
DISSERTAÇÃO DE MESTRADO Nº 1086

SOLUTION OF A SCHEDULING PROBLEM USING AN ABSTRACTION OF
THE CLOSED LOOP BEHAVIOUR OF A DISCRETE EVENT SYSTEM

Gustavo Caetano Rafael

DATA DA DEFESA: 12/11/2018

Powered by TCPDF (www.tcpdf.org)

Universidade Federal de Minas Gerais

Escola de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica

SOLUTION OF A SCHEDULING PROBLEM USING AN
ABSTRACTION OF THE CLOSED LOOP BEHAVIOUR OF A

DISCRETE EVENT SYSTEM

Gustavo Caetano Rafael

Dissertação de Mestrado submetida à Banca
Examinadora designada pelo Colegiado do Programa
de Pós-Graduação em Engenharia Elétrica da Escola
de Engenharia da Universidade Federal de Minas
Gerais, como requisito para obtenção do Título de
Mestre em Engenharia Elétrica.

Orientadora: Profa. Patrícia Nascimento Pena

Belo Horizonte - MG

Novembro de 2018

Powered by TCPDF (www.tcpdf.org)

 Rafael, Gustavo Caetano.
 R136s Solution of a scheduling problem using an abstraction of the closed

loop behaviour of a discrete event system [manuscrito] / Gustavo Caetano
Rafael. - 2018.

 55 f., enc.: il.

 Orientadora: Patrícia Nascimento Pena.

 Dissertação (mestrado) - Universidade Federal de Minas Gerais,
 Escola de Engenharia.

 Bibliografia: f. 51-55.

 1. Engenharia elétrica - Teses. 2. Algoritmos evolutivos - Teses.
3. Heurística - Teses. 4. Otimização combinatória - Teses. 5. Teoria dos
autômatos - Teses. I. Pena, Patrícia Nascimento. II. Universidade Federal
de Minas Gerais. Escola de Engenharia. III. Título.

 CDU: 621.3(043)

i

Acknowledgements

I would like to thank my father, Geraldo, for helping in my initial steps in my technical
career (teaching me how to re-assembling my toys) and for the extra prays every night.
My mother, Suzete, to whom I could not be more thankful, for the unconditional support
(even when she was the only one believing on me), for the extra patience to teach me
(in my earlier years) and for inspiring me and my sister to always learn more. To my
little sister, Marianna, there are not enough words to say how important she was for this
accomplishment. Thanks for listening me every night (and day), for motivating me to
keep fighting every day of my life and for being my most dedicated career manager. To my
aunts, Marly and Efigênia, for supporting me even when they did not understand what
I was doing. They are an example of courage and faith and a source of inspiration on
how a dedicated and responsible son should I be. To all my family (uncles, aunts, cousins,
godson and goddaughter) thanks for supporting me in this achievement. In memory of my
biggest supporter, my grandmother Geralda, who rests in peace in the glory of God.

Last, but certainly not least, I am very grateful to my advisor, Professor Patrícia
Nascimento Pena, for the orientation, the patience and for pushing me to reach my best
with her "Impress me!!!". I would like to give a special thanks to all my friends from the
LACSED, for all the fun, for joining me in the "LAC-Tetrix’s" moments and for the long
discussions in the whiteboard. Thanks to the staff of UFMG’s Engineering School that
participated in my academic training. Moreover, I would like to acknowledge the funding
agencies FAPEMIG, CAPES and CNPQ for funding my education.

To all my friends all around the world, in special Feliphe Castro, Carlos Roberto jr.
e Matheus Araújo, a big thanks for help during this whole journey (from undergradu-
ate studies until the graduate school) you are the best investments that the Gustavo’s
Corporation did.

ii

Agradecimentos

Eu gostaria de agradecer ao meu pai, Geraldo, por me ajudar nos meus primeiros passos
em minha jornada técnica (me ensinado como remontar meus briquedos) e pelas orações
extras todas as noites. À minha mãe, Suzete, por seu apoio incondicional (mesmo nos
momentos quando ela era a única pessoa que acreditava em mim), pela paciência extra
ao me ensinar (nos meus primeiros anos escolares) e por inspirar a mim e minha irmã a
sempre continuar aprendendo. À minha irmã, Marianna, não há palavras o bastante para
descrever quão importante ela foi para essa conquista. Obrigado por sempre me ouvir
todas as noites (e dias), por me motivar continuar lutando todos os dias da minha vida e
ser minha mais dedicada empresária. As minhas tias, Marly e Efigênia, por me apoiarem
mesmo quando elas não entendiam o que eu estava fazendo. Elas são um exemplo de
coragem, fé e uma fonte de inspiração em como ser um bom filho. Aos meus famíliares
(tios, tias, primos, afilhado e afilhada) sou grato por terem me apoiado em mais essa
conquista. Em memória da minha maior fã, minha avó Geralda, que descansa em paz na
glória de Deus.

Por último, mas não menos importante, eu sou muito grato a minha orientadora,
Professora Patrícia Nascimento Pena, por sua orientação, pela paciência e por me motivar
à atingir meu mellhor com seu "Me Impressione!!!". Eu também Gostaria de agradecer
todos os meus amigos do LACSED, pelos momentos divertidos, por se juntarem a mim
nos momentos de "LAC-Tetrixs" (re-organização do laboratório) e nas longas discussões no
quadro. Obrigado aos funcionários da Escola de Engenharia da UFMG, que participaram
da minha vida acadêmica. Além disso, gostaria de agradecer as agências de financiamento
à pesquisa FAPEMIG, CAPES e CNPQ, por investirem na minha educação.

À todos os meus amigos ao redor do mundo, em especial Feliphe Castro, Carlos
Roberto Jr. e Matheus Araújo, um grande obrigado por toda ajuda durante toda essa
jornada (da graduação até a pósgraduação), vocês foram o melhor investimento da Gustavo
Corporation.

iii

If I have seen further than others, it is by standing upon the shoulders of
giants.(Se eu pude enxergar mais longe, é por que me apoiei nos ombros de

gigantes.)

