
 
 

UNIVERSIDADE FEDERAL DE MINAS GERAIS 

PROGRAMA DE PÓS-GRADUAÇÃO EM NEUROCIÊNCIAS 

 

 

 

ISABELLA STARLING ALVES  

  

  

  

 

NONSYMBOLIC AND SYMBOLIC MAGNITUDES PROCESSING IN CHILDREN WITH 

MATHEMATICAL DIFFICULTIES 

 

 

 

 

 

 

 

  

  

  

 

Belo Horizonte 

2017 



 
 

ISABELLA STARLING ALVES 

  

  

NONSYMBOLIC AND SYMBOLIC MAGNITUDES PROCESSING IN CHILDREN WITH 

MATHEMATICAL DIFFICULTIES 

 

 

 

 

 

 

Thesis committee: 

 

                                                                           Professor Renato Bortoloti (Advisor), 

Professor Vitor Geraldi Haase (Co-advisor), 

Professor Antônio Jaeger, 

Professor Edward Hubbard 

 

   

 

 

Submitted in partial fulfillment of the 

requirements for the degree of 

Master in Neurosciences 

  

UNIVERSIDADE FEDERAL DE MINAS GERAIS 

2017 



 
 

 

       
      
       

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
       
       
   

             
  

   
 043       Alves, Isabella Starling.  
             Nonsymbolic and symbolic magnitudes processing in children with           

                 mathematical difficulties [manuscrito] / Isabella Starling Alves. – 2017.  
    
             85 f. :  il. ; 29,5 cm.          
  
             Orientador: Professor Renato Bortoloti. Co-orientador: Professor Vitor            
                 Geraldi Haase.  
                          Dissertação (mestrado) – Universidade Federal de Minas Gerais, Instituto de        
                 Ciências Biológicas.  
    
            1. Neurociências - Teses. 2. Dificuldade de aprendizagem - Teses. 3.     
      Desempenho nas crianças. 4. Matemática. I. Bortoloti, Renato. II. Haase, Vitor  
                 Geraldi. III. Universidade Federal de Minas Gerais. Instituto de Ciências          
                 Biológicas. IV. Título.                                                                                               
    
                                                                                                    CDU: 612.8  
  

 



i 
 

 

Table of Contents 

  

Abbreviations and Acronyms ....................................................................................................ii 

Summary of Tables ................................................................................................................. iii 

Summary of Figures................................................................................................................. iv 

Acknowledgements ................................................................................................................... v 

Abstract ................................................................................................................................... vi 

Resumo .................................................................................................................................. vii 

1. Introduction .......................................................................................................................... 1 

1.1.References  ..................................................................................................................... 3  

2. Study I .................................................................................................................................. 5 

2.1.The present study  ......................................................................................................... 12 

2.2. Method......................................................................................................................... 13 

      2.2.1. Participants .......................................................................................................... 13 

      2.2.2. Materials ............................................................................................................. 14 

   2.2.2.1. Raven’s colored progressive matrices ............................................................ 14 

   2.2.2.2. Brazilian school achievement test .................................................................. 14 

   2.2.2.3. Basic arithmetic operations ............................................................................ 15 

   2.2.2.4. Nonsymbolic magnitude comparison ............................................................. 16 

   2.2.2.5. Symbolic magnitude comparison ................................................................... 16 

      2.2.3. Procedures ........................................................................................................... 17 

    2.3. Results ......................................................................................................................... 18 

      2.3.1. Nonsymbolic magnitude comparison ................................................................... 18 

      2.3.2. Symbolic magnitude comparison ......................................................................... 20 

      2.3.3. Number processing and math achievement ........................................................... 23 

    2.4. Discussion .................................................................................................................... 25 

    2.5. References ................................................................................................................... 31 

3. Study II ............................................................................................................................... 43 

3.1.The present study  ......................................................................................................... 51 

    3.2. Method......................................................................................................................... 52 

       3.2.1. Participants ......................................................................................................... 52 

       3.2.2. Materials ............................................................................................................ 53 

    3.2.2.1. Arabic number transcoding task .................................................................... 53 

    3.2.2.2. Nonsymbolic magnitude comparison ............................................................ 54 

    3.2.2.3. Two-digit number comparison ...................................................................... 54 

        3.2.3. Procedures ......................................................................................................... 56 

    3.3. Results ......................................................................................................................... 56 

        3.3.1. Nonsymbolic comparison ................................................................................... 56 

        3.3.2. Two-digit number comparison ........................................................................... 58 

        3.3.3. Number Processing and math achievement ......................................................... 59 

    3.4. Discussion .................................................................................................................... 61 

    3.5. References ................................................................................................................... 68 

4. General Dicussion ............................................................................................................... 78 

     4.1. References ................................................................................................................... 83 

 

 

 



ii 
 

 

Abbreviations and Acronyms 

 

ANS     Approximate number system 

DD     Developmental Dyscalculia 

MLD     Mathematical Learning Disability 

MD              Mathematical Difficulties  

TA     Typical achievement 

TDE     Brazilian School Achievement Test 

RT     Reaction time  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

 

Summary of Tables 

 

Table 2.1. Descriptive data of the individual assessment sample …………………. 14 

Table 3.1. Descriptive data of the individual assessment sample……...……………53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

 

Summary of Figures 

Figure 2.1. Illustration of experimental tasks………………………………………. 17 

Figure 2.2. Distance effect in nonsymbolic magnitude comparison task..…………. 19 

Figure 2.3. Boxplot of nonsymbolic Weber fraction ………………………………. 20 

Figure 2.4. Distance effect in symbolic magnitude comparison task..................…....22 

Figure 2.5. Boxplot of symbolic Weber fraction........................................................ 22 

Figure 2.6. Linear regression: arithmetic and nonsymbolic Weber fraction...............24 

Figure 2.7. Linear regression: arithmetic and symbolic Weber fraction…………….25 

Figure 3.1. Nonsymbolic comparison task…………………………………………. 55 

Figure 3.2. Two-digit number comparison task..…………..………………………. 56 

Figure 3.3. Distance effect in nonsymbolic magnitude comparison task..…………. 57 

Figure 3.4. Nonsymbolic Weber fraction………… ………………………………...58 

Figure 3.5. Compatibility effect …......…………....………………………………...59 

Figure 3.6. Numerical transcoding error analysis…………………………………...61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

Acknowledgements 

 

This master thesis is a result of a research project of the Developmental 

Neuropsychology Lab – UFMG, of which I have the honor to participate since 2009. First, I 

would like to thank prof. Vitor Haase, for giving me the opportunity to learn about this 

wonderful world of neuropsychology, for always being ready to help me whenever I had 

questions on my research, and for inspiring me as a professional. I would also like to 

acknowledge prof. Renato Bortoloti, my thesis advisor, for his support and motivation with my 

writing. I am also grateful to Prof. Edward Hubbard and prof. Antônio Jaeger for being part of 

my thesis committee, and helping me to improve this work.  

I would also like to thank Ricardo and Annelise for the feedback and collaboration on 

this work, and for their friendship. To the research assistants of this project, Luana, Drielle, 

Amanda, Ana Lídia, Manu, Babi, Jéssica, Mavi, Thayane, and Ailton: thank you! This thesis 

would not exist without your help. In addition, my gratitude to my lab colleagues, in special 

Giu, Malu, Júlia, Lívia, and Dessa. Thanks to Pedro, for the inspiring words whenever I felt a 

little lost, and to my dear friends Gui, Ju, Dani, Ti, and Debs. 

I wish to express my sincere thanks to CAPES for the financial support to my research, 

and to the kids and families that took part in this study. 

At last, but not least, I acknowledge my parents and my brother for their emotional 

support and unconditional love.  

 

 

 

 

 

 



vi 
 

 

Abstract 

There is a persistent debate in the literature on the mechanisms related to specific deficits in 

Mathematical Difficulties (MD). The core deficit hypothesis states that children with MD 

present difficulties to process and manipulate nonsymbolic magnitudes. On the other hand, 

the access deficit hypothesis proposes that children with MD present intact nonsymbolic 

magnitude processing abilities, but an impaired capacity to link symbolic numbers to their 

correspondent analog representations. This master's thesis investigated the performance of 

children with MD in nonsymbolic and symbolic magnitude processing, and the association of 

these abilities to math achievement. In the first study, children with MD were compared to 

typical achievement (TA) peers in nonsymbolic and symbolic magnitude comparison tasks, 

indexed by reaction time, accuracy, distance effect and Weber fraction. Children with MD 

presented difficulties in the nonsymbolic but not in the symbolic magnitude processing. 

Finally, both symbolic and nonsymbolic magnitude processing predicted the math 

achievement of TA, but not MD children. In the second study, children with MD and TA 

were compared regarding nonsymbolic magnitude processing and two-digit number 

processing and the relationship between these abilities and arithmetic and numerical 

transcoding skills was investigated. Children with MD presented difficulties in nonsymbolic 

and two-digit number processing, and both abilities were associated to math achievement and 

numerical transcoding skills. Overall, results of the first and the second studies support the 

core deficit hypothesis, and reinforce the importance of numerical processing for math 

achievement. 

Keywords: mathematical difficulties, ANS, nonsymbolic magnitude comparison, symbolic 

magnitude comparison, distance effect, compatibility effect  
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Resumo 

Há um debate persistente na literatura quanto aos mecanismos relacionados a déficits 

específicos das dificuldades na matemática (MD). Por um lado, a hipótese do déficit central 

(core deficit) assume que crianças com MD apresentam dificuldades em processar e 

manipular magnitudes não-simbólicas. Por outro lado, a hipótese do transtorno de acesso 

propõe que crianças com MD apresentam habilidades de processamento de magnitudes não-

simbólicas preservadas, mas dificuldades em associar magnitudes simbólicas às suas 

representações analógicas correspondentes. Essa dissertação de mestrado investigou o 

desempenho de crianças com MD no processamento não-simbólico e simbólico de 

magnitudes, bem como a associação entre essas habilidades e o desempenho na matemática. 

No primeiro estudo, crianças com MD foram comparadas a pares com desempenho típico 

(TA) quanto a tempo de reação (RT), acurácia, efeito de distância e fração de Weber 

calculados em tarefas de comparação de magnitudes numéricas não-simbólicas e simbólicas. 

Crianças com MD apresentaram dificuldades no processamento de magnitudes não-

simbólicas, mas não no simbólico. Por fim, tanto o processamento simbólico de magnitudes 

quanto o não-simbólico foram preditores do desempenho na matemática em crianças com TA, 

mas não com MD. No segundo estudo, crianças com MD e TA foram comparadas quanto ao 

processamento não-simbólico de magnitudes e ao processamento de numerais com dois 

dígitos. Além disso, a relação entre o processamento numérico e as habilidades de aritmética e 

transcodificação numérica foi investigada. Crianças com MD e TA apresentaram dificuldades 

no processamento de magnitudes não-simbólicas e de números de dois-dígitos, e ambas as 

tarefas foram associados ao desempenho aritmético e na transcodificação numérica. De forma 

geral, os resultados do primeiro e do segundo estudo corroboram a hipótese do déficit central, 

e reforçam a importância do processamento numérico para o desempenho na matemática.  

 

Palavras-chave: dificuldades na matemática, ANS, comparação de magnitudes não-simbólicas, 

comparação de magnitudes simbólicas, efeito de distância, efeito de compatibilidade  
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Nonsymbolic and symbolic magnitudes processing in children with mathematical 

difficulties 

Numerical skills are highly intertwined to our daily lives, from simple activities as 

dialing a phone number, making payments, and telling the hours, to application on high 

technology. Numerical skills correlate to higher employability (Parsons & Byners, 2005) and 

greater health outcomes (Reyna & Brainerd, 2007), and play a role in a nation’s economic 

success (Hanushek, Woessmann, Jamison, & Jamison, 2008), especially on the advance of 

STEM (science, technology, engineering, and mathematics) disciplines. Thus, mathematical 

education has been a target of investments in diverse nations (White House, 2015; Ciências 

sem Fronteiras, 2016). In Brazil, in spite of its importance been recognized, the mathematical 

education is still inadequate: the frequency of students with low math achievement raised 

from 2.24% in 2011 to 4.94% in 2013 (INEP, 2016). Results from PISA (2012) indicated that 

67.1% Brazilian students presented low scores in the mathematics literacy test.  

The identification of underlying mechanisms of mathematical difficulties (MD) has 

attracted considerable research interest. Some studies suggest that an impairment in 

nonsymbolic magnitudes processing is the root of mathematical difficulties – the core deficit 

hypothesis (Piazza, et al., 2010, Mazzocco, Feigenson, & Halberda, 2011; Pinheiro-Chagas et 

al., 2014). The nonsymbolic magnitudes processing relies on the approximate number system 

(ANS), which is dedicated to representation of numbers in an analog fashion (Halberda & 

Feigenson, 2008), and allows nonsymbolic magnitude comparison, estimation and calculation 

(Dehaene, 2001).  However, the core deficit hypothesis has been called into question by some 

studies showing that children with MD present an intact ANS, and difficulties in symbolic 

number processing (De Smedt & Gilmore, 2011; Rousselle & Noël, 2007). The access deficit 

hypothesis proposes that the main cause of MD is an impairment in symbolic processing due 
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to difficulties in linking symbolic numbers to their correspondent nonsymbolic representation 

(Noël & Rousselle, 2011).  

