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A: area (𝑚2) Subscripts/Superscripts 

AR: area ratio 1, 2,..., 10: thermodynamic states of fluid in the refrigeration 
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BD: book depreciation cond: condenser 
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𝐻̅𝑑: monthly average daily defuse radiation  (MJ/m2) w: water 
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ℎ𝑐𝑝: heat transfer coefficient of convection boiling (𝑊 𝑚2𝐾)⁄  T: total 

ℎ𝑛𝑝: heat transfer coefficient of nuclear boiling (𝑊 𝑚2𝐾)⁄  b: beam radiation 
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Abstract 
 

The case study is Unit 132 of the second refinery of the South Pars, Bushehr in the south of Iran. This unit has a 

refrigeration system that is responsible to deliver 39 kg/s cold water for cooling the equipment of the refinery. In the 

first part, two refrigeration systems are designed for this target, which are heat exchanger refrigeration system (HXRS) 

and ejector expansion refrigeration system (EERS). R134a, R407C and R410A refrigerants are evaluated to identify 

the most suitable one for the proposed systems. Energy, exergy, economic and environmental analyses are investigated 

for each system. Sizing of the evaporator, condenser and ejector device are determined. In the second part, artificial 

intelligence methods are developed to predict solar and wind energy. These predicted data are employed to calculate 

the produced power by wind turbines and photovoltaic panels. In the third part, a hybrid renewable energy with 

hydrogen energy storage system is designed to provide the electrical energy for this refrigeration unit. The target of 

this part is to define and assess an off-grid hybrid renewable energy with hydrogen storage system. The system 

combines solar energy, wind energy, hydrogen production unit and fuel cell. Energy, exergy, and economic analyses 

are carried out for the proposed system. The results demonstrated that from energy, exergy, environmental and 

economic point of views R134a EERS is more efficient than HXRS with different working fluids. For prediction of 

solar radiation data, multilayer feed-forward neural network (MLFFNN) and support vector regression (SVR) 

performed better than the other developed models. For wind speed prediction, SVR outperformed the other developed 

models for all time intervals. Also, for hybrid renewable energy system, the amount of energy and exergy efficiencies 

for photovoltaic system (in the case study region) were obtained as 12% and 16%, respectively. In addition, for wind 

turbine system, the values of energy and exergy efficiencies were achieved 32% and 26%, respectively. The payback 

period of the proposed renewable energy system was obtained around 11 years.    

Keywords: Refrigeration system; Photovoltaic system; Wind energy; Hydrogen storage system; Artificial intelligence 
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Chapter 1 

Introduction 
 

Most of sun’s ultraviolet (UV) radiation is absorbed by ozone layer of the earth. This layer contains a high 

concentration of ozone. The ozone layer is vitally important to life because it absorbs biologically harmful ultraviolet 

(UV) radiation coming from the sun [1]. Today most of the industrial units use the electrical energy that it is produced 

by power stations which are fueled by fossil fuels. A lot of pollution is released by these power stations and it causes 

the destruction of the ozone layer [2]. The increase in energy demand, depletion of fossil resources and environmental 

pollution problem have led to growth of interest in more efficient systems [3]. Therefore, efforts to reduce high-grade 

energy consumption are necessary and it is useful to develop innovative alternatives in technologies that involve large 

amounts of power consumption, such as vapor compression refrigeration. As an example, one can consider alternative 

ejector refrigeration system (ERS).  

There is a growing global demand for energy, but also for reducing strain on the environment. Considerable 

investments were made in alternative energy research worldwide recently. Growing demand for environment-friendly 

energy makes renewable energy development and production a sound investment for the future. Solar energy can be 

defined as the energy produced by the Sun's radiation. This energy comes in two forms, heat and light. Since solar 

energy comes from the sun it is considered a renewable source of energy because nothing is consumed to use this 

energy. Solar energy is also a clean source of energy that does not damage the environment with harmful emissions 

or waste like other source such as nuclear and conventional energy. Solar energy sources can be located anywhere that 

there is sunlight, thus solar energy sites  can  be  constructed  close  to  where  consumers  are  located;  this  could  

potentially reduce transmission and distribution costs [4]. An important feature to design required photovoltaic 

systems is prediction of solar energy, that machine learning algorithms are currently, the most popular for this target 

[5]. Several studies were proposed machine learning algorithms to predict solar irradiance in different worldwide 

regions [6]–[9]. 

Between the renewable energies, the wind energy is more accessible and fairly cheaper [10]. Wind energy is a clean 

resource and does not pollute the air like fossil fuel power stations. In addition, it does not produce atmospheric 

emissions which increase health problems. Power produced by WTs depends on wind speed. Due to the importance 

of short-term prediction of the wind speed for connecting and disconnecting the power to the grid and management of 

the power, many investigations have implemented artificial intelligence methods in order to predict wind speed data 

[11]–[13]. Artificial neural network (ANN) is a kind of the artificial intelligence that is proposed to predict wind speed 

data [13]–[20]. Meteorological data, e.g., pressure, temperature, relative humidity, etc., of the region are proposed to 

construct the intelligent models [21], [22]. 
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The aims of this thesis are to design and asses a refrigeration system for supplying the cold water for Unit 132 of the 

second refinery of the South Pars, Bushehr in the south of Iran. Also, designing and evaluating a hybrid 

photovoltaic/wind energy system with hydrogen energy storage system to provide the electrical energy for the 

refrigeration system and to discuss the feasibility of applying this system for the remote area (or islands) in the south 

of Iran. In addition, using artificial intelligence methods to predict solar and wind energies, which are used to calculate 

the energy input to photovoltaic panels and generating power by wind turbines. The targets of this Ph.D. thesis are as 

follows:  

1.1. Refrigeration unit 

Maybe a system will be an ideal system from a thermodynamic point of view, but it might not be able to pass the 

economic and environmental criteria. Also, analysis the systems only by considering the economic criterion, can 

obtain the cheapest one, but may not be a well-designed one from the thermodynamic and environmental points of 

view. Thus none of these systems are acceptable from a comprehensive engineering point of view and it needs that a 

simultaneous consideration of all or some of these criteria might provide a better option for engineers. The goal of this 

section of Ph.D. thesis are: 

1. Energy analysis based on the first law of thermodynamics in order to find the maximum coefficient of 

performance of the proposed systems. 

2. Exergy analysis of the systems in order to determine the exergy destruction of the systems and also for each 

component of the systems.  

3. Environmental analysis for the proposed systems.  

4. Thermo-economic analysis based on the second law of thermodynamics for the proposed systems.  

5. To determine the sizing of the components such as evaporator, condenser, and ejector device.  

Contribution: 

Regarding the literature review, the extensive research carried out on the performance of the EERS with the constant 

area for ejector device based on the energy analysis. In this study, the performance of the EERS and ejector design 

under different operating conditions and for the first time by considering the economic and thermodynamic parameters 

simultaneously carried out. Thus far, the ejector device was applied in transcritical CO2 cycle, domestic refrigerators 

and freezers, this Ph.D. thesis concentrates on the EERS in real conditions for large-scale refrigeration system for 

supplying the cold water (high temperature in condenser and evaporator). Also, there is no detailed thermo-economic 

assessment on the EERS in order to design the components. Based on the literature, more the proposed thermo-

economic analysis methods have considered only the initial capital cost and costs of the input exergy of the system. 

Due to the large capacity of the unit, in this study TRR method is considered as thermo-economic analysis method in 

which all the costs, including return on investment, equipment, and fuel purchase prices and the total revenue 

requirement are calculated annually.   

The main goal of this section is to find the more efficient refrigeration system with the optimum working fluid for 

supplying the cold water for the refinery.    
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1.2. Artificial intelligence methods 

1.2.1. Solar radiation prediction 

Between renewable energy resources, solar energy has a high potential in Iran. This country with 300 clear sunny days 

for a year and average 2200 kWh/m2/year solar radiation is especially important to use solar systems [23]. In the south 

of Iran there are several Islands that because of remarkable potential of the solar energy in these regions, it is proposed 

to use solar energy systems for providing the electrical energy. Prediction of the solar radiation is useful for grid 

operators in order to make decisions of grid operation, as well as, for electric market operators. In addition energy 

producers and to negotiate contracts with financial entities or utilities that distribute the produced energy also use of 

this solar prediction. The goals of this study are: 

1. To develop a multilayer feed-forward neural network (MLFFNN) in order to predict the solar radiation in 

the study zone. 

2. Using radial basis function neural network (RBFNN) to forecast the hourly solar radiation. 

3. To develop a support vector regression (SVR) model to estimate the hourly solar radiation.  

4. Prediction of solar radiation using fuzzy inference system (FIS).  

5. To develop adaptive neuro-fuzzy system (ANFIS) for predicting the solar radiation. 

1.3.2. Wind speed prediction    

The fossil fuel energy resource is gradually being replaced by renewable energy in the world. The sources of fossil 

fuel energy are limited and use of this resources causes the environmental pollutions and depletion of ozone layer 

[24]. Iran has primarily relied on a fossil fuel-based energy sector to make its country powerful. With looking at the 

meteorological data in Iran, it can be understood that there is a powerful potential for using the wind energy in this 

country. With considering these subjects, this Ph.D. thesis has been encouraged to evaluate the wind energy in the 

south of Iran. The goals of this study are: 

1. To design an MLFFNN to predict the wind speed and its direction with several data training algorithms to 

identify the better one. 

2. The implementing of SVR model for forecasting the wind speed with different time series data. 

3. Using ANFIS model to predict the wind speed data in the study region. 

Contribution: 

Machine learning algorithms were applied to predict the solar and wind energy in the case study zone. This Ph.D. 

thesis evaluated some machine learning algorithms like multilayer feed-forward neural network, radial basis function 

neural network, support vector regression model, fuzzy inference system, and adaptive neuro-fuzzy inference system 

in order to predict the solar radiation and wind speed datasets in the study region. The more efficient method will be 

introduced for predicting the targets. A comparison between the developed models is done in order to find the best 

performance. Also, forecasting models are developed for the first time in the south of Iran to predict wind speed and 

solar energy.  

https://en.wikipedia.org/wiki/Iran
https://en.wikipedia.org/wiki/Fossil_fuel
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The main goal of this section is to propose the optimum intelligent model for prediction of solar radiation and wind 

speed.  

1.3. Hybrid renewable energy system 

The hydrogen energy storage system is especially attractive for remote communities which are not connected to a 

utility grid. For remote areas, the value of solar/wind energy is extremely high and because of the difficulty and 

expense of bringing in fuel or building a power line, the renewable hydrogen system can supply energy with locally 

available renewable sources. In this study, a hybrid renewable energy with hydrogen storage system for supplying the 

electrical energy for Unit 132 of the second refinery of South Pars in Bushehr (Iran) is proposed. PV panel, wind 

turbine, electrolyzer, fuel cell, hydrogen tank, and converter are considered for this system. The goals of this section 

of the Ph.D. thesis are:  

1. To find the pattern of produced power for photovoltaic and wind turbine systems in the study zone with 

dynamical modeling of solar radiation and wind energy.  

2. Energy analysis for the photovoltaic system in order to find the produced pattern of photovoltaic systems 

in the case study region.  

3. Finding the optimum slope and azimuth angles for solar collectors for the study zone.  

4. Energy analysis for the wind turbine system in the case study region.  

5. Exergy analysis for the wind turbine system in the study zone. 

6. To determine the pattern of produced power for the photovoltaic and wind energy systems.  

7. Energy, exergy, and economic analysis for the hybrid renewable energy with hydrogen energy storage 

system.     

Contribution: 

Although some studies investigated hybrid renewable energy systems with hydrogen energy storage, based on a 

comprehensive literature review that has been done for hybrid renewable energy with hydrogen energy storage systems 

most of the studies are in small applications and this study focus on a large hydrogen energy storage system with the 

constant demand load. Also, this analysis for the first time is carried out for the south of Iran and the energy storage 

pattern was found for this area. In the south of Iran, there are a lot of remote area and several islands, which the 

proposed system can be applied for this regions.   

The main target of this section is to investigate a dynamic model of the renewable energy system for supplying the 

electrical energy in the case study region.    

1.4. Scope 

This thesis in the first section concentrates on ejector expansion refrigeration system and evaluates the technical and 

economic status and prospects of the system components. The proposed system can be used in food processing, 

preservation and distribution; chemical and process industries; special applications such as cold treatment of metals, 

medical, construction, ice skating; comfort air-conditioning; and supplying the cold water in large-scale industrial 

applications. The second section machine learning algorithms are applied to predict the solar and wind energy for the 
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study zone. These proposed models can be used to predict the solar and wind energy in the other regions in the world. 

The predicted data are used to calculate the produced power by wind turbines and photovoltaic panels. The third 

section defines and assesses a hybrid renewable energy with hydrogen energy storage system that is suitable for the 

remote area applications. The proposed system concentrates on solar and wind energy in the south of Iran, which in 

this region there are a lot of remote areas and islands that proposed system can be used for this regions. Also, the 

potential of solar and wind energy for the study zone will be evaluated.   

1.5. Methods and Outline 

This Ph.D. thesis is developed based on a literature review and experiences from relevant projects all over the world. 

For designing the refrigeration systems:  

1. EES software is used to obtain the operating condition of the proposed systems.  

2. Energy, exergy, economic, and environmental analyses of the proposed systems were implemented by 

developing some algorithms in the Matlab software. 

3. Solar and wind analysis of the hybrid renewable energy system is based on the data that provided by 

NASA[25].  

4. The first and second law of thermodynamics are used to evaluate the hybrid renewable energy system.   

5. For implementing the machine learning algorithms Matlab software is used. A three layer feed-forward neural 

network, a radial basis function neural network, fuzzy inference system, support vector regression model, 

and adaptive neuro-fuzzy inference system are applied to predict the solar radiation. Also, a three layer feed-

forward neural network, support vector regression and adaptive neuro-fuzzy inference system models are 

used to estimate the wind speed data in the study zone.  
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Chapter 2 

Literature Review 
 

2.1. Refrigeration system 

World energy consumption is increasing continually and this event is worrisome for all researchers and scientists [3]. 

The increase in energy demand, depletion of fossil resources and environmental pollution problem have led to a growth 

of interest in more efficient systems. Therefore, efforts to reduce high-grade energy consumption are necessary and it 

is useful to develop innovative alternatives in technologies that involve large amounts of power consumption, such as 

vapor compression refrigeration system [26]. This type of cooling systems are more popular in Iran and optimization 

of these systems will be helpful for energy saving. As an example, one can consider alternative ejector refrigeration 

system (ERS). The role of energy and exergy analysis for defining the cost and benefits in refrigeration systems was 

shown with the thermo-economic analysis that is based on the second law of thermodynamics. The optimum 

conditions for thermodynamic and economic performance of the system are achieved by considering the economic 

and thermodynamic parameters simultaneously [27]. Maybe a system will be an ideal system from a thermodynamic 

point of view, but it might not be able to pass the economic and environmental criteria. Also, analysis the systems 

only by considering the economic criterion can obtain the cheapest one, but may not be a well-designed one from the 

thermodynamic and environmental points of view. Thus none of these systems are acceptable from a comprehensive 

engineering point of view and it needs that a simultaneous consideration of all or some of these criteria might provide 

a better option for engineers. 

With the introduction of EERS for the first time by Kornhauser [28] in 1990, studies in this area have seen a growing 

trend. Some of the investigations have proposed ejector instead of the expansion device in refrigeration systems [29]–

[32]. Two-phase flow ejector device was proposed instead of the expansion device in refrigeration cycle (RC) by 

Hassanian et al. [33]. It is found that ejector device is an efficient way to enhance the performance of the system. The 

coefficient of performance (COP) increased approximately 88% as evaporation temperatures changed from -10℃ to 

10℃. Wongwises et al. [34] conducted an experimental investigation on EERS in a transcritical CO2 refrigeration 

system. It was found a higher cooling capacity and COP, as a result of using ejector as a new expansion device. Zheng 

et al. [35] developed a dynamic model for a CO2 transcritical EERS. Evaporator, gas cooler and separator were 

formulated by using the mass and energy conservation laws. They illustrated that the area ratio of the ejector has 

greater effect on gas cooler pressure. Also, the mass flow rates decrease if the area ratio of ejector increases. Li  et  al. 

[36] evaluated  EERS  with R1234yf as working fluid. The constant evaporation temperature (5℃) and the constant 

condensing temperature (40℃), COP, and volumetric cooling capacity (VCC) were analyzed in their study. It was 

observed that COP and VCC in EERS were improved in comparison to a standard refrigeration system. Thongtip et 

al. [37] evaluated the performance of an ejector that was applied in R141b jet-pump refrigeration system. They 

provided the optimum range of primary mass flow rate and critical evaporator temperature for the proposed ejector 

system.    
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On the other hand, some studies evaluated thermo-economic analysis in refrigeration systems. Farsi et al. [38] 

evaluated thermo-economic analysis on ejector supercritical refrigeration system. For economic analysis, it is 

considered the operating and maintenance costs and the capital investment cost of the component. Thermo-economic 

optimization results illustrated that COP and exergy efficiency improve about 12% and 8%, respectively. 

Exergoeconomic analysis and multi-objective optimization for an ejector refrigeration cycle (ERC) powered by an 

internal combustion engine have been investigated by Sadeghi et al. [39]. Thermodynamic analysis, exergoeconomic 

and multiobjective optimization were implemented for the ERC in order to obtain the optimum design variables. 

Several design parameters such as the condenser, evaporator and generator temperatures are examined on the 

thermodynamic and exergoeconomic performances. Their results showed the best performance obtained when the 

ejector refrigeration system works at a generator, a condenser and evaporator temperatures of 94.54, 33.44 and 0.03℃, 

respectively. Exergoeconomic analysis of CO2 transcritical refrigeration system (TRS) was done by Fazelpour et al. 

[40]. They used an economizer as an auxiliary component for one-stage CO2 TRS that this machine helps them to 

decrease the total cost by about 14%. Rezayan et al. [41] evaluated thermo-economic analysis of CO2/NH3 cascade 

refrigeration system. By the input exergy cost and capital cost for the systems, the optimum evaporation and 

condensing temperatures were found in their study. It should be noted that finding the size of the components is 

important for thermo-economic analysis which is done in this study. Shell and tube evaporator and compact air-cooled 

condenser were considered for the proposed systems in this study. Comprehensive methods in order to design the heat 

exchangers are introduced by Thulukkanam [42] and Lee [43]. An ejector expansion device is divided into three 

sections known as diffuser, mixing section and motive nozzle. To determine the size of the ejector device some 

methods were proposed by [33], [44], [45]. Based on the literature review for the ejector in refrigeration systems, it 

can be said that many studies proposed an ejector in transcritical CO2 refrigeration systems [30], [46]–[50], domestic 

refrigerators [36], [44], [51]–[58], and domestic refrigerator-freezers [31], [59]–[61].     

2.2. Artificial intelligence methods 

2.2.1. Wind speed prediction 

Wind energy is one of the most common of clean energies that has been developed significantly in the world [62]. 

This type of energy is more accessible, inexhaustible, fairly cheaper, renewable and sustainable, and environmentally 

friendly. Wind energy is a free source of energy that has served the mankind for many countries for driving wind 

turbines, pumping water, ships, etc. Developing wind energy systems can improve the idea of electricity generation 

without pollution in the future [63]. However, the integration of wind farms into the power networks has become an 

important problem for commitment and control of power plants, connecting and disconnecting the power to the grid 

and management of the power [64]. The produced power by wind turbine is related to the wind speed. Wind is 

considered one of the weather variables which more difficult to be estimated [65]. Wind is intermittent in nature, so it 

is not possible to predict exact wind speed because of the continuously changing climate conditions.   

Therefore, the advent of alternative energy sources, particularly wind power, and the need to manage energy resources 

necessitate the use of advanced tools for prediction of short-term wind speed (or other types of renewable energies) 

[66]. The contribution of wind speed prediction for a safe and economic operation of the network will organize by 
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independent power producer, system operator distribution and electrical companies. In recent years many 

investigations have proposed machine learning algorithms (MLAs) (or Artificial Intelligence methods) to predict the 

variation of meteorological data such as wind speed, solar irradiance, relative humidity, air temperature and etc. [11], 

[13], [67]–[72]. Artificial Intelligence methods are defined as an extensive scientific discipline which enable computer 

programs to solve the complex nonlinear problems. In this study, four types of MLAs are implemented to predict the 

wind speed data. It is exposed the procedure to achieve the possible models which better explain the wind speed 

behavior. These methods are described as follows:              

The first method is multilayer feed forward neural network (MLFFNN) that is defined as a new method of 

programming computers. This method is employed to analyze the problems that are very difficult to solve using 

conventional techniques [73]. The second method is support vector regression (SVR) that optimize its structure based 

on the input data. This method has been introduced by Vapnik [74], which works based on the classification and 

regression technique. In recent years, SVR was successfully employed on classification tasks in very different areas 

of application [75]–[78]. The third method is adaptive neuro-fuzzy inference system (ANFIS). An ANFIS model is 

defined as a combination of an ANN (generally, radial basis function neural network) into a fuzzy inference system. 

This combination is carried out to obtain the knowledge of the human expert to adjust the fuzzy parameters. The fourth 

method is the combination of particle swarm optimization (PSO) algorithm with ANFIS model (ANFIS-PSO). The 

PSO algorithm is employed to increase the performance of the ANFIS model, tuning the membership functions 

required to achieve a lower error. This optimization algorithm that was proposed by Kennedy and Eberhart in 1995 is 

a heuristic approach [79].  

Chang et al. [80] developed a radial basis function neural network (RBFNN) for short-term wind speed and power 

forecast. The proposed network was trained with 24 h of observation period with historical data. Also, their method 

was compared with other methods of neural networks. They obtained the mean absolute percentage error (MAPE) for 

backpropagation neural network (BPNN), RBFNN and ANFIS as 27%, 24% and 3.87%, respectively. Ramasamy et 

al. [15] proposed an artificial neural network (ANN) to estimate wind speed in the mountains region of India. 

Temperature, solar radiation, air pressure and altitude were selected as inputs of the model and mean daily wind speed 

was selected as the target. It was reported a MAPE and correlation coefficient around 4.55% and 0.98, respectively. 

Doucoure et al. [21] implemented wavelet neural network and multi-resolution analysis to forecast wind speed.  

Liu et al. [81] developed a modified Taylor Kriging method in order to estimate wind speed time-series data. One-

year wind speed data were divided into 10 samples and the proposed model was applied to each sample. The proposed 

method was compared with an autoregressive integrated moving average method (ARIMA) and the results illustrated 

that the proposed method outperformed the ARIMA method by 18.6% and 15.2% in term of mean absolute error 

(MAE) and root mean square error (RMSE), respectively. Noorollahi et al. [82] used ANNs for estimating temporal 

and spatial wind speed in Iran. They implemented BPNN, RBFNN and ANFIS models to predict the targets. The 

BPNN and ANFIS models yielded similar results. The RBFNN method illustrated larger errors in all cases. Schicker 

et al. [83] developed an interval-artificial neural network for short-term wind speed prediction. 
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Kumar et al. [84] proposed generalized regression neural network (GRNN) and multilayer perceptron neural network 

(MLPNN) in order to predict wind speed in Western Region of India. It was found that the GRNN model has given 

the better result than MLPNN in term of mean square error (MSE). Sheela et al. [85] proposed neural network based 

on hybrid computing model for wind speed prediction. The proposed model was compared with an MLPNN and the 

results demonstrated the hybrid computing model performed better in terms of minimization of errors. Petkovic [86] 

implemented an ANFIS method for estimation of wind speed distribution. It was achieved an improvement in 

predictive accuracy and capability of generalization with the ANFIS approach.  

Bonfil et al. [87] developed a model based on SVR to predict wind speed for wind farms. Wavelet, extreme learning 

machine and outlier correction algorithm were developed in order to predict wind speed by Mi et al. [88]. Also, Liu 

et al. [71] applied secondary decomposition algorithm and Elman neural networks for forecasting wind speed data. It 

was achieved a satisfactory performance for the proposed method in multi-step wind speed prediction. Li et al. [89] 

developed a study based on three models of ANN to predict wind speed data. These methods were adaptive linear 

element, backpropagation and radial basis function neural network. It was observed that the three developed models 

were capable at wind speed prediction. Koo et al. [90] employed ANN to predict wind speed data based on geological 

and distance variables (a case study in South Korea). 

Lodge and Yu [91] implemented an ANN to predict the short-term wind speed data. This model was constructed based 

on the current weather condition and historical wind speed data. The values of RMSE for training and testing datasets 

were determined as 0.5781 (m/s) and 0.8895 (m/s), respectively. Mohandes et al. [92] developed a support vector 

machine (SVM) for forecasting the wind speed data and compared to an MLP neural network. For testing datasets, 

the value of MSE for SVM and MLP models were obtained 0.0078 and 0.0090, respectively. Bilgili et al. [93] used 

MLP neural network in order to forecast wind speed data. To train the network, resilient propagation (RP) learning 

algorithm was employed. Also, logsig and purelin transfer functions were selected for the hidden and output layers, 

respectively. The MAPE for the developed model was obtained 14.13%.  

