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Introdução Geral 

Gnaphosidae é a sexta maior família de aranhas, com 2183 espécies agrupadas em 124 

gêneros, e pode ser encontrada em todos continentes, exceto na Antártida (embora seja 

provável que ocorra em ilhas subantárticas). Na América do Sul a família é representada 

por 26 gêneros e 173 espécies, sendo que 17 gêneros e 69 espécies ocorrem no Brasil. 

Essa diversidade sul-americana representa apenas 0,08% do número de espécies 

conhecidas de Gnaphosidae. Com as informações a respeito da família que temos no 

momento, é difícil explicar essa baixa diversidade. Ela pode estar relacionada a 

deficiências de esforço de coleta e estudo taxonômico focado na fauna sul-americana. 

Por outro lado, é possível que as condições ambientais na região Neotropical não sejam 

favoráveis à diversificação da família, ou talvez a explicação seja uma combinação de 

vários desses fatores. 

Os gnaphosídeos são aranhas de pequeno a médio porte (2 a 15 mm), que não 

usam a seda para construção de teias e forrageiam no solo, sob pedras e troncos caídos. 

Os órgãos produtores do fio de seda, as fiandeiras, apresentam características muito 

peculiares nessa família: as fiandeiras laterais anteriores são longas, com um único 

segmento tubular esclerotinizado, e as fúsulas (estrutura pele qual a seda é secretada) 

das glândulas piriformes são grandes, com uma base membranosa. Exemplares de 

Gnaphosidae apresentam aparência geral que pode não atrair tanto a atenção de 

pesquisadores e do público leigo, ao contrário de famílias como Araneidae, Thomisidae 

e de alguns theraphosídeos, por exemplo. Gnaphosídeos são aranhas, na sua maioria, de 

cores pálidas ou escuras com morfologia não muito diferenciada de uma aranha 

genérica de solo. Muitas delas podem lembrar superficialmente formigas, passando 

despercebidas a olhares pouco atentos. Entretanto, apesar do habitus aparentemente 

pouco diferenciado, uma observação mais cuidadosa da morfologia dessas aranhas 

revela uma diversidade enorme nas estruturas que compõe o corpo desses animais. 

Cerdas de cobertura corporal, espinhos, fiandeiras, olhos, quelíceras, órgãos sensoriais, 

garras tarsais, tufos de cerdas subungueais e genitálias são algumas das estruturas que 

apresentam grande variação entre os gêneros da família e indicam que Gnaphosidae 

apresenta grande potencial para estudos evolutivos e de morfologia comparada e 

funcional. A diversidade morfológica de genitália de Gnaphosidae, por exemplo, é algo 

notável entre essas aranhas por apresentarem tanto órgãos complexos, com várias 

estruturas, até órgãos simples, com poucas partes. Exemplares dessa família podem 
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servir de modelo para estudos de evolução sexual ajudando a compreender melhor os 

processos envolvidos na evolução de órgãos copulatórios. 

Gnaphosidae é um grupo muito antigo de aranhas, globalmente distribuído, mas 

que apresenta certo endemismo, ou seja, alguns grupos de espécies são restritos a 

regiões específicas do planeta. Isso indica que essas aranhas podem ser modelos 

interessantes para estudos biogeográficos em grande e média escala. Entender como e 

onde as espécies de aranhas estão distribuídas e quais os fatores limitam essa 

distribuição pode fornecer informações importantes de como a história do planeta 

influenciou na história dos organismos. Assim, é possível desvendar os processos 

macroecológicos e geológicos que geraram a biodiversidade na Terra. 

Para utilizar gnaphosídeos como modelo de estudos de processos geradores da 

biodiversidade é necessária uma boa compreensão da composição da fauna e das 

relações evolutivas entre as espécies. Trabalhos taxonômicos são importantes para 

descrever e conhecer adequadamente os organismos de determinada região. A 

taxonomia de Gnaphosidae vem sendo bem explorada nos últimos anos, principalmente 

no hemisfério norte, o que permitiu um grande avanço no conhecimento da família. 

Entretanto, muitas regiões, como na África, Ásia e América do Sul, continuam pouco 

exploradas com relação à fauna de Gnaphosidae, sendo que muitos gêneros necessitam 

revisões taxonômicas detalhadas. 

Para melhor entender processos evolutivos envolvidos na diversificação das 

espécies é necessário ter hipóteses de relações filogenéticas entre os organismos. O uso 

de filogenias para estudos comparativos permite isolar o efeito filogenético ao testar 

hipóteses evolutivas. Uma vez que espécies proximamente relacionadas tendem a ter 

traços semelhantes, resultados espúrios podem ser obtidos em análises de correlação 

entre variáveis de interesse, e a filogenia é necessária para remover o efeito indesejado 

da autocorrelação filogenética. Embora Gnaphosidae tenha grande potencial como 

modelo para estudo de processos evolutivos, a falta de hipóteses filogenéticas impede 

esse tipo de investigação. 

Esta tese pretende contribuir para o avanço na compreensão dos padrões e 

processos que podem explicar a biodiversidade de aranhas da família Gnaphosidae 

através da proposição de uma hipótese filogenética para a família, de testes de hipóteses 

de diversificação da genitália e de uma revisão taxonômica de um gênero neotropical. 

Esses objetivos são abordados aqui em três capítulos na forma de manuscritos para 

submissão em revistas científicas. O primeiro capítulo, a ser submetido ao periódico 
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Cladistics, apresenta uma análise cladística baseada em dados morfológicos para 

Gnaphosidae. O segundo capítulo trata da evolução da complexidade do aparelho 

copulatório na família e será submetido à revista Biological Journal of Linnean Society. 

Por fim, o terceiro capítulo apresenta uma revisão taxonômica do gênero Apopyllus 

aceita para publicação na revista Zootaxa. 
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Abstract 

Gnaphosidae Pocock is a very diverse spider family with remarkable spinning organs 

morphology. Although the family has received intense taxonomical attention in latest 

years, its inter-generic relationships remain obscure. A cladistic analysis of 

Gnaphosidae genera was performed to untangle the evolutionary history of the family. 

A matrix of 336 morphological characters, scored for 70 gnaphosids and 29 outgroups, 

was analyzed through parsimony. Gnaphosidae is not recovered as a monophyletic 

group, neither were most previously proposed intrafamiliar groupings. Vectius Simon 

and Hemicloea Thorell are transferred to Trochanteriidae Karsch, and Xenoplectus 

Schiapelli & Gerschman to Liocranidae. Micaria Westring, Nauhea Forster and Verita 

Ramírez & Grismado (and probably some related genera) are most likely not 

gnaphosids, though their phylogenetic placement is uncertain. Gnaphosidae Sensu 

Stricto is defined as spiders with enlarged piriform spigots, longer and wider than major 

ampullate pigots. Within Gnaphosidae S.S., well-supported clades allow the definition, 

on quantitative phylogenetics bases, of Gnaphosinae Pocock, Zelotinae Platnick, 

Herpyllinae Platnick, Prodidominae Simon Rank Res and the newly proposed 

Leptodrassinae New Subfamily. Many genera are not assigned to subfamily given low 

supported relationships. The homology and evolution of some structures like the claw 

tuft clasper, the elongated base of piriform spigots and the modification of chelicera 

promargin are discussed. This work points some directions towards a better 

understanding of the generic relationships of Gnaphosidae and related taxa.               
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Introduction 

Recent efforts to elucidate inter-familiar and deeper relationships of spiders have 

improved significantly the knowledge about systematics and evolution of higher level 

lineages within the order (Silva Davila, 2003; Griswold et al., 2005; Bond et al., 2014; 

Fernández et al., 2014; Ramírez, 2014; Polotow et al., 2015; Garrison et al., 2016). 

However, there are still many taxa whose the intra-familiar and lower levels 

relationships are poorly know (Coddington, 2005). Gnaphosidae Pocock, 1898, for 

example, is a diverse family that needs formal phylogenetic analysis to unravel the 

evolutionary history of its genera. 

 Gnaphosidae, as nowadays delimited, comprises 2183 species (the sixth richer 

spider family) arranged in 124 genera with worldwide distribution (World Spider 

Catalog, 2016). The family has been traditionally placed in the superfamily 

Gnaphosoidea (Lehtinen, 1967; Platnick, 1990; Coddington, 2005) together with 

Prodidomidae Simon, 1884, Lamponidae Simon, 1893, Gallieniellidae Millot, 1947, 

Trochanteriidae Karsch, 1879, Ammoxenidae Simon, 1893 and Cithaeronidae Simon, 

1893; based on the following shared characters: (1) presence of minor ampullate gland 

spigots (MiAm) on the posterior lateral spinnerets (PLS) and on the posterior median 

spinnerets (PMS), (2) oblique and flattened posterior median yes (PME) and (3) 

oblique, depressed endites (Platnick, 1990, 2000, 2002; Coddington, 2005). The limits 

and relationships of those families were explored in several important studies (Platnick, 

1985, 1990, 1991, 2000, 2002; Platnick & Baehr, 2006) but, regardless of the putative 

synapomorphies mentioned above, the Gnaphosoidea monophyly was recently 

challenged in a recent investigation of Dionycha spiders, where the superfamily 

appeared to be paraphyletic (Ramírez, 2014). Although the relationships of gnaphosoid 

families are not clear, it seems that Gnaphosidae is closely related to Prodidomidae, 

being the enlarged piriform gland spigots a candidate synapomorphy for this sister 

group relationship. 

 The monophyly of Gnaphosidae have never been systematically tested in a 

formal phylogenetic analysis and the position of some genera inside the family is still 

discussed (e.g.: Micaria Westring, 1851, Vectius Simon, 1897, Xenoplectus Schiapelli 

& Gerschman, 1958, Anagraphis Simon, 1893; Murphy, 2007; Ramírez, 2014). It is 

acknowledged, nevertheless, that most members of the family share some peculiar 

characteristics of the ALS and piriform gland spigots (Pi). Platnick (1990) redefined the 

family to include genera with Pi “enormously enlarged”, with a widened base and shaft 
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and a slit-like opening. Murphy (2007) diagnosed Gnaphosidae as having the ALS with 

a single sclerotized tubular segment and having enlarged Pi emerging from a distensible 

membranous tip. Ramírez (2014) proposed the widened Pi with the shaft-base transition 

superficially marked (fused) as a synapomorphy of a more narrowly defined 

Gnaphosidae. However it is known that some gnaphosid genera have the Pi with a 

defined shaft-base transition and the fusion could be an apomorphic condition inside the 

family (Platnick, 1990). The study carried out by Ramírez (2014) sampled only eight 

Gnaphosidae genera and, as stated therein, the inclusion of more representatives could 

challenge the results. The morphology of spinnerets and spigots of Gnaphosidae are 

remarkable and uncommon within Araneae (Platnick, 1990) and deserve more 

evolutionary investigation. 

 Several works have brought substantial contributions to solve the taxonomy of 

Gnaphosidae, especially regarding the New World fauna (Platnick & Shadab, 1976a, 

1979, 1984; Platnick, 1983; Zambonato & Lise, 2004; Ott, 2012, 2014; Ott et al., 2012; 

Jorge et al., 2013) and, therefore, many genera are well delimited. However, the 

phylogenetic relationships among gnaphosid genera are still obscure. The family is 

traditionally divided into eight, loosely delimited, subfamilies: Drassodinae, Echeminae, 

Gnaphosinae, Hemicloeninae, Laroniinae, Micariinae, Herpyliinae and Zelotinae 

(Platnick 1990). These subfamily names refer basically to some groupings proposed by 

Simon (1893) and some recent proposals (e.g. Platnick & Shadab, 1977, 1982a) but they 

were never formally described. Although some subfamilies have putative 

synapomorphies, they have never been put into test of character congruence in a 

cladistics analysis. A more recent alternative internal classification of Gnaphosidae 

divides the family in 14 groups of genera (Murphy, 2007). However, these groups were 

proposed to facilitate identification and were not intended to reflect any phylogenetic 

relationship. 

 A phylogenetic hypothesis for Gnaphosidae could help to understand the 

evolution of some remarkable characters in the family, like the spinnerets and spigots 

morphology, and contribute to a systematic classification that reflects the evolutionary 

history of the group. Also, it could be the base for biogeographical and macroecological 

studies, since it is a globally distributed family with some endemic groups (e.g. 

Platnick, 1976). In this study, a cladistics analysis using morphological characters is 

performed to elucidate the relationship of the Gnaphosidae genera, testing the family 
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monophyly, the monophyly of internal groupings and subfamilies, as well as the 

relationship of the family with other spider families. 

 

Material and Methods 

Taxon sampling 

The outgroup was selected to sample at least one exemplar of all the main lineages of 

the Oblique Median Tapetum (OMT) clade (Ramírez, 2014), which includes all the 

former Gnaphosoidea families (Prodidomidae, Lamponidae, Gallieniellidae, 

Trochanteriidae, Ammoxenidae and Cithaeronidae), plus Trachelidae Simon, 1897, 

Phrurolithidae Banks, 1892 and Liocranidae Simon, 1897. More than one genus was 

sampled from the families that appeared to be paraphyletic in Ramírez (2014) analysis. 

The families Trochanteriidae and Prodidomidae were sampled more extensively, since 

they dispute with Gnaphosidae the taxonomic position of some species (Platnick & 

Shadab, 1976b; Platnick, 1985, 1986a, 1990; Platnick & Baehr, 2006) and the three 

families seem to be closely related (Ramírez, 2014). This outgroup composition allows 

a good testing of Gnaphosidae monophyly and inter-familiar relationship. Anyphaena 

accentuata (Walckenaer, 1802), a member of Anyphaenidae, were chosen to root the 

tree. 

 The ingroup was chosen in a way that all subfamilies and Murphy‟s (2007) 

groups were represented, whenever possible, by a sufficient number of genera to test 

their monophyly. Since it was not the objective to test the monophyly of genera, only 

one species of each genus were used as terminals, except for a few cases in which only 

one female and one male from different closely related species were available. Thus, the 

following species were composed to represent their genera as a single chimera taxon: 

Aphantaulax cincta (L. Koch, 1866) and Aphantaulax sp.; Asemesthes albovittatus 

Purcell, 1908 and A. montanus Tucker, 1923; Gertschosa amphiloga (Chamberlin, 

1936) and G. concinna (Simon, 1895); Oltacloea beltraoe Brescovit & Ramos, 2003 

and Oltacloea sp.; Plator indicus Simon, 1897 and Plator sp.; Zelanda erebus (L. Koch, 

1873) and Z. kaituna (Forster, 1979). 

 Species were selected to represent each genus based on nomenclatural 

importance and material availability. Whenever possible, type species of families, 

subfamilies and genera were included in the matrix, to guide nomenclatural decisions. 

Additionally, since it is important to have both sexes sampled and Scanning Electronic 

Microscopy (SEM) images to code many of the characters, it was selected species with 
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sufficient well preserved material of both sexes. Notwithstanding, a few taxa (31) could 

not be examined through SEM due to shortage of collection material. For at least part of 

these species, when SEM images were missing or the specimens available were not in 

good conditions, the character scoring was complemented by observations of other 

species and/or SEM images from literature for the same or closely related species. 

These cases are noted in the character list (Appendix 1). Two taxa were scored based 

only on images (from published studies and from unpublished Assembling the Tree of 

Life Spiders database), since specimens were not available at the time of the study: 

Verita williamsi Ramírez & Grismado, 2015 and Trachycosmus sculptilis Simon, 1893. 

The former was included because it could be important to explore the relationship of 

some Gnaphosidae taxa (like Micaria and Nauhea Forster, 1979), the latter was 

included in order to provide clues about the relationship and monophyly of 

Trochanteriidae. 

 A total of 99 terminal taxa were used in the analysis, being 29 from outgroups 

and 70 Gnaphosidae. Twenty one taxa were scored only from one sex. The material 

examined for this study is listed in the Appendix 2 and are deposited in the following 

collections (abbreviations and curators in parenthesis): American Museum of Natural 

History, New York, USA (AMNH, Lorenzo Prendini); California Academy of Sciences, 

San Francisco, USA (CASENT, Lauren Esposito and Darrell Ubick); Canterbury 

Museum, Christchurch, New Zeland (CMNZ, Cor Vink); Centro de Coleções 

Taxonômicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (UFMG, 

Adalberto J. Santos); Coleção de História Natural da Universidade Federal do Piauí, 

Floriano, Brazil (CHNUFPI, Leonardo S. Carvalho); Democritus University of Thrace, 

Alexandroupolis, Greece (DUT, Maria Chatzaki); Instituto Nacional de Pesquisas da 

Amazônia, Manaus, Brazil (INPA, A.L. Henriques); Laboratório Especial de Coleções 

Zoológicas, Instituto Butantan, São Paulo, Brazil (IBSP, Antonio D. Brescovit); Museo 

Argentino de Ciencias Naturales „Bernadino Rivadavia‟, Buenos Aires, Argentina 

(MACN, Martín J. Ramirez); Museo de Historia Natural, Universidad Nacional Mayor 

de San Marcos, Lima, Peru (MUSM, Diana S. Dávila); Museo de La Plata, La Plata, 

Argentina (MLP, Luís A. Pereira); Museo Zoologico de "La Specola", Florence, Italy 

(MZLS, Luca Bartolozzi); Museu de Ciências e Tecnologia, Pontifícia Universidade 

Católica do Rio Grande do Sul, Porto Alegre, Brazil (MCTP, Arno A. Lise); Museu de 

Ciências Naturais, Fundação Zoobotânica do Rio Grande do Sul, Porto Alegre, Brazil 

(MCN, Ricardo Ott); Museu de Zoologia da Universidade de São Paulo, São Paulo, 
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Brazil (MZSP, Ricardo Pinto-da-Rocha); Museu Nacional, Rio de Janeiro, Brazil 

(MNRJ, Adriano B. Kury); Museu Paraense Emílio Goeldi, Belém, Brazil (MPEG, 

Alexandre B. Bonaldo); Museum of Comparative Zoology, Harvard University, 

Cambridge, USA (MCZ, Gonzalo Giribet); Museum of Zoology of the Invertebrates, 

Perm State University, Russia (PSU, Sergey L. Esyunin); National Collection of 

Arachnida, Pretoria, South Africa (NCA, A.S. Dippenaar-Schoeman); National Museum 

of Natural History, Smithsonian Institution, Washington D.C., USA (USNM, Jonathan 

A. Coddington); Queensland Museum, Brisbane, Australia (QSM, Robert Raven); 

Western Australian Museum, Perth, Australia (WAM, Mark Havey). 

 

Character sampling and specimen preparation 

Many of the characters used in this study were obtained or adapted from previous 

phylogenetic works on Entelegynae, especially when it included dionychans and 

gnaphosoid spiders (Griswold, 1993; Platnick, 2000, 2002; Bosselaers & Jocqué, 2002; 

Griswold et al., 2005; Platnick & Baehr, 2006; Haddad et al., 2009; Ramírez, 2014) as 

well from diagnoses and description of genera. Adaptation of characters involved 

reinterpretation of homology statements, separation of sexually dimorphic characters or 

separation of one mixed character into two or more neomorfic and transformational 

characters (sensu Sereno, 2007). Additionally, a search for new characters were done 

during specimen examination and added to the matrix. Autapomorphies were kept in the 

analysis since they can be useful for genus diagnosis or for possible future intrageneric 

phylogenetic research. When the state of a character (especially of multistate characters) 

could not be seen clearly, due to bad preparation or specimen condition, or when it 

looked like an intermediate condition between two states, it was coded as polymorphic 

(0&1 codding in Mesquite) and noted. 

 Shapes of structures are frequently used as discrete characters to reconstruct 

spider phylogeny or to diagnose taxa (e.g. Ramírez 2014: char. 9). The reliability of 

such separation into discrete states are rarely discussed, even though it has been show 

that the use of carapace shape as discrete character might not be adequate for estimating  

Mygalomorphae phylogeny (Bond & Beamer, 2006). Here, Geometric Morphometrics 

(Rohlf, 1990; Adams et al., 2004; Zelditch et al., 2004; Slice, 2007) techniques were 

applied to evaluate if the shape of some structures could be used as discrete character 

states in the phylogeny. Standardized images (photographs or SEM) were taken for the 

following structures: cephalothorax in dorsal view, labium in ventral view, sternum in 
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ventral view, anterior eye row in frontal view and posterior eye row in dorsal view. 

Landmarks and semi-landmarks were established for each structure, aligned and 

submitted to a Relative Warp Analysis (RWA; Adams et al., 2004; Zelditch et al., 

2004). The tps series software (Rohlf, 2015) were used for the Geometric 

Morphometrics analysis, as detailed in the Supplemantary Material. 

 Specimens were examined immersed in 75% ethanol under a Motic K series, 

Leica M205C and a Leica MZ12 stereoscopic microscopes. Female genitalia were 

dissected and soft tissues were cleaned using a pancreatin solution (Álvarez-Padilla & 

Hormiga, 2007), digested with contact lens cleaner and/or temporarily cleared using 

clove oil or methyl salicylate solution (Levi, 1965; Holm, 1979). Male palpi and 

spinnerets were expanded using lactic acid heated in double boiler for a few minutes 

(Levi, 1965; Murphy, 2007). Photographs were made using Leica M205C equipped 

with a Leica DFC295 digital camera. Multifocal images were mounted using the 

softwares Leica Application Suite and Helicon Focus (Helicon Soft Ltd). 

 For SEM, specimens were submitted to critical-point drying after an overnight 

period in 100% ethanol, mounted in aluminum stubs with adhesive copper tape and 

sputter coated with gold. For each species, about eight stubs were prepared for SEM 

(male palp and abdomen, female abdomen, epigynum, legs I and IV, chelicerae and 

cephalothorax with palp). Images were taken with a Quanta 2000 SEM at the Centro de 

Microscopia da UFMG and with a LEO 1450vp SEM at the Entomology Department of 

California Academy of Sciences. 

 Mesquite v.3.04 (Maddison & Maddison, 2015) was used to construct and edit 

the matrix with 336 morphological characters. All characters were treated as non-

additive. The character list with descriptions and argumentation can be found in the 

Appendix 1. 

 

Phylogenetic analysis 

The optimal trees under the parsimony criterion were searched using the new 

technologies (Goloboff, 1999) on TNT v.1.5-beta (Goloboff et al., 2008a). It was 

performed Random Sectorial Searches (S=45; X=30; N=43) + Consensus Sectorial 

Searches (S=10; Y=30) + Ratchet (C=12; 30 iterations) + Drift (C=12; D=30) + Tree 

Fusing (30 rounds) with 15 random addition sequences. Additionally, a round of tree 

bisection-and-reconnection (TBR) and sub-tree-pruning-and-regrafting (SPR) were 

performed on the trees found with new technologies search. Searches were done using 
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Equal Weights (EW) and Implied Weights (IW; Goloboff, 1993; Goloboff et al., 2008b) 

with 10 different values of the concavity constant (k= 3, 5, 7, 9, 11, 15, 17, 19, 21 and 

23). The best trees under different weight regimes were compared using SPR distances 

(Goloboff, 2008) and the tree with the highest mean similarity with the others were 

chosen as working hypothesis. Character optimization to explore the evolution of some 

features was done with WinClada (Nixon, 2002). Clade support was estimated through 

jackknifing under symmetrical resampling (Goloboff et al., 2003), with 1000 

pseudoreplications, and with bremer support (BS) values (Bremer, 1994). A preliminary 

run indicate a maximum BS value of 0.85 in fit difference. After an initial run retaining 

3000 trees with fit difference of 0.01, other nine cycles were run, increasing the fit 

difference in ten units and the trees in memories in 3000 each cycle. This way, a 

universe of suboptimal trees up to 0.90 units of difference of fit was explored to 

estimate BS values. Search parameters were the same mentioned above. The support of 

clades is shown in the preferred tree. 

 

Results 

Matrix and Character Statistics 

The final dataset resulted in a matrix with 336 active characters scored for 99 taxa, in 

which 21% of entries are missing data and 13% are inapplicable. The great proportion 

of missing data was due to the high number of taxa without SEM preparation (31 taxa) 

and with only one sex available (21 taxa). There are 35 characters from female genitalia, 

57 from male genitalia, 52 from spinnerets and 222 from other body parts. 

 The Geometric Morphometrics contributed to the codding of four characters. 

The cephalothorax analysis yielded two independent binary characters: the overall shape 

(Char. 278, Supplementary Material Figure S2A) and the shape of the anterior margin 

(Char. 279, Supplementary Material Figure S2A). The sternum ordination shows the 

presence of one character with two states (Char. 280, Supplementary Material Figure 

S2B). The posterior eye row could be coded in two states: a procurved closely spaced 

eye row, and a straight to recurved row (Char. 281, Supplementary Material Figure 

S3A). The analysis of the anterior eye row and labium reveals a continuum of shape 

variation, so those structures could not be coded as binary character states, although 

some of them were tentatively scored qualitatively, but kept as inactive characters (see 

Appendix 1: chars. 336–345 and the Supplementary Material). 
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Phylogeny 

The equal weights analysis resulted in 2088 most parsimonious trees with 2016 steps 

(CI= 17, RI=51). The strict consensus of these trees is highly unresolved for the 

Gnaphosidae genera relationships, with only few clades consistently recovered among 

all trees, although the outgroup shows good resolution (Fig. 1). 

 The tree obtained in the implied weights analysis with k=15 was the one with the 

highest mean similarity with the other trees (Table 1). Therefore, this tree was used as 

working hypothesis for the Gnaphosidae genera phylogeny (Fig. 2, fit= 69.32592). The 

trees found under other concavity values and under equal weights are, nevertheless, 

used to discuss robustness of clades. Most of the clades are weakly supported by the 

resampling analysis and bremer support values (Fig. 2). The sensitivity analysis (sensu 

Giribet, 2003) to weighting regime as well as the supports are summarized in the 

working hypothesis tree (Fig. 2). 

 Gnaphosoidea is not recovered here as a monophyletic group, since 

Gallieniellidae is closer to Phrurolithidae and some Liocranidae than to the other 

gnaphosoid families (Fig. 2). The Claw Tuft Clasper (CTC) clade, recently proposed 

(Ramírez 2014), also appears paraphyletic in this analysis. Among the former 

Gnaphosoidea families, Ammoxenidae, Gallieniellidae and Prodidomidae are 

monophyletic (Lamponidae and Cithaeronidae monophyly could not be tested since 

only one terminal was used from each family). Ammoxenidae is sister to Cithaeronidae 

and prodidomids are closely related to gnaphosids (Fig. 2). 

 Gnaphosidae as currently delimited is not monophyletic, neither are most of the 

subfamilies or Murphy‟s groups. Only Zelotinae (equivalent to Murphy‟s Zelotes group) 

and Herpyllinae are recovered as natural groups. The Hemicloeinae (Hemicloea group) 

are grouped with the flattened trochanteriids. Micaria, Verita and Nauhea are related to 

Ammoxenidae+Cithaeronidae clade, Lamponidae and Trochantheriidae, respectively. 

Xenoplectus is related to trochanteriids in the IW analysis and to Liocranum L. Koch, 

1866 under EW. Some gnaphosids are more closely related to prodidomids than to other 

gnaphosids (e.g. Anagraphis Simon, 1893 and Anzacia Dalmas, 1919). 

 

Discussion 

Gnaphosoidea 

In the past few years, Gnaphosoidea received substantial attention on its systematics and 

taxonomy (Platnick, 1990, 2000, 2002; Platnick & Baehr, 2006). A recent analysis, 
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nevertheless, revealed that many of the characters thought to be synapomorphies of the 

superfamily are, in fact, shared derived characters of a more inclusive clade named 

OMT (Ramírez, 2014). This clade includes all the Gnaphosoidea families plus 

Liocranidae, Phrurolithidae and Trachelidae. The findings here also suggest a 

paraphyletic Gnaphosoidea, and the classic gnaphosoid median eyes, with oblique 

tapetum, and the obliquely depressed endites emerge as synapomorphies of the OMT 

clade. In the dataset herein, the oblique tapetum is present in all taxa except for 

Anyphaena Sundevall, 1833, Meedo Main, 1987, Oltacloea Mello-Leitão, 1940 and 

Tricongius Simon, 1893. The oblique depressed endites might be, in some cases, hard to 

recognize, and the interpretation might disagree between authors (e.g. Trachycosmus  

Simon, 1893; Platnick, 2002; Ramírez, 2014). Here it was considered primitively absent 

only in Anyphaena and secondarily lost in Notiodrassus Bryant, 1935. 

 

The CTC clade 

The CTC clade was recently proposed to include Trachelidae, Ammoxenidae, 

Cithaeronidae, Phrurolithidae, Prodidomidae, Gnaphosidae, some gallieniellids, some 

trochantheriids, and some liocranids (Ramírez, 2014). The main synapomorphy of the 

clade, the claw tuft clasper, is a structure located on base of the tarsal claw that probably 

is used to move the tenent setae of the claw tuft (Fig. 8). The homology of the claw tuft 

clasper was interpreted in a different manner herein, what probably led to finding the 

CTC clade paraphyletic. The structure was divided in three independent characters, a 

classic clasper (char. 134; Fig. 8 B, C, G), a folded clasper (char. 135; Fig. 8 A, E) and a 

solid pointed clasper (char. 136; Fig. 8 C, F), since they do not seem to be homologous. 

The classic clasper was originally discovered by Platnick et al. (2005) who 

called it specialized proximal claw teeth. This clasper is a digitiform structure that looks 

like several teeth closely spaced and it is located just above a basal claw fold (Fig. 8B, 

C, G). This fold seems to be present (in different degrees of development) in all taxa 

examined through SEM (Fig. 9). In some genera, like Eilica Keyserling, 1891, the basal 

fold is very developed and might be used to clasp the claw tuft seta (Fig. 8A, E), serving 

the same function as the classic clasper. The classic clasper differs from the folded 

clasper regarding their position and structural composition. In other cases, as in 

Ammoxenus Simon, 1893 and Micaria, the basal fold is not very developed, but it has a 

solid pointed projection towards claw tuft and also might be used to clasp tenant setae 

(Fig. 8F). The pointed clasper, although in the same position as the folded clasper, 
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differs in structural composition and seems independent modifications of the same 

structure, the basal fold. Both pointed clasper and classic clasper can be found in 

Chilongius Platnick, Shadab & Sorkin, 2005 (Fig. 8C). All these evidences suggest that 

the three described structures might not be homologous, although they serve the same 

function, and should be treated as different independent characters. 

Ramirez (2014) stated that, even with the uncertain taxonomic composition of 

the CTC clade, the evolution of the clasping mechanism with one single origin is well 

established. This single origin would be consistent with the transition from articulate to 

fixed claw tuft insertion and possibly related to the appearance of the ribs of the basal 

section of claw tuft tenant setae (Ramírez, 2014). This suggests that the spider would be 

able to move the claw tuft even without an articulated claw tuft insertion, clasping the 

basal ribs of tenent setae. The homology reinterpretation and the results presented here 

imply, however, an alternative explanation to clasper evolution. It might be that those 

taxa with a clasping mechanism evolved independent ways to control the movement of 

tenant setae and overcome the problem of the unarticulated claw tuft insertion. The 

classic clasper evolved once in the working hypothesis herein (Fig. 10) as a 

synapomorphy of the Neotropical tricongiine prodidomids (in agreement with Platnick 

et al., 2005). The folded clasper is a synapomorphy of a small group of laroniines and 

some gnaphosines (Fig. 10). The pointed clasper is more homoplasic, evolving at least 

four times in the OMT clade (Fig. 10). The clasping mechanism evolution does not 

seems directly related to the evolution of basal section of the tenant setae with ribs, 

thought it could be a pre-adaptation to evolution of clasper, facilitating the coupling of 

these structures and allowing better movement of the claw tuft. However, it is still a 

puzzle the mechanism in which the taxa with fixed claw tuft insertion would suppress 

the problem (if it is really a problem) of reduced movability of tenant seta, since many 

taxa with claw tuft do not have a clasper. Detailed comparative studies of morphology 

and mechanics of these structures could help to understand better de homology, function 

and evolution of the claw tuft clasping mechanisms. 

 

Gallieniellidae 

Gallieniellidae is supported here by the elongated, tubular, semi-paraxial chelicerae 

(chars. 61, 96, 97; Figs 3, 21D, G), absence of claw tuft, loss of conductor, absence of 

aciniform gland spigots (Ac) on PLS, among others. This result agrees with Platnick 

(2002) and Haddad et al. (2009). A disputed member of the family, Austrachelas 
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Lawrence, 1938; was not included in the analysis. Haddad et al. (2009) transferred this 

genus from Liocranidae since it was found, in a phylogenetic analysis, embeded in 

Gallieniellidae clade. However, in the Dionycha phylogeny (Ramírez, 2014) 

Austrachelas was found to be closer to Liocranum. In fact, Gallieniellidae appeared 

paraphyletic, with taxa scattered through OMT clade. Austrachelas do not have clearly 

semi-paraxial chelicerae, have Ac on PLS and have claw tuft, and, therefore, the 

inclusion of this taxa might change the Gallieniellidae monophyly obtained herein. On 

the other hand, a constrained analysis with Gallieniellidae monophyletic shown to be 

slightly suboptimal, recovering a possible secondary signal (Ramírez, 2014). Therefore, 

it might be interesting more studies on this family to elucidate its relationships.  

 

Ammoxenidae and Cithaeronidae 

Ammoxenidae (at least Ammoxenus) and Cithaeronidae are often recovered as weakly 

supported sister clades (Platnick 2002, Ramirez 2014). Although Ramírez (2014) did 

not find a monophyletic Ammoxenidae, a constrained analyses shown to perform 

almost as better, resulting in Ammoxenidae sister to Cithaeronidae. Herein, this sister 

group relationship is weakly supported by characters related to tarsi pseudosgmentation 

(althoug with reversion in Rastellus Platnick & Griffin, 1990; Figs 2, 4) and the loss of 

palpal conductor. Ammoxenidae monophyly, on the other hand, is very well supported, 

and the main synapomorphies are strong spines on chelicerae, PMS anteriorly displaced, 

terminal apophysis on embolus, absence of piriform gland spigots in females and 

procurved posterior eye row (Fig. 3). 

 

Trochanteriidae and Flattened Gnaphosoids 

The taxonomic position and relationships of the flattened gnaphosoid genera has always 

been confusing (see Platnick, 1985, 1986a, 1986b, 1990, 2002). Vectius and Hemicloea 

Thorell, 1870 are, until nowadays, accepted to be members of the subfamily 

Hemicloeinae (or Hemicloea group in Murphy 2007) and placed in Gnaphosidae (World 

Spider Catalog, 2016). This placement was justified based on the presence of enlarged 

piriform gland spigots and the lack of a distal sclerotized ring on PLS (Platnick, 1990). 

However, in those taxa the piriform spigots are not considerably longer nor wider than 

the major ampullate spigots, as in the true gnaphosids (Fig. 13) and most trochanteriid 

genera studied here (except for Trachycosmus) have an inflatable membrane and 

incomplete distal ring on ALS (Fig. 13). Herein, the extremely flattened trochanteriids 
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(Trochanteria Karsch, 1878, Doliomalus Simon, 1897, Platyoides O. Pickard-

Cambridge, 1890 and Plator Simon, 1880) group with the hemicloeinae gnaphosids in a 

strongly supported clade, which is phylogeneticaly distant from Trachycosmus (Fig. 2). 

Many of the synapomorphies of this clade are related to the body flatness (Fig. 4B). 

The support of flattened gnaphosoid group as a natural one could be questioned 

based on the argument that many shared characters recovered as synapomorphies would 

be a convergence resulting from the same way of life under tree bark and cracks. 

Notwithstanding, deactivating those characters during tree search recovered the same 

grouping. Beside the flatness related characters, those taxa also shares remarkable 

similarities in male genitalia, with a detached, laminar embolus with some projections, a 

rounded conductor, and a cymbium with a short apex (Figs 22E, F; 23G–L). The results 

herein suggest, therefore, that the flattened gnaphosoid group, composed of Platyoides, 

Trochanteria, Hemicloea, Vectius, Doliomalus and Plator, might be monophyletic and 

that lifestyle under tree bark or cracks could had be present on their most recent 

common ancestor. 

As a taxonomic implication for these findings, Hemicloea and Vectius should be 

transferred to Trochantheriidae, but a careful study is needed to redelimit the family, 

regarding the Trachycosminae, Morebilinae and, maybe, some members of 

Trochanteriinae (Platnick, 2002). These taxa are not extremely flattened, have the 

complete distal article of ALS, and, at least some of them, does not have the oblique 

median tapetum characteristics of OMT clade (Platnick, 2002; Ramírez, 2014). In the 

Dionycha phylogeny (Ramírez, 2014) Fissarena Henschel, Davies & Dickman, 1995, 

Desognaphosa Platnick, 2002 and Trachycosmus appeared as sister to all the OMT 

clade. Herein, only Trachycosmus were included and, since this genus have an oblique 

median tapetum, they emerged inside the OMT, but far apart from the remaining 

Trochantheriidae. An analysis with a broader sampling of trochanteriids would help 

elucidate if the family, as nowadays delimited, is actually an artificial assembling of two 

distinct, not closely related lineages. 

Other flattened (but not extremely) taxa historically associated with 

Trochanteridae are Oltacloea and Xenoplectus (Schiapelli & Pikelin, 1957; Platnick, 

1985, 1986a, 1986b). Oltacloea are clearly a Prodidomidae and is recovered nested in 

the prodidominae clade. The position of Xenoplectus, currently placed in Gnaphosidae, 

is more uncertain. In the working hypothesis it is sister to the flattened trochanteriids, 

but the relationship is sensitive to weighting schemes, being sister to Liocranum in 
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analyses with some values of k, and closely related to Phrurolithidae in another. 

Besides, when deactivating the flatness related characters, Xenoplectus fall sister to 

Liocranum. Xenoplectus spinnerets and spigots are not the gnaphosids kind and it is 

most certain that this genus should not be placed in Gnaphosidae. Considering that the 

deactivation of flatness related characters changes Xenoplectus position regarding the 

trochanteriids, it is likely that this genus should not be allocated in Trochanteriidae. As 

suggested before (per Brescovit, in Murphy, 2007), a better taxonomic position for 

Xenoplectus should be in Liocranidae, until more liocranid genera are included in a 

phylogenetic analysis and the family is more clearly delimited. 

 

Gnaphosidae 

The monophyly of Gnaphosidae, as nowadays delimited, is challenged here by the 

position of prodidomids as derived gnaphosids and by few “problematic” taxa. The 

close relationship of Prodidomidae and Gnaphosidae has been suggested in many 

previous studies (Platnick, 1990, 2000, 2002; Platnick & Baehr, 2006; Ramírez, 2014). 