One difficulty in analyzing the core and the access deficit hypotheses through the 

available literature is that different methods are used. Some studies present only accuracy and 

reaction time (RT) in nonsymbolic and symbolic processing tasks (e.g. Landerl, Bevan, & 

Butterworth, 2004; De Smedt & Gilmore, 2011), while others use more refined measures (e.g. 

distance effect and Weber fraction; Ashkenazi et al., 2009; Rousselle & Noël, 2007; 

Mazzocco et al., 2011; Pinheiro-Chagas et al., 2014). Another inconstancy in the literature is 

the magnitude range used in numerical processing tasks – from smaller and easier 

numerosities (from 1 to 9; De Smedt & Gilmore, 2011; Mussolin, Mejias & Noël, 2010; 

Rousselle & Noël, 2007) to larger ones (two-digit numbers; Ashkenazi et al., 2009; Mazzocco 

et al., 2011; Pinheiro-Chagas et al., 2014).  

In this thesis, the performance of children with MD in nonsymbolic and symbolic 

processing was investigated. In the first study, children with MD were compared to peers with 

typical achievement (TA) in a nonsymbolic and a symbolic magnitude processing task. In 

order to minimize the difficulty in interpreting results due to diverse indexes, RT, accuracy, 

distance effect and the Weber fraction were presented. In the second study, the nonsymbolic 

magnitude and the two-digit number processing were investigated in children with MD and 

TA. In both studies, the association between numerical processing and math achievement was 

also investigated.  

If children with MD presented impairments in nonsymbolic and symbolic number 

processing, the core deficit hypothesis would be supported. Otherwise, if children with MD 

presented difficulties only in symbolic number processing, the access deficit hypothesis 

would be corroborated. A significant association between nonsymbolic and symbolic 

magnitude processing and math achievement was expected as well.  
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Abstract 

There is a persistent debate in the literature on the mechanisms related to specific deficits in 

Mathematical Difficulties (MD). On the one hand, the core deficit hypothesis states that 

children with MD present difficulties to process and manipulate nonsymbolic magnitudes. On 

the other hand, the access deficit hypothesis proposes that children with MD present intact 

nonsymbolic magnitude processing, but an impaired capacity to link symbolic numbers to 

their correspondent magnitude representation. This study investigated nonsymbolic and 

symbolic magnitude processing in children with MD, and the relationship between these 

abilities and math achievement. We proposed a new index for symbolic magnitude 

processing, an internal symbolic Weber fraction. Children with MD presented difficulties in 

the nonsymbolic but not in the symbolic magnitude processing. Finally, both symbolic and 

nonsymbolic Weber fractions predicted the scores of TA but not MD children in addition, 

subtraction, and multiplication tasks. Results support the core deficit hypothesis.  

 

Keywords: mathematical difficulties, ANS, nonsymbolic comparison, symbolic comparison 
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Core deficit or access hypothesis: which one rules in mathematical difficulties? 

Developmental dyscalculia (DD) is a learning disorder characterized by persistent 

difficulties in mathematics, which cannot be attributed to intellectual disabilities, sensorial 

deficits, emotional and motivational reasons, or poor educational methods (Butterworth, 

2005). The prevalence of DD has been estimated between 3 to 6% of age-school children 

(Shalev, Auerbach, Manor & Gross-Tsur, 2000). 

Estimating the proper prevalence of DD is difficult, since there is no consensus on the 

best criteria for its identification. While some studies use a criterion of discrepancy between 

intelligence and math achievement scores (Lewis, Hitch, & Walker, 1994), others select a cut-

off point in standardized math achievement tests (Badian, 1983).   Besides the criteria 

diversity, different names have been used as synonyms for DD, for example Math Learning 

Disabilities (MLD; e.g. Mazzocco, Feigenson, & Halberda, 2011), Mathematical Disabilities 

(e.g. Geary, 1993), and Mathematical Difficulties (MD; e.g. Jordan, Hanich, & Kaplan, 2003). 

Mazzocco (2007) proposed a uniform terminology, with a liberal criterion (scores below the 

25th percentile in math tests) assigned to identification of MD, and a more strict criterion 

(scores below the 5th percentile in math tests) for DD or MLD. The group with DD or MLD 

presents more specific and persistent difficulties with a constitutional etiology. In the group 

with MD, however, the math achievement can be influenced by socio-economical and 

motivational factors, and might improve over academic years. The term MD will be used 

hereinafter, since it is more inclusive. 

The symptoms of MD depend on age, but a persistent difficulty in calculation is 

recurrent. Children with MD are unsuccessful to perform additions (Landerl, Bevan, & 

Butterworth, 2004; Ostad, 1997), subtractions (Landerl et al., 2004; Ostad, 1999), and 

multiplications (Berteletti, Prado, & Booth, 2014; Landerl et al., 2004). Such struggle is 

usually manifested by high reaction times (RT), low accuracy, and the use of immature 
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strategies, as finger counting (Landerl et al., 2004; Geary, 1993; Hanich, Jordan, Kaplan, & 

Dick, 2001; Siegler & Robinson, 1982). Other difficulties usually observed in MD are reading 

analog clocks (Anderson, 2008; Burny, Valcke, & Desoete, 2012), as well as comparing and 

estimating quantities (Mazzocco, et al. 2011; Pinheiro-Chagas et al., 2014). 

There are two main hypotheses to explain the distinctive difficulties of MD, the core 

deficit hypothesis and the access deficit hypothesis. The core deficit hypothesis assumes that 

MD present a deficit in the approximate number system (ANS; Piazza et al., 2010; Mazzocco 

et al., 2011). The ANS is a system dedicated to representation of magnitudes in an analog 

fashion (Halberda & Feigenson, 2008), and allows nonsymbolic comparison, estimation, and 

calculation (Dehaene, 2001). Evidences demonstrate that the ANS is spatially organized along 

a mental number line, which is oriented from left (smaller magnitudes) to right (greater 

magnitudes), and is logarithmically compressed (Dehaene, 2003; Hubbard, Piazza, Pinel, & 

Dehaene, 2005).  

The distance effect and the size effect are evidences for the mental number line 

(Moyer & Landauer, 1967; Verguts & van Opstal, 2005). The distance effect accounts for 

higher RT and lower accuracy when numerically close magnitudes are compared, in contrast 

to lower RT and higher accuracy for the comparison of numerically distant magnitudes. For 

example, it is easier to distinguish 4 from 9 (distance 5) than 4 from 6 (distance 2). The size 

effect, in turn, refers to lower RT and higher accuracy to compare small pairs of numbers, in 

contrast to higher RT and lower accuracy to compare large pairs of the same distance. For 

example, it is easier to compare 1 to 2 (small pair – distance 1) than 6 to 7 (large pair – also 

distance 1).  

The numerical representation in the mental number line is not exact and discrete, but 

noisy. Thus, each time a number is processed, an error occurs, and the representation of other 

magnitudes is activated as well – for example, when the number 5 is processed, the 
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representation for 3, 4, 6, and 7 can be also activated (Gallistel & Gelman, 2000). The ability 

to distinguish different magnitudes depends on the ratio between them, with higher accuracy 

for increasing ratios, as stated by Weber’s law, and indexed by the internal Weber fraction 

(Piazza, Izard, Pinel, LeBihan, & Dehaene, 2004). The Weber fraction accounts for the 

variability in the representation of a specific magnitude (Chesney, 2016), and the higher its 

value, the lower is the sensitivity to numerical differences, or, in other words, the worse is the 

ANS acuity (to see methods for Weber fraction calculation, see Piazza et al., 2004 and 

Halberda, Mazzocco, & Feigenson, 2008). 

The ANS is present in different species, from invertebrates (Gross, Pahl, Si, Zhu, 

Tautz, & Zhang, 2009) to fishes (Agrillo, Dadda, Serena, & Bisazza, 2008), amphibians 

(Krusche, Uller, & Dicke, 2010), birds (Garland & Low, 2014), and mammals (Jordan, 

MacLean, & Brannon, 2008; McComb, Packer, & Pusey, 1994). The processing of 

magnitudes in these species might be important to find food, run from predators, live in 

groups, and find sexual partners (McComb, Packer, & Pusey, 1994.) Hence, an evolutionary 

function is attributed to the ANS (Dehaene, 2001). In humans, there is evidence that the ANS 

is already present in fetus (Schleger et al., 2014), and that neonates can differ quantities in the 

ratio of 3:1 (Izard, Sann, Spelke, & Streri, 2009). By 5 months of age, infants can accurately 

perceive manipulations in quantities, as addition or subtraction of objects in a scene (Wynn, 

1992), and 6 month olds infants already differ quantities in the ratio of 2:1 (Xu, Spelke, & 

Goddard, 2005). Studies with infants evince that the ANS is independent of language and 

formal instruction, which is also corroborated by ethnology studies with indigenous (Gordon, 

2004; Pica, Lemer, Izard, & Dehaene, 2004).  

Pica et al. (2004) investigated the ANS in the Amazonian tribe Munduruku. In the 

Munduruku language, the numerical lexicon is restrict to small numbers, from one to five, and 

there are no words for large magnitudes. In Pica et al. study (2004), the Munduruku 
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indigenous were instructed to compare two quantities, presented as sets of 20 to 80 dots. They 

were able to discriminate the quantities accurately, even in the lack of a symbolic system for 

magnitudes greater than five.  

In spite of the innate and primitive character of the ANS, children with MD present 

low acuity in nonsymbolic magnitude comparisons (Landerl, Fussenegger, Moll, & 

Willburger, 2009; Price, Holloway, Rasanen, Vesterinen, & Ansari, 2007), estimations 

(Mazzocco et al., 2011; Mejias, Mussolin, Rousselle, Gregoire, & Noel, 2011; Pinheiro-

Chagas et al., 2014), and calculation (De Smedt & Gilmore, 2011; Pinheiro-Chagas et al., 

2014). Specially, MD children present a higher Weber fraction when compared to typical 

achievement children (TA) (Mazzocco et al., 2011; Costa et al., 2011; Olsson, Östergren, & 

Träff, 2016; Pinheiro-Chagas et al., 2014). Piazza et al. (2010), using a nonsymbolic 

magnitude comparison task, showed that Weber fractions of 10 years-old MD children were 

significantly higher when compared to TA children paired by age, but corresponded to the 

Weber fraction of 5-years olds. Our research team recently showed that MD children 

presented higher Weber fraction than TA, and did not engage the ANS in arithmetic 

operations and word problems (Pinheiro-Chagas et al., 2014). We also showed, through a 

single case study, that the Weber fraction is a stable measure, apparently insensitive to 

practice in MD children (Júlio‐Costa, Starling‐Alves, Lopes‐Silva, Wood, & Haase, 2015). 

Notwithstanding, there is no consensus on ANS impairments in children with MD (De 

Smedt & Gilmore, 2011; Kovas et al., 2009; Rousselle & Noël, 2007). The access deficit 

hypothesis proposes that a deficit in linking analog magnitudes to symbolic representations of 

number justifies the difficulties in MD, instead of ANS impairments (Noël & Rousselle 2011; 

see also De Smedt, Noël, Gilmore, & Ansari, 2013). In typical achievement, the symbolic 

representations of number activate the ANS, and respond to distance and size effects 

(Dehaene, 1992). 



CORE OR DEFICIT HYPOTHESIS: WHICH EXPLAINS MD?   11 
 

 

In a literature review, Noël and Rousselle (2011) showed that young children (from 6 

to 9 years old) with MD do not present difficulties in nonsymbolic magnitude comparison, but 

in a symbolic version of the task (see Iuculano, Tang, Hall, & Butterworth, 2008; Landerl et 

al., 2004; Landerl & Kölle, 2009). On the other hand, later in the development, children from 

10 to 14 years old present impairments in the ANS, as assessed by nonsymbolic magnitude 

comparison tasks (see Costa et al., 2011; Kucian, Loenneker, Dietrich, Dosch, Martin & von 

Aster, 2006; Kucian, Loenneker, Martin, & von Aster, 2011; Mussolin, Mejias, & Noël, 2010; 

Piazza et al., 2010). For this reason, the authors sustain that the main deficit in MD is in 

accessing the nonsymbolic magnitude through symbolic representations, in line with the 

access deficit hypothesis. As MD children do not engage the nonsymbolic magnitude in 

symbolic number tasks, the ANS would not develop properly. Consequently, ANS deficits 

could only be observed in older children.  

Differences between MD and TA children in symbolic magnitude comparison tasks 

have been consistent across studies (De Smedt et al., 2013). Rousselle and Noël (2007) 

showed that 7 years old children with MD presented impairments in RT, accuracy and 

distance effect in a symbolic magnitude comparison task, with Arabic digits from one to nine. 

Using a similar experiment, Landerl et al. (2004) and Iuculano et al. (2008) also showed 

differences between MD and TA children in RT and accuracy, respectively.  