Salcedo-Sanz et al. [94] developed evolutionary support vector regression algorithms to estimate short-term wind 

speed prediction. An Evolutionary Programming algorithm (EP) and particle swarm optimization algorithm (PSO) 

were applied to tackle the hyper-parameters estimation problem in regression SVM. Their results have shown that the 

new model based on SVM with EP algorithm outperformed the MLP neural network. Liu et al. [95] proposed two 

models of ANN to predict the wind speed data. The first model was SVM optimized with genetic algorithm (SVM-

GA) and the second one was a combination of wavelet transform with SVM-GA model (W-SVM-GA). It was obtained 

that the W-SVM-GA performed better than the SVM-GA in terms of MAPE and RMSE. 

2.2.2. Solar radiation prediction 

Renewable energy resources, particularly, solar energy is being replaced with the fossil fuel resources [96], [97]. 

Accurate prediction of solar irradiance data is an important issue towards the successful planning of renewable energy 

projects [98]. Vast applications in the field of agriculture, heating and cooling systems, ventilation and electrical 

energy production use solar energy. Generally, solar radiation data are measured by pyrheliometer, pyranometer and 
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sunshine duration meter. But, installation of these devices for each station is very expensive. In addition, due to the 

low accuracy of these devices, the missing data have been found. Therefore, the accurate prediction of solar irradiance 

data is important for solar energy researches [99]. In recent layers, many investigations utilized artificial intelligence 

methods to predict the solar radiation data [100], [101], which a summary of them are described as follows:   

Loghmari et al. [102] compared the performance of two global solar radiation models (an Artificial Neural Network 

(ANN) and Inverse Distance Weighting based model (IDW)) for spatial interpolation purposes. The available 

meteorological data was used by the ANN model to predict global solar radiation. Global solar radiation measured in 

the neighboring regions were used by the IDW model to predict the target. It was obtained the average relative root 

mean square error for the ANN and IDW models as 6.4% and 5.11%, respectively. Kashyap et al. [103] developed a 

model based on ANN with backpropagation algorithm for solar radiation forecasting. The predicted model was 

initiated and validated with 10 meteorological parameters further in sub-categories. They concluded that the best 

results for the developed model were obtained with the delays of 15 or 30, transfer function as tansig, the number of 

neurons in the hidden layer as 10 or 20. For this model, the value of RMSE was obtained around 25-35%. Wu et al. 

[104] developed a new model based on a genetic approach combing multi-model framework in order to solar radiation 

time series prediction. Several patterns in the stochastic solar radiation series were assumed by them in which a genetic 

algorithm was applied to find the optimal segment of the solar radiation series. It was obtained that the proposed model 

outperformed the autoregressive moving and average model (ARMA) and time delay neural network (TDNN). Meenal 

and Selvakumar [105] compared the performances of the support vector machine (SVM), ANN and empirical solar 

radiation models by considering the different combination of input variables. The input parameters were selected to 

be month, latitude, longitude, bright sunshine hours, day length, relative humidity, maximum and minimum 

temperatures. This study was done in order to predict the monthly mean daily global solar radiation (GSR) for various 

stations in India. They obtained that the SVM model with most influencing input parameters performs better than the 

ANN and empirical models.  

Olatomiwa et al. [106] used an ANFIS model to estimate solar radiation in Nigeria. This model was developed based 

on a series of measured meteorological data that were monthly mean minimum and maximum temperatures, and 

sunshine duration. The root mean square error (RMSE) and determination coefficient (R2) for training and testing 

phases of the model were obtained as 1.0854 and 0.8544, and 1.7585 and 0.6567, respectively. An ANN model was 

developed for prediction of monthly average daily global solar radiation by Alsina et al. [107]. This study was 

developed for prediction of solar radiation over Italy. To construct the model, 13 input parameters were considered 

and the results have shown the mean absolute percentage error (MAPE) of the model, ranges between 1.67% and 

4.25%. 

Wang et al. [108] conducted a study for prediction of solar radiation that compares three types of ANN methods. 

Multilayer perceptron (MLP), generalization regression neural network (GRNN) and RBFNN were applied to estimate 

the daily global solar radiation. The models were developed based on the air temperature, relative humidity, air 

pressure, water vapor pressure and sunshine duration hours measured at 12 stations in different climate zones as input 

variables. It was found that MLP and RBFNN models provide better accuracy than the GRNN. A SVM was applied 
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for prediction of daily and mean monthly global solar radiation in an arid climate (Ghardaia, Algeria) by Belaid and 

Mellit [109]. For this model, the inputs were selected to be the ambient temperature, maximum sunshine duration and 

extraterrestrial solar radiation. For the developed SVM model the correlation coefficient varied from 0.894 to 0.896. 

Also, this model performed better than an MLP. Mehdizadeh et al. [110] developed a study based on Gene Expression 

Programming (GEP), ANN, ANFIS and 48 empirical equations in order to estimate daily solar radiation in Kerman, 

Iran. They reported that the meteorological parameters-based and sunshine-based scenarios in ANFIS and ANN 

presented high accuracy compared to the empirical models.            

2.3. Hybrid renewable energy system 

The main problem to utilize the solar and wind energies is the great variation in available power which occurs from 

season to season, day to day, hour to hour. This would not be a problem if the load was well correlated to the energy 

availability, but unfortunately, this is not often the case. Efficient storage is essential for large-scale exploitation of 

intermittent renewable sources. Today most renewable electricity systems use battery as storage system [111]. This 

type of storage is expensive and large per unit of stored energy but has the advantage of high efficiency. Batteries can 

be used for short-term storage, but in order to keep the solar/wind power system dependable, a relatively large number 

of batteries will generally be needed [112]. This can result in high costs. Until now, one of the key factors constraining 

the advantage of renewable power sources has been the inability of batteries to store enough electricity to provide user 

needs during extended periods of calm or cloudy days. The introduction of hydrogen will help to overcome the storage 

difficulty of renewable energy. Hydrogen can be easily produced by electricity via electrolysis and reconverted to 

electricity by fuel cell power plants [113]. 

In recent years several studies have been conducted on hydrogen energy storage system for renewable energies. Energy 

and exergy analysis of a solar system with hydrogen storage unit was done by Ozcan et al. [114]. Kotowicz et al. [115] 

developed a methodology to obtain the efficiency of a hydrogen generator as a system for storage of renewable-

generated energy. Uyar et al. [116] investigated a model of renewable energy system integrated to a hydrogen storage 

unit for better design of 100% renewable energy communities. They showed the role of hydrogen and fuel cell for 

supplying the required energy in transportation sectors as a clean energy system. Calderon et al. [117] proposed a 

PV/wind system with hydrogen storage performance to provide the electrical energy in Badajoz, Spain. The proposed 

system was evaluated based on an exergy analysis. They obtained a low exergy efficiency for the PV modules (8.39%) 

in Badajoz.     

Kalinci et al. [118] evaluated energy and exergy analysis of a hybrid hydrogen energy system and applied it for 

Bozccada, Turkey. Marchenko et al. [119] investigated a PV/wind energy system on the Baikal Lake. They proposed 

a system using PV panels and wind turbine for supplying the electric power and electrolyzer, hydrogen tank and fuel 

cell as energy storage system. Khalid et al. [120] analyzed a renewable energy based integrated photovoltaic system 

(PVS) and wind turbine system (WTS) to provide electrical energy for residential applications. They used the excess 

electricity generated to produce hydrogen through electrolyzer and using hydrogen generated by fuel cell during peak 

demand periods. The overall energy and exergy efficiencies of this system were reported as 26% and 26.8%, 

respectively. Also, Caliskan et al. [121] investigated a hybrid renewable energy based hydrogen energy storage. 
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Energy and exergy analysis of this system has been evaluated by them. It is found the average energy efficiency for 

WT, PV array, electrolyzer and fuel cell by 26.15%, 9.06%, 53.55% and 33.06%, respectively.  

In the areas which are connected to the grid, it is certainly not worthwhile to use the renewable hydrogen system 

nowadays. It is an environmentally friendly system but too costly. However in the more areas where no connection to 

utility grid, the renewable hydrogen system is an attractive solution. Gonzalez et al. [122] evaluated a solar hydrogen 

storage system and compared it with other electrical energy storage technologies. In their study, hydrogen energy 

storage system was classified between 100 kW and 100 MW power rating. A solar electricity supply system with 

seasonal hydrogen storage to supply a constant load was proposed by Andrews et al. [123]. Finding a more efficient 

energy storage system for a long-time is essential because throughout the world there are hundreds of thousands of 

villages, remote communities and islands which do not have power or are supplied on an individual basis by small gas 

or diesel generator sets, small WTs and PV systems. Smaoui et al. [124] presented optimal sizing of stand-alone 

PV/wind/hydrogen hybrid system in a desalination unit. It is proposed a methodology to find the optimal technical-

economic configuration among a set of systems components. Also, for a desalination unit in stand-alone region in Iran 

a cost-effective wind/PV/hydrogen energy system was proposed by Maleki et al. [125]. This system was designed for 

increasing the freshwater availability and to provide the load demand.  

The barrier of the applications of hydrogen system is its high costs in its early development stage. Economically this 

system cannot compete with traditional energy systems in most cases. Hence, some researchers are working to improve 

the hydrogen energy storage systems. Singh et al. [126] proposed a techno-economic feasibility analysis for a 

hydrogen fuel cell and PV hybrid renewable energy system. The proposed system was applied for the academic 

research building, in India. Nguyen et al. [127] developed an optimal capacity design of battery and hydrogen storage 

system for a PV renewable energy system. A technical feasibility and financial analysis for PV/wind hydrogen system 

were done by Shakya et al. [128]. This system was evaluated with PV% of 0, 12, 60, and 100 configurations in which 

the lowest levelized energy cost was obtained for 100% PV.    
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Chapter 3 

Material and methods 
 

Fig. 3.1 presents the target of this Ph.D. thesis. Designing a refrigeration system to supply the cold water for the 

refinery. The electrical energy of this unit is provided by considering a hybrid photovoltaic/wind turbine energy system 

with hydrogen storage system. In this system, artificial intelligence methods are employed to predict the solar radiation 

on the collectors. Intelligent models are developed based on the ambient temperature, pressure, relative humidity, 

wind speed and local time as input variables. The predicted solar radiation data are used to calculate the energy input 

to the photovoltaic panels. Also, artificial intelligence methods are applied to predict the wind speed using 

meteorological data. The estimated wind speed data are employed to calculate the generating power by wind turbines. 

Ambient temperature, pressure, relative humidity and local time are selected as input variables of the models. 

3.1. Refrigeration system (Unit 132 of the refinery) 

Unit 132 of the second refinery of the South Pars (Iran) has been considered in order to supply the cold water for the 

refinery. Indeed, this unit is responsible for delivering 39 kg/s cold water for cooling the equipment in the refinery. 

The hot water enters into the evaporator at 40 ℃ and leaves it at 30 ℃. The cooling capacity of this process is 1631 

kW. For this target, three refrigeration systems are proposed and designed to provide the cold water for the refinery. 

The first one is a basic refrigeration system (BRS), the second one is a basic refrigeration system with an internal heat 

exchanger (HXRS), and the third one is an ejector expansion refrigeration system (EERS) (these system are shown in 

Figs. 3.2-3.4).  

Fig. 3.2 presents a BRS (and its P-h diagram) with four main components that are evaporator, condenser, expansion 

valve and compressor. Fig. 3.3 illustrates the HXRS (including five components that are compressor, condenser, 

evaporator, internal heat exchanger and expansion valve) accompanying with its P-h diagram. Indeed, this system is 

a standard refrigeration system with an internal heat exchanger, which this internal heat exchanger is used for sub-

cooling and superheat processes respectively at the outlet of condenser and evaporator. P-h diagram of the cycle shows 

the superheat and sub-cooling processes are 1 to 2 and 4 to 5, respectively. An EERS is shown in Fig. 3.4 (components: 

evaporator, condenser, compressor, expansion valve, ejector expansion and separator) and this system is proposed for 

the refinery instead of the HXRS. Ejector expansion in vapor compression refrigeration system was first proposed by 

Kornhauser [28]. Ejector expansion compression cycle reduces the work of compression, which increases the COP of 

the system. 
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Fig. 3.1. A schematic diagram of the system. 
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Fig. 3.2. A schematic diagram of a BRS with its P-h diagram. 

 
Fig. 3.3. A schematic diagram of an IHERS and its P-h diagram. 

Saturated vapor and saturated liquid are considered in the outlet of evaporator and condenser, respectively. By having 

the amount of the condensing and evaporating temperatures, all the thermodynamic properties are determined in the 

evaporator and condenser. Also, by applying a mathematical model (Eqs. (3.1)- (3.51)) in Engineering Equation Solver 

(EES) software the values of thermodynamic properties in all points that are shown in Figs. 3.2-3.4 are obtained. 

Tables 3.1-3.3, show operating conditions for BRS, HXRS and EERS. Temperature, pressure, specific enthalpy, 

specific entropy and quality of vapor are calculated for each point of the cycles. Design conditions of the cycles are 

constant in all three systems.  
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Fig. 3.4. EERS and P-h diagram of the cycle.  

Table 3.1. Operating conditions for SRS (Fig. 1). 

Point T [℃] P [kPa] h [kJ/kg] s [kJ/kg K] x(%) 

1 24 646.2 263.7 0.9209 100 

2 68.35 1750 287.9 0.9325 - 

3 61.66 1750 142.1 0.4971 0 

4 24 646.2 142.1 0.5117 31.95 

 

Table 3.2. Operating conditions for IHERS (Fig. 2). 

Point T [℃] P [kPa] h [kJ/kg] s [kJ/kg K] x(%) 

1 24 646.2 263.7 0.9209 1 

2 33.95 646.2 273.7 0.954 - 

3 81 1750 299.6 0.9661 - 

4 61.6 1750 142.1 0.4971 0 

5 55.47 1750 131.9 0.4666 - 

6 24 646.2 131.9 0.4776 26.27 

 

Table 3.3. Operating conditions for EERS (Fig. 3). 

Point T [℃] P [kPa] h [kJ/kg] s [kJ/kg K] x(%) 

1 26.94 705.1 265.2 0.9198 1 

2 67.75 1750 287.1 0.9302 - 

3 61.66 1750 142.1 0.4971 0 

4 22.96 626.2 138.9 0.5017 30.84 

5 22.96 626.2 190.8 0.6771 59.75 

6 26.94 705.1 192.6 0.678 58.48 

7 26.94 705.1 89.17 0.3335 0 

8 24 646.2 89.17 0.3337 2.347 

9 24 646.2 263.7 0.9209 1 

10 22.96 626.2 263.1 0.9212 99.99 

 

3.1.1. Energy and exergy analysis of the systems 

Analysis for HXRS: 

The operating conditions for the cycles of the BRS and HXRS are obtained with the simulation in EES software. 

Moreover, for analysis of each component mass conservation law, the first and second laws of thermodynamics are 
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applied for each control volume. Eqs. (3.1)- (3.4) show the energy and exergy analysis for evaporator and heat 

exchanger in HXRS. 

𝑄̇𝑒𝑣𝑎𝑝 = 𝑚̇𝑓(ℎ1 − ℎ6) = 𝑚̇𝑤 𝐶𝑝𝑤(𝑇𝑤8 − 𝑇𝑤7) (3.1) 

𝐼𝑒̇𝑣𝑎 = 𝑚̇𝑓[(ℎ1 − ℎ6) − 𝑇0(𝑆1 − 𝑆6)] − 𝑚̇𝑤[(ℎ𝑤7 − ℎ𝑤8) − 𝑇0(𝑆𝑤7 − 𝑆𝑤8)] (3.2) 

𝑄̇𝐻.𝐸 = 𝑚̇𝑓(ℎ2 − ℎ1) = 𝑚̇𝑓(ℎ5 − ℎ4) (3.3) 

𝐼𝐻̇.𝐸 = 𝑚̇𝑓[[(ℎ5 − ℎ4) − 𝑇0(𝑆5 − 𝑆4)] − [(ℎ2 − ℎ1) − 𝑇0(𝑆2 − 𝑆1)]] (3.4) 

For expansion valve: 

ℎ6 = ℎ5 (3.5) 

𝐼𝑒̇𝑥.𝑣 = 𝑚̇𝑓[𝑇0(𝑆6 − 𝑆5)] (3.6) 

For compressor: 

𝑤̇𝑐𝑜𝑚𝑝 = 𝑚̇𝑓(ℎ2 − ℎ1) (3.7) 

𝐼𝑐̇𝑜𝑚𝑝 = 𝑚̇𝑓[𝑇0(𝑆2 − 𝑆1)] (3.8) 

Finally, for condenser: 

𝑄̇𝑐𝑜𝑛𝑑 = 𝑚̇𝑓(ℎ3 − ℎ2) (3.9) 

𝐼𝑐̇𝑜𝑛𝑑 = 𝑚̇𝑓 × 𝑇0 [
(ℎ3 − ℎ2)

𝑇𝑐𝑜𝑛𝑑
− (𝑆3 − 𝑆2)] + 𝑤̇𝑓𝑎𝑛,𝑐𝑜𝑛𝑑 

(3.10) 

Analysis for EERS: 

Also, energy and exergy analysis for EERS have been given by Eqs. (2.11)- (2.30). Saturated liquid and saturated 

vapor are considered for EERS in the outlet of the condenser and evaporator respectively and by having evaporating 

and condensing temperature, thermodynamic properties will be obtained in points 3 and 9 of the cycle in EERS, which 

was shown in Fig. 3.4. Governing equations of energy and exergy analysis of the compressor are defined by following 

equations: 

ℎ2,𝑖𝑠 = ℎ(𝑝2, 𝑠1) (3.11) 

𝜂𝑖𝑠,𝑐𝑜𝑚𝑝 = (ℎ1 − ℎ2) (ℎ1 − ℎ2,𝑖𝑠)⁄  (3.12) 

𝜂𝑖𝑠,𝑐𝑜𝑚𝑝 = 0.874 − 0.0135(𝑝𝑐𝑜𝑛𝑑 𝑝𝑒𝑣𝑎⁄ ) [129] (3.13) 

𝑤̇𝑐𝑜𝑚𝑝 = 𝑚̇3((ℎ2 − ℎ1) (1 + 𝜔)⁄ ) (3.14) 

𝐼𝑐̇𝑜𝑚𝑝 =
𝑚̇6

𝜔 + 1
[𝑇𝑜(𝑠2 − 𝑠1)] 

(3.15) 

Condenser: 

𝑄̇𝑐𝑜𝑛𝑑 =
𝑚6̇

𝜔 + 1
[(ℎ2 − ℎ3)] 

(3.16) 

𝐼𝑐̇𝑜𝑛𝑑 =
𝑚6̇

𝜔 + 1
[(ℎ2 − ℎ3) − 𝑇𝑜(𝑠2 − 𝑠3)] 

(3.17) 

Expansion valve: 

ℎ7 = ℎ8 (3.18) 

𝐼𝑒̇𝑥.𝑣 =
𝑚̇6𝜔

𝜔 + 1
𝑇𝑜[(𝑠8 − 𝑠7)] 

(3.19) 

Evaporator: 
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𝑄̇𝑒𝑣𝑎 =
𝑚̇6𝜔

𝜔 + 1
(ℎ9 − ℎ8) 

(3.20) 

𝐼𝑒̇𝑣𝑎 = 𝑚̇9((ℎ8 − ℎ9) − 𝑇0(𝑠8 − 𝑠9)) − 𝑚̇𝑤((ℎ11 − ℎ12) − 𝑇0(𝑠11 − 𝑠12)) (3.21) 

Gas-liquid separator: 

Saturated vapor and saturated liquid for inlet of compressor and expansion valve respectively are considered and with 

analysis gas-liquid separator the amount of the specific entropy in points 1 and 7 were obtained.  

ℎ1 = ℎ(𝑝1 , 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑣𝑎𝑝𝑜𝑟) (3.22) 

ℎ7 = ℎ(𝑝1, 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑙𝑖𝑞𝑢𝑖𝑑) (3.23) 

Ejector: 

Exergy analysis in ejector will be introduced by Eq. (3.24).  

𝐼𝑒̇𝑗𝑒 = 𝑚̇6𝑇𝑜 [𝑠6 − 𝑠3
1

𝜔 + 1
− 𝑠9

𝜔

𝜔 + 1
] 

(3.24) 

Area ratio and pressure lift ratio are two useful parameters for designing ejector which are given by Eqs. (3.25) and 

(3.26), respectively[36]:  

𝐴𝑅 =
𝐴10 + 𝐴4
𝐴4

 
(3.25) 

𝑃𝐿𝑅 =
𝑝𝑒𝑗𝑒

𝑝𝑒𝑣𝑎
=
𝑝6
𝑝9

 
(3.26) 

The COP of the cycle is determined by the following relation: 

𝐶𝑂𝑃 =
𝑞𝑒𝑣𝑎
𝑤𝑐𝑜𝑚𝑝

 
(3.27) 

Yu JL et al. [130], for the compressor, defined VCC of the cycle based on the specific suction volume: 

𝑉𝐶𝐶 =
𝜔(ℎ9 − ℎ8)

𝑣1
 

(3.28) 

3.1.1.1. Heat exchangers design procedure 

Evaporator and internal heat exchanger (MHX): 

Shell-and-tube heat exchanger is the most common type of heat exchanger in industrial applications. These exchangers 

hold more than 65 percent of the market share [43]. For evaporator and MHX in the refrigeration system in the refinery 

shell and tube heat exchanger (STHX) was proposed. Thermal area and pressure loss are important for thermo-

economic analysis. Outer diameter (𝑑𝑜), number of passes (𝑁𝑝), shell diameter (𝐷𝑠), tube length (𝐿𝑡), and diameter 

ratio (𝑑𝑟 = 𝑑𝑜 𝑑𝑖⁄ ) are design parameters which were determined by iterations initially. And then the calculations 

were iterated with different values of parameters until they satisfied the design requirements. The tube pitch ratio 𝑃𝑟  

is defined by the following equations [43]: 

𝑃𝑟 = 𝑃𝑡 𝑑𝑜⁄  (3.29) 

𝐵 = 𝐿𝑡 (𝑁𝑏 + 1)⁄  (3.30) 

𝐶𝑡 = 𝑃𝑡 − 𝑑𝑜 (3.31) 
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Where 𝐿𝑡, 𝑁𝑏, B, 𝑃𝑡, and 𝐶𝑡 are tube length, number of baffles, baffle spacing, tube pitch and tube clearance 

respectively.  

The number of tubes 𝑁𝑡 can be predicted in fair approximation with the shell inside diameter 𝐷𝑠: 

𝑁𝑡 = (𝐶𝑇𝑃)
 𝜋𝐷𝑠

2 4⁄

𝐶𝐿. 𝑃𝑡
2  

(3.32) 

In which, CTP and CL are tube count constant and tube layout constant respectively. 

Velocity of the fluid and Reynolds number for tube side are given by following relations: 

𝑣𝑖 =
𝑚̇𝑖

𝜌𝐴𝑐𝑖
 

(3.33) 

𝐴𝑐𝑖 =
𝜋𝑑𝑖

2

4

𝑁𝑡
𝑁𝑝

 
(3.34) 

𝑅𝑒𝐷 =
𝑚̇𝑖𝑑𝑖
𝐴𝑐𝑖  𝜇

=
𝜌𝑣𝑖𝑑𝑖
𝜇

 
(3.35) 

The cross-flow area of the shell side is defined as: 

𝐴𝑐𝑜 = 𝐷𝑠𝐶𝑡𝐵 𝑃𝑡⁄  (2.36) 

And for shell side the equivalent diameter for the square pitch layout and Reynolds number are defined: 

𝐷𝑒 =
4(𝑃𝑡

2 − 𝜋
𝑑0
2

4
)

𝜋𝑑0
 

 

(3.37) 

𝑅𝑒𝐷 =
𝜌 𝑣𝑜 𝐷𝑒
𝜇

=
𝑚̇𝑜𝐷𝑒
𝐴𝑐𝑜  𝜇

 
(3.38) 

Heat transfer coefficient for inner and outer fluid in shell and tube heat exchanger is determined by Eqs. (3.39)- (3.51). 

For outer fluid: 

if 𝑅𝑒𝐷 ≥ 2300 

ℎ𝑜 = 0.023 𝑅𝑒𝐷
0.8 𝑃𝑟0.3

𝑘

𝑑𝑖
 

 

(3.39) 

Otherwise 

𝑁𝑢 = 3.657 or 𝑁𝑢 = 4.364 (3.40) 

For inner fluid: 

if Re≥2300 

𝑓 = (1.58 𝑙𝑛(𝑅𝑒𝐷) − 3.28)
−2 (3.41) 

Otherwise 

𝑓 = 16 𝑅𝑒𝐷⁄  (3.42) 

Chen correlation for heat transfer coefficient is defined by Eqs. (3.43)- (3.51) [42].  

ℎ𝑖 = ℎ𝑐𝑏 + ℎ𝑛𝑏 (3.43) 

Where ℎ𝑐𝑝 and ℎ𝑛𝑏 are heat transfer coefficient of convection boiling and nuclear boiling respectively.  

