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Abstract

Quantum theory can be described as a framework for calculating probabilities of mea-

surement outcomes. A great part of its deep foundational questions comes from the fact that

these probabilities may disagree with classical calculations, under reasonable premises. The

classical notion in which the observables are frequently assumed as predefined before their

measurement motivates the assumption of noncontextuality, i.e. that all the observables have

preassigned values before the interaction with the experimental apparatus, independently on

which other observables are jointly measured with it. It is known that this classical view is

inconsistent with quantum predictions. The main question of this thesis can be phrased as: can

we use memory to classically obtain results in agreement with quantum theory applied to se-

quential measurements? If so, how to quantify the amount of memory needed? These questions

are addressed in a specific contextuality scenario: the Peres-Mermin square. Previous results

are extended by using a comprehensive scheme, which shows that the same bound of a three-

internal-state automaton is sufficient, even when all probabilistic predictions are considered.

Trying to use a lower dimensional quantum resource, i.e. the qubit, to reduce the memory cost

in this scenario led us to another question of whether or not there is contextuality for this type

of system. We find that sequences of compatible and repeatable quantum measurements on

a qubit cannot reveal contextuality, even when the measurements are not assumed projective

beforehand.
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Resumo

A Teoria Quântica pode ser interpretada como um arcabouço teórico para se calcular

probabilidades de resultados de medições. Grande parte de suas questões fundamentais vem

do fato que estas probabilidades podem entrar em desacordo com cálculos clássicos. A noção

clássica de que observáveis têm valores predefinidos antes de suas medições motiva a premissa de

não-contextualidade(NC), i.e. de que todas as observáveis têm valores pré-atribúıdos antes da

interação com o aparato de medição, independente de quais outras observáveis estão sendo me-

didas conjuntamente. É sabido que tal visão clássica é inconsistente com as previsões da teoria

quântica. O problema principal desta tese pode ser formulado da seguinte forma: podemos usar

memória para obter classicamente resultados de acordo com a Teoria Quântica, para medições

sequenciais? E como quantificar quanta memória seria necessária? Tais questões são abordadas

em um cenário de contextualidade espećıfico: o quadrado de Peres-Mermin. Resultados ante-

riores são ampliados usando uma abordagem abrangente, demonstrando que autômatos com

três estados internos são suficientes, mesmo quando as previsões probabiĺısticas são inclúıdas.

A tentativa de usar um recurso quântico de menor dimensão, isto é, um qubit, para reduzir o

custo de memória neste cenário nos levou a outra questão: se há contextualidade neste tipo

de sistema. Nós descobrimos que uma sequência de medições compat́ıveis e repetit́ıveis em um

qubit não pode revelar nenhuma contextualidade, mesmo que não sejam assumidas medições

projetivas de antemão.
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Introduction

During the last century, the development of quantum theory (QT) exposed the physicists to

theoretical puzzles and conceptual challenges which we are still trying to unravel. When study-

ing the foundations of QT, there exists a great interest about how it differs from classical theory

(CT), which advantages it might offer to society and how well can we understand the basic new

concepts arising from its intricate mathematical formalism. Notions such as entanglement [1],

contextuality [2], nonlocality [3, 4], complementarity [5] etc. are in front of us as obstacles to

be surpassed but also as tools to be explored [6–8]. Research on these topics serves as much as

for constructing the conceptual and theoretical framework as for several technological applica-

tions, ranging from the classical simulation of quantum systems [9–17] to better cryptographic

strategies [18].

In CT, the physical properties of a system are described via deterministic functions on

the set of classical states. Associated with an apple falling from a three, for example, there is a

set of questions we might ask about it: what is its color, its position in a specific time, energy,

momentum etc. If f is a function which associates each question X, for a physical system s,

to the corresponding answer fX(s), then fcolor(apple) = red, and at the level of probabilities

we write papple(red | color) = 1, while papple(blue | color) = 0 and so on. This description is

said to be dispersion-free, i.e. it is given in terms of probability distributions which assume

only two values, 1 or 0, meaning the system having or not having the property. On the other

hand, actual experiments exhibit a degree of imprecision, and ignorance on the actual state of

affairs leads to a probabilistic description in terms of mixtures of dispersion-free distributions.

In subsection 1.4.3, we will see that no dispersion-free probability distribution can be assigned to
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the outcomes of the set of all quantum mechanical observables. This is an interesting discussion

arising with the birth of quantum theory, and exploited by the so-called EPR paper, in 1935,

written by A. Einstein, B. Podolsky, and N. Rosen [19]. In this paper, the authors argue about

why should QT be considered incomplete, if it is assumed a local-realistic definition of physical

models. Their point may be explained in a simpler version, created by D. Bohm [20]. Consider

a singlet state |ψ〉 = 1/
√

2(|01〉 − |10〉), written in the σz basis, distributed over two parties,

Alice and Bob. They will make the same measurement σz on its part of the system, Alice first

and then Bob. When Alice makes her measurement and gets its outcome, she is able to predict

which is the measurement outcome of Bob, because they are anticorrelated. As she does not

need to interact with Bob’s system, this classically means that the measurement outcome is

predefined to Bob. Now, the singlet state maintain its form when rotated, and writing it in the

σx basis it becomes |ψ〉 = 1/
√

2(|+−〉 − |−+〉), in which |±〉 = 1/
√

2(|0〉 ± |1〉). If instead of

measuring σz, they measure σx, the same reasoning applies. This leads to the conclusion that

the outcomes for the measurements in B must be predefined, according to EPR argument, and

therefore quantum mechanics is incomplete, given it does not provide means to predict those

quantities.

An example of a deterministic extension for QT appeared in 1952, proposed by D.

Bohm [21]. It brings a formalism for QT based on the position of the particles and a global

wave function which respects Schrödinger’s quantum dynamics. Therefore, it is complete, in

the sense proposed by EPR, because it allows for deterministic predictions of the properties

of the system. The ignorance on the initial position of the system leads to the probabilistic

predictions, as it commonly happens in classical theory. On the other hand, it has the strange

feature of being nonlocal, i.e. actions of distant observers influence the measurement outcomes

of others.

In the course of this line of research, the differences between QT and CT became more

evident. In 1960, E. Specker [22, 23] found that if the dimension of the quantum state space

is three or larger, there is no way to embed quantum logic, as formulated by J. von Neumann

using the rules of QT, into classical logic, given a set of jointly decidable propositions, its

conjunctions and implications.
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In 1964, motivated by the EPR paper and by the de Broglie-Bohm pilot wave theory,

mainly by its nonlocal character, Bell introduced the concept of local hidden variables [24] to

study the differences between classical and quantum probability distributions for a bipartite

scenario. A random variable λ, unknown to the experimenters, would contain the information

needed for the outcomes of the measurements to become predefined, and then the ignorance on

this variable is responsible for the indeterminacy of the outcomes. Given the bipartite scenario

specified above, we denote by A(â, λ) the outcome of a spin measurement by Alice in the

direction of the unitary vector â, and B(b̂, λ) the analogous for Bob. If the λ has a probability

distribution ρ(λ), the expectation values for the product of the two observables is

EL(â, b̂) =

∫
dλρ(λ)A(â, λ)B(b̂, λ). (1)

The quantum correlations achieved by the singlet state in the same scenario is

EQ(â, b̂) = 〈σâ ⊗ σb̂〉|ψ〉 = −â · b̂. (2)

Bell showed in this paper that the behaviours of EL and EQ are distinct, thus demonstrating

theoretically the impossibility of explaining QT through the use of local hidden variables. Thus,

these works started to show that, although EPR paper present reasonable assumptions, there

is always some price to pay — in Bohm’s case, for example, it’s nonlocality — when trying

to fit QT in classical interpretations, what frustrates the expectations of the paper written in

1935.

In 1966, Bell also showed [25] that when the dimension of the quantum state space is

three or larger, there is no way to assign dispersion free distributions to measurement outcomes

which satisfy the requirements of QT. He perceived that Gleason’s theorem, which will be ex-

plained in subsection 1.4.3, implied this conclusion already. Nevertheless, in 1967 S. Kochen

and E. Specker proved a similar proposal [26]; they solved the issue by analysing the equiva-

lent problem of embedding quantum logic into classical logic, which is equivalent to assigning

consistent definite values to quantum observables. The authors proved the impossibility of this

assignment, with the power of attributing values simultaneously only to jointly measurable
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observables, due to the impossibility of measuring two or more noncommuting observables in

the same experimental apparatus.

Any set of jointly measurable observables defines a context, and the hypothesis of non-

contextuality is defined by the demand that observables have predefined values independent

of which other compatible observables are measured together. Thus, if {A,B,C,D, . . .} is a

context and {A,B′, C ′, D′, . . .} is also a context, a variable λ implies an assignment of the same

value to A in both contexts, i.e. there exists a well defined A(λ). Thus, the papers discussed

above proved that QT is contextual, in the sense that QT cannot be modeled by a noncontextual

model.

There is a straightforward mathematical relation between contextuality and nonlocality.

Observables measured in distinct locations at the same time are compatible by construction,

thus the impossibility to model QT with a local model, i.e. the nonlocal character of the theory,

may be interpreted as a particular manifestation of the contextual character of the theory, when

the subsystems are space-like separated.

Different and simpler arguments proving that QT is contextual appeared later, e.g.

Refs. [2,27–31]. Two particularly important scenarios are discussed in this thesis, the Clauser–

Horne–Shimony–Holt (CHSH) scenario [32] and the Peres-Mermin square [33, 34]. The first

scenario, in a modern adaptation, is an experimental proposal of the scenario proposed by Bell

in 1964, with the generalization consisting of probabilistic outcomes. It attributes probability

distributions p(a | A, λ) and p(b | B, λ) to measurement outcomes a and b, when measuring A

and B, depending on the variable λ, such that the probabilities achieved are of the form

p(a, b | A,B) =

∫
dλρ(λ)p(a | A, λ)p(b | B, λ). (3)

These distributions respect the CHSH Bell inequality, in reference to Bell’s original paper. Each

party has two dichotomic observables, which can assume the values +1 or −1. The inequality
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is written as

〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≤ 2, (4)

in which 〈AiBj〉 is the expectation value for the product of the outcomes of measuring Ai and

Bj. It is known [35] that QT allows a violation of this inequality up to 2
√

2, which is another

proof that it cannot be modeled with local hidden variables.

The second scenario, the Peres-Mermin square, is one of the simplest scenarios in which

contextuality manifests itself. It consist of one party measuring all the observables of one row

or one column of the following square of observables


A B C

a b c

α β γ

 . (5)

A noncontextual modeling assigns±1 value to each observable depending on λ, i.e {A(λ), B(λ), C(λ),

a(λ), b(λ), c(λ), α(λ), β(λ), γ(λ)}. An ensemble of this strategies respects the following inequal-

ity

〈ABC〉+ 〈abc〉+ 〈αβγ〉+ 〈Aaα〉+ 〈Bbβ〉 − 〈Ccγ〉 ≤ 4. (6)

On the other hand, using the following operators


σz ⊗ 1 1⊗σz σz ⊗ σz

1⊗σx σx ⊗ 1 σx ⊗ σx

σz ⊗ σx σx ⊗ σz σy ⊗ σy

 , (7)

QT reaches the value of 6, which is the algebraic maximum of the expression, independently of

which quantum system is being measured. This latter fact also demonstrates that QT cannot

be modeled in terms of a noncontextual model, and that this is a feature of the measurements,

since this violation is valid for all quantum states.
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In the course of foundational research, it has been found that the idiosyncrasies of QT

might in fact help in improving computational strategies. This is intriguing, since if we con-

sider a system described by a Hilbert space of dimension d, only d states can be perfectly

discriminated in a single-shot experiment, and its information-carring capacity is equal or less

than log2 d bits, according to Holevo bound [36]. Therefore, one could think that there is no

advantage in using quantum systems as substrate to perform computations. These natural con-

siderations are disproved by scientific works since the decade of 1980, when the field of quantum

information started being shaped. Since then, there has been a great effort to understand the

role of probabilities arising from quantum theory in order to offer more effective resources to

computational problems with respect to classical programs [6, 37]. For example, distributing a

quantum system over several parties might reduce the communication complexity over what is

possible with classical systems alone [7,12,38]. The relation between this type of problems and

Bell’s nonlocality, and the identification of the latter as a resource is studied in [4,39,40]. One of

the most clear scenarios in which this advantage in communication occurs is in the superdense

coding scenario. In this situation, Alice and Bob share a state |ψ〉 = 1/
√

2(|00〉 + |11〉). By

manipulating her part in a specific way and sending the qubit to Bob, she can transmit two

bits of information, as explained now. She wants to send to Bob one of the strings 00, 01, 10 or

11, after applying only local measurements. Alice can transform locally the global state to one

of the four orthogonal states:

00 :
1√
2

(|00〉+ |11〉) (do nothing),

01 :
1√
2

(|00〉 − |11〉) (apply σz),

10 :
1√
2

(|10〉+ |01〉) (apply σx),

11 :
1√
2

(|01〉 − |10〉) (apply σx than σz). (8)

In the first situation, to send 00, she does nothing. In the second, sending 01, she applies the

σz gate in her part. To send 10, she applies σx. Finally, to send 11, she applies σx and than

σz. As the resulting states are orthogonal, they can be discriminated in a single experiment.

Alice then sends her qubit to Bob, and now in the possession of the two qubits, he can make
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the measurement in the Bell basis and find out which is the two bit message Alice sent him.

One natural question regarding quantum nonlocality is quantifying the communication

needed between parts in order to classically simulate its behaviours1. Generalizing this question

to contextuality brings the idea of quantifying the resource necessary to simulate the results

of quantum sequential measurements. The latter are found be simulated with the use of some

memory, leading to the notion of memory cost [15, 16, 41], i.e. the classical memory needed to

simulate the correlations occurring in sequences of quantum measurements by means of a classi-

cal automaton, defined below. It is impossible to accurately record a quantum state, given that

we have to record complex numbers, and, even worse, the number of real parameters needed

grows exponentially with the size of the system. One alternative is to simulate the probabilistic

behavior of quantum systems in terms of generating outputs with identical probability distri-

butions. During a sequence of measurements X1, . . . , Xn with outputs x1, . . . , xn, a quantum

system updates its state in every step

ρ0
X1−→
x1

ρ1
X2−→
x2

ρ2 . . .
Xn−→
xn

ρn. (9)

The classical counterpart is modeled by a classical automaton with access to k distinct states

s0
X1−→
x1

s1
X2−→
x2

s2 . . .
Xn−→
xn

sn, (10)

in which si ∈ {1, . . . , k}. Those states can be seen as an internal memory of the machine; if we

represent them as binary strings, we need to have access to a string of length of log2 k. The

aim is to reproduce the distribution p(x1, . . . , xn | X1, . . . , Xn). It has been found that the

memory cost can exceed the amount of information which can be stored in a quantum system

defined for a Hilbert space of dimension d, i.e. k ≥ d, and this implies that using a quantum

system can reduce the memory needed for certain input-output processes, yielding a quantum

memory advantage [11,15,16,42–44]. In the seminal paper, which we will explain in chapter 2,

Galvão and Hardy [11] showed that the simulation of a qubit in a unitary evolution requires

1Pragmatically, these behaviours are sets of probability distributions p(ab . . . | AB . . .) which can be obtained
in a given scenario.
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an arbitrary large number of classical bits, depending on the number of steps. In Ref. [15],

Kleinmann et al. introduced the concept of memory cost to quantum contextuality, and derived

some bounds for different scenarios, including the Peres-Mermin scenario, which is great part

of the subject of this thesis. They found a memory advantage while trying to simulate some

deterministic predictions for outcomes of quantum measurements. For example, in a sequence of

measurements ABaA in a ququart, given that A commutes with every operator, but [B, a] 6= 0,

QT predicts that the outcome for A must repeat in both measurements. For a certain choice

of operators, we need k strict larger than four to be possible to reproduce this sequence, thus

defining an instance of quantum memory advantage. In a recent paper, Cabello et al. [42]

found memory advantages in important scenarios, in terms of the entropy of the set of strings

of outputs generated by a quantum system.

Once classical resources are still much more accessible than quantum resources [45], the

analysis of which scenarios would yield a quantum advantage is crucial. We are here interested

in the analysis of the memory cost with respect to quantum contextuality, which means to

determine the classical memory needed when the measurements in a sequence only embraces

mutually compatible measurements [15], and compare this cost to the information carriage

capacity of the system. In this strict form, the question of whether there exists a quantum

memory advantage due to contextuality is still open. Finding a scenario with contextual mem-

ory advantage demonstrates a feature of quantum mechanics which can be used to improve

computational strategies. On the other hand, if there is not any advantage in the contextu-

ality paradigm, besides being fundamentally intriguing why the bound of d states exists, the

incompatibility of quantum measurements would be a useful resource, since in this case there

are situations which show memory advantage.

