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intender la lingua, e conoscer i caratteri, ne’ quali è scritto. Egli è scritto in lingua
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Resumo

Esta tese trata do problema de localização de deformações em materiais parcialmente
frágeis, modelados como meios com degradação elástica, utilizando duas diferentes es-
tratégias de regularização, aplicadas quer individualmente quer em combinação: uma
regularização no ńıvel da formulação através da teoria de cont́ınuo micropolar, e uma
regularização no ńıvel numérico utilizando métodos sem malha do tipo smoothed point
interpolation. Com o objetivo de permitir a representação de meios parcialmente frágeis
com o modelo de cont́ınuo micropolar, foi proposta uma formulação unificada monodis-
sipativa para degradação elástica em meios micropolares, definida em termos de tensores
secantes, funções de carregamento e regras de degradação, e dentro desse esquema geral
foram obtidos diferentes modelos de dano escalar. Foi também introduzida uma especi-
fica forma compacta para a representação de meios micropolares, com o objetivo de obter
uma compatibilidade formal entre modelos constitutivos clássicos e micropolares. Apro-
veitando dessa compatibilidade, os modelos micropolares foram implementados em uma
estrutura existente para meios clássicos, baseada no paradigma de orientação a objetos,
caracterizada pela independência entre os modelos constitutivos e os métodos numeri-
cos e modelos de análise adotados durante a análise. Conceitos sobre a propagação de
ondas de aceleração, como a condição de compatibilidade de Maxwell e a condição de
propagação de Fresnel-Hadamard, foram derivados para a formulação micropolar pro-
posta, com o objetivo de obter um indicador de localização, para ser utilizado como uma
ferramenta anaĺıtica e numerica para a avaliação dos efeitos de regularização induzidos
pelos parâmetros do material micropolar. Modelos existentes de tipo smoothed point in-
terpolation, desenvolvidos originalmente para a elasticidade e elastoplasticidade clássicas,
foram estendidos ao caso de degradação elástica em meios clássicos. A peculiar forma
fraca de tipo weakened-weak na qual esses métodos são baseados, foi estendida também
para o cont́ınuo micropolar, considerando seja elasticidade que degradação elástica. Tais
métodos foram implementados no mesmo projeto orientado a objetos no qual foram im-
plementados os models constitutivos para o cont́ınuo micropolar. Diferentes simulações
numéricas relativas a problems de localização numérica e induzida, permitiram de des-
tacar os efeitos de regularização da teoria micropolar em análises com o método dos
elementos finitos, bem como os efeitos de regularização dos métodos de tipo smoothed
point interpolation em modelos clássicos de degradação elástica. As duas estratégias se
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mostraram capazes the regularizar, individualmente, a resposta em diferentes análises.
Além disso, a combinação das duas permitiu de melhorar os resultados dos casos onde a
aplicação individual delas não era suficiente. Os mesmos resultados foram obtidos com
outras simulações, feitas utilizando dois testes esperimentais reais como base para a de-
finição dos modelos discretos. Nesse caso foi possivel observar, além da regularização das
instabilidades materiais, também uma certa capacidade dos métodos de tipo smoothed
point interpolation de fornecer, durante as análises, resultados independentes da malha.
Palavras-chave: Localização de deformações; Cont́ınuo micropolar; Mecânica do dano
cont́ınuo; Métodos sem malha; Smoothed point interpolation methods (S-PIM); Pro-
gramação Orientada a Objetos (POO)
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Abstract

The present thesis address the issue of localization (or discontinuous failure) in quasi-
brittle materials modelled as elastic-degrading media, using two different regularization
strategies, applied individually as well as in a combined form: a regularization at the
formulation level with the micropolar continuum theory, and a regularization at the nu-
merical level using smoothed point interpolation meshfree methods. In order to allow
the representation of quasi-brittle media with the micropolar continuum model, a uni-
fied monodissipative formulation for elastic degradation in micropolar media, defined in
terms of secant tensors, loading functions and degradation rules, has been proposed,
also deriving a number of scalar damage models within its general scheme. A peculiar
compact representation for micropolar media has been introduced, in order to guaran-
tee a formal compatibility between classic and micropolar constitutive models. Taking
advantage of this compatibility, the micropolar models have been implemented within
an existing object-oriented constitutive models framework originally conceived for clas-
sic media, characterized by its independence on the underlying numerical method and
analysis model adopted during an analysis. Well-known concepts of acceleration waves
propagation, such as the Maxwell compatibility condition and the Fresnel–Hadamard
propagation condition, have been derived for the proposed micropolar formulation, in
order to obtain a proper localization indicator as a both analytical and numerical tool
for the evaluation of the regularization effects induced by the micropolar material pa-
rameters. Existent smoothed point interpolation methods, originally developed for classic
elasticity and elasto-plasticity, have been extended to the case of elastic degradation in
classic media. The peculiar weakened-weak form which they are based on, has been also
extended to the micropolar continuum, considering both elasticity and elastic degrada-
tion. These methods have been implemented within the same object-oriented project of
the micropolar constitutive models framework. A number of simulations regarding prob-
lems of numerical and induced localization in damage models, allowed to point out the
regularization effects of the micropolar theory in finite element analyses, as well as the
regularization effects of smoothed point interpolation methods in classic elastic-degrading
models. Both these strategies were capable to individually regularize the behaviour of
a number of analyses. Furthermore, their combination allowed to improve the results
in the cases where the use of just one of them wasn’t sufficient. The same results were
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obtained with another set of simulations performed using two different real experimental
tests as a basis for the discrete models. In this case, beside the regularization of material
instabilities, is was also possible to observe a certain capability of the smoothed point
interpolation methods to provide mesh-objective results during the analyses.
Key-words: Strain localization; Micropolar continuum theory; Continuum damage me-
chanics; Meshfree methods; Smoothed point interpolation methods (S-PIM); Object-
Oriented Programming (OOP)
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Ē vector space associated to the environment space
RN N-dimensional Euclidean space
SO(3) space of the rotation tensors
D domain of a body
Dt domain of a body at the time instant t
∂D boundary of a body
∂Du

e essential boundary for prescribed displacements
∂Dϕ

e essential boundary for prescribed microrotations
∂Du

n natural boundary for the prescribed stresses
∂Dϕ

n natural boundary for the prescribed couple-stresses
DS
k k-th smoothing domain

∂DS
k boundary of the k-th smoothing domain
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Êt tangent constitutive operator (classic stress/strain relation)
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a(w̄, ū) bilinear form
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Chapter 1

Introduction

1.1 Motivations

The class of quasi-brittle media comprehends a large number of materials which are of
interest in various engineering applications, such as concrete, rocks, coarse-grained ce-
ramics, and most fibre-reinforced materials. Hence, a proper characterization of their
behaviour is of fundamental importance. Among the different methods and techniques,
continuum damage mechanics has been shown to be a valid approach for the representa-
tion of the physically non-linear phenomena characterizing the behaviour of quasi-brittle
media. Briefly, it consists in the representation of the degradation (or damaging) of a
material during a loading process in terms of a set of state variables (or damage vari-
ables), which are functions defined at every point of the domain representing the body
under analysis. This continuous approach to degradation has been the objective of a
large number of investigations, which led to the formalization of different independent
constitutive approaches into unified frameworks. The continuous nature of this strategy
is also appealing from the computational point of view since, in general, requires less
efforts to be implemented within the finite element method or other discretization tech-
niques. Numerous studies have also been devoted to questions regarding numerical and
coding aspects of the aforementioned unified frameworks. The aim of these studies was
the optimization of the implementations, especially regarding the issue of independence
between the constitutive modelling aspects and the underlying numerical methods, which
is important to guarantee the use of an implemented constitutive model independently
on the peculiar numerical methods that is being used to perform the analysis.

Despite the advantages offered by this continuous approach to damage, finite ele-
ment discretizations based on models defined within continuum damage mechanics may
suffer for a number of issues, because of the softening behaviour of such models. Quasi-
brittle media indeed, are characterized by a reduction of their load-carrying capacity,
which manifests when a certain deformation threshold is attained, resulting in typical de-
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scending branches in load-displacement plots. During this softening phase the degrading
phenomena tend to concentrate in limited parts of the body under analysis, resulting in
the so-called strain localization, which is a precursor of the failure of a sample. When
this phenomenon occours, the numerical simulations may be affected by a number of
pathological behaviours such that, for example, strong mesh dependency, premature crack
initiation, and instantaneous perfectly-brittle fracture, which significantly alter the quality
of the results.

The problem of strain localization has been investigated by many authors, considering
both elasto-plastic and damage (or elastic-degrading) models. It has been pointed out that
the pathological behaviours exhibited in numerical simulations where localization occours
are due to the local description offered by the classic continuum theory, in contrast with
the non-local nature of phenomena like plasticity and damage. The solutions that have
been proposed over the years aimed to recover this non-locality introducing a sort of
internal length, in order to regularize the behaviour of a model.

A common approach that has been followed by many authors in the past consists in
the regularization of a model with the introduction of an internal length at the formu-
lation level, i.e., directly in the continuum description, using gradient-enhanced models
and multifield (or generalized) continuum descriptions. Among the latter, the Cosserat
(or micropolar) continuum theory has been widely adopted to regularize problems with
strain-softening elasto-plasticity, with limited applications also to damage models. Its
popularity among the researchers is mainly due to the fact that, with respect to other
generalized continuum strategies, it has a simple formulation and is easy to be imple-
mented in standard FEM codes; furthermore, its parameters can be connected with the
microstructural properties of a material. However, when dealing with the micropolar the-
ory, as well as other multifield continuum theories, the main issue consists in a lack of
generality of the physically non-linear models based on them. While for classic media,
as commented before, great efforts have been made to attain comprehensive theoretical
and computational frameworks for constitutive models, the same level of development is
not currently available in the aforementioned gradient-enhanced and multifield continuum
theories.

The other path that can be followed for the regularization of localization problems
consists instead on the introduction of an internal length at the numerical level, i.e.,
within the discretization method. Different solutions have been proposed in the past
in the field of the finite element method, like as embedded discontinuities or embedded
localization zones. Recently, it has been shown that some classes of meshfree methods,
like moving least square, reproducing kernel approximations, and methods based on strain
smoothing techniques, are able to bring regularization effects on localization problems,
due to the intrinsic non-local properties that are embedded in their formulation.

Regarding these two approaches to regularization, at the formulation and at the numer-
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ical level, the existent literature points out that, often, a single strategy is not sufficient
to regularize a wide range of problems, and better results can be obtained combining
different methods.

1.2 Objectives

Taking into account the premises discussed in the previous Section 1.1, this thesis was
developed with the aim to investigate localization problems occourring in quasi-brittle
media using two different regularization strategies: the micropolar continuum theory at
the formulation level, and smoothed point interpolation methods at the numerical level.

Due to the limited number of constitutive models based on the micropolar theory
available in the literature and to their lack of generality, it was first necessary to develop a
unified formulation for elastic degradation based on this continuum description, analogous
to the existent one based on the classic theory. Peculiar efforts were also devoted to the
implementation aspects of such formulation, aiming to obtain a computational framework
for constitutive models independent on both the peculiar numerical method and analysis
models adopted in an analysis, and compatible with an existent implementation for classic
media1.

The proposed constitutive models for elastic degradation in micropolar media were
then investigated within the theory of acceleration waves propagation, a common ap-
proach to study localization phenomena. This investigation led to the definition of a
localization indicator for the micropolar continuum, which was used to evaluate the role
of the micropolar material parameters on the onset of localization.

Smoothed point interpolation methods allow for a more simple treatment of the essen-
tial boundary conditions with respect to other common meshfree methods. In the existent
literature, they have been applied only to classic elasticity and elasto-plasticity, hence it
was necessary to extend their application to elastic-degrading models based on both the
classic and the micropolar continuum theories.

1.3 Outline

This treatise is organized in 7 chapters and 3 appendices. After this introduction (Chap-
ter 1), Chapter 2 presents a survey on the literature concerning some aspects of the
modelling of quasi-brittle media. It contains some basic informations on the physics of
quasi-brittle media, on the modelling approach within continuum damage mechanics, and

1 The implementation of such framework have been performed in the open-source software INSANE,
taking advantage of its existent framework for constitutive models based on the classic continuum theory
(Appendix C).
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on a unified formulation for multidissipative elastic-degrading models. It also discusses
about localization issues and possible regularization strategies.

The micropolar continuum is treated in Chapter 3. After a brief survey on physical and
modelling aspects of materials with microstructure, the basic expressions of the micropolar
formulation in linear elasticity are briefly recalled. The chapter then focuses on a novel
unified formulation for micropolar elastic-degrading models proposed by the author.

Chapter 4 is devoted to the class of smoothed point interpolation methods. In the
first part, after a brief review on general meshfree methods, the main concepts regarding
smoothed point interpolation methods are recalled, focusing on two specific methods.
Novel applications of such models to the case of elastic degradation in classic media, and
to the case of elasticity and elastic degradation in micropolar media are then presented.

In Chapter 5 the localization analysis of the proposed constitutive models is performed.
A proper localization indicator, which allows to perform both analytical and numerical
localization analyses in micropolar media, is derived. Two analytical investigations are
then performed in order to point out the role of the micropolar material parameters on
the onset of localization.

A set of numerical simulations dealing with problems characterized by numerical and
induced localization are presented in Chapter 6, which were performed with both the
finite element method and meshfree methods, and considering both classic and micropolar
theories.

Also Chapter 7 presents some numerical simulations, that in this case were performed
using real experimental tests as a basis.

Finally, Chapter 8 close this treatise, summing up the main contributions of this thesis
and discussing possible future developments in this research field.

This text is followed by a set of 3 appendices, containing other important informations
which have been left out from the main text in order to ease the reading. The content
of Appendix C is of fundamental importance as a support for this text, since it con-
tains informations on the coding structure adopted for the implementations of micropolar
constitutive models and of meshfree methods.

1.4 Notations

Some standard notations used in the body of the manuscript are summarized here. With
the symbols E, Ē and RN , the environment space (a three-dimensional Euclidean space),
its associated vector space and the N-dimensional Euclidean space are indicated. The
symbols (ēi) and (r̄α) indicate, respectively, a basis of E and a basis of RN . The symbol
D ⊆ E indicates the domain of a body. In the following of the manuscript, if not differently
specified, spaces will be assumed to be three-dimensional with latin indexes running from
1 to 3; an exception is represented by generalized quantities defined in six-dimensional
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spaces, for which the indices will run from 1 to 6. Vectors are indicated as x̄ ∈ Ē, with
x̄ = xi ēi, while second-order and fourth-order tensors respectively by x ∈ Ē ⊗ Ē, with
x = xij ēi ⊗ ēj, and by x̂ ∈ Ē⊗ Ē⊗ Ē⊗ Ē, with x̂ = xijk` ēi ⊗ ēj ⊗ ēk ⊗ ē`. The tensors
of third- and fifth-order used in this manuscript are of mixed type, and are represented
respectively by x̌ ∈ RN⊗Ē⊗Ē, with x̌ = xαij r̄α⊗ ēi⊗ ēj, and by x̆ ∈ RN⊗Ē⊗Ē⊗Ē⊗Ē,
with x̆ = xαijk` r̄α⊗ ēi⊗ ēj⊗ ēk⊗ ē`. The symbol · denotes both the standard dot product
between vectors and the total contraction between tensors like, for example, x̄ · ȳ = xi yi,
x · ȳ = xij yj ēi, x̂ · y = xijk` yk` ēi ⊗ ēj and the other possible combinations. The same
symbol is used, with a slight abuse of notation, also for contractions with mixed order
tensor, like x · y̌ = xij yαij r̄α, since there is no risk of confusion between the different
indexes. With the symbol ⊗, the standard tensorial product, as x̄⊗ ȳ = xi yj ēi ⊗ ēj or
x⊗ y = xij yk` ēi ⊗ ēj ⊗ ēk ⊗ ē`, is indicated. In case of mixed tensors, combinations are
given, for example, by x̌⊗ y̌ = xαij yβk` r̄α ⊗ ēi ⊗ ēj ⊗ r̄β ⊗ ēk ⊗ ē`. In some applications
the Voigt notation will be used to represent second-order and fourth-order tensors; once a
certain coordinates system has been fixed, a generic second-order tensor with dimension
three x can be represented by means of an array with nine components, indicated with
the symbol {x}. In an analogus way, a fourth-order tensor with dimension three x̂ can
be represented by means of a 9× 9 matrix, indicated as [x̂]. It should be noted that the
provided dimensions refer to a general three-dimensional case; in different situations (e.g.,
plane-strain or plane-stress states, or peculiar symmetries), the size of arrays and matrices
in Voigt representation is minor, in general. Such dimensions will be also different for the
Voigt representation of generalized quantities. The same symbols {·} and [·] are also used
to indicate, respectively, arrays and matrices in numerical equations. In this manuscript,
second-order and fourth-order identity tensors are expressed as

id := δij ēi ⊗ ēj, id · ā = ā (1.1)
ˆID := δik δj` ēi ⊗ ēj ⊗ ēk ⊗ ē`, ˆID · a = a (1.2)

ˆIDT := δi` δjk ēi ⊗ ēj ⊗ ēk ⊗ ē`, ˆIDT · a = aT (1.3)

ˆIDsym := 1
2 (δikδj` + δi`δjk) ēi ⊗ ēj ⊗ ēk ⊗ ē`, ˆIDsym · a = asym (1.4)

ˆIDskw := 1
2 (δikδj` − δi`δjk) ēi ⊗ ēj ⊗ ēk ⊗ ē`, ˆIDskw · a = askw (1.5)

The symbol J·K indicates the jump of a certain quantity across a discontinuity surface,
while the symbols < ·, · >X , ‖·‖X , and |·|X indicate, respectively, an inner product, a
norm, and a seminorm, in a generic space X.
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1.5 Tools

Different tools have been of fundamental importance for the realization of this thesis.
The numerical simulations presented in Chapters 6 and 7, as well as the implementation
exposed in Appendix C, have been realized in the INSANE2 software (INSANE - IN-
teractive Structural ANalysis Environment, n.d.), an open source project based on the
Object-Oriented Paradigm (OOP), and written in Java. The figures representing finite
element meshes and the corresponding contour plots presented in Chapters 6 and 7 have
been extracted from the post-processor of the software INSANE, except for the contour
plots of the localization indicators in the finite element models, which have been gener-
ated with the Python library Matplotlib (Hunter, 2007). The triangular background
cells used for the construction of meshfree discretizations in Chapters 6 and 7, as well as
the contour plots for the meshfree models in Chapters 6 and 7, have been generated with
the software Gmsh (Geuzaine and Remacle, 2009). The conversion of input/output files
between the software INSANE and Gmsh, as well as the numerical localization analyses
exposed in Chapter 6, have been performed with author’s own applications, available at
his Git repository (https://github.com/grLapo). This text has been prepared in LATEX,
using the editor Kile (Kile, n.d.). Large part of the figures and plots have been generated
with the Tikz (Tantau, 2013) and Pgfplots (Pgfplots, n.d.) libraries. Other figures have
been prepared and edited with Inkscape (Inkscape, n.d.) and Gimp (Gimp, n.d.).

2 More informations on the project can be found at https://www.insane.dees.ufmg.br/, while the
development code is freely available at the Git repository http://git.insane.dees.ufmg.br/insane/
insane.git.

https://github.com/grLapo
https://www.insane.dees.ufmg.br/
http://git.insane.dees.ufmg.br/insane/insane.git
http://git.insane.dees.ufmg.br/insane/insane.git


Chapter 2

Modelling of quasi-brittle media

The main concepts and issues related to the modelling of quasi-brittle
media are exposed. After a brief survey on the physical aspects of such
media, some concepts of continuum damage mechanics are presented,
focusing on the notion of damage variables and on a unified formulation
for elastic-degrading constitutive models. The issue of localization is
then recalled, together with discussions on different regularization tech-
niques.

2.1 Physical aspects

The different behaviours that a material may exhibit at a macro scale (i.e., the scale
at which a solid is idealized as a continuous body) can be collected in three main ideal
categories:
• ductile;
• brittle;
• quasi-brittle.

A specimen of a ductile material, loaded in an uniaxial state, after an initial linear elastic
phase presents a non-linear load-displacement relation; if the cause of the deformation
is removed, the specimen unloads following a path that presents the same slope as the
initial linear elastic phase. Once at the stress-free state, the specimen presents a residual
strain, that constitutes the history of the deformation process; a new loading phase will
start from that residual deformation following a path parallel to the initial elastic one
(Fig. 2.1(a)).

If a material has a brittle response, it presents a limited (or absent) non-linear branch,
with a sudden failure once a certain load level is reached (Fig. 2.1(b)). A quasi-brittle
material may present a wide non-linear branch as a ductile one; it differs however from a
ductile material for its unloading path, that at a stress-free state is characterized by no
residual strains (Fig. 2.1(c)). In other words, according to Lemaitre and Desmorat:

7
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Figure 2.1: Material behaviours

“A material is considered brittle when it brakes without any irreversible
strains and without any dissipation prior to cracking [...]. It is consid-
ered quasi-brittle when a dissipation prior to cracking exists with no or
negligible permanent strains [...].”(Lemaitre and Desmorat, 2005, pag.
321)

In this case, the history of the deformation process is represented by the deterioration of
the specimen stiffness, and a new loading branch starting from the stress-free configuration
will follow a path different (with a less pronounced slope) from the initial elastic one.

The fact that a material belongs to one of the aforementioned categories is closely
related to its characteristics at the atomic and the micro scales, and to the defects that it
may present at such scales. At the atomic scale a solid is characterized by the geometry,
topology and type of bonding of its atomic lattices (aggregates of atoms or molecules),
and its defects are, among the others, atomic vacancies, dislocations, and disinclinations
(Krajcinovic, 1996). The micro scale, in the words of Krajcinovic:

“[...]refers to the range of lengths within which the solid is heteroge-
neous and piece-wise continuous. Individual geometrical features of the
microstructure (grains, chain-folded lamellae, fibers, etc.) are clearly
recognizable. The deformation patterns are affected by grain and phase
boundaries, inclusions, individual fibers, pores, grain size microcracks,
and dislocation bands.”(Krajcinovic, 1996, pag. 11)

At the macro scale, described before, the defects are constituted by macrocracks, notches,
large perforations and shear bands, for example.

A ductile response is tipical of polycrystalline solids (e.g., metals and alloys1), that
exhibit plastic deformations due to material flows through the lattices, like as grain sliding
on crystallographic planes or dislocations flow, for example (Asaro (1983), Havner (1992)

1 It is remarked that not all metals and alloys present a ductile behaviour. Furthermore, their be-
haviour may be influenced by factors that are not intrinsic to the material, like as temperature and
loading conditions, for example.
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and Lubliner (2008)). The residual strains represent a measure of the effects of mutations
at atomic and micro scales on the deformation at the macro scale of the body. If during
the plastic process the number of bonds between the materials particles is unaltered (i.e.,
if the plastic mutations don’t alter the connections among the particles of the body), also
the elastic moduli of the material remain unaltered, resulting in an unloading-reloading
path parallel to the initial elastic one (Fig. 2.1(a)). Ductile materials may fail because of
ductile fracture (Fig. 2.2). In this case, the rupture of bonds between material particles
may be caused by atomic decohesion due to dislocations piling in metals or by nucleation,
growth and coalescence of microvoids (i.e., cavities of microscopic size) near inclusions and
second-phase particles in metal alloys, which may lead to the formation of a macrocrack
(Puttick (1959), Benzerga and Leblond (2010), Lemaitre and Desmorat (2005) and Chen
and Butcher (2013)). The ductile behaviour is due to the fact that the crack tip, in this
case, is blunted by dislocations emitting from the crack tip itself, and requires a large
amount of energy to propagate (Rice (1992) and Rice and Thomson (1974)).

microvoids

Figure 2.2: Fracture by microvoids nucleation

Rather than to material flow and microvoids nucleation, the non-linear behaviour of
brittle and quasi-brittle media “is associated with the loss of interatomic bonds which is
manifested on the micro scale as the nucleation and growth of microcracks” (Krajcinovic,
1996, pag. 17). Microcracks are the typical defects of brittle and quasi-brittle media,
and differ from microvoids for their geometrical characteristics. While the latter can be
described as cavities in the crystal structure of a metal, with no singular points, the former
can be defined as “flat defects with an atomically sharp tip” (Krajcinovic, 1996, pag. 19),
i.e., surfaces that form in a material, across which the continuity is lost.

microcracks

Figure 2.3: Fracture by microcracks nucleation

Most ceramics, glasses, and steels at low temperature belong to the class of brittle
materials. The deformation process in this case is dominated by the propagation of a
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small number of macrocracks, that may initiate in correspondence to existing defects, like
as notches or pre-existing cracks, that is, at stress concentrations, in general (Fig. 2.3).
Such materials present a limited non-linear deformation branch and an abrupt rupture
(Fig. 2.1(b)), due to the fact that all the energy imparted by external loads is dissipated
with the formation of microcracks in the direction of propagation of the macrocracks,
leading to a rapid failure (the so-called crack growth-dominated process).

In quasi-brittle media, instead, the deformation process is dominated by the forma-
tion of microcracks that nucleate randomly over large parts of a specimen (the so-called
nucleation-dominated process). Rather than because of stress concentrations, microcracks
initiate due to the rupture of weak material bonds scattered across a specimen. Only part
of them will assemble into a cluster, leading eventually to the formation of a macrocrack,
and most of the imparted energy will be dissipated by micro defects nucleation across
large parts of the specimen. The fact that in such materials microcracks may form with-
out gathering into a macrocrack is due to their heterogeneity at the micro scale. When the
material is heterogeneous at the micro scale, a microcrack may initiate and its growth be
arrested by a material particle with higher fracture strength. In this case a large number
of microcracks may nucleate, inducing a non-linear behaviour with dissipation of energy,
without necessarily form a macrocrack that may lead to an abrupt failure. Brittle materi-
als, on the contrary, are characterized by an homogeneous micro scale; when microcracks
initiate due to stress concentrations they find no obstacles and are free to gather into one
or more macrocracks. Heterogeneity at the micro scale is a characteristic of materials like
concrete (Fig. 2.4), rocks, coarse-grained ceramics and most fibre-reinforced materials.

aggregates

cement paste

macrocrack

microcracks

Figure 2.4: Concrete microstructure

The following sections will be devoted specifically to the class of quasi-brittle materials,
considering both modelling aspects and common issues related to their numerical analysis.
Before proceeding further, it should be remarked that the material models recalled in this
section represent idealized material behaviours. If submitted to an experimental test, a
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real specimen will be neither purely ductile nor purely brittle (or quasi-brittle) and will
present, in general, a mixed behaviour. Moreover, in some cases, a certain behaviour could
be not only an intrinsic property of a material but it could also depend on other factors
(see, e.g., Nemat-Nasser and Chang (1990)) such as the stress state and the loading rate,
for example (see, e.g., the so-called brittle-to-ductile transition phenomenom).

2.2 Continuum damage approach

As discussed in the previous section, the degradation of a quasi-brittle medium is a com-
plex phenomenom which strongly depends on the heterogeneous character of the medium
microstructure. Among the different strategies for the modelling of such materials this
work focuses on continuum damage mechanics2 3. Within this approach a quasi-brittle
medium is modelled at the macro scale as a continuum body for the whole loading pro-
cess4. As it will be specified in Section 2.2.1, here the term damage refers to the defects
of a material at the micro scale, that is, microvoids and microcracks, that are responsible
for the deterioration of its elastic properties. The discontinuous effect of these defects
is taken into account by means of continuous field variables, the so-called damage vari-
ables. As it will be discussed in Section 2.2.2, these damage variables will be considered
as state variables in the treatment of quasi-brittle media within the thermodynamics of
irreversible processes.

A fundamental concept for the transition from the heterogeneous representation of the
micro scale of a material to the continuous description at its macro scale is the one of
representative volume element (RVE). In a material the RVE can be defined as

“[...]a sample[, of that material,] that (a) is structurally entirely typical
of the whole mixture on average, and (b) contains a sufficient number of
inclusions for the apparent overall moduli to be effectively independent
of the surface values of traction and displacement, so long as these values
are ‘macroscopically uniform.’ That is, they fluctuate about a mean with
a wavelength small compared with the dimensions of the sample, and the
effects of such fluctuations become insignificant within a few wavelengths
of the surface. The contribution of this surface layer to any average can

2 For an exhaustive treatment on continuum damage mechanics and other modelling strategies like,
for example, statistical models, lattice models, and micromechanical models, the reader may refer to the
book by Krajcinovic (Krajcinovic, 1996).

3 The first applications of the concept of continuum damage mechanics in concrete started in the 1980s
with the works of Mazars (Mazars and Lemaitre, 1984, Mazars and Pijaudier-Cabot, 1989), devoted to
its simplest scalar form.

4 Eventually, a transition to a discrete damage model could be considered in order to take into account
the formation of a macrocrack, as a discontinuity in the smooth fields describing the kinematics of the
body (see, e.g., de Borst and Abellan (2002), de Borst, Remmers, Needleman and Abellan (2004)).
However, this approach is not considered in the present work.
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be made negligible by taking the sample large enough.”(Hill, 1963, pag.
359)

More concisely, the RVE can be identified also as

“[...]the smallest volume on which a density may represent a field of
discontinuous properties.”(Lemaitre and Dufailly, 1987, pag. 644)

The heterogeneous material properties and the scattered defects at the micro scale are
averaged in order to obtain an effective continuum approximation, where each point of
the continuum model is characterized by such averaged quantities. The size of an RVE
depends both on the material microstructure and on the defects at the micro scale; its
linear size may vary from 0.05 to 0.5 mm for metals, and from 10 to 100 mm for concrete,
for example.

As it will be discussed in Section 2.2.2, the degradation of a quasi-brittle material
due to defects at the micro scale is represented mathematically as the evolution of its
elastic properties. In an uniaxial state, for example, the Young’s modulus passes from
an initial value one E, to a secant value ES, which evolves during the loading process
(Fig. 2.5). In a more general case the degradation will be represented in terms of the
whole constitutive operator that, in a loading process, will pass from an intial value Ê
to a secant one ÊS. This strategy for the representation of the behaviour of quasi-brittle
media is usually referred to as elastic degradation, since it aims to describe the evolution
of the elastic properties of a material; a damage model is obtained when such evolution
is represented in terms of damage variables.

E

ES

displacement

lo
ad

Figure 2.5: Elastic properties degradation

Remark 2.1: Computational approaches to damage

Besides continuum damage mechanics, two other approaches widely applied to the
computational modelling of quasi-brittle media, and specifically of concrete, are the
discrete and smeared crack models.
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A first application of the discrete approach to concrete can be found in the work
of Ngo and Scordelis (1967), where the crack was introduced as a geometric entity,
allowed to grow in correspondence of a certain tensile strength criterion attained at
the crack tip. Departing from the initial applications based on the concepts of linear
elastic fracture mechanics (Griffith, 1921), important results in the analysis of quasi-
brittle materials were obtained with the introduction of the cohesive discontinuity
method (Dugdale, 1960, Barenblatt, 1962, Hillerborg et al., 1976, Needleman, 1987).
Further improvements of the method aimed to solve one of its main drawbacks, i.e.,
the strong dependency of the crack path on the topology of the mesh, requiring the use
of re-meshing procedures (Ingraffea and Saouma, 1987) or the application of meshfree
methods (Belytschko and Black, 1999, Moes et al., 1999, Rabczuk and Belytschko,
2004, 2007).

An initial version of the smeared approach applied to concrete analysis was pro-
posed by Rashid (1968), and later developed by Suidan and Schnobrich (1973), Bažant
and Oh (1983) and Rots et al. (1985). Differently from the discrete approach, in this
case the cracks are not explicitly represented, but are introduced as a degradation of
the elements stiffness. Analogies between the smeared crack approach and continuum
damage mechanics were pointed out by de Borst and Gutiérrez (1999) and de Borst
(2002).

Both discrete and continuous approaches to fracture have a consistent physical
basis in the field of quasi-brittle materials failure. Indeed, while the geometrical
discontinuity proper of the discrete approach appears to be the most natural way to
represent the final phases of failure process, where the microcracks tend to coalesce
into one or more macrocracks, the continuous concept is a practical resource for
the representation of the complex phenomena involved in the microcracks nucleation
process, i.e., microcracks initiation, growth and coalesces (Rots and Blaauwendraad,
1989). Based on these considerations, the combination of the two approaches has
been recently investigated in a number of works (see, e.g., de Borst and Abellan
(2002) and de Borst, Remmers, Needleman and Abellan (2004)).

2.2.1 Damage variables

As discussed in the previous section, the damage variables represent a way to quantify
the presence of microdefects in terms of continuous field variables. From a physical point
of view, the damage can be defined as the surface density of microcracks and intersection
of microvoids lying on a plane cutting a certain RVE (Lemaitre and Dufailly, 1987). Such
density, that is a function of the plane orientation represented by its normal n̄, is expressed
as

D(n̄) := SD
S

(2.1)
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where S is the cross-section of the cutted RVE and SD the area of the defects at the
cutting plane (Fig. 2.6). As it has been defined, this density represents a damage variable
that goes from 0 (undamaged material) to 1 (completely damaged material); alternatively,
an integrity variable, defined as i(n̄) := 1−D(n̄), can be considered.

n̄

RVE
SD

S

Figure 2.6: Damage representation on a RVE

Alongside the nominal5 stresses and strains, i.e., the ones defined on the idealized
continuum body, in the context of damage mechanics the concept of effective stresses
and strains is usually introduced (see, e.g., Rabotnov (1968), Simo and Ju (1987), Rizzi
(1995) and Lemaitre and Desmorat (2005)). Such quantities are defined as the stress and
the strain which the undamaged material between the microdefects is subjected to. The
relation between effective stresses and strains is assumed to be described by the same
constitutive law of the undamaged material, considered as linear elastic (see, e.g., Carol
et al. (2001a))

σeff = Ê · εeff → σeffij = Eijkl ε
eff
kl (2.2)

The passage from effective to nominal quantities involves the use of damage variables.
First, the rule defining the passage from effective to nominal of one of the quantities, the
stress or the strain, should be fixed in terms of damage variables. Then, the transformation
of the remaining quantity may be perfomed through one of the following equivalence
conditions:
• strain equivalence;
• stress equivalence;
• energy equivalence.

In the first case, the nominal and effective strains are assumed to be coincident, while the
nominal stress depends on the effective one by mean of a fourth-order tensor α̂ measuring
the average effect of distributed defects, resulting in the following secant constitutive

5 The nominal stresses and strains are the ones that can be measured externally using, for example, the
initial cross-section and length of a specimen during a test, without taking into account their evolution.
Mathematically, they are the one that satisfy equilibrium and compatibility conditions at the macro scale.
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operator
ε = εeff , σ = α̂ · σeff , ES

ijkl = αijmnEmnkl (2.3)

On the contrary, the stress equivalence assumes the nominal and effective stresses to
be coincident, with the nominal strain depending again on a fourth-order tensor α̂; this
results in the expressions

σ = σeff , εeff = α̂ · ε, ES
ijkl = Eijmnαmnkl (2.4)

It is emphasized that both the aforementioned approaches don’t transmit to ÊS, in general,
the major symmetry of Ê, that instead are maintained by the energy equivalence method,
expressed by σ ·ε = σeff ·εeff . In this case two different approaches are possible, resulting
in the following sets of equations

σ = α̂∗ · σeff , εeff = α̂∗ · ε, ES
ijkl = α∗ijpqEpqrsα

∗
klrs (2.5)

σeff = α̂ · σ, ε = α̂ · εeff , ES
ijkl = αpqijEpqrsαrskl (2.6)

where the tensors α̂∗ and α̂ are such that α∗ijpqαpqkl = αijpqα
∗
pqkl = IDsym

ijkl .
Once one of the previous methods is adopted, damage variables can be introduced

in a model in different ways. The most common approach is the one of scalar-isotropic6

damage, where the damage is described in terms of a single scalar variable, while more
complex models consider the effects of the material degradation in terms of second-order
or fourth-order tensors.

2.2.1.1 Scalar damage

The simplest approach to material degradation in terms of scalar variables is represented
by the scalar-isotropic damage model. There, a single damage variable independent on
the direction (i.e., isotropic) is considered (Kachanov, 1958). Recalling the representation
within the strain equivalence condition, such model can be obtained by setting α̂ = i îd,
where i is an integrity variable varying from 1 (virgin material) to 0 (fully damaged
material). From Eq. (2.3), considering the damage variable D such that i = 1 − D, the
well-known form of scalar-isotropic damage is recovered

ÊS = (1−D) Ê (2.7)

6 In the literature such form of damage is usually referred to simply as isotropic damage or as scalar
damage. The term scalar refers to the nature of the scalar variable, while the term isotropic indicates the
effect on the secant constitutive operator. However, it should be noted that such nomenclatures, when
adopted independently may be ambiguous since, as recalled in this section, there are scalar models that
are not isotropic, and isotropic models that are not described in terms of a single damage variable. In
order to avoid confusion, in the following the classic damage expression ÊS = (1−D) Ê will be referred
to as scalar-isotropic.
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Such model is labelled as isotropic since it affects in the same way all the components of
the initial constitutive operator Ê; an eventual isotropy of such tensor is not destroyed
by the damage variable.

This form of damage can be generalized in such a way to obtain a scalar damage format
where the components of the initial constitutive operator are modified with different
weights; the following expression can be adopted (see, e.g., Ortiz (1985))

ÊS = Ê + λ(D) M̂∗ (2.8)

where M̂∗ is a fourth-order tensor defining the directions where damage takes place, and
λ(D) is a function depending on the damage variable and eventually on the elastic material
parameters. If M̂∗ is isotropic the damage model is also referred to as isotropic; on the
contrary, if M̂∗ is anisotropic, also the damage model is referred to as anisotropic. In the
latter case, the scalar damage creates an anisotropic effect on the secant operator.

Other common forms of scalar damage include orthotropic models based on a single
damage variable (de Borst and Gutiérrez, 1999), unilateral damage models that use two
scalar variables in order to distinguish between damage in tension and compression (see,
e.g., Ladevèze (1983), Mazars and Pijaudier-Cabot (1989), Mazars et al. (1990), Comi
and Perego (2001) and Cervera and Tesei (2017)), and models that use more than one
damage variable in order to describe the different damage mechanisms that may verify in
a material (see, e.g., Ladevèze (1983) and Lemaitre and Desmorat (2005) where different
variables are used to represent the damage mechanisms in composite materials).

2.2.1.2 Tensorial damage

When the dependence of the damage on the considered direction cannot be neglected,
more complex representations must be adopted. In order to obtain a natural repre-
sentation of the anistropy of the material degradation, the damage is usually repre-
sented in terms of second-order and fourth-order tensors (Krajcinovic, 1996, Lemaitre
and Desmorat, 2005). Despite the importance of such representations they are not re-
called here since this work, as it will be shown in Section 3.3, focuses on the degradation
of micropolar media described in terms of scalar-isotropic damage models.

2.2.2 Unified formulation for constitutive models

As discussed before, the models of continuum damage mechanics that will be adopted
here belong to the general class of elastic-degrading models, that is, models where the
degradation of a material is represented in terms of the evolution of its elastic proper-
ties. While the theory of elasto-plasticity has a long tradition in the scientific and the
engineering communities, with both theoretical and numerical aspects well-established



§2.2 Modelling of quasi-brittle media 17

in the literature (see, e.g., Hill (1998), Simo and Hughes (1998), and Lubliner (2008)),
the development of the theory of elastic degradation has been less uniform, with numer-
ous mutually independent contributions (see, e.g., Carol et al. (1994) for some historical
comments).

In the last years a lot of efforts have been made in order to collect the various inde-
pendent contributions to the field of elastic degradation in a unified theoretical frame-
work. One of the first comprehensive attempts of unification can be found in Carol et al.
(1994), where the authors proposed a framework for the representation of different elastic-
degrading models in terms of secant constitutive operators, a single loading function (i.e.,
monodissipative models), and degradation/flow rules, as in the case of elasto-plasticity.
The inclusion of existent scalar damage models in the same framework was also explicitly
illustrated. Subsequent contributions (see, e.g., de Borst (1987), Carol et al. (1994), Rizzi
(1995), Carol and Willam (1996), Carol (1996), de Borst and Gutiérrez (1999), Armero
and Oller (2000a,b), Carol et al. (2001a,b), and Hansen et al. (2001)) resulted in a multi-
dissipative unified formulation where, in analogy to multisurface plasticity (see, e.g., Simo
and Hughes (1998)), the different constitutive models can be represented in terms of se-
cant constitutive operators, loading functions, and degradation/flow rules. At the heart
of such formulation there is a tensorial formalism that guarantees the generality of the
formulation (Rizzi and Carol, 2001), allowing to represent the main theoretical concepts
independently on the peculiar constitutive models. Such generality also allows to perform
various investigations on different constitutive models using as a basis their tensor-based
general equations. An example is constituted by the studies by Rizzi and his co-authors
on localization in mono and multidissipative elastic-degrading models (Rizzi et al., 1995,
1996), performed on the general tensor-based equations, without having to deal with the
specificities of each peculiar model; the same approach was followed by the author in
Gori et al. (2017b), as discussed in Chapter 5. As it will be discussed in Appendix C, this
unified formulation, with its tensorial formalism, offers benefits also from a computational
point of view, since it eases the implementation efforts for a large class of constitutive
models, as shown by the object-oriented implementation presented in Penna (2011) and
Gori et al. (2017a). In the following, the main aspects of this multidissipative formulation
are briefly recalled7, since they will be used in Section 3.3 to define an analogous theo-
retical framework for elastic-degrading micropolar media. Before proceeding further it is
remarked that despite it is possible to couple elastic degradation with plastic effects in the
same multidissipative representation, here the presence of plastic dissipation mechanisms
is excluded.

In a geometrically linear context, an elastic-degrading medium is characterized by the

7 The paragraphs that follow are mainly an excerpt of the treatment on the same subject contained
in the paper by Gori et al. (2017a).
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following total stress-strain relations

σ = ÊS · ε, ε = (ÊS)−1 · σ (2.9)

where ÊS is the secant constitutive operator. These equations correspond to the assump-
tion of an unloading-reloading process where the stiffness remains equal to the current
secant one; in this case, a full unload leads to zero permanent strains. The rate form of
the expressions in Eq. (2.9) results in the equations

σ̇ = ÊS · ε̇+ ˙̂ES · ε = σ̇e + σ̇d, ε̇ = (ÊS)−1 · σ̇ + ( ˙̂ES)−1 · σ = ε̇e + ε̇d (2.10)

where the superscripts e and d indicate, respectively, the elastic and the degrading parts
of a quantity8. The previous expressions can be resumed in the tangent relations

σ̇ = Êt · ε̇, ε̇ = (Êt)−1 · σ̇ (2.11)

where the tangent constitutive operator Êt has the following general representation

Êt = ÊS − z−1 · (x̌⊗ y̌) = (ES
ijk` − (zαβ)−1 xβij yαk`) ēi ⊗ ēj ⊗ ēk ⊗ ē` (2.12)

which specific expression depends on the chosen approach.

Remark 2.2

In analogy to multisurface plasticity, multidissipative elastic-degrading models con-
sider a generic number N of dissipation mechanisms. Such number reduces to one in
the case of monopotential models (see, e.g., Carol et al. (1994)), resulting in

Êt = ÊS − 1
z
·
(
x⊗ y

)
=
(
ES
ijk` −

1
z
xij yk`

)
ēi ⊗ ēj ⊗ ēk ⊗ ē` (2.13)

In the previous Eq. (2.12), the indices α and β refer to such dissipation mechanisms
and run from 1 to N .

A first approach, referred to as stress-based approach, relies on the additive decom-
position of the strain rate, ε̇ = ε̇e + ε̇d. Within this approach, the inelastic rate ε̇d and
the rate of the inverse of the secant constitutive operator are defined in terms of the

8 In the decompositions expressed by Eq. (2.10), the same notations introduced in Carol et al. (1994)
for the classic continuum theory have been adopted. At this point, an analogy with the concept of
coupled-media (elasto-plastic coupling, i.e., dependence of the elastic moduli on the plastic deformation
Maier and Hueckel (1979)) can be made. The elastic and degrading components defined here can be
identified as the reversible and irreversible components defined in Collins and Houlsby (1997). However,
differently from the elasto-plastic coupling, in the present work the elastic properties depend only on the
elastic degradation of the material and no plastic behaviour is accounted for.
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degradation rules

ε̇d =
N∑
β=1

λ̇β m
(β) = ˙̄λ · m̌, ( ˙̂ES)−1 =

N∑
β=1

λ̇β M̂(β) = ˙̄λ · M̆ (2.14)

where ˙̄λ ∈ RN is the vector containing the N inelastic multipliers, m̌ the third-order
tensor containing the N directions of degradation m(β) of the strain degrading rate, each
one represented as a second-order tensor, and M̆ the fifth-order tensor containing the N
directions of degradation M̂(β) of the inverse of the secant constitutive operator, each one
represented by a fourth-order tensor. It can be easily shown that the relation m̌ = M̆ · σ
holds. The different phases of the loading process are described in terms of N loading
functions fα(σ, π), that can be collected in a vector f̄ ∈ RN , each one depending on the
stress state σ and on a generic set of internal variables π, that in a thermodynamical
context are referred to as thermodynamical forces. Like the inelastic strain rate, also the
thermodynamical forces rate can be expressed in terms of a degradation rule as

π̇ =
N∑
β=1

λ̇β h
(β) (2.15)

where the terms λ̇β are inelastic multipliers, and the terms h(β) are the directions of
degradation of the set π. Within this approach, the operators appearing in Eq. (2.12) are
represented by

x̌ := ÊS · m̌ = (ES
ijpq mβpq) r̄β ⊗ ēi ⊗ ēj (2.16)

y̌ := ň · ÊS = (nαvz ES
vzk`) r̄α ⊗ ēk ⊗ ē` (2.17)

z := H + ň · (ÊS · m̌) = (Hαβ + nαmn E
S
mnrs mβrs) r̄α ⊗ r̄β (2.18)

where the terms ň and H are the gradients of the loading functions, defined by

ň := ∂fα
∂σvz

r̄α ⊗ ēv ⊗ ēz, H := −∂fα
∂π

h(β) r̄α ⊗ r̄β = −∂fα
∂λβ

r̄α ⊗ r̄β (2.19)

The so-called strain-based approach, on the contrary, relies on the additive decompo-
sition for the stress rate, σ̇ = σ̇e + σ̇d. In this case, the inelastic rate σ̇d and the rate of
the secant constitutive operator are defined in terms of the degradation rules

σ̇d =
N∑
β=1

λ̇β m
∗(β) = ˙̄λ · m̌∗, ˙̂ES =

N∑
β=1

λ̇β M̂∗(β) = ˙̄λ · M̆∗ (2.20)

where ˙̄λ ∈ RN is again a vector containing the N inelastic multipliers, m̌∗ the third-order
tensor containing the N directions of degradation m∗(β) of the stress degrading rate, each
one represented as a second-order tensor, and M̆∗ the fifth-order tensor containing the N
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directions of degradation M̂∗(β) of the secant constitutive operator, each one represented
by a fourth-order tensor. It can be easily shown that the relation m̌∗ = M̆∗ · ε holds. As
for the stress-based approach, a set of N loading functions fα(ε, π∗) describes the different
phases of the loading process. In this case, each loading function depends on the strain
state ε and on a generic set of internal variables π∗. Like the inelastic stress rate, also the
thermodynamical forces rate π̇∗ can be expressed in terms of a degradation rule as

π̇∗ =
N∑
β=1

λ̇β h
∗(β) (2.21)

where the terms λ̇β are inelastic multipliers, and the terms h∗(β) are the directions of
degradation for the set π∗. Within this approach, the operators appearing in Eq. (2.12)
are represented by

x̌ := −m̌∗ = mβij r̄β ⊗ ēi ⊗ ēj (2.22)

y̌ := ň∗ = n∗αk` r̄α ⊗ ēk ⊗ ē` (2.23)

z := H∗ = H∗αβ r̄α ⊗ r̄β (2.24)

where the terms ň∗ and H∗ are the gradients of the loading functions, defined by

ň∗ := ∂fα
∂εk`

r̄α ⊗ ēk ⊗ ē`, H∗ := −∂fα
∂π∗

h∗(β) r̄α ⊗ r̄β = −∂fα
∂λβ

r̄α ⊗ r̄β (2.25)

Within this general framework for elastic degradation, damage models can be obtained
once the secant material properties are assumed to depend on a reduced set of parameters,
the damage variables, as (ÊS)−1((Ê)−1,D) for the stress-based approach, and ÊS(Ê,D∗)
for the strain-based approach. The symbols D and D∗, representing the sets of damage
variables for the stress- and the strain-based approaches, may indicate, in general, scalar,
vectorial or tensorial damage variables (Rizzi, 1995, Ju, 1990). For a damage model, the
rate of the secant constitutive operator can be expressed as

( ˙̂ES)−1 = ∂(ÊS)−1

∂D
∗ Ḋ, ˙̂ES = ∂ÊS

∂D∗
∗ Ḋ∗ (2.26)

where with the symbol ∗, a contraction operation compatible with the peculiar nature
of the damage variables sets is indicated. The rates of the damage variables sets can be
expressed in terms of the following degradation rules

Ḋ =
N∑
β=1

λ̇β M(β) = ˙̄λ · M, Ḋ∗ =
N∑
β=1

λ̇β M∗(β) = ˙̄λ · M∗ (2.27)

where ˙̄λ ∈ RN is the vector of inelastic multipliers whileM andM∗ contain, respectively,
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the N directions of degradation M(β) and M∗(β) of the sets of damage variables D and
D∗. The directions of degradation of the damage variables sets and the ones of the secant
constitutive operator are linked by the relations

M̆ = ∂(ÊS)−1

∂D
∗M, M̆∗ = ∂ÊS

∂D∗
∗M∗ (2.28)

2.2.2.1 Scalar-isotropic damage models

As shown in Eq. (2.7), scalar-isotropic damage models are characterized by a secant
constitutive operator that depends on the initial elastic one and on a single scalar dam-
age variable, ÊS(D, Ê) = (1 − D) Ê. Considering the contents of the previous section,
scalar-isotropic models can be considered as strain-based monodissipative models. From
Eq. (2.26), the rate of the secant constitutive operator reduces to

˙̂ES(D) = ∂ÊS

∂D
Ḋ = −Ê Ḋ (2.29)

Hence, it can be deduced that the operator defined in the previous section assume the
expressions

λ̇ = Ḋ, M̂∗ = −Ê, M∗ = 1, m∗ = −Ê · ε = −σ0 (2.30)

For a scalar damage model, a common choice for the loading function is represented by
the following additive decomposition

f(ε,D) = εeq(ε)−K(D) ≤ 0 (2.31)

where εeq(ε) is a function depending only on the strain tensor, usually indicated as equiv-
alent deformation, that represents the loading condition of the continuum, while K(D) is
an historical parameter that depends only on the damage variable and that is represen-
tative of the maximum level of deformation reached during the loading process. Such a
loading function results in the tangent constitutive operator

Êt = (1−D) Ê− 1
H∗

(
σ0 ⊗ n∗

)
, n∗ = ∂εeq

∂ε
, H∗ = ∂K(D)

∂D
=
(
∂D(εeq)
∂εeq

)−1

(2.32)
where D(K) is a prescribed evolution law for the damage like, for example, the following
exponential damage law

D(εeq) = 1− K0

εeq

(
1− α + αe−β(εeq−K0)

)
(2.33)
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where K0 is a threshold value for the equivalent deformation, representing the onset
of damage, and where α and β are parameters that define, respectively, the maximum
allowed damage level and the damage evolution intensity. Different scalar damage models
can be obtained choosing a peculiar equivalent deformation; the classic damage models
of Mazars-Lemaitre (Mazars and Lemaitre, 1984), Simo-Ju (Simo and Ju, 1987), Marigo
(Marigo, 1985, Lemaitre and Desmorat, 2005) and Mazars (Mazars, 1984, de Borst and
Gutiérrez, 1999) are defined by the equivalent deformations

εeq =



√
ε · ε (Mazars-Lemaitre)
√

2ψ0 (Simo-Ju)√
2ψ0/E (Marigo)√[∑3

k=1 (< ε(k) >+)2] (Mazars)

(2.34)

where 2ψ0 = ε · (Ê · ε) is the internal energy, E the initial Young’s modulus, ε(k) the k-th
eigenvalue of the strain tensor, and < ε(k) >+= (ε(k) + |ε(k)|)/2 its positive part.

2.3 Localization issues

The collapse of a whole body is triggered, in general, by a localized failure, i.e., a loss
in the material continuity that interests a small portion of the body (Rizzi, 1995). As
observed in experimental tests with metals (Nadai, 1931), geo-materials (Ord et al., 1991,
Di Prisco et al., 1992) and concrete (Kupfer et al., 1969, Cedolin et al., 1987), such a
localized failure is preceeded by the so-called localization of deformations, consisting in
the concentration of irreversible phenomena, like plasticization and cracking, in a reduced
region of a body; from a kinematical point of view, it results in high gradients of the
displacement field, preceeding the material decohesion. Localization is a characteristic
of elasto-plastic and quasi-brittle media, i.e., materials that can be described in terms of
strain-softening models.

It is clear that the localization analysis, intended here in the sense given by Rudnicki
and Rice (1975) as an investigation of material instabilities at the constitutive level (i.e.,
in a pointwise sense), is a fundamental issue, since it represents an important warning for
the imminent failure of a system. It is remarked that the phenomenon of localization is
strongly influenced by the boundary conditions of a body and, in a discrete model, by the
mesh density and alignment; however, a pointwise analysis is still able to provide useful
informations on the material failure.

Traditionally, the localization of deformations is analyzed within the theory of accel-
eration waves propagation (Hadamard, 1903, Hill, 1962), i.e., waves that carry a weak
discontinuity in the velocity field. Localization, in this case, corresponds to a stationarity
condition of the wavefront (Fresnel-Hadamard propagation condition). Similar results can
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be derived also in a quasi-static context, where the localization is represented as a jump
in the strain rate at a certain discontinuity surface (Maxell compatibility condition), at
which the static equilibrium is imposed (Thomas, 1961, Rudnicki and Rice, 1975). Both
the approaches lead to localization conditions that rely on the spectral properties of the
acoustic (or localization) tensor, represented by the projection of the tangent constitutive
operator along a certain direction

Q := n̄ ·
(
Êt · n̄

)
(2.35)

where n̄ is the local normal to the discontinuity surface. One is the weak localization con-
dition (det

(
Q
)

= 0), corresponding to the loss of ellipticity of the equilibrium equations,
that depends directly on the acoustic tensor, while the other is the strong localization
condition (det

(
Sym

[
Q
])

= 0), also known as loss of strong ellipticity, which depends
instead on the symmetric part of the acoustic tensor.

Localization problems in the field of elasto-plasticity have been investigated by a lot
of authors in the past, with a number of works devoted to the analysis of the spectral
properties of the acoustic tensor for the loss of ellipticity (Rice, 1976, Rice and Rud-
nicki, 1980, Ortiz, 1987, Borré and Maier, 1989, Bigoni and Hueckel, 1991a, Ottosen and
Runesson, 1991a,b, Bigoni and Zaccaria, 1994), and of its symmetric part for the loss of
strong ellipticity (Ottosen and Runesson, 1991a, Bigoni and Hueckel, 1991a, Bigoni and
Zaccaria, 1992, Neilsen and Schreyer, 1993, Szabó, 2000).

Localization analysis, usually indicated also as discontinuous failure, enriches the set
of failure indicators, traditionally represented by the loss of material stability (ε̇ · σ̇ =
0, ∀ε̇ 6= 0) and loss of uniqueness (σ̇ = 0), also known as continuous failures (Hill, 1958,
Drucker, 1964, Maier and Hueckel, 1979, Runesson and Mróz, 1989). The different failure
indicators have been studied by Neilsen and Schreyer (1993) and de Borst et al. (1993),
that have established the relations between the various indicators and the necessary con-
ditions for the different kinds of bifurcation. A summarization of the different contributes
to the eigenvalues analysis of the constitutive operators and of the acoustic tensor for
elasto-plastic models has been proposed by Szabó (1998). Despite the large amount of
analytical developments for the localization analysis by the acoustic tensor, the compu-
tational aspects are still an active field of research (Xue and Belytschko, 2010, Arriaga
et al., 2015).

Regarding the field of elastic degradation and damage models, only a few analytical
investigations on localization phenomena have been performed (Desoyer and Cormery,
1994, Rizzi et al., 1995, Jirásek, 2007a), mainly focused on scalar-isotropic damage mod-
els, with some works devoted to elastic degradation coupled with plasticity (Maier and
Hueckel, 1979, Bigoni and Hueckel, 1991b). However, taking advantage of a unified for-
mulation (Carol et al., 1994, Rizzi et al., 1996, Rizzi and Carol, 2001), the theoretical and
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the numerical resources developed in elasto-plasticity can be easily extended to damage
models. An extensive treatise on the topic can be found in Rizzi (1995), where differ-
ent localization conditions, as well as the further failure indicators, are investigated for
elastic-degrading models based on the classic continuum theory, with peculiar attention
on scalar damage models.

It is well known that numerical analyses where localization occours are characterized
by a number of pathological behaviours, such as strong mesh-dependency, premature frac-
ture initiation and instantaneous perfectly-brittle fracture (de Borst et al., 1993, Peerlings
et al., 2002). These pathological effects are due to the fact that, when strain-softening
material models are adopted, at a certain load level the continuum boundary value prob-
lem may become ill-posed (loss of ellipticity of the equilibrium equations, corresponding
to a singular strain rate). The ill-posedness of the problem corresponds to an infinite set
of solutions (discontinuous bifurcation), from which the numerical method selects the one
corresponding to the smallest energy dissipation. This approximated solution strongly de-
pends on the mesh; at mesh refinement it tends to a failure with zero energy dissipation,
and then to a non-physical behaviour.

2.3.1 Regularization techniques

The problem of strain localization has been investigated by many authors in the past,
with peculiar attention on elasto-plastic models. It has been pointed out that the patho-
logical behaviours that may affect the numerical simulations where localization occours
are due to the local representation offered by the classic continuum theory, in contrast
with the non-local nature of phenomena like damage and plasticity (Bažant, 1991). The
main aim of the proposed solutions to this problem (the so-called regularization tech-
niques) is the introduction of an intrinsic (or internal) length in the continuum model,
allowing to recover the non-local character of the phenomenon; an interesting overview
on the different regularization methods can be found in de Borst et al. (1993) and Bažant
and Jirásek (2002). Among the different alternatives there are: non-local and gradient-
enhanced models (Bažant and Lin, 1988, Pijaudier-Cabot and Bažant, 1987, de Borst
and Mühlhaus, 1992, Peerlings et al., 1996, Peerlings, 1999, Peerlings et al., 2001, 2002,
Badnava et al., 2016), viscous models (Needleman, 1988), cohesive zone models (Dugdale,
1960, Barenblatt, 1962), methods based on the fracture energy approach (Bažant and Oh,
1983), and the multifield continua approach (see, e.g., Frémond and Nedjar (1996), Miehe
et al. (2010, 2016) and Remark 3.1).