Both taxa have an enlarged piriform gland spigot, compared to the major ampullate 

spigots. This is the main synapomorphy of a clade recovered herein that involve the two 

families. Although some “problematic” genera, like Vectius (as discussed in 

Trochanteriidae section) and Micaria, Nauhea and Verita (discussed below), might 

have questionable coding for this character and might not be real gnaphosids, the 

prodidomid genera and the real Gnaphosidae have the Pi clearly longer and wider than 

MaAm. This enlarged piriform spigot clade have negligible support, probably due to its 

few synapomorphies, but it is stable through weighting schemes, and these two shared 

derived characters are remarkable and uncommon in spiders. A similar analogous 

enlargement is found only on males of Clubionidae Wagner, 1887. Within the OMT 

clade, the enlargement of the piriform spigots might have evolved only once without 

reversions (Fig. 17). Therefore, the close relationship of prodidomids and gnaphosids 

are reasonable. 

 Platnick & Shadab (1976b) argued that prodidomids would be a branch of 

derived gnaphosids and it should be given a subfamilial taxonomic status inside 

Gnaphosidae. This hypothesis was abandoned later in subsequent works on 

Gnaphosoidea (Platnick, 1990). Herein, we found evidence suggesting that a 

monophyletic group of prodidomid spiders could really be a derived branch of 

gnaphosids (Fig. 2) and none of the weighting schemes recovered prodidomids as sister 



  

20 
 

group of gnaphosids. Therefore, the Prodidominae taxonomical rank should be 

resurrected and the subfamily should be placed in Gnaphosidae. 

 

The Micariines and the Anzacia Group 

It has been suggested that Micaria could be related to some Phrurolithidae taxa 

(Lehtinen, 1967) and also that the genus should be placed in its own family (Mikhailov 

& Fet, 1986). The inclusion of Micaria in Gnaphosidae has been justified on the 

presence of enlarged piriform gland spigots (Platnick, 1990; Murphy, 2007). However, 

although Micaria‟s piriform spigots have broad openings, they are not wider or longer 

than the major ampullates, as it is found in true Gnaphosidae (Fig. 12E). In fact, males 

of Micaria have no piriform spigots at all (Fig. 16C) and females have only one. 

Ramírez (2014) found Micaria to be sister to a clade formed by Gnaphosidae plus 

Prodidomidae. Herein, Micaria is sister to the Cithaeronidae plus Ammoxenidae clade, 

but the relationship is not well supported. The most notable synapomorphies are the 

solid pointed claw-tuft clasper (unknown state in Cithaeronidae and with homoplasy in 

the dataset) and the pseudosegmentation on legs III and IV (lost in Rastellus and 

homoplastic). Arboricaria Bosmans, 2000 was not included in this analysis but it might 

be closely related to Micaria since they are very similar in genitalia and general 

morphology (Mikhailov, 2016). 

 The Anzacia group includes genera that resemble Micaria (except 

Hypodrassodes Dalmas, 1919 and Anzacia Dalmas, 1919) in many aspects, including 

genital and spinnerets morphology (Murphy, 2007; Ramírez & Grismado, 2015). The 

recently described Verita Ramírez & Grismado, 2015 also was supposed to be related 

with Micaria and some genera of the Anzacia group, like Homoeothele Simon, 1908 

and Matua Forster, 1979. Herein, the Anzacia group (represented by Anzacia, Nauhea, 

Verita and Hypodrassodes) was found to be polyphyletic and was not closely related to 

Micaria. 

Anzacia and Hypodrassodes are the most different genera among the Anzacia 

group. Both have piriform spigots clearly longer and wider than the major ampullates, 

and both genera most certainly belong to the Gnaphosidae S.S. clade. They also have 

quite complex palp morphology (Fig. 23A–C; Zakharov & Ovtcharenko, 2011). 

Anzacia is quite unstable through different weighting schemes, and it is recovered as 

sister to Hypodrassodes only under two concavity values (k=19, 21). Hypodrassodes 

have many piriform spigots with long base and short shaft and the genital morphology 
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is quite elaborate. It is possible that Hypodrassodes is really not closely related to the 

Anzacia group, but rather to some gnaphosids with the same spigot morphology 

(Zelanda, Drassodex and Notiodrassus). Howsoever, it is most likely that both Anzacia 

and Hypodrassodes are not related to the remaining genera in Anzacia group. 

Nauhea has unstable position, probably due to many missing data, since there 

was only one male available and it was not possible to obtain SEM images. Verita is 

always recovered as sister to Lampona Thorell, 1869 based on the absence of squamose 

setae, presence of plumose seta, post epigastric sclerites, male dorsal scutum and 

absence of separated cylindrical spigot field on PMS. Micaria, Nahuea and Verita do 

not have the enlarged piriform spigots and, therefore, most likely do not belong to the 

Gnaphosidae. However, their positions in the OMT clade are not clear. The inclusion of 

Homoeothele and Matua, as well as more species of Micaria and Arboricaria, could 

help elucidate if the similarities between those taxa are convergences resulting from a 

reduced size, convergences related to ant mimicking or even if the taxa are indeed 

closely related. Given the uncertain position of these taxa, they should be kept in 

Gnaphosidae until more data is available to establish a better placement. The name 

Gnaphosidae Sensu Stricto is used here, however, to refer to the monophyletic group 

that includes taxa that have the piriform spigots longer and wider than the major 

ampullate gland spigots (Fig. 2), excluding, therefore, those uncertain taxa. 

 

Prodidomines 

Prodidomidae has been recovered as monophyletic in every analysis so far, with good 

support and clear synapomorphies, although it was never rigorously tested in previous 

studies, since few representatives of the family and outgroups were used (Platnick & 

Baehr, 2006; Ramírez, 2014). Herein, a third of the described genera were used and the 

family is well supported by an incomplete distal article of the ALS with patches of long 

setae around spinnerets (Fig. 11A–D, G), by a piriform spigot with base longer than 

shaft (Fig. 11A–D, G), by the absence of epiandrous spigots, by primary spermathecae 

absent (lumen indistinct from ducts; Fig. 26G, H), and dorsal chemosensory patch on 

male palp and dorsal triangular scales on tarsal claw (Figs 5, 8D, G, H). Among those, 

the patches of long setae on ALS and the long base of piriform spigots are traditionally 

accepted as the most distinctive and noticeable diagnostic characters for the family. An 

elongated base of Pi, but not associated to patches of long setae, is also found at least in 

Hypodrassodes, Zelanda Özdikmen, 2009, Drassodex Murphy, 2007 and Notiodrassus, 
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evolving independently in two clades on the working hypothesis (Fig. 17). In some 

weighting regimes those taxa are found closely related to Prodidominae, but without 

compromising the monophyly of the subfamily. Therefore, even with some 

uncertainties related to the evolution of the long base Pi spigots, the prodidomids are 

most likely a natural group. Although most of the prodidomid terminals are Neotropical, 

the inclusion of exemplars from the recently revised Australian fauna (Platnick & 

Baehr, 2006) is not likely to challenge the subfamily monophyly, since they seem to 

have the main synapomorphies of the family. It might be of interest, nevertheless, the 

careful examination and revision of the less known and relatively diverse African 

prodidomine fauna. 

 

The Gnaphosines 

Simon (1893) defined the groups Gnaphoseae and Laronieae basically based on the 

modifications of the chelicerae retromargin. These groups were subsequently referred to 

as Gnaphosinae and Laroninae subfamilies (Platnick, 1975a, 1975b; Platnick & Shadab, 

1975; Ovtsharenko et al., 1992), or Gnaphosa and Laronius group (Murphy, 2007). The 

former would be defined by the presence of a serrated keel on the chelicerae (Fig. 28D), 

while the latter would be diagnosed by the presence of translucent laminas on 

retromargin (Fig. 28B). Platnick & Shadab (1975) argued that the lumping of both 

groups in one would be extremely artificial, and that it is most likely that chelicerae 

modification arose independently, not being homologous. Herein, all types of cuticular 

projections of retromargin – teeth, lamina and serrated keel – were considered 

homologous, given their position, and were represented as a neomorphic character. 

However, the morphological variation of these projections suggests distinct 

modifications of same structure and a transformational unordered character was created 

to accommodate these differences. This way, the data allows the congruence test to 

reveal if these cheliceral modifications arose independently or if one has originated 

from the other. The results show support for a possible single origin of the chelicerae 

retromargin serrated keel and that the lamina in laroniines (represented by Eilica and 

Callilepis Westring, 1874) could be a derived modification of the former structure (Figs 

2; 6, 28B, D, F), appearing two times (or three, depending on the interpretation of the 

character state in Pterotricha Kulczyński, 1903). Anyway, such a kind of promargin 

projection as laminas would have arisen independently, and not from a serrated keel, in 

Leptodrassus Simon, 1878. 
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Although Laroniinae might be monophyletic, as suggested by some weighting 

regimes, its position as sister group to a monophyletic Gnaphosinae is quite unlikely. 

The clade formed by gnaphosines and laroniines are, nevertheless, very well supported 

by the absence of promarginal and retromarginal escort seta on the chelicerae, a 

subtegulum that covers part of the proximal part of the tegulum, and that can be seen on 

ventral view (Fig. 24A, D, G), and the serrated keel on retromargin of the chelicerae 

(modified into translucent lamina in Eilica and Callilepis). Even though Laronius 

Platnick & Deeleman-Reinhold, 2001 were not examined here, it is expected to be 

nested in this clade, since the taxa have the retromargin translucent lamina. Therefore, 

the Gnaphosinae should be redelimited to include Laronius, Eilica and Callilepis. 

 

The Zelotines 

Berland (1919) proposed a small group of gnaphosid genera based on the presence of a 

preening comb on metatarsi III and IV, and the generic limits and composition of this 

group were subsequently clarified through a series of revisionary papers (Platnick & 

Shadab, 1982a, 1982b, 1983; Platnick & Murphy, 1984, 1987; Platnick & Song, 1986; 

Snazell, 1997; Levy, 1998; Russell-Smith & Murphy, 2005; FitzPatrick, 2007; 

Chatzaki, 2010; Murphy & Russell-Smith, 2010; Senglet, 2012). This group, commonly 

referred to as Zelotes complex, Zelotinae (Platnick, 1990) or Zelotes group (Murphy, 

2007), was recovered herein with good support, being the preening comb the main 

synapomorphy, with no convergence or reversion through Gnaphosidae evolution. The 

group is also united by the presence of post epigastric sclerites (convergent in 

Lamponidae and other genera) and a teardrop shaped tarsal organ opening. 

 Most of the zelotines have remarkable male palp and also share some characters 

in female genitalia, which have been target of recent studies about the copulatory 

mechanism and homology (Senglet, 2004). All genera but Berinda Roewer, 1928 and 

Zelotibia Russell-Smith & Murphy, 2005 have a detached embolar division with a 

terminal apophysis and a terminal membrane on a laminar embolus. The male palp also 

has a characteristically shaped median apophysis and has no conductor (Fig. 25A, E, F). 

The position of Berinda and Zelotibia arising from the two most basal dichotomies 

suggest that this characteristic palp evolved once, with no reversion (Fig. 5C). 
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The Herpyllines 

Platnick & Shadab (1977) proposed the Herpyllus complex (Herpyllinae in Platnick, 

1990) to comprise a few genera with simple but similar genitalia. This grouping 

included genera with black and white coloration patterns on the abdomen, like 

Herpyllus Hentz, 1832 and Sergiolus Simon, 1891, and with plain-colored abdomen, 

like Nodocion Chamberlin, 1922, Litopyllus Chamberlin, 1922 and Scotophaeus Simon, 

1893. Murphy (2007) included in Herpyllus group, for identification purposes, only the 

black-and-white species. Herein, we found support for a clade of black-and-white 

herpyllines, which is sister to Nodocion plus Litopyllus. This relationship is supported 

by the loss of epiandrous spigots and the presence of a keel on chelicerae promargin 

(Fig. 28E, G), in addition to the remarkable genitalia similarities (Fig. 24B, E, F, H). 

Even though the Nodocion/Litopyllus clade might be nested inside the black and white 

clade, as appeared in some weighting regimes, the single origin of the colored abdomen 

is well established. 

 Scotophaeus, although originally included in Herpyllinae, seems to be distantly 

related to the herpylline clade found here. Scotophaeus have a simple palp, but with 

detached embolus, rather than fused to tegulum, and the median apohysis and conductor 

are not twisted around the embolus. Though the genus is most likely not a Herpyllinae, 

the relationships of Scotophaeus are still uncertain, being probably related to 

Apodrassodes Vellard, 1924 and Drassodes Westring, 1851. 

 

Leptodrassus and Relatives  

The Leptodrassus, Leptodrassex and Cryptodrassus groups were delimited based on eye 

disposition, presence/absence of male dorsal scutum and presence/absence of chelicera 

lamina (Murphy, 2007). Although they differ in these characters, the genera included in 

Cryptodrassus, Leptodrassus and Leptodrassex groups have considerably similar genital 

morphology and they were found to be closely related in this study. They all belong to a 

well-supported clade in which some synapomorphies are an epigynal plate without an 

atrium, a posteriorly direct fertilization duct, an accessory secondary median apophysis 

on male palp, a thin filiform embolus (sometimes hidden on the unexpanded bulb; Fig. 

23D–F). 

 The species of Cryptodrassus Miller, 1943 examined herein, C. creticus 

Chatzaki, 2002, might not be congeneric with the type species of the genus, C. 

hungaricus (Balogh, 1935) (Murphy, 2007). C. creticus have the genitalia 
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morphological pattern as in the genera of the Leptodrassus and Leptodrassex groups, 

while C. hungaricus might be slightly different. The females do not have a posteriorly 

directed fertilization duct (Murphy, 2007; Kovblyuk & Nadolny, 2010), and only one 

tegular sclerite, possibly the secondary median apophysis (the apical tegular sclerite in 

Kovblyuk & Nadolny, 2010), is found in males. Even with those differences, the 

general morphology of the body and genitalia suggest that C. hungaricus could still be 

closer to the clade mentioned here than to other gnaphosid genera. Unfortunately, there 

was no C. hungaricus specimens available for this study, and a closer examination of 

this species might be of interest. 

  

The “Echemines” and “Drassodines” 

The Echeminae were defined to include genera with strongly procurved posterior eye 

row, dentate tarsal claw, unadvanced ALS and a long embolus inserted on the prolateral 

side of the tegulum (Platnick & Shadab, 1976a, 1976b, 1976c, 1979). Murphy (2007) 

defined the Echemus group as having plain colored abdomen and a dorsal scutum. 

Many of the characters used by those authors seem to be plesiomorfic, or at least shared 

by a great number of genera, and it is not surprising that those groupings were not 

recovered here as monophyletic. The only derived and more restrict character is the 

procurved posterior eye row, although it is homoplasic. 

 The group Drassodeae, as proposed by Simon (1893), was delimited based on 

the robust chelicerae armed with strong teeth. After the relimitation of the other 

gnaphosid subfamilies mentioned above, many genera in that group were transferred, 

and the limits of Drassodinae remained obscured. As said by Platnick (1990), this 

subfamily was used as “wastebasket” of gnaphosids, grouping genera that do not belong 

to the other subfamilies. Murphy (2007) defined the Drassodes group as having plain 

colored abdomen, a notched trochanter and lacking dorsal scutum. Again, many 

characters are plesiomorphic and the only derived homoplasic character, the notched 

trochanter, was not enough to recover the monophyly of the group. The relationships of 

drassodines (and Drassodes group) genera are still unstable and more study is necessary 

to establish their phylogenetic placement. 

 

The Anagraphidines 

Anagraphidinae was redelimited to include two genera with sclerotized tip on anterior 

lateral spinnerets: Anagraphis Simon, 1893 and Talanites Simon, 1893 (Platnick & 
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Baehr, 2006). Murphy (2007) described a new genus, Drassodex and placed it on his 

Anagraphis group. Here, the annular crescent with fringe thin seta (as the sclerotized tip 

was called in Murphy, 2007) was tentatively included in the matrix, but not used, 

because the annular crescent might be a reminiscent of spinneret distal article. This sign 

of a distal article is found in gnaphosids and prodidomids in many levels. There might 

be just some few setae near the MaAm spinning field, or there might be many setae on 

patches associated to the piriform spigots (Platnick & Baehr, 2006; Ramírez, 2014). The 

sclerotization is hardly seen, but rather inferred through the presence of setae. Although 

in the mentioned genera the sclerotized tip can be more easily seen, it was considered as 

the same state as the other gnaphosids, since levels of sclerotization might be hard to 

delimit. Given that almost none of the derived characters present in Anagraphis are 

shared with Drassodex, it is quite unlikely that both genera are closely related, even if 

this state of character is included. Howsoever, regardless of the position of Drassodex, 

it seems that Anagraphis and Talanites might constitute a natural group. However, most 

of their synapomorphies are ambiguous or highly homoplastic. 

The taxonomic position of anagraphidines has been floating between 

Gnaphosidae and Prodidomidae (Platnick, 1990; Platnick & Ovtsharenko, 1991; Levy, 

1999; Chatzaki et al., 2002a, 2002b; Platnick & Baehr, 2006). Herein, anagraphidines 

and prodidomines were found to be sister groups supported by a secondary spermatheca 

with long duct (Fig. 26G, H), a fingerprint cuticle texture and the major ampullate 

spigots field touching distal article border (Fig. 14A). The sister group relationship 

found here is stable through weighting regimes, but it has low support regarding Bremer 

and jackknife values. The close relationship of anagraphidines and prodidomids was 

also hypothetized by Platnick & Shadab (1976c) and recovered in the cladistics analysis 

of Ramírez (2014). Ramírez (2014) showed that a constrained analysis with Anagraphis 

closer to Gnaphosidae resulted in a slightly suboptimal tree with Anagraphis sister to 

the remaining gnaphosids, but with no synapomorphy. Therefore, all these evidence 

suggest that is quite plausible that anagraphidines might be closely related to 

prodidomids than to remaining gnaphosids. 

 

Conclusions 

The position of Xenoplectus is uncertain but it is clearly that it does not belong to 

Gnaphosidae. Therefore, Xenoplectus should be transferred to Liocranidae until more 

data are available for untangling its evolutionary relationships. Regarding the 
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hemicloeine genera, Vectius and Hemicloea, they should be transferred to 

Trochanteriidae. This family might be composed by two distinct, distant related lineages 

and needs a careful investigation. 

  The most problematic taxa in Gnaphosidae are Micaria, Nauhea, Verita and, 

probably, also Arboricaria, Homoeothele and Matua. These genera do not have the 

characteristic spigots morphology and are not nested within the true gnaphosids, but 

also, do not clearly fit to any other well established clade. For the lack of a better place, 

Micaria, Arboricaria, Nauhea, Verita, Homoeothele and Matua should be kept in 

Gnaphosidae. 

 The position of prodidomids as an offshoot of Gnaphosidae suggests that the 

former should be ranked as a subfamily of the latter. A Gnaphosidae Sensu Stricto could 

be defined as the spiders that belong to OMT clade that have widened piriform spigots 

(clearly wider and longer than the major ampullate spigots). In a broader sense, 

Gnaphosidae would also include Micaria, Arboricaria, Nauhea, Verita, Homoeothele 

and Matua. Gnaphosidae sensu lato would be more loosely defined including small 

spiders (2–5mm) with few (1–8) piriform spigots about the same size as the major 

ampullate, and with shaft as wide as base with broad opening. Although loosely 

defined, this definition still allow the identification, with some confidence, of members 

of this paraphyletic family. 

 Within the Gnaphosidae S.S. the well-established monophyletic groups are 

noteworthy. Among the traditional groups, there are the Gnaphosinae (relimited to 

include “laroniines”), Prodidominae Rank Res., Herpyllinae and Zelotinae. There is 

also the newly grouping Leptodrassinae New Subfamily, which is proposed here to 

include Leptodrassus¸ Leptodrassex, Leptopilos Levy, 2009 and Cryptodrassus. The 

remaining Gnaphosidae that do not belong to any of the well supported subfamily, 

although they could be informally grouped in the paraphyletic “drassodinae”, should 

rather not be placed in any formal taxonomic rank until more evidence is available to 

organize them in monophyletic groups. The present work show some interesting results 

regarding the evolution of gnaphosids and, although it does not solve many of the 

previous systematic problems, this work points some directions towards a better 

understanding of the genus-level relationships of Gnaphosidae and closely related taxa. 
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Taxonomy 

The taxonomic decisions were made to avoid changes based on weakly supported 

evidence and that would imply unstable taxonomical names. All decisions are justified 

on the bases of evidence found here and explained above in the text. 

 

Family Gnaphosidae Pocock, 1898 

Drassides Sundevall, 1833: 17 (type genus Drassus Walckenaer, 1805 = Gnaphosa 

Latreille, 1804). 

Drassidae Simon, 1893: 339 (type genus Drassodes Westring, 1851) 

Gnaphosidae Pocock, 1898: 219 (type genus Gnaphosa Latreille, 1804). 

Drassodidae Berland, 1932: 343 (Type genus Drassodes Westring, 1851). 

 

Diagnosis: The spiders that belong to Gnaphosidae have piriform gland spigots 

homogeneous in morphology and clearly longer and wider than the major ampullate 

spigots in males and females (Figs 11, 12 A–D, F–G). Sometimes, in small (2–5mm), 

non-flattened spiders (Micaria, Nauhea, Verita, Homoeothele and Matua) the piriform 

spigots might be about as long as wide, but they are few in number (1–8) and their 

shafts are tubular, with broad opening (Fig. 12E). Usually, the base of piriform spigots 

is shorter or about the same size as the shaft, but in some cases (Hypodrassodes, 

Zelanda, Drassodex, Notiodrassus and Prodidominae) the base might be longer than the 

shaft (Fig. 11). 

 

Composition: The family includes five well established monophyletic subfamilies, but 

given the low support of relationships, many genera could not be assigned to a formal 

subfamiliar rank. The doubtful used subfamilial groups Drassodinae, Echeminae, 

Anagraphidinae, and Micariinae do not have any clearly unambiguous diagnosis and 

might not form monophyletic groups. Therefore, they are not formally defined herein, 

but their composition is mentioned below for historical purpose. The following genera 

are transferred to other families: Xenoplectus is transferred to Liocranidae; Vectius and 

Henmicloea (together with the subfamily Hemicloeinae) are transferred to 

Trochanteriidae. 

 

Subfamily Gnaphosinae Pocock, 1898 

Gnaphoseae Simon, 1893: 379. (type genus Gnaphosa Latreille, 1804) 
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Laronieae Simon, 1893: 378. (Type genus Laronia Simon, 1893 = Eilica Keyserling, 

1891). New synonymy 

Gnaphosinae: Roewer 1944, Platnick 1990: 4 

Laroniinae: Platnick 1990: 4 

 

Diagnosis: Gnaphosidae spiders that have a modified projection on chelicerae 

retromargin, which could be a serrated keel or a rounded lamina (Fig. 28B, D, F). 

 

Included genera: Amusia Tullgren, 1910; Aneplasa Tucker, 1923; Asemesthes Simon, 

1887; Berlandina Dalmas, 1922; Callilepis; Echemella Strand, 1906; Eilica; Fedotovia 

Charitonov, 1946; Gnaphosa; Laronius; Microsa Platnick & Shadab, 1976; Minosia 

Dalmas, 1921; Minosiella Dalmas, 1921; Nomisia Dalmas, 1921; Pterotricha 

Kulczyński, 1903; Pterotrichina Dalmas, 1921; Scotognapha Dalmas, 1920; Shiragaia 

Paik, 1992; Smionia Dalmas, 1920; Trephopoda Tucker, 1923. 

 

Subfamily Zelotinae Platnick, 1990  

Zelotes complex Platnick & Shadab, 1982a: 3 

Zelotine Platnick & Murphy, 1987: 2 

Zelotinae Platnick, 1990: .4 (Type genus Zelotes Gistel, 1848) 

 

Remarks: Berland (1919) proposed a small group of gnaphosid genera based on the 

presence of a preening comb on metatarsi III and IV, which was later called Zelotes 

complex (Platnick & Shadab, 1982a) or zelotine (Platnick & Murphy, 1987). Only 

more recently the name Zelotinae was used to rank this group as subfamily (Platnick, 

1990). Although there is no formal description of the taxa, it is implicit that Zelotes 

should be the type genus and that the preening comb should be the diagnostic 

character. 

 

Diagnosis: Gnaphosidae spiders that have a preening comb on metatarsi III and IV (Fig. 

30H). 

 

Included genera: Allozelotes Yin & Peng, 1998; Berinda Roewer, 1928; Camillina 

Berland, 1919; Canariognapha Wunderlich, 2011; Civizelotes Senglet, 2012; 

Drassyllus Chamberlin, 1922; Echemographis Caporiacco, 1955; Heser Tuneva, 2004; 
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Ibala Fitzparick, 2009; Setaphis Simon, 1893; Trachyzelotes Lohmander, 1944; 

Turkozelotes Kovblyuk & Seyyar, 2009; Urozelotes Mello-Leitão, 1938; Zelominor 

Snazell & Murphy, 1997; Zelotes; Zelotibia Russell-Smith & Murphy, 2005; Zelowan 

Murphy & Russell-Smith, 2010. 

 

Subfamily Herpyllinae Platnick, 1990 

Herpyllus complex Platnick & Shadab, 1977: 3 

Herpyllinae Platnick, 1990: 4 (Type genus Herpyllus Hentz, 1832) 

 

Remarks: The Herpyllus complex was proposed to comprise a few genera with simple 

but similar genitalia (Platnick & Shadab, 1977). Later, this group was treated as the 

subfamily Herpyllinae (Platnick, 1990) implicitly assuming Herpyllus as the type genus. 

 

Diagnosis: Gnaphosidae spiders that have a keel on chelicerae promargin, does not 

have epiandrous spigots, have the embolus fused to tegulum and involved by an 

elongated, membranous conductor, and that the female genitalia have an elongated 

primary spermathecae, frequently reniform in shape. The keel might be a subtle 

projection or might be teeth with fused bases. The median apophysis might be present 

as a small enlongated sclerite, apical in not-expanded bulbus, and closely associated to 

conductor and embolus. The majority of the spiders in this group have a distinct black 

and white pattern on abdomen, which is not found outside the subfamily. 

 

Included genera: Aphantaulax Simon, 1878; Cabanadrassus Mello-Leitão, 1941; 

Ceryerda Simon, 1909; Cesonia Simon, 1893; Cladothela Kishida, 1928; Epicharitus 

Rainbow, 1916; Gertschosa Platnick & Shadab, 1981; Herpyllus; Hitobia Kamura, 

1992; Kishidaia Yaginuma, 1960; Ladissa Simon, 1907; Latonigena Simon, 1893; 

Litopyllus Chamberlin, 1922; Macarophaeus Wunderlich, 2011; Nodocion Chamberlin, 

1922; Phaeocedus Simon, 1893; Poecilochroa Westring, 1874; Scotocesonia 

Caporiacco, 1947; Sergiolus Simon, 1891; Sernokorba Kamura, 1992; Symphanodes 

Rainbow, 1916; Trichothyse Tucker, 1923; Xizangia Song, Zhu & Zhang, 2004. 

  

Subfamily Leptodrassinae New Subfamily 

Type genus Leptodrassus Simon, 1878 
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Diagnosis: Gnaphosidae spiders that have an epigynal plate without an atrium, a 

posteriorly direct fertilization duct, an accessory secondary median apophysis on male 

palp that involve a thin filiform embolus (sometimes hidden on not expanded bulb; 

Figs. 23D–F). 

 

Included genera: Cryptodrassus Miller, 1943; Leptodrassex Murphy, 2007; 

Leptodrassus; Leptopilos Levy, 2009; Neodrassex Ott, 2012. 

 

Subfamily Prodidominae Simon, 1884 Rank Resurrected 

Prodidomides Simon, 1884: 302 (Type genus Prodidomus Hentz, 1847) 

Prodidominae Platnick & Shadab, 1976b: 3 

Prodidomidae Platnick, 1990: 36 

Molycriinae Platnick, 1990: 4 (Type genus Molycria  Simon, 1887) New synonymy 

Theuminae Platnick & Baher, 2006: 5 (Type genus Theuma Simon, 1893) New 

synonymy 

 

Diagnosis: Gnaphosidae spiders that have the distal incomplete article of the anterior 

lateral spinnerets composed of patches of setae closely associated piriform spigot, 

which have base longer than shaft (Fig. 11A–D, G). 

 

Included genera: Anagrina Berland, 1920; Austrodomus Lawrence, 1947; Brasilomma 

Brescovit, Ferreira & Rheims, 2012; Caudalia Alayón, 1980; Chileomma Platnick, 

Shadab & Sorkin, 2005; Chileuma Platnick, Shadab & Sorkin, 2005; Chilongius 

Platnick, Shadab & Sorkin, 2005; Cryptoerithus Rainbow, 1915; Eleleis Simon, 1893; 

Katumbea Cooke, 1964; Lygromma Simon, 1893; Lygrommatoides Strand, 1918; 

Molycria Simon, 1887; Moreno Mello-Leitão, 1940; Myandra Simon, 1887; Namundra 

Platnick & Bird, 2007; Neozimiris Simon, 1903; Nomindra Platnick & Baehr, 2006; 

Oltacloea; Plutonodomus Cooke, 1964; Prodida Dalmas, 1919; Prodidomus; 

Purcelliana Cooke, 1964; Theuma Simon, 1893; Theumella Strand, 1906; Tivodrassus 

Chamberlin & Ivie, 1936; Tricongius Simon, 1893; Wesmaldra Platnick & Baehr, 2006; 

Wydundra Platnick & Baehr, 2006; Zimirina Dalmas, 1919; Zimiris Simon, 1882. 

 

Doubtful subfamilies 

“Echeminae” 
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Composition: Amazoromus Brescovit & Höfer, 1994; Arauchemus Ott & Brescovit, 

2012; Echemoides Mello-Leitão, 1938; Echemus Simon, 1878; Scopoides Platnick, 

1989; Megamyrmaekion Reuss, 1834; Zimiromus Banks, 1914. 

 

“Drassodinae” 

Composition: Apodrassodes Vellard, 1924; Apopyllus Platnick & Shadab, 1984; 

Drassodes; Haplodrassus; Hypodrassodes Dalmas, 1919; Nopyllus; Odontodrassus 

Jézéquel, 1965; Orodrassus Chamberlin, 1922; Synaphosus Platnick & Shadab, 1980. 

 

Anagraphidinae 

Composition: Anagraphis; Talanites Simon, 1893; Talanitoides Levy, 2009. 

 

Micariinae 

Composition: Arboricaria; Micaria. 

 

Genera with no subfamiliar placement 

Allomicythus Ono, 2009; Anzacia Dalmas, 1919;  Apodrassus Chamberlin, 1916;  

Aracus Thorell, 1887; Asiabadus Roewer, 1961; Australoechemus Schmidt & Piepho, 

1994; Benoitodes Platnick, 1993; Coillina Yin & Peng, 1998; Coreodrassus Paik, 1984; 

Cubanopyllus Alayón & Platnick, 1993; Diaphractus Purcell, 1907;  Drassodex; 

Encoptarthria Main, 1954;  Homoeothele; Hongkongia Song & Zhu, 1998;  Intruda 

Forster, 1979; Kaitawa Forster, 1979; Matua Forster, 1979; Microdrassus Dalmas, 

1919; Micythus Thorell, 1897; Montebello Hogg, 1914; Nauhea; Notiodrassus Bryant, 

1935; Parabonna Mello-Leitão, 1947; Parasyrisca Schenkel, 1963; Pseudodrassus 

Caporiacco, 1935; Sanitubius Kamura, 2001; Scotophaeus Simon, 1893; Shaitan 

Kovblyuk, Kastrygina & Marusik, 2013; Sidydrassus Esyunin & Tuneva, 2002; Sosticus 

Chamberlin, 1922; Symphanodes Rainbow, 1916;  Titus O. Pickard-Cambridge, 1901; 

Verita; Xerophaeus Purcell, 1907; Zelanda Özdikmen,2009. 
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Tables 

Table 1: Mean similarity between trees generated with each k value and the remaining 

trees obtained with implied weighting, calculated through SPR distances. The tree with 

the highest mean similarity with the remaining trees is in bold. 

 

Weighting Regime Mean Similarity 

k=3 0.5530 

k=5 0.6695 

k=7 0.7178 

k=7' 0.7112 

k=9 0.7671 

k=11 0.7689 

k=15 0.7784 

k=17 0.6828 

k=19 0.6818 

k=21 0.7169 

k=23 0.6913 
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Figures 

 

 

Fig. 1: Strict consensus of the 2098 most parsimonious trees obtained under equal character weights 

analysis. 
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Fig. 2: Working phylogenetic hypothesis of gnaphosid spiders, with clade support and sensitivity to weighting 

regimes. The well supported clades discussed in text are highlighted. 
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Fig. 3: Character optimization outgroup taxa on the working hypothesis, according to accelerated transformation series (ACTRAN) criteria. Some nodes are collapsed and are represented in other 

figures. Numbers in brackets show terminals in collapsed clades. 
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Fig. 4: Character optimization on the Gallienielidae (A), Xenoplectus+Trochanteriidae (B) and Gnaphosidae S.S. (C) clades, 

according to accelerated transformation series (ACTRAN) criteria. 
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Fig. 5: Character optimization on the Prodidominae (A), Leptodrassinae (B) and Zelotinae (C) clades, according 

to accelerated transformation series (ACTRAN) criteria. 
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Fig. 6: Character optimization on the Gnaphosinae (A) and Herpyllinae (B) clades, according to accelerated 

transformation series (ACTRAN) criteria. 
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Fig. 7: Character optimization on the Other Gnaphosidae S.S. branch, according to accelerated transformation series (ACTRAN) criteria. 
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Fig. 8: Types of claw tuft claspers. A) Callilepis gosoga, leg IV. B) Chileuma paposo, leg IV. C) Chilongius palmas, leg 

IV. D) Cryptoerytus occultus, leg IV. E) Eilica bicolor, leg IV. F) Micaria gosiuta, leg I. G) Moreno grande, leg I. H) 

Tivodrassus etaphor, leg IV. BCF: Basal claw fold; CC: Classic clasper; CDS: Claw dorsal scales; FC: Folded clasper; PC: 

Pointed solid clasper. 
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Fig. 9: Tarsi. A) Cryptoeritus occultus, female leg I, retrolateral. B) Drassyllus fallens, female leg IV, retrolateral. C) 

Minosia simeonica, female leg IV, prolateral. D) Nodocion eclecticus, female leg IV, prolateral. E) Synaphosus syntheticus, 

female leg IV, prolateral. F) Tivodrassus etaphor, male leg IV, retrolateral. BCF: Basal claw fold; CSS: Claw slit suture; 

CT: Claw tuft; MPTS: Modified pseudotenent setae; Ony: Onychium; TS: Tenent setae. 
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Fig. 10: The evolution of the three types of claspers, classic clasper (char.134), folded clasper (char. 135) and solid clasper (char. 

136), on the preferred tree (concavity function k=15). Optimized according to accelerated transformation series (ACTRAN) 

criteria. 
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Fig. 11: Female anterior lateral spinnerets. A) Chileuma paposo. B) Chileuma paposo, detail. C) Chilongius palmas. D) 

Moreno grande. E-F) Hypodrassodes maoricus. G) Tivodrassus etaphor. H) Zelanda erebus. DPS: Distal article, patches of 

associated setae around spigots; eMaAm: Ectal major ampullate spigot; MaAm: Major Ampullate spigots; Nb: Spigot 

nubbin; Pi: Piriform spigots; PiB: Piriform spigot base; PiS: Piriform spigot shaft; SBP: Setae bearing projection. 
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Fig. 12: Female anterior lateral spinnerets. A) Callilepis nocturna. B) Camillina cordifera. C) Drassodes sacatus. D) 

Herpyllus ecclesiasticus. E) Micaria gosiuta. F) Nodocion eclecticus. G) Talanites echinus. H) Urozelotes ruticus. DSS: 

Distal article sensory seta; eMaAm: Ectal major ampullate spigot; IDA: Incomplete distal article; IM: Inflatable membrane; 

mMaAm: Mesal major ampullate spigot; Pi: Piriform spigots; PiB: Piriform spigot base; PiS: Piriform spigot shaft. 



  

54 
 

 

 

Fig. 13: Female anterior lateral spinnerets. A) Cithaeron praedonius. B) Gallieniella mygaloides. C) Hemicloea sundevalli. 

D) Trochanteria gomezi. eMaAm: Ectal major ampullate spigot; mMaAm: Mesal major ampullate spigot; Nb: Spigot 

nubbin; Pi: Piriform spigots. 
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Fig. 14: Male anterior lateral spinnerets. A) Anagraphis pallens. B) Chileuma paposo. C) Chileuma paposo. D) 

Hypodrassodes maoricus. E) Talanites echinus F) Tivodrassus etaphor.  
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Fig. 15: Male anterior lateral spinnerets. A) Camillina cordifera. B) Drassyllus fallens. C) Gnaphosa californica. D) 

Orodrassus coloradensis. E) Pterotricha conspersa. F) Sergiolus capulatus. G) Setaphis subtilis. H) Zelotes duplex. 
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Fig. 16: Male anterior lateral spinnerets. A) Ammoxenus cocineus. B) Cithaeron praedonius. C) Micaria gosiuta. D) 

Trochanteria gomezi. eMaAm: Ectal major ampullate spigot; MaAm: Major Ampullate spigots; mMaAm: Mesal major 

ampullate spigot; Pi: Piriform spigots. 
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Fig. 17: The evolution of incomplete ring type (char. 284), of piriform spigot base length relative to shaft (char. 294) and of 

the fusion of base and shaft of piriform spigots (char. 298) on the Enlarged Piriform Spigots Clade. The plesiomorphic 

states for this character in this clade are: the incomplete ring as a semi-circle on the anterior margin of ALS (char. 284, sate 

0), base of Pi shorter or about the same as shaft (char. 294, state 0) and base of Pi not fused to base (char. 298, state 0). 