This thesis is organized as follows. Chapter 1 is dedicated to explain the basic proba-

bilistic framework for quantum and classical measurements, and some experimental differences

between these two approaches. Both CT and QT can be put in the common ground of effects

and instruments, in which the probabilities extracted from the corresponding states are derived.

For QT, the notion of post-measurement state is discussed, with later implications to quan-

tum sequential measurements; in this situation the update rule for quantum states is crucial.
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Furthermore, the notion of nonlocality and contextuality are discussed, and the Peres-Mermin

scenario and CHSH scenario are explained in details.

Chapter 2 is devoted to extend the notion of classical models, to include other resources

such as communication and memory, and how to simulate quantum scenarios with them, quan-

tifying the resource to do this task. Results for communication are better explored and studied,

and some lower bounds on communication cost and its relation with the violation of Bell in-

equalities are discussed. Then, sequential scenarios and its memory cost are considered. First,

the memory cost to simulate a specific decision problem relating to unitary evolution of quan-

tum system is addressed. At last, the Peres-Mermin scenario is studied, and a memory cost to

simulate certain deterministic predictions is derived, giving a lower bound to the main question

considered in this work.

Chapter 3 contains the main results of this thesis, solving two questions. First, the

memory cost for simulating the Peres-Mermin scenario, using a proposal for modeling the

sequence of measurements; these results have been published in Ref. [46]. We found that

three internal states are sufficient to explain quantum correlations for all states and arbitrary

sequences of compatible observables. And this raised the second question: the possibility

of reproducing the same scenario, which uses two qubits, with a lower dimensional quantum

system. As we prove, this is possible even with a classical system with three states of memory,

and so it also possible with a qutrit, which leads us to reduce even more the dimension of the

resource. The impossibility of reproducing the Peres-Mermin scenario with a qubit led us to

rewrite the second question as a more general proposal: is there contextuality in a qubit? We

address this issue considering repeatable and compatible instruments.



Chapter 1

Aspects of Classical and Quantum

Theory

In this chapter we begin to expose the mathematical background and the main points to be

explored in this work, relating to the confrontation between classical and quantum theory. The

focus in the thesis is the cost of classical resources to simulate probabilities obtained from

quantum states and measurements, therefore we briefly explain the probabilistic background

in classical theory (CT), and then a modern formulation in quantum theory (QT). While in

CT the outcome of measurements can be interpreted as the value of a property of the system,

in which the error about this knowledge can be as close to zero as the experimental set up

allows, in QT the notion of incompatible observables appears, and the measurement cannot be

interpreted as a noninvasive procedure any more.

1.1 Classical Events

In classical theories, like Newtonian, Lagrangian and Hamiltonian Mechanics, the features of

physical systems are usually defined as functions on the elements of the state space. Thus, po-

sition, momentum, energy etc. are functions of a classical state to the set of possible outcomes.

This means that the events obtained from measuring those observable quantities are represented

10
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by deterministic, or dispersion free, probability distributions; and the act of measuring only

reveals the value the system holds for that observable even before the measurement. Usually,

it is hard to know the exact classical state we prepare, or even impossible some times. Thus,

a degree of imprecision in the description of the exact state leads to a probabilistic description

of the measurement outcomes. Besides, the empirical distinction between all classical states is

not perfect, because the measurement apparatus has an error associated to the measurement

outcome. A third factor which could impact the discrimination of a given state is not knowing

the exact evolution of the system through time, before measuring it. Then, when obtaining

nondeterministic distributions for measurement outcomes, classical theories allow them to be

interpreted as a mixture of the deterministic distributions, i.e., those distributions in which we

know everything about the system and dynamics. In principle, it is possible to obtain more

precise preparations of each state and more precise measurements so that the statistics obtained

approaches a dispersion free distribution, as we will see in Sec. 1.3.1.

In order to make the above reasoning more clear, we will introduce a notation for the

measurement scenario, which can be translated into an input-output process. Let the measure-

ment choice be the input represented by the elements X ∈ I, the outcome of a measurement

by x ∈ O, with I being the finite set of allowed inputs and O being the finite set of outputs1.

An output is a function of the input, the state of the system and the strategy adopted. The

latter may refer to direct questions of the properties of the system, and may include other gen-

eral attributes, such as classical manipulation af available data before the output. It will be a

general label that represents all the possibilities which can be achieved for available states and

inputs. The output functions for every measurement are denoted by X(s, λ), s being the state

and λ the strategy. In the scope of classical reasoning, we assume we are testing one specific

state for each strategy, i.e. the measurements do not change the state of the system, and thus

the state is implied by the strategy, and the output function can be written only as X(λ). The

probabilities for the measurement outcome are represented by lλ(x1x2 . . . xN | X1X2 . . . XN), in

which the string x1x2 . . . xN is the string of outputs, X1X2 . . . XN is the string of inputs and lλ

is the probability distribution for this string of outputs, given the choice of those inputs and

1Actually, there can be distinct sets of outputs for each input, but for simplicity we can use only one set,
with the required adaptations.
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the strategy λ. We are going to restrict ourselves to a finite number of inputs and outputs,

because these cases are the only important ones in this thesis, and it simplifies the approach.

If the outcomes are functions of the input, the probabilities are dispersion free, which

means that they attain the values 0 or 1, reproducing the deterministic behavior. Consequently,

we have

lλ(x1x2 . . . xN | X1X2 . . . XN) = δx1X1(λ)δ
x2
X2(λ) . . . δ

xN
XN (λ). (1.1)

In this equation, Xi and xi, for i = 1, . . . , N , are arbitrary members of I and O, respectively,

and δab is the usual Kronecker delta. Therefore, this expression is 1 if all the outputs x are in

accordance with the output functions X(λ), and zero otherwise.

There is a larger class of deterministic behaviours, those in which an output is a function

of all the inputs. This can happen for instance when the scenario is composed by several parties,

in which communication is allowed after the input choice, and thus every party can know what

the inputs of the other parties are and change its output accordingly. They are defined as

dλ(x1x2 . . . xN | X1X2 . . . XN) := δx1f1(λ,X1,...,XN )δ
x2
f2(λ,X1,...,XN ) . . . δ

xN
fN (λ,X1,...,XN ). (1.2)

In the expression above, the f ’s are the response functions for each strategy λ and the whole

string of inputs.

A general strategy generates a random variable λ according to some probability distri-

bution ρ(λ). Therefore, the probability distributions achieved are mixtures of the deterministic

strategies dλ, i.e.

pρ(x1x2 . . . xN | X1X2 . . . XN) =
∑
λ

ρ(λ)dλ(x1x2 . . . xN | X1X2 . . . XN). (1.3)
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1.2 Deterministic Strategies as Vertices of Polytopes

Eq. (1.3) may be interpreted as a convex mixture of vectors in a suitable vector space. Given a

specific scenario — which is defined by its inputs, outputs and parties involved, together with

the conditions they must respect — we write the possible strings of inputs as Ei = X
(i)
1 . . . X

(i)
Ni

,

defined as the string i of inputs which are entered in the same run. Define also eij = x
(ij)
1 . . . x

(ij)
Ni

,

given Ei for input, as all the possibilities for the outcomes, ordered by the j index. As an

example, let us assume three dichotomic observables I = {A,B,C}, in which O = {1, 2}. The

scenario consist of measuring ~E := (Ei)
4
i=1 = (A,B,AB,C), meaning that we can enter each of

the inputs separately, but only A and B together. The output events are gathered in an n-tuple

~ei = (eij)j such that, for example, ~e1 = (1, 2) and ~e3 = (11, 12, 21, 22), the possible outputs for

A and AB, respectively. Defining the vectors ~dλ, such that (dλ)ij := dλ(eij | Ei), we see that a

general convex combination

L∑
λ=1

ρ(λ)~dλ, (1.4)

in which L is the total number of strategies, defines a convex polytope [47–49], because it is

the convex hull of a finite number of points, which are the extremal vectors ~dλ. To be clear,

this constitutes a polytope P defined as

P := { ~q | qij =
∑
λ

dλ(eij | Ei)ρ(λ), for some ρ(λ) }

:= { ~q | ~q = D~ρ, for some ~ρ } (1.5)

in which ~ρ = (ρ(λ = 1), ρ(λ = 2), . . . , ρ(λ = L)), with ρ(λ) ≥ 0 and
∑L

λ=1 ρ(λ) = 1. The

matrix D has its columns formed with the vectors ~dλ, i.e. D = [~d1
~d2 . . . ~dL]. Therefore,

defining eij | Ei as the event of obtaining the outcomes eij when making the measurements in

Ei, qij is the probability for the event eij | Ei given the ensemble characterized by ρ(λ).

The above way of writing the convex polytope, a convex hull of a finite number of

vertices, is called vertex representation (or V-representation), see Fig.1.1(a); more details about
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Figure 1.1: (a) Convex set formed as convex mixture of a finite number of vertices. (b) Convex
set formed by the points which are located in the intersection of the half-spaces defined by the
inequalities.

general representations can be found in [47–49]. Another useful way of characterizing the

polytopes, which will be a major tool of the present thesis, is the half-space representation

(H-representation), see Fig. 1.1(b). It consists of constructing the polytope as an intersection

of half spaces, defined by linear inequalities, i.e.

P = {~q | ~hl.~q ≤ αl ∀ l}. (1.6)

In this expression, the ~hl are vectors of coefficients for the linear inequalities and, together with

αl, they determine a half space region in the original vector space. The intersection of these

half-spaces defines the same polytope.

1.3 States and Effects

Usually in an experiment, it is possible to define the process in two steps: preparation and

measurement. The line separating the two regions is quite arbitrary, and in these procedures

might be included transformations, such as unitary gates, on a state that comes out of a source,

for example.

The notion of effects allows us to embrace both the classical and the quantum proba-

bilistic framework. From this section until Sec. 1.4.8, the content is formulated and disposed

according to the book of T. Heinosaari and M. Ziman [50], with the required adaptations. This
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Figure 1.2: A physical system is prepared and sent to a measurement apparatus, which outputs
“yes” or “no”, based on the received system λ and internal features of the apparatus.

book provides a modern compilation of important results for the mathematical formalism of QT,

and the effects are one of the starting points for the construction that follows. The interested

reader might also want to read Ref. [51], a earlier publication with a similar approach.

According to the authors, an effect “is a measurement apparatus that produces either

‘yes’ or ‘no’ as an outcome”. In this general framework, given a state ρ we associate an effect

E : ρ 7→ [0, 1] (1.7)

as the probability of an ‘yes’ answer. By definition, the identity effect I assigns probability one

to every state, i.e. I(ρ) = 1, and the zero effect O assigns a null probability, i.e. O(ρ) = 0.

If we prepare two states ρ1 and ρ2, and randomly select ρ1 with probability p, this

results in a new preparation procedure, and thus the effect must act in the convex mixture of

the states. This means that the resultant effect is also a convex mixture of the original effects,

i.e.

E(pρ1 + (1− p)ρ2) = pE(ρ1) + (1− p)E(ρ2). (1.8)

Another starting point would be if we turn our attention to the states. Then, it is

possible to define them with respect to the allowed effects for each theory. They can be seen

as what comes out from the preparation procedure. In this way, the meaning of states would

be to represent the physical objects which behave identically under all experiments, i.e. a state

is the set of preparation procedures that identically leads to the same effects. In other words,

we might be able to recognize the set of effects demanded by the experiments, and, labeling by
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the states, we can define the functions

fρ(E) := E(ρ), (1.9)

and for two states ρ1 and ρ2, we have ρ1 = ρ2 iff both states define the same function for all

effects, i.e.

fρ1(E) = fρ2(E), ∀ E. (1.10)

Finally, convex combination of the states must respect

(λf + (1− λ)f ′)(E) = λf(E) + (1− λ)f ′(E). (1.11)

We will take as the starting point the states and derive the effects associated to them.

As an effect can be seen as the probability of a “yes” answer, in a measurement with more than

two outcomes, the probability of each outcome is represented by an effect.

1.3.1 Classical Effects

The tools described above can be used both in classical and quantum formalisms. The applica-

tion in the classical realm is done through the identification of classical preparation procedures,

i.e. classical states, as members of a state space Ω, and effects as functions from Ω to the

interval [0, 1]. Usually Ω is infinite, like the usual position vs. momentum phase space, which

for N degrees of freedom is associated with R
2N . In this thesis, though, we are going to deal

only discrete state space. Thus, in the scenario in which Ω contains d elements, a classical

preparation procedure is represented by a probability vector

~p = (p1, . . . , pd). (1.12)
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The equation above is interpreted as preparing the state i with a probability pi, and it can

be seen as an ensemble of the d distinguishable states. On the other hand, the effects are

represented by

~e = (e1, . . . , ed), (1.13)

satisfying 0 ≤ ei ≤ 1. The probability for a ‘yes’ answer for this effect is ~p · ~e =
∑

i piei. The

identity effect is I = (1, 1, . . . , 1) and the zero effect is O = (0, 0, . . . , 0).

There is no state for which all the effects are dispersion free, i.e. produces only 0 or 1,

but we can restrict the analysis to extremal states and to extremal effects. An element of a

convex set is extremal iff it cannot be written as a convex combination of any other element. In

this situation, both pi and ei belong to {0, 1}, and this corresponds to the deterministic scenario

in this formalism. Therefore, there are d extremal states and 2d extremal effects. If the state

i has the property associated to an effect then ei = 1, otherwise it is zero. Consequently, it is

possible to interpret the classical effects as a mixture of deterministic effects on a discrete set

of states.

1.4 Quantum Theory

Quantum theory (QT) is a consistent probabilistic theory developed through the last century,

and its foundations raises interesting confrontations with the foundations of classical theory.

One of its most intriguing features is contextuality, in which the possibility that quantum

systems have predefined values as outcomes of measurements, and therefore dispersion free

probability measures for measurement outcomes, implies that the outcome of each measure-

ment has to depend on which other observables are measured alongside. In other words, the

measurement outcomes would depend on the context of the measurement. We explain now the

framework for QT, and later the fundamental aspects and non-usual behaviors with respect to

classical reasoning.
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1.4.1 Mathematical Formalism

The state space of QT is a subset of the space of linear operators in the Hilbert space L(H).

Considering the mathematical description, the only specific characteristic of the state space is

the dimension of the underlying Hilbert space H. The set S(H) of physical states associated

to a Hilbert space H is

S(H) := {ρ ∈ L(H) | ρ ≥ 0, tr(ρ) = 1}. (1.14)

The members of this space are usually called density matrices. Consequently, effects are linear

mappings S(H) → [0, 1]. These properties guarantee (c.f. [50], pg. 68) that for every effect

there is a selfadjoint operator Ê, such that

E(ρ) = tr(ρÊ). (1.15)

The equation above is related to the Born rule in this approach. It associates every measure-

ment outcome to an effect, and the probability for that outcome is given by Eq. (1.15). Every

Ê has to respect 0 ≤ Ê ≤ I. As we are going to deal only with quantum effects, from now

on we will write the selfadjoint operators without the hats. In this way, the set of effects is

denoted by E(H):

E(H) = {Ê ∈ LS(H) | 0 ≤ E ≤ I}. (1.16)

In the equation above, LS(H) is the set of selfadjoint linear operators on the Hilbert space H.

Note that projections are effects, but not all effects are projections. For example, as-

suming the reader familiar with Dirac notation, an operator t |ψ〉 〈ψ|, for positive t < 1, is an

effect but not a projection. The collection of projections is denoted by P(H).
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1.4.2 Observables and POVMs

Effects are used to formalize the notion of probabilistic “yes” or “no” outcomes inside the Hilbert

space formalism of quantum theory. Usually, though, an experiment has several outcomes for

a given preparation, each one occuring with a certain probability. The term observable defines

the mathematical description of this idea.

Given an experiment with n outcomes on a quantum state ρ , each of the outcomes is

represented by an effect Ei, i = 1, . . . , n. Assuming that there is always an outcome in every

run, the normalization of probabilities implies that

tr(ρE1) + tr(ρE2) + . . .+ tr(ρEn) = 1. (1.17)

in which 0 ≤ tr(ρEj) ≤ 1. As this is required to be valid in all quantum states ρ, the effects

have to obey

n∑
j=1

Ej = I, (1.18)

Concluding, we can say that a discrete observable is a collection of effects which obey

condition (1.18).

In the general case, we need to define the objects more carefully, with the notion of

generalized probability measures on the set of effects. If Ω is a non-empty set, a collection F

of subsets of Ω is a σ-algebra if:

1. Ω is in F ;

2. if X1, X2, . . . are in F , then ∪iXi is also in F ;

3. if X is in F , Ω\X is also in F .

The pair (Ω,F) is called a measurable space. An element of X ∈ F is called an event.