ℎ𝑐𝑏 = 0.023 𝑅𝑒𝑙
0.8 𝑃𝑟0.4

𝑘𝑙
𝑑𝑖
. 𝐹(1 − 𝑥)0.8 

 

(3.44) 

𝑅𝑒𝑙 =
𝐺(1 − 𝑥)𝑑𝑖

𝜇𝑙
 

 

(3.45) 
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F=1   for    
1

𝜒
≤ 0.1 (3.46) 

𝐹 = 2.35 (
1

𝜒
+ 0.213)

0.736

  for       
1

𝜒
≥ 1      

(3.47) 

And Martinelli parameter is defined by Eq. (3.48): 

𝜒 = (
1 − 𝑥

𝑥
)
0.9

 (
𝜌𝑙
𝜌𝑣
)
0.5

(
𝜇𝑙
𝜇𝑣
)
0.1

 
(3.48) 

Also, heat transfer coefficient for nuclear boiling is given by following equations.  

ℎ𝑛𝑏 = 0.00122 [
𝐾𝑙
0.79 𝑐𝑝𝑙

0.45 𝜌𝑙
0.49 

𝜎0.5 𝜇𝑙
0.29 ℎ𝑙𝑣

0.24 𝜌𝑣
0.24
] × (𝑇𝑊 − 𝑇𝑠𝑎𝑡)

0.24[(𝑇𝑊 − 𝑇𝑠𝑎𝑡) ℎ𝑙𝑣  𝜌𝑣 𝑇𝑠𝑎𝑡⁄  ]0.75 𝑆′ 
(3.49) 

𝑆′ =
1

1 + 2.53 × 10−6(𝑅𝑒𝑇𝑃)
1.17

 
(3.50) 

𝑅𝑒𝑇𝑃 = 𝑅𝑒𝑙  𝐹
1.25 (3.51) 

Heat transfer areas of inner and outer surfaces of an inner pipe are given by Eqs. (3.52) and (3.53), respectively.  

𝐴𝑖 = 𝜋𝑑𝑖𝑁𝑡𝐿 (3.52) 

𝐴𝑜 = 𝜋𝑑𝑜𝑁𝑡𝐿 (3.53) 

Overall heat transfer coefficient is defined as [43]: 

𝑈𝑜 =
 1 𝐴𝑜⁄

1
ℎ𝑖𝐴𝑖

+
𝑙𝑛 (

𝑑𝑜
𝑑𝑖
)

2𝜋𝐿𝑘
+

1
ℎ𝑜𝐴𝑜

 
 

(3.54) 

 

Pressure drop in shell side is proposed by following relations: 

∆𝑃 = 𝑓
𝐷𝑠
𝐷𝑒
(𝑁𝑏 + 1)

1

2
𝜌𝑣𝑜

2 
(3.55) 

𝑓 = 𝑒𝑥𝑝(0.576 − 0.19𝐿𝑛(𝑅𝑒𝐷)) (3.56) 

 

As well as the pressure drop in tube side is: 

∆𝑃 = 4 (
𝑓. 𝐿𝑡
𝑑𝑖

+ 1)𝑁𝑝
1

2
𝜌𝑣𝑖

2 
(3.57) 

Condenser design procedure: 

Finned-tube heat exchanger for condensing process in the condenser was considered. Total heat transfer area for 

thermo-economic investigation will be calculated and is necessary for this analysis. The total number of tubes is: 

𝑁𝑡 =
𝐿3
𝑃𝑡

𝐿2
𝑃𝑐
+ 1

2
+ (

𝐿3
𝑃𝑡
− 1)

𝐿2
𝑃𝑐
− 1

2
 

(3.58) 

Total heat transfer area is composed of the primary and fin surface area that are given by Eqs. (3.59) and (3.60).  

𝐴𝑝 = 𝜋𝑑𝑜(𝐿1 − 𝛿𝑁𝑓𝐿1)𝑁𝑡 + 2(𝐿2𝐿3 −
𝜋𝑑𝑜

2

4
)𝑁𝑡 

(3.59) 
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𝐴𝑓 = (
2𝜋(𝑑𝑒

2 − 𝑑𝑜
2)

4
+ 𝜋𝑑𝑒𝛿)𝑁𝑓𝐿1𝑁𝑡 

(3.60) 

In which, 𝐿1, 𝐿2, 𝐿3, 𝑃𝑡, 𝑃𝑐, δ, and 𝑁𝑓 are length, across and height of circular fine tube heat exchanger, transverse 

tube pitches, longitudinal tube pitch, fin thickness, and number of fins per unit length respectively. The minimum free-

flow area is 

𝐴𝑐 =
𝐿3
𝑃𝑡
[(𝑃𝑡 − 𝑑𝑜)𝐿1 − (𝑑𝑒 − 𝑑𝑜)𝛿𝑁𝑓𝐿1] 

(3.61) 

The hydraulic diameter is given by Eq. (3.62). 

𝐷ℎ = 4𝐴𝑐𝐿2 𝐴𝑡⁄  (3.62) 

The mass velocity G is given by: 

𝐺 = 𝑚̇ 𝐴𝑐⁄  (3.63) 

The Reynolds number is given by: 

𝑅𝑒 =
𝜌𝑣𝐷ℎ
𝜇

=
𝐺𝐷ℎ
𝜇

 
(3.64) 

The pin pitch is defined by: 

𝑃𝑓 = 1 𝑁𝑓⁄  (3.65) 

Convection heat transfer coefficient of the air over the pipes on the condenser is given by Eq. (3.66) [42].    

ℎ𝑜 = 0.14𝑅𝑒
−0.328. (

𝑃𝑡
𝑃𝑙
)
−0.502

. (
𝑆

𝑑𝑜
)
0.0312

. 𝐺. 𝑐𝑝. 𝑃𝑟−
2
3 

(3.66) 

Condensing coefficient inside the pipe is given by Butterworth relation [42].  

ℎ𝑖 = 0.728 [1 +
(1 − 𝑥)

𝑥
(
𝜌𝑣
𝜌𝑙
)

2
3
]

−
3
4

× [
𝐾𝑙
3𝜌𝑙  (𝜌𝑙 − 𝜌𝑣)𝑔ℎ𝑙𝑣

′

𝜇𝑙𝑑𝑖(𝑇𝑠𝑎𝑡 − 𝑇𝑤)
]

1
4

 

(3.67) 

And 

 

ℎ𝑙𝑣
′ = ℎ𝑙𝑣 + 0.68𝐶𝑝𝑙(𝑇𝑠𝑎𝑡 − 𝑇𝑤) (3.68) 

Finally, pressure drop is define by Eqs. (3.69) and (3.70) [43]: 

∆𝑃 =
𝐺2

2𝜌𝑖
[2 (

𝜌𝑖
𝜌𝑜
− 1) +

4𝑓𝐿

𝐷ℎ
𝜌𝑖 (

1

𝜌
)
𝑚

] 
 

(3.69) 

(
1

𝜌
)
𝑚

=
1

𝜌𝑚
=
1

2
(
1

𝜌𝑖
+
1

𝜌𝑜
) 

(3.70) 

Algorithm for designing heat exchangers:  

Procedure design of heat exchangers has been introduced by some references [42], [43], [131]. These algorithms for 

designing evaporator and MHX (Fig. 3.5 (a)) and condenser (Fig. 3.5 (b)) were proposed. At first, initial data that are 

considered for designing the heat exchangers are entered into the program. Thermodynamic properties for refrigerant 

and secondary fluid are calculated. Design parameters that sought by iterations initially are considered and then flow 

characteristics of the fluids are determined. After that, heat transfer characteristics are calculated. Achieved values of 

the parameters are checked with the standard values that are defined by aforementioned references. Also, the pressure 
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drop for refrigerant that is inside the tubes and secondary fluids that are water in evaporator and air in the condenser 

will be investigated.  

a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 3.5. Flowchart for designing of the evaporator (a) and condenser (b). 

Fig. 3.6 demonstrates the tube surface area for a circular finned-tube heat exchanger and defines some geometrical 

characteristics of this heat exchanger. Also, Fig. 3.7 shows a cross-section of the square-pitch layout for shell and tube 

heat exchanger. The clearance and tube pitch for designing a heat exchanger is defined in this figure.  

 

Initial data for designing 

evaporator (𝑄̇𝑒𝑣𝑎, 𝑇𝑒𝑣𝑎, 𝑇𝑤𝑖 , 𝑇𝑤𝑜) 

 
Thermodynamic properties 

of R134a and water 

𝐵,𝐶𝑇𝑃, 𝑑𝑟, 𝑃𝑟, 𝐶, 𝑛, 𝑥 

Design parameters sought 

by iterations initially, 

 𝑑𝑜, 𝑑𝑖 , 𝑁𝑝 𝐷𝑠, 𝐿𝑡, 𝑅𝑓𝑖 , 𝑅𝑓𝑜, 𝑘 

𝑁𝑏 , 𝑃𝑡, 𝐶𝑡, 𝐴𝑖 , 𝐺𝑖 

𝐴𝑐𝑜 , 𝑣2, 𝐷𝑒 , 𝑅𝑒𝑙 

 if  𝑣𝑜=1.2 to 2.4 

Calculate ℎ𝑜  

𝑅𝑒𝑓 , 𝑃𝑟𝑓, 𝜒, 𝐹, ℎ𝑖 

𝐿𝑀𝑇𝐷,𝑈𝑜,𝑎𝑠𝑠𝑢𝑚 , 𝑁𝑡 , 𝑅𝑒 

if  𝑣𝑖=1.4 to 2.8 

 𝐴𝑜, 𝐴𝑖 , 𝑈𝑜,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 

if 
𝑈𝑜,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑈𝑜,𝑎𝑠𝑠𝑢𝑚

𝑈𝑜,𝑎𝑠𝑠𝑢𝑚
< 0.05 

Initial data for designing 

condenser 𝑇0, 𝑚̇𝑟𝑒𝑓 , 𝑚̇𝑎𝑖𝑟 

Thermodynamic properties 

of R134a and air 

Design parameters sought 

by iterations initially, 

 𝑑𝑜, 𝑑𝑖 , 𝑑𝑒, 𝑁𝑓 , 𝑝𝑡, 𝑝𝑐 , 𝛿, 𝐿1, 𝐿2, 𝐿3 

 

  𝑁𝑡, 𝐴𝑝, 𝐴𝑓 , 𝐴𝑡 

In the equilateral 

triangular tube a=b 

𝐴𝑐𝑜 , 𝐷ℎ𝑜 , 𝐺𝑜, 𝑅𝑒𝑜, 𝑝𝑓   

 ℎ𝑜, 𝜂𝑓 , 𝜂𝑜, 𝐴𝑐𝑖 , 𝑅𝑒𝑖 

𝑖𝑓 𝑣𝑖 = 1.2 𝑡𝑜 2.4  

𝑓𝑖 , 𝑁𝑢𝑖 , ℎ𝑖 , 𝑅𝑤 , 𝐴𝑖 , 𝑅𝑓𝑖 , 𝑅𝑓𝑜, 𝑈𝐴 

End 

Calculate f 

No 

Yes 

No 

Yes 

No 

Yes 

Pressure drop 

is acceptable?   

End 

No 

Yes 

No 

No 

No 

Yes 

Yes 

Yes 

Pressure drop 

is acceptable?   
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a
Pt

Pd

Pc

δ 
Total number of fins=Nf L1

di do de

 

Fig. 3.6. The tube surface area.   

Flow

do

di

Ct Pt

 

Fig. 3.7. Square-pitch layout.  

3.1.1.2. Design ejector 

Fig. 3.8 illustrates a schematic of the ejector device that was used for EERS. It is constituted by motive nozzle, suction 

nozzle, mixing section, and diffuser. Geometrical parameters that is shown in Fig. 3.8 will be determined in the result 

section of this study.  

 

 

 

 

Fig. 3.8. Schematic of the ejector device.  

Motive nozzle Mixing section Diffuser 

10 

3 𝜃𝑚𝑛,2 

𝜃𝑚𝑛,1 
𝐿𝑚𝑛,1 

𝐷𝑠𝑛,𝑒 𝐷𝑚𝑛,𝑖 

𝜃𝑠𝑛 

𝜃𝑑 

𝐷𝑡  6 5 

t 

4 

10 

9 

𝐿𝑚𝑛,2 

𝐷𝑚𝑛,𝑒 𝐷𝑚𝑠 
𝐷𝑑 

𝐿𝑠𝑛 𝐿𝑚𝑠 𝐿𝑑 

Suction nozzle 
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Motive nozzle: 

Sarkar et al. [132] illustrated that assumption of constant pressure for designing an ejector is better than the assumption 

of constant area. In the outlet of ejector motive nozzle with considered constant pressure:   

𝑝4 = 𝑝𝑒𝑣𝑎 − ∆𝑝 (3.71) 

ℎ4,𝑖𝑠 = ℎ(𝑝4, 𝑠3) (3.72) 

𝜂𝑚𝑛 =
ℎ3 − ℎ4
ℎ3 − ℎ4,𝑖𝑠

 
 

(3.73) 

𝑣4
2 = 2(ℎ3 − ℎ4) (3.74) 

𝐴4𝜌4𝑣4 =
1

(1 + 𝜔)
 

 

(3.75) 

𝐺4 = 𝜌4𝑣4 (3.76) 

𝐷𝑚𝑛,𝑒 = √
4𝑚̇3

𝜋𝐺4
 

 

(3.77) 

Where 𝜔 = 𝑚̇9 𝑚̇3⁄  is ejector entrainment ratio. 

Suction nozzle: 

At the suction nozzle the governing equations for calculating the thermodynamic properties are: 

𝑝10 = 𝑝𝑒𝑣𝑎 − ∆𝑝 (3.78) 

ℎ10,𝑖𝑠 = ℎ(𝑝10, 𝑠9) (3.79) 

𝜂𝑠𝑛 =
ℎ9 − ℎ10
ℎ9 − ℎ10,𝑖𝑠

 
 

(3.80) 

𝑣10
2 = 2(ℎ9 − ℎ10) (3.81) 

𝐺10 = 𝜌10𝑣10 (3.82) 

𝐴10𝜌10𝑣10 =
𝜔

(1 + 𝜔)
 

(3.83) 

𝐷𝑠𝑛,𝑒 = √
4𝑚̇9

𝜋𝐺10
 

 

(3.84) 

Mixing section: 

And in the mixing section which is point 5 in the Fig. 3.8: 

𝑝4 = 𝑝5 = 𝑝10 (3.85) 

𝑣5 = 𝜂𝑚𝑠
1 2⁄ (

1

1 + 𝜔
𝑣4 +

𝜔

1 + 𝜔
𝑣10) 

 

(3.86) 

ℎ5 +
𝑣5
2

2
=

1

1 + 𝜔
(ℎ4 +

𝑣4
2

2
) +

𝜔

1 + 𝜔
(ℎ10 +

𝑣10
2

2
) 

 

(3.87) 

𝑠5 = 𝑠(𝑝5, ℎ5) (3.88) 

𝐺5 = 𝜌5𝑢5 (3.89) 

𝐷𝑚𝑠 = √
4𝑚̇𝑡𝑜𝑡

𝜋𝐺5
 

 

(3.90) 

Diffuser: 

At the diffuser outlet:  
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ℎ6 = ℎ5 +
𝑣5
2

2
 

 

(3.91) 

𝜂𝑑 =
ℎ5 − ℎ6,𝑖𝑠
ℎ5 − ℎ6

 
(3.92) 

𝑝6 = 𝑝(ℎ6,𝑠, 𝑠5) (3.93) 

After finding properties in point 6 of the cycle, the amount of the quality at this point with Eq. (3.94) should be 

satisfied.  

𝑥6 =
1

1 + 𝜔
 

(3.94) 

Proposed algorithm for ejector:  

Computational procedure flowchart for EERS is shown in Fig. 3.9. At first, design parameters for the system are 

entered into the algorithm and then thermodynamic properties of refrigerants and water are calculated. By applying 

energy equation for evaporator and condenser, operating conditions for these two components will be obtained. After 

that, ejector entrainment ratio and pressure drop in suction nozzle are guessed and then the operating conditions for 

motive nozzle, suction nozzle, mixing section, and diffuser respectively are obtained. The quality of vapor in the outlet 

of diffuser should be satisfied with Eq. 3.94, otherwise, the value of ∆𝑃 and 𝜔 will be updated.       

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.9. Algorithm computer program for design EERS.  

 

 

 

 

Input data  

𝑇𝑒𝑣𝑎, 𝑇𝑐𝑜𝑛𝑑 , 𝑇𝑤𝑖 , 𝑇𝑤𝑒 , 𝑚̇𝑤 , 𝑄̇𝑒𝑣𝑎 

 

Calculating properties of point 9 

and point 3 (h, P, s) 

Guess ∆𝑃 and ω  

 

Calculating thermophysical 

 properties of refrigerants and water 

Yes 

 

End 

Calculating 

𝑃4, ℎ4,𝑖𝑠, ℎ4, 𝑣4, 𝐴4, 𝐷𝑚𝑛,𝑒 

 

Calculating 

𝑃10, ℎ10,𝑖𝑠 , ℎ10, 𝑣10, 𝐴10, 𝐷𝑠𝑛,𝑒  

 

Calculating 

𝑃5, 𝑣5, ℎ5, 𝑠5, 𝐷𝑚𝑠 

 

Calculating 

ℎ6, ℎ6,𝑖𝑠, 𝑃6 

 

Calculating 

𝑥6,𝑐𝑎𝑙𝑐  

& COP=COPmax  

𝑥6,𝑐𝑎𝑙𝑐 − 𝑥6<0.075 No 

Start 
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3.1.2. Thermo-economic analysis  

Purchased equipment cost: 

In this analysis by applying the economic conception besides the thermodynamic definitions and with the definition 

of economic value for energy and exergy conceptions, will have a balance between the energy and exergy next to the 

costs of the system. The balance of the costs in the steady state for all the systems was stated by the Eq. (3.95).  

𝐶𝑃,𝑡𝑜𝑡 = 𝐶𝐹,𝑡𝑜𝑡 + 𝑍𝑡𝑜𝑡
𝐶𝐼 + 𝑍𝑡𝑜𝑡

𝑂𝑀𝐶  (3.95) 

Eq. 3.95 states which the rate of product cost of the system (CP,tot) is equal to the rate of the fuel cost (CF,tot), the rate 

of overall investment costs (Ztot
CI ), and costs related to maintenance and operation (Ztot

OMC). The purchased equipment 

cost (PEC) are given by the following equations [133]: 

For compressor: 

𝑃𝐸𝐶𝑐𝑜𝑚 = (
573𝑚̇𝑟𝑒𝑓

0.8996 − 𝜂𝑖𝑠𝑒𝑛
) (
𝑃𝑐𝑜𝑛𝑑
𝑃𝑒𝑣𝑎

) 𝑙𝑛 (
𝑃𝑐𝑜𝑛𝑑
𝑃𝑒𝑣𝑎

) 
(3.96) 

𝜂𝑖𝑠𝑒𝑛 = 0.85 − 0.046667 (
𝑃𝑐𝑜𝑛𝑑

𝑃𝑒𝑣𝑎
) [129] (3.97) 

PEC for the heat exchanger is obtained by the Eq. (3.98) [133]. 

𝑃𝐸𝐶𝐻𝐸𝑋 = 2290(𝐴𝐻𝐸𝑋)
0.6 (3.98) 

 

And for Condenser and evaporator, PEC are given by Eqs. (3.99) and (3.100) [134].  

𝑃𝐸𝐶𝑐𝑜𝑛𝑑 = 516.6213𝐴𝑐𝑜𝑛𝑑 + 268.45 (3.99) 

𝑃𝐸𝐶𝑒𝑣𝑎 = 309.143𝐴𝑒𝑣𝑎 + 231.915 (3.100) 

PEC for ejector expansion device is given by El-Sayed [135].  

𝑃𝐸𝐶𝑒𝑗𝑒 = 750𝑚̇𝑓 (
𝑇𝑖
𝑃𝑖
)
0.05

𝑃𝑒
−0.75 

(3.101) 

It should be mentioned that these costs are for the 2004 year and must be updated. The costs will be updated to new 

costs.  

𝑃𝐸𝐶𝑛𝑒𝑤 = 𝑃𝐸𝐶𝑟𝑒𝑓 (
𝐼𝑛𝑒𝑤
𝐼𝑟𝑒𝑓

) 
(3.102) 

𝐼𝑛𝑒𝑤  and 𝐼𝑟𝑒𝑓  are Marshal and Swift index [136]. 

Total Revenue Requirement (TRR) and economic objective function: 

For the analysis and optimization of the energy systems, total annual investment, fuel cost and cost of maintenance 

and operation must be calculated. In this section TRR method has been applied [137]. Also, the complete analysis of 

this method has been shown in Ref. [138]. The total PEC is defined by the Eq. (3.103).   

𝑃𝐸𝐶𝑡𝑜𝑡 = 𝑃𝐸𝐶𝑐𝑜𝑚 + 𝑃𝐸𝐶𝑐𝑜𝑛𝑑 + 𝑃𝐸𝐶𝑒𝑣𝑎 + 𝑃𝐸𝐶𝐻.𝐸 (3.103) 

Total net investment (𝑇𝑁𝐼) is defined by Eq. (3.104) [138].    

𝑇𝑁𝐼 = 𝑃𝐸𝐶𝑡𝑜𝑡 + 𝑝𝑖𝑝𝑖𝑛𝑔 𝑎𝑛𝑑 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 (3.104) 
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Piping and installation Cost is 5 percent of 𝑃𝐸𝐶𝑡𝑜𝑡 and TNI is given by the following equation:  

𝑇𝑁𝐼 = 1.05 𝑃𝐸𝐶𝑡𝑜𝑡  (3.105) 

It is assumed that the cost of equipment at the end of the life operation is zero and with this assumption total capital 

recovery is: 

𝑇𝐶𝑅𝑗 = 𝐵𝐷𝑗 , 𝑗 = 1,2, … , 𝐵𝐿 (3.106) 

In which 

𝐵𝐷𝑗 =
𝑇𝑁𝐼

𝐵𝐿
          𝑗 = 1,2, … , 𝐵𝐿 

(3.107) 

Where 𝐵𝐷𝑗 , 𝐵𝐿, and 𝑇𝐶𝑅𝑗 are book depreciation, book life that is 25 years in this study and total capital recovery. 

Balance at the beginning of a year is equal to the total net investment and it is in order to calculate the total revenue 

requirement.  

𝐵𝐵𝑌1 = 𝑇𝑁𝐼 (3.108) 

The cost balance at the beginning of every year is obtained from Eq. (3.109).   

𝐵𝐵𝑌𝑗 = 𝐵𝐵𝑌𝑗−1 − 𝐵𝐷𝑗 (3.109) 

Return on investment (ROI) of the system is given by the following equation:  

𝑅𝑂𝐼𝑗 = 𝐵𝐵𝑌𝑗 × 𝑖𝑒𝑓𝑓 , 𝑗 = 1,2, … , 𝐵𝐿 (3.110) 

The fuel cost of the system for the first year is calculated by Eq. (3.111). In unit 132 of the refinery, there are two 

systems for working and this analysis is for one of them. Thus the time of system operating is 𝜏 = 4380 ℎ.  

𝐹𝐶0 = 𝐶𝑒𝑙𝑒𝑐𝑡 . 𝜏. 𝑤̇𝑡𝑜𝑡 (3.111) 

Where 𝐶𝑒𝑙𝑒𝑐𝑡  and 𝑤̇𝑡𝑜𝑡 are the constant cost of electricity consumption ($ kWh⁄ ) and total energy electricity 

consumption respectively. 

The fuel cost in j year is:   

𝐹𝐶𝑗 = 𝐹𝐶0(1 + 𝑟𝐹𝐶)
𝑗 (3.112) 

Where 𝑟𝐹𝐶  is the rate of increasing fuel cost that considered 0.156 according to the 2016 year in Iran [139].   

Operating and maintenance cost (OMC) for the first year considered 2 percent of the total PEC and is stated by Eq. 

(3.113). Also, OMC for j year is obtained by Eq. (3.114).  

𝑂𝑀𝐶0 = 0.02𝑃𝐸𝐶𝑡𝑜𝑡  (3.113) 

𝑂𝑀𝐶𝑗 = 𝑂𝑀𝐶0(1 + 𝑟𝑂𝑀𝐶)
𝑗 (3.114) 

Total revenue requirement in the j year from aggregate the return on investment, fuel cost and operating and 

maintenance costs is obtained.  

𝑇𝑅𝑅𝑗 = 𝑅𝑂𝐼𝑗 + 𝐹𝐶𝑗 + 𝑂𝑀𝐶𝑗 (3.115) 
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The total revenue requirement is increasing in various years with increase operation years. Therefore it is seen a need 

to levelized of this cost. The levelized total revenue requirement is defined by the following equation: 

𝑇𝑅𝑅𝐿 = 𝐶𝑅𝐹 ×∑
𝑇𝑅𝑅𝑗

(1 + 𝑖𝑒𝑓𝑓)
𝑗

𝐵𝐿

𝑗=1

 

(3.116) 

In which, 𝑖𝑒𝑓𝑓  is the annual effective rate of return that is calculated 0.2 in Iran. Also, CRF is capital recovery factor 

that is given by Eq. (3.117). 