Although there is still a debate on which mechanism is related to the deficits present in 

MD, both symbolic (Bugden, Price, McLean, & Ansari, 2012; Castronovo & Göbel, 2012; De 

Smedt, Verschaffel, & Ghesquière, 2009) and nonsymbolic (Halberda et al., 2008; Inglis, 

Attridge, Batchelor, & Gilmore, 2011; Paulsen, Woldorff, & Brannon, 2010) magnitude 

processing are stated as relevant for mathematical achievement. De Smedt, Verschaffel, and 

Ghesquière (2009) found a moderate correlation between RT and accuracy in a symbolic 

magnitude comparison task and a standardized math achievement test. There is evidence that 
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the symbolic magnitude comparison task is correlated to simple math operations as well 

(Moeller, Pixner, Zuber, Kaufmann, & Nuerk, 2011; Mundy & Gilmore, 2009). 

On the other hand, the ANS is indicated as a start-up tool for the formal mathematics 

abilities (Piazza, 2010), and there is a significant correlation between nonsymbolic magnitude 

comparison and both standardized (Halberda et al., 2008; Landerl & Kölle, 2009; Desoete, 

Ceulemans, De Weerdt, & Pieters, 2012) and simple arithmetic tasks (Mundy & Gilmore, 

2009; Piazza et al., 2010). The ANS is also correlated to math achievement when assessed 

through estimation (Booth & Siegler, 2006; Mejias et al., 2011; Castronovo & Göbel, 2012) 

and nonsymbolic calculation (Gilmore, McCarthy, & Spelke, 2010) tasks. In a meta-analysis, 

Chen and Li (2014) showed that the ANS prospectively predicts mathematics performance, 

and is likewise retrospectively correlated to early math achievement, with moderate effects.  

The present study 

Although several studies investigated whether the core deficit or the access deficit 

hypothesis accounts for impairments in MD, this debate is still unsolved. One limitation is the 

inconsistency derived from the variety of methods used in the literature, in a way that it 

becomes difficult to compare results. Some studies that supported the core deficit hypothesis 

used the Weber fraction as an index for the ANS in the nonsymbolic magnitude comparison 

task (Piazza et al., 2010; Pinheiro-Chagas et al., 2014), whereas others studies that supported 

the access deficit hypothesis used only RT, accuracy, or distance effect measures (Kovas et 

al., 2009; Rousselle & Noël, 2007). In addition, there are not many studies presenting an 

investigation of MD children nonsymbolic and symbolic magnitude processing (De Smedt & 

Gilmore, 2011; Iuculano et al., 2008; Landerl et al., 2004; Landerl et al., 2009; Landerl & 

Kölle, 2009; Oliveira-Ferreira et al., 2012a; Olsson et al., 2016; Rousselle & Noël, 2007).  

In the present study, the performance of MD children in nonsymbolic and symbolic 

magnitude comparison tasks is investigated, and contrasted to TA peers. If the core deficit 
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hypothesis is more accurate to explain deficits in MD, differences between groups in the 

nonsymbolic magnitude comparison task are expected. Otherwise, if the access deficit 

hypothesis is correct, then differences between MD and TA children are expected only in the 

symbolic magnitude comparison task. In order to reduce methodological issues, RT, accuracy, 

distance effect, and Weber fraction were computed for both nonsymbolic and symbolic 

magnitude comparison. Usually, the Weber fraction is computed only in nonsymbolic 

magnitude comparison tasks, but, if the symbolic representations of number are attached to 

the ANS, possibly the symbolic magnitude processing responds to Weber’s law as well. 

Therefore, we present an innovative internal Weber fraction as an index for a symbolic 

magnitude comparison task. Finally, the relationship between nonsymbolic and symbolic 

Weber fractions and arithmetic is investigated separately for MD and TA children.  

Method 

Participants 

Three hundred and twenty-two children voluntarily took part in this study. Children 

were students from first to sixth grade of public and private schools of Belo Horizonte and 

Mariana, Brazil. First, the intelligence and the school achievement of all children were 

assessed in groups. Children with spelling difficulties (percentile < 25th in a spelling test) or 

low intelligence (percentile < 10th in an intelligence test), n = 100, were excluded from this 

study. Thus, 170 children with TA (scores above the 25th percentile in the scholar 

achievement task), and 52 with MD (scores under the 25th percentile in mathematics in the 

scholar achievement task) were selected to complete an individual assessment, comprising a 

task of basic arithmetic operations and magnitude comparison tasks. Twenty-six children 

were excluded from posterior analysis because they presented either a poor R² (< .20) in the 

fitting procedure to calculate the Weber fraction, or presented a value of Weber fraction that 
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exceeded the discriminability of the tasks ( > .60 in nonsymbolic magnitude comparison task, 

and >.80 in symbolic magnitude comparison task). 

The final sample was composed by 159 children in the TA group (93 female, 66 male, 

age range: 8-12 years, M = 9.74, SD = 1.13), and 37 in the MD group (18 female, 19 male, age 

range: 8-12 years, M = 9.81, SD = 1.19). Groups were matched in age, F(1,194) = .11, p = 

.74, ƞ² = .001, and sex, X² = 1.18, p = .36, φ = .07. Although both groups had normal 

intelligence, the TA group (M = .51, SD = .62) presented higher scores in Raven’s colored 

progressive matrices when compared to the MD group (M = .08, SD= .74), F (1,194) = 13.36, 

p<.001, ƞ² = .64. The descriptive data is presented in table 2.1.  

Table 2.1: Descriptive data of the individual assessment sample. 
 

  TA (n=159) MD (n=37) χ² df p φ 

Sex (% female) 58.49 48.64 1.18 1 0.36 .07 

 Mean SD Mean SD F df p ƞ² 

Age (years) 9.74 1.13 9.81 1.19 .11 1;194 0.74 .001 

Raven (Z score) .51 .62 .08 .74 13.36 1;194 <0.001 .064 

Note. TA = typically achieving children; MD = children with mathematics difficulties; Z score (mean = 0, SD = 
1). 

 

 

Materials 

Raven’s colored progressive matrices. The Raven’s Colored Progressive Matrices 

test was used to assess the general intelligence of participants, and z-scores were calculated 

for each participant according to the Brazilian norms (Angelini, Alves, Custódio, Duarte, & 

Duarte, 1999). In this test, children were instructed find the best option to complete a pattern 

with a missing part.  

The Brazilian school achievement test. The Brazilian school achievement test (Teste 

de desempenho escolar, TDE, Stein, 1994) is the most widely used standardized test of school 

achievement with norms for the Brazilian population (see also Oliveira-Ferreira et al., 2012b). 

It comprises three subtests: arithmetic, single-word spelling, and single-word reading. In this 
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study, the arithmetic and the single-word spelling subtests were used, and applied in groups 

up to five children. The arithmetic subtest is composed of three simple verbally presented 

word problems (i.g., “If you had three candies and received four, how many candies do you 

have now?”) and 35 written arithmetic calculations of increasing complexity (i.g., very easy: 

4−1; easy: 1230+150+1620; intermediate: 823×96; hard: 3/4+2/8). There is no time limit to 

complete the task, and children are instructed to work to the best of their ability. The single-

word spelling subtest is composed by 36 items. In the first item, children might write their 

names, whereas in the other items they write a word presented orally. These subtests were 

used to characterize 2nd to 7th grade children’s scholar achievement, and identify groups with 

math learning disabilities (percentile in arithmetic subtest < 25th). Reliability coefficients 

(Cronbach’s α) of TDE subtests are 0.89.  

Basic Arithmetic Operations. The Basic Arithmetic Operation task (Pinheiro-Chagas 

et al., 2014) consisted of addition (27 items), subtraction (27 items) and multiplication (28 

items) operations, which were printed on separate sheets of paper. Children were instructed to 

answer as fast and as accurate as they could. Arithmetic operations were organized in two 

levels of complexity and were presented to children in separate blocks: one consisted of 

simple arithmetic facts and the other of more complex ones. Simple additions were defined as 

those operations with the results below 10 (i.g., 3+5), while complex additions had results 

between 11 and 17 (i.g., 9+5). Tie problems (i.g., 4+4) were not used for addition. Simple 

subtraction comprised problems in which the operands were below 10 (i.g., 9-6), while in 

complex subtractions the first operand ranged from 11 to 17 (i.g., 16-9). No negative results 

were included in the subtraction problems. Simple multiplication consisted of operations with 

results below 25 or with the number 5 as one of the operands (i.g., 2*7, 5*6), while for the 

complex multiplication the result of operands ranged from 24 to 72 (i.g., 6*8). Tie problems 

were not used for multiplication. Time limit per block was set in 1 minute. For the analyses, 
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the scores obtained in the simple and complex versions of addition, subtraction and 

multiplication tasks, respectively, were combined. The coefficients of these tasks were highly 

reliable (Cronbach’s α > 0.90).  

Nonsymbolic Magnitude Comparison. In the nonsymbolic magnitude comparison 

task (Pinheiro-Chagas, 2014), participants were instructed to compare two sets of dots 

presented simultaneously, and to choose the larger numerosity by pressing a key congruent to 

its side (left or right) (Figure 2.1 - A). Black dots were presented on a white circle over a 

black background. On each trial, one of the two white circles contained 32 dots (reference 

numerosity) and the other one contained 20, 23, 26, 29, 35, 38, 41, or 44 dots. Each 

numerosity was presented 8 times, each time in a different configuration, with a total of 64 

testing trials. Maximum stimulus presentation time was 4000 ms, and intertrial interval was 

700 ms. Between each trial, a fixation point appeared on the screen for 500 ms - a cross, 

printed in white, with 3 cm in each line. To prevent the use of non-numerical cues, the sets of 

dots were designed and generated using a predefined MATLAB script (Dehaene, Izard, & 

Piazza, 2005), in such a way that on half of the trials, dot size remained constant so that the 

total dot area covaried positively with numerosity, and on the other half, total dot area was 

fixed so that dot size covaried negatively with numerosity. Data were trimmed in two 

interactive steps for each child to exclude responses ± 3 SD from the mean reaction time (RT). 

As a measure of the ANS acuity, the internal Weber fraction was calculated for each child 

based on the Log-Gaussian model of number representation (Dehaene, 2007), with the 

methods described by Piazza et al. (2004). 

Symbolic Magnitude Comparison.  In the symbolic magnitude comparison task 

(Oliveira-Ferreira, 2012a), children were instructed to judge if an Arabic number presented on 

the computer screen was greater or smaller than 5 (Figure 2.1 - B). The numbers presented on 

the screen were 1, 2, 3, 4, 6, 7, 8, or 9 (distances 1 to 4), printed in white over a black 
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background. If the presented number was smaller than 5, children should press a predefined 

key on the left side of keyboard. Otherwise, if the presented number was greater than 5, 

children should press a key on the right side of the keyboard. The task comprised a total of 80 

trials, 10 trials for each numerosity. The presented number was shown on the screen for 

4000ms, and the time interval between trials was 700ms. Before the test trial, there was a 

fixation trial (a cross) with duration of 500ms. As in the nonsymbolic magnitude comparison 

task, responses ± 3 SD from the mean RT were excluded. To assure comparable indexes in 

nonsymbolic and symbolic magnitude comparison task, a symbolic version of the Weber 

fraction was calculated, based on Log-Gaussian model of number representation (Dehaene, 

2007). As  traditionally done in nonsymbolic magnitude comparisons, the error rates for each 

ratio were computed, and the Weber fraction was calculated with methods proposed by Piazza 

et al. (2004). 

 

  

 

 

 

 

 
Figure 2.1. Illustration of experimental tasks, with arrows indicating the time curse of the tasks: fixation trial, 

experimental trial, and intertrial. a. Nonsymbolic magnitude comparison task; b. Symbolic magnitude 

comparison task. 

 

Procedures 

This study had approval from the IRB of Universidade Federal de Minas Gerais - 

Brazil. Children took part in the study only after they verbally agreed and their parents or 

legal guardians signed the informed consent form. Children’s assessment occurred in quiet 

and comfortable rooms in their own schools. First, children completed the Raven’s Colored 

A B 
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Progressive Matrices, followed by the spelling and arithmetic subtests of TDE, in groups with 

a maximum of five participants. Afterwards, children individually completed the 

Nonsymbolic Magnitude Comparison task, the Symbolic Magnitude Comparison task, and the 

Basic Arithmetic Operations task in a counterbalanced order.  

To test the hypothesis that MD children present difficulties in nonsymbolic and 

symbolic magnitude processing, comparison analysis were run with group (between subjects) 

and numerical magnitude (within subjects) as independent variables. To investigate the 

relationship between nonsymbolic and symbolic magnitude processing and math 

achievement, linear regressions were run.  

Results 

Nonsymbolic magnitude comparison 

There was no significant correlation between intelligence scores and RT (r =.01, p = 

.83), accuracy (r = -.07, p = .28), or Weber fraction (r = -.04, p = .55) in the nonsymbolic 

magnitude comparison task. Thus, Raven’s z-scores were not added as covariate in posterior 

analysis.  