Thus a σ-algebra allows to assign probabilities to events in a consistent way. A probability
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measure is an assignment p : F 7→ [0, 1] such that

1. p(Ω) = 1;

2. p(∪iXi) =
∑

i p(Xi) for sequences {Xi} of pairwise disjoint sets in F .

Then, it is possible to define positive operator-valued measure (POVM) as a mapping A : F →

E(H) such that

1. A(Ω) = I;

2. A(∪iXi) =
∑

iA(Xi), for sequences {Xi} of disjoint sets Xi ∈ F .

The conditions above guarantee that this mapping A defines a probability measure for

every set of outcomes X for all quantum states ρ via tr[ρA(X)]. The possible observables

in quantum theory are now defined with the set of POVMs. For observables which have a

countable set of outcomes xi, this set is identified with Ω, i.e. Ω = {x1, x2 . . .}, and F is chosen

to be the power set 2Ω, which is the set constructed with all possible subsets of Ω and therefore

has 2|Ω| elements. By the conditions for POVMs applied to a countable Ω, an observable A of

this type is totally characterized by the assignments

xj 7→ A(xj), (1.19)

with
∑

iA(xi) = I.

An observable is called sharp, or a projection, if for every X ∈ F , A(X) is a projection,

i.e. A(X) = [A(X)]2.

Proposition 1.1. The following statements are equivalent ( c.f. [50], Prop. 3.29)

1. A is sharp;

2. A(X)A(Y ) = A(X ∩ Y ), for every X, Y ∈ F ;
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3. A(X)A(Ω/X) = O, for every X.

Proposition 1.2. The range of a sharp observable A consists of mutually commuting projec-

tions.

Proof. It follows from proposition 1.1. If A(X) and A(Y ) are in the range of A,

A(X)A(Y ) = A(X ∩ Y ) = A(Y ∩X) = A(Y )A(X). (1.20)

Proposition 1.3. If A is a sharp observable on a Hilbert space of dimension d, then it consists

of at most d outcomes with nonzero probability represented by orthogonal projections.

Proof. Proposition 1.1 tells us that when X ∩ Y = ∅ then A(X)A(Y ) = 0. And there can be

at most d mutually orthogonal vectors, each one representing one of the projectors, therefore

associated to d outcomes.

In the usual textbooks of quantum mechanics [52, 53], the observables are defined in

terms of selfadjoint operators. How does the formalism explained in this section relates to the

usual one? The answer comes from the spectral decomposition theorem.

Theorem 1.1. Spectral Decomposition

If T is a Hermitian operator, there exists an orthonormal basis {φi} and a sequence {λj}

of real numbers such that

T =
∑
i

λi |φi〉 〈φi| . (1.21)

Given a Hilbert space of dimension d, an experiment with d distinct outcomes {a1, . . . , ad},
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and an associated orthonormal basis {|ai〉}di=1, the following operator is selfadjoint

A =
∑
i

aiPai , (1.22)

in which Pai is the projector into the subspace associated to the outcome ai. Besides, starting

with some selfadjoint A, its eigenvalues are denoted by ai, representing the outcomes, with

the corresponding eigenvectors spanning the associated subspace. The projector onto those

subspaces are represented by Pai , and the probability for each outcome is given by tr[ρPai ].

Consequently, the expectation value of a sharp observable A might be expressed as

〈A〉ρ =
∑
i

aip(ai)

=
∑
i

ai tr[ρPai ]

= tr(ρA). (1.23)

1.4.3 Extremal Effects

We already saw that the extremal states on classical mechanics are dispersion free when re-

stricted to extremal effects. Below we see that trying to interpret the probabilities obtained in

QT in terms of dispersion-free assignments is impossible, for dim(H) ≥ 3.

As already mentioned, an element of a convex set is called extremal if it cannot be

written as a convex sum of other elements. The extremal states from S(H) are called pure

states. If a state is not pure, it is called a mixed state.

The theorem 1.1 guarantees there is a canonical convex decomposition for quantum

states, expressed in the following theorem:

Theorem 1.2. Canonical Convex Decomposition
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If ρ ∈ S(H), it can be expressed as a convex sum of projectors

ρ =
∑
i

λiPi. (1.24)

As ρ is Hermitian, this is proved using the trace condition tr[ρ] = 1 and positivity. The

existence of a canonical convex decomposition implies that the extremal elements of the state

space are the projectors Pi. It is a good moment to point that the notion of extremality is,

in general, different from that of boundary states. A state belongs to the boundary if there

is another arbitrarily close linear selfadjoint operator with trace one that is not a state. In

other words, ρ is on the boundary if, for each ε > 0, there exists a selfadjoint operator ξε, with

tr [ξε] = 1, such that ||ρ − ξε||tr < ε, but ξε 6∈ S(H). An extremal state is on the boundary,

but usually the boundary is formed also by mixed states. The example of the cube illustrates

that. The extremal elements are its vertices, and its faces belong to its boundary, although

they are formed by convex combinations of its vertices. For QT, the only example in which the

boundary coincides with the extremal states, considering a fixed dimension, is in the case of

qubits. It is interesting to note that all states which have eigenvalue 0 belong to the boundary.

The results for the extremal effects have similarities with those for the extremal states,

as seen below.

Proposition 1.4. The extremal elements of the set of effects E(H) are the projections.

Proof. To see that every projection is an extremal element, try to write it as a convex sum of

two other effects

P = λE1 + (1− λ)E2. (1.25)

Find some |ψ〉 ∈ H such that 〈ψ|Pψ〉 = 0, i.e.

λ 〈ψ|E1ψ〉+ (1− λ) 〈ψ|E2ψ〉 = 0 (1.26)

This implies that 〈ψ|E1ψ〉 = 0. Therefore, we see that P |ψ〉 = 0 =⇒ E1 |ψ〉 = 0. Analogously,
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using the projection I − P and another vector |φ〉, such that (I − P ) |φ〉 = 0, we see that

P |φ〉 = |φ〉 =⇒ E1 |φ〉 = |φ〉. As a projection can be expanded in terms of its eigenvectors,

one should conclude that E1 = P , therefore E2 must also be equal to P and only trivial

expansions of a projector are consistent. Therefore, the projectors are extremal.

To see why only the projections are extremal, assume that there is an effect A which

is not a projection but is extremal. The derived operator E1 = A2 6= A is also an effect, and

E2 = 2A−A2 is also an effect. The fact that the latter is an effect is easily seen in the expression

I − E2 = I − 2A+ A2 = (I − A)2, which is an effect. Therefore,

A =
1

2
(E1 + E2), (1.27)

and consequently A is not extremal.

1.4.4 Gleason’s Theorem

Trying to assign a classical view to quantum theory is the same as trying to find dispersion free

assignments to the set of extremal POVMs acting on pure states. The projective measurements

are extremal, and it is enough to restrict the analysis to them. Below we show the impossibility

of dispersion-free assignments to projections, if dimH ≥ 3.

We want to find a probability measure on the projections Pi ∈ P(H) such that f(Pi) ∈

{0, 1}, and f has to obey

1. f(I) = 1 and

2. f(
∑

i |ϕi〉 〈ϕi|) =
∑

i f(|ϕi〉 〈ϕi|),

in which {ϕi} forms an orthonormal set. The two assumptions are independent; while the first

one was already explained, the second is a desirable behaviour of the probability assignments.

It is formalizing the notion that if two outcomes x1 and x2 are associated to two projections

and the latter belong to the range of the same observable — and therefore they are orthogonal
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— the observation of an event which is the outcome x1 or x2 is the sum of each probability.

This corresponds to summing the projections.

If two states |η〉 and |φ〉 are orthogonal and f(|η〉 〈η|) = 1, then f(|φ〉 〈φ|) = 0. If both

f(|η〉 〈η|) = f(|φ〉 〈φ|) = 0, then every linear combination of η and φ, i.e. ψ = a |η〉+ b |φ〉, with

|a|2 + |b|2 = 1, must lead to f(|ψ〉 〈ψ|) = 0. This comes from noticing that

f (|aη + bφ〉 〈aη + bφ|+ |b∗η − a∗φ〉 〈b∗η − a∗φ|) = f (|η〉 〈η|+ |φ〉 〈φ|) = 0, (1.28)

and, therefore f(|aη + bφ〉 〈aη + bφ|) = f(|b∗η − a∗φ〉 〈b∗η − a∗φ|) = 0, since a |η〉 + b |φ〉 and

b∗ |η〉 − a∗ |φ〉 are orthogonal.

Theorem 1.3. If dimH ≥ 3, there is no dispersion free probability measure on P(H).

Proof. Let us suppose that exists a dispersion free probability measure on P(H) when dimH ≥

3.

Choose some vector |ϕ〉 for which f(|ϕ〉 〈ϕ|) = 1. Suppose there is another vector |φ〉

such that f(|φ〉 〈φ|) = 0 and || |ϕ〉 − |φ〉 || ≤ 1/3. We define

|φ〉 =
|ϕ〉+ ε |ϕ′〉√

1 + ε2
, (1.29)

in which ε ∈ R, ε > 0. Furthermore, we choose |ϕ′〉 orthogonal to |ϕ〉, thus we see that ε must

be less than 1/2. Now, choose another vector |ϕ′′〉, orthogonal to both |ϕ〉 and |ϕ′〉, and define,

for any nonzero real number γ, other two orthogonal vectors

|ψ〉γ =
1

N
(− |ϕ′〉+ γ |ϕ′′〉),

|ψ′〉γ =
1

N ′

(
|φ〉+

ε

γ
√

1 + ε2
|ϕ′′〉

)
, (1.30)

in whichN andN ′ are normalization factors. By the definitions above, f(|φ〉 〈φ|) = f(|ϕ′〉 〈ϕ′|) =

f(|ϕ′′〉 〈ϕ′′|) = f(|ψγ〉 〈ψγ|) = f(|ψ′γ〉 〈ψ′γ|) = 0.
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Since ε < 1/2, we define γ± by

ε(γ± + γ−1
± ) = ±1. (1.31)

The expression above comes from the inequality |γ + γ−1| ≥ 2, for any γ. Finally, defining

another pair of vectors

|η±〉 =
ε
√

1 + γ2
± |ψγ±〉+

√
1 + ε2(1 + γ−2

± ) |ψ′γ±〉√
1 + ε2(γ± + γ−1

± )2

=
|ϕ〉+ ε(γ± + γ−1

± ) |ϕ′′〉√
1 + ε2(γ± + γ−1

± )2

=
1√
2

(|ϕ〉 ± |ϕ′′〉). (1.32)

Now, the η± are linear combinations of ψγ, thus f(|η±〉 〈η±|) = 0. On the other hand,

|ϕ〉 =
1√
2

(|η+〉+ |η−〉) , (1.33)

which leads to f(|ϕ〉 〈ϕ|) = 0. This is in contradiction with our original assumption, and there-

fore, examining the logical steps, the assumption f(|φ〉 〈φ|) = 0 is inconsistent. Concluding, as

the values must be distributed according to the normalization constraint, there is no way to

assign a dispersion free probability distribution for the continuous set of projections.

A profound theorem which describes the unique generalized probability measure for the

set of projections through the state space is the Gleason’s theorem:

Theorem 1.4. (Gleason’s theorem)

If dimH ≥ 3, for every probability measure f : P(H)→ [0, 1] there is a unique operator

ρf ∈ S(H) such that

f(P ) = tr(ρfP ). (1.34)

The above relation means that the probabilities for the extremal effects one might realize
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in a lab on a physical system, in the framework of QT, are derived from a specific quantum

state through the above formula. As it is never dispersion free, it is impossible for QT to be

interpreted like a mixture of deterministic behaviors. It is a good point to note that two of

the most important fundamental questions left — and they are reduntant, i.e. answering one

automatically answers the other, nonetheless it is important to choose — is why is the state

space of QT the set of density matrices associated to the Hilbert space formalism, or why the

effect space is E(H). Gleason’s theorem is for systems with dimension greater than two, while

for dimension two there are explicit dispersion free models, the interested reader can check

in [50], pg. 80.

1.4.5 Composite Systems

Suppose there is a physical system with two distinguishable parts, A and B, described by two

quantum states ρA ∈ S(HA) and ρB ∈ S(HB). One should look for a way to consistently

describe the joint system. Denoting the effects which act on each part respectively by EA and

EB, if they are uncorrelated, there should be a joint effect γ(EA, EB) ∈ E(HAB), and a joint

quantum system γ̄(ρA, ρB) ∈ S(HAB) such that

tr(γ̄(ρA, ρB)γ(EA, EB)) = tr(ρAEA) tr(ρBEB). (1.35)

We identify HAB with the tensor product of the separated spaces HAB = HA ⊗ HB.

Then, the joint effects are tensor products of each effect γ(EA, EB) = EA⊗EB and analogously

for the state, γ̄(ρA, ρB) = ρA ⊗ ρB.

Note that the state space consists not only of the composition of uncorrelated systems

and effects, but of more exotic elements ρAB, which gives rise to many foundational questions.

These states are the so-called entangled states, which are those which cannot be written as a
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convex sum of product states

ρAB 6=
∑
i

γiρ
(i)
A ⊗ ρ

(i)
B , (1.36)

for any ρ
(i)
A and ρ

(i)
B , and γi ∈ R+,

∑
i γi = 1.

For a composite system, it is possible to obtain information about its parts, by the

partial trace.

Definition 1.1. The partial trace for the system A, over B, is a mapping trB : S(HAB) →

S(HA) such that

tr[trB[ρAB]E] = tr[ρAB(E ⊗ I)], (1.37)

for all effects E. The partial trace over A is defined in analogous way.

The statistics for the system A alone is obtained through the quantum state resulting

from the partial trace over the system B, i.e. ρA := trB[ρAB].

1.4.6 Quantum Channels

Physical states are able to undergo transformations, and in QT this is done through quantum

channels and quantum operations. The authors of the book in Ref. [50] define a channel as

a transformation which takes as input a quantum state and maps it to another state. An

operation is a more general idea which maps quantum states to subnormalized quantum states,

thus allowing for example loss of systems during a transformation. Subnormalized states are

defined as

S̃ = {ρ ∈ L(H) | ρ ≥ O, tr(ρ) ≤ 1}. (1.38)
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The operations N which act on quantum states must be linear, i.e.

N (
∑
i

λiρi) =
∑
i

λiN (ρi), (1.39)

in order to provide the same action on two different convex decompositions of the same quantum

state. Therefore, these operations are considered to be linear mappings on S̄(H). They have

to satisfy

• tr[N (ρ)] ≤ 1,

• N (ρ) ≥ O.

The operation N which respects tr[N (T )] ≤ tr[T ], for all positive operators T ∈ T (H),

is called trace nonincreasing operation. And, if for all T , it respects tr[N (T )] = tr[T ], it is

called trace preserving.

As the composition of systems is done through tensor product, an operation acting

locally on a quantum system must transform the whole composite system into a positive oper-

ator. This is guaranteed through demanding complete positiveness. In composite system AB,

an operation acting on A will be represented by

NA(ρA)⊗ ρB = (NA ⊗ I)(ρA ⊗ ρB). (1.40)

The positiveness of NA does not always imply positivity of any extension NA⊗ I, as it happens

for example with transposition. Choosing an orthogonal basis {|φ〉i}di−1, the linear operation of

transposition τ permutes the ket and bra elements, i.e.

τ(|φi〉 〈φj|) = |φj〉 〈φi| . (1.41)

As the eigenvalues are not modified by the transposition, it is a positive operation. Now consider
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the operation τA ⊗ I applied on the state |ψ+〉 〈ψ+|, in which

|ψ+〉 =
1√
d

∑
j

|φj〉 ⊗ |φj〉 .

=⇒ |ψ+〉 〈ψ+| =
∑
i,j

1

d
|φi〉 〈φj| ⊗ |φi〉 〈φj| . (1.42)

Thus, τA⊗ I(|ψ+〉 〈ψ+|) = 1
d

∑
i,j |φj〉 〈φi| ⊗ |φi〉 〈φj|. This operator is not positive semidefinite,

since

(
∑
i,j

|φj〉 〈φi| ⊗ |φi〉 〈φj|) · (|φ1〉 ⊗ |φ2〉 − |φ2〉 ⊗ |φ1〉) = −(|φ1〉 ⊗ |φ2〉 − |φ2〉 ⊗ |φ1〉), (1.43)

and therefore, it has negative eigenvalues.

Definition 1.2. A linear mapping NA is completely positive if every mapping NA ⊗ I ∈

T (HA ⊗HB) is positive, for all finite dimensional extensions HB.

Summarizing, a quantum channel/operation obeys the following properties:

1. linearity,

2. complete positiveness,

3. trace preserving/nonincreasing.