Optimized according to accelerated transformation series (ACTRAN) criteria. 
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Fig. 18: Female posterior lateral spinnerets. A) Camillina cordifera. B) Cesonia bilineata. C) Echemoides aguilari. D) 

Micaria gosiuta. E) Minosia simeonica. F) Odontodrassus aphanes. G) Scotophaeus blackwalli. H) Setaphis subtilis. Ac: 

Aciniform gland spigots; Cyb: Cylindrical gland spigots; MiAm: Minor ampullate gland spigots. 
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Fig. 19: Female posterior lateral spinnerets. A) Cithaeron praedonius. B) Gallieniella mygaloides. C) Hemicloea 

sundevalli. D) Trochanteria ranucula. Ac: Aciniform gland spigots; Cyb: Cylindrical gland spigots; MiAm: Minor 

ampullate gland spigots. 
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Fig. 20: Female posterior median spinnerets. A) Eilica bicolor. B) Gallieniella mygaloides. C) Herpyllus ecclesiasticus. D) 

Micaria gosiuta. E) Odontodrassus aphanes. F) Setaphis subtilis. G) Synaphosus syntheticus. H) Trochanteria gomezi. Ac: 

Aciniform gland spigots; Cyb: Cylindrical gland spigots; MiAm: Minor ampullate gland spigots; SDC: Spinning field deep 

constriction. 
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Fig. 21: A) Berlandina plumalis, habitus dorsal. B) Cesonia bilineata, habitus dorsal. C) Herpyllus ecclesiasticus, habitus 

dorsal. D) Meedo houstoni, habitus ventral. E) Sergiolus capulatus, habitus dorsal. F) Litopyllus temporarius, habitus 

dorsal. G) Gallieniella mygaloides habitus lateral. H) S. capulatus, opisthosoma, dorsal. I) L. temporarius, opisthosoma 

dorsal. J) Hemicloea sundevalli, habitus lateral. K) Prodidomus rufus, frontal. L) Vectius nigeri, frontal. 
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Fig. 22: Right male palps. A) Ammoxenus coccineus. B) Cithaeron praedonius. C) Micaria gosiuta. D) Moreno grande. E) 

Trochanteria gomezi. F) Vectius niger. E: Embolus; EB: Embolar base; EPP: Embolar base proximal projection; MA: 

Median apophysis; TA: Terminal apophysis. 
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Fig. 23: Right male palps, prolateral (A, D, G, J), ventral (B, E, H, J) and retrolateral (C, F, I, L). A–C) Anzacia gemmea. 

D–F) Neodrassex aureus. G–I) Plator sp. J–L) Vectius niger. AMA: Acessory median apophysis; C: Conductor; E: 

Embolus; MA: Median apophysis; PTA: Prolateral tibial apophysis; RTA: Retrolateral tibial apophysis; TA: Terminal 

apophysis. 
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Fig. 24: Right male palps. A) Callilepis gosoga. B) Cesonia bilineata. C) Drassodes saccatus. D) Gnaphosa californica. E) 

Herpyllus ecclesiasticus. F) Litopyllus temporarius. G) Pterotricha conspersa. H) Sergiolus capulatus. C: Conductor; Cyb: 

Cymbium; E: Embolus; EB: Embolus base; EL: Embolar locking lobe; ET: Embolus tip.; MA: Median apophysis; ST: 

Subtegulum; T: Tegulum. 
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Fig. 25: Right male palps. A) Drassyllus fallens. B) Haplodrassus hiemalis. C) Hypodrassodes maoricus. D) Sosticus 

insularis. E) Trachyzelotes pedestris. F) Zelotes duplex. C: Conductor; EB: Embolus base; ET: Embolus tip.; Isa: 

Intercalary sclerite, apical part; ISp: Intercalary sclerite, proximal part; MA: Median apophysis; RP: Radix dorsal 

projection; ST: Subtegulum; TA: Terminal apophysis; TM: Terminal membrane. 
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Fig. 26: Female internal genitalia, dorsal view. A) Callilepis nocturna. B) Cesonia bilineata. C) Cithaeron praedonius. D) 

Drassodes saccatus. E) Herpyllus ecclesiasticus. F) Hypodrassodes maoricus. G) Lygromma chamberlini. H) Moreno 

grande. I) Nodocion eclecticus. J) Setaphis subtilis. K) Vectius niger. L) Zelanda erebus. BG: Bennett"s Gland; CD: 

Copulatory duct; FD: Fertilization duct; PS: Primary spermathecae; SS: Secondary spermatheca; StSS: Stalk of secondary 

spermatheca; 
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Fig. 27: Female genitalia, ventral view. A) Callilepis nocturna. B) Camillina cordifera. C) Cesonia bilineata. D) Cithaeron 

praedonius. E) Hypodrassodes maoricus. F) Lygromma chamberlini. G) Moreno grande. H) Nodocion eclecticus. I) 

Nomisia aussereri. J) Setaphis subtilis. K) Vectius niger. L) Zelanda erebus. AF: Anterior fold; CO: Copulatory opening; 

ELF: Epigynal lateral field; EMF: Epigynal midian field; ES: Epigynal scape; LFF: Lateral fold furrow; LFS: Lateral fold 

suture. 
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Fig. 28: Female chelicerae, ventral view A) Anagraphis pallens. B) Callilepis gosoga. C) Gallieniella mygaloides. D) 

Gnaphosa californica. E) Nodocion eclecticus. F) Pterotricha conspersa. G) Sergiolus capulatus. H) Vectius niger. FSS: 

Fang shaft serula; PK: Prolateral keel; PT I: Prolateral tooth I; PT II: Prolateral tooth II; PT IV: Prolateral tooth IV; RT I: 

Retrolateral tooth I; RT II: Retrolateral tooth II; RWS: Retrolateral whisker setae; SK: Serrated keel. 
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Fig. 29: Female (except E) chelicerae, dorsal view. A) Berlandina plumalis. B) Callilepis nocturna. C) Chilongius palmas. 

D) Gnaphosa californica. E) Micaria gosiuta (male). F) Trachyzelotes pedestris. G) Trochanteria gomezi. H) Xerophaeus 

capensis. PES: Prolateral escort seta; PWS: Prolateral whisker setae; RES: Retrolateral escort seta; RS: Rake setae; RWS: 

Retrolateral whisker setae; TMS: Thick macrosetae. 
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Fig. 30: Female right legs (except D). A) Callilepis nocturna, tarsus I, ventral. B) Cithaeron praedonius, leg IV, prolateral. 

C) Echemoides aguilari, leg IV, retrolateral. D) Micaria gosiuta, male tibia I, retrolateral, showing long, curved, sensory 

ventral setae. E) Nodocion eclecticus, tarsus IV, ventral. F) Orodrassus coloradensis, leg I, ventral. G) Trachyzelotes 

pedestris, tarsus I, ventral. H) Zelotes duplex, distal part of metatarsus IV, ventral. GS: Grasping setae; PCo: Preening 

comb; RMS: Row of ventral macrosetae; TS: Tenent setae. 
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Fig. 31: Trichobothria. A) Anagraphis pallens. B) Apopyllus silvestrii. C) Camillina cordifera. D) Chileuma paposo. E) 

Chilongius palmas. F) Cryptoeritus occultus. G) Gnaphosa californica. H) Micaria gosiuta. I) Minosia simeonica. J) 

Trochanteria gomezi. K) Vectius niger. L) Zelanda erebus. DP: Distal plate; PP: Proximal plate. 
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Fig. 32: Tarsal organs. A) Anzacia gemmea. B) Apopyllus silvestrii. C) Camillina cordifera. D) Chilongius palmas. E) 

Hemicloea sundevalli. F) Hypodrassodes maoricus. G) Micaria gosiuta. H) Moreno grande. I) Orodrassus coloradensis. J) 

Sergiolus capulatus. K) Talanites equinus. L) Xerophaeus capensis. 
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Fig. 33: Squamose (A, C, E, F) and plumose (B, D, F, H) setae. A) Anagraphis pallens. B) Callilepis nocturna. C) 

Cryptoeritus occultus. D) Haplodrassus hiemalis. E) Hypodrassodes maoricus. F) Litopyllus temporarius. G) Sergiolus 

capulatus. H) Sosticus insularis. Ax: Axis; DlS: Dorso-lateral spines; LvA: Later-ventral appendages; PlS: Plumose setae; 

Sh: Shaft; SqS: Squamose setae. 
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Appendices 

Appendix 1. Character list. Characters marked with “(F)” were scored for females and with 

“(M)” for males, since they might show sexual dimorphism. 

 

Abdomen 

0. Abdomen, antero-dorsal, tuft of setae:  absent = 0; present = 1. (Bosselaers & Jocqué, 2002: 

char. 101; Ramírez, 2014: char. 213) 

1. Abdomen, dorsal, black and white color pattern:  absent = 0; present = 1. 

2. Abdomen, dorsal, dark chevrons:  absent = 0; present = 1.  

3. Abdomen, ventral, genital segment, sclerotization:  not sclerotized = 0; sclerotized = 1. 

4. Abdomen, lateral border, thick macrosetae:  absent = 0; present = 1.  

5. Abdomen, pedicel, dorsal and ventral, sclerites, fusion:  absent = 0; present = 1. (Platnick, 

2000: chars. 6 and 19) 

6. Abdomen, pedicel, ventral, anterior margin, shape:  pointed = 0; truncated = 1. (Ramírez, 

2014, char. 199) 

7. Abdomen, pedicel, ventral, sclerite, articulation with sternum:  free = 0; fused = 1. 

(Ramírez, 2014, char. 198). Ammoxenus coccineus scored 0, against Ramírez (2014) for A. 

amphalodes. 

8. Abdomen, surface, plumose setae:  absent = 0; present = 1. The plumose setae are scales 

(covering setae) with cylindrical shaft (at least the proximal third; Fig. 33). 

9. Abdomen, surface, plumose setae, appendages (brachia) disposition: only in proximal part 

= 0; reaching terminal half = 1. 

10. Abdomen, surface, plumose setae, tip shape:  cylindrical = 0; flattened = 1. 

11. Abdomen, surface, squamose setae:  absent = 0; present = 1 (Fig. 33). Squamose setae are 

flattened scales. Used in a broader sense than Zakharov & Ovtsharenko (2015). These authors 

described different types of flattened covering setae. Herein, the structures composing each 

type were considered different characters (see above) that could be present on a flattened 

scale. Anzacia gemmea scored based on Zakharov & Ovtsharenko (2015). 

12. Abdomen, surface, squamose setae, lateroventral appendages:  absent = 0; present = 1 

(Fig. 33). 

13. Abdomen, surface, squamose setae, dorsolateral spines:  absent = 0; present = 1 (Fig. 33). 

14. Abdomen, surface, squamose setae, dorsolateral spines, type: short and contiguous = 0; 

long and separated = 1 (Fig. 33). 
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15. Abdomen, surface, squamose setae, dorsolateral spines, disposition: on both sides = 0; 

only on one side = 1. 

16. Abdomen, surface, squamose setae, number of axes:  zero = 0; one = 1; two = 2 (Fig. 33). 

17. Abdomen, surface, squamose setae, ventral projections:  absent = 0; present = 1 (Fig. 33). 

18. Abdomen, ventral, internally invaginated postepigastric sclerites: absent = 0; present = 1 

(Platnick, 2000: char. 11. Platnick, 2002: char. 7) 

19. Abdomen (F), dorsal, scutum:  absent = 0; present = 1. 

20. Abdomen (F), dorsal, scutum, size: only on the anterior face of abdomen = 0; passing first 

apodeme = 1. Adapted from Platnick (2000). 

21. Abdomen (M), dorsal, scutum:  absent = 0; present = 1. Notiodrassus distinctus scored 1, 

against Murphy (2007). Teutamus rama scored based on Ramírez (2014).  

22. Abdomen (M), dorsal, scutum, size:  not reaching the first apodeme = 0; surpassing first 

apodeme = 1. 

23. Abdomen (M), ventral, epiandrum, epiandrous spigots:  absent = 0; present = 1. 

Xenoplectus sp. scored 1, there seems to be two spigots (against Ramírez, 2014).  

24. Abdomen (M), ventral, epiandrum, epiandrous spigots, disposition: sparse =0; two groups 

in separated cavities = 1; two groups in one unique cavity = 2. Drassinella, Liocranum and 

Trachelas: the spigots are not inserted in a whole on cuticular surface but they are in groups 

(scored 1). No taxon in this dataset was scored 0, but the state was kept since it show variation 

on Dionycha spiders and might be useful for further analyses.   

 

Cephalothorax 

25. Cephalothorax, carapace, surface, plumose setae:  absent = 0; present = 1. 

26. Cephalothorax, carapace, surface, plumose setae, appendages (brachia) disposition: only 

on proximal part = 0; reaching terminal half = 1. 

27. Cephalothorax, carapace, surface, plumose setae, tip shape:  cylindrical = 0; flattened = 1. 

28. Cephalothorax, carapace, surface, squamose setae:  absent = 0; present = 1. 

29. Cephalothorax, carapace, surface, squamose setae, lateroventral appendages: absent = 0; 

present = 1. 

30. Cephalothorax, carapace, surface, squamose setae, dorsolateral spines: absent = 0; present 

= 1.  

31. Cephalothorax, carapace, surface, squamose setae, dorsolateral spines, type: short and 

contiguous = 0; long and separated = 1. 
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32. Cephalothorax, carapace, surface, squamose setae, dorsolateral spines, disposition: on 

both sides = 0; only on one side = 1. All terminals have state 0, but the character was kept in 

the matrix as it could be useful in future studies.. 

33. Cephalothorax, carapace, surface, squamose setae, number of axes: zero = 0; one = 1; two 

= 2. 

34. Cephalothorax, carapace, surface, squamose setae, ventral projections: absent = 0; present 

= 1. 

35. Cephalothorax, carapace, anterior, chilum:  absent = 0; present = 1. Vectius niger scored 0 

(against Ramírez, 2014). 

36. Cephalothorax, carapace, anterior, chilum, configuration: single sclerite = 0; paired 

sclerites = 1. 

37. Cephalothorax, carapace, anterior, clypeus, margin profile in anterior view: straight or 

slightly curved = 0; produced in a median lobe anteriorlly = 1; very curved, forming an arc = 

2. 

38. Cephalothorax, carapace, cephalic area, anterior lateral eyes tapetum symmetry axis: 

vertical to oblique = 0; horizontal = 1 (Ramírez, 2014: char. 23). 

 39. Cephalothorax, carapace, cephalic area, anterior median eyes, black surrounds: absent = 

0; present = 1. It was considered present when the black surrounds of the two eyes are 

connected. (Murphy, 2007) 

40. Cephalothorax, carapace, cephalic area, anterior median eyes, size relative to others: 

smaller = 0; about same size = 1; larger = 2. 

41. Cephalothorax, carapace, cephalic area, posterior lateral and median eyes tapeta axes: 

parallel = 0; orthogonal = 1 (Ramírez, 2014: char. 28). 

42. Cephalothorax, carapace, cephalic area, posterior median eyes, lens limits: raised from 

surrounding cuticule = 0; not raised = 1 (Ramírez, 2014: char. 20). 

43. Cephalothorax, carapace, cephalic area, posterior median eyes, lens ridges: absent = 0; 

present = 1. 

44. Cephalothorax, carapace, cephalic area, posterior median eyes, tapeta, symmetry axes: 

parallel to each other = 0; orthogonal to each other = 1 (Ramírez, 2014: char. 23). Tricongius 

and Oltacloea: it looks slightly oblique, but not orthogonal (scored 0). 

45. Cephalothorax, carapace, cephalic area, posterior median eyes, tapeta, symmetry axes 

orthogonal, direction of the 45 degree angle: anterior = 0; posterior = 1. Although the shape of 

lens might be in different arrangement between genera, the tapeta angle is always directed 

anteriorly.   
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46. Cephalothorax, carapace, dorsal, cephalic area, eye row tubercle: absent = 0; present = 1.  

47. Cephalothorax, carapace, dorsal, cephalic area, posterior median eyes, lens: domed = 0; 

flattened = 1 (Platnick, 2000: char. 9; Platnick, 2002: char. 1). 

48. Cephalothorax, carapace, dorsal, cephalic area, posterior median eyes, position in relation 

to each other: separated = 0; close, almost touching = 1. 

49. Cephalothorax, carapace, dorsal, cephalic area, posterior median eyes, size relative to 

laterals: smaller = 0; same size = 1; larger = 2. 

50. Cephalothorax, carapace, dorsal, color pattern:  plain colored = 0; colored stripes = 1. 

51. Cephalothorax, carapace, dorsal, fovea:  absent = 0; present = 1. 

52. Cephalothorax, carapace, flatness:  domed = 0; extremely flat = 1. 

53. Cephalothorax, carapace, thoracic area, height relative to cephalon: lower = 0; about as 

high = 1; higher = 2. 

54. Cephalothorax, lateral, epimeric sclerites, type:  not fused = 0; fused = 1. 

55. Cephalothorax, ventral, intercoxal extensions:  absent = 0; present = 1 (Platnick 2000: 

chars. 24, 25; Platnick, 2002: char.5; Ramírez 2014: char. 96.). Ramírez (2014) used the 

character "Detached intercoxal sternum extensions" with the states "0. Absent or fused to 

sternum" and "1. Present". Here it was separated into a neomorphic (present/absent) and a 

transformational character (fused/not fused). Platyoides walteri scored 0 (against Ramírez, 

2014). 

56. Cephalothorax, ventral, intercoxal extensions, fusion to sternum: not fused = 0; fused = 1. 

57. Cephalothorax, ventral, precoxal sclerites:  absent = 0; present = 1 (Silva Davila, 2003; 

Ramírez, 2014: char. 95). Ramírez (2014) used as a three state character: absent, fused and 

not fused. Here it was separated into a neomorphic and a trasformational character with two 

states each.  

58. Cephalothorax, ventral, precoxal sclerites, fusion to sternum: not fused (free) = 0; fused = 

1. 

 

Chelicerae 

59. Chelicerae, fang, shaft serrula:  absent = 0; present = 1. 

60. Chelicerae, fang, shaft, tubercle in males:  absent = 0; present = 1. Males Gallieniella 

mygaloides have a small tubercle on the concave side of chelicerae. 

61. Chelicerae, fang, length:  normal = 0; elongated, with tip almost reaching paturon base = 1 

(Fig. 29G). 



  

79 
 

62. Chelicerae, paturon, anterior surface, proximal, mesal mounds in male: absent = 0; present 

= 1. Male of Micaria gosiuta have a small mound with some setae (Fig. 29E). 

63. Chelicerae, paturon, anterior surface, thick spines:  absent = 0; present = 1. (Ramírez, 

2014: fig. 25B, D) 

64. Chelicerae, paturon, anterior surface, tuft of macrosetae:  absent = 0; present = 1. (Fig. 

29A, B, F) 

65. Chelicerae, paturon, anterior surface, tuft of macrosetae, length: smaller than half the fang 

length = 0; at least half the fang size = 1. 

66. Chelicerae, paturon, anterior surface, tuft of macrosetae, density: sparse = 0; dense = 1 

(Fig. 29F). 

67. Chelicerae, paturon, basal, posterior membranous mound:  absent = 0; present = 1 

(Ramírez, 2014: char. 35). Rastellus: scored based on Ramírez (2014).  

68. Chelicerae, paturon, ectal, boss:  absent = 0; present = 1. Ammoxenus coccineus: scored 0, 

against Ramírez (2014) for A. amphalodes 

69. Chelicerae, paturon, ectal, boss type:  smal, weakly pronounced = 0; very pronounced = 1. 

70. Chelicerae, paturon, posterior, fang furrow, teeth:  absent = 0; present = 1. 

71. Chelicerae, paturon, promargin, rake setae:  absent = 0; present = 1. Ammoxenus, 

Doliomalus and Neozimiris: There is a row of setae but it is not flattened with aligned barbs 

(scored 0). 

72. Chelicerae, paturon, promargin, whisker setae:  absent = 0; present = 1. 

73. Chelicerae, paturon, promargin, escort setae:  absent = 0; present = 1. Only considered 

escort setae when it is different from the whisker setae. There might be different types of 

escort setae, but it was not coded here since homology establishment is difficult. 

74. Chelicerae, paturon, promargin, keel:  absent = 0; present = 1. The promargin is elevated 

in a smooth (not serrated) keel (Fig. 28E, G). Not considered homologous to teeth because 

keel and teeth IV can co-occur (e.g: Sergiolus). Herpyllus: base of teeth is elevated and 

contiguous (scored 1). Latonigena: scored 1, against Ott et al. (2012). It is said that 

Latonigena differs from Sergioulus by having teeth instead of the carina (Ott et al., 2012), but 

the structure on the promargin is like the one in Sergioulus, looking like two teeth fused. 

Nodocion: not very pronounced (scored 1). Scotocesonia: similar to Latonigena (scored 1). 

75. Chelicerae, paturon, promargin, tooth II:  absent = 0; present = 1. Teeth were separated 

into serial homologous structures according to the distance to the paturon-fang articulation, 

being the tooth I the closest. In a few cases, there were more than five teeth, so they all were 

lumped into one character “tooth extras” (Fig. 28). 
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76. Chelicerae, paturon, promargin, tooth II:  absent = 0; present = 1. 

77. Chelicerae, paturon, promargin, tooth III:  absent = 0; present = 1. 

78. Chelicerae, paturon, promargin, tooth IV:  absent = 0; present = 1. Callilepis and Eilica: 

laminar and rounded (scored 1). Latonigena, Litopyllus, Scotocesonia and Sergiolus: small 

and it might be part of the keel (scored 1). 

79. Chelicerae, paturon, promargin, tooth V:  absent = 0; present = 1. 

80. Chelicerae, paturon, promargin, tooth extras:  absent = 0; present = 1. 

81. Chelicerae, paturon, proximal region, deep constriction:  absent = 0; present = 1 (Platnick, 

2002: char. 21.). 

82. Chelicerae, paturon, retromargin, projections (lamina, keel or teeth): absent = 0; present = 

1. All kinds of projections of the cuticle retromargin were considered homologous, including 

normal teeth, the gnaphosines serrated keels and laroniines lamina. However, they were 

considered as different modifications of this cuticular projection and a transformational 

character (char. 83) was created to accommodate these different states (Fig. 28). 

83. Chelicerae, paturon, retromargin, projections type:  teeth = 0; serrated keel = 1 (Fig. 28D); 

translucent lamina = 2. (Fig. 28B). Litopillus levantinus: It looks like an intermediate between 

an angular lamina and teeth. Since not having lamina is one of the diagnostic characters of the 

genus, it was considered a teeth, but it might indicate that the genus is paraphyletic or that this 

species is misplaced.   

84. Chelicerae, paturon, retromargin, rake setae:  absent = 0; present = 1. 

85. Chelicerae, paturon, retromargin, escort setae:  absent = 0; present = 1. Only considered 

escort setae when it is different from the whisker setae. There might be different types of 

escort setae, but it was not coded here since homology establishment is difficult.    

86. Chelicerae, paturon, retromargin, whisker setae:  absent = 0; present = 1. 

87. Chelicerae, paturon, retromargin, tooth I:  absent = 0; present = 1. Not applicable when 

the projection type is a serrated keel or translucent lamina (Char. 83). 

88. Chelicerae, paturon, retromargin, tooth II:  absent = 0; present = 1. Not applicable when 

the projection type is a serrated keel or translucent lamina (Char. 83). 

89. Chelicerae, paturon, retromargin, tooth III:  absent = 0; present = 1. Not applicable when 

the projection type is a serrated keel or translucent lamina (Char. 83). 

90. Chelicerae, paturon, retromargin, tooth IV:  absent = 0; present = 1. Not applicable when 

the projection type is a serrated keel or translucent lamina (Char. 83). 

91. Chelicerae, paturon, retromargin, tooth extras:  absent = 0; present = 1. Not applicable 

when the projection type is a serrated keel or translucent lamina (Char. 83). 
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92. Chelicerae, paturon, retromargin, translucent lamina number:  one = 0; two = 1. Only 

applicable when projection type is a translucent lamina.   

93. Chelicerae, paturon, retromargin, translucent lamina type:  rounded = 0; angular = 1. Only 

applicable when projection type is a translucent lamina. Murphy (2007) proposed this 

character to differentiate the lamina present in Laronius group (rounded) from the ones in 

Leptodrassus group (angular). The angular type resembles more a long, laminar teeth, with 

pointed edges, while the rounded lamina looks more modified.     

94. Chelicerae, paturon, retromargin and furrow, sclerotization: sclerotized = 0; unsclerotized 

posterior patch just distal from cheliceral gland area = 1; completely unsclerotized = 2 

(Ramírez, 2014: char. 44). 

95. Chelicerae, paturon, shape:  conical, longer than wide = 0; rounded, about as long as wide 

= 1. (Fig. 28).   

96. Chelicerae, projection:  ventrally = 0; anteriorly = 1 (Fig. 21 D, G, K). 

97. Chelicerae, disposition:  plagiognathous = 0; orthognathous = 1 (Fig. 21 D). 

 

Female Genitalia 

98. Epigynum, anterior fold:  absent = 0; present = 1. The anterior fold is a transversal furrow 

on the anterior part of the epigynum, separating the anterior field from the middle fild (Fig. 

27). 

99. Epigynum, anterior fold, posterior extension forming a secondary lateral fold: absent = 0; 

present = 1. The lateral tips of the furrow might be extended towards posterior part forming a 

longitudinal furrow (Fig. 27). This longitudinal furrow differs from the lateral fold because 

the latter is associated to the internal copulatory ducts and openings. 

100. Epigynum, anterior fold, hood:  absent = 0; present = 1. The furrow covers part of the 

epigynal plate (Fig. 27). 

101. Epigynum, anterior fold, scape:  absent = 0; present = 1. The scape is a median 

projection of the anterior fold, not connected to the epigynal plate (Fig. 27). 

102. Epigynum, lateral folds:  absent, epigynum is an undivided plate = 0; present = 1 (Fig. 

27). Lateral folds are longitudinal furrows or sutures that divide the epyginum and are usually 

associated with the copulatory ducts (Sierwald, 1989). 

103. Epigynum, lateral folds, type:  suture = 0; furrow = 1 (Fig. 27). 

104. Epigynum, lateral folds, forming small paramedian epigynal pockets: absent = 0; present 

= 1. Present in Apopyllus and Synaphosus (see Chapter 3 of this thesis) 
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105. Epigynum, median field, septum:  absent = 0; present = 1. The septum is a medial 

longitudinal keel on the median field. 

106. Epigynum, median field, plate surface, atrium: absent, the median field is on same plane 

as lateral field = 0; present, there is an excavation on median field = 1.   

107. Epigynum, vulva, copulatory ducts, extension relative to copulatory opening: extending 

anteriorly = 0; not extending anteriorly = 1. 

108. Epigynum, vulva, copulatory ducts, shape:  highly convoluted = 0; spiral = 1; curved or 

with a few curls = 2. 

109. Epigynum, vulva, copulatory ducts, sclerotization: completely sclerotized = 0; only 

proximal part = 1; only terminal part = 2. 

110. Epigynum, vulva, cuticular glands:  absent = 0; present = 1. 

111. Epigynum, vulva, fertilization duct, direction:  ventrally directed = 0; posteriorly directed 

= 1. 

112. Epigynum, vulva, fertilization duct, position:  posterior = 0; anterior = 1. 

113. Epigynum, vulva, massive midpiece:  absent = 0; present = 1 (Platnick, 1983). 

114. Epigynum, vulva, primary spermatheca:  absent = 0; present = 1. The primary 

spermathecae is a dilatation of copulatory duct and connected with the fertilization duct (base 

of spermatheca in Sierwald, 1989). It might bear the Bennett‟s gland. The state 0 means that it 

cannot be clearly differentiated from ducts (Fig. 26C, G, H).   

115. Epigynum, vulva, primary spermatheca, position: paramedian, close to each other = 0; 

lateral, apart from each other = 1. 

116. Epigynum, vulva, primary spermatheca, Bennett‟s gland, insertion: depressed = 0; 

superficial = 1. 

117. Epigynum, vulva, secondary spermatheca:  absent = 0; present = 1 (Fig. 26). Secondary 

spermatheca is a blind sac with large pores (Ramírez, 2014). 

118. Epigynum, vulva, secondary spermatheca, location:  copulatory duct = 0; spermatheca = 

1. There is no (or very small) duct between secondary and primary spermathecae. Equivalent 

to char. 377 in Ramírez (2014). 

119. Epigynum, vulva, secondary spermatheca, size relative to primary spermatheca: smaller 

= 0; about as large = 1; at least 1.5 larger = 2. 

120. Epigynum, vulva, secondary spermatheca, well defined lumen:  absent = 0, there is a 

patch of pores on the copulatory ducts or in the primary spermatheca (Fig. 26J); present = 1. 

121. Epigynum, vulva, secondary spermatheca, long duct (stalk, at least two times the head): 

absent = 0; present = 1 (Fig. 26G, H, L). 
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122. Epigynum, vulva primary spermatheca, shape:  rounded = 0; elongated = 1; reniform = 2. 

 

Legs and Female Palp 

123. Legs, surface, plumose setae:  absent = 0; present = 1. 

124. Legs, surface, plumose setae, appendages (brachia) disposition: only on proximal part = 

0; reaching terminal half = 1. 

125. Legs, surface, plumose setae, tip shape:  cylindrical = 0; flattened = 1. 

126. Legs, surface, squamose setae:  absent = 0; present = 1. 

127. Legs, surface, squamose setae, lateroventral appendages:  absent = 0; present = 1. 

128. Legs, surface, squamose setae, dorsolateral spines:  absent = 0; present = 1. 

129. Legs, surface, squamose setae, dorsolateral spines, type: short and contiguous = 0; long 

and separated = 1. 

130. Legs, surface, squamose setae, dorsolateral spines, disposition: on both sides = 0; on one 

side = 1. 

131. Legs, surface, squamose setae, number of axes (shafts):  zero = 0; one = 1; two = 2. 

132. Legs, surface, squamose setae, ventral projections:  absent = 0; present = 1. Only state 1 

was observed, but the character was kept in the matrix as it could be useful for future studies. 

133. Legs, orientation:  prograde = 0; laterigrade = 1. 

134. Legs, tarsi, apical, claw-claw tuft clasping mechanism of teeth appressed together 

(classic clasper): absent = 0; present = 1 (Fig. 8B, C, G, H). See text for discussion about 

claspers homology. 

135. Legs, tarsi, apical, claw-claw tuft clasping mechanism formed by a developed basal fold 

(folded clasper): absent = 0; present = 1 (Fig. 8A, E). 

136. Legs, tarsi, apical, claw-claw tuft clasping mechanism formed by solid projection of 

basal fold (solid projection clasper): absent = 0; present = 1 (Fig. 8C, D, F). 

137. Legs, tarsi, apical, claw-claw tuft clasping mechanism, structure: teeth appressed 

together = 0; solid = 1. Alternative coding considering the claspers as different states of same 

character as in Ramírez (2014). This character was inactive during search and was kept in 

dataset for comparisons purpose and test the effect of alternative coding. See text for 

discussion about claspers homology. 

138. Legs, tarsi, apical, claws, denticles (teeth):  absent = 0; present = 1. 

139. Legs, tarsi, apical, claws, denticles (teeth), size:  reduced = 0 (Fig. 9E, F); normal = 1. 

140. Legs, tarsi, apical, claws, teeth insertion line:  ectal = 0; median = 1 (Fig. 9); mesal = 2 

(Fig. 8A). 
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141. Legs, tarsi, apical, claws, dorsal scales (velvety texture):  absent = 0; present = 1. (Fig. 

8B, D, G) 

142. Legs, tarsi, apical, claw tufts:  absent = 0; present = 1. 

143. Legs, tarsi, apical, two-three pairs of pseudotenent seta with spaced barbs only on leg IV: 

absent = 0; present = 1 (Fig. 9B). 

144. Legs, tarsi, apical, claw tuft, insertion: continuous with lateral cuticle (or slightly 

separated by sutures) = 0; well delimited plate = 1 (Ramírez, 2014: char. 173). 

145. Legs, tarsi, apical, claw tuft, seta, basal rectangular blocks:  absent = 0; present = 1 

(Ramírez, 2014: char. 167). 

146. Legs, tarsi, apical, claw tuft, seta, basal section, shape: almost cylindrical = 0; with folds 

or ribs = 1 (Ramírez, 2014: char. 164). 

147. Legs, tarsi, apical, claw tuft, seta, base, packing: in individual sockets = 0; together = 1; 

base fused = 2 (Ramírez, 2014: char. 166). 

148. Legs, tarsi, apical, claw tuft, seta, tenant surface, orientation: facing ventrally = 0; facing 

mesally = 1. 

149. Legs, tarsi, apical, claw tuft, seta, type:  pseudotenant setae = 0; tenant setae = 1. 

150. Legs, tarsi, apical, modified setae with long apical tube:  absent = 0; present = 1 

(Ramírez, 2014: char. 175). 

151. Legs, tarsi, distal, ventral, claw slit suture:  absent = 0; present = 1 (Fig. 9A, F; Ramírez, 

2014). 

152. Legs, tarsi, distal, claw slit suture complete, forming onychium: absent = 0; present = 1 

(Fig. 9A).  

153. Legs, tarsi, cuticle, texture:  smooth to rugose = 0; fingerprint = 1 (Fig. 32D, H). 

154. Legs, tarsi, tarsal organ, capsule elevation:  absent = 0; present = 1 (Fig. 32). 

155. Legs, tarsi, tarsal organ, capsule, marginal sulci:  absent = 0; present = 1 (Fig. 32). 

156. Legs, tarsi, tarsal organ, capsule, texture: same as surrounding cuticle = 0; different = 1. 

157. Legs, tarsi, tarsal organ, opening, rim, type:  depressed = 0; elevated = 1 (Fig. 32). 

158. Legs, tarsi, tarsal organ, opening, shape:  round to oval = 0; tear-drop = 1. 

159. Legs, tarsi, tarsal organ on leg IV:  absent = 0; present = 1. 

160. Legs, tarsi, trichobothria, plates, differentiation:  absent, distal and proximal are similar = 

0; present = 1 (Fig. 31). 

161. Legs, tarsi, trichobothria, distal plate, transversal ridges:  absent = 0; present = 1 (Fig. 

31). 
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162. Legs, tarsi, trichobothria, proximal plate, distal margin, medial limit differentiation: 

absent = 0; present = 1 (Ramírez, 2014: char. 177). 

163. Legs, tarsi, trichobothria, proximal plate, transversal ridges:  absent = 0; present = 1. 

164. Legs, whorled setae:  absent = 0; present = 1. 

165. Legs I, coxa, retrolateral hymen:  absent = 0; present = 1. Ramírez (2014: char. 102) used 

one character with four states: "0. absent", "1. present in leg I", "2. present on legs I-II", and 

"3. present on legs I-III". Since the states are not mutually exclusive, this character was 

divided into three neomorphic characters, one for each leg. 

166. Legs I and II, metatarsi, ventral, scopulae of tenent setae:  absent = 0; present = 1. 

167. Legs I and II, metatarsi, ventral, scopulae of tenent setae, density: sparse = 0; dense = 1. 

168. Legs I and II, metatarsi, ventral, scopulae of tenent setae, longitudinal extension: 

restricted to distal part = 0; reaching proximal third = 1. 

169. Legs I and II, metatarsi, ventral, scopulae of tenent setae, scopulae type: continuous = 0; 

divided = 1; only on prolateral side = 2. 

170. Legs I and II, metatarsi and tarsi, ventral, scopulae of tenent setae, setae socket, 

indentation: absent = 0; present = 1. 

171. Legs I and II, metatarsi and tarsi, ventral, scopulae of tenent setae, setae type: tenent = 0; 

pseudotenent (filiform end) = 1. 

172. Legs I and II, patellae, indentation:  absent = 0; present = 1. Platyoides: It seems to be 

weakly sclerotized, but without a clear indentation (scored 0, against Ramírez 2014). 

173. Legs I and II, tarsi, ventral, paired row of spines between scopulae: absent = 0; present = 

1. 

174. Legs I and II, tarsi, ventral, grasping setae:  absent = 0; present = 1. Grasping setae are 

thick setae with short and spaced barbs (Fig. 30G). 

175. Legs I and II, tarsi, ventral, scopulae of tenent setae:  absent = 0; present = 1. 

176. Legs I and II, tarsi, ventral, scopulae of tenent setae, density: sparse = 0 (Fig. 30A, E); 

dense = 1 (Fig. 30F). 

177. Legs I and II, tarsi, ventral, scopulae of tenent setae, scopulae type: continuous = 0 (Fig. 

30F); divided = 1 (Fig. 30A, E). 

178. Legs I and II, trochanters, distal rim:  straight = 0; shallow indentation = 1; notched = 2. 

179. Legs I and II, tarsi, pseudosegmenation:  absent = 0; present = 1 (Fig. 30B, C). 

180. Legs III, tarsus, pseudosegmentation:  absent = 0; present = 1. 

181. Legs IV (F), tarsi, pseudosegmentation:  absent = 0; present = 1. 

182. Legs IV (M), tarsi, pseudosegmentation:  absent = 0; present = 1. 
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183. Legs, tarsi, pseudosegmentation, dorsal extension:  absent, pseudosegmentation 

restricted to ventral part = 0; present = 1. 

184. Legs, tarsi, pseudosegmentation, longitudinal extension: only in terminal = 0; reaching 

proximal = 1. 

185. Legs, tarsi, pseudosegmentation, type:  rings = 0 (Fig. 30B); cracked = 1 (Fig. 30C). 

186. Legs I and II, tibia and metatarsi, ventral, parallel row of strong spines: absent = 0; 

present = 1. 

187. Legs III and IV, metatarsi, distal, preening bush:  absent = 0; present = 1. Preening bush 

is a dense concentration of normal tactile setae on the distal part of metatarsi III and IV. 

Sometimes it might be difficult to determine if it is really present. It was considered present 

when there was a clear difference of setae concentration on that area. 

188. Legs III and IV, metatarsi, distal, preening comb:  absent = 0; present = 1 (Fig. 30H). 

Preening comb is an organized row of strong setae on the distal part of metatarsi. 

189. Legs III, metatarsi, ventral, scopulae of tenant setae:  absent = 0; present = 1. 

190. Legs III, metatarsi, ventral, scopulae of tenent setae, density: sparse = 0; dense = 1. 

191. Legs III, metatarsi, ventral, scopulae of tenent setae, longitudinal extension: restricted to 

distal part = 0; reaching proximal part = 1. 

192. Legs III, metatarsi, ventral, scopulae of tenent setae, scopulae type: continuous = 0; 

divided = 1; only on prolateral side = 2. 

193. Legs III, tarsi, ventral, paired row of macrosetae:  absent = 0; present = 1. 

194. Legs III, tarsi, ventral, scopulae of tenent setae:  absent = 0; present = 1. 

195. Legs III, tarsi, ventral, scopulae of tenent setae, density:  sparse = 0; dense = 1. 

196. Legs III, tarsi, ventral, scopulae of tenent setae, scopulae type: continuous = 0; divided = 

1. 