A mixed-ANOVA, with magnitude (within-subjects, 8 levels: 20, 23, 26, 29, 35, 38, 

41, and 44) and groups (between-subjects, 2 levels: TA and MD) as independent variables 

was conducted for accuracy and RT on the nonsymbolic magnitude comparison task. For RT, 

there was a main-effect of magnitude, F (1,194) = 20.69, p = <.001, ƞ² =.096 (Figure 2.2 – A). 

Post-hoc analysis showed lower RT for magnitudes distant from the reference, with 

significant difference (p <.05) between 20 (M = 1159.99, SD = 26.16) and 23 (M = 1232.10, 

SD = 29.71), 20 and 26 (M = 1290.19, SD = 32.74), 20 and 29 (M = 1363.30, SD = 38.34), 20 

and 35 (M = 1340.32, SD = 31.93), 20 and 41 (M = 1237.26, SD = 28.19), 20 and 44 (M = 

1225.16, SD = 28.68), 23 and 29, 23 and 35, 26 and 38 (M = 1196.32, SD = 27.95), 26 and 44, 

29 and 41, 29 and 44, 35 and 38, 35 and 41, and 35 and 44. There was no significant main-
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effect of groups, F (1,194) = 2.48, p = .12, ƞ² = .013, although MD (M = 1298.19, SD = 

48.46) presented higher RT than TA group (M = 1212.95, SD = 23.52). There was no 

significant interaction between factors, F (1,194) = 1.05, p = .40, ƞ² = .005.  

For accuracy, there was a main-effect of magnitude, F (1,194) = 140.08, p = <.001, ƞ² 

= .419 (Figure 2.2 – B). Post-hoc analysis showed higher accuracy for magnitudes distant 

from the reference, with significant difference (p <.05) between 20 (M = .36, .SD = .04) and 

23 (M = .93, SD = .08), 20 and 26 (M = 2.55, SD = .11), 20 and 29 (M = 3.61, SD = .12), 20 

and 35 (M = 2.55, SD = .116), 20 and 38 (M = 1.18, SD = .10), 20 and 41 (M = 1.26, SD = 

.09), 20 and 44 (M = 1.02, SD = .08), 23 and 26, 23 and 29, 23 and 35, 26 and 29, 26 and 38, 

26 and 41, 26 and 44, 29 and 35, 29 and 38, 29 and 41, 29 and 44, 35 and 38, 35 and 41, and 

35 and 44. The MD group (M = 1.83, SD = .08) presented lower accuracy than TA (M = 1.54, 

SD = .04), as shown by a main-effect of groups, F (1,194) = 11.22, p <.01, ƞ² = .055. There 

was no significant interaction between factors, F (1,194) = 1.16, p = .32, ƞ² = .006.  

 

 

 

 

 

 

 

 
Figure 2.2. Distance effect in nonsymbolic magnitude comparison task. a. Reaction time – there was a 

significant distance effect for RT.  Post-hoc analysis showed differences between 20 and 23, 20 and 26, 20 and 

29, 20 and 35, 20 and 41, 20 and 44, 23 and 29, 23 and 35, 26 and 38, 26 and 44, 29 and 41, 29 and 44, 35 and 

38, 35 and 41, and 35 and 44. There was no difference between MD and TA, and no interaction between 

magnitudes and groups.  b. Accuracy – As in RT, there was no interaction between factors. The distance effect 
was significant, and the Post-hoc analysis showed differences between 20 and 23, 20 and 26, 20 and 29, 20 and 

35, 20 and 38, 20 and 41, 20 and 44, 23 and 26, 23 and 29, 23 and 35, 26 and 29, 26 and 38, 26 and 41, 26 and 

44, 29 and 35, 29 and 38, 29 and 41, 29 and 44, 35 and 38, 35 and 41, and 35 and 44. Children with MD 

presented lower accuracy when compared to TA.  

  

A B 
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To investigate differences between TA and MD groups in the Weber Fraction, a one-

way analysis of variance (ANOVA) was conducted. There was a main-effect of group, F (1, 

194) = 7.36, p < .01 ƞ² = .037 (Figure 2.3), indicating higher Weber fraction values for the 

MD (M = .30, SD = .08) when compared to TA peers (M = .26, SD = .09).  

 

Figure 2.3. Boxplot of Weber fraction in the nonsymbolic magnitude comparison task. Children with MD 

presented a nonsymbolic Weber fraction significantly higher than TA peers.  

 

Symbolic magnitude comparison 

There was no significant correlation between intelligence scores and RT (r = .02, p = 

.73), accuracy (r = -.02, p = .73), or Weber fraction (r = .03, p = .67) in the symbolic 

magnitude comparison task. For this reason, as in nonsymbolic magnitude comparison 

analysis, Raven’s z-scores were not included as covariate.  
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A mixed-ANOVA, with numerical magnitude (within-subjects, 8 levels: 1, 2, 3, 4, 6, 

7, 8, and 9) and groups (between-subjects, 2 levels: TA and MD) as independent variables 

was conducted for accuracy and RT on the symbolic magnitude comparison task. For RT, 

there was a main-effect of numerical magnitude, F (1,194) = 29.20, p = <.001, ƞ² = 

.131(Figure 2.4 – A). Post-hoc analysis showed lower RT for magnitudes distant from the 

reference, with significant difference (p <.05) between 1 (M = 871.83, SD = 20.94) and 3 (M 

= 961.86, SD = 23.28), 1 and 4 (M = 992.79, SD = 23.27), 1 and 6 (M = 1011.51, SD = 25.07), 

1 and 7 (M = 920.40, SD = 21.63), 1 and 8 (M = 928.89, SD = 21.68), 1 and 9 (M = 889.17, 

SD = 20.96), 2 (M = 904. 84, SD = 20.20) and 3, 2 and 4, 2 and 6, 3 and 6, 3 and 9, 4 and 7, 4 

and 8, 4 and 9, and 8 and 9. There was no significant main-effect of groups, F (1,194) = 1.44, 

p = .23, ƞ² = 007, although MD group (M = 959.73, SD = 36.85) presented higher RT than TA 

(M = 910.59, SD = 17.78). There was no significant interaction between factors, F (1,194) = 

.53, p = .81, ƞ² = .003.  

For accuracy, there was a main-effect of magnitude, F (1,194) = 11.66, p = <.001, ƞ² = 

.057 (Figure 2.4 – B). Post-hoc analysis showed higher accuracy for magnitudes distant from 

the reference, with significant difference (p <.05) between 1(M = .62, SD = 0.7) and 2 (M = 

.96, SD = .09), 1 and 3 (M = .99, SD = .09), 1 and 4 (M = 1.13, SD =.10), 1 and 6 (M = 1.58, 

SD =.10), 1 and 7 (M = 1.02, SD =.09), 1 and 8 (M = 1.16, SD =.08), 1 and 9 (M = .69, SD 

=.08), 2 and 6, 3 and 6, 4 and 9, 6 and 7, 6 and 8, 6 and 9, and 8 and 9. There was no main-

effect of groups, F (1,194) = .76, p = .38, ƞ² = .004, but MD (M = 1.05, SD = .07) presented 

lower accuracy than TA group (M = .98, SD = .04). There was no significant interaction 

between factors, F (1,194) = 1.53, p = .15, ƞ² = .008.  

To investigate differences between TA and MD groups in the symbolic Weber 

Fraction, a one-way analysis of variance was conducted. There was no main effect of groups, 
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F (1, 194) = 1.55, p = .21, ƞ² = .008 (Figure 2.5). However, the MD group (M = .21, SD = .15) 

presented higher Weber fraction values than TA (M = .18, SD = .12).   

 

Figure 2.4. Distance effect in symbolic magnitude comparison task. a. Reaction time – there was a significant 

distance effect for RT.  Post-hoc analysis showed differences between 1 and 3, 1 and 4, 1 and 6, 1 and 7, 1 and 8, 
1 and 9, 2 and 3, 2 and 4, 2 and 6, 3 and 6, 3 and 9, 4 and 7, 4 and 8, 4 and 9, and 8 and 9. There was no 

difference between MD and TA, and no interaction between magnitudes and groups.  b. Accuracy – As in RT, 

there was no difference between groups, or interaction between factors. The distance effect was significant, and 

the Post-hoc analysis showed differences between 1 and 2, 1 and 3, 1 and 4, 1 and 6, 1 and 7, 1 and 8, 1 and 9, 2 

and 6, 3 and 6, 4 and 9, 6 and 7, 6 and 8, 6 and 9, and 8 and 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.5. Boxplot of Weber fraction in the symbolic magnitude comparison task. Children with MD presented 

higher symbolic Weber fraction than TA peers, but the difference did not reach significance.  
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Number processing and math achievement 

Groups were compared regarding their scores in Basic Arithmetic Operations. There 

was a significant difference in addition, F (1,194) = 19.15, p < .001, ƞ² = .090, with higher 

accuracy for TA (M = 22.18, SD = 6.02) than MD (M = 18.29, SD = 6.02), and in subtraction, 

with higher accuracy for TA group (M = 16.59, SD = 5.99) than MD (M =11.16, SD = 5.99), 

F (1,194) = 24.63, p < .001, ƞ² = .113. Finally, there was a significant difference between 

groups in multiplication, F (1,194) = 22.55, p < .001, ƞ² = .103, with higher accuracy for TA 

(M = 14.63, SD = .66) when compared to MD (M = 7.51, SD = 1.36).  

Regression analysis with addition, subtraction, and multiplication as dependent 

variables, and nonsymbolic and symbolic Weber fraction as independent variables were run 

separately for each group.  First, results of nonsymbolic Weber fraction regressions are 

reported, followed by results of symbolic Weber fraction. 

For nonsymbolic Weber fraction, in the TA group, a significant regression equation 

was found for addition, F (1,158) = 14.43; p<.001, adjusted R² of .08 (Figure 2.6 – A), 

subtraction, F (1,158) = 11.04; p <.01, adjusted R² = .06 (Figure 2.6 – B), and multiplication, 

F(1,158) = 6.19; p <.05,  adjusted R² = .03 (Figure 2.6 – C).  For MD children, no significant 

equation was found for addition, F (1,36) = .001; p = .97, adjusted R² = -.03 (Figure 2.6 – A), 

subtraction, F (1,36) = .04; p = .84, adjusted R² = -.03 (Figure 2.6 – B),  or multiplication, F 

(1,36) = .15; p = .69, adjusted R² = -.02 (Figure 2.6 – C).  

For symbolic Weber fraction, a significant regression equation was found for addition, 

F (1,158) = 14.32; p <.001, adjusted R² of .08 (Figure 2.7 – A), subtraction, F(1,158) = 5.57; 

p <.05, adjusted R² = .03 (Figure 2.7 – B), and multiplication, F(1,158) = 5.56; p <.05, 

adjusted R² = .03 (Figure 2.7 – C), for TA. For MD, no significant equation was found for 

addition, F (1,36) = .81; p = .37, adjusted R² = -.005 (Figure 2.7 – A), subtraction, F (1,36) = 
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1.11; p = .29, adjusted R² =.003 (Figure 2.7 – B),  or multiplication, F (1,36) = .49; p = .48, 

adjusted R² = -.01 (Figure 2.7 – C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.6. Linear regression between arithmetic operations and the Weber fraction indexed in a nonsymbolic 

magnitude comparison task. The regressions were significant for TA but not for MD a. Linear regression 

between nonsymbolic Weber fraction and addition;  b. Linear regression between nonsymbolic Weber fraction 

and subtraction; c. Linear regression between nonsymbolic Weber fraction and multiplication. 

 

 

 

 

  

 

A 

C 

B 



CORE OR DEFICIT HYPOTHESIS: WHICH EXPLAINS MD?   25 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 
 

 

 

 
 

 

 
 

 

 
 
 

 

Figure 2.7. Linear regression between arithmetic operations and the Weber fraction indexed in a symbolic 

magnitude comparison task. The regressions were significant for TA but not for MD. a. Linear regression 

between symbolic Weber fraction and addition; b. Linear regression between symbolic Weber fraction and 

subtraction; c. Linear regression between symbolic Weber fraction and multiplication. 

 

Discussion 

In the present study, children with MD were compared to TA peers in nonsymbolic 

and symbolic magnitude processing. Overall, the distance effect was observed in nonsymbolic 

and symbolic magnitude comparison tasks. MD children presented lower accuracy and higher 

Weber fractions than TA in the nonsymbolic magnitude comparison task, but no differences 

were found between groups in any parameters of the symbolic magnitude comparison task. 
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These results are in line with the core deficit hypothesis. Finally, both nonsymbolic and 

symbolic magnitude processing acuity were related to addition, subtraction, and 

multiplication in the TA, but not in the MD group. Thereby, it is possible that children with 

MD do not engage basic number processing in arithmetic, and alternatively recruit other 

cognitive mechanisms.  

Although there was a significant difference between groups in intelligence, no 

correlation was observed between nonsymbolic and symbolic magnitude comparison tasks 

and intelligence scores. Brankaer, Ghesquière, and De Smedt (2014) showed that numerical 

magnitude processing is independent of intelligence. They compared the magnitude 

processing of groups that presented MD in association with low intelligence, MD with normal 

intelligence, or TA in mathematics with normal intelligence. Children with MD, regardless of 

intelligence, presented lower magnitude processing acuity when compared to TA. 