The channels have a very useful representation in terms of a sum of operators, which

we use to prove a result in Sec. 3.2. First, note that a state of the form NS(ρ) = SρS† is

valid subnormalized state, for S†S ≤ I and tr [S] < ∞. The properties of linearity and trace

nonincreasingness are implied by these facts, and the complete positivity comes from

〈ψ | (SρS† ⊗ I) | ψ〉 = 〈ψ | (S ⊗ I)(ρ⊗ I)(S† ⊗ I) | ψ〉 = 〈ψ̃ | (ρ⊗ I) | ψ̃〉 ≥ 0, (1.44)

where |ψ̃〉 = (S† ⊗ I) |ψ〉. If S†S = I, then NS is a channel.
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Figure 1.3: A system is prepared in the state ρ; after the measurement it changes to state ρ′.

Also, by linearity, the sum

NS = NS1 +NS2 + . . .NSN
(1.45)

is an operation or channel, if

S†1S1 + S†2S2 + . . .+ S†NSN ≤ I. (1.46)

By the proposition below, we see that the converse is also true.

Theorem 1.5. A linear mapping E : S(H) → S(H) is a channel if and only if there exists a

sequence of operators {Ak} such that (c.f. [50], Prop. 4.21)

E(T ) =
∑
k

AkTA
†
k,

∑
k

A†kAk = I. (1.47)

If dimH = d <∞, then it is possible to choose d2 or fewer operators Ak.

The form in Eq. (1.47) is called operator-sum form, or Kraus-form, of a channel E . The

operators Ak are called Kraus operators.

1.4.7 Measurement Models and Instruments

In the process of measuring an observable A, we firstly prepare a quantum system on a state

ρ ∈ S(H) and send it to the measurement apparatus. An outcome is registered in the latter,

and the system may or may not be destroyed in the process. If the quantum state is not always

destroyed, as in Fig. 1.4.7, the definition of post-measurement state to be used in subsequent

measurements is of significant role. The system interacts with a probe initially prepared in a
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state ξ ∈ K, by its own a physical system associated to some Hilbert space dimension. After

this interaction the state of the measured system changes, in general, and the probe becomes

correlated with the system; finally we make the measurement on the probe. Therefore, in a

measurement model we should specify

• K, the Hilbert space associated to the probe system;

• ξ, the initial state of the probe;

• V , a channel from S̄(H⊗K) to S̄(H⊗K);

• the pointer observable F , associated to the probe effect space, and assumed to have the

same outcome space (Ω,F) than A.

The quadrupleM = (K, ξ,V , F ) is a measurement model of A if, for all quantum states

ρ,

tr[ρA(X)] = tr[V(ρ⊗ ξ)(I ⊗ F (X))]. (1.48)

This means that the probabilities obtained by measuring the probe are the same as those

associated to the effects for the observable A. After the first interaction, and assuming that

the system is not destroyed, we will measure another observable B. As we are dealing only

with finite number of outcomes, we will change notation slightly. The effects associated to the

outcome x and an observable A are going to be denoted by Ax, and for the second observable

B with outcome y the effects are By. Denoting by pρ(x, y) the probability of measurement of

A and B to return an outcomes x and y, the joint probability obtained in this scenario is

pρ(x, y) = tr[ρAxBy] = tr[V(ρ⊗ ξ)(By ⊗ Fx)]. (1.49)

comparing with Eq. (1.37) this is the same as

tr[V(ρ⊗ ξ)(By ⊗ Fx)] = tr[By trK(V(ρ⊗ ξ)(I ⊗ Fx))]. (1.50)
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Therefore, it is useful to define the operator

IMx (ρ) = trK(V(ρ⊗ ξ)(I ⊗ Fx)) (1.51)

such that

pρ(x, y) = tr[IMx (ρ)By]. (1.52)

This mapping from ρ→ IMx (ρ) has the following properties

(i) for each X, IMx is an operation;

(ii) tr[IMΩ (ρ)] = 1 and tr[IM∅ (ρ)] = 0, ∀ ρ;

(iii) for a sequence {xj} of pairwise disjoint sets

tr[IM∪xj(ρ)] =
∑
j

tr[IMxj (ρ)]; (1.53)

and, by definition

pρ(x) = tr[IMx (ρ)]. (1.54)

A mapping I, which satisfies the conditions (i)− (iii) above is called an instrument ; they are

used here to define the post-measurement state. Our results in Sec. 3.2 are proven inside this

formalism.

1.4.8 Quantum Contextuality

Nonlocality: CHSH scenario

Consider two parties, Alice and Bob, spatially separated, each of which holding a box with a

physical system inside, c.f. Fig. 1.4. Each box has a set of input buttons and produces an
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output after each button is pressed. The inputs for Alice and Bob are {A1, A2} and {B1, B2},

respectively. For every input, the output is always −1 or +1. These buttons represents measure-

ment choices — “questions” — we can perform in a physical system, plus a classical treatment

of the data acquired, producing the outputs, or measurement outcomes.

Figure 1.4: Alice and Bob receive a classical system λ, input A and B and output a and b,
respectively.

We will start by analysing the scenario in which they share a random variable, carried by

a classical system, after pressing the input button. The shared random variable will be denoted

by λ. This variable together with the input will influence the output of each box in such a

way that the output is a probability distribution depending on the input. Thus, for Alice, the

output a has a probability p(a | A, λ), and analogously for Bob. If λ has a distribution p(λ),

the joint distribution of the output which can be obtained by this model is

p(a, b | A,B) =

∫
λ

p(λ)p(a | A, λ)p(b | B, λ)dλ. (1.55)

We can restrict the probabilistic character of these distributions to the randomness of the

variable λ, following the work of A. Fine [54]. To do that, first rewrite

p(a | A, λ) =

∫
µ

p(µ)δaα(µ,A,λ)dµ,

p(b | B, λ) =

∫
ν

p(ν)δbβ(ν,B,λ)dν, (1.56)

in which α and β are the output functions, depending also on the intrinsic random variables µ

and ν. In this way, Eq. (1.55) is written as

p(a, b | A,B) =

∫
λ

∫
µ

∫
ν

[p(λ)p(µ)p(ν)]δaα(µ,A,λ)δ
b
β(ν,B,λ)dµdνdλ. (1.57)
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Now, we can define some λ′(λ, µ, ν) such that p(λ′) = p(λ)p(µ)p(ν) and

p(a, b | A,B) =

∫
λ′
p(λ′)δaα(A,λ′)δ

b
β(B,λ′)dλ

′. (1.58)

Therefore, we can make mixtures of deterministic strategies for achieving every classical prob-

ability distributions over the joint outputs.

The nonclassicallity witness appears when confronting specific expectation values ob-

tained from the experiments, which can be achieved by QT, but not by classical theory, with

the modeling represented in Eq. 1.55. This witness is the average of the CHSH expression

S := a1b1 + a1b2 + a2b1 − a2b2. (1.59)

Now, if the outputs are written in a table as

a1(λ′) b2(λ′)

b1(λ′) a2(λ′)

 :=

α(A1, λ
′) β(B2, λ

′)

β(B1, λ
′) α(A2, λ

′)

 (1.60)

and, for each λ′, the outputs of Ai and Bj, respectively, are denoted by ai(λ
′) and bj(λ

′).

There are 24 tables of this kind, so we can compute S for each of them, to see the maximum

value it attains. On the other hand there is a shortcut to see the maximum value for this

and other similar expressions. Instead, defining c1(λ′) = a1(λ′)b1(λ′), r1(λ′) = a1(λ′)b2(λ′),

r2(λ′) = a2(λ′)b1(λ′) and c2(λ′) = a2(λ′)b2(λ′), the expression S now becomes

S = c1 + r1 + r2 − c2. (1.61)

On the other hand, the product of the elements can be made by the rows or the columns,

equivalently. Therefore

r1(λ′)r2(λ′) = c1(λ′)c2(λ′). (1.62)
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In this way, S could be rewritten as

S = c1 + r1 + r2 −
r1r2

c1

. (1.63)

In this form, instead of checking the values of the observables, it is possible to analyze the

value of the expression by the individual terms of the sum. There are eight values for the

triple (c1(λ′), r1(λ′), r2(λ′)), and S(λ′) is maximal when (c1(λ′), r1(λ′), r2(λ′)) is equal to one

of the triples (+1,+1,+1), (−1,+1,+1), (+1,−1,+1), (+1,+1,−1), resulting in S = 2. Con-

sequently,

〈S〉 ≤ 2. (1.64)

On the other hand, in the realm of QT, the following set of selfadjoint operators

A1 B2

B1 A2

 =

σx ⊗ I I ⊗ σz

I ⊗ σx σz ⊗ I

 (1.65)

violates the classical bound. Just note that the operator SQ has the form

SQ = A1B1 + A1B2 + A2B1 − A2B2 = σx ⊗ σx + σx ⊗ σz + σz ⊗ σx − σz ⊗ σz, (1.66)

and that it has eigenvalues ±2
√

2, therefore the corresponding quantum state for the higher

value violates (1.64). Indeed, this is shown to be the maximum value achieved in QT [35]. We

have the following bounds

〈S〉
C

≤ 2
Q

≤ 2
√

2, (1.67)

in which the superscript C(Q) means the classical (quantum) bound.

Therefore, we see that the impossibility to assign dispersion free probability distributions

for the quantum set has experimental implications. Inequalities like expression (1.64) are

commonly called Bell inequalities, and they are related to inequalities obtained when trying to
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model experiments in terms of local variables, i.e. modeling in the context which leads to Eq.

(1.55). Recent experiments confirmed the classical bound is violated [55–57]. Thus, we say QT

is nonlocal, in the sense that no local modeling of the form (1.55) can explain experiments in

which the parties are spatially separated.

Contextuality: the Peres-Mermin Scenario

In the CHSH scenario, it was possible to distribute the observables to different parties. But this

is not needed; there is a more general concept to deal with the possibility of non existence of

dispersion free probability distributions, and this is related to the phenomenon of contextuality.

A context is any set of joint measurable observables, and the hypothesis of noncontextuality is

that a measurement outcome of any observable does not depend on which other observables are

jointly measured with it. Spatially separated observables are jointly measurable by construction,

thus they form a context. But there are other scenarios, and one of the most intriguing collection

of contexts is the Peres-Mermin scenario [33, 34]. It consists of 9 dichotomic observables, with

+1 or −1 outputs arranged as in the matrix below:


A B C

a b c

α β γ

 . (1.68)

The Peres-Mermin (PM) scenario is made such that the observables on the same row or

column are jointly measurable and, therefore, belong to the same context. We have then six

contexts, {A,B,C}, {a, b, c}, {α, β, γ}, {A, a, α}, {B, b, β} and {C, c, γ}.

Noncontextual Model A classical noncontextual model explaining the statistics of nine

dichotomic measurements assigns a mixture of matrices with predefined values, identified by
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the random variable λ,


A(λ) B(λ) C(λ)

a(λ) b(λ) c(λ)

α(λ) β(λ) γ(λ)

 :=


A B C

a b c

α β γ


λ

. (1.69)

The outputs are +1 or −1, thus the total number of distinct deterministic tables is

29 = 512. For the noncontextual model, there is a noncontextuality (NC) inequality associated.

It was proposed by Cabello [29] and it can be written as

〈ABC〉+ 〈abc〉+ 〈αβγ〉+ 〈Aaα〉+ 〈Bbβ〉 − 〈Ccγ〉 ≤ 4. (1.70)

This inequality can be easily checked by noticing that each one of the 512 tables does not

exceed the value of 4 for (1.70) nor the mixture of them, consequently. Another way to see the

impossibility of classical violation is to note that, in analogy to the CHSH scenario, it is possible

to write product of the nine observables following its columns or its rows. Consequently the

product of the outputs taken from the last column context is related to the product of the five

other contexts. Defining Ri as the product of outcomes for the observables on the row i, and

analogously Ci for the columns, C3 might be written as

C3 = Ccγ =
(ABC)(abc)(αβγ)

(Aaα)(Bbβ)
=
R1R2R3

C1C2

. (1.71)

Therefore, the expression (1.70) is maximal when all contexts are +1, or when only one among

the observables C, c or γ is −1, resulting in the above bound for the classical reasoning.

The Quantum Scenario In the original references [33,34], the authors proposed the follow-

ing set of observables to fill the matrix:


A B C

a b c

α β γ

 =


σz ⊗ 1 1⊗σz σz ⊗ σz

1⊗σx σx ⊗ 1 σx ⊗ σx

σz ⊗ σx σx ⊗ σz σy ⊗ σy

 . (1.72)
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Every operator commutes with the others in the same row or column. They have the interesting

property that

ABC = abc = αβγ = Aaα = Bbβ = −Ccγ = 1, (1.73)

and, therefore,

〈ABC〉+ 〈abc〉+ 〈αβγ〉+ 〈Aaα〉+ 〈Bbβ〉 − 〈Ccγ〉 = 6. (1.74)

This is an instance of state independent violation of the NC inequality (1.70). Therefore,

its violation comes only from the relations among the observables, a feature that cannot happen

in a Bell inequality, as it is always possible to find separable states, with local statistics, while

no global measurements can be applied.

Taking a different point of view, as a logical conclusion, Eq. (1.73) could never be satis-

fied by the outcomes of a noncontextual theory, as we can see by the analysis of the condition

(1.71). In QT, the outcomes of all observables within a context can be obtained in a joint mea-

surement. For the three dichotomic observables in each context of the Peres-Mermin square,

the joint measurement on two qubits has four distinct outcomes, taken from the set of the

8 possible combinations of outcomes { (+1,+1,+1), (+1,+1,−1), . . . , (−1,−1,−1) }. Alterna-

tively, the outcomes can be obtained by measuring the observables in a context in a sequential

way. This approach has been preferred in recent experiments on quantum contextuality [58–64].

When measuring an observable X from the Peres-Mermin square, the quantum state ρ changes

according to the usual state update rule

ρ 7→
Πx|XρΠx|X

tr(ρΠx|X)
, (1.75)

with Πx|X = 1
2
(1+xX) depending on the measurement outcome x = ±1 of X. In a sense,

sequential measurements with this Lüders transformation [65] are a special way to implement a

joint measurement. Since the quantum state changes according to the choice of the observable

and the measurement outcome, one could argue that the quantum state serves as a memory
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and the contextual behavior is achieved due to the very presence of this memory.

1.5 Chapter Conclusions

We detailed here how probabilities for events can be modeled in classical and quantum theory,

through the notion of effects associated to measurement outcomes. Differently from classical

theories, quantum theory does not allow general dispersion free probability distributions when

restricted to extremal effects and states. This is interpreted as the manifestations of the intrin-

sic probabilistic character of QT, which have experimental implications. Using the local and

noncontextual classical models to explain the scenarios, we were able to derive some inequalities

these models respect and, in contrast, QT violates. The premises of those models, although

being extremely reasonable, can be modified to embrace more general classical models, and this

comes with a cost, which is the subject of the next chapter.



Chapter 2

Simulations and Costs

In this chapter we discuss some concepts and results about classically simulating a specific set

of events and its probabilities. We analyze the costs by searching for lower bounds on the

classical resources needed to reproduce the desired correlations. We are mainly concerned with

the comparison between classical and quantum resources, but this kind of approach is useful

for more general scenarios, once the important resources are defined. The classical resource is

quantified in bits, in terms of memory or communication, while the quantum resource by the

number of necessary qubits. Those are the simplest information storage systems of each theory.

2.1 Simulating Nonlocality with Communication

One way to quantify nonlocality is by asking how much communication is necessary between

the parties such that they are able to classically simulate a nonlocal behaviour [4].

The most basic scenario of nonlocality is between two parties, Alice and Bob, each of

which receives an input and has to return an output. They can share a random variable λ —

discrete or continuous, with a distribution p(λ) — prior to the input, and they can communicate

freely before receiving the inputs, and only freely after the input. The input of Alice will

be denoted by A, the output by a, Bob’s input by B, output by b and the total message

41
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Figure 2.1: If Alice and Bob can communicate before the outputs, how much communication
is needed to simulate CHSH correlations?

communicated before the outputs by s. The main goal is to reproduce a given probability

distribution p(a, b | A,B). The process is illustrated by the figure 2.1.

Using this scheme, the probabilities achieved by the model are

p(a, b | A,B) =
∑
λ,s

p(λ)p(s | A,B, λ)p(a | A, s, λ)p(b | B, s, λ), (2.1)

with the sum over λ replaced by an integral when this variable belongs to a continuous set.

The communication is always treated as discrete in this thesis.

The set of probabilities which can be reproduced by this model increases with the amount

of bits communicated. The minimum amount of communication per run is one bit, while

if every part communicates its input to the other, it is trivial to reproduce any probability

distribution. We can see this by noting that, if both know A and B, they can use joint

deterministic strategies sampled from the original probability distribution p(a, b | A,B). For

example, they can decompose it into a mixture of joint deterministic distributions, c.f. Eq.