197. Legs III and IV, trochanter, distal rim:  normal = 0; shallow indentation = 1; notched = 2. 

198. Legs IV, metatarsi, ventral, scopulae of tenant setae:  absent = 0; present = 1. 

199. Legs IV, metatarsi, ventral, scopulae of tenent setae, density:  sparse = 0; dense = 1. 

200. Legs IV, metatarsi, ventral, scopulae of tenent setae, longitudinal extension: restricted to 

distal part = 0; reaching proximal part = 1. 

201. Legs IV, metatarsi, ventral, scopulae of tenent setae, scopulae type: continuous = 0; 

divided = 1; only on prolateral side = 2. 

202. Legs IV, tarsi, ventral, paired row of macrosetae:  absent = 0; present = 1. 

203. Legs IV, tarsi, ventral, trident setae:  absent = 0; present = 1. 

204. Legs IV, tarsi, ventral, scopulae of tenent setae:  absent = 0; present = 1. 
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205. Legs IV, tarsi, ventral, scopulae of tenent setae, density:  sparse = 0; dense = 1. 

206. Legs IV, tarsi, ventral, scopulae of tenent setae, scopulae type: continuous = 0; divided = 

1. 

207. Legs IV, tarsus, claw, distal teeth elongated compared to others teeth: absent = 0; present 

= 1 (Fig. 9E). 

208. Legs IV, trochanter, length relative to trochanter III:  about the same size = 0; at least 1.5 

times longer = 1 (Platnick, 2002). 

209. Palp, endite, distal, macrosetae:  absent = 0; present = 1 (Ramírez, 2015: char. 71). 

210. Palp, endite, dorsal, setae, branched setae:  absent = 0; present = 1 (Ramirez, 2015: char. 

73). Not observed on the terminals used here. 

211. Palp, endite, prolateral edge, longitudinal groove:  absent = 0; present = 1 (Platnick, 

2000: char. 21) 

212. Palp, endite, serrula:  absent = 0; present = 1. 

213. Palp, endite, ventral surface, oblique depression:  absent = 0; present = 1. Phrurolithus 

festivus and Trachelas mexicanus: scored 1, against Ramírez (2014). Trachycosmus: looking 

at the images, it seems that it is present, but restricted to the median edge, which agrees with 

Platnick (2002) and disagrees with Ramírez (2014). 

214. Palp (F), femur, lateroventral, row of 7–9 long, strong spines:  absent = 0; present = 1. 

Found in Wesmaldra and Wydundra (Platnick & Baehr, 2006: char. 10). Not observed in this 

dataset. 

215. Palp (F), tarsus, dorsal, chemosensory patch, position: on dorso-apical surface = 0; on 

apical truncation = 1 (Ramírez, 2014: char. 84). 

216. Palp (F), tarsus, dorsal, chemosensory setae, distribution:  scattered = 0; in a defined 

patch = 1 (Ramírez, 2014: char. 83). 

217. Palp (F), tarsus, whorled setae:  absent = 0; present = 1. 

218. Palp (F), tarsus, terminal, claw:  absent = 0; present = 1. 

219. Palp (F), tarsus, terminal, claw, teeth:  absent = 0; present = 1. 

220. Palp (F), tarsus, terminal, claw, type:  normal = 0; reduced to a nubbin = 1. 

 

Male Genitalia 

221. Palp, copulatory bulb, median apophysis, shape:  elongate = 0 (Fig. 24D); rounded, or 

irregularry shaped, but approximately as long as wide = 1 (Fig. 24C). The median apophysis 

is a projection that arises from the membranous median area of tegulum, on the concave side 

of the sperm duct.  
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222. Palp, copulatory bulb, conductor:  absent = 0; present = 1 (Fig. 24B). The conductor is an 

outgrowth of the proximal part of tegular wall associated to the embolus tip (Zakharov & 

Ovtcharenko, 2011). Amazoromus: Althought it was described as not having conductor, there 

is a small projection, with lightly sclerotized base and translucid tip, proximal on the tegulum. 

It can be seen in Brescovit & Höfer (1994: fig. 1b). It is more easily seen on expanded bulb. 

Gallieniellidae: it looks more terminally situated. It might be a tegular membranous 

projection (scored 0). Oltacloea beltraoe: not described as having a conductor, but it can be 

seen, on expanded palp, a long sclerotized sclerite arising from proximal part of the tegulum 

and folowing the embolus (scored 1). Phrurolithus festivus: There is a proximal projection on 

tegulum, interpreted as a sclrerotized conductor due to its position (scored 1). Sergiolus 

capulatus: the membranous projection is not connected to the embolus, but to proximal part of 

the tegulum, thus it could be called a conductor (against Zakharov & Ovtcharenko 2013), in 

agreement with Platnick (1981). Zelotes duplex: there is a membranous area proximal in 

tegulum that holds the embolus, but it is not a clear outgrowth (scored 0, against Platnick & 

Shadab 1983). 

223. Palp, copulatory bulb, conductor, sclerotization:  translucid = 0; sclerotized = 1. 

224. Palp, copulatory bulb, conductor, shape:  rounded lobe = 0; elongated = 1. Anzacia 

gemmea: according to Zakharov & Ovtcharenko (2011) the conductor should be a clover leaf, 

but, according to criteria applied herein, what they called conductor is a terminal apophysis 

(in agreement with Ovtsharenko & Platnick 1995) an the conductor is an elongated 

membranous projection.  

225. Palp, copulatory bulb, embolus distal tubular membrane (articulation): absent, embolus 

fused to tegulum = 0 (Fig. 24B); present, embolus articulated = 1 (Fig. 25D; Zakharov & 

Ovtcharenko, 2011) 

226. Palp, copulatory bulb, embolar base distal projection:  absent = 0; present = 1 (Senglet, 

2004).   

227. Palp, copulatory bulb, embolar base, proximal projection:  absent = 0; present = 1 (Fig. 

22E, F). Some trochanteriids have a ventral projection on proximal part of embolus base. 

228. Palp, copulatory bulb, embolar locking lobe:  absent = 0; present = 1 (Fig. 24G). The 

embolus has a lobe that fits a corresponding lobe on the tegulum. It is not a homologue to the 

tegular locking lobes on embolus base described by Griswold et al. (2005: char. 116 state 1), 

since herein the character refers to a more ventral positioned structure that interacts with the 

tegulun, not a dorsolateral projection that interacts with the subtegulum.    
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229. Palp, copulatory bulb, embolus, embolar base, dilatation:  absent = 0; present, the 

transition between the proximal part of embolus to the distal is abrubt = 1. 

 230. Palp, copulatory bulb, embolus, embolar radix projection:  absent = 0; present = 1. The 

radix projection is a dorsal projection on the embolar base. The radix here is defined, 

following Senglet (2004), as the dorsal part of the embolar base that connects the embolus to 

the proximal part of the tegulum. It is not homologous to the araneiods radix (Fig. 25A, F).  

231. Palp, copulatory bulb, embolus, embolar escort esclerite:  absent = 0; present = 1. There 

is a projection from the dorsal base that escorts the embolus and it is attached to it by a 

membrane. In this dataset it was found in Berlandina plumalis and in Zelanda erebus. 

Zakharov & Ovtcharenko (2011) called this sclerite, in Zelanda, subterminal apophysis and 

the membrane was called pars pendula. 

232. Palp, copulatory bulb, embolus, insertion in tegulum on unexpanded bulb: retrolateral = 

0; prolateral = 1. 

233. Palp, copulatory bulb, embolus, length relative to tegulum:  about half = 0; about the 

same = 1; longer, with loops around it = 2. 

234. Palp, copulatory bulb, embolus, pars pendula:  absent = 0; present = 1. Pars pendula is a 

membrane on concave side of embolus (Zakharov & Ovtcharenko, 2011). 

235. Palp, copulatory bulb, embolus, shape:  laminar = 0; tubular = 1. 

236. Palp, copulatory bulb, embolus, tubular embolus type: filiform, or conical = 0; wide, 

massive, with rounded tip = 1. 

237. Palp, copulatory bulb, embolus, terminal membrane:  absent = 0; present = 1. The 

terminal membrane is an inflatable membrane located on terminal part of the embolus 

(Zakharov & Ovtcharenko, 2011). It is equivalent to the terminal haematodocha described for 

Zelotinae by Senglet (2004).    

238. Palp, copulatory bulb, embolus, embolar granulation:  absent = 0; present = 1. 

239. Palp, copulatory bulb, fulcrum:  absent = 0; present = 1. The fulcrum is a movable small 

sclerite on embolus tip (Zakharov & Ovtcharenko, 2011). 

240. Palp, copulatory bulb, intercalary sclerite:  absent = 0; present = 1 (Fig. 25F). The 

intercalary sclerite is a sclerotized structure that connects the embolus base, or base of the 

terminal apophysis, to the terminal part of tegulum. It is situated more dorsally in relation to 

embolus (Platnick & Shadab, 1983; Senglet, 2004; Zakharov & Ovtcharenko, 2013). 

Berlandina plumalis: it might be part of the subtegulum (scored 1). Heser schmitzi: according 

to Tuneva (2004) the genus does not have terminal apophysis neither intercalary sclerite. 

Heser schmitzi was trasfered from Zelotes by Senglet (2012), who called the intercalary 
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sclerite an “embolar base”. However, it is a separate sclerite, located between the tegulum and 

terminal apophysis. Hemicloea, Trochanteria and Vectius: there is a small sclerite seen on 

expanded bulb (scored 1).    

241. Palp, copulatory bulb, median apophysis:  absent = 0; present = 1 (Figs 24, 25). The 

median apophysis is a projection that arises from a membranous median area on the tegulum, 

near the concave side of the sperm duct. Cithaeron: it may act like a conductor, but its 

position suggests it is a median apophysis (scored 1). 

242. Palp, copulatory bulb, median apophysis, proximal, numerous small spines (granulation): 

absent = 0; present = 1. 

243. Palp, copulatory bulb, median apophysis, sclerotization: completely sclerotized = 0; 

partially sclerotized = 1; not sclerotized = 2. 

244. Palp, copulatory bulb, median apophysis, terminal hook:  absent = 0; present = 1. 

245. Palp, copulatory bulb, accessory median apophysis:  absent = 0; present = 1. The 

accessory median apophysis is a sclerite on the terminal part of the tegulum, distal in relation 

to median apophysis and associated to the embolus, probably functioning as a conductor. 

Anyphaena accentuata: not clear if it belongs to terminal or median division of bulbus but, 

according to criteria herein, it is most likely an accessory median apophysis (scored 0; see 

Ramírez, 1995 and references therein for discussion of terms used for this structure). 

Neodrassex aureus: the structure Ott (2012) called embolus is actually an apophysis terminal 

on tegulum that acts like a conductor (scored 1; Fig. 23D–F).  

246. Palp, copulatory bulb, membranous tegular extension:  absent = 0; present = 1. It is a 

membrane distally situated on tegulum (see chapter 3 of this thesis). Apodrassodes 

guatemalensis: it is not clear if the membranous area is really terminal on tegulum (score 1). 

247. Palp, copulatory bulb, membranous tegular extension, type: long, with sulci to support 

the embolus = 0; short = 1.  

248. Palp, copulatory bulb, petiole:  absent = 0; present = 1. Smal sclerite on the alveolus of 

the cymbium, which connects the cymbium to the subtegulum. 

249. Palp, copulatory bulb, subtegulum, locking lobe:  absent = 0; present = 1. The 

subtegulum has a lobe that fits a corresponding lobe on the tegulum (Griswold et al. 2005: 

char. 115). 

250. Palp, copulatory bulb, subtegulum, proximal projection:  absent = 0; present = 1. It is a 

projection near the fundus. 

251. Palp, copulatory bulb, tegulum, distal tegular projection:  absent = 0; present = 1. 
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252. Palp, copulatory bulb, tegulum, distal tegular spine-like process: absent = 0; present = 1. 

This projection is located on the terminal part of the tegulum, near the embolus base, and is 

found in Cryptoeritus occultus. 

253. Palp, copulatory bulb, tegulum, proximal part: uncovered = 0; covered by the 

subtegulum = 1.  

254. Palp, copulatory bulb, terminal apophysis:  absent = 0; present = 1. The terminal 

apophysis is a sclerite on the terminal division of bulbus, proximally and ventrally positioned 

in relation to embolus and connected (fused or not) to embolar base (Fig. 25). Heser schmitzi: 

according to Senglet (2012) there is no terminal apophysis, but there is a terminal sclerite, 

ventral to embolus and connectet to it (scored 1). Zelotibia simpula: there is a small lightly 

sclerotized terminal structure on the tegulum, but it is uncertain if it could be considered a 

terminal apophysis (scored 0). 

255. Palp, copulatory bulb, terminal apophysis, distal part, shape:  simple, undivided = 0; 

bifid = 1. Present in Camillina (Platnick & Shadab, 1982a). 

256. Palp, copulatory bulb, terminal apophysis, sheet shaped sclerite surrounding the 

embolus: absent = 0; present = 1. Echemoides and Zimiromus have a long membranous 

sclerite that surrounds the embolus. Based on the trajectory of the spermatic duct, it seems to 

belong to the terminal division of bulbus, since it is distal to the beginning of the ejaculatory 

duct and closely associated to the embolus. Also, in Echemoides aguilari this sclerite is distal 

to an accessory median apophysis. So, given its topology, it was considered a terminal 

apophysis. However, it might not be a homologue to the terminal apophysis of Zelotinae, 

since it is not detached from the tegulum and is morphologically very different. This character 

was then, created to accommodate this difference. 

257. Palp, cymbium, dorsal, terminal, chemosensory patch:  absent = 0; present = 1 (Ramírez, 

2014: char. 324). 

258. Palp, cymbium, dorsal, trichobothria:  absent = 0; present = 1. Lampona cylindrata: 

scored 1 (against Ramírez 2014). 

259. Palp, cymbium, retrolateral, median process (projection):  absent = 0; present = 1. The 

incision in Apopyllus is considered a median process, forming a conductor-like structure.  

260. Palp, cymbium, retrolateral, median process, type:  without incision = 0; with incision, 

forming a conductor-like canal = 1 (cymbial incision in see chapter 3 of this thesis). 

261. Palp, cymbium, retrolateral, proximal process:  absent = 0; present = 1. Present in 

Nopyllus (Ott, 2014). 

262. Palp, cymbium, ventral, apex, size:  short = 0; long = 1. 
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263. Palp, cymbium, ventral, terminal, bunch of thick setae:  absent = 0; present = 1 (Ramírez, 

2014: char. 326). 

264. Palp, femur, distal, dorsal process:  absent = 0; present = 1. 

265. Palp, femur, distal, prolateral, process:  absent = 0; present = 1. 

266. Palp, femur, median, ventral, process:  absent = 0; present = 1 (Ramírez, 2014: char. 

306). 

267. Palp, tibia, retrolateral tibial apophysis:  absent = 0; present = 1. Zelotibia simpula: very 

small projection. The structure identified as a RTA by Nzigidahera & Jocqué (2009) is here 

called Proximal Retrolateral Tibial Apophysis. 

268. Palp, tibia, retrolateral tibial apophysis, position:  retrolateral = 0; shifted dorsally = 1. 

269. Palp, tibia, retrolateral tibial apophysis, type:  laminar = 0; almost conical or spine-like = 

1. 

270. Palp, tibia, retrolateral tibial apophysis, elaborated folds:  absent = 0; present = 1. 

Applicable only if the RTA is laminar, as seen in Apopyllus (see chapter 3 of this thesis).  

271. Palp, tibia, retrolateral tibial apophysis, ventral lobe:  absent = 0; present = 1. 

272. Palp, tibia, ventral tibial apophysis:  absent = 0; present = 1. 

273. Palp, tibia, ventral tibial apophysis, type:  singular = 0; bifid = 1. 

274. Palp, tibia, dorsal tibial apophysis:  absent = 0; present = 1. 

275. Palp, tibia, prolateral tibial apophysis:  absent = 0; present = 1. 

276. Palp, patellae, retrolateral apophysis:  absent = 0; present = 1. 

277. Palp, tibia, proximal retrolateral tibial apophysis:  absent = 0; present = 1. 

 

Morphometrics-defined characters 

278. Cephalothorax, dorsal, carapace, overall shape:  longer than wide = 0; wider than long = 

1. See Supplementary Material. 

279. Cephalothorax, dorsal, carapace, anterior margin shape: with a cephalic moderate 

constriction and convex anterior margin = 0; without a cephalic constriction and straight to 

concave anterior margin = 1. See Supplementary Material. 

280. Cephalothorax, ventral, sternum, overall shape:  longer than wide = 0; wider than long = 

1. 

281. Cephalothorax, carapace, dorsal, cephalic area, posterior eye row, shape: procurved = 0; 

straight to recurved = 1. See Supplementary Material. 

 

Spinnerets 
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282. Abdomen, anterior lateral spinnerets, basal article, whorled setae: absent = 0; present = 

1. 

283. Abdomen, anterior lateral spinnerets, distal article: complete sclerotized ring = 0 (Fig. 

13A, B); incomplete ring = 1 (Figs 11, 12, 14, 15; Platnick 2000: char. 15; Platnick, 2002: 

char. 3; Ramírez, 2014: char. 247). 

284. Abdomen, anterior lateral spinnerets, distal article, incomplete ring, type: semi-circle in 

the anterior margin = 0 (Figs 11E, F, H; 12); patches of setae on the base of spigots = 1 (Fig. 

11A–D, G). 

285. Abdomen, anterior lateral spinnerets, distal article, sensory seta near piriform gland 

spigot: absent = 0; present = 1 (Fig. 12F). 

286. Abdomen, anterior lateral spinnerets, distal article, setae, elevated base: absent = 0; 

present = 1. 

287. Abdomen, anterior lateral spinnerets, distance between them in relation to their diameter: 

slightly separated = 0; separated about one ALS diameter or more = 1. 

288. Abdomen, anterior lateral spinnerets, length in relation to abdomen: more than 25%= 0; 

less than 25%= 1 (Platnick & Baehr, 2006: char. 5.) 

289. Abdomen, anterior lateral spinnerets, position: next to other two pairs = 0; anteriorly 

placed = 1. 

290. Abdomen, anterior lateral spinnerets, sclerotization:  light = 0; heavy = 1. 

291. Abdomen, anterior lateral spinnerets, shape:  conical = 0; cylindrical = 1; compressed 

laterally = 2. 

292. Abdomen, anterior lateral spinnerets, spinning field, inflatable membrane: absent = 0 

(Fig. 13A, B); present = 1 (Fig. 12A). 

293. Abdomen, anterior lateral spinnerets, major ampullate gland spigot field, conical setae 

bearing projection: absent = 0; present = 1 (Figs 11B, D; 14A). 

294. Abdomen, anterior lateral spinnerets, piriform gland spigots, base length relative to shaft: 

shorter or as short as = 0 (Figs 12; 13; 15); longer = 1 (Fig. 11). Platnick (2000, 2002) 

assumed dependence between plumose setae and elongated base of spigots, and coded both as 

a single character. However they are independent and each one should be considered a 

different character.  

295. Abdomen, anterior lateral spinnerets, piriform gland spigots, base width in relation to 

MaAm: about the same = 0 (Fig. 13); greatly widened = 1 (Figs 11; 12A–D, F–H; 14; 15). 
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296. Abdomen, anterior lateral spinnerets, piriform gland spigots, length relative to the major 

ampullate gland spigots: shorter or about as long as = 0 (Figs 12E; 13 ); longer = 1 (Figs 11; 

12 A–D, F–H; 14; 15). 

297. Abdomen, anterior lateral spinnerets, piriform gland spigots, plumose setae base (with 

barbs): absent = 0; present = 1 (Ramírez, 2014: char. 270). 

298. Abdomen, anterior lateral spinnerets, piriform gland spigots, shaft fused to base: absent 

= 0 (Fig. 12C, E, G); present = 1 (Fig 12A, B, D, H). 

299. Abdomen, anterior lateral spinnerets, piriform gland spigots, shaft width relative to base: 

narrower = 0 (Fig. 13B, D); as wide as base, with broad openings = 1 (Figs 12; 13C). 

300. Abdomen, posterior lateral spinnerets, distal, long spigots on a flat non-distensible pad: 

absent = 0; present = 1 (Fig. 19C). 

301. Abdomen, posterior median and lateral spinnerets, modified interdigitate setae: absent = 

0; present = 1 (Platnick, 1990). Same as claviform setae in Ramírez (2014: char. 292).  

302. Abdomen, posterior median spinnerets, minor ampullate gland spigot, shaft: about the 

same size as the aciniform = 0; reduced to needlelike extension = 1. 

303. Abdomen, posterior median spinnerets, position:  posterior to ALS = 0; anteriorly 

advanced, in same line as ALS = 1. 

304. Abdomen (F), anterior lateral spinnerets, anterior (ectal) major ampullate gland spigots, 

shaft and base, thickness relative to posterior (mesal): anterior (ectal) thinner = 0; same size = 

1; anterior thicker = 2. 

305. Abdomen (F), anterior lateral spinnerets, major ampullate gland spigots, ectal spigots: 

absent = 0 (Fig. 11B); present, functional or as a nubbin = 1 (Figs 11E; 12B). 

306. Abdomen (F), anterior lateral spinnerets, major ampullate gland spigots, mesal spigots: 

absent = 0; present = 1. 

307. Abdomen (F), anterior lateral spinnerets, major ampullate gland spigots, mesal spigots, 

type: normal = 0 (Fig. 12B); nubbin = 1 (Fig. 11E). 

308. Abdomen (M), anterior lateral spinnerets, major ampullate gland spigots, ectal spigots: 

abset = 0; present = 1. 

309. Abdomen (M), anterior lateral spinnerets, major ampullate gland spigots, mesal spigots: 

absent = 0; present = 1. 

310. Abdomen (M), anterior lateral spinnerets, major ampullate gland spigots, mesal spigots, 

type: normal = 0; nubbin = 1. 

311. Abdomen, anterior lateral spinnerets, major ampullate gland spigots, position: touching 

basal article border = 0 (Fig. 11B, D, G); far from the border = 1 (Fig. 11E, H). 
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312. Abdomen (F), anterior lateral spinnerets, piriform gland spigots: absent = 0; present = 1. 

313. Abdomen (M), anterior lateral spinnerets, piriform gland spigots: absent = 0; present = 1 

(Fig. 16A, C). 

314. Abdomen (F), anterior lateral spinnerets, piriform gland spigots position: only on the 

edge = 0 (Fig. 12A, B, D, H); at the edge and in the middle of spinnerets = 1 (Fig. 12C, E, G). 

315. Abdomen (F), anterior lateral spinnerets, spinning field, furrow between major ampullate 

and piriform gland spigots: absent = 0; present = 1. Adapted from Ramírez (2014: char. 264). 

316. Abdomen (M), anterior lateral spinnerets, spinning field, furrow between major 

ampullate and piriform gland spigots: absent = 0; present = 1. Adapted from Ramírez (2014: 

char. 264). 

317. Abdomen (F), posterior lateral spinnerets, aciniform gland spigots: absent = 0; present = 

1. 

318. Abdomen (M), posterior lateral spinnerets, aciniform gland spigots: absent = 0; present = 

1. 

319. Abdomen (F), posterior lateral spinnerets, cylindrical gland spigots: absent = 0; present = 

1. 

320. Abdomen (F), posterior lateral spinnerets, minor ampullate gland spigots: absent = 0; 

present = 1 (Fig. 18). Same as “Modified Spigots” in Griswold et al. (2005: char. 96) and 

Ramírez (2014: char. 296). 

321. Abdomen (M), posterior lateral spinnerets, minor ampullate gland spigots: absent = 0; 

present = 1. 

322. Abdomen (F), posterior median spinnerets, aciniform gland spigots: absent = 0; present = 

1. 

323. Abdomen (M), posterior median spinnerets, aciniform gland spigots: absent = 0; present 

= 1. 

324. Abdomen (F), posterior median spinnerets, cylindrical gland spigots: absent = 0; present 

= 1. 

325. Abdomen (F), posterior median spinnerets, cylindrical gland spigots in parallel rows: 

absent = 0; present = 1. 

326. Abdomen (F), posterior median spinnerets, cylindrical gland spigots, separated field: 

absent = 0; present, the Cy are not mixed with other spigots = 1 (Ramírez, 2014). 

327. Abdomen (F), posterior median spinnerets, spinning field, deep constriction: absent = 0; 

present = 1 (Fig. 20G; Murphy, 2007).  



  

96 
 

328. Abdomen (F), posterior median spinnerets, minor ampullate gland spigots: absent = 0; 

present = 1. 

329. Abdomen (M), posterior median spinnerets, minor ampullate gland spigots: absent = 0; 

present = 1. 

330. Abdomen (F), posterior median spinnerets, minor ampullate gland spigots, number: two 

= 0; one plus nubbin = 1; one = 2. 

331. Abdomen (M), posterior median spinnerets, minor ampullate gland spigots, number: two 

= 0; one plus nubbin = 1; one = 2. 

332. Abdomen, spinnerets, major ampullate and aciniform gland spigots, shaft, shape: 

cylindrical or tapering = 0; clavate = 1 (Ramírez, 2014: char. 250). 

333. Abdomen, spinnerets, spigot, insertion articulation, type:  simple = 0; annulate, flexible = 

1 (Ramírez, 2014: char. 238). 

334. Abdomen, ventral, posterior, colulus:  absent = 0; present = 1. 

335. Abdomen, ventral, posterior, colulus type:  plate with few hairs = 0; well defined lobe 

=1. Only state 0 was observed in this dataset. 

 

Inactive characters  

The following characters show some variation and were tentatively scored. However, they 

could not be clearly separated into discrete states and, therefore, were treated as inactive 

during search. They were kept in matrix for documentation, since they could be useful for 

further studies.  

 

336. Abdomen, anterior lateral spinnerets, major ampullate gland spigots, location: mesal 

margin = 0; anterior margin = 1; intermediate = 2. Inactive: Not clear the difference between 

mesal and anterior. 

337. Abdomen, anterior lateral spinnerets, basal article, distal rim, plumose setae: absent = 0; 

present = 1. Inactive:  Homology between seta is hard to determine. 

338. Abdomen, anterior lateral spinnerets, distal article, setae kind: plumose = 0; minutely 

plumose = 1; aculeate = 2. Inactive:  Homology between seta is hard to determine. 

339. Abdomen, anterior lateral spinnerets, piriform gland spigots, shaft sclerotization: lightly 

= 0; heavily = 1. Inactive: level of sclerotization is har to distinguish. 

340. Abdomen, antero-dorsal, tuft of setae, type:  Aculeate = 0; minutely plumose = 1. 

Inactive:  Homology between seta is hard to determine.  
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341. Abdomen, dorsal, anal tubercle, setae:  Plumose = 0; minutely plumose = 1; Aculeate = 

2. Inactive:  Homology between seta is hard to determine. 

342. Cephalothorax, carapace, dorsal, posterior margin, shape: not reflected anteriorly = 0; 

reflected anteriorly with narrow rim = 1; reflected anteriorly with broad rim = 2. Inactive: 

geometric morphometrics shows that there is no continuous variation between reflected 

anteriorly and not reflected. The difference in shape is represented by two characters defined 

by GM: overall shape and anterior margin shape (Platnick, 2002: char. 13.). 

343. Cephalothorax, sternum, posterior edge:  projected between coxae IV = 0; not projected 

between coxae IV = 1. Inactive: morphometrics shows that there is continuous variation 

between projected and not projected between coxa, but there is a discrete difference between 

elongated and almost rounded sterna. 

344. Cephalothorax, carapace, frontal, cephalic area, anterior eye row, shape: procurved = 0; 

straight = 1. Inactive: geometric morphometrics shows that it is a continuum of variation. 

345. Chelicerae, paturon, anterior surface, weakly sclerotized oval area: absent = 0; present = 

1. Inactive: several taxa seem to have a little more unsclerotized area. It is harder to 

determinie, especially in taxa with pale cuticle (Platnick, 2000: char. 17.). 
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Appendix 2. Material examined. 

Ammoxenidae 

Ammoxenus coccineus 

CAS 9051663: 2 M, 1 F. Namibia, Erongo, Gobabeb. 2/VI/1979. Wharton 

CAS 9051664: 1 F. Namibia, Aasvölnes. 16/VI/1991. V.Roth & B. Roth 

Rastellus africanus 

AMNH: 3 M, 3 F. Botswana, Okavango Delta. Mopane woodland. 3/X/1975.  

Anyphaenidae 

Anyphaena acentuata 

AMNH: 2 M, 2 F. 

Cithaeronidae 

Cithaeron praedonius 

AMNH: 1 F. Libya, Wadi Kuf. 24/I/1960. JALC 

AMNH: 1 M, 1 F. U.S.A, Florida, Passo, Port Richey. 20/VI/2011. J.T. stiles 

UFMG 14503: 1 M, 1 F. Brazil, Piauí, Teresina, Bairro Morada do Sol. I/2014. L.S. Carvalho  

Gallieniellidae 

Galianoella leucostigma 

AMNH: 1 F. Argentina, Salta, Chuscha, 6km NW Cafayate. 20/XI/1995. P. Goloboff 

CHNUFPI  161: 1 M. Brazil, Piauí, Guaribas, Parque Nacional da Serra das Confusões. 9-15/XII/2010. L. S. 

Carvalho et. al. 

Gallieniella mygaloides 

AMNH: 1 F. Madagascar, Anjavidilava, massif de l'Andringitra. 15/I/1971. J.M. Betsch 

AMNH: 2 M, 1 F. Madagascar, Tananarive:col du Tsiafajavona, massif de 18 Ankaratra. II/1967. R. legendrene 

& J.M. Betsch 

CAS 9051641: 1 F, 8 J. Madagascar, Fianarantsoa, Res. Andringitra, 8.5km SE Antanitotsy. 6/III/1997. B.L. 

Fisher 

CAS 9064158: 1 M. Madagascar, Sofia Region, Anjiamangirana, 45km S Antsohihy, Analagnambe, 

Analagnambe Gallery forest, 5Km W Anjiamangirana. 25-2/IV-V/2013. M. Irwin & H. Rinha 

Meedo hustoni 

CAS 9051640: 1 F. Australia, Western Australia, Milly Milly. 6/X/1962.  

Gnaphosidae 

"Megamyrmaekion" nr. transvaalicus 

MNRJ 6661: 1 F. África do Sul, Gauteng, Pretoria, Groenkloof Nature Reserve. 29/X/2002. A. Kury 

Amazoromus kedus 

AMNH: 1 M. , Amazonas, Manaus, Reserva Ducke. 14/X/1991.  

INPA 114: 1 F. Brazil, Amazonas, Manaus, Reserva Ducke. 17/VIII/1992. Hofer & Gasnier 

INPA 28: 1 M. Brazil, Amazonas, Manaus, Reserva Ducke. 30/XI/1991.  

Anagraphis pallens 

MCZ 69794: 1 M, 1 F. Israel, Sede Boqer, Hatira Ridge. 5/VII/1993. Y. Lubin 

MCZ 69795: 1 M, 1 F. Israel, Wad I Mashash. 23/VII/1992. Y. Lubin 
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Aneplasa facieis 

CAS 9058646: 1 F, 1 J. South Africa, Cape Province, Oudtshoorn. 29/X/1949. Malkin 

Anzacia gemmea 

CAS 9051590: 1 M. New Zeland, South Island, Arthur's Pass, outside youth hostel. 21/III/1995. J. Boutin 

CAS 9051644: 1 F. New Zeland, South Island, Queen Charlotte Sound. III-IV/1993. J. Boutin 

CAS 9051645: 1 F. New Zeland, South Island, Mosgiel, Outram Bridge Taieri River. 28/III/1995. J. Boutin 

Aphantaulax cincta 

MCZ 33036: 1 F. Not in Phylogeny.  

Aphantaulax sp. 

CAS 9064210: 1 M. Madagascar, Andrefana Region, District of Horombe, Vohibasia National Park. 15-

22/VIII/2011. M. Irwin & H. Rinha 

CAS 9064211: 1 F. Madagascar, Andrefana Region, District of Horombe, Vohibasia National Park. 10-

17/VI/2011. M. Irwin & H. Rinha 

Apodrassodes guatemalensis 

MCN 29246: 2 M. Brazil, Rio Grande do Sul, Bom Jesus. 28-30/III/1998. A. B. Bonaldo 

MCTP 460: 2 M, 16 F, 13 J. Brazil, Quillota, Rio Grande do Sul. 24-28/V/1991. A.A. Lise 

Apopyllus silvestrii 

CAS 9051658: 1 M. Bolivia, Potosi. 22/II/1951.  

CAS 9051659: 1 F. Argentina, Chubut, Shaman. 19/XI/1966. E.I. Schingler & M.E. Irwin 

CAS 9051660: 1 F. Bolivia, Potosi. 23/II/1951.  

Arauchemus graudo 

MCN 47666: 2 M. Brazil, Rio Grande do Sul, São Francisco de Paula. 14/IV/2002. R. Ott 

MCN 47673: 1 F, 1 J. Brazil, Rio Grande do Sul, São Francisco de Paula. 11/X/2001. R. Ott 

Arauchemus miudo 

MCN 47700: 4 F. Brazil, Rio Grande do Sul, São Francisco de Paula, Porteiro Velho. 13/XI/2001. R. Ott 

Asemesthes albovittatus 

CAS 9058616: 1 F. 

Asemesthes montanus 

USNM : 1 M. South Africa, Free State, Brandford, Florisbad. 21/X/1985. L.N. Lotz 

Australoehemus celer 

CAS 9067682: 1 M. Curaçao, , Carmabi Institute. 7/X/2004.  

CAS 9067686: 1 F. Bonaire, , DROB. 6/XII/2004. G. van Hoorn 

Berinda amabilis 

DUT 859: 1 M, 1 F. Greece. 17-22/V-VII/1998.  

Berlandina plumalis 

MCZ 33661: 1 M, 1 F. Israel, Sede Boqer, Halukim Ridge. 5/VII/1993. Y. Lubin 

MCZ 33695: 1 M, 1 F. Israel, Sede Boqer, Halukim Ridge. 5/VII/1993. Y. Lubin 

Callilepis gosoga 

CAS 9048349: 9 M, 2 F. U.S.A, California, Riverside, Whitewater Cyn. R.L. Aalbu 

CAS 9051227: 1 F. U.S.A, California, Stabislaus, PG&E Plant Site; 5 miles n Turlock Lake. 26/V/1976. J.Colins 
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CAS 9051304: 1 M. U.S.A, California, Santa Clara. 30/V/1971.  

CAS 9051363: 1 M. U.S.A, California, Inyo, Birchum Springs. 30/V/1997. G. Pratt et al. 

CAS 9051416: 1 F. U.S.A, California, Inyo, Coso Village. 30/V/1997. G. Pratt et al. 

Callilepis nocturna 

AMNH: 2 M, 2 F. Austria, Innsbruck-Umgebung Fallen. V-VII/1964.  

Camillina cordifera 

AMNH: 3 M, 4 F. Botswana, Maxwee.  

AMNH: 4 M, 3 F. South Africa, Transvaal, Pretoria. 4-28/I/1980. J. Peck 

Cesonia bilineata 

CAS 9051599: 1 M. U.S.A, Arkansas, Mississippi. 16-23/VI/1966.  

CAS 9058792: 1 M. U.S.A, Arkansas, Washington, Cove Creek. 3/V/1963. O. & M. Hite 

CAS 9058793: 1 F. . 26/VII/1964.  

CAS 9151600: 1 F. U.S.A, Arkansas, Bradley. VI-VII/1963. Leslie 

Cryptodrassus creticus 

MariaGrecia 8432: 3 M, 1 F. Greece, Astypalaia, Agia Kyriaki isl. 25-11/IV-VI/2005.  

Drassodes lapidosus 

MCN 23585: 4 M, 2 F. Germany, Albshausen, Witzenhausen. 15/V/1993. A. D. Brescovit 

Drassodes saccatus 

CAS 9051356: 1 F. U.S.A, California, Stanilaus, Frank Raines Park. 4/IV/1970. S.C. Williams 

CAS 9051587: 1 F. U.S.A, Washington, Vantage. 28/IV/1936. M.H. Hatch 

CAS 9051587: 1 M, 1 F. U.S.A, Washington, Vantage. 26/IV/1936.  

CAS 9051589: 2 M. U.S.A, Kansas, Riley. 16/V/1964.  

CAS 9051649: 1 M. U.S.A, Nevada, Sheldon Wildlife Refuge. VIII/1947. J.C. Exline 

Drassodex lesserti 

MZSP 13751: 1 M, 1 F. Germany.  

Drassyllus fallens 

MCZ 33506: 1 M, 1 F, 1 J. U.S.A, Michigan, Calhoum, Albium. 18/V/1935. A.M. Chickering 

MCZ 33515: 3 F. U.S.A, Pennsylvania, Gettysburg. 20/VI/1960. R.D. Barnes 

Echemoides aguilari 

CAS 9058763: 1 M, 2 F. 

MUSM 504986: 1 M, 1 F, 4 J. Peru, Ica, Paracas. 19-20/VI/1999.  

Eilica bicolor 

AMNH: 1 F. U.S.A, Florida, Sebring. 1/III/1960.  

AMNH: 1 M. U.S.A, Florida, Monroe, Cudjoekey. 29-14/VIII-XIII?/1986. S. & J. Peck 

Gertschosa amphiloga 

CAS 9058796: 1 F. Mexico, Colima. XII/1929. S.F. Light 

Gertschosa concinna 

CAS 9051602: 1 M. Mexico, Islas Tres Marias, M.M. Zóre. 13-23/V/1925. H.H. Keifer 

Gnaphosa californica 

CAS 9049342: 1 F. U.S.A, California, Modocco, 5 mi w Canby. 30/VI/1974. C. Griswold 
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CAS 9049584: 2 M. U.S.A, California, Alameda, Grizzly Peak Bvd.. 10/VI/1962. P.R. Craig et al. 

CAS 9051585: 6 F,  J. U.S.A, Oregon, Carvallis. J. Kincaid 

CAS 9051586: 1 M, 1 J. U.S.A, Washington, Wenatchee. 14/V/1932.  