Sir.Isaac Newton

iv

Resumo

Esta dissertação aborda o problema de planejamento de produção no ambiente industrial
sob a perspectiva de Sistemas a Eventos Discretos. Para tal, foi utilizada uma solução
obtida pela aplicação da Teoria de Controle Supervisório como espaço de busca em um
problema de otimização, juntamente com algoritmos evolucionários. Na literatura, essa
abordagem foi descrita como CSO - Controle Supervisório e Otimização. Na CSO busca-se
uma cadeia do comportamento em malha fechada, que minimiza o makespan para a
produção de um lote de produtos. No presente trabalho, propõe-se uma heurística para
geração de indivíduos garantidamente factíveis Rafael & Pena (2018), além do uso de uma
abstração do comportamento em malha fechada. Por fim, a heurística proposta é aplicada
em três estudos de caso. Para um deles (o Sistema Flexível de Manufatura) foi possível
encontrar a solução ótima para todas as instâncias em que a mesma era conhecida.

v

Abstract

This dissertation deals with a production-planning problem in the industrial environment
from the perspective of Discrete Event Systems. For such, a solution obtained by applying
the Supervisory Control Theory (SCT) was used as the search space for the optimization
problem, together with evolutionary algorithms. In the literature, this method was
described as the SCO - Supervisory Control and Optimization approach. In the SCO, a
string of the closed-loop behavior, that minimizes the makespan for the production of a
batch of products is sought. In the present work, a heuristic that guarantees the generation
of feasible individuals is proposed (Rafael & Pena, 2018), built from an abstraction of
the closed-loop behavior. Lastly, the proposed heuristic is applied in three case studies.
For one of them (the Flexible manufacturing system), in all instances that the optimal
solution is known, it was found.

vi

Contents

List of Figures ix

List of Tables xi

Acronyms xii

List of Symbols xiii

1 Introduction 1
1.1 Motivations . 1
1.2 Scheduling . 2
1.3 Scheduling and Supervisory Control Theory 3
1.4 Objectives . 6
1.5 Thesis structure . 6
1.6 Final Remarks . 7

2 Preliminaries 8
2.1 Discrete Events Systems . 8
2.2 Automata and Language Theory . 9

2.2.1 Languages . 9
2.2.2 Natural Projection . 9
2.2.3 Automata . 10

2.3 Supervisory Control Theory . 10
2.4 Supervisor Abstraction . 12
2.5 Makespan evaluation . 14
2.6 Clonal Selection Algorithm . 15
2.7 The case studies . 17

2.7.1 The Cluster Tool . 17
2.7.2 The Flexible Manufacturing System 20
2.7.3 The Search For the Optimal Sequences 22

2.8 Final Remarks . 24

vii

3 Methodology 26
3.1 Problem Statement . 26
3.2 Definitions . 27
3.3 Individual Generation algorithm . 28

3.3.1 Integration: CSA and DS states . 30
3.4 Setting the optimization parameters . 31
3.5 Most Frequent Event Algorithm . 37
3.6 Final Remarks . 37

4 Experimental Results 39
4.1 Procedure . 39
4.2 The Cluster Tool . 40

4.2.1 One Robot Cluster Tool . 41
4.2.2 Two Robots Cluster Tool . 43

4.3 The Flexible Manufacturing System . 44
4.4 Final Remarks . 48

5 Conclusions 49
5.1 Future Research . 50

Bibliography 51

viii

List of Figures

1.1 Scheduling application in a manufacturing system, (Malik & Pena, 2018). 3

2.1 Observer’s property representation. 10
2.2 Automaton G . 11
2.3 Supervisory Control Theory Structure. 11
2.4 Simplified Manufacturing System . 13
2.5 Gk is the machine model (k “ 1, .., 4) and Ej is the specification (j “ 1, 2, 3). 13
2.6 Natural projection of the supervisor S to the set of controllable events, in

the SMS. 13
2.7 Quantity specification (Eq) for a batch of size 2, Definition 2. 13
2.8 Automaton PEq , represents the parallel composition between the P and Eq. 14
2.9 The automaton that implements A . 14
2.10 Standard Cluster Tool layout (Lee & Ni, 2012). 17
2.11 Cluster Tool layout and the number of robots in the mainframe. 18
2.12 One Robot Cluster Tool - all machines automaton model representation. . 19
2.13 One Robot Cluster Tool - Buffers specification. 19
2.14 Flexible Manufacturing System. 20
2.15 Flexible Manufacturing System automata model. 21
2.16 Flexible Manufacturing System specifications. 22

3.1 Automaton G and its DS states filled in gray 28
3.2 Automaton G. 28
3.3 PEq and the sequence s highlighted in gray. 30
3.4 PEq and the sequence snew highlighted in gray. 30
3.5 Cloning process diagram. 32
3.6 The population size impacts in the average makespan and optimization time. 33
3.7 The population size impacts in the average makespan and optimization time. 34
3.8 The population size impacts in the average makespan and optimization time. 35
3.9 The stop criteria and impacts in the average makespan and optimization time. 35

ix

3.10 The effects of different amounts of TMP individuals in the average makespan
and in the optimization time. 36

3.11 The automaton G illustrates the presence of the most frequent events. . . 37

x

List of Tables

2.1 Scheduling problems and the number of solutions. 24
2.2 Scheduling problems and the total optimization time. 24

4.1 Time interval for the Cluster Tool with one robot and four process modules,
(Nunes, 2018). 41

4.2 Optimization parameters used for the cluster tool with one robot problem. . 41
4.3 One robot cluster tool makespan optimization results 42
4.4 One robot cluster tool makespan optimization results for the average

makespan in 30 runs. 42
4.5 Time interval for the Cluster Tool with two robot and four PM mod-

ules,(Nunes, 2018). 43
4.6 Optimization parameters used for the cluster tool with two robots problem. 43
4.7 Two robots cluster tool makespan optimization results 44
4.8 Two robots cluster tool makespan optimization results 44
4.9 Time interval between controllable and uncontrollable events for the FSM. 45
4.10 Optimization parameters used for the FMS problem. 45
4.11 FMS Makespan optimization using the proposed methods 45
4.12 Average and standard deviation of the FMS makespan in 30 runs of the CSA. 46
4.13 CSA with random initial population versus the MPT and the Formal