(1.2), such that they only use terms which respects the joint probability; a convenient p(λ)

allows them to do the task.

2.1.1 Communication Cost for Simulating Singlet Correlations

The seminal Bell paper [24] on a similar bipartite scenario tells us that if there is no communi-

cation between the parties, or no interaction in any form after distributing the joint quantum
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state, the singlet state, implies that the quantum correlations obtained behave differently than

what is expected in classical theory. Clauser et al. [32] translated this conclusion into an exper-

iment realized in its most strong form in recent years [55–57]1. The experiments tells us that

the CHSH inequality (1.64) is indeed violated. Thus, to achieve what quantum theory gives

using only classical resources, how much communication is needed? The question might also

be formulated in the other way around, by how much can classical communication be reduced

if one uses quantum systems?

We must allow an influence from Alice’s side to Bob’s side and, as already said, the

minimal amount of communication they can exchange is one bit. In the paper of Toner and

Bacon [12], the authors proved that one bit of communication is enough to reproduce all

bipartite correlations arising from the singlet state, and thus it also covers the CHSH scenario.

The strategy they used will be explained below.

First, Alice and Bob share a pair of two independent random variables λ̂1 and λ̂2, taken

from a uniform distribution over the unit sphere. Alice then selects her measurement setting,

represented by another direction Â on the unit sphere. Alice outputs a according to

a = − sgn(Â · ~λ1), (2.2)

in which sgn(x) = 1, for x ≥ 0 and sgn(x) = −1, for x < 0. She communicates a bit s to Bob,

s = sgn(Â · λ̂1) sgn(Â · λ̂2), (2.3)

and Bob analogously selects another measurement vector B̂, and outputs b,

b = sgn
[
B̂ · (λ̂1 + sλ̂2)

]
. (2.4)

1It is strong in the sense that the loopholes of freedom-of-choice, fair-sampling and no-signaling [66] were
simultaneously closed in each experiment. The first loophole is engendered when we cannot guarantee that
the measurement choices are free or random. The second loophole is related to the fact that some runs of an
experiment do not produce experimental data. Thus, improving the detection rate closes this loophole. The
third loophole appears when the parties are close enough so that communication can be exchanged between
them after the input is chosen. All these three loopholes allow violations of Bell inequalities which can be
explained classically.
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Figure 2.2: Diagram for the 1 bit strategy. Figure taken from reference [12]. In (a), if Alice
chooses a measurement direction in the gray region, she outputs −1, and if she chooses a
direction in the other hemisphere she outputs +1; (b) and (c) are read in analogous way.

The protocol is schematized in the Fig. 2.2, and the calculations are done in the referred paper.

Averaging over the random variables gives us

〈ab〉 = −Â · B̂. (2.5)

Therefore, the authors show that with one bit of classical communication it is possible

to reproduce quantum correlations for the singlet. One should note that we are not dealing

with a countable number of measurement settings; indeed, any direction on the unit sphere

might in principle be realized by a qubit measurement. If you consider only two settings per

party, then it is possible to reduce the communication in average, as shown in the next section.



2.1. Simulating Nonlocality with Communication 45

2.1.2 Lower Bounds on Communication Cost

It is usually very difficult to find optimal strategies to simulate specific correlations. Frequently

one starts by constructing which outputs are obtained for each amount of communication

available. So, for example, in the CHSH scenario with one bit of communication we can

construct 64 deterministic output functions. The set of inputs for Alice is {A0, A1} and for Bob

it is {B0, B1}, the output can change depending on the communication received, represented

by the bit s. Suppose Alice makes the measurement, she has two inputs to map to two outputs,

thus four distinct output functions a(Ai, λj), i = 0, 1 and j = 1, . . . , 4. Then she communicates

s to Bob. As his outputs also depends on s, he has 16 output functions β(Bi′ , s, λj′), with

i′ = 0, 1 and j′ = 1, . . . , 16. Note here that each λ corresponds to a strategy. As the strategies

for Alice and Bob are independent, i.e. they can choose any output function a and b, we arrive

in 4× 16 values for the joint strategy.

As we increase the number of inputs, outcomes and the amount of communication, the

number of strategies grows exponentially, making it difficult to calculate the communication

cost. In another crucial work, Pironio [13] showed that the violation of Bell inequalities using

classical resources imposes lower bounds on the communication cost, and that this lower bound

increases with the violation of those inequalities. Below we adapt to more parties the scenario

analyzed by Pironio.

Consider N parties performing one among k measurements available with m outputs

each. The notation is going to change slightly to accommodate more parties. The sce-

nario is completely characterized by the probabilities p(x1, . . . , xN | X1 . . . XN), in which

xi ∈ {0, . . . ,m − 1} is the output and Xj = {0, . . . , k − 1} is the input. We can arrange
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this probabilities in a vector ~p, ordering by the input first:

~p =



p(0 . . . 0 | 0 . . . 0)

p(0 . . . 1 | 0 . . . 0)

...

p(m− 1 . . .m− 1 | 0 . . . 0)

p(0 . . . 0 | 0 . . . 1)

...

...

p(m− 1 . . .m− 1 | k − 1 . . . k − 1)



. (2.6)

The normalization constraint applies to every measurement setting,

∑
x1,...,xN

p(x1, . . . , xN | X1 . . . XN) = 1, for Xi = 0, . . . , k − 1, (2.7)

and for i = 1, . . . , N . Consequently, the sum of its entries is the number of distinct measurement

settings, i.e.,

∑
j

pj = kN . (2.8)

In the paper, Bell type inequalities are written as a linear inequality on the vector of

probabilities, i.e.

B(~p) = ~b · ~p ≤ B0, (2.9)

in which B0 is the maximal value it takes for local strategies, i.e. strategies which use no

communication.

In classical reasoning, each party uses local strategies to reproduce the probabilities for

the outputs, based on their choice for the input and the communication received by them. The
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deterministic strategies are ~dλ, in which each of its entries are

dλ(x1, . . . , xN | X1, . . . , XN) = δx1f1(X1,...,XN ,λ) . . . δ
xN
fN (X1,...,XN ,λ). (2.10)

The functions fi are the deterministic outputs for every joint input. Since there are a finite

number of deterministic functions for this kind of strategy, we will label them with a countable

variable λ. Now, every probabilistic strategy can be decomposed in terms of deterministic ones:

~p =
∑
λ

qλ ~dλ. (2.11)

Every deterministic strategy has a communication cost C( ~dλ), and we will group them

according to this cost. Thus, if a strategy has a communication cost ci, we will label them with

λi, i.e., C( ~dλi) = ci. In other words, the label “i” tag the communication cost, while λ now can

order the strategies with the same cost. In this way, the probabilistic strategies become

~p =
∑
i

∑
λi

qλi
~dλi . (2.12)

The average communication cost is, then,

C̄ =
∑
i

∑
λi

qλici ≡
∑
i

qici, (2.13)

in which qi :=
∑

λi
qλi is the probability of selecting a strategy with cost ci.

It is interesting to see that, grouping the strategies this way, there is a maximum violation

of a linear inequality for every communication cost bounded by the maximum over the strategies

that have this cost, i.e.

Bi = max
λi
{~b · ~dλi}. (2.14)
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We can now interpret B0 as

B0 = max
λ0
{~b · ~dλ0}, (2.15)

and we read it as the maximum value achieved for strategies with no cost. Now we are in position

to state a central result, in the proposition below, taken from [13] with a minor modification.

Proposition 2.1. The communication cost associated with a particular value for B(~p) by the

distribution ~p satisfies the following bound

C(~p) ≥ B(~p)−B0

Bj∗ −B0

cj∗ , (2.16)

in which the index j∗ is taken from the most efficient strategy which violates the inequality

(2.9), i.e., j∗ is such that

j∗ = arg max
j 6=0

Bj −B0

cj
. (2.17)

Proof. By definition,

B(~p) = ~b · ~p =
∑
i,λi

qλi
~b · ~dλi ≤

∑
i,λi

qλiBi =
∑
i

qiBi. (2.18)

For the average communication cost we have

C(~p) =
∑
i

qici

=
∑
i

qici −
(
B(~p)−B0

Bj∗ −B0

cj∗

)
+
B(~p)−B0

Bj∗ −B0

cj∗

≥
∑
i

qici −
(∑

i qiBi − (
∑

i qi)B0

Bj∗ −B0

cj∗

)
+
B(~p)−B0

Bj∗ −B0

cj∗

=
B(~p)−B0

Bj∗ −B0

cj∗ +
∑
i

qi

(
ci −

Bi −B0

Bj∗ −B0

cj∗

)
≥ B(~p)−B0

Bj∗ −B0

cj∗ , (2.19)
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in which we used Eq. (2.17) and (2.18) to see that ci ≥ cj∗(Bi −B0)/(Bj∗ −B0).

Therefore, there is a lower bound which increases with the amount of violation of the Bell

inequality.

The author also shows that for certain situations this bound is tight, which includes

the CHSH scenario. In the latter, with one bit of communication it is possible to reach the

maximum algebraic value for CHSH expression, which is 4, and therefore cj∗ = 1. Consequently,

the communication cost to simulate the singlet state is C(~p) = 2
√

2−2
4−2

.1 =
√

2 − 1 ≈ 0.4. The

authors also give an explicit strategy which accomplishes this. It consists of selecting properly

among these specific local strategies, which reach the value of 2 for B(~p),

d00 d10 d20 d30 d40 d50 d60 d70

d(00 | 00) 1 1 0 0 1 0 0 0

d(10 | 00) 0 0 0 0 0 1 0 0

d(01 | 00) 0 0 1 0 0 0 0 0

d(11 | 00) 0 0 0 1 0 0 1 1

d(00 | 10) 1 0 0 0 0 0 0 0

d(10 | 10) 0 1 0 0 1 1 0 0

d(01 | 10) 0 0 1 1 0 0 1 0

d(11 | 10) 0 0 0 0 0 0 0 1

d(00 | 01) 1 1 1 0 0 0 0 0

d(10 | 01) 0 0 0 1 0 0 0 0

d(01 | 01) 0 0 0 0 1 0 0 0

d(11 | 01) 0 0 0 0 0 1 1 1

d(00 | 11) 1 0 1 1 0 0 0 0

d(10 | 11) 0 1 0 0 0 0 0 0

d(01 | 11) 0 0 0 0 0 0 1 0

d(11 | 11) 0 0 0 0 1 1 0 1

and these 1-bit strategies, which reach the value of 4 for B(~p),
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d01 d11 d21 d31 d41 d51 d61 d71

d(00 | 00) 1 0 1 0 1 0 1 0

d(10 | 00) 0 0 0 0 0 0 0 0

d(01 | 00) 0 0 0 0 0 0 0 0

d(11 | 00) 0 1 0 1 0 1 0 1

d(00 | 10) 0 0 0 0 0 0 0 0

d(10 | 10) 0 0 1 1 1 0 1 0

d(01 | 10) 1 1 0 0 0 1 0 1

d(11 | 10) 0 0 0 0 0 0 0 0

d(00 | 01) 1 0 1 0 1 1 0 0

d(10 | 01) 0 0 0 0 0 0 0 0

d(01 | 01) 0 0 0 0 0 0 0 0

d(11 | 01) 0 1 0 1 0 0 1 1

d(00 | 11) 1 1 0 0 1 1 0 0

d(10 | 11) 0 0 0 0 0 0 0 0

d(01 | 11) 0 0 0 0 0 0 0 0

d(11 | 11) 0 0 1 1 0 0 1 1

.

It is an interesting conclusion to relate the communication cost to the violation of Bell

type inequalities. On the other hand, the analysis above still needs to compute the most efficient

strategy in terms of communication and violation — i.e., to find the j∗ index by computing

the violations for every value of ci possible. A great advance in this terms comes from Montina

and Wolf [67], in a paper which they compute lower bounds for the communication cost for the

CHSH scenario based solely on the probability distributions.

Extending the discussion, Ref. [68] shows that, using two bits of communication, max-

imally entangled states are reproduced, in a bipartite scenario and an arbitrary number of

measurements with two outcomes. Ref. [14] shows that three bits are sufficient to simulate

equatorial measurements on the GHZ scenario.
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2.2 Simulating Contextuality with Memory

Apart from communication problems, there are other confrontations between classical strategies

and quantum strategies. In the past decade, memory as a classical resource was associated to

simulating sequences of quantum measurements. It is the case that, in a sequential process,

a physical system attains different states during the process, and therefore we can associate a

memory cost to the scenario. Classically, the information content of d distinguishable states

produced with probability pi, i = 1, . . . , d, is usually quantified in terms of the Shannon entropy

H(~p) = −
∑

i pi log pi, which is measured in bits, if the log is taken in base 2. The maximum

value it attains is log d. Quantically, Holevo’s bound [36] expresses that the maximum storage

capacity of a quantum system associated to a Hilbert space of dimension d is also log d. Nielsen

and Chuang provide a simpler argument to prove it in Ref. [69], chapter 12. Superficially, this

bound may lead to the idea that we cannot take advantage of the peculiarities of QT while

using quantum states to store information or to communicate; an idea which turns out to be

wrong. It is interesting to point out that using an orthogonal basis in a d-level state from QT

one can simulate classical transformations on d classical states, as long as one can operate in the

quantum states analogously, for example mapping from basis vectors to basis vectors. On the

other hand, there are probability distributions achievable by quantum operations on a d level

quantum state which are not achievable by classical operations on d distinguishable classical

states. This raises the possibility of a memory advantage of QT over CT.

The first instance of memory advantage of quantum theory was discovered by E. Galvão

and L. Hardy [11], detailed in Subsec. 2.2.2, analyzing a quantum unitary dynamics. The

application to contextuality was developed by Kleinmann et al. [15], explained in Subsec. 2.2.1.

In the latter, first the authors studied the application of the concept of memory to scenarios

in which only compatible measurements are allowed. Then they studied sequences which are

related to contextuality, but also allowed incompatible observables in the same sequence. In

their model, they considered only deterministic automata and did not find a memory advantage

from QT over CT when considering only compatible measurements in the same sequence. There

are good reasons to extend the model to a probabilistic one, as explained in 2.2.3. Furthermore,
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besides these two models, there were other proposals to define the memory cost [16,70]. In all

of them, the memory is related to the number of distinct classical states a physical system can

assume during sequential measurements.

2.2.1 Memory Cost of Quantum Contextuality: Lower Bound on

the Peres-Mermin Scenario

As a first approach, the authors of [15] modeled a sequence of quantum measurements as

a classical Mealy machine [71]. These machines, or automata, are used to model sequential

input-output processes, for which the general idea is to simulate a string of outputs x1x2 . . . xn

produced sequentially when entering the inputs X1, X2, . . . , Xn, also sequentially. The process

represents a classical system, in some state s, receiving an interaction with the environment,

i.e. the input, then this interaction transforms the state s to another state s′ and some part of

the environment, represented by the output. The automaton can be defined with a quintuple

M = (Q,Σ,Θ, F,G). In this notation, Q is the set of accessible states of the machine, Σ the

set of inputs, Θ the set of outputs, F : Q × Σ → Q the transition function taking s 7→ s′,

conditioned on the environment input, and G : Q × Σ → Θ the output function. This can be

drawn in a diagram such as in Fig. 2.3.

This thesis is related to the computation of the memory cost of contextuality; specifically

for the Peres-Mermin scenario, which has as inputs projective measurements. In a sequential

scenario for QT with projective measurements, we see that the measurement outputs of a

contextuality scenario respects repeatability, i.e. that in a sequence of the same measurement

XX . . ., the same output is returned, i.e. xx . . .. Furthermore, the compatibility condition on

the measurements is also respected. Following Ref. [72], this condition is defined by the demand

that, in a sequence of compatible measurements, the outcomes of each observable cannot be

changed after measuring other observable and that the correlations obtained while measuring

two compatible observables do not depend on their position on the sequence of measurements.

In order to specify it better, we define SAB = {A1, B1, A1A1, A1B2, B1B2, B1A2, . . .} as the

infinite set representing the sequences of measurements which we can perform only with two
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Figure 2.3: A four-state machine, with inputs and outputs belonging to the set {0,1}. Every
arrow corresponds to the transition from one state to another, given the i/o (input/output)
respective to the process written next to it. The state depicted in the square represents the
initial state.

observables A and B. The symbol xSl denotes the outcome of the observable X measured on the

position l in the sequence S ∈ SAB. If the observables A and B are compatible, the following

conditions are satisfied:

1. Their outcomes a and b cannot be changed during the sequences, i.e.

aSk = aSl ,

bSm = bSn, (2.20)

for all k, l,m, n and any S ∈ SAB.