Gnaphosa clara 

CAS 9051666: 4 F. U.S.A, New Mexico, Socorro. 18/VI/1949. Wheeler Exline 

CAS 9051667: 1 M. U.S.A, Nevada, Washoe, 3 miles N. of Nixon. 21/VI/1960. D.C. Rentz 

Haplodrassus chamberlini 

CAS 9051592: 1 M. U.S.A, Colorado, Fremont, Wet mountains. 7/V/1964. B.H. Bbanta 

CAS 9051593: 1 M. U.S.A, Colorado, El Paso, Peyton Road. 2/V/1964. B.H. Banta 

Haplodrassus hiemalis 

MCZ 33035: 1 F. Canada, Ontario, Thunder Bay Dist, Klotz Lake, 25 miles east of Longlac. Summer/1960. D. 

Windle 

MCZ 33675: 1 M. U.S.A, Massachusetts, Essex, Ipswich River, Topsfield. 15/V/1915. J.H. Emerton Collection 

MCZ 33689: 1 M. U.S.A, Massachusetts, Worcester, Grafton. J.H. Emerton Collection 

Herpyllus eclesiasticus 

CAS 9051591: 1 M. U.S.A, Arkansas, Mississippi. 9 -15/VI/1966.  

CAS 9051646: 1 M. U.S.A, Missouri, Rolla. 29/V/1949. H.E.F. 

CAS 9051647: 2 F. U.S.A, Missouri, Johnson, Portle Springs. 5/VIII/1961. W. Peck 

CAS 9051648: 1 M. U.S.A, Texas, Austin. 1-10/VIII/1945. H.E.F. 

Heser schmitzi 

CAS 9029973: 1 M, 1 F. U.S.A, California, Marin, San Rafael, 8 Park Ridge Rod. 8-14/VIII/2014. Jere 

Schweikert 

Hypodrassodes maoricus 

CAS 9058742: 1 M, 2 J. New Zeland, South Island, Greymouth. 20/III/1993. J. Boutin 

CAS 9058743: 2 F. New Zeland, North Island, Wellington, Town belt, Hay Street. I-II/1995. J. Boutin 

Kishidaia albomaculata 

CAS 9051629: 1 F, 1 J. Russia, Siberia, Moneron Island, SSE shore, Usovo Creek. 24/VIII/2001. Y.M. Marusik 

Latonigena auricomis 

MCN 13406: 1 F. Brazil, Rio Grande do Sul, Porto Alegre. 7/IX/1985. A. D. Brescovit 

MCN 16582: 1 M. Brazil, Rio Grande do Sul, Rio Grande. 4/XII/1986. E. H. Buckup 

MCN 21955: 1 M. Brazil, Rio Grande do Sul, Porto Alegre. 18/I/1992. M. A. L. Marques 

MCN 43575: 1 F. Brazil, Rio Grande do Sul, Porto Alegre. 23/IX/2007. M. C. Pairet Jr 

Leptodrassex sp. 

CAS 9058718: 1 F. Kenya, Nairobi, Magadi Road, 33mi N Magadi. 24/XI/1957.  

Leptodrassus albidus 

DUT 476: 117 F. Greece. 20-26/V-VII/1999.  

Leptopilos levantinus 

DUT : 1 F. Greece.  

DUT 894: 1 M. Greece. 30-01/VI-IX/1998.  

Litopyllus temporarius 
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CAS 9058744: 1 M. U.S.A, Missouri, Johnson, Wsrrensburg. 6/V/1964. W. Peck 

CAS 9058745: 1 F. U.S.A, Missouri, Johnson, Wsrrensburg. 1/VI/1963. W. Peck 

Micaria gosiuta 

CAS 9048287: 1 F. U.S.A, California, Inyo, Big Pine. 6/X/1986. D. Giuliani 

CAS 9048499: 3 M, 1 F. U.S.A, California, Mono. 2-IX-1980 a 22-IV-1981. D. Giuliani 

CAS 9051596: 1 M. U.S.A, Nevada, Lincon, Dry Lake Valley. III-XI/1986. D. Giuliani 

CAS 9051654: 1 M, 2 F. U.S.A, Nevada, Lincon, Meadow Valley Range, Oak Springs Summit.  

Microsa chickeringi 

MCZ 60749: 4 F. U.S.A, Virgin Islands, St. Thomas. VIII/1966. A.M. Chickering 

Minosia simeonica 

MCZ 60750: 8 M. Israel, , Sede Boqer, Sede Zin. 2/X/1992. Y.D. Lubin 

MCZ 60751: 2 F. Israel, , Ma'ale Ramon. 2/XI/1992. Y.D. Lubin 

Nauhea tapa 

CAS 9058802: 1 M. New Zeland, Otago, Blue Mountains, tussock grasslands. 27/III/1995. J. Boutin 

Neodrassex aureus 

MCN 17305: 3 F. Brazil, Paraná, Curitiba. 2/XI/1987. A. D. Brescovit 

MCN 21574: 1 M. Brazil, Amazonas, Manaus. 16/X/1985. B. C. Klein 

Nodocion ecclecticus 

CAS 9048447: 1 M, 1 J. U.S.A, California, Napa, N. side Howell Mt. 3km NNE of Angwin. 8/VIII/1984. H.B. 

Leech 

CAS 9058750: 1 F. México, Baja California, Sur Isla Santa Catalina. 21/V/1970. S.C. Willians & V.F. Lee 

Nomisia ausseri 

CAS 9058749: 4 M, 7 F. Kazakhstan, Almaty, Kapcagay. 26/VIII/1992. Masusik, Logunov, Eskov 

Nopyllus sp. 

IBSP 149352: 1 M. Brazil, Paraná, Foz do Iguaçu, Parque Nacional do Iguaçu. 3-12/III/2002. Eq. Biota 

IBSP 149353: 1 M. Brazil, Paraná, Foz do Iguaçu, Parque Nacional do Iguaçu. 3-12/III/2002. Eq. Biota 

Notiodrassus distinctus 

CMNZ 2015.4.1: 1 F. New Zeland, Otago, Dunedin, 47 Hunt St. Anderson Bay. 19/V/2014.  

CMNZ 2015.4.1: 1 F. New Zeland, Otago, Dunedin, Nichols Falls. 22/V/2014.  

UFMG tombar: 1 M. New Zeland, Otago, Dunedin, 47 Hunt St.. 7/X/2015.  

Odontodrasus aphanes 

MCZ 60710: 4 F, 1 J. Jamaica, St. Andrew, Liguanea. 15/X/1957. Chickering 

MCZ 60711: 2 M. Jamaica, St. Andrew, Liguanea. 15/X/1957. Chickering 

MCZ 60713: 3 M, 2 F. Jamaica, Middlesex, St. Catherine, 1.5 mi S-w of Spanish town. 10/X/1957. Chickering 

Orodrassus coloradensis 

MCZ 33485: 2 M, 3 F. U.S.A, Utah, Summit, Chalk Creek. 1917. R.V. Chamberlin 

Parasyrisca orites 

CAS 9058769: 1 F. U.S.A, Washington, Paradise Park, Mt. Rainier.  

Phaeocedus braccatus 

USNM : 1 F. Russia, Maritime provence, Lazovski Res. Korpad' Camp.. 6-9/VIII/1998. Y.M. Marusik 
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Pterotricha conspersa 

MCZ 60755: 1 M, 2 F. Israel, , Machtesh Ramon. 19/IV/1993. Y. Lubin 

Scopoides catharius 

AMNH: 1 M. U.S.A, California, San Diego, Mt. Palomar. 30/VI/1956. W. Gertsch 

CAS 9048199: 1 F. U.S.A, California, Inyo, Quens Valley, 3 miles n.n.w. of Lone Pine. 31/XII/1980. Derham 

Giuliani 

Scotocesonia dermerarae 

MZLS 196: 1 F. Guyana.  

Scotognapha teideensis 

AMNH: 1 F. Canary Island, Tenerife, Las Cañadas. 7/X/1995. N. Zurita 

AMNH: 1 M. Canary Island, Tenerife, Las Cañadas. 29/VI/1995. N. Zurita 

Scotophaeus blckwalli 

CAS 9044775: 1 M. U.S.A, California, San Francisco, in bldg.. 6/X/1994. C. Griswold 

CAS 9044781: 1 F. U.S.A, California, Contra Costa, Concord, in hause. 18/VII/1994. J. Goutier 

Sergiolus capulatus 

CAS 9051665: 1 M. U.S.A, Missouri, Johnson, Wsrrensburg. 1/VI/1963. W. Peck 

CAS 9058747: 1 F. U.S.A, Missouri, Johnson, Wsrrensburg. 2/VI/1961. W. Peck 

CAS 9058748: 1 M. U.S.A, Arkansas, Bradley, Sumpter Comm.. 18/V/1963. Leslie 

Setaphis subtilis 

 AMNH: 4 M, 2 F. Cote D'Ivoire, Bafing, Touba. 23/VII/1994.  

AMNH: 3 M, 4 F. Ethiopia, , Awash National Park. 22/VI/1988.  

Sidydrassus shumakovi 

PSU 3723: 1 M, 1 F. . 11/VI/2003.  

Sosticus insularis 

CAS 9058751: 1 F. U.S.A, Missouri, Johnson, Wsrrensburg. 22-25/VI/1962. W. Peck 

MCZ 33495: 1 M. U.S.A, Michigan, N.W. Marquette co. - N.E. Baraga co.. 13/VII/1948. Chickering 

Synaphosus syntheticus 

CAS 9051613: 1 M, 1 J. U.S.A, Georgia, Ashburn. 9/V/1968. J.A. Payne 

CAS 9051628: 1 F. Mexico, Baja California, Beach at Palm Wells. 25-27/VI/1921.  

CAS 9058752: 1 M. Mexico, Baja California, Isla Raza. 21/IV/1921. J.C Chammberlin 

MCZ 60637: 1 M, 3 F. U.S.A, Texas, Brewster, Big Bend Nat. Park. 24-25/V/1967. E. Sabath 

Talanites echinus 

CAS 9051655: 1 F. U.S.A, Arkansas, Washington, Cove Creek. 25/III/1961.  

CAS 9051656: 1 F. U.S.A, Arkansas, Washington. 25/IV/1961.  

CAS 9051657: 6 M. U.S.A, Arkansas, Washington, Cove Creek. 12/V/1963.  

Trachyzelotes pedestris 

MCZ 60605: 1 M, 1 F. France.  

Trephopoda parvipalpa 

CAS 9058766: 1 M. South Africa, Cape Province, Oudtshoorn. 29/X/1949. B. Malkfu 

Urozelotes rusticus 
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CAS 9044653: 1 M. U.S.A, California, Tulare, Ash Moutain, Kaweah Power Station #3. 29/III/1982. R.D. 

Haines 

CAS 9049245: 1 F. U.S.A, California, Orange, La Habra. 17/IX/2001. 

CAS 9049399: 1 F. U.S.A, California, Alameda, Redwood Regional Park, Roberts recreational Area.. 

17/VI/1964. P.R. & D.L. Craig 

CAS 9051339: 1 M. U.S.A, California, Fresno, 11 mi S Nendota, nr Cantua Ck.. 11-14/VI/1989. P. Sherrill 

Xerophaeus capensis 

NCA 2005/555: 1 M. South Africa, Western Cape, Potberg, De Loop Nature Reserve. 6/IV/2004. C. Haddad 

NCA 2008/410: 2 M. South Africa, Western Cape, Jakobsbaii. 2/X/2001. C. Haddad & R. Lyle 

Zelanda erebus 

CAS 9051618: 1 F. New Zeland, South Island, Otago, Dunedin. 14-18/IX/1995. J. Boutin 

CAS 9058754: 1 F. New Zeland, South Island, Otago, Dunedin. 12/IV/1993. J. Boutin 

Zelanda kaituna 

CAS 9058753: 1 M. New Zeland, South Island, Central Otago, Blue Mountain, tussok grasslands. 27/III/1995. J. 

Boutin 

Zelotes duplex 

CAS 9051594: 1 M. U.S.A, Arkansas, Nashiville. 25/V/1962.  

CAS 9051595: 1 M. U.S.A.  

CAS 9051650: 1 F. U.S.A, Missouri, Dent, Montauk Park. 21/VI/1961. H.E.F. 

CAS 9051651: 2 M. U.S.A, Arkansas, Bradley. 11/V/1963. Leslie 

CAS 9051652: 2 F. U.S.A, Arkansas, Bradley. 10/VIII/1963. Leslie 

CAS 9051653: 14 M, 7 F. U.S.A, Arkansas, Bradley. VI-VII/1964.  

Zelotibia simpula 

CAS 9064176: 1 M, 1 F. Uganda, Western Uganda, Kabarole, Kibale National Park, Kanyawara Biological 

Station. 26-15/VII-VIII/2012. B. Fisher et al. 

Zimiromus montenegro 

MCN 32003: 2 M. Brazil, Rio Grande do Sul, Estrela Velha. 27/X/1999. A. F. Franceschini 

MCN 40104: 2 F. Brazil, Rio Grande do Sul, Triunfo. 7/XII/2005. R. Ott & A. Barcellos 

Lamponidae 

Lampona cylindrata 

QSM 26748: 2 M. Australia, Victoria, Snake gully, Monash University. VI/1975. V. Salanitri 

Liocranidae 

Liocranum rupicola 

AMNH: 1 F. England, Purbeck Coast, Dorset, Seacombe. 26/V/1974.  

AMNH: 1 M. Wales, Gower, Swansea, Nicholaston Burrows. 6/IV/1966.  

Teutamus serrulatus 

AMNH: 1 F. Malaysia, Pahang, 4mi NE Cameron. 25/IV/1977. L.E. Watrous 

Xenoplectus sp. 

MCTP 16001: 2 F. Brazil, Rio Grande do Sul, São Francisco de Paula, Porteiro Velho. XII/2001. L.A. 

Bertonello et al. 
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MCTP 23303: 2 M. Brazil, Rio Grande do Sul, São Francisco de Paula, Porteiro Velho. 12-15/X/1999.  

Phrurolithidae 

Drassinella gertschi 

CAS 9058794: 1 M. U.S.A, California, Inyo, Alabama Hills, 2 mi w. of lone Pine. XII-III/1980-1981. D. 

Giuliani 

CAS 9058795: 3 F. U.S.A, California, San Bernardino, Ft. Irwin Avawatz Mts. (spring). 26/V/1997. G. Pratt, W. 

Savary & D. Ubick 

Phrurolithus festivus 

CAS 9051630: 7 F. Russia, Siberia, Sakhalin Island, SE part Belaya River, middle fork near Skol Field Station. 

16-21/VII-VIII/2001. Y.M. Marusik 

CAS 9051636: 1 M. Russia, Siberia, Maritime provence, Lazovsky Reserve, Kordon Korpad'. 7/V/1999. Y. 

Sundukov 

Prodidomidae 

Chileuma paposo 

AMNH: 4 M, 5 F. Chile, Antofagasta, 6 Km E Paposo. 12/X/1992. N. Platnick, K. Catley and P. Goloboff 

Chilongius palmas 

AMNH: 1 F. Chile, Quillota, Palmas de Ocoa, Parque Nacional La Campana, umburned sit, pitfall #13. 

19/VII/1985. R. Calderón G. 

AMNH: 1 M. Chile, Quillota, Palmas de Ocoa, Parque Nacional La Campana, umburned sit, pitfall #1. 

30/XI/1984. R. Calderón G. 

AMNH: 1 M, 1 F. Chile, Quillota, Palmas de Ocoa, Parque Nacional La Campana. 21/XII/1984. R. Calderón 

Cryptoeritus occultus 

WAM T44975: 2 M. Australia, Western Cape, Mardathuna Station. 14-24/I-IV/1995. A.Sampey 

WAM T44980: 1 F. Australia, Weastern Australia, Nerren Nerren Station. 15-11/X-I/1994-1995. N.Mackenzie 

& J. Rolfe 

Lygromma chamberlini 

MCZ 78848:  M,  F,  J. Panama, , Canal Zone, Barro Colorado Island. VI-VII/1943-1944. A.M. Chickering 

MCZ 78854: 1 M, 1 F. Panama, , Canal Zone, Barro Colorado Island. VI-VIII/1949. A.M. Chickering 

Moreno Grande 

AMNH: 1 M, 1 F. Chile, Elqui, beach 6km S Cruz Grande. 7/X/1992. N. Platncik, P. Goloboff, K. Catley 

AMNH: 2 M, 1 F. Chile, Elqui, 20Km N La Serena. 8/II/1994. N.Platnick, K. Catley, R. Calderón, R.T. Allen 

Oltacloea beltraoe 

UFMG 9309: 1 F. Brazil, Minas Gerais, Itacarambi, Parque Nacional Cavernas do Peruaçu. 17-22/X/2010. 

G.F.B.P. Ferreira et al. 

Oltacloea sp. 

IBSP 67175: 1 M. Brazil, Paraíba, Areia, Reserva Mata de Pau de Ferro. 26-29/IX/1999. A.D. Brescivit et al. 

Prodidomus rufus 

CAS 9036861: 1 F. U.S.A, California, Orange. 20/X/2002. I. Beck 

CAS 9058764: 1 F. U.S.A, California, Inyo, 5.7 mi N Shoshone. 8/I/1981. V. Roth 

MCZ 70333: 1 M. U.S.A, Texas, Denton. 4/XII/1946. S. Jones 
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MCZ 70334: 1 F. U.S.A, Texas, Dallas, Bluff View. 16/V/1935. S. Jones 

Tivodrassus etaphor 

AMNH: 1 F. Mexico, Hidalgo. 23/VII/1966.  

MCZ 78843: 2 M, 1 F. Mexico, Oaxaca, Oaxaca. 7/VI/1971. S.B. Peck 

Tricongius amazonicus 

INPA 38: 1 M. Brazil, Amazonas, Manaus, Igapó Trumã Mirím. 3/X/1987. Hofer 

INPA 39: 1 F. Brazil, Amazonas, Manaus, Igapó Trumã Mirím. 3/X/1987. Hofer 

Zimiris doriai 

MPEG 21962: 1 F. Brazil, Pará, Belém, Bairro Batista Campos. 13/II/2002. Barreiros, J.A.P. 

Trochanteriidae 

Doliomalus cimicoides 

AMNH: 1 M. 

CAS 9025484: 3 F. 

Hemicloea sundevalli 

QSM s36573: 1 M, 3 F. , , Boggomoss #7 (BS8). 13/VI/1996.  

Plator indicus 

MCZ 33623: 3 F. India, Uttarakhand, Mussoorie. IV-XII/1934.  

Plator sp. 

CAS 9025486: 2 M. Pakistan, , 2 Mi W of Cherat. 20/XII/1961.  

Trochanteria gomezi 

CHNUFPI 1307: 2 M, 6 F, 9 J. Brazil, Roraima, Boa Vista, Campus de Cauamé, Universidade Federal de 

Roraima. 22/VII/2014. L.S. Carvalho & M.C. Schneider 

CHNUFPI 1571: 1 M. Brazil, Roraima, Boa Vista, Campus de Cauamé, Universidade Federal de Roraima. 

22/VII/2014. L.S. Carvalho & M.C. Schneider 

Vectius niger 

CAS 9051661: 1 M. Paraguai, Guaira, Sierra San Cervacia. 6/VI/1988. V.D & B. Roth 

CAS 9051662: 2 F, 5 J. Argentina, Salta. 14/II/1951.  

Undertemined 

Gnaphosoidea-TEX 

CAS 9058805: 2 M. U.S.A, Texas, Brewster, Big Sandy. 11-28/VIII/2010. N.V. Horner 

CAS 9058806: 1 F. U.S.A, Texas, Brewster, Big Sandy. 29-13/VIII-IX/2010. N.V. Horner 
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Supplementary Material for Cladistic analysis of the worldwide family Gnaphosidae 

 

Geometric Morphometrics Analysis 

 

Supplementary Material and Methods 

Shape of structures is frequently used as discrete characters to reconstruct spider phylogeny or 

to diagnose taxa. The reliability of such separation into discrete states are rarely discussed, 

even though it has been show that carapace shape might not be efficient as a phylogenetic 

character for Mygalomorphae (Bond & Beamer, 2006). Here, Geometric Morphometrics 

(Rohlf, 1990; Adams et al., 2004; Zelditch et al., 2004; Slice, 2007) techniques were applied 

to evaluate if the shape of some structures could be used as discrete states characters in the 

phylogeny. 

 Geometric Morphometrics requires the establishment of homologous points known as 

landmarks. Sometimes, when some landmarks cannot be established with confidence, 

outlined-based technics (e.g.: semi-landmarks) might be used together with landmarks-based 

describe shape (Bookstein, 1997; Zelditch et al., 2004; Slice, 2007). However, structures with 

very variable shapes or with complex tri-dimensionality might offer impediments for shape 

analysis in two dimensions, since it might not be possible to determine landmarks and semi-

landmarks with confidence. Based on this, five structures suitable for 2D morphometrics with 

landmarks and semi-landmarks were chosen: dorsal shape of carapace, ventral labium shape, 

ventral sternum shape, and the anterior and posterior eye rows. Images from digital camera 

and from scanning electronic microscopy were used to obtain the coordinates of landmarks 

and semi-landmarks for each structure (Figs. S1A-E) using tpsDig v.2.17 (Rohlf, 2013). The 

structures were analyzed separately, 84 species were sampled for cephalothorax analyses, 65 

for posterior eye row, and 86 for the sternum. Landmarks and semi-landmarks were aligned 

using Procrustes superimposition and semi-landmarks were aligned using Minimum 

Procrustes Distance. A Relative Warp Analysis (RWA) with α = 0, which is equivalent to a 

Principal Component Analysis of shape variables (Adams et al., 2004; Zelditch et al., 2004), 

was applied to data aligned for each one of the five structures using tpsRelw v. 1.54 (Rohlf, 

2014). The graphical output of the analysis was used to search for evidence of discrete 

morphological changes. 
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Supplementary Results 

The first RWA axis for the carapace is related with the widening/straightening of the carapace 

(Fig. S2A). Two genera are well separated from the remaining points along this axis: Vectius 

and Doliomalus. These genera have the carapace wider than long. The other clouds with 

smaller values along the first axis have the carapace longer than wide. The first axis, 

therefore, contributed with one character with two discrete states (char. 278). There is one 

genera with intermediate shape between these two, Hemicloea, which the state of character 

could not determined (scored 0&1 in the matrix). 

 The second axis is correlated with the shape of the anterior part of cephalic area (Fig. 

S2A). Specimens with higher scores in this axis have a cephalic area better delimited by a 

constriction of carapace, and the anterior margin is straight to convex, while the opposite is 

observed for the smaller scores. Two discrete groups can be well established based on this 

axis, and it a character with two states were created to accommodate this variation (char. 279). 

The remaining axes of RWA were not able to reveal discrete shape differences. 

The first axis of RWA of the sternum show two taxa, Vectius and Doliomalus, with the 

sternum wider than long, while the remaining genera have the sternum longer than wide (Fig. 

S3A). This two sates were used in the character 280 of the cladistic analysis. The remaining 

axes did not show clear discrete variation of shape. 

 The posterior yes row is usually characterized as procurved, straight or recurved. In 

Gnaphosidae, these characters are used to differentiate genera and groups of genera. The first 

axis of RWA show that the posterior eye row disposition can be divided in only two discrete 

states: procurved or straight to recurved (Fig. S3A). These states were used as part of the 

character 281 in the cladistics analysis. 

 The analyses of the anterior eye row and the labium show that these structures could 

not be separated in clear-cut, discrete characters representing their shapes (Fig. S3B, C). 

Therefore, they were not used to estimate the phylogenetic relationships. 
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Supplementary Figures 

 

 

Figure S1: Landmarks (white dots) and semi-landmarks (black dots) established for the structures. A) Cesonia bilineata 

cephalothorax. Landmarks are the mid-point of the anterior and posterior edges. Semi-landmarks are points evenly spaced between 

landmarks. B) Haplodrassus hiemalis sternum. Landmarks are the mid-point of the anterior and posterior edges. Semi-landmarks 

are based on the pre and intercoxal sclerites, or the perpendicular line in the middle of the coxae and between coxae when the 

sclerites are absent. C) Apopyllus silvestrii labium. Landmarks are the mid-point of the anterior and posterior edges. Semi-

landmarks are points evenly spaced between landmarks. D) Anagraphis pallens frontal view. Landmarks are the eyes itself. D) 

Gnaphosa californica cephalic area, dorsal view. Landmarks are the eyes itself. 
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Figure S2: Relative Warps Analysis for the cephalothorax (A) and sternum (B). Figures on extremity of each axis are thin-plate 

splines showing shape deformation in that direction along axes and an example of spider with that kind of shape. 
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Figure S3: Relative Warp Analysis for the posterior eye row (A), anterior eye row (B) and labium (C). Figures on extremity of 

each axis show shape deformation in that direction along axes and an example of spider with that kind of shape. 
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Abstract 

Spiders may be good models for studying genitalia diversity and evolution given their 

peculiar copulatory mechanism, with male external copulatory apparatus located in palps. 

Gnaphosidae can be particularly interesting for this kind of study, as it holds in a same 

monophyletic group a remarkable structural diversity in male copulatory apparatus. The 

family contains species with simple, bipartite palps, with tripartite palps and a few elements, 

and species with several structures on tripartite palp. Some palpal homology studies suggest 

intermediate palp complexity as the ancestral condition for the family, from which both more 

complex and simpler palp would have evolved, with a trend to sclerite fusion. However, this 

hypothesis was never tested on a phylogenetic background, since no Gnaphosidae phylogeny 

was available until recently. Regarding female genitalia, both the epigynum and vulva range 

from simple to complex, but there is no information on its evolution. Thus, despite the great 

diversity of Gnaphosidae, patterns of genital evolution and mechanisms involved in 

copulatory organ diversification in the family are barely known. The aim of this study was to 

contribute to the understanding of genital evolution through the exploration of 

macroevolutionary patterns related to copulatory organ diversity in Gnaphosidae. More 

specifically, the evolutionary trend in complexity and predictions about genital evolution were 

tested using phylogenetic comparative methods. A phylogenetic tree inferred with 

morphological data was used hypothesis for the comparative method. We sampled 35 female 

and 57 male characters to explore genital evolution, based on phylogenetic trees obtained. A 

bipartite palp with intermediate complexity was found to be the plesiomorphic condition, but 

there was no trend toward simplification or increasing complexity. The same intermediate 

complexity with no trend was found for females. Additionally, we discovered that complexity 

of female and male copulatory organs did not coevolve, suggesting no support for sexual 

antagonistic conflict hypothesis. Homology and evolution of some structures are discussed. 

Additional information on copulatory behavior of gnaphosids might contribute to the 

understanding of genital evolution. 
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Introduction 

Copulatory organs are widespread in several animal lineages, present impressive variety of 

forms and are thought to evolve relatively faster than other traits (Huber, 2003; Eberhard, 

2010a). Many evolutionary hypotheses have been proposed to explain this great diversity of 

genitalia including (1) pleiotropy, which postulates that genitalia are neutral and evolve with 

other genetically correlated traits, (2) natural selection, according to which the genitalia would 

evolve to avoid hybrid formation through a species-specific lock–and–key mechanism, and 

(3) sexual selection, which predicts that some traits would be favored by some post copulatory 

mechanisms, such as cryptic female choice, sperm competition or sexually antagonistic 

coevolution (Arnqvist, 1997; Hosken & Stockley, 2004; Eberhard, 2010b,a, 2015).  

Sexual selection by cryptic female choice has usually been indicated as the main general 

mechanism to explain genital diversity in spiders (Eberhard, 2010a, 2015; Eberhard & Huber, 

2010). Nevertheless, few studies test specific hypotheses about the genitalia evolution based 

on phylogenetic comparative methods and some of them indicate alternative explanations for 

genital diversity within the group (Kuntner, Coddington, & Schneider, 2009). In fact, studies 

on arthropod genitalia suggest that genital evolution might be more complex, not explained by 

single mechanism, (Simmons, 2014), indicating that much effort is still necessary to make 

progress on the understanding of genital evolution. 

 Spiders may be good models for studding genitalia diversity and evolution (Eberhard, 

2004a). In Araneae, the sperm transference evolved in a unique manner among arachnids 

through the modification of male palps into a peculiar copulatory apparatus. The copulatory 

bulb is a compound of sclerotized structures with reduced sensorial and muscular organs that 

need to fit precisely to the female genitalia (Eberhard & Huber, 2010; but see Lipke, Hammel, 

& Michalik, 2015, for evidence of neurons on copulatory bulb). Spider species-level 

systematics is based mainly on the morphology of male and female copulatory organs. 

Therefore, the number of described species is a good proxy of genitalia diversity in the order 

and suggests the existence of 45.942 different forms of copulatory organs (World Spider 

Catalog, 2016). Even though the importance of copulatory structures might have been 

overestimated in systematics (Jocqué, 2002; Huber, 2004), the great diversity of forms and 

elements in spider genitalia perceived by arachnologists are indubitable and begs for an 

explanation. 

 The putative plesiomorphic male palp bulb in spiders is a tripartite structure, with 

proximal (subtegulum), median (tegulum) and terminal (embolus) divisions (Platnick & 

Gertsch, 1976; Kraus, 1978; Coddington, 1990; Sierwald, 1990). This basic ground plan 
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might have evolved in different directions among great lineages, resulting in relatively simple 

copulatory bulbs with fused elements, as in some Mygalomorphae (Bertani, 2000) and 

Haplogynae spiders (Platnick & Dupérré, 2009), or more complex organs, with additional 

elements and variable shape, as in most araneoid spiders (Coddington, 1990). There is less 

information about the evolution of female genitalia, but it is suggested that it might have 

evolved from a simple system of glandular sperm storage with no external structure to a more 

complex system with additional ducts and receptaculae and with external sclerotized 

structures with folds and projections (Forster, 1980; Sierwald, 1989). 

 Gnaphosidae spiders, besides the great diversity – it is the sixth most species-rich 

spider family (World Spider Catalog, 2016), are remarkable in having species with simple 

palps, with bipartite bulb and few elements (e.g. Litopyllus Chamberlin, 1922; Platnick & 

Shadab, 1980a), species with intermediate conditions, with tripartite palp and few elements 

(e.g. Gnaphosa Latreille, 1804; Platnick & Shadab, 1975), and species with several additional 

structures on a tripartite palp (e.g. Zelotes Gistel, 1848; Senglet, 2004). Some studies on 

palpal structure homology among gnaphosids suggest that an intermediate complexity palp 

might be the ancestral condition for the family, from which the more complex and more 

simple palps would evolve, but with a major evolutionary trend to fusion of sclerites 

(Zakharov & Ovtcharenko, 2011, 2013). However, those hypotheses were never tested on a 

phylogenetic background, since no Gnaphosidae phylogeny was available at time, and the 

studies were limited to few taxa. 

 Regarding female genitalia, gnaphosids are considered entelegyne spiders, which 

means that the internal genitalia (vulva) have two pairs of openings to exterior, one that leads 

to the copulatory duct and one that arises from the fertilization duct, and have a sclerotized 

external structure, the epigynum (Coddington & Levi, 1991; Garrison et al., 2016). Both the 

epigynum and the vulva range from simple structured organs, with short ducts and an 

undivided external plate (e.g. Cesonia Simon, 1893; Platnick & Shadab, 1980b), to more 

complex structures, with long coiled ducts and the epigynum with ventral folds and 

projections (e.g.: Apopyllus Platnick & Shadab, 1984). However, only some zelotine spiders 

have been explored in a more detailed comparative morphological study of female genitalia 

(Senglet, 2004) and little is known about the homology between their components. 

 Despite the great diversity of Gnaphosidae, the patterns of genital evolution and 

mechanisms involved on copulatory organ diversification in the family are barely known. The 

aim of this study was to contribute to the understanding the genital evolution through the 

exploration of macroevolutionary patterns and processes related to the copulatory organ 
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diversity in Gnaphosidae. More specifically, the evolutionary trend in complexity and some 

predictions of genital evolution hypothesis (cryptic choice, arms race or lock-and-key) were 

tested using phylogenetic comparative methods. 

 

Material and Methods 

Dataset 

Our analyses were based on a phylogenetic hypothesis and genitalic characters taken from the 

morphological matrix of previous work on Gnaphosidae systematics (Azevedo et al., 

unpublished). Only characters that could easily indicate complexity (see below) were kept for 

the analyses, resulting in 48 male and 15 female characters (Appendix 1). Missing data was 

conservatively treated as absent character. Taxa with more than 10% of missing entries were 

excluded from complexity analysis (Appendix 2), although they are shown on the tree and 

used on the character evolution. The final dataset consists of 89 males and 93 female taxa. 

The tree found under concavity function with k=15 in Azevedo et al. (unpublished) was used 

as working hypothesis for comparative analysis. WinClada v. 1.00.08 (Nixon, 2002) and 

Mesquite v.3.04 (Maddison & Maddison, 2015) were used to optimize discrete characters and 

the continuous organ complexity, under maximum parsimony and squared change parsimony 

(Maddison, 1991), respectively. 

 The characters and complexity measures were optimized in the whole tree, including 

outgroups, to avoid ambiguous optimization on the root of the clade of interest, the 

Gnaphosidae S.S. clade (Azevedo et al., unpublished). However, for hypothesis testing on the 

genitalia complexity evolution (see below), only Gnaphosidae S.S. clade was included, since 

including sparsely sampled outgroup families could mislead the results. 

 

Complexity 

Complexity might be hard to define and measure (McShea, 1991; Adami, Ofria, & Collier, 

2000; Adami, 2002; Ramírez & Michalik, 2014). Here it was used the structural complexity 

concept, in which complexity is a function of number of parts in the organism and irregularity 

of their arrangement (McShea, 1991). Neomorphic characters, i.e. the ones that indicate an 

appearance or loss of a trait (Sereno, 2007), were used to count the presence of structures on 

male and female genitalia. Since some transformational characters, which represents 

modification of an existent trait (Sereno, 2007), could also be useful for individualizing 

structural elements, they were also used to calculate complexity (Ramírez & Michalik, 2014). 

For example, some species might have a very long and coiled embolus, others might have the 
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embolus that is approximately as long as the tegulum, while others might have the embolus 

shorter than half the tegulum. A value of 1, 0.5 and 0 was given to those structures 

respectively. Although the short embolus is coded as 0, the presence of an embolus is coded 

as 1, therefore contributing to the overall complexity of the palp. The same was done for 

sclerotization characters, coding 0, 0.5 and 1 for unsclerotized, partially and completely 

sclerotized, respectively. Transformational characters representing shape of structures were 

not used. 

 

Trends in complexity 

Generalized estimating equations (GEE) for comparative data were used to test for 

evolutionary trend on complexity. This method allows parameter estimation of a generalized 

linear model (GLM) taking into account the correlation between specimens, which is 

determined by phylogenetic relationships, and there is no need to estimate ancestral states 

(Paradis & Claude, 2002).  

The effects of taxa depth (distance to root) on the complexity measurement were analyzed to 

test models of possible complexity evolution. If there is an evolutionary trend of increasing 

complexity, it is expected a better fit of the data to a normal linear regression model with 

positive relationship of taxa depth and complexity (positive regression coefficients). If the 

tendency is to simplify genitalia, the normal regression coefficients would be estimated to be 

negative. A quadratic function would fit the data better if the simplicity or complexity is in 

intermediate position on the tree, with negative and positive coefficient, respectively. If there 

is no relationship, the coefficients would not be statistically different from 0, and a model that 

estimates only the intercept would be a better explanation for the data. The model choice was 

based on the Quasi-likelihood Information Criterion (QIC), a modification of the tradition 

Akaike Information Criterion (AIC) for GEE (Pan, 2001). If the best model includes the 

estimation of the coefficient, it was also checked if the value is significant different from 0. 

Analysis were carried out using the APE package (Paradis, Claude, & Strimmer, 2004)  for R! 

v.3.2.1 (R Core Development Team, 2015). 

The taxa depths were calculated as the number of nodes that separates the terminal from the 

root of the tree. This is the same as considering all branch lengths equal to unity. Since the 

phylogeny used provides no information on branch lengths, it is necessary some 

transformation. Considering all branch lengths equal is equivalent of assuming a 

punctuational view of evolution (Pagel, 1994, 1997, 1999). In this way, changes in a trait 

would be proportional to the number of speciation events (nodes) estimated from the root to 



  

120 
 

the species, independent of the length of the branches. We believe this is a conservative 

approach, more appropriate when branch lengths are not available. 

 

Testing genital evolution hypothesis 

Sometimes it might be hard to distinguish between hypothesis of genital evolution, as they are 

not always mutually exclusive (Hosken & Stockley, 2004; Eberhard, 2010a, 2015). The 

Sexually Antagonistic Coevolution (SAC) and Lock-and-Key (LK) hypotheses predict a 

strong correlation between male and female genitalia morphology, but correlation might or 

might not be present if genitalia are evolving under the Cryptic Female Choice (CFC) 

mechanism (Arnqvist, 1997; Eberhard, 2010b, 2015). If females are cryptically choosing 

males based mainly on stimuli that male genitalia produce, the coevolution of genital 

morphology would not be expected under CFC. Therefore, a lack of correlation of genital 

morphological complexity would favor CFC over SAC and LK. 

 GEE for comparative data was used to test the correlation between female and male 

genital complexity. A model that estimates the coefficient (inclination) of a normal regression 

was compared to one in which the coefficient is zero (not estimated). Model choice was based 

on the Quasi-likelihood Information Criterion (QIC). If the best model includes the estimation 

of the coefficient, it was also checked if the value is significantly different from 0. Analysis 

were carried out using APE package. 

 Another expectation of sexual selection by CFC is that male copulatory organs would 

have a faster evolutionary rate of morphological characters than female genitalia, since 

morphological changes that stimulate better the female would be suffering strong positive 

selective pressure (Eberhard, 2010b). To test the difference in evolutionary rate, the variance 

of evolutionary change (sigma parameter of the Brownian Motion; Pagel, 1997, 1999) of male 

and female complexity were estimated using independent contrasts model through Bayesian 

methods in BayesTraits V2 (Pagel & Meade, 2014). The MCMC consisted of 1,000,000 

chains with sample period of 1,000, after a burn in phase of 10,000 generations. The sigma 

period was considered uniform between 0 and 100. The female and male mean rates estimated 

on the stationary phase of the MCMC were compared with a t-test with significance level of 

0.05. 
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Results 

Ancestral state reconstruction and character evolution 

The reconstruction of ancestral character states suggests that the male palp of the most recent 

Gnaphosidae S.S. ancestor would have the following structures: petiole, subtegulum, tegulum, 

embolus fused to tegulum, embolus about the same size or smaller (umbiguous) than 

copulatory bulb, conductor, a completely sclerotized median apophysis and a retrolateral tibial 

apophysis. These traits do not necessarly constitue synapomorphies, they are just the 

conditions found on the common ancestor of the clade. The conductor was lost 

unambiguously six times and regained five times during Gnaphosidae S.S. evolution. An 

articulation between embolus and tegulum arises four times and was lost again three times. A 

long (longer than tegulum) coiled embolus appears nine times and disappears two times (one 

time it is reversed to an embolus as long as tegulum and other it is reduced to about half the 

tegulum length). The median apophysis was lost seven times, with no regain. The terminal 

apophysis (a sclerite on the terminal division of bulbus, proximally and ventrally positioned in 

relation to embolus) arises four times on gnaphosids. The Figure 1 shows the optimization of 

the palpal characters on phylogeny. 