Verification in the FMS Makespan optimization. 47
4.14 SCO (Costa et al., 2018) versus CSA with random initial population in the

FMS Makespan optimization. 48

xi

Acronyms

DES Discrete Events Systems

SCT Supervisory Control Theory

SCO Supervisory Control Optimization

JSS Job Shop Scheduling

DS Divergent State

CSA Clonal Selection Algorithm

BFS Breadth First Search

MPT Timed Maximum Parallelism

LMP Logical Maximum Parallelism

MPS Minimal Parts Set

SF Small Factory

VNS Variable Neighborhood Search

ITL Industrial Transfer Line

CT Cluster Tool

CTSP Cluster Tool Scheduling Problem

PM Process Module

FMS Flexible Manufacturing System

NP Nondeterministic Polynomial Time

LP Linear Programming

MILP Mixed Integer Linear Programming

xii

List of Symbols

G Automaton

S Supervisor

P Belongs to

@ For all

X Interception Operator

Y Union Operator

Σ Alphabet or set of events

ΣC Set of Controllable Events

ΣUC Set of Uncontrollable Events

Σ˚ Set of all Words that can be created with the events of Σ including the Null
word ε

ε Null Word

Q Set of States

Qm Set of Marked States

QD Set of Divergent States

Γ Active Events Function

LpGq Automaton G Generated Language

LmpGq Automaton G Generated Language

xiii

1
Introduction

In this chapter, the motivations for this work, a literature review on scheduling problems
and some techniques applied to solve them, in the context of Discrete Events System, are
going to be presented. These problems appear in a wild range of industries and researchers
apply some techniques that are going to be presented.

1.1 Motivations

In times of constant change in the economic scenario, organizations should not only reduce
their losses, but also carefully invest their most important asset: time. In this scenario,
the research in production planning and scheduling techniques becomes a key element for
managing the ever increasing demand for productivity (Pinedo, 2016). Moreover, according
to Wang et al. (2008), improving the production scheduling is a factor capable of giving
competitive advantages to any industry. However, the problem of finding the sequence of
events that minimize the production time (for a limited amount of products) is considered
computationally hard, since its complexity is not polynomial (Garey & Johnson, 1979).

Many formalisms have been used to solve the problem of minimizing the production
time (makespan) in scheduling problems within the context of Discrete Event Systems
(DES) (Cassandras & Lafortune, 2009). We mention Petri Nets (López-Mellado et al.,
2005), automata and languages (Alves et al., 2016a; Costa et al., 2018) and timed automata
(Abdeddaïm et al., 2006; Su, 2012).

However, the present work is going to focus in automata and languages, in addition

1

CHAPTER 1. INTRODUCTION 2

of the Supervisory Control Theory (SCT) (Ramadge & Wonham, 1989), because they
can offer a different perspective to solve planning problems. These techniques allow to
model problems and its constraints using automata, besides it makes possible to create a
minimally restrictive controller. Another significant aspect of using the SCT is the fact
that, once the solution is found and some conditions are fulfilled (Vilela & Pena, 2016), it
can be implemented in a real system without jeopardizing its operation.

1.2 Scheduling

A decision-making process that is regularly used in all types of manufacturing and services
industries (Pinedo, 2016). Usually, a finite number of assets is assigned according to a
set of tasks, this is made throughout a permutation on these elements (Pinedo, 2016).
According to Baker & Trietsch (2013), the goal in a scheduling problem is to find the
order in which a set of tasks must be performed so that a specific performance index is
optimized.

In this scenario, finding a production schedule that minimizes the manufacturing time
belongs to the non polynomial time class (NP)(Garey & Johnson, 1980). Methods in
this class are computationally hard to solve due to its complexity. Often, in this type of
problem, the set of all possible solutions is given by pN !qM , where N represents the number
of tasks and M the number of machines (Arisha et al., 2001).

One way to solve this kind of problems is to apply dynamic programming techniques
to find exactly optimal solutions (Bellman & Dreyfus, 2015). However, the complexity
starts to become prohibitive for medium size problems. Despite the inherited difficulty to
solve scheduling problems over the years researchers developed several techniques to deal
with this problem. For example the Gantt chart, Figure 1.1, illustrates the scheduling of a
manufacturing system. In the y-axis each machine is represented, and in the x-axis their
production time is represented by the rectangles. This kind of visualization tool allows us
to understand what are the limiting factors in the production process.

The scheduling problem is often splitted into two different groups, the deterministic and
the stochastic problems (Aytug et al., 2005). In the deterministic approach the operation
time of each machine in a production system is known and constant during operation,
while in a stochastic approach the time information takes into account a distribution and
is represented by a random variable.

In the literature there are several techniques to solve scheduling problems. They usually
are divided in two groups: traditional techniques (Analytical and Heuristic Methods) and
advanced techniques (Artificial Intelligence, Genetic Algorithms and Hybrid Methods)
(Arisha et al., 2001).

The analytical approach considers the problem in its total form, scheduling N jobs on
M machines, meaning that the whole problem is considered. Approaches like Explicit Enu-

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Scheduling application in a manufacturing system, (Malik & Pena, 2018).

meration (Baker & Trietsch, 2013; Brucker et al., 1994), Implicit Enumeration (Bellman &
Dreyfus, 2015), Branch and Bound Algorithms (Brucker et al., 1994), Linear Programming
(Charnes & Cooper, 1962; Panek et al., 2004), Integer Programming (Wagner, 1959; Ko-
betski & Fabian, 2006) are examples of the analytical method. A more in depth discussion
is going to be made in Section 1.3.

The heuristic approach can be represented by a function h that returns an estimate
hpsq of the minimum cost h˚psq of getting from the state s to a goal state and that h is
admissible if 0 ď hpsq ď h˚psq for every state s (from which it follows that h(s) = 0 whenever
s is a goal node) (Ghallab et al., 2016). In other words in every decision point the function
h helps to decide which option will favour the optimization criteria. Some examples of
heuristic methods are: Incremental Scheduling (Alves et al., 2016a), Neighborhood search
techniques (Baker & Trietsch, 2013; Pena et al., 2016) and Lagrangian relaxation (Hoitomt
et al., 1993).