A valid alternative is also represented by the micropolar theory (Cosserat and Cosserat,
1909), that has been widely used in the past as a regularization method in strain-softening
elasto-plasticity. In this case, the intrinsic length is due to an additional field that en-
riches the continuum kinematics with effects connected to the sub-structural level of the



§2.3 Modelling of quasi-brittle media 25

material. The works of de Borst (1991), de Borst and Sluys (1991) and Sluys (1992), for
example, investigated numerically the regularization properties of the micropolar theory
on elasto-plastic models. The works of Dietsche et al. (1993) and Iordache and Willam
(1998) instead, proposed an extension to the micropolar theory of the classic Maxwell
compatibility condition; both analytical and numerical analyses are performed in order to
evaluate the effects of the additional material parameters on the discontinuous failure of
elasto-plastic models. Furthermore, the authors pointed out the presence of an additional
localization condition (the so-called second localization condition), due to the asymme-
try of the stress tensor. An extension of the Fresnel-Hadamard propagation condition
can be found in Grioli (1980), for the visco-elastic case, and Eremeyev (2005), for the
geometrically exact elastic case.

To the author knowledge, the only works that focus on the regularization proper-
ties of the micropolar theory combined with damage models are the one of Xotta et al.
(2016) and a paper of the author himself (Gori et al. (2017b)). In the former the authors
performed numerical evaluations on the localization conditions of a micropolar medium,
in terms of the Maxwell compatibility condition and of the second localization condition.
The micropolar medium considered by the authors is characterized by an elasto-plastic
behaviour, coupled with scalar damage, where the damage variable is applied only to the
Cauchy-like part of the elastic tensor, without affecting the couple-stresses. Furthermore,
the considerations on bifurcation analysis are limited to the influence of the Cosserat’s
shear modulus, one of the additional material parameters of the micropolar theory. The
paper by the author instead, provided a general investigation on the phenomenom of lo-
calization in generic elastic-degrading micropolar media, which will be discussed in detail
in Chapter 5.

While the regularization strategies described up to this point are all based on the in-
troduction of an intrinsic length at the formulation level (i.e., at the level of the continuum
formulation), there are a class of numerical methods which allow to introduce an internal
length at the numerical level. Among the various solutions based on the finite element
method there are, for example, the use of elements with embedded discontinuities (Ortiz
et al., 1987), able to represent various kind of weak and strong discontinuities, or ele-
ment with embedded localization zones (Pietruszczak and Mróz, 1981, Belytschko et al.,
1988). Recently it has been shown that some classes of meshfree methods, like moving
least square, reproducing kernel approximations, and methods based on strain smoothing
techniques, are able to bring regularization effects on localization problems (Liu et al.,
1999, Chen et al., 2000, Li et al., 2000a,b, Chen et al., 2004, 2007, Wang and Li, 2012,
Pozo et al., 2014), due to their intrinsic non-local properties. Their approximation func-
tions indeed, are not constructed locally, as in the finite element method, because of the
use of basis and weighting functions which support size is greater than the nodes spac-
ing. Moreover, the use of a meshfree method allows, in general, to overcome the problem
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of mesh orientation bias. Aspects on the regularization properties of meshfree methods
will be discussed in Chapter 4 and in the examples of Chapter 6, with specific focus on
smoothed point interpolation methods.



Chapter 3

Micropolar media

The present chapter deals with micropolar media in a physically non-
linear context. After a brief survey on the physical aspects and the
modelling issues regarding the class of materials with microstruture,
the main aspects of the micropolar formulation in linear elasticity are
recalled. Then, a novel unified formulation for elastic-degrading microp-
olar models proposed by the author is discussed in details. The weak
form of the micropolar boundary value problem is also recalled, together
with its linearization in the context of elastic degradation.

3.1 Materials with microstructure: physical aspects
and modelling issues

In the previous chapter it has been pointed out that the quasi-brittle character of a ma-
terial is due to its heterogeneity at the micro scale, where, according to Krajcinovic, the
micro scale “refers to the range of lengths within which [...] individual geometrical features
of the microstructure (grains, chain-folded lamellae, fibers, etc.) are clearly recognizable”
(Krajcinovic, 1996, pag. 11). Materials “in which events developing at very small spatial
scales with respect to the size of the body have influence on the macroscopic mechan-
ical behaviour, exerted through interactions barely representable in terms of standard
stresses” (Mariano, 2016, pag. 7), are referred to as complex materials (or materials with
microstructure). According to these quotes, a large number of materials of interest in the
field of structural engineering, such as concrete, geo-materials, coarse-grained ceramics,
and most fibre-reinforced materials, for example, can be considered as complex, posing
different issues regarding their analytical and computational modelling.

In the standard approach to continuum mechanics (the so-called Cauchy’s or classic
continuum theory) a real body is idealized, from a geometrical point of view, simply as
a certain region in space, an open subset D of the three-dimensional Euclidean space

27
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E, composed by a set of particles, or material elements (see, e.g., Noll (1958) or Mars-
den and Hughes (1994)). Each particle is characterized only by its position in space,
and interactions between two particles are transmitted only by a force vector. Within
this minimalistic approach, details on the nature of the material elements are purposely
skipped, since such classic representation describes “the macroscopic configuration of a
body and its changes, without furnishing direct information on the microscopic shape
of the pertinent material at a certain scale, the one involved in the possible phenomena
characterizing a peculiar behaviour of the body under analysis” (Mariano, 2016, pag. 9).
As observed in Section 2.2, when modelling a body as a classic continuum, the influence of
the microstructure on its gross behaviour (i.e., the set of details below the resolution level
of the continuum model) is taken into account by means of constitutive relations, which
parameters are averaged over a finite extension of the microstructure, the representative
volume element.

While this approach allows to cover a large class of materials, in some situations the
influence of the substructure may be so prominent that a representation through an ho-
mogenized classic continuum may not be sufficient to capture all the involved phenomena.
Continuum theories in which the standard description is enriched by the introduction of
additional variables able to carry informations on the material substructure go under the
name of multifield continuum theories (see, e.g., Mariano (2002)), which initiated from
the works of Voigt (1887) and Cosserat and Cosserat (1909)1. Alongside the standard
motion of the body particles, multifield theories consider at each point of the body also a
morphological descriptor, an object belonging to a generic differentiable manifold, which
nature depends on the specific complex material under analysis. The micropolar contin-
uum model considered in this treatise belongs to the more general class of micromorphic
continua, which are themselves a specific class of multifield models. Briefly, a micromor-
phic continuum is represented as a classic continuum (referred to as macrocontinuum in
this context) with deformable particles, i.e., each point of the continuum is endowed with
a further deformable continuum structure, the microcontinuum (Eringen, 1999). In this
case the morphological operator is a simple linear operator describing the uniform defor-
mation of each microcontinuum; proper constraints on this operator allow to obtain the
classes of microstretch and micropolar continua. This chapter focuses on the case of geo-
metrically linear micropolar media, which will be formulated in the contex of continuum
damage mechanics.

Remark 3.1: Multifield continua and material degradation

The multifield formulation have been shown to be an interesting approach to the

1 The reader may refers to the introduction of the papers by Mariano (2002) and Mariano and Stazi
(2005) for historical notes on the origin and evolution of multifield theories.
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modelling of material degradation, allowing a direct representation of degrading phe-
nomena in terms of additional field variables, alongside the motion of the material
particles, instead of the standard representation within the context of thermodynam-
ics with internal state variables (Coleman and Gurtin, 1967). Markov (1995) repre-
sented the deterioration of a solid in terms of a scalar damage variable, interpreted in
the context of microstretch elasticity as a measure of the independent volume change
of each material particle due to degradation. In Frémond and Nedjar (1996) the
authors recasted the standard continuum damage mechanics in the perspective of a
multifield approach, adding the classic scalar damage variable (Kachanov, 1958) to
the field variables of the problem. Mariano (1999) represented microcracked bod-
ies enriching the classic continuum description with an additional microdisplacement
field, representing a perturbation to the standard displacement field of the material
particles (see also, e.g., Mariano et al. (2002, 2004)). In a comprehensive paper,
Forest (2009) showed how several gradient elastoviscoplasticity and damage models
previously proposed in the literature can be represented within a same micromorphic
approach (where the term “micromorphic” is used in a broader sense than in Eringen
(1999), more like a synonymous of “multifield”). In Miehe et al. (2010, 2016) the
authors considered the problem of fracture within the context of multifield continua,
introducing an auxiliary field variable able to describe cracks topology. As a final
example, in Oliver et al. (2012) the authors investigated the modelling of steel fiber
reinforced concrete introducing an additional field variable representing the bond slip
mechanism, i.e., the relative displacement between fibers and matrix. The examples
described in this remark are not intended to be a comprehensive survey on the topic,
and are provided only to expose some possibilities regarding the use of multifield con-
tinua. Concerning the approach adopted in the following sections for the physically
non-linear micropolar modelling proposed by the author, it is important to empha-
size that it differs from the ones discussed in this remark. As it will be shown, there
the multifield approach is due to the additional kinematical desciptor associated to
the material particles, while the degradation phenomena are represented at the con-
stitutive level within the standard approach of thermodynamics with internal state
variables.

3.2 Micropolar continuum theory

The micropolar continuum first appeared in the work of the Cosserat’s brothers (Cosserat
and Cosserat (1909)), based on some previous ideas formulated by Voigt (1887). Their
point of view consisted in considering each material element of a body as a small rigid
body, able to rotate independently of the neighboring particles. Such rotation (represented
by an orthogonal tensor in a geometrically exact context, or by an axial vector assuming
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a linear hypothesis for the geometry) constitutes an additional field variable that enriches
the standard continuum description, which consider only the motion of the particles. As
it will be discussed in the following sections, interactions between particles in a micropolar
medium are represented not only in terms of the standard stress tensor, but also with
an additional couple-stress tensor, which components are couples per unit of area. As
it will be shown, the additional kinematical field endows the continuum with a set of
internal lengths, responsible for its regularization properties in strain-softening problems
(Section 2.3.1), which have been investigated by a number of authors in case of elasto-
plasticity (see, e.g., de Borst and Sluys (1991), de Borst (1991, 1993), Sluys (1992),
Dietsche et al. (1993), Iordache and Willam (1998)), with a few contributions in case
of damage models (Xotta et al. (2016), Gori et al. (2017b)). Before proceeding to the
presentation of the micropolar formulation for elastic degradation proposed by the author
(Section 3.3), the basic equations defining the behaviour of a linear elastic micropolar
medium will be briefly recalled2.

3.2.1 Kinematics and equilibrium equations

The configuration Dt of a micropolar medium at a certain time instant t is characterized
by the couple (c(p, t), R(p, t)). As illustrated in Fig. 3.1, c(p, t) is the standard motion,
mapping the points of the continuum from a certain reference configuration D to the
deformed configuration Dt, with associated displacement field ū(p, t) := c(p, t) − p. The
operator R(p, t) ∈ SO(3) is an orthogonal tensor, measuring the rigid rotation of the par-
ticles of the micropolar medium, represented by the transformation of the rigid directors(
Ξ̄1, Ξ̄2, Ξ̄3

)
into

(
ξ̄1, ξ̄2, ξ̄3

)
, where ξ̄i = R · Ξ̄i.

D Dt(c(p, t), R(p, t))

p
Ξ̄1

Ξ̄2

Ξ̄3

ξ̄1 ξ̄2

ξ̄3

Figure 3.1: Configuration of a micropolar medium

In a geometrically linear context the distinction between the reference and the de-
formed configurations is dropped, and the linearization of the kinematical quantities

2 For a comprehensive understanding on the subject the reader may refer to the existing literature on
the topic. See, e.g., the books by Eringen (1999) and Eremeyev et al. (2013) for a generic treatment, and
the papers cited in Section 2.3.1 for applications to physically non-linear problems.
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allows to replace the rotation operator with a rotation vector (the axial vector of a
skew-symmetric tensor obtained as a linearization of R). Within this assumption, the
configuration of a micropolar continuum is characterized, at each point p ∈ D, by a dis-
placement field ū and a microrotation vector ϕ̄3. The choice of such field variables for the
representation of the kinematics of the body leads to the strain measures

γ = gradT( ū)− e · ϕ̄ = (uj,i − eijk ϕk) ēi ⊗ ēj (3.1)

κ = gradT( ϕ̄) = ϕj,i ēi ⊗ ēj (3.2)

which are referred to as strain tensor and microcurvature tensor, respectively, and where
the symbol e indicates the standard Levi-Civita operator with three indexes. To these
strain measures correspond, respectively, the stress tensor σ and the couple-stress tensor µ
which must satisfy the local equilibrium equations4 for forces and moments in the domain
D

divT (σ) + b̄V = ρ¨̄u −→ σij,i + bV j = ρüj (3.3)

divT
(
µ
)

+ e · σ + l̄V = ρθ ¨̄ϕ −→ µij,i + ejkl σkl + lV j = ρθϕ̈j (3.4)

where b̄V and l̄V represent, respectively, volume forces and volume couples acting in the
body domain, ρ is the density of the medium, and ρθ is the scalar measure of the rotation
inertia of continuum particles (see, e.g., Eremeyev (2005)). To the previous equations,
the following natural and essential boundary conditions are associated

η̄ · σ = t̄A at ∂Du
n, η̄ · µ = t̄C at ∂Dϕ

n (3.5)

ū = ū∗ at ∂Du
e , ϕ̄ = ϕ̄∗ at ∂Dϕ

e (3.6)

where η̄ is the unit normal vector field defined at the boundary ∂D of the body.

3.2.2 Linear isotropic elasticity

In linear elasticity, disregarding the direct coupling between the Cauchy-type and Cosserat-
type effects (i.e., the chirality effect), stress and deformation measures are linked by the
following constitutive equations

σ = Â · γ (3.7)

µ = Ĉ · κ (3.8)

3 The explicit dependence on the point p and on the time t of both ū and ϕ̄ is dropped in order to
simplify the notation.

4 Though in the following attention will be focused on quasi-static problems, the inertial terms are
explicitly represented in the equilibrium equations since they will be used in Chapter 5 in the discussions
regarding micropolar acceleration waves.



32 CHAPTER 3 §3.2

where Â and Ĉ are the initial constitutive operators for the micropolar model that,
assuming an initially isotropic material, are expressed in terms of six material parameters
as

Â = A1 id⊗ id+ (A2 + A3) ˆIDsym + (A2 − A3) ˆIDskw (3.9)

Ĉ = C1 id⊗ id+ (C2 + C3) ˆIDsym + (C2 − C3) ˆIDskw (3.10)

or alternatively as

Â = A1 id⊗ id+ A2 ˆID + A3 ˆIDT (3.11)

Ĉ = C1 id⊗ id+ C2 ˆID + C3 ˆIDT (3.12)

It should be noted that the components of the microcurvature tensor κ and of the
couple-stress tensor µ are not characterized by the same units of measure of, respectively,
the strain tensor γ and the stress tensor σ. In a number of applications it is convenient to
scale such operators in order to obtain a dimensional compatibility. The microcurvature
and couple-stress tensors can be replaced by the scaled operators κ∗ and µ∗ defined as
κ∗ = L̂ ·κ and µ∗ = L̂−1 ·µ, where L̂ is a fourth-order tensor containing the characteristic
lengths of the micropolar medium. The constitutive relation for the scaled operators,
analogous to the one of Eq. (3.8) is expressed as µ∗ = Ĉ∗ · κ∗, with Ĉ∗ = L̂−1 · Ĉ · L̂−1.

Remark 3.2: Chirality effect

The problem of chirality (or non-centrosymmetry) in a three-dimensional micropolar
medium was first treated by Nowacki (1986), and consists in considering a coupling
between the constitutive equations of Eqs. (3.7) and (3.8), in the form

σ = Â · γ + B̂ · κ (3.13)

µ = Ĉ · κ+ B̂ · γ (3.14)

with the introduction of the additional constitutive tensor B̂. It is worth to note
that such representation, in an hyperelastic context, is the most general one, and
correspond to the choice of an Helmholtz free energy density of the form

ψ
(
γ, κ

)
= 1

2 γ ·
(
Â · γ

)
+ 1

2 κ ·
(
Ĉ · κ

)
+ γ ·

(
B̂ · κ

)
(3.15)

Despite being usually disregarded, this effect may be relevant, depending on the mi-
crostructure of the material under analysis (see, e.g., Joumaa and Ostoja-Starzewski
(2011) and Rezakhani and Cusatis (2014)). Regarding the formulation discussed in
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Section 3.3, it is emphasized that the inclusion of chirality shouldn’t require peculiar
efforts, except for the presence of additional material parameters to be defined.

3.2.3 Micropolar material parameters

When dealing with generalized continuum theories one of the main drawbacks is the
presence of additional material parameters, with respect to the two of a classic isotropic
continuum. Two problems must be worked out, in general: the first is the definition
of proper “engineering” parameters with clear physical, meaning like the classic Young’s
modulus and Poisson’s ratio, the second is their calibration. A recent contribution on
these issues is represented by Hassanpour and Heppler (2015), where the authors pre-
sented a survey on both notations and experimental aspects related to the linear isotropic
micropolar model. Due to its completeness, it will be used as a basis for the following
discussions5.

3.2.3.1 Parameters redefinition

Regarding the definition of proper material parameters, different conventions have been
adopted in the past, often leading to errors and a certain confusion when comparing
the different contributions available in the literature, as pointed out in Hassanpour and
Heppler (2015). Some of the discussions presented in Hassanpour and Heppler (2015)
are recalled in the following, in order to introduce the “engineering” parameters adopted
throughout this treatise. In order to simplify the comparison with the cited work, the
elastic parameters appearing in Eqs. (3.9) and (3.10) are recalled in Table 3.1 alongside
the corresponding ones adopted in Hassanpour and Heppler (2015).

Current Hassanpour and Heppler (2015)

A1 λ
A2 µ+ κ
A3 µ− κ
C1 α
C2 γ + β
C3 γ − β

Table 3.1: Micropolar parameters

First it is interesting to observe that applying the constitutive operator expressed
in Eq. (3.9), the stress tensor σ appearing in Eq. (3.7) is naturally decomposed into a

5 Though they have not been taken into account in the present treatise, interesting investigations on
the micropolar material parameters can be found in the works of Neff and his co-authors (see, e.g., Neff
(2006), Neff and Jeong (2009), Neff et al. (2010) and Jeong and Neff (2015)).
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symmetric and a skew-symmetric parts as

σ = A1tr(γ) id+ (A2 + A3) γsym︸ ︷︷ ︸
symmetric

+ (A2 − A3) γskew︸ ︷︷ ︸
skew-symmetric

(3.16)

Since the symmetric part of the strain tensor γ coincides with the classic strain tensor
(γsym = (grad( ū)+gradT( ū))/2), the parameters A1, A2 and A3 can be associated to the
Lame’s parameters λ and µ (or G) as

A1 = λ, A2 + A3 = 2µ = 2G (3.17)

Furthermore, considering an uniaxial stress state σ11 6= 0, with associated strain compo-
nents γ11, γ22 and γ33, the classic Young’s modulus and Poisson’s ratio can be introduced
as

E := σ11

γ11
, ν := −γ22

γ11
= −γ33

γ11
, G = E

2(1 + ν) , λ = Eν

(1− 2ν)(1 + ν) (3.18)

The skew-symmetric part of the stress tensor is usually recasted in terms of an additional
material parameter, the Cosserat’s shear modulus Gc, defined as 2Gc = A2 − A3. Tak-
ing into account that the skew-symmetric part of the strain tensor corresponds to the
difference between the micro and the macrorotation of the continuum

γskew =

(−eijk ϕk)︸ ︷︷ ︸
microrotation

− 1
2 (ui,j − uj,i)︸ ︷︷ ︸

macrorotation

 ēi ⊗ ēj (3.19)

it can be observed that the Cosserat’s shear modulus controls the contribution of the
microrotation to the macro stress; hence, it can be interpreted as a parameter that controls
the effect of the microstructure of a material on its gross behaviour. As it will be pointed
out in Chapter 5, such parameter also exhibits a prominent influence on the regularization
properties of the micropolar model.

As already done in Eq. (3.16) for the stress tensor, also the couple-stress tensor can
be naturally decomposed into a symmetric and a skew-symmetric parts, as

µ = C1tr(κ) id+ (C2 + C3) κsym︸ ︷︷ ︸
symmetric

+ (C2 − C3) κskew︸ ︷︷ ︸
skew-symmetric

(3.20)

As pointed out in Hassanpour and Heppler (2015), considering an uniaxial couple-stress
state µ11 6= 0, with the associated microcurvature components κ11, κ22 and κ33, the
material moduli E and ξ, analogous to the Young’s modulus and the Poisson’s ratio, can



§3.2 Micropolar media 35

be defined as

E := µ11

κ11
= (3C1 + C2 + C3)(C2 + C3)

2C1 + C2 + C3
(3.21)

ξ := −κ22

κ11
= −κ33

κ11
= C1

2C1 + C2 + C3
(3.22)

Furthermore, the material modulus η, such that 2η = C2 − C3, can be introduced as the
parameter relating the skew-symmetric parts of the couple-stress and the microcurvature
tensors.

With the aforementioned material parameters, the stress and the couple-stress tensors
of an isotropic micropolar medium can be expressed as

σ = Eν

(1− 2ν)(1 + ν) tr(γ) id+ 2G γsym + 2Gc γ
skew (3.23)

µ = Eξ
(1− 2ξ)(1 + ξ) tr(κ) id+ E

1 + ξ
κsym + 2η κskew (3.24)

The material moduli E and ξ are usually replaced by two or more characteristic lengths,
with a more significative physical meaning. It is worth to note that there isn’t a common
agreement on the definition of such lengths, and different expressions may be found in
the literature (see, e.g., Gauthier and Jahsman (1975), Reddys and Venkatasubramaniano
(1979), Mühlhaus and Vardoulakis (1987), Park and Lakes (1987), de Borst (1991), Lakes
(1995), Liu and Hu (2005), and Huang and Xu (2015)). While some of the characteristic
lengths defined in the literature are of general validity, other assume a precise physical
meaning only for peculiar stress/strain states. In a plane-stress state, like the one con-
sidered in the numerical analyses performed in the present treatise (Chapters 6 and 7), a
common choice (see, e.g., de Borst (1991)) consists in the use of a single intrinsic bending
length (or simply, internal length) Lb such that

µ13 = 2GL2
b κ13, µ23 = 2GL2

b κ23 (3.25)

which can be associated to the characteristics of the microstructure of a material (see, e.g.,
de Borst and Sluys (1991)). From Eq. (3.12), it can be observed that the characteristic
length Lb satisfies the equality 2GL2

b = C2. It is also interesting to observe that in
a plane-stress state, the six material parameters of the micropolar continuum reduces
to four independent parameters, the classic Young’s modulus and Poisson’s ratio, the
Cosserat’s shear modulus, and the internal bending length.

3.2.3.2 Parameters characterization

This treatise doesn’t deal with the characterization of the additional material parameters
of the micropolar theory, but rather with their regularization effects in elastic-degrading
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problems where localization occours. However, since this is an important task for future
practical applications, a brief review of the main contributions on the topic is here pre-
sented. In order to characterize the micropolar material moduli, two different approaches
can be followed: experimental tests, aiming to evaluate the material parameters through
a fitting procedure with experimental measures, and homogenization techniques, aiming
to replace a microstructured material with an effective generalized continuum model.

Regarding the experimental investigations on the micropolar parameters, a large num-
ber of works is available in the literature, which mainly focus on bio-materials like bones,
and on polymeric and metallic foams. A quite complete survey can be found in Hassan-
pour and Heppler (2015) and won’t be repeated here.

Homogenization techniques can be divided into analytical and numerical methods.
The former consist in the evaluation of the micropolar moduli through the comparison of
the response of lattice structures able to represent the substructure of a certain material;
such an approach is well suited for periodic substructures (e.g., crystals). In the numerical
approach the homogenization is performed by calibrating the material moduli through
numerical simulations of representative volume elements (RVE). In this case, random
microstructures can be easily accounted for. Regarding the existing literature on the
topic:

“Adomeit (1968) considered a three-dimensional honeycomb structure
built of cubical cells and calculated the elastic coefficients of its equiv-
alent couple-stress continuum from a structural view point. Employing
the couple-stress theory to describe the dynamics of a composite with
a laminated structure, Herrmann and Achenbach (1968) obtained the
non-classical material constants as functions of the geometry and the
classical material constants of the composite’s constituents. Banks and
Sokolowski (1968) showed an analogy between the equations governing
the behaviour of a planar lattice structure built up from elastic beams
and the equations of the two-dimensional couple-stress theory and re-
lated the elastic moduli of the couple-stress continuum to the elastic
properties of the beam elements in the lattice structure. In a similar
work, Askar and Cakmak (1968) proposed an equivalent micropolar con-
tinuum model for a two-dimensional lattice structure composed of ori-
entable mass points joined by massless beam elements and represented
the micropolar elastic moduli of the equivalent continuum in terms of the
properties of the connecting beams. In these works, the characteristic
length (of the couple-stress or micropolar elasticity theory) was found
to be related to the size of the structural elements.

There have been many other scholars trying to theoretically (usu-
ally based on an equivalent continuum approach) calculate the mate-
rial coefficients from structural considerations (Bažant and Christensen,
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1972, Kanatani, 1979, Noor and Nemeth, 1980a,b, Berglund, 1982, Wang
and Stronge, 1999, Ostoja-Starzewski et al., 1999, Ostoja-Starzewski,
2002, Mora and Waas, 2007, TekogLu, 2007, Tekoglu and Onck, 2008,
Salehian, 2008, Chung and Waas, 2009, Tekoglu et al., 2011, Seppecher
et al., 2011). Recently, Ganghoffer et al. (Dos Reis and Ganghoffer,
2011, 2012, Goda, Assidi, Belouettar and Ganghoffer, 2012, Goda, As-
sidi and Ganghoffer, 2012, Goda et al., 2014) have put a lot of effort
into using the homogenization techniques to establish non-classical con-
stitutive equations and determine the elastic moduli corresponding to
repetitive lattices and trabecular structures (e.g. bone).”(Hassanpour
and Heppler, 2015, pag. 9)

The existing literature cited in Hassanpour and Heppler (2015) can be complemented with
the works by Chang et al. devoted to granular materials (Chang and Liao, 1990, Chang
and Ma, 1991, 1992), and other focused on regular and random composites (Bigoni and
Drugan, 2007, Suiker et al., 2001, Willoughby et al., 2012, De Bellis and Addessi, 2014,
Trovalusci et al., 2015, Addessi et al., 2016), and Trovalusci et al. (2017).

3.3 A unified formulation for elastic degradation in
micropolar continua

Section 2.2.2 has been devoted to the description of the so-called unified formulation for
constitutive models, a theoretical resource able to represent, in a common framework, a
large number of multidissipative elasto-plastic and elastic-degrading models with a tenso-
rial formalism, in terms of constitutive operators, loading functions, and degradation/flow
rules, which has been object of investigation by a number of authors (see, e.g., de Borst
(1987), Carol et al. (1994), Rizzi (1995), Carol and Willam (1996), Carol (1996), de Borst
and Gutiérrez (1999), Armero and Oller (2000a,b), Carol et al. (2001a,b), and Hansen
et al. (2001)). As it will be commented in Appendix C, such approach to constitutive
modelling have been also shown to be particularly useful as a basis for computational
implementations (Penna, 2011, Gori et al., 2017a).

Taking into account the advantages offered by a unified formulation for constitutive
models based on a tensorial formalism, and considering the lack of generality regarding
the constitutive aspects of existent elasto-plastic and damage micropolar models (see, e.g.,
de Borst and Sluys (1991), de Borst (1991, 1993), Sluys (1992), Dietsche et al. (1993),
Iordache and Willam (1998), Steinmann (1995), and Xotta et al. (2016)), the author
proposed an extension of such concept to constitutive models based on the micropolar
continuum theory. This attempt resulted in a both theoretical and computational frame-
work inspired on the single-criterion Cosserat’s plasticity approach discussed in Forest
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and Sievert (2003), able to represent a large number of elasto-plastic and elastic-degrading
micropolar models (Gori et al., 2015a, 2017c), that has been successfully applied to the
analysis of localization phenomena in problems with scalar-isotropic damage (Gori et al.,
2017b). As it will be shown, the key for the realization of such a framework has been a
compact tensorial representation of the micropolar constitutive equations, inspired by the
symbolism adopted by Eremeyev in his paper on acceleration waves in micropolar elastic
media (Eremeyev, 2005). The theoretical aspects of this approach to constitutive mod-
elling, which are mainly drawn from Gori et al. (2017c), will be discussed in the following
sections, while the computational aspects will be discussed in details in Appendix C.

3.3.1 Elastic degradation in micropolar media

The starting point for the derivation of an elastic-degrading constitutive model within the
context of the micropolar theory is the extension of the Clausius-Duhem inequality to the
micropolar case (Steinmann, 1995)

ψ̇ − σ · γ̇ − µ · κ̇ ≤ 0 ∀γ̇, κ̇ (3.26)

where ψ is the Helmholtz free energy density, depending on the current state of the mate-
rial. Alternatively, the Clausius-Duhem inequality can be rewritten in terms of the Gibbs
free energy G, obtained from the Helmholtz free energy with a Legendre transformation
(Collins and Houlsby, 1997), and characterized by ψ + G = σ · γ + µ · κ, resulting in

Ġ− γ · σ̇ − κ · µ̇ ≥ 0 ∀σ̇, µ̇ (3.27)

The choice of a peculiar expression for the Helmholtz or the Gibbs free energy densities
should be based on the material under analysis. Regarding the Helmholtz free energy den-
sity, in general, a common choice is to make it dependent on the measures of deformation,
which indicates the current state of a body, and on a set of parameters indicating the state
of elastic or plastic degradation of the material6 (see, e.g., Coleman and Gurtin (1967)).
In this context, the degradation of the material properties is assumed to be elastic, i.e.,
not induced by any plastic mechanism7. Furthermore, no microcracks closure-reopening
effect is accounted for. Hence, the Helmholtz and the Gibbs free energies can be expressed

6 Of course, since it is a density, it also depends on the considered position inside the body. However,
such dependence is not made explicit here in order to contain the notation.

7 Though, as it will be shown, the case of perfect plasticity can be easily included within the same
framework discussed here.
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as8

ψ
(
γ, κ, ÂS, ĈS

)
= 1

2 γ ·
(
ÂS · γ

)
+ 1

2 κ ·
(
ĈS · κ

)
(3.28)

G
(
σ, µ, (ÂS)−1, (ĈS)−1

)
= 1

2 σ ·
(
(ÂS)−1 · σ

)
+ 1

2 µ ·
(
(ĈS)−1 · µ

)
(3.29)

where ÂS and ĈS are the current secant constitutive operators. It is worth to note that
in a more complex case, with microcracks closure-reopening effects or plastic damage, the
current constitutive operators wouldn’t be secant, and residual deformations could appear
at a zero stress state. The inequalities expressed in Eqs. (3.26) and (3.27) can then be
rewritten as (

∂ψ

∂γ
− σ

)
· γ̇ +

(
∂ψ

∂κ
− µ

)
· κ̇− Ḋ∗ ≤ 0 ∀γ̇, κ̇ (3.30)(

∂G
∂σ
− γ

)
· σ̇ +

(
∂G
∂µ
− κ

)
· µ̇+ Ḋ ≥ 0 ∀σ̇, µ̇ (3.31)

where the dissipation functions Ḋ∗ and Ḋ are expressed as

Ḋ∗ := −Π̂∗A ·
˙̂AS − Π̂∗C ·

˙̂CS, Ḋ := −Π̂A · ( ˙̂AS)−1 − Π̂C · ( ˙̂CS)−1 (3.32)

in terms of the thermodynamical forces

Π̂∗A := ∂ψ

∂ÂS
= 1

2
(
γ ⊗ γ

)
, Π̂∗C := ∂ψ

∂ĈS
= 1

2 (κ⊗ κ) (3.33)

Π̂A := − ∂G

∂(ÂS)−1
= −1

2 (σ ⊗ σ) , Π̂C := − ∂ψ

∂(ĈS)−1
= 1

2
(
µ⊗ µ

)
(3.34)

From Eqs. (3.30) and (3.31), due to the arbitrariness of the quantities γ̇, κ̇, σ̇, and µ̇, the
following relations hold

σ = ∂ψ

∂γ
= ÂS · γ, µ = ∂ψ

∂κ
= ĈS · κ, Ḋ∗ ≥ 0 (3.35)

γ = ∂G

∂σ
= (ÂS)−1 · σ, κ = ∂G

∂µ
= (ĈS)−1 · µ, Ḋ ≥ 0 (3.36)

where the non-negativeness of the dissipation terms is related to the irreversibility of the
degradation process. The previous equations emphasize that, for a micropolar elastic-
degrading material, total relations between stress and deformation measures exist, and
are expressed in terms of the current secant material properties.

Deriving Eq. (3.35), the expressions of the stress and the couple-stress rate tensors

8 These expressions can be viewed as a generalization to a micropolar medium of the ones proposed
in Carol et al. (1994) for the classic continuum.
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can be obtained as

σ̇ = ∂2ψ

∂γ∂γ
· γ̇ + ∂2ψ

∂γ∂ÂS
· ˙̂AS = ÂS · γ̇ + ˙̂AS · γ (3.37)

µ̇ = ∂2ψ

∂κ∂κ
· κ̇+ ∂2ψ

∂κ∂ĈS
· ˙̂CS = ĈS · κ̇+ ˙̂CS · κ (3.38)

These equations (see also Fig. 3.2, where the stress and the strain rates have been replaced
with their infinitesimal increments) show that both the stress and the couple-stress rates
can be decomposed into two contributions: an elastic contribution due to deformation
increments at fixed secant stiffness, and a degrading one induced by stiffness degradation
at constant deformation

σ̇ = σ̇e + σ̇d, σ̇e := ÂS · γ̇, σ̇d := ˙̂AS · γ (3.39)

µ̇ = µ̇e + µ̇d, µ̇e := ĈS · κ̇, µ̇d := ˙̂CS · κ (3.40)

E0 ES

dγe
dγd

dγ

dσ = ESdγe

γ

σ

Figure 3.2: Additive decomposition of the strain rate

In an analogous way, from Eq. (3.36), the strain and the microcurvature rate tensors
can be expressed as

γ̇ = ∂2G
∂σ∂σ

· σ̇ + ∂2G
∂σ∂(ÂS)−1

· ( ˙̂AS)−1 = (ÂS)−1 · σ̇ + ( ˙̂AS)−1 · σ (3.41)

κ̇ = ∂2G
∂µ∂µ

· µ̇+ ∂2G
∂µ∂(ĈS)−1

· ( ˙̂CS)−1 = (ĈS)−1 · µ̇+ ( ˙̂CS)−1 · µ (3.42)

A decomposition similar to the one adopted in Eqs. (3.39) and (3.40) can be introduced,
resulting in the following elastic and degrading contributions

γ̇ = γ̇e + γ̇d, γ̇e := (ÂS)−1 · σ̇, γ̇d := ( ˙̂AS)−1 · σ (3.43)

κ̇ = κ̇e + κ̇d, κ̇e := (ĈS)−1 · µ̇, κ̇d := ( ˙̂CS)−1 · µ (3.44)



§3.3 Micropolar media 41

where the degrading deformation measures are related to the degrading parts of the stress
and the couple-stress rate tensors by

σ̇d = −ÂS · γ̇d, µ̇d = −ĈS · κ̇d (3.45)

Making use of the aforementioned decompositions, the dissipation terms (Eq. (3.32)) can
be expressed as

Ḋ∗ = −1
2 γ · σ̇d − 1

2 κ · µ̇d, Ḋ = 1
2 σ · γ̇d + 1

2 µ · κ̇d (3.46)

Furthermore, considering the relations in Eq. (3.45), it can be easily shown that the
equality Ḋ = Ḋ∗ holds.

Remark 3.3: Coupled media

In the decompositions expressed by Eqs. (3.39), (3.40), (3.43) and (3.44), the same
notations introduced in Carol et al. (1994) for the classic continuum theory have been
adopted. At this point, an analogy with the concept of coupled media (elasto-plastic
coupling, i.e., dependence of the elastic moduli on the plastic deformation (Maier and
Hueckel, 1979)) can be made. The elastic and the degrading components defined here
can be identified as the reversible and the irreversible components defined in Collins
and Houlsby (1997). However, differently from elasto-plastic coupling, in the present
work the elastic properties depend only on the elastic degradation of the material and
no plastic behaviour is accounted for.

3.3.1.1 Stress-based formulation

The stress-based formulation relies on the additive decomposition of the strain and the
microcurvature rate tensors of Eqs. (3.43) and (3.44). Like in micropolar elasto-plasticity,
two degradation rules are introduced to represent the degrading parts of the strain and
the microcurvature rate tensors

γ̇d = λ̇ mA (3.47)

κ̇d = λ̇ mC (3.48)

where the term λ̇ is the inelastic multiplier, defining the magnitude of the inelastic rates,
while the operators mA and mC represent the directions of degradation of the strain and
the microcurvature degrading rates, respectively. The degradation rules, together with
Eqs. (3.43) and (3.44), allow to obtain the following expressions for the stress and the
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couple-stress rate tensors

σ̇ = ÂS · γ̇ − λ̇ ÂS ·mA (3.49)

µ̇ = ĈS · κ̇− λ̇ ĈS ·mC (3.50)

It should be noted that the aforementioned degradation rules are not sufficient to
completely define the evolution of the material properties during the degradation process,
i.e., to represent univocally the evolution of the secant constitutive operators (see, e.g.,
Carol et al. (1994) for the same consideration in the classic continuum case). Indeed, it
can be observed that each one of the expressions of the strain and the microcurvature
degrading parts, here recalled for simplicity,

γ̇d = ( ˙̂AS)−1 · σ, κ̇d = ( ˙̂CS)−1 · µ (3.51)

represents, for a known stress-strain state, a system of 9 equations in 45 unknowns (the
independent components of each one of the constitutive operators). Hence, proper degra-
dation rules for the secant constitutive operators must be introduced in order to com-
pletely define the evolution of the model; for the considered stress-based approach these
are represented by

( ˙̂AS)−1 = λ̇ M̂A (3.52)

( ˙̂CS)−1 = λ̇ M̂C (3.53)

where λ̇ is an inelastic multiplier, defining the magnitude of the rates, and M̂A and M̂C

represent, the directions of degradation of the inverse of the secant constitutive operators.
It can be easily shown that the following relations between the different directions of
degradation hold

mA = M̂A · σ (3.54)

mC = M̂C · µ (3.55)

The different phases of the loading process are described in terms of the loading
function9 f(σ, µ, Π̂A, Π̂C), characterized by the classic Kuhn-Tucker conditions

λ̇ ≥ 0, f ≤ 0, λ̇f = 0 (3.56)

9 This approach, consisting in a single loading function describing the loading process of both the
Cauchy-like and the Cosserat-like parts of the formulation, is analogous to the single-criterion approach
described by Forest and Sievert (2003) in micropolar elasto-plasticity. As it will be shown, this approach
leads to a coupling between the non-linear constitutive equations, which will be addressed in Section 3.3.3.
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When damage occours, the following consistency condition holds

ḟ = ∂f

∂σ
· σ̇ + ∂f

∂µ
· µ̇+ ∂f

∂Π̂A

· ˙̂ΠA + ∂f

∂Π̂C

· ˙̂ΠC = 0 (3.57)

Taking into account that degradation rules can be introduced also for the rates of the
thermodynamic forces as

˙̂ΠA = λ̇ ĥA, ˙̂ΠC = λ̇ ĥC (3.58)

the consistency condition can be rewritten as

ḟ = nA · σ̇ + nC · µ̇−H λ̇ = 0 (3.59)

where the following partial derivatives of the loading function have been introduced

nA := ∂f

∂σ
, nC := ∂f

∂µ
, N̂A := − ∂f

∂Π̂A

, N̂C := − ∂f

∂Π̂C

(3.60)

H := N̂A · ĥA + N̂C · ĥC = −∂f
∂λ

(3.61)

It can be easily shown that the following relations between the partial derivatives of the
loading function hold

nA = N̂A · σ, nC = N̂C · µ (3.62)

Introducing the rate expressions for the stress and the couple-stress tensors of Eqs. (3.49)
and (3.50) into the consistency condition, the following strain-driven expression for the
inelastic multiplier can be obtained

λ̇ =
nA · (ÂS · γ̇) + nC · (ĈS · κ̇)

H + nA · (ÂS ·mA) + nC · (ĈS ·mC)
(3.63)

Finally, introducing such equation into Eqs. (3.49) and (3.50), the following expressions
for the stress and the couple-stress rate tensors can be obtained

σ̇ =
(

ÂS − (ÂS ·mA)⊗ (nA · ÂS)
H + nA · (ÂS ·mA) + nC · (ĈS ·mC)

)
· γ̇

− (ÂS ·mA)⊗ (nC · ĈS)
H + nA · (ÂS ·mA) + nC · (ĈS ·mC)

· κ̇ (3.64)

µ̇ =
(

ĈS − (ĈS ·mC)⊗ (nC · ĈS)
H + nA · (ÂS ·mA) + nC · (ĈS ·mC)

)
· κ̇

− (ĈS ·mC)⊗ (nA · ÂS)
H + nA · (ÂS ·mA) + nC · (ĈS ·mC)

· γ̇ (3.65)
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3.3.1.2 Strain-based formulation

The concepts developed in the previous section for the stress-based formulation are here
repeated in a dual way, in order to obtain a strain-based formulation for micropolar
elastic-degrading media. In this case, the additive decomposition of the stress and the
couple-stress rate tensors (Eqs. (3.39) and (3.40)) is considered.

The degrading parts of the stress and the couple-stress rate tensors are defined in
terms of the following degradation rules

σ̇d = λ̇ m∗A (3.66)

µ̇d = λ̇ m∗C (3.67)

where λ̇ is the inelastic multiplier, defining the magnitude of the inelastic rates, while the
operators m∗A and m∗C represent, respectively, the directions of degradations of the stress
and the couple-stress degrading rates. The degradation rules, together with Eqs. (3.39)
and (3.40), allow to obtain the following expressions for the stress and the couple-stress
rate tensors

σ̇ = ÂS · γ̇ + λ̇ m∗A (3.68)

µ̇ = ĈS · κ̇+ λ̇ m∗C (3.69)

Due to the same considerations already made for the stress-based approach, degrada-
tion rules for the rates of the secant constitutive operators must be introduced as

˙̂AS = λ̇ M̂∗
A (3.70)

˙̂CS = λ̇ M̂∗
C (3.71)

where λ̇ is an inelastic multiplier, defining the magnitude of the rates, and M̂∗
A and M̂∗

C

represents, respectively, the directions of degradation of the secant constitutive operators.
It can be easily shown that the following relations between the different directions of
degradation hold

m∗A = M̂∗
A · γ (3.72)

m∗C = M̂∗
C · κ (3.73)

In an analogous way as in the stress-based approach, a single loading function f(γ, κ, Π̂∗A, Π̂∗C)
defines the different phases of the loading process; for such a function, the classic Kuhn-
Tucker conditions hold

λ̇ ≥ 0, f ≤ 0, λ̇f = 0 (3.74)
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In this case, the consistency condition, verified when damage occours, is represented by

ḟ = ∂f

∂γ
· γ̇ + ∂f

∂κ
· κ̇+ ∂f

∂Π̂∗A
· ˙̂Π∗A + ∂f

∂Π̂∗C
· ˙̂Π∗C = 0 (3.75)

Defining the degradation rules for the rates of the thermodynamical forces as

˙̂Π∗A = λ̇ ĥ∗A,
˙̂Π∗C = λ̇ ĥ∗C (3.76)

the consistency condition can be rewritten as

ḟ = n∗A · γ̇ + n∗C · κ̇−H∗λ̇ = 0 (3.77)

where the following partial derivatives of the loading function have been introduced

n∗A := ∂f

∂γ
, n∗C := ∂f

∂κ
, N̂∗A := ∂f

∂Π̂∗A
, N̂∗C := ∂f

∂Π̂∗C
(3.78)

H∗ := −N̂∗A · ĥ∗A − N̂∗C · ĥ∗C = −∂f
∂λ

(3.79)

It can be easily shown that the partial derivatives of the loading function are related by

n∗A = N̂∗A · γ, n∗C = N̂∗C · κ (3.80)

The consistency condition leads to the following strain-driven expression for the in-
elastic multiplier

λ̇ = 1
H∗

(
n∗A · γ̇ + n∗C · κ̇

)
(3.81)

that, when introduced into Eqs. (3.68) and (3.69), allows to obtain the following expres-
sions for the stress and the couple-stress rate tensors

σ̇ =
(
ÂS + 1

H∗
(m∗A ⊗ n∗A)

)
· γ̇ + 1

H∗
(m∗A ⊗ n∗C) · κ̇ (3.82)

µ̇ =
(
ĈS + 1

H∗
(m∗C ⊗ n∗C)

)
· κ̇+ 1

H∗
(m∗C ⊗ n∗A) · γ̇ (3.83)

Remark 3.4: General expressions of the constitutive equations

The unified formulation for classic constitutive models has been presented in Sec-
tion 2.2.2 using an expression of the tangent constitutive operator (Eq. (2.12)) of
general character, able to describe both the stress- and the strain-based approaches.
An analogous expression can be obtained also for the rate equations of the micropolar
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models discussed here, and is represented by (Gori et al., 2018)

σ̇ =
(
ÂS − 1

z

(
xA ⊗ yA

))
· γ̇ − 1

z

(
xA ⊗ yC

)
· κ̇ (3.84)

µ̇ =
(
ĈS − 1

z

(
xC ⊗ yC

))
· κ̇− 1

z

(
xC ⊗ yA

)
· γ̇ (3.85)

The expressions of the stress-based approach (Eqs. (3.64) and (3.65)) can be obtained
assuming

z := H + nA ·
(
ÂS ·mA

)
+ nC ·

(
ĈS ·mC

)
(3.86)

xA := ÂS ·mA, xC := ĈS ·mC (3.87)

y
A

:= nA · ÂS, y
C

:= nC · ĈS (3.88)

while the ones of the strain-based approach (Eqs. (3.82) and (3.83)) are characterized
by

z := H∗ (3.89)

xA := −m∗A, xC := −m∗C (3.90)

y
A

:= n∗A, y
C

:= n∗C (3.91)

3.3.1.3 Duality of the representations

The main operators characterizing the two different formulations of elastic degradation are
resumed in Table 3.2. Peculiar duality relations between such operators can be obtained.

Stress-based formulation Strain-based formulation

Additive γ̇ = γ̇e + γ̇d → σ̇ = ÂS · γ̇e σ̇ = σ̇e + σ̇d → γ̇ = (ÂS)−1 · σ̇e
decompositions κ̇ = κ̇e + κ̇d → µ̇ = ĈS · κ̇e µ̇ = µ̇e + µ̇d → κ̇ = (ĈS)−1 · µ̇e

γ̇d = λ̇ mA σ̇d = λ̇ m∗A
Degradation κ̇d = λ̇ mC µ̇d = λ̇ m∗C

rules ( ˙̂AS)−1 = λ̇ M̂A
˙̂AS = λ̇ M̂∗

A

( ˙̂CS)−1 = λ̇ M̂C
˙̂CS = λ̇ M̂∗

C

f = f(σ, µ, Π̂A, Π̂C) f = f(γ, κ, Π̂∗A, Π̂∗C)
Loading function nA = ∂f

∂σ n∗A = ∂f
∂γ

gradient nC = ∂f
∂µ n∗C = ∂f

∂κ

H = −∂f
∂λ H∗ = −∂f

∂λ

Inelastic multiplier λ̇ = nA·(ÂS ·γ̇)+nC ·(ĈS ·κ̇)
H+nA·(ÂS ·mA)+nC ·(ĈS ·mC) λ̇ = 1

H∗

(
n∗A · γ̇ + n∗C · κ̇

)
Table 3.2: Stress- and strain-based formulations

Comparing the expressions of the stress and the couple-stress rate tensors of the stress-
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based formulation (Eqs. (3.49) and (3.50)) with the ones of the strain-based formulation
(Eqs. (3.68) and (3.69)), it can be easily shown that the following relations between the
directions of degradation hold

m∗A = −ÂS ·mA (3.92)

m∗C = −ĈS ·mC (3.93)

A relation between the gradients of the loading function can be obtained considering
the chain rule for derivation, resulting in

n∗A = ∂f

∂γ
= ∂f

∂σ
· ∂σ
∂γ

= nA · ÂS (3.94)

n∗C = ∂f

∂κ
= ∂f

∂µ
·
∂µ

∂κ
= nC · ĈS (3.95)

Finally, a relation between the terms H and H∗ can be obtained by equating the
expressions of Eqs. (3.63) and (3.81) for the inelastic multiplier

H∗ = H + nA · (ÂS ·mA) + nC · (ĈS ·mC) (3.96)

It can be observed that the relations between the operators of the two formulations
presented in this section are completely analogous to the ones that characterize the elastic-
degading formulation based on the classic continuum theory (see, e.g., Carol et al. (1994)
and Penna (2011) for a comparison).

3.3.2 Damage variables

In the previous sections, a generic elastic-degrading model for micropolar media has been
developed. From this generic framework, a damage model is obtained once the secant
constitutive operators are assumed to depend on a set of reduced parameters, the set
of damage variables, that completely defines the state of degradation, or damage, of a
material during a loading process. The main advantage of this approach is that a reduced
number of parameters can be used instead of the 45 independents components of each
one of the secant constitutive operators, allowing for a reduction in the complexity of the
problem.

In a general case, two different sets of damage variables can be introduced: one repre-
senting the degradation of the stress-strain relation and the other the degradation of the
relation between the couple-stress and the microcurvature. For a stress-based formulation
the two sets of variables are indicated, respectively, as DA and DC , while for a strain-
based one, the symbols D∗A and D∗C are used. It should be noted that both the sets DA
and DC and D∗A and D∗C represent the same physical phenomenon; however, a distinction
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is maintained since the former are used to define the degradation of compliance tensors,
while the latter define the degradation of stiffness tensors. In this general introduction,
the peculiar nature of the operators defining the damage variables for the micropolar
theory is not specified. Indeed, the previous symbols may be used to indicate, in general,
scalar, vectorial or tensorial damage variables.

3.3.2.1 Stress-based formulation

In the stress-based approach, as already stated, the degradation process is represented in
terms of the evolution of compliance constitutive operators. Introducing proper sets of
damage variables, such operators can be expressed as

(ÂS)−1 = (ÂS)−1
(
(Â)−1,DA

)
(3.97)

(ĈS)−1 = (ĈS)−1
(
(Ĉ)−1,DC

)
(3.98)

Hence, their time derivatives are represented by

( ˙̂AS)−1 = ∂(ÂS)−1

∂DA
∗ ḊA (3.99)

( ˙̂CS)−1 = ∂(ĈS)−1

∂DC
∗ ḊC (3.100)

where with the symbol ∗, a contraction operation compatible with the peculiar nature of
the damage variables sets is indicated.

At this point it is observed that, similarly to the degradation rules introduced in
Eqs. (3.52) and (3.53), analogous rules can be defined for the evolution of the damage
variables as

ḊA = λ̇MA (3.101)

ḊC = λ̇MC (3.102)

where λ̇ represents the inelastic multiplier, defining the magnitude of the damage evo-
lution, while the operators MA and MC represent, respectively, the directions of degra-
dation of the damage variables sets. Such operators present the same scalar, vectorial
or tensorial nature of the sets of damage variables. Replacing these degradation rules
in Eqs. (3.99) and (3.100), and comparing with the degradation rules of Eqs. (3.52)
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and (3.53), it can be shown that the following relations hold

M̂A = ∂(ÂS)−1

∂DA
∗MA (3.103)

M̂C = ∂(ĈS)−1

∂DC
∗MC (3.104)

3.3.2.2 Strain-based formulation

Proceeding in a dual way, in the strain-based approach the degradation process is rep-
resented by means of the evolution of stiffness constitutive operators. Assuming their
dependence on the sets of damage variables they can be expressed as

ÂS = ÂS
(
Â,D∗A

)
(3.105)

ĈS = ĈS
(
Ĉ,D∗C

)
(3.106)

with time derivatives

˙̂AS = ∂ÂS

∂D∗A
∗ Ḋ∗A (3.107)

˙̂CS = ∂ĈS

∂D∗C
∗ Ḋ∗C (3.108)

Like for the stress-based formulation, proper degradation rules are introduced for the
evolution of the damage variables

Ḋ∗A = λ̇M∗
A (3.109)

Ḋ∗C = λ̇M∗
C (3.110)

for which the following relations hold

M̂∗
A = ∂ÂS

∂D∗A
∗M∗

A (3.111)

M̂∗
C = ∂ĈS

∂D∗C
∗M∗

C (3.112)

3.3.3 Compact tensorial formulation for micropolar continua

The purpose of this section is to address the problem of consistency (or compatibility)
between the proposed formulation for elastic degradation in micropolar model discussed
above, and the existing analogous formulation for classic media discussed in Section 2.2.2.
As pointed out in Section 2.2.2 and in the references therein, a unified formulation is
useful for three reasons, since it allows to:
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• represent different constitutive models within the same general equations;
• analyze different models at the same time performing the investigations directly on

their common equations;
• reduce the implementation efforts, especially in case of an object-oriented approach.

Despite these points could be easily satisfied also by the formulation for micropolar media
discussed previously, it is worth to note that they have been already addressed in case
of classic media by an extensive literature (see, e.g., the localization analyses by Rizzi
(1995) and Rizzi et al. (1996), the object-oriented implementations for elasto-plasticity
by Jeremić and his co-authors (Jeremić and Sture, 1998, Jeremić et al., 1999, Jeremić
and Yang, 2002), and for elastic degradation and elasto-plasticity by Penna and his co-
authors (Penna, 2011, Gori et al., 2017a)); hence, it would be interesting for the micropolar
models to take advantage of these theoretical and computational resources already defined
for classic continuum models.

The main issue is constituted by the difference between the general equations of the
classic and the micropolar formulations. Indeed, the formulation for classic media consists
in the single rate expression σ̇ = Êt · ε̇, represented by the tangent constitutive operator
expressed in Eq. (2.12), which for a monodissipative medium reduces to

Êt = ÊS − 1
z

(
x⊗ y

)
= (ES

ijk` −
1
z
xij yk`) ēi ⊗ ēj ⊗ ēk ⊗ ē` (3.113)

while a micropolar medium is represented in terms of the two rate expressions of Eqs. (3.84)
and (3.85), here repeated for simplicity

σ̇ =
(
ÂS − 1

z

(
xA ⊗ yA

))
· γ̇ − 1

z

(
xA ⊗ yC

)
· κ̇ (3.114)

µ̇ =
(
ĈS − 1

z

(
xC ⊗ yC

))
· κ̇− 1

z

(
xC ⊗ yA

)
· γ̇ (3.115)

The solution of the problem of compatibility between the two formulations was pro-
posed by the author in Gori et al. (2017c), using a compact tensorial formulation, orig-
inally adopted by Eremeyev (2005) for the problem of elastic waves propagation in mi-
cropolar media. Within this approach, the aforementioned micropolar rate equations can
be condensed in a single generalized tangent relation

Σ̇ = Ê t · Γ̇ (3.116)

where the generalized stress rate operator Σ̇ and the generalized strain rate operator Γ̇,
both represented by second-order tensors with dimension six, are defined by

Σ̇ =
σ̇ 0

0 µ̇

 , Γ̇ =
γ̇ 0

0 κ̇

 (3.117)
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The generalized tangent operator Ê t is instead represented by a fourth-order tensor with
dimension six, and assumes the expression

Ê t = ÊS − 1
z

(X ⊗ Y ) (3.118)

where X and Y are defined by

X =
xA 0

0 xC

 , Y =
yA 0

0 y
C

 (3.119)

The generalized secant operator is represented by a fourth-order tensor with dimension
six, such that

Σ = ÊS · Γ −→
σ 0

0 µ

 = ÊS ·
γ 0

0 κ

 (3.120)

containing the elements of both the operators ÂS and ĈS, as illustrated in the following
scheme

(ÊS)βνδψ =





ASβν11 ASβν12 ASβν13 0 0 0
ASβν21 ASβν22 ASβν23 0 0 0
ASβν31 ASβν32 ASβν33 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, for β, ν = 1, 2, 3



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 CS(β−3)(ν−3)11 CS(β−3)(ν−3)12 CS(β−3)(ν−3)13

0 0 0 CS(β−3)(ν−3)21 CS(β−3)(ν−3)22 CS(β−3)(ν−3)23

0 0 0 CS(β−3)(ν−3)31 CS(β−3)(ν−3)32 CS(β−3)(ν−3)33


, for β, ν = 4, 5, 6

(3.121)

At this point it should be noted how the generalized tangent operator depicted in
Eq. (3.118) presents a tensorial expression that is formally identical to the one of the
tangent operator for classic media (Eq. (3.113)), except for the dimension of the involved
operators, hence solving the problem of compatibility between the two formulations. The
compact tensorial formulation presented in Gori et al. (2017c) and discussed in this sec-
tion, was adopted by the author in Gori et al. (2017b) to extend to micropolar elastic-
degrading models concepts of localization and discontinuous failure previously formulated
for classic media (Chapter 5), and in Gori et al. (2018) to represent micropolar constitu-
tive models within the same computational framework of classic elastic-degrading models
(discussed in details in Appendix C).
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3.3.3.1 Stress-based formulation

In the stress-based approach the generalized tangent operator (Eq. (3.118)) is expressed
by

Ê t = ÊS − (ÊS ·m)⊗ (n · ÊS)
H + n · (ÊS ·m)

(3.122)

The directions of degradation and the partial derivatives of the loading function are rep-
resented in a generalized form as

m =
mA 0

0 mC

 , n = ∂f

∂Σ =
nA 0

0 nC

 (3.123)

Regarding the directions of degradation for the evolution of the secant constitutive
operators, a generalized operator M̂ can be introduced in a way to include the components
of both M̂A and M̂C , following the same scheme adopted in Eq. (3.121). With this
generalized operator, the rate of variation of the generalized secant constitutive operator
is represented by

( ˙̂ES)−1 = λ̇ M̂ (3.124)

It should be noted that this compact tensorial formulation can be extended also to
the operators defining the damage variables, that can be represented by means of a gen-
eralized set of damage variables D, containing both the operators DA and DC , which
explicit expression depends on the peculiar nature of the sets of damage variables. For
the generalized set of damage variables the degradation rule is

Ḋ = λ̇M (3.125)

whereM is a generalized operator containing the directions of degradationMA andMC .

3.3.3.2 Strain-based formulation

The strain-based approach is characterized by the following generalized tangent operator

Ê t = ÊS + 1
H∗

(m∗ ⊗ n∗) (3.126)

where the generalized operators m∗ and n∗ are represented by

m∗ =
m∗A 0

0 m∗C

 , n∗ = ∂f

∂Γ =
n∗A 0

0 n∗C

 (3.127)

Proceeding in a dual way to the stress-based case, a generalized operator M̂∗, contain-
ing the components of both M̂∗

A and M̂∗
C can be introduced, allowing the representation
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of the evolution of the generalized secant constitutive operator as

˙̂ES = λ̇ M̂∗ (3.128)

Regarding the damage variables and their evolution, the same considerations already
made for the stress-based formulation hold. Hence, the generalized set of damage variable
D∗, containing both the operators D∗A and D∗C , can be introduced, together with its
evolution rule

Ḋ∗ = λ̇M∗ (3.129)

where M∗ is the generalized operator containing the directions of degradation M∗
A and

M∗
C .