 The ancestral epyginum would have an anterior fold, laterals folds composed by 

furrows, completely sclerotized short (with some curls) copulatory ducts, ventrally directed 

fertilization ducts, primary spermathecae, and secondary spermathecae with defined lumen 

and short stalk. The anterior fold was lost 10 times in Gnaphosidae S.S. The furrowed lateral 

folds were lost at least four times and became a suture seven times, with one ambiguous 

reversal to furrow. A posteriorly directed fertilization duct arises one time at the ancestor of 

Leptodrassinae. The primary spermathecae were lost two times, one in the most recent 

ancestor of Prodidominae and in Drassodex Murphy, 2007. The secondary spermathecae 

disappear two times on Gnaphosidae S.S. evolution. A long copulatory duct (spiral or highly 

convoluted) evolved six times, with one reversion. The Figure 1 shows the optimization of the 

epigynum characters on phylogeny. 

 

Complexity evolution 

The palp complexity in Gnaphosidae S.S. ranges from four, in Gertschosa Platnick & Shadab, 

1981, to 14.5 in Zelanda Özdikmen, 2009. The mean palp complexity of the dataset is 9.26. 

The ancestral complexity in Gnaphosidae S.S. is 8.5-9.5. Therefore, an intermediate 

complexity is the ancestral condition from which more complex and simpler palps evolved 

(Fig. 2). Epigynum complexity in Gnaphosidae S.S. ranges from two, in Zelotibia Russell-
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Smith & Murphy, 2005, to 10, in Apopyllus Platnick & Shadab, 1984 and Apodrassodes 

Vellard, 1924. The mean epigynum complexity of the dataset is 5.96. The ancestral 

complexity in Gnaphosidae S.S. is 6. As for males, an epigynum with intermediate 

complexity should be the ancestral condition (Fig. 2). The model with best QIC shows no 

relationship between complexity and distance to root, neither for palp nor epigynum (Fig. 3; 

Table 1, 2). Therefore, there is no trend towards either increasing or decreasing complexity. 

 

Testing genital evolution hypothesis 

The best model is the one with no correlation between female and male genitalia (Fig. 2, 4). 

Therefore, male and female sexual organs are not coevolving regarding their complexity. The 

brownian variance parameter estimated in BayesTraits using MCMC shows significant 

difference in the evolutionary rates of palp and epigynum (p<0.05, t=29.98, df=1998). The 

palp is evolving 1.24 times faster than epigynum. 

 

Discussion 

Genitalia structure homology 

Homology between male palp structures might be hard to establish, especially when number 

of structures may vary between species being analyzed (Ramírez, 2007). The supposed rapid 

evolution of genitalia might have caused several gains and losses and it is not clear which 

genital structures are homologous among spiders and more comparative morphology and 

phylogenetic studies are necessary to unravel this issue (Coddington, 1990; Sierwald, 1990). 

Some important studies on Gnaphosidae spiders have contributed to proposals of primary 

homology hypothesis  among palp characters in the family (Senglet, 2004; Zakharov & 

Ovtcharenko, 2011, 2013). However, testing the congruence of these characters against others 

is an important step on the process of establishing secondary homology (de Pinna, 1991; 

Richter, 2005). Here, the results of a previous phylogenetic analysis, (Azevedo et al., 

unpublished) putting into test primary homology propositions were used to explore the 

evolution of some genitalic characters helping to understand their homology in Gnaphosidae. 

The median apophysis, a projection that arises from the membranous median area of tegulum 

(Azevedo et al., unpublished), is homologous among all Gnaphosidae and probably has its origin 

more deeply in spider phylogeny. At least this dataset suggests that it would be present in the 

common ancestor of the OMT clade (Ramírez, 2014). However, although in Gnaphosidae this 

structure was lost some times with no regains –what gives little doubts about its homology – 

there was one reappearance of the median apohysis after a loss in the outgroup. Therefore, 
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broadly taxonomical sampling is needed to understand median apophysis homology on a deep 

context of spider evolution. 

 The conductor, an outgrowth of the proximal part of tegular wall associated to 

embolus tip (Zakharov & Ovtcharenko, 2011), is absent in about half of the gnaphosid genera. 

In many cases, the supposed function of this structure (to help conducting embolus during 

copulation) might be overtaken by other parts of palp. In some Zelotinae (Gnaphosidae), for 

example, the embolus passes on the backside of median apophysis during intromission phase 

(Senglet, 2004). In some taxa, like in Leptodrassinae, a secondary median apophysis 

surrounds the embolus and might act as a conductor. Regarding the taxa that have the 

conductor, although this structure is present in the most recent ancestor of Gnaphosidae S.S., 

its homology among the whole family is not supported, since several independent appearances 

suggest convergence in many clades. 

 A tripartite bulb is supposed to be the plesiomorphic condition for spiders and also for 

Gnaphosidae (Platnick & Gertsch, 1976; Kraus, 1978; Coddington, 1990; Sierwald, 1990; 

Zakharov & Ovtcharenko, 2011, 2013). However, our results suggest that a palpal bulb with 

tree division is a derived condition within Gnaphosidae S.S. The ancestral gnaphosid probably 

had no tubular distal membrane separating embolus from tegulum, resulting in a bipartite 

bulb. In fact, the results suggest that the fusion of tegulum and embolus might have arisen 

before the origin of Gnaphosidae S.S. The membrane that separates terminal and median bulb 

division appears four times in the family, and a return to ancestral condition occurs three 

times on the phylogenetic hypothesis used. Therefore, it is hard to state that there is a trend 

towards fusion or separation of sclerites. 

 Detailed studies on comparative morphology and evolution of female genitalia are rare 

in spiders, but it is suggested that the spermatheca are homologous among all entelegyne 

spiders (Forster, 1980; Sierwald, 1989). Herein it was found that the primary and secondary 

spermathecae are homologous among all gnaphosids and evolved much before the most 

recent common ancestor of the family, which might support homology in Entelegynae. The 

primary spermatheca has been lost at least two times in Gaphosidae S.S., becoming an 

undifferentiated part, usually less sclerotized, of terminal segment of copulatory duct. The 

lateral folds are also plesiomorphic for gnaphosids and probably arose much before the 

family‟s ancestor. However, these structures might have been completely lost or be present as 

sutures. It has been show that precursors of lateral folds are present in the early stage of 

epigynum ontogeny and that they invaginate to form the internal ducts (Sierwald, 1989). 

Since the plesiomorpfic feature for the family is the lateral fold present as furrows in the 
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epigynum, the apomorphic conditions of lateral folds as sutures or completely absence of the 

structure might be regarded as paedomorfic condition. In those derived taxa, the formation of 

the internal genitalia and sexual organs might have reached maturation before the complete 

development of the precursor of lateral folds. An ontogenetic study could help to elucidate 

this hypothesis of gnaphosids paedomorphic epigynum revealed by the phylogeny. However, 

the understanding of lateral folds evolution through spiders will require much more effort to 

study the distribution of these characters through spider phylogeny. 

 

Complexity 

The putative plesiomorphic condition for Araneae of a tripartite palp with many taxa showing 

an apomorphic fusion of sclerites might support the hypothesis of a trend towards 

simplification of male genitalia (Platnick & Gertsch, 1976; Kraus, 1978; Coddington, 1990; 

Sierwald, 1990). In Gnaphosid this simplification trend was also proposed as an explanation 

for the presence of genera with bipartite palp in the family (Zakharov & Ovtcharenko, 2013). 

Herein it was show that the ancestral condition is actually a palp with embolus fused to 

tegulum, what would suggest simple palps originating more complex ones. However, as 

mentioned above, an articulated palp appears and disappears a few times, without an apparent 

trend. Besides, the complexity is not measured only by the fusion of two sclerites, but by the 

number of structures in male palp. Some genera with not flexible embolus might have other 

sclerites, increasing complexity. The complexity measure shows no evolutionary trend on 

male genitalia. The plesiomorphic condition in Gnaphosidae S.S. is a palp with moderate 

complexity giving rise to both complex and simple palps. The complexity would be evolving 

in Brownian motion, in which the trait would evolve independently in each branch of a 

cladogenesis event in a random direction towards simplification or increasing complexity, 

leaving no macroevolutionary trend. 

 Regarding the females, the plesiomorphic condition of a spider genitalia with few 

structures, with possible intermediate conditions in some clades (Mygalomorphae, 

Haplogynae and Leptonetidae) and the presence of many taxa with genitalia bearing many 

structures could bring the idea of increasing complexity (Forster, 1980). However, the same 

pattern observed for males was found for complexity evolution of the epigynum, with 

plesiomorphic moderate complexity evolving in Brownian motion with no trends. 

 The method applied here use a simple complexity measure and assumes a punctuated 

way of evolution, since there is no information on branch lengths and absolute time on 

Gnaphosidae evolution. Some modern methods allow the use of geometric morphometrics 
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technics to calculate a more elaborated measure of complexity and dated phylogenies permit 

incorporate and test other models of trait evolution, including variation on rate among 

branches (Rowe & Arnqvist, 2012; Baker et al., 2015). However, geometric morphometrics 

technics might be difficult to apply to a large gnaphosid genitalia datatset because of (1) the 

great variety of morphology, resulting in no correspondent structures and, consequently, 

precluding landmark establishment; and (2) the tridimensionality of  structures with few 

landmarks, requiring surface analysis methods of 3D images (Adams, Rohlf, & Slice, 2004; 

Zelditch et al., 2004). A good sample of gnaphosid genera for molecular analysis would 

require worldwide effort to obtain fresh material all over the world, since the family is 

globally distributed, or an effort to sample old museum specimens. Until those data are 

available, the analysis presented herein shows a good test and overview of macroevolutionary 

evolution of complexity in genitalia of Gnaphosidae. 

 

Sexual selection 

The analysis presented herein shows no support for SAC. In Gnaphosidae spiders, the female 

might be choosing males genitalia that best stimulates the sensory system during copulation, 

regardless (or with little influence) of the mechanical fit with epigynum. Since there is no 

trend in complexity, there is no general best condition of male genitalia, and the female choice 

towards simple or complex palps would be idiosyncratic of each species and not predicted by 

epigynum complexity. Many evidence suggest sexual evolution by cryptic female choice as 

the mechanism generating genital diversity in spiders. Some morphological and sexual 

behavior studies show that females might be able to control copulation and manipulate sperm 

storage in Araneidae, Oonopidae, Pholcidae, Tetrablemmidae, and Tetragnathidae spiders 

(Huber, 1999; Burger, Nentwig, & Kropf, 2003; Burger et al., 2006; Welke & Schneider, 

2009; Aisenberg, Barrantes, & Eberhard, 2015; Calbacho-Rosa & Peretti, 2015; Schneider, 

Uhl, & Herberstein, 2015). Eberhard (2004b) found no support for coevolution of male 

structures and respective contact area in female genitalia among several arthropod groups 

(including spiders), favoring CFC over SAC. However, a correlation between male and 

female genital complexity was demonstrated for nephilid spiders, suggesting the occurrence 

of SAC, possibly together with CFC (Kuntner et al., 2009). 

 It has been argued that the bias towards the study of male genitalia could hamper the 

understanding of genital evolution (Ah-King, Barron, & Herberstein, 2014). Indeed, 

morphological and comparative studies of female genitalia are scarcer for spiders. Detailed 

studies of Haplogynae spiders with simple external genitalia revealed that the internal 
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structure might be complex (Burger et al., 2003, 2006). However, the internal structures 

found in those studies of haplogyne female genitalia are related to sperm control, suggesting 

female choice. 

There is also some evidence for sperm competition (SC) in spiders (Schneider et al., 2000). 

Some Pholcidae uses palpal structures to remove sperm of rival males present in female 

genitalia (Calbacho-Rosa et al., 2013; Calbacho-Rosa & Peretti, 2015). The presence of 

genital plugs may also indicates sperm competition (Uhl, Nessler, & Schneider, 2010; 

Eberhard, 2015). Genital plugs have been reported for gnaphosid species, but the frequency of 

its use, how it is formed and the ability of males to remove it is barely known. It was show 

that the removal of genital plug in Arboricaria sociabilis (Kulczyński, 1897) is rare and the 

plug might be an effective way of preventing sperm competition (Sentenská et al., 2015). In 

some zelotines, there is a hectic brushing of tibial apophysis on epigynum during copulation 

(Senglet, 2004). Although this movement could help to remove the genital plug, the intention 

and consequences of this behavior are unknown. Evidence of sperm competition, 

nevertheless, might not exclude the occurrence of CFC, and females might have some 

influence on sperm competition (Eberhard, 2015). In Arboricaria sociabilis, males that couple 

genitalia faster are allowed by females to copulate longer and to complete genital plug 

production (Sentenská et al., 2015). 

 The hypotheses of sexual selection are not mutually exclusive and differing processes 

might affect together the evolution of genital complexity (Simmons, 2014). It has been shown 

that different parts, or even a single structure, in the genitalia of insects might be under 

different selective pressures and could evolve through distinct mechanisms of sexual selection 

(Rowe & Arnqvist, 2012; Frazee & Masly, 2015). Some Gnaphosidae species have a very 

long, coiled embolus, which seems to be, at least in part, correlated with long coiled 

copulatory ducts in female. These two structures might have evolved in an “arms race” in 

order to control copulation, while other structures in genitalia might have evolved under 

selection by cryptic female choice. The fact that the ecological environment might influence 

the context of sexual selection also illustrates how complex the processes acting on genital 

diversity might be (Anderson & Langerhans, 2015). Herein it is provided an evidence for 

CFC in Gnaphosidae spiders on a macroevolutionary scale. Detailed studies of descriptive and 

comparative morphology, copulatory mechanisms, and sexual behavior in populations and 

groups of species and genera is of interest in order to contribute to a better understanding of 

the mechanism generating Gnaphosidae genital diversity. 

 



  

127 
 

References 

Adami C. 2002. What is complexity? BioEssays 24: 1085–1094. 

Adami C, Ofria C & Collier TC. 2000. Evolution of biological complexity. Proceedings of 

the National Academy of Sciences 97: 4463–4468. 

Adams D, Rohlf F & Slice DE. 2004. Geometric morphometrics: ten years of progress 

following the „revolution‟. Italian Journal of Zoology 71: 5–16. 

Ah-King M, Barron AB & Herberstein ME. 2014. Genital Evolution: Why Are Females 

Still Understudied? PLoS Biology 12: 1–7. 

Aisenberg A, Barrantes G & Eberhard WG. 2015. Post-copulatory sexual selection in two 

tropical orb-weaving leucauge spiders. In: Peretti A V, Aisenberg A, eds. Cryptic Female 

Choice in Arthropods: Patterns, Mechanisms and Prospects. Heidelberg: Springer, 79–108. 

Anderson CM & Langerhans RB. 2015. Origins of female genital diversity: Predation risk 

and lock-and-key explain rapid divergence during an adaptive radiation. Evolution 69: 2452–

2467. 

Arnqvist G. 1997. The evolution of animal genitalia: distinguishing between hypotheses by 

single species studies. Evolution in Health and Disease 60: 365–379. 

Baker J, Meade A, Pagel M, et al. 2015. Adaptive evolution toward larger size in mammals. 

Proceedings of the National Academy of Sciences of the United States of America 112: 5093–

5098. 

Bertani R. 2000. Male Palpal Bulbs and Homologous Features in Theraphosinae (Araneae, 

Theraphosidae). Journal of Arachnology 28: 29–42. 

Burger M, Michalik P, Graber W, et al. 2006. Complex genital system of a haplogyne 

spider (Arachnida, Araneae, Tetrablemmidae) indicates internal fertilization and full female 

control over transferred sperm. Journal of Morphology 267: 166–186. 

Burger M, Nentwig W & Kropf C. 2003. Complex genital structures indicate cryptic female 

choice in a haplogyne spider (Arachnida, Araneae, Oonopidae, Gamasomorphinae). Journal 

of Morphology 255: 80–93. 

Calbacho-Rosa L, Galicia-Mendoza I, Dutto MS, et al. 2013. Copulatory behavior in a 

pholcid spider: Males use specialized genitalic movements for sperm removal and copulatory 

courtship. Naturwissenschaften 100: 407–416. 

Calbacho-Rosa L & Peretti A V. 2015. Copulatory and post-copulatory sexual selection in 

haplogyne spiders, with emphasis on Pholcidae and Oonopidae. In: Peretti A V, Aisenberg A, 

eds. Cryptic Female Choice in Arthropods. Heidelberg: Springer, 109–144. 



  

128 
 

Coddington JA. 1990. Ontogeny and homology in the male palpus of orb-weaving spiders 

and their relatives, with comments on phylogeny (Araneoclada: Araneoidea, Deinopoidea). 

Smithsonian Contributions to Zoology 496: 1–52. 

Coddington JA & Levi HW. 1991. Systematics and Evolution of Spiders (Araneae). Annual 

Review of Ecology and Systematics 22: 565–592. 

Eberhard WG. 2004a. Why study spider sex: special traits of spiders facilitate studies of 

sperm competition and cryptic female choice. The Journal of Arachnology 32: 545–556. 

Eberhard WG. 2004b. Rapid divergent evolution of sexual morphology: comparative tests 

of antagonistic coevolution and traditional female choice. Evolution 58: 1947–1970. 

Eberhard WG. 2010a. Evolution of genitalia: Theories, evidence, and new directions. 

Genetica 138: 5–18. 

Eberhard W. 2010b. Rapid divergent evolution of genitalia. In: Leonard J, Córdoba-Aguilar 

A, eds. The evolution of primary sexual characters in animals. Oxford: Oxford University 

Press, 40–78. 

Eberhard WG. 2015. Cryptic female choice and other types of post-copulatory sexual 

selection. In: Peretti A V, Aisenberg A, eds. Cryptic Female Choice in Arthropods. 

Heidelberg: Springer, 1–26. 

Eberhard WG & Huber BA. 2010. Spider genitalia - precise maneuvers with a numb 

structure in a complex lock. In: Leonard J, Córdoba-Aguilar A, eds. The Evolution of Primary 

Sexual Characters in Animals. Oxford, 249–284. 

Forster RR. 1980. Evolution of the tarsal organ, the respiratory system and the female 

genitalia in spiders. VIII Internationaler Arachnologen Kongres Viena. 

Frazee SR & Masly JP. 2015. Multiple sexual selection pressures drive the rapid evolution 

of complex morphology in a male secondary genital structure. Ecology and Evolution 5: 

4437–4450. 

Garrison NL, Rodriguez J, Agnarsson I, et al. 2016. Spider phylogenomics: untangling the 

Spider Tree of Life. PeerJ 4: e1719. 

Hosken DJ & Stockley P. 2004. Sexual selection and genital evolution. Trends in Ecology & 

Evolution 19: 87–93. 

Huber BA. 1999. Sexual selection in pholcid spiders (Araneae, Pholcidae). Journal of 

Arachnology 27: 135–141. 

Huber BA. 2003. Rapid evolution and species-specificity of arthropod genitalia: fact or 

artifact? Organisms Diversity & Evolution 3: 63–71. 



  

129 
 

Huber B a. 2004. The significance of copulatory structures in spider systematics. In: Schult J, 

ed. Studien zur Theorie der Biologie, Band 5, Biosemiotik - Praktische Anwendung und 

Konsequenzen fuer die Einzeldisziplinen. Berlin: VWB-Verlag fuer Wissenschaft und 

Bildung, 89–100. 

Jocqué R. 2002. Genitalic polymorphism - a challenge for taxonomy. Journal of Arachnology 

30: 298–306. 

Kraus O. 1978. Liphistius and the evolution of spider genitalia. Symposia of the Zoological 

Society of London 42: 235–254. 

Kuntner M, Coddington JA & Schneider JM. 2009. Intersexual arms race? Genital 

coevolution in nephilid spiders (Araneae, Nephilidae). Evolution 63: 1451–1463. 

Lipke E, Hammel JU & Michalik P. 2015. First evidence of neurons in the male copulatory 

organ of a spider. Biology Letters 11: 1–4. 

Maddison WP. 1991. Squared-change parsimony reconstruction of ancestral states for 

continuous-valued on a phylogenetic tree. Systematic Zoology 40: 304–314. 

Maddison WP & Maddison DR. 2015. Mesquite: a modular system for evolutionary 

analysis. Version 3.04. Available at: mesquiteproject. org/mesquite/download/download. 

html. 

McShea DW. 1991. Complexity and evolution: what everybody knows. Biology and 

Philosophy 6: 303–324. 

Nixon KC. 2002. WinClada, version 1.00. 08. Published by the author, Ithaca, New York. 

Pagel M. 1994. Detecting correlated evolution on phylogenies: a general method for the 

comparative analysis of discrete characters. Proceedings of the Royal Society of London B: 

Biological Sciences 255: 37–45. 

Pagel M. 1997. Inferring evolutionary processes from phylogenies. Zoologica Scripta 26: 

331–348. 

Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877–884. 

Pagel M & Meade A. 2014. Bayes Traits V2. Computer program and documentation. 

Available at: http://www. evolution. rdg. ac. uk/BayesTraits. html. 

Pan W. 2001. Akaike‟ s information criterion in generalized estimating equations. Biometrics 

57: 120–125. 

Paradis E & Claude J. 2002. Analysis of comparative data using generalized estimating 

equations. Journal of Theoretical Biology 218: 175–85. 

Paradis E, Claude J & Strimmer K. 2004. APE: analyses of phylogenetics and evolution in 

R language. Bioinformatics 20: 289–290. 



  

130 
 

De Pinna MGG. 1991. Concepts and tests of homology in the cladistic paradigm. Cladistics 

7: 367–394. 

Platnick NI & Dupérré N. 2009. The American Goblin Spiders of the New Genus 

Escaphiella (Araneae, Oonopidae). Bulletin of the American Museum of Natural History 328: 

1–151. 

Platnick N & Gertsch WJ. 1976. The suborders of spiders: a cladistic analysis (Arachnida, 

Araneae). American Museum Novitatesum Novitate: 1–15. 

Platnick NI & Shadab MU. 1975. A revision of the spider genus Gnaphosa (Araneae, 

Gnaphosidae) in America. Bulletin of the American Museum of Natural History 155: 1–66. 

Platnick NI & Shadab MU. 1980a. A Revision of the North American Spider Genera 

Nodocion, Litopyllus, and Synaphosus (Araneae, Gnaphosidae). American Museum 

Novitates: 1–26. 

Platnick NI & Shadab MU. 1980b. A revision of the spider genus Cesonia (Araneae, 

Gnaphosidae). Bulletin of the American Museum of Natural History 165: 337–385. 

Platnick NI & Shadab MU. 1984. A revision of the neotropical spiders of the genus 

Apopyllus (Araneae, Gnaphosidae). American Museum Novitates 2788: 1–9. 

R Core Development Team. 2015. R: a language and environment for statistical computing, 

3.2.1. Document freely available on the internet at: http://www. r-project. org. 

Ramírez MJ. 2007. Homology as a parsimony problem: A dynamic homology approach for 

morphological data. Cladistics 23: 588–612. 

Ramírez MJ. 2014. The morphology and phylogeny of dionychan spiders (Araneae: 

Araneomorphae). Bulletin of the American Museum of Natural History 390: 1–374. 

Ramírez MJ & Michalik P. 2014. Calculating structural complexity in phylogenies using 

ancestral ontologies. Cladistics 30: 635–649. 

Richter S. 2005. Homologies in phylogenetic analyses - Concept and tests. Theory in 

Biosciences 124: 105–120. 

Rowe L & Arnqvist G. 2012. Sexual selection and the evolution of genital shape and 

complexity in water striders. Evolution 66: 40–54. 

Schneider JM, Herberstein ME, De Crespigny FC, et al. 2000. Sperm competition and 

small size advantage for males of the golden orb-web spider Nephila edulis. Journal of 

Evolutionary Biology 13: 939–946. 

Schneider J, Uhl G & Herberstein ME. 2015. Cryptic female choice within the genus 

argiope: A comparative approach. In: Peretti A V, Aisenberg A, eds. Cryptic Female Choice 

in Arthropods: Patterns, Mechanisms and Prospects. Heidelberg: Springer, 55–77. 



  

131 
 

Senglet A. 2004. Copulatory mechanisms in Zelotes, Drasillus and Trachyzelotes (Araneae, 

Gnaphosidae) with additional faunistic and taxonomy data on species from Southwest Europe. 

Mitteilungen der schweizerischen entomologischen Gesellschaft 77: 87–119. 

Sentenská L, Pekár S, Lipke E, et al. 2015. Female control of mate plugging in a female-

cannibalistic spider (Micaria sociabilis). BMC Evolutionary Biology 15: 18. 

Sereno PC. 2007. Logical basis for morphological characters in phylogenetics. Cladistics 23: 

565–587. 

Sierwald P. 1989. Morphology and ontogeny of female copulatory organs in American 

Pisauridae, with special reference to homologous features (Arachnida, Araneae). Smithsonian 

Contributions to Zoology: 1–24. 

Sierwald P. 1990. Morphology and homologous features in the male palpal organ in 

Pisauridae and other spider families, with notes on the taxonomy of Pisauridae (Arachnidae: 

Araneae). Nemouria 35: 1–59. 

Simmons LW. 2014. Sexual selection and genital evolution. Austral Entomology 53: 1–17. 

Uhl G, Nessler SH & Schneider JM. 2010. Securing paternity in spiders? A review on 

occurrence and effects of mating plugs and male genital mutilation. Genetica 138: 75–104. 

Welke K & Schneider JM. 2009. Inbreeding avoidance through cryptic female choice in the 

cannibalistic orb-web spider Argiope lobata. Behavioral Ecology 20: 1056–1062. 

World Spider Catalog. 2016. World Spider Catalog. Natural History Museum Bern, online 

at http://wsc.nmbe.ch, version 17.0, accessed on 27.V.2016. 

Zakharov BP & Ovtcharenko VI. 2011. Morphological organization of the male palpal 

organ in Australian ground spiders of the genera Anzacia, Intruda, Zelanda, and 

Encoptarthria (Araneae: Gnaphosidae). Journal of Arachnology 39: 327–336. 

Zakharov B & Ovtcharenko V. 2013. Male palp organ morphology of three species of 

ground spiders (Araneae, Gnaphosidae). Arachnologische Mitteilungen 45: 15–20. 

Zelditch ML, Swiderski DL, Sheets HD, et al. 2004. Geometric morphometrics for 

biologists: a primer. London: Elsevier.  

 



  

132 
 

Tables 

Table 1. Quasi-likelihood Information Criterion (QIC), parameters estimated and t-test 

significance of parameters (p) of models of relationships between taxa depth and epigynum 

complexity. P values less than 0.05 means that parameter is significantly different from zero. 

 

Model_EPI QIC Intercept p Coef 1 p Coef 2 p 

No relationship 190.4296 6.492165 1.79E-07 _ _ _ _ 

Linear 195.0208 5.313765 0.000161 0.1367172 0.136668 _ _ 

Quadratic 197.9252 6.296519 1.20E-06 3.126998 1.46E-01 2.719585 9.62E-02 

 

 

Table 2. Quasi-likelihood Information Criterion (QIC), parameters estimated and t-test 

significance of parameters (p) of models of relationships between taxa depth and palp 

complexity. P values less than 0.05 means that parameter is significantly different from zero. 

 

Model_PALP QIC Intercept p Coef 1 p Coef 2 p 

No relationship 374.5783 9.350303 1.95E-07 _ _ _ _ 

Linear 378.3865 9.035528 3.38E-05 0.03652001 0.774535 _ _ 

Quadratic 381.7759 9.312672 9.45E-07 0.8377897 7.79E-01 0.524473 8.14E-01 
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Figures 

 

Figure 1. Optimization of genitalic characters on the phylogenetic hypothesis for Gnaphosidae S.S. Characters optimized using 

Acceleration transformation series (ACCTRAN) criterion. Numbers above the branches are character numbers and below are 

character states, according to Appendix 1. Open circles indicate homoplastic character transformations, filled squares are non-

homoplastic. 
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Figure 2. Optimization of palp (left) and epigynum (right) complexity on the phylogenetic hypothesis for Gnaphosidae S.S. 
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Figure 3. Regression of gnaphosid epigynum (A) and palp (B) complexity on taxa depth (distance to the root) along a family 

phylogeny. No significant association was found. 
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Figure 4. Regression of palp complexity on epigynum complexity among gnaphosid spiders. No significant association was 

found
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Appendices 

Appendix 1.  List of genitalic characters used in analyses. 

 

0. Epigynum, anterior fold:  absent = 0; present = 1.  

1. Epigynum, anterior fold, posterior extension forming a secondary lateral fold:  

    absent = 0; present = 1.  

2. Epigynum, anterior fold, hood:  absent = 0; present = 1.  

3. Epigynum, anterior fold, scape:  absent = 0; present = 1.  

4. Epigynum, lateral folds:  absent = 0; present = 1.  

5. Epigynum, lateral folds, type:  suture = 0; furrow = 1.  

6. Epigynum, lateral folds, forming small paramedian epiginal pockets:  

    absent = 0; present = 1.  

7. Epigynum, median field, septum:  absent = 0; present = 1.  

8. Epigynum, midian field, plate surface, atrium:  

    absent, same plane as lateral field = 0; present = 1; unnamed state = 2. [nonadditive]. 

9. Epigynum, vulva, copulatory ducts, shape:  highly convoluted = 0; spiral = 1; 

    curved or with some curls = 2. [nonadditive]. 

10. Epigynum, vulva, massive midpiece:  absent = 0; present = 1.  

11. Epigynum, vulva, primary spermathecae:  absent = 0; present = 1.  

12. Epigynum, vulva, secondary spermatheca:  absent = 0; present = 1.  

13. Epigynum, vulva, secondary spermatheca, well defined lumen:  absent = 0; 

    present = 1.  

14. Epigynum, vulva, secondary spermatheca, long duct (at least two imes the head):  

    absent = 0; present = 1.  

15. Palp, copulatory bulb, conductor:  absent = 0; present = 1.  

16. Palp, copulatory bulb, conductor, sclerotization:  translucid = 0; 

    sclerotized = 1.  

17. Palp, copulatory bulb, embolus distal tubular membrane (articulation):  

    absent = 0; present = 1.  

18. Palp, copulatory bulb, embolar base distal projection:  absent = 0; 

    present = 1.  

19. Palp, copulatory bulb, embolar base proximal projection:  absent = 0; 

    present = 1.  
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20. Palp, copulatory bulb, embolar locking lobe:  absent = 0; present = 1.  

21. Palp, copulatory bulb, embolus, embolar base, dilatation:  absent = 0; 

    present = 1.  

22. Palp, copulatory bulb, embolus, embolar radix projection:  absent = 0; 

    present = 1.  

23. Palp, copulatory bulb, embolus, embolar escort sclerite:  absent = 0; 

    present = 1.  

24. Palp, copulatory bulb, embolus, length relative to tegulun:  about half = 0; 

    about the same = 1; longer, with loops around it = 2. [nonadditive]. 

25. Palp, copulatory bulb, embolus, pars pendula:  absent = 0; present = 1.  

26. Palp, copulatory bulb, embolus, terminal membrane:  absent = 0; present = 1.  

27. Palp, copulatory bulb, embolus, embolar granulation:  absent = 0; 

    present = 1.  

28. Palp, copulatory bulb, fulcrum:  absent = 0; present = 1.  

29. Palp, copulatory bulb, intercalary scletrite:  absent = 0; present = 1.  

30. Palp, copulatory bulb, median apophysis:  absent = 0; present = 1.  

31. Palp, copulatory bulb, median apophysis, proximal, numerous small spines 

(granulation?):  

    absent = 0; present = 1.  

32. Palp, copulatory bulb, median apophysis, sclerotization:  

    completely sclerotized = 0; partially sclerotized = 1; not sclerotized = 2. 

[nonadditive]. 

33. Palp, copulatory bulb, median apophysis, terminal hook:  absent = 0; 

    present = 1.  

34. Palp, copulatory bulb, acessory median apophysis:  absent = 0; present = 1.  

35. Palp, copulatory bulb, membranous tegular extension:  absent = 0; 

    present = 1.  

36. Palp, copulatory bulb, membranous tegular extension, type:  

    long, with sulci to support the embolus = 0; short = 1.  

37. Palp, copulatory bulb, petioles:  absent = 0; present = 1. 

38. Palp, copulatory bulb, subtegulum, locking lobe:  absent = 0; present = 1.  

39. Palp, copulatory bulb, subtegulum, proximal projection:  absent = 0; 

    present = 1.  

40. Palp, copulatory bulb, tegulum, distal tegular projection:  absent = 0; 
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    present = 1.  

41. Palp, copulatory bulb, tegulum, distal tegular spine-like process:  

    abesnt = 0; present = 1.  

42. Palp, copulatory bulb, tegulum, proximal part, covered by subtegulum:  

    absent = 0; present = 1.  

43. Palp, copulatory bulb, terminal apophysis:  absent = 0; present = 1.  

44. Palp, copulatory bulb, terminal apophysis, distal part, bifid:  absent = 0; 

    present = 1. . 

45. Palp, cymbium, dorsal, terminal, chemosensory patch:  absent = 0; 

    present = 1.  

46. Palp, cymbium, dorsal, trichobothria:  absent = 0; present = 1.  

47. Palp, cymbium, retrolateral, median process:  absent = 0; present = 1.  

48. Palp, cymbium, retrolateral, median process, type:  without incision = 0; 

    with incision, forming a conductor-like canal = 1.  

49. Palp, cymbium, retrolateral, proximal process:  absent = 0; present = 1.  

50. Palp, cymbium, ventral, terminal, bunch of thick setae:  absent = 0; 

    present = 1.  

51. Palp, femur, distal, dorsal, process:  absent = 0; present = 1.  

52. Palp, femur, distal, prolateral, process:  absent = 0; present = 1.  

53. Palp, femur, medial, ventral, process:  absent = 0; present = 1.  

54. Palp, tibia, retrolateral tibial apophysis:  absent = 0; present = 1.  

55. Palp, tibia, retrolateral tibial apophysis, elaboreted folds:  absent = 0; 

    present = 1.  

56. Palp, tibia, retrolateral tibial apophysis, ventral lobe:  absent = 0; 

    present = 1.  

57. Palp, tibia, ventral tibial apophysis:  absent = 0; present = 1.  

58. Palp, tibia, ventral tibial apophysis, type:  singular = 0; bifid = 1.  

59. Palp, tibia, dorsal tibial apophysis:  absent = 0; present = 1.  

60. Palp, tibia, prolateral tibial apophysis:  absent = 0; present = 1.  

61. Palp, patelae, retrolateral apophysis:  absent = 0; present = 1.  

62. Palp, tibia, proximal retrolateral tibial apophysis:  absent = 0; 

    present = 1. 
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Appendix 2. Complexity values and proportion of missing data for taxa on 

phylogenetic tree. 

 

TAXA 

Epigynum 

Complexity 

 Missing Data 

(%) 

Palp 

Complexity 

 Missing Data 

(%) 

Amazoromus kedus 7 0% 10 2% 

Ammoxenus coccineus 9 0% 9 2% 

Anagraphis pallens 7 0% 7 0% 

Aneplasa facieis 5 0% _ 96% 

Anyphaena accentuata 8 0% 7.5 2% 

Anzacia gemmea 6 0% 10 0% 

Aphantaulax sp. 5 4% 6 0% 

Apodrassodes guatemalensis 10 0% 9 0% 

Apopyllus silvestrii 10 0% 12.5 0% 

Arauchemus graudo 7 0% 11.5 0% 

Asemesthes spp. _ 31% 11 0% 

Australoechemus 7 6% 8 0% 

Berinda sp. 7 0% 9.5 0% 

Berlandina plumalis 4 0% 13.5 0% 

Callilepis nocturna 6 0% 10 0% 

Camillina cordifera 6 0% 13 0% 

Cesonia bilineata 4 0% 7 0% 

Chileuma paposo 5 2% 7 2% 

Chilongius palmas 3 2% 8.5 0% 

Cithaeron praedonius 5 0% 6 0% 

Cryptodrassus creticus 7 0% 7.5 0% 

Cryptoerithus occultus 6 2% 8.5 2% 

Doliomalus cimicoides 8.5 0% 9 0% 

Drassinella sp. 3 0% 7 0% 

Drassodes saccatus 6 0% 7 0% 

Drassodex lesserti 6.5 0% 10 0% 

Drassyllus fallens 8 0% 12 0% 

Echemoides aguilari 7 0% 10.5 2% 

Eilica bicolor 6 0% 12 0% 

Galianoella leucostigma 6 0% 9.5 0% 

Gallieniella mygaloides 5.5 0% 12.5 0% 

Gertschosa sp. 7 0% 4 0% 

Gnaphosa californica 9.5 0% 12.5 0% 

Gnaphosoidea TEX 1 4% 11.5 0% 

Haplodrassus hiemalis 6 0% 10 10% 

Hemicloea sundevalli 6 0% 13 0% 

Herpyllus ecclesiasticus 7 0% 6 0% 

Heser schmitzi 3 6% 11 0% 
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Appendix 2. Continuation. 