Apart from the traditional methods, there are advanced techniques that apply artificial
intelligence. Arisha et al. (2001) presents, as the most efficient methods to find the optimal
solution, the Neural Networks (Masud et al., 2011), Fuzzy logic (Meziane et al., 2000)
and genetic algorithms (Lee et al., 1997). In this work, an approach that is closer to the
advanced methods is going to be used. In the methodology that will be presented, an
evolutionary algorithm is going to be applied for the optimization and the solutions are
provided by the Supervisory Control Theory.

1.3 Scheduling and Supervisory Control Theory

In the context of Supervisory Control Theory (SCT) (Ramadge & Wonham, 1989) many
extensions have been proposed to solve scheduling problems (Kobetski & Fabian, 2006; Su

CHAPTER 1. INTRODUCTION 4

et al., 2012; Hill & Lafortune, 2016; Pena et al., 2016).
The works of Panek et al. (2004); Kobetski & Fabian (2006) combined the analytical

techniques with SCT. The first proposed a method motivated by reachability algorithms.
It presents an algorithm capable of generating lower bounds for the cost-to-go by embedded
Linear Programming (LP) and the pruning of the search tree. The resulting algorithm
reduces the computational effort when compared to the standard shortest path algorithm.
According to Panek et al. (2004), the specification of a given job-shop1 problem to be
efficiently solved, using their technique is less time-consuming and cumbersome to design.
Following this analytical approach, Kobetski & Fabian (2006) proposed a method that au-
tomatically combines Supervisory Control Theory and Mixed Integer Linear Programming
(MILP). This technique aims to obtain the best of both methods. The SCT is used to
model the problem and its constraints, then the resulting deterministic finite automaton
(supervisor) is mathematically converted in such a way that the MILP can be applied
directly. Other authors used a supervisor abstraction, obtained by SCT as the search
space. This technique reduces the computational complexity of the scheduling problems.
Hill & Lafortune (2016) apply a method, where each supervisor’s transition is weighted and
used to generate an abstraction, them this is employed to solve the planning problem. In a
similar way, Su (2012) used the abstraction to simplify the time-weighted system design by
masking out its local transitions so that subsequent time-optimal supervisor synthesis can
be carried out in a more computationally efficient manner (Su, 2012). The key element
on this approach is the encoding of the time information in max-plus matrices. It allows
the aggregation of concurrent transition firings. The author shows that a component wise
abstraction strategy is not only possible but also is less computationally demanding than
creating an abstraction model for a system with a wide number of components.

A heuristic approach for scheduling problems is presented by Alves et al. (2016a).
This work introduces a method called Maximum Parallelism, which has a heuristic that
favors the total accumulated parallelism of equipment during production. This technique
presents two distinct branches: one focused in a purely logical approach called Logical
Maximum Parallelism (LMP) (Alves et al., 2016a) and the other strand combines the
parallelism information and the task execution time to optimize the makespan, the
Maximum Parallelism with Temporal constraints (MPT) (Alves et al., 2016b). Despite of
the quality of the results and their low runtime, they are still local-optimal solutions for
the makespan problem. The proposed heuristic has linear complexity in regard of the size
of the problem, which makes it capable of producing solutions in a very time-efficient way.
The MPT approach is used to compare with this work findings, in Chapter 4.

Malik & Pena (2018) apply the capabilities of model checking to solve the problem
1 In a job shop with m machines each job has its own predetermined route to follow. A distinction is

made between job shops in which each job visits each machine at most once and job shops in which a job
may visit each machine more than once, (Pinedo, 2016).

CHAPTER 1. INTRODUCTION 5

of optimal task scheduling in a flexible manufacturing system (De Queiroz et al., 2005).
In this approach, the system was modelled as a DES with a supervisor that implements
the supervisory control theory. Then timing constraints were added to the model in the
form of extended finite-state machines. In order to compute an optimal timed schedule,
Supremica (Akesson et al., 2006), a software for synthesis, model checking simulation of
discrete event systems was used.

The Supervisory Control Optimization (SCO) methodology was proposed to address
scheduling problems in a manufacturing cell (Pena et al., 2016). In this approach, the
Supervisory Control Theory encodes the problem constraints and an optimization technique
is used to solve the problem of finding the optimal schedule. Here the controllable events
are used to model the starting of operations in a specific machine and a production
sequence (or set) is represented by a string of controllable events. In the SCO a specific
word-encoding technique is employed, in which a small production set is concatenated
several times to create the desired batch of products (Pena et al., 2016). The encoding
is based on the fact that there are parts of the sequence (events) that have to remain
in a specific order (a piece should always arrive in a conveyor before being painted, for
example). Each invariant sub-sequence is uniquely encoded with a string of a repeated
symbol from an alphabet. Since new individuals (new production sequences) are created
by a permutation of the elements of the sequence such encoding allows to reduce the
infeasibility. In the SCO, different optimization algorithms were tested: clonal selection
algorithm (CSA) using a randomized method to generate solutions (Silva et al., 2011),
CSA with a local search algorithm to improve the best individual of each generation
(Oliveira et al., 2013), ant colony system algorithm with a 2-opt local search algorithm
(Costa et al., 2012), among others. The optimization method with the best result was the
Variable Neighborhood Search (VNS), used in (Pena et al., 2016).

Despite of the relative success, all previous works were limited to manufacture only
small batches of product, because the generation of solutions for larger batches was heavily
impacted by the occurrence of infeasible solutions causing a high computational cost. To
solve this (Costa et al., 2018) problem, Costa et al. (2018) proposed the Supervisory Control
Optimization Concatenation (SCO-CONCAT). SCO-CONCAT is based on the idea that
to produce large batches it does not help optimizing the large batch itself. Typically, a
manufacturing system has a limited number of products that can be manufactured at the
same time. Previously optimized sequences (called Minimal Part Set strings, obtained
using SCO, (Pena et al., 2016)) are concatenated and permuted to generate a pattern that
is repeated a number of times until the size of the batch is obtained.

The SCO-CONCAT represents an important step for the evolution of the SCO and
once the process of finding the MPS stops being its bottleneck, due to the generation of
infeasible solutions, this methodology is going to be ready to face bigger challenges.