The distance effect was observed in both nonsymbolic and symbolic comparison tasks.  

However, there was no difference between groups in this domain, which is corroborated by 

previous studies (Ashkenazi, Mark-Zigdon, & Henik, 2009; Kovas et al., 2009; Kucian et al., 

2011; Landerl & Köle, 2009). In the nonsymbolic magnitude comparison task, MD children 

presented lower accuracy and higher Weber fractions when compared to TA peers. Results 

suggesting an impairment in the ANS in children with MD have been replicated by most 

studies that presented the Weber fraction (Costa et al., 2011; Mazzocco et al., 2011; Olsson et 

al., 2016; Piazza et al., 2010; Pinheiro-Chagas et al., 2014). Thereby, the Weber fraction is 

probably a more sensitive index of the ANS acuity (Piazza et al., 2010; Schneider et al., 2016) 

when compared to RT and accuracy. 

Since children with MD presented low ANS acuity, the core deficit hypothesis (Piazza 

et al., 2010) was corroborated. The core deficit hypothesis proposes that children with MD 

present an impairment in the ANS (Piazza et al., 2010, Pinheiro-Chagas et al., 2014), which 
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leads to difficulties in the symbolic number processing and formal arithmetic skills. The ANS 

is responsible for an abstract representation of number in an analog fashion, with numbers 

logarithmic compressed along a mental number line (Dehaene, 2003; Halberda & Feigenson, 

2008).  The nonsymbolic magnitude comparison task is broadly used to investigate the ANS 

acuity (Halberda et al., 2008; Landerl et al., 2009; Mazzocco et al., 2011, Pinheiro-Chagas et 

al., 2014), but this method has been criticized, due the difficulty to control possible cofounds 

(Gebuis, & Reynvoet, 2011; Gilmore et al., 2013; Leibovich, Katzin, Harel, Henik, 2016; 

Szűcs, Nobes, Devine, Gabriel, & Gebuis, 2013).  

Gilmore et al. (2013) suggested that choosing the greater numerosity in the 

nonsymbolic magnitude comparison task is influenced by executive functions.  They 

presented children with congruent and incongruent trials in a nonsymbolic magnitude 

comparison task, with dots as stimuli. In the congruent trials, the greater array presented 

larger dots and a larger area, whereas on incongruent trials, the greater array presented smaller 

dots and a smaller area. They proposed that responses to incongruent trials might be a result 

of inhibition skills, instead of the ANS acuity. Other possible cofound in the nonsymbolic 

magnitude comparison task is the visual property of stimuli. Gebuis and Reynvoet (2011) 

investigated the interaction between number and visual properties using different versions of 

the nonsymbolic comparison task. They showed that the performance changed when 

manipulations on the visual properties of the stimuli were made, even when the ratio between 

numbers was constant. Accordingly, the authors proposed that the ANS measures might be 

compromised by visual cues that cannot be controlled (see also Szűcs et al., 2013).  These 

studies suggest that nonsymbolic magnitudes processing might be actually a continuous 

property of the visual system, but this assumption has been taken into question (Anobile, 

Castaldi, Turi, Tinelli, & Burr, 2016).  
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Anobile et al. (2016) showed that the numerosity processing is independent of other 

visual properties, as texture and density, in the nonsymbolic magnitude comparison task. The 

authors investigated the performance of children in two nonsymbolic magnitude comparison 

tasks, one with sparse stimuli, and another with very dense stimuli. The scores in the sparse 

stimuli condition were significantly associated to math achievement, but not the scores in the 

high-density condition. These results evince that numerosity and visual cues are perceived by 

independent systems. In addition, the analog magnitude processing follows Weber’s law, 

corroborating the relevance of the ANS.  

Other important evidence for the ANS is the theory of magnitude (ATOM: A Theory 

Of Magnitude; Walsh, 2003). Walsh (2003) proposed that time, space and number are part of 

generalized magnitude system. Skagerlund and Träff (2014) showed that children with MD 

suffer from a general magnitude processing deficit, since they presented lower acuity than TA 

in tasks assessing time, numerosity, and space magnitudes processing. Thus, there is evidence 

that the ANS is component of a multi-modal abstract model of magnitude representations.   

As the symbolic magnitude processing arouse nonsymbolic representations (Dehaene, 

1992), and relies on the ratio between magnitudes (Moyer & Landauer, 1967; Reynvoet, De 

Smedt, & van den Bussche, 2009), it would be plausible to assess the Weber fraction in a 

symbolic magnitude comparison task. We calculated a symbolic Weber fraction based on a 

Log-Gaussian model (Dehaene, 2007) with methods adapted from Piazza et al. (2004).  

However, no difference between MD and TA groups were observed in the symbolic 

magnitude comparison task, either in symbolic Weber fraction, accuracy or RT. Previous 

studies failed to find symbolic magnitude processing impairments in MD as well (Landerl & 

Kolle, 2009; Landerl et al., 2009; Mussolin et al., 2010).  

One possibility is that the numerosity range used in the symbolic comparison task – 

from 1 to 9 – could have been not sensible enough to detect differences between groups, in 
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opposition to the nonsymbolic magnitude comparison task, that presented a larger numerosity 

range – from 20 to 44. Landerl et al. (2009) failed to show differences between MD and TA in 

symbolic magnituce comparisons with single-digits, but found that MD present impairments 

in a two-digits number comparison. According to Skagerlund and Träff (2014), children are 

extensively presented with single-digit numbers in school, and two-digit number tasks might 

be more sensitive to assess symbolic magnitude processing.  Nonsymbolic and symbolic 

magnitude comparison tasks with paired numerosity range should be used to investigate this 

subject, and our research group is working to clarify this in further studies.  

Regarding arithmetic operations, children with MD presented difficulties in addition, 

subtraction and multiplication when compared to TA children, in line with previous findings 

(Landerl et al., 2004; Ostad, 1997; 1999). The association between symbolic and nonsymbolic 

magnitude processing and arithmetic was also investigated. Both symbolic and nonsymbolic 

Weber fractions predicted achievement in basic numerical operations for TA, but not for MD. 

Thus, to solve arithmetic problems, children with MD probably engage different cognitive 

resources instead of numerical processing, as proposed by Pinheiro-Chagas et al (2014). 

Geary et al. (2004) proposes that children with MD choose guessing as a strategy for solving 

arithmetic, since it is quick and require low effort (Geary et al., 2004). However, qualitative 

error analysis in the basic arithmetic operation task was beyond the scope of this current 

article. 

This study investigated the performance of children with MD and TA in nonsymbolic 

and symbolic magnitude comparison tasks, and presented theoretical and methodological 

implications.  The core deficit hypothesis was supported, even when different indexes of 

nonsymbolic and symbolic magnitude comparison tasks were presented: RT, acuity, distance 

effect, and Weber fraction. To our knowledge, this was the first study to index a symbolic 
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Weber fraction, which is a methodological innovation. However, new investigations are 

required in order to validate this measure.   

Mathematical abilities are increasingly valued, especially with the interdisciplinary 

and applied approach of science, technology, engineering and mathematics (STEM) fields of 

study. Parsons and Bynner (2005) showed that a better mathematical achievement is related to 

higher employability rates and incomes.  Thus, it is important to identify underlying 

mechanisms of MD in order to establish better diagnose criteria and consequently develop 

interventions techniques for a disorder that can negatively impact a significant number of 

school-age children.  
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Abstract 

The nonsymbolic and symbolic processing in children with mathematical difficulties (MD) has 

received much attention in the last years. Usually, these abilities are assessed by numerical 

magnitude comparison tasks. However, while large numerosities are typically used in the 

nonsymbolic comparison tasks, few studies have investigated symbolic comparisons with two-

digit numbers. This study investigated the nonsymbolic and the two-digit number processing in 

children with MD, and the relationship of these abilities with basic arithmetic calculation and 

numerical transcoding skills. Children with MD presented impairments in the nonsymbolic 

processing. They also presented difficulties in a two-digit number comparison task, although no 

compatibility effect was observed. There was a significant correlation between nonsymbolic 

processing and multiplication and numerical transcoding scores. The two-digit number processing, 

in turn, was correlated to addition, subtraction, and multiplication, as well as numerical transcoding 

scores and syntactic errors frequency. Impairments in the analog number representation in children 

with MD were endorsed, as well as the importance of basic numerical processing to math 

achievement. 

 

Keywords: mathematical difficulties, ANS, nonsymbolic comparison, two-digit symbolic 

comparison, compatibility effect 
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Symbolic and nonsymbolic number processing influences on math achievement 

The numerical reasoning skills are crucial for our daily lives. Besides its relevance for 

school achievement (Halberda, Mazzocco, & Feigenson, 2008; Schneider et al., 2016), numerical 

skills are related to career (Parsons & Bynner, 2005) and health outcomes (Reyna & Brainerd, 

2007), and play an important role in a nation’s economic success (Hanushek, Woessmann, 

Jamison, & Jamison, 2008). In this sense, difficulties with numerical reasoning are attracting 

widespread research interest in order to find their underlying mechanisms. 

The persistent difficulty to learn math with a neurobiological etiology is known as 

developmental dyscalculia (DD), a disorder that affects approximately 6% of age-school children 

(Shalev, Auerbach, Manor, & Gross-Tsur, 2000). Children with DD often struggle to solve 

addition, subtraction, and multiplication (Landerl, Bevan, & Butterworth, 2004), write numbers 

(Moura et al., 2013), and represent and manipulate numerosities (Pinheiro-Chagas et al., 2014; 

Rousselle & Noël, 2007).  

Different criteria have been applied to identify DD. While some studies use a criterion of 

discrepancy between intelligence and math achievement scores, others use an arbitrary cut-off 

point in standardized math achievement tests, varying from the 5th to the 30th percentile 

(Mazzocco, 2007). In addition, different terms have been used to DD, as math learning 

disabilities (e.g. Mazzocco, Feigenson, & Halberda, 2011), mathematical disabilities (e.g. Geary, 

1993), and mathematical difficulties (e.g. Jordan, Hanich, & Kaplan, 2003). In this paper, the 

term MD will be used to refer to low math achievement in general (Mazzocco, 2007).   

The triple-code model (Dehaene, 1992) assumes that there are three main numerical 

representation codes: analog, auditory-verbal, and visual-Arabic. Number related tasks, 

independently of their complexity, are tied to a specific input and output code, so it is possible to 
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transcode one representation into another (e.g. an analog representation into an Arabic one). The 

auditory-verbal and the visual-Arabic codes are symbolic and result from cultural artifacts. On 

the other hand, the analog code consists in a primitive non-symbolic representation of number, 

and is the foundation for symbolic representations. 

The abstract representation of numerical magnitudes in an analog fashion relies on the 

approximate number system (ANS; Halberda & Feigenson, 2008), which allows nonsymbolic 

comparisons (Piazza et al., 2010), estimations (Mazzocco et al., 2011) and approximate 

calculations (Pinheiro-Chagas et al., 2014). An extensive literature demonstrates that the ANS is 

spatially organized along a mental number line that is logarithmically compressed, and oriented 

from left (smaller numbers) to right (greater magnitudes) (Galton, 1881; Dehaene, 2003; 

Hubbard, Piazza, Pinel, & Dehaene, 2005). One evidence of the mental number line is the 

distance effect (Moyer & Landauer, 1967):  the closer two numbers are from each other, the 

harder it is to perform comparisons between them.  For example, one may present higher 

reaction time (RT) and lower accuracy to compare 4 and 6 (distance 2) than 4 and 9 (distance 5).  

The ability to distinguish different magnitudes also depends on the ratio between them. 

The ANS responds to the Weber’s law (Dehaene, 2003), which states that the minimum 

noticeable change in a stimulus is a constant ratio of the original stimulus (Laming, 1986), and is 

indexed by the internal Weber fraction (Halberda et al., 2008). The internal Weber fraction 

assesses the variability in the representation of a specific magnitude, and a high Weber fraction 

indicates a poor ANS (see Piazza, Izard, Pinel, LeBihan, & Dehaene, 2004, and Halberda et al., 

2008).  

Piazza et al. (2010) investigated the ANS acuity of 10 years-old children with MD and 

typical achievement (TA), pre-school children (5 year-olds), and adults using a nonsymbolic 



 

NUMBER PROCESSING AND MATH ACHIEVEMENT  47 

 

 

magnitude comparison task, indexed by the Weber fraction. Results showed that the Weber 

fraction decreased significantly throughout development, from kindergarten to adulthood. The 

Weber fractions of children with MD were higher when compared to TA peers paired by age, but 

corresponded to the Weber fraction of 5 years-old children. In sum, children with MD presented 

a developmental delay in the ANS acuity.  