𝐶𝑅𝐹 =
𝑖𝑒𝑓𝑓(1 + 𝑖𝑒𝑓𝑓)

𝐵𝐿

(1 + 𝑖𝑒𝑓𝑓)
𝐵𝐿
− 1

 
(3.117) 

The cost of the fuel is increasing too. The levelized fuel cost is obtained by multiple of the fuel cost in the first year 

in CELF. 

𝐹𝐶𝐿 = 𝐹𝐶0. 𝐶𝐸𝐿𝐹 = 𝐹𝐶0 ×
𝐾𝐹𝐶(1 − 𝐾𝐹𝐶

𝑛 )

(1 − 𝐾𝐹𝐶)
× 𝐶𝑅𝐹 

(3.118) 

𝐾𝐹𝐶 =
1 + 𝑟𝐹𝐶
1 + 𝑖𝑒𝑓𝑓

 
(3.119) 

The operating and maintenance costs obtained by this method and by the beginning of the year for levelized annual. 

𝑂𝑀𝐶𝐿 = 𝑂𝑀𝐶0 × 𝐶𝐸𝐿𝐹 = 𝑂𝑀𝐶0
𝐾𝑂𝑀𝐶(1 − 𝐾𝑂𝑀𝐶

𝑛 )

(1 − 𝐾𝑂𝑀𝐶)
× 𝐶𝑅𝐹 

(3.120) 

𝐾𝑂𝑀𝐶 =
1 + 𝑟𝑂𝑀𝐶
1 + 𝑖𝑒𝑓𝑓

 
(3.121) 

 Finally the levelized annual cost is 

𝐶𝐶𝐿 = 𝑇𝑅𝑅𝐿 − 𝐹𝐶𝐿 − 𝑂𝑀𝐶𝐿 (3.122) 

The cost of expenses or cost of investment (superscript Cl) and operating and maintenance costs (superscript OM) can 

be divided into k part similar to purchased equipment cost.  

𝑍̇𝑘
𝑐𝑙 =

𝐶𝐶𝐿
𝜏

𝑃𝐸𝐶𝑘
∑ 𝑃𝐸𝐶𝑘𝑘

 
(3.123) 

𝑍̇𝑘
𝑂𝑀 =

𝑂𝑀𝐶𝐿
𝜏

𝑃𝐸𝐶𝐾
∑ 𝑃𝐸𝐶𝑘𝑘

 
(3.124) 

The rate of total cost of part k for the system is obtained by Eq. (3.125). 

𝑍̇𝐾 = 𝑍̇𝐾
𝐶𝐼 + 𝑍̇𝐾

𝑂𝑀 (3.125) 

The cost of annual fuel obtained as dollar per hour by dividing the levelized annual cost of fuel per hours of operation. 

𝐶̇𝐹 =
𝐹𝐶𝐿
𝜏

 
(3.126) 

Finally, the target function is total cost based on dollar per hour. 
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𝐶̇𝑃 = 𝐶̇𝐹 +∑𝑍̇𝐾 
(3.127) 

3.1.3. Environmental Analysis 

The refrigeration system in the refinery does not have any fuel combustion, therefore no environmental pollutant is 

emitted directly by the system. But the cycle works with electrical energy in the compressor and condenser fan and 

this electrical energy is produced by a fossil fuel power plant. The power plant for this electrical energy releases 

pollutant to the surrounding, which can be calculated. These contaminations are considered as a function of produced 

electrical energy for compressor and condenser fan, which are calculated by Eqs. (3.128)- (3.130). Table 3.4 illustrates 

the value of different contaminations that are released by the power plants based on gr kWh⁄  in Iran. This table is for 

the 2013 year that is the last data of it [140]. According to Table 3.4, for this application, carbon monoxide (CO), 

carbon dioxide (CO2) and oxide of nitrogen (NOx) are considered as environmental pollutant, which can be calculated 

by the following relations [79], [141]. 

𝑚𝐶𝑂2 = 𝜏 × (𝑊̇𝑐𝑜𝑚 + 𝑊̇𝑓𝑎𝑛) × 𝑓𝑎𝑐𝐶𝑂2  (3.128) 

𝑚𝑁𝑂𝑥 = 𝜏 × (𝑊̇𝑐𝑜𝑚 + 𝑊̇𝑓𝑎𝑛) × 𝑓𝑎𝑐𝑁𝑂𝑥  (3.129) 

𝑚𝐶𝑂 = 𝜏 × (𝑊̇𝑐𝑜𝑚 + 𝑊̇𝑓𝑎𝑛) × 𝑓𝑎𝑐𝐶𝑂 (3.130) 

Where 𝑓𝑎𝑐𝐶𝑂2 , 𝑓𝑎𝑐𝑁𝑂𝑥 , 𝑓𝑎𝑐𝐶𝑂  and 𝜏 are the produced coefficient of 𝐶𝑂2, 𝑁𝑂𝑥, 𝐶𝑂 and working time of the system 

per year and are equal to 694.906 gr kWh⁄ , 2.548 gr kWh⁄ , 0.695 gr kWh⁄  and 4380 h, respectively [140]. It should 

be noted that there are two refrigeration systems in the refinery in parallel and one of them is analyzed. 

Table 3.4. The amount of the pollution (gr/kWh) that is released by various power stations in Iran [140]. 

Type of 

power plant 

NOx SO2 SO3 CO SMP CO2 CH4 N2O C 

Ministry of power 

Vapor 2.307 7.752 0.033 2.530 0.169 824.899 0.022 0.004 224.972 

Gas 2.403 0.505 0.013 0.091 0.124 849.370 0.017 0.002 231.646 

Combined 

cycle 

2.925 0.282 0.009 0.086 0.081 469.945 0.011 0.002 128.167 

Diesel 1.525 4.605 0.070 0.001 0.292 826.379 0.036 0.012 225.376 

Private sector 

Vapor 1.890 3.612 0.021 0.508 0.135 764.902 0.019 0.003 208.610 

Gas 2.269 0.824 0.018 0.069 0.135 798.463 0.018 0.003 217.763 

Combined 

cycle 

3.077 0.292 0.010 0.053 0.086 483.882 0.012 0.002 131.968 

Grate 

industries 

2.283 0.029 0.001 0.465 0.069 1182.665 0.014 0.001 322.545 

Total 

average 

2.548 2.455 0.018 0.695 0.122 694.906 0.017 0.003 189.520 

3.2. Machine learning algorithms 

A machine learning algorithm in its most general form can be described as a function f(x) which takes an input vector 

x and generates an output vector y. Fig. 3.10 illustrates a classification of machine learning that contains two types of 

techniques (supervised learning and unsupervised learning). Supervised learning divided into two sections that are 
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classification and regression that these two methods were applied to predict the target. Also unsupervised learning 

uses clustering technique to forecast the target [142].  

Machine 

learning

Supervised 

learning

Unsupervised 

learning

Classification

Regression

Clustering

Neural 

networks

Support vector 

regression

Fuzzy C-

Means

 

Fig. 3.10. Classification of the machine learning. 

3.2.1. Artificial neural network (ANN) 

An artificial neural network (ANN) is a network that attempts to imitate brain functions. The human brain contains 

approximately 1011 neurons working in perfect harmony to perform a task. ANN’s are designed to do a specific task 

through a learning process. By providing inputs and the desired output data, an ANN finds the relationship between 

the input and output data. Similar to a brain, where neurons are connected by synapses, the neurons in an ANN are 

connected by weighted inputs. Neurons are activated when the summation of these weighted inputs exceeds the 

neurons activation threshold. There are seven successive steps involved in the design and implementation of an ANN: 

1. Collecting data  

2. Creating the network  

3. Configuring the network  

4. Initializing the weights and biases  

5. Training the network  

6. Validating the network  

7. Using the network 

ANN structure: 

An ANN consists of three sections that are input layer, hidden layer, and the output layer. Input vector (X) is multiplied 

by weight vector (W) and this multiplication vector (WX) is added to a bias (b) that led to the input vector (n) that this 

vector enters to a neuron. The neuron applies a transfer function (f) to this input vector that the output vector (a) is 

obtained. Fig. 3.11 shows a single neuron network that explained in this section. Eq. (3.131) shows the relation 

between input and the output, 

𝑛 = 𝑊1,1𝑋1 +𝑊1,2𝑋2 +⋯+𝑊1,𝑟𝑋𝑟 + 𝑏 (3.131) 

Also, Eqs. 3.132 and 3.133 demonstrate that during the training stage the amount of the weight(s) and bias(s) will be 

updated with this equation. 

𝑊(𝑘 + 1) = 𝑊(𝑘) + 2𝛼𝑒(𝑘)𝑋𝑇(𝑘) (3.132) 
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b(k + 1) = b(k) + 2𝛼𝑒(𝑘) (3.133) 

In which, 𝛼 and e are the learning rate and error respectively. 

X1

X2

Xr

  ƒ 

b

n a a=f(WX+b)

 
Fig. 3.11. Single neuron network. 

Single layer neural network: 

Single-layer neural network (SLNN) is an extended case of the simple case mentioned in the previous section. SLNN 

consists of one layer of neurons as shown in Fig. 3.12.  

 

Fig. 3.12. Single Layer Neural Network. 

Each input of the SLNN, 𝑥𝑖, is connected to all of the neurons in the layer by a weight vector, W. Every neuron adds 

its weight inputs (𝑊𝑇𝑥) and bias to form its net input, 𝑛𝑖.The net input vector 𝑛𝑖 is used by the activation function, f, 

to form the neuron output vector 𝑎𝑖. The number of inputs is typically different than the number of neurons. The 

weight matrix, W, is given by: 

[

𝑊1,1 𝑊1,2
𝑊2,1 𝑊2,2

    
⋯ 𝑊1, 𝑅
⋯ 𝑊2, 𝑅

⋯ ⋯
𝑊𝑆, 1 𝑊𝑆, 2    

⋯ ⋯
⋯ 𝑊𝑆, 𝑅

] 

(3.134) 

 

Where R is the number of elements in the input vector and S is the number of neurons 

Multilayer neural network:  
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Multi-layer  neural  networks  (MLNN’s)  are  used  to  implement  complex  problems  that SLNN’s are unable to 

solve. It has the ability to convert non-linearly-separable objects into a different domain where they become linearly 

separable. MLNN’s include an input layer, output layer, and hidden layers as shown in Fig. 3.13.  

  

  

  

  

  

  

  

  

  

Inputs Input layer (layer 1) Hidden layer (layer 2) Output layer (layer 3)

±1 ±1 ±1 

X1 

X2 

Xr 

 

Fig. 3.13. Multilayer neural network.  

In multi-layer networks the output of each layer becomes the input for the subsequent layer. Each layer has its own 

weight matrix. These weight matrices are varied to achieve a minimum total error. The output of a MLNN is given 

by: 

𝑎1 = 𝑓1(𝐼𝑊1,1𝑋 + 𝑏1) (3.135) 

𝑎2 = 𝑓2(𝐼𝑊2,1𝑎1 + 𝑏2) (3.136) 

𝑎3 = 𝑓3(𝐼𝑊3,2𝑎2 + 𝑏3) (3.137) 

𝑎3 = 𝑓3(𝐼𝑊3,2𝑓2(𝐼𝑊1,2𝑓1(𝐼𝑊1,1𝑋 + 𝑏1) + 𝑏2) + 𝑏3) (3.138) 

Where, X= input vector, IW=input weight matrix, LW = hidden weight matrix, b = bias vector, and a = layer output 

vector. The hidden layer associated with multi-layer neural networks provides a powerful tool for performing very 

complex analysis. 

3.2.2. RBFNN model 

Radial Basis Function (RBF) neural networks operate on a somewhat different principle. Instead of having threshold 

units with a single value against which to compare accumulated sums of input signals, each RBF neuron has a set of 

values called a “reference vector” for comparison with an input set of the same cardinality. Fig. 3.14 illustrates a 

RBFNN that contains three layers [143]. The first layer is the input layer that contains the input neurons; the second 

layer is the hidden layer that is composed the RBF neurons; the third layer is the output layer contains linear basis 

function neurons with one node per category or class of data. The weight c and one extra coefficient for each neuron 

were defined by the RBF neuron (for the radial basis neuron is not the bias but the width b). The weights of the RBF 
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neuron determine the center for the RBF and actually it calculates the Euclidean distance between the input vector and 

the middle of the hypersphere. The neuron’s inner potential can be obtained by: 

𝑔(𝑥) =
‖𝑥 − 𝑐‖

𝑏
 

(3.139) 

And the combining with the Gaussian activation function can be obtained: 

𝑓(𝑥) = 𝑒−
‖𝑥−𝑐‖
𝑏  

(3.140) 

Also, the final activation of the ith output neuron is obtained by the following equation: 

𝑦𝑖 = 𝑊𝑜,𝑗 +∑𝑊𝑖,𝑗  𝑒
−
‖𝑥−𝑐𝑖‖
𝑏𝑖

𝑛ℎ

𝑖=1

 

(3.141) 

The RBFNN will be designed with the “newrb” function in Matlab software. The network will be trained with the 

70% of the data and 30% of data will be used to test the network. The optimum performance of the network will be 

obtained with setting the various parameters of the network. For this network the spread of RBF and maximum number 

of neurons are the important user defined parameters.     
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Fig. 3.14. Structure of the RBF.  

3.2.3. SVR model 

Support Vector Machines that have been introduced by Vapnik (2013) [74] are classification and regression 

techniques, which optimize its structure based on the input data. For training data (𝑥𝑖 , 𝑦𝑖), ..., (𝑥𝑛 , 𝑦𝑛), where 𝑥𝑖 are 

the vectors with input values and 𝑦𝑖  the appropriate output values for 𝑥𝑖, the ε-insensitive SVR aims to find a function 

𝑓(𝑥), that has the deviation from the target 𝑦𝑖  at most 𝜀 at all times, while being as ”flat” as possible. This problem 

can be written down as an optimization problem: 

min
𝜔,𝑏,𝜉,𝜉∗

1

2
𝜔𝑇𝜔 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 
(3.142) 

𝑠. 𝑡. {

𝑦𝑖 − (〈𝜔, 𝑥𝑖〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖
(〈𝜔, 𝑥𝑖〉 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉, 𝜉∗ ≥ 0                                  

 

(3.143) 

In which, n is the number of samples, 𝜉𝑖 shows the upper training error, 𝜉𝑖
∗ is the lower training error subject to the 𝜀-

insensitive tube |𝑦𝑖 − (〈𝜔, 𝑥𝑖〉 + 𝑏)|. Also, C is the regularized constant that determines the trade-off between the 
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regularization term and the empirical error, and 𝐶 > 0. The SVR creates the 𝑓(𝑥) such that: (1) 𝜉𝑖 and 𝜉𝑖
∗ are minimized 

to achieve the minimal training error and (2) to make the function ”flat” and penalize too complex functions we 

minimize 
1

2
𝜔𝑇𝜔. The final decision function is defined by:  

𝑓(𝑥, 𝛼𝑖 , 𝛼𝑖
∗) =∑(𝛼𝑖 − 𝛼𝑖

∗)𝜅(𝑥, 𝑥𝑖) + 𝑏

𝑛

𝑖=1

 
(3.144) 

And can be found by utilizing the properties Lagrange multipliers, Kernel trick and the optimality constraints. The 

Lagrange multipliers and Kernel trick are described in the following. 

Lagrange multipliers: 

In Eq. (3.144) 𝛼𝑖, 𝛼𝑖
∗ indicate the Lagrange multipliers. They can be obtained by maximizing the dual function of Eq. 

(3.142) and then can be introduced by: 

max
𝛼𝑖,𝛼𝑖

∗
∑𝑦𝑖(𝛼𝑖 − 𝛼𝑖

∗) − 𝜀∑𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)

𝑛

𝑖=1

−
1

2
∑∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)〈𝑥𝑖 , 𝑥𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑖=1

 
(3.145) 

𝑠. 𝑡.

{
 
 

 
 ∑(𝛼𝑖 − 𝛼𝑖

∗) = 0

𝑛

𝑖=1

0 ≤ 𝛼𝑖 ≤ 𝐶           

0 ≤ 𝛼𝑖
∗ ≤ 𝐶          

𝑖 = 1,2, … , 𝑛        

 

 

(3.146) 

In Eq. (3.142), only some (𝛼𝑖 − 𝛼𝑖
∗)  are not equal to zero, which comes from the Karush-Kuhn-Tucker’s conditions 

of solving a quadratic programming problem. The support vector itself refers to the approximation error of data point 

on non-zero coefficient equal or larger than ε. Because errors lower than ε are acceptable, the data from the training 

set inside the ”ε-tube” do not contribute to the cost nor the solution of the problem. 

Kernel trick: 

The key to non-linear extension of the SVR is the Eq. (3.145) and the existence of the so-called kernel trick. The dot 

product of 〈𝑥𝑖 , 𝑥𝑗〉 from the Eq. (3.145) becomes a kernel function 〈∅(𝑥𝑖), ∅(𝑥𝑗)〉 = 𝑘(𝑥𝑖 , 𝑥𝑗) in the case of non-

linearity. The function ∅:𝑅𝑑 → ℋ presents the idea of mapping the input space into a feature space with a higher 

dimension. The common kernel function that satisfy this issue are: 

Linear kernel: 𝑘𝑙𝑖𝑛(𝑥, 𝑥
′) = 〈𝑥, 𝑥′〉 (3.147) 

Polynomial kernel: 〈𝑥, 𝑥′〉𝑝 , 𝑝 ∈ 𝑁 (3.148) 

Radial basis function (RBF): 𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝(−𝜎‖𝑥 − 𝑥′‖2), 𝜎 ∈ 𝑅, 𝜎 > 0 (3.149) 

For this study RBF was used as kernel function that its mapping space has an infinite number of dimensions. Fig. 3.15 

shows a SVRNN architecture based on Eq. (3.144) with considering the Karush-Kuhn-Tucker’s conditions for solving 

a quadratic programming problem. The value of  (𝛼𝑖 − 𝛼𝑖
∗) that are nonzero are support vectors, which are applied to 

obtain the decision function. It is important to find the optimum three user-determined parameters that are C, ɛ, and 

σ.     
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Fig. 3.15. SVR architecture. 

3.2.4. FIS model  

Fuzzy inference system (FIS) is represented as the process of mapping a set of input data sets into a set output data, 

using an approach based on fuzzy logic (an architecture of FIS is shown in Fig. 3.16). The process contains the 

following main parts: membership functions (MFs), fuzzy logic operators, and if-then rules. The main steps of a FIS 

are: the first part is called fuzzification that is defined as: compare the input(s) with the MFs on the previous part to 

obtain the membership values; the second part is defined as: combine the membership values on the premise part to 

get firing strength (degree of fulfillment) of each rule; the third part: generate the qualified consequents or each rule 

depending on the firing strength; and the forth part is called the defuzzification and aggregate the qualified consequents 

to produce a crisp output [144]. 

Fuzzifier Inference Engine Deffuzzifier

Database

Rule base

Knowledge base

Crisp 

Input
Crisp 

Output
Fuzzy 

Input

Fuzzy 

Output

 

Fig. 3.16. The architecture of fuzzy inference system. 

The knowledge base is defined as the jointly of the rule base (contains a fuzzy if-then rules) and the database (defines 

the membership functions of fuzzy sets used in the fuzzy rules). The fuzzifier by using the membership function 

converts the crisp input to a linguistic variable. Inference engine using if-then type fuzzy rules converts fuzzy input to 

the fuzzy output. Difuzzifier converts the fuzzy output of the inference engine to crisp using membership functions 

analogous to the ones used by the Defuzzifier. Two methods have been introduced for the FIS that are Mamdani (is 

the most commonly seen FIS method) and Sugeno or Takagi–Sugeno–Kang. This two type of FIS are different in the 

consequent of fuzzy rules. Fig. 3.17 shows the FIS structure that is proposed to predict the solar radiation in this study. 

𝑥1 𝑥2 𝑥𝑖 

∅(𝑥1) ∅(𝑥2) ∅(𝑥) ∅(𝑥i) 

k(𝑥, 𝑥1) k(𝑥, 𝑥2) k(𝑥, 𝑥i) 

𝑓(𝑥) =∑(𝛼𝑖 − 𝛼𝑖
∗) 𝑘(𝑥, 𝑥𝑖) + 𝑏 

𝛼1 − 𝛼1
∗ 𝛼2 − 𝛼2

∗ 𝛼𝑖 − 𝛼𝑖
∗ 
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One model with the five inputs, and one output; also Mamdani method is selected for FIS structure. Also, IF-THEN 

rules, fuzzy maping, and membership function are describe in the following. 

Fuzzy Inference System

(mamdani)

x1

x2

x3

x4

x5

y

       

Fig. 3.17. FIS structure. 

3.2.5. ANFIS model 

Fuzzy rules will be obtained from the human expert in the most fuzzy systems, hence ANN were incorporated into 

fuzzy system to obtain the knowledge of human expert by applying the learning algorithms. This method was used 

for automatic fuzzy if-then rules generation. This connection (an ANN into fuzzy system) is called neuro-fuzzy 

system. The most frequently used ANN in neuro-fuzzy system is RBFNN in which each node has radial basis function 

such as Gaussian and Ellipsoidal. There are many developed neuro-fuzzy algorithms that adaptive neuro inference 

system is one of them. This algorithm uses RBFNN to determine the parameters of the fuzzy system. In this model 

Takagi–Sugeno–Kang models are involved in framework of adaptive system. For each ANFIS two basic learning 

algorithm are required that one of them is applied to find the suitable fuzzy logic rules and is called structure learning 

algorithm. The second one is the parameter learning algorithm to adjust the membership functions and other 

parameters according to desired performance from the system. In this study to obtain the fuzzy logic parameters, 

gradient-descent training algorithms are used. Fig. 3.18 shows the ANFIS structure that has been used from two fuzzy 

if-then rules under Takagi–Sugeno–Kang model that are given by the following:  

Rule 1: If (x is 𝐴1) and (y is 𝐵1) then 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 (3.150) 

Rule 2: If (x is 𝐴2) and (y is 𝐵2) then 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 (3.151) 

In which 𝑟𝑖, 𝑝𝑖 , and 𝑞𝑖 are the design parameters that will be obtained during the period of training phase.  

The ANFIS layers are described as follows: 

Layer 1 (fuzzification layer), the signal that is obtained from each node is transferred to the other layer. Cells outputs 

(𝑂𝑖
1) are defined by [145]:    

𝑂𝑖
1 = 𝜇𝐴𝑖(𝑥),     𝑖 = 1,2 (3.152) 

Where 𝜇𝐴𝑖  is associated to the membership function and 𝐴𝑖 is linguistic variable associated with this node function.    

In the most ANFIS models 𝜇𝐴𝑖  is selected as:  

𝜇𝐴𝑖(𝑥) = 𝑒𝑥𝑝 {− [(
𝑥 − 𝑐𝑖
𝑎𝑖

)
2

]

𝑏𝑖

} 
(3.153) 



 

38 

 

In which 𝑥 is the input and {𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖} are premise parameters. 

Layer 2 (rule layer), is achieved with the membership degrees in which each node output demonstrates the firing 

strength of a fuzzy rule.    

𝑂2
𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥). 𝜇𝐵𝑖(𝑦),      𝑖 = 1,2 (3.154) 

Layer 3 (normalization layer), every node in this layer is a fixed node labeled N. The ith node calculates the ratio of 

the rule’s firing strength to the sum of all rules’ firing strengths: 

𝑂3
𝑖 = 𝑤̅𝑖 =

𝑤𝑖
𝑤1 + 𝑤2

, 𝑖 = 1,2 (3.155) 

Layer 4 (defuzzification layer), the output value for each rule is calculated from the value of the previous layer. 

𝑂4
𝑖 = 𝑤̅𝑖𝑓𝑖 = 𝑤̅𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖),     𝑖 = 1,2 (3.156) 

In which 𝑤̅𝑖 is a normalized firing strength from layer 3 and {𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖} are the consequent parameters. 

Layer 5 (sum layer), the output of ANFIS model is achieved by collecting the output values of each rule that are 

obtained from the previous layer.  

𝑂5
𝑖 = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 =∑𝑤̅𝑖𝑓𝑖

𝑖

=
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖

, 𝑖 = 1,2 
(3.157) 

Three types of ANFIS are proposed to predict the time series data of solar radiation. The first one generate FIS 

structure from data using grid partition (this method generate one output Sugeno-type FIS using a grid partition on the 

data) (ANFIS-GP). The second one generate FIS structure using subtractive clustering (this method use subtractive 

clustering to create a Sugeno-type FIS structure and requires separate sets of input and output data as input arguments) 

(ANFIS-SC). The third one generate FIS structure using FCM clustering (this method by using fuzzy c-means (FCM) 

clustering generate a FIS) (ANFIS-FCM).  
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Fig. 3.18. ANFIS structure. 
3.2.6. Particle Swarm Optimization (PSO) algorithm 

Eberhart and Kennedy for the first time in 1995 developed particle swarm optimization (PSO) algorithm that inspired 

by the flocking and schooling patterns of fish and birds [146]. Swarm intelligence is defined as a problem-solving 

method that relies on interactions of simple processing units. This method uses a number of particles that constitute a 

swarm moving around in the search space looking for the best solution. Also, each particle in search space adjusts its 

𝑤̅1 

𝑤̅2 

𝑤̅1𝑓1 

𝑤̅2𝑓2 
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“flying” according to its own flying experience as well as the flying experience of other particles. Fig. 3.19 illustrate 

a design structure of PSO algorithm.  