3.3.4 Scalar-isotropic damage models

Scalar damage models can be derived within the general formulation discussed in Sec-
tion 3.3.1 by reducing the set of damage variables to a single scalar value, like in a classic
medium. If damage is assumed to be also isotropic, the resulting generalized constitutive
operator can be expressed as

ÊS(Ê , D) = (1−D) Ê (3.130)

where the damage variable D is assumed to vary from 0 (undamaged material) to 1
(completely damaged material), and where Ê represents the initial elastic operator. The
evolution of the secant material properties depends on the rate of the damage variable as

˙̂ES(Ê , D) = ∂ÊS

∂D
Ḋ = −Ê Ḋ (3.131)

Focusing on the strain-based approach, the comparison of the previous equation with
Eq. (3.128) shows that the following relations hold

λ̇ = Ḋ, M̂∗ = −Ê , M̂∗
A = −Â, M̂∗

C = −Ĉ (3.132)

M =M∗
A =M∗

C = 1 (3.133)

Hence, the directions of degradation for the inelastic rates are represented by

m∗A = −Â · γ = −σ0

m∗C = −Ĉ · κ = −µ0

 −→ m∗ = −Σ0 := −
σ0 0

0 µ0

 (3.134)

A common choice for the loading function f(γ, κ,D) = f(Γ, D) in the case of scalar
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damage is represented by the following additive decomposition

f(γ, κ,D) = Γeq(γ, κ)−K(D) ≤ 0 (3.135)

where Γeq(γ, κ) = Γeq(Γ) is a function depending only on the deformation operators,
usually referred to as equivalent deformation, that represents the loading condition of
the continuum, while K(D) is an historical parameter that depends only on the damage
variable. The historical parameter is representative of the maximum level of deformation
reached during the loading process. With this assumption it follows that

n∗A = ∂Γeq
∂γ

, n∗C = ∂Γeq
∂κ

, H = ∂K

∂D
=
(
∂D(Γeq)
∂Γeq

)−1

(3.136)

where D(Γeq) is a prescribed evolution law for the damage variable.
At this point, it can be easily shown that, for a scalar-isotropic damage model, the

stress and the couple-stress rates (Eqs. (3.82) and (3.83)) can be rewritten as

σ̇ =
(

(1−D) Â− ∂D(Γeq)
∂Γeq

(
σ0 ⊗ ∂Γeq

∂γ

))
· γ̇

− ∂D(Γeq)
∂Γeq

(
σ0 ⊗ ∂Γeq

∂κ

)
· κ̇ (3.137)

µ̇ =
(

(1−D) Ĉ− ∂D(Γeq)
∂Γeq

(
µ0 ⊗ ∂Γeq

∂κ

))
· κ̇

− ∂D(Γeq)
∂Γeq

(
µ0 ⊗ ∂Γeq

∂γ

)
· γ̇ (3.138)

or in terms of the generalized tangent operator

Ê t = (1−D) Ê − ∂D(Γeq)
∂Γeq

(
Σ0 ⊗ ∂Γeq

∂Γ

)
(3.139)

Within this general framework different damage models can be obtained, once peculiar
equivalent deformations and damage law are choosen. In the following, the two damage
models used in the numerical simulations of Chapters 6 and 7 will be presented; further
models proposed by the author in other pubblications will be presented in Appendix A.
Before proceeding to the presentation of these models, a brief discussion on the special
case of associated models is reported, since it will be used in Section 5.4.

3.3.4.1 Associated models in strain space

A peculiar class of scalar-isotropic damage models is represented by the ones that are
associated in the strain-space, i.e., damage models for which the gradient of the loading
function n (or n∗) has the same direction of the degradation rule m (or m∗). Such models
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can be expressed as n∗ = τ Σ0, where the parameter τ depends on the peculiar damage
model. In this case, the generalized tangent operator assumes the expression

Ê t = (1−D) Ê − τ ∂D(Γeq)
∂Γeq

(
Σ0 ⊗ Σ0

)
(3.140)

3.3.4.2 Marigo’s micropolar damage model

The so-called Marigo’s micropolar scalar damage model has been adopted by the author
in Gori et al. (2017b), where it was used to perform analytical and numerical localization
analyses. It is an associated model, obtained as an extension to the micropolar theory
of the classic damage model based on strain energy proposed by Marigo (1985), and is
characterized by the following equivalent deformation

Γeq =
√

2ψ0

E
, ψ0 = 1

2 γ ·
(
Â · γ

)
+ 1

2 κ ·
(
Ĉ · κ

)
, τ = 1

E Γeq
(3.141)

In the numerical simulations of Chapter 6, it was associated to the following exponential
damage law

D(Γeq) = 1− K0

Γeq

(
1− α + αe−β(Γeq−K0)

)
(3.142)

where, like in the analogous law for the classic continuum depicted in Eq. (2.33), K0 is
a threshold value for the equivalent deformation, representing the onset of damage, and
where α and β are parameters that allow to control, the maximum value of the scalar
damage variable and the damage evolution intensity, respectively.

3.3.4.3 Mazars micropolar damage model

This model was proposed by the author in Gori et al. (2017c), and it is an extension of the
classic Mazar damage model (Mazars, 1984). It is represented by the following equivalent
deformation10

Γeq(γ, κ) =

√√√√[ 3∑
k=1

(< ε(k) >+)2
]

+ κ∗ · κ∗, < ε(k) >+= ε(k) + |ε(k)|
2 (3.143)

where ε(k) is the k-th eigenvalue of the symmetric part of the strain tensor (ε = γsym),
while the operator < · >+ indicates the positive part of a quantity. With this choice for
the equivalent deformation, the gradients of the loading function, represented in Voigt

10 It should be noted that, for dimensionality reasons, the scaled microcurvature tensor κ∗ defined in
Section 3.2.2 has been used in Eq. (3.143).
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notation, are expressed as {
∂f

∂γ

}
g

= 1
Γeq

[Tε]T < {ε}` >+ (3.144)
{
∂f

∂κ∗

}
g

= 1
Γeq
{κ∗}g (3.145)

where with the subscripts g and ` are indicated, respectively, a global coordinate system,
and the local principal system of the tensor ε, and where the matrix [Tε] represents
the transformation matrix of the symmetric part of the strain tensor between these two
systems, {ε}` = [Tε] {ε}g.

An alternative version of the model, used in the numerical examples of Chapter 7, can
be obtained by removing the dependence of the equivalent deformation on the microcur-
vature tensor

Γeq(γ, κ) = Γeq(γ) =

√√√√[ 3∑
k=1

(< ε(k) >+)2
]

(3.146)

which makes the term {∂f/∂κ∗}g to vanish.

In the original work by Mazars a specific treatment for the evolution of the scalar
damage variable was adopted, which extension to the micropolar formulation have been
discussed in Gori et al. (2017c) and will be recalled in Appendix A. In the numerical sim-
ulations presented in Chapter 7, the approach suggested in de Borst and Gutiérrez (1999)
was followed. This is a simplified version of the Mazar’s model, where the exponential
damage law of Eq. (3.142) replace the original treatment of the damage variable proposed
by Mazars.

3.4 Weak form and FEM representation

3.4.1 Weak form of the micropolar boundary values problem

The weak form of the coupled boundary values problem that governs a micropolar medium
described in Section 3.2, can be obtained in a straightforward manner using the weighted
residual method, for example. Once obtained, the problem resumes in: find the set
U = (ū, ϕ̄) ∈ V(D) such that

A(W,U) = f(W ), ∀ W = (w̄, ω̄) ∈ V0(D) (3.147)
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where V(D) is the space of trial functions (or admissible configurations), and V0(D) the
space of test functions, defined as

V(D) := {U ≡ (ū, ϕ̄) ∈ H∗(D) | ū = ū∗ at ∂Du
e , ϕ̄ = ϕ̄∗ at ∂Dϕ

e } (3.148)

V0(D) :=
{
W ≡ (w̄, ω̄) ∈ H∗(D) | w̄ = 0̄ at ∂Du

e , ω̄ = 0̄ at ∂Dϕ
e

}
(3.149)

where H∗(D) = (H1(D))n × (H1(D))m, with (H1(D))k the space of square integrable
k-dimensional vector fields with square integrable first derivatives over the domain D.
The bilinear form A(W,U) = A((w̄, ω̄), (ū, ϕ̄)) is expressed as

A(W,U) :=
∫

D

(
gradT(w̄ )− e · ω̄

)
·
(
Â ·

(
gradT( ū)− e · ϕ̄

))
dV

+
∫

D
gradT( ω̄ ) ·

(
Ĉ · gradT( ϕ̄)

)
dV

(3.150)

and the linear functional f(W ) = f(w̄, ω̄) as

f(W ) :=
∫
∂Du

n

w̄ · t̄A dS +
∫

D
w̄ · b̄V dV +

∫
∂Dϕ

n

ω̄ · t̄C dS +
∫

D
ω̄ · l̄V dV (3.151)

The existence and uniqueness of the solution of the problem of Eq. (3.147) have been
proven in Hlaváček and Hlaváček (1969).

Recalling the definition of the strain and the microcurvature tensors given in Eqs. (3.1)
and (3.2), the bilinear form can be rewritten as

A(W,U) =
∫

D
γ(W ) ·

(
Â · γ(U)

)
dV +

∫
D
κ(W ) ·

(
Ĉ · κ(U)

)
dV

=
∫

D
Γ(W ) ·

(
Ê · Γ(U)

)
dV

(3.152)

3.4.1.1 Linearization of the weak form

In order to treat the presence of physical non-linearities, the weak form defined in Eq. (3.147)
must be linearized. This procedure is briefly recalled in the following; the aspects con-
cerning the discretization of such linearized weak form are skipped, since they will be
addressed in more details in the following Sections 4.3 and 4.4.

The linearization is performed introducing the space of admissible variations δV(D),
defined by

δV(D) :=
{
δU ≡ (δū, δϕ̄) ∈ H∗(D) | δū = 0̄ at ∂Du

e , δϕ̄ = 0̄ at ∂Dϕ
e

}
(3.153)

which allows to obtain a set of perturbed configurations Vε(D), characterized by elements
Uε = U + δU satisfying the kinematical boundary conditions of the problem. Recasting
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the weak form of Eq. (3.147) for a known equilibrium configuration U as

G(W,U) := A(W,U)− f(W ) = 0, ∀W ∈ V0(D) (3.154)

with the introduction of the functional G(W,U), a perturbed configuration near the equi-
librium one, which still satisfies the equilibrium condition of the body, can be expressed
in terms of the elements of the space of admissible variations as

G(W,Uε) := A(W,Uε)− f(W ) = 0, ∀W ∈ V0(D) (3.155)

The variation δU which allows to reach the new equilibrium configuration can be evaluated
approximating the functional G with its linearization G(W,Uε) ' L [G(W,Uε)], resulting
in

L [G(W,Uε)] = G(W,U) +DG(W,U) · δU = 0, ∀W ∈ V0(D) (3.156)

where the term DG(W,Uε) · δU is the following directional (or Fréchet) derivative

DG(W,U) · δū = ∂G(W,Uε)
∂ε

∣∣∣∣∣
ε=0

(3.157)

The linearized weakened-weak form can then be recasted into: find the increment δU ∈
δV(D) such that

DG(W,U) · δU = −G(W,U), ∀W ∈ V0(D) (3.158)

It can be easily shown (see, Section 3.4.1) that the term DG(W,U) · δU appearing in the
linearized weak form of Eq. (3.158) is expressed by

DG(W,U) · δU =
∫

D
Γ(W ) ·

(
Ê t · δΓ(U)

)
dV (3.159)

where Ê t is the generalized tangent constitutive operator as defined in Section 3.3, and
where the variation δΓ(U) can be interpreted as the rate of the generalized deformation
tensors Γ̇ appearing in Section 3.3.

3.4.2 Voigt notation

The weak form illustrated above can be rewritten in Voigt notation, a form that is more
suitable for the numerical implementation discussed in Appendix C, exposed briefly here
for a plane-stress problem. In this case, the only components of the displacement and the
microrotation fields that characterize the problem are ux, uy, and ϕz, while stress and
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deformation measures are expressed by

{σ} = (σxx σxy σyx σyy)T , {γ} = (γxx γxy γyx γyy)T (3.160)

{µ∗} = (µxz/Lb µyz/Lb)T , {κ∗} = (κxzLb κyzLb)T (3.161)

where the scaled couple-stresses and microcurvatures are being used, since, as shown in
de Borst (1991), they lead to a more convenient numerical representation.

The expressions of the strain and the microcurvature tensors (Eqs. (3.1) and (3.2))
can be rewritten in Voigt notation as

{γ} = [LA]{ū} − [e]{ϕ̄} =


∂x 0
0 ∂x

∂y 0
0 ∂y


ux
uy

−


0
1
−1
0

ϕz (3.162)

{κ∗} = [L∗C ]{ϕ̄} =
Lb ∂x
Lb ∂y

ϕz (3.163)

where the derivative operator [L∗C ] already embeds the characteristic bending length Lb.
From Eq. (3.150), the bilinear form A(W,U) can be expressed as

A(W,U) =
∫

D
([LA]{w̄} − [e]{ω̄})T [Â] ([LA]{ū} − [e]{ϕ̄}) dV

+
∫

D
([L∗C ]{ω̄})T [Ĉ∗] ([L∗C ]{ϕ̄}) dV

(3.164)

where the matricial expressions of the constitutive operators [Â] and [Ĉ∗] are

[Â] =


E

1−ν2 0 0 νE
1−ν2

0 G+Gc G−Gc 0
0 G−Gc G+Gc 0
νE

1−ν2 0 0 E
1−ν2

 , [Ĉ∗] =
2G 0

0 2G

 (3.165)

while from Eq. (3.151) the linear functional f(W ) can be expressed as

f(W ) =
∫
∂Du

n

{w̄}T{t̄A} dS +
∫

D
{w̄}T{b̄V } dV

+
∫
∂Dϕ

n

{ω̄}T{t̄C} dS +
∫

D
{ω̄}T{l̄V } dV

(3.166)

It is worth to note that, in general, when a micropolar medium is investigated nu-
merically with the finite element method or with other discretization methods, the field
variables and the stress and the deformation measures are not represented separately with
different objects as in the equations above. The field variables ux, uy, and ϕz, for example,
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are usually collected in a single array (ux uy ϕz)T that is indicated here with the symbol
{U}, while the symbol {W} will indicate the array of test functions (wx wy ωz)T ; stress
and deformation measures are usually represented in terms of their generalized forms as
(see, e.g., de Borst (1991))

{Σ} = (σxx σxy σyx σyy µxz/Lb µyz/Lb)T (3.167)

{Γ} = (γxx γxy γyx γyy κxzLb κyzLb)T (3.168)

These two arrays are linked by the equation {Σ} = [Ê ] {Γ}, where [Ê ] is the matricial
representation of the generalized constitutive operator Ê , expressed in a plane-stress state
by

[Ê ] =
[Â] [0]

[0] [Ĉ∗]

 =



E
1−ν2 0 0 νE

1−ν2 0 0
0 G+GC G−GC 0 0 0
0 G−GC G+GC 0 0 0
νE

1−ν2 0 0 E
1−ν2 0 0

0 0 0 0 2G 0
0 0 0 0 0 2G


(3.169)

The array {Γ} can be expressed in terms of {U} as

{Γ} = [L]{U} =
[LA] [−e]

[0] [L∗C ]



ux

uy

ϕz

 =



∂x 0 0
0 ∂x 1
∂y 0 −1
0 ∂y 0
0 0 Lb ∂x

0 0 Lb ∂y




ux

uy

ϕz

 (3.170)

resulting in the following expressions for the bilinear form and the linear functional

A(W,U) =
∫

D
([L]{W})T [Ê ] ([L]{U}) dV (3.171)

f(W ) =
∫
∂Du

n

{W}T{t} dS +
∫

D
{W}T{bV } dV (3.172)

where the symbols {t} and {bV } indicate the arrays (tAx tAy tCz)T and (bV x bV y lz)T ,
respectively.

3.4.3 FEM representation: Bubnov-Galerkin discretization

After the introduction of the generalized terms, the weak form expressed by the bilinear
form and the linear functional of Eqs. (3.171) and (3.172) is completely analogous to the
standard weak form of classic elasticity (see, e.g., Eqs. (4.27) and (4.28)). It then follows
that also the discretization procedure that allow to obtain a finite element representation
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is the same as in classic elasticity, widely discussed in any FEM book (see, e.g., Bathe
(1996) or Zienkiewicz and Taylor (2000)). Taking into account this premise, the present
section will provide some basic informations on the discretization procedure for the mi-
cropolar formulation discussed above. Attention will be focused on the aspects that may
be different with respect to the analogous approach in classic elasticity, and many details
will be skipped since they can be easily found in the mentioned literature on FEM.

In the discretization of a model, the sets of trial and test functions U and W are
replaced by the approximations Uh ∈ Vh(D) and W h ∈ V0

h(D), where the discretized
spaces Vh(D) and V0

h(D) are defined as

Vh(D) :=
{
Uh ≡ (ūh, ϕ̄h) ∈ H∗h(D) | ūh = ū∗ at ∂Du

e , ϕ̄
h = ϕ̄∗ at ∂Dϕ

e

}
(3.173)

V0
h(D) :=

{
W h ≡ (w̄h, ω̄h) ∈ H∗h(D) | w̄h = 0̄ at ∂Du

e , ω̄
h = 0̄ at ∂Dϕ

e

}
(3.174)

where H∗h(D) = (H1
h(D))n × (H1

h(D))m, with (H1
h(D))k the space of discretized square

integrable k-dimensional vector fields with square integrable first derivatives over the do-
main D. Within the Bubnov-Galerkin approach, these approximations are both expressed
in terms of the same shape functions Ni(p), and of the nodal parameters di and dWi , which
are the nodal values of the trial and the test functions at each node i of the discretized
model, in the following way11 (for the trial functions)

{U(p)} ' {Uh(p)} =
N∑
i=1

[Ni(p)]{di} =
N∑
i=1

[NAi(p)] [0]
[0] [NCi(p)]

{dAi}
{dCi}

 (3.175)

where N is the number of nodes of the element which the point p belongs to, [Ni(p)] is
the shape functions matrix, and {di} the array collecting the nodal parameters at the
node i. The subscripts A and C, as already done before, are used to distinguish between
Cauchy-like and Cosserat-like terms. In a plane problem, for which the state variables
reduce to the components ux, uy, and ϕz, the approximation (of the trial functions) is
expressed by 

ux(p)
uy(p)
ϕz(p)

 '

uhx(p)
uhy(p)
ϕhz (p)

 =
N∑
i=1


Ni(p) 0 0

0 Ni(p) 0
0 0 Ni(p)



duxi

duyi

dϕzi

 (3.176)

11 In the present approach, the same approximation functions are used to discretize both the displace-
ment field and the microrotation field of the micropolar medium. From the following Eq. (3.181) it can
be seen that, differently from a classic medium, in this case also the approximation functions must be
integrated together with their spatial derivatives, hence requiring a larger number of integration points
with respect to a classic continuum model. In order to overcome this issue a possible solution suggested
in de Borst (1991) is to use a different order of interpolation for the two state variables. For exam-
ple, in a six-nodes triangular element, a number of integration points equal to three is sufficient if the
microrotation are linearly interpolated, using their nodal values at only three nodes.
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Once replaced into the weak form of the problem (Eqs. (3.171) and (3.172)), the
discretized trial and test functions allow to obtain a matricial system representing the
behaviour of the discrete model

[K] {X} = {R} (3.177)

where [K] is the global stiffness matrix of the system, {X} the nodal parameters vector
collecting all the nodal parameters {di}, and {R} the vector of nodal dual parameters.
Performing the integration over the domain D appearing in Eq. (3.171) in an element-wise
manner, the assembly of the stiffness matrix result in the superposition of the contribu-
tions of each element composing the model

[K]el =
∫

Del

[B(p)]T [Ê(p)][B(p)] dV (3.178)

where the symbol
∫

Del
indicates the integral over an element. The matrix [B(p)] is com-

posed by the submatrices [Bi(p)] as [B(p)] = ([B1(p)] . . . [Bi(p)] . . . [BN(p)]), such that

{Γ(p)} =
N∑
i=1

[Bi(p)]{di} (3.179)

each one given by

[Bi(p)] =
[LA][NAi(p)] [−e][NCi(p)]

[0] [L∗C ][NCi(p)]

 (3.180)

Focusing again on a plane stress problem, the matrix [Bi(p)] of Eq. (3.180) can be ex-
pressed as

[Bi(p)] =



∂xNi(p) 0 0
0 ∂xNi(p) Ni(p)

∂yNi(p) 0 −Ni(p)
0 ∂yNi(p) 0
0 0 Lb ∂xNi(p)
0 0 Lb ∂yNi(p)


(3.181)



Chapter 4

Smoothed point interpolation
methods

This chapter is devoted to the class of meshfree smoothed point inter-
polation methods. After a brief general review on meshfree methods,
the main concepts of smoothed point interpolation methods applied to
the case of linear elastic classic media are recalled. The novel applica-
tions to elastic-degrading constitutive models and to elastic and elastic-
degrading micropolar media are then discussed.

4.1 Meshfree methods: a brief review

In order to solve the system of partial differential equations (PDEs) governing a problem of
continuum mechanics (or any other continuum problem representable in terms of PDEs),
the finite element method (see, e.g., Bathe (1996) or Zienkiewicz and Taylor (2000))
discretizes the problem domain with a mesh, in the following manner:

“
1. The continuum is separated by imaginary lines or surfaces into a

number of “finite elements”.
2. The elements are assumed to be interconnected at a discrete num-

ber of nodal points situated on their boundaries and occasionally
in their interior.

”(Zienkiewicz and Taylor, 2000, pag. 18)

The unknown parameters of the problem are then represented by the nodal values of the
field variable (e.g., the displacement field in a solid mechanics problem). The choice of
proper approximation functions within each element allows to mount a system of linear
equations for the solution of the problem. On the other hand:

63
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“The meshfree method is used to establish a system of algebraic equa-
tions for the whole problem domain without the use of a predefined mesh,
or uses easily generable meshes in a much more flexible or “freer” man-
ner. Meshfree methods essentially use a set of nodes scattered within the
problem domain as well as on the boundaries to represent the problem
domain and its boundaries. The field functions are then approximated
locally using these nodes.”(Liu, 2009, pag. 14)

As pointed out by Liu in his book (Liu, 2009), the standard finite element method
suffers for a number of limitations; among them there are:
• the need for a quality mesh, that reduces the automation in mesh generation;
• the “overly stiff” behaviour, resulting from the full compatibility in the assumed

displacement field, and leading to locking and poor solutions in gradient/derivatives;
• the loss of accuracy due to element distorsions in problems with large deformations;
• the mesh bias in problems like crack growth and phase transformations;
• the difficult simulation of breakage and fragmentation problems;
• the costly adaptive and remeshing approaches;
• the availability of solely a “lower bound” to the exact solution.

An examination of this list reveals that most of the mentioned issues are due to the “heavy
and rigid reliance on the use of quality elements that are the building blocks of FEM ”
(Liu, 2009, pag. 17), and to the predefined connectivity required by such elements.

The basic idea of meshfree methods is then to mitigate these issues by eliminating or
reducing the reliance on a mesh1. Among the most common meshfree methods there are
the smoothed particle hydrodynamics (SPH) method (Gingold and Monaghan, 1977), the
element-free Galerkin2 (EFG) method (Belytschko et al., 1994), the reproducing kernel
particle method (RKPM) (Liu et al., 1995), the family of point interpolation methods (dis-
cussed in the following section), and the meshless local Petrov-Galerkin (MLPG) method
(Atluri and Zhu, 1998). Despite a computational cost that is, in general, higher than
in the standard FEM, meshfree methods exhibit a number of important features; among
them, the following can be highlighted (Liu, 2009):
• easy automatic mesh generation using triangulation strategies;
• absent or limited mesh alignment sensitivity;
• no need for remeshing operations, especially in problems with large deformations or

moving discontinuities;
• construction of shape functions of any desired order of continuity.
Regarding physically non-linear problems, meshfree methods, due to their character-

istics, have been shown to be well suited for discrete fracture and continuum damage
1 Though meshfree discretizations are not based on a conventional mesh as intended in the standard

FEM, the term “mesh” will still be used in the following to indicate such discretizations.
2 Based on the diffuse elements method (DEM) originated by Nayroles et al. (1992).
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mechanics problems (see, e.g., Rabczuk (2013) and Daxini and Prajapati (2014) for an
extensive survey on the topic), for example. However, as pointed out in Section 2.3.1,
in this treatise the interest on such numerical methods is because of the regularization
properties that they are able to introduce in strain localization problems, as emphasized
in a number of contributions (Liu et al., 1999, Chen et al., 2000, Li et al., 2000a,b, Chen
et al., 2004, 2007, Wang and Li, 2012, Pozo et al., 2014).

The following Section 4.2 will focus on the class of smoothing point interpolation
methods, recalling their basic aspects with specific attention on the node-based smoothed
point interpolation method (NS-PIM) (Liu et al., 2005, Zhang et al., 2007) and the edge-
based smoothed point interpolation method (ES-PIM) (Liu and Zhang, 2008). Sections 4.3
and 4.4, instead, will be devoted to original contributions by the author. The former will
deal with the extension of these methods to the field of continuum damage mechanics,
while the latter will focus on the application to the micropolar continuum theory.

4.2 Smoothed point interpolation methods

Smoothed point interpolation methods, like other meshfree methods, rely on a set of nodes
scattered in the problem domain, usually obtained through a triangulation operation. At
each integration point p ∈ D, the approximation uh(p) of a certain field variable u(p)
is represented in terms of a set of approximation (or shape) functions φi(p) and nodal
parameters ui := u(pi) as

u(p) ' uh(p) =
∑
i∈Sd

φi(p)ui (4.1)

where the approximation functions are constructed considering a set of nodes in the
neighbourhood of the point itself, the so-called support domain3 Sd (composed by support
nodes). Support domains vary from point to point and they are, in general, overlapping.

In these methods the shape functions may be generated with the point interpolation
method, the radial point interpolation method, and the radial point interpolation method
with polynomial reproduction. The first meshfree methods based on these shape functions
were proposed by Liu and his co-authors in Liu and Gu (2001) and Wang and Liu (2002a),
as an alternative to existent meshfree methods. Indeed, due to their delta Kronecker
property they allowed a more simple imposition of essential boundary conditions, with
respect to other meshfree methods.

Despite the advantage of the delta Kronecker property, point interpolation approxima-
tions, in general, are incompatible, since such shape functions may present discontinuities
when passing from a support domain to another. This fact poses a limit on the application
of the standard weak form of solid mechanics problems, which is based on the hypothesis

3 Making an analogy with the FEM, one can think about the nodes of a finite element as the support
nodes of the integration points belonging to that element.
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of continuity of the approximation functions. In order to overcome this issue, Liu and his
co-authors proposed the use of a smoothing operation4 of the gradients involved in the
formulation, in order to reduce the continuity requirement of the shape functions. The
combination of the smoothing technique with point interpolation functions allowed to
obtain different smoothed meshfree methods56, like the node-based smoothed point inter-
polation (NS-PIM) method (Liu et al., 2005, Zhang et al., 2007), the edge-based smoothed
point interpolation (ES-PIM) method (Liu and Zhang, 2008), and the cell-based smoothed
point interpolation method (Liu and Zhang, 2009). In order to deal with the presence of
incompatible shape functions and smoothing operations, Liu developed a new theoretical
framework, establishing two novel concepts: the G-space theory and the weakened-weak
form (W2) formulation (see, e.g., Liu (2010a,b), Liu and Zhang (2013)).

In the following of the present section, the basic concepts of point interpolation shape
functions, G-space theory, and weakened-weak form will be discussed, since they will
serve as a basis for the novel developments presented in Sections 4.3 and 4.4. The nu-
merical implementation of these methods in the software INSANE will be discussed in
Appendix C.

4.2.1 Shape functions

Two kind of shape functions will be presented in this section: the ones obtained with the
point interpolation method (PIM) and the ones by the radial point interpolation method
with polynomial reproduction (RPIM). Both these strategies have been implemented in
the INSANE software (Appendix C) and adopted in the simulations of Chapters 6 and 7.
Due to its lack of consistency, the simple radial point interpolation method has not been
considered.

4 As mentioned by Liu (see, e.g., the introduction of Liu (2010a)) such smoothing technique (Liu,
2008) is analogous to the one adopted in other contextes like non-local continuum mechanics (Zhang
et al., 2006, Eringen and Edelen, 1972), SPH methods (Liu and Liu, 2003, Lucy, 1977, Liu et al., 2008,
Monaghan, 1982), hybrid FEM (Quarteroni and Valli, 1994), for the regularization of spatial instabilities
in nodal integrated meshfree methods Chen et al. (2001), and, as mentioned in Section 2.3.1, for the
regularization of material instabilities (Chen et al., 2000).

5 The smoothing technique has been also applied by Liu and his co-authors to the standard FEM,
obtaining the so-called smoothed finite element method (see, e.g., Liu, Dai and Nguyen (2007) and Liu
et al. (2009)).

6 As pointed out in Liu and Zhang (2013), the smoothed point interpolation methods belong to the
more general class of strain constructed methods, which still relies on point interpolation function, but
with a different strategy for the treatement of the gradients.
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4.2.1.1 Point interpolation method

In the point interpolation method (Liu and Gu, 2001), the approximation uh(q) of a certain
field variable u(q) is represented at each point q ∈ D as the following series representation

u(q) ' uh(q) =
n∑
i=1

pi(q)ai = {p(q)}T{a} (4.2)

where the terms pi(q) are a set of monomials evaluated at q, constituting a polynomial
basis, n is the number of support nodes in the local support domain at the point q, ai are
the coefficients corresponding to the monomials pi(q), which must be evaluated in order
to define the approximation functions.

Remark 4.1: Polynomial basis functions

The monomials, in general, are chosen in a top-down approach from the Pascal tri-
angle. Focusing on a two-dimensional domain, the polynomial basis at a point p of
coordinates (x, y) is represented by

{p(q)} =
(
1 x y

)T
(4.3)

when three support nodes are accounted for (like in the T3-scheme discussed in Sec-
tion 4.2.1.3), and by

{p(q)} =
(
1 x y xy x2 y2

)T
(4.4)

for six support nodes (as in the case of the T6/3-scheme presented in Section 4.2.1.3).
The presence of the constant term in the basis is fundamental to guarantee the par-
tition of unity property of the resulting shape functions, while the constant term and
the first order monomial together allow to obtain the linear consistency of the shape
functions (i.e., the exact reproduction of at least a linear function).

The unknown coefficients ai can be evaluated by imposing the following interpolation
condition for each node of the support domain

uj =
n∑
i=1

pi(qj)ai, j = 1, . . . , n (4.5)

that can be recasted in the compact form

{U} = [Pq]{a} (4.6)

where {U} = (u1, . . . , un)T is the vector of the nodal parameters of the field variable,
while [Pq] is the moment matrix, each line of which is composed by the basis function
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evaluated at a support nodes

[Pq] =


{p(q1)}T

...
{p(qn)}T

 (4.7)

Assuming the moment matrix to be invertible, from Eq. (4.6) the coefficients can be
calculated as {a} = [Pq]−1{U}, that replaced into Eq. (4.2) lead to

uh(q) = {p(q)}T [Pq]−1{U} = {φ(q)}T{U} (4.8)

where each shape function φi(q) is given by

φi(q) = pj(q)[Pq]−1
ji (4.9)

As long as the moment matrix is invertible and linear terms are included in the basis,
such PIM shape function are characterized by the following properties (Liu, 2009):
• they are linearly independent;
• they posses the delta Kronecker property;
• they form a partition of unity;
• they posses the linear reproducing property7;
• they present compact support (as long as the support domain is compact);
• they are not compatible, in general.

Remark 4.2: Incompatibility of the PIM shape functions

As already pointed out PIM shape functions, in general, are not compatible, since
they may present discontinuities over the domain. According to Liu (2009), these
discontinuities are due to the absence of a smooth transition between support domains.
When passing from an integration point to another, with different support domains,
the shape function for a node changes suddenly, resulting in a discontinuity at that
point. This doesn’t happen, for example, in the moving least square (MLS) method
(Liu, 2009), where the presence of weight functions allows for a smooth transition
between support domains; MLS shape functions indeed, are compatible, in general.
As it will be discussed in Section 4.2.2, a special treatement is required in order to
properly deal with this incompatibility.

Remark 4.3: Singularity of the moment matrix

7 Furthermore, each function included in the basis can be exactly reproduced.
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The evaluation of the unknown coefficients ai requires the invertibility of the moment
matrix. However, such matrix may be singular, for example in presence of peculiar
nodes alignments (Liu, 2009). As pointed by Liu (2009), among the possible strategies
able to avoid the singularity of the moment matrix there is the use of radial basis
functions and the use of T-schemes for support nodes selection.

4.2.1.2 Radial point interpolation method with polynomial reproduction

The radial point interpolation method (RPIM) is similar to the PIM, with the differ-
ence that radial basis functions are used instead of polynomial ones. As mentioned in
Remark 4.3, the use of a radial basis is sufficient to guarantee the invertibility of the
moment matrix (Liu, 2009). The main drawback of shape function constructed with the
RPIM is the lack of consistency, in the sense that they don’t exhibit polynomial repro-
duction of any order. As pointed out by Liu (2009), though the approximations of any
continuous function using radial basis functions can be shown to converge, the main issue
is related to the impossibility of passing the standard patch test. The solution proposed
in Wang and Liu (2002a) was to enrich the approximation adding polynomial terms (up
to the linear order, in general) to the radial basis, obtaining the so-called radial point
interpolation method with polynomial reproduction. Another important reason to add
polynomial terms to the radial basis is that in this way the dependence of the quality of
the solution on the parameters of the radial functions is reduced.

The approximation in the RPIM with polynomial reproduction is expressed by

u(q) ' uh(q) =
n∑
i=1

Ri(q)ai +
m∑
j=1

pj(q)bj = {R(q)}T{a}+ {p(q)}T{b} (4.10)

where the terms Ri(q) are a set of radial functions evaluated at q, constituting a radial
basis, n is the number of support nodes in the local support domain at the point q,
the terms pj(q) constitutes a polynomial basis as in the PIM, and m is the number
of monomials composing the polynomial basis. The number of monomials should be
sufficient to guarantee, at least, the linear reproduction (e.g., in a two-dimensional domain
three monomials are sufficient to pass the standard patch test, the constant term and
the two linear terms in the coordinates x and y). The approximation of Eq. (4.10) is
characterized by two sets of unknown coefficients

{a} =
(
a1, . . . , an

)T
, {b} =

(
b1, . . . , bm

)T
(4.11)

which can be evaluated imposing the interpolation condition

uk =
n∑
i=1

Ri(qk)ai +
m∑
j=1

pj(qk)bj, k = 1, . . . , n (4.12)
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and the additional condition (Golberg et al., 1999)

n∑
i=1

pj(qi)ai = 0, j = 1, . . . ,m (4.13)

that can be recasted in the following compact form {U} = [Rq]{a}+ [Pm]{b}
{0} = [Pm]T{a}

→

 [Rq] [Pm]
[Pm]T [0]

{a}
{b}

 =
{U}
{0}

 (4.14)

where the matrix [Rq] with dimension n × n is the moment matrix, each line of which
is composed by the radial basis function evaluated at a support node, while the matrix
[Pm] with dimension n×m has its lines formed by the polynomial basis evaluated at the
support nodes

[Rq] =


{R(q1)}T

...
{R(qn)}T

 , [Pm] =


{p(q1)}T

...
{p(qn)}T

 (4.15)

After some manipulations of the involved equations (see, e.g., Liu (2009)), the unknown
coefficients can be evaluated as

{a} = [Sa]{U}, {b} = [Sb]{U} (4.16)

where the matrices [Sa] and [Sb] are represented by

[Sa] := [Rq]−1 − [Rq]−1[Pm][Sb] (4.17)

[Sb] :=
(
[Pm]T [Rq]−1[Pm]

)−1
[Pm]T [Rq]−1 (4.18)

resulting in the approximation

uh(q) =
(
{R(q)}T [Sa] + {p(q)}T [Sb]

)
{U} = {φ(q)}T{U} (4.19)

where each shape function φi(q) is given by

φi(q) = Rj(q)[Sa]ji + pj(q)[Sb]ji (4.20)

As pointed out by Liu (2009), the construction of such approximation is possible as long
as the matrix [Pm]T [Rq]−1[Pm] is invertible; the invertibility of such matrix is guaran-
teed, in general, as long as n ≥ m. Shape functions constructed with the RPIM posses
the same properties mentioned for the ones obtained with the PIM, including the linear
reproduction property, as long as linear polynomial terms are taken into account.
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Remark 4.4: Radial basis functions

The radial functions Ri(p) appearing in Eq. (4.10) defined for each node i in the
support domain, depend only on the distance ri between the point p ∈ D at which
they must be evaluated and the node i. In the numerical simulations presented in
Chapters 6 and 7 only two kind of radial functions have been used, the multiquadric
(MQ) function

Ri(ri) =
(
r2
i + C2

)q
(4.21)

depending on the shape parameters C and q, and the Gaussian, or exponential (EXP)
function

Ri(ri) = exp (−cr2
i ) (4.22)

depending on the shape parameter c, both of them adopted in Wang and Liu (2002a).
Investigations on the choice of optimal shape parameters for the accuracy of the
approximation can be found in Wang and Liu (2002a) and Wang and Liu (2002b),
for example. However, as pointed out in Liu (2009), in presence of polynomial terms
as in the RPIM with polynomial reproduction, and when smoothing techniques are
adopted, the reliance of the accuracy on the shape parameters is significantly reduced.

4.2.1.3 Support nodes selection schemes

In order to construct PIM (Eq. (4.2)) and RPIM (Eq. (4.10)) approximations at a certain
point q of the problem domain it is necessary to use a number of n support nodes, compos-
ing the so-called support domain at the point q. In order to compose the support domain
selecting proper nodes in the neighbourhood of the point q, two different strategies have
been adopted in this work: the selection via influence domains and via T-schemes8.

The selection of support nodes via influence domains is a standard approach adopted
in a number of meshfree methods. Each node is endowed with an influence domain,
characterized by a shape and its dimensions. For example, in Fig. 4.1, each node posseses
a circular influence domain, characterized by a certain radius which may vary from node
to node. For each integration point, the corresponding support domain is generated
adding all the nodes which influence domains contain the selected integration point. In
the example depicted in Fig. 4.1, the support domain at the selected integration have been

8 Another strategy, that hasn’t been considered in this treatise but that could improve the perfor-
mances of this class of meshfree methods, especially in case of large models, is the support nodes selection
via K-Nearest Neighbor (KNN) algorithms, that could also be useful as an alternative to the methods
considered in this treatise for the investigation of the regularization properties related to the non-locality
of PIM and RPIM approximations. As pointed out in Remark 4.6, the use of the influence domains strat-
egy tends to affect the sparseness of the stiffness matrix in a negative way; in this case, KNN strategies
should introduce a non-locality analogous to the one of the influence domains strategy, with a reduced
effect on the sparseness of the stiffness matrix.
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marked with an hollow circle. The number of nodes in each support domain is controlled
by the ratio between the size of the influence domains and the mean nodal distance. While
this method works well for MLS and RPIM shape functions, when applied to PIM shape
functions it may lead to a singular moment matrix, in case of peculiar nodal alignments.

Node
Support node
Integration point

Figure 4.1: Support nodes selection via influence domains

An alternative is represented by the so-called T-schemes (Liu, 2009). Such methods
perform the support nodes selection making use of background triangular cells, constructed
as a triangulation of the scattered nodes of the discrete model. In general, there is no
need to construct such set of cells specifically for the application of the T-schemes. A
triangulation indeed, could have been already constructed during the discretization of
the domain, at the moment of the nodes generation. Furthermore, in smoothed point
interpolation methods, like the ones considered in this treatise, a set of background cells
is necessary for the construction of the smoothing domains (Section 4.2.2); hence, the
triangular cells are already available for nodes selection. In the examples presented in
Chapters 6 and 7, two kind of T-schemes have been considered: the T3-scheme and the
T6/3-scheme, which, as pointed out by Liu (Liu, 2009), allow to obtain invertible moment
matrices with both PIM and RPIM shape functions9. For an integration point belonging
to a certain cell, the T3-scheme selects as support nodes the three nodes at the vertices of
the cell (Fig. 4.2(a)). The T6/3-scheme distinguishes between interior and boundary cells.
The former are cells which have no one of their edges on the boundary of the problem,
while the latter are cells with at least an edge on the boundary of the domain. For a
boundary cell, the three nodes at the vertices of the cell are selected as support nodes,
like in the T3-scheme. On the other hand, in case of an interior cell, a total number of
six nodes is selected: the three nodes located at the vertices of the cell, and three nodes
located at the remote vertices of the three neighboring cells (Fig. 4.2(b)).

9 As pointed out in Liu (2009), two further methods based on triangular background cells are available,
the so-called T6 and T2L schemes, which selects, in general, a larger number of nodes with respect to the
T-schemes already mentioned in this section. However, the example discussed in Chapters 6 and 7, and
the implementation proposed by the author in Appendix C, focused only on the two T-schemes discussed
in this section.
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Node
Support node
Integration pointInterior cell

Boundary cell

(a) T3-scheme

Node
Support node
Integration pointInterior cell

Boundary cell

(b) T6/3-scheme

Figure 4.2: Support nodes selection via T-schemes

Remark 4.5: Quadrilateral background cells

Though the standard procedure in smoothed point interpolation methods is to use
triangular background cells, since they don’t require peculiar meshing efforts, it is
possible to use also different geometries for the background cells. In the simulations
discussed in Section 6.4, for example, quadrilateral cells were used, since the idea of
the presented example was to compare the results obtained with the adopted meshfree
methods with the ones of an FEM mesh of quadrilateral elements. In order to select
the support nodes of quadrilateral cells, the same T-scheme concepts for triangular
cells can be adopted. For the example of Section 6.4, two strategies were introduced,
that were named T4-scheme and T12/4-scheme. For an integration point belonging
to an interior or boundary cell, the former selects as support nodes the four nodes
corresponding to the vertices of the cell (Fig. 4.3(a)). The latter instead, considers
again four nodes for boundary cells, and twelve nodes for interior cells, selected as in
the following: four nodes corresponding to the vertices of the interior cell, and eight
nodes located at the remote vertices of the four neighboring cells (Fig. 4.3(b)). These
two strategies have been used only with the RPIM.



74 CHAPTER 4 §4.2

Node
Support node
Integration point

Interior cell
Boundary cell

(a) T4-scheme

Node
Support node
Integration point

Interior cell
Boundary cell

(b) T12/4-scheme

Figure 4.3: Support nodes selection via T-schemes on quadrilateral cells

Remark 4.6: T-schemes vs influence domains

It has been mentioned that T-schemes are useful to guarantee the invertibility of the
moment matrix in the PIM strategy. As pointed out by Liu (2009), they are also
important to obtain a sparse stiffness matrix, which eases the solution of the linear
system of equations. The sparseness of the stiffness matrix results from the compact
character of the support domains generated with the T-schemes. Another interesting
feature is that they also allow to know a priori the parts of the domain where the
approximation functions may exhibit discontinuities, which is important for the node-
and edge-based methods presented in Sections 4.2.3 and 4.2.4.

The influence domains strategy on the contrary, depending on the size of the in-
fluence domains, tends to destroy the sparseness of the stiffness matrix. Furthermore,
when using the influence domains strategy, the positions of the shape functions dis-
continuities is not known a priori. Despite these disadvantages, this strategy was
adopted in the simulations of Section 7.3 in order to investigate the non-local effects
of the PIM and RPIM meshfree methods.

4.2.2 G-space theory and weakened-weak form

As pointed out in the previous sections, the use of incompatible approximation functions
led Liu and his co-authors to the introduction of a novel theoretical structure, consti-
tuted by the G-space theory and the weakened-weak form (W2) formulation (see, e.g., Liu
(2010a,b) and Liu and Zhang (2013)), which will be briefly recalled here, since they will
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be used in the following Section 4.4 for the application of PIM and RPIM approximation
methods to the analysis of micropolar media. First, the concept of weak form in clas-
sic elasticity is briefly recalled. Then, the novel formulation introduced by Liu and his
co-authors is recalled, focusing on the following points:

• smoothing domains generation;
• smoothing operation;
• G-spaces;
• weakened-weak form.

4.2.2.1 Weak form in classic elasticity

For a problem of classic elasticity, characterized by the unknown field variable ū defined
over the problem domain D, by the essential boundary condition ū = ū∗ at ∂De, by
the natural boundary condition n̄ · σ = t̄ at ∂Dn, and subjected to volume forces b̄V
defined over the whole domain D, the weak form of the problem can be expressed as in
the following: find the field ū ∈ V(D) such that

∫
D
ε(w̄) ·

(
Ê · ε(ū)

)
dV −

∫
∂Dn

w̄ · t̄ dS −
∫

D
w̄ · b̄V dV = 0, ∀w̄ ∈ V0(D) (4.23)

where ε(ū) = (ui,j + uj,i)/2 ēi ⊗ ēj, and where V(D) and V0(D) are, respectively, the
spaces of trial and test functions, defined as

V(D) :=
{
ū ∈

(
H1(D)

)n
| ū = ū∗ at ∂Du

e

}
(4.24)

V0(D) :=
{
w̄ ∈

(
H1(D)

)n
| w̄ = 0 at ∂Du

e

}
(4.25)

where (H1(D))n is the space of square integrable n-dimensional vector fields with square
integrable first derivatives over the domain D. The weak form of Eq. (4.23) can be
recasted in a compact for as

a(w̄, ū) = f(w̄), ∀w̄ ∈ V0(D) (4.26)

where the bilinear form a(w̄, ū) and the linear functional f(w̄) have been introduced,
defined as

a(w̄, ū) :=
∫

D
ε(w̄) ·

(
Ê · ε(ū)

)
dV (4.27)

f(w̄) :=
∫
∂Dn

w̄ · t̄ dS +
∫

D
w̄ · b̄V dV (4.28)
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It is worth to note that the requirement ū, w̄ ∈ (H1(D))n is necessary to bound from
above the value of the bilinear form10.

Introducing the Voigt notation for a plane stress case, as done in Section 3.4.2 for the
micropolar medium, the components of the weak form of Eq. (4.26) can be recasted as

a(w̄, ū) :=
∫

D
([L]{w̄})T [Ê] ([L]{ū}) dV (4.29)

f(w̄) :=
∫
∂Dn

{w̄}T{t̄} dS +
∫

D
{w̄}{b̄V } dV (4.30)

where the derivative operator [L] is such that

{ε(ū)} = [L]{ū} →


εxx

εyy

εxy

 =


∂x 0
0 ∂y

∂y ∂x


ux
uy

 (4.31)

Within the FEM approach the weak form of Eq. (4.26) is discretized by replacing the
trial and test functions ū and w̄ with the approximations ūh ∈ Vh(D) and w̄h ∈ V0

h(D),
where Vh(D) and V0

h(D) are the discretized spaces of trial and test functions such that

Vh(D) :=
{
ū ∈

(
H1
h(D)

)n
| ū = ū∗ at ∂Du

e

}
(4.32)

V0
h(D) :=

{
w̄ ∈

(
H1
h(D)

)n
| w̄ = 0 at ∂Du

e

}
(4.33)

where (H1
h(D))n is the space of square integrable n-dimensional discretized vector fields

(i.e., constructed with approximation functions in terms of a set of nodal parameters)
with square integrable first derivatives over the domain D. As already discussed for
the micropolar medium, the discretization results in a matricial system like the one of
Eq. (3.177), where the stiffness matrix [K] is evaluated through the contributions of the
finite elements

[K]el =
∫

Del

[B(p)]T [Ê(p)][B(p)] dV (4.34)

where the symbol
∫

Del
indicates the integral over an element. The matrix [B(p)] is com-

posed by the submatrices [Bi(p)] as [B(p)] = ([B1(p)] . . . [Bi(p)] . . . [BN(p)]), such that

{ε(p)} =
N∑
i=1

[Bi(p)]{di} =


∂xNi(p) 0

0 ∂yNi(p)
∂yNi(p) ∂xNi(p)


duxi
duyi

 (4.35)

The requirement of the approximated field variable to belong to the discretized space
(H1

h(D))n is satisfied when the approximation is constructed with FEM shape functions,
which exhibit a piecewise continuous first derivative that is bounded in an integral sense.

10 Taking into account the analogy between the bilinear form and the total strain energy of a body it
is possible to emphasize that this requirement is necessary to bound from above the strain energy.
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This requirement however, poses a limitation on the use of shape functions generated
with the PIM and RPIM. Since such shape functions are, in general, incompatible, also
the resulting approximation of the field variable will be incompatible, i.e., it will present
discontinuities. Hence, if the trial and test functions ū and w̄ are replaced by the approx-
imations ūh and w̄h obtained with PIM or RPIM shape functions, the requirement on the
square integrable first derivative won’t be satisfied anymore.

4.2.2.2 Smoothing domains creation

G-spaces are defined for discrete models, where the field variables are expressed in terms
of approximation functions and nodal parameters, like the space (H1

h(D))n containing
the approximated field variables of an FEM model as pointed out in the previous sec-
tion. Before recalling the definition of G-spaces is then necessary to present the peculiar
discretization strategy which they rely on.

As pointed out in Liu (2010a), the domain D is discretized with a set of Ne non-
overlapping background cells DC

i , with i = 1, . . . , Ne, which vertices correspond to a set
of Nn scattered nodes. These cells are, in general, triangular; however, as pointed out
also in Section 4.2.1.3, any polygonal shape can be adopted. It is worth to note that,
if one of the T-schemes illustrated in Section 4.2.1.3 is adopted, the boundaries ∂DC

i

of the cells represent parts of the domain where the approximation functions may be
discontinuous. A further tassellation of the domain is performed, introducing a set of
NS non-overlapping smoothing domains ∂DS

k , with k = 1, . . . , NS. When generating this
second subdivision, the following no-sharing rule must be considered: the boundaries ∂DS

k

of the smoothing domains must not share any finite portion with the boundaries ∂DC
i of

the background cells, i.e., they may share at most a finite number of points with the parts
of the domain where the approximation functions may be discontinuous. As it will be
shown in the following Sections 4.2.3 and 4.2.4, where specific discretization strategies will
be presented, the reason for this requirement is to guarantee the possibility to perform the
integration of the approximation functions along the boundary of the smoothing domains.

4.2.2.3 Smoothing operation

The smoothing operation illustrated in this section was introduced by Liu (see, e.g., Liu
(2008)) in order to reduce the requirement of continuity of the field variable appearing in
the weak form expressed by Eq. (4.23). Such smoothing operation is based on the domain
tassellation discussed in the previous section, assuming the tassellation to be stationary11

during the analysis. Within this approach, the derivative grad( ū) = ui,j ēi ⊗ ēj of the
field variable ū at a certain point p ∈ DS

k is replaced inside the smoothing domain DS
k by

11 The stationarity requirement was originally adopted in Liu (2010a); however, other smoothed meth-
ods don’t rely on this assumption (see, e.g., Liu and Zhang (2013)).
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the smoothed derivative g̃rad( ū) = ũi,j ēi ⊗ ēj, with

ui,j(p) ' ũi,j(pk) :=
∫

DS
k

ui,j(ξ) W̃ (pk − ξ) dV , p ∈ DS
k (4.36)

constant within a smoothing domain, where W̃ is a smoothing function, and where pk
is the centre of the smoothing domain. If the field variable ū is continuous, the Green’s
divergence theorem can be applied, resulting in

ũi,j(pk) =
∫
∂DS

k

(
ui(ξ)⊗ n(k)

j (ξ)
)
W̃ (pk − ξ) dS

−
∫

DS
k

ui(ξ)⊗ W̃,j(pk − ξ) dV
(4.37)

where n̄(k) is the unitary outward normal vector field on the boundary ∂DS
k . A common

choice for the smoothing function W̃ is the following Heaviside-type function

W̃ (pk − ξ) :=

 1/Ak ξ ∈ DS
k

0 ξ /∈ DS
k

(4.38)

where Ak =
∫

DS
k

dV , which results in

ũi,j(pk) = 1
Ak

∫
∂DS

k

ui(ξ)⊗ n(k)
j (ξ) dS (4.39)

As pointed out by Liu and Zhang:

“The “smoothed derivatives” defined in Equation (2.67) [Eq. (4.39)] is a
generalized concept. It is NOT “the derivative obtained by smoothing
the derivatives of the function”, because such a gradient does not in
general exist, as the function may not be continuous! Rigorously speak-
ing, the “smoothed derivative” is the outward flux of the function across
the smoothing domain boundary Γsx [∂DS

k ]. The smoothed derivative
of a function can be approximated using only the function values, and
no differentiation is needed. Hence the consistency requirement on the
function is reduced, if only the approximate derivative is required.”(Liu
and Zhang, 2013, pag. 67)

As emphasized in the quoted text, the smoothing operation consists into replace the
derivative of the field variable with the smoothed derivative illustrated in Eq. (4.39). This
substitution is assumed to be valid whether the field variable is continuous or not, i.e.,
whether the application of the Green’s theorem in Eq. (4.37) is licit or not. As pointed
out in Liu (2008), though not rigorous in theory, this operation is possible to implement,
since Eq. (4.39) require no differentiation of the field variable, opening the possibility to
use PIM and RPIM incompatible functions for the approximation of the field variable.
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4.2.2.4 G-space theory

A general treatement on the G-space theory can be found in Liu (2010a) and Liu and
Zhang (2013), and its application to classic elasticity in Liu (2010b). Briefly, the G-
space12 G1

h(D) is defined as the following space of functions u(p) discretized in terms of
approximation functions φj(p) and nodal parameters dj

G1
h(D) :=

{
u | u(p) =

Nn∑
j=1

φj(p)dj, u ∈ L2(D),

NS∑
k=1

(∫
∂DS

k

u(ξ) n(k)
i (ξ) dS

)2

> 0⇔ u 6= c ∈ R, i = 1, . . . , d
} (4.40)

where c ∈ R is a constant, d the dimension of the space D, and L2(D) the Lebesgue
space of square integrable functions. When n-dimensional vector fields are considered,
the following space can be introduced

(
G1
h(D)

)n
:=
{
ū = ui ēi | ui ∈ G1

h(D), i = 1, . . . , n
}

(4.41)

This space is endowed with the following inner product

< ū, w̄ >G1 =
∫

D
(ū · w̄) dV︸ ︷︷ ︸
< ū, w̄ >L2

+
∫

D

(
g̃rad( ū) · g̃rad(w̄ )

)
dV︸ ︷︷ ︸

< g̃rad( ū ), g̃rad( w̄ ) >L2

, ū, v̄ ∈
(
G1
h(D)

)n
(4.42)

with induced norm ‖·‖2
G1 and semi-norm |·|2G1 expressed as combination of norms in the

Lebesgue space L2(D)

‖ū‖2
G1 = ‖ū‖2

L2 + |ū|2G1 , ū ∈
(
G1
h(D)

)n
(4.43)

|ū|2G1 =
∥∥∥g̃rad( ū)

∥∥∥2

L2
, ū ∈

(
G1
h(D)

)n
(4.44)

As it can be observed in Eq. (4.40), the shape functions must be (i) linearly indepen-
dent, in order to form a basis, (ii) bounded, i.e., square integrable, and (iii) must verify
the positivity condition ∑NS

k=1

(∫
∂DS

k
u(ξ) n(k)

i (ξ) dS
)2
> 0. The two last requirements, as

pointed out by Liu (Liu, 2010a), are necessary to guarantee the stability and convergence
of the numerical models built upon the weakened-weak formulation based on G-spaces.

The main difference between the space G1
h(D) and the space H1

h(D) usually adopted
in FEM applications (i.e., the discretized space of square integrable functions with square
integrable first derivative), is the fact that the latter requires both the function and its
first derivative to be square integrable (‖ū‖2

L2(D) <∞ and ‖grad( ū)‖2
L2(D) <∞) in order

to ensure an upper bound to the strain energy (aka the bilinear form), while in the

12 The more general case of spaces Gm
h (D) with m > 1 is not considered here.
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former only the function is required to be square integrable since, as it will be discussed
in the following section, the bilinear form of the weakened-weak form depends only on
the function and not on its first derivative. While in the weakened-weak form the strain
energy is automatically bounded from above once the functions are square integrable, a
lower bound must be explicitly imposed, with the aforementioned positivity condition; in
the standard weak form, as pointed out in Liu (2010a), an explicit lower bound is not
necessary, since the condition ‖grad( ū)‖2

L2(D) = 0 is attained only if the function is zero
everywhere, due to the Poincare-Friedrichs inequality13 (Liu, 2009). The reduced order
of continuity required by the space G1

h(D) opens the possibility to use PIM and RPIM
shape functions as a basis to generate its elements. The main characteristics of G-spaces
needed to guarantee the existence and uniqueness of the solution of the weakened-weak
formulation discussed in the following Section 4.2.2.5 have been widely discussed by Liu
and his co-authors in a number of papers and books (see, e.g., Liu (2010a,b, 2009) and
Liu and Zhang (2013)) and won’t be recalled here; part of them will be presented in
Section 4.4 in a version adapted for micropolar media.

4.2.2.5 Weakened-weak form of the classic elasticity problem

The weakened-weak form in classic elasticity have been presented in Liu (2010b). As
discussed in the mentioned paper, such formulation can be obtained by replacing the
strain tensor ε appearing in the bilinear form of Eq. (4.27) with its smoothed version ε̃,
resulting in the smoothed bilinear form

ã(w̄, ū) =
∫

D
ε̃(w̄(pk)) ·

(
Ê · ε̃(ū(pk))

)
dV (4.45)

where the smoothed strain tensor ε̃ is obtained considering the smoothing derivatives of
Eq. (4.39)

ε̃ij = 1
2 (ũi,j + ũj,i) (4.46)

In plane stress case, it assumes the matricial expression

{ε̃(ū(pk))} = 1
Ak

∫
∂DS

k

[L̃n(ξ)]{ū(ξ)} dS (4.47)
ε̃xx

ε̃yy

ε̃xy

 = 1
Ak

∫
∂DS

k


n(k)
x (ξ) 0

0 n(k)
y (ξ)

n(k)
y (ξ) n(k)

x (ξ)


ux(ξ)
uy(ξ)

 dS (4.48)

13 As pointed out in Liu (2009), the Poincare-Friedrichs inequality is represented by c‖w̄‖2
H1 ≤ |w̄|2H1 ,

∀ w̄ ∈
(
H1

0(D)
)k, with c ∈ R and c > 0, and expresses an equivalence between the norm and the seminorm

for k-dimensional vector fields in the space H1
0(D) of square integrable k-dimensional vector fields with

square integrable first derivative with prevented rigid-body motions.
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Recalling that the smoothed derivatives are constant within each smoothing domain de-
fined in Section 4.2.2.2, and also assuming the constitutive operator Ê to be constant
within each smoothing domain, the integral

∫
D may be replaced with a summation over

the smoothing domains, resulting in

ã(w̄, ū) =
NS∑
k=1

Ak
(
ε̃(w̄(pk)) ·

(
Ê · ε̃(ū(pk))

))
(4.49)

The weakened-weak form of the classic elasticity problem recalled in Section 4.2.2.1
consists then into find the field ū ∈ V(D) such that

ã(w̄, ū) = f(w̄), ∀w̄ ∈ V0(D) (4.50)

where V(D) and V0(D) are, respectively, the spaces of trial and test functions, defined as

V(D) :=
{
ū ∈

(
G1
h(D)

)n
| ū = ū∗ at ∂Du

e

}
(4.51)

V0(D) :=
{
w̄ ∈

(
G1
h(D)

)n
| w̄ = 0 at ∂Du

e

}
(4.52)

Discussions on the properties of the weakened-weak form of Eq. (4.50), as well as on the
conditions that ensure the existence and uniqueness of the solution ū ∈ V(D) can be
found in Liu and Zhang (2008) and Liu (2010b).