 

 

TAXA 

Epigynum 

Complexity 

 Missing Data 

(%) 

Palp 

Complexity 

 Missing Data 

(%) 

Hypodrassodes maoricus 8 0% 11 2% 

Kishidaia albimaculata 5 4% _ 96% 

Lampona cylindrata 8 0% 6 0% 

Latonigena auricomis 4 0% 5 0% 

Leptodrassex sp. 6 0% _ 96% 

Leptodrassus albidus 4 4% 9.5 0% 

Leptopilos levantinus 5 0% 8.5 0% 

Liocranum 7 0% 9.5 0% 

Litopyllus temporarius 4 2% 5 0% 

Lygromma chamberlini 6 0% 8 2% 

Meedo houstoni 5 0% 5.5 10% 

Megamyrmaekion 

transvalense 7 0% _ 100% 

Micaria gosiuta 6 0% 8 0% 

Microsa chickeringi 7 0% 10.5 2% 

Minosia simeonica 6 0% 7 0% 

Moreno grande 6 0% 11 0% 

Nauhea tapa _ 31% 6 2% 

Neodrassex aureus 7 4% 9.5 0% 

Neozimiris pubescens 5 2% 9.5 2% 

Nodocion eclecticus 6 0% 6 0% 

Nomisia aussereri 8 0% 10 0% 

Nopyllus sp. _ 31% 6 0% 

Notiodrassus distinctus 6 0% 7.5 0% 

Odontodrassus aphanes 6 0% 7 0% 

Oltacloea beltraoe 8 0% 10 0% 

Orodrassus coloradensis 7 0% 10 0% 

Parasyrisca orites 5 6% _ 96% 

Phaeocedus braccatus 3 4% _ 96% 

Phrurulithus festivus 3 0% 9 0% 

Plator sp. 6 0% 9 0% 

Platyoides walteri 8 0% 9.5 0% 

Prodidomus rufus 6 4% 7.5 0% 

Pterotricha conspersa 6 0% 12.5 0% 

Rastellus spp. 3 0% 8 2% 

Scopoides catharius 8 0% 8.5 0% 

Scotocesonia demerarae 6 0% _ 98% 

Scotognapha teideensis 7 0% 12.5 0% 

Scotophaeus blackwalli 8 0% 7 2% 

Sergiolus capulatus 6 0% 6 0% 
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Appendix 2. Continued. 

 

TAXA 

Epigynum 

Complexity 

 Missing Data 

(%) 

Palp 

Complexity 

 Missing Data 

(%) 

Setaphis subtilis 6 0% 11 0% 

Sosticus insularis 5 0% 11.5 4% 

Sydidrassus sp. 5 0% 7.5 0% 

Synaphosus syntheticus 7 0% 8 0% 

Talanites echinus _ 29% _ 71% 

Teutamus rama 3 0% 8.5 2% 

Tivodrassus ethophor 4 0% 11.5 0% 

Trachelas mexicanus 3.5 0% 5 4% 

Trachycosmus sculptilis 8 0% _ 35% 

Trachyzelotes pedestris 8 0% 13 2% 

Trephopoda parvipalpa _ 31% 9.5 0% 

Tricongius amazonicus 3 6% 7.5 6% 

Trochantheria gomezi 6 0% 12.5 0% 

Urozelotes rusticus 6 0% 11 0% 

Vectius niger 5 0% 12.5 0% 

Verita sp. 6 2% _ 31% 

Xenoplectus sp. 4 0% 11 2% 

Xerophaeus capensis _ 29% 10.5 0% 

Zelanda erebus/kaituna 7 0% 14.5 0% 

Zelotes duplex 6 0% 13 2% 

Zelotiba simpula 2 0% 11.5 0% 

Zimiromus montenegro 8 0% 10.5 0% 
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Abstract 

The Neotropical gnaphosid genus Apopyllus is found from southern Mexico to southern 

Argentina. It can be diagnosed by the complex shape of RTA, by the membranous 

tegular extension, the long coiled embolus, the retrolateral incision on the cymbium, the 

long convoluted copulatory duct extending anteriorly to the copulatory openings and by 

the presence of paramedian epigynal pockets and of an anterior ridge on the epigynum. 

The RTA characters are important in species taxonomy and the complex shape and 

variation of the RTA hampers identification, especially regarding the two most common 

described species. In this paper the genus is revised, the genital morphology is 

described and homology between its components and those of other genera is discussed. 

Apopyllus pauper is considered a senior synonym of A. iheringi. Four new species are 

described from Brazil: A. aeolicus, A. atlanticus, A. centralis and A. gandarela. 

 

Keywords: Drassodinae, spider genitalia, Apopyllus iheringi, Apopyllus silvestrii 

 

Introduction 

The spider genus Apopyllus was described by Platnick & Shadab (1984) to include eight 

Neotropical species, distributed from southern Mexico to southern Argentina. Species 

mailto:ghfazevedo@gmail.com
mailto:ghfazevedo@gmail.com
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of the genus have characteristic genitalic features: the presence of paramedian epigynal 

openings and highly convoluted copulatory ducts in females (Fig. 1A, B). Males were 

included in the genus based on the folded retrolateral tibial apophysis, an elongated 

coiled embolus, an incised cymbium and membranous bifid tegular extension (Fig. 

1C, D). Since the proposal of Apopyllus, only one species was added to the genus, 

Apopyllus isabelae Brescovit & Lise, 1993; which later turned out to be member of a 

different genus, Nopyllus Ott, 2014 (Brescovit & Lise 1993; Ott 2014). 

Despite the peculiar genitalia, species of Apopyllus show some characters that indicate 

possible relationships with other Gnaphosidae genera. The genus is considered closely 

related to Apodrassodes Vellard, 1924 and Nopyllus, based on the long embolus 

supported by a tegular extension (Ott 2014; Platnick & Shadab 1984). However, the 

homology between palpal sclerites in those genera is still controversial (see Ott 

2014). Notwithstanding, there are no clear characters in the Apopyllus female 

genitalia that could indicate close relationship with other described South American 

genera. The convoluted female copulatory ducts in particular, despite intra and 

interspecific variation, might have some features comparable between species and 

genera. A detailed description of Apopyllus genitalia is thus essential to facilitate 

comparison with other genera, in order to obtain reliable primary homology hypotheses 

and, consequently, better understand their evolutionary relationships. 

Despite the homology uncertainties expressed above, the retrolateral tibial apophysis 

(RTA) is a good putative synapomorphy for the genus. This structure is very complex in 

shape, unlike other gnaphosid genera (see Murphy 2007), and it is used to distinguish 

Apopyllus species. The two most common species of Apopyllus, A. silvestrii (Simon, 

1905) and A. iheringi (Mello-Leitão, 1943), can be sympatric in some localities. 

Although female specimens can be easily attributed to one of the two species, 

identifying the males may be a confusing task. The difference between the two species 

relies on the careful observation of RTA in retrolateral view (Platnick & Shadab 1984), 

and any slight change in position of the palp being examined might change the 

perception of its shape. Also, during a survey of gnaphosid material in collections, we 

found great intraspecific variation in Apopyllus RTA morphology, which hampers 

species identification and suggests that the diversity of the genus could be higher than 

known nowadays. In this work we describe the genital morphology and the diversity 

within Apopyllus in a taxonomic revision of this Neotropical ground spider genus. 
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Material and Methods 

Specimens were examined immersed in 75% ethanol under a Motic K series 

stereoscopic microscope. Female genitalia were dissected and soft tissues were cleaned 

using a pancreatin solution (Álvarez-Padilla & Hormiga 2007). To see better the 

trajectories of the ducts, epigyna were temporarily cleared using clove oil or methyl 

salicylate solution (Holm 1979; Levi 1965). Male palpi were expanded using lactic acid 

heated in double boiler for a few minutes (Levi 1965). Drawings and photographs were 

made using a Leica M205C, Leica MZ12 and Nikon SMZ800 stereoscopic microscopes 

and Zeiss Axiostar compound microscope equipped with camera lucida and digital 

cameras. Multifocal images were mounted using the softwares Leica Application Suite 

and Helicon Focus (Helicon Soft Ltd). Specimens were prepared for Scanning 

Electronic Microscopy (SEM) using critical point drying, sputter coated with 10 nm of 

gold and photographed with a Quanta 2000 SEM at the Centro de Microscopia da 

UFMG and with a LEO 1450vp SEM at the Entomology Department of California 

Academy of Sciences. Specimens without information about geographic coordinates 

were georeferenced using geoLoc tool of speciesLink (http://splink.cria.org.br/geoloc) 

for Brazilian localities, and Google Earth for other countries. Maps were made using 

ArcMap 10.3 (Esri Inc.). 

The format of description follows Platnick & Shadab (1975) with the following 

modifications: the measurement reported is for the type specimens (holotype and 

allotype), and the variation are reported separated as the maximum and minimum total 

and carapace length of sampled specimens. The following abbreviations for the eyes are 

used: AME, anterior median eyes; ALE, anterior lateral eyes; PLE, posterior lateral 

eyes; PME, posterior median eyes; MOQ, median ocular quadrangle. Material examined 

sections were prepared using AUTOMATEX (Brown 2013). 

The material used for this study are deposited in the following collections 

(abbreviations and curators in parentheses): American Museum of Natural History, New 

York, USA (AMNH, N.I. Platnick); California Academy of Sciences (CASENT, Lauren 

Esposito and Darrell Ubick); Centro de Coleções Taxonômicas, Universidade Federal 

de Minas Gerais (UFMG, Adalberto J. Santos); Coleção de História Natural da 

Universidade Federal do Piauí, Floriano, PI (CHNUFPI, Leonardo S. Carvalho); 

Laboratório Especial de Coleções Zoológicas, Instituto Butantan, São Paulo, (IBSP, 

Antonio D. Brescovit); Museo Argentino de Ciencias Naturales Bernadino Rivadavia, 

Buenos Aires (MACN, Martín J. Ramirez); Museo de La Plata, La Plata (MLP, Luís A. 



  

147 
 

Pereira); Museu de Ciências Naturais, Fundação Zoobotânica do Rio Grande do Sul, 

Porto Alegre (MCN, Ricardo Ott); Museu de Ciências e Tecnologia, Pontifícia 

Universidade Católica do Rio Grande do Sul, Porto Alegre (MCTP, Arno A. Lise); 

Museu Nacional, Rio de Janeiro (MNRJ, Adriano B. Kury); Museu Paraense Emílio 

Goeldi, Belém (MPEG, Alexandre B. Bonaldo); Museum of Comparative Zoology, 

Havard University, Cambridge, USA (MCZ, Gonzalo Giribet); National Museum of 

Natural History, Smithsonian Institution, Washington D.C. (USNM, Jonathan A. 

Coddington). 

 

Taxonomy 

Family Gnaphosidae Pocock, 1898 

Genus Apopyllus Platnick & Shadab, 1984 

Type species: Zelotes silvestrii (Simon, 1905) 

 

Diagnosis. Females of Apopyllus can be recognized by the long, convoluted copulatory 

ducts extending anteriorly to the copulatory openings, and by the presence of 

paramedian epigynal pockets and of an anterior ridge in the epigynum (Figs 1A–B, 2A– 

B). Males can be distinguished from other gnaphosid genera by the shape of 

RTA, which is folded in an elaborated structure, by the long bifid membranous tegular 

extension (MTE) that supports the long coiled embolus, by a retrolateral incision on the 

cymbium, and by the presence of median apophysis on tegulum (Figs 1C–D, 2C). 

Description. As in Platnick & Shadab (1984), except for the male and female genitalia, 

which are described below, and for the presence of terminal pseudosegmentation of 

metatarsi IV in both sexes (Fig. 2D). The female internal genitalia (vulva) of Apopyllus 

are composed of a pair of highly convoluted copulatory ducts, a pair of secondary 

spermathecae (blind end receptacles with large glandular pores), a pair of primary 

spermathecae ( r ecep tac l es  wi th  smal l  po r es )  t ha t  a r e  connected to a pair of 

fertilization ducts (Figs. 1A–B, 2B). The copulatory ducts, though variable between 

and within species, have a basic structure that can be observed in all species (Figs. 1A–

B). The copulatory opening leads to the proximal part of the copulatory duct (PPD) that 

is ventrally located and has a “U” shape. It curves dorsally and goes towards the 

posterior part of epigynum, forming the paramedian descendent duct (PDD). The PDD 

curves towards the anterior part, forming the lateral ascendant duct (LAD). It extends 

anteriorly to the copulatory opening forming the anterior curled duct (ACD). The ACD 
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leads to a ventral duct that goes posteriorly, called lateral descendent duct (LDD). It 

curves forming the lateral loop (LL) and then the paramedian ascendant duct (PAD). 

The PAD curves dorsally leading to the terminal part of the copulatory duct (TPD), 

which ends at the primary spermatheca. The secondary spermatheca is a rounded blind 

sac of variable size that arises from the lateral loop. 

Male genitalia have a small subtegulum that can be seen in ventral view on unexpanded 

palp (Fig. 1C). The tegulum is rounded to oval, with an elongated, partially sclerotized, 

hook shaped median apophysis (Figs. 1C, 2C), and with a long bifid membranous 

tegular extension (MTE) that supports a long coiled embolus (Figs. 1C–D, 2C). The 

embolus articulates with the tegulum by a long distal tubular membrane (DTM) (Fig. 

2C). The RTA is folded in an elaborated structure, with ventral, dorsal and apical 

serrated keels (Figs. 2C). The cymbium has a retrolateral projection ventrally incised 

(Figs. 1C–D, 2C).  

Distribution. Neotropical, from southern South America to southern Mexico. 

Natural History. Species of Apopyllus can be found in areas with rocky ground and 

might be active during daylight (GHFA personal observation). 

 

Identification key to Apopyllus species 

Males 

1 Cymbial incision proximally situated, cymbial projection evident and positioned 

proximally (Figs. 3A–C, 3E–G, 4A–C, 4E–G, 5A–C, 5E–G, 6A–C, 6E–G, 7A–C, 7E–

G, 8A–C, 8E–G) … 2 

- Cymbial incision distally situated (Figs. 3D, 4D, 5D, 6D), cymbial projection small 

and distally positioned (Figs. 7D, 8D), RTA as in figures 3D, 4D, 5D, 6D, 7D and 8D  

A. ivieorum 

 

2 Cymbial projection shorter than RTA in dorsal and ventral view (Figs. 3C, 4C, 7C, 

8C), retrolateral loop of the embolus and MTE short, not extending as far as the 

proximal part of the cymbium (Figs. 5C, 6C), RTA robust (Figs 5C, 6C, 7C, 8C) … A. 

now 

- Cymbial projection longer or as long as RTA in dorsal and ventral view (Fig. 3A, 3B, 

3E, 3F, 4A, 4B, 4E, 4F, 7A, 7B, 7E, 7F, 8E, 8F), embolus and MTE long, extending as 

far to the proximal part of the cymbium (Figs. 5A, B, E-F and 6E-F), RTA otherwise… 

3 
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3 RTA with a dorsal process (Figs. 5F, 6F, see arrow)… A. centralis new sp. 

- RTA without dorsal process (Figs. 5A–E, G, 6A–E, G)… 4 

 

4 RTA with a proximal spine on the apical keel (Fig 5E, 6E, see arrow)… A. aeolicus 

new sp. 

- RTA without a proximal spine on the apical keel (Fig. 5A–C, F, G, 6A–C, F, G)… 5 

 

5 RTA with truncated tip (Figs. 7A, 8A, 9A–B), dorsal keel of RTA rounded and curved 

in retrobasal view (Fig. 9B), apical keel of RTA sinuous in apical view (Fig. 9A)… A. 

silvestrii 

- RTA with pointed tip (Figs. 7B, G, 8B, G, 9C–F), dorsal keel of RTA more or less 

rhomboidal in retrobasal view (Figs. 9D, 9F), apical keel of RTA gently curved in 

apical view (Figs. 9C, 9E) … 6 

 

6 RTA very pointed in dorsal and retrobasal view (Figs. 7G, 8G, 9E–F), shape of RTA 

in retrobasal view as in figure 9F… A. atlanticus new sp. 

- RTA blunt in dorsal, apical and retrobasal view (Figs. 7B, 8B, 9C–D), shape of RTA 

as in figure 9D… A. pauper 

 

Females 

1 Anterior ridge completely sclerotized (Figs. 10A–F, 11A–F)… 2 

- Anterior ridge less sclerotized in the middle, conferring an incomplete appearance (Fig 

10G, 11G)… A. centralis new sp. 

 

2 Anterior ridge thin (Figs. 10D, 11D)… 3 

- Anterior ridge thick (Figs. 10A–C, E, F, H, 11A–C, E, F, H)… 4 

 

3 PDD and LAD extended posteriorly beyond the anterior edge of primary 

spermathecae (See Platnick & Shadab 1984: fig. 18)… A. suavis 

- PDD and LAD not extended posteriorly beyond the secondary spermathecae (Figs. 

10D, 11D)… A. huanuco 
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4 Diameter of secondary spermathecae at least two thirds the diameter of primary 

spermathecae (Figs. 12B, 12F, 12H, 13B, 13F, 13H)… 5 

- Diameter of secondary spermathecae less than two thirds the diameter of primary 

spermathecae (Figs. 12A, 12C-E, 12G, 13A, 13C–E, 13G)… 7 

 

5 Anterior ridge sinuous (Figs. 10F, 11F)… A. gandarela new sp. 

- Anterior ridge otherwise (Figs. 10A, 10B, 10E, 11G, 11H, 11A, 11B, 11E, 11GH) … 

6 

 

6 Epigynal pockets bell-shaped, with the angle between them directed posteriorly (Figs. 

10B, 11B)… A. pauper 

- Epigynal pockets elongated, with the angle between them directed anteriorly (Fig. 

10H, 11H)… A. atlanticus new sp. 

 

7 Anterior ridge sinuous (Figs. 10C, 11C), ACD single-coiled (Figs. 12C, 13C)… A. 

malleco 

- Anterior ridge otherwise (Figs. 10A, 10B, 10E, 11G, 11H, 11A, 11B, 11E, 11GH)…8 

 

8 PDD and LAD parallel (Figs. 12A, 13A), anterior ridge not arched (Figs. 10A, 

11A)… A. silvestrii 

- PDD and LAD not parallel (Fig 12E, 13E), anterior ridge arched (Fig. 10E, 11E)… A. 

now 

 

Apopyllus silvestrii (Simon, 1905) 

Figures 2A–D, 3A, 4A, 5A, 6A, 7A, 8A, 9A–B, 10A, 11A, 12A, 13A, 14A 

 

Melanophora silvestrii Simon, 1905: 4. Male and female syntypes from Missioneros, 

Río Santa Cruz, Santa Cruz, Argentina. Deposited in MNHN (not examined). 

Zelotes silvestrii: Petrunkevitch, 1911: 151. 

Zelotes melanophorus Mello-Leitao, 1941: 169, fig. 59. Male and female syntypes from 

Colalao, Tucuman, Argentina (31º14‟3”S, 64º15‟40”W). Deposited in MLP 14895 

(examined through photographs). Synonym by Platnick & Shadab (1984). 
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Gytha argentina Mello-Leitão, 1944: 351, fig. 42. Male holotype from La Plata, Buenos 

Aires, Argentina (34º55‟16”S, 57º57‟15”W).  Deposited in MLP 16080 (examined 

through photographs). Synonym by Platnick & Shadab (1984). 

Apopyllus silvestrii: Platnick & Shadab, 1984: 3, figs. 1–4. 

 

Diagnosis. Males can be distinguished by truncated terminal tip of RTA in dorsal view 

(Figs 7A, 8A), a sinuous apical keel of RTA (Fig. 9A) and dorsal keel of RTA rounded 

and curved in retrobasal view (Fig. 9B). Females can be distinguished by the parallel 

PDD and LAD and by the secondary spermatheca much smaller than the primary 

spermatheca (Figs. 12A, 13A). 

Description. See Platnick & Shadab (1984). In addition, the RTA has a small basal 

retrolateral tubercle (Fig. 2C). 

Variation. Male carapace length (N=18) 1.84–3.32. Female carapace length 

(N=15) 2.28-3.32. 

Material Examined. Material examined. ARGENTINA: Chubut: Epuyén (labeled as 

Epuylu), 42º14'3"S, 71º21'3"W, 6m# 3f# 1 juvenile, 12/VI/1962, A. Kovacs coll. 

(AMNH), 1m# 1f#, 2/VIII/1962, A. Kovacs coll. (AMNH), Esquel, Road to La Hoya, 

42º54'S, 71º19'W, 2f#, 16/XI/1988, V. & B. Roth coll. (CASENT 9066946); Córdoba: 

Pampa de Achala, El Cóndor, 31º36'31"S, 64º45'44"W, 2152.2m, 1f#, 8/XII/1997, A. 

Kury coll. (MNRJ 6664). BOLÍVIA: Huatajata: La Paz, Lake Titicaca, 16º13'37"S, 

68º41'37"W, 2m# 1f#, 8/VIII/1993, H. Höfer & A.D. Brescovit coll. (MCN 23741). 

BRAZIL: Minas Gerais: Belo Horizonte, Campus da UFMG, 19º51'41"S, 

43º57'48"W, 1m#, 6/V/2001, E.O. Machado coll. (UFMG 686), Belo Horizonte, 

Estação Ecológica da UFMG, 19º52'38"S, 43º58'16"W, 845m, 1f#, I/2001 (UFMG 

8330), 1f#, III/2001 (UFMG 8323); Rio Grande do Sul: Bagé, 1m#, 30/X/2003, L. 

Almeida coll. (MCTP 16977), 1f#, 30/XII/2003, L. Almeida coll. (MCTP 16976), 

Carlos Barbosa, 29º18'0"S, 51º30'0"W, 1m#, 28/X/1989, A.A. Lise coll. (MCN 18964), 

Eldorado do Sul, 1m#, 25-30/XI/1996, G. Carvalho & R. Silva coll. (MCTP 12551), 

Itaara, 29º45'18"S, 53º59'31"W, 1m#, 24/VIII/2009, R. Alves coll. (MCTP 26289), 

29º45'18"S, 57º5'16"W, 3m# 1f#, X/2009, R. Alves coll. (MCTP 26292, 26293), 

Morrinhos do Sul, Pixirica, 2f#, 02/XI/2006, A. Gonçalves  coll. (MCN 52302), 1m, 

1f#, 1-16/VI/2006, A. Gonçalves  coll.  (MCN 52300), Porto Alegre, 1m#, 10/V/2000, 

A.  Braul coll. (MCTP 11216), Morrinhos do Sul, Três Passos, 1f#, 01/XI/2006, A. 

Gonçalves coll. (MCN 52301), Porto Alegre, Vila Nova, 29º59'29"S, 51º13'16"W, 2m# 



  

152 
 

1f#, 21/XI/2006, E.L.C. Silva coll. (MCTP 19720), Santana do Livramento, Rincão 

Bonito do Ibirapuitã, 30º37'49''S, 55º32'26''W, 1m#, 13/XI/2012, Equipe PELD/MCN 

coll. (MCN 52296), São Francisco de Paula, Potreiro Velho, Pró Mata, 1f#, 

20/VII/1999, A. A. Lise coll. (MCTP 12671), 1m#, 21-24/X/1999, A. A. Lise coll. 

(MCTP 16028), Uruguaiana, Imbaa, 1m#, 24/VI/2009, R. Alves coll. (MCTP 26288), 

2f#, 2m#, I/2009, R. Alves coll. (MCTP 26282, 26283, 26285, 26286), 1f#, II/2009, R. 

Alves coll. (MCTP 26284), 1m#, IX/2009, R. Alves coll. (MCTP 26290), 1m#, X/2009, 

R. Alves coll. (MCTP 26291), Minas do Leão, 1m#, 12/VI/2008, L. R. Podgaiski coll. 

(MCN 44393), Viamão, Parque Estadual Itapuã, 2m#, 2f#, 18/IV–06/V.2007, R. 

Moraes coll. (MCTP 29996), ; Santa Catarina: Chapecó, 27º6'1"S, 52º35'59"W, 1m#, 

23/IX/2008, R.C. Francisco coll. (MCTP 29641), Florianópolis, 27º34'60"S, 

48º33'59"W, 1f#, 24/X/1988, V. & B. Roth coll. (CASENT 9066937), 1m#, 23/V/2003, 

C. E. Santo coll. (MCTP 19765). PERU: Puna: Lake Titicaca, 15º50'28"S, 70º1'31"W, 

3900m, 1f#, VI/1947, W. Weyrauch coll. (AMNH); Puno: 60km N Puno, 15º50'24"S, 

70º1'18"W, 1m# 1f# 2 juveniles#, 21/II/1951, Ross & Michelbacher coll. (CASENT 

9048498). URUGUAY: Lavalleja: Arequita, Cerro Arequita, 34º17'11"S, 55º16'5"W, 

1f#, 5/XII/1997, A.D. Brescovit coll. (IBSP 14468). 

Distribution. Southern Chile and Argentina to Southern Peru and Central- Western 

Brazil (Fig. 14A). 

 

Apopyllus pauper (Mello-Leitão, 1942) 

Figures 3B, 4B, 5B, 6B, 7B, 8B, 9C–D, 10B, 11B, 12B, 13B, 14B 

 

Zelotes pauper Mello-Leitão, 1942: 413, fig. 39. Female holotype from General 

Capdevila, Chaco, Argentina (27º25‟18”S, 61º28‟37”W). Deposited in MLP 15500 

(examined through photographs). 

Zelotes iheringi Mello-Leitão, 1943: 262. Female holotype from Paraiba do Norte, 

Paraíba, Brazil (36º30‟S, 75º15‟W). Deposited in MNRJ 58361 (examined). New 

synonymy. 

Apopyllus pauper: Platnick & Shadab, 1984: 4, figs. 5, 6. 

Apopyllus iheringi: Platnick & Shadab, 1984: 5, figs. 11–14. New synonymy. 

 

Diagnosis. Females can be distinguished by the secondary spermatheca with diameter at 

least two thirds as long as the primary spermatheca, by the TPD curved dorsally, by the 
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curved PDD (Figs 12B, 13B) and by the short bell-like paramedian epigynal pockets 

(Figs 10B, 11B). Males can be distinguished by the moderately pointed terminal part of 

RTA in dorsal and retrobasal view (Figs. 7B, 8B, 9D), by the gently curved dorsal keel 

of RTA in apical view (Fig. 9C) and by the rhomboidal shape of RTA in retrobasal 

view (Fig. 9D). 

Synonymy. Apopyllus pauper was described as having the PAD “expanded anteriorly 

into bulbous form” (Platnick & Shadab 1984: p. 5, figs. 5–6). This description matches 

the aspect of the holotype genitalia when examined ventrally, without any preparation. 

However, the expanded ducts are not visible when the genitalia are examined under 

clove oil or methyl salicilate (Fig. 15A–B), and the duct aspect does not seem to be 

different from that described for Apopyllus iheringi (Platnick & Shadab 1984: p. 5). 

Other aspects of the morphology of the A. pauper holotype also seem to be within the 

variation observed in the A. iheringi. Thus, we do not see evidence that could indicate 

that A. iheringi and A. pauper are different species. 

Description. For the female see description of Apopyllus pauper in Platnick & Shadab 

(1984), which is like in the diagnosis reported here except for the description of female 

genitalia. For the males, see Apopyllus iheringi in Platnick & Shadab (1984). 

Variation. The anterior ridge of the epigynum varies from straight to concave in the 

posterior and/or anterior margin. The dorsal keel of RTA might be from moderate to 

strongly curved. RTA simple or with a small basal retrolateral tubercle as in A. 

silvestrii. Some specimens might be dark brown to black with a white or silver gray 

dorsal longitudinal stripe in the opisthosoma and carapace, or with carapace entirely 

silver gray. Male carapace length (N=18) 1.28-3.4. Female carapace length (N=16) 

1.96-3.40. 

Material Examined. ARGENTINA: Catamarca: Villavil, 8km E. of Andalgala, 

27º36'16"S, 66º17'16"W, 3f#, 30/XII/1974, F.A. Enders coll. (USNM); Córdoba: Los 

Molinos, 31º50'46"S, 64º22'59"W, 1f# 1 juvenile#, 7/XII/1997, A. Kury coll. (MNRJ 

6663); La Pampa: Cuaracó, RN 152, 56 km from Casa de Piedra, 38º8'40"S, 

66º29'33"W, 295m, 2m# 2 juveniles#, 11/X/2014, A.D. Brescovit et al. coll. (IBSP 

167048, MACN 34838), Lihue Calel, PN Lihue Calel, cerro Fortaleza, 38º1'15"S, 

65º35'32"W, 419m, 3m# 3 juveniles#, 11/X/2014, A.D. Brescovit et al. coll. (IBSP 

167047, MACN 34843), Linhue, 1m# 1 juvenile# (IBSP 167049); La Rioja: Mazan, 

29º25'15"S, 66º51'0"W, 1f#, 8/XII/1974, F.A. Enders coll. (USNM); Río Negro: El 

Cuy, RP 6, 88 km SW from General Roca, 39º42'28"S, 68º9'19"W, 617 m, 1m#, 
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12/X/2014, A.D. Brescovit et al. coll. (MACN 34844), General Roca, Cinco Saltos, 

camino a Lago Pellegrini, 38º48'42"S, 68º3'7"W, 270m, 1f#, 16/X/2014, A.D. Brescovit 

et al. coll. (IBSP 167054), General Roca, Paso Córdoba, 39º7'37"S, 67º40'6"W, 266m, 

1m#, 15/X/2014, A.D. Brescovit et al. coll. (MACN 34839), Valcheta, 1f# (IBSP 

167050), Valcheta, RN 23, 36 km SE from Valcheta, 40º51'37"S, 65º48'44"W, 208m, 

2m# 3f# 1 juvenile, 13/X/2014, A.D. Brescovit et al. coll. (MACN 34841). BRAZIL: 

Bahia: Feira de Santana, Chácara Promenade, 1f#, 4-6/I/2003, T. V. Aguzzoli coll. 

(MCN 35061); Goiás: Catalão, Barragem para Aproveitamento Hidrelétrico Serra do 

Facão, 17º31'56.09"S, 47º33'36"W, 754m, 1f#, VII/2010, R.B. Martines & R.M.C. 

Silveira coll. (UFMG 4565), 17º52'20.39"S, 47º37'34.89"W, 739m, 1f#, VII/2010, 

R.B. Martines & R.M.C. Silveira coll. (UFMG 4584), 17º36'26.07"S, 47º37'13.57"W, 

811m, 2m#, VII/2010, R.B. Martines & R.M.C. Silveira coll. (UFMG 4566); 

Maranhão: Caxias, Reserva Ecológica Inhamum, 4º49'60"S, 43º20'69"W, 5f#, 2–

5/X/2007, J.F.B. Lima-Lobato & F. Limeira de Oliveira coll. (IBSP 129017, 129022, 

129023), 1m# 4f#, 26–29/IX/2007, J.F.B. Lima-Lobato & F. Limeira de Oliveira coll. 

(IBSP 129015, 129024); Mato Grosso: Chapada dos Guimarães, 2m#, 20-29/VII/2000, 

C. Strussmann coll. (MCTP 11310), 2m#, 23-30/VIII/2000, C. Strussmann coll. (MCTP 

11327); Piauí: Piracuruca, Parque Nacional Sete Cidades, 4º05'56.2''S, 41º43'12.9''W, 

1m#, no data, no col. (MPEG 7904); Mato Grosso do Sul: Três Lagoas, Horto Barra do 

Moeda, 20º57'0"S, 51º47'0"W, 1m# 1f#, 8/VIII/2007, M. Uehara-Prado coll. (UFMG 

5073); Minas Gerais: Belo Horizonte, Estação Ecológica da UFMG, 19º52'38"S, 

43º58'16"W, 845m, 1m#, 2003 (UFMG 8328), Belo Horizonte, Parque Municipal das 

Mangabeiras, 19º56'38.98"S, 43º54'1.07"W, 1f#, 5–12/XII/2008, H.H. Santos et al. 

coll. (UFMG 7886), Cardeal Mota, Serra do Cipó, 19º20'15.84"S, 43º38'18.72"W, 

805m, 2f#, 17/VII/2012, P.H. Martins et al. coll. (UFMG 12326, 12327), Catas Altas, 

RPPN Santuário do Caraça, Cachoeira da Bocaina, 20º7'25"S, 43º27'56"W, 1f#, 

12/IX/2015, G.H.F. Azevedo coll. (UFMG 18861), Leme do Prado, Reserva Estadual 

de Acauã, 17º7'94.2"S, 42º43'98.1"W, 887m, 2m# 2f#, 18–28/II/2013, P.H. Martins 

coll. (UFMG 12837), 17º9'3.6"S, 42º46'24.1"W, 856m, 4f#, 18–28/II/2013, P.H. 

Martins coll. (UFMG 12982), Manga, Parque Estadual da Mata Seca, 14º50'54"S, 

43º59'17"W, 1f#, IX/2010, 14º50'58"S,  44º0'28"W,  2m#, IX/2011, 14º50'54"S, 

43º59'17"W, 2m#, IX/2011, R.N.S.L. Garro et al. coll. (UFMG 14775–14777), 

Santo Antônio do Itambé, Parque Estadual do Pico de Itambé, 18º27'58"S, 

43º18'27"W, 757m, 1f#, 16–17/II/2013, P.H. Martins coll. (UFMG 12981), São 



  

155 
 

Gonçalo do Rio Abaixo, Estação de Preservação e Desenvolvimento Ambiental de Peti, 

19º58'23"S, 43º29'57"W, 820m, 1f#, 8–9/XII/2012, G.H.F. Azevedo et al. coll. (UFMG 

12653); Pernambuco: Serra Talhada, Fazenda Saco, Mata da Pimenteira, 7º53'S, 

38º18'W, 1f#, 17/X/2010, M. Carvalho coll. (UFMG 4492); Rio Grande do Sul: 

Santana do Livramento, Faz. Bela Vista do Ibirapuitã, 1m#, 14/XI/2012, Equipe 

PELD/MCN coll. (MCN 52297); Santana do Livramento, APA do Ibirapuitã, Faz. D. 

Laura, Rincão Bonito, 1f#, 12/XI/2012; R. Ott coll. (MCN 52309), APA do Ibirapuitã 

Faz. Bela Vista, 1f, 14/XI/2012; Eq. PELD/MCN coll (MCN 52310). Roraima: 

Amajari, Vila Tepequém,  prox. Da Pousada PSJ,  3º47'10.4"N,  61º43'15.3"W,  

640m,  1m#, 17/VII/2014, L.S. Carvalho et al. coll. (UFMG 17107); Tocantins: Santa 

Fé do Araguaia, 6º43'41.6"S, 48º48'8"W, 1m#, 19/IV/2009, U. Oliveira & M.D. 

Miranda coll. (UFMG 5736). PERU: Apurimac: Chincherros, 13º31'3"S, 73º42'24"W, 

2m# 3f# 1 juvenile, 12/XII/1980, C. Gold coll. (CASENT 9057334). 

Distribution. Northern Argentina to southern Peru and to northern and northeastern 

Brazil (Fig. 14B). 

 

Apopyllus malleco Platnick & Shadab, 1984 

Figs. 1A–B, 10C, 11C, 12C, 13C, 14B 

 

Apopyllus malleco Platnick & Shadab, 1984: 6, figs. 7–8. Female holotype from 10 km. 

west of Collipulli, Malleco, Chile (38º21‟33”S, 72º38‟20”W), 4/I/1961, J. K. Greer 

coll., deposited in AMNH (examined). 

 

Diagnosis. Females can be distinguished by the sinuous anterior ridge of the epigynum 

and ACD with a single coil (Figs. 10C, 11C, 12C, 13C). 

Description. See Platnick & Shadab (1984). 

Material examined. Only the holotype. 

Distribution. Known only from the type locality, Malleco, Chile (Fig. 14B). 

 

Apopyllus huanuco Platnick & Shadab, 1984 

Figs. 10D, 11D, 12D, 13D, 14C 
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Apopyllus huanuco Platnick & Shadab, 1984: 6, figs. 9–10. Female holotype from 

Acomayo, Huanuco, Peru (13º55‟26”S, 71º41‟35”W, 2100m), VII/1946, F. 

Woytkowski coll. Deposited in AMNH (examined). 

 

Diagnosis. Females can be distinguished by the very arched and thin anterior ridge 

in the epigynum, by the short PDD and LAD not overlapping the secondary 

spermathecae. (Figs. 10D, 11D, 12D, 13D). 

Description. See Platnick & Shadab (1984). 

Material examined. Huanuco, Peru, 9º27‟1”S 76º16‟15”W, 1f#, 27/I/1947, J.C. 

Pallister col. (AMNH). 

Distribution. Known only from the type locality, Huanuco, Peru (Fig. 14C). 

 

Apopyllus now Platnick & Shadab, 1984 

Figs. 3C, 4C, 5C, 6C, 7C, 8C, 10E, 11E, 12E, 13E, 14A 

 

Apopyllus now Platnick & Shadab, 1984: 7, figs. 19–22. Male holotype and female 

paratype from the south slope of Veeris Berg, Curaçao (12º10‟7”N, 68º59‟25”W), 

20/XII/1962, H.W. Levi coll., deposited in MCZ (examined). 

 

Diagnosis. Females can be distinguished by the anterior ridge arched and thick on the 

sides (Figs. 10E, 11E) and by the dorsal longitudinal pale white stripe in the prosoma 

and opisthosoma. Males can be diagnosed by the retrolateral cymbial projection shorter 

than the RTA in dorsal and ventral view, by the shorter embolus, with a more distally 

situated embolus loop, and by the shape of the robust RTA (Fig. 3C, 4C, 5C, 6C, 7C, 

8C). 

Description. See Platnick & Shadab (1984). 

Material examined. The holotype and paratype only. 

Distribution. Known only from the type locality, Curaçao (Fig. 14A). 

 

Apopyllus ivieorum Platnick & Shadab, 1984 

Figs. 3D, 4D, 5D, 6D, 7D, 8D, 14A 
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Apopyllus ivieorum Platnick & Shadab, 1984: 8, figs. 15–16. Male holotype from 8 mi. 

west of Tehuantepec, Oaxaca, Mexico (16º57‟19”N 96º28‟15”W), 29/VIII/1966. J. and 

W. Ivie coll., deposited in AMNH (examined). 

 

Diagnosis. Males can be distinguished by the cymbial incision distally situated, by the 

absence of a cymbial retrolateral projection, and the characteristic shape of RTA (Figs 

3D, 4D, 5D, 6D, 7D, 8D). 

Description. See Platnick & Shadab (1984). Females unknown. 

Material examined. Only the type material. 

Distribution. Known only from the type locality, Oaxaca, Mexico (Fig. 14A). 

 

Apopyllus suavis (Simon, 1893) 

 

Herpyllus suavis Simon, 1893: 455, fig. 25. Two female syntypes from Colonia Tovar, 

Aragua, Venezuela (10º24‟19”N, 67º17‟22”W), deposited in MNHN (not examined). 

Apopyllus suavis: Platnick & Shadab 1984: 7, figs. 17–18. 

 

Diagnosis. Females can be distinguished by the PDD and LAD extending beyond the 

anterior edge of primary spermathecae, and by the arched anterior ridge (see Platnick & 

Shadab, 1984, figs 17, 18). 

Description. See Platnick & Shadab (1984). Males unknown. 

Distribution. Known only from the type locality, Aragua, Venezuela (Fig. 14C). 

Remarks. Although we have not seen the syntypes, the description and drawings in 

Platnick & Shadab (1984) allow us to infer that this specimen is morphologically 

different from the other species in the genus and might be acknowledged as a distinct 

species. 