Setting parameters 

C1, C2, W

Randomly generated X

Calculate fitness values 

for each particle

Fitness 

[(X)<(pBest)] 

Assign current fitness as 

new pBest

Yes

Fitness 

[(pBest)<(gBest)] 

gBest=pBest

Update 

velocity

Update 

position

No

Yes

No

 

Fig. 3.19. Design structure of the PSO algorithm. 

The algorithm follows three main stages that are described as follows [147]: 

1. The target (or conditions) of the problem that is defined for the PSO algorithm 

2. Global best (gBest) value that determines which particle’s data is currently closer to the target 

3. Stop condition that determines when the algorithm should be stopped    

Also, each particle contains: 

1. 𝑥⃗𝑖; this vector shows the current position in the search space for the particle i 

2. 𝑝𝑖; the best position in history of particle i is defined by this vector 
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3. 𝑣⃗𝑖; the particle’s velocity of the particle i 

4. 𝑝𝐵𝑒𝑠𝑡𝑖; this parameter indicates the quality of solution of the best position of particle i  

This optimization algorithm (PSO) update the ANFIS parameters. As above mentioned, the ANFIS has two main 

parameters that are premise and consequent parameters. The membership functions are assumed Gaussian as in Eq. 

(3.153), and their parameters are {𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖} (𝑎𝑖 is the variance of membership functions, 𝑏𝑖 is a trainable parameter 

and 𝑐𝑖 is the center of membership functions). These parameters are premise parameters. The consequent parameters 

were given in Eq. (3.156) that are {𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖}. Therefore, there are three sets of trainable parameters in the premise 

parameters that each of them has N genes. Here, N demonstrates the number of membership functions. Moreover, the 

consequent parameters are trained during the optimization process. In conclusion part, each chromosome has 

(𝐼 + 1) × 𝑅 genes that 𝐼 denotes dimension of data inputs and 𝑅 is equal to number of rules. Indeed, in the first step, 

the parameters are initialized randomly and then are begin updated using optimization algorithms. One of the 

parameters set are being updated during each iteration. For instance, in the first iteration the values of 𝑎𝑖 are updated 

and then in the second iteration the values of 𝑏𝑖 are updated and then after updating all parameters again, the first 

parameter update is considered and so on.   

3.2.7. Performance evaluation criteria  

Three different statistical indicators including root mean square error (RMSE), determination coefficient (R2) and 

mean square error (MSE) are considered to evaluate the forecast accuracy of the proposed models. These statistical 

indicators are calculated by the following equations [148],[149]:   

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 

(3.158) 

𝑅2 = (
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)
𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)
2 ∑ (𝑦𝑖 − 𝑦̅)

2𝑛
𝑖=1

𝑛
𝑖=1

)

2

 
(3.159) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 
(3.160) 

Here, 𝑥𝑖, 𝑦𝑖 , 𝑥̅, 𝑦̅ and 𝑛 are actual value, predicted value, mean of actual data, mean of predicted data and number of 

data, respectively.   

3.3. Hybrid renewable energy analysis 

Despite Iran’s vast reserves of hydrocarbons, but by looking to Fig. 3.20 it can be found that this country is potentially 

one of the best regions for solar radiation and wind energy. The Unit 132 of the second refinery is located in the south 

of Iran (the rectangle on the map, Fig. 3.20). The total area of Bushehr is around 22,743 km2 and analysis of the data 

(Fig. 3.20 (a)) illustrated that this area receives an average of 7 kWh/m2 solar radiation for one day. By considering 

only 1% of this area with average of 12% energy efficiency, can be obtained around 200 (MWh day⁄ ) electrical 

energy. Also, in recent years, Iran had an impressive growth in wind generation. In 2010, Iran provided 203 MW of 

electricity from the wind power [150]. Fig. 3.20 (b) illustrates the average wind speed data in Iran that are provided 
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by renewable energy organization of Iran [151]. Analysis of potential wind energy only in 26 stations of Iran shows 

these stations with approximately 33% energy efficiency can produce around 6500 MW electrical power [151].  

 

 

 

 

Fig. 3.20. Average annual solar radiation (a) and wind speed (b) [151].   

Hybrid PV/wind energy that has been proposed for supplying the electrical energy for Unit 132 is shown in Fig. 3.21. 

The input energy will be provided by WTS and PVS and whenever there are no solar or wind energies, demanding 

energy will be supplied by energy storage system. If the total energy produced by renewable energy sources is greater 

than the energy demand of the unit, the excess electric energy is used by the electrolyzer to produce hydrogen and it 

is stored in the hydrogen tanks. The fuel cell will use stored hydrogen for supplying the electrical energy as the 

secondary power source in Unit 132. 

Table 3.5 illustrates the technical specification of the PV panel, wind turbine, electrolyzer, fuel cell, hydrogen tank 

and converter that are the components of the proposed system. It should be noted that for the converter and fuel cell 

that have less life than 20 years, the additional cost and cost of replacement are considered. As can be seen in the table, 

the number of solar PV panels (5200) and wind turbines (2) are determined based on the unit required power (7600 

kW/day) and produced power by the hybrid PV/WT system. Indeed, the produced power of each PV module and WT 

(in the case study region) will determine the number of PV panels and WTs. Also, the size of the electrolyzer depends 

on its input power that is obtained from the renewable energy system. The capacity of the fuel cell is related on the 

required energy of the unit. A converter is considered aiming to convert the electric current from DC to AC. Moreover, 

components efficiency are considered in order to select their size.         

a) b) 
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Fig. 3.21. Schematic of the hybrid renewable energy with hydrogen storage system. 

Table 3.5. Technical specification of the proposed system.  

Parameters Value Converter 

Project life time (𝑛𝑝) 20 years Initial cost  700 $/kW 

Load power of the Unit 132 320 kW Life time 10 years 

Air density (𝜌𝑎) 1.22 kg/m3 Efficiency  95% 

LHV (H2) 141764 kJ/kg Nominal power 320 kW 

𝑇𝑎 25 ℃ Technical specifications of wind turbine (E-44)   

Characteristics of the PV panel Rated power: 900 kW 

 STC NOCT Rotor diameter: 44 m 

Maximum power (𝑃𝑚𝑎𝑥) 240 Wp 181.7 Wp Hub height in meter: 45 / 55 

Voltage at maximum power (𝑉𝑚𝑝𝑝) 29.7 V 27.1 V WEC concept: Gearless, variable speed, 

single blade adjustment 

Current at maximum power (𝐼𝑚𝑝𝑝) 8.08 A 6.71 A Rotor type: Upwind rotor with active 

pitch control 

Open circuit voltage (𝑉𝑜𝑐) 37.3 V 33.9 V Rotational direction: Clockwise 

Short circuit current (𝐼𝑠𝑐) 8.6 A 7.37 A No. of blades: 3 

Temperature   45±2 ℃ Rotational speed: Variable, 16 - 34.5 rpm 

Temperature coefficient of 𝑃𝑚𝑎𝑥 -0.442 % ℃⁄  Annual maintenance costs 

of wind turbine (C Mnt-

WT ) 

84 $/kW-year 

Temperature coefficient of 𝑉𝑜𝑐 -0.352 % ℃⁄  Life time 20 years 

Temperature coefficient of 𝐼𝑠𝑐 0.088 % ℃⁄  Initial cost 3,000 $/kW 

Panel dimension (H/W/D)  1655×992×45 mm Number of turbines 2 

Cell type Polycrystalline Electrolyzer 

Initial cost 3,300 $/kW Initial cost 1500 $/kW 

Annual maintenance costs  44 $/kW-year Annual maintenance costs 5% of initial cost-year 

Life time  20 to 25 years Nominal electrolyzer 

power 

1500 kW 

Number of PV panels 5200 Electrolyzer efficiency 74% 

Hydrogen tank Fuel cell 

Life time 20 years Initial cost 2000 $/kW 
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Initial cost 500 $/kg Annual maintenance costs 5% of the initial cost 

Capacity 7500 kg Nominal fuel cell power 450 kW 

Annual maintenance costs 5% of initial cost-

year 

Replacement cost of fuel 

cell 

$1400  

 

3.3.1. Energy and Exergy analysis 

Photovoltaic system: 

Klein and Theilacker [152] developed a method for determining the monthly slope and azimuth angles. The total 

monthly average daily radiation is defined by: 

𝐻𝑇 = 𝐻 𝑅̅ (3.161) 

In which, 𝐻̅ is the monthly average daily radiation on a horizontal surface that is:  

𝐻 = 𝐾𝑇 𝐻𝑜 (3.162) 

Where 𝐻𝑜 is the monthly average daily extraterrestrial radiation and 𝐾𝑇 is the monthly average clearness index. 𝐻𝑜 is 

defined by Eq. (3.163) [153].  

𝐻̅𝑜 =
24 × 3600 × 𝐺𝑠𝑐

𝜋
(1 + 0.033 𝑐𝑜𝑠 (

360 𝑛

365
)) × [cos ∅ cos 𝛿  (sin 𝜔2 − sin𝜔1) +

𝜋(𝜔2 −𝜔1)

180
sin ∅ sin 𝛿] 

(3.163) 

In which 𝐺𝑠𝑐  is the energy from the sun per unit time received on a unit area of surface perpendicular to the direction 

of propagation of the radiation at mean earth-sun distance outside the atmosphere that is equal to 1367𝑊 𝑚2⁄ . Also, 

n, ∅, 𝛿 and 𝜔 are number of the ith day of month, latitude, declination angle, and hour angle.  

𝛿 is given by: 

𝛿 = 23.45 𝑠𝑖𝑛 (360 
284 + 𝑛

365
) 

(3.164) 

Also, 𝑅̅ is the ratio of monthly mean daily global solar radiation on an inclined plate to that on a horizontal plate:  

𝑅̅ = 𝐷 +
𝐻̅𝑑

𝐻
(
1 + 𝑐𝑜𝑠𝛽

2
) + 𝜌𝑔 (

1 − 𝑐𝑜𝑠𝛽

2
) 

(3.165) 

Where 𝛽 is slope angle, and D is calculated by: 

𝐷 = {
𝑚𝑎𝑥 (0, 𝐺(𝜔𝑠𝑠, 𝜔𝑠𝑟))  𝑖𝑓 𝜔𝑠𝑠 ≥ 𝜔𝑠𝑟                             

𝑚𝑎𝑥(0, [𝐺(𝜔𝑠𝑠, −𝜔𝑠) + 𝐺(𝜔𝑠, 𝜔𝑠𝑟)])  𝑖𝑓 𝜔𝑠𝑟 > 𝜔𝑠𝑠
 

(3.166) 

In which 𝜔𝑠𝑠 and 𝜔𝑠𝑟  are the sunset and sunrise hour angles for beam radiation on a tilted surface, respectively.  Where 

𝐺(𝜔1, 𝜔2) can be determined by: 

𝐺(𝜔1, 𝜔2) =
1

2𝑑
[(
𝑏𝐴

2
− 𝑎́𝐵) (𝜔1 −𝜔2)

𝜋

180
+ (𝑎́𝐴 − 𝑏𝐵)(𝑠𝑖𝑛𝜔1 − 𝑠𝑖𝑛𝜔2) − 𝑎́𝐶(𝑐𝑜𝑠𝜔1 − 𝑐𝑜𝑠𝜔2)

+ (
𝑏𝐴

2
) (𝑠𝑖𝑛𝜔1 𝑐𝑜𝑠𝜔1 − 𝑠𝑖𝑛𝜔2 cos𝜔2) + (

𝑏𝐶

2
) (𝑠𝑖𝑛𝑤1

2 − 𝑠𝑖𝑛𝑤2
2 )] 

(3.167) 

In which, 𝑎́ is: 

𝑎́ = 𝑎 −
𝐻𝑑

𝐻
 

 

(3.168) 

Also, 𝜔𝑠𝑟  and 𝜔𝑠𝑠 are introduced by Eqs. (3.169)- (3.172).  



 

44 

 

|𝜔𝑠𝑟| = 𝑚𝑖𝑛 [𝜔𝑠, 𝑐𝑜𝑠
−1
𝐴𝐵 + 𝐶√𝐴2 − 𝐵2 + 𝐶2

𝐴2 + 𝐶2
] 

(3.169) 

𝜔𝑠𝑟 = {
−|𝜔𝑠𝑟| 𝑖𝑓 (𝐴 > 0 𝑎𝑛𝑑 𝐵 > 0) 𝑜𝑟 (𝐴 ≥ 𝐵)

+|𝜔𝑠𝑟| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            
 

(3.170) 

|𝜔𝑠𝑠| = 𝑚𝑖𝑛 [𝜔𝑠, 𝑐𝑜𝑠
−1
𝐴𝐵 − 𝐶√𝐴2 − 𝐵2 + 𝐶2

𝐴2 + 𝐶2
] 

(3.171) 

𝜔𝑠𝑠 = {
+|𝜔𝑠𝑠| 𝑖𝑓 (𝐴 > 0 𝑎𝑛𝑑 𝐵 > 0) 𝑜𝑟 (𝐴 ≥ 𝐵)

−|𝜔𝑠𝑠| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            
 

(3.172) 

In which A, B, and C are functions of solar geometry and position of the solar surface that are given by: 

𝐴 = 𝑐𝑜𝑠𝛽 + 𝑡𝑎𝑛𝜑 𝑐𝑜𝑠𝛾 sin 𝛽 (3.173) 

𝐵 = 𝑐𝑜𝑠𝜔𝑠 𝑐𝑜𝑠𝛽 + 𝑡𝑎𝑛𝛿 𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛾 (3.174) 

𝐶 =
sin 𝛽  𝑠𝑖𝑛𝛾

𝑐𝑜𝑠𝜑
 

 

(3.175) 

As well as a, b and d are constant coefficients that are given by the following equations:  

𝑎 = 0.4090 + 0.5016 𝑠𝑖𝑛(𝜔𝑠 − 60) (3.176) 

𝑏 = 0.6609 − 0.4767 𝑠𝑖𝑛(𝜔𝑠 − 60) (3.177) 

𝑑 = 𝑠𝑖𝑛(𝜔𝑠) −
𝜋

180
𝑐𝑜𝑠(𝜔𝑠) 

(3.178) 

Monthly average diffuse fraction correlations are defined by [153]: 

For 𝜔𝑠 ≤ 81.4° and 0.3 ≤ 𝐾𝑇 ≤ 0.8 

𝐻𝑑

𝐻̅
= 1.391 − 3.560 𝐾𝑇 + 4.189𝐾𝑇

2 − 2.137𝐾𝑇
3 

(3.179) 

And also for 𝜔𝑠 > 81.4° and 0.3 ≤ 𝐾𝑇 ≤ 0.8 

𝐻𝑑

𝐻̅
= 1.311 − 3.022 𝐾𝑇 + 3.427 𝐾𝑇

2 − 1.821𝐾𝑇
3 

(3.180) 

The output power of the PV array for the ith hour of the day is: 

𝑃𝑖 = 𝐴𝑐𝐺𝑇,𝑖𝜂𝑚𝑝𝜂𝑒 (3.181) 

In which 𝐴𝑐, 𝐺𝑇,𝑖, 𝜂𝑚𝑝 and 𝜂𝑒 are the array area, incident solar radiation, the maximum power point efficiency of the 

array and the efficiency of any power-conditioning equipment, respectively. The maximum power point efficiency is: 

𝜂𝑚𝑝 = 𝜂𝑚𝑝,𝑟𝑒𝑓 [1 +
𝜇𝑚𝑝

𝜇𝑚𝑝,𝑟𝑒𝑓
(𝑇𝑎 − 𝑇𝑟𝑒𝑓) +

𝜇𝑚𝑝𝐺𝑇

𝜇𝑚𝑝,𝑟𝑒𝑓

𝜏𝛼

𝑈𝐿
(1 −

𝜂𝑚𝑝

𝜏𝛼
)] 

(3.182) 

The term 𝜂𝑚𝑝 𝜏𝛼⁄  is always small compared to unity and thus can be approximated by 𝜂𝑚𝑝,𝑟𝑒𝑓 without introducing 

significant error. 

Based on the first law of thermodynamics the energy efficiency is: 

𝜂 =
𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡𝑝𝑢𝑡

𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡
 

(3.183) 
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The input exergy of the PV system is:  

𝐸𝑥𝑖𝑛 = 𝐴𝐺𝑇 [1 −
4

3
(
𝑇𝑎
𝑇𝑠
) +

1

3
(
𝑇𝑎
𝑇𝑠
)
4

] 
(3.184) 

Also, the exergy output of the PV system is defined by consideration of the thermal and electrical exergy that is:  

𝐸𝑥𝑜𝑢𝑡 = 𝐸𝑥𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝐸𝑥𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 (3.185) 

In which, thermal exergy of the system is: 

𝐸𝑥𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝑄 [1 −
𝑇𝑎
𝑇𝑚
] 

(3.186) 

Where 𝑄 is the heat emitted to the surround which is defined by: 

𝑄 = 𝑈𝐴(𝑇𝑚 − 𝑇𝑎) (3.187) 

In which U is the overall heat loss coefficient and is composed of the convection and radiation heat transfer coefficient 

that are given by the Eqs. (3.188) and (3.189). Convection heat transfer coefficient is: 

ℎ𝑐𝑜𝑛𝑣 = 2.8 + 3𝑣𝑚 (3.188) 

And radiation heat transfer coefficient is proposed by Ref. [154]:  

ℎ𝑟𝑎𝑑 = 𝜀𝜎(𝑇𝑠𝑘𝑦 + 𝑇𝑚)(𝑇𝑠𝑘𝑦
2 + 𝑇𝑚

2) (3.189) 

In which effective temperature of the sky is 𝑇𝑠𝑘𝑦 = 𝑇𝑎 − 6.  

The temperature of the module based on the normal operating cell temperature is: 

𝑇𝑚 = 𝑇𝑎 + (𝑁𝑂𝐶𝑇 − 20)
𝐺𝑇
800

 
(3.190) 

Finally, the electrical exergy of the system that has been defined by Ref. [155] is:  

𝐸𝑥𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = 𝑉𝑜𝑐 × 𝐼𝑠𝑐 × 𝐹𝐹 (3.191) 

In which, FF is the fill factor and is equal to: 

𝐹𝐹 =
𝑉𝑚𝑝𝐼𝑚𝑝

𝑉𝑜𝑐𝐼𝑠𝑐
 

(3.192) 

The exergy efficiency based on the second law of thermodynamics is expressed by: 

𝜓 =
𝐸𝑥𝑒𝑟𝑔𝑦 𝑜𝑢𝑡𝑝𝑢𝑡

𝐸𝑥𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡
 

(3.193) 

Wind turbine system: 

The energy analysis for a WT is defined by the following equation: 

𝑘𝑒1 = 𝑤𝑜𝑢𝑡 + 𝑘𝑒2 (3.194) 

In which 𝑘𝑒 and 𝑤𝑜𝑢𝑡  are the kinetic energy of the wind-flow and the output work that extracted by rotor blades, 

respectively. Eq. (3.195) defines the kinetic energy of the wind:  

𝑘𝑒 =
1

2
𝜌𝐴𝑡𝑣3 

(3.195) 

For any design of WT the theoretical maximum power efficiency (𝐶𝑝𝑚𝑎𝑥) is around 59%. Since WT cannot work in 

the 𝐶𝑝𝑚𝑎𝑥, the actual generated power for each WT is:  

𝑃𝑚 =
1

2
𝜌𝐶𝑝𝐴𝑣3 

(3.196) 
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Fig. 3.22 shows a schematic of three main sections of a WTS. The mechanical power of the rotor is calculated by Eq. 

(3.197). It must be determined how much of this power will be transferred to the electrical grid. For this target, 

according to Fig. 3.22, it is necessary to calculate the efficiencies of the gearbox, generator and power electronics. 

The amount of the actual generated power is:  

𝑃𝑒 = 𝜂𝑔𝑏 𝜂𝑔𝑛 𝜂𝑝 𝑃𝑚 (3.197) 

 The efficiencies of the gearbox, generator and power electronics device were assumed to be 𝜂𝑔𝑏=0.95,  𝜂𝑔𝑛=0.97 and 

𝜂𝑝=0.98, respectively [156].  

Gearbox Generator
Power 

Electronics

PePm

 

Fig. 3.22. Three main sections of a wind turbine. 

Exergy analysis for WT is given by the following equation:  

𝐸𝑥̇𝑓𝑙𝑜𝑤1 = 𝑊̇𝑜𝑢𝑡 + 𝐸𝑥̇𝑓𝑙𝑜𝑤2 + 𝐸𝑥̇𝑑𝑒𝑠𝑡  (3.198) 

In which 𝐸𝑥̇𝑓𝑙𝑜𝑤1  is the exergy rate of the flow in the inlet of WT, 𝑊̇𝑜𝑢𝑡 is the rate of the output work and 𝐸𝑥̇𝑑𝑒𝑠𝑡 is 

defined as the rate of the exergy destruction of the WT. The 𝐸𝑥̇𝑓𝑙𝑜𝑤1  is: 

𝐸𝑥𝑓𝑙𝑜𝑤 = (𝐸𝑥𝑘 + 𝐸𝑥𝑝 + ∆𝐻 − 𝑇𝑎∆𝑆) + 𝐸𝑥𝑐ℎ (3.199) 

Where 𝐸𝑥𝑘, 𝐸𝑥𝑝, ∆𝐻, 𝑇𝑎, ∆𝑆 and 𝐸𝑥𝑐ℎ are kinetic energy, potential energy (is considered to be zero), change in 

enthalpy, ambient temperature, change in entropy and chemical energy. The kinetic exergy is: 

𝐸𝑥𝑘 = 𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑  (3.200) 

the enthalpy difference is calculated by: 

∆𝐻 = 𝑚̇𝑐𝑝𝑎(𝑇2 − 𝑇1) (3.201) 

in which, 𝑚̇, 𝑐𝑝𝑎, 𝑇1 and 𝑇2 are the mass flow rate of the air, the air specific heat and the wind chill temperature at the 

inlet and outlet of the WT, respectively. The wind chill temperature is [157]:   

𝑇𝑖,𝑤𝑖𝑛𝑑−𝑐ℎ𝑖 = 13.12 + 0.6215𝑇𝑎 − 11.37𝑣𝑖
0.16 + 0.3965𝑇𝑎𝑣𝑖

0.16 (3.202) 

The wind speed and 𝑇𝑖,𝑤𝑖𝑛𝑑−𝑐ℎ𝑖  are at 10-meter elevation and ℃, respectively. The amount of the wind speed after the 

WT is defined by Sahin et al. [157] correlation.  

𝑣2 = √
2(𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 − 𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑)

𝜌𝐴𝑡

3

 

 

(3.203) 

Physical exergy of the air is given by an equation that has been developed by Bejan et al. [138].  

𝐸𝑥𝑝ℎ = (𝑐𝑝𝑎 + 𝛺𝑐𝑝𝑣)𝑇0 [
𝑇

𝑇0
− 1 − 𝑙𝑛 (

𝑇

𝑇0
)] + (1 + 1.6078𝛺)𝑅𝑇0𝑙𝑛 (

𝑃

𝑃0
) 

(3.204) 

In which 𝑐𝑝𝑎, 𝑐𝑝𝑣, 𝛺, R and 𝑃0 are the air specific heat, vapor specific heat, humidity ratio, gas constant and reference 

pressure. The pressure in the inlet and outlet of the WT is:  
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𝑃𝑖 = 𝑃𝑎 ±
𝜌

2
𝑣𝑖
2 

(3.205) 

The chemical exergy is:  

𝐸𝑥𝑐ℎ = 𝑅𝑇0[(1 + 1.6078𝛺)𝑙𝑛[(1 + 1.6078𝛺0)/(1 + 1.6078𝛺)] + 1 + 1.6078𝛺𝑙𝑛(𝛺 𝛺0⁄ )] (3.206) 

Also, heat loss of the WT is:  

𝑄̇𝑙𝑜𝑠𝑠 = 𝑚̇𝑎𝑐𝑝𝑎(𝑇2 − 𝑇1) (3.207) 

And entropy generation is: 

𝐼̇ = 𝑇0 (𝑐𝑝𝑙𝑛 (
𝑇2
𝑇1
) − 𝑅𝑙𝑛 (

𝑃2
𝑃1
) −

𝑚̇𝑐𝑝(𝑇𝑎 − 𝑇𝑎𝑣𝑒)

𝑇𝑎
) 

(3.208) 

The specific exergy destruction can be defined by: 

𝐸𝑥𝑑𝑒𝑠 =
𝑇0∆𝑆

𝜌𝐴𝑣
 

(3.209) 

 

Finally, the energy and exergy efficiencies of the WT are:  

𝜂 =
𝑤̇𝑜𝑢𝑡
𝑃

 
(3.210) 

𝜓 =
𝑤̇𝑜𝑢𝑡

𝐸𝑥̇𝑓𝑙𝑜𝑤
 

(3.211) 

Electrolyzer and fuel cell: 

Based on the following formula, electrolyzer splits water into hydrogen and oxygen using the excess electrical energy 

from PVS and WTS.  