The absence of derivatives in the smoothed bilinear form (Eq. (4.49)) allows to express
both the trial and the test functions in terms of PIM and RPIM shape functions φi(p),
since they are well suited to form a basis for the space (G1

h(D))n, resulting (for the trial
functions) in

{ū(p)} =
∑
i∈Sd

[φi(p)]{di} (4.53)

where {di} is the array collecting the nodal parameters at the node i, and where Sd is the
support domain of the point p ∈ D. The smoothed strains can be expressed in terms of
the smoothed strain-displacement matrix [B̃i(pk)] as

{ε̃(ū(pk))} =
∑
i∈Sd

[B̃i(pk)]{di} (4.54)
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where [B̃i(pk)], in a plane stress state, is represented by

[B̃i(pk)] = 1
Ak

∫
∂DS

k

[L̃n(ξ)][φi(ξ)] dS

= 1
Ak

∫
∂DS

k


n(k)
x (ξ) φi(ξ) 0

0 n(k)
y (ξ) φi(ξ)

n(k)
y (ξ) φi(ξ) n(k)

x (ξ) φi(ξ)

 dS

=


φ̃i,x(pk) 0

0 φ̃i,y(pk)
φ̃i,y(pk) φ̃i,x(pk)



(4.55)

where the terms φ̃i,l(pk) are the smoothed derivatives of the shape functions, expressed by

φ̃i,l(pk) := 1
Ak

∫
∂DS

k

n
(k)
l (ξ) φi(ξ) dS, l = x, y (4.56)

The discretization results in the same algebraic system expressed in Eq. (3.177), where
now the stiffness matrix [K] is evaluated through the contribution of each smoothing
domain

[K(pk)]Sd = Ak[B̃(pk)]T [Ê(pk)][B̃(pk)] (4.57)

where as in the FEM, the matrix [B̃(pk)] is composed by the submatrices [B̃i(pk)] as
[B̃(pk)] =

(
[B̃1(pk)] . . . [B̃i(pk)] . . . [B̃N(pk)]

)
, where N is the number of nodes in the sup-

port domain Sd at the point pk.

Remark 4.7: Softening effects

In Liu and Zhang (2007) and Liu (2008), the authors pointed out that the smoothed
bilinear form is capable to provide softer results with respect to the standard weak
form, when the same approximation functions are used (ã(w̄, w̄) ≤ a(w̄, w̄), w̄ ∈
V0
h(D)). They also showed that it is also capable to provide an upper bound approx-

imation to the exact solution. This last characteristic however, depends on both the
kind of approximation functions that are being adopted, and on the peculiar strategy
used for the generation of the smoothing domains. As shown in Remark 7.2, the
NS-PIM is capable to provide such upper bound approximation, while the ES-PIM
provides, in general, a lower bound approximation as the standard FEM, though with
a solution that is still softer than the one of the standard FEM.
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4.2.3 Node-based smoothed point interpolation method

The node-based smoothed point interpolation method (NS-PIM) was originally proposed by
Liu and his co-authors in Liu et al. (2005), Liu and Zhang (2007), and Zhang et al. (2007)
as a meshfree method based on point interpolation shape functions with a nodal integration
procedure14, and was later shown to belong to the more general class of methods obtained
with a gradient smoothing technique (Liu, 2008). Such method relies on the weakened-
weak form presented in Section 4.2.2.5 and, as anticipated by its name, on smoothing
domains based on the scattered nodes of the discrete model. Despite it could be used
also for one- and three-dimensional problems, in the following attention is focused on
the two-dimensional case. The generation of smoothing domains with the equally-shared
smoothing domains strategy15 (see, e.g., Liu and Zhang (2013)) is depicted in Fig. 4.4, for
an internal and a boundary domains. The generic smoothing domain DS

k at the node k is
generated using the surrounding triangular cells, by connecting sequentially, the midpoints
of the cells edges containing the node k with the centroids of the cells. With this strategy,
the number of smoothing domains is equal to the number of nodes (NS = Nn), which
satifies the minimum number requirement discussed in Liu (2008). From Fig. 4.4 it can
be observed that these domains also satisfy the requirements presented in Section 4.2.2.2,
since they are non-overlapping and they respect the no-sharing rule; indeed, the boundary
∂DS

k of a generic smoothing domain doesn’t share any finite portion with the edges of the
surrounding cells, where the approximation functions may be discontinuous, but share
only the midpoint of their edges.

Node
Cell edge midpoint
Cell centroid
Integration point

Internal domain

Boundary domain

DS
i

DS
j

i

j

Figure 4.4: Node-based smoothing domain

When regular quadrilateral cells are used, as in the simulations of Section 6.4, the
14 In the cited papers the method was originally called linearly conforming point interpolation method

(LC-PIM).
15 The equally-shared smoothing domain strategy is the most common in the NS-PIM. However, as

pointed out in Liu and Zhang (2013), for example, also Voronoi cells can be used as smoothing domains,
as done in Chen et al. (2001) for the nodal integration strategy in the EFG method.
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strategy for the generation of the smoothing domains is the same as the one described
above, and is depicted in Fig. 4.5.

Node
Cell edge midpoint
Cell centroid
Integration point

Internal domain

Boundary domain

Boundary domain

DS
i

DS
j

DS
k

i

j

k

Figure 4.5: Node-based smoothing domain - Quadrilateral cells

The smoothed shape functions appearing in Eq. (4.56), which allow to evaluate the
smoothed bilinear form, are calculated performing a numerical integration along the
boundary ∂DS

k of each smoothing domain. Since the boundary of each smoothing do-
main is composed by a set of linear segments, the integration can be expressed as a sum
of Gaussian quadratures over each segment, resulting in

φ̃i,l(pk) = 1
Ak

nseg∑
m=1

Lm
2

(ngp∑
n=1

W gp
n φi(pm,n) n(k)

l,m

)
, l = x, y (4.58)

where nseg is the number of segments, Lm the length of the m-th segment, ngp the number
of integration points of each segment, pm,n the n-th integration point of the m-th segment
with associated weight W gp

n , and n(k)
l,m the component in the direction l of the unit normal

to the m-th segment of the k-th smoothing domain.

4.2.4 Edge-based smoothed point interpolation method

The edge-based smoothed point interpolation method (ES-PIM) was introduced by Liu and
his co-authors in Liu and Zhang (2008) in order to correct the excessive softnening effect
of the NS-PIM, which resulted in temporally unstable dynamic problems. As pointed
out in Liu and Zhang (2013), the ES-PIM exhibits a stiffer behaviour with respect to the
NS-PIM, is both spatially and temporally stable, and is capable to produce much more
accurate results compared to the NS-PIM and the standard FEM.

The difference between the NS-PIM and the ES-PIM relies in the strategy for the
generation of the smoothing domains, which in the latter, as anticipated by the name
of the method, is based on the edges of the background cells instead of the nodes. As
illustrated in Fig. 4.6, the smoothing domain associated to the generic internal edge j is
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constructed by connecting the two nodes at the ends of the edge with the centroids of
the two triangular cells that share the edge j. For a boundary edge the procedure is the
same, except for the fact that also the edge belongs to the boundary of the smoothing
domain. As pointed out in Liu (2009), also this strategy satisfies the requirement on the
minimum number of smoothing domains, is non-overlapping, and respect the no-sharing
rule.

Node
Cell centroid
Integration point

Internal domain
Boundary domain

DS
i

DS
j

Figure 4.6: Edge-based smoothing domain

In presence of quadrilateral background cells, as in the example of Section 6.4, the
same strategy applies, resulting in the smoothing domains depicted in Fig. 4.7.

Node
Cell centroid
Integration point

Internal domain

Boundary domain

DS
i

DS
j

Figure 4.7: Edge-based smoothing domain - Quadrilateral cells

Also with the edge-based strategy the boundary of each smoothing domain is composed
by linear segments; in this case the number is fixed, and is equal to four segments for
an internal edge, and three for a boundary edge, while in the NS-PIM it depends on the
number of cells surrounding the node. The numerical integration of the smoothed shape
functions is the same as the one expressed in Eq. (4.58).

4.2.5 Non-local character of smoothed point interpolation ap-
proximations

As already stated, the reason for using smoothed meshfree methods in this treatise is
to take advantage of their intrinsic non-local character, and to the corresponding regu-
larization effects in strain-softening problems. In one of the first works devoted to the
investigation of the regularization properties of meshfree methods (Chen et al., 2000),
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the authors, focusing on moving least square (MLS) and reproducing kernel (RK) ap-
proximations, pointed out that these methods posses an intrinsic non-locality due to the
presence of weight functions which support size is greater than the nodal spacing. They
also emphasized that a further non-local effect can be introduced when a nodal integration
strategy is adopted.

To the author knowledge, analogous investigations on the class of smoothed point
interpolation methods have not been performed yet. The NS-PIM strategy has been
applied to strain-softening elasto-plasticity in Zhang et al. (2015), though with no explicit
discussions on eventual regularization effects. It is the author opinion (supported by the
results presented in Chapters 6 and 7) that also this class of meshfree methods is capable
to regularize the behaviour of numerical simulations of strain-softening problems, due
to intrinsic non-local properties. In smoothed point interpolation methods these non-
local properties can be ascribed to two of the concepts which these methods are based
on. The first is the generation of state variables approximations via PIM and RPIM
with T-schemes. Despite the absence of weight functions (which are present in MLS
approximations), also the PIM and RPIM approximations embed a certain non-locality.
Indeed, while the T3-scheme generates the support domain at an integration point using
the three nodes of the triangular cells which the point belongs to (Fig. 4.2(a)), resulting in
a situation similar to the one of a triangular finite element, the T6/3-scheme (Fig. 4.2(b))
allows to obtain support domains that are larger than the nodal spacing. The second
concept capable to introduce a certain degree of non-locality is the use of smoothed strains,
resulting in a procedure that is analogous to the nodal integration scheme adopted in Chen
et al. (2000).

4.3 Application to continuum damage mechanics

To the author knowledge, the only application of a smoothed point interpolation method
to a physically non-linear problem is the one of Zhang et al. (2015), where the NS-PIM was
used to investigate elasto-plastic models. However, the nodal integration strategy which
the NS-PIM is based on, had already been applied to non-linear elasticity and elasto-
plasticity (Chen et al., 2002) and to scalar damage (Chen et al., 2000). In this treatise
attention is focused on the application of both the NS-PIM and ES-PIM to problems of
continuum damage mechanics, represented in terms of the elastic-degrading constitutive
models discussed in Section 2.2.

In Section 4.2.2.5, the passage from Eq. (4.45) to Eq. (4.49), that is, the passage from
a smoothed bilinear form expressed in terms of the domain integral

∫
D to a smoothed

bilinear form expressed as a summation over the number of smoothing domains, is made
possible with the assumption of a linear elastic constitutive operator Ê constant over
the smoothing domain. In a physically linear problem, since the material properties
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are independent on the state of the body, this assumption is verified both in case of
homogeneous and heterogeneous materials; an eventual heterogeneous distribution of the
material properties indeed, could be easily considered with the attribution of different
material properties at each smoothing domain, constant over the same smoothing domain.

When dealing with elastic-degrading models, the initial elastic constitutive operator
Ê appearing in Eq. (4.45) must be replaced with a secant operator ÊS which depends on
the state of the body, and which varies during the loading process

ã(w̄, ū) =
∫

D
ε̃(w̄(pk)) ·

(
ÊS(ε(ū)) · ε̃(ū(pk))

)
dV (4.59)

In order to obtain an expression similar to the one of Eq. (4.49), a smoothed constitutive
operator ˜̂ES(pk), constant over the smoothing domain DS

k , can be introduced as

˜̂ES(pk) := 1
Ak

∫
DS
k

ÊS(ξ) dV (4.60)

resulting in

ã(w̄, ū) =
NS∑
k=1

Ak

(
ε̃(w̄(pk)) ·

(˜̂ES(pk) · ε̃(ū(pk))
))

(4.61)

The integration appearing in Eq. (4.60) can be avoided, in general, taking into account
the following considerations. First, it can be observed that the secant operator depends on
the state of the body at each point ξ ∈ DS

k , for example, on the current strain ε(ū(ξ)) which
depends on the state variable. In NS-PIM and ES-PIM procedures, the state variable is
calculated at the point pk of each smoothing domain DS

k , resulting in a smoothed strain
tensor ε̃(ū(pk)) (Eq. (4.46)) which is constant over the smoothing domain. The smoothed
constitutive operator can then be assumed to be equal to the secant operator generated
using the smoothed strain as

Ê(ε(ū))→ ˜̂ES(pk) ≡ ÊS(ε̃(ū(pk)) (4.62)

In case of a scalar-isotropic damage model, for example, the secant constitutive op-
erator depends on the initial constitutive operator Ê and on the scalar damage variable
D as ÊS = (1 − D) Ê (Eq. (2.7)), where the variable D depends on the current strain
state of the body through an equivalent strain measure (Eq. (2.34)), D = D(εeq) with
εeq = εeq(ε(ū(p))). In this case, the smoothed constitutive operator will depend on a
smoothed damage variable D̃(pk) as

˜̂ES(pk) = (1− D̃(pk)) Ê, D̃(pk) = D(ε̃eq), ε̃eq = εeq(ε̃(ū(pk)) (4.63)
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4.3.1 Linearization of the weakened-weak form

The introduction of PIM or RPIM approximation functions in the smoothed bilinear
form of Eq. (4.61), and in the linear functional of Eq. (4.28), leads to an algebraic system
analogous to the one of Eq. (3.177), where the stiffness matrix [K] is replaced by the
secant stiffness matrix [KS], which components depend on the current state of the body

[KS] {X} = {R} (4.64)

The solution of this non-linear system allows to find the evolution, during the loading
process, of the state variable ū(p, t), which now depends both on the position p ∈ D and
on a parameter t, usually called pseudo-time in a quasi-static context as the one consid-
ered here. The non-linear system can be solved with an incremental-iterative strategy
(Remark 4.8) based on the Newton-Rhapson method, which requires a linearization of
Eq. (4.64), as in the standard non-linear FEM (see, e.g., Wriggers (2008)).

The first step for the linearization within the Newton-Rhapson method consists in the
introduction of a space of admissible variations δV(D), associated to the space of trial
functions V(D)16, defined as

δV(D) :=
{
δū ∈

(
G1
h(D)

)n
| δū = 0̄ at ∂Du

e

}
(4.65)

The admissible variations δū allow to obtain a set of perturbed configurations Vε(D),
which elements ūε = ū+ε δū satisfy the kinematical boundary conditions of the problem.
The weakened-weak form of Eq. (4.50) can be recasted as

G(w̄, ū) := ã(w̄, ū)− f(w̄) = 0, ∀w̄ ∈ V0(D) (4.66)

with the introduction of the functional G(w̄, ū). The basic idea of this approach is to
find a perturbed configuration G(w̄, ūε) near the known equilibrium configuration G(w̄, ū)
(which satisfies Eq. (4.66)), such that it satisfies the condition

G(w̄, ūε) = ã(w̄, ūε)− f(w̄) = 0, ∀w̄ ∈ V0(D) (4.67)

The vector field δū which allows to reach the new equilibrium configuration can be cal-
culated with the linearization G(w̄, ūε) ' L [G(w̄, ūε)], resulting in

L [G(w̄, ūε)] = G(w̄, ū) +DG(w̄, ū) · δū = 0, ∀w̄ ∈ V0(D) (4.68)

16 In this case the space of trial functions is also known as space of admissible configurations of the
body.
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where the terms DG(w̄, ūε) · δū is the following directional (or Fréchet) derivative

DG(w̄, ū) · δū = ∂G(w̄, ūε)
∂ε

∣∣∣∣∣
ε=0

(4.69)

The linearized weakened-weak form can then be recasted into: find the increments δū ∈
δV(D) such that

DG(w̄, ū) · δū = −G(w̄, ū), ∀w̄ ∈ V0(D) (4.70)

Proposition 4.1. In case of elastic-degrading constitutive models in a geometrically
linear context, the directional derivative of Eq. (4.69) is expressed by

DG(w̄, ū) · δū =
NS∑
k=1

Ak

(
ε̃(w̄(pk)) ·

(˜̂Et(pk) · δε̃(ū(pk))
))

=
NS∑
k=1

Ak

(
ε̃(w̄(pk)) ·

(˜̂Et(pk) · ˙̃ε(ū(pk))
)) (4.71)

where ˙̃ε ≡ δε̃ is the rate of the smoothed strain tensor, analogous to the one defined in
Section 2.2.2 for the strain tensor.

Proof. First, since in a geometrically linear context the linear functional f(w̄) doesn’t depend
on ū, the directional derivative of G(w̄, ū) reduces to the directional derivative of the bilinear
form

DG(w̄, ū) · δū = ∂ã(w̄, ūε)
∂ε

∣∣∣∣
ε=0

From Eq. (4.61) the bilinear form can be expressed as

ã(w̄, ū) =
NS∑
k=1

Ak (ε̃(w̄(pk)) · σ̃(ūε(pk)))

where the smoothed stress tensor σ̃(ūε(pk)) = ÊS(ε̃(ūε(pk)) · ε̃(ūε(pk)) has been introduced, re-
sulting in

DG(w̄, ū) · δū =
NS∑
k=1

Ak

(
ε̃(w̄(pk)) ·

∂σ̃(ūε(pk))
∂ε

∣∣∣∣
ε=0

)
The directional derivative of the smoothed stress tensor can be expressed as

δσ̃(ū(pk)) : = ∂σ̃(ūε(pk))
∂ε

∣∣∣∣
ε=0

= ∂

∂ε

(
ÊS(ε̃(ūε(pk)) · ε̃(ūε(pk))

)∣∣∣∣
ε=0

= ÊS(ε̃(ū(pk)) ·
∂ε̃(ūε(pk))

∂ε

∣∣∣∣
ε=0

+ ∂ÊS(ε̃(ūε(pk))
∂ε

∣∣∣∣∣
ε=0
· ε̃(ū(pk))

= ÊS(ε̃(ū(pk)) · δε̃(ū(pk)) + δÊS(ε̃(ū(pk)) · ε̃(ū(pk))

The directional derivatives of the smoothed stress and strain tensors and of the secant constitutive
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operator can be identified with their rates

δσ̃ ≡ ˙̃σ, δε̃ ≡ ˙̃ε, δÊS ≡ ˙̂ES

hence, the expression of δσ̃(ū(pk)) is the same as the one of Eq. (2.10) (σ̇ = ÊS ·ε̇+ ˙̂ES ·ε), except
for the presence of the smoothed terms. Taking into account the discussions in Section 2.2.2, the
directional derivative of the smoothed stress can be expressed in terms of the tangent constitutive
operator Êt(ε̃(ū(pk)) ≡

˜̂Et(pk) as

δσ̃(ū(pk)) = Êt(ε̃(ū(pk)) · δε̃(ū(pk)) ≡ Êt(ε̃(ū(pk)) · ˙̃ε(ū(pk)) = σ̇(ū(pk))

leading to the expressions in proposition 4.1.
The right hand side of Eq. (4.70) is known, since it depends on the displacement field

ū of a known equilibrium configuration, and is expressed as

G(w̄, ū) = ã(w̄, ū)− f(w̄)

=
NS∑
k=1

Ak (ε̃(w̄(pk)) · σ̃(ūε(pk)))− f(w̄)
(4.72)

Introducing the PIM or RPIM approximation functions into Eq. (4.70), for both the
test functions w̄(p) and the increments δū(p)

{w̄(p)} =
∑
i∈Sd

[φi(p)]{dwi }, {δū(p)} =
∑
i∈Sd

[φi(p)]{δdi} (4.73)

and taking into account proposition 4.1, the following algebraic system can be obtained

[Kt] {∆X} = {N} (4.74)

where [Kt] is the global tangent stiffness matrix of the system, {∆X} the nodal param-
eters vector collecting all the nodal parameters {δdi}, and {N} an array containing the
discretization of the right hand side of Eq. (4.70).

Remark 4.8: Solution of the tangent system

The tangent system of Eq. (4.74) can be solved using an incremental-iterative method
for which the pseudo-time is replaced by a finite discretization, by means of a set of
increments (or steps); inside each step an iterative procedure is performed (predictor-
corrector method). The incremental equilibrium equation at the iteration n of the
step k is then represented by

[Kt]kn−1 {∆X}kn = ∆λkn {P}+ {Q}kn−1 (4.75)



§4.4 Smoothed point interpolation methods 91

where [Kt]kn−1 is the tangent stiffness matrix at the iteration n − 1 of the step k,
depending in general on the current values of the field variables, {∆X}kn is the vector
of incremental nodal parameters at the iteration n of the step k, ∆λkn is the increment
of the load multiplier at the iteration n of the step k, {P} the vector of the nodal
reference loads, and {Q}kn−1 the vector of the residual forces at the iteration n − 1
of the step k, given by {Q}kn−1 = λkn−1 {P} − {F}kn−1, where {F}kn−1 is the vector of
nodal forces equivalent to internal stresses.

The stiffness matrix [Kt] and the vector {F} are assembled considering the con-
tribution of each smoothing domain composing the discrete model

[Kt(pk)]Sd = Ak[B̃(pk)]T [˜̂Et(pk)][B̃(p)] (4.76)

{F (pk)}Sd = Ak[B̃(pk)]T{σ̃(pk)} dV (4.77)

where the expression of the tangent stiffness matrix is analogous to the one of Eq. (4.57)
with the initial constitutive operator Ê replaced by the smoothed tangent one ˜̂Et(pk) ≡
Êt(ε̃(ū(pk)). It is worth to note that in Eq. (4.76) it is possible to use directly the
tangent constitutive operator defined in Eq. (2.12), since no return mapping oper-
ation is involved in the evaluation of the stress tensor, which is calculated directly
using the secant constitutive operator.

4.4 Application to micropolar media

The present section is devoted to the application of smoothed meshfree methods to the
analysis of micropolar media. In Section 3.4, the standard weak form for micropolar
media has been presented, together with the Petrov-Galerkin discretization for the FEM
representation. As discussed in Section 4.2.2, standard weak forms rely on trial and
test functions which must be continuous. As already stated, when using PIM or RPIM
approximations, which may exhibit discontinuities, a special treatement is required, which
resulted in the formulation of the G-space theory and the weakened-weak form by Liu and
his co-authors (see, e.g., Liu (2010a,b) and Liu and Zhang (2013)), recalled in Section 4.2.2.
The aim of this section is then to extend the theoretical framework developed by Liu and
his co-authors to the case of micropolar media. First, the concept of smoothing operation
is applied to the gradients appearing in the strain and microcurvature tensors, and a
G-space theory for micropolar media is formulated. Then, a weakened-weak form for
the micropolar problem is introduced, and the existence and uniqueness of its solution is
proven. Finally, the discretization in terms of PIM and RPIM shape functions is presented,
and a linearization procedure for physically non-linear problems is exposed.
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4.4.1 Smoothing operation

Using a smoothing technique analogous to the one exposed in Section 4.2.2.3, the strain
and microcurvature tensors γ (Eq. (3.1)) and κ (Eq. (3.2)) depending on the set U(p) ≡
(ū(p), ϕ̄(p)) at each point p of a certain smoothing domain DS

k generated as in Sec-
tion 4.2.2.2, can be replaced by the smoothed strain and microcurvature tensors γ̃(U(pk))
and κ̃(U(pk)), depending on the set of field variables U(pk) at the centre pk of the smooth-
ing domain DS

k , defined as

γ(p) ' γ̃(U(pk)) :=
∫

DS
k

γ(ξ) W̃ (pk − ξ) dV , p ∈ DS
k (4.78)

κ(p) ' κ̃(U(pk)) :=
∫

DS
k

κ(ξ) W̃ (pk − ξ) dV , p ∈ DS
k (4.79)

where, as in Section 4.2.2.3, W̃ is a smoothing function. Considering Eqs. (3.1) and (3.2),
they can be expressed as

γ̃(U(pk)) =
∫

DS
k

(
gradT( ū(ξ))− e · ϕ̄(ξ)

)
W̃ (pk − ξ) dV (4.80)

κ̃(U(pk)) =
∫

DS
k

gradT( ϕ̄(ξ)) W̃ (pk − ξ) dV (4.81)

If the fields ū and ϕ̄ are continuous (i.e., at least piecewise differentiable) the Green’s
divergence theorem can be applied to Eqs. (4.80) and (4.81), resulting in

γ̃(U(pk)) =
∫
∂DS

k

(n̄(s)⊗ ū(s)) W̃ (pk − ξ) dV −
∫

DS
k

ū(ξ)⊗ grad(W̃ (pk − ξ)) dV

−
∫

DS
k

(e · ϕ̄(ξ)) W̃ (pk − ξ) dV (4.82)

κ̃(U(pk)) =
∫
∂DS

k

(n̄(s)⊗ ϕ̄(s)) W̃ (pk − ξ) dV −
∫

DS
k

ϕ̄(ξ)⊗ grad(W̃ (pk − ξ)) dV (4.83)

Assuming the same Heaviside-type smoothing function expressed in Eq. (4.38), Eqs. (4.82)
and (4.83) reduce to

γ̃(U(pk)) = 1
Ak

∫
∂DS

k

n̄(k)(s)⊗ ū(s) dS︸ ︷︷ ︸
g̃rad

T
( ū )

−e · ˜̄ϕ(U(pk)) (4.84)

κ̃(U(pk)) = 1
Ak

∫
∂DS

k

n̄(k)(s)⊗ ϕ̄(s) dS︸ ︷︷ ︸
g̃rad

T
( ϕ̄ )

(4.85)

where the smoothed microrotation ˜̄ϕ(U(pk)), constant over the smoothing domain DS
k ,

has been defined as ˜̄ϕ(U(pk)) := 1
Ak

∫
DS
k

ϕ̄(ξ) dV (4.86)
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With the application of the Green’s divergence theorem, all the domain integrals where
the field variables appeared in terms of their gradient have been transformed into bound-
ary integrals. Due to the presence of the field variable ϕ̄, the smoothed strain tensor
γ̃(U(pk)) (Eq. (4.84)) still contains a domain integral (Eq. (4.86)), which requires a spe-
cial treatement for the construction of a micropolar weakened-weak form. It is worth to
note that the problem of the presence of a field variable in a strain measure in terms of the
variable itself and not in terms of its gradient is analogous to the case of an axisymmetric
problem in classic elasticity. According to the available literature on smoothing methods
and nodal integration strategies applied to axisymmetric problems two approaches can
be followed. In Tootoonchi and Khoshghalb (2016) the authors focused on axisymmet-
ric problems with the application of the cell-based smoothed point interpolation method.
The strain terms depending on the field variable were treated by the authors considering a
numerical integration of the domain integral, using integration points inside each smooth-
ing domain. Within this approach, the expression in Eq. (4.86) should be directly used for
the evaluation of the smoothed microrotation. In Chen et al. (2002) instead, the authors
proposed a nodal integration strategy for Galerkin meshfree methods applied to geomet-
rical non-linearities and elasto-plasticity. The case of axisymmetric problems was briefly
mentioned, stating that the strain terms containing the field variable should be evaluated
nodally. Within this approach the following approximation should be introduced

˜̄ϕ(pk) ' ϕ̄(pk) (4.87)

which consists into approximate the smoothed field variable appearing in Eq. (4.84) with
its value at the point pk17. In the present treatise the approach by Chen et al. (2002) has
been preferred to the one by Tootoonchi and Khoshghalb (2016), since it led to a more
simple treatement of the strain tensor, also from a computational point of view. Then,
replacing Eq. (4.87) into Eq. (4.84), the smoothed strain tensor can be expressed as

γ̃(U(pk)) = 1
Ak

∫
∂DS

k

n̄(k)(s)⊗ ū(s) dS − ϕ̄(pk) (4.88)

4.4.2 G-space for micropolar field variables

The concept of G-space presented in Section 4.2.2.4 can be extended to the case of mi-
cropolar media following a procedure similar to the one adopted in Section 3.4, where the
space H∗(D) was introduced to represent the micropolar trial and test functions. In a mi-
cropolar medium indeed, discretized trial and test functions, U ≡ (ū, ϕ̄) and W ≡ (w̄, ω̄),

17 For the node-based strategy it would be the nodal value of ϕ̄, like for the nodal integration approach
adopted by Chen et al. (2002), while for the edge-based one it would be the interpolated value of ϕ̄ at
pk.
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can be considered as elements of the space

G∗h(D) :=
(
G1
h(D)

)n
×
(
G1
h(D)

)m
(4.89)

where the generic G-space (G1
hD))k for k-dimensional vector fields has been defined in

Eq. (4.41). Since it has been defined as the cartesian product of two Hilbert spaces, it
follows that also G∗h(D) is an Hilbert space, with natural (i.e., induced by the cartesian
product, as in Hlaváček and Hlaváček (1969)) inner product < ·, · >′G∗(D) expressed as a
combination of inner products in a standard G-space (Eq. (4.42))

< W,U >′G∗ = < w̄, ū >G1 +< ω̄, ϕ̄ >G1 , W, U ∈ G∗h(D) (4.90)

with induced norm ‖·‖
′

G∗ and semi-norm |·|
′

G∗ expressed as combinations of norms in the
Lebesgue space L2(D)

‖W‖
′2
G∗ = ‖W‖2

L2 + |W |2G∗ = ‖w̄‖2
L2 + ‖ω̄‖2

L2 + |W |2G∗ , W ∈ G∗h(D) (4.91)

|W |
′2
G∗ =

∥∥∥g̃rad(w̄ )
∥∥∥2

L2︸ ︷︷ ︸
|w̄|2G1

+
∥∥∥g̃rad( ω̄ )

∥∥∥2

L2︸ ︷︷ ︸
|ω̄|2G1

, W ∈ G∗h(D) (4.92)

Aiming to prove the existence and uniqueness of the micropolar weakened-weak form
discussed in Section 4.4.3, the author observed that the alternative inner product

< W,U >G∗ =
∫

D
w̄ · ū dV︸ ︷︷ ︸

< w̄, ū >L2

+
∫

D
ω̄ · ϕ̄ dV︸ ︷︷ ︸

< ω̄, ϕ̄ >L2︸ ︷︷ ︸
< W,U >L2

+
∫

D
Γ̃(W ) · Γ̃(U) dV︸ ︷︷ ︸
< Γ̃(W ), Γ̃(U) >L2

, W, U ∈ G∗h(D) (4.93)

represents a more convenient choice. Taking into account the expression of the generalized
deformation operator (Eq. (3.117)), the term < Γ̃(W ), Γ̃(U) >L2 can be recasted as

< Γ̃(W ), Γ̃(U) >L2 =
∫

D
γ̃(W ) · γ̃(U) dV︸ ︷︷ ︸
< γ̃(W ), γ̃(U) >L2

+
∫

D
κ̃(W ) · κ̃(U) dV︸ ︷︷ ︸
< κ̃(W ), κ̃(U) >L2

(4.94)

Finally, considering that the smoothed operators are constant over each smoothing do-
main, the following expressions can be obtained

< Γ̃(W ), Γ̃(U) >L2 =
NS∑
k=1

Ak
(
Γ̃(W (pk)) · Γ̃(U(pk))

)
(4.95)

=
NS∑
k=1

Ak
(
γ̃(W (pk)) · γ̃(U(pk))

)
+

NS∑
k=1

Ak (κ̃(W (pk)) · κ̃(U(pk)))

(4.96)
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This inner product results in the induced norm ‖·‖G∗

‖W‖2
G∗ = ‖W‖2

L2 + |W |2G∗ = ‖w̄‖2
L2 + ‖ω̄‖2

L2 + |W |2G∗ , W ∈ G∗h(D) (4.97)

which is analogous to the one of Eq. (4.91) except for the different semi-norm |·|G∗ ex-
pressed by

|W |2G∗ =
∥∥∥Γ̃(W )

∥∥∥2

L2
=
∥∥∥γ̃(W )

∥∥∥2

L2
+ ‖κ̃(W )‖2

L2 (4.98)

The term |W |2G∗ in Eq. (4.98) qualifies as a semi-norm since it may exist a function
W ∈ G∗h(D),W 6= 0 such that |W |2G∗ = 0 (i.e., a rigid body motion for which Γ̃ = 0).

The relation between the semi-norms |·|
′2
G∗ and |·|2G∗ , and between the norms ‖·‖

′2
G∗

and ‖·‖2
G∗ , can be pointed out by introducing the expressions of the smoothed strain

(Eq. (4.84)) and microcurvature (Eq. (4.85)) tensors in Eq. (4.97), resulting in

∥∥∥γ̃(W )
∥∥∥2

L2
=
∥∥∥∥g̃rad

T
(w̄ )

∥∥∥∥2

L2︸ ︷︷ ︸
|w̄|2G1

+ 2
∥∥∥˜̄ω∥∥∥2

L2
− 2< g̃rad

T
(w̄ ), e · ˜̄ω >L2︸ ︷︷ ︸

2h(W )

(4.99)

‖κ̃(W )‖2
L2 =

∥∥∥∥g̃rad
T

( ω̄ )
∥∥∥∥2

L2︸ ︷︷ ︸
|ω̄|2G1

(4.100)

where in the first equation, the term

2h(W ) := 2
∥∥∥˜̄ω∥∥∥2

L2
− 2< g̃rad

T
(w̄ ), e · ˜̄ω >L2 (4.101)

has been introduced. Comparing Eq. (4.92) with Eq. (4.98), the following relations hold

‖W‖
′2
G∗ = ‖W‖2

G∗ − 2h(W ) (4.102)

|W |
′2
G∗ = |W |2G∗ − 2h(W ) (4.103)

Proposition 4.2. The inner-product space (G∗h(D), < ·, · >G∗) is an Hilbert space.

Proof. An inner-product space
(
G∗h(D), < ·, · >G∗

)
is an Hilbert space when the associated

normed space
(
G∗h(D), ‖·‖G∗

)
is complete with respect to the metric induced by the norm, i.e., if

it is a Banach space. Since, according to Eqs. (4.97) and (4.98), the norm ‖·‖G∗ is a composition
of ‖·‖L2 norms, this proof can be conducted following the same procedure adopted to prove that
a Sobolev space is a Banach space (see, e.g., Brenner and Scott (2008)).

Let {Wj} be a Cauchy sequence with respect to the norm ‖·‖G∗. Since ‖·‖G∗ is a combination
of norms ‖·‖L2

‖Wj‖2G∗ = ‖Wj‖2L2 +
∥∥∥Γ̃(Wj)

∥∥∥2

L2

it follows that {Wj} itself and
{

Γ̃(Wj)
}

are Cauchy sequences with respect to the norm ‖·‖L2.
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Since the Lebesgue space L2(D) is also a Banach space (i.e., it is complete), it follows that

∃V ∈ L2(D) | ‖Wj − V ‖L2 → 0 as j →∞

∃Γ̃∗ ∈ L2(D) |
∥∥∥Γ̃(Wj)− Γ̃∗

∥∥∥
L2
→ 0 as j →∞

In order to complete the proof it is necessary to show that Γ̃(V ) exists and is equal to Γ̃∗. First,
it can be observed that

lim
j→∞

Γ̃(Wj) = Γ̃∗

Then, considering that Wj → V in L2(D), it follows that

lim
j→∞

Γ̃(Wj) = Γ̃(V )

Hence, it follows that Γ̃(V ) = Γ̃∗.
The fact that the space G∗h(D) is an Hilbert space also with respect to the new inner

product (Eq. (4.93)), as stated in proposition 4.2, is fundamental for the discussions in
the following Section 4.4.3. The proofs of existence and uniqueness of the micropolar
weakened-weak form presented in Section 4.4.3 indeed, as in case of a standard weak form
or a weakened weak form for a classic medium (see, e.g., Liu (2009)), are based on the
Lax-Milgram theorem (see, e.g., Brenner and Scott (2008)), which requires the variational
problem (i.e., the weak or weakened-weak form) to be formulated for functions belonging
to Hilbert spaces.

Another important property that is necessary for the developments in the following
Section 4.4.3 is the equivalency between the norm and semi-norm when peculiar con-
strained G-spaces are accounted for. This property, which involves the standard Korn’s
and Friedrichs-Poincaré’s inequalities for standard media (Brenner and Scott, 2008), has
been shown to be valid also for the classic G-space (Liu, 2010a), when functions are
choosen to belong to a constrained space like the V0(D) of Eq. (4.52), (i.e., a space where
rigid body motions are prevented, making the semi-norm full positive). For the G-space
G∗h(D), this issue is addressed in the following propositions.

Proposition 4.3. For any function W belonging to the G-space G∗h(D) the following
inequality between the norm ‖·‖G∗ and semi-norm |·|G∗ holds

‖W‖2
G∗ ≥ |W |

2
G∗ , ∀W ∈ G∗h(D) (4.104)

Proof. The proof of the inequality of Eq. (4.104) is straightforward. Recalling the expressions
of Eqs. (4.97) and (4.98)

‖W‖2G∗ = ‖W‖2L2 + |W |2G∗ = ‖W‖2L2 +
∥∥∥Γ̃(W )

∥∥∥2

L2

and taking into account the full positivity of the norm and the semi-positivity of the semi-norm,
it is observed that it may exist a W ∈ G∗h(D),W 6= 0 such that ‖W‖G∗ 6= 0 and |W |G∗ = 0, which
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leads to the inequality
‖W‖2G∗ ≥ |W |

2
G∗ , ∀W ∈ G∗h(D)

Proposition 4.4. For any function W belonging to the constrained space V0
h(D) ∈ G∗h(D)

such that

V0
h(D) :=

{
W ≡ (w̄, ω̄) ∈ G∗h(D) | w̄ = 0̄ at ∂Du

e , ω̄ = 0̄ at ∂Dϕ
e

}
(4.105)

the following inequality between the norm ‖·‖G∗ and semi-norm |·|G∗ holds

∃cG ∈ R, cG > 0 | cG‖W‖G∗ ≤ |W |G∗ , ∀ W ∈ V0
h(D) (4.106)

Taking into account the expression of the semi-norm in Eq. (4.98), the inequality of
Eq. (4.106) become18

cG‖W‖G∗ ≤
∥∥∥Γ̃(W )

∥∥∥
L2
, ∀ W ∈ V0

h(D) (4.107)

which is equivalent to the second Korn’s inequality in classic elasticity.

Proof. This proof is based on a result by Liu, the so-called third inequality presented in Liu
(2010a), which casts a relation between the norm and semi-norm in a constrained G-space,
consisting in the following result

∃c1 ∈ R, c1 > 0 | c1‖v̄‖G1 ≤ |v̄|G1 , ∀v̄ ∈
(
G1
h,0(D)

)n
where the space constrained

(
G1
h,0(D)

)n
is a subspace of the G-space

(
G1
h(D)

)n such that

(
G1
h,0(D)

)n
:=
{
v̄ ∈

(
G1
h(D)

)n
| v̄ = 0̄ at ∂De

}
Introducing this result into the natural seminorm of Eq. (4.92) it follows that

|W |
′2
G∗ = |w̄|2G1 + |ω̄|2G1 ≥ c1‖w̄‖2G1 + c1‖ω̄‖2G1 = c1‖W‖

′2
G1

and then
|W |

′2
G∗ ≥ c1‖W‖

′2
G∗

Taking into account the relation between the natural seminorm |·|
′

G∗ and the seminorm |·|G∗
expressed in Eq. (4.103), it follows that

|W |2G∗ = |W |
′2
G∗ + 2h(W ) ≥ c1‖W‖

′2
G∗ + 2h(W )

Due to the upper bound in Eq. (4.104), it follows that c1 ≤ 1 (see also Horgan (1995)), hence

18 In the papers by Liu (see, e.g., Liu (2010a) and Liu (2010b)) the inequalities like the ones of
Eq. (4.106) and Eq. (4.107) are indicated as third and fourth inequalities, respectively.
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from the above equation

c1‖W‖
′2
G∗ + 2h(W ) ≥ c1

(
‖W‖

′2
G∗ + 2h(W )

)
= c1‖W‖2G∗

which results in Eq. (4.106)

|W |2G∗ ≥ c1‖W‖2G∗ → |W |G∗ ≥ cG‖W‖G∗ (4.108)

Proposition 4.5. For any function W belonging to the constrained space V0
h(D) ∈ G∗h(D)

defined in Eq. (4.105), the norm ‖·‖G∗ and semi-norm |·|G∗ are equivalent, i.e.,

∃cG ∈ R, cG > 0 | cG‖W‖G∗ ≤ |W |G∗ ≤ ‖W‖G∗ , ∀ W ∈ V0
( D) (4.109)

Proof. The proposition follows directly from proposition 4.3 and proposition 4.4.

4.4.3 A weakened-weak form for the micropolar continuum

The weakened-weak form for the micropolar boundary value problem can be introduced in
an analogous way as done in Section 4.2.2.5 for the classic elasticity problem, introducing
the smoothed bilinear form Ã(W,U), obtained from Eq. (3.152) by replacing the strain
and microcurvature tensors, γ and κ, with the smoothed operators defined in Eqs. (4.84)
and (4.85), resulting in

Ã(W,U) =
∫

D

(
γ̃(W ) ·

(
Â · γ̃(U)

))
dV +

∫
D

(
κ̃(W ) ·

(
Ĉ · κ̃(U)

))
dV (4.110)

=
∫

D

(
Γ̃(W ) ·

(
Ê · Γ̃(U)

))
dV (4.111)

Recalling that the smoothed strain and microcurvature tensors defined in Section 4.4.1
are constant within each smoothing domain DS

k , and also assuming the constitutive oper-
ators Â and Ĉ to be constant within each smoothing domain, the domain integral

∫
D can

be transformed in a summation over the NS smoothing domains composing the discrete
model, resulting in the following expressions for the smoothed bilinear form

Ã(W,U) =
Ns∑
k=1

Ak
(
γ̃(W (pk)) ·

(
Â · γ̃(U(pk))

))

+
Ns∑
k=1

Ak
(
κ̃(W (pk)) ·

(
Ĉ · κ̃(U(pk))

))
(4.112)

=
Ns∑
k=1

Ak
(
Γ̃(W (pk)) ·

(
Ê · Γ̃(U(pk))

))
(4.113)
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Definition 4.6 (Micropolar weakened-weak form). The weakened-weak form of the mi-
cropolar boundary value problem defined in Section 3.2 consists into: find the set U ≡
(ū, ϕ̄) ∈ Vh(D) such that

Ã(W,U) = f(W ), ∀ W = (w̄, ω̄) ∈ V0
h(D) (4.114)

where Vh(D) and V0
h(D) are, respectively, the discretized spaces of trial and test functions,

defined as

Vh(D) := {U ≡ (ū, ϕ̄) ∈ G∗h(D) | ū = ū∗ at ∂Du
e , ϕ̄ = ϕ̄∗ at ∂Dϕ

e } (4.115)

V0
h(D) :=

{
W ≡ (w̄, ω̄) ∈ G∗h(D) | w̄ = 0̄ at ∂Du

e , ω̄ = 0̄ at ∂Dϕ
e

}
(4.116)

where G∗h(D) is the G-space for micropolar field variables introduced in Section 4.4.2.

4.4.3.1 Existence and uniqueness of the solution

Since, like it has been pointed out before, the space G∗h(D) is an Hilbert space with the
inner product defined in Eq. (4.93), the existence and uniqueness of the solution of the
problem depicted in definition 4.6 is guaranteed by the well-known Lax-Milgram theorem
(see, e.g., Brenner and Scott (2008)). In order to satisfy the conditions of the theorem it
is necessary to verify if the bilinear form Ã(W,U) (Eq. (4.113)) is:

• coercive in V0
h(D)

• continuous in Vh(D)

The proofs for coercivity and continuity of the bilinear form are collected in the following
propositions, and are similar to the ones developed in Liu (2010b) for the smoothed bilinear
form in classic elasticity.

Proposition 4.7 (Coercivity with respect to the semi-norm). The smoothed bilinear
form is coercive in V0

h(D) with respect to the semi-norm |·|G∗ defined in Eq. (4.98), that
is

∃c1 ∈ R, c1 > 0 | Ã(W,W ) ≥ c1|W |2G∗ , ∀W ∈ V0
h(D) (4.117)

Proof. Since the matrix [Ê ] representing the constitutive operator Ê is symmetric positive
definite, it can be decomposed as

[Ê ] = [U]T [Λ][U]

where [Λ] is a diagonal matrix containing all the positive eigenvalues of [Ê ], and where [U] is
a unitary matrix (i.e., such that [U]T [U] = [ ˆID]) of eigenvectors. Replacing this decomposition
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into Eq. (4.113) (or in the Voigt representation of the cited equation, Eq. (4.126)) leads to

Ã(W,W ) =
Ns∑
k=1

Ak

((
[U]{Γ̃(W (pk))}

)T
[Λ]

(
[U]{Γ̃(W (pk))}

))

≥ λmin
Ns∑
k=1

Ak

((
[U]{Γ̃(W (pk))}

)T (
[U]{Γ̃(W (pk))}

))

= λmin

Ns∑
k=1

Ak
(
{Γ̃(W (pk))}T [U]T [U]{Γ̃(Wpk))}

)

= λmin

Ns∑
k=1

Ak
(
{Γ̃(W (pk))}T {Γ̃(W (pk))}

)

= λmin

Ns∑
k=1

Ak
(
Γ̃(W (pk)) · Γ̃(W (pk))

)
= λmin

∥∥∥Γ̃(W )
∥∥∥2

G∗
= λmin|W |2G∗

where λmin is the smallest eigenvalue of [Ê ]. Assuming c1 = λmin the proposition of Eq. (4.117)
is proven.

Proposition 4.8 (Coercivity with respect to the norm). The smoothed bilinear form is
coercive in V0

h(D) with respect to the norm ‖·‖G∗ defined in Eq. (4.97), that is

∃c2 ∈ R, c2 > 0 | Ã(W,W ) ≥ c2‖W‖2
G∗ , ∀W ∈ V0

h(D) (4.118)

Proof. This proof is straightforward, and consists in the introduction in the previous equa-
tion for coercivity with respect to the semi-norm (Eq. (4.117)) of the upper bound to the norm
represented in Eq. (4.106), resulting in

Ã(W,W ) ≥ c1|W |2G∗ ≥ c1 c
2
G︸ ︷︷ ︸

c2

‖W‖2G∗

Proposition 4.9 (Continuity with respect to the norm). The smoothed bilinear form is
continuous in Vh(D) with respect to the norm ‖·‖G∗ defined in Eq. (4.97), that is

∃c3 ∈ R, c3 > 0 | Ã(W,U) ≤ c3‖W‖G∗‖U‖G∗ , ∀W,U ∈ Vh(D) (4.119)

Proof. This proof is similar to the one of proposition 4.7, since it is based on the same de-
composition [Ê ] = [U]T [Λ][U] of the symmetric positive definite matrix [Ê ], into a diagonal
matrix [Λ] containing all the positive eigenvalues of [Ê ], and a unitary matrix [U] (i.e., such
that [U]T [U] = [ ˆID]) of eigenvectors. Replacing this decomposition into Eq. (4.113) (or in the
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Voigt representation of the cited equation, Eq. (4.126)) leads to

Ã(W,U) =
Ns∑
k=1

Ak

((
[U]{Γ̃(W (pk))}

)T
[Λ]

(
[U]{Γ̃(U(pk))}

))

≤ λmax
Ns∑
k=1

Ak

((
[U]{Γ̃(W (pk))}

)T (
[U]{Γ̃(U(pk))}

))

= λmax

Ns∑
k=1

Ak
(
{Γ̃(W (pk))}T [U]T [U]{Γ̃(U(pk))}

)

= λmax

Ns∑
k=1

Ak
(
{Γ̃(W (pk))}T {Γ̃(U(pk))}

)

= λmax

Ns∑
k=1

Ak
(
Γ̃(W (pk)) · Γ̃(U(pk))

)
= λmax< Γ̃(W ), Γ̃(U) >L2

Considering the Schwarz inequality of the inner product it follows that

Ã(W,U) ≤ λmax
∥∥∥Γ̃(W )

∥∥∥
L2

∥∥∥Γ̃(U)
∥∥∥
L2

= λmax|W |G∗ |U |G∗

The proof of Eq. (4.119) follows directly by proposition 4.3, and by assuming c3 = λmax.

4.4.3.2 Voigt notation and discretization

The Voigt notation for the weakened-weak form of Eq. (4.111) is introduced as done for
the case of the standar weak form (Section 3.4.2), focusing on a plane-stress case. The
smoothed strain and microcurvature tensors can be represented in terms of the following
arrays

{γ̃(U(pk))} =
(
γ̃xx(U(pk)) γ̃xy(U(pk)) γ̃yx(U(pk)) γ̃yy(U(pk))

)T
(4.120)

{κ̃(U(pk))} =
(
κ̃xz(U(pk))Lb κ̃yz(U(pk))Lb

)T
(4.121)

which expressions in terms of the field variables is

{γ̃(U(pk))} = 1
Ak

∫
∂DS

k

[L̃nA(ξ)]{ū(ξ)} dS − [e]{ϕ̄(pk)} (4.122)

{κ̃∗(U(pk))} = 1
Ak

∫
∂DS

k

[L̃∗nC(ξ)]{ϕ̄(ξ)} dS (4.123)

where the operators containing the normal vector are expressed, in a plane-stress state,
as

[L̃nA] :=


n(k)
x 0
0 n(k)

x

n(k)
y 0
0 n(k)

y

 , [L̃∗nC ] :=
Lbn(k)

x

Lbn
(k)
y

 (4.124)
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This results in the following Voigt representation of the smoothed bilinear form

Ã(W,U) =
Ns∑
k=1

Ak
(
{γ̃(W (pk))}T [Â]{γ̃(U(pk))}

)

+
Ns∑
k=1

Ak
(
{κ̃∗(W (pk))}T [Ĉ∗]{κ̃∗(U(pk))}

)
(4.125)

=
Ns∑
k=1

Ak
(
{Γ̃(W (pk))}T [Ê ]{Γ̃(U(pk))}

)
(4.126)

The trial (and the test) functions belonging to the G-space G∗h(D) can be expressed
in terms of PIM or RPIM shape functions φi(p) and nodal parameters di as

{U(p)} =
∑
i∈Sd

[φi(p)]{di} =
∑
i∈Sd

[φAi(p)] [0]
[0] [φCi(p)]

{dAi}
{dCi}

 (4.127)

where Sd is the support domain at the point p, [φi(p)] is the shape functions matrix, and
{di} the array collecting the nodal parameters at the node i. As before, the subscripts A
and C are used to distinguish between Cauchy-like and Cosserat-like terms

{ū(p)} =
∑
i∈Sd

[φAi(p)]{dAi}, {ϕ̄(p)} =
∑
i∈Sd

[φCi(p)]{dCi} (4.128)

Introducing these expressions into Eqs. (4.122) and (4.123) results in

{γ̃(U(pk))} =
∑
i∈Sd

[B̃AAi]{dAi}+
∑
i∈Sd

[B̃ACi]{dCi} (4.129)

{κ̃∗(U(pk))} =
∑
i∈Sd

[B̃CCi]{dCi} (4.130)

where the following operators, containing the smoothed derivatives of the shape functions
defined in Eq. (4.56), have been introduced19

[B̃AAi(pk)] := 1
Ak

∫
∂DS

k

[L̃nA(ξ)][φAi(ξ)] dS (4.131)

[B̃ACi(pk)] := −[e][φCi(pk)] (4.132)

[B̃CCi(pk)] := 1
Ak

∫
∂DS

k

[L̃nC(ξ)][φCi(ξ)] dS (4.133)

When the compact representation is accounted for, the generalized deformation tensor Γ̃

19 Due to the assumption of Eq. (4.87), no smoothing operation is applied to the microrotation vector
appearing in the smoothed strain tensor.
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can be expressed as

{Γ̃(U(pk))} =
∑
i∈Sd

[B̃i(pk)]{di} =
∑
i∈Sd

[B̃AAi(pk)] [B̃ACi(pk)]
[0] [B̃CCi(pk)]

{dAi}
{dCi}

 (4.134)

The representation in terms of shape functions and nodal parameters results in an
algebraic system like the one expressed in Eq. (3.177), where the stiffness matrix [K] can
be evaluated through the contribution of each smoothing domain

[K(pk)]Sd = Ak[B̃(pk)]T [Ê(pk)][B̃(p)] (4.135)

where as in the FEM, the matrix [B̃(pk)] is composed by the submatrices [B̃i(pk)] as
[B̃(pk)] =

(
[B̃1(pk)] . . . [B̃i(pk)] . . . [B̃N(pk)]

)
, where N is the number of nodes in the sup-

port domain Sd at the point pk.

4.4.3.3 Linearization of the micropolar weakened-weak form

The linearization procedure is analogous to the one discussed in Section 3.4.1 for the
micropolar standard weak form and in Section 4.3.1 for the weakened-weak form in classic
media; the details of the derivation will be skipped, since they are the same that can be
found in the mentioned sections.

Definition 4.10 (Micropolar linearized weakened-weak form). The linearized weakened-
weak form of the micropolar boundary value problem defined in Section 3.2 consists into:
find the increment δU ≡ (δū, δϕ̄) ∈ δVh(D) such that

DG(W,U) · δU = −G(W,U), ∀W ∈ V0
h(D) (4.136)

where δVh(D) and V0
h(D) are, respectively, the spaces of admissible variations and test

functions, defined as

Vh(D) :=
{
δU ≡ (δū, δϕ̄) ∈ G∗h(D) | δū = 0̄ at ∂Du

e , δϕ̄ = 0̄ at ∂Dϕ
e

}
(4.137)

V0
h(D) :=

{
W ≡ (w̄, ω̄) ∈ G∗h(D) | w̄ = 0̄ at ∂Du

e , ω̄ = 0̄ at ∂Dϕ
e

}
(4.138)

where G∗h(D) is the G-space for micropolar field variables introduced in Section 4.4.2.

Proposition 4.11. In case of elastic-degrading constitutive models in a geometrically
linear context, the directional derivative of Eq. (4.136) is expressed by

DG(w̄, ū) · δū =
NS∑
k=1

Ak
(
Γ̃(w̄(pk)) ·

(
Ê t(pk) · δΓ̃(ū(pk))

))

=
NS∑
k=1

Ak

(
Γ̃(w̄(pk)) ·

(
Ê t(pk) · ˙̃Γ(ū(pk))

)) (4.139)
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where, in an analogous way as pointed out in Section 3.4.1.1, ˙̃Γ ≡ δΓ̃ is the rate of
the smoothed generalized strain tensor, and Ê t is the generalized tangent constitutive
operator.

Proof. This proof follows the same procedure adopted in proposition 4.1. Observing that in
a geometrically linear context the linear functional f(W ) doesn’t depend on U , the directional
derivative of G(W,U) reduces to the directional derivative of the bilinear form

DG(W,U) · δU = ∂Ã(W,Uε)
∂ε

∣∣∣∣∣
ε=0

From Eq. (4.113) the bilinear form can be expressed as

Ã(W,U) =
NS∑
k=1

Ak
(
Γ̃(W (pk)) · Σ̃(Uε(pk))

)

where the smoothed generalized stress tensor Σ̃(Uε(pk)) = ÊS(Γ̃(Uε(pk)) · Γ̃(Uε(pk)) has been
introduced, resulting in

DG(W,U) · δU =
NS∑
k=1

Ak

(
Γ̃(W (pk)) ·

∂Σ̃(Uε(pk))
∂ε

∣∣∣∣∣
ε=0

)

The directional derivative of the smoothed generalized stress tensor can be expressed as

δΣ̃(U(pk)) : = ∂Σ̃(Uε(pk))
∂ε

∣∣∣∣∣
ε=0

= ∂

∂ε

(
ÊS(Γ̃(Uε(pk)) · Γ̃(Uε(pk))

)∣∣∣∣
ε=0

= ÊS(Γ̃(U(pk)) ·
∂Γ̃(Uε(pk))

∂ε

∣∣∣∣∣
ε=0

+ ∂ÊS(Γ̃(Uε(pk))
∂ε

∣∣∣∣∣
ε=0
· Γ̃(U(pk))

= ÊS(Γ̃(U(pk)) · δΓ̃(U(pk)) + δÊS(Γ̃(U(pk)) · Γ̃(U(pk))

The directional derivatives of the smoothed generalized stress and deformation tensors and of
the generalized secant constitutive operator can be identified with their rates

δΣ̃ ≡ ˙̃Σ, δΓ̃ ≡ ˙̃Γ, δÊS ≡ ˙̂ES

hence, the expression of δΣ̃(U(pk)) is the same as the one of Eq. (2.10) (Σ̇ = ÊS ·Γ̇+ ˙̂ES ·Γ), except
for the presence of the smoothed terms. Taking into account the discussions in Section 3.4.1.1,
the directional derivative of the smoothed stress can be expressed in terms of the smoothed tangent
constitutive operator ˜̂E t(pk) ≡ Ê t(Γ̃(U(pk)), constant over each smoothing domain, as

δΣ̃(U(pk)) = Ê t(Γ̃(U(pk)) · δΓ̃(U(pk)) ≡ Ê t(Γ̃(U(pk)) · ˙̃Γ(U(pk)) = Σ̇(U(pk))

leading to the expressions in Eq. (4.139).

The right hand side of Eq. (4.136) is known, since it depends on the displacement field
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U of a known equilibrium configuration, and is expressed as

G(W,U) = Ã(W,U)− f(W )

=
NS∑
k=1

Ak
(
Γ̃(W (pk)) · Σ̃(Uε(pk))

)
− f(W )

(4.140)

Introducing PIM or RPIM approximation functions into Eq. (4.136), for both the test
functions W (p) and the increments δU(p)

{W (p)} =
∑
i∈Sd

[φi(p)]{dWi }, {δU(p)} =
∑
i∈Sd

[φi(p)]{δdi} (4.141)

and taking into account proposition 4.11, the following algebraic system can be obtained

[Kt] {∆X} = {N} (4.142)

where [Kt] is the global tangent stiffness matrix of the system, {∆X} the nodal param-
eters vector collecting all the nodal parameters {δdi}, and {N} an array containing the
discretization of the right hand side of Eq. (4.70); the solution procedure for this system
is the same recalled in Remark 4.8 for the weakened-weak formulation in classic media.





Chapter 5

Discontinuous failure in micropolar
elastic-degrading media

The present chapter illustrates the phenomenon of discontinuous failure
(or localization) in elastic-degrading micropolar media. The concept of
acceleration waves propagation is applied to the elastic-degrading mi-
cropolar models proposed by the author, extending to these models the
classic Maxwell compatibility condition and Fresnel-Hadamard propa-
gation condition. A proper localization indicator is derived, and used to
evaluate the effects of the micropolar additional material parameters on
the onset of localization, through analytical investigations.

5.1 A preface

Section 2.3 provided a survey on the existent contributions on the topic of localization
analysis in elasto-plastic and elastic-degrading classic and micropolar media. It pointed
out that while the literature on localization in classic media is vast, with contributions
on concepts like acceleration waves propagation, failure indicators for continuous (loss of
material stability and loss of uniqueness) and discontinuous failure (loss of ellipticity and
loss of strong ellipticity), and eigenvalue analysis of constitutive operators and acoustic
tensors, the contributions regarding the micropolar theory are more limited. As discussed
in Section 2.3, the main contributions to this topic identified by the author consist in:
• the numerical investigations on regularization effects in micropolar elasto-plasticity

by de Borst (1991), de Borst and Sluys (1991) and Sluys (1992);
• the extension to micropolar elasto-plasticity of the classic Maxwell compatibility

condition by Dietsche et al. (1993) and Iordache and Willam (1998), together with
analytical and numerical analyses on the regularization effects of the additional
material parameters;
• the extension of the classic Fresnel-Hadamard propagation condition to visco-elastic
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micropolar media by Grioli (1980) and to geometrically exact elastic micropolar
media by Eremeyev (2005);
• the evaluation of the effects of the Cosserat’s shear modulus on localization with nu-

merical investigations based on an extension of the Maxwell compatibility condition
for micropolar media with scalar damage1 by Xotta et al. (2016).