 

Apopyllus gandarela new species 

Figs. 10F, 11F, 12F, 13F, 14A 

 

Type Material. Female holotype from Serra da Gandarela, Rio Acima, Minas Gerais, 

Brazil (20º5´31” S, 43º41‟0” W, 1636m), 14/II/2015, A.J. Santos coll., deposited in 

UFMG 16876. 
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Etymology. The specific name is taken from the type locality, Serra da Gandarela, one 

of the many mountain ranges that contribute to the aquifer system of the region, and 

which is threatened by mining activities. 

Diagnosis. Females can be distinguished by the sinuous anterior ridge, with the middle 

part projected anteriorly, by the ACD very coiled, and by the secondary spermathecae 

about two thirds the diameter of the primary ones (Figs. 10F, 11F, 12F, 13F). 

Description. Female (holotype): Total length 7.5. Carapace 2.6 long, 1.88 wide. Femur 

II 1.68 long. Carapace dark brown, with black reticulations. Legs and palps brown, 

lighter in patellae, tibiae, metatarsi and tarsi.  Femur I with a lighter area in the 

prolateral proximal part. Sternum and labium brown. Endites light brown with white 

anterior border. Opisthosoma pale gray. Eyes sizes and interdistances: AME 0.08, 

ALE 0.1, PME 0.07, PLE 0.08, AME–AME 0.06, AME–ALE 0.02, ALE–PLE 0.05, 

PME–PME 0.06, PME–PLE 0.06. MOQ 0.48 wide. Leg spination: femora: I, II d1-1-

1, p0-0-1; III d1-1-1, r0-1-1, p0-1-1; patellae: III, IV p0-1-0, r0- 1-0; tibiae: I v0-0-1p; 

II vlr-2-0; III, IV d1-0-0, p1-1-0, v1p-2-2, r2-2-0; Metatarsi: I, II v2-0-0; II, IV p1d-2-

1v, v2-2-2, r1d-1d-2. 

Male: unknown. 

Material examined. Only the holotype. 

Distribution. Known only from the type locality, Serra da Gandarela, Rio Acima, 

Minas Gerais, Brazil (Fig. 14D). The type locality is an area of Canga, a mountain field 

vegetation typical of iron-ore plateaus (Salgado & Carmo 2015). 

 

Apopyllus aeolicus new species 

Figs. 3E, 4E, 5E, 6E, 7E, 8E, 14A 

 

Type Material. Male holotype from Parque Eólico de Guanambi, Caetité, Bahia, Brazil 

(14º6‟41.7”S 42º36‟27.7”W, 998m), 13/IV/2015, L.S. Carvalho col., deposited in 

CHNUFPI 1567. 

Etymology. The specific name is taken from the Greek mythological character 

Aeolus, the god of wind, and is a reference to type locality, which is i n  a wind 

power plant. 

Diagnosis. Males can be distinguished by the proximal spine on the apical keel of the 

RTA (Fig. 5E, 6E, arrow). 
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Description. Male (holotype): Total length 5.24. Carapace 2.32 long, 1.80 wide. Femur 

II 1.44 long. Carapace dark brown to black with a longitudinal stripe of white setae. 

Legs and palps dark brown, lighter on patellae, tibiae, metatarsi and tarsi. Femur I and 

palp with a lighter area on the prolateral part. Sternum and labium dark brown. Endites 

light brown with white anterior border and lighter oval area on the basal part. 

Opisthosoma dorsum dark gray with a longitudinal stripe of white setae and a dark 

brown scutum. Ventral side of opisthosoma light brown. Eyes sizes and interdistances: 

AME 0.08, ALE 0.1, PME 0.06, PLE 0.08, AME–AME 0.06, AME–ALE 0.02, ALE–

PLE 0.04, PME–PME 0.06, PME–PLE 0.06. MOQ 0.44 wide. RTA with proximal 

spine on the apical keel. Leg spination: femora: I, II d1-1-1, p0-0-1; III d1-1-1, r0-1-1, 

p0-1-1; patellae: III, IV p0-1-0, r0-1-0; tibiae: I, II v1-0-1; III p1-1-0, v1p-2-2, r2-1d-0; 

IV d1-0-1, p1-0-1, v1p-2-2, r2-0-2; metatarsi: I, II v2-0-0; III p1-2-1, v1p-2-2, r1-1-2; 

IV p1-2-1d, v2-2-2, r1-2-2. 

Female: unknown. 

Material Examined. Only the holotype. 

Distribution. Known only from the type locality, Parque Eólico de Guanambi, Caetité, 

Bahia, Brazil (Fig. 14A). 

 

Apopyllus centralis new species 

Figs. 3F, 4F, 5F, 6F, 7F, 8F, 10G, 11G, 12G, 13G, 14D 

 

Type material. Male holotype from Usina de Aproveitamento Hidrelétrico Serra do 

Facão, Catalão, Goiás, Brazil (17º30‟9”S 47º33‟32”W, 754m), I/2010, R.B. Martines & 

R.M.C. Silveira coll., deposited in UFMG 4395. Paratypes: one female from Usina de 

Aproveitamento Hidrelétrico Serra do Facão, Catalão, Goiás, Brazil (17º44”36.93”S 

47º35‟19.56” W, 933m), VII/2010, R.B. Martines & R.M.C. Silveira coll. 

(UFMG 4564); one female from Parque Nacional da Serra das Confusões, Cristino 

Castro, Piauí, Brazil (8º56‟16.9”S 43º51‟48.1”W), 9/XII/2012, L.S. Carvalho coll. 

(CHNUFPI 609); one male and one female from Pimenta Bueno, Rondônia, Brazil 

(11º38‟60”S 61º12‟0”W), VII/2000, M. Carvalho col. (IBSP 137001); two males 

and one female from Campo de Provas Brigadeiro Velloso, Serra do Cachimbo, Novo 

Progresso, Pará, Brazil (9º21‟45.33”S 54º54‟54.4”W), 7–17/IX/2003 (MPEG 22022). 

Etymology. The specific name is a reference to the distribution of the species in central 

Brazil. 
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Diagnosis. Males can be distinguished by the presence of a dorsal process in the RTA 

(Fig. 5F, 6F [arrow], 7F, 8F). Females can be distinguished by the anterior ridge of the 

epigynum less sclerotized in the middle, conferring an incomplete appearance (Figs. 

10G, 11G). 

Description. Male (holotype): Total length 4.44. Carapace 1.84 long, 1.56 wide. Femur 

II 1.2 long. Carapace brown. Legs and palps brown. Coxae white on the terminal part in 

dorsal view. Femur I and palp with a lighter area on the prolateral part. Sternum and 

labium light brown. Endites light brown with white anterior border. Opisthosoma 

dorsum dark gray with a brown scutum. Ventral side of opisthosoma light brown. Eyes 

sizes and interdistances: AME 0.08, ALE 0.08, PME 0.1, PLE 0.1, AME–AME 0.02, 

AME–ALE 0.02, ALE–PLE 0.02, PME–PME 0.02, PME–PLE 0.05. MOQ 0.38 wide. 

RTA with dorsal process. Leg spination: femora: I, II d1-1-1, p0-0-1; III d1-1-1, r0-1-1, 

p0-1-1; patellae: III, IV p0-1-0, r0-1-0; tibiae: I v1r-2-0, II v1r-2-1p, III, IV d1-1-0, 

v1p-2-2; metatarsi: I, II v2-0-0, III p0-1-1-0, v2-2-2, r1-1-1; IV p0-1-1, v2-2-2, r1-0-1. 

Female (UFMG 4564): Total length 4.88. Carapace 2.16 long, 1.6 wide. Femur II 

1.36 long. Coloration as in male. No dorsal scutum on the opisthosoma. Eyes sizes 

and interdistances: AME 0.07, ALE 0.08, PME 0.06, PLE 0.08, AME–AME 0.04, 

AME–ALE 0.02, ALE–PLE 0.02, PME–PME 0.06, PME–PLE 0.06. MOQ 0.38 wide. 

Epigynum with incomplete anterior ridge and secondary spermathecae smaller than 

primary spermathecae. Leg spination: femora: I, II d1-1-1, p0-0-1; III d1-1-1, r0-1-1, 

p0-1-1; patellae: III, IV p0-1-0, r0-1-0; tibiae: I v0-0-1; II v1-0-1; III p1-1-1, v1p-2-2, 

r1-1-0; IV d1-1-1, p1-1-0, v1p-2-2, r1-1-0; metatarsi: I v2-0-0; II v2-1r-0; III p1-2-1, 

v2-2-2, r1d-1d-2; IV d0-1-1, p1d-1-1, v2-2-2, r1-1-1. 

Variation. Male (N = 45) carapace length 1.51–2.01. Female (N = 20), carapace 

length, 1.71–2.16. 

Material Examined. BRAZIL: Amapá: Macapá, 110m, 2f#, 24-28/XII/2004, R. A. 

Silva coll. (MCTP 16590), Mazagão, 1m#, 03/XII/2003, R. A. Silva coll. (MCTP 

16537); Goiás: Alto Paraíso de Goiás, 14º9'43"S, 47º36'36"W, 1m#, VIII/1991, S.T. 

Amaranto (IBSP 98752), Catalão, Barragem para Aproveitamento Hidrelétrico Serra do 

Facão, 17º35'34"S, 47º37'16"W, 835m, 1f#, I/2010,  17º51'40"S,  47º37'38"W,  762m,  

1m#  1f#,  I/2010, 17º44'36.93"S, 47º35'19.56"W, 933m, 21f#, VII/2010, 

17º36'23.9"S, 47º37'18.52"W, 835m, 1m#, VII/2010, 17º52'24.62"S, 47º37'33.3"W, 

762m, 2m# 2f#, VII/2010, R.B. Martines & R.M.C. Silveira coll. (UFMG 4394, 4406, 

4564, 4552, 4567); Maranhão: Caxias, Reserva Ecológica Inhamum, 4º49'60"S, 
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43º20'69"W, 1m#, 23–26/IV/2007, J.F.B. Lima-Lobato et al. coll. (IBSP 130925), 1m#, 

IX–X/2007, J.F.B. Lima-Lobato & F. Limeira de Oliveira coll. (IBSP 129026); Mato 

Grosso: Nossa Senhora do Livramento, Pantanal do Poconé - Pirizal, Fazenda Retiro 

Novo, 16º15'S, 56º36'W, 1f# 1m#, I/2004–III/2005, L.D. Battirola coll. (IBSP 

125469), Nossa Senhora do Livramento, Pantanal do Poconé - Pirizal, Fazenda Retiro 

Novo, 16º22'1"S, 56º17'58"W, 125m, 2f#, F.S.F. Leite coll. (UFMG 8781); Santo 

Antonio do Levergere, 1m#, 09/X/1981, H. Duarte coll. (MCTP 2522); Mato 

Grosso do Sul: Brasilândia, Horto Rio Verde, 20º50'0"S, 51º40'0"W, 1m# 1 juvenile, 

14/VIII/2007, M. Uehara-Prado coll. (UFMG 12496), Selvíria, Horto Matão, 

20º20'0"S, 51º40'0"W, 1m#, 19/VIII/2007, M. Uehara-Prado coll. (UFMG 12495); 

Minas Gerais: Belo Horizonte, Campus da UFMG, 19º51'53"S, 48º57'58"W, 835m, 

1m#, 3/VIII/2012, P.H. Martins et al. coll. (UFMG 11940), Leme do Prado, 

Reserva Estadual de Acauã, 17º7'94.2"S, 42º43'98.1", 887m, 1f#, 18–28/II/2013, P.H. 

Martins coll. (UFMG 19407); Pará: Novo Progresso, Campo de Provas Brigadeiro 

Velloso, Serra do Cachimbo, 9º21'45.3"S, 54º54'54.4"W, 1f#, 1m#, 16–26/III/2004 

(MPEG 22028, 22029), 11m# 7f# 1 juvenile, 7–17/IX/2003 (MPEG 22007–22024), 

Igarapé-açu, 3f#, 7m#, 09/XII/2002, Eq. FEIGA-UFRA coll. (MPEG 21825–21833), 

1f#, 1m#, 14/IX/2011, S. Ribeiro coll. (MPEG 21839), 1f#, 19/V/2011, S. Ribeiro coll. 

(MPEG 21836), São Geraldo do Araguaia, Serra das Andorinhas, 1f#, 27/X–

07/XI/2011, A. B. Bonaldo et al. coll. (MPEG 21838); Piauí: Alvorada do Gurguéia, 

Fazenda Escola da UFPI, 8º22'28.6"S, 43º51'32.5"W, 1f#, 15–17/II/2012, L.S. Carvalho 

coll. (CHNUFPI 608), ditto, Caatinga, 8º22'28.6"S, 43º51'32.5"W, 230m, 3f#, 15–

17/II/2012, I.L.F. Magalhães et al. coll. (IBSP 165373), Cristino Castro, Parque 

Nacional da Serra das Confusões, 8º56'16.9"S, 43º51'48.1"W, 1f#, 9/XII/2012, L.S. 

Carvalho coll. (CHNUFPI 609), Castelo do Piauí, ECB Rochas Ornamentais, 5º13'46''S, 

41o41'29.9''W, 1m#, 03/XII/2005, F. M. Oliveira-Neto coll. (MPEG 7901), 1f#, 

11/XI/2005, F. M. Oliveira-Neto coll. (MPEG 7903), 1m#, 19/X/2005, F. M. Oliveira-

Neto coll. (MPEG 7902), 1m#, 26/X/2005, F. M. Oliveira-Neto coll. (MPEG 7900), 

ECB Rochas Ornamentais, Fazenda Bonito, 5º14'7''S, 41o41'16.3''W, 1m#, no date, F. 

M. Oliveira-Neto coll. (MPEG 21868), Piracuruca, Parque Nacional Sete Cidades, 

4º05'39.9''S, 41º43'53.3''W, 1m#, 06/XII/2006, L. S. Carvalho, D. Candiani & N. F. Lo 

Man Hung coll. (MPEG 21871), 1m#, 13/IX/2006, L. S. Carvalho & F. M de Oliveira-

Neto coll. (MPEG 9708), 1m#, 21/VI/2007, F. M. Oliveira-Neto coll. (MPEG 21877), 

6m# 5f#, 24/VI/2007, Carvalho, Albuquerque & Oliveira-Neto coll. (MPEG 21878–
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21884), 3m#, 3f#, 26/I/2007, L. S. Carvalho, M. T. Avelino & M. P. Albuquerque coll. 

(MPEG 21872–21876), 1m#, 3f#, no date, no col. (MPEG 21870, 21886); Rondônia: 

Pimenta Bueno, 11º38'60"S, 61º12'0"W, 8m# 4f#, VII/2000, M. Carvalho coll. (IBSP 

137001, 137007, 137010, 137011); São Paulo: Botucatu, Usina São Manoel, 1m#, 

01/XII/1998, Mendes coll. (MZUSP 62766), Itirapina, Estação Ecológica de Itirapina, 

22º16'49"S, 48º7'10"W, 1f#, 2001, C. Bertim coll. (IBSP 126311). 

Distribution. Central Brazil, mainly in Cerrado biome, with some occurrences in 

Caatinga (Fig. 14D). 

 

Apopyllus atlanticus new species 

Figs. 3G, 4G, 5G, 6G, 7G, 8G, 9E–F, 10H, 11H, 12H, 13H, 14C 

 

Type material. Male holotype from Mampituba, Rio Grande do Sul, Brazil, 

(29°12'42.22"S 49°56'9.52"W), 01/XI/2006, A. Gonçalves et al. coll., deposited in 

MCN 52307. Paratypes: two females, same data of holotype (MCN 52303). 

Etymology. The specific name is a reference to the distribution of this species mainly in 

the Atlantic Forest of Brazil. 

Diagnosis. Females can be distinguished by the elongated paramedian epigynal pockets, 

forming a anteriorly directed angle with each other, by the thick AR, by the secondary 

spermatheca with diameter at least two thirds as long as the primary spermatheca, by the 

TPD curved dorsally and by the curved PDD (Fig 10H, 11H, 12H, 13H). Males can be 

distinguished by the very pointed terminal part of RTA in dorsal and retrobasal views 

(Figs. 7G, 8G, 9F), by the gently curved dorsal keel of RTA in apical view (Fig. 9E) 

and by the rhomboidal shape of RTA in retrobasal view (Fig. 7G, 8G). 

Description. Male (holotype). Total length  4.98. Carapace 2.33 long, 1.85 wide. 

Femur II 1.52 long. Eyes sizes and interdistances: AME 0.08, ALE 0.10, PME 0.08, 

PLE 0.06, AME–AME 0.06, AME–ALE 0.01, PME–PME 0.06, PME–PLE 0.03, ALE–

PLE, 0.03. MOQ length  0.23, front 0.21, back 0.23. Cymbium widened at level of 

retrolateral incision. RTA very long, bearing a toothed keel and 2–3 distal teeth. 

Leg spination: femur III p0-0-1, patella III p0-0-1, tibia III v1-2-2, p1-1-1, r 1-1-1, 

femur IV p0-0-1, patella p0-0-1, tibia IV v1-2-2. 

Female (BADIT 51). Total length  7.08. Carapace 2.49 long, 1.98 wide. Femur II 1.65 

long. Eyes sizes and interdistances as in male. Female genitalia with elongated 

openings. Leg spination: femur III p0-1-1, r0-1-1, patella III p0-0-1, r0-0-1, tibia III d0-
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0-1, v1-2-2, p1-2-1, r 1-1-1, femur IV p0-1-1, r0-0-1, patella p0-1-1, r0-0-1, tibia IV d0-

0-1, v1-2-2, p1-3-1, r1-3-1. 

Variation. A few specimens have epigynal pockets not so thin and elongated as in the 

holotype. 

Material Examined. BRAZIL: Bahia: Abaíra, Distrito de Catolés, Pico da Serra 

do Barbado, 13º17'27"S, 41º54'6"W, 2033 m, 1m#, 3/XI/2013, L.S.Carvalho coll. 

(CHNUFPI 613); Porto Seguro, 16º23'21"S, 39º10'1.5"W, 126 m, 4m#, 16/V/2012, 

L.D. Audino coll. (UFMG 16790, 16791), 16º38'48.1"S, 39º6'0.1"W, 27 m, 1m#, 

21/V/2012, L.D. Audino coll. (UFMG 16835), 16º8'27.6"S, 39º9'23.4"W, 91 m, 

2m#, 29/V/2012, L.D. Audino coll. (UFMG 16828); Mato Grosso do Sul: Três 

Lagoas, Horto Barra do Moeda, 20º57'0"S, 51º47'0"W, 1m#, 16/V/2009, M. Uehara-

Prado coll. (UFMG 5080), ditto, 3m#, 18/V/2009, M. Uehara-Prado coll. (UFMG 

5082); Minas Gerais: Catas Altas, RPPN Serra do Caraça, 20º5'S, 43º29'W, 1m#, IV–

V/2002, Equipe Biota coll. (IBSP 148889), Juatuba, Área de Preservação da COPASA, 

Serra Azul/Rio Manso, 20º8'60"S, 44º27'0", 4m# 1 juvenile#, 18–24/IV/2002, Equipe 

Biota coll. (IBSP 149306, 149321), Nova Lima, RPPN Mata Samuel de Paula, 

20º0'S, 43º52'W, 967m, 1m#, 29/IV–1/V/2007, J.P.P. Pena-Barbosa et al. coll. (UFMG 

2526), Ouro Preto, Parque Estadual do Itacolomi, 20º26'5.3"S, 43º30'32.6"W, 1326 

m, 25m# 11f#, 11–13/IV/2008, K.P. Santos et al. coll. (UFMG 2361, 2435), 1m# 1f# 

2–4/XI/2007, K.P. Santos et al. (UFMG 2065, 2066), Santa Bárbara, RPPN Santuário 

do Caraça, Pico do Sol, 20º4'8.17"S, 43º30'17.21"W, 1210 m, 1m#, 15/IX/2010, L.N. 

Perillo coll. (UFMG 6691), Santana do Riacho, Parque Nacional da Serra do Cipó, 

Travessão, 19º19'34"S, 43º30'21"W, 1215 m, 1m#, 10–14/II/2001, E.S.S. Álvares & 

E.O. Machado coll. (UFMG 488), São Gonçalo do Rio Abaixo, Estação de Preservação 

e Desenvolvimento Ambiental de Peti, 19º58'23"S, 43º29'57"W, 820 m, 1f#, 8–

9/XII/2012, G.H.F. Azevedo et al. coll. (UFMG 12652); Paraíba: Cabaceiras, 

7º29'25"S, 36º17'16"W, 1m#, 26/V/2012, R.L. Andrade coll. (CHNUFPI 1448); 

Pernambuco: Serra Talhada, Fazenda Saco, Mata da Pimenteira, 7º53'S, 38º18'W, 

1m#, X/2008, M. Carvalho coll. (UFMG 4336); Rio Grande do Sul:  Augusto 

Pestana, 28º31'2"S, 53º59'31"W, 1f#, 10/I/2009, L.V. Silva et al. coll. (MCTP 

27336), 1m#, 12/XII/2008, L.V. Silva et al. coll. (MCTP 26610), 1f#, 24/I/2009, L.V. 

Silva et al. coll (MCTP 27337), 2f#, 24/II/2009, L.V. Silva et al. coll. (MCTP 27339, 

27340), 1m#, 04/X/2009, L. V. Silva coll. (MCTP 32459), 5f#, 10/I/2009, L. V. Silva 

coll. (MCTP 27345–42736), 1f#, 12/XI/2008, L. V. Silva coll. (MCTP 26618), 1f#, 
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12/XII/.2008, L. V. Silva coll. (MCTP 26617), 1f#, 18/IV/2009, L. V. Silva coll. 

(MCTP 27347), 1f#, 24/I/2009, L. V. Silva coll. (MCTP 27338), 1m, 1f#, 25.X.2009, L. 

V. Silva coll. (MCTP 32511), 1f#, 27/XI/2008, L. V. Silva coll. (MCTP 26622), 1f#, 

27/XI/2008, L. V. Silva coll. (MCTP 26625), 1f#, 27/XI/2008, L. V. Silva coll. (MCTP 

26623), 1f#, 27/XII/2008, L. V. Silva coll. (MCTP 26626), 2f#, 27/XII/2008, L. V. 

Silva coll. (MCTP 26628), Cambará do Sul, 29º8'54"S, 50º4'8"W, 1m#, XII/2004, 

M.V. Petry et al. coll. (MCTP 31222), Capão do Leão, 1f#, 15/I/2008, J. L. O.  

Rosado col l .  (MCN 46781), Horto Florestal, Erchim, 1f#, 31/III–14/IV/2012, R. 

Moraes col l .  (MCN 52308), Itaara, 29º34'60"S, 53º46'59"W, 1m# 1f#, XI/2006, A.A. 

Lise coll. (MCTP 20764, 20765), 1f#, II/2007, A. A. Lise et al. col l .  (MCTP 20770), 

1f#, XI/2006, A. A. Lise et al. col l .  (MCTP 20769); Mampituba, 1f#, 3m#, 

01/XI/2006, A. Gonçalves  col l .  (MCN 52303), Roça da Estância, Mampituba, 1m#, 

01/XI/2006, A. Gonçalves  col l .  (MCN 52307), 1f#, 08/V/2006, A. Gonçalves  col l .  

(MCN 52306), Três Passos, Morrinhos do Sul, 1m#, 01/XI/2006, A. Gonçalves  col l .  

(MCN 52304). Santa Catarina: Blumenau, Parque Municipal das Nascentes do 

Ribeirão Garcia, 27º1'S, 49º1'W, 1f#, 18/V/2005, R.C. Francisco coll. (IBSP 122688), 

Guatambú, 27º6'1"S, 52º45'0"W, 1f#, 04/IX/2009, R.C. Francisco coll. (MCTP 26637); 

São Paulo: Itirapina, Estação Ecológica de Itirapina, 22º16'49"S, 48º7'10"W, 31m#, 

2001, C. Bertim coll. (IBSP 126285, 126288, 126300), Jundiaí, Parque Estadual da 

Serra do Japi, 23º17'S, 46º59'W, 822m, 1m#, XII/2007, J. Sobjack coll. (UFMG 6527). 

Distribution. Southern, southeastern and northeastern Brazil, mainly in Atlantic 

Forest (Fig. 14C). 

 

Discussion 

The female genitalia of Apopyllus were first described as having a pair of 

paramedian openings leading to internal convoluted ducts (Platnick & Shadab 1984). 

However, the copulatory duct trajectory shows that the  copulatory openings are 

actually located below the anterior ridge of the epigynum (Figs. 1A–B) and what was 

thought to be the copulatory openings are blind pockets. Based on their position, we 

suppose that these paramedian pockets might be formed by the lateral epigynal folds. 

During the female genitalia development, the epigynal folds invaginate to form the 

ducts and spermathecae (Sierwald 1989): these remain in the adults as well demarcated 

folds, as a suture or they may be completely absent (Ramírez 2014). We suppose the 
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folds migrate to a paramedian position and are reduced in the adult female Apopyllus, 

forming the pockets and a small depression on the epigynal median field (Fig. 2A).  

The female epigynum of Apopyllus have an anterior ridge that covers the copulatory 

openings (Figs. 1B, 2A). This anterior ridge varies between species (and a little within 

species) and can be used as a taxonomic character. In gnaphosids of the Zelotes group 

(Murphy 2007), a similar anterior structure, the anterior anchoring pocket, may be 

found and this is used for the anchorage of male RTA during copulation (Senglet 2004). 

Although Apopyllus does not belong to this group and the anterior ridge might not be 

homologous to the zelotine anchoring pocket, it might also function as a fitting point 

to the retrolateral tibial apophysis of Apopyllus. In fact, genital mechanics studies 

have shown that the RTA can function as a “preliminary lock” mechanism, fitting 

to specialized structures in the female genitalia to allow pedipalpus alignment before 

intromission (Huber 1995, Eberhard & Huber 2010). The RTA is the most 

interspecificaly variable structure in the otherwise homogeneous male palp of Apopyllus 

species, and the anterior ridge is the most interspecificaly variable structure in the 

external female genitalia. Therefore, changes in one may select changes in the other, 

and their current shape variation could be a product of male-female coevolution. Given 

the channels formed by the keels on RTA, we could also presume that it could have an 

additional function of conducting the embolus. 

Apopyllus is supposed to be closely related to Apodrassodes based on the long coiled 

embolus and the MTE. However, the female genitalia of these two genera are quite 

different. The epigynum of Apodrassodes does not have paramedian pockets, shows no 

trace of lateral folds (Fig. 15C), and has a short anterior scape, which could be 

considered a projection of an anterior ridge. The Apodrassodes vulva has a massive 

mid piece (Fig. 15D; Platnick 1983), which seems to be a matted copulatory duct, from 

which there arises an elongated secondary spermatheca (Fig. 15D) and the short curved 

copulatory duct leading to the primary spermatheca. The female of Nopyllus, another 

genus considered closely related to Apopyllus, is not known. The only described 

gnaphosid that seems to have an epigynum that resembles Apopyllus is the Old World 

genus Synaphosus, which also has a pair of paramedian pockets and long and 

convoluted copulatory ducts (see Murphy 2007, Ovtsharenko et al. 1994). There are 

also some undescribed South American species with paramedian pockets, long 

convoluted ducts and with a long embolus in male palpi (GHFA personal observation). 

It might be that these female characters previously thought to be synapomorphy of 
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Apopyllus are, actually, shared by a small group of genera. A formal phylogenetic 

analysis is needed to test this hypothesis. 

Despite the marked differences in female genitalia, the male copulatory apparatus shows 

evidence of close phylogenetic affinity between Apopyllus, Apodrassodes and Nopyllus. 

The male palp of Apopyllus has a long embolus supported by a membranous tegular 

projection (Figs. 1C, D, 2C). The gnaphosid conductor is usually represented by a 

membranous projection that supports the embolus and is connected to the proximal 

(taking as reference the trajectory of the sperm duct) part of the tegulum (Zakharov & 

Ovtcharenko 2011). This appears to be homologous to the “Sierwald conductor” of 

Polotow et al., (2015: 160), which may be a synapomorphy for the Dionycha (including 

Gnaphosidae) plus the OC (oval Calamistrum) clade (Polotow et al., 2016, p. 133, 

character 39, fig, 4).  In Apopyllus, this membranous projection is located distally on the 

tegulum and, based on its position, it cannot be considered a homologue of the 

conductor of other gnaphosids, hence it is here called Membranous Tegular Extension. 

This membranous distal projection is also found in Apodrassodes and Nopyllus 

(Platnick 1983; Ott 2014), although in Apopyllus it is long and bifid. The conductor 

described in Synaphosus (Platnick 1983; Ovtsharenko et al. 1994) is a distally situated 

bifid membrane, and could be considered a MTE (Figs. 16A-B). Synaphosus also share 

with Apopyllus a long distal tubular membrane (Fig. 16A). The cymbium of Apopyllus 

is also characteristic in being projected retrolaterally, with a retrolateral incision to 

accommodate the embolus in the unexpanded position. In Apodrassodes and Nopyllus 

there is also a modification of the cymbium to accommodate the long embolus, but 

there is no such projection. So, the long and bifid MTE and the projected cymbial 

retrolateral incision might be synapomorphies of Apopyllus. 

The most singular character of Apopyllus is the shape of the RTA. It is a complex folded 

lamina with ventral, apical and dorsal keels (Figs. 1D, 2C, 9A–F). The gnaphosid RTA 

is usually a simple, conical or laminar projection, and a complex structure like in 

Apopyllus is not found in other genera of the family. Therefore, this might be a good 

putative synapomorphy for the genus. The morphology of the bulb structures is 

conserved within the genus but, as shown above, the morphology of the RTA is of 

taxonomic value to distinguish species. 

It is worth noting that, in general, the morphology of male palp seems to be less 

variable between species than the morphology of the epigynum. Apopyllus silvestrii and 

A. iheringi, for example, are two species in which the palps are very similar, but the 
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vulvae are notably different. Usually, the female spider genitalia is less differentiated 

between species than the male‟s (e.g.: Crews 2009; Hepner & Milasowszky 2006; 

Milasowszky et al. 1997), which is expected according to the cryptic female choice 

hypothesis of genital evolution, which predicts that the male genitalia are under more 

intense sexual selection pressure (Eberhard 2010). Thus, a different process than cryptic 

female choice might be involved in the genital evolution of this Gnaphosidae genus. 

This could be elucidated through studies of the mating mechanism and intraspecific 

variability of genital organs of Apopyllus, which seems to be an interesting model to 

test hypotheses on the evolution of spider genitalia.  Gnaphosidae, and the larger clade 

Dionycha to which they belong, underwent a period of accelerated diversification 

relative to other spiders (Garrison et al., 2016): a careful study of gnaphosid genital 

coevolution in a phylogenetic context may allow us to elaborate the processes leading to 

this remarkable evolutionary result. 
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Figures 

 

Figure 1: Genital Morphology of Apopyllus. A, B A. malleco female; C, D. A silvestrii male.  A) Vulva, dorsal view. B) 

Epigynum, ventral view. Vulva can be seen by transparency. C) Male palp, ventral view. D) Male palp, retrolateral view. 

Abbreviations: ACD: Anterior Curled Ducts, AR: Anterior Ridge, AK: Apical Keel, CI: Cymbial Incision, CP: Cymbial 

Projection, Cy: Cymbium, DK: Dorsal Keel, DTM: Distal Tubular Membrane, E: Embolus, ET: Embolus Tip, FD: 

Fertilization Duct, LAD: Lateral Ascendant Duct, LDD: Lateral Descendant Ducts, LL: Lateral Loop, MA: Median 

Apophysis, MTE: Membranous Tegular Extension, PAD: Paramedian Ascendant Duct, PDD: Paramedian Descendant 

Duct, PP: Paramendian Pockets, PPD: Proximal Part of Copulatory Duct, PS: Primary Spermathecae, RTA: Retrolateral 

Tibial Apophysis, SS: Secondary Spermathecae, ST: Subtegulum, T: Tegulum, TPD: Terminal Part of Copulatory Duct, 

Tu: Tuberculum, VK: Ventral Keel. . 
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Figure 2: Apopyllus silvestrii (female and legs: UFMG 8323; male: CASENT 9051658): A) Epigynum, ventral view. B) 

Vulva, dorsal view. C) Expanded male right palp, retrolateral view. D) Tarsus of leg IV, showing pseudosegmentation. 

Abbreviations: AR: Anterior Ridge, AK: Apical Keel of Retrolateral Tibial Apophysis, CI: Cymbial Incision, DK: Dorsal 

Keel of Retrolateral Tibial Apophysis, EB: Embolus Base, ET: Embolus Tip, LF: Lateral Field, MA: Median 

Apophysis, MF: Median Fold, MTE: Membranous Tegular Extension, PP: Paramedian Pockets, SS: Secondary 

Spermathecae, ST: Subtegulum, T: Tegulum, Tu: Tubercle of Retrolateral Tibial Apophysis, VK: Ventral keel of 

Retrolateral Tibial Apophysis. 
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Figure 3: Apopyllus spp., male left palp in ventral view. A) A. silvestrii (MCTP 26293). B) A. pauper (IBSP 129024). C) 

A. now (MCZ 22335). D) A. ivieorum (AMNH). E) A. aeolicus new. sp. (CHNUFPI 1567). F) A. centralis new sp. 

(UFMG 4395). G) A. atlanticus new sp. (UFMG 16828). 
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Figure 4: Apopyllus spp., male left palp in ventral view. A) A. silvestrii (MCTP 26293). B) A. pauper (MCTP 11327). C) 

A. now (MCZ 22335). D) A. ivieorum (AMNH). E) A. aeolicus new. sp. (CHNUFPI 1567). F) A. centralis new sp. 

(UFMG 4395). G) A. atlanticus new sp. (UFMG 16828). 
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Figure 5: Apopyllus spp., male left palp in retrolateral view. A) A. silvestrii (MCTP 26293). B) A. pauper (IBSP 

129024). C) A. now (MCZ 22335). D) A. ivieorum (AMNH). E) A. aeolicus new. sp. (CHNUFPI 1567). F) A. centralis 

new sp. (UFMG 4395). G) A. atlanticus new sp. (UFMG 16828). 
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Figure 6: Apopyllus spp., male left palp in retrolateral view. A) A. silvestrii (MCTP 26293). B) A. pauper (MCTP 

11327). C) A. now (MCZ 22335). D) A. ivieorum (AMNH). E) A. aeolicus new. sp. (CHNUFPI 1567). F) A. centralis new 

sp. (UFMG 4395). G) A. atlanticus new sp. (UFMG 16828). The arrow indicates the dorsal tubercle of RTA in A. 

centralis. 
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Figure 7: Apopyllus spp., male left palp in dorsal view. A) A. silvestrii (MCTP 26293). B) A. pauper (IBSP 129024). C) 

A. now (MCZ 22335). D) A. ivieorum (AMNH). E) A. aeolicus new. sp. (CHNUFPI 1567). F) A. centralis new sp. 

(UFMG 4395). G) A. atlanticus new sp. (UFMG 16828). 
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Figure 8: Apopyllus spp., male left palp in dorsal view. A) A. silvestrii (MCTP 26293). B) A. pauper (MCTP 11327). C) A. 

now (MCZ 22335). D) A. ivieorum (AMNH). E) A. aeolicus new. sp. (CHNUFPI 1567). F) A. centralis new sp. 

(UFMG 4395). G) A. atlanticus new sp. (UFMG 16828). 
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Figure 9: Right palp retrolateral tibial apophysis in apical (A, C, E) and retrobasal (B, D, F) view of A. silvestrii (A, B; 

CAS 9048498), A. pauper (C, D; UFMG 5736)) and A. atlanticus (E, F, MCN 52304 ). Abbreviations: AK: Apical Keel, 

AKp: Apical Keel proximal part, DK: Dorsal Keel, VK: Ventral Keel, VKp: Ventral Keel proximal part. 
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Figure 10: Apopyllus spp., epigynum, ventral view. Vulva can be seen by transparency. A) A. silvestrii (MCTP 26293). 

B) A. pauper (MNRJ58361). C) A. malleco (AMNH). D) A. huanuco (AMNH). E) A. now (MCZ 24971). F) A. 

gandarela new. sp. (UFMG 16876). G) A. centralis new sp. (UFMG 4564). H) A. atlanticus new sp. (MCTP 27338). 
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Figure 11: Apopyllus spp., epigynum, ventral view. Vulva can be seen by transparency. A) A. silvestrii (MCTP 26293). 

B) A. pauper (MNRJ58361). C) A. malleco (AMNH). D) A. huanuco (AMNH). E) A. now (MCZ 24971). F) A. 

gandarela new. sp. (UFMG 16876). G) A. centralis new sp. (UFMG 4564). H) A. atlanticus new sp. (MCTP 27338). 
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Figure 12: Apopyllus spp., vulva, dorsal view. A) A. silvestrii (MCTP 26293). B) A. pauper (MNRJ58361). C) A. malleco 

(AMNH). D) A. huanuco (AMNH). E) A. now (MCZ 24971). F) A. gandarela new. sp. (UFMG 16876). G) A. centralis 

new sp. (UFMG 4564). H) A. atlanticus new sp. (MCTP 27338). 
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Figure 13: Apopyllus spp., vulva, dorsal view. A) A. silvestrii (MCTP 26293). B) A. pauper (MNRJ58361). C) A. malleco 

(AMNH). D) A. huanuco (AMNH). E) A. now (MCZ 24971). F) A. gandarela new. sp. (UFMG 16876). G) A. centralis 

new sp. (UFMG 4564). H) A. atlanticus new sp. (MCTP 27338). 
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Figure 14: Geographic distribution records of Apopyllus species. 
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Figure 15: A) Zelotes pauper (= Apopyllus pauper), female holotype (MLP 15500), epygyne, ventral view. B) Ditto, 

vulva, dorsal view. C) Apodrassodes guatemalensis (MCN 21095), epigynum, ventral view. D) Ditto, vulva, dorsal 

view. Abbreviations: MP: Massive Midpiece, PS: Primary Spermathecae, SS: Secondary Spermathecae, SC: Scape. 
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Figure 16: Synaphosus syntheticus right male palp. A) Retrolateral view. B) Prolateral view. Abbreviations: Cy: Cymbium, 

DTM: Distal Tubular Membrane, E: Embolus, EB: Embolus base, ET: Embolus Tip, MTE: Membranous Tegular 

Extension, ST: Subtegulum, Tp: Tegulum Proximal part, Tt: Tegulum terminal part. 

 

 