2. For any S1 and S2 belonging to SAB, the average of the outcomes for A and B are the

same in both sequences and in any position, i.e

〈aS1
k 〉 = 〈aS2

l 〉,

〈bS1
m 〉 = 〈bS2

n 〉, (2.21)

for all k, l,m, n.

When modeling this scenario as proposed here, these two conditions must be observed.
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The memory cost of quantum contextuality is the cost associated to a set of sequences

of compatible observables. If the number of classical states is greater than the Holevo bound

associated to the quantum state used to obtain the probabilities, we have an instance of memory

advantage. It should be noted that there is still no contextuality scenario in which the memory

cost is known to be necessarily greater than the Holevo bound. Answering whether there is a

memory advantage in the contextuality paradigm is important even in the nonlocality scenario,

in which the observables of the experiment are compatible, due to space-like separation. We

are concerned in this thesis with the Peres-Mermin scenario, studied in section 1.4.8.

In reference [15], the authors derived a lower bound for the memory cost of this scenario,

which we detail below. As it is a contextuality scenario, at least two classical states are required

to simulate it. The authors then prove that two states are not enough, and show a model with

three states which respects the contextuality conditions above.

An automaton with access to L states can be represented by L state matrices {ms}Ls=1

with elements {fs(X), s′s(X)}, in which fs is the output function and s′s is the state after the

output, both depending on the input X and the current state s. As an example, a toy model

with three inputs, two outputs and two states can be written as

m1 =

[
+, 1 +, 1 +, 2

]
, m2 =

[
−, 2 +, 2 +, 2

]
, (2.22)

in which the inputs A,B and C correspond to the first, second and third entries of each matrix,

respectively, and the outputs are {+,−}. Starting the automaton in s = 1, a sequence CA

returns (+,−), and the final state is s = 2. This toy model respects repeatability, and violates

the triangle inequality [73]

〈AB〉+ 〈BC〉 − 〈CA〉 ≤ 1, (2.23)

which is a noncontextuality inequality. The model does not respect compatibility, as a sequence

ACA returns different values for A.

For the Peres-Mermin scenario, a state matrix for the state i is a 3× 3 matrix with the
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corresponding outputs fi(X) ≡ X(i) and state transition s′X(i), i.e.

mi =


A(i), s′A(i) B(i), s′B(i) C(i), s′C(i)

a(i), s′a(i) b(i), s′b(i) c(i), s′c(i)

α(i), s′α(i) β(i), s′β(i) γ(i), s′γ(i)

 . (2.24)

Considering this specific scenario, one should note that the fact that the conditions (1.73)

cannot be respected in a noncontextual theory means that every state matrix must have at

least one contradiction to these quantum conditions in one of its rows or columns. This means

that the product of the outputs in the same state matrix is not 1 (−1 for the last column) and

there is the need for a state change.

A two state automaton has the form

m1 =


A(1), s′A(1) B(1), s′B(1) C(1), s′C(1)

a(1), s′a(1) b(1), s′b(1) c(1), s′c(1)

α(1), s′α(1) β(1), s′β(1) γ(1), s′γ(1)

 ,m2 =


A(2), s′A(2) B(2), s′B(2) C(2), s′C(2)

a(2), s′a(2) b(2), s′b(2) c(2), s′c(2)

α(2), s′α(2) β(2), s′β(2) γ(2), s′γ(2)

 .
(2.25)

Now the authors show that no two-state automaton can simulate QT, in the sense of giving

valid outputs for a sequence of inputs. Without loss of generality, we will start the automaton

on state 1. Suppose there is a contradiction on the last column context, i.e. C(1)c(1)γ(1) = 1.

In order to fix the contradiction we will assume the state changes at X = C, i.e. s′C,1 = 2.

Then, because of repeatability C(2) = C(1),

m1 =


− − C(1), 2

− − −

− − −

 ,m2 =


− − C(1), s′C(2)

− − −

− − −

 . (2.26)

But there cannot be only one state change in the last column context. If this is the case, when

we measure C in the last position — γcC or cγC — we still would have the contradiction.
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Therefore we need to have another state change. We assign it to c:

m1 =


− − C(1), 2

− − c(1), 2

− − −

 ,m2 =


− − C(1), s′C(2)

− − c(1), s′c(2)

− − −

 . (2.27)

Note that again c(2) = c(1). Even in this scenario, we still have contradictions in sequences like

γcC. But if we have three state changes, repeatability forces the contradiction in both state

matrices. Consequently, a two state automaton cannot reproduce the PM scenario.

The authors on [15] found a three state automaton which give valid output sequences,

for inputs which belong to the same context, i.e. for sequences of inputs in the same row or

column. It can be written as

m1 =


(+1, 1) (+1, 1) (+1,2)

(+1, 1) (+1, 1) (+,3)

(+1, 1) (+1, 1) (+1, 1)

 ,m2 =


(+1, 2) (+1,1) (+1, 2)

(−1, 2) (+1, 2) (−1, 2)

(−1, 2) (−1,3) (+1, 2)

 ,

m3 =


(+1, 3) (−1, 3) (−1, 3)

(+1,1) (+1, 3) (+1, 3)

(−1,2) (−1, 3) (+1, 3)

 . (2.28)

This automaton respects repeatability, compatibility and the quantum conditions, as one

can check. As they are dispersion free, and the PM square contains incompatible observables,

e.g. those in the diagonal, no quantum state can be represented by an automaton like that.

This means that when trying to fully simulate a quantum state, including its correlations, and

marginal probabilities, the memory cost could increase, but still we have a lower bound on

the memory cost. The main purpose of this thesis is to find the memory cost to simulate any

quantum state in the PM scenario, which is the subject of chapter 3.
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2.2.2 How Many Bits to a Qubit?

In 2003, E. Galvão and L. Hardy proposed a scenario [11] in which they compare the memory

cost of classical and quantum theories to solve the following problem. Consider a field φ(x)

with the property that

∫ B

A

φ(x)dx = αm, (2.29)

in which m is an integer and α is a fixed constant, and we consider some interval x ∈ [A,B].

The problem is to tell if m is even or odd, sending a physical system through the field. An

analog classical system with continuous degree of freedom can perform the task by the right

coupling to the field. For instance, a rod with a fixed end and free to rotate in the yz plane

and the coupling defined such as the angle θ from the rod and its position x is implicit in the

relation

dθ = ηφ(x)dx. (2.30)

If η = π/α the rod will rotate by m/2 turns in the end. Then, if m is even, the rod will be

pointing in the same direction of the beginning, and if m is odd, it will be pointing to the

opposite side.

The quantum strategy uses a two level system, for example a spin 1/2 particle prepared

interacting with a field in the x̂ direction such that it rotates in the yz plane while it travels.

Then we adjust η such that the outcome of a measurement in B will tell the parity of m. The

proposal presented in the paper for such idealization uses a transparent rod inside of which is a

classical field φ(x) = Bx, produced by a solenoid wrapped around it. If a photon with vertical

polarization passes through the rod, the direction of the polarization rotate proportionally to

the integral of the field, according to the Faraday effect. Adjusting the physical parameters of

the rod, the parity of m can be told by the vertical or horizontal orientation of the polarization

at point B.
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A spin-half particle has access to two orthogonal states which can be distinguished with

certainty in a one shot experiment, and therefore realizes the concept of a qubit. Due to

the fact that the classical strategy above has a tolerance to error — we only need to identify

the hemisphere at which the rod ends — maybe a discrete classical system might solve the

computational task too. What the authors showed is that, when using a discrete number of

classical states to simulate the strategies above, there is always a chance to fail.

To prove that a classical system with a finite number of states fail at some point, let

us divide the interval AB into N equal intervals, in each of which there is a party which can

classically manipulate the system. We now define φn , n = 1, . . . , N , to be the integrated value

of the field in its corresponding interval. Equation (2.29) now turns into

∑
n

φn = αm. (2.31)

We will choose, for practical purposes, the field such that it takes only a discrete set

of values φn = αkn/K, in which kn ∈ {0, 1, . . . , 2K − 1}, where K is a power of 2. Equation

(2.30) now implies

∑
n

kn = mK. (2.32)

The classical strategy succeeds if it correctly answers the question of the parity of m at

point B. In the middle of the process, the nth party receives a classical state ln−1 from the

previous party, makes the classical manipulation based on the number φn, and sends ln to the

next party, trying to transmit some information about the partial sum of the integrated values

of the field. Each ln is one of the classical states ln ∈ {1, . . . , L}. The state output function is

then denoted by ln = fnln−1
(kn). The first party possesses l0 = 1 to start. The last party must

decide whether m is even or odd based on kN and on the information transmitted by lN−1. The

authors then proved that, given an arbitrary integer L = 2N − 1, there is always a scenario

which demands more than L states to succeed, proving that the memory must be arbitrarily

large.
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The proof is by contradiction. Assume that the number of states in which the classical

system can be is L = 2K − 1, i.e. less than what is needed to transmit kn. Consequently, for

some l1 there must be a 6= b such that f 1
0 (a) = f 1

0 (b) = l1. Furthermore, the important function

to be evaluated at the end is SN = (
∑N

i=1 ki) mod 2K. If m is even, then SN = 0, otherwise

SN = K. Each party n has to keep track of the partial sum Sn = (
∑n

i ki) mod 2K to get in

the end without error. We will see this is not possible with 2N − 1 states. Its already apparent

that in the first step one already has the possibility to fail, and this error will accumulate until

there is certainly a message which carries the wrong information.

Let us denote by An the set composed with the partial sums Sn which are consistent

with the state ln−1. We can see that if AN−1 has elements which differ by K, summing kN can

lead both to m odd or even, therefore the Nth party will have the chance to fail, for some kn.

Associated to an arbitrary ln, there exists a and b such that fnln−1
(a) = fnln−1

(b) = ln. If

the (n+ 1)th party receives this ln, then

|An+1| ≥ |An ⊕ {a, b}|. (2.33)

The expression X = Y ⊕ Z means the set X is formed through the set of distinct sums

mod 2K of one element from Y and one element from Z.

Now, we will prove that we must find elements which are distant by K. We assume, to

arrive later in a contradiction, that a successful protocol exists and that the following relation

holds:

|An ⊕ {a, b}| = |An|. (2.34)

We can see actually that

An ⊕ {a} = An ⊕ {b}, (2.35)

because An ⊕ {a, b} = (An ⊕ {a}) ∪ (An ⊕ {b}) and unions have the same elements as their
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parts if and only if they are equal.

Looking to Eq. (2.35), it also implies

An = An ⊕ {b− a}. (2.36)

By denoting ∆1 = b − a, we have An = An ⊕ i∆1, for any i ∈ Z. Either this ∆1 divides 2K,

or there is a smaller ∆m which does. It will be defined by the following procedure. If ∆1 does

not divide 2K, there is an i such that 0 < i∆1 mod 2K < ∆1, and then ∆2 = i∆1 mod 2K.

Note that An = An⊕ j∆2, for j ∈ Z. After that one checks if this ∆2 is the divisor. If not, the

procedure must be repeated interactively until a divisor is found. The sequence must terminate,

since 0 < ∆n+1 < ∆n. The last member of the sequence must be a divisor of 2K. We will call

it ν.

Since it is a divisor of K, it must be a power of 2. As the sums are taken mod 2K,

and K is also a power of 2, this implies that are elements from An which differ by K, leading

to an error. Therefore we should revise our premise (2.34). It must be false, then

|An+1| ≥ |An ⊕ {a, b}| ≥ |An|+ 1 (2.37)

is true for any successful protocol. Consequently, the last party might receive a message with

|AN | = N . If this number is larger than K, it would mean that there are elements which differ

by K in the possible sums, and therefore it will be impossible for the Nth party give the right

answer with certainty. Thus, we need K ≥ N . But we have chosen L = 2K−1. This reasoning

implies L ≥ 2N − 1. As N and K are freely chosen, the number of different internal classical

states must be arbitrarily large. Concluding, no finite classical system reproduces the quantum

qubit protocol faithfully.
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2.2.3 Probabilistic Automata

In the literature, deterministic automata [11, 15, 16, 71] and ε−transducers [70, 74] are used

to model the sequential scenario. Probabilistic automata [75], those which allow probabilistic

answers and state transitions, are more powerful than deterministic ones; the simplest way to

see this is in the adapted description of the “Absent Minded Driver” problem [76] described

now.

Absent Minded Driver In this situation, illustrated in figure 2.4, a driver wants to get

home. The path consists of two roundabouts in the first of which the driver has to pass

straightforward and in the second the driver has to take the first exit, to the right. But, when

confronted with a roundabout, the driver cannot remember if it is the first or the second. The

driver, then, only follow direct instructions such as “if a roundabout found: turn right” or

“go straight ahead” . Deterministic strategies for the memoryless driver always leads to wrong

exits. These strategies corresponds to always take the first exit or to go straight ahead when

confronted with a roudabout, no matter if it is the first or the second one. Then, the driver

could never arrive home without the help of friends. On the other hand, there is a better

strategy for the memoryless driver: to randomly choose between the two exits. In this way, the

driver always has a positive chance to get home. This is a clear instance in which the random

strategy is better than deterministic ones. Note also that with one bit of memory, the problem

can be solved with certainty. The driver just have to memorize the position of the roundabout,

and follow the instructions for each one. In terms of probabilities, denoting by R the instance

of confronting the roundabout(input), by 1 the output of going straight and by 0 the output of

turning right, the deterministic memoryless strategies always impose p(01 | RR) = 0, while the

probabilistic ones allows for 0 < p(01 | RR) < 1 and the 1-bit strategy allows p(01 | RR) = 1.

2.2.4 Memory Cost for Probabilistic Behaviour

In our model, which we propose now, this kind of memory saving strategy corresponds to

intrinsic randomness for the output, i.e a probabilistic output even when the strategy λ is
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Figure 2.4: Without memory of which roundabout the driver is, the best strategy is to choose
randomly.

already considered — p(x | X,λ) is different from 0 or 1. In order to simulate measurements

on quantum systems, intrinsic randomness can help to reduce the memory needed in sequences

of noncompatible observables. The sequence of σxσzσx measurements on a qubit in the state

|0〉 needs no internal memory to be implemented by a probabilistic strategy. Just take a coin,

and every measurement corresponds to a coin flip. But if there is no intrinsic randomness,

having p(011|σxσzσx) > 0 is not trivial, at least one bit of memory is required to reproduce

the opposite outcome in the last measurement, with respect to the first. This approach has

been observed in Ref. [70]. Now consider sequences of only one measurement on |0〉, like σxσx

or σyσy. Using only intrinsic randomness, the automata will need an amount of internal states

with size of at least the number of possible outcomes. This is because it has to be random

in the first output, but repeatable in the rest of the sequence. Therefore, at this point it is

easy to see the role of the external random variable. To reproduce these sequences, we need no

memory if the outcome depend on the value of an external random variable λ, and we assume

this variable is produced with no cost. At every run, consisting of a complete sequence of

measurements, a different λ is selected, and consequently this kind of strategy deals with the

diversity of the outcomes, without having to add more internal states. Thus, if we represent a

strategy λ by a vector of outputs (σx(λ), σy(λ)), we can randomly select two distinct strategies,

(σx(λ1), σy(λ1)) = (+1,+1) and (σx(λ2), σy(λ2)) = (−1,−1). Now, the memory is represented

by the number of different internal classical states the automaton uses, which is related to the

necessity of state transitions if ones wants to simulate a given set of sequences of measurements.

Concluding, the model we propose is probabilistic, with internal and external random-

ness and with access to a set of classical states. At this point, we note that the output and state
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Figure 2.5: Example of an ε-transducer with two states. The arrows indicate the transitions,
and attached to the arrows are the events with the corresponding probability.

transitions depend on which internal state the machine is, the input and the strategy selected.

The minimal number of states needed to reproduce the given probability distributions gives the

memory cost for that specific situation.

The framework for general sequences of measurements is the following. Consider a

sequential input-output process of length N reproduced with a set of inputs I = {0, . . . , I − 1}

and set of outputs O = {0, . . . , 1 − O}. By sequential we mean every time an input Xi ∈ I

is entered an output xi ∈ O is returned, with i = 1, . . . , N . The process is characterized

by the probabilities P (x1x2 . . . xN | X1X2 . . . XN). The classical counterpart is modelled with

a mixture of probabilistic automata with access to a set M of classical internal states M =

{1, . . . , k}, representing the memory, and to a random variable λ, with probability distribution

p(λ). At the beginning of every sequence of measurements, the automaton selects a strategy

λ according to p(λ), with an starting state s0 ∈ M selected with probability p(s0 | λ). In any

moment of the sequence, before every input, the internal state of the automaton is some s ∈M .