Taking into account these contributions the author, in a previous paper (Gori et al.,
2017b), proposed an extension of the discontinuous failure concepts to elastic-degrading
micropolar media, using as a basis the general formulation proposed in Gori et al. (2017c).
Following a path analogous to the one of Grioli (1980) and Eremeyev (2005), the author
investigated the problem of acceleration waves propagation within the elastic-degrading
formulation of Gori et al. (2017c), deriving a proper extension of the classic Maxwell com-
patibility condition and Fresnel-Hadamard propagation condition, using these conditions
as a basis for subsequent localization analyses. The main advantage of this approach con-
sisted in the fact that since the different concepts were derived for the general expressions
of the unified formulation for elastic-degrading micropolar media, they can be directly
extended to all the peculiar models that can be derived within the aforementioned formu-
lation. In the paper, specific attention was paid on an extension of the classic weak (or
kinematically compatible) localization condition, relying on the analysis of a generalized
acoustic tensor. Using this condition, a peculiar localization indicator was introduced as
a quantity that allows to evaluate the onset of a bifurcation in a boundary value problem.
Specific investigations were also proposed in order to investigates the effects of the addi-
tional material parameters, considering the peculiar case of an associated scalar-isotropic
damage model in a plane-stress state. The theoretical content of the paper (Gori et al.,
2017b), as well as its analytical investigations, are discussed in the present chapter, while
the numerical simulations are collected in Chapter 6.

5.2 Acceleration waves in elastic-degrading micropo-
lar media

A wave, in the sense of Hadamard (Hadamard, 1903), is an isolated, smooth and orientable
geometric surface S(p, t) (the wavefront) parametrized by the time t, with p ∈ D, not
necessarily plane, that moves relatively to the material, and across which certain field
variables are momentarily discontinuous (Hill, 1962). The wave propagates with velocity
c in the normal direction n̄. The unitary vectors p̄A and p̄C indicates the directions of
polarization, i.e., the directions defining the motion of the material points on the surface in
terms of displacement and microrotation, respectively. The body is divided into two parts

1In this case the authors applied the scalar damage only to the Cauchy-like part of the constitutive
operator, without affecting the couple-stresses. Hence, only the effect of the Cosserat’s shear modulus
was evaluated.
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by the wavefront; the symbols a+ and a− indicate the values of a certain field variable
a at each one of the opposite sides of the wavefront, while the symbol JaK := a+ − a−

indicates the jump of the same variable across the wavefront.

An acceleration wave in a micropolar medium is characterized by a second-order dis-
continuity in the displacement field ū and in the microrotation field ϕ̄ (Eremeyev, 2005).
It is emphasized that, in general, in an elastic context, second-order discontinuities in the
displacement and microrotation fields are transported by different waves (with different
propagation velocities); a single wave transporting both the discontinuities is a peculiar
case (Grioli, 1980). The acceleration fields ¨̄u and ¨̄ϕ and the gradients of the velocity
fields ˙̄u and ˙̄ϕ are then discontinuous, while the displacement, microrotation, and veloci-
ties fields themselves remain continuous across the wavefront (see, e.g., Grioli (1980) and
Eremeyev (2005))

JūK = 0, J ˙̄uK = 0, J¨̄uK 6= 0, Jgrad( ˙̄u)K 6= 0 (5.1)

Jϕ̄K = 0, J ˙̄ϕK = 0, J ¨̄ϕK 6= 0, Jgrad( ˙̄ϕ)K 6= 0 (5.2)

From the previous conditions it can be easily shown that also the strain and microcur-
vature rate tensors γ̇ and κ̇, as well as the stress and couple-stress rate tensors σ̇ and µ̇,
are discontinuous across the wavefront.

In this context, the localization analysis consists in to verify the existence of acceler-
ation waves with the aforementioned characteristics; as it will be shown in the following,
localization arises when the conditions for the propagation of such waves are violated, i.e.,
when an acceleration wave become stationary.

5.2.1 Maxwell compatibility condition

An analogous version of the Maxwell compatibility condition for classic media (Rizzi,
1995), i.e., a condition for the jumps in the gradients appearing in Eqs. (5.1) and (5.2), is
now derived for a micropolar medium (see, e.g., Dietsche et al. (1993) for the elasto-plastic
case). First, it is observed that the continuity conditions J ˙̄uK = 0 and J ˙̄ϕK = 0 impose a
restriction on the derivatives of the fields ˙̄u and ˙̄ϕ: in the directions τ̄ ⊥ n̄ the derivatives
must vanish (Jgrad( ˙̄u)K · τ̄ = 0 and Jgrad( ˙̄ϕ)K · τ̄ = 0), while the same doesn’t apply to
the derivatives along n̄. Hence, the jumps in the velocities gradients exhibit a component
only in the normal direction

Jgrad( ˙̄u)K = ḡA ⊗ n̄, Jgrad( ˙̄ϕ)K = ḡC ⊗ n̄ (5.3)
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Like for classic media (see, e.g., Jirásek (2007a)), the vectors ḡA := Jgrad( ˙̄u)K · n̄ and
ḡA := Jgrad( ˙̄u)K · n̄, can be rewritten in the form

ḡA = γ̇A p̄A, ḡC = γ̇C p̄C (5.4)

where γ̇A := ‖ḡA‖ and γ̇C := ‖ḡC‖ represents the magnitude of the jumps, while the uni-
tary vectors p̄A := ḡA/‖ḡA‖ and p̄C := ḡC/‖ḡC‖ are the previously mentioned polarization
vectors. The Maxwell compatibility condition for the micropolar medium is then expressed
by

Jgrad( ˙̄u)K = γ̇A p̄A ⊗ n̄, Jgrad( ˙̄ϕ)K = γ̇C p̄C ⊗ n̄ (5.5)

resulting in the following jumps of the strain and microcurvature rate tensors

Jγ̇K = n̄⊗ ḡA, Jκ̇K = n̄⊗ ḡC (5.6)

The previous quantities can be recasted in terms of acceleration jumps J¨̄uK and J ¨̄ϕK, and
normal velocity c as follows. Considering an infinitesimal time interval dt, the differentials
of the velocity fields can be expressed as d ˙̄u = grad( ˙̄u) ·dx̄+ ¨̄u dt and d ˙̄ϕ = grad( ˙̄ϕ) ·dx̄+
¨̄ϕ dt, where dx̄ = c dt n̄ indicates the change of position of a point p ∈ D on the wavefront
in the time interval dt. The continuity conditions J ˙̄u(p+ dx̄, t+ dt)K ' J ˙̄u(p, t) + d ˙̄uK = 0
and J ˙̄ϕ(p+ dx̄, t+ dt)K ' J ˙̄ϕ(p, t) + d ˙̄uK = 0, together with Eqs. (5.1) and (5.2), imply
that Jd ˙̄uK = 0 and Jd ˙̄ϕK = 0; hence

cJgrad( ˙̄u)K · n̄+ J¨̄uK = 0, ḡA = −J¨̄uK
c
, γ̇A = −JüK

c
, JüK := ‖J¨̄uK‖ (5.7)

cJgrad( ˙̄ϕ)K · n̄+ J ¨̄ϕK = 0, ḡC = −J ¨̄ϕK
c
, γ̇C = −Jϕ̈K

c
, Jϕ̈K := ‖J ¨̄ϕK‖ (5.8)

In Eremeyev (2005) the vectors ḡA and ḡC are referred to as vector amplitudes for the
jumps of linear and angular accelerations; together with the normal velocity c, they allow
to express the jumps in the accelerations as J¨̄uK = −c ḡA and J ¨̄ϕK = −c ḡC .

5.2.2 Fresnel-Hadamard propagation condition

In an acceleration wave, the gradients of both the displacement and microrotation fields
are assumed to be continuous2 across the discontinuity surface, i.e., Jgrad( ū)K = 0 and
Jgrad( ϕ̄)K = 0 (Eqs. (5.1) and (5.2)). Hence, from Eqs. (3.1) and (3.2), it can be easily
shown that the jumps in the strain and microcurvature tensors also vanish, JγK = 0 and
JκK = 0. Since the secant constitutive operators depend on the state of deformation but
not on its rate, it follows that they are continuous across the discontinuity surface and

2 The acceleration waves theory considers discontinuities in the sole second-order terms. The gradient
is a first-order term.
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that also the stress and couple-stress tensor are continuous

JσK = JÂS · γK = ÂS · JγK = 0, JµK = JĈS · κK = ĈS · JκK = 0 (5.9)

As discussed by Rice (1976), Bigoni (2014), since the conditions JσK = 0 and JµK = 0
hold, the Maxwell compatibility condition can be applied in a straightforward manner to
the vectors σ·v̄ and µ·v̄, where v̄ is an arbitrary constant vector, leading to (Appendix B.1)

Jgrad(σ · v̄ )K = −1
c

(Jσ̇K · v̄)⊗ n̄, Jgrad(µ · v̄ )K = −1
c

(
Jµ̇K · v̄

)
⊗ n̄ (5.10)

Taking the trace of both equations leads to (Appendix B.1)

JdivT (σ)K = −1
c
n̄ · Jσ̇K, JdivT

(
µ
)
K = −1

c
n̄ · Jµ̇K (5.11)

From Eqs. (3.3) and (3.4), the jump of the local equilibrium equations can be expressed
as JdivT (σ)K = ρ J¨̄uK and JdivT

(
µ
)
K = ρθ J ¨̄ϕK. Replacing the divergence of the stress and

couple-stress tensors, and the expressions of J¨̄uK and J ¨̄ϕK in terms of the vectors ḡA and
ḡC , leads to the following generalization of the Fresnel-Hadamard propagation condition

n̄ · Jσ̇K = ρc2 ḡA, n̄ · Jµ̇K = ρθc2 ḡC (5.12)

defining the conditions for propagation of acceleration waves in a micropolar elastic-
degrading medium.

5.2.3 Elastic waves

A wave is elastic when the material at both sides of the discontinuity surface is un-
damanged (i.e., ÂS = Â and ĈS = Ĉ). Taking into account that in this case Jσ̇K = Â·Jγ̇K
and Jµ̇K = Ĉ · Jκ̇K (with Jγ̇K and Jκ̇K defined as in Eq. (5.6)), the Fresnel-Hadamard prop-
agation condition (Eq. (5.12)) results in

Q
AA
· ḡA = ρc2 ḡA, Q

CC
· ḡC = ρθc2 ḡC (5.13)

where
Q
AA

:= (nkAki`jn`) ēi ⊗ ēj, Q
CC

:= (nkCki`jn`) ēi ⊗ ēj (5.14)

are the initial acoustic tensors. The expressions in Eq. (5.13) can be recasted in the
following compact form

Q · ḡ = ρc2V · ḡ → Q̃ · ḡ = ρc2 ḡ (5.15)
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where the generalized initial acoustic tensor Q̃ is defined, together with ḡ and V , as

Q̃ :=
(
V −1Q

)
=
QAA

0
0 Q

CC
/θ

 , ḡ :=
ḡA
ḡC

 , V :=
id 0

0 θ id

 (5.16)

As discussed by Eremeyev (2005), the expressions in Eq. (5.13) represent a generalized
version of the Fresnel-Hadamard propagation condition for micropolar elastic media, defin-
ing the conditions for propagation of elastic acceleration waves. Considering an initially
isotropic material, both the initial acoustic tensors can be expressed as a rank-one modi-
fication of the identity tensor as

Q
AA

= A2 id+ (A1 + A3) n̄⊗ n̄, Q
CC

= C2 id+ (C1 + C3) n̄⊗ n̄ (5.17)

The problem of elastic acceleration waves in micropolar media has been investigated
by Grioli (1980), Eremeyev (2005); since some of these results are useful for the following
analysis of damaging waves, they are briefly resumed in Appendix B.2.

5.2.4 Damaging waves

In a damaging wave both the sides of the discontinuity surface are in a damaged state3 4.
Recalling the general rate equations of a micropolar elastic-degrading medium expressed
in Eqs. (3.84) and (3.85), the jump in the stress and couple-stress rates can be rewritten
as

Jσ̇K =
(
ÂS − 1

z
xA ⊗ yA

)
· Jγ̇K− 1

z

(
xA ⊗ yC

)
· Jκ̇K (5.18)

Jµ̇K =
(
ĈS − 1

z
xC ⊗ yC

)
· Jκ̇K− 1

z

(
xC ⊗ yA

)
· Jγ̇K (5.19)

3 A more complex condition could be represented by a mixed damaged-undamaged state for the two
constitutive relations, that is, for example, a damage state for the stress-strain relation and an elastic state
for the couple-stress-microcurvature one. However, due to the assumption of a single loading function for
the representation of the elastic domain, this condition is excluded, since both the constitutive relations
enter in a damage state at the same time.

4 In this work, the same degradation evolution is assumed at both the sides of the discontinuity surface,
that is, the cases of loading waves and unloading waves (i.e., when one side of the discontinuity surface is
in a damaged state while the other is still elastic) are not considered here. In classic media, such a choice
is justified by the fact that a discontinuous bifurcation always verifies for the former condition before the
latter one, as shown in Rice and Rudnicki (1980), Borré and Maier (1989) and Ottosen and Runesson
(1991a) for the elasto-plastic case, and in Jirásek (2007a) for scalar damage. However, it is remarked
that analogous results are not currently available for micropolar media, and should be object of further
investigations.
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Replacing these rates into Eq. (5.12) results in the propagation conditions

n̄ ·
[(

ÂS − 1
z

(
xA ⊗ yA

))
· (n̄⊗ ḡA)− 1

z

(
xA ⊗ yC

)
· (n̄⊗ ḡC)

]
= ρc2ḡA (5.20)

n̄ ·
[(

ĈS − 1
z

(
xC ⊗ yC

))
· (n̄⊗ ḡC)− 1

z

(
xC ⊗ yA

)
· (n̄⊗ ḡA)

]
= ρθc2ḡC (5.21)

Introducing the tangent acoustic tensors

Qt
AA

:= QS
AA
− 1
z
b̄A ⊗ āA, Qt

AC
:= −1

z
b̄A ⊗ āC (5.22)

Qt
CC

:= QS
CC
− 1
z
b̄C ⊗ āC , Qt

CA
:= −1

z
b̄C ⊗ āA (5.23)

with the secant acoustic tensors and the traction vectors (Hill, 1962) defined as

QS
AA

:=
(
nkA

S
ki`jn`

)
ēi ⊗ ēj, QS

CC
:=
(
nkC

S
ki`jn`

)
ēi ⊗ ēj (5.24)

āA := n̄ · y
A
, b̄A := n̄ · xA, āC := n̄ · y

C
, b̄C := n̄ · xC (5.25)

the expressions in Eqs. (5.20) and (5.21) can be rewritten as

Qt
AA
· ḡA +Qt

AC
· ḡC = ρc2ḡA (5.26)

Qt
CA
· ḡA +Qt

CC
· ḡC = ρθc2ḡC (5.27)

or in the compact form

Qt · ḡ = ρc2V · ḡ, Q̃
t · ḡ = ρc2 ḡ (5.28)

where the generalized acoustic tensors Qt and Q̃
t are expressed by

Qt :=
Qt

AA
Qt
AC

Qt
CA

Qt
CC

 , Q̃
t :=

(
V −1Qt

)
=
 Qt

AA
Qt
AC

Qt
CA
/θ Qt

CC
/θ

 (5.29)

In a compact form, the generalized acoustic tensor can be expressed in terms of the
generalized secant acoustic tensor QS and of the generalized traction vectors ā and b̄ as

Qt = QS − 1
z

(
b̄⊗ ā

)
, QS :=

QS
AA

0
0 QS

CC

 , ā :=
āA
āC

 , b̄ :=
b̄A
b̄C

 (5.30)

The expressions in Eqs. (5.26) and (5.27) represent a generalized version of the classic
Fresnel-Hadamard propagation condition (already discussed in Eremeyev (2005) for non-
linear micropolar elastic media), defining the conditions for propagation of acceleration
waves in a micropolar elastic-degrading medium.
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5.3 Localization analysis

Within the theory of acceleration waves, the onset of localization is represented by the
stationarity condition of the wavefront: localization arises when the propagation condition
for an acceleration wave is no more satisfied, i.e., when the wavefront became stationary
(c→ 0) for certain normal and polarization directions

Q̃
t · ḡ = 0̄ (5.31)

Making use of the concepts exposed in the previous section, a generalization of the
localization conditions traditionally defined in the classic continuum theory (see, e.g., Rizzi
(1995) and Rizzi et al. (1995, 1996)) is here presented. In this work attention is focused on
the so-called weak localization condition (also known as kinematically compatible failure5),
based on the spectral properties of the acoustic tensor. The strong localization condition
that, as discussed in the introduction, is based on the spectral properties of the symmetric
part of the acoustic tensor, is not taken into account6.

5.3.1 Localization condition

Regarding the localization in the context of damaging waves, the most general case is
represented by the stationarity of a wavefront transporting a second-order discontinuity
in both the fields ū and ϕ̄ (i.e., with JüK 6= 0 and Jϕ̈K 6= 0), resulting, from Eq. (5.31) in
the condition

det
(
Q̃t) = 0 (5.32)

that, considering Eq. (5.29), is equivalent to det
(
Qt
)

= 0 (as long as θ 6= 0). From
this one, two special cases can be obtained (for further details see Appendix B.3): (i)
the stationarity of a wavefront transporting a second-order discontinuity in the field ū

(JüK 6= 0 and Jϕ̈K = 0), (ii) the stationarity of a wavefront transporting a second-order
discontinuity in the field ϕ̄ (JüK = 0 and Jϕ̈K 6= 0), resulting in the conditions

(i) det
(
Qt

AA

)
= 0 (ii) det

(
Qt

CC

)
= 0 (5.33)

where the former is associated to b̄C = 0̄, while the latter to b̄A = 0̄.

5 The name kinematically compatible failure originates from the fact that such condition can be also
derived in a quasi-static context, independently on the theory of acceleration waves propagation, assuming
the kinematical conditions of discontinuity expressed by the Maxwell equations (Eq. (5.5)). The quasi-
static approach has been followed by Dietsche et al. (1993) and Iordache and Willam (1998), for the
localization analysis in micropolar elasto-plasticity.

6 It is remarked that in case of associated models, as the ones considered in Section 5.4, the two
conditions coincide.
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5.3.2 Localization indicator

A common procedure in localization analysis, usually adopted in the classic continuum
theory, consists into simplify the localization problem replacing the aforementioned lo-
calization conditions with equivalent ones (see, e.g., Rizzi et al. (1996)). Considering for
example the generalized tangent acoustic tensor Qt (Eq. (5.30)), the following tensor can
be introduced

D := (QS)−1Qt =
id 0

0 id

− 1
z

(
(QS)−1 · b̄

)
⊗ ā (5.34)

which determinant, from the matrix determinant lemma (see, e.g., Ding and Zhou (2007)),
can be expressed as

det (D) =
det

(
Qt
)

det
(
QS
) = 1− 1

z

(
ā ·
(
(QS)−1 · b̄

))

= 1− 1
z

[
āA ·

(
(QS

AA
)−1 · b̄A

)
+ āC ·

(
(QS

CC
)−1 · b̄C

)] (5.35)

The general localization condition of Eq. (5.32) is equivalent to det (D) = 0; hence,
introducing the localization indicator q as

q := det (D) =
det

(
Qt
)

det
(
QS
) (5.36)

the condition for the onset of localization in a micropolar medium (Eq. (5.32)) can be
expressed by q = 0. From Eq. (5.35), it can be shown that the localization indicator q
vanishes at a certain direction n̄ when the modulus z is equal to a certain limit value7

zdf (n̄)

q = 0⇐⇒ z = zdf (n̄) : = ā ·
(
(QS)−1 · b̄

)
= āA ·

(
(QS

AA
)−1 · b̄A

)
+ āC ·

(
(QS

CC
)−1 · b̄C

) (5.37)

Discontinuous failure is prevented as long as zdf (n̄) < z. For the special cases correspond-
ing to b̄C = 0 and b̄A = 0, the localization indicator reduces to

q = 1− 1
z
āA ·

(
(QS

AA
)−1 · b̄A

)
, if b̄C = 0

q = 1− 1
z
āC ·

(
(QS

CC
)−1 · b̄C

)
, if b̄A = 0

(5.38)

7 As in traditional works based on the classic continuum theory, the subscript df indicates the limit
values corresponding to the onset of a discontinuous failure, i.e., a localization.
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with the following limit values for the onset of localization

zdf (n̄) = āA ·
(
(QS

AA
)−1 · b̄A

)
, if b̄C = 0

zdf (n̄) = āC ·
(
(QS

CC
)−1 · b̄C

)
, if b̄A = 0

(5.39)

Taking into account the expressions for the modulus z in the stress- and strain-based
approaches defined in Remark 3.4, the following limit values for the inelastic moduli H
and H∗ can be obtained

Hdf (n̄) = ā ·
(
(QS)−1 · b̄

)
− nA ·

(
AS ·mA

)
− nC ·

(
CS ·mC

)
(5.40)

H∗df (n̄) = ā ·
(
(QS)−1 · b̄

)
(5.41)

As observed by Rizzi (1995) for classic media, the conditionsHdf (n̄) < H andH∗df (n̄) < H∗

are equivalent, since the moduli H and H∗ differ for the quantity nA · (AS ·mA) + nC ·
(CS ·mC), which doesn’t depend on the direction n̄.

If the material is initially isotropic (as it will be assumed in the following section), the
inverses of the secant acoustic tensors are expressed by

(
QS
AA

)−1
= 1
A2

id− A1 + A3

A1 + A2 + A3
n̄⊗ n̄ (5.42)

(
QS
CC

)−1
= 1
C2

id− C1 + C3

C1 + C2 + C3
n̄⊗ n̄ (5.43)

and then

āA ·
(
(QS

AA
)−1 · b̄A

)
= 1
A2

[
āA · b̄A −

A1 + A3

A1 + A2 + A3
(āA · n̄)(n̄ · b̄A)

]
(5.44)

āC ·
(
(QS

CC
)−1 · b̄C

)
= 1
C2

[
āC · b̄C −

C1 + C3

C1 + C2 + C3
(āC · n̄)(n̄ · b̄C)

]
(5.45)

5.4 Regularization effects of the micropolar parame-
ters

While the previous sections provided a general approach to localization analysis in mi-
cropolar elastic-degrading media, the present section focuses on the case of associated
scalar-isotropic damage models expressed in the strain-based approach, in a plane stress
state, with specific attention on the Marigo model defined by Eq. (3.141). The objective
of this section is to provide some quantitative results regarding the formulation presented
in the previous sections, and to evaluate the effects on the onset of localization of the
additional material parameters of the micropolar continuum theory. These evaluations
were performed by the author in Gori et al. (2017b) considering two cases: a uniaxial
stress state, able to provide informations on the effects of the Cosserat’s shear modulus,
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and a more complex stress state obtained with the analytical solution of a plate with a
circular hole, influenced also by internal bending length.

5.4.1 Associated scalar-isotropic damage in plane stress

For an associated scalar-isotropic damage model, expressed by n = τ Σ0, it can be easily
shown that the traction vectors appearing in Eq. (5.25) reduces to

āA = τ b̄A, b̄A = n̄ · σ0, āC = τ b̄C , b̄C = n̄ · µ0 (5.46)

and, once replaced into Eqs. (5.22) and (5.23), lead to the following expression for the
tangent acoustic tensors

Qt
AA

:= (1−D) Q
AA
− τ

H∗
b̄A ⊗ b̄A, Qt

AC
:= − τ

H∗
b̄A ⊗ b̄C (5.47)

Qt
CC

:= (1−D) Q
CC
− τ

H∗
b̄C ⊗ b̄C , Qt

CA
:= − τ

H∗
b̄C ⊗ b̄A (5.48)

Assuming a plane-stress state in the plane (x,y), the polarization vectors, and the
direction of propagation reduce to

p̄A =
pAx
pAy

 , p̄C =
(
1
)
, n̄ =

nx
ny

 (5.49)

Taking into account the following elastic isotropic constitutive relations in Voigt notation
σxx

σxy

σyx

σyy

 =


E

1−ν2 0 0 νE
1−ν2

0 G+Gc G−Gc 0
0 G−Gc G+Gc 0
νE

1−ν2 0 0 E
1−ν2




γxx

γxy

γyx

γyy

 (5.50)

µxz
µyz

 =
2GL2

b 0
0 2GL2

b

κxz
κyz

 (5.51)

the following expressions for the initial acoustic tensors in plane stress can be obtained

Q
AA

=
G+Gc 0

0 G+Gc

+
(

νE

1− ν2 +G−Gc

) n2
x nxny

nxny n2
y

 (5.52)

Q
CC

= 2GL2
b (5.53)
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with their inverse

(
Q
AA

)−1
=
 1
G+Gc 0

0 1
G+Gc

− χ

G+Gc

 n2
x nxny

nxny n2
y

 (5.54)

(
Q
CC

)−1
= 1

2GL2
b

(5.55)

where the material parameter

χ :=
(

νE

1− ν2 +G−Gc

) 1− ν2

E
(5.56)

has been introduced. Replacing these values into Eq. (5.35), the limit value of the inelastic
modulus is equal to

H∗df (n̄) = τ

1−D

[
1

G+Gc

(
b̄A · b̄A − χ(n̄ · b̄A)2

)
+ 1

2GL2
b

b̄C · b̄C
]

(5.57)

Before exposing the analytical results discussed in Gori et al. (2017b), a comment
should be made on the validity of these results. As already stated, the localization analysis
treated in the present work is at the material level, i.e., a pointwise analysis that supposes
an ideal stress state with no boundary effects. In a real system, the boundary conditions,
as well as the mesh density and alignment, have an important influence on the solution
of the problem and on the effects related to the localization. Despite this limitation, such
pointwise analysis is still able to provide important informations on the material failure
and on the influence of the different material parameters.

5.4.2 Uniaxial stress state

The first example presented in Gori et al. (2017b) considered a uniaxial stress state in
absence of couple-stresses, assuming as only non-zero component of the stress tensor σ0

the term σ0
yy. For the considered model of Eq. (3.141), this choice corresponds to the value

Γeq = γyy for the equivalent strain measure and to the value τ = 1/σ0
yy for the factor char-

acterizing the associated model. In absence of couple-stresses and microcurvatures, the
only localization condition that has to be accounted for is the stationarity of a wavefront
transporting a second-order discontinuity in the field ū, represented by det

(
Qt

AA

)
= 0

(Eq. (5.33)). The localization analysis then relies on the evaluation of the localization
indicator q = 1−H∗df (n̄)/H∗ for different directions of propagation, with H∗df (n̄) defined
as in Eq. (5.57). Replacing the uniaxial stress state into the equations defined previously,
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the limit values of the inelastic modulus can be expressed as

H∗df (n̄) =
τ(σ0

yy)2

(1−D)(G+Gc)
(
n2
y − χ n4

y

)
=

σ0
yy

(1−D)(G+Gc)
(
n2
y − χ n4

y

) (5.58)

where ny is the projection of the direction of propagation onto the y axis.
In order to perform the analysis, a specific material was considered, with Young’s

modulus E = 20000 N/mm2, Poisson’s ratio ν = 0.30 and shear modulus G = 7692.31
N/mm2, with the following parameters for the exponential damage law, α = 0.999, β
= 500 and K0 = 5 × 10−5. The regularization effects of the micropolar medium were
evaluated considering three different values for the Cosserat’s shear modulus: Gc = 0
N/mm2, in order to reproduce the limit case of a classic medium, Gc = 500 N/mm2 and
Gc = 2500 N/mm2.

Figs. 5.1 and 5.2 present the results of the analysis for different values of the Cosserat’s
shear modulus in terms of the limit values of the inelastic modulus and of the localiza-
tion indicator at the onset of damage (i.e., with D ' 0), where the inelastic modulus
H∗ = (∂D(Γeq)/∂Γeq)−1 (as defined in Eq. (3.136)) assumes the value H∗ = 4.8782×10−5.
In both of them, the results are plotted against the angle θn between the propagation di-
rection and the y axis (ny = cos (θn)). As it can be observed, the value of the Cosserat’s
shear modulus exhibited a certain influence on the onset of localization. For Gc = 0
N/mm2, the case corresponding to the classic medium behaviour, the condition for dis-
continuous failure H∗df > H∗ was attained since damage initiation, for certain directions of
propagation, as also for Gc = 500 N/mm2. Focusing on the state of damage initiation, it
is observed that in this case the value Gc = 2500 N/mm2 was able to prevent the discon-
tinuos failure, since the conditions H∗df < H∗ and q > 0 were satisfied for each direction
of propagation.
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Figure 5.1: Uniaxial stress - Inelastic modulus limit values at damage initiation

It is interesting to observe that, in Fig. 5.1, while the values of H∗df in the range θn ∈
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Figure 5.2: Uniaxial stress - Localization indicator at damage initiation

(0, 90) were influenced by variations on the Cosserat’s shear modulus, the value associated
to a mode-I failure8, corresponding in this example to the angle θn = 0, wasn’t influenced
by the Cosserat’s shear modulus; as it will be discussed in the following section, such value
is influenced only by the internal length, in presence of couple-stresses. Furthermore, it
is worth to note that for high values of the Cosserat’s shear modulus, that mode tended
to become the critical one. This is a well known deficiency of the micropolar model for
problems where the contribution of the internal length is not activated. In that cases, in
order to obtain a stronger regularization effect, different continuum formulations should
be cosidered, such as the micromorphic model (see, e.g., Forest et al. (2005)), for example.

In Fig. 5.3, the results corresponding to states beyond damage initiation are illustrated.
There, the values of the localization indicator are plotted against the discontinuity angle
θn and the scalar damage variable. It is interesting to observe that in the case with Gc =
2500 N/mm2, where the localization was prevented at the onset of damage, at a certain
threshold value of the scalar damage variable the localization condition q = 0 was attained
for a certain critical angle θn.

Remark 5.1: Numerical simulations

In Gori et al. (2017b), the uniaxial stress state discussed in the present section was
also investigated numerically with the finite element method, with an example of
induced localization. The aim of such an investigation was to confirm the analytical
evaluations presented in this section, showing the presence of bifurcated solutions in
the FEM models for the classic medium and for the micropolar medium with Gc =
500 N/mm2, and regularized solutions for the value Gc = 2500 N/mm2, for which
the localization condition wasn’t attained. The same example will be presented in
Section 6.4, where also simulations with smoothed point interpolation methods will

8 A mode-I localized deformation is characterized by a jump in the displacement gradient only in the
normal direction to the discontinuity surface, Jγ̇K = γ̇A n̄⊗n̄, i.e., when the normal n̄ and the polarization
vector p̄A coincides.
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Figure 5.3: Uniaxial stress - Localization indicator beyond damage initiation
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be shown, together with another example treating the case of numerical localization
(Section 6.3).

5.4.3 Plate with circular hole

While the previous example allowed to emphasize the role of the Cosserat’s shear modulus
on the onset of localization, the second example presented in Gori et al. (2017b) allowed
to evaluate also the effect of the internal bending length. As already stated, in order to
evaluate the effect of the internal bending length, a more complex stress state is needed,
with presence of couple-stresses. Though a generic stress state could have been adopted, in
Gori et al. (2017b) the case of an infinite micropolar plate with a circular hole (Fig. 5.4) was
choosen since an analytical solution is available. Such problem has been widely studied in
the past, with the aim to derive proper stress intensity factors for the micropolar model.
In the cited paper the analytical solution provided by Kaloni and Ariman (1967) was
considered (for the explicit equations of the analytical solution the reader should refer to
the cited work or to the book by Eringen (1999)), assuming a circular hole with a unitary
radius.

qq

x

y

r
θ

A

Figure 5.4: Plate with circular hole

The localization analysis discussed here was based on the point of coordinates (1, 90,
0) in the polar system (r, θ, z), the point A in Fig. 5.4. Furthermore, only the state
at the onset of damage (i.e., for D ' 0) was taken into account. Different points or
different damage states couldn’t have been considered because of the limitation of the
analytical solution; since A is the most stressed point, the damage initiates there, and as
the behaviour is no more linear elastic the validity of the analytical solution is lost9. At
the selected point, the stress state is characterized by the non-zero components σrr, σrθ,
σθr, σθθ and µθz, where in general σrθ 6= σθr.

9 In order to extend the localization analysis to different points in the domain and to different damage
states, a possible strategy is to mount the acoustic tensors not with values from analytical solutions but
rather using data from finite element analyses, as done in Xotta et al. (2016) and Gori et al. (2017d) for
example. This same approach, called numerical localization analysis, will be discussed in Chapter 6.



§5.4 Discontinuous failure in micropolar elastic-degrading media 123

Due to the presence of couple-stresses, and since no one of the conditions b̄C = 0̄ or
b̄A = 0̄ is verified for the selected solution, the general case of a second-order discontinuity
in both the displacement and microrotation fields must be taken into account, resulting in
a failure analysis relying on the evaluation of the localization indicator q = 1−H∗df (n̄)/H∗

for different directions of propagation, where the limit values of the inelastic modulus can
be obtained from Eq. (5.57). As it can be observed in the cited equation, in this case also
the internal bending length appears in the expression of H∗df . In this case it is interesting
to emphasize the values of H∗df corresponding to the mode-I localized deformation state,
since they are directly influenced by the value of the internal bending length. Since such
condition corresponds to p̄A = n̄, the limit value of the inelastic modulus of the mode-I
failure can be found replacing the polarization vector p̄A with the normal vector n̄ into
Eq. (5.31). It can be shown that the resulting system of equations is satisfied only for
the direction (nr, nθ) = (0, 1) in the plane (r,θ), for a limit value of the inelastic modulus
expressed by

H∗df (0, 1) = τ

E (1−D)

[
σ2
θθ(1− ν2) + Eµ2

θz

2GL2
b

]
(5.59)

corresponding to the following ratio between Jϕ̈K and JüK

Jϕ̈K
JüK

= Eµθz
(1− ν2)2GL2

bσθθ
(5.60)

In order to perform the analysis, a specific material was considered, with Young’s
modulus E = 20000 N/mm2, Poisson’s ratio ν = 0.30 and shear modulus G = 7692.31
N/mm2, with the following parameters for the exponential damage law, α = 0.999, β =
3000 and K0 = 5×10−5. The effect of the micropolar parameters was evaluated considering
two different values for the Cosserat’s shear modulus, Gc = 500 N/mm2 and Gc = 2500
N/mm2, as well as two different values of the internal bending length, Lb = 0.05 mm and
Lb = 0.25 mm.

The results in terms of the inelastic modulus are illustrated in Fig. 5.5, at the onset of
damage (i.e., with D ' 0) for the range of directions θ = [0, 90]. There, the function Hdf

is plotted against the angle θn of the propagation direction with the r axis (nr = cos θn),
and compared with the limit value H∗ = (∂D(Γeq)/∂Γeq)−1 as defined in Eq. (3.136),
equal to H∗ = 4.35 × 10−5. Also the value Hdf (0, 1) associated to the mode-I failure is
plotted, at the position θn = 90◦. As it can be observed, localization was prevented only
for the condition “d” (Gc = 2500 N/mm2 - Lb = 0.25 mm), which satisfied the inequality
H∗df < H∗ for each direction. Analogous conclusions can be drawn from the data contained
in Fig. 5.6, where the localization indicator q (Eq. (5.36)) is illustrated.

Remark 5.2: Effects of the micropolar parameters
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Taking into account the results presented in this section and in the previous one,
some considerations regarding the influence of the additional material parameters of
the micropolar theory can be made. From Figs. 5.1 and 5.5 it can be observed that, in
the considered examples, the Cosserat’s shear modulus exhibited an influence on the
limit value H∗df (θn) in the range θn ∈ (0, 90), without affecting the values at θn = 0◦

and θn = 90◦ (this can be seen comparing the combination “a” with “c” in Fig. 5.5, for
example). The internal bending length Lb, on the contrary, manifested an influence
on the limit value H∗df (θn) in the whole range θn ∈ [0, 90]. For both of the Cosserat’s
moduli it can be observed that the greater their value, the smaller the limit value H∗df
was. Taking into account these considerations, it can be stated that:
• in absence of couple-stresses the onset of localization is ruled only by the

Cosserat’s shear modulus, and may verify at different directions depending on
the relation between H∗ and H∗df ;
• in presence of couple-stresses the limit value H∗df is ruled by both the Cosserat’s

shear modulus and the internal bending length, and localization may verify at
different directions depending on the relation between H∗ and H∗df ;
• as the value of the Cosserat’s shear modulus grows, the localization tends to be

of a mode-I type;
• in that case, the onset of localization is ruled solely by the internal bending

length.





Chapter 6

Numerical and induced localization
examples

The present chapter collects a set of simulations involving problems of
numerical and induced localization. The different examples aim to show
the regularization effects induced by the micropolar continuum model
and by smoothed meshfree methods in such kind of problems.

6.1 Numerical vs induced localization

As discussed in Section 2.3, the problem of localization is a fundamental issue in numer-
ical simulations involving strain-softening constitutive models, like the damage models
usually adopted for the modelling of quasi-brittle media, for example (Chapter 2), espe-
cially when tangent approximations of the constitutive operators are accounted for. The
aforementioned section pointed out the physical aspects of localization, as an irreversible
phenomenon corresponding to plasticization or cracks formation in certain parts of a real
body. It also emphasized the mathematics behind this phenomenon. The condition for lo-
calization is usually associated to a certain state of the so-called acoustic tensor and, from
a mathematical point of view, corresponds to the loss of ellipticity of the partial differen-
tial equations defining the elastic equilibrium problem. When trying to solve numerically
a problem where localization occours, the main issue is that the numerical solution be-
come unstable, i.e., highly sensitive to perturbations; once ellipticity is lost, the boundary
value problem ceases to be well posed, and bifurcated solutions may appear.

Depending on the kind of perturbation that is being considered, one may distinguish
between two different situations, called numerical and induced localization, respectively.
The former can be conveniently explained basing the discussion on an hypothetical sample
characterized by an initially uniform stress/strain state. As illustrated analytically in
Section 5.4, a sample in a uniform state may attain a localization condition for a certain
deformation level. If, hypothetically, all the variables calculated numerically during the

127
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analysis of such a sample were uniformly distributed among its integration points (as
indeed it should be expected for a sample in a uniform stress/strain state), the verification
of the localization condition would not affect the current equilibrium path of the sample.
However, due to the floating-point arithmetic, at each integration point of the discrete
model the variables may assume values that are different from the expected uniform
ones. Due to the high sensitiveness of the model as a consequence of the localization
condition, such difference may be sufficient to trigger a bifurcated solution, divergent with
respect to the expected one. Such bifurcated solution happen to depend on the size of
the discretization; hence, convergence upon mesh refinement is lost. This phenomenon
goes by the name of numerical localization due to the fact that it originates from an
approximation error that is intrisic to discrete (aka numerical) models.

Remark 6.1: Initially non-uniform states

The problem of numerical localization discussed in the present section is based on
an initially uniform stress/strain state. However, it is important to point out that
such issue may also affect problems that don’t present an initial uniform state. In
that case, if a localization condition occours, the solution may still become unstable
due to numerical perturbations, usually presenting an instantaneous brittle failure.
Hence, it is important to rely on methods that allow to avoid such situations.

The phenomenon of induced localization is strictly related to the one of numerical
localization. The necessary condition for both phenomena to manifest is the same, the
verification of the localization condition (Section 5.3). What distinguishes them is the
triggering event. In case of numerical localization, as discussed above, a bifurcated solu-
tion may be triggered by a numerical instability, able to provide a sufficient perturbation.
On the other hand, the initiation of an induced localization is due to a physical character-
istic of the considered model. This characteristic may be a certain geometric configuration
or a local variation in the material properties, for example, i.e., any peculiarity able to
induce a sufficient perturbation. Depending on the triggering event, the initial state may
be uniform or not. In the examples discussed in Section 6.3, the initial state is uniform,
since the triggering event is constituted by the introduction of weakened elements, i.e.,
elements characterized by a material with a reduced damage initiation threshold; in this
case the problem is uniform until damage initiation. On the other hand, the case of the
infinite shear layer with constrained microrotations (Section 6.2) presents an non-uniform
solution since the beginning of the loading process.

The first example that will be presented is the analysis of an infinite shear layer (Sec-
tion 6.2), a model that has been widely adopted in the past to illustrate the regularization
properties of the micropolar medium in elasto-plasticity. Differently from existent inves-
tigations, in this case the infinite shear layer was analyzed considering a scalar damage
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model in a plane-stress state, instead of an elasto-plastic one in a plane-strain state. It
was investigated using only the FEM, and it has been included in this manuscript as a
sort of benchmark test for the micropolar models proposed in Section 3.3, leaving the
investigations on the regularization effects of both the micropolar and smoothed point
interpolation strategies to the subsequent examples of Sections 6.3 and 6.4.

6.2 Infinite shear layer

The infinite shear layer problem has been widely adopted in the past to expose the
regularization properties of the micropolar formulation in elasto-plastic models with strain
softening. Among the different contributions there are the works by de Borst (1991, 1993)
and de Borst and Sluys (1991), that focused on the regularization aspects in micropolar
elasto-plastic models, the work by Huang and Bauer (2003), devoted to the analysis of
cohesionless granular materials, and the work by Liu, Scarpas and Kasbergen (2007),
devoted to the analysis of two-phase three-dimensional micropolar elasto-plastic models.

The problem, depicted in Fig. 6.1(a), consists in a sample of height H, which extends
indefinitely in the x direction. The bottom of the layer is constrained in both the x and y
directions, and each point of the layer is prevented from moving in the y direction. The
load is represented by a shear force applied at the top, in the x direction. In virtue of
the symmetry condition induced by the infinite extension assumption, the problem can
be investigated focusing the attention on a thin strip of the layer (usually a single strip
of finite elements in an FEM model); inside this strip, points with the same y coordinate
are assumed to have the same horizontal displacement (and the same microrotation, in
case of a micropolar medium).
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Figure 6.1: Infinite shear layer

In the investigation exposed in the present section, a layer characterized by an height
H = 100 mm and a width w = 2 mm was considered. The layer was assumed to be in
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a plane-stress state1, with a unitary thickness. The material was modelled as a Marigo
scalar damage model (Eq. (2.34)), assuming as elastic properties the Young’s modulus
E = 30000 N/mm2, Poisson’s ratio ν = 0.20, and shear modulus G = 12500 N/mm2,
and assuming an exponential damage law for the evolution of the scalar damage variable
characterized by the parameters α = 0.950, β = 750 and K0 = 1.0 ×10−5; these material
properties correspond to the constitutive behaviour depicted in Fig. 6.1(b). Like in the
examples discussed in the previous sections, also in the shear layer a perturbation is
needed to trigger a localized solution once the localization condition is met2. To this
scope, a weakened region was inserted in the middle of the layer (the hatched area in
Fig. 6.1(a)), characterized by a slightly reduced value of the parameter K0. The height of
the weakened region was choosen accordingly to each discretization. Considering the FEM
meshes illustrated in Fig. 6.2, in the coarser mesh the weakened zone occupied the central
element of the layer, while in the other meshes it occupied the two middle elements; the
meshes 1 and 2 were then characterized by the same heigth of the weakened zone, while
the meshes 3 and 4 by a reduced height.

6.2.1 FEM simulations

The analyses with the finite element method were performed considering four discretiza-
tions, illustrated in Fig. 6.2, composed by 5, 10, 20, and 40 four-nodes finite elements,
disposed in a single strip, that is, with just one element in the x direction. The resulting
discretizations were characterized by elements with a fixed width of 2 mm and height
equal to 20 mm, 10 mm, 5 mm, and 2.5 mm, respectively. As it can be observed, all the
nodes were constrained in the vertical direction, in virtue of the aforementioned hypothe-
sis that each point of the layer is prevented from moving in the y direction. Furthermore,
the symmetry condition of the layer, stating that points with the same y coordinate have
the same horizontal displacement, was imposed with a master-slave strategy.

The FEM analyses were performed adopting a loading process driven by the dis-
placement control method, assuming a reference load F = 2 N, an initial loading factor
increment of 1.0 ×10−5, and a tollerance for convergence in relative force of 1.0 ×10−4.
All the simulations presented in this section were performed considering the tangent ap-
proximation of the constitutive operator.

The results of the analyses, in terms of horizontal displacement of the top section
plotted against the load factor, are illustrated in Fig. 6.3. As it can be observed, the

1 While the present investigation considered a plane-stress state, the shear layer problem is commonly
treated as a plane-strain problem (see, e.g., de Borst (1991)). Since the objective of this investigation
was just to point out the properties of the proposed micropolar damage models concerning the problem
of localization, this discrepancy is not relevant.

2 An exception is constituted by the analyses performed with the micropolar medium with constrained
microrotations at the top and bottom sections of the layer, that will be discussed in the following Sec-
tion 6.2.2.2.
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 6.2: Infinite shear layer - FEM meshes

results were strongly dependent on the discretization. The first two meshes, characterized
by the same height of the weakened zone, presented the same equilibrium path, while the
most refined meshes manifested a stronger softening in the post-peak branch. The effect
of the different heigths of the weakened zone is also emphasized by the contour plots of
the scalar damage variable illustrated in Fig. 6.4. There it can be observed that, at the
onset of damage, the damaged zone of the layer was confined to the weakened elements;
during the loading process such zone didn’t expand, and tended to remain concentrated
in the initially damaged elements (Fig. 6.5).
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Figure 6.3: Infinite shear layer - FEM - Equilibrium paths
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 6.4: Infinite shear layer - FEM - Damage initiation

Fig. 6.5 illustrates the deformed and damaged configurations exhibited by the different
discretizations of the layer at the final step of the analysis, corresponding to an horizontal
displacement of the top of the layer equal to dx = 7.39 × 10−3 m. As it can be observed,
all the deformations of the layer tended to concentrate in the central elements (i.e., the
weakened ones), while the other parts of the layer exhibited rigid displacements. These
results are analogous to the ones found by other authors in case of elasto-plasticity, and
allow to show how in a classic medium the width of the localization zone “is entirely
governed by the spacing of the finite element mesh” (de Borst, 1991, pag. 326).

6.2.2 Regularization by micropolar formulation

As already commented, the analysis of the infinite shear layer problem has been carried
out by a number of authors in the past, for the case of micropolar elasto-plasticity (see,
e.g., de Borst (1991, 1993), de Borst and Sluys (1991), Huang and Bauer (2003), and Liu,
Scarpas and Kasbergen (2007)). In the existent literature the authors usually considered
two different conditions regarding the degree of constraint at the top and bottom sections
of the layer: free and constrained microrotations. The former is characterized by an
homogeneous strain state and, as in the case of a classic medium, the insertion of a
weakened zone is needed to trigger a bifurcated solution once the localization condition
is met. In the latter instead, an homogeneous strain state is not obtained since “already
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 6.5: Infinite shear layer - FEM - Deformed and damaged configurations at dx,max = 7.39
× 10−3 m

in the elastic regime a boundary layer of approximately a height l [the internal bending
length Lb] develops at the upper and lower parts of the shear layer and the strains are
not uniform over the height of the entire shear layer” (de Borst, 1991, pag. 326). As a
consequence bifurcated solutions naturally arise, with no need of artificially introduced
imperfections.

Remark 6.2: Constrained microrotations: physical interpretation

Large part of the investigations on the infinite shear layer problem performed in the
past introduced the hypothesis of constrained microrotations just as a mean to obtain
a naturally non-homogeneous strain state, in order to induce bifurcated solutions in
the micropolar medium without introducing ad hoc perturbations. However, such
hypothesis can be justified by physical motivations. In Huang and Bauer (2003)
the authors analysed the infinite shear layer problem considering different degrees of
constraint for the microrotations. They considered the shear layer as a sample placed
between two bounding structures, at the top and bottom sections, respectively. Since
they focused on the analysis of cohesionless granular materials, they introduced a
correlation between the roughness of such bounding structures and the degree of
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constraint on the microrotations.

“The influence of the rotation resistance of particles in contact with
a bounding structure in motion can be modeled with the Cosserat
boundary conditions in a physically natural manner. Very rough
walls can capture small grains so that a rotation of particles along
the bounding surface is prevented.”(Huang and Bauer, 2003, pag.
345)

Besides the case of fully constrained microrotations corresponding to very rough
bounding structures, the authors believes that “for a smoother boundary it is con-
ceivable to consider a certain coupling between the displacement of the boundary and
the corresponding particle rotation” (Huang and Bauer, 2003, pag. 345). In order
to evaluate this coupling they assumed an empirical equation, originally proposed by
proposed by Tejchman (Tejchman, 1997), which takes into account both the mean
grain diameter of the material particles and the roughness of the bounding surfaces.
While, as found by other authors and also observed in Section 6.2.2.2, in case of fully
constrained microrotations localization develops in the middle of the height layer, in
case of intermediary degrees of constraint the authors found that localization may
arise also in different parts of the sample.

6.2.2.1 Free microrotations

The analysis of the micropolar infinite shear layer with free microrotations was performed
considering 9 different combinations of the material parameters, using the values 500,
1000, and 2000 N/mm2 for the Cosserat’s shear layer Gc and the values 0.1, 1.0 and 5.0
mm for the internal bending length Lb.

The results of the analyses for the various combinations of parameters in terms of
equilibrium paths, are illustrated in Fig. 6.6. As it can be observed, for a fixed value
of the bending length, to higher values of the Cosserat’s shear modulus corresponded
post-peak branches with reduced slope, which tendend to the one of the homogeneous
case, that is, without weakening (Fig. 6.1(b)). For the smallest values of Lb this effect
was clearly evident just in the coarsest mesh. In the other meshes it was noticeable only
in the first part of the descending branch, and the behaviour of the remaining part of
the post-peak branch was almost unchanged. For a sufficiently high value of the bending
length (in this case Lb = 5.0 mm), the entire post-peak branch was affected also in the
finer meshes, leading to mesh objective solutions for the combination Gc = 2000 N/mm2

and Lb = 5.0 mm (Fig. 6.6(i)).
The effect of the different values of the Cosserat’s material parameters can be observed

also in Fig. 6.7. There, the damaged configurations exhibited by the most refined mesh
at step 30 (a few steps after damage initiation), for the same combinations of parameters
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used in Fig. 6.6, are illustrated. As it can be observed, to higher values of both Gc and
Lb corresponded a wider damaged zone.

The fact that the combination of Cosserat’s material parameters given by Gc = 2000
N/mm2 and Lb = 5.0 mm was able to provide mesh objective solutions (as it can be
observed in Fig. 6.6) can be emphasized comparing the results in terms of deformed and
damaged configurations at the end of the loading process obtained with the classic medium
(Fig. 6.5) with the ones obtained with the micropolar medium with Gc = 2000 N/mm2

and Lb = 5.0 mm (Fig. 6.8). While for the classic medium each mesh exhibited a different
behaviour, with deformations and damage concentrated in the two central elements, the
analysis with the micropolar medium manifested the same deformed configuration in each
one of the meshes. The same holds also for the damage variable , which distribution was
almost the same among the different meshes.

6.2.2.2 Constrained microrotations

As stated above, in case of constrained microrotations there is no need of an artificial
imperfection in order to trigger a bifurcated solution in the infinite shear layer. Taking into
account this fact, the constrained micropolar model was investigated with two different
conditions, one with the same weakened zones like in the previous case and the other with
an homogeneous material all along the height of the layer. The analysis was performed
considering 9 different combinations of the material parameters, using the values 1000,
2000, and 3000 N/mm2 for the Cosserat’s shear layer Gc and the values 0.1, 1.0 and 5.0
mm for the internal bending length Lb. The results in terms of equilibrium paths for both
the weakened (Fig. 6.9) and the homogeneous (Fig. 6.10) materials were similar to the
ones exhibited by the case with free microrotations (Fig. 6.6), regarding the effect of the
Cosserat’s material parameters. Indeed, also in these cases, to higher values of Gc and Lb
corresponded post-peak branches with reduced slope. With the combination Gc = 3000
N/mm2 and Lb = 5.0 mm it was possible to obtain mesh objective behaviours, except for
the most refined mesh in the case with weakened material, which exhibited a divergence
in the equilibrium path for the last steps of the loading process.

The same conclusions can be drawn from the observation of the results obtained with
the combination Gc = 3000 N/mm2 - Lb = 5.0 mm depicted in Figs. 6.11 and 6.12, in terms
of deformed and damaged configurations. Regarding the case with weakened material
Fig. 6.11, it can be observed that the results manifested a certain mesh objectivity except
for the mesh 4 that, as already observed in the equilibrium paths, exhibited a localization
of the deformations in the final steps of the analysis. On the other hand, the case with
homogeneous material Fig. 6.12 manifested the same behaviour with the four meshes.
Comparing these results with the one of the case with free microrotations (Fig. 6.8) it
can be observed that the deformed configurations were slightly different: in the case with
free microrotations the deformations were more evenly distributed along the height of the
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 6.8: Infinite shear layer - Micropolar FEM - Gc = 2000 N/mm2 - Lb = 5.0 mm - Deformed
and damaged configurations at dx,max = 7.39 × 10−3 m

layer, while in the case with constrained microrotations they were concentrated in a zone
in the middle of the layer.

As pointed out in previous investigations involving micropolar elasto-plastic models
(see, e.g., de Borst (1991)), the infinite shear layer problem allows to point out the capabil-
ity of the micropolar formulation to represent the size of localization zones independently
on the size of the underlying discretization. In the case of scalar damage investigated
in the present section this behaviour can be emphasized considering the distribution of
the damage variable at the onset of damage. As it can be observed in the contour plots
of Fig. 6.13, at the onset of damage the four meshes analysed with the combination Gc

= 3000 N/mm2 - Lb = 5.0 mm exhibited approximately the same damage distribution,
independently on the discretization.
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 6.11: Infinite shear layer - Micropolar FEM with constrained microrotations - Gc = 3000
N/mm2 - Lb = 5.0 mm - Deformed and damaged configurations at dx,max = 7.39 × 10−3 m
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 6.12: Infinite shear layer - Micropolar FEM with constrained microrotations and uniform
material - Gc = 3000 N/mm2 - Lb = 5.0 mm - Deformed and damaged configurations at dx,max
= 7.39 × 10−3 m
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 6.13: Infinite shear layer - Micropolar FEM with constrained microrotations and uniform
material - Gc = 3000 N/mm2 - Lb = 5.0 mm - Damage initiation
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6.3 Uniaxial stress state: numerical localization

The problem of numerical localization was investigated considering the sample illustrated
in Fig. 6.14(a), constituted by a square panel in a plane-stress state with unitary thick-
ness, loaded in the x direction. The same material parameters of the uniaxial stress
state investigated analytically in Chapter 5 were adopted, with Young’s modulus E =
20000 N/mm2, Poisson’s ratio ν = 0.30, and shear modulus G = 7692.31 N/mm2. The
Marigo’s scalar damage model was adopted (Eq. (2.34)), with the following parameters
for the exponential damage law, α = 0.999, β = 500 and K0 = 5 ×10−5, leading to the
constitutive behaviour depicted in Fig. 6.14(b). As observed in Section 5.4.2, the classic
continuum model in an uniaxial stress state with the aforementioned parameters attains
the localization condition as soon as damage initiates (Fig. 5.1).

1
m

m

1 mm
q

x

y

(a) Geometry

0 · 100 4 · 10−5 8 · 10−5 1.2 · 10−4
0.0

0.5

1.0

εxx [-]

σ
x

x
[N

/m
m

2 ]

(b) Constitutive behaviour

Figure 6.14: Numerical localization - Square panel

6.3.1 FEM simulations

In order to investigate the localization issues associated to the model of Fig. 6.14(a), the
three finite element meshes of Fig. 6.15 were considered. They are composed by 8, 36,
and 184 triangular elements, with mean element sizes of 0.5 mm, 0.25 mm, and 0.125
mm, respectively.

Remark 6.3

The basic idea of this kind of tests is that as the number of elements increases (and
then the number of integration points), the probability to have a perturbation in a
certain variable, able to trigger a bifurcated solution, increases.

The FEM analyses were performed adopting a loading process driven by the generalized
displacement control method (Yang and Shieh, 1990), assuming a reference load q = 1
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 6.15: Numerical localization - FEM meshes

N/mm, an initial loading factor increment of 0.005, and a tollerance for convergence
in relative displacement of 1 × 10−4. All the simulations presented in this section were
performed considering the tangent approximation of the constitutive operator. The results
of the analyses, in terms of horizontal displacement plotted against the load factor, are
illustrated in Fig. 6.16. As it can be observed, the coarsest meshes exhibited stable and
convergent solutions, coherent with the expected constitutive behaviour (Fig. 6.14(b)),
while the most refined one presented an instability as soon as the damage initiated,
indicating the presence of a bifurcation due to numerical localization. The third mesh lost
convergence as the peak value of the load factor was reached, and wasn’t able to represent
the post-peak branch. The prediction of the analytical investigation of Section 5.4.2
appears then to be correct, up to this point.

6.3.2 Regularization by micropolar formulation

The analytical investigation presented in Section 5.4.2 pointed out that the micropolar
continuum theory, under certain values of its material parameters, should be able to
prevent localization to occour. For a uniaxial stress state as the one considered here, with
the same material parameters, it has been shown that the adoption of a Cosserat’s shear
modulus Gc = 2500 N/mm2 is sufficient to guarantee a positive value of the localization
indicator (Fig. 5.2). Hence, with the adoption of such continuum description it should
be possible to regularize the behaviour of the otherwise unstable analyses illustrated in
Fig. 6.16.

The finite element analyses of the meshes illustrated in Fig. 6.15 were repeated using
the micropolar theory instead of the classic one, considering two different values of the
Cosserat’s shear modulus: Gc = 2500 N/mm2, for which the localization condition is not
verified at the onset of damage, and Gc = 500 N/mm2, for which the localization condition
is attained as soon as the damage initiates. The internal bending length was set to Lb =
1 mm; however, it is remarked that, as long as the solution is uniform, such parameter
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Figure 6.16: Numerical localization - FEM - Equilibrium paths

has no influence on the onset of localization.
The results of these analyses are illustrated in Fig. 6.17. As predicted by the ana-

lytical investigation of Section 5.4.2, the value Gc = 2500 N/mm2 resulted in the same
solution for the three meshes (Fig. 6.17(a)), without loss of convergence due to the onset
of localization. On the other hand, the case with Gc = 500 N/mm2 was not able to
regularize the analysis with the most refined mesh (Fig. 6.17(b)). As it can be observed
in Fig. 6.17(b), the equilibrium path of the third mesh was different from the expected
one, correspondent to the uniform solution. Though the solution wasn’t convergent, there
still was an improvement with respect to the analysis with the classic continuum model,
which was not able to represent at all the post-peak equilibrium path.
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Figure 6.17: Numerical localization - Micropolar FEM - Equilibrium paths
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Focusing on this divergent solution it is interesting to observe how the bifurcation
due to numerical localization affected the distribution of the internal variables inside the
analysed discrete model. For the scalar damage variable, for example, Fig. 6.18 shows
how this variable tended to concentrate in specific parts of the model, and to go to zero
elsewhere.

Figure 6.18: Numerical localization - Micropolar FEM- Scalar damage variable

6.3.2.1 Localization indicator: numerical evaluation

The results discussed up to this point allowed to emphasize the role of the Cosserat’s
shear modulus on the pathological effects that appear in simulations where numerical lo-
calization occours, confirming the analytical predictions presented in Chapter 5. Further
informations on the relation between numerical localization, localization indicator, and
Cosserat’s shear modulus, can be drawn performing a numerical evaluation of the local-
ization indicator. Following the same procedure presented by the author in Gori et al.
(2017d), the sample of Fig. 6.14(a) was investigated performing the localization analysis
discussed in Chapter 5 using the values of the state variables calculated during the load-
ing process at each integration point of the finite element model, instead of the analytical
values of the uniaxial stress state as in Section 5.4.2.