𝐻2𝑂 + 𝑃𝑜𝑤𝑒𝑟 → 𝐻2 + 1 2⁄ 𝑂2 (3.212) 

The energy efficiency of the electrolyzer is defined by the lower heating value of hydrogen produced and power 

consumed by the process and is given by: 

𝜂 =
𝑚̇𝐻2𝐿𝐻𝑉𝐻2
𝑃𝑜𝑤𝑒𝑟 𝑖𝑛𝑝𝑢𝑡

 
(3.213) 

The exergy efficiency of the electrolyzer is given by consideration of physical and chemical exergy of the hydrogen 

and is defined by Eq. (3.124).  

𝜀 =
𝐸̇𝑥𝐻2

𝑃𝑜𝑤𝑒𝑟 𝑖𝑛𝑝𝑢𝑡
=
𝑚̇𝐻2(𝑒𝑥𝑝ℎ + 𝑒𝑥𝑐ℎ)𝐻2

𝑃𝑜𝑤𝑒𝑟 𝑖𝑛𝑝𝑢𝑡
 

(3.214) 

Physical exergy of the hydrogen is: 

𝑒𝑥𝑝ℎ = (ℎ − ℎ0) − 𝑇0(𝑠 − 𝑠0) (3.215) 

And for an ideal gas it can be written as: 
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𝑒𝑥𝑝ℎ = 𝑐𝑝𝑇0 [
𝑇

𝑇0
− 1 − 𝑙𝑛 (

𝑇

𝑇0
) + 𝑙𝑛 (

𝑃

𝑃0
)

𝑘−1
𝑘
] 

(3.216) 

In which 𝑐𝑝, 𝑇0, 𝑃0 and k  are the heat capacity at the constant pressure, ambient temperature, ambient pressure and 

the adiabatic exponent.   

Also, physical exergy is given by: 

𝑒𝑥𝑐ℎ =∑𝑥𝐻2𝑒𝑥0,𝐻2 + 𝑅𝐻2𝑇0∑𝑥𝐻2𝑙𝑛 𝑥𝐻2 
(3.217) 

Economic analysis: 

The life cycle cost (LCC) is used of hybrid system that was considered in this study. It is defined by consideration of 

the annual capital cost (𝐶𝐶), the annual maintenance cost (𝑀𝐶), the cost of installation (𝐼𝐶) and the cost of replacement 

(RC) of the components.  

𝐿𝐶𝐶 = 𝐶𝐶 +𝑀𝐶 + 𝐼𝐶 + 𝑅𝐶 (3.218) 

LCC of photovoltaic system: 

The initial capital cost of the PVS is determined as: 

𝐶𝐶𝑃𝑉 = 𝐴𝑃𝑉𝐶𝑃𝑉 (
𝑖𝑟(1 + 𝑖𝑟)

𝑛𝑝

(1 + 𝑖𝑟)
𝑛𝑝 − 1

) 
(3.219) 

in which  𝐴𝑃𝑉, 𝐶𝑃𝑉, 𝑖𝑟  and 𝑛𝑝 are area of PV array, unit cost of the PV panels, interest rate of the system and the life 

span, consecutively. 

Also, the annual maintenance cost is defined by:      

𝑀𝐶𝑃𝑉 = 𝐶𝑀𝑛𝑡−𝑃𝑉 𝐴𝑃𝑉 (3.220) 

where 𝐶𝑀𝑛𝑡−𝑃𝑉 is annual maintenance cost of each PV panel.   

LCC of wind turbine system: 

The annual capital cost for WTS according to the swept area of the blades (𝐴𝑊𝑇) is:  

𝐶𝐶𝑊𝑇 = 𝐴𝑊𝑇𝐶𝑊𝑇 (
𝑖𝑟(1 + 𝑖𝑟)

𝑛𝑝

(1 + 𝑖𝑟)
𝑛𝑝 − 1

) 
(3.221) 

In which 𝐶𝑊𝑇 is the unit cost of the WTS that is defined by the initial cost of each WT and the cost of installation of 

WT. 

The annual maintenance cost for WTS can be evaluated as following equation:    

𝑀𝐶𝑃𝑉 = 𝐶𝑀𝑛𝑡−𝑃𝑉𝐴𝑃𝑉 (3.222) 

LCC of fuel cell and electrolyzer: 

As well as the capital cost of the fuel cell is expressible as: 

𝐶𝐶𝐹𝐶 = 𝑃𝑊𝐹𝐶 . (
𝑖𝑟(1 + 𝑖𝑟)

𝑛𝑝

(1 + 𝑖𝑟)
𝑛𝑝 − 1

) 
(3.223) 
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In which 𝑃𝑊𝐹𝐶  is the single payment present worth factor. It should be noted that the life time of fuel cell and 

electrolyzer are considered five years [125].  

𝑃𝑊𝐹𝐶 = 𝐶𝐹𝐶 ∑
1

(1 + 𝑖𝑟)
𝑘

𝑘=0,5,10,15

 
(3.224) 

where 𝐶𝐹𝐶  is the fuel cell cost.   

Also, LCC of electrolyzer is obtained as a same way as before explained for the fuel cell.    

LCC of hydrogen tank (H2): 

The capital cost of the hydrogen tank is determined by the following equation: 

𝐶𝐶𝐻𝑇 = 𝑁𝐻2 . 𝐶𝐻2 (
𝑖𝑟(1 + 𝑖𝑟)

𝑛𝑝

(1 + 𝑖𝑟)
𝑛𝑝 − 1

) 
(3.225) 

In which 𝑁𝐻2 and 𝐶𝐻2 are number of hydrogen tank and the initial cost of an electrolyzer.  
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Chapter 4 

Results and Discussion 
 

4.1. Refrigeration unit 

The operating conditions of the proposed systems are obtained with a mathematical modeling of the thermodynamic 

cycle in EES software. Table 4.1 illustrates a comparison between the simulated cycle and actual data of Unit 132 of 

the refinery. The results show the errors ((actual data − simulated data actual data⁄ ) × 100) are less than 5 percent 

which are due to the theoretical assumption and error of the numerical value of the refrigerant properties in the software 

with the actual data of the cycle. 

Table 4.1. Comparison between actual data of the cycle and simulated data in the software. 

 Actual data of the 

cycle 

Simulated data by 

software 

Error (%) 

Mass of flow (kg/s) 12.6 12.4 1.59  

Work of compressor (kW) 371.2 381.4 -2.75 

Heat loss from the air condenser (kW) 2002 2032 -1.5 

Temperature of the cold fluid in the outlet 

of the heat exchanger (℃) 

34 33.95 0.147  

Temperature of the hot fluid in the outlet of 

the heat exchanger (℃) 

56 55.47 0.946  

The EERS is compared with Sarkar [158] system on isobutane as working fluid. With condensing temperature varying 

from 35 to 55℃, the comparison for 𝑇𝑒𝑣𝑎=15℃, 𝜂𝑠𝑛, 𝜂𝑚𝑛, 𝜂𝑑=0.85, and 𝜂𝑚𝑠=1 is shown in Fig. 4.1 As can be seen in 

the graph, the COP calculated from the present model is in agreement with Sarkar [158].     

 
Fig. 4.1. Comparison between the proposed model and Sarkar [158].   

Tables 4.2-4.4 represents the sizing of the evaporator, condenser, and ejector before and after optimization for the 

R134a EERS. By considering the optimum evaporation and condensing temperatures, the area of the evaporator (from 
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193.4 m2 to 148.3 m2) and condenser (from 975.5 m2 to 926.7 m2) decrease. For the ejector device by considering the 

optimum temperatures, the values of the 𝐷𝑚𝑛,𝑡, 𝐷𝑚𝑛,𝑡, 𝐷𝑚𝑛,𝑡, and 𝐷𝑚𝑛,𝑡 increase approximately by 4%.   

Table 4.2. Sizing of the evaporator. 

 Exist 

evaporator 

Optimized 

evaporator 

Area of the evaporator  193.4 𝑚2 148.3 𝑚2 

Cylinder outside diameter 700 mm 650 mm 

Cylinder inside diameter 684 mm 634 mm 

Tube length 5000 mm 4500mm 

Number of tube 622 530 

Tube pith 25 mm 25 mm 

Tube passes 1 1 

Tube outer diameter 20 mm 20 mm 

Tube wall thickness 1.65 mm 1.65 mm 

Number of baffle 6 6 

Baffle thickness 9.52 mm 9.52 mm 

Table 4.3. Sizing of the condenser. 

 Exist 

condenser 

Optimized 

condenser 

Area of the condenser  975.5 𝑚2 926.7 𝑚2 

Unit length 6609.6 mm 6609.6 mm 

Width 1489.82 mm 1421.48mm 

Tube passes 2 2 

Number of fan 4 4 

Fan blade diameter 1371.6 mm 1371.6 mm 

Tube outer diameter 30 mm 30 mm 

Tube wall thickness 1.65 mm 1.65 mm 

Fin thickness 0.58 mm 0.58 mm 

Fin outer diameter 62 mm 62 mm 

Header width 1354.05 mm 1285.7 mm 

Header depth 304.8 mm 304.8 mm 

Header height 533.85 533.85 

Table 4.4. Sizing of the ejector. 

𝐿𝑚𝑛,1
𝐷𝑚𝑛,1

 
𝜃𝑚𝑛,1 𝐿𝑚𝑛,2

𝐷𝑚𝑛,𝑒
 

𝜃𝑚𝑛,2 𝐿𝑠𝑛
𝐷𝑠𝑛

 
𝜃𝑠𝑛 𝐿𝑚𝑠

𝐷𝑚𝑠
 

𝐿𝑑
𝐷𝑑

 
𝜃𝑑 𝐷𝑚𝑛,𝑒 𝐷𝑚𝑛,𝑡 𝐷𝑚𝑠 𝐷𝑠𝑛,𝑒 

1 23 11.11 1.3 1 18.4 11 4 3.8 0.2668 0.1323 0.5546 0.6107 

 With optimum 𝑇𝑒𝑣𝑎 and 𝑇𝑐𝑜𝑛𝑑 

Proposed by Ref. [159] 0.2773 0.1375 0.5777 0.6239 

Also, Chainwongsa et al. [159] and Disawas et al. [161] have proposed different values for 𝐿𝑚𝑛,2 𝐷𝑚𝑛,𝑒⁄  and 𝜃𝑚𝑛,2 

which are 8 and 2.3, respectively.  

Energy analysis based on the first law of thermodynamics was done for the EERS and HXRS and is shown in Fig. 

4.2. Both systems are investigated with R134a, R407C, and R410A refrigerants. The COP is a ratio of useful cooling 

provided to work required that as is presented in the graph, the EERS is more efficient system compared with the 

HXRS. Also, R134a is more efficient than R407C and R410A for the both proposed systems. The COP of the R134a 

EERS is 11% more than R134a HXRS. Bilir Sag et al. [162] proposed an ejector for a refrigeration system and 
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concluded that the COP increased about 7 to 11%. Also, Aghazadeh Dokandari et al. [163] in a refrigeration system 

with an ejector obtained a COP improvement of about 5 to 7% over the standard refrigeration cycle. Deng et al. [164] 

illustrated that the ejector as expander device in a refrigeration system improved the COP by up to 22%. According to 

the results of this study and before mentioned studies, it can be concluded that ejector expansion device can improve 

the COP of the cycle. This system is an ideal system from a thermodynamic point of view, but it might not be able to 

pass the economic criteria. Hence, thermos-economic assessment is investigated in the following of this study.         

 
Fig. 4.2. Comparison between the EERS and HXRS based on energy analysis. 

Fig. 4.3 represents the exergy analysis based on the second law of thermodynamics for the EERS and HXRS. R134a, 

R410A, and R407C are considered as working fluid for each system. In this graph, the exergy destruction for each 

component of the system is given. Minimum and maximum HXRS exergy destruction are obtained for the middle 

heat exchanger and condenser, respectively. For the EERS, the ejector and condenser have the lower and higher exergy 

destruction, respectively. Exergy destruction for the expansion valve in the HXRS accounts for 19% (40.67 kW) of 

the total; this value in the EERS is less than 1% (0.6471 kW) of the total. The lower exergy destruction is achieved 

for the EERS with R134a refrigerant. The amount of the exergy destroyed for the R407C EERS is lower than R410A 

EERS. Deng et al. [46] investigated the exergy destroyed for an EERS and concluded that the exergy destruction for 

the EERS is less than the standard refrigeration system.    
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Fig. 4.3. Exergy analysis in each component with different refrigerants on the EERS and HXRS. 

Fig. 4.4 demonstrates the effect of pressure drop in suction nozzle on COP, COPimp(𝐶𝑂𝑃 − 𝐶𝑂𝑃𝐵𝑅𝑆 𝐶𝑂𝑃𝐵𝑅𝑆)⁄ , VCC, 

VCCimp(𝑉𝐶𝐶 − 𝑉𝐶𝐶𝐵𝑅𝑆 𝑉𝐶𝐶𝐵𝑅𝑆)⁄ , PR, and PLR. This variation can be divided into two sections. From ∆𝑃 = 0.5 kPa 

to 20 kPa and from 20 kPa to 50 kPa. The graph represents with the pressure drop increasing, the COP, COPimp, VCC, 

VCCimp, and PR first increase up to a peak value and then decrease. Therefore it is found that there is an optimum 

pressure drop in the EERS that leads to a maximum performance of the system. This pressure drop causes an increasing 

for COP and VCC from 5.57 to 5.63 (1.077 %) and 4210 to 4250 (1%) kJ/m3, respectively. It is found an advantage 

for ejector cycle that recovers the throttling loss and decreases the pressure ratio (𝑃𝑅 = 𝑃2 𝑃1⁄ ) of the compressor that 

it leads to decrease the work of the compressor. The amount of the PR for the basic refrigeration cycle is 2.708 kPa 

and this value for EERS in ∆𝑃 = 20 𝑘𝑃𝑎 is equal to 2.480 kPa. Also, the pressure lift ratio between ∆𝑃 = 0.5 kPa 

and 20 kPa changes from 1.080 to 1.092. The optimum pressure drop was considered 20 kPa in which the maximum 

COPimp and VCCimp will be obtained that are 0.124 and 0.112 respectively. This conclusion has an agreement with the 

previous studies [36], [165]. 
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Fig. 4.4. Pressure drop in suction nozzle variation versus COP,COPimp, VCC, VCCimp, PR, and PLR. 

Fig. 4.5 illustrates the effect of the condensing temperature on AR, COP, COPimp, VCC, PLR, and PR. The results 

demonstrate that the AR for the R134a EERS at constant evaporation temperature with an increase in the condensing 

temperature increases (for each 1℃, 0.03% increment). As the condensing temperature increases from 54℃ to 62℃, 

the COP decreases and PR increases which led the power of the compressor to increase. The increase in the compressor 

power causes system COP to decrease as seen in Fig. 4.5 (this conclusion is in agreement with [50]). Also, when the 

condensing temperature increases, the VCC and PLR increase, and COPimp decreases. PLR is defined as (𝑃6 𝑃9⁄ ) and 

when the condensing temperature increases, the value of 𝑃6 increases that led the PLR to rise. Also, the variation of 

the VCC is justified by Eq. (3.28) in which with the condensing temperature increasing, the specific volume in the 

inlet of compressor decreases that leads to increases in VCC. Clearly, the efficiency of the EERS is directly 

proportional to condensing temperature. 
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Fig. 4.5. Condensation temperature variation versus COP,COPimp, VCC, VCCimp, PR and PLR. 

Fig. 4.6 represents the variation of evaporation temperature on COPimp, VCCimp, and PLR. The graph shows that for a 

constant condensing temperature (61.66℃), COPimp increases with an increase in the evaporation temperature. The 

effect of the changing evaporation temperature on VCCimp demonstrates that VCCimp decreases from 0.14 to 0.06. The 

obtained conclusion is in agreement with [36]. Also, according to Eq. (3.26) with an increment for evaporation 

temperature, the amount of the evaporation pressure increases, as a result, the value of PLR decreases.  

 

Fig. 4.6. Evaporation temperature changing on COPimp, VCCimp and PLR. 
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Effect of pressure drop in suction nozzle, evaporation and condensing temperatures on ejector diameters is shown in 

Figs. 4.7, 4.8, and 4.9. Fig. 4.7 demonstrates the effect of the pressure drop in suction nozzle on motive nozzle throat, 

motive nozzle exit, suction nozzle exit, and mixing section diameters. Based on Eq. (3.84) when the pressure drop in 

suction nozzle decreases the amount of the 𝑚̇9 decreases and the mass flux in suction nozzle exit increases which 

leads the suction nozzle exit diameter decreases. Also, the mixing section diameter decreases with a lower tilt 

compared to the suction nozzle diameter. Motive nozzle throat and motive nozzle exit diameters have a fairly steady 

trend. Fig. 4.8 represents the effect of the evaporation temperature on the ejector diameters. Based on the data in the 

figure when the evaporation temperature increases the entire ejector diameter decrease. The motive nozzle exit 

diameter decreases as a result of decreasing in the 𝑚̇3 and increasing in mass flux at the outlet of motive nozzle 

simultaneously (based on Eq. (3.77)). Increasing in evaporation temperature causes the critical mass flux in the motive 

nozzle throat remains unchanged and by decreasing the 𝑚̇3, throat diameter decreases. As the evaporation temperature 

increases the amount of the 𝑚̇9 increases but the mass flux in suction nozzle increases with a higher rate than 𝑚̇9. 

Therefore based on Eq. (3.84) the suction nozzle diameter decreases. Fig. 4.9 shows the effect of the condensation 

temperature on the ejector diameters. Based on Eq. (3.90) when the condensation temperature increases, the amount 

of the 𝑚̇𝑡𝑜𝑡 increases (0.14%). On the other hand, the mass flux in the mixing section increases by 13.54%. As a result, 

the rate of the increase of the mass flux in the mixing section is higher than 𝑚̇𝑡𝑜𝑡 which leads the mixing section 

diameter to decrease. There is no remarkable variation on the 𝐷𝑚𝑛,𝑡, 𝐷𝑚𝑛,𝑒 and 𝐷𝑠𝑛,𝑒 with condensation temperature 

increasing. These conclusions are in agreement with the conclusions of Hassanain et al. [33] study. 

  

 
Fig. 4.7. Effect of pressure drop in suction nozzle over the ejector diameters.  
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Fig. 4.8. Effect of evaporation temperature on the ejector diameters.  

 
Fig. 4.9. Effect of condensing temperature on the ejector diameters. 

The effect of changing pressure drop in suction nozzle on COP has been investigated in the previous section (Fig. 4.4) 

and the optimum value has been obtained for designing the ejector. Fig. 4.10 shows this investigation on the cost of 

the ejector which illustrates the optimum ∆𝑃 leads to the maximum cost of the ejector. As regards the cost of the 

ejector compared to the profit of higher performance of the system is negligible so ∆𝑃 = 20 𝑘𝑃𝑎 is considered for 

designing the ejector in suction nozzle. Also, when the evaporation and condensing temperature increase the value of 

PECeje increases.  
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Fig. 4.10. Variation of the pressure drop over cost of ejector device. 

The total costs of components that include the cost of investment and maintenance costs are analyzed and shown in a 

pie chart in Fig. 4.11. It can be seen that the highest portion of costs is occupied by condenser by approximately 75 

percent. This analysis is carried out for the EERS and HXRS with R134a refrigerant. It is noteworthy that the 

percentage of the costs for evaporator in the EERS is more than HXRS and the portion of the compressor is almost 

steady for both systems. Fig. 4.12 demonstrates the costs of the components and purchased power of the proposed 

systems. The pie chart shows the percentage of purchased power for the EERS is approximately 59% whereas this 

value for the HXRS is around 64%.  

 

 

Fig. 4.11. Proportion of each components of the EERS and HXRS over the costs. 

 

 

 

Fig. 4.12. Proportion of the components over the costs of equipment and purchased fuel. 

As can be seen in Fig 4.13, the effect of the changing evaporation temperature on the rate of the total costs of the 

components is evaluated. According to the figure, there is a moderate decrease in the costs of compressor versus 𝑇𝑒𝑣𝑎 
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increasing. The evaporation temperature changes between 18℃ and 28℃. It is clear that during evaporation 

temperature variation, the amount of the 𝑍̇𝑒𝑗𝑒  and 𝑍̇𝑐𝑜𝑛𝑑 don’t have a significant change. As the evaporation 

temperature increases, the trend of 𝑍̇𝑒𝑣𝑎 observes a gradual rise.  

 
Fig. 4.13. Rate of the total cost in each component according to the changing evaporation temperature in the R134a EERS. 

The total costs of the condenser, evaporator, compressor, and ejector versus the changing condensing temperature is 

shown in Fig. 4.14. The results indicate when the condensing temperature increases (from 50 ℃ to 63℃), the amount 

of the 𝑍̇ for the ejector and evaporator is fairly steady over all the variation and the 𝑍̇ for the compressor gradually 

increases (almost 5% increases for 1℃ increment in 𝑇𝑐𝑜𝑛𝑑). But the trend of the 𝑍̇𝑐𝑜𝑛𝑑 can be divided into two distinct 

section: from 𝑇𝑐𝑜𝑛𝑑 = 50℃ to 58.5℃ in which the rate of costs decrease and after that from 58.5℃ to 63℃, it increases.  

 
Fig. 4.14. Cost of each component versus condensing temperature in the R134a EERS. 

Fig. 4.15 represents the effect of changing 𝑇𝑒𝑣𝑎, R134a evaporation temperature, on costs of the components (by 

considering the cost of investment, operating and maintenance costs) of the EERS. As can be seen, the value of the 
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𝑍̇𝑘 decreases from 18℃ to 20℃ and then increases from 20℃ to 28℃. Therefore, the minimum 𝑍̇𝑘 is obtained by 

considering 𝑇𝑒𝑣𝑎 = 20℃ for designing the evaporator.  

 

Fig. 4.15. Variation of 𝑇𝑒𝑣𝑎 versus the total cost of components in the R134a EERS.   

Also Fig. 4.16 illustrates the variation of the condensing temperature on the 𝑍̇𝑘 for the R134a EERS. As can be seen, 

with the condensing temperature increasing (from 50℃ to 58.50℃), the 𝑍̇𝑘 of the system first decreases and it reached 

to the minimum value and then increases. As a result, it is proposed to consider the condensing temperature as 58.50℃ 

in which the minimum cost of the components was obtained.          

 
Fig. 4.16. Investigation on changing condensing temperature versus the total cost of components in the R134a EERS.   
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The total cost of the components (𝑍̇𝑘), the cost of the fuel (𝐶̇𝑓𝑢𝑒𝑙), and the total cost of the refrigeration system (Ċp) 

are evaluated in Fig. 4.17. This figure shows Ċp for the EERS is less than HXRS. The cost of the components for the 

R134a EERS are 3% lower than R134a HXRS. The fuel of the system for the EERS is approximately 22% lower than 

HXRS which it is the important parameter for this analysis. Also, the final goal of this analysis that is Ċp, for the 

R134a EERS is reported 15.2% lower than R134a HXRS.  

 

Fig. 4.17. Comparison of the costs of the components, fuel and total cost of RS on the EERS and HXRS. 

Considering the environmental impacts is necessary for designing and modeling the thermal and cooling new systems 

due to the increasing environmental concerns and specifically global warming issues [166]. The amount of the CO, 

CO2, and NOx that were released by the BRS, HXRS, and EERS is shown in Fig. 4.18. It is shown CO2 has the 

maximum value of the pollution and this investigation is for three systems with three refrigerants. The lowest 

contamination is seen for EERS with R134a refrigerant.   
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Fig. 4.18. Comparison of carbon monoxide, carbon dioxide and oxide of nitrogen that were produced by BRS, HXRS, and EERS 
with R134a, R407C, and R410A refrigerants. 

4.2. Machine learning algorithms 

4.2.1. Solar radiation prediction 

There are a number of traditional methods for prediction of solar radiation that most of them are involve the statistical 

analysis of the data [167]. In addition, development of an empirical model using mathematical methods, such as least 

squares curve fitting or nonlinear regression. In dynamic systems, these models cannot predict the targets with high 

accuracy. Hence, authors proposed machine learning algorithms to predict hourly solar irradiance. For prediction of 

solar radiation two networks were proposed, which are described as follows.   

For N1: 

In this network, pressure, temperature, relative humidity, wind speed and local time are used as inputs of the network 

and the MLFFNN, RBFNN, SVR, and FIS models are applied to predict the solar radiation for the study zone. The 

networks use data that have been provided by NASA [25]. The proposed models are trained with the hourly data 

collections. During data training, a smaller error between the outputs and targets can be found. When the new data are 

interred into the neural network, it can be achieved high error in outputs that this situation is called overfitting. In this 

study, some methods are applied to avoid overfitting problem. These methods are: 

1. Divided the data into two sections: the train data and test data. In this method, the error between the outputs 

and targets is evaluated for two sets of data.  