The automaton receives, then, an input X, outputs x and updates its state to s′ according to

p(x, s′ | X, s, λ). Therefore, the probabilities achieved by our model are

P (x1, . . . , xN | X1, . . . , XN) =

=
∑
λ,~s

p(λ)p(s0 | λ)p(x1, s1 | X1, s0, λ) . . . p(xN , sN | XN , sN−1, λ),

(2.38)

in which ~s = (s1, . . . , sN) and the sum is over all the possible values of its entries.
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Figure 2.5 represents one possible way of visualizing the process. It represents an ex-

ample of 2 state automaton, for a fixed λ. The automaton starts at an specific strategy λ and

selects the starting state s0. The arrows represent the state transition after the corresponding

input, labeled by the probability of this event.

By convention, the memory cost is counted in terms of bits, which is the logarithm in

base two of the number of classical states used by the automaton. One should note that a

noncontextual probability distribution is the one which uses only one state, i.e., no memory,

to be simulated. And this is exactly the point in which we relate contextuality to memory. In

addition to being the costly resource, the memory cost can be interpreted as a quantifier for

contextual behavior.

2.3 Chapter Conclusions

The relation between the simulation of some quantum scenarios and the classical resources

to simulate them was studied. The communication cost was studied for singlet correlations,

and it was found that with one bit it is possible to reconstruct the correlations obtained from

measurements on this quantum system. The memory cost was studied for the Peres-Mermin

scenario, and we saw that at least three internal states are necessary to reproduce the correla-

tions obtained in QT.



Chapter 3

Memory Cost for the Peres-Mermin

Scenario

3.1 Memory Cost to Simulate PM Scenario

In this section we present one of the main results of this thesis. The memory cost for the PM

scenario is found, based on the probabilistic model we propose.

3.1.1 Probabilistic Models for PM scenario

The paper from Kleinmann et al. [15] shows us that no machine with less than three inter-

nal states allows us to reproduce conditions (1.73), if compatibility and repeatability are also

demanded — see section 2.2.1. The analysis was deterministic, but it is easy to see that a

probabilistic model cannot improve the results, as shown now.

To assume the model is probabilistic means that p(x, s′ | X, s, λ) is different from 0 or

1 for at least one configuration of the arguments. Fixing λ and s, we note that, to respect

repeatability for a given X, if the output is probabilistic then there should be a transition to

two distinct states, one for each output. Thus, this situation already demands three states.

65
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Next, we study when this is not the case, i.e. the output is deterministic, and the model

only counts on probabilistic transitions and fixed outputs. The argument goes very similar

to the deterministic case. Thus, let us assume we have two states, a starting state s1 and

other general state s2, and we are in a specific context with the observables, say, A,B and C.

Due to the fact that the model is noncontextual, at least for one context the product of the

outputs in the state matrix is in contradiction with (1.73). Without loss of generality, we can

choose this contradiction to be the ABC context. Therefore we need a state transition to avoid

the contradiction, and it will be placed at the A measurement. The repeatability condition

demands that the value for A is the same on s1 and s2. But if we have only this transition the

value of A is already defined by B and C, as we can make the reverse measurement BCA, the

product of which is also equal to the identity. Therefore we need at least two state transitions,

from s1 to s2. Let those transitions be in A and B. Yet, we see that the value of C determines

the product of the other output: C(s1) = A(s1)B(s2) = B(s1)A(s2), because the product of

the three outputs for the sequence ABC is fixed by the context. Together with repeatability,

these assumptions tells us that the output of these measurements should be the same in both

states, leading to the same contradiction. The last case is when there is three state transitions,

but then repeatability already imposes the same output for the three observables.

Concluding, no machine — deterministic or probabilistic — with less than three states

can reproduce sequences of quantum measurements simulating the Peres-Mermin scenario.

3.1.2 Other Valid Automata

As we concluded, an automaton needs at least three internal states to be able to reproduce the

contextuality and repeatability conditions in the Peres-Mermin scenario. Also, a quantum state

cannot be reproduced by any single automaton. Therefore, we will use the automaton proposed

in reference [15] and make some operations on it to find other automata which respect the

quantum conditions (1.73), and then make convex combinations of them to obtain the desired

correlations. As we will see in the analysis below, there is no need for intrinsic randomness in

this situation.
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Every automata that respects the quantum conditions are valid automata. There are

some operations when performed on the automata in Eq. (2.28) produce other valid automata:

i Flip the signs of the outputs in the same way in the three state matrices in such a way that

there are either two sign flips or no sign flips in every row and column. As an example, it is

shown below the flipping pattern in the first matrix, with the flips represented by diamonds,

and then the corresponding valid automaton:


� � .

� . �

. � �

 (3.1)

m1 =


(−1,m1) (−1,m1) (+1,m2)

(−1,m1) (+1,m1) (−,m3)

(+1,m1) (−1,m1) (−1,m1)

 ,m2 =


(−1,m2) (−1,m1) (+1,m2)

(+1,m2) (+1,m2) (+1,m2)

(−1,m2) (+1,m3) (−1,m2)

 ,

m3 =


(−1,m3) (+1,m3) (−1,m3)

(−1,m1) (+1,m3) (−1,m3)

(−1,m2) (+1,m3) (−1,m3)

 . (3.2)

ii Any permutation of the rows applied in the same way in all of the three state matrices; the

transition rule must also change accordingly. Or a permutation between the first and the

second column.

All automata obtained in this way might be viewed as a deterministic strategy in the

set of three state automata. According to the proposed model in Eq. (2.38), the mixture of

three state automata is also a valid strategy. Therefore, we shall use them to try to simulate

the quantum correlations in the PM scenario.

Applying the rule i arbitrarily results in 15 new tables of the form (2.28). For each

one of these 16 tables, we also made the permutations of the rows 1 ↔ 2, 1 ↔ 3, 2 ↔ 3,
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and the column permutation 1 ↔ 2, together with the original table. There are other valid

automata, but for computational reasons we want to keep the minimum of strategies needed.

Consequently, until now we have 16×5 = 80 automata, and they proved to be sufficient. Every

state in each automaton can be chosen to be the initial state, thus we arrive in 240 different

values for λ.

3.1.3 Testing Sufficient Sequences

The model should reproduce every correlation obtained from the sequence of measurements of

the form x1x2 . . . | X1X2 . . ., given that X1, X2 . . . are pairwise compatible; thus, we would have

to test an infinite number of sequences in order to see if the model is right. However, there are

some conditions on the probabilities which allow us to reduce the number of sequences tested.

Furthermore, practically, the contexts tested in experiments are finite in number and sequence

length.

In the PM scenario, when we measure two distinct observables the third one is already

determined, because of the conditions (1.73). Therefore,

P (xyz | XY Z) = P (xy | XY )δx·y·z,sgn(C), (3.3)

for the inputsX 6= Y 6= Z. The function sgn is defined as sgn(C) = 1, for C = R1, R2, R3, C1, C2,

and sgn(C) = −1, if C = C3. Remeber that Ci and Rj are the column and row contexts, re-

spectively. Then, we should look for infinite sequences of two distinct measurements. Note also

that in quantum mechanics and in the model, repeatability is always respected. Consequently,

when one measures repeated observables, e.g., a sequence X . . .XY XY , the same probability

distribution for the outcomes as those of the X . . .XY sequence are obtained. This is the case

because when the second distinct observable is measured, all the sequences that can result from

this scenario have their probability already defined. Furthermore, the outcome for Y is only

defined when it is measured, and differences in the length of the string of X might result in

different values for y. The only case missing, then, is when one observable repeats itself until
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other observable is measured. For quantum mechanics, we have

P (x, x, . . . , x, y |X,X . . . , X, Y ) =

= tr(ΠY
y ΠX

x . . .Π
X
x ΠX

x ρΠX
x ΠX

x . . .]Π
Y
y ) = tr(ΠY

y ΠX
x ρΠX

x ΠY
y ) =

= P (xy | XY ). (3.4)

However, for the automata, the value of y might not be fixed until we actually measure it, and

sequences like XXY and XY might produce different outcomes for y. Therefore we have to

look how our specific model behaves in this situation. Analysing the automaton in (2.28), it is

possible to conclude that the output for a measurement sequence XX . . .XY is xx . . . xy if and

only if the output for XY is xy. This is due to the fact that we have only one state transition

for column contexts, and for row contexts we always change to a row with identical outputs.

Applying transformations i and ii to the original automaton does not change these properties.

Therefore it is enough to test probabilities for sequences of size two of distinct measurements.

Usually it is better to construct the deterministic strategies by its outputs, i.e. how many

outputs we can obtain given we have access to a fixed amount of memory. For deterministic

automata, we can count the number of distinct strategies by determining the number of different

automata we can construct. We denote by I = {0, . . . , I − 1},O = {0, . . . , O − 1} and k the

input set, output set and number of internal states of the model, respectively. The deterministic

automaton can be represented, as in Eq. (2.28), by a vector of pairs (Xl(s), s
′
l(s))

I
l=1 for every

state s. The number of different vectors we can construct is, then, (O · k)I per state. As every

state can be seen as an independent vector, we have a total of (O · k)I·k different automata. In

this way, we have to test which kind of probability vectors we can produce, starting from the

outputs. The case of probabilistic automata is different, as there exists an infinite number of

different behaviors, and we need to parametrize a general automaton. Given the probability

distribution p(s′, x | s,X, λ), we will analyze the number of parameters for a fixed state s and

strategy λ. Then, every s′, x and X defines one parameter, therefore we have k ·O ·I parameters.

There is one normalization to every input, consequently to every state is associated (k ·O−1)I

parameters. As each state is independent, the total number of parameters is (k · O − 1)I · k.
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The λ labels, then, every distinct selection of these parameters. As it is supposed to be, the

set of deterministic probabilities is inside the probabilistic set. Just note that the number of

ways to arrange the parameters associated to every state and input such that there is only one

1 and the rest 0’s in the probability distribution is O · k. Therefore, there are (O · k)I ways per

state to distribute this assignments, leading to (O · k)I·k different deterministic behaviors.

For practical reasons, we are not going to test the set of probabilities p(xy | XY ).

Instead, we deal with the equivalent set of expectation values

〈X〉 =
∑
x,y

xP (xy | XY ),

〈XY 〉 =
∑
x,y

xyP (xy | XY ),

〈XYX〉 =
∑
x,y

yP (xy | XY ).

(3.5)

Considering 〈X〉, there are 9 possibilities for the PM scenario, one for each observable. For

〈XY 〉, there are in principle 36 — 6 combinations for each context — but, for quantum me-

chanics, 〈XY 〉 = 〈Y X〉 and for the automata the product xy is always the same as yx. This

latter fact happens because there is at least one input for which there is no state change, for

every context in the state matrices. As the product of the three observables in the same line

is fixed, if one outcome is fixed, the product of the other two is also fixed. Therefore we have

18 different expectation values. Finally, there are 36 expectation values of the form 〈XYX〉.

Thus, if the model can reproduce these 63 expectation values with the 3 state automata, by

means of Eq. (3.5), the probabilities for any sequence would also be in accordance with the

desired probabilities. In the analysis below, we use only deterministic behaviors and we see

they are sufficient. If this were not the case, we should include probabilistic behaviors before

testing for an increased-memory model.

In this approach, we need to construct the correlation vector for every automaton. The

correlation obtained by a quantum state for a sequential measurement is 〈XY 〉 = tr(ρXY ). On
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the other hand, every automaton corresponds to a deterministic correlation vector. To obtain

the desired correlations, the automata should be selected randomly according to the probability

of the external random variable λ. Consequently, we arrive at a feasibility program for p(λ):

tr(ρX) =
∑
λ

p(λ)xX1 (λ),

tr(ρXY ) =
∑
λ

p(λ)xXY1 (λ)yXY2 (λ) =
∑
λ

p(λ)xX1 (λ)yXY2 (λ),

tr(ρXY X) =
∑
λ

p(λ)xXYX1 (λ)yXYX2 (λ)xXYX3 (λ) =
∑
λ

p(λ)yXY2 (λ), (3.6)

in which xX1...Xl...Xn

l (λ) is the output in the position l for Xl = X in the sequence X1 . . . Xn, and

yX1...Xm...Xn
m (λ) is the output in the position m for Xm = Y in the sequence X1 . . . Xn, given the

strategy λ. In the second line of Eq. (3.6) it was considered that xXY1 = xX1 because there is no

influence on future sequences on past outcomes, and in the third line xXYX1 yXYX2 xXYX3 = yXY2

because in addition the value of x repeats in all its occurrences.

It is possible to find which distribution p(λ) reproduces specific states by linear program-

ming. As a practical example, reproducing the singlet state |ψ〉 = (|01〉 − |10〉)/
√

2 demands

four automata λ = 1, 2, 3, 4, chosen with equal probability. The automata can be written as:

λ1 :

m
(1)
1 =


− + −,m2

− − +,m3

+ − −

 ;m
(1)
2 =


− +,m1 −

+ − −

− +,m3 −

 ; m
(1)
3 =


− − +

−,m1 − +

−,m2 + −

 ; (3.7)

λ2 :
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m
(2)
1 =


− + −,m2

+ + +,m3

− + −

 ;m
(2)
2 =


− +,m1 −

− + −

+ −,m3 −

 ; m
(2)
3 =


− − +

+,m1 + +

+,m2 − −

 ; (3.8)

λ3 :

m
(3)
1 =


+ − −,m2

− − +,m3

− + −

 ;m
(3)
2 =


+ −,m1 −

+ − −

+ −,m3 −

 ; m
(3)
3 =


+ + +

−,m1 − +

+,m2 − −

 ; (3.9)

λ4 :

m
(4)
1 =


+ − −,m2

+ + +,m3

+ − −

 ;m
(4)
2 =


+ −,m1 −

− + −

− +,m3 −

 ; m
(4)
3 =


+ + +

+,m1 + +

−,m2 + −

 . (3.10)

The starting state is now fixed and it is highlighted by the square brackets, i.e. s0 = 2.

In this form, one clearly sees that the above strategy represents an eigenstate of the observables

of the last column context, as it is supposed to be the case, because there is no state changes in

the last columns in the starting state matrices, and the corresponding outputs have the same

value in all strategies.

3.1.4 Probing All States

The feasibility program (3.6) is useful when dealing with specific states. In the present case,

the query if all quantum states can be classically simulated by a three state automaton must be

solved with a different approach. Our method can be seen geometrically: we will show that the

set of probabilities obtained from quantum theory is a subset of the set of probabilities given

by three-state automata.
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The set of correlation vectors produced by the automata is convex and, as we are dealing

with deterministic strategies, each correlation vector obtained from every automaton is a vertex.

Therefore, the set of strategies is a polytope, as already mentioned, c.f. (1.5) and (1.6). The

V-representation for this case is

P := {~q | ~q =
∑
λ

p(λ)~fλ,
∑
λ

p(λ) = 1},

≡ {~q | qj = ~vj · ~p,
∑
λ

pλ = 1, pλ ≥ 0} (3.11)

in which λ labels the vertices. We also define D = {Dj}63
j=1 = {A,B,C, α, . . . , AB,AC,BC,

. . . , cγc} as the sequence of possible contexts, as defined in Sec. 3.1.3, and ~fλ is the vector

in which each entry j is the product of the outputs for the context Dj, for a given λ. The

vector ~vj has in its entries the prediction for the same sequence of measurements, for every

automata, i.e., ~vj = ((fλ=1)j, (f2)j, . . . , (f240)j), in which the λ’s are defined in Sec. 3.1.2. The

H-representation is obtained from the V-representation, and it is assumed in the general form

P := {~q | ~al · ~q ≤ αl, for every l = 1, . . .}. (3.12)

On the other hand, the quantum set is characterized by

Q := {~q | qj = tr(ρZj), for some ρ}, j = 1, . . . , 63. (3.13)

Each operator Zj is one of the 63 operators obtained by multiplying the observables of the

sequence Dj.

If the quantum set is inside the polytope generated by the automata, see Fig. 3.1, the

quantum correlation vector respects the half space inequalities (3.12). This implies that

~al.~q =
∑
j

(~al)j · qj =
∑
j

(~al)j · tr(ρZj) ≤ αl

=⇒ tr
[
ρ(αl 1−~al · ~Z)

]
≥ 0. (3.14)
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Figure 3.1: If Q is inside P , the quantum set respects the same inequalities as the classical set
with memory.

for every ρ, in which we defined ~Z ≡ (Zj)
63
j=1. In accordance with the positivity criterion, this

leads us to define the set of witnesses

Wl := αl 1−~al · ~Z. (3.15)

Therefore, if all quantum vectors of correlations respect the automaton inequalities, for all l

we have Wl ≥ 0, i.e. they are positive semidefinite. Conversely, if the Wl’s are all positive

semidefinite, then any vector of correlations from the set Q respects all of the polytope inequal-

ities (3.12) and thus it is inside the polytope. Therefore, we need to make the transformation

from V-representation to H-representation, and then check if the obtained Wl’s are positive

semidefinite.