Fig. 6.19 illustrates the results of such analysis, in terms of localization indicator at
damage initiation for the most refined mesh. As it can be observed, the simulations
performed with the classic medium (Fig. 6.19(a)) and with the micropolar one with Gc

= 500 N/mm2 (Fig. 6.19(b)) exhibited negative values of the localization indicator since
damage initiation. On the other hand, the micropolar medium with Gc = 2500 N/mm2

(Fig. 6.19(c)) manifested positive values of the localization indicator at each integration
point, as predicted in Fig. 5.2; the numerical value of the localization indicator is q =
0.06234460, corresponding to a critical angle θn = 15◦, and it is equal to the minimum
value illustrated in Fig. 5.2.
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(a) Classic (b) Gc = 500 N/mm2 (c) Gc = 2500 N/mm2

Figure 6.19: Numerical localization - Numerical values of the localization indicator at damage
initiation

Remark 6.4

In this case the numerical evaluation of the localization indicator has been presented
only as a mean to confirm the analytical predictions discussed in Section 5.4.2. How-
ever, as it will be shown in Section 6.4.2.2, this procedure can be also useful to
investigate different behaviours appearing in numerical simulations that cannot be
predicted by analytical investigations.

6.3.3 Regularization by smoothed meshfree methods

In order to assert the behaviour of smoothed meshfree methods under conditions of nu-
merical localization, the example depicted in Fig. 6.14(a) was investigated using both the
NS-PIM and ES-PIM strategies discussed in Chapter 4. The adopted discretizations are
illustrated in Fig. 6.20 for the NS-PIM method, and in Fig. 6.21 for the ES-PIM method;
in these figures, nodes, smoothing domains, and underlying triangular cells are depicted.
As it can be observed, node- and edge-based smoothing domains were constructed using
as underlying triangular cells the finite elements depicted in Fig. 6.15.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 6.20: Numerical localization - NS-PIM discretizations
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 6.21: Numerical localization - ES-PIM discretizations

Regarding the generation of support domains, both the T3 and the T6/3 schemes
were adopted. The shape functions were constructed with both the point interpolation
method and radial point interpolation method with polynomial reproduction. For the latter,
MQ radial basis functions were adopted (Eq. (4.21)), with C = 1.42 and q = 1.03, with a
number of polynomial terms equal to 3. Like for the finite element method, the non-linear
analyses were performed adopting a loading process driven by the generalized displacement
control method (Yang and Shieh, 1990), assuming a reference load q = 1 N/mm, an initial
loading factor increment of 0.005, and a tollerance for convergence in relative displacement
of 1 × 10−4, considering the tangent approximation of the constitutive operator.

Concerning the regularization of numerical instabilities due to localization, the plots
of Fig. 6.22 illustrate that, in this specific situation, the NS-PIM didn’t present any
significative improvement with respect to the finite element method. The coarser mesh
exhibited the same results for all the simulations, coherent with the expected constitutive
behaviour (Fig. 6.14(b)), except for the case NS-RPIM T3, where a snap-back appeared in
the post-peak branch. The intermediate mesh manifested an instability and a snap-back
in the NS-PIM T3 and NS-PIM T6/3 analyses, respectively. The NS-RPIM T3 was able
to represent the post-peak branch with the intermediate mesh, though divergent from the
expected one. The NS-RPIM T6/3, instead, was able to correctly represent the post-peak
phase with the intermediate mesh. Regarding the finer mesh only the NS-RPIM T6/3 was
able to give a partial representation of the post-peak branch, though different from the
expected one; with the other configurations the analyses arrested at damage initiation.

As highlighted by the plots of Fig. 6.23, the simulations performed with the ES-PIM
clearly exhibited a better behaviour with respect to the ones with the NS-PIM, in the
analysis of the example of Fig. 6.14(a). The analyses performed with the coarser mesh
exhibited the same post-peak behaviour in all the considered cases, coherent with the
adopted constitutive law (Fig. 6.14(b)). The behaviour of the intermediate mesh was
represented correctly with the T6/3 scheme, while the combinations ES-PIM T3 and ES-
RPIM T3 manifested instabilities at damage initiation. The cases ES-PIM T3, ES-PIM
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T6/3 and ES-RPIM T3 with the most refined mesh presented a divergent equilibrium
path, The analysis performed with the case ES-RPIM T6/3 was the only one able to
correctly represent the post-peak branch with the most refined mesh, showing a result
analogous to the one obtained with the finite element analysis of the micropolar model
with Gc = 2500 N/mm2 (Fig. 6.17(a)).

Remark 6.5

A first conclusion that can be drawn from the discussions above is that the ES-PIM,
especially in its version with radial basis functions with polynomial reproduction and
T6/3 selection scheme, appears to be better suited as a discretization strategy for
problems where numerical localization may occour if compared to the NS-PIM and
to the standard FEM, at least for the example discussed here. Focusing on the mesh-
free approach, the radial basis functions with polynomial reproduction provided more
stable solutions than the polynomial ones. Regarding the regularization of numeri-
cal instabilities due to localization, the results presented above clearly indicate that
the T6/3 scheme was able to produce better results than the T3 scheme. This last
conclusion seems to corroborate the hypothesis discussed in Section 4.2.5 that point
interpolation methods, as other meshfree methods, should be able to regularize prob-
lems where localization occours due to their intrinsic non-local nature (as observed in
Chen et al. (2000) for reproducing kernel methods). Regarding these considerations,
it is important to emphasize that the results which they are based on were obtained
using a single set of parameters for the MQ radial functions; though, as pointed out
by Liu (Liu, 2009), in presence of polynomial reproduction the solution should be
less dependent on variations in the shape parameters of the radial functions, it is
worth to note that variations in such parameters could lead to different performances
regarding the regularization effects.

Remark 6.6: ES-RPIM and localization indicator

As illustrated in Fig. 6.23(d), the configuration ES-RPIM T6/3 was able to perform
correctly the non-linear analysis of the sample of Fig. 6.14(a) with all the discretiza-
tions of Fig. 6.21, presenting results analogous to the ones obtained with the finite
element method combined with the micropolar theory. As already discussed, the reg-
ularization effects of the micropolar model are related to the value of the Cosserat’s
shear layer and of the localization indicator: the case with Gc = 2500 N/mm2, corre-
sponding to a positive localization indicator all along the analysis (see, e.g., Fig. 5.2),
was able to provide a regularized solution, while the case with Gc = 500 N/mm2,
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for which the localization indicator was negative (see, e.g., Fig. 5.2), wasn’t able to
provide a regularized solution. It is interesting to observe that the regularization
effect provided by the ES-RPIM T6/3 for the examined problem is different in nature
from the one of the micropolar model. Indeed, as it can be observed in Fig. 6.24,
for example, though exhibiting regularization effects, the simulations performed with
the ES-RPIM T6/3 still presented a negative localization indicator since damage
initiation, like in the case of FEM simulation with the classic continuum theory.

Figure 6.24: Numerical localization - ES-RPIM T6/3: localization indicator

6.3.4 Micropolar NS-PIM and ES-PIM

Once pointed out the regularization properties of both the micropolar formulation and
smoothed meshfree methods, the analysis of the sample illustrated in Fig. 6.14(a) were
repeated combining these two strategies. Comparing Fig. 6.22 with Fig. 6.25, it can be
observed how the adoption of the micropolar model with Gc = 2500 N/mm2 improved
the results obtained with the NS-PIM; as for the classic formulation, the most accurate
results were obtained with the combination NS-RPIM T6/3, which was able to correctly
reproduce the equilibrium path of all the three meshes. Also the results obtained with
the ES-PIM were enhanced by its combination with the micropolar formulation. In this
case all the analyses exhibited convergent results, except the ones of the most refined
mesh with the combinations ES-PIM T3 and ES-RPIM T3, as well as the one of the
intermediate mesh with the ES-RPIM T3 which presented a snap-back (Fig. 6.26).

6.4 Uniaxial stress state: induced localization

The problem of induced localization was investigated considering the sample illustrated in
Fig. 6.27(a), constituted by a square panel in a plane-stress state with unitary thickness,
loaded in the y direction. The material parameters were choosen in order to match the
ones adopted in Section 5.4.2 for the analytical localization investigation of the uniaxial
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stress state, with Young’s modulus E = 20000 N/mm2, Poisson’s ratio ν = 0.30 and
shear modulus G = 7692.31 N/mm2. The Marigo’s scalar damage model was adopted
(Eq. (2.34)), with the following parameters for the exponential damage law, α = 0.999,
β = 500 and K0 = 5 ×10−5, corresponding to the constitutive behaviour depicted in
Fig. 6.27(b). As for the previous example, these values of the material parameters and
damage law are such that the condition for discontinuous failure is attained as soon as
the damage initiates (Fig. 5.2). In order to trigger a bifurcated solution, two symmetric
weakened zones were placed in the model (the hatched areas in Fig. 6.27(a)), characterized
by a slightly reduced value of K0, with size 0.1 mm × 0.2 mm, which was kept constant
for all the FEM and meshfree discretizations.
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(a) Geometry
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(b) Constitutive behaviour

Figure 6.27: Induced localization - Square panel

6.4.1 FEM simulations

The effects of induced localization on the model of Fig. 6.27(a) were first investigated using
three FEM meshes composed, respectively, by 100, 400, and 1600 four-nodes quadrilateral
elements Fig. 6.28, with size 0.1 mm × 0.1 mm, 0.05 mm × 0.05 mm, and 0.025 mm ×
0.025 mm. Since the localization is induced, the use of different discretizations is not
related to the probability of numerical instability to manifest, it is a mean to illustrate
the strong mesh dependency of the bifurcated solutions that may appear in the post-peak
branch.

Remark 6.7: Gori et al. (2017b)

The results of this example had already been presented by the author in a paper de-
voted to the phenomenon of discontinuous failure (or localization) in elastic-degrading
micropolar media (Gori et al., 2017b). There, the meshes depicted in Fig. 6.28 were
analysed using both the classic and the micropolar continuum theories, as in the
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 6.28: Induced localization - FEM meshes

present section of this manuscript. The simulations investigated in the aforementioned
paper have been performed again, before collecting their results in this manuscript.
As the reader will notice, the results presented here are slightly different from the
ones of the cited paper. For example, the contour plots of the damaged states in the
paper present some asymmetric configurations that differs from the ones presented
here, which are all symmetric. In the author opinion, these discrepancies are due to
the fact that some of the simulations presented in (Gori et al., 2017b) were affected
also by numerical localization, beside induced localization. Since, as already stated,
the former is a rather aleatory phenomenon, it didn’t manifested once the simulations
were repeated. The symmetric defects depicted in Fig. 6.27(a) should always produce
a symmetric damaged configuration; an asymmetric one can only be a consequence
of a numerical instability of the discrete model.

The FEM analyses were performed adopting a loading process driven by the generalized
displacement control method (Yang and Shieh, 1990), assuming a reference load q = 1
N/mm, an initial loading factor increment of 0.005, and a tollerance for convergence in
relative displacement of 1 × 10−4. The nodes at the top of each mesh were constrained
to have the same vertical displacement, by means of the master-slave imposition method,
assuming the node of coordinates (0.5, 1.0) as master. All the simulations were performed
considering the tangent approximation of the constitutive operator. The results of the
analyses, in terms of vertical displacement plotted against the load factor, are illustrated
in Fig. 6.29. As it can be observed, the results produced by each mesh were different.

The fact that each analysis produced different results is emphasized by the contour
plots of the scalar damage variable illustrated in Fig. 6.30. There, the distribution of
the scalar damage variable across the discrete model is represented for the three meshes
at the steps 11 (damage initiation), 15, 100, 200, and 300 of the analysis, the images at
the left illustrating the step at damage initiation. These figures clearly illustrate how the
solution in terms of damaged configuration changes upon mesh refinement.
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Figure 6.29: Induced localization - FEM - Equilibrium paths
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Figure 6.30: Induced localization - Damage distribution



§6.4 Numerical and induced localization examples 159

6.4.2 Regularization by micropolar formulation

As already done for the case of numerical localization, the finite element simulations of
the model illustrated in Fig. 6.27(a) were repeated, adopting the micropolar formulation
instead of the classic one. Two values of the Cosserat’s shear modulus were adopted, Gc =
2500 N/mm2 and Gc = 500 N/mm2, while the value of the internal bending length was set
to Lb = 1 mm. As already discussed in Section 6.3, the first value of the Cosserat’s shear
modulus should be capable to avoid localized configurations since, according to Fig. 5.2,
it should be able to maintain a positive value of the localization indicator. The role of
the internal bending length is slightly different than in the case presented in Section 6.3,
and will be discussed in detail in Section 6.4.2.2.

The results of these analyses are illustrated in Fig. 6.31. The case with Gc = 500
N/mm2 (Fig. 6.31(a)) produced divergent solutions, as in the case of the classic continuum
model. On the other hand, as predicted in Fig. 5.2, the case with Gc = 2500 N/mm2

was able to regularize the analysis, and allowed to obtain equilibrium paths that were
objective upon mesh refinement (Fig. 6.31(b)), until the last steps of the analysis where
the paths started to diverge.
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(b) Gc = 2500 N/mm2

Figure 6.31: Induced localization - Micropolar FEM - Equilibrium paths

The regularization effects of the micropolar formulation are well emphasized also by
the contour plots of the scalar damage variable illustrated in Figs. 6.32 and 6.33 for the
steps 11, 15, 100, 200, and 300 of the analysis, the same steps adopted in Fig. 6.30.
While the case with Gc = 500 N/mm2 (Fig. 6.32) still showed mesh dependent damaged
configurations as the classic model case, the analysis performed with Gc = 2500 N/mm2

(Fig. 6.33) manifested a different behaviour. In the latter case indeed, the damaged zone
was approximately the same for the three discretizations, except for the last steps of the
simulations, where the damage was trapped in the central bands of elements, exhibiting
a mode-I failure; this behaviour will be discussed in details in Section 6.4.2.2. Regarding
the simulations performed with Gc = 2500 N/mm2, the step 200 corresponds to a vertical
displacement of the points at the top of the sample of dy = 9.78 × 10−5 mm, right before
the point of divergence in the plots of Fig. 6.31(b).
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(a) Mesh 1

(b) Mesh 2

(c) Mesh 3

Figure 6.32: Induced localization - Damage distribution - Gc = 500 N/mm2

(a) Mesh 1

(b) Mesh 2

(c) Mesh 3

Figure 6.33: Induced localization - Damage distribution - Gc = 2500 N/mm2
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6.4.2.1 Localization indicator: numerical evaluation

As already done in Section 6.3.2.1 for the case of numerical localization, also the sample
of Fig. 6.27(a) was investigated performing a numerical evaluation of the localization
indicator, using the values of the state variables calculated during the loading process
at each integration point3. The following Figs. 6.34 to 6.36 illustrate the results of this
investigation for the most refined mesh, considering the same five steps of the previous
figures.

Remark 6.8: Discrete localization analysis

The analytical investigations discussed in Section 5.4.2 were based on the hypothesis
of uniaxial stress state; for the simulations presented in this section such hypothesis
is valid only in the elastic phase and at damage initiation (D ' 0), and is lost as
soon as damage grows (D > 0). This hypothesis clearly poses a limit to the applica-
bility of such analytical investigations to discrete models. The discrete localization
analysis, based on a numerical evaluation of the localization indicator, overcomes this
limitation, and allow to investigates the discrete models for states beyond the onset
of damage, for which the uniaxial stress state hypothesis is not rigorously applicable.

In Figs. 6.34 and 6.35 it can be observed that, as predicted analytically, the simulation
with the classic medium and with the micropolar one with Gc = 500 N/mm2 exhibited
negative values of the localization indicator already at the step corresponding to damage
initiation. In the subsequent steps, it can be observed how the values of the localization
indicator follow the same patterns of the damage variable depicted in Figs. 6.30 and 6.32,
presenting negative values all along the loading process.

As predicted by the analytical investigations, the simulation performed with the mi-
cropolar medium with Gc = 2500 N/mm2 exhibited positive values of the localization
indicator at the onset of damage (Fig. 6.36). The figures referring to steps 15 and 100
indicate that the localization indicator still presented positive values up to that point of
the loading process, with the lower values in correspondence to the weakened zones of the
sample. At step 200, right before the divergence point in the plots of Fig. 6.31(b), the
distribution of the localization indicator is quite different from the one at the previous
steps, with negative values appearing in some parts of the domain. The figure depicting
the last step of the analysis emphasizes the presence of a mode-I localized deformation4,
with negative values of the localization indicator in correspondence to the central band
of elements.

3 The results of this investigation were presented by the author in Gori et al. (2017d).
4 A mode-I localized deformation is characterized by a jump in the displacement gradient only in the

normal direction to the discontinuity surface, Jγ̇K = γ̇A n̄⊗n̄, i.e., when the normal n̄ and the polarization
vector p̄A coincide.



162 CHAPTER 6 §6.4

(a) Step 11 (b) Step 15 (c) Step 100

(d) Step 200 (e) Step 300

Figure 6.34: Induced localization - Localization indicator - Classic medium

(a) Step 11 (b) Step 15 (c) Step 100

(d) Step 200 (e) Step 300

Figure 6.35: Induced localization - Localization indicator - Micropolar medium - Gc = 500
N/mm2
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(a) Step 11 (b) Step 15 (c) Step 100

(d) Step 200 (e) Step 300

Figure 6.36: Induced localization - Localization indicator - Micropolar medium - Gc = 2500
N/mm2

6.4.2.2 Mode-I failure and role of the internal bending length

The results discussed above allowed to emphasize the role of the Cosserat’s shear mod-
ulus on the pathological effects that appear in numerical simulations where localization
occours, confirming the analytical predictions of Section 5.4.2. Despite the regularization
effects manifested in the simulations with the higher value of the Cosserat’s shear mod-
ulus it is worth to note that, also for values of Gc such that the localization condition
wasn’t fulfilled at damage initiation, the problem wasn’t fully independent on the mesh
since, at a certain point of the loading process, the damage tended to be trapped in the
central band of elements with a mode-I localized deformation; since the size of the central
band of elements varied with the different discretizations, the numerical analyses became
mesh-dependent after a certain damage threshold (Fig. 6.33).

The reason this mode-I localization in the final steps of the simulations passed unde-
tected by the localization analysis of Section 5.4.2 has to be searched in the discrepancy
between the analytical and the discrete models. Despite the fact that Fig. 5.3 indicates
that also the case of uniaxial stress state with Gc = 2500 N/mm2 attains the localization
condition at a certain damage level, the associated critical angle doesn’t match the mode-I
failure manifested by the discrete model. Indeed, the values of the localization indicator
in that figure had been obtained analytically under the hypothesis of an uniaxial stress
state, hypothesis that is lost as soon as damage develops. Another difference is due to
the fact that, as pointed out in Iordache and Willam (1998), since the stress state is no
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more uniform after damage initiation, the limit values of H∗df may become locally higher
than the ones predicted analytically (i.e., with lower values of the localization indicator),
in such a way as to attain the localization condition.

As pointed out by the author in a previous publication (Gori et al., 2017d), this mode-I
failure is strictly related to the internal bending length of the micropolar model. In the
analytical investigations of Section 5.4.2, because of the assumed uniaxial stress state in
which couple-stresses were absent, only the Cosserat’s shear modulus had an active role
on the values of the localization indicator. However, in the discrete models discussed
above, as soon as damage initiated at the weakened zones of the sample the stress state
was no longer a pure uniaxial one; couple-stresses arised, activating the internal bending
length. As pointed out by the analytical investigation of the plate with a circular hole
(Section 5.4.3), for sufficiently high values of the Cosserat’s shear modulus, the onset of
localization is ruled solely by the internal bending length, and the failure tends to be
of a mode-I type. The role of the internal bending length in the present example was
pointed out repeating the finite element analysis with the micropolar formulation with
Gc = 2500 N/mm2 adopting the value Lb = 0.1 mm, instead of the value Lb = 1.0 mm
used in the simulations discussed above. The results depicted in Fig. 6.37 show that both
the simulations manifested a similar behaviour, presenting convergent solutions up to a
certain point of the analysis, where the paths started to diverge due to a mode-I failure.
The main difference was that the analysis with Lb = 0.1 mm manifested the mode-I failure
for a minor value of the vertical displacement with respect to the case with Lb = 1.0 mm,
confirming, for this example, the prediction of Section 5.4.3 that for higher values of the
Cosserat’s shear modulus the localization is ruled solely by the internal bending length.
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(a) Gc = 2500 N/mm2 - Lb = 1.0 mm
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(b) Gc = 2500 N/mm2 - Lb = 0.1 mm

Figure 6.37: Induced localization - Micropolar FEM - Equilibrium paths

The same conclusions can be drawn observing the results of the discrete localization
analysis performed with the micropolar sample with Gc = 2500 N/mm2 and Lb = 0.1
mm (Fig. 6.38). The first steps of the analysis exhibited results similar to the ones of
the case with Lb = 1.0 mm (Fig. 6.36). However, it can be observed that the case with
the reduced internal bending length already presented a mode-I localized deformation at
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step 200, while at the same step the case with Lb = 1.0 mm was still presenting the first
symptoms of localization.

(a) Step 11 (b) Step 15 (c) Step 100

(d) Step 200 (e) Step 300

Figure 6.38: Induced localization - Localization indicator - Micropolar medium - Gc = 2500
N/mm2 - Lb = 0.1 mm

6.4.3 Regularization by smoothed meshfree methods

The example of Fig. 6.27(a) was investigated also with the smoothed methods NS-PIM
and ES-PIM, with the discretizations depicted in Figs. 6.39 and 6.40. As it can be
observed, node- and edge-based smoothing domains were generated using as underlying
cells the finite elements meshes depicted in Fig. 6.28, in order to maintain the same nodes
distributions.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 6.39: Induced localization - NS-PIM discretizations
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 6.40: Induced localization - ES-PIM discretizations

The support domains were generated using both the T4 and the T12/4 schemes, the
analogous for quadrilateral cells of the T3 and the T6/3 schemes (Remark 4.5). The shape
functions were constructed with the radial point interpolation method with polynomial
reproduction, with a number of polynomial terms equal to 3; the use of polynomial basis
functions was avoided in this example, because with the T12/4 scheme they would have
lead to singular moment matrices. The exponential radial basis function (Eq. (4.22)) was
adopted, with c = -0.3635 for the mesh 1 and c = -1.4540 for the meshes 2 and 3. Like
for the finite element method, the non-linear analyses were performed adopting a loading
process driven by the generalized displacement control method (Yang and Shieh, 1990),
assuming a reference load q = 1 N/mm, an initial loading factor increment of 0.005, and
a tollerance for convergence in relative displacement of 1 × 10−4, considering the tangent
approximation of the constitutive operator.

Remark 6.9: Quadrilateral background cells

As discussed in Chapter 4, the smoothing domains of the NS-PIM and the ES-PIM
are usually generated using triangular background cells, though a simulation per-
formed with quadrilateral cells was presented in Zhang et al. (2015). Regarding the
investigation of the sample of Fig. 6.27(a) with smoothed meshfree methods, in order
to make a comparison with previously published FEM results based on quadrilateral
elements (Gori et al., 2017b), quadrilateral background cells were used for the gener-
ation of the smoothing domains. It is worth to note that the regular nodal patterns
depicted in Fig. 6.28 could have been easily reproduced also with triangular cells.
However, the choice of quadrilateral cells was driven by the idea of having, for the
T4 scheme at each integration point, the same number of support nodes as in the
quadrilateral finite elements, since the extent of the support domain is an important
factor in localization problems.

Despite the interesting results exhibited by the ES-PIM concerning localization is-
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sues, as shown in the following paragraphs, it is necessary to emphasize that, at least
for the example investigated in the present section, the use of quadrilateral back-
ground cells probably wasn’t the optimal choice. Indeed, these simulations exhibited
an high sensitivity to the choices regarding the radial basis functions; a wide prelimi-
nary investigation was necessary in order to find suitable parameters for the choosen
function. This behaviour wasn’t expected since smoothed point interpolation meth-
ods combined with radial basis functions with polynomial reproduction shouldn’t be
so sensitive to changes in the radial functions parameters (see, e.g., Liu (2009) and
Wang and Liu (2002b)); hence, further investigations should be performed in the fu-
ture in order to address this issue. In the author opinion this issue is almost certainly
due to the use of quadrilateral background cells, since the smoothed methods have
been shown to perform well with regular nodal patterns and T-schemes for support
nodes selection (Liu, 2009).

Regarding the NS-RPIM, it was observed that both the T4 and the T12/4 schemes
led to unstable analysis with the tangent approximation of the constitutive operator,
which arrested as soon as damage started to develop. The ES-RPIM with T4 scheme was
able to perform the analysis with the coarser mesh, though with results different from
the expected ones in terms of equilibrium paths (Fig. 6.41(a)). The analysis with the
intermediate mesh arrested a few steps after damage initiation, while the one with the
finer mesh arrested at the onset of damage. Better results were obtained with the T12/4
scheme. As it can be observed in Fig. 6.41(b), the equilibrium paths obtained with the
finer and intermediate meshes were stable and compatible with the expected one. The
analyses with the coarser one instead, gave only a partial representation of the equilibrium
path, since it exhibited slight perturbations at the final steps.
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Figure 6.41: Induced localization - ES-RPIM - Equilibrium paths

These results are better illustrated by the contour plots of the scalar damage variable.
In Fig. 6.42 it can be observed that the analyses performed with the T4 scheme led
to different damaged configurations for the three meshes. The coarser mesh exhibited
a damage configuration that, up step 100, was similar to the one obtained with the
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intermediate finite element mesh with the classic medium (Fig. 6.30); after step 100,
the scalar damage variable abruptly growed to 1 within a single step. The intermediate
mesh manifested an asymmetric configuration, where the damage concentrated in a single
inclined band soon after damage initiation, and convergence was lost a few steps after the
onset of damage. In the finer mesh instead, the damage abruptly growed to 1 in the step
after the onset of damage. The analyses performed with the T12/4 scheme (Fig. 6.41(b))
resulted in similar damaged configurations for the three meshes, at least in the first steps.
Indeed, it can be observed that already at the step 15 the coarser mesh presented some
irregularities in the damage distribution, which tended to grow in the subsequent steps.

(a) Mesh 1

(b) Mesh 2

(c) Mesh 3

Figure 6.42: Induced localization - ES-RPIM T4 - Damaged configurations

It is interesting to observe that the analyses performed with the intermediate and
finer meshes with the ES-RPIM T12/4 resulted in damage distributions that are quite
similar to the one obtained with the micropolar finite element analysis with Gc = 2500
N/mm2, for a large part of the loading process. However, upon comparison of Figs. 6.33
and 6.43, it can be observed that the solutions started to diverge in the final steps of
the loading process. In the finite element analyses, the damaged zone tended first to
extend, and then to concentrate in the central band of elements. In the analyses with
the smoothed meshfree method on the contrary, the higher values of the scalar damage
variable remained mostly confined in the weakened zones.
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(a) Mesh 1

(b) Mesh 2

(c) Mesh 3

Figure 6.43: Induced localization - ES-RPIM T12/4 - Damaged configurations

6.4.4 Micropolar NS-PIM and ES-PIM

Like in the case of the finite element method, the micropolar formulation was able to
improve also the results obtained with smoothed meshfree methods in the example con-
sidered in the present section, when the values Gc = 2500 N/mm2 was adopted for the
Cosserat’s shear modulus. While it wasn’t possible to perform the analysis with the NS-
RPIM using the classic continuum formulation, the micropolar model allowed to describe,
at least partially, the loading process. As it can be observed in Figs. 6.44(a) and 6.45,
the results obtained with the NS-RPIM T4 with the three meshes were coincident up to
a certain point of the loading processes, in terms of both equilibrium path and damage
distribution. Then, the analyses with the meshes 2 and 3 lost convergence and arrested,
while the one with the coarser mesh started to diverge from the expected equilibrium
path. Regarding the T12/4 scheme (Figs. 6.44(b) and 6.46), it is interesting to observe
how it provided significantly worst results than the T4 scheme, both in terms of equilib-
rium paths and damage distributions, on the contrary of what could be expected from
the results obtained in the previous numerical localization example (Section 6.3).

Regarding the ES-RPIM T4 (Figs. 6.47(a) and 6.48), the use of the micropolar for-
mulation led to a slight improvement with respect to the classic continuum model. The
analyses were able to represent correctly the damage evolution up to a certain point of
the loading process, with results in terms of damage contour plots similar to the ones
exhibited by the FEM simulations (Fig. 6.33). The behaviour exhibited by the analyses
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(a) NS-RPIM T4
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Figure 6.44: Induced localization - Micropolar NS-RPIM - Gc = 2500 N/mm2 - Equilibrium
paths

(a) Mesh 1

(b) Mesh 2

(c) Mesh 3

Figure 6.45: Induced localization - Micropolar NS-RPIM T4 - Damage - Gc = 2500 N/mm2
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(a) Mesh 1

(b) Mesh 2

(c) Mesh 3

Figure 6.46: Induced localization - Micropolar NS-RPIM T12/4 - Damage - Gc = 2500 N/mm2

with the T12/4 scheme (Figs. 6.47(b) and 6.49) was similar to the one obtained with
the classic medium. There was however an improvement regarding the simulations with
the mesh 1 that, despite still presenting some irregularities in the damage distribution,
exhibited a more regular behaviour which didn’t tend to degenerate as in the case of the
classic model (Fig. 6.43).
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Figure 6.47: Induced localization - Micropolar ES-RPIM - Gc = 2500 N/mm2 - Equilibrium
paths
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(a) Mesh 1

(b) Mesh 2

(c) Mesh 3

Figure 6.48: Induced localization - Micropolar ES-RPIM T4 - Damage - Gc = 2500 N/mm2

(a) Mesh 1

(b) Mesh 2

(c) Mesh 3

Figure 6.49: Induced localization - Micropolar ES-RPIM T12/4 - Damage - Gc = 2500 N/mm2



Chapter 7

Simulation of experimental tests

The present chapter presents two examples, based on real experimental
tests of plain concrete samples. They aim to point out the advantages of
the micropolar and smoothed point interpolation strategies; specifically,
the more stable solutions exhibited by the micropolar formulation, and
a certain mesh-objective behaviour presented by the smoothed point
interpolation methods.

7.1 A preface

The following two examples are based on real experimental tests of plain concrete samples,
a four-point shear test (Section 7.2), and the test of an L-shaped panel (Section 7.3),
widely adopted in the literature as benchmark tests for constitutive models and numerical
procedures. In this case they were choosen in order to emphasize some of the qualities
of both the proposed micropolar damage models and the smoothed point interpolation
methods. The first one, the four-point shear test, allowed to show how a simple micropolar
scalar damage model was able to correctly reproduce the complex behaviour of this test,
where scalar damage models based on the classic continuum usually fail, due to the
peculiar mixed-mode loading with high shear gradients that appears near the notch of
the beam. Both this test and the second one, the L-shaped panel, allowed to point
out the capability of smoothed point interpolation methods to provide a certain mesh-
objectivity in the results, if compared to the standard FEM. Before proceeding to the
presentation of the examples, it is necessary to remark that the reason for their inclusion in
this manuscript has been to emphasize the aforementioned characteristics of the adopted
regularization strategies. When plotting the equilibrium paths obtained in the different
simulations the experimental results have also been represented, in order to illustate the
capability of the adopted strategies to reproduce the general behaviour of the experimental
tests due to their regularization properties. It is remarked however, that the aim wasn’t
to exactly reproduce the experimental results, since this would have required accurate

173
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calibrations of the damage laws and, possibly, the use of micropolar damage models more
complex than the simple scalar one, able to better capture the physical behaviour of the
samples.

7.2 Four-point shear test

The four-point shear test of the plain concrete beam depicted in Fig. 7.1 was peformed
by Arrea and Ingraffea (Arrea and Ingraffea, 1982), and has been widely used in the lit-
erature as a benchmark test for numerical investigations on concrete behaviour (see, e.g.,
Oliver et al. (2002), Rabczuk and Belytschko (2004), de Borst, Gutiérrez, Wells, Remmers
and Askes (2004), Rabczuk and Belytschko (2007), Jirásek (2007b), Fang et al. (2008),
Matallah and La Borderie (2009), Rajagopal and Gupta (2011), Ghosh and Chaudhuri
(2013) and Chaudhuri (2013)). The beam is characterized by a mixed-mode loading, with
an high shear gradient between the fixed constraint and the applied load P. The failure
corresponds to a curved crack path, going from the top of the notch to the point which
the load P is applied to. Due to its characteristics, the simulation of such test is difficult
with scalar-isotropic damage models, and usually requires more complex approaches, like
discrete cracking methods (see, e.g., Oliver et al. (2002), Rabczuk and Belytschko (2004),
de Borst, Gutiérrez, Wells, Remmers and Askes (2004) and Fang et al. (2008)), or spe-
cial treatments for scalar damage models like the non-local approach (see, e.g., Jirásek
(2007b)), for example. As it will be shown in the present section, analyses performed with
classic scalar damage models were not able to reproduce the experimental results of the
four-point shear test, due to instabilities in the loading branch of the equilibrium paths.
On the other hand, the micropolar approach to scalar damage proposed in Chapter 3 was
able to simulate the behaviour of such test. This result was expected for this peculiar
loading condition, since in presence of high values of shear stresses couple-stresses usually
arise, leading to the activation of the internal bending length, and to the regularization
effects of the micropolar formulation.

0.13 P P

203 397 61 61 397 203

82

224
CMSD

Experimental crack path (Arrea and Ingraffea, 1982)

Figure 7.1: Four-point shear test - Geometry (measures in mm)

The concrete investigated by Arrea and Ingraffea (Arrea and Ingraffea, 1982) was
characterized by a Young’s modulus E = 24800 N/mm2, Poisson’s ratio ν = 0.20, tensile
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uniaxial strength between 2.8 N/mm2 and 4.0 N/mm2, and fracture enegy between 0.10
N/mm2 and 0.14 N/mm2; in the following simulations its behaviour was reproduced
adopting the Mazars1 scalar damage model (Eq. (2.34)), with the following parameters
for the exponential damage law, α = 0.950, β = 1000 and K0 = 1.6 ×10−4.

7.2.1 FEM simulations

The analyses with the finite element method were performed considering meshes composed
by three-node triangular elements in a plane-stress state, with a thickness of 156 mm.
Three discretizations were adopted (Fig. 7.2), with mean nodal spacing of 30 mm, 20
mm, and 10 mm between the notch and the point of application of the load P, and 70
mm elsewhere. The notch was represented as sharp, with an initial opening of 5 mm.

(a) Mesh 1 (b) Mesh 2

(c) Mesh 3

Figure 7.2: Four-point shear test - FEM meshes

The FEM analyses were performed adopting a loading process driven by a cylindrical
arc length control method, assuming a reference load P = 130000 N, an initial loading
factor increment of 0.0125, and a tollerance for convergence in relative displacement of
1 × 10−4. All the simulations presented in this section were performed considering the
tangent approximation of the constitutive operator. The results of the analyses performed
with the classic medium, in terms of crack mouth sliding displacement (CMSD) plotted
against the load factor are illustrated in Fig. 7.3, together with the experimental results
obtained by Arrea and Ingraffea (Arrea and Ingraffea, 1982). As it can be observed, no
one of the three meshes was able to describe the behaviour of the beam; the meshes 1
and 2 exhibited an elastic unloading once the peak value of the load factor was reached,
while the third mesh lost convergence before the maximum load factor value.

The analysis of the four-point shear test was repeated for the three discretizations
using the micropolar medium, with six different combinations of the additional material
parameters, adopting the values 500 N/mm2, 2500 N/mm2, and 3500 N/mm2 for the
Cosserat’s shear modulus Gc, and the values 5.0 mm and 10.0 mm for the internal bending

1 For the micropolar strategy, the Mazars equivalent deformation of Eq. (3.146) was adopted.
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Figure 7.3: Four-point shear test - FEM - Equilibrium paths

length Lb. The results are collected in the plots of Fig. 7.4. As it can be observed, the use
of the micropolar medium with a simple scalar damage model allowed to investigate also
the post-peak branch of the equilibrium paths, which were affected by both the additional
material parameters; specifically, to higher values of Gc and Lb corresponded higher peak
values of the load factor. Despite the fact that, on the contrary of the classic medium, the
micropolar one allowed to reproduce the softening phase of the loading process, it can be
observed that the solutions depicted in Fig. 7.4 strongly depended on the discretization,
with lower peak values obtained with the most refined meshes. This fact is emphasized also
by the damaged configurations illustrated in Fig. 7.5. The damaged zones obtained with
the three meshes were compatible with the expected cracking path (Fig. 7.1); however,
it can be observed that to a finer mesh corresponded a narrow damaged zone, pointing
out the mesh dependency of the problem, which wasn’t mitigated by the micropolar
formulation.

7.2.2 ES-RPIM simulations

The beam of Fig. 7.1 was investigated using also the ES-RPIM, with the discretizations
depicted in Fig. 7.6, each one obtained constructing the edge-based smoothing domains
using as background cells the triangular finite elements of Fig. 7.2, hence maintaining the
same nodal distributions of the finite element meshes2.

Regarding the generation of the support domains, both the T3 and the T6/3 schemes
were adopted. The shape functions were constructed with the radial point interpolation

2 The simulation of the four-point shear test was performed using also node-based smoohing domains.
Both polynomial and radial basis functions were tested, as well as both the selection schemes T3 and T6/3.
However, neither with the classic nor with the micropolar medium it was possible to obtain satisfactory
results, since damage initiated long before the expected threshold and the analyses arrested soon after
the onset of damage. Hence, only the results obtained with the edge-based method are presented in this
section.
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Figure 7.4: Four-point shear test - Micropolar FEM - Equilibrium paths

(a) Mesh 1 (b) Mesh 2

(c) Mesh 3

Figure 7.5: Four-point shear test - Micropolar FEM - Gc = 2500 N/mm2 - Lb = 10.0 mm -
Damaged configuration
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(a) Mesh 1 (b) Mesh 2

(c) Mesh 3

Figure 7.6: Four-point shear test - ESRPIM meshes

method with polynomial reproduction, using the exponential radial function (Eq. (4.22))
with c = 0.002, and adopting 3 polynomial terms. As for the finite element analyses, the
non-linear simulations were performed adopting a loading process driven by a cylindrical
arc length control method, assuming a reference load P = 130000 N, an initial loading
factor increment of 0.0125, and a tollerance for convergence in relative displacement of 1
× 10−4, considering the tangent approximation of the constitutive operator. The results
of the analyses performed with the classic medium are illustrated in Fig. 7.7. As it can be
noted, in this case the behaviour of the ES-RPIM was similar to the finite element method
(Fig. 7.3); in all the simulations the models lost convergence already in the loading path,
except for the mesh 1 with the T3 scheme, which manifested an elastic unloading along
the original loading path once the peak value was attained.
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Figure 7.7: Four-point shear test - ES-RPIM - Equilibrium paths

Like in the case of the finite element method, the analyses with the micropolar medium
gave significantly better results. Adopting the T3 scheme it was possible to investigate
the softening phase of the loading process, except for the combinations with Gc = 500
N/mm2, which exhibited instabilities with the meshes 1 and 3, and for the mesh 3 with
the combination Gc = 2500 N/mm2 and Lb = 10.0 mm, which also lost convegence in
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the loading phase, as it can be observed in Fig. 7.8. Fig. 7.9 illustrates the damaged
configurations obtained for the three discretizations with the combination Gc = 3500
N/mm2 and Lb = 10.0 mm, showing damaged zones compatible with the expected crack
path depicted in Fig. 7.1. However, observing the results illustrated in Figs. 7.8 and 7.9 it
is worth to note that also in this case, as previously observed for the finite element method,
the analyses were strongly dependent on the discretization, with lower peak values and
narrower damaged zones in the finest meshes.
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Figure 7.8: Four-point shear test - Micropolar ES-RPIM T3

The adoption of the T6/3 selection scheme in the ES-RPIM simulations led to an im-
provement of the results. Observing the equilibrium paths of Fig. 7.10 it can be noted that
more stable analyses were obtained, also with the combinations with Gc = 500 N/mm2,
which were characterized by instabilities in the case of the T3 scheme. Furthermore, while
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(a) Mesh 1 (b) Mesh 2

(c) Mesh 3

Figure 7.9: Four-point shear test - Micropolar ESRPIM-T3 - Gc = 3500 N/mm2 - Lb = 10.0
mm - Damaged configuration

the simulations with the coarsest discretization led to results well above the experimental
ones, both the meshes 2 and 3 produced results that fell in the experimental rage. The
most interesting result however, is that a certain mesh objectivity was observed adopting
this scheme. Indeed, observing the equilibrium paths of the meshes 2 and 3 it can be noted
that they exhibited similar results in terms of peak value, and were almost coincident in
the final part of the softening branch, especially for the combinations with Gc = 3500
N/mm2, with some discrepancies in the middle of the post peak branch. This result is
emphasized also by the contour plots of the scalar damage variable depicted in Fig. 7.11.
Comparing Fig. 7.11(b) with Fig. 7.11(c) it can be observed that the two discretizations
with the T6/3 scheme produced damaged zones with a similar width, while with the T3
scheme the difference in width was considerably higher (see Figs. 7.9(b) and 7.9(c)).

Remark 7.1: Intrinsic non-local nature of meshfree approximations

The results discussed in Chapter 6 have pointed out the regularization properties of
the smoothed point interpolation approximation in problems characterized by numer-
ical or induced localization. The example of the four-point shear test presented in
this section instead, allowed to emphasize the capability of such methods to bring
a certain degree of mesh objectivity, at least in the considered case. As it can be
observed, both these characteristics are ascribable to the use of the T6/3 scheme for
the selection of support nodes (the T12/4 scheme in case of quadrilateral cells as in
Section 6.4), which, as observed in Chapter 4, leads to larger support domains than
the T3 scheme; the approximation at each integration point indeed, is constructed
using six nodes (three nodes for the integration points along the boundary), on the
contrary of the T3 scheme and of the FEM with three-node triangular element, which
rely on approximations constructed with only three nodes at each integration point.
These properties of regularization and mesh objectivity are analogous to the ones that
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Figure 7.10: Four-point shear test - Micropolar ESRPIM-T6/3

(a) Mesh 1 (b) Mesh 2

(c) Mesh 3

Figure 7.11: Four-point shear test - Micropolar ESRPIM-T6/3 - Gc = 3500 N/mm2 - Lb = 10.0
mm - Damaged configuration
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could be obtained using non-local continuum formulations and, since they were ex-
hibited only when larger support domains were adopted, with support nodes beyond
the limits of the triangular background cell/finite element, they seems to corrobo-
rate the hypothesis discussed in Chapter 4 (as also noted in Remark 6.5) that point
interpolation methods are characterized by an intrinsic non-local nature that makes
them well suited to correctly represent strain-softening problems (as also pointed out
in Chen et al. (2000) in case of reproducing kernel methods).

7.3 L-shaped panel

The plain concrete L-shaped panel depicted in Fig. 7.12 was investigated experimentally
by Winkler et al. (2004). As it can be observed in Fig. 7.12, the failure mode found by the
authors consisted in a crack initiating at the concave corner of the panel, propagating in
the horizontal direction with a slightly curved path. The authors also performed numerical
investigations with a smeared-crack approach. As it will be shown in the present section,
differently from the four-point shear test, the analysis of this problem performed with
simple scalar-isotropic damage models based on the classic continuum formulation didn’t
present peculiar difficulties, except for the lack of mesh objectivity. Simulations performed
with the micropolar medium didn’t show significant improvements with respect to the
results that will be presented in this section; hence, they will not be considered here,
limiting the discussions to the use of the meshfree approach and its effects on the mesh
objectivity problem.

500 mm

25
0

m
m

25
0

m
m

250 mm 250 mm

F

A

Experimental crack path
(Winkler et al., 2004)

Figure 7.12: L-shaped panel - Geometry

The concrete investigated by Winkler et al. (2004) was characterized by a Young’s
modulus E = 25850 N/mm2, a Poisson’s ratio ν = 0.18, tensile and compressive uniaxial
strengths ft = 2.7 N/mm2 and 4.0 N/mm2, a fracture energy Gc = 0.065 N/mm2, and a
characteristic length of the material h = 28 mm; in the following simulations its behaviour
was reproduced adopting the Mazars scalar damage model (Eq. (2.34)), with the following
parameters for the exponential damage law, α = 0.950, β = 1100 and K0 = 1.12 ×10−4.
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7.3.1 FEM simulations

In order to investigate the behaviour of the panel with the finite element method four
different discretizations were considered (Fig. 7.13), each one composed by three-node
triangular elements in a plane-stress state, with a thickness of 100 mm. The four meshes
were characterized by a different mean nodal spacing near the concave corner, equal to
25 mm, 15 mm, 10 mm, and 5 mm, while it was equal to 50 mm elsewhere.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

(d) Mesh 4

Figure 7.13: L-shaped panel - FEM meshes

The analyses were performed adopting a loading process driven by the generalized
displacement control method (Yang and Shieh, 1990), assuming a reference load F = 7000
N, an initial loading factor increment of 0.005, and a tollerance for convergence in relative
displacement of 1 × 10−4. All the simulations presented in this section were performed
considering the tangent approximation of the constitutive operator, except for some of
the simulations discussed in Section 7.3.2.1, which required a secant approximation due
to convergence issues. The results of the analyses are illustrated in Fig. 7.14, where the
values of the vertical displacement at the point A of Fig. 7.12 are plotted against the
load factor, together with the experimental range presented in Winkler et al. (2004). As
it can be observed, the results obtained with the coarsest mesh were in good agreement
with the experimental results, both in terms of peak value of the load factor and shape
of the softening branch, except for an initial stiffness higher than the one observed in
the experiment; this issue however, is common to other simulations of such a test that
can be found in the literature, and it can be observed also in Winkler et al. (2004).
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However, the problem appeared to be strongly dependent on the discretization, since the
analyses performed with the other meshes showed lower peak values of the load factor.
The presence of mesh dependency is also pointed out by the contour plots of the scalar
damage variable illustrated in Fig. 7.15. Indeed, despite their shape was compatible with
the experimental cracking path depicted in Fig. 7.12, the damaged zones width varied
with the discretization, with narrower widths in the most refined meshes.

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70
0.00

0.20

0.40

0.60

0.80

1.00

1.20

dy [mm]

Lo
ad

Fa
ct

or

Experimental (Winkler et al., 2004)
Mesh 1
Mesh 2
Mesh 3
Mesh 4

Figure 7.14: L-shaped panel - FEM - Equilibrium paths

As commented in the opening of this section, the FEM simulations of the L-shaped
panel were performed also with the micropolar medium. The additional material param-
eters Gc and Lb exhibited a certain influence on the results of the analyses, since the peak
values tended to grow as the values of Gc and Lb were increased. However, they had no
effect on the mesh dependency of the problem. Since the use of the micropolar formula-
tion didn’t bring any improvement regarding this problem, the corresponding results will
not be exposed in the present section.

7.3.2 NS-RPIM and ES-RPIM simulations

The L-shape panel was investigated also with smoothed point interpolation methods,
with the discretizations illustrated in Fig. 7.16 for the NS-RPIM and the ones depicted
in Fig. 7.17 for the ES-RPIM. Following the same procedure already discussed in the
previous examples, node- and edge-based smoothing domains were constructed adopting
as background cells the triangular finite elements of the meshes illustrated in Fig. 7.13,
in order to maintain the same nodal distributions adopted in the FEM simulations.

At each integration point, the support domain was generated using both the T3 and the
T6/3 schemes. The shape functions were constructed with the radial point interpolation
method with polynomial reproduction, using the exponential radial function (Eq. (4.22))
with c = 0.002, and adopting 3 polynomial terms.
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

(d) Mesh 4

Figure 7.15: L-shaped panel - FEM - Damaged configurations

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

(d) Mesh 4

Figure 7.16: L-shaped panel - NS-RPIM meshes
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

(d) Mesh 4

Figure 7.17: L-shaped panel - ES-RPIM meshes

Remark 7.2: Calibration of the radial functions

The present remark is devoted to the exposition of the guidelines that were followed
in order to calibrate the radial functions adopted in the simulations discussed in the
present volume. As pointed out in Chapter 4, shape functions constructed with the
radial point interpolation method depend on the choice of a peculiar radial function
and its parameters. Optimal values of the radial functions parameters are usually
problem dependent. In Wang and Liu (2002b) the authors investigated some linear
elastic problems with the radial point interpolation method (without smoothing oper-
ation) in order to define ranges of optimal values for the parameters of the MQ radial
function (Eq. (4.21)) and the dimensionless exponential radial function, different from
the one of Eq. (4.22). Regarding the simulations presented in this volume, the calibra-
tion of the radial functions parameters was performed, in general, starting from the
optimal values discussed in Wang and Liu (2002b), eventually adjusting them to the
needs of the specific problems. The final verification of the choosen parameters was
made considering the results of the non-linear analyses; however, the first evaluation
was performed with linear elastic analyses, comparing the results obtained with the
smoothed meshfree methods with the ones of the finite element method.

Regarding the specific problem of the L-shaped panel, the results of the linear
elastic analyses are illustrated in Figs. 7.18 and 7.19, where the values of the vertical
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displacement of the point A of Fig. 7.12 are plotted against the mean nodal spacing.
Fig. 7.18 illustrates the results obtained with the MQ radial function with C = 1.42, q
= 1.03, where these parameters are the ones that resulted to be optimal in the prob-
lems investigated in Wang and Liu (2002b). As it can be observed, the analyses with
the NS-RPIM, both with the T3 and the T6/3 selection schemes, showed convergence
upon mesh refinement. As expected (Liu, 2009), while the convergence of the FEM
is “from below” (lower bound solution), the one of the NS-RPIM is “from above”
(upper bound solution). The results obtained with the ES-RPIM are intermediate
between the ones of the FEM and the one of the NS-RPIM. While the analyses with
the selection scheme T6/3 exhibited convergence, this wasn’t true for the T3 scheme,
which solution started to diverge with in the discretizations with h ' 10 mm and h
' 5 mm.
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Figure 7.18: L-shaped panel - Convergence - MQ radial function (Eq. (4.21)) with C = 1.42
and q = 1.03

Better results were obtained adopting the exponential radial function with c =
0.002. As it can be observed in Fig. 7.19, the results obtained with the NS-RPIM T3
were almost the same, with slight variations in the results with the NS-RPIM T6/3.
The analyses with the ES-RPIM T3, on the contrary of the previous case, exhibited
convergence, while the displacements calculated with the ES-RPIM T6/3 were nearer
to the ones obtained with the finite element method.
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Figure 7.19: L-shaped panel - Convergence - Exponential radial function (Eq. (4.22)) with
c = 0.002

It is worth to note that in all the examples based on radial functions presented
in this manuscript, for a certain discrete model the parameters of the radial function
were assumed to be the same at each point of the model. It is pointed out that better
results could have been obtained assuming different values of that parameters from
point to point, especially performing a calibration based on the mean nodal distance
in the neighbor of each point.

Like for the FEM analyses, the simulations were performed adopting a loading process
driven by the generalized displacement control method (Yang and Shieh, 1990), assuming a
reference load F = 7000 N, an initial loading factor increment of 0.005, and a tollerance for
convergence in relative displacement of 1 × 10−4. The results of the analyses performed
with the NS-RPIM in terms of equilibrium paths are illustrated in Fig. 7.20, while the
contour plots of the damaged configurations are depicted in Figs. 7.21 and 7.22. As it can
be observed, due to the upper bound approximation, the NS-RPIM produced solutions
with peak values higher than the ones obtained with the FEM. However, they exhibited
the same mesh dependency issues of the finite element solutions. It is interesting to note
that both the T3 and the T6/3 schemes produced almost the same results, both in terms
of equilibrium paths and damage distributions.

As expected from the linear elastic results depicted in Fig. 7.19, the equilibrium paths
obtained with the ES-RPIM (Fig. 7.23) exhibited values that were intermediate between
the ones of the FEM and the ones of the NS-RPIM. Regarding the equilibrium paths
obtained with the T6/3 scheme it is interesting to note that while they still presented
different peak values depending on the discretization, they were characterized by less
dispersed results with respect to the ones obtained with the T3 scheme. The effect
of the T6/3 scheme was more evident in the meshes 2, 3, and 4, which exhibited a
considerable growth of the peak values; the coarsest mesh instead, manifested almost the
same peak values with the two schemes, though the post-peak branch presented a reduced
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Figure 7.20: L-shaped panel - NS-RPIM - Equilibrium paths

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

(d) Mesh 4

Figure 7.21: L-shaped panel - NS-RPIM T3 - Damaged configurations
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

(d) Mesh 4

Figure 7.22: L-shaped panel - NS-RPIM T6/3 - Damaged configurations

decay with the T6/3 approach. The fact that the results obtained with the T6/3 scheme
were less dispersed is also emphasized by the contour plots of the scalar damage variable
depicted in Figs. 7.24 and 7.25. While the damaged zones obtained with the T3 scheme
Fig. 7.24 presented a considerably narrower width as the discretization was refined, the
ones obtained with the T6/3 scheme appeared to be more uniform.
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Figure 7.23: L-shaped panel - ES-RPIM - Equilibrium paths
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

(d) Mesh 4

Figure 7.24: L-shaped panel - ES-RPIM T3 - Damaged configurations

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

(d) Mesh 4

Figure 7.25: L-shaped panel - ES-RPIM T6/3 - Damaged configurations
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7.3.2.1 Influence domains

The results discussed in Section 7.2 have pointed out that the ES-RPIM with T6/3 scheme
was able, in that specific example, to provide mesh objective solutions. This effect of the
T6/3 scheme has been partially observed also in the problem of the L-shaped panel, where
it was able to produce less dispersed results with respect to the other approximation
methods. As discussed in Remark 7.1, these effects are due to the intrinsic non-local
nature of the smoothed point interpolation methods.

Since the T6/3 scheme wasn’t sufficient to attain mesh objectivity for the L-shaped
panel problem, the analyses were repeated assuming a different approach for the support
nodes selection: in the zone near the concave corner (the hatched area in Fig. 7.26), the
support domains were constructed using the influence domains strategy (Section 4.2.1.3),
while in the other parts of the problem domain the T3 scheme was maintained. The
adopted influence domains were circular, and the analyses were performed with three
different values for their radius, 20 mm, 25 mm, and 30 mm. This approach was applied
only to the meshes 2, 3, and 4, while for the mesh 1 the results obtained with the T3
scheme were maintained. As discussed in details in the following Remark 7.3, the idea
of this approach was to try to amplify the non-locality of the method by using support
domains larger than the ones obtainable with the sole T6/3 scheme.

Influence domains strategy

T3 scheme

Figure 7.26: L-shaped panel - Area with support nodes selection via influence domains

Remark 7.3: Influence domains and non-local effect

As discussed in Section 4.2, support domains in smoothed point interpolation methods
are usually constructed using T-schemes since they:
• overcome the singular moment matrix issue
• generate compact support domains, enhancing the efficiency of the method

However, as pointed out by the results exposed in Chapter 6 and in the present
chapter, when dealing with strain-softening problems the presence of larger support
domains seems to be beneficial in order to achieve mesh objectivity. It is important to
emphasize that in the previous period, the term larger referred not to the number of



§7.3 Simulation of experimental tests 193

nodes in a support domain, but rather to its size in space. As discussed in Section 4.2
and observed also by other authors (see, e.g., Chen et al. (2000)) it is the contruction
of the approximation at each integration point, made using nodes beyond the ones of
the background cell which the point belong to, that provide a non-local character to
a meshfree method.

The T6/3 scheme is able to provide larger support domains with respect to the
T3 scheme, and the associated non-local effects was pointed out by the examples
discussed in this volume. However, it is worth to note that the spatial size of the
support domains generated by such scheme is still dependent on the mean nodal
distance (Fig. 7.27). In order to overcome this limitation, and to improve the non-
locality of the method, the use of influence domains for support domains generation
was considered. The reason is due to the fact that the spatial size of such support
domains (and then their non-local effect) is no longer dependent on the nodes spacing,
and can be controlled by the size of the influence domains. This can be observed
in Fig. 7.27, where the different support domains for a certain integration point
obtained both with T-schemes and the influence domains strategy are depicted for
two different discretizations. Like in a non-local continuum formulation, where the use
of an intrinsic length may induce a mesh objective behaviour, it seemed reasonable to
assume that analyses performed with different discretizations but adopting the same
support domain size should have led to the same results; hence the reason for the
application of this strategy to the example presented in this section.

R

T3 scheme
T6/3 scheme

R

Figure 7.27: Support nodes selection via influence domains and T-schemes

Having discussed the quality of this approach, it is necessary to point out its main
drawbacks. The first one is related to the efficiency of the numerical method. Larger
influence domains tend to generate support domains with a large number of nodes,
destroying the sparseness of the stiffness matrix of the discrete model, making more
difficult its solution. The effects of this issue however, may be reduced by limiting
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the application of such strategy to specific parts of the problem domain, as done in
Fig. 7.26 where it was applied in the area interested by damage propagation (or using
a KNN approach for support nodes selection, as discussed briefly in Section 4.2.1.3).
The second issue is related to the moment matrix. It was observed indeed, that
to a large number of nodes corresponded a bad conditioned matrix. The solution
used when applying such strategy to the L-shaped panel was to limit the difference
between the radius of the circular influence domains and the mean nodes spacing.
A further issue regards the boundary integrals performed to evaluate the smoothed
shape functions (Eq. (4.58)). When the support nodes selection is performed via
T-schemes, it is known that the boundaries of the background cells may be zones of
discontinuity for the shape functions, and then they are avoided when choosing the
position of the integrations points along the smoothing domains boundary. However,
when influence domains are adopted, the position of such discontinuity zones isn’t
known a priori, and there is the risk for integration points to be placed on them,
affecting the quality of the results.

As it can be observed in Fig. 7.28, when circular influence domains with radius R =
20 mm were adopted, the meshes 3 and 4 exhibited almost the same equilibrium path,
with a slight discrepancy in the softening branch. For the values R = 25 mm and R =
30 mm the two discretizations still manifested the same peak value, though with larger
differences in the post-peak branch. Furthermore, it should be noted that to higher radii
corresponded higher peak values. Considering the results obtained for the mesh 2, it
is interesting to observe that as the radius of the influence domains was increased, the
difference in terms of peak-values between the mesh 2 and the meshes 3 and 4 tended
to decrease, emphasizing the behaviour obtained with the T6/3 scheme and observed in
Fig. 7.23.