CHAPTER 1. INTRODUCTION 6

1.4 Objectives

The main objective of this dissertation is to propose a new heuristic method, based on the
results of (Vilela & Pena, 2016) to generate solutions (or individuals) to be used with the
clonal selection algorithm (De Castro & Von Zuben, 2002) for solving scheduling problems.
This heuristic is built over an abstraction of the controllable closed-loop behavior (instead
of the behavior itself) to generate the sequences that are going to be used in an optimization
method. Once this new method is established, an Evolutionary Algorithm is going to be
applied, in order to solve the scheduling problem. Moreover, another heuristic based on
the frequency of the events is proposed. The major goal of this work is to find an efficient
way to solve scheduling problems. As a result this work extends the Supervisory Control
and Optimization (SCO) (Pena et al., 2016), using the abstraction of the closed-loop
behavior (Vilela & Pena, 2016) to solve the problem of finding the optimal scheduling in a
manufacturing system. As secondary objectives we mention:

• Develop new ways of generating feasible solutions;

• Find sequences that minimizes the makespan, for any number of products;

• Apply the proposed solutions to different scheduling problems in the Discrete Events
Systems literature.

1.5 Thesis structure

This theses is organized as follows:

• Chapter 1 Presents a literature review on scheduling problems and shows this
problem from the perspective of Discrete Event Systems.

• Chapter 2 Introduces preliminaries concepts of Discrete Events Systems and the
main definitions for Supervisory Control Theory. Besides, the evolutionary algorithm
used is explained and it ends discussing the impact of generating all possible solutions.

• Chapter 3 Deepens in the methodology proposed introducing some new propositions
and two algorithms that implements ideas presented. One is combined with an
evolutionary algorithm and the second is a heuristic method to solve the problem.

• Chapter 4 Tests the proposed ideas in this dissertation, by applying them in the
three scheduling problems case studies.

• Chapter 5 Concludes with the main contributions of this dissertation, a summary
of the content discussed and presents some ideas for future developments.

CHAPTER 1. INTRODUCTION 7

1.6 Final Remarks

In this chapter the motivation and the objectives were introduced. Besides, the literature
review on scheduling problems and the main concepts supporting the SCO were presented.
This was important, because the present work extends the results of the SCO by applying
a technique that assures the creation of feasible solutions only. These modifications in the
SCO are expected to improve its time efficiency by reducing the optimization runtime.
In the next chapter an in depth exploration of the Discrete Event Systems and of other
concepts for this dissertation are going to be presented.

2
Preliminaries

In this chapter, some basic concepts of Discrete Event Systems, Supervisory Control Theory
are presented. Also the theoretical results related to the abstraction of the closed-loop
behavior, the makespan evaluation, the clonal selection algorithm and the case studies are
presented. Lastly the impact of searching for all possible solutions is discussed.

2.1 Discrete Events Systems

Discrete Events Systems (DES) are dynamic systems whose interaction with external
entities is made by stimulus called events. These events can be represented as: a push of a
button, a sensor activation, the beginning or the ending of a task, a timed interruption
call, or inner system’s event. One characteristic of the event is its instantaneous nature
that is responsible for its discrete aspect. Another aspect of the occurrence of events is the
change of the system’s configuration. This is known as state change, therefore, it is said
that the occurrence of events leads to the transition of the system’s states. As described
by Cury (2001), Discrete Events Systems are dynamic systems that evolves according to
abrupt occurrence of physical events that in general have irregular and unknown time
intervals.

Due to the specificity of DES, it is not possible to apply conventional mathematical
techniques like differential and difference equations that are very common when dealing
with continuous, or discrete time variables, respectively.

8

CHAPTER 2. PRELIMINARIES 9

2.2 Automata and Language Theory

2.2.1 Languages

Let Σ be a finite and nonempty set of events, referred to as an alphabet. The DES behavior
is modeled by a finite group of strings over Σ. Σ˚ is the set of all strings on Σ, including
the empty string ε. A subset L Ď Σ˚ is called a language. The concatenation of strings s,
u P Σ˚ is written as su. A string s P Σ˚ is called a prefix of t P Σ˚, written s ď t, if there
exists u P Σ˚ such that su “ t. The prefix-closure L of a language L Ď Σ˚ is the set of all
prefixes of strings in L, i.e.:

L “ ts P Σ˚|s ď t for some t P Lu.

2.2.2 Natural Projection

The natural projection Pi : Σ˚ Ñ Σ˚

i is an operation that maps the strings of Σ˚ into
strings of Σi, Σ˚

i Ď Σ˚, by erasing all the events that are not contained in Σi. The natural
projection can be defined as:

P pεq :“ ε

P peq :“

$

&

%

e if e P Σ˚

i

ε if e P Σ˚zΣ˚

i

P pseq :“ P psqP peq for s P Σ˚, e P Σi.

The inverse projection P´1
i : Σ˚

i Ñ Σ˚ is defined as P´1
i pLq “ ts P Σ˚|Pipsq P Lu and is

composed of all traces that, when projected, recover traces from L.
The natural projection can have a known property named Observer Property (OP)

presented in Definition 1.

Definition 1. (Wong, 1998) A language L Ď Σ˚, an alphabet Σi P Σ and P : Σ˚ Ñ Σ˚

i a
natural projection that maps the strings in Σ˚ into strings of Σ˚

i . If (@a P L)(@b P Σ˚

i), such
that P paqb P P pLq ñ pDc P Σ˚qP pacq “ P paqb and ac P L, then the natural projection P pLq

has the observer property.

Figure 2.1 is going to be used to explain the Observer Property (Definition 1) as
presented in Alves (2018). The inner ellipse on the left represents the language L, which is
defined over the alphabet Σ, while the inner ellipse (to the right) represents the natural
projection of this language to the alphabet Σi. Then, a string a that is a prefix of a string
in L is chosen. After that, a is projected to the alphabet Σi and then the projection of a
(PΣÑΣi

paq) is concatenated with a suffix b, composed only by elements of Σi. This results

CHAPTER 2. PRELIMINARIES 10

in a string that is part of the projection of L, in another words, PΣÑΣi
paqb P PΣÑΣi

pLq.
This operation is represented in Figure 2.1 by the blue arrows. If the projection has the
Observer Property, then, for all a and b, such that PΣÑΣi

paqb P PΣÑΣi
pLq, there will be a c,

such that PΣÑΣi
pacq “ PΣÑΣi

paqb and ac P L. This is represented by the red arrows. As a
consequence, PΣÑΣi

pcq “ b.