Several studies corroborated the ANS impairments in children with MD, as assessed by 

nonsymbolic magnitude comparison (Costa et al., 2011; Mazzocco et al., 2011; Price, Holloway, 

Rasanen, Vesterinen, & Ansari, 2007), estimation (Mazzocco et al., 2011; Mejias, Mussolin, 

Rousselle, Gregoire, & Noël., 2011; Pinheiro-Chagas et al., 2014) and approximate calculation 

(Pinheiro-Chagas et al., 2014) tasks. Accordingly, some studies have suggested that the main 

cause of MD is a deficit in the ANS, which is referred as the core deficit hypothesis (Piazza et 

al., 2010; Pinheiro-Chagas et al., 2014). The core deficit hypothesis sustains that children with 

MD present a deficit in the analog representations of number, resulting in poor performance in 

measures of the ANS, and leading to deficits in the symbolic representations (Piazza et al., 

2010). However, this hypothesis has been queried by the access deficit hypothesis (Noël & 

Rousselle, 2011; Rousselle and Noël, 2007), which proposes that children with MD present an 

intact ANS, but a poor symbolic magnitude processing resulting from a deficit in attaching 

symbolic magnitudes to their correspondent analog representations.  

The symbolic magnitude comparison is the most used task to assess symbolic number 

processing. Several studies have corroborated that children with MD present impairments in 

single-digits comparison tasks (De Smedt & Gilmore, 2011; Iuculano, Tang, Hall, & 

Butterworth, 2008; Rousselle & Noël, 2007), but these observations are inconclusive (Landerl, 

Fussenegger, Moll, & Willburguer, 2009; Starling-Alves et al., in preparation). Landerl et al. 



 

NUMBER PROCESSING AND MATH ACHIEVEMENT  48 

 

 

(2009) failed to find differences between children with MD and TA in single-digit number 

comparisons, but a different outcome was observed in a two-digit number comparison task. 

Ashkenazi, Mark-Zigdon, and Henik (2009) also showed that the comparison between numbers 

composed by two digits is sensitive to deficits in MD. In the study of Ashkenazi et al. (2009), 

children with MD were presented with single and two-digit number comparison tasks. In the 

single-digit number comparison, MD and TA differed only in accuracy, but not in RT. 

Otherwise, in the two-digit number comparison, the distance effect was larger in MD in contrast 

to TA. The unit-decade compatibility effect was also investigated in this study, but there was no 

difference between groups. 

The unit-decade compatibility effect (hereinafter compatibility effect) is a measure that 

underlies the automatic magnitude representation of two-digit numbers (Nuerk & Willmes, 2005; 

Nuerk, Weger, and Willmes, 2004), and occurs when the performance in a comparison task 

depends on the magnitude of units and decades. Nuerk, Weger, and Willmes (2001) showed that 

when two-digit numbers present greater decade and unit (compatible trial, e.g. 47 vs. 23, 4 is 

greater than 2, 7 is greater than 3) in a symbolic comparison task, lower RT and higher accuracy 

are observed. In contrast, numbers that present greater decade and smaller unit (incompatible 

trial, e.g. 43 vs. 27, 4 is greater than 2, but 3 is smaller than 7) lead to higher RT and lower 

accuracy. The processing of two-digit numbers is related to the knowledge of place-value rules 

(Moeller, Pixner, Zuber, Kaufmann, & Nuerk, 2011), since it is important to notice that the 

greater decade indicates the greater number. 

The place-value of each component of a two-digit number is automatically processed in 

typical achievement (Kallai & Tzelgov, 2012), but children with MD present difficulties in this 

domain (Cirino et al., 2007; Hanich, Jordan, Kaplan, & Dick, 2001). The place-value knowledge 



 

NUMBER PROCESSING AND MATH ACHIEVEMENT  49 

 

 

is distinguished as important for writing Arabic numbers (Barrouillet, Bernardin, & Camos, 

2004, Camos, 2008). Barrouillet et al. (2004) proposed a developmental, asemantic and 

procedural (ADAPT) model of writing Arabic numbers.  This model assumes that transcoding a 

verbal number into an Arabic code is independent of a semantic representation, and relies on the 

application of procedural rules. For familiar numbers, the spoken language indicates the units, 

teens, decades, and the separators hundred and thousand, and this information is stored in the 

long-term memory. Thus, the procedures to write an Arabic number require the identification of 

the place-value of each component digit of a number. For example, for transcoding “twenty-

four” into “24”, it is necessary to identify that “-four” indicates a unit associated to “4” and 

“twenty” indicates a decade associated to “2”, and then write the numbers in the right sequence. 

While a familiar number is directly retrieved from lexicon, unfamiliar numbers require more 

procedural rules and higher working memory capacity. Throughout development, two main 

factors contribute to better performance in transcoding: the familiarity of the number and the 

improvement of procedural abilities.  

Moura et al. (2013) showed that children with MD presented lower achievement in 

number transcoding when compared to TA peers in early and middle elementary school. The 

type of transcoding errors, lexical or syntactic, committed by MD also differed from TA. Lexical 

errors occur when an element of a number is replaced (e.g. “thirty-two” -> “35”), whereas 

syntactic errors occur when the magnitude of the number is modified (e.g. “two hundred fifty-

nine” -> “200509”) or the position of the digits is switched (e.g. “twenty-five” -> “52”). While 

children with TA presented syntactic errors only in the early elementary school, and achieved 

proficiency in writing numbers in middle elementary school, children with MD presented lexical 
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and syntactic errors in early elementary school, and syntactic errors in the middle elementary 

school.  

A growing body of literature has shown an association between numerical processing and 

math achievement (Bonny & Lourenco, 2013; Bugden, Price, McLean, & Ansari, 2012; 

Halberda et al., 2008; Libertus, Feigenson, & Halberda, 2011; Pinheiro-Chagas et al., 2014; 

Sasanguie, De Smedt, Defever, & Reynvoet, 2012). In a recent meta-analysis, Schneider et al. 

(2016) showed that both nonsymbolic and symbolic magnitude processing are important for 

mathematical competence, throughout the lifespan.  

The ANS is recognized as a start-up tool for the acquisition of symbolic number 

knowledge and mathematical proficiency (Piazza, 2010). Halberda et al. (2008), in a seminal 

study, showed that the Weber fraction of 14-years-old children was significantly correlated to 

past math achievement, back to kindergarten. The relationship between the ANS, assessed by a 

nonsymbolic comparison task, and scores in standardized mathematic tests (Inglis, Attridge, 

Batchelor, & Gilmore, 2011; Landerl & Kölle, 2009; Libertus, et al., 2011) and basic arithmetic 

operations (Lyons & Beilock, 2011; Mundy & Gilmore, 2009; Pinheiro-Chagas et al., 2014) has 

been corroborated.  

The symbolic number processing is also distinguished as important for math 

achievement. Mundy and Gilmore (2009) showed a moderate correlation between accuracy and 

RT in a symbolic magnitude comparison task, with single-digit numbers, and calculation skills in 

the beginning of elementary school. This association has been supported by other studies 

(Bugden et al., 2012; Desoete, Ceulemans, De Weerdt, & Pieters, 2012; Holloway & Ansari, 

2009), even when a symbolic magnitude comparison task with two-digit number was used 

(Landerl & Köle, 2009; Moeller et al., 2011; Sasanguie et al., 2012). In a longitudinal study, 
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Moeller et al. (2011) showed that performance in a two-digit number comparison task in first 

grade predicted math achievement in third grade. However, the relationship between two-digit 

processing and math achievement is still less explored than single-digit processing, especially in 

number writing skills.  

The present study 

There is still a considerable controversy surrounding the core deficit hypothesis and the 

access deficit hypothesis. The miscellaneous methods used in the literature makes it difficult to 

compare studies. Different outcomes are observed regarding the used index, which vary from 

accuracy and RT (Landerl et al., 2004; De Smedt & Gilmore, 2011; Kucian et al., 2006) to 

distance effect (Ashkenazi et al., 2009; Kovas et al., 2009; Rousselle & Noël, 2007) and also 

Weber fraction (Mazzocco et al., 2011; Piazza et al. 2010; Pinhero-Chagas et al., 2014; Starling-

Alves et al., in preparation). Additionally, stimuli in nonsymbolic and symbolic magnitude 

comparison tasks cover different magnitude ranges. Usually, larger magnitudes are used in 

nonsymbolic comparisons (e.g. De Smedt & Gilmore; 2011; Piazza et al. 2010; Pinheiro-Chagas 

et al., 2014; Rousselle & Noël, 2007), in contrast to magnitudes from one to nine in the symbolic 

comparisons (e.g. De Smedt & Gilmore, 2011; Mussolin, Mejias, & Noël, 2010; Rousselle & 

Noël, 2007). Few studies have investigated the compatibility effect, which allows the 

investigation on the automatic processing of two-digit numbers, in MD. (Ashkenazi et al., 2009; 

Landerl, 2013; Landerl & Kovas, 2009; Landerl et al., 2009). 

Regardless of the magnitude or index used, an association between both nonsymbolic and 

single-digit number processing and children’s math achievement has been addressed by several 

studies (Bugden et al., 2012; Lyons & Beilock, 2011; Moeller et al., 2011; Pinheiro-Chagas et 

al., 2014; Sasanguie et al., 2012). However, the relationship between two-digit numbers and 
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math achievement, especially numerical transcoding skills, has not been investigated in depth 

yet.   

In this study, the nonsymbolic and the symbolic number processing in children with MD, 

and the association between these abilities with math achievement were investigated. Children 

with MD and TA were presented with nonsymbolic magnitude comparison and two-digit number 

comparison tasks, both with similar magnitude stimuli. Then, the relationship between these 

tasks and addition, subtraction, multiplication and numerical transcoding skills was examined. 

Method 

Participants 

One hundred and twenty-eight children voluntarily participated in this experiment. 

Children were students from third to fifth grade of public schools of Belo Horizonte, Brazil. 

Intelligence, scholar achievement, and numerical transcoding abilities were assessed in groups. 

Children with spelling difficulties (percentile < 25th in a spelling task) or low intelligence 

(percentile < 10th in the Raven's Coloured Progressive Matrices) did not take part in the posterior 

phases of the study (n = 41). Thus, 87 children with TA and MD were selected to complete an 

individual assessment, comprising tasks of math achievement and magnitude comparison tasks. 

Twelve children were excluded from analysis because they presented either a poor R² (< .20) in 

the fitting procedure to calculate the Weber fraction, or presented a value of Weber fraction that 

exceeded the discriminability of the task (Weber fraction > .60). 

The final sample was composed by 55 children in the TA group (30 male, 25 female, age 

range: 8-11 years , M = 9.07, SD = .57), and 20 in the MD group (11 female, 9 male, age range: 

8-10 years, M = 9.05, SD = .51). Groups were matched in age, F (1,73) = .02, p = .88, ƞ² = .001, 
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sex, X² = .53, p = .32, φ = .08, and intelligence, F (1,73) = 2.01, p =.16, ƞ² = .027. The 

descriptive data is presented in table 3.1.  

Table 3.1: Descriptive data of the individual assessment sample. 
 

  TA (n=55) MD (n=20) χ² df p φ 

Sex (% female) 45.45 55.00 .53 1 .32 .08 

 Mean SD Mean SD F df p ƞ² 

Age (years) 9.07 .57 9.05 .51 .02 1;73 .88 .001 

Raven (Z score) 1.15 .08 .92 .14 2.01 1;73 .16 .027 

Note. TA = typically achieving children; MD = children with mathematics difficulties; Z score (mean = 0, SD = 1). 

 

Materials 

The materials used in this study were the same of Starling-Alves et al. (in preparation; see 

page 5 of this thesis). However, different versions of Nonsymbolic Magnitude Comparison task 

and Symbolic Magnitude Comparison task were applied. Moreover, an Arabic Number 

Transcoding Task was included.  

Arabic Number Transcoding Task. To evaluate number transcoding skills, children 

were instructed to write the Arabic forms of dictated numbers. This task consists of 81 items, up 

to four digits (2 one-digit numbers, 6 two-digit numbers, 19 three-digit numbers, and 54 four-

digit numbers). The numbers were selected based on their transcoding complexity, defined by 

the number of transcoding rules (algorithms) necessary to convert between notations, according 

to the ADAPT model (Barrouillet et al., 2004; Camos, 2008). The items covered different 

complexity levels, from more simple numbers (2 rules) to more complex ones (7 rules). As 

shown in previous investigations, this task presents high internal consistency (KR20 = 0.96; 

Moura et al., 2013, 2015; Lopes-Silva et al., 2014). The total score in this task was given by a z-

score calculated for each child based on scores distribution of the total sample. In addition, an 
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error frequency score was calculated by dividing the total syntactic and lexical errors of children 

by the sample size of their groups.  

Nonsymbolic Magnitude Comparison. This version of the task (Figure 3.1) was similar 

to the one used in Starling-Alves et al. (in preparation; see page 5 of this thesis). However, there 

were two reference numerosities (see Piazza et al., 2010): 32 dots contrasted to 20, 24, 28, 30, 

34, 36, 38, 40, or 44 dots, and 16 dots contrasted to 10, 12, 13, 14, 15, 17, 18, 19, 20, or 22 dots. 