On the other hand, despite a better agreement on the value of the peak load factor,
the softening branches still presented different paths. This behaviour can be ascribed,
at least partially to the fact that, as pointed out by Fig. 7.26, the influence domains
stategy was applied only near the damage initiation zone. In the other zones interested
by damage propagation, that have an influence on the shape of the post-peak branch,
the approximation was constructed using the T3 scheme, without the introduction of
non-local effects. This fact seems to be confirmed also by the contour plots illustrated in
Figs. 7.29 to 7.31. Indeed, as it can be observed, as long as the damage developed in the
area subjected to nodes selection by influence domains, the width of the damaged zones
was almost the same among the three discretizations. As it started to grow outside of
that area, the damaged zones become mesh dependent again.
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Experimental (Winkler et al., 2004)
Mesh 1
Mesh 2
Mesh 3
Mesh 4

Figure 7.28: L-shaped panel - ES-RPIM with influence domains strategy - Equilibrium paths

(a) Mesh 2 (b) Mesh 3 (c) Mesh 4

Figure 7.29: L-shaped panel - ES-RPIM with influence domains strategy - R = 20 mm - Damaged
configurations

(a) Mesh 2 (b) Mesh 3 (c) Mesh 4

Figure 7.30: L-shaped panel - ES-RPIM with influence domains strategy - R = 25 mm - Damaged
configurations
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(a) Mesh 2 (b) Mesh 3 (c) Mesh 4

Figure 7.31: L-shaped panel - ES-RPIM with influence domains strategy - R = 30 mm - Damaged
configurations



Chapter 8

Conclusions

The main aim of the present thesis was to propose a novel approach to the problem of
localization in the modelling of quasi-brittle media. This task was accomplished adopting
two different regularization strategies: the micropolar continuum, at the formulation level,
and smoothed point interpolation meshfree methods, at the numerical level. Both of them,
when applied individually (i.e., micropolar damage models + finite element method, and
smoothed point interpolation methods + classic damage models), were capable to reg-
ularize certain classes of problems characterized by numerical and induced localization.
The coupling of the two strategies (i.e., micropolar damage models + smoothed point
interpolation methods) allowed to significantly improve the quality of the results in some
of the cases where the individual use of one of the strategies wasn’t sufficient to regular-
ize the behaviour of the simulation. Interesting results were also obtained using the two
stragies to analyze discrete models created using real experimental tests of plain concrete
samples as a basis. This last set of simulations allowed to emphasize both the capability
of the micropolar model to better represent certain behaviours if compared to the classic
theory, and the capability of the smoothed point interpolation methods to provide mesh
objective results in physically non-linear analyses. Due to the multiple topics treated
in this thesis, the ones that in the author opinion were the more significant and novel
contributions will be discussed in the following sections. The last section of this chapter
will be devoted instead, to a survey on possible future research trends that could expand
the achievements of this thesis.

8.1 Micropolar media

Regarding the field of micropolar media, this thesis provided three significant contribu-
tions to the topics listed below:
• modelling of quasi-brittle materials as micropolar elastic-degrading media;
• localization analysis;
• numerical implementation (addressed in Section 8.3).
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As pointed out in Section 3.3, in the existent literature there are many applications
of the micropolar continuum to problems in elasto-plasticity, with limited applications
to damage models. In order to allow the use of the micropolar model to the analysis of
quasi-brittle media, one of the first tasks the author dealt with was then the combination
of the micropolar theory with damage models (or, more in general, with elastic-degrading
models). The realization of this task pointed out a significant differece between exist-
ing micropolar physically non-linear models and analogous models based on the classic
continuum theory. While the latter had been object of many investigations in the past,
which allowed to obtain the so-called unified formulations for both elastic-degradation and
elasto-plasticity (see, e.g., de Borst (1987), Carol et al. (1994), Rizzi (1995), Carol and
Willam (1996), Carol (1996), de Borst and Gutiérrez (1999), Armero and Oller (2000a,b),
Carol et al. (2001a,b) and Hansen et al. (2001)), the contributions in the former focused
mainly on elasto-plasticity, with a certain lack of generality if compared to existent clas-
sic unified formulations, except for an attempt made in Forest and Sievert (2003) in case
of micropolar elasto-plasticity. Taking into account the advantages offered by the afore-
mentioned unified formulations for contitutive models and by their tensorial formalism,
the author proposed a novel unified formulation for micropolar media able to represent
a large number of elasto-plastic and elastic-degrading micropolar models (Section 3.3),
inspired on the single-criterion Cosserat’s plasticity approach discussed in Forest and
Sievert (2003). Of fundamental importance for this formulation was the adoption of a
peculiar compact tensorial representation of the constitutive equations of the micropolar
model, inspired in the symbolism adopted by Eremeyev in his paper on acceleration waves
in micropolar elastic media (Eremeyev, 2005).

Regarding the second topic mentioned in the list above, localization analysis, the
same issues pointed out for the unified formulation apply also in this case. Indeed, the
existent literature contains many investigations regarding localization analysis in classic
media, considering both elasto-plasticity and elastic degradation (see the papers cited in
Section 2.3), with limited contributions regarding the micropolar continuum. The ones
that to the author knowledge are main contributions based on the micropolar continuum
available in the literature have been pointed out in Sections 2.3 and 5.1; among them
there are:

• the numerical investigations on regularization effects in micropolar elasto-plasticity
by de Borst (1991), de Borst and Sluys (1991) and Sluys (1992),
• the extension to micropolar elasto-plasticity of the classic Maxwell compatibility

condition by Dietsche et al. (1993) and Iordache and Willam (1998), together with
analytical and numerical analyses on the regularization effects of the additional
material parameters,
• the extension of the classic Fresnel-Hadamard propagation condition to visco-elastic

micropolar media by Grioli (1980) and to geometrically exact elastic micropolar
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media by Eremeyev (2005),
• the evaluation of the effects of the Cosserat’s shear modulus on localization with nu-

merical investigations based on an extension of the Maxwell compatibility condition
for micropolar media with scalar damage1 by Xotta et al. (2016).

Taking into account the lack of contributions in the field of localization analysis for elastic-
degrading micropolar media, one of the main contributions of this thesis has been the
extension of the concept of localization analysis to the unified formulation for micropolar
elastic-degrading models discussed above. Chapter 5 presented the localization analysis of
micropolar elastic-degrading models within the theory of acceleration waves propagation.
The main result has been the derivation of a localization indicator for micropolar media,
analogous to the one for classic media. Using this tool it has been possible to evaluate
the effects of two of the micropolar material parameters on the onset of localization, the
Cosserat’s shear modulus and the internal bending length (the ones appearing in plane
problems), through analytical investigations on two different stress states. The same
localization indicator was also adopted to perform numerical localization analyses, using
the output data of finite element and meshfree simulations, as done in Xotta et al. (2016).

The contributions by the author concerning the first two topics in the list above
resulted in a number of publications in peer-reviewed journals (Gori et al., 2017c,b) and
conference proceedings (Gori et al., 2015a,b,c, 2016, 2017d). The contributions on the
other topic, the numerical implementation, will be addressed in Section 8.3.

8.2 Smoothed point interpolation methods

As pointed out in Chapter 4, the smoothed point interpolation methods were originally
proposed by Liu and his co-authors for problems in classic elasticity (see, e.g., Liu (2008,
2009, 2010a,b)), and were also applied to elasto-plasticity (Zhang et al., 2015). The
main contributions of this thesis consist in the extension of smoothed point interpolation
methods to:
• elastic degradation and damage in classic media;
• micropolar elasticity;
• elastic degradation and damage in micropolar media.

These methods are based on a peculiar weakened-weak form, which differs from the stan-
dard one for the reduced order of continuity required for the approximation functions. The
approximation functions adopted in these methods belong to the so-called G-spaces (Liu,
2010a), which properties guarantee the existence and uniqueness of the solution of the
weakened-weak form. While the application to classic elastic degradation was straightfor-

1In this case the authors applied the scalar damage only to the Cauchy-like part of the constitutive
operator, without affecting the couple-stresses. Hence, only the effect of the Cosserat’s shear modulus
was evaluated.
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ward, consisting just in a proper linearization of the weakened-weak form, the use of these
methods in micropolar media required greater efforts. First, a new version of the G-space
theory and of the weakened-weak form were introduced, in order to take into account the
different formulation with respect to a classic medium. Then, new proofs for existence and
uniqueness of solutions of this modified weakened-weak form were provided. As for classic
media, the application to physically non-linear models, also required the linearization of
this new weakened-weak form. While these new contents were provided for the general
framework of smoothed point interpolation methods, the numerical simulations presented
in Chapters 6 and 7 focused on two specific strategies, the node-based smoothed point
interpolation method (NS-PIM) and the edge-based smoothed point interpolation method
(ES-PIM).

8.3 Numerical implementations

The realization of the numerical simulations presented in Chapters 6 and 7 required the im-
plementation of both the unified formulation for micropolar elastic-degrading models and
the node- and edge-based smoothed point interpolation methods, which was performed in
the software INSANE (Appendix C). Regarding the implementation of the micropolar
models, the major result has been the introduction of a peculiar compact tensor-based
format for the representation of the micropolar constitutive equations, which allowed to
obtain a formal compatibility with the equations based on classic media, as pointed out in
Section 3.3.3. In virtue of this compatibility it has been possible to implement the microp-
olar elastic-degrading models in the existent object-oriented framework for computational
models of the software INSANE (Penna, 2011, Gori et al., 2017a) with minimum efforts,
reusing large part of the existent code. The main characteristics of this implementation
has been presented in Appendix C, and has been included in a paper recently submitted
by the author (Gori et al., 2018).

The object-oriented implementation of the smoothed point interpolation methods in
the INSANE system was more challenging than the one of the constitutive models.
Before the contributions of this thesis, the code structure of the INSANE was well-suited
for the finite element method; other methods like the generalized/extended finite element
method and the boundary element method, due to their FEM-like formulation, had been
implemented taking advantage of the existent FEM structure. Despite the fact that it
had been possible to implement also the Element-Free Galerkin method using the same
class structure of the FEM, as done in Silva (2012)2, the author observed that the same
couldn’t have been possible for the meshfree methods considered in this treatise. Hence, an
important contribution of this thesis has been the introduction in the INSANE software

2 The existent implementation of the Element-Free Galerkin method was extended by the author to
the case of micropolar media in Gori et al. (2016).
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of a new structure, well-suited for the implementation of smoothed point interpolation
methods, which partially relies on existent classes used by the other methods. This new
object-oriented structure has been kept quite general and, in the author opinion, it should
allow for a straightforward implementation of other meshfree methods.

8.4 Future research topics

This manuscript is the final product of a four years research. While the author feel to
have given a certain, though limited, contribution on the topics investigated, he recognizes
that many questions have been left open, and that many paths and new ideas that arose
during this research have not been followed, in favor of the contents of this manuscript.
The present section is then thought as a memorandum, regarding the possible future
research topics that could give continuity to the work presented in this treatise. These
suggestions are collected in the three areas listed below, and exposed in the following:
• localization analysis for the micropolar continuum and other generalized continua;
• regularization effects of meshfree methods;
• modelling of quasi-brittle media as generalized continua.

8.4.1 Localization analysis for the micropolar continuum and
other generalized continua

• The present research pointed out some of the regularization properties of the microp-
olar continuum in elastic-degrading constitutive models, confirming results that had
been found previously in the field of micropolar elasto-plasticity. Taking in mind
that the localization analysis (or discontinuous failure) is only one of the possible
failure indicators (see, e.g., Neilsen and Schreyer (1993) and de Borst et al. (1993)),
efforts should be made to apply the other indicators, such as the loss of material
stability and loss of uniqueness to constitutive models based on the micropolar the-
ory.
• The investigations presented here, as well as the ones available in the literature re-

garding localization in micropolar elasto-plasticity, focused on plane-states, where
only the Cosserat’s shear modulus and the internal bending length appear. Hence,
it would be interesting to investigate three-dimensional stress states, evaluating the
effects on the onset of localization of the 4 remaining micropolar material parame-
ters.
• The analytical investigations performed in Section 5.4 and the numerical analyses

in Chapter 6, took into account a single constitutive model, an associated scalar-
isotropic damage model. Further efforts should be focused on the extension of such
localization analyses to other micropolar constitutive models, considering also non-
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associated models where there is a distinction between the loss of ellipticity and loss
of strong ellipticity conditions.
• The numerical localization analyses performed in Chapter 6 (and in Xotta et al.

(2016)) are an intersting tool for the evaluation of the localized state of a sample
during a simulation, but their applicability is limited due their computational cost.
Hence, efforts should be made in order to optimize such evaluations, to make them
available for a real time use during the simulations.

8.4.2 Regularization effects of meshfree methods

• Regarding the investigation of the regularization effects in meshfree methods, this
work focused only on two strategies, the NS-PIM and ES-PIM, both of them applied
to the plane-stress state. Further investigations should consider both the applica-
tion to other stress states and the use of other methods of the smoothed point
interpolation family.
• The regularization properties of meshfree methods were first pointed out in Chen

et al. (2000) for the Element-Free Galerkin and Reproducing Kernel methods, and
the present work pointed out their presence also in two of the smoothing point
interpolation methods. It would be interesting then to investigate the presence of
such properties also in other common meshfree methods, like the Meshless Local
Petrov-Galerkin for example.
• Regarding the physically non-linear simulations peformed in Chapters 6 and 7 with

the NS-PIM and ES-PIM, it would be interesting to investigate in details the even-
tual effects on the onset of localization of the kind of radial functions and of their
parameters.
• Furthermore, taking into account the results obtained in Chapter 7 with the use

of the influence domains strategy, further investigations should be devoted to over-
come the issues related to the use of this method, in order to make it an available
regularization tool. As mentioned in Section 4.2.1.3, interesting results could be
obtained using support nodes selection strategies via K-Nearest Neighbor (KNN)
algorithms, for example.

8.4.3 Modelling of quasi-brittle media as generalized continua

• Besides its regularization effects, the micropolar model has been also shown to
be useful for the representation of the behaviour of quasi-brittle media in cases
where the classic continuum was not sufficient, using simple scalar-isotropic damage
models (see, e.g., the four point shear test in Section 7.2). In order to provide an
even better representation of experimental results, efforts should be made to obtain
further micropolar models capable to take into account more complex phenomena,
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like different behaviours in tension and compression, anisotropic damage evolution,
and microcracks closure-reopening effect, for example.
• The micropolar elastic-degrading models presented in Section 3.3 are phenomeno-

logical. Another interesting approach consists in the use of models based on mi-
cromechanics, i.e., models derived taking into account the peculiar microstructure
of a material. In Section 3.2.3.2, some strategies regarding the characterization of
the elastic material parameters of the micropolar medium have been presented. In
the author opinion, a promising path for the derivation of micromechanics-based
models could be the use of the analytical and numerical homogenization techniques
presented in Section 3.2.3.2, properly improved for the application to physical non-
linearities.
• As pointed out in Section 3.1, the micropolar continuum is only one of the pos-

sible multifield continua. A better representation of the degrading phenomena in
quasi-brittle media could be given by the use of different multifield strategies, more
advanced than the micropolar one, especially the ones that combine the use of addi-
tional kinematical variables with the inclusion of the degrading phenomena among
the field variables of the problem.
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Mariano, P. M., Gioffrè, M., Stazi, F. L. and Augusti, G. (2002), ‘Microcracked bod-
ies with random properties : a preliminary investigation on localization phenomena’,
Composite Structures vol. 80, 1027–1047.
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materials’, Géotechnique vol. 37(3), 271–283.

Nadai, A. (1931), Plasticity, McGraw-Hill, New York.

Nayroles, B., Touzot, G. and Villon, P. (1992), ‘Generalizing the finite element method:
Diffuse approximation and diffuse elements’, Computational Mechanics vol. 10(5), 307–
318.

Needleman, A. (1987), ‘A continuum model for void nucleation by inclusion debonding’,
Advances in Applied Mechanics vol. 54, 525–531.

Needleman, A. (1988), ‘Material rate dependence and mesh sensitivity in localization
problems’, Computer Methods in Applied Mechanics and Engineering vol. 67, 69–85.

Neff, P. (2006), ‘The cosserat couple modulus for continuous solids is zero viz the linearized
Cauchy-stress tensor is symmetric’, ZAMM Zeitschrift fur Angewandte Mathematik und
Mechanik vol. 86(11), 892–912.

Neff, P. and Jeong, J. (2009), ‘A new paradigm: the linear isotropic Cosserat model with
conformally invariant curvature energy’, ZAMM Zeitschrift fur Angewandte Mathematik
und Mechanik vol. 89(2), 107–122.

Neff, P., Jeong, J. and Fischle, A. (2010), ‘Stable identification of linear isotropic Cosserat
parameters: bounded stiffness in bending and torsion implies conformal invariance of
curvature’, Acta Mechanica vol. 211, 237–249.

Neilsen, M. and Schreyer, H. (1993), ‘Bifurcations in elastic-plastic materials’, Interna-
tional Journal of Solids and Structures vol. 30(4), 521–544.

Nemat-Nasser, S. and Chang, S. N. (1990), ‘Compression-induced high strain rate void
collapse, tensile cracking, and recrystallization in ductile single and polycrystals’, Me-
chanics of Materials vol. 10(1-2), 1–17.

Ngo, D. and Scordelis, A. C. (1967), ‘Finite element analysis of reinforced concrete beams’,
Journal of the American Concrete Institute vol. 64, 152–163.

Noll, W. (1958), ‘A mathematical theory of the mechanical behavior of continuous media’,
Archive for Rational Mechanics and Analysis vol. 2, 197–226.

Noor, A. K. and Nemeth, M. P. (1980a), ‘Analysis of spatial beamlike lattices with rigid
joints’, Computer Methods in Applied Mechanics and Engineering vol. 24, 35–59.



BIBLIOGRAPHY 221

Noor, A. K. and Nemeth, M. P. (1980b), ‘Micropolar beam models for lattice grids with
rigid joints’, Computer Methods in Applied Mechanics and Engineering vol. 21, 249–263.

Nowacki, W. (1986), Theory of asymmetric elasticity, Pergamon Press, Oxford, UK.

Oliver, J., Huespe, a. E., Pulido, M. D. G. and Chaves, E. (2002), ‘From continuum me-
chanics to fracture mechanics: The strong discontinuity approach’, Engineering Frac-
ture Mechanics vol. 69, 113–136.

Oliver, J., Mora, D. F., Huespe, A. E. and Weyler, R. (2012), ‘A micromorphic model
for steel fiber reinforced concrete.’, International journal of solids and structures vol.
49, 2990–3007.

Ord, A., Vardoulakis, I. and Kajewsky, R. (1991), ‘Shear band formation in gasford sand-
stone’, International Journal of Rock Mechanics and Mining Sciences vol. 42(4), 697–
709.

Ortiz, M. (1985), ‘A constitutive theory for the inelastic behavior of concrete’, Mechanics
of Materials vol. 4, 67–93.

Ortiz, M. (1987), ‘An analytical study of the localized failure modes of concrete’, Me-
chanics of Materials vol. 6, 159–174.

Ortiz, M., Leroy, Y. and Needleman, A. (1987), ‘A finite element method for localized fail-
ure analysis’, Computer Methods in Applied Mechanics and Engineering vol. 61(2), 189–
214.

Ostoja-Starzewski, M. (2002), ‘Lattice models in micromechanics’, Applied Mechanics
Reviews vol. 55(1), 35–60.

Ostoja-Starzewski, M., Boccara, S. D. and Jasiuk, I. (1999), ‘Couple stress moduli and
characteristic length of a two-phase compoiste’, Mechanical Research Communications
vol. 26(4), 387–396.

Ottosen, N. S. and Runesson, K. (1991a), ‘Acceleration waves in elasto-plasticity’, Inter-
national Journal of Solids and Structures vol. 28(2), 135–159.

Ottosen, N. S. and Runesson, K. (1991b), ‘Properties of discontinuous bifurcation solutions
in elasto-plasticity’, International Journal of Solids and Structures vol. 27(4), 401–421.

Park, H. and Lakes, R. (1987), ‘Torsion of a micropolar elastic prism of square cross-
section’, International Journal of Solids and Structures vol. 23(4), 485–503.

Peerlings, R. (1999), Enhanced damage modelling for fracture and fatigue, PhD thesis,
Technische Universiteit Eindhoven.



222 BIBLIOGRAPHY

Peerlings, R. H. J., Borst, R. D., Brekelmans, W. A. M. and de Vree, J. H. P. (1996), ‘Gra-
dient enhanced damage for quasi-brittle materials’, International Journal for Numerical
Methods in Engineering vol. 39, 3391–3403.

Peerlings, R. H. J., De Borst, R., Brekelmans, W. A. M. and Geers, M. G. D. (2002),
‘Localisation issues in local and nonlocal continuum approaches to fracture’, European
Journal of Mechanics, A/Solids vol. 21, 175–189.

Peerlings, R. H. J., Geers, M. G. D., De Borst, R. and Brekelmans, W. A. M. (2001), ‘A
critical comparison of nonlocal and gradient-enhanced softening continua’, International
Journal of Solids and Structures vol. 38, 7723–7746.

Penna, S. S. (2011), Formulação multipotencial para modelos de degradação elástica:
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Runesson, K. and Mróz, Z. (1989), ‘A note on nonassociated plastic flow rules’, vol.
5, 639–658.

Salehian, A. (2008), Micropolar continuum modeling of large space structures with flexible
joints and thermal effects: theory and experiment, PhD thesis, Virginia Polytechnic
Institute and State University.

Seppecher, P., Alibert, J. J. and Isola, F. D. (2011), ‘Linear elastic trusses leading to
continua with exotic mechanical interactions’, Journal of Physics: Conference Series
vol. 319, 1–13.

Silva, R. P. (2012), Análise não-linear de estruturas de concreto por meio do método
Element Free Galerkin, Phd thesis, Universidade Federal de Minas Gerais (UFMG),
Belo Horizonte, Brazil. (in portuguese).

Simo, J. C. and Hughes, T. J. R. (1998), Computational Inelasticity, Springer-Verlag,
New York.

Simo, J. C. and Ju, J. W. (1987), ‘Strain- and stress-based continuum damage models-I.
Formulation’, International Journal of Solids and Structures vol. 23(7), 821–840.

Sluys, L. J. (1992), Wave propagation, localization and dispersion in softening solids, PhD
thesis, Technische Universiteit Delft, Delft, The Nederlands.



BIBLIOGRAPHY 225

Steinmann, P. (1995), ‘Theory and numerics of ductile micropolar elastoplastic damage’,
International Journal for Numerical Methods in Engineering vol. 38, 583–606.

Suidan, M. and Schnobrich, W. C. (1973), ‘Finite element analysis of reinforced concrete’,
Journal of the Structural Division, ASCE pp. 2109–2121.

Suiker, A. S. J., De Borst, R. and Chang, C. S. (2001), ‘Micro-mechanical modelling
of granular material. Part 1: Derivation of a second-gradient micro-polar constitutive
theory’, Acta Mechanica vol. 149, 161–180.
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Appendix A

Micropolar scalar-isotropic damage
models

In Section 3.3.4 two specific scalar-isotropic damage models that can be derived within
the general formulation discussed in Section 3.3 have been presented. This appendix
is devoted to further models that were implemented in the framework discussed in Ap-
pendix C, but that weren’t used in the numerical simulations discussed in Chapters 6
and 7.

A.1 Associated models in strain space

As stated in Section 3.3.4, models associated in strain space are characterized by a gradient
of the loading function in the form

n∗ = τ Σ0 (A.1)

In addition to the Marigo’s model of Eq. (3.141), the framework of the software INSANE
contains two other models of this kind, that are extensions to the micropolar theory of the
classic Simo-Ju model (Simo and Ju, 1987) and Ju model (Ju, 1989), and are expressed
by the equivalent deformations

Γeq =


√

2ψ0 (Simo-Ju)
ψ0 (Ju)

(A.2)

where ψ0 is the same as in Eq. (3.141), corresponding to the values

τ =

 1/Γeq (Simo-Ju)
1 (Ju)

(A.3)
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A.2 Mazars-Lemaitre model

This model was adopted by the author in two conference papers, Gori et al. (2015b) and
Gori et al. (2015c); it is an extension to the micropolar formulation of the classic Mazars-
Lemitre model (Mazars and Lemaitre, 1984), and is expressed by equivalent deformation

Γeq =
√

Γ · Γ =
√
γ · γ + κ · κ (A.4)

to which corresponds the following gradient of the loading function

n∗ =
 γ

Γeq 0
0 κ

Γeq

 (A.5)

A.3 De Vree model

This model was adopted by the author in Gori et al. (2015c), and was obtained as an
extension to the micropolar theory of the classic de Vree’s model (de Vree et al., 1995).
Such model is characterized by the following equivalent deformation

Γeq = k − 1
2k(1− 2 ν) IΓ

1 + 1
2k

√√√√( k − 1
1− 2 ν IΓ

1

)2

+ 12 k
(1 + ν)2 JΓ

2 (A.6)

where the parameter k allows to take into account the different behaviour of the material
for a compression and a tension state. Such parameter is assumed to be equal to the
ratio of the compressive uniaxial strength and the tensile uniaxial strength, k = fc/ft.
In Equation A.6, the first and second invariants of the generalized strain operator are
represented by

IΓ
1 = Iγ1 + Iκ1 (A.7)

JΓ
2 = Jγ2 + Jκ2 (A.8)

Such quantities can be calculated, for a micropolar model in a plane state, as

Iγ1 = tr(γ) (A.9)

Iκ1 = tr(κ) (A.10)

Jγ2 = 1
4
(
γdev · γdev + γdev · γdevT

)
(A.11)

Jκ2 = 1
2
(
κdev · κdev

)
(A.12)
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where with the superscript dev the deviatoric part of a tensor is indicated. The gradients
of the loading function result in

n∗A = k − 1
2k(1− 2ν)

∂IΓ
1

∂γ
+ 1

4k
2
(
k−1
1−2ν

)2
IΓ
1
∂IΓ1
∂γ

+ 12 k
(1+ν)2

∂JΓ
2

∂γ√(
k−1
1−2ν IΓ

1

)2
+ 12 k

(1+ν)2 JΓ
2

(A.13)

n∗C = k − 1
2k(1− 2ν)

∂IΓ
1

∂κ
+ 1

4k
2
(
k−1
1−2ν

)2
IΓ
1
∂IΓ1
∂κ

+ 12 k
(1+ν)2

∂JΓ
2

∂κ√(
k−1
1−2ν IΓ

1

)2
+ 12 k

(1+ν)2 JΓ
2

(A.14)

Taking into account Eq. (A.7), the derivatives of the first invariant are represented by

∂IΓ
1

∂γ
= ∂Iγ1
∂γ

=
∂tr(γ)
∂γ

= id (A.15)

∂IΓ
1

∂κ
= ∂Iκ1
∂κ

= ∂tr(κ)
∂κ

= id (A.16)

while taking into account Eq. (A.8), the derivatives of the second invariant, for a microp-
olar model in a plane state, are represented by

∂JΓ
2

∂γ
= ∂Jγ2

∂γ
= 1

2
(
γdev + γdevT

)
(A.17)

∂JΓ
2

∂κ
= ∂Jκ2

∂κ
= κdev (A.18)

A.4 Mazars model

In Section 3.3.4, a simplied version of the micropolar Mazars model have been presented.
In Gori et al. (2017c) the author discussed an extension to the micropolar theory of the
original treatment of the scalar damage variable proposed in Mazars (1984), which is
illustrated below.

As in the orginal work of Mazars, the damage variable is obtained as a combination
of two different traction and compression damage variables

D := αt Dt + αc Dc (A.19)

Such damage variables are defined as the following functions of the equivalent deformation

Dt(Γeq) := 1− 1
Γeq

(1− At)K0 −
1

eBt(Γeq−K0)At (A.20)

Dc(Γeq) := 1− 1
Γeq

(1− Ac)K0 −
1

eBc(Γeq−K0)Ac (A.21)

where K0 is a threshold value for the equivalent deformation, representing the onset
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of damage, and where the parameters At, Ac, Bt and Bc assume the role of material
parameters. The weighting functions αt and αc are evaluated as

αt :=
3∑

k=1
Hk

εt(k)(εt(k) + εc(k))
Γ2
eq

, αc :=
3∑

k=1
Hk

εc(k)(εt(k) + εc(k))
Γ2
eq

(A.22)

where the terms εt(k) and εc(k) represents, respectively, the eigenvalues of the strain tensors
εt and εc obtained using the positive and negative parts of the stress tensor σ0 = Â · ε,
represented in its principal system

σ0 =< σ0 >+ + < σ0 >−, εt :=
(
Â
)−1
· < σ0 >+, εc :=

(
Â
)−1
· < σ0 >− (A.23)

and where the parameters Hk are given by

Hk :=

 1 if εt(k) + εc(k) ≥ 0
0 if εt(k) + εc(k) < 0

(A.24)



Appendix B

Acceleration waves and localization
in micropolar media

B.1 Stress and couple-stress: Maxwell compatibility
condition

The expressions in Eq. (5.10) are obtained starting from Eqs. (5.7) and (5.8), replacing
˙̄u and ˙̄ϕ with the vectors σ · v̄ and µ · v̄, respectively, where, as already stated, v̄ is an
arbitrary constant vector, resulting in

Jgrad(σ · v̄ )K · n̄ = −1
c

˙Jσ̃ · v̄K= −1
c

Jσ̇K · v̄ (B.1)

Jgrad(µ · v̄ )K · n̄ = −1
c

˙Jµ̃ · v̄K= −1
c

Jµ̇K · v̄ (B.2)

and then in

Jgrad(σ · v̄ )K = −1
c

(Jσ̇K · v̄)⊗ n̄, Jgrad(µ · v̄ )K = −1
c

(
Jµ̇K · v̄

)
⊗ n̄ (B.3)

The expressions in Eq. (5.11) are instead obtained considering the trace of the two
previous equations. Focusing on the first one, associated to the stress tensor σ, the left side
is expressed in components as (σij vj),k = σij,k vj; its trace σij,i vj results in divT (σ) · v̄.
The right side is instead expressed by −1/c Jσ̇ijK vj nk; its trace −1/c Jσ̇ijK vj ni results
in −1/c n̄ · (Jσ̇K · v̄). Repeating for the second expression leads to the searched equations

JdivT (σ)K = −1
c
n̄ · Jσ̇K, JdivT

(
µ
)
K = −1

c
n̄ · Jµ̇K (B.4)
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B.2 Micropolar elastic acceleration waves propaga-
tion

The condition for elastic acceleration waves propagation is briefly analyzed in this ap-
pendix. The results presented here are analogous to the one obtained by Grioli (1980),
Eremeyev (2005). The Fresnel-Hadamard propagation condition, for an initially isotropic
micropolar medium results in the following uncoupled eigenvalues problems

(A2 − ρc2) ḡA + (A1 + A3) (n̄ · ḡA) n̄ = 0 (B.5)

(C2 − ρθc2) ḡC + (C1 + C3) (n̄ · ḡC) n̄ = 0 (B.6)

The first equation results in the eigenvalue c =
√

(A1 + A2 + A3)/ρ with multiplicity 1,
correspondent to an eigenvector ḡA ‖ n̄ (longitudinal wave), and in the eigenvalue c =√
A2/ρ with multiplicity 2, correspondent to eigenvectors ḡA ⊥ n̄ (transversal waves). In

an analogous way, the second equation results in the eigenvalue c =
√

(C1 + C2 + C3)/ρθ
with multiplicity 1, correspondent to an eigenvector ḡC ‖ n̄ (longitudinal wave), and in
the eigenvalue c =

√
C2/ρθ with multiplicity 2, correspondent to eigenvectors ḡC ⊥ n̄

(transversal waves).
As pointed out by Grioli (1980), a micropolar elastic acceleration wave transports, in

general, a second-order discontinuity in the field ū or in the field ϕ̄. A wave transporting
discontinuities in both the field should be regarded as a special case, and may verify only
for specific values of the material moduli. There are four special cases, represented by
longitudinal waves

ḡA ‖ n̄, ḡC ‖ n̄, A1 + A2 + A3 = C1 + C2 + C3

θ
(B.7)

transversal waves
ḡA ⊥ n̄, ḡC ⊥ n̄, A2 = C2

θ
(B.8)

and mixed waves, defined by

ḡA ‖ n̄, ḡC ⊥ n̄, A1 + A2 + A3 = C2

θ
(B.9)

or by
ḡA ⊥ n̄, ḡC ‖ n̄, A2 = C1 + C2 + C3

θ
(B.10)

B.3 Special cases for localization conditions

Among the proposed localization conditions, as already stated, the most general one is
represented by the stationarity of a wave transporting a second-order discontinuity in
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both the fields ū and ϕ̄; in this case, the localization condition Q̃
t · ḡ = 0̄ may have a

non-trivial solution only if det
(
Q̃t) = 0. It is now showed how the special cases regarding

the discontinuity of the sole field ū or of the sole field ϕ̄ can be derived from the general
one. Assuming first a discontinuity in the field ū (JüK 6= 0 and Jϕ̈K = 0), the propagation
condition reduces to Qt

AA
· ḡA = ρc2 ḡA

Qt
CA
· ḡA = 0

⇒

 QS
AA
· ḡA − 1

H
(āA · ḡA) b̄A = ρc2 ḡA

− 1
H

(āA · ḡA) b̄C = 0
(B.11)

The second equation is satisfied only when āA · ḡA = 0 or b̄C = 0̄. If the former condition
is verified, the first equation reduces to QS

AA
· ḡA = ρc2 ḡA, analogous to the one of

elastic waves, with Q
AA

replaced by QS
AA

. Recalling the equations of Appendix B, it
follow that the localization condition (c → 0) is attained only for vanishing material
parameters, i.e., when the medium is completely damaged; such extreme condition is not
considered in this work. Attention is then focused on the condition b̄C = 0. In this case
the localization condition reduces to Qt

AA
· ḡA = 0, and a non-trivial solution is possible

only if det
(
Qt

AA

)
= 0. The same considerations apply if the discontinuity in the field ϕ̄

(JüK = 0 and Jϕ̈K 6= 0) is accounted for. In this case, the localization in the micro-rotation
field is possible if both b̄A = 0̄ and det

(
Qt

CC

)
= 0 are verified.





Appendix C

INSANE: INteractive Structural
ANalysis Environment

The INSANE system (INSANE - INteractive Structural ANalysis Environment, n.d.) is
an open source software for computational mechanics, developed at the Structural Engi-
neering Department (DEES) of the Federal University of Minas Gerais. It is based on
the Java language, and relies on the object-oriented programming (OOP). This, results
in a robust software composed by a set of classes that interacts between them, and that
are able to represent the different aspects of a numerical simulation with an high level of
generalization. The high abstraction of the parts of the software eases the maintenance
of the code, and its expansion, resulting in a system well-suited for the simultaneous
collaboration of different researchers. The software is composed by a set of interactive
graphical applications allowing the operations of pre- and post-processing, and by a nu-
merical core responsible for the analysis of discrete models, which will be discussed in
the following sections. The current organization of the software is the results of a large
number of contributions by different researchers1; the ones that are more strictly related
to this thesis are: Fuina (2009), which implemented the micropolar model for elasticity
and elasto-plasticity, Penna (2011), which proposed the implementation of the constitu-
tive models formulation discussed in Section 2.2.2, and Silva (2012), which implemented
the Element-Free Galerkin (EFG) method.

In the following, the details of the parts of the numerical core which are related to the
presente thesis are presented, together with the author’s contributions. The structure of
the INSANE system is presented with the help of UML (Unified Modelling Language)
diagrams, allowing a concise representation of complex aspects of the software. In order
to emphasize the author’s contributions to the software, the colours illustrated in Fig. C.1
are adopted in the UML diagrams.

1 All the papers, conference proceedings, master and doctoral thesis related to the INSANE system
are listed in the website of the project, https://www.insane.dees.ufmg.br/. The reader should refer
to this list of works for all the classes and parts of the code not described in this manuscript.
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Unmodified class Modified class New class

Figure C.1: UML colors legend

C.1 Numerical core

The main components of the numerical core of the INSANE system are the interfaces
Assembler, Model and Persistence, and the abstract class Solution (Fig. C.2). These
objects represent the principal resources that allow the numerical simulation of different
problems with different numerical methods.

�interface�
Persistence

�abstract class�
Solution

�abstract class�
Model

�interface�
java.util.Observer java.util.Observablejava.util.Observable

�interface�
Assembler

Figure C.2: Numerical core

The task of the Assembler (Appendix C.5) is to mount the matricial system of the
model, as the one of Eq. (3.177), returning the stiffness matrix and its partitions related to
free and constrained degrees of freedom, and the vector of nodal dual parameters. Depend-
ing on the kind of approximation considered in the non-linear analysis, the stiffness matrix
can be elastic (getC()), secant (getTotalC()) and tangent (getIncrementalC())2. In
returning the vector {R} (Eq. (3.177)), the main task of the assembler is to mount the vec-
tor of nodal forces equivalent to internal stresses (getFp()). The abstract class Solution
(Appendix C.4) provides a set of methods devoted to the solution of the matricial sys-
tem expressed in Eq. (3.177). Different inherited classes allow the solution of linear and
non-linear problems, both for static and dynamic analyses. The abstract class Model
(Appendix C.3) allows the representation of a generic discrete model in the numerical
core of the software. It is composed by several lists of objects, each one representing
a peculiar component of a discrete model, like nodes, elements, type of problem, type
of analysis model and materials, for example. The interface Persistence is responsible
for the processing of input and output data, which are persisted as XML (eXtensible
Markup Language) files. Such class also guarantees the consistency of the data between
the different components of the discrete model, applying the Observer-Observable de-

2 It is worth to note that in the described methods the symbol C is used to indicate the stiffness matrix,
instead of K as in Eq. (3.177). This is justified by the fact that for a more general problem than the quasi-
static one adopted here, Eq. (3.177) should account for additional terms, as [A] {Ẍ}+[B] {Ẋ}+[C] {X} =
{R}, where {Ẋ} and {Ẍ} represent, respectively, the first and second time derivatives of the nodal
parameters. However, in the analytical expressions, the symbol K is maintained since it is traditionally
adopted in the field of mechanics.
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sign pattern. When an alteration in the state of an observed object (i.e., an object that
extends the class java.util.observable) occours, the propagation mechanism of the
alteration is triggered, and the observers (i.e., the objects implementing the interface
java.util.observer) are notified to update themselves. In the INSANE system, as
illustrated in Fig. C.2, the role of observer is assumed by the interface Persistence, while
the observed objects are the abstract classes Model and Solution.

The components of the numerical core listed here will be discussed in details in the fol-
lowing, together with : data structures for tensors and arrays, meshfree models generation
strategies, and constitutive models framework.

C.2 Data structures for tensors and arrays

The Voigt expressions adopted in the manuscript for the representation of discretized
equations in both classic and micropolar media contain vector, i.e., mono-dimensional
arrays indicated as {·}, and matrices, i.e., two-dimensional arrays indicated as [·], while
the constitutive expressions presented in Sections 2.2.2 and 3.3 works with tensors. The
correct handling of such objects is an important aspect for the efficiency of a simulation
code, and it can take advantage of the OOP (Jeremić and Sture, 1998). Especially the
use of tensor objects in object-oriented software has been treated by a number of authors
in the past (see, e.g., Jeremić and Sture (1998) and Weller et al. (1998)), usually for the
representation of constitutive models as in Jeremić et al. (1999) and Jeremić and Yang
(2002). Tensor objects were also used by Penna (Penna (2011) and Gori et al. (2017a))
for the creation of the constitutive models framework for classic media of the software
INSANE (Appendix C.6), which was later expandend to introduce also physically non-
linear micropolar models (Gori et al., 2018). As pointed out in the cited works, the
main advantage in the use of tensor objects in a code is that they allow to express the
constitutive equations depicted in Sections 2.2.2 and 3.3 in a form that is as close as
possible to their mathematical representation, resulting in a more clear and simple code.

In the INSANE system, vectors, matrices, and tensors are represented, respectively,
by the classes IVector, IMatrix, and Tensor. The class IVector (Fig. C.3(a)) possesses
two attributes; an integer defining its size, and an array containing the vector components
in double precision. In an analogous way, the class IMatrix (Fig. C.3(b)) is characterized
by three attributes: two integers defining the number of rows and columns, and a two-
dimensional array containing the matrix components in double precision. For both the
IVector and IMatrix classes, the numbering of the elements begins with zero. Some of
the methods of these two classes are exposed in Fig. C.3; there, different constructors
for their initialization, as well as different methods to get and set their components are
represented. Despite they are not explicitly exposed here, both the classes posses proper
methods for the definition of standard algebraic operations like as sum and multiplication.
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IVector

-size: int
-vector: double[ ]

+IVector(double[ ] vector)
+IVector(IVector vector)
+IVector(int size)
+getElement(int index)
+setElement(int index, double value)

(a) IVector

IMatrix

-numRow: int
-numCol: int
-matrix: double[ ][ ]

+IMatrix(double[ ][ ] matrix)
+IMatrix(IMatrix matrix)
+IMatrix(int nRow, int nCol)
+getElement(int row, int column)
+setElement(int row, int column, double value)

(b) IMatrix

Figure C.3: Classes IVector and IMatrix

The class Tensor (Fig. C.4) possesses three attributes: an integer defining the or-
der of the tensor, an array of integers that indicates the dimension of each index of
the tensor, and an instance of the class IMatrix, that stores the elements of the ten-
sor. With respect to the original implementation, which only allowed three-dimensional
tensors (i.e., with each index with dimension equal to 3), this class was updated by the
author in order to allow the use of indexes with mixed dimensions. This was necessary
for the implementation of the compact tensor-based expressions of the micropolar models
discussed in Section 3.3.3. This characteristic is also important for the representation
of constitutive equations in multidissipative models; for example, the third-order tensor
m̌ = mβij r̄β⊗ ēi⊗ ēj, appearing in Eq. (2.12), that contains the N directions of degrada-
tion m(β) of the strain degrading rate in the stress-based representation (Section 2.2.2),
is characterized by the indexes i and j run from 1 to 3, and by the index β that depends
on the number of adopted directions of degradation. Furthermore, this property could be
used, in future applications of the same constitutive models framework, for the represen-
tation of other generalized continua (e.g., the microstretch or the micromorphic models),
where the generalized tensors may not be represented as a composition of blocks with the
same dimensions as the ones of Section 3.3.3.

Tensor

-order: int
-dimension: int[ ]
-tensor: IMatrix

+Tensor(Tensor tensor)
+Tensor(int order)
+Tensor(double t0)
+Tensor(int order, int dim)
+Tensor(int order, int[ ] dimension)

Figure C.4: Class Tensor

In Fig. C.4, the constructors of the class Tensor are also represented; they allow to
initialize a tensor as a copy of an existing one (Tensor(Tensor tensor)), as an empy
three-dimensional tensor with the specified order (Tensor(int order)), as a zeroth-order
tensor with the specified value (Tensor(double t0)), and as a tensor with specified order
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and dimensions3, with the same dimension for all the indexes (Tensor(int order, int
dim)) or with different dimensions for each index (Tensor(int order, int[] dim)).

The internal representation of a tensor is obtained by composition using an instance
of the class IMatrix; for example, a third-order tensor ť with indexes dimension equal to
three, is represented as the matrix

[ť] =


t111 t112 t113 t211 t212 t213 t311 t312 t313

t121 t122 t123 t221 t222 t223 t321 t322 t323

t131 t132 t133 t231 t232 t233 t331 t332 t333

 (C.1)

This strategy allows to access the components of a tensor and to perform operations like
sum, subtaction, and multiplication by a scalar, using the analogous operations already
defined for the class IMatrix. Since the matrix object is not directly accessible by the
user, the aforementioned operations are filtered by proper methods defined in the class
Tensor (Table C.1), that work with the mathematical syntax of the tensorial equations
(i.e., with indexes starting from 1 instead than 0 as in the class IMatrix).

Method Description

getValue() Get the value of a 0th order tensor
setValue(double v) Set the value of a 0th order tensor
getValue(int i) Get the i− th component of a 1st order tensor
setValue(int i, double v) Set the i− th component of a 1st order tensor
getValue(int i, int j) Get the component i, j of a 2nd order tensor
setValue(int i, int j, double v) Set the component i, j of a 2nd order tensor
add(Tensor t1, Tensor t2) Return the sum of t1 and t2
add2(Tensor t2) Set this tensor to the sum of itself and t2
add3(Tensor t2) Return the sum of this tensor and t2
sub(Tensor t1, Tensor t2) Return the difference of t1 and t2
sub2(Tensor t2) Set this tensor to the difference of itself and t2
sub3(Tensor t2) Return the difference of this tensor and t2
scale(double s) Return this tensor multiplied by the scalar s

Table C.1: Access, sum, subtraction, and scaling methods of the class Tensor

In order to represent the constitutive equations discussed in Sections 2.2.2 and 3.3,
the implementation of operations like the contraction between tensors and the tensorial
product is of fundamental importance. Some of the methods that allow to perform such
operations between tensors of different order are illustrated in Table C.2.

Using the methods discussed in this section, the equation representing the secant re-
lation between the generalized stress and the generalized strain operators (Eq. (3.120)),
Σij = ESijk` Γk`, can be expressed in the code as stress = secantOperator.ijklDOTkl(strain).
The contraction operation ESijk` Γk` is illustrated in the code block of Fig. C.5; as it can be

3 Such class is structured to ideally accomodate tensors of the desired order and dimensions; however,
at the current stage of implementation, only tensors of order from 0 to 6 are supported.



244 APPENDIX C §C.3

Method Mathematical operation

iDOTi(Tensor b) c = ā · b̄ = ai bi
ijDOTj(Tensor b) c̄ = a · b̄ = aij bj ēi
ijklDOTkl(Tensor b) c = â · b = aijk` bk` ēi ⊗ ēj
ijVECkl(Tensor b) ĉ = a⊗ b = aij bk` ēi ⊗ ēj ⊗ ēk ⊗ ē`

Table C.2: Tensors contraction and tensorial product

observed in the code, the method ijklDOTkl(Tensor b) performs such operation making
use of the access methods of the class.

1 public Tensor ijklDOTkl ( Tensor b) {
2 int dimI = a. getDimension ()[0];
3 int dimJ = a. getDimension ()[1];
4 int dimK = a. getDimension ()[2];
5 int dimL = a. getDimension ()[3];
6 int [] dim = { dimI , dimJ };
7 Tensor t = new Tensor (2, dim );
8 for (int i = 1; i < dimI + 1; i++) {
9 for (int j = 1; j < dimJ + 1; j++) {

10 double c = 0;
11 for (int k = 1; k < dimK + 1; k++) {
12 for (int l = 1; l < dimL + 1; l++) {
13 c += a. getValue (i, j, k, l) * b. getValue (k, l);
14 }
15 }
16 t. setValue (i, j, c);
17 }
18 }
19 return t;
20 }

Figure C.5: Tensor contraction cij = aijk` bk`

Another important equation that has to be represented in the numerical framework is
the one defining the generalized tangent operator (Eq. (3.118)), E tijk` = ESijk`−1/z (Xij Yk`);
using the methods of the class Tensor such equation can be expressed as tangentOp =
secantOp.sub3((x.ijVECkl(y)).scale(1/z)), where the method ijVECkl(Tensor b)
for the tensorial product is illustrated in the block code of Fig. C.6.

C.3 Discrete models representation

Discrete models are represented within the INSANE software by the abstract class Model
and its subclasses. A partial representation of this organization of classes is represented
in Fig. C.7. The class Model was originally conceived for element-based methods relying
on the standard weak form, like the finite element method, the generalized/extended
finite element method, and the boundary element method. It contains different lists of
objects which allow the representation of a discrete model and which are shared by the
aforementioned numerical methods; each peculiar method is then represented by a specific
class which inherits from Model. Among these objects, it is pointed out the presence of a
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1 public Tensor ijVECkl ( Tensor b) {
2 int dimI = this . getDimension ()[0];
3 int dimJ = this . getDimension ()[1];
4 int dimK = b. getDimension ()[0];
5 int dimL = b. getDimension ()[1];
6 int [] dim = { dimI , dimJ , dimK , dimL };
7 Tensor t = new Tensor (4, dim );
8 for (int i = 1; i < dimI + 1; i++) {
9 for (int j = 1; j < dimJ + 1; j++) {

10 for (int k = 1; k < dimK + 1; k++) {
11 for (int l = 1; l < dimL + 1; l++) {
12 t. setValue (i, j, k, l, this . getValue (i, j) * b. getValue (k, l));
13 }
14 }
15 }
16 }
17 return t;
18 }

Figure C.6: Tensorial product cijk` = aij bk`

list of nodes and a list of elements. Each node is represented as an instance of the class
Node, containing informations on the position of the discrete point and of the values of
the field variable at that point, while each element is represented by an instance of the
class Element. Briefly, the class Element is composed by a list os nodes, the incidence of
the element, and by a list of integration points, which allow a generic representation of
the components of the aforementioned methods. The specific objects of each numerical
method are then obtained extending such class. Within this organization of classes it was
also possible to implement the EFG meshfree method (Silva, 2012).

MeshfreeModel

-domainTopology: HalfEdgeDataStructure
-integrationDomains: ArrayList<IntegrationDomain>
-supportNodesStrategyList: HashMap<String, SupportNodesStrategy>
-influenceDomainsList: HashMap<String, InfluenceDomain>
-shape: MeshfreeShape

+computeShapeFunctions()
+initSupportDomains()

SmoothedPimMeshfreeModel

+computeShapeFunctions()
+computeSmoothedInternalVariablesOperator()
+initSupportDomains()

�abstract class�
Model

-nodes: ArrayList<Node>
-elements: ArrayList<Element>

+init()
+update()

FemModel

+init()
+update()

Figure C.7: Class Model

The main characteristic of a finite element is that it embeds two roles in the same
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objects; indeed, it is both a set of nodes for which it is possible to generate a stiffness ma-
trix and an integration cell, i.e., an object allowing to perform the numerical integration
for the evaluation of the stiffness matrix associated to the nodes. In a meshfree method
however, these two roles are in general well separated: the numerical integration is per-
formed over integration domains, which can be a tasselation of the whole domain or a set
of overlapping regions (as in the Meshless Local Petrov-Galerkin method), while the set of
nodes for which a stiffness matrix is generated is the support domain, that is characteristic
of each integration point. While it was possible to implement the EFG with the existent
element-based strategy, the author observed that the implementation of the smoothed
point interpolation methods discussed in Chapter 4 would have been impossible within
the existent framework. In order to allow the inclusion of these methods, as well as to
guarantee the possibility of future implementations of different meshfree methods, it was
necessary to create two new entities, the classes SupportDomain and IntegrationDomain
(and the inherited class SmoothingDomain), discussed in the following section. Hence, as
it can be observed in Fig. C.7, a meshfree model within the INSANE is represented by
a list of integration domains, as well as a list of nodes inherited from the class Model. It
also posseses an instance of the class MeshfreeShape which indicates the kind of shape
function used for the approximation, and informations regarding the geometry of the do-
main (an instance of the class HalfEdgeDataStructure) which, together with the lists of
objects of the type SupportNodesStrategy and InfluenceDomain, are necessary for the
search of support nodes with defined strategies.

While the class MeshfreeModel4 is devoted to the representation of meshfree models
based on the standard Gauss integration, the class SmoothedPimMeshfreeModel allows
to represent the methods discussed in Chapter 4, and differs from its superclass for the
different implementation of the methods devoted to the evaluation of the shape functions,
allowing the evaluation of the smoothed shape functions.

C.3.1 SupportDomain, IntegrationDomain and SmoothingDomain

As discussed before, the class SupportDomain is used to represent the support domain
at each integration point, and has a role that is analogous to the one of the incidence
nodes of a finite element. The main attributes and methods of this class are illustrated
in Fig. C.8. Like a finite element it is characterized by a label, a set of nodes (not strictly
ordered as the incidence nodes of a finite element), and other informations regarding the
kind of analysis models (AnalysisModel), the kind of problem (ProblemDriver), and the
constitutive model of the material (ConstitutiveModel). Different from a finite element

4 Despite being quite comprehensive, the structure proposed in this appendix should be improved in
the future in order to guarantee the representation of further models, like the Meshless Local Petrov-
Galerkin method which is based on different approximations for the trial and test functions, and methods
based on the strong form of a problem.



§C.3 INSANE: INteractive Structural ANalysis Environment 247

it doesn’t posses a set of integration points that, as it will be pointed out below, belong
to the integration domain. However, the class SupportDomain keeps a reference of the
integration point which is associated to (the attribute degeneration, an instance of the
class Degeneration).

As it will be discussed in Appendix C.5, the main task of a support domain, in a
meshfree method based on the standard Gauss integration, is to provide the stiffness
matrix associated to its nodes, which will be used to compose the global matrix of the
model (see, Fig. C.31). This task is executed by the methods getC(), getTotalC(), and
getIncrementalC(), which provide the initial, secant and tangent stiffness matrix, re-
spectively. In a physically non-linear problem also the method getF() is adopted, in order
to obtain the vector of nodal forces equivalent to internal stresses. The further methods
illustrated in Fig. C.8 are called in different parts of the code, and are used to evaluate the
nodal forces equivalent to applied loads (getE()), to evaluate the coordinates of the sup-
port nodes (getGlobalCartesianNodalCoordsMatrix()), to get the values of the state
variables for the nodes of the support domain (getStateVariables()), to get the vector
containing the values of the dual internal variables (e.g., the stresses) at the degeneration
associated to the support domain (getDegenerationDualInternalVariables()), and to
get the vector of internal variables (e.g., the strains) at the degeneration associated to the
support domain (getPointInternalVariables()).

SupportDomain

-label: String
-degeneration: Degeneration
-nodesList: ArrayList<MeshfreeNode>
-analysisModel: AnalysisModel
-problemDriver: ProblemDriver
-constitutiveModel: ConstitutiveModel

+getC()
+getTotalC()
+getIncrementalC()
+getF()
+getE(DiscreteDomainValue domainValue, int ipCounter)
+getGlobalCartesianNodalCoordsMatrix()
+getStateVariables()
+getDegenerationDualInternalVariables()
+getPointInternalVariables()

Figure C.8: Class SupportDomain

The class IntegrationDomain (Fig. C.9) is used to represent the integration regions
that allow to perform the numerical integration of the equations of meshfree models. In
this sense it is similar to a finite element, since also the finite elements can be viewed
as a tasselation of a domain used to perform the numerical integration. The inherited
class SmoothingDomain is (Fig. C.9) used in case of smoothed methods. As it can be seen
in Fig. C.9, the class IntegrationDomain is not a proper region of the domain where
to perform the numerical integration; this role is attributed to the objects of the type
IntegrationCell, a list of which is contained in the class IntegrationDomain. Each
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IntegrationCell is composed by a list of points (instances of the class IPoint3d which
represent a geometrical point in the INSANE) defining its geometry (the attribute inci-
dence), a list of integration points (the attribute degenerations), and a shape function (an
instance of the class Shape) which is used for interpolation operations regarding the cell ge-
ometry. It also posseses a reference to the integration domain which it belongs to, the kind
of analysis model, material and constitutive model associated to that region of the domain,
and a map used to eventually store different values in the cell. Its methods are mostly de-
voted to the purpose of numerical integration, and are analogous to the ones that could be
found in a class representing a finite element; among them ther are methods devoted to the
evaluation of the jacobian transformation, (getJacobianTransformation(Degeneration
dg)), and to the evaluation of the integration factor associated to the kind of natural co-
ordinats system (getCoordIntegrationFactor()), for example. IntegrationCell is an
abstract class; its methods devoted to the generation and initialization of the shape func-
tion and of the integration points are defined by its subclasses that represent specific
geometries.

IntegrationDomain

-label: String
-supportNodesStrategy: String
-integrationCells: ArrayList<IntegrationCell>
-values: HashMap<String, Object>
-integrationOrder: int[ ]

+init()
+getPointInternalVariables(Degeneration dg, IntegrationCell intCell)
+update()

SmoothingDomain

-degeneration: Degeneration
-analysisModel: AnalysisModel
-constitutiveModel: ConstitutiveModel

+getC()
+getTotalC()
+getIncrementalC()
+getF()
+init()
+getPointInternalVariables()
+getPointDualInternalVariables()

NodeBasedSmoothingDomain

-node: Node

EdgeBasedSmoothingDomain

-edge: Edge

Figure C.9: Classes IntegrationDomain and SmoothingDomain

The reason for the definition of an integration domain object as a list of integration
cells is evident for the smoothed point interpolation methods presented in Sections 4.2.3
and 4.2.4. From Fig. 4.4 it can be observed that a smoothing domain, a specific kind of
integration domain, is characterized by a polygonal boundary, along which the numeri-
cal integration is performed. As discussed in Section 4.2.3 the numerical integration is
performed considering each segment composing the smoothing domain boundary as an in-
tegration cell, justifying the choice made in the design of the classes IntegrationDomain
and IntegrationCell. This choice should be also valid in case of MLPG models where,
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in general, due to precision issues in the numerical integration, each local integration
region is further divided in integration cells.

�abstract class�
IntegrationCell

-label: String
-incidence: ArrayList<IPoint3d>
-degenerations: ArrayList<Degeneration>
-shape: Shape
-integrationDomain: IntegrationDomain
-analysisModel: AnalysisModel
-material: Material
-constitutiveModel: ConstitutiveModel
-values: HashMap<String, Object>

+getJacobianTransformation(Degeneration dg)
+getCoordIntegrationFactor()
+getLocalCartesianVerticesCoordsMatrix()
+getGlobalCartesianVerticesCoordsMatrix()
+getCartesianPointCoords(double[ ] point)
+getCartesianNodalCoordsVector()
+getTransformationMatrix(IMatrix dl, IMatrix cn)
+createDegenerations(int[ ] integrationOrder)
+initDegenerations(int[ ] integrationOrder)
+initShape()
+update()
+createInstance(String st)

UnidimensionalIntegrationCell

+initDegenerations(int[ ] integrationOrder)
+initShape()

TriangularIntegrationCell

+getCoordIntegrationFactor()
+initDegenerations(int[ ] integrationOrder)
+initShape()

QuadrilateralIntegrationCell

+initDegenerations(int[ ] integrationOrder)
+initShape()

Figure C.10: Class IntegrationCell

It is interesting to note that a standard finite element could be easily characterized in
terms of the aforementioned objects, using an integration domain composed by a single
integration cell with the same geometry of the finite element, with vertices coincident
with the incidence nodes of the element, adopting the same support domain for all the
integration points of the cells, composed by the incidence of the element.

The class SmoothingDomain, which inherits from IntegrationDomain, was introduced
in order to allow the representation of the smoothed methods presented in Chapter 4. As
it will be discussed in Appendix C.5 indeed, standard and smoothed methods require a
different approach for the generation of the global stiffness matrix. In case of methods
based on the standard integration this matrix is assembled using the contribution of each
support domain, which is responsible to provide the stiffness matrix associated to its
nodes. On the other hand, the smoothed domains are required to directly provide the
stiffness matrix for all the support nodes associated to its integration points distributed
on the boundary. Hence, as it can be seen in Fig. C.9, such class posseses the same
methods that can be found in the class SupportDomain (Fig. C.8). Like its super class,
also SmoothingDomain uses a list of integration cells, each one endowed with a certain
number of integration points. However, such integration points are used with the only
purpose to evaluate the smoothed shape functions; in order to keep track of the evo-
lution of the constitutive parameters it is used another integration point, the attribute
degeneration (Degeneration). The class SmoothingDomain is extended by two classes,
NodeBasedSmoothingDomain and EdgeBasedSmoothingDomain, devoted to the represen-
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tation of the peculiar smoothing domain presented in Sections 4.2.3 and 4.2.4. These
subclasses endow the represented smoothing domain with an instance of the object which
it is associated to: a node of the discrete model (Node), or an edge (Edge) of the domain
topology represented by the background cells expressed in terms of an half-edge data
structure (HalfEdgeDataStructure).