Figure 2.1: Observer’s property representation.

The language P pLq is called abstraction, (Alves, 2018). If this abstraction has the
observer property then it is called OP-abstraction. To verify this property the reader
should look for the algorithm presented in Pena et al. (2014).

2.2.3 Automata

A finite automaton is a 5-tuple G “ pQ,Σ, δ, q0, Qmq where Q is a finite set of states, Σ is an
alphabet, δ : QˆΣ Ñ Q is the transition function, q0 P Q is the initial state and Qm Ď Q is
the set of marked states. The transition function can be extended to recognize words over
Σ˚ as δpq, σsq “ q1 if δpq, σq “ x and δpx, sq “ q1. The generated and marked language are,
respectively, LpGq “ ts P Σ˚|δpq0, sq “ q1^q1 P Qu and LmpGq “ ts P Σ˚|δpq0, sq “ q1^q1 P Qmu.
The active event function Γ : QÑ 2Σ, establishes that for any q P Q, the set of events σ P Σ
for which δpq, σq is defined. An automaton G is deterministic if δpq, σq “ q1 and δpq, σq “ q2

implies q1 “ q2. In Figure 2.2, the set of states is Q “ t0, 1u, the alphabet is Σ “ tα, βu, the
marked state is Qm “ t0u and the transition function is composed of: δp0, αq “ 1, δp1, αq “ 1
and δp1, βq “ 0.

2.3 Supervisory Control Theory

Proposed by Ramadge & Wonham (1989), the Supervisory Control Theory (SCT) allows
to synthesize an entity called Supervisor, which is capable of limiting the closed-loop

CHAPTER 2. PRELIMINARIES 11

0 1

α

β

α

Figure 2.2: Automaton G

behavior of a system to a specific set of desired actions. This is important because it
avoids that the system executes actions that lead to dangerous situations, or physical
damage. In this context the supervisor implements the minimally restrictive behavior,
meaning that it is permissive. So, it does not enforce a predetermined action to the system,
only prevents undesirable situations. The basic structure representing a system under
supervisory control can be seen in Figure 2.3. The behavior of the system is represented by
automata and languages the supervisor imposes control over in order to prevent blockage
and undesirable behaviors.

Figure 2.3: Supervisory Control Theory Structure.

The process of synthesizing a supervisor that embodies the entire system’s behavior is
presented in the SCT as the Monolithic Control. Depending on the system in question
computing a supervisor to ensure the minimum makespan can be a NP-hard problem (Su
& Woeginger, 2011).

The system to be controlled is called plant, the controller agent is called supervisor and
the control problem is to find a supervisor that enforces the specifications in a minimally
restrictive way.

The plant is modeled by an automaton G “ pQ,Σ, δ, q0, Qmq and Σ “ Σc Y Σuc where
Σc is the set of controllable events that can be disabled by an external agent and Σuc is
the set of uncontrollable events that cannot be disabled by an external agent. The plant
represents the logical model of the DES and the supervisor’s S role is to regulate the plant
actions to meet a desired behavior K disabling only controllable events.

Let E be an automaton that represents the specification imposed over G. them
K “ LmpG||Eq Ď LmpGq is controllable with respect to G if KΣu X LpGq Ď K. There exists
a non-blocking supervisor V for G such that LmpV {Gq “ K if, and only if, K is controllable
with respect to G. If K does not satisfy the condition, then the supremal controllable and
non-blocking sub-language sup CpK,Gq can be synthesized. It represents the least restrictive

CHAPTER 2. PRELIMINARIES 12

non-blocking supervisor. For G and K, a monolithic supervisor automaton S, can be
computed to represent sup CpK,Gq such that LmpSq “ sup CpK,Gq Ď K. The generated and
marked language of a plant G under the action of a supervisor S are, respectively, LpS{Gq
and LmpS{Gq Ď LpS{Gq. A supervisor S is called non-blocking when LmpS{Gq “ LpS{Gq.

2.4 Supervisor Abstraction

In Vilela & Pena (2016), the conditions under which the natural projection of the closed-
loop behavior to the controllable events, P : Σ˚ Ñ Σ˚

c , keeps a good property of the original
supervisor are presented. This is a theoretical result that allows to search for optimal
solutions on a smaller universe, P pSq instead or S. The above mentioned “good property”
is, once a trace sopt P P pSq is picked, that trace, when lifted to the original alphabet, can
be executed to the end. This result is presented in Theorem 1.

Theorem 1. (Vilela & Pena, 2016)Let G be a system, S be the supremal controllable
sub-language contained in a desired language K and P : Σ˚ Ñ Σ˚

c the natural projection.
For all sequences sopt P Σ˚

c and A “ P´1psoptq X S, if P has the observer property then A is
controllable with respect to LpGq.

Theorem 1 establishes that under certain conditions over the projection, the lifted
language A (composed of all traces of S that project to sopt) is controllable. The verification
of controllability guarantees that all the interleavings that may arise in the lifted trace, if
possible in the plant, are possible when implementing the plan in the system. In other
words, to implement the controllable sopt trace in the system, it is not necessary to disable
uncontrollable events.

To find the set of all legal traces of controllable events that produce k products, we
have to calculate Eq||P pSq Ď P pSq. We define Eq as in Definition 2.

Definition 2. An automaton Eq is a quantity specification, for the production of a batch
of k products, if it has the following characteristics:

1. ΣEq “ tσu, where σ is the last controllable event of the event sequence that leads to
the production of 1 product;

2. LmpEqq “ v Ď Σ˚

Eq
, where |v| “ k and k is the number of products in a batch.