For analysis of accuracy and RT, distances were grouped in short, comprising distances 1, 2, and 

3, and large, distances 4, 6, 8, and 12. Each numerosity was presented 8 times, each time in a 

different configuration, in a total of 80 trials. Data were trimmed in two interactive steps for each 

child to exclude responses ± 3 SD from the mean RT. As a measure of the ANS acuity, the 

internal Weber fraction calculation was based on the Log-Gaussian model of number 

representation (Dehaene, 2007), with the methods described by Piazza et al. (2004), combining 

the error rates for ratios with reference 16 and 32.  

Two-digit Number Comparison. In this symbolic magnitude comparison task (Figure 

3.2), children were instructed to compare two-digit Arabic numbers presented on the computer 

screen and decide which was the greater (see Nuerk et al., 2001). The numbers were presented 

on the screen printed in white over a black background. The numerosities ranged from 21 to 89, 

and the distance between decades, the distance between units, and the decade-unit compatibility 

were controlled. Large conditions were defined when the distance between decades or between 

units ranged from 4 to 8 (e.g. 21 vs. 67, 34 vs. 81, 38 vs. 91, 81 vs. 39), whereas short decade 

conditions occurred when the distance between decades or between units ranged from 1 to 3 (e.g. 

43 vs. 59, 29 vs. 47, 54 vs. 37). In the congruent conditions, the greater number presented greater 
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decade and unit (e.g. 59 vs. 43), and in the incongruent conditions, the greater number presented 

greater decade but smaller unit (e.g. 81 vs. 34).  

The task comprised two blocks of 56 trials each. Before the testing trial, a fixation point – 

a cross, printed in white – was presented on the screen for 1000ms. The task trial consisted of the 

presentation of two numbers, shown on the screen for 5000ms, and followed by a mask, 

presented for 500ms.  The intertrial interval was also 500ms. Children were instructed to press 

the “H” key on the keyboard if the greater number was presented at the top of the computer 

screen, and “B” if the greater number was presented at the bottom. Decade distance, unit 

distance, and compatibility conditions presentation in the top or the bottom of the screen was 

counterbalanced. Data were trimmed in two interactive steps for each child to exclude responses 

± 3 SD from the mean reaction time. 

 

 

 

 

 

 

 

 

 
 

 

 
 

 
Figure 3.1. Illustration of the nonsymbolic comparison task, with arrows indicating the time curse of the task: 

fixation trial, experimental trial, and intertrial interval. 
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Figure 3.2. Illustration of the symbolic comparison task, with arrows indicating the time curse of the task: fixation 

trial, experimental trial, mask, and intertrial interval. 

 

Procedures 

The procedures were the same as in Starling-Alves et al. (in preparation; see page 5 of 

this thesis).   

Results 

Nonsymbolic magnitude comparison 

First, 2x2 mixed-ANOVAs, with distance (2 levels: large and short) as within-subjects 

factor, and groups (2 levels: TA and MD) as between-subjects were run for accuracy and RT. For 

RT (Figure 3.3 - A), there was a main effect of distance, F (1,73) = 74.03, p <.001, ƞ² = .507, 

with higher RT for short distances (M = .83, SD = .01) when compared to large ones (M = .68, 
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SD = .01). There was no main effect of groups, F (1,73) = .37, p = .54, ƞ² = .005, and no 

interaction between factors, F(1,73) = 3.20, p = .08, ƞ² = .043. 

For accuracy (Figure 3.3 - B), there was a main effect of distance, F (1,73) = 213.09, p 

<.001, ƞ² = .745, with higher accuracy for large (M = .83, SD = .01) distances than short (M = 

.68, SD = .01) ones. There was also a main effect of groups, F (1,73) = 13.15, p <.01, ƞ² = .153, 

with higher accuracy for TA (M = .80, SD = .01) than MD (M = .75, SD = .01). There was no 

significant interaction between factors, F (1,73) = .01, p = .98, ƞ² = .00.  

The Weber fraction was also indexed. Children with MD  presented higher values of 

Weber fraction (M = 0.25, SD = 0.06) when compared to TA (M = 0.20, SD = 0.06), F (1,73) = 

8.67, p<.01, ƞ² = .106 (Figure 3.4).  

 
Figure 3.3. Distance effect in nonsymbolic comparison task. a. Reaction time (RT) – there was a significant 

Distance Effect, with significant difference between large and short distances. There was no difference between MD 

(mathematical difficulties) and TA (typical achievement), and no interaction between factors.  b. Accuracy – As in 

RT, the distance effect was significant, with higher accuracy for large than short distance. Children with MD 

presented lower accuracy when compared to TA. There was no interaction between factors.   

A B 
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Figure 3.4. Weber fraction indexed by the nonsymbolic comparison task. Children with MD (mathematical 

difficulties) presented a higher nonsymbolic Weber fraction than TA (typical achievement) peers.  

 

Two-digit number comparison 

In the two-digit number comparison task, 2 x 2 mixed-ANOVAs were conducted for RT 

and accuracy, with compatibility (2 levels: compatible and incompatible) as within-subjects, and 

group (2 levels: MD and TA) as between-subjects factor. For RT (Figure 3.5 - A), there was a 

significant main effect of group, F (1,73) = 4.55, p <.05, ƞ² = .059, with higher RT for MD  

group (M = 1403.66, SD = 72.53) when compared to TA (M = 1223.06, SD = 43.74). There was 

no main effect of compatibility, F (1,43) = 3.61, p = 0.62, ƞ² = .047, and no significant 

interaction between factors,  F (1,73) = 2.12, p = .15, ƞ² = .028. 

Similar results were found for accuracy (Figure 3.5 - B). There was a significant main 

effect for group, F(1,73) = 19.72, p <.001, ƞ² = .213, with higher accuracy for TA children (M = 
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53.41, SD = .26) when compared to MD (M = 51.15, SD = .44). There was no significant main 

effect of compatibility, F(1,73) = 1.12, p =.29, ƞ² = .015, or interaction, F(1,73) = .47, p =.49, ƞ² 

= .006. 

 

 

Figure 3.5. Compatibility effect. a. Reaction time (RT) – there was a significant difference between MD 

(mathematical difficulties) and TA (typical achievement), but no difference between compatible and incompatible 

trials and no interaction between factors.  b. Accuracy – As in RT, there was a significant difference between 

groups, but no compatibility effect or interaction between factors. 

 

Number processing and math achievement 

Groups were compared regarding their performance in Basic Arithmetic Operations and 

Numerical transcoding. Then, Pearson correlation between math achievement and nonsymbolic 

and symbolic processing were run. The Weber fraction was used as an index of nonsymbolic 

processing, and the total accuracy and mean RT were used for symbolic processing, since there 

was no difference between compatible and incompatible conditions. 

A significant difference between groups was found in addition, F (1,73) = 4.97, p < .05, 

ƞ² = .064, with higher accuracy for TA (M = 20.41, SD = 5.62) than MD (M = 17.05, SD = 6.20), 

and subtraction, F(1,73) = 5.83, p < .05, ƞ² = .074, with higher accuracy for TA group (M = 

A B 
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14.58, SD = 6.28) than MD (M = 10.75, SD = 5.43) as well. Finally, children with MD also 

presented difficulties in multiplication (M = 6.20, SD = 5.62), when compared to TA peers (M = 

10.85, SD = 7.09), F (1, 73) = 6.99, p < .05, ƞ² = .087. 

The Weber fraction presented significant correlation only with multiplication, r = -.27, p 

<.05. A significant correlation was also observed between mean accuracy, in symbolic 

comparison task, and addition, r = .27, p <.05, and subtraction scores, r = .24, p <.05. The mean 

RT in symbolic comparison task correlated with scores in addition, r = -.37, p <.001, subtraction, 

r = -.40, p <.001, and multiplication, r = -.27, p <.05.   

For numerical transcoding, MD group presented lower z-scores (M = -.60, SD = .20) 

when compared to TA (M = .26, SD = .12), F(1,73) = 13.56, p < .001, ƞ² = .157.  There was a 

significant correlation between transcoding z-scores and mean accuracy, r = .38, p <.01, and RT 

in symbolic comparison, r = -.54, p <.001, and Weber fraction, r = -.25, p <.05.The frequency of 

syntactic and lexical errors was also investigated. A score for errors type was calculated by 

dividing the total frequency of syntactic and lexical errors for each child by the correspondent 

group size. This analysis minimize cofounds originated from unequal sample sizes. 

A 2x2 mixed ANOVA (Figure 3.6) was calculated with error type as within-subjects (2 

levels: syntactic and lexical) and groups as between-subjects factor (2 levels: MD and TA). 

There was a main-effect of error type, F(1,73) = 14.31, p < .001, ƞ² = .164, with higher syntactic 

errors (M = .56, SD = .12) than lexical ones (M = .10, SD = .08), and a main-effect of group, 

F(1,73) = 19.43, p < .001, ƞ² = .210, with higher errors frequency for MD (M = .59, SD = .10) 

than TA group (M = .06, SD = .06). There was a significant interaction between factors, F(1,73) 

= 14.31, p < .001, ƞ² = .164, indicating that children with MD presented more syntactic errors (M 
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= 1.01, SD = .20) than lexical ones (M = .17, SD = .03), and children with TA presented similar 

frequency of  syntactic (M = .08, SD = .12) and lexical errors (M = .03, SD = .02). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6. Error frequency in the numerical transcoding task analysis. There was significant difference between 

error categories, and between children with MD (mathematical difficulties) and TA (typical achievement). A 

significant interaction was observed between factors. 

 

There was a significant correlation between syntactic errors and accuracy, r = -.38, p 

<.01, and RT, r = .58, p <.001, in the two-digit comparison task. No significant correlation was 

observed between syntactic errors and Weber fraction, r = .21, p = .07, and between lexical 

errors and accuracy, r = -.20, p = .08, and RT, r = .12, p <.30 in two-digit number comparison 

task, and Weber fraction, r = .22, p = .07. 

Discussion 

In the present study, the numerical processing skills of children with MD were 

investigated. Children with MD presented impairments in the ANS acuity, as assessed by a 
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nonsymbolic comparison task, and in the symbolic number processing, as assessed by a two-digit 

number comparison task. In this task, the compatibility effect was not observed either in MD or 

TA groups. The relationship between numerical processing skills and math achievement was also 

examined.  There was a significant association between the nonsymbolic processing and 

numerical transcoding and multiplication scores, and between symbolic processing and 

numerical transcoding, addition, subtraction, and multiplication.  

In the nonsymbolic comparison task, RT, accuracy, distance effect and Weber fraction 

were calculated. A significant distance effect was observed for both RT and accuracy. The 

distance effect occurs when it is more difficult to distinguish between numerically close numbers 

(i.g. 32 and 36, distance 4) than between numbers that are far away from each other in a mental 

number line (i.g. 32 and 44, distance 12) (Dehaene, 2003; Moyer & Landauer, 1967), and has 

been replicated by different studies (Castronovo & Göbel, 2012; Holloway & Ansari, 2009; 

Landerl & Köle, 2009).  Although no difference between groups was observed in RT, children 

with MD presented lower accuracy and higher Weber fraction when compared to TA peers. The 

Weber fraction is distinguished as a sensible measure of the ANS acuity (Anobile et al., 2016; 

Piazza et al., 2010; Schneider et al., 2016), which has been assumed as impaired in children with 

MD (Costa et al., 2011; Mazzocco et al., 2011; Pinheiro-Chagas et al., 2014; Olsson et al., 2016).  

Children with MD also presented impairments in the symbolic processing. The symbolic 

processing is usually assessed by single-digit number comparison tasks (De Smedt & Gilmore, 

2011; Holloway & Ansari, 2009; Iuculano et al., 2008; Landerl et al., 2004; Mundy & Gilmore, 

2009; Sasanguie et al., 2012; Vanbinst, Ansari, Ceulemans, Ghesquière, & De Smedt, 2015), but 

some studies show that a two-digit number comparison task might be more sensitive to deficits 

in MD (Landerl & Kölle, 2009; Landerl et al., 2009; Ashkenazi et al., 2009). According to 
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Skagerlund and Träff (2014), it is possible that a greater exposure of children to single-digit 

numbers in school results in an efficient processing of small symbolic magnitudes. In this study, 

children with MD presented higher RT and lower accuracy in a two-digit number comparison 

task when compared to TA children. 

These results are in line with the core deficit hypothesis. The core deficit hypothesis 

proposes that a deficit in analog abstract representations of number - the ANS - is the main cause 

of MD (Piazza et al., 2010; Mazzocco et al., 2011; Pinheiro-Chagas et al. 2014). As the symbolic 

number representations are built upon nonsymbolic ones (Dehaene, 1992; Feigenson, Dehaene, 

& Spelke, 2004), a poor ANS might lead to deficits in symbolic magnitudes processing (Piazza 

et al., 2010; Skagerlund & Träff, 2014). In opposition to the core deficit hypothesis, the access 

deficit hypothesis suggests that children with MD present an intact ANS, but an impairment in 

linking symbolic numbers to their analog representations, which explain deficits in symbolic 

number processing (Rousselle & Noël, 2007; Noël & Rousselle, 2011). The core deficit 

hypothesis was corroborated since children with MD presented low ANS acuity and impairments 

in two-digit number processing. 