2. The second method to avoid overfitting is using automated regularization. The basic idea of the Bayesian 

framework procedure is first to create random values and then to add them to weights and biases. In this way, 

Bayesian regularization provides a variance that is distributed between random values. This concept is 

implemented in trainbr algorithm in Matlab software.  
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3. MSE can be modified to avoid overfitting problem. This statistical parameter relies on changing a certain 

factor to the MSE that contains a sum square error of the weight and biases. 

4. It is noteworthy that SVR model has a regularization parameter, which makes the user think about avoiding 

overfitting problem.     

For N2:  

In this network, proposed models use the past values of hourly solar radiation to estimate the future values. The 

MLFFNN, SVR, FIS, ANFIS-FCM, ANFIS-GP and ANFIS-SC are designed in order to predict the targets. 

MLFFNN model: 

A three layer feed-forward neural network was used to predict the targets in this study. The network was trained with 

six different data training algorithms that are LM, BFG, RP, SCG, CGP and BR (are shown in Table 4.5). Several 

tests using a different number of neurons in the hidden layer were performed. Finding the number of neurons in the 

hidden layer and type of data training algorithm can help to obtain the maximum performance for the developed 

model. The best performance was obtained with 150 neurons in the hidden layer. Also, the results show that LM has 

the best performance for predicting the targets with the highest correlation coefficient as 0.9887, lowest RMSE as 

41.0876 (Wh/m2) and lowest MSE as1688.188 (Wh/m2) for the test data (these performance evaluation measures are 

described in Appendix B). As can be seen in Table 1, BR, SCG and RP illustrate a satisfactory output with a correlation 

coefficient close to 0.98. Also, BFG has the maximum computation time and number of iterations with the low 

performance of this network (N1).  

Table 4.5. Comparison of the different data training algorithms in MLFFNN (N1). 

 Algorithm RMSE (Wh/m2) R Computation 

time 

Epoch MSE (Wh/m2) 

  train test train test   train test 

LM trainlm 20.2989 41.0876 0.9968 0.9887 0:00:01 19 412.0455 1688.188 

BFG trainbfg 104.4125 129.8327 0.9122 0.8696 0:01:34 2000 10901.964 16856.518 

RP trainrp 48.7892 59.5264 0.9829 0.9652 0:00:01 182 2380.385 3543.394 

SCG trainscg 39.0337 69.3104 0.9878 0.9670 0:00:03 227 1523.6318 4803.928 

CGP traincgp 59.2158 76.1573 0.97299 0.9586 0:00:04 147 3506.513 5799.929 

BR trainbr 41.453 46.6413 0.98711 0.9819 0:00:09 33 1718.352 2175.407 

Table 4.6 shows the time-series prediction of the solar irradiance (𝑁2) for the MLFFNN in the case study zone. The 

best performance was obtained with 70 neurons in the hidden layer. Six data training algorithms were applied to 

estimate the targets. LM and BR have the best performance respectively with R=0.9526 and 0.9570 for the test data.   

Table 4.6. Different data training algorithms in MLFFNN (N2) to predict solar irradiance. 

 Algorithm RMSE (Wh/m2) R Computation 

time 

Epoch MSE (Wh/m2) 

  train test train test   train test 

LM trainlm 52.2695 80.4823 0.9787 0.9526 0:00:01 18 2732.097 6477.3995 

BFG trainbfg 69.1641 87.1539 0.9632 0.9431 0:01:27 2000 4783.67 87.1539 

RP trainrp 64.7522 85.0304 0.9677 0.9429 0:00:00 99 4192.850 7230.174 

SCG trainscg 65.0755 80.9183 0.9674 0.9485 0:00:00 65 4234.825 6547.776 

CGP traincgp 78.9906 96.1576 0.9525 0.9302 0:00:00 41 6239.518 9246.273 

BR trainbr 67.4387 73.8315 0.9649 0.9570 0:00:02 41 4547.978 5451.097 
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RBF model: 

Another type of neural network that has been applied to predict the solar radiation is RBF. This network adds neurons 

to the hidden layer until it achieves the goal (specific MSE). The main user-determined parameters in this network are 

spread of radial basis functions and the maximum number of neurons. The results of the proposed RBF model is shown 

in Table 3. The maximum number of neurons was determined 400 neurons and the amount of the R, RMSE and MSE 

for different spread of the model are given in Table 4.7. The large spread shows the smoother the function 

approximation. Too small a spread illustrates that the network needs many neurons to fit a smooth function and the 

network might not generalize well. Too large a spread means that the network needs a lot of neurons to fit a fast-

changing function. In this investigation, the network was trained with 70% of the data and 30% of data was used to 

test the network. The results show that the network with the spread to be 6 has the best performance that for test data 

R=0.88011 and RMSE=150.1416 (Wh/m2).  

Table 4.7. RBFNN with different spread parameter for finding the best performance. 

 RMSE (Wh/m2) R MSE (Wh/m2) 

Spread train test train test train test 

3 57.715 205.438 0.9856 0.7179 3331.086 42204.912 

4 60.037 163.747 0.9844 0.8195 3604.504 26813.365 

5 63.857 161.446 0.9824 0.8432 4077.755 26065.027 

6 67.189 150.141 0.9805 0.8801 4514.375 22542.507 

7 69.378 171.432 0.9792 0.8733 4813.315 29389.247 

8 71.321 159.967 0.9780 0.8699 5086.758 25589.632 

 

SVR model: 

The SVR model was proposed to predict the targets in this study. For this model, there are three user-determined 

parameters to obtain the best performance of the model. Parameters ε (is the error defined by the user), σ (is a 

predefined value which controls the width of the Gaussian function), and C (cost parameter C handles the trade-off 

between errors in the predictions (first term) and complexity (second term)) account for a significant effect on the 

SVR performance. As a result, in choosing user-defined parameters, a large number of trials were carried out with 

different combinations of C and σ. Fig. 4.19 illustrates different user-defined parameters for predicting the solar 

radiation in which the best performance was obtained in ε=0.5, σ=1, and c=500 with R=0.9999, RMSE=1.054 (Wh/m2) 

and MSE=1.0262 (Wh/m2).  

Also, this model is applied to predict the time-series data of hourly solar radiation (N2). To obtain the best performance 

of the model several iterations are done. Four models of the SVR technique are shown in Table 4.8 in which Model-

4 (with R=0.9999, RMSE=3.026 (Wh/m2) and MSE=9.1363 (Wh/m2)) indicates the highest accuracy of the model. In 

addition, these model are shown in Fig. 4.20.      

Table 4.8. Different aspect of designer-determined parameters for the proposed SVR.   

Model  RMSE (Wh/m2) R MSE (Wh/m2) 

1 ε=0.5, σ=0.5, C=100 276.185 0.6477 76278.28 

2 ε=1, σ=1, C=100 166.554 0.8119 27740.23 

3 ε=0.5, σ=1, C=500 14.1872 0.9987 201.277 

4 ε=0.5, σ=1, C=1000 3.026 0.9999 9.1363 
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Fig. 4.19. The SVR model for predicting the target with ε=1, σ=1, C=1 (a), ε=1, σ=1, C=100 (b), ε=1, σ=0.5, C=500 (c), and 

ε=0.5, σ=1, C=500 (d).   

 

Fig. 4.20. The SVR model to predict the time-series hourly solar radiation (N2) (based on Table 4.8).   

FIS model: 

Forecasting model based the FIS was proposed to predict the solar irradiance. The data were divided into two sections 

as 70% for the network training and 30% for the test data. At first, the number of fuzzy rules in order to obtain the 

maximum performance was determined. Fig. 4.21 shows the best performance of the model by considering the four 

MFs as inputs and target [4 4 4 4 4⏟    
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 4⏟
𝑇𝑎𝑟𝑔𝑒𝑡𝑠

]. For this model, MFs were determined as gaussmf for the inputs and 

output and the Mamdani model as FIS structure. Gaussian MF is popular method for specifying fuzzy sets. Selecting 

the type of MF and its number is mostly dependent on the application and problem. The number of MFs are obtained 

through a trial and error process. In addition, for N2 the train and test data are shown in Fig. 4.22 in which R values 
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for the N2 (train: 0.96207 and test: 0.94683) are greater than N1 (train: 0.92955 and test: 0.8787) and this model for 

the time-series prediction has the better performance.   

 
Fig. 4.21. Train and test data for the FIS in N1. 

 

Fig. 4.22. Train and test data for the FIS in N2. 

Fig. 4.23 indicates the FIS decision surface for two inputs (x1: local time (hour) and x2: temperature (K)) and target 

(y: solar irradiance (Wh/m2)). According to the decision surface, one can see the variation of local time has the 

maximum effect to predict the hourly solar irradiance.  
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Fig. 4.23. FIS decision surface for the solar radiation prediction, x1: local time (hour), x2: temperature (K), y: solar irradiance 

(Wh/m2). 

ANFIS model: 

Three types of the ANFIS model were developed to predict the time-series solar irradiance (N2). The first one is 

ANFIS-FCM that uses fuzzy c-means clustering to determine the number of rules and MFs for the antecedents and 

consequents. For finding the optimum performance three different ANFIS-FCM were evaluated that are shown in 

Table 5. This table represents the results of this investigation in which was used from R and RMSE for evaluating the 

outputs (for train and test data). ANFIS-FCM (2) has the best performance with 10 clusters and partition matrix 

exponent=2, (this parameter controls the amount of fuzzy overlap between clusters that larger values demonstrate a 

greater degree of overlap). Also, the input and output MFs are gaussmf and linear respectively. Fig. 4.24 illustrates 

the structure of the ANFIS-FCM (2) with four inputs and one output. Ten clusters were generated for each input with 

10 rules.   

 

Fig. 4.24. Structure of the ANFIS-FCM (2). 

The second one is ANFIS-SC that uses subtractive clustering to generate a Sugeno-type FIS structure. The main 

parameter for designing this model is the influence radius (radii) which is a vector that specifies a cluster center's 

range of influence in each of the data dimensions. This model was used to predict the target with different radii that 
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Table 4.9 shows ANFIS-SC (3) has the maximum performance. The third one is ANFIS-GP that uses grid partition 

on the data for generating a single-output Sugeno-type FIS. Input MF type is gaussmf and the output MF type is linear 

for this model. Also, the model evaluated with different number of MFs that are shown in Table 4.9. The values of 

correlation coefficient and RMSE for this model show the ANFIS-GP (3) with 4 MFs has the maximum correlation 

coefficient as 0.9493 and minimum RMSE as 86.1513 (Wh/m2) for the test data. The maximum performance for the 

current investigation in ANFIS-GP model is obtained with the higher MFs (as can be seen in Table 4.9).  

Table 4.9. Different types of ANFIS methods. 

  RMSE R 

FCM Number 

of 

clusters 

Partition 

Matrix 

Exponent 

Train Test Train Test 

FCM(1) 5 2 59.7021 88.719 0.9715 0.94613 

FCM(2) 10 2 56.671 83.1365 0.97436 0.95279 

FCM(3) 20 4 53.1077 86.8542 0.97752 0.94777 

Sub-Clustering Influence Radius     

Sub-Clustering (1)        0.1 56.0014 10398.3099 0.97497 0.19884 

Sub-Clustering (2)        0.2 53.0843 88.8146 0.97754 0.94497 

Sub-Clustering (3)        0.4 56.0832 84.8125 0.9749 0.94956 

Grid-Part Number of MFs     

Grid-Part(1) 2 58.1909 86.3136 0.97295 0.9483 

Grid-Part(2) 3 54.4955 88.3549 0.97632 0.94535 

Grid-Part(3) 4 50.0626 86.1513 0.98005 0.94938 

Comparison of the developed models: 

Fig. 4.25 demonstrates a comparison between the developed models to predict the solar radiation (N1). This graph 

shows the correlations between the targets and outputs for all data. The SVR model has the best performance to 

forecast the hourly solar irradiance with the correlation coefficient as 0.99839 for all data. Also, the MLFFNN reports 

the satisfactory outputs with the R=0.98481 and RMSE=44.5356 (Wh/m2). The RBFNN illustrates an acceptance 

correlation between the outputs and targets in the training stage but the test data have lower performance as compared 

to the training stage. In addition, FIS model can predict the targets with the correlation coefficient of 0.8787 and 

RMSE of 171.256 (Wh/m2). 

Fig. 4.26 shows the correlation between targets and outputs for time-series prediction of solar irradiance (N2) with 

different proposed models. Although all the developed models can successfully predict the targets with approximately 

above 0.95% accuracy, SVR has the best performance between the all developed models with R=0.9999, and 

RMSE=3.0266 (Wh/m2).   

   



 

69 

 

 

Fig. 4.25. Comparison of the forecasting model in N1. 

 

Fig. 4.26. Time series prediction of different proposed models. 
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Fig. 4.27. Prediction of solar irradiance for 72 hours (N1). 

 
Fig. 4.28. Prediction of solar irradiance for 24 hours (N2). 

Table 4.10 demonstrates the correlation coefficient for some different proposed models in order to estimate solar 

irradiance from literature studies. Hourly solar radiation prediction is a dynamic system and statistical models cannot 

estimate the targets with the high accuracy. As can be seen in Table 4.10, Chen et al. [168] reported approximately 

R=0.7 for statistical methods in order to forecast solar radiation. But other studies have shown that machine learning 

algorithms can predict this system with high efficiency. This article was shown that the developed models can predict 

the targets with the high performance. Olatomiwa et al. [169] developed an ANN with maximum accuracy (R=0.9551) 

to predict the solar radiation, but this study obtained an ANN with R=0.9887 in the test data. Also developed SVR 

model reported a performance higher than Ramedani et al. [170] model. 
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Table 4.10. Performance of the different proposed models for predicting solar irradiance from literature review.  

 Model R  Model R 

Chen et al. [168] Statistical method 0.7 Quej et al. [171] SVM 0.8209 

 Fuzzy algorithm 0.8613  ANFIS 0.8024 

 Neural network 0.8915  ANN 0.8012 

Olatomiwa et al. 

[172] 

SVM-Firefly 

Algorithm 

0.8918 Ibrahim et al. 

[9] 

ANN 0.828413 

 ANN 0.8635  ANN-FFA 0.8699 

 Genetic Programming 0.7895  Random forests 0.7947 

Ramedani et al. 

[170] 

ANN 0.8938 Bou-Rabee et 

al. [173] 

ANN 85.6 

 ANFIS 0.8949 Gupta et al. 

[169] 

ANN 0.9551 

 SVR-RBF 0.8888 Bakirci [174] Empirical 0.8831 

 

4.2.2. Wind speed prediction 

Wind power generation depends on wind speed, thus, wind speed prediction becomes increasingly important for 

modern wind farm management and supply-demand balancing in the smart grid. However, wind speed is generally 

very difficult to estimate, due to its non-stationary and intermittent nature. There are a number of traditional methods 

for prediction of wind speed that most of them are involve the statistical analysis of the data. In dynamic systems, 

these models cannot predict the targets with high accuracy. Hence, authors proposed machine learning algorithms to 

predict the targets in these dynamic systems. The network was developed with temperature, pressure, local time and 

relative humidity as input variables and the targets are wind speed, wind direction and output power of a WT. To 

evaluate the performance of the models three statistical parameters that are root mean square error (RMSE), correlation 

coefficient (R) and mean square error (MSE) are used. These parameters are described in Appendix A. During data 

training, a smaller error between the outputs and targets can be found. When the new data are interred to the neural 

network, it can be achieved high error in outputs that this situation is called overfitting. In this study to avoid overfitting 

problem, the data were divided into two sections as 70% training datasets and 30% as testing datasets.  

MLFFNN model: 

ANN is a promising method for adaptive the prediction of targets. Table 4.11 illustrates prediction of the wind speed 

and its direction using MLFFNN. To obtain the best performance nine data training algorithms were applied. The 

results show in January for 10-min interval data, BR and LM algorithms have the maximum R and minimum RMSE 

and MSE. But the computation time and number of iteration for LM are lower than BR algorithm. Also, BFG algorithm 

reports an accuracy above 96%. RP and SCG algorithms are faster than others training algorithms. It is observed that 

prediction wind direction is harder than wind speed for the network. The designed network needs much the 

computation time to predict the wind direction. Fig. 4.29 demonstrates the training phase of the model to predict wind 

speed for 24 hours. Moreover, for prediction of wind direction the training phase of the model with different data 

training algorithms are shown in Fig. 4.30. Both figures illustrate that LM and BR can successfully train the models. 

Reaching good forecasting accuracy for MLFFNN also depends on the suitable number of neurons in the hidden layer. 

The smallest errors of statistical indices were obtained for 75 neurons in the hidden layer for wind speed prediction 

and 175 neurons for wind direction forecasting model.   

 

http://www.sciencedirect.com/science/article/pii/S0360544209000401?via%3Dihub#!
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Table 4.11. Prediction of the wind speed and its direction using MLFFNN. 

Wind speed prediction for January with 10-min interval 

 Algorithm RMSE(m/s) R Computation 

time 

Epoch MSE(m/s) 

LM trainlm 0.3226 0.9828 0:02:03 423 0.1041 

BFG trainbfg 0.4689 0.9634 0:00:41 342 0.2199 

RP trainrp 0.7169 0.9124 0:00:07 361 0.5140 

SCG trainscg 0.8361 0.8786 0:00:04 115 0.6991 

CGB traincgb 0.7705 0.8980 0:00:10 132 0.5937 

CGF traincgf 0.7634 0.8999 0:00:16 202 0.5828 

CGP traincgp 0.7888 0.8930 0:00:13 163 0.6212 

OSS trainoss 0.7730 0.8973 0:00:17 191 0.5976 

BR trainbr 0.2958 0.9856 0:05:13 1059 0.0875 

Wind direction prediction for January with 10-min interval 

 Algorithm RMSE(°) R Computation 

time 

Epoch MSE(°) 

LM trainlm 25.954 0.9791 0:02:39 214 673.644 

BFG trainbfg 69.372 0.8397 0:50:34 10000 4812.477 

RP trainrp 66.087 0.8557 0:00:18 459 4367.534 

SCG trainscg 65.027 0.8595 0:00:24 322 4260.725 

CGB traincgb 72.749 0.8218 0:00:24 142 5292.431 

CGF traincgf 76.359 0.8015 0:00:24 139 5830.768 

CGP traincgp 72.556 0.8229 0:00:34 199 5264.469 

OSS trainoss 80.573 0.7759 0:00:48 153 6492.079 

BR trainbr 30.306 0.9714 0:06:28 488 918.468 

 

Fig. 4.29. Comparison of the different training algorithms for wind speed prediction for MLFFNN.  
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Fig. 4.30. Comparison of training algorithms for prediction of wind direction for MLFFNN.    

Figure 4.31 illustrates the testing phase of wind speed prediction for 24 hours of January. This graph shows that 

the overfitting problem has considered for designing the network and the results with new data have an 

approximately similar trend with the data training process. For this prediction, LM, BFG and BR show satisfactory 

predicted wind speed data.  

 

Fig. 4.31. Test data of MLFFNN for 24 hours. 
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width of the Gaussian function) and C (cost parameter C handles the trade-off between errors in the predictions 

(first term) and complexity (second term)). Different values of these parameters are reported in Table 4.12. The 

best performance of the model was achieved for Model-4 of SVR in terms of RMSE=0.0184 (m/s), R=0.9999 

and MSE=0.0003 (m/s).  

Table 4.12. Design parameters of SVR-RBF for wind speed forecasting (10-min interval)    

Model  RMSE 

(m/s) 

R MSE 

(m/s) 

1 ε=1, σ=1, C=1 0.8647 0.9286 0.7478 

2 ε=0.5, σ=1, C=100 0.4504 0.9811 0.0202 

3 ε=0.02, σ=1, 

C=1000 

0.0191 0.9999 0.0003 

4 ε=0.02, σ=0.5, 

C=1000 

0.0184 0.9999 0.0003 

Also, Fig. 4.32 demonstrates the prediction of wind direction in six different values of user-determined 

parameters. The performance of the model with different values of ɛ, σ and C is shown in this graph in which Fig. 

4.32 (f) shows the best performance by ɛ=0.5, σ=1 and C=1000.  

 

Fig. 4.32. SVR-RBF with different user-determined parameters: (a), ɛ=1, σ=1, C=1, (b), ɛ=1, σ=1, C=30, (c), ɛ=0.5, σ=1, C=30, 

(d), ɛ=0.5, σ=1, C=50, (e), ɛ=0.02, σ=0.5, C=100, (f), ɛ=0.5, σ=1, C=1000.     
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population is 200, the maximum iteration is 1500, 𝐶1 = 1 (personal learning coefficient), 𝐶2 = 2 (global learning 

coefficient) and Inertia weight was considered as 1. The correlation coefficient, which indicates the goodness of 

fit of the model, for the ANFIS model is reported to be 0.8991 and 0.8995 for the training and testing datasets, 

respectively. The PSO algorithm can successfully improve the performance of the ANFIS model and the novel 

method outperforms the ANFIS model. 

Table 4.13. A comparison between ANFIS and ANFIS-PSO models for 5-min interval of wind speed data. 

 RMSE (m/s) R MSE (m/s) 

 Train Test Train Test Train Test 

ANFIS 0.8466 0.8420 0.8898 0.8888 0.7167 0.7090 

ANFIS-

PSO 

0.1700 0.2321 0.9958 0.9922 0.0289 0.0538 

Figure 4.33 demonstrates the prediction of wind speed with the ANFIS-PSO model agrees well with the target 

data and the magnitude of the disagreement between the actual and predicted data is small.   

 

Fig. 4.33. Actual and predicted wind speed data for 10-min interval using ANFIS-PSO.  

Models comparison:  

The developed models were applied to predict the targets. Actually, we proposed a network with pressure, 

temperature, local time and relative humidity as inputs variables that can predict wind speed, wind direction and 

output power of the considered WT in the case study region. Four samples of datasets were considered to evaluate 

the proposed models. Wind speed data with 5-min interval (8,928 data), 10-min interval (4,464 data), 30-min 

interval (1,488) and 1-h interval (744 data) for June 2017 were selected for this investigation. Comparison of the 

models for RMSE, R and MSE values can be observed clearly in Table 4.14. The lowest statistical errors and the 

highest correlation coefficient were obtained with the SVR-RBF model for all time intervals. The obtained 

correlation coefficient of the MLFFNN and ANFIS-PSO models (for 5-min and 10-min intervals) illustrate the 

predicted wind speed (outputs) agrees well with the actual data (targets) and the magnitude of the disagreement 

0 200 400 600 800 1000 1200
0

2

4

6

8

10

Number of data

v
 (

m
/s

)

 

 

Targets Outputs



 

76 

 

between the outputs and targets is small. For 30-min and 1-h intervals, the SVR-RBF outperforms the MLFFNN 

and ANFIS-PSO models in terms of RMSE, R and MSE. Moreover, the MLFFNN and ANFIS-PSO models 

approximately have the same ability to predict the wind speed data.  

Table 4.14. A comparison between the developed models to predict wind speed data. 

5-min interval 

 RMSE(m/s) R MSE(m/s) 

 Train Test Train Test Train Test 

MLFFNN 0.2143 0.2450 0.9933 0.99108 0.0459 0.0600 

SVR-

RBF 

0.0206 0.0213 0.9999 0.9999 4.23E-

04 

4.53E-

04 

ANFIS-

PSO 

0.1700 0.2321 0.9958 0.9922 0.0289 0.0538 

10-min interval 

MLFFNN 0.1373 0.2216 0.9972 0.9924 0.0189 0.0491 

SVR-

RBF 

0.0439 0.0526 0.9997 0.9996 0.0019 0.0028 

ANFIS-

PSO 

0.1819 0.3549 0.9951 0.9824 0.0331 0.1259 

30-min interval 

MLFFNN 0.2053 0.7437 0.9940 0.9123 0.0421 0.5532 

SVR-

RBF 

0.1800 0.1808 0.9951 0.9957 0.0324 0.0327 

ANFIS-

PSO 

0.4566 0.7965 0.9686 0.9103 0.2085 0.6344 

1-h interval 

MLFFNN 0.3589 0.9382 0.9831 0.8631 0.1288 0.8803 

SVR-

RBF 

0.3669 0.3651 0.9824 0.9796 0.1346 0.1333 

ANFIS-

PSO 

0.590 1.0312 0.9474 0.8534 0.3481 1.0634 

Also, the performances of the MLFFNN, SVR-RBF and ANFIS-PSO models for wind direction forecasting are 

compared using a comprehensive wind direction samples. For the 5-min interval, the correlation coefficient is 

0.9612 for MLFFNN and ANFIS-PSO and is 0.9918 for SVR-RBF. As expected, the SVR-RBF is more accurate 

than MLFFNN and ANFIS-PSO models. Generally, the developed models have lower performance for prediction 

of wind direction compared to wind speed forecasting. This investigation is shown in Table 4.15.  
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Table 4.15. A comparison between the developed models to predict wind direction data.   