Example 1. The simplified manufacturing system (SMS) is an extension of the small
factory problem (Wonham, 2015). It consists of four machines (M1,M2,M3,M4) and three
unitary buffers (B1, B2, B3), Figure 2.4. The controllable events Σc “ tα1, α2, α3, α4u mark
the starting of a process and the uncontrollable events Σuc “ tβ1, β2, β3, β4u represent the
process ending. This way, a machine (Mi) starts it operation when a controllable event αi

CHAPTER 2. PRELIMINARIES 13

M1 B1 M2 B2 M3 B3 M4

α1 β1 α2 β2 α3 β3 α4 β4

Figure 2.4: Simplified Manufacturing System

occurs and the process finalization is noticed by the correspondent uncontrollable event βi.
In this system a finished product must pass by all four machines.

The machines were modeled as two states automata Gk, which in the initial state I they
are in Idle mode and the state W represents their operation mode. The control problem is to
avoid underflow and overflow of the unitary buffers, in this case the buffer Bk is considered
empty when it is in state 0 and full in state 1. The machines and Buffer specifications can
be seen in Figure 2.5.

I W 0 1
αk

βk

Gk : EJ :
βj

αj`1

Figure 2.5: Gk is the machine model (k “ 1, .., 4) and Ej is the specification (j “ 1, 2, 3).

Once the plants (G1, G2, G3, G4) and the specifications (E1, E2, E3) are defined they are
used to compute a monolithic supervisor S and then a natural projection (P) on the
controllable events is applied on S. Both were made by using UltraDES (Alves et al., 2017)
and P pSq is shown in the Figure 2.6.

P pSq :

0 1 2 3

4

5 6

7

α1 α2 α1 α3 α2

α1

α3 α1

α4

α4 α4

α4

Figure 2.6: Natural projection of the supervisor S to the set of controllable events, in the
SMS.

0 1 2α4 α4

Figure 2.7: Quantity specification (Eq) for a batch of size 2, Definition 2.

To generate all the strings of controllable events that lead to the production of two
products in the SMS, first the parallel composition between the natural projection (P pSq)
and a quantity specification (Eq) is made (Eq||P pSq). The product specification (Eq) is
presented in Definition 2. For a batch of size two, the quantity specification is shown in
Figure 2.7.

CHAPTER 2. PRELIMINARIES 14

The resulting automaton PEq (Figure 3.2) represents all possible sequences of controllable
events, that once executed, lead to the manufacturing of two products in the SMS.

0 1 2

3

4

5

6 7

8

9 10 11
α1 α2

α1

α3

α2

α4α4

α2

α1

α3

α4
α1

α4

α3

Figure 2.8: Automaton PEq , represents the parallel composition between the P and Eq.

Consider an optimal string of controllable events sopt “ α1α2α1α3α2α4α3α4, in G. Ac-
cording to Theorem 1, the lifted language A is controllable, thus adding uncontrollable
events does not affect the string sopt feasibility in regard to the plant. The automaton
representing A can be found by applying: A “ P´1psoptq X S, Figure 2.9.

0 1 2 3

4

6

7

5

13

1211

9

8

10

15

14

16

17 18

21 22

19

23

20

24 25 26

α1 β1 α2

β2

α1

α1

β2

β1

β1

β2

α3 α3

β1

β3

β1

β3

α2

α4

β3

β2

β2

β3

α4

β2

α4

β4 β4

α3

β4

β2 α3

β3

β4

β3 α4 β4

Figure 2.9: The automaton that implements A

The automaton in Figure 2.9 implements the lifted language A. It has all possible traces
of S that project to sopt. The result is valid for any sopt and this sequence is going to be
picked by the optimization algorithm.

2.5 Makespan evaluation

One key parameter to understand a manufacturing system’s performance is the production
time or makespan. This parameter represents the total time for a batch of products to be
processed. In the context of Discrete Events Systems, more specifically in automata and
languages, a batch of products can be represented as a sequence of events that are related
to the machines in the plant.

CHAPTER 2. PRELIMINARIES 15

To calculate the makespan, each machine processing time is known beforehand and it
is represented by the time interval between the controllable event (starting the machine’s
operation) and the uncontrollable event (ending it). For calculation purpose we assume
that the controllable event time is zero and the uncontrollable event happens a constant
time value after the controllable.

In order to evaluate the makespan of this sequence, or string of events, in this work
the temporal function (fT) introduced by Alves et al. (2016b) is going to be applied. To
understand how this function works, two definitions are going to be presented.

Definition 3. (Alves et al., 2016b) Consider S “ pQ,Σ, δ, q0, Qmq a supervisor, the temporal
function f 1T : Σ˚ ˆ Σ Ñ IR˚, of S is defined as:

f 1T ps, σq :“

$

&

%

t if δps, σq exists

8 otherwise

For an event σ P Σ and a sequence s P LpS{Gq, t is the time until σ happens, given that
a sequence s has been executed. However, this is just not enough to evaluate the temporal
information of a sequence of events. Thus, the temporal function must be extended:

Definition 4. (Alves et al., 2016b) Let S “ pQ,Σ, δ, q0, Qmq be a supervisor, the expanded
temporal function fT : Σ˚ Ñ IR˚, of S is defined as:

$

&

%

fT pεq “ 0

fT psσq “ fT psq ` f 1T ps, σq

Definition 4 shows how to compute the makespan for a sequence.

2.6 Clonal Selection Algorithm

The Clonal Selection Algorithm (CSA) (De Castro & Von Zuben, 2002) was inspired in
the principles of the immunological system of mammals, where the improvement of the
solutions works as a metaphor for the immune system of the living organisms. In this
scenario, each solution is treated as an individual and a population is composed by N

individuals. First, several replicas of the current antibodies are made with the most useful
antibodies receiving more replicas. Then, these replicas are randomly mutated. This
process generates solutions that are similar to the original but they differ to some extent.

The pseudo-code for the CSA can be seen in Algorithm 1. The inputs for this algorithm
are the number of individuals (N), the number of generations (nGen), the mutation rate
(λ) and the number of products (nP). The outputs are the best solutions (individuals).