In principle, we constructed the vertices for the V-representation, and there are algo-

rithms which make the transformation between V-representation and H-representation. There-

fore, in principle we should be able to test for positive definiteness of the Wl’s. The tech-

nical problem at this point is that the transformation between representations is a compu-

tationally hard problem. Indeed, we were not able to find a direct solution to the prob-

lem. We proceed by reducing the dimension of the polytope generated by the automata,

intersecting it with the affine space of the quantum set. An affine space is a linear space

displaced by some constant vector ~b. More specifically, Q is contained in the affine space

~b+ U ≡ {~b+ ~u | ~u ∈ U}, in which bj = tr(ρZj), for some fixed ρ = ρ0 — for example ρ0 = 1 /4

— and U = {~u | uj = tr(GZj), for some Hermitian operator G, tr(ρ0G) = 0}. This is true
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since we can always write ρ = ρ0 + G. The dimension of U is found to be 9, by the linear

independence relations of the Zl operators. In this way, Q ⊂ P is the same as Q ⊂ P ∩ (~b+U).

Treating this intersection problem of convex sets as its proper extension to the corre-

sponding cones, the equivalent problem might be formulated as follows. Let P be the extension

to a cone associated to P , i.e., the set P = {~q | ~q = A~r,~r � 0}; note that normalization condi-

tion was set aside. Notation ~r � 0 means ri ≥ 0,∀i. The extension to the cone P is made by

adding the vector ~e = (1, . . . , 1) to the vectors ~vj and dropping the normalization condition on ~p.

Consequently, A is the matrix with rows [e,~v1, ~v2, . . . , ~v63]. Therefore, (1, ~q) ∈ P ⇐⇒ ~q ∈ P .

We also define the extension to U as

U = {(λ, λ~b+ U) | λ ∈ R, ~u ∈ U} (3.16)

so that (1, ~x) ∈ U ⇐⇒ ~x ∈ (~b + U). Now for some matrix K — whose kernel is a subspace

associated to the linear space U — we construct some matrix F the range of which is the kernel

of KA. It follows that

P ∩ kerK = {A~r | ~r � 0, K(A~r) = ~0}

= {A~r | ~r � 0, ~r = F~s, for some ~s}

= {AF~s | F~s � 0}

= AF{~s | F~s � 0}

= AF{F ′~s | ~s � 0}

= {AFF ′~s | ~s � 0}. (3.17)

The structure of the above reasoning is the following. The intersection with the plane of the

quantum predictions is made through the additional condition that KA~r = 0. Thus, ~r is on the

Kernel of KA, consequently it can be seen as a mapping through the matrix F . Until now, the

set is written in the V-representation. The next step is to transform to the H-representation,

to get the matrix F ′, and with these matrices we are able to find the inequalities that define

the polytope P ∩ (~b+ U).
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Finding some K such that ker(K) = U , we choose some matrix F with range ker(KA).

The matrix B := AFF ′ is computed easily for this scenario. The next step is to revert the

representations again to get the inequalities:

{B~s | ~s � 0} = {~s | B′~s � 0}. (3.18)

Now, this routine is already done with cddlib [77] to transform the representations.

To generate the matrices K and F , we use iml [78]. Both packages work with unlimited

integer precision, and thus the computation is exact. We verify independently the results using

porta [79].

The next step is to use B′ to obtain the inequalities to generate the Wl’s. We have that

(1, ~q) ∈ P ∩ U if and only if

B′l,1 +
∑
j

B′l,j+1qj ≥ 0, (3.19)

and we find our witnesses — c.f. Eq. (3.14) — to be

Wl = B′l,1 1−
∑
j

B′l,j+1Zj. (3.20)

Proceeding exactly like described above, we found all the Wl’s to be positive semidefinite.

Therefore we can conclude that the Peres-Mermin scenario on two qubits can be simulated by

a classical machine with only three internal states of memory. This is remarkable, since we

expected somehow the memory cost to increase, with possibility to go beyond the Holevo

bound.

Concluding, it remains an interesting question whether the memory cost for quantum

contextuality can be greater than the Holevo bound for some scenario. The negative answer

would mean that a classical system can efficiently simulate a contextuality scenario, while the

positive answer would mean that there is a memory advantage of using quantum systems to

perform sequential operations.
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In the PM scenario, we found that a trit can be used to violate the corresponding NC

inequality. Therefore, a qutrit could be used to play the same role as the trit, with manip-

ulation on the computational basis, for example. It is possible that we still have a quantum

advantage for this scenario? If a qubit could simulate the classical trit on this scenario, the

answer is affirmative. In the next section we use this motivation to extend the analysis to the

question whether or not there is contextuality on a qubit. When considering joint projective

measurements on a two-level quantum system, there exists noncontextual models to explain

the correlations. But we consider a broader scenario which uses instruments as the measure-

ment model. Interestingly, the analysis made so far converged to a line of research explored

also in Refs. [80–85]. In our analysis, presented in the next section, we are concerned with the

possibility of the manifestation of contextuality using compatible and repeatable instruments.

3.2 A Qubit in a Quantum Automaton

The model of a quantum automaton proposed here works as a sequence of quantum instruments.

The automaton operates on a subset of quantum states S(H), and it starts in an initial state ρ0.

It receives an input belonging to the discrete set I, and returns an element of the discrete set

of outputs O. Also, there is an update rule Λx,X : S(H)→ S(H) for every input–output pair.

This update rule and the probability for this event to happen are modelled by instruments, and

their corresponding Kraus decomposition, explained in chapter 1. For dichotomic measurements

with outcomes {−1,+1}, this decomposition has the general form

Λ+,X(ρ) =
∑
i

KiρK
†
i ,

Λ−,X(ρ) =
∑
i

QiρQ
†
i , (3.21)

with the trace preserving condition

∑
i

K†iKi +
∑
j

Q†jQj = 1 . (3.22)
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3.2.1 Conditions on the Instrument

If we do not impose compatibility and repeatability, we will find sequences of measurements

on a qubit that violate a noncontextuality (NC) inequality. We can even violate the tri-

angle inequality (2.23) which cannot be violated by projective measurements on quantum

states. The violation can be achieved preparing a quantum state |ψ〉 〈ψ| and assigning sharp

observables to A and B such that {A(+1) = |ψ〉 〈ψ| , A(−1) = 1 − |ψ〉 〈ψ|}, {B(+1) =

1 − |ψ〉 〈ψ| , B(−1) = |ψ〉 〈ψ|} and to C a deterministic output + together with a transfor-

mation that takes |ψ〉 〈ψ| 7→ |ψ⊥〉 〈ψ⊥|. This will give us maximum algebraic violation, using

the three sequences {AB,BC,CA}. Consequently, the measurements should be tested for

compatibility and repeatability to give meaningful results.

In order to construct this model for a quantum machine, we only need to use a subset of

qubit states. We assume that the machine uses at least two distinct states at some point during

the sequence of measurements, otherwise it is only a convex mixture over classical probabilities.

We assume the initial state ρ0 to be a pure state |ψ〉 〈ψ|, because an initial mixed state can

be decomposed into a mixture of pure states, and therefore a strategy which uses mixed states

can be thought of as a mixture of strategies involving only pure states initially. We also need

at least instrument which changes the state from ρ0 to ρ1, with ρ1 6= ρ0 , since otherwise the

automaton would not use any memory and hence be noncontextual. The canonical convex

decomposition of ρ1 contains at least one projection |ψ̃〉 〈ψ̃| which is different from |ψ〉 〈ψ|.

In terms of eq. (3.21), the condition in which the outcomes of a measurement must

be repeatable in a sequence, i.e., each round gives one classical output for each measurement,

reads

tr [Λ+ (Λ−(ρ))] = tr [Λ− (Λ+(ρ))] = 0, (3.23)

i.e. the probability to obtain contradicting outcomes is zero. Therefore

tr

(∑
i,j

QjKi |ψ〉 〈ψ|K†iQ
†
j

)
= tr

(∑
i,j

KiQj |ψ〉 〈ψ|Q†jK
†
i

)
= 0. (3.24)
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The trace of a sum is the sum of the trace, and as each term in the sum is nonnegative and we

can see QjKi |ψ〉 and KiQj |ψ〉 as new vectors, we find, that for all i and j,

QjKi |ψ〉 = KiQj |ψ〉 = 0 (3.25)

must hold. In this way,

1. if either Ki = 0 ∀i or Qj = 0 ∀j, we have a deterministic output and a general quantum

channel to update the state;

2. if both maps are not zero, i.e. in the case of a dichotomic measurement, we will split in

the cases in which it changes the input state, and in which it does not. Defining A as the

state-changing measurement — the existence of which was assumed above — we express

it through the maps A+(ρ) =
∑

iKiρK
†
i and A−(ρ) =

∑
iQiρQ

†
i . The repeatability

argument on a sequence AA for the initial state |ψ〉 leads to (3.25) and on the last two

measurements on AAA, which act on the part |ψ̃〉 〈ψ̃|, to

QjKi |ψ̃〉 = 0. (3.26)

Together with equation (3.25), and noting that |ψ〉 and |ψ̃〉 span the two dimensional

space, this leads to

KiQj = QjKi = 0, ∀i, j (3.27)

Because these relations do not depend on the indices, and the supports of the Kraus

operators must be non-empty acting in the two dimensional Hilbert space, they might be

defined as rank one operators

Ki = K0 = |a〉 〈b| ,

Qj = Q0 = |b⊥〉 〈a⊥| , (3.28)

in which |a〉 and |b〉 are some vectors in the qubit space. The normalization con-
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dition (3.22) implies |a〉 = |b〉, up to an arbitrary phase. Therefore, we can define

K0 = |a〉 〈a| ;Q0 = 1− |a〉 〈a|. Consequently, A is projective.

Note, that a dichotomic measurement A’ compatible with A also must be projective by the

same reasoning, considering the sequences A′A′ and AA′A′. Furthermore, as we work with a two

dimensional space, either they are the same projective measurement, or the complementary, i.e.

a projective measurement in which the effects for each outcome are interchanged with respect

to A.

Now let B be a measurement which does not change the input state. If there are two

distinct input states, say |ψ〉 〈ψ| and |ψ′〉 〈ψ′|, we can use the same argument above — the

consequences of measuring the sequence BB for both states — to say that B is projective, or

argument 1 if it is a channel.

The only case missing is a quantum automaton in which only one initial state |ψ〉 〈ψ|

occurs and a dichotomic non state-changing measurement B. Imposing repeatability means

that the outcome for this measurement must be predefined for the input state. Now take a

compatible measurement, say C. It also cannot change the input state, otherwise measuring

BCB could lead to opposite outcomes on B, as it is dichotomic and the mappings are defined

on a two dimensional space. Repeatability and not changing the state, therefore, leads to

predefined outputs for this context, which can be modeled by a deterministic classical strategy.

To violate a noncontextuality inequality, on the other hand, a context dependent result is

necessary, i.e. an observable which gives “+” in one context and “−” in any other. Obviously

this is not possible if all the measurements are non state changing. Without loss of generality,

this deterministic part will be replaced by an identity map together with a fixed outcome, which

is included in the class of general channels.

So far we found that in the scenario with repeatable and compatible instruments on

a particular set of qubit states, we must work only with projections and general channels.

The projections in the same context must be compatible, therefore the measurement of the

observables of this context can be implemented in a joint measurement. We already know, as

mentioned in Sec. 1.4.4, that projective measurements on a qubit have a classical — memoryless
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— simulation. The deterministic assignments do not introduce any trouble if they are measured

after the projections, since they must not disturb the outcomes of the projective measurements.

The only possibility to disturb the probabilities would be to start by a measurement represented

by a general map, follwed by projections. Thus, if the projections in a given context are

composed by the effects {|φ〉 〈φ| , 1− |φ〉 〈φ|}, a compatible general map Λ must preserve its

eigenspace, i.e.

Λ(|φ〉 〈φ|) = |φ〉 〈φ| , (3.29a)

Λ(|φ⊥〉 〈φ⊥|) = |φ⊥〉 〈φ⊥| . (3.29b)

Using the Kraus decomposition for Λ(ρ) =
∑

iKiρK
†
i , with

Ki =

ai bi

ci di

 , (3.30)

in the basis {|φ〉 , |φ⊥〉}, Eqs. (3.29) are written as

∑
i

ai bi

ci di


1 0

0 0


a∗i c∗i

b∗i d∗i

 =

1 0

0 0

 , (3.31a)

∑
i

ai bi

ci di


0 0

0 1


a∗i c∗i

b∗i d∗i

 =

0 0

0 1

 . (3.31b)

Considering (3.31a) first,

∑
i

ai bi

ci di


1 0

0 0


a∗i c∗i

b∗i d∗i

 =
∑
i

ai bi

ci di


a∗i c∗i

0 0

 =
∑
i

|ai|2 aic
∗
i

a∗i ci |ci|2

 =

1 0

0 0

 .
(3.32)
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Consequently, we conclude that

∑
i

|ai|2 = 1

∑
i

|ci|2 = 0 =⇒ ci = 0. (3.33)

Now considering (3.31b), an analogous reasoning leads to

∑
i

|di|2 = 1

bi = 0. (3.34)

Applying this map to a general state ρ, in which

ρ =

α β

γ δ

 , (3.35)

we get

Λ(ρ) =
∑
i

ai 0

0 di


α β

γ δ


a∗i 0

0 d∗i

 =
∑
i

ai 0

0 di


αa∗i βd∗i

γa∗i δd∗i

 =
∑
i

α|ai|2 βaid
∗
i

γa∗i di δ|di|2


=

α∑i |ai|2 β
∑

i aid
∗
i

γ
∑

i a
∗
i di δ

∑
i |di|2

 =

 α β
∑

i aid
∗
i

γ
∑

i a
∗
i di δ

 . (3.36)

We can see that the probabilities of the two outcomes given the input state are the same given

the state transformed by the map, i.e. tr [ρ |φ〉 〈φ|] = tr [Λ(ρ) |φ〉 〈φ|] = α and tr
[
ρ |φ⊥〉 〈φ⊥|

]
=

tr
[
Λ(ρ) |φ⊥〉 〈φ⊥|

]
= δ. We can see that this state after the channel cannot change the prob-

ability of the sequences obtained if instead we first measure the projections. Therefore, the

argument ends due to the existence of classical distributions for projective measurements on a

qubit, which cannot violate any NC inequality.



Conclusions and Perspectives

In this thesis, we saw intriguing differences between quantum and classical theories for physical

phenomena. These differences lead to experimentally testable bounds on noncontextuality in-

equalities, which include Bell-type inequalities. When realizing the experiments in a sequential

way, physicists measuring compatible observables from QT can model the experiment not in

terms of density matrices and instruments, but by using classical systems with memory. This

memory is related to the minimum number of classical states which must be accessible during

the sequence of measurements. This has implications in better computational resources, which

could be more efficient than the classical ones. Furthermore, there is an ontological query if

quantum states associated to Hilbert spaces of dimension d might be in fact described by d

distinct classical states, associated to the probabilistic automata. Up to now, there is no result

showing a necessarily higher number of classical states when one is restricted to contextuality

scenarios. Inside this topic, and the main result of this thesis, we showed that the Peres-Mermin

scenario, in which d = 4, can be simulated by only three classical states, still less than Holevo’s

bound. We have thus raised the question if this is a general feature of contextuality or it

depends on each situation. In the scenarios analysed so far, there is no example of memory

advantage in the contextuality paradigm; on the other hand, there are other scenarios which

need less than d states, like the CHSH.

If we can violate the PM inequality, i.e. Eq. (1.70), with three classical states, we

can also do so with a qutrit and classical manipulation, since they transmit the same amount

of information between two measurements. Thus, the next step would be to see if a sequen-

tial modeling of a qubit in sequential measurements might violate PM inequality, using the

83
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instrument approach. We found a more general claim, that a qubit cannot violate any non-

contextuality inequality. This is a stronger form of part of the analysis of the hidden-variable

problem by Kochen, Specker and Bell. Thus, if one tests compatibility and repeatability in

sequential measurements and still violates a noncontextuality inequality, then one can conclude

that the system tested needs at least a three-dimensional Hilbert space to be described by

quantum theory.

Besides the quest for memory advantage of quantum contextuality, it is interesting to

investigate whether the qubit is equivalent to the bit or other generalized states in GPT’s,

regarding the probabilities which might be obtained. Partial results we obtained, which are

not in the scope of this thesis, show that there are differences between the bit and the qubit,

which can be tested experimentally, using noncompatible measurements in a sequence. On the

other hand, calculations show that with a g-bit, i.e. a generalized bit, it is possible to violate

NC inequalities, respecting both repeatability and compatibility. Consequently, an intriguing

question that appears at this point is why it is not possible to violate NC inequalities for the

qubit, when considering repeatable and compatible instruments.
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