5-min interval 

 RMSE(°) R MSE(°) 
 Train Test Train Test Train Test 

MLFFNN 15.922 23.572 0.9822 0.9612 253.528 555.67 

SVR-

RBF 

8.1018 14.2148 0.9945 0.9918 65.638 202.061 

ANFIS-

PSO 

16.2761 23.7135 0.9817 0.9612 264.910 562.3316 

10-min interval 

MLFFNN 20.498 29.110 0.9710 0.9373 420.204 847.441 

SVR-

RBF 

23.306 25.907 0.9592 0.9379 640.394 671.173 

ANFIS-

PSO 

22.7428 0.37068 0.9638 0.9074 517.2342 1374.0433 

30-min interval 

MLFFNN 32.212 54.418 0.9243 0.8007 1037.616 2961.400 

SVR-

RBF 

8.5732 8.4891 0.9955 0.9927 73.5002 72.0641 

ANFIS-

PSO 

44.189 61.2601 0.8570 0.7201 1952.6645 3752.7941 

1-h interval 

MLFFNN 33.459 69.933 0.9236 0.6284 1119.529 4890.751 

SVR-

RBF 

13.9711 19.4433 0.9824 0.9765 195.1904 378.0410 

ANFIS-

PSO 

40.255 87.9549 0.8784 0.5368 1620.4624 7736.056 

4.3. Hybrid renewable energy system 

Solar/wind energy potential:  

Fig. 4.34 demonstrates the variation of the wind speed for the case study region in 2016. The hub center for the 

considered wind turbine (E-44) is 55 m. The average wind speed for this region measured at the hub center (measured 

by Duffie and Beckman [153] correlation) is around 7 m/s. Wind speed in the hub center is the main parameter to 

calculate the mechanical power of the rotor. Fig. 4.35 illustrates the average temperature for the study zone between 

2000 and 2016. As can be observed in the figure, the average temperature for 6 months (from April to October) is 

above 28℃. This value of temperature shows that the energy efficiency for PV modules will be decreased in these 

months. Because the energy efficiency of PV modules is in relation to the ambient temperature (based on Eqs. (3.182) 

and (3.183)). Solar radiation on top of atmosphere (a) and over the collectors (b) from 2000 to 2016 are shown in Fig. 

4.36. The maximum solar radiation on the PV collectors (horizontal) in May, June, July and August is approximately 

8 kWh/m2/day. The solar data were provided by NASA [25].    
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Fig. 4.34. Wind speed (m/s) for Bushehr in 2016. 

 
Fig. 4.35. Variation of the temperature (℃) between 2000 and 2016 in Bushehr. 
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Fig. 4.36. Solar radiation on top of atmosphere (a) and on the collectors (b) based on kWh/m2/day. 

Sun tracker system due to having the moving part is more expensive compared to stationary collectors. Also, in this 

system ongoing maintenance is generally required. Hence, determining the optimum slope angle is important for 

receiving the more solar radiation on flat-plate collectors. The amount of the monthly tilt angle of the collectors for 

the study zone is shown in Fig. 4.37. 

 
Fig. 4.37. Monthly optimum slope angle of solar collectors. 

The effect of the monthly optimum slope angle for the solar collectors is reported in Fig. 4.38. The results show, with 

monthly optimum tilt angle, the amount of the solar radiation is increased about 20% for an annual period. But in 

March, April, May and June the values of the solar radiation with monthly slope angle is close to the values of 

horizontal collectors. In January and December, the amounts of the solar radiation with optimum slope angle is 

approximately 50% more than the horizontal collectors.  

-20 0 20 40 60 80 100
5

10

15

20

25

30

Slope Angle(Degree) 

T
o

ta
l 

S
o

la
r 

R
a

d
ia

ti
o

n
 (

M
J

/m
2
)

 

 

January

February

March

April

May

June

July

August

September

October

November

December



 

80 

 

 
Fig. 4.38. Average solar radiation on the horizontal and tilted surfaces. 

Liu and Jordan [175] proposed azimuth angle for the northern hemisphere and southern hemisphere to be 0° and 180°, 

respectively. In this investigation, the azimuth angle for the study region is determined to be 30° (is shown in Fig. 

4.39). The proposed azimuth angle was calculated by using the yearly slope angle (regarding Eqs. (3.161)- (3.180)).      

 
Fig. 4.39. Optimum azimuth angle for solar collectors in Bushehr. 

Produced power: 

The proposed system is a stand-alone system with all the energy coming from sun and wind. Fig. 4.40 shows the 

amount of the provided energy by the PV, WT and fuel cell systems for an annual period for the unit. According to 

the pie chart, PVS accounts for 43% of the total. A third of the required energy is provided by WTS. Also, the fuel 

cell by using the stored hydrogen supplies 26% of the total energy.   
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Fig. 4.40. Percentage of the provided energy by PVS, WTS and ful cell. 

Fig. 4.41 demonstrates the curves of the power coefficient and electric power produced of the WT that have been 

obtained in the study region. As can be seen in Fig. 4.41 (a), from 0 to 2 m/s, the power coefficient is zero; from 2 to 

7 m/s, it increases and reaches to the maximum value; between 7 and 14 m/s, there is a moderate decrease. Moreover, 

Fig. 4.41 (b) shows the curve of generated power versus the wind speed. Regarding the graph, between 0 and 4 m/s, 

cannot be seen an impressive produced power. Also, between 4 and 14 m/s, the trend is obviously upwards and reaches 

to around 700 kW.       

 

Fig. 4.41. Power coefficient (a) and electric power produced (kW) (b) versus wind speed (m/s) for the WT. 

Fig. 4.42 represents a dynamic model of the generated power for an annual period for the PV and WT systems. Power 

produced by PVS (Fig. 4.42 (a)) for six months is more than 1000 kW from 6:00 to 14:00. The generated power 

decreases for June, July, August and September and reaches to 600 kW. Power generated by WTS (Fig. 4.42 (b)) has 

different values for each time series but the maximum power is shown in May, June and July for the study zone. Also, 

from 5:00 to 16:00 the obtained power of WTS is above 800 kW. Fig. 4.43 demonstrates the productive power of the 

PVS (a) and WTS (b) in 12, 13 and 14 of June 2016. WTS produces more power in these days. Average daily wind 

power that has been produced by WTS is almost 170 kW and this power for PVS is roughly 233 kW.  

Fig. 4.44 shows the model of the stored power by the energy storage system for one year in the study zone. To provide 

the demand energy rate of the unit, the storage system is considered with the 50 MW at the start of the system. It is 
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clear that during January to May, the stored power rises gradually; between April and July, the stored power reaches 

to the maximum value that is approximately 280 MW; then from June to December, this power will be consumed. 

The amount of the stored power at the end of the period will be reached to the start point. 

  

Fig. 4.42. Produced power by the PVS (a) and WTS (b).  

 
Fig. 4.43. Produced power (kW) by PVS (a) and WTS (b) for June 12th, 13th and 14th.   
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Fig. 4.44. Stored power and consumed power by the energy storage system. 

Fig. 4.45 (a) illustrates the excess power that was transferred to the electrolyzer for one year. This excess power can 

be used to produce the hydrogen in the electrolyzer. Between 5:00 and 15:00 the required energy rate is provided by 

the PVS and WTS. Fig. 4.45 (b) exhibits all the times that the required energy rate of the unit is provided by the fuel 

cell.   

 

Fig. 4.45. Input power (MW) to the electrolyzer (a) and produced power (MW) by the fuel cell (b). 

The produced hydrogen by the electrolyzer is shown in Fig. 4.46. Hydrogen tank that was considered for this system 

can save around 7500 kg hydrogen by own. This value of hydrogen can generate approximately 300 MWh electrical 

energy for this system. Fig. 4.47 demonstrates depleted hydrogen by the fuel cell in each hour of January. This 

hydrogen is consumed to provide the required energy of the system.              
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Fig. 4.46. Hydrogen produced (kg) by the electrolyzer. 

  

Fig. 4.47. Consumed hydrogen by the fuel cell in January. 

Energy, exergy and economic analysis: 

Energy and exergy analysis based on the first and second laws of thermodynamics carried out for the PVS, WTS and 

energy storage system. Energy and exergy analysis of the PVS is shown in Fig. 4.48. As before mentioned, the ambient 

temperature for the study zone between April and October is above 25℃. This value of the temperature can decrease 

the efficiency of the PV modules (as can be observed in Fig. 4.48). The average energy and exergy efficiencies in this 

region are obtained 12% and 16%, respectively.    
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Fig. 4.48. Energy and exergy efficiency of the PVS. 

Energy efficiency of the WTS for the study zone in two weeks of January, December and March is shown in Fig. 4.49. 

The average energy efficiency for the WTS is around 32% for one year. One of the best methods for evaluating the 

wind energy technology is the exergy analysis. It gives better comprehension of performance than the energy 

efficiency. Fig. 4.50 presents exergy analysis based on the second law of thermodynamics for the WTS in Bushehr. It 

is clear that the inlet and outlet exergy of the system are mainly attributed to the wind speed and due to oscillating 

nature of wind, exergy efficiency has different values for each time. The exergy efficiency is changed between 0 and 

37% at different measured wind speed data. Also, the mean exergy efficiency for the WTS is 25.41% for one year.  

 
Fig. 4.49. Energy efficiency of the WT. 
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Fig. 4.50. Exergy efficiency of the WT. 

Fig. 4.51 shows the input and output exergy of the electrolyzer for one year (2016), one month (January) and one 

week (first week of February). By considering the physical and chemical exergy of the electrolysis process and based 

on Eq. (3.213) the rate of exergy has been calculated. Hydrogen will be obtained from water by electrolysis, using 

excess generated energy rate that is more between 6:00 and 14:00.    

 

 
Fig. 4.51. Input and output exergy of the electrolyzer. 

The rate of exergy input, output and destruction for three days in February is shown in Fig. 4.52. In Unit 132, fuel cell 

does not work continuously and completely relates to the required energy of the unit which changes during the day. 

The rate of exergy destruction changes between 0 and 100 kW.   
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Fig. 4.52. The rate of exergy input, exergy output and exergy destruction of the fuel cell for three days. 

Finally, a comprehensive exergy investigation for the proposed system is shown in Fig. 4.53. This exergy graph 

focuses on exergy destruction for each component of the system. At first glance, it is clear that the main part of input 

exergy is belonged to PVS with around 80%. Low efficiency of the PV collectors causes the maximum exergy 

destruction of this system by around 65%. The maximum energy efficiency for each WTS was reported to be 59.3% 

by Betz [176]. In this study, the average energy and exergy efficiencies for the WT are determined to be 32% and 

25%, respectively. The amount of the exergy destruction for the WTS is around 13.52%. Also, the values of the exergy 

destruction for the electrolyzer, fuel cell and converter are 2.3%, 3.5% and 1.4%, respectively.  
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Fig. 4.53. Exergy graph of the proposed system. 

Fig. 4.54 indicates the initial cost of the components that have been considered for the proposed system in this study. 

The WTs made up the maximum value of the cost with 28% of the total. It is clear the energy storage system that 

contains electrolyzer, fuel cell and hydrogen tank accounts for approximately 50% of the total. Also, PV array and 

converter have the 20% and 1% of the total investment, respectively.       
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Fig. 4.54. The initial cost of the components.  

The costs of the system include the installation cost as well as operation and maintenance costs. The initial investment 

of the hybrid renewable energy system is extremely high but the operating and maintenance costs are low. All these 

costs have been decreasing with the constant striving for cost-effectiveness, thereby lowering the cost of energy. Fig. 

4.55 (a) demonstrates the cost of the maintenance for the project lifetime (20 years). Also, the total cost of the system 

contains the initial cost, the cost of maintenance, the cost of the installation and replacement of the components is 

shown in Fig. 4.56 (b). Total cost in the first year is around 20 million dollars. The trend is obviously upwards and 

reaches to 2.65 million dollars. The costs of operation and maintenance by considering the rate of inflation and 

replacement of the components change from 0.4 to 7 million dollars.   

 
Fig. 4.55. Cost of the maintenance (a) and total cost of the system (b). 

The required electrical power for Unit 132 is 320 kW. Since the initial investment was calculated for the first year, 

the amount of cost per kWh is approximately 7 $/kWh. In the second year, there are only the operation and 

maintenance costs in which the cost of the system is decreased to 0.0461 $/kWh. Thereafter, for the next years, the 

cost of produced electrical power will be decreased and the proposed system can compensate the initial system 

investment.     
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The payback period of the hybrid hydrogen system that has been proposed for supplying the electrical energy in Unit 

132 is shown in Fig. 4.56. The initial cost of the system is approximately 20 million dollars. This initial cost will be 

increased by the operation and maintenance costs of each year and the rate of the inflation that is considered to be 

20% for Iran [139]. The lifetime of the PV panels, wind turbines, electrolyzer and hydrogen tanks was considered to 

be 20 years, and fuel cells have relatively shorter lifetime which is around 5 years. The price of the electrical energy 

generated was considered around 0.28 $/kWh [151] for the first year of the energy production. Also, the rate of 

inflation is also considered for the generated energy by the system. The payback period for the hybrid hydrogen energy 

system is around 11 years.       

 

Fig. 4.56. Payback period for the proposed system. 

Many investigations have proposed PV/wind system with hydrogen storage system. These studies have been applied 

to supply the electrical energy in different regions around the world. To the best of the authors’ knowledge, most of 

these investigations are based on energy analysis. Table 4.16 demonstrates the average energy efficiency for each 

system component. As it was mentioned before, maximum energy efficiency for each wind turbine is 53%. According 

to Table 4.16, maximum energy efficiency for wind turbine in different case studies was reported around 40%. In this 

study, it is shown that the energy efficiency for WT, in the case study region, is around 32% for an annual period. This 

value of energy efficiency makes it a region with high potential for wind energy. An average energy efficiency between 

8 and 15% have been reported by the studies for PVS. In this investigation, an average of 12% is obtained for the 

energy efficiency of PV panels in the case study region. Also, the range of energy efficiency changes for electrolyzer, 

fuel cell, hydrogen tank and inverter are shown in Table 4.16. Kalinci et al. [118] investigated hybrid hydrogen energy 

system for Bozcada, Turkey. They have reported the daily average exergy efficiency for the PV array and the 

percentage of the system exergy rate as 14.26 and 13.54%, respectively. In another study, Caliskan et al. [121] obtained 

an average of 9.74% exergy efficiency for the solar PV panels.  In this study, the exergy efficiency for the PV panels 

and the percentage of the exergy rate for the system were reported around 16% and 14.204%, respectively. 
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Table 4.16. The range of the energy efficiency for each component. 

 Studies Energy efficiency (%) Lifetime, years 

PV Refs. [118], [121], [119], [117], 

[177], [178], [179] 

8-15 20-25 

WT Refs. [118], [121], [119], [180], 

[181], [182], [183]  

25-40 20-25 

Electrolyzer Refs. [118], [121], [119], [184], 

[182], [178]       

53-82 10-20 

Fuel cell Refs. [184], [119], [121], [185], 

[180], [181]   

30-70 5-20 

Hydrogen tank Refs. [184], [119], [182]  95-100 10-20 

Inverter Refs. [184], [119] 90-95 10-20 
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Chapter 5 

Conclusions 
 

5.1. Refrigeration System 

In this Ph.D. thesis, a specific type of EERS was proposed as an alternative system in order to supply the cold water 

for Unit 132 of the second refinery of the South Pars, Iran. This system was compared with the HXRS with three 

different refrigerants (R134a, R407C, and R410A). Energy, exergy, and thermo-economic analysis were implemented 

for both of the proposed systems. Finding the size of the components is necessary for thermo-economic analysis, hence 

required equations for designing the evaporator, condenser, and ejector were given. For thermo-economic analysis, 

the TRR method was proposed in which all the costs, including return on investment, equipment, and fuel purchase 

prices and the total revenue requirement were calculated annually. Energy analysis of the system demonstrated that 

the EERS with R134a as refrigerant has the maximum COP compared to the R134a HXRS. Also, the amount of the 

COP for the R410A EERS is more than R407C EERS. Exergy analysis of the systems indicated that the value of 

exergy destruction in the R134a EERS is lower than HXRS with R134a, R407C, and R410A refrigerants. For the 

R134a EERS, the maximum COP was obtained at ∆𝑃 = 20 𝐾𝑝𝑎 (pressure drop in suction nozzle) in which PR has 

the minimum value. Also, the COP of the R134a EERS was decreased with an increase in condensing temperature. 

Effect of the evaporation and condensing temperatures on diameters of the diffuser, suction nozzle, motive nozzle, 

and motive section have been evaluated. Increasing in pressure drop in suction nozzle decreased the diameter of the 

suction nozzle and mixing section. Also, the diameter of the mixing section was decreased with an increase of the 

condensing and evaporation temperatures. Thermo-economic analysis illustrated that the total cost of the components 

in the EERS is almost 3% lower than HXRS but the total costs of the fuel and the refrigeration system are 22% and 

15.2% lower than HXRS, respectively. In addition, the values of the condensing and evaporation temperatures for 

designing the evaporator and condenser were proposed to be 58.5℃ and 20℃, respectively. The results of this study 

demonstrated that by considering energy, exergy, and thermo-economic analysis, using the ejector expansion device 

in refrigeration systems for supplying the cold water is highly recommended.  

5.2. Artificial intelligence methods 

5.2.1. Solar Energy Prediction  

Solar power is a vast, free and renewable resource that can be used to produce electricity. Solar-generated electricity 

produces no greenhouse gases or emissions of any kind. Solar energy is a commercially-proven, rapidly growing form 

of electricity generation. Machine learning algorithms were used in order to predict the solar radiation in the study 

region. In first methodology (N1), pressure, temperature, relative humidity, wind speed and local time were used to 

predict solar irradiance. In this network, the amount of the solar radiation that has been recorded during the past few 

months or years was used to train the network in order to find the solar irradiance with the new inputs. Indeed, it is 

trained a network to predict the solar irradiance with the before mentioned inputs and without solar irradiance data 
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collection. The second methodology (N2) is time-series prediction that developed models used the past values 

measured solar radiation in order to estimate the future values. Thus the developed models always require solar 

irradiance database to forecast the future values. This type of forecasting model is valuable for grid operators in order 

to make decisions of grid operation and also for electric market operators. For the N1, the MLFFNN, RBFNN, SVR, 

and FIS models were proposed and compared to each other. For the N2, the MLFFNN, SVR, FIS, ANFIS-FCM, 

ANFIS-SC, and ANFIS-GP were developed to forecast solar radiation. This study has led to conclusions in the 

following, for the N1:  

The MLFFNN was trained with six data training algorithms. The results illustrated that LM and BR have highest 

correlation coefficient for the test data respectively with 0.9887 and 0.9819. The RBFNN was implemented with six 

different spread parameter that for this analysis the best performance was obtained in spread to be 6 in which R and 

RMSE for the test data were 0.88011 and 150.1416, respectively. Also, the SVR model with different user-determined 

parameters was applied to predict the targets. This model has shown the highest R close to 1 and RMSE=1.053 

(Wh/m2). In addition, the FIS model was applied in order to estimate the solar irradiance. The best performance was 

achieved by considering the four MFs for each input and target. For this state R and RMSE for the test data are 0.8787 

and 171.256 (Wh/m2), respectively. The comparison of the developed models illustrated that the SVR model and 

MLFFNN have the maximum efficiency for forecasting the solar radiation.  

For the N2:   

Time-series data of hourly solar irradiance was predicted with the MLFFNN. For this purpose, different data training 

algorithms were used in order to obtain the better performance. The results illustrated that the LM and BR training 

algorithms have the maximum correlation coefficient for the test data respectively with 0.9526 and 0.9570. The 

maximum performance was obtained with 70 neurons in the hidden layer. It can be observed, this model has shown a 

better performance for N1 compared to N2. The SVR models reported the maximum performance for time-series 

prediction with R=0.9999 and RMSE=9.1363 (Wh/m2). Also, the FIS model demonstrated the better outputs for the 

N2 compared to the N1. This model estimated the targets with approximately 95% accuracy in the test data. In addition, 

three types of ANFIS model were evaluated in order to forecast the target. ANFIS-FCM with 10 clusters has shown 

the best performance with R=0.95279 and RMSE=83.1365 (Wh/m2) for the test data. As a result, for the N2, although 

the SVR and ANFIS-FCM have shown the better performance for time-series forecasting, the other developed models 

also reported the outputs with around 94% accuracy in the test data. 

5.2.2. Wind Speed Prediction 

Although Iran is among the countries with the huge reserves of fossil fuels and non-renewable sources of energy such 

as oil and gas, it benefits a remarkable potential of renewable energies such as the wind, solar, biomass and geothermal. 

The wind turbine system is one of the most competitive sources in the field of renewable energy technologies. Despite 

several studies which investigated wind energy in different worldwide regions, different patterns of power produced 

from wind energy have led to the fact that this research is being continued in wind energy systems. This study has led 

to conclusions in the following: 



 

93 

 

Three methods of machine learning algorithms were developed to predict the wind speed, wind direction and output 

power of the WT in Bushehr, located in the south of Iran. Pressure, temperature, local time and relative humidity of 

the region were considered to be the input variables. The first model was MLFFNN that was trained with nine data 

training algorithms. The LM and BR algorithms have shown the minimum errors between the actual and predicted 

data. The second model was SVR with RBF as kernel function. This model was adjusted with three different used-

defined parameters that the best performance of the model was obtained by ɛ=0.5, σ=1 and C=1000. The third method 

was ANFIS that was optimized with a PSO algorithm. Forecasting models were compared with 5-min, 10-min, 30-

min and 1-h intervals of wind speed and its direction. For 5-min and 10-min intervals of wind speed data, the predicted 

values were found to be in excellent agreement with the actual data for three developed models. For other time 

intervals, the SVR-RBF model performs better than the MLFFNN and ANFIS-PSO in terms of R, MSE and MSE. 

For wind direction prediction, the developed models have shown lower performance compared to wind speed 

prediction. 

5.3. Hybrid Renewable Energy System 

Utilizing solar and wind energy with hydrogen will have strong environmental effect, to promote the concept of using 

renewable and clean resources and protect the environment. Hydrogen is the suitable energy carrier to store solar and 

wind energy and transform them to electrical energy. If there is a need to store a large amount of energy for a long 

time, hydrogen storage system is today often cheaper and more compact than battery storage. So hydrogen is preferred 

as media in a long-term storage. The solar/wind energy with hydrogen energy storage system for supplying the 

constant electrical load in a large scale in the south of Iran was proposed. The results demonstrated that although Iran 

is rich in fossil fuel resources, analysis of the solar and wind energy stated that this country is a suitable place for 

applying the solar and wind energy systems. The monthly optimum slope angle for solar collectors was determined 

with the minimum value in June as -9° and the maximum value in December as 57°. Also, the optimum azimuth angle 

was found as 30° for the study zone. The solar radiation with the monthly optimum tilt angle was found around 20% 

more than the horizontal collectors. It is found that the amount of the absorption radiation with the optimum slope 

angle in such months of the year allows producing more power. The energy and exergy analysis of the PVS have been 

reported by average of 12% energy efficiency and 16% exergy efficiency. Analysis the ambient temperature of the 

Bushehr demonstrated that the temperature for June, July, August and September is more than 28℃ and this 

temperature can be decreased the efficiency of the PVS. Therefore, in these months authors suggest using a cooling 

system for PV modules. Investigation on power generation of WTs illustrated that between April and August and from 

9:00 to 14:00 the power produced by wind farm is above 800 kW. In other months of the year, this power is less than 

600 kW. Also, for 00:00 to 5:00 and 16:00 to 24:00 the generated power is around 800 kW in this region. Despite the 

energy efficiency for the WTS in some days is close to 50%, the average energy efficiency in this region for the WT 

was reported around 32%. Exergy analysis using the second law of thermodynamics for evaluating the quality of 

energy was done in this station. Exergy efficiency of the WTS was changed between 0 and 37% and the average value 

of it was obtained around 26%. Investigation of exergy destruction of the system illustrated that the PVS has the 

maximum exergy destruction with 65% of the total. The portion of exergy destroyed of the WTs is 13.52%. Also, the 

less role of exergy destruction belongs to the electrolyzer, fuel cell and converter with 2.3%, 3.5% and 1.4%, 
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respectively. Between January and June excess energy was transferred to the electrolyzer and hydrogen was produced 

and stored in the hydrogen tanks. In June to December this energy was consumed by the unit. Economic analysis 

illustrated that the PVS, WTS and energy storage system were included around 20%, 28% and 50% of the total 

investment, respectively. In addition, the payback period for the hybrid renewable energy was obtained around 11 

years. 
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Future work 
 

It is proposed to work on the following suggestions as the future works: 

1. A new intelligent model based on support vector regression optimized with imperialist competitive algorithm for 

prediction of solar radiation and wind speed data. 

2. A new approach based on support vector regression optimized with particle swarm optimization algorithm to 

prediction of wind speed and solar radiation data. 

3. Energy, exergy and economic analyses of ocean thermal energy conversion/photovoltaic/wind turbine system with 

hydrogen energy storage system.  

4. Energy and exergy analyses of geothermal energy system equipped with solar energy with hydrogen storage system 

5. Energy and exergy analyses of photovoltaic/wind turbine system with compressed air energy storage (CAES) 

system 

6. Energy and exergy analyses of geothermal/photovoltaic energy system for supplying electrical energy 
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