The two-digit number processing can be investigated by the compatibility effect, which 

accounts for the automatic activation of numerical magnitudes, and occurs when higher RT and 

lower accuracy are observed in incompatible two-digit number comparisons, in contrast to lower 

RT and higher accuracy in compatible items (Nuerk & Willmes, 2005).  In this study, no 

compatibility effect was observed in TA and MD groups. The compatibility effect has been 

underexplored in children with MD, and the literature present inconclusive findings (Ashkenazi, 

et al., 2009; Landerl, 2013; Landerl & Köle, 2009; Landerl et al., 2009). Landerl and Köle 

(2009) investigated the compatibility effect in children with MD cross-sectionally. They were the 
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first to show the compatibility effect in children with MD, and evinced that this group process 

two-digit numbers in a decomposed fashion. Differently, Ashkenazi, et al. (2009) found no 

significant compatibility effect in children with MD. These authors proposed that the 

compatibility effect in children might be influenced by the distance between decades and 

between units, such that sets with small decade distance and large unit distance rise stronger 

compatibility effect. According to Nuerk and Willmes (2005), when distance effect in decades 

interacts with the distance effect in units, the compatibility effect might be null or even reverse.  

The absence of the compatibility effect in children is indicative of poor ability to process 

two-digit numbers automatically (Ashkenazi, et al., 2009; Mussolin & Noël, 2008). Difficulties 

in the automatic processing of numbers is one of the cognitive deficits associated with MD. In a 

case-study, our research group showed that a child with impaired ANS presented difficulties in 

automatic processing of numbers, e.g. in comparing nonsymbolic magnitudes and performing 

multiplication tasks, but not in domains that required controlled processing (Haase et al., 2014), 

e.g. performing subtraction tasks.  

In the present study, the basic arithmetic operations and numerical transcoding skills of 

children with MD were also investigated. Children with MD presented lower scores in addition, 

subtraction, multiplication and numerical transcoding tasks when compared to TA peers, in line 

with previous studies (Landerl et al., 2004; Moura et al., 2013). An association between 

numerical processing and math achievement has been widely shown in the literature (Chen & Li, 

2014; Schneider et al., 2016), and there is evidence that the nonsymbolic magnitude processing 

is associated with basic addition, subtraction, and multiplication (Lyons and Beilock, 2011; 

Mundy & Gilmore, 2009; Pinheiro-Chagas et al., 2014). Surprisingly, the Weber fraction was 

only correlated to scores in numerical transcoding and multiplication.  Lopes-Silva et al. (2014) 
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showed a significant association between transcoding scores and the Weber fraction. However, 

this association was weak and did not remain after general cognitive domains, as intelligence and 

working memory, were controlled.  

In Brazil, children in 3rd and 4th grades are learning simple and complex multiplication. 

One possibility is that nonsymbolic representations of number are more recruited during the 

acquisition of new mathematical knowledge, in comparison to consolidated math skills, solved 

by retrieval (Ashcraft, 1992; Bonny & Lourenco, 2013).  McCrink and Spelke (2010) showed 

that 5 to 7 years-old children, not formally presented to multiplication, could understand 

nonsymbolic multiplicative patterns relying on the ANS. However, studies with adults suggest 

that multiplication is related to retrieval and to the symbolic processing of number (Lemer, 

Dehaene, Spelke, & Cohen, 2003; Park & Brannon, 2013; Vanbinst et al., 2015).  A 

developmental shift in the strategies to solve multiplication and the role of the ANS in this 

process are still to be clarified by longitudinal studies.   

Additionally, the symbolic processing was significantly associated with addition, 

subtraction, multiplication and numerical transcoding. The RT in the two-digit number 

comparison task was moderately correlated to addition, subtraction, multiplication and numerical 

transcoding scores, and the accuracy was correlated to addition, subtraction and numerical 

transcoding. These results corroborate previous findings (Landerl & Köle, 2009; Moeller et al., 

2011; Sasanguie et al., 2012; Schneider et al., 2016) that show that the symbolic number 

processing is relevant for math achievement. In a meta-analysis, Schneider et al. (2016) 

punctuated that the symbolic number processing present stronger association to math 

achievement than the nonsymbolic number processing. However, Price and Fuchs (2016) 

showed that the symbolic number processing mediates the relationship between the abstract 
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analog representation of number and math achievement. Accordingly, the ANS may influence 

math skills by allowing the development of symbolic numerical representations (Dehaene, 1992).   

Finally, the error types in numerical transcoding were taken into account. In accordance 

with previous findings (Moura et al., 2013), children with MD presented higher frequencies of 

syntactic errors than lexical ones, whereas children with TA presented similar low frequency of 

syntactic and lexical errors. In addition, poor representation of two-digit number – lower 

accuracy and higher RT – was associated to higher frequency of syntactic errors. The two-digit 

number comparison task indicates the automatic processing of numbers and the knowledge of the 

place-value rules (Moeller et al., 2011), which are important for transcoding procedures. To 

properly transcode a number, the place-value of each component of the number needs to be 

identified, associated to a digit and written in the correct sequence (Barrouillet et al., 2004). 

Syntactic errors occur when the magnitude of the number is modified or the position of the digits 

within a number is switched, and are indicative of poor acquisition of transcoding procedures 

rules (Barrouillet et al., 2004, Camos, 2008; Moura et al., 2013), which might be the case of 

children with MD. 

In sum, children with MD presented poor ANS acuity and a poor performance in a two-

digit number comparison task, corroborating the core deficit hypothesis. The compatibility effect 

was not observed, suggesting that elementary school children cannot fully process numbers 

automatically. Children with MD also presented difficulties in addition, subtraction, 

multiplication, and numerical transcoding tasks. Both the symbolic and the nonsymbolic 

comparison tasks were associated with math achievement. Finally, difficulties in two-digit 

number processing were associated with high frequencies of syntactic errors in numerical 
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transcoding, suggesting that the automatic processing of number and place-value skills are 

important to the knowledge of transcoding rules.  

To the best of our knowledge, this was the first study to investigate the nonsymbolic and 

symbolic magnitude processing in children with MD, presenting both the Weber fraction as an 

index of ANS acuity, and the unit-digit compatibility effect. In addition, no previous studies had 

investigated the relationship between two-digit number processing and numerical transcoding 

errors frequency. Further studies should clarify the two-digit number processing in MD and its 

relationship with arithmetic and numerical transcoding, especially with longitudinal designs.  
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General Discussion 

In the current thesis, the nonsymbolic and the symbolic magnitude processing in children 

with Mathematical Difficulties (MD) and the relationship of these abilities with math 

achievement were investigated in two studies. Here, a general overview of studies is presented 

and discussed. 

In the first study, numerical magnitude processing of children with MD and typical 

achievement (TA) were assessed by a nonsymbolic magnitude and a single-digit number 

comparison task. In order to assure that indexes used in both tasks were comparable, accuracy, 

reaction time (RT), distance effect, and a nonsymbolic and a symbolic Weber fraction were 

presented. The Weber fraction takes into account the errors committed in each ratio in a 

comparison task, and accounts for the variability in the representation of magnitudes (Halberda, 

Mazzocco, & Feigenson, 2008; Piazza et al., 2010). As the symbolic magnitude representations 

are attached to the ANS (Dehaene, 1992), and respond to the distance effect (Moyer & Landauer, 

1967), they could possibly be indexed by the Weber fraction. 

Children with MD presented difficulties in the nonsymbolic magnitude comparison task, 

presenting lower accuracy and higher Weber fractions when compared to TA. However, in the 

symbolic comparison task with single-digit numbers, no differences between groups were 

observed. The distance effect was observed– higher RT and lower accuracy for close magnitudes 

– for both the nonsymbolic and the symbolic comparison tasks, but there was no difference 

between groups in this domain.  

 Children with MD presented difficulties in addition, subtraction, and multiplication 

skills. The relationship between number processing and math achievement was investigated 

through linear regression analysis separately for MD and TA groups, with the nonsymbolic and 
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the symbolic Weber fraction as factors and scores in addition, subtraction, and multiplication as 

dependent variables. For TA children, the nonsymbolic and the symbolic Weber fractions were 

significant predictors of addition, subtraction, and multiplication. However, for the MD group, 

no regression reached significance. Therefore, it is possible that children with MD do not engage 

the number processing to solve arithmetic problems, and use different cognitive resources 

(Pinheiro-Chagas et al., 2014). 

Since no differences between MD and TA groups were found in the single-digit number 

processing, in the second study, the two-digit number processing and its association with math 

achievement were investigated. Children with MD and TA responded to a nonsymbolic 

magnitude comparison task, and a two-digit number comparison task, such that oth tasks had 

similar magnitude ranges.  

In the second study, children with MD presented difficulties in the nonsymbolic 

magnitude processing and in the two-digit number processing. In the nonsymbolic number 

comparison task, children with MD presented lower accuracy and higher Weber fraction than 

TA. In the two-digit number task, in turn, children with MD presented higher RT and lower 

accuracy than the TA, but no compatibility effect was observed for both groups. The 

compatibility effect occurs when higher RT and lower accuracy are observed in incompatible 

two-digit number comparisons, in contrast to lower RT and higher accuracy in compatible items, 

and allows the investigation of automatic processing of number (Nuerk & Willmes, 2005). 

Unfortunately, as the design of the two-digit task was based on the distance between decades and 

units, and the compatibility between them, rather than on the ratio between numbers, it was not 

possible to calculate a symbolic Weber fraction. 
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Regarding math achievement, children with MD presented difficulties in addition, 

subtraction, multiplication and numerical transcoding skills. The association between number 

processing and math achievement was investigated through a correlation analysis. The 

nonsymbolic Weber fraction was significantly correlated with multiplication and numerical 

transcoding scores. On the other hand, in the two-digit number comparison task, accuracy was 

correlated with addition, subtraction, and numerical transcoding scores, and RT was correlated 

with addition, subtraction, multiplication and numerical transcoding scores. An error analysis 

was conducted in the numerical transcoding task, and children with MD presented more syntactic 

and lexical errors than children with TA. There was a significant correlation between syntactic 

errors frequency and accuracy and RT in the two-digit number comparison task. No correlation 

was significant for lexical errors.  

Overall, children with MD presented impairments in the ANS, supporting the core deficit 

hypothesis. The core deficit hypothesis proposes that a deficit in the ANS is the main cause of 

MD (Mazzocco, Feigensn, & Halberda, 2011; Piazza et al. 2010; Pinheiro-Chagas et al., 2014).  

The ANS is dedicated to the representation of abstract magnitudes in an analog fashion 

(Feigenson, Dehaene, & Spelke, 2004), and allows nonsymbolic magnitude comparison, 

estimation and calculation (Dehaene, 2001). The validity of the ANS has been taken into 

question (Gebuis, & Reynvoet, 2011; Gilmore et al., 2013; Leibovich, Katzin, Harel, Henik, 

2016), but there is evidence that this system is part of a generalized magnitude system 

(Skagerlund & Träff, 2014; Walsh, 2003), and is independent of visual properties (Anobile, 

Castaldi, Turi, Tinelli, & Burr, 2016).   

According the triple-code model (Dehaene, 1992), the ANS is the foundation for the 

symbolic representations of number. Therefore, it was expected that children with low ANS 
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acuity would also present impairments in the symbolic processing. When a single-digit number 

comparison task was used, no differences between children with MD and TA were found. 

However, a two-digit number comparison task was sensible to symbolic processing difficulties in 

MD, which is in line with other studies (Ashkenazi, Mark-Zigdon, & Henik, 2009; Landerl, 

Fussenegger, Moll, & Willburguer, 2009). Skagerlund and Träff (2014) suggested that, in 

schools, there might be a greater exposure of children to single-digit numbers than to two-digit 

numbers. Accordingly, elementary school children present an efficient processing of small 

symbolic magnitudes, and greater symbolic magnitudes tasks are more sensible to difficulties. In 

the two-digit number comparison task, no compatibility effect was observed for MD and TA. 

One possibility is that elementary school children are still unable to process larg numbers 

automatically, as proposed by Ashkenazi et al. (2009).  

In the present thesis, the association between numerical magnitudes processing and math 

achievement was observed, in line with several studies (Bugden, Price, McLean, & Ansari, 2012; 

Castronovo & Göbel, 2012; De Smedt, Verschaffel, & Ghesquière, 2009; Halberda et al., 2008; 

Inglis, Attridge, Batchelor, & Gilmore, 2011; Paulsen, Woldorff, & Brannon, 2010). The 

symbolic number processing presented a stronger correlation with math achievement than the 

nonsymbolic processing. Price and Fuchs (2016) showed that the symbolic number processing 

mediates the relationship between the ANS and math achievement. In this sense, the ANS may 

influence math skills indirectly, by allowing the development of symbolic numerical 

representations (Dehaene, 1992).   

As mathematical abilities are important for our daily lives, it is necessary to identify 

underlying mechanisms of MD. Further studies might still clarify the importance of nonsymbolic 

and symbolic magnitude processing to math achievement, especially through longitudinal 
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designs, as well as confirm the validity of a symbolic Weber fraction and its relationship with 

MD.  
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