C.3.2 Support domains and shape functions evaluation

Meshfree models are loaded in the INSANE from input files containing all the infor-
mations of a discrete model (Section C.3.4), like nodes list and integration domains
list. The support domains are generated once the model is loaded with the method
initSupportDomains() of the class MeshfreeModel (Fig. C.7), before its processing. As
it can be observed in Fig. C.9, the class IntegrationDomain posseses the attribute sup-
portNodesStrategy, which defined the strategy that must be adopted for the generation of
the support domains associated to the integration points of the integration cells of that
integration domain, which is selected from a list in an instance of the class MeshfreeModel
(the attribute supportNodesStrategyList). The strategies for the support nodes selection
have been presented in Section 4.2.1.3, and are represented by subclasses of the abstract
class SupportNodesStrategy (Fig. C.11). Each one of this subclasses contain a dif-
ferent implementation of the method that performs the support nodes search. At this
point it is worth to note the presence of the model topology in the call of the method
findSupportDomain(. . . ), represented by the background cell with vertices on the nodes
expressed by an instance of the class HalfEdgeDataStructure.

�abstract class�
SupportNodesStrategy

-label: String

+findSupportDomain(SupportDomain sd, HalfEdgeDataStructure domainTopology)
+createInstance(String st)

T3Scheme

+findSupportDomain(. . . )

T6 3Scheme

+findSupportDomain(. . . )

InfluenceDomainsStrategy

-protectedSegments: ArrayList�Segment�

+findSupportDomain(. . . )

Figure C.11: Class SupportNodesStrategy

The class defining the strategy that relies on the use of influence domains (Influence-
DomainsStrategy) contains an additional attribute, representing a list of protected seg-
ments. The influence domains strategy indeed is based at the moment on the visibility
method, with influence domains of different shapes and sizes defined at each node (in-
stances of the abstract class InfluenceDomain).

Since for a large number of integration points this procedure can be very time consum-
ing, the method initSupportDomains() make use of the Java multithreading strategy, as
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pointed out in Fig. C.12, where the implementation in the class MeshfreeModel is illus-
trated. The class SmoothedPimMeshfreeModel (Fig. C.7) has its own implementation of
the method initSupportDomains(); it first call the analogous method of its superclass
in order to fill the support domains of the integration points on the smoothing domains
boundaries, and then it fills the support domain associated to the central point of each
smoothing domain, as illustrated in Fig. C.13.

1 public void initSupportDomains () {
2
3 ExecutorService executor = Executors . newFixedThreadPool (5);
4 ListIterator < IntegrationDomain > intDoms = this . integrationDomains . listIterator ();
5 while ( intDoms . hasNext ()) {
6 IntegrationDomain intDom = intDoms .next ();
7 Runnable runnable = new Runnable () {
8 private IntegrationDomain integrationDomain ;
9 private MeshfreeModel model ;

10 @Override
11 public void run () {
12 ListIterator < IntegrationCell > intCells = intDom . getIntegrationCells (). listIterator ();
13 while ( intCells . hasNext ()) {
14 IntegrationCell intCell = intCells .next ();
15 ListIterator < Degeneration > dgs = intCell . getDegenerations (). listIterator ();
16 while (dgs. hasNext ()) {
17 Degeneration dg = dgs.next ();
18 SupportDomain sd = new SupportDomain ();
19 sd. setAnalysisModel ( intCell . getAnalysisModel ());
20 sd. setGlobalAnalysisModel ( this . model . getGlobalAnalysisModel ());
21 sd. setProblemDriver ( this . model . getProblemDriver ());
22 sd. setConstitutiveModel ( intCell . getConstitutiveModel ());
23 sd. setDegeneration (dg );
24 dg. addMeshFreeValue ( Degeneration . SUPPORT_DOMAIN , sd );
25 this . model . getSupportNodesStrategy ( intDom . getSupportNodesStrategy ())
26 . findSupportDomain (sd , this . model . domainTopology );
27 sd.init ();
28 }
29 }
30 }
31 private Runnable setAttributes ( IntegrationDomain integrationDomain ,
32 MeshfreeModel model ) {
33 this . integrationDomain = integrationDomain ;
34 this . model = model ;
35 return this ;
36 }
37 }. setAttributes (intDom , this );
38 executor . execute ( runnable );
39 }
40 executor . shutdown ();
41 try {
42 executor . awaitTermination (20 , TimeUnit . MINUTES );
43 } catch ( InterruptedException e) {
44 e. printStackTrace ();
45 }

Figure C.12: The method initSupportDomains() (MeshfreeModel)

Once the support domains have been generated, it is necessary to evaluate the shape
functions at each integration point. In the INSANE, the values of the FEM shape
functions are calculated each time that they are needed. However, since the operations
involved in the evaluation of meshfree shape functions have a greater computational cost,
it is preferred to evaluate them before the processing, and store them inside each in-
stance of the class Degeneration. The evaluation of the shape functions is performed
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1 @Override
2 public void initSupportDomains () {
3 super . initSupportDomains ();
4 ListIterator < IntegrationDomain > smoothDoms = this . getIntegrationDomains ()
5 . listIterator ();
6 SmoothingDomain smoothDom ;
7 while ( smoothDoms . hasNext ()) {
8 smoothDom = ( SmoothingDomain ) smoothDoms .next ();
9 SupportDomain sd = new SupportDomain ();

10 sd. setAnalysisModel ( smoothDom . getAnalysisModel ());
11 sd. setGlobalAnalysisModel ( this . getGlobalAnalysisModel ());
12 sd. setProblemDriver ( this . getProblemDriver ());
13 sd. setConstitutiveModel ( smoothDom . getConstitutiveModel ());
14 ListIterator < IntegrationCell > integratinCells = smoothDom . getIntegrationCells ()
15 . listIterator ();
16 while ( integratinCells . hasNext ()) {
17 IntegrationCell integrationCell = integratinCells .next ();
18 ListIterator < Degeneration > degenerations = integrationCell . getDegenerations ()
19 . listIterator ();
20 while ( degenerations . hasNext ()) {
21 Degeneration degeneration = degenerations .next ();
22 ListIterator < MeshfreeNode > nodes = (( SupportDomain ) degeneration . getMeshFreeValues ()
23 .get( Degeneration . SUPPORT_DOMAIN )). getNodesList (). listIterator ();
24 while ( nodes . hasNext ()) {
25 MeshfreeNode node = nodes .next ();
26 if (!( sd. getNodesList (). contains (node ))) {
27 sd. addNode (node );
28 }
29 }
30 }
31 }
32 sd. setDegeneration ( smoothDom . getDg ());
33 smoothDom . getDg (). addMeshFreeValue ( Degeneration . SUPPORT_DOMAIN , sd );
34 sd.init ();
35 }
36 }

Figure C.13: The method initSupportDomains() (SmoothedPimMeshfreeModel)
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within the method computeShapeFunctions() of the class MeshfreeModel, illustrated
in Fig. C.14. The class SmoothedPimMeshfreeModel has its own implementation of this
method (Fig. C.15), which differs from the one of the superclass for the use of the method
getShapeFunction(. . . ) instead of the method getShapeFunctionAndDerivative(. . . ),
both of them of the class MeshfreeShape (Section C.3.3); the former provide only the
values of the shape functions, while the latter also of their derivatives. The method in
the class SmoothedPimMeshfreeModel posseses also a call to the private method compute-
SmoothedInternalVariablesOperators(), which performs the evaluation of the smoothed
shape functions and of the smoothed kinematical operators.

1 public void computeShapeFunctions () {
2 ListIterator < IntegrationDomain > integrationDomains = this . getIntegrationDomains ()
3 . listIterator ();
4 Degeneration dg;
5 while ( integrationDomains . hasNext ()) {
6 IntegrationDomain intDom = integrationDomains .next ();
7 ListIterator < IntegrationCell > intCells = intDom . getIntegrationCells ()
8 . listIterator ();
9 while ( intCells . hasNext ()) {

10 ListIterator < Degeneration > dgs = intCells .next (). getDegenerations ()
11 . listIterator ();
12 while (dgs. hasNext ()) {
13 dg = dgs.next ();
14 IMatrix shapes = this . getShape (). getShapeFunctionAndDerivative (dg
15 . getRepresentation (). getCartesianCoords (),
16 (( SupportDomain ) dg. getMeshFreeValues (). get( Degeneration . SUPPORT_DOMAIN ))
17 . getNodesList ());
18 dg. addMeshFreeValue ( Degeneration . MESHFREE_SHAPE_FUNCTIONS , shapes );
19 }
20 }
21 }
22 }

Figure C.14: The method computeShapeFunctions() (MeshfreeModel)

1 public void computeShapeFunctions () {
2 ListIterator < IntegrationDomain > integrationDomains = this . getIntegrationDomains ()
3 . listIterator ();
4 Degeneration dg;
5 while ( integrationDomains . hasNext ()) {
6 IntegrationDomain intDom = integrationDomains .next ();
7 ListIterator < IntegrationCell > intCells = intDom . getIntegrationCells ()
8 . listIterator ();
9 while ( intCells . hasNext ()) {

10 ListIterator < Degeneration > dgs = intCells .next (). getDegenerations ()
11 . listIterator ();
12 while (dgs. hasNext ()) {
13 dg = dgs.next ();
14 IMatrix shapes = this . getShape (). getShapeFunction (dg
15 . getRepresentation (). getCartesianCoords (),
16 (( SupportDomain ) dg. getMeshFreeValues ()
17 .get( Degeneration . SUPPORT_DOMAIN )). getNodesList ());
18 dg. addMeshFreeValue ( Degeneration . MESHFREE_SHAPE_FUNCTIONS , shapes );
19 }
20 }
21 }
22 this . computeSmoothedInternalVariablesOperators ();
23 }

Figure C.15: The method computeShapeFunctions() (SmoothedPimMeshfreeModel)
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C.3.3 Shape functions

The FEM shape functions are generated using the existent classes that inherit from the
abstract class Shape. Since the mechanisms for the generation of meshfree approximation
functions are quite different, it was necessary to introduce another set of classes, which
inherit from the abstract class MeshfreeShape (Fig. C.16). This class, an instance of
which is possessed by the class MeshfreeModel (Fig. C.7), has two attributes, a label and
an instance of the class BasisFunctions representing the kind of basis function which the
shape functions are based on. It also define two abstract methods, getShapeFunction()
and getShapeFunctionAndDerivative(), which returns a matrix containing the values
of the shape functions and the values of the shape functions and of their first derivative,
respectively, evaluated at the informed point for the support nodes passed as an argument
(Fig. C.16). Such methods are then implemented by the inherited classes. At the mo-
ment, the implemented classes allow to represent PIM shape functions (PimShape), RPIM
shape functions (RPimShape), and RPIM shape functions with polynomial reproduction
(RPimPolyReproductionShape). The implementation of the mentioned methods in the
class PimShape is illustrated in Fig. C.17 as an example.

�abstract class�
MeshfreeShape

-label: String
-basisFunction: BasisFunctions

+getShapeFunction(IPoint3d point, ArrayList<MeshfreeNode> supportNodes)
+getShapeFunctionAndDerivative(IPoint3d point, ArrayList<MeshfreeNode> supportNodes)
+createInstance(String st)

PimShape

+getShapeFunction(. . . )
+getShapeFunctionAndDerivative(. . . )
+computeMomentMatrix(ArrayList<MeshfreeNode> supportNodes)

RPimShape

+getShapeFunction(. . . )
+getShapeFunctionAndDerivative(. . . )
+computeMomentMatrix(ArrayList<MeshfreeNode> supportNodes)

RPimPolyReproductionShape

-polynomialBasis: BasisFunctions
-numPolynomialTerms: int

+getShapeFunction(. . . )
+getShapeFunctionAndDerivative(. . . )
+computeRadialMomentMatrix(ArrayList<MeshfreeNode> supportNodes)
+computePolynomialMomentMatrix(ArrayList<MeshfreeNode> supportNodes)

Figure C.16: Class MeshfreeShape

The basis functions are represented by the subclasses of the abstract class BasisFunctions
(Fig. C.18). This class posseses a single attribute defining the number of functions of
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1 public IMatrix getShapeFunction ( IPoint3d point , ArrayList < MeshfreeNode > supportNodes ) {
2 IMatrix sf = new IMatrix (1, supportNodes .size ());
3 this . getBasisFunction (). setnBasisFunctions ( supportNodes .size ());
4 IVector aux = new IVector ( supportNodes .size ());
5 IMatrix pqInv = this . computeMomentMatrix ( supportNodes ). pseudoInverse ();
6 IVector p = this . getBasisFunction (). getBasisFunctions ( point );
7 aux.mul(p, pqInv );
8 sf. setRow (0, aux );
9 return sf;

10 }
11
12 public IMatrix getShapeFunctionAndDerivative ( IPoint3d point ,
13 ArrayList < MeshfreeNode > supportNodes ) {
14 this . getBasisFunction (). setnBasisFunctions ( supportNodes .size ());
15 IMatrix pqInv = this . computeMomentMatrix ( supportNodes ). pseudoInverse ();
16 IVector aux = this . getBasisFunction (). getBasisFunctions ( point );
17 IVector aux2 = new IVector (aux. getSize ());
18 aux2.mul(aux , pqInv );
19 IMatrix aux3 = this . getBasisFunction (). getDerivedBasisFunctions ( point );
20 aux3. transpose ();
21 aux3.mul( pqInv );
22 IMatrix sf = new IMatrix (aux3. getNumRow () + 1, supportNodes .size ());
23 sf. setRow (0, aux2 );
24 aux3. copySubMatrix (0, 0, aux3. getNumRow (), supportNodes .size (), 1, 0, sf );
25 return sf;
26 }
27
28 protected IMatrix computeMomentMatrix (ArrayList < MeshfreeNode > supportNodes ) {
29 IMatrix pq = new IMatrix ( supportNodes .size (), this . getBasisFunction ()
30 . getnBasisFunctions ());
31 ListIterator < MeshfreeNode > nodes = supportNodes . listIterator ();
32 int counter = 0;
33 while ( nodes . hasNext ()) {
34 IPoint3d point = nodes .next (). getPoint ();
35 IVector aux = this . getBasisFunction (). getBasisFunctions ( point );
36 pq. setRow (counter , aux );
37 counter ++;
38 }
39 return pq;
40 }

Figure C.17: Methods of the class PimShape
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the basis, and define two abstract methods, which return the value of the basis func-
tion (getBasisFunctions(. . . )) and of its derivative (getDerivedBasisFunctions(. . . ))
at the specified point. Polynomial basis functions are defined by the abstract class
PolynomialBasisFunctions, which adds a further attribute, the maximum order of the
basis. The methods which allow to calculate the value of the basis and its derivative are
implemented by its subclasses defined for specific dimensions.

Radial basis functions instead, are defined by the abstract class RadialBasisFunctions,
which posseses an instance of the class RadialFunction and a list of nodes as attributes.
This list of nodes corresponds to the support nodes of the point at which the radial
basis is calculated. The class RadialBasisFunctions already implements the method
getBasisFunctions(. . . ), since for a radial basis is independent on the dimension of the
domain. The method getDerivedBasisFunctions(. . . ) is instead implemented by its
subclasses.

�abstract class�
BasisFunctions

-nBasisFunctions: int

+getBasisFunctions(IPoint3d point)
+getDerivedBasisFunctions(IPoint3d point)
+createInstance(String st)

PolynomialBasisFunctions

-order: int

+computeNumberOfBasisFunctions(int order)
+computePolynomialOrder(int nBasisFunctions)

RadialBasisFunctions

-rf: RadialFunction
-centers: ArrayList<MeshfreeNode>

+getBasisFunctions(IPoint3d point)

PolynomialBasisFunctions1D

+getBasisFunctions(IPoint3d point)
+getDerivedBasisFunctions(IPoint3d point)

PolynomialBasisFunctions2D

+getBasisFunctions(IPoint3d point)
+getDerivedBasisFunctions(IPoint3d point)

PolynomialBasisFunctions3D

+getBasisFunctions(IPoint3d point)
+getDerivedBasisFunctions(IPoint3d point)

RadialBasisFunctions1D

+getDerivedBasisFunctions(IPoint3d point)

RadialBasisFunctions2D

+getDerivedBasisFunctions(IPoint3d point)

RadialBasisFunctions3D

+getDerivedBasisFunctions(IPoint3d point)

Figure C.18: Class BasisFunctions

RadialFunction is the abstract class that allows to represent radial functions in
the INSANE. It defines two methods, getRadialFunction(double radius) and get-
DerivedRadialFunction(double radius), which return the value of a radial function
and of its derivative for the informed radius. It is important to note that this derivative
is with respect to the radius; the correction performed in order to obtain the derivative
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with respect to the coordinates system of the model is performed in the inherited classes
of RadialBasisFunctions. The multiquadric function of Eq. (4.21) is represented by the
class MultiquadricRf, where the attributes sharpness and exp correspond, respectively,
to the parameters C and q appearing in Eq. (4.21), while the exponential function of
Eq. (4.22) is represented by the class ExponentialRf, where the attribute cParameter is
the exponent c appearing in Eq. (4.22).

�abstract class�
RadialFunction

+getRadialFunction(double radius)
+getDerivedRadialFunction(double radius)
+createInstance(String st)

MultiquadricRf

-sharpness: double
-exp: double

+getRadialFunction(double radius)
+getDerivedRadialFunction(double radius)

ExponentialRf

-cParameter: double

+getRadialFunction(double radius)
+getDerivedRadialFunction(double radius)

Figure C.19: Class RadialFunction

C.3.4 Meshfree models generation

The INSANE has a pre-processor that is capable to generate a finite element model
and persist it in an XML file, containing all the informations of the discrete model, like
nodes, elements, materials, and shape functions, for example. Such file can be modified
with a text editor to obtain other methods and functions of the software that are not yet
implemented in its graphical user interface (GUI), such as the existent implementation
of the EFG. However, since this new implementation for meshfree methods is based on
different objects with respect to the currently implemented methods, it is not possible
to use the FEM input file generated by the pre-processor to create input files for these
meshfree methods.

The initial idea was to generate a discrete meshfree model starting from a model
described from a geometrical point of view, that is, defined in terms of the geometry of its
domain, and by informations regarding loadings and constraints directly applied on the
geometry, instead that on discrete objects like nodes, for example. The classes that will
be described in the following were designed for this purpose, though the original objective
has not been completely implemented yet.

The class that manages the generation of meshfree discrete models is called Mesh-
freeModelGenerator (Fig. C.20). This class, together with its inherited class PimModel-
Generator, was designed to have as attributes an instance of the class DataModel and an
instance of the class MeshfreeModel. The method generateDiscreteModel(), through
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the call to different protected methods that can be overriden by subclasses of Meshfree-
ModelGenerator, performs all the necessary operations that allow to obtain an object of
the kind MeshfreeModel from one of the kind DataModel.

�abstract class�
MeshfreeModelGenerator

-dataModel: DataModel
-discreteModel: MeshfreeModel

+generateDiscreteModel()

PimModelGenerator

Figure C.20: Class MeshfreeModelGenerator

The latter (Fig. C.21), is characterized by the following attributes: an instance of
the class PhysicalModel (Fig. C.21), containing informations of the problem geome-
try and boundary conditions applied on the geometry itself, an instance of the class
NodalDistributionStrategy, which is responsible for the generation of the scattered
nodes over the domain, an instance of the class IntegrationDomainStrategy, that de-
fines different strategies for the generation of the integration domains of the model, and
two maps containing informations regarding the discrete model that must be generated.

DataModel

-physicalModel: PhysicalModel
-nodalDistributionStrategy: NodalDistributionStrategy
-integrationDomainStrategy: IntegrationDomainStrategy
-discreteModelParameters: HashMap<String, Object>
-facesAttributes: HashMap<String, Object>

PhysicalModel

-domainTopology: HalfEdgeDataStructure
-loadings: ArrayList<ValuesSet>
-restraints: ArrayList<ValuesSet>
-materials: ArrayList<Material>
-constitutiveModels: ArrayList<ConstitutiveModel>

Figure C.21: The classes DataModel and PhysicalModel

As already stated, the original objective has not been completely implemented yet.
Currently, the smoothed PIM and RPIM models described in Chapter 4 (as well as
PIM and RPIM methods based on the standard Gauss integration, not discussed in
this manuscript) are constructed starting from an existent set of triangular or quadri-
lateral background cells, which can be generated with INSANE pre-processor or with
other tools (like Gmsh, as in the S-PIM examples presented in Chapters 6 and 7),
which vertices are directly converted in nodes (instances of the class MeshfreeNode)
by the PimModelGenerator. The integration and the smoothing domains are gener-
ated from these background cells by the classes that inherit from the abstract class
IntegrationDomainStrategy illustrated in Fig. C.22, an instance of which is contained
in the DataModel. The class TriangularCellBased2D, though not used in this work,
allows to generates integration domains for two-dimensional meshfree models based on
the standard Gauss integration, with triangular integration cells obtained as different
subdivisions of the triangular background cells (the attribute numberOfCells indeed, in-
dicates the number of integration cells that should be placed inside a background cell).



§C.4 INSANE: INteractive Structural ANalysis Environment 259

The smoothing domains of the NS-PIM and ES-PIM methods based on both triangu-
lar and quadrilateral background cells are generated by the classes NsPimTriangular-
2dStrategy, NsPimQuadrilateral2dStrategy, EsPimTriangular2dStrategy, and Es-
PimQuadrilateral2dStrategy.

�abstract class�
IntegrationDomainStrategy

-model: MeshfreeModel
-backgroundCells: HalfEdgeDataStructure
-integrationOrder: int[ ]

+generateIntegrationDomains()

Smoothed2dStrategy

+computeOutwardNormal(IPoint3d a, IPoint3d b, Vertex v)

NsPimTriangular2dStrategy

+generateIntegrationDomains()

NsPimQuadrilateral2dStrategy

+generateIntegrationDomains()

EsPimTriangular2dStrategy

+generateIntegrationDomains()

EsPimQuadrilateral2dStrategy

+generateIntegrationDomains()

TriangularCellBased2D

-numberOfCells: int

+generateIntegrationDomains()

Figure C.22: Classe IntegrationDomainStrategy

Once the meshfree model has been generated it is persisted in an XML file, which
contains all the informations of the discrete model, such as nodes list and integration
domains list, for example. This file can then be loaded for the analysis process. In-
put and output files are managed by the new classes DataModelPersistenceAsXml and
DiscreteModelPersistenceAsXml, analogous to the class PersistenceAsXml appearing
in Fig. C.2. At the moment, the results of the analyses are not persisted in XML files as for
FEM models, since the INSANE post-processor has not be adapted to meshfree methods
yet. Instead, the results are persisted in CSV (Comma-Separated Values) files, which are
then converted by a third application in files compatible with Gmsh, the software used
to generate the S-PIM contour plots in Chapters 6 and 7.

C.4 Non-linear problems solving

The class Solution and the other associated classes, are devoted to the solution of linear
systems in the form of Eq. (3.177) (here recalled)

[K] {X} = {R} (C.2)
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and non-linear systems, where the stiffness matrix may vary during the analysis. As
discussed in Remark 4.8, such non-linear systems, once linearized, may be solved with
an incremental-iterative method, where the pseudo-time, that parametrizes the equilib-
rium configurations in a quasi-static context, is replaced by a finite discretization, by
means of a set of increments (or steps); inside each step an iterative procedure is per-
formed (predictor-corrector method). The resulting incremental equilibrium equation at
the iteration n of the step k is then represented by

[Kt]kn−1 {∆X}kn = ∆λkn {P}+ {Q}kn−1 (C.3)

where [Kt]kn−1 is the tangent stiffness matrix at the iteration n−1 of the step k, depending
in general on the current values of the field variables, {∆X}kn is the vector of incremental
nodal parameters at the iteration n of the step k, ∆λkn is the increment of the load
multiplier at the iteration n of the step k, {P} the vector of the nodal reference loads,
and {Q}kn−1 the vector of the residual forces at the iteration n − 1 of the step k, given
by {Q}kn−1 = λkn−1 {P} − {F}kn−1, where {F}kn−1 is the vector of nodal forces equivalent
to internal stresses. In case of physical non-linearities, the stiffness matrix [Kt] and the
vector {F} are assembled considering the contributions of each “element” composing the
discrete model, given by

[Kt]el =
∫

Del

[B]T [Êt][B] dV (C.4)

{F}el =
∫

Del

[B]T{σ} dV (C.5)

for a classic medium, or by

[Kt]el =
∫

Del

[B]T [Ê t][B] dV (C.6)

{F}el =
∫

Del

[B]T{Σ} dV (C.7)

for a micropolar medium, where, depending on the considered problem,
∫

Del
may repre-

sent a line, surface or volume integral over the “element”. It is necessary to emphasize
that in the present appendix the term “element” will be used in a broad sense, with
no restriction to FEM elements. Indeed, since in the INSANE system different nu-
merical methods coexist, the term “element”, as adopted in this appendix, may refer to
the elements of the finite element method, the boundary elements and internal cells of
the boundary element method, the quadrature cells of the Element-Free Galerkin metod,
or the smoothing domains of the smoothed point interpolation methods. In the above
equations, when the smoothed point interpolation methods of Chapter 4 are taken into
account, the kinematical operator [B] is replaced by its smoothed version [B̃].

Following a standard methodology (Batoz and Dhatt, 1979), non-linear systems in
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the form of Eq. (C.3) are analyzed decomposing additively the vector of incremental
nodal parameters into two components as {∆X}kn = ∆λkn {∆XP}kn + {∆XQ}kn, such that
[Kt]kn−1 {∆XP}kn = {P} and [Kt]kn−1 {∆XQ}kn = {Q}kn−1. The different phases of the
solution procedure adopted in the software are resumed by the pseudo-code of Fig. C.23
(Yang and Shieh, 1990).

1 begin
2 Assemble the vector of nodal reference loads {P};
3 foreach iteration n and step k do
4 repeat
5 Mount the global tangent stiffness matrix [Kt]kn−1 ;
6 Compute the incremental nodal parameters {∆XP }kn and {∆XQ}kn ;
7 Compute the load factor increment ∆λkn ;
8 Update the nodal parameter vector

{X}kn = {X}kn−1 + ∆λkn {∆XP }kn + {∆XQ}kn;
9 Update the load factor λkn = λkn−1 + ∆λkn;

10 Mount the the vector of nodal forces equivalent to internal stresses {F}kn;
11 Update the vector of residual forces {Q}kn = λkn {P} − {F}kn;
12 until convergence;
13 end
14 end

Figure C.23: Solution algorithm (Yang and Shieh, 1990)

The part of the INSANE system devoted to the solution of linear and non-linear
equations is composed by the abstract class Solution, as already stated, and by the
interfaces Step and IterativeStrategy. The class Solution (Fig. C.24) is responsible
for the representation inside the software of different solution procedures that can be
adopted depending on the considered problem.

�abstract class�
Solution

ThermoStructural SteadyState GlobalLocal

�abstract class�
EquilibriumPath

StaticEquilibriumPath�abstract class�
DynamicEquilibriumPath

Figure C.24: Abstract class Solution

Attention is here devoted to the class StaticEquilibriumPath, responsible for the
solution of static non-linear problems. The method execute() implemented in such class
triggers the solution algorithm represented in Fig. C.23. Its attribute step, an instance
of the interface Step, contains all the methods that are necessary to the execution of an
incremental step of the non-linear analysis; the class StandardNewtonRaphson, detailed
in Fig. C.26, manages the solution with the Newton-Raphson method.
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StaticEquilibriumPath

-step: Step
-iterativeStrategy: IterativeStrategy

+execute()

�abstract class�
EquilibriumPath

+update(Observable, Object): void

�interface�
Step

�inteface�
IterativeStrategy

�abstract class�
Solution

�interface�
java.util.Observerjava.util.Observable

-step

0..1

-iterativeStrategy

*

Figure C.25: Class StaticEquilibriumPath

The method execute() of this class is responsible for the activation of the iterative
process inside each step. The attribute iterativeStrategy, an instance of the interface
IterativeStrategy, specifies the control method adopted in the solution, and is respon-
sible for the iterative predictor-corrector strategy defined in the algorithm of Fig. C.23.
Among the implemented control methods there are the load control, displacement control
(Batoz and Dhatt, 1979), different arc-length controls (Feng et al. (1996), Riks (1979),
Ramm (1981), Crisfield (1981) and Crisfield (1983)), and the generalized displacement
control (Yang and Shieh, 1990).

StandardNewtonRaphson

-assembler: Assembler
-is: IterativeStrategy

+execute()

�interface�
Step

�inteface�
Assembler

�inteface�
IterativeStrategy

-assembler

0..1

-is

0..1

Figure C.26: Class StandardNewtonRaphson

The implementation of the solution process for non-linear problems described in Fig. C.23
is resumed by the sequence diagram of Fig. C.27. The class Solution (i.e., the inherited
class StaticEquilibriumPath in case of a static non-linear problem) initiates a loop over
the steps of the incremental process while the method execute() triggers the iterative pro-
cess for each step. The tangent stiffness matrix is provided5 by the Assembler, an instance
of which is contained in the class StandardNewtonRaphson (Fig. C.26). Once the tan-
gent stiffness matrix has been obtained, the method getXPandXQ() allows to evaluate the
incremental values {∆XP}kn and {∆XQ}kn of the state variable; the IterativeStrategy
is then solicited to return the predicted value of the load factor increment at the first
iteration (getPredictor()), or its correction for the other iterations (getCorrector()).

5 This procedure, and the one for the evaluation of the vector of nodal forces equivalent to internal
stresses, will be discussed in details in Appendix C.5.
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The updating of both the load factor and the nodal parameters vector is performed by
the method assignStepState(...), that receives as an input the evaluated load factor
increment. Finally, the vector of residual forces is calculated using the vector of nodal
forces equivalent to internal stresses, and the convergence is checked.

getIncrementalCuu()

[Kt]kn−1

getXPandXQ()

{∆XP }kn and {∆XQ}kn

getPredictor()

∆λkn predictor

getCorrector()

∆λkn corrector

assignStepState(lf)

getFp()
{F}kn

check convergence {Q}kn = λkn {P} − {F}kn

execute()

Solution Step Assembler IterativeStrategy

[iteration > 1]

alt

[iteration 1]

loop

[iteration n]

loop

[step k]

Figure C.27: Non-linear solution sequence diagram

As it can be observed in the class and sequence diagrams exposed in this section, the
module Solution implemented in the software is highly modular, allowing an easy com-
bination between different incremental methods and iterative strategies for the solution of
various kind of static, dynamic, linear and non-linear problems. Furthermore, it is empha-
sized that this module exhibits no direct connection with a peculiar numerical method or
constitutive model, since the only contact with the other parts of the software is through
the methods getIncrementalCuu() and getFp() of the interface Assembler. This aspect
allows the use of this module for the solution of different problems independently on the
peculiar numerical methods and constitutive models adopted in the analysis.
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C.5 Assembly of the tangent stiffness matrix and of
the internal forces vector

The procedure allowing to mount the tangent stiffness matrix and the vector of inter-
nal forces appearing in Eq. (C.3) is managed by the classes that implement the inter-
face Assembler. In the INSANE system each numerical method is characterized by a
class that implement Assembler. Here attention is focused on the classes FemAssembler,
for the finite element method, MeshfreeAssembler, for meshfree methods based on the
standard Gauss integration, and SmoothedMeshfreeAssembler, for the smoothed point
interpolation methods (Fig. C.28).

�inteface�
Assembler

FemAssembler

MeshfreeAssembler

SmoothedMeshfreeAssembler

Figure C.28: Interface Assembler

This procedure is resumed in the following sequence diagrams, for a finite element
model (Fig. C.29), for a meshfree model based on the standard Gauss integration (Fig. C.31),
and for a smoothed point interpolation model (Fig. C.32) As pointed out by the diagrams,
the entire process is triggered in the three cases by the class Solution; as already discussed
for the diagram of Fig. C.27, the class Solution initiates a loop over the steps of the in-
cremental process, while its method execute() triggers the iterative process for each step.
For each iteration n and each step k, the implementation of the interface Assembler is so-
licited to provide the tangent stiffness matrix [Kt]kn−1 (getIncrementalCuu()). Each one
of the classes FemAssembler, MeshfreeAssembler, and SmoothedMeshfreeAssembler (as
well as the classes representing the further numerical methods not listed here), contain
methods that allow to assemble the global stiffness matrix, making use of the contribu-
tions of the “elements” composing the discrete model (Eq. (C.4)). As discussed before,
here the term element is used in a wide sense, since it may refer to the finite elements
of a finite element model, to the quadrature cells of a meshfree method, the boundary
elements and internal cells of a boundary element model, or the smoothing domains of a
smoothed point interpolation meshfree method.

In case of a finite element model (Fig. C.29), the class FemAssembler initiates a
loop over the finite elements composing the discrete model, i.e., the instances of the class
Elements, asking the stiffness matrix of each one of them with the call getIncrementalCuu().
Such object is evaluated by the numerical integration of Eq. (C.4), that can be expressed
schematically as the following sum over the integration points

[Kt]el =
∑
ip

Wip

(
[B]T [Êt][B]

)
ip
Jip gip (C.8)
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where Wip is a weighting factor, Jip the Jacobian representing the integration domain
transformation, and gip a certain geometrical property evaluated at the integration point.
The abstract class ProblemDriver (called by the method getIncrementalC(Element
e)) manages the integration procedure, through the subclass PhysicallyNonLinear (Sec-
tion C.5.1). A basic sketch of the integration procedure for a physically non-linear problem
is represented in Fig. C.30. In order to perform the numerical integration illustrated in
Fig. C.30, the class PhysicallyNonLinear solicitates each integration point, represented
by an instance of the abstract class Degeneration (Section C.5.2), to return the value of
the tangent constitutive operator, through the method mountCt().

1 begin
2 Initialize the element tangent stiffness matrix [Kt]el;
3 foreach integration point ip do
4 Mount the kinematical operator [B]ip ;
5 Mount the tangent constitutive operator [Êt]ip ;
6 Evaluate the weighting factor Wip ;
7 Evaluate the Jacobian of the element transformation Jip ;
8 Evaluate the geometrical properties gip;
9 Perform the product Wip

(
[B]T [Êt][B]

)
ip
Jip gip ;

10 Add its value to the element tangent stiffness matrix;
11 end
12 end

Figure C.30: Integration algorithm for physically non-linear problems - FEM

As illustrated in Fig. C.29, an analogous procedure is repeated in order to mount the
vector {F}kn of nodal forces equivalent to internal stresses, for each step k and iteration
n. As for the tangent stiffness matrix, also this object is evaluated considering the con-
tribution of the list of “elements” composing the discrete model, each one calculating
numerically the integral of Eq. (C.5) as

{F}el =
∑
ip

Wip

(
[B]T{σ}

)
ip
Jip gip (C.9)

For a meshfree method based on the standard Gauss integration the procedure for
the assembly of the stiffness matrix and the vector of nodal forces equivalent to internal
stresses is depicted in Fig. C.31. As it can be observed, these objects are mounted using
the contribution of each support domain. The class MeshfreeAssembler executes three
nested loops, over each integration domain (instance of class IntegrationDomain, de-
scribed in Appendix C.3), over each integration cell belonging to the selected integration
domain (instance of class IntegrationCell, described in Appendix C.3), and finally over
each integration point contained in the selected integration cell (as for the FEM, each
integration point is an instance of the class Degeneration). The object Degeneration
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contains an instance of the class SupportDomain (Appendix C.3), representing the support
domain at that integration point, which provides to the assembler the tangent stiffness
matrix for the set of support nodes through the method getIncrementalC(). The in-
tegration strategy is different with respect to the one of the standard FEM depicted in
Eq. (C.8). In this case the contributions to the global stiffness matrix are evaluated for
each integration point individually, using the following equation

[Kt]ipSd = Wip

(
[B]T [Êt][B]

)
ip
Jip gip (C.10)

Each term [Kt]ipSd embeds the coefficients for the numerical integration, depending on the
characteristics of the integration cell; the summation over the integration points belonging
to the same cell is then implicit, and is performed as the support domain matrix is
mounted in the global one. Making an analogy with the FEM, each support domain
can be considered as a finite element, i.e., a set of nodes for which the stiffness matrix is
evaluated. The operation depicted in Eq. (C.10) is performed by an inherited class of Pro-
blemDriver, MeshfreeSolidMech for a linear elastic problem or PhysicallyNonlinear-
MeshfreeSolidMech for a physically non-linear problem, through the method getIncre-
mentalC(SupportDomain sd, IntegrationCell intCell). At this point the procedure
is analogous to the one depicted in Fig. C.30, except for the absence of the loop over the
integration points.

In case of a smoothed point integration method, the procedure for the assembly of the
stiffness matrix and the vector of nodal forces equivalent to internal stresses is depicted
in Fig. C.32, and is more similar to the one of the standard FEM than to the one de-
scribed above for a meshfree method with standard Gauss integration. In this case the
class SmoothedMeshfreeAssembler perform a single loop over the smoothing domains,
instances of the class SmoothingDomain (inherited from IntegrationDomain), each one
provides its stiffness matrix [K(pk)]Sd expressed in Eq. (4.57), according to the following
expression

[K(pk)]Sd = Ak[B̃(pk)]T [Ê(pk)][B̃(pk)] gpk (C.11)

where, with respect to the expression of Eq. (4.57), the presence of a factor gpk containing
geometrical informations of the smoothing domain (the thickness, for example) is made
explicit, since this objects is not embedded in the others depicted in Eq. (C.11). The
operation depicted in Eq. (C.11) is performed by an inherited class of ProblemDriv-
er, SmoothedPim for a linear elastic problem or PhysicallyNonlinearSmoothedPim for
a physically non-linear problem, through the method getIncrementalC(SupportDomain
sd). The operation perfomed for the evaluation of Eq. (C.11) is simpler than the one
depicted in Fig. C.30, since there in no need for a loop over the integration points, and since
the smoothed kinematical operator has been already evaluated during the initialization
phase of the discrete model (Appendix C.3).
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[Ê
t
]

m
ou

nt
C

t(
)

[Ê
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C.5.1 The abstract class ProblemDriver

The partial structure of subclasses of ProblemDriver is depicted in Fig. C.33, where
the methods used in the previous section are also represented. The existent classes
Parametric and PhysicallyNonLinear were originally implemented in order to repre-
sent the numerical integration procedures for parametric finite elements, in linear elas-
ticity and in physically non-linear problems, respectively. Further problems are managed
by other subclasses, devoted to the evaluation of the geometrical tangent stiffness in a
geometrically non-linear problem, or the load tangent stiffness matrix in a problem with
non-conservative loads (the so-called follower loads), for example. The existent classes
devoted to the representation of the EFG are not illustrated in Fig. C.33, however, they
are an extention of the class Parametric. In order to allow the use of the smoothed point
interpolation methods treated in this manuscript, as well as other meshfree methods, it
was necessary to expand the structure of the ProblemDriver class, adding the classes
MeshfreeSolidMech and PhysicallyNonlinearMeshfreeSolidMech devoted to the rep-
resentation of linear elastic and physically non-linear meshfree methods based on the
standard Gauss integration, and the classes SmoothedPim and PhysicallyNonlinear-
SmoothedPim devoted to the representation of linear elastic and physically non-linear
smoothed point interpolation methods.

�abstract class�
ProblemDriver

�abstract class�
SolidMech

Parametric

+getC(Element e)

PhysicallyNonLinear

+getIncrementalC(Element e)
+getF(Element e)

MeshfreeSolidMech

+getC(SupportDomain sd, IntegrationCell
intCell)

SmoothedPim

+getIncrementalC(SmoothingDomain sd)

PhysicallyNonlinearMeshfreeSolidMech

+getIncrementalC(SupportDomain sd, Inte-
grationCell intCell)
+getF(SupportDomain sd, IntegrationCell
intCell)

PhysicallyNonlinearSmoothedPim

+getIncrementalC(SmoothingDomain sd)
+getF(SmoothingDomain sd)

Figure C.33: The ProblemDriver class
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C.5.2 The abstract class Degeneration

The abstract class Degeneration (similar to the class GaussPoint originally defined
by Menétrey and Zimmermann (1993)) represents the degeneration of a certain solid
model into a point. Each object of the class Degeneration is composed by a list of
material points (instances of the class MaterialPoint, that represent, for example, a
certain number of points discretizing a beam cross section) and by a Representation,
that represents the integration point itself (with coordinates and weighting factor Wip).
Among the different kinds of degenerations, it is pointed out the presence of the class
PrescribedDegeneration, which geometrical characteristics are explicitly specified (e.g.,
the thickness for a plane problem), and the class CrossSection, which characteristics
depend on the set of material points discretizing the section of a beam.

�abstract class�
Degeneration

-materialPoints: ArrayList<MaterialPoint>
-representation: Representation

+getGeometricProperties()
+mountC()
+mountCs()
+mountCt()

MaterialPoint

Representation

PrescribedDegeneration

CrossSection

-materialPoints

0..*
-representation

1

Figure C.34: The Degeneration class

The object Degeneration is responsible for returning to the ProblemDriver its con-
tribution to the numerical integration expressed in Eq. (C.8). To do this, it is asked to
mount the constitutive operator (initial, by the method mountC(), secant, by the method
mountCs() or tangent, by the method mountCt()) evaluated at the integration point,
which value is solicitated to an instance of the class ConstitutiveModel, illustrated in
the following section.

C.6 Constitutive models framework

As pointed out by the sequence diagrams of Figs. C.29, C.31 and C.32, the main role
of the constitutive models framework is to provide the expressions of the constitutive
operator (initial Ê or Ê , secant ÊS or ÊS, tangent Êt or Ê t) and of the vector of internal
stresses (σ or Σ). Before proceeding with the description of the implementation strategy
adopted for the micropolar models of Chapter 3, the main characteristics of the original
framework for classic media implemented by Penna (see, e.g., Penna (2011) or Gori et al.
(2017a)) are briefly recalled.

The root structure of the original framework is depicted in Fig. C.35. Once all
the necessary informations like kind of analysis and material properties, for example,
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have been provided, the abstract class ConstitutiveModel is able to return the con-
stitutive operator (in all its different approximations) and the internal stresses, through
the methods mountC() (initial operator), mountCs() (secant operator), mountCt() (tan-
gent operator), and mountDualInternalVariableVector(). Different classes may ex-
tend the ConstitutiveModel, overriding the aforementioned methods in order to obtain
a proper constitutive model (like the class LinearElasticConstitutiveModel for lin-
ear elastic constitutive models depicted in Fig. C.35). The focus here is on the class
UnifiedConstitutiveModel and on the inherited classes UCMMultipleLoadingFunction
and UCMSingleLoadingFunction. The first one extends the methods of the class Con-
stitutiveModel devoted to mount the initial and secant constitutive operators and the
vector of internal stresses. The class UCMMultipleLoadingFunction extends the method
mountCt() in order to represent multidissipative models (i.e., the ones that can be rep-
resent in terms of Eq. (2.12)), while the class UCMSingleLoadingFunction focuses on
monodissipative models (i.e., the ones that can be represent in terms of Eq. (2.13)). De-
tails regarding these classes, together with explicative code blocks, have been provided by
the authors in Gori et al. (2017a) and will not be repeated here.

�abstract class�
ConstitutiveModel

+mountDualInternalVariableVector(. . . )
+mountC(. . . )
+mountCs(. . . )
+mountCt(. . . )
+update()

LinearElasticConstModel

UnifiedConstitutiveModel

UCMSingleLoadingFunction

UCMMultipleLoadingFunction

UnifiedConstitutiveModelFilter

-filter
1

Figure C.35: Abstract Class ConstitutiveModel

As it can be observed in Fig. C.35, the class UnifiedConstitutiveModel possesses
an instance of the class UnifiedConstitutiveModelFilter. This is the superclass of
a family of classes called filters, each one devoted to the representation of a peculiar
constitutive model. Indeed, while the objects UCMMultipleLoadingFunction and UCM-
SingleLoadingFunction define the structure of constitutive operator equation (Eq. (2.12)
and Eq. (2.13)), the elements that allow to mount the tangent operator are provided by
the class UnifiedConstitutiveModelFilter. Such class possesses methods that define
the loading functions and their gradients (getLoadingFunctionPotential() and get-
HardeningSofteningPotential()), the directions of degradation (getInelasticPoten-
tial()), as well as the expressions of the secant constitutive operator (getSecantTen-
sor()), as it can be observed in Fig. C.36.

The properties of the framework that has been briefly exposed here, have been widely
discussed by the author in Gori et al. (2017a). In that publication specific emphasis has
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UnifiedConstitutiveModelFilter

+getSecantTensor(. . . )
+getInelasticPotential(. . . )
+getLoadingFunctionPotential(. . . )
+getHardeningSofteningPotential(. . . )
+update()

Figure C.36: Class UnifiedConstitutiveModelFilter

been given to the fact that the use of tensor objects for the representation of constitutive
models allowed to obtain a framework for constitutive model that is highly modular and
easy to expand, independent on the adopted numerical method, and independent on the
peculiar analysis model. The modularity and the expandability can be easily understood
considering the underlying theory discussed in Section 2.2.2, that is exactly reproduced
with the classes UnifiedConstitutiveModel and UnifiedConstitutiveModelFilter.
The independence on the numerical method and on the analysis model are due to the use
of tensor-objects; the result is a set of constitutive models that can be used with different
methods (like as the finite element method, the boundary element method, or different
meshfree methods) and analysis models (like as plane-stress or plane-strain) without re-
quiring any modification of the framework. The objective of this section is to show that
such framework can be also made independent on the adopted continuum model. More
specifically, it will be shown that the peculiar structure of the framework allows to in-
troduce different continuum models (in this case the micropolar model) with minimum
implementation efforts.

In this section it has been stated that the class UCMSingleLoadingFunction is able
to represent the tangent constitutive operator for monodissipative classic media, the one
expressed in Eq. (2.13). It has been also stated that such equation is represented in the
code with tensor objects, in a form that is close to its mathematical expression. Since
the tangent constitutive operator for monodissipative micropolar media (E tijk` = ESijk` −
1/z (Xij Yk`), Eq. (3.118)) presents a tensorial expression that is formally identical to the
one of the tangent operator for classic media (Et

ijk` = ES
ijk`−1/z (xij yk`), Eq. (2.13)), also

this expression can be represented by the class UCMSingleLoadingFunction with the same
code line tangentOp = secantOp.sub3((x.ijVECkl(y)).scale(1/z)), without requir-
ing any modification. The only difference between these two equations is the dimension of
the involved tensors. However, since the methods of the class UCMSingleLoadingFunction
depend only on the order of the tensors and not on their size, such class is able to represent
both the continuum models. Though this case is not investigated here, the same code
could be used also for other continuum models, as long as their tangent constitutive op-
erator can be expressed in a form analogous to the one of Eq. (3.118). The compatibility
between Eqs. (2.12) and (3.118) is guaranteed by the compact tensorial representation for
micropolar media discussed in Section 3.3.3. Without this representation, the structure
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of the classes ConstitutiveModel and UnifiedConstitutiveModel originally conceived
for classic media, couldn’t have been used to include micropolar models. A specific set of
classes should have been created for each different continuum model undermining the mod-
ularity and expandability of the framework. Since the class UCMSingleLoadingFunction
is able to deal also with the micropolar formulation, the definition of proper constitutive
models for micropolar media is a task of the class UnifiedConstitutiveModelFilter
and its inherited classes.

A partial structure of the filters classes is illustrated in Fig. C.37. As for the class
UnifiedConstitutiveModel, also in this case a distinction is made between multidissipa-
tive and monodissipative models, represented by the classes MLFConstitutiveModelFil-
ter and SLFConstitutiveModelFilter, respectively; as in Section 3.3 the sole monodis-
sipative micropolar models have been accounted for, attention will be focused only on the
latter. Such class is extended by the class ElastoPlasticConstitutiveModelFilter,
devoted to the representation of elasto-plastic models, and by the class Isotropic-
ConstitutiveModelFilter, devoted instead to the representation of scalar-isotropic dam-
age models, as the ones presented in Section 2.2.2.1. These two classes have been illus-
trated in Gori et al. (2017a) and, since there has been no need to modify them in order
to include micropolar models, they will not be discussed here.

�abstract class�
ConstitutiveModelFilter

UnifiedConstitutiveModelFilterMLFConstitutiveModelFilter

SLFConstitutiveModelFilter

ElastoPlasticConstitutiveModelFilter

IsotropicConstitutiveModelFilter

SLFICMSIDamageMicropolarMazars A

SLFICMSIDamageMicropolarMazars B

SFLICMMicropolarMarigo

SLFEPCMMicropolarVonMises

Figure C.37: Class organization of the micropolar filters

Three specific micropolar models can be found in Fig. C.37: the classic J2 elasto-plastic
micropolar model proposed by de Borst (1993), represented by the class SLFEPCMMicropolarVonMises,
and two scalar damage models proposed by the author in Gori et al. (2017c,b) and ex-
pressed in Eqs. (3.141), (3.143) and (3.146), represented, respectively, by the classes
SLFICMMicropolarMarigo, SLFICMSIDamageMicropolarMazars B and SLFICMSIDamage-
MicropolarMazars A. In order to expose some implementation details, attention is fo-
cused on the classes that allow to represent the extention to the micropolar theory of
the classic Marigo model discussed in Section 3.3.4. These classes allow to compose the
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expression
Ê t = (1−D) Ê − 1

H∗
(X ⊗ Y ) (C.12)

where the direction of degradation X and the gradient of the loading function Y are
expressed by

X = −Ê · Γ, Y = ∂Γeq
∂Γ (C.13)

The secant constitutive operator ÊS = (1−D) Ê is provided by the method getSecant-
Tensor(...) of the class IsotropicConstitutiveModelFilter, using the same code
block developed for classic media already discussed in Gori et al. (2017a). The other
terms appearing in Eq. (C.12) can be obtained with the methods of the class SLFICM-
MicropolarMarigo, a part of which is reported in Fig. C.38. The method getInelas-
ticPotential(...) returns the direction of degradation X = −Ê · Γ, getLoading-
FunctionPotential(...) returns the gradient of the loading function Y = ∂Γeq/∂Γ,
that for the micropolar Marigo model is expressed by Y = (Ê · Γ)/(Γeq E), and get-
HardeningSofteningPotential(...) returns the derivative of the damage law 1/H∗ =
∂D(Γeq)/∂Γeq. The definition of the equivalent deformation measure is also a fundamental
operation for the formation of the tangent constitutive operator (its use can be seen at line
16 of Fig. C.38). Such quantity is provided by the method getEquivalentStrain(...).
For the considered model, the evaluation of the strain measure Γeq =

√
2ψ0/E (Eq. (3.141)),

with 2ψ0 = γ · (Â · γ) + κ · (Ĉ · κ), is illustrated in the code block of Fig. C.39.
The class SLFICMMicropolarMarigo, as well as the other filters classes, possesses a

number of further methods for its internal operations, like a method for the updating of
the constitutive variables during the analysis (updateConstitutivesVariables(...)),
or a method for the evaluation of the state of the loading function (unLoadLaw(...)),
which have been discussed in the suggested references, together with the other classes
appearing in the code blocks of Figs. C.38 and C.39, like Material and AnalysisModel.

The operations that allow to mount the vector of internal stresses {Σ} have not
been described here, since there haven’t been any modifications with respect to the
existent implementation for classic media. This emphasize again the generality of a
framework based on tensor object. The class responsible for the assembly of the in-
ternal stresses is the UnifiedConstitutiveModel class. In case of models with elas-
tic degradation, such class provide the internal stresses through the code line stress =
(this.mountCs(...)).mul(strain), which is able to represent both the expressions for
classic (σ = ÊS · ε) and micropolar media (Σ = ÊS · Γ).

The procedures described in this section have shown a strategy for the implemen-
tation of micropolar models in an existing framework for classic media. It has been
emphasized that the use of tensor objects for the representation of constitutive models
originally adopted by the authors in Gori et al. (2017a) has been fundamental for the
inclusion of micropolar models with minimum implementation efforts. The adoption of
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1 public Tensor getInelasticPotential ( AnalysisModel am , Material mat ,
2 HashMap <Object , Object > cv) {
3 Tensor generalizedElasticTensor = new Tensor (am
4 . getDualInternalVariablesOperatorTensor (mat. getPs ()));
5 Tensor generalizedStrainTensor = new Tensor ((( Tensor ) cv
6 .get( SLFICMMicropolarLemaitreChaboche . GENERALIZED_STRAIN_TENSOR )));
7 Tensor m = new Tensor ( generalizedElasticTensor
8 . ijkldotkl ( generalizedStrainTensor ));
9 m. scale ( -1.0);

10 return m;
11 }
12
13 public Tensor getLoadingFunctionPotential ( AnalysisModel am , Material mat ,
14 HashMap <Object , Object > cv) {
15 Tensor generalizedElasticTensor = am.
16 getDualInternalVariablesOperatorTensor (mat. getPs ());
17 Tensor generalizedStrainTensor = (( Tensor ) cv
18 .get( SLFICMMicropolarLemaitreChaboche . GENERALIZED_STRAIN_TENSOR ));
19 Tensor generalizedStressTensor = generalizedElasticTensor
20 . ijkldotkl ( generalizedStrainTensor );
21 double eqvs = ( Double ) cv.get( SLFICMMicropolarLemaitreChaboche
22 . EQUIVALENT_STRAIN );
23 double e0 = (( LemaitreChabocheMicropolarMaterial ) mat)
24 . getMaterialValues ( Material . ELASTICITY );
25 Tensor n;
26 if (eqvs > 0) {
27 n = new Tensor ( generalizedStressTensor );
28 n. scale (1.0 / (eqvs * e0 ));
29 } else {
30 n = new Tensor (2, 6);
31 }
32 return n;
33 }
34
35 public Tensor getHardeningSofteningPotential ( AnalysisModel am ,
36 Material mat , HashMap <Object ,
37 Object > cv) {
38 Tensor h = new Tensor (0);
39 double dwdk = (( Double ) cv
40 .get( SLFICMMicropolarLemaitreChaboche . TDAMAGE ));
41 h. setElement (0, 0, dwdk );
42 return h;
43 }

Figure C.38: Methods of the class SLFICMMicropolarMarigo

1 protected double getEquivalentStrain ( Tensor generalizedStrainTensor ,
2 AnalysisModel am , Material mat) {
3 Tensor generalizedElasticTensor = new Tensor (am
4 . getDualInternalVariablesOperatorTensor (mat. getPs ()));
5 double e0 = (( LemaitreChabocheMicropolarMaterial ) mat)
6 . getMaterialValues ( Material . ELASTICITY );
7 Tensor aux = generalizedStrainTensor . ijdotij ( generalizedElasticTensor
8 . ijkldotkl ( generalizedStrainTensor ));
9 double value = Math.sqrt(aux. getTensor (). getElement (0, 0) / e0 );

10 return value ;
11 }

Figure C.39: Method getEquivalentStrain(...) of SLFICMMicropolarMarigo
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a compact representation for micropolar models as the one described in Section 3.3.3
allowed to obtain constitutive equations formally identical to the ones for the classic me-
dia, resulting in the use of the same numerical structure for both the kind of continuum
models. As it has been shown, only a few classes are needed to define a peculiar model;
for example, if a developer had to implement a new micropolar scalar damage model,
with its own equivalent deformation measure, he should only need to extend the class
IsotropicConstitutiveModelFilter with a new class overriding the methods of the
superclass in order to characterize the new constitutive model. A practical application of
the framework will be shown in the following section, using two numerical simulations.

In the following two sections the classes AnalysisModel and Material are presented,
since they have a strong relation with the constitutive models framework.

C.6.1 The AnalysisModel class

The abstract class AnalysisModel is devoted to the representation inside the code of the
different problems that can be analized, i.e., three-dimensional, plane-stress, plane-strain,
etc. Its inherited classes characterize each problem in terms of number of degrees of
freedom, kind and number of internal variables (i.e., strains) and dual internal variables
(i.e., stresses). In this context, it is emphasized only its role in relation to the constitutive
models framework. As already discussed in the previous sections, a difference exists in the
representation of objects inside the proposed constitutive models framework and outside
of it. The constitutive relations are expressed in the framework by means of tensor objects,
with the advantages in terms of modularity and generalization discussed in the previous
section. Outside the framework, as in conventional FEM codes, a matricial representation
is adopted, for operations like numerical integration and assembly of stiffness matrices.

The exchange of informations between the framework, that works with tensorial quan-
tities, and the other parts of the code, that work with matricial objects, is guaranteed
by the classes that inherit from AnalysisModel. Such classes indeed, are able to convert
the tensorial representation of an operator into its Voigt expression, and vice-versa. The
method getActiveDualInternalVariablesVector(...), for example, is able to convert
the second-order stress tensor to its Voigt expression; for a plane-stress analysis model
this results in the conversion

σ =


σxx σxy 0
σyx σyy 0
0 0 0

→ {σ} =


σxx

σyy

σxy

 (C.14)

In an analogous way, the method reduceToMatrix(...), converts the fourth-order con-
stitutive operator tensor into its Voigt expression; again, for a plane-stress problem, this
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results in a 3× 3 matrix as

Ê→ [Ê] = E

1− ν2


1 ν 0
ν 1 0
0 0 1− ν

 (C.15)

Among its different tasks, the AnalysisModel is also responsible for the generation of the
matrix containing the approximation functions of the state variable of the problem and
of the matrix representing the kinematical operator, both in its standard and smoothed
version, which are created according to the specified model.

A partial structure of this system of classes is represented in Fig. C.40. The original
implementation in the INSANE system of the micropolar continuum (Fuina, 2009) was
made before the introduction of the tensor-based constitutive models framework; hence,
a new set of classes have been introduced, in order to guarantee the compatibility with
the new strategy for constitutive modelling. In order to allow the use of the new meshfree
models implemented in this work, a new class for classic media in plane stress has been
introduced, which inherits from the existing PlaneStress class.

�abstract class�
AnalysisModel

�abstract class�
Plane

PlaneStress

PlaneStressMeshfree

�abstract class�
GeneralizedContinuum

�abstract class�
Micropolar

�abstract class�
MicropolarPlane

MicropolarPlaneStress

MicropolarPlaneStressMeshfree

Figure C.40: Class AnalysisModel

C.6.2 The Material class

The classes that inherit from the superclass Material are responsible for the representa-
tion of different materials inside the software; as it can be observed in Fig. C.39, one of
the roles of such class is to provide the values of the material moduli, through the method
getPs(), that can be used, for example, by an instance of the class AnalysisModel to
mount a constitutive operator. Elasto-plastic materials and materials with damage must
implement the interfaces Hardenable and Damageable, respectively. Focusing on the lat-
ter, such interface forces a class to implement the methods getDamage(...), that should
return the damage level for a certain deformation, and getInelasticModulus(...),
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that should return instead the variation of the damage for a certain deformation; as
pointed out in Gori et al. (2017a), both methods are called within the inherited classes
of ConstitutiveModelFilter. Such methods call analogous methods contained in the
abstract class InelasticLaw, an instance of which may be contained in an class that
inherits from Material. An exponential damage law like the one of Eq. (2.33), for ex-
ample, is represented inside the code by the class DamageLawExponential, that inherits
from InelasticLaw. In this case, the evaluation of the damage level with the method
getDamage(...) is exposed in Fig. C.41.

1 public double getDamage ( double eps) {
2 double w = 0.0;
3 if (eps > 0.0) {
4 if (eps <= kappa ) {
5 w = 0.0;
6 }
7 if (eps > kappa ) {
8 w = 1 - ( kappa / eps) * (1.0 - alpha + alpha * (Math.exp(- betha * (eps - kappa ))));
9 }

10 }
11 if (eps <= 0.0) {
12 w = 0.0;
13 }
14 if ( this . getDamageThreshold () < w) {
15 this . setRateThreshold ( this . getRateThreshold () / w);
16 w = this . getDamageThreshold ();
17 }
18 return w;
19 }

Figure C.41: Method getDamage(...) of DamageLawExponential

In order to allow the use of the new elastic-degrading micropolar model (Section 3.3)
and of the new meshfree methods (Chapter 4), there has been no need to modify the
original implementation for micropolar models of the class Material ((Fuina, 2009)).
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