CHAPTER 2. PRELIMINARIES 16

Algorithm 1: Clonal Selection Algorithm
Input : N, nGen, λ, nP
Output : Solution

1 Initial population of 2N individuals pnP q
2 PopulationÐMakespan.EvaluationpPopulationq

3 BestIndividualsÐ Population.SortedbypMakespanq

4 for j Ð 0 to N do
5 SelectedInd.addp BestIndividuals[j] q
6 end
7 while Stop criterion not achieved do
8 for each IndÐ in Population do
9 TestedIndividual.addpIndq

10 for k Ð 0 to EvalpInd, noClonesq do
11 pQDSnew, Snewq Ð Seq.Generator(Ind, λq
12 newIndÐMakespan.Evaluationpsnew, QDSnewq

13 TestedIndividual.AddpnewIndq

14 end
15 NextGen.addpTestedIndividual.Minpqq

16 TestedIndividual.Clearpq

17 end
18 PopulationÐ NextGen

19 CheckMakespanpPopulation, nGenq

20 end

Initially, the population has 3N random individuals (uniform distribution), this allows
the exploration of the search space. Then, this population has its makespan evaluated (as
described in Section 2.5) and the N best individuals (the ones with the smaller makespan)
are selected, lines 1 to 5.

The number of clones (nClones) produced for each individual is calculated in terms of
the function that guarantees that the best individuals generates pβqnClones clones, while
the worst ones generates p1 ´ βqnClones clones. This parameter β may assume values
between 0 and 1, and the parameter nClones represents the maximum number of clones.
The fitness function used is based on the ranking of the solutions which in this work
is the makespan. Thus, the solutions with the smallest makespan are selected for the
next generation. This version of the CSA uses as stop criteria: the maximum number of
generations pMaxGenq, or the number of generations without improvements pnGenq.

Regarding the mutation, the clones are mutated and the parents are left untouched.
Besides, its intensity parameter λ varies with a fitness function such that an individual with
higher fitness (smaller makespan), suffers mutations that are less intense while individuals
with lower fitness (meaning higher production time) have a more aggressive mutation.

CHAPTER 2. PRELIMINARIES 17

2.7 The case studies

The proposed techniques were applied in two problems in the DES literature, the Cluster
Tool (Uzsoy et al., 1994) and the Flexible Manufacturing System (De Queiroz et al., 2005).
Each problem presented an unique optimization challenge involving the layout of the
system and different types of products to be made. To assure that the abstraction proposed
by Vilela & Pena (2016) could be used in the testing problems, they were checked for the
presence of the observer property in the closed-loop projection. This was accomplished by
using the method implemented in TCT (Feng & Wonham, 2006).

2.7.1 The Cluster Tool

The semiconductors industry has one of the highest specialized manufacturing facilities
known (Lee & Ni, 2012), due to the critical nature of its processes. In this scenario, one of
the key elements of the wafer manufacturing is the cluster tool (CT), Figure 2.10. This
machine is responsible for the fabrication of the silicon wafer and it is capable to manage
its most complex stages. As a result, there are studies related to the cluster tool scheduling
problem (CTSP) like Uzsoy et al. (1994), Jula & Leachman (2010) and Shin et al. (2001).
The cluster tool has four basic components:

Figure 2.10: Standard Cluster Tool layout (Lee & Ni, 2012).

• Load locks (LL): the wafer’s storage unit is responsible for protecting each wafer in
the beginning of the process and at the end;

• Chambers (CH): the place where different stages of the wafer fabrication processes
happens;

• Robot (RB): the agent behind the manipulation of the silicon wafer through the
chambers;

CHAPTER 2. PRELIMINARIES 18

• Mainframe: the place where all the components above are stored.

In this dissertation, two types of cluster architectures are evaluated. These layouts
differ from each other by the number of robots in the mainframe (Figures 2.11), usually
the cluster tool has one or two robots and in all architectures of this system, the load lock
works as an interface with the external world. Another characteristic is the number of
process modules for each layout that can be 4, 5 or 6.

The first layout to be introduced is the radial cluster tool with one robot inside
the mainframe. This cluster tool architecture is shown in Figure 2.11.a with its main
components and how they interact with each other. The arrows indicate the flow of the
actions and the numbers attached to them represent the event. The controllable events
are represented with odd numbers, while the uncontrollable events are represented with
even numbers. As can be seen in Figure 2.11.a, there are three main components in the
cluster tool, one load lock LL, one robot R1 (in charge of the actions in the mainframe),
six buffers (B1, B2, B3, B4, B5 and B6) and four process chambers (C1, C2, C3 and C4).

Figure 2.11: Cluster Tool layout and the number of robots in the mainframe.

Example 2. Consider the production of one wafer unit in the cluster tool, Figure 2.11.a.
In a sequential manufacturing process each process chamber is visited only once, starting
from C1 up to C4. The production sequence, composed only by controllable events, would
be:

• Product “ 11´ 21´ 101´ 23´ 201´ 25´ 301´ 27´ 401´ 29´ 13.

To guarantee that the operation of this system does not reach a deadlock or a haz-
ardous stage for the plant, the system first is modeled as an automaton GP , which is the

CHAPTER 2. PRELIMINARIES 19

parallel composition of all machines automata (Figure 2.12) and the supremal controllable
sublanguage S is obtained. Then, the abstraction is calculated.

0 1

0 1

0 1

0 1

1

0

2

0

1
2

3

45

C11 :
101

102

201

202

C12 :

301

302

C13 :

401

402
C14 :

LL :

11

12

14

13

R1 :
21

22 23
24

25

26
27

2829

30

Figure 2.12: One Robot Cluster Tool - all machines automaton model representation.

The control problem is to guarantee no overflow and underflow in the buffers and also
that the closed-loop behavior is nonblocking. The specifications (E1, E2, E3, E4, E5 and E6)
were used to compute the supremal controllable sublanguage, Figure 2.13.

0 1

0 1

1

0 1

2 0 1

0 1

2

02

2E1 :
12

21

22

101

E2 :

26

301

E4 :

E5 :

402

29

401

28

E6 :
30

13

23

102
E3 :

24

201

25

202

27

302

Figure 2.13: One Robot Cluster Tool - Buffers specification.

The second architecture studied was the cluster tool with two robots working in the
mainframe, Figure 2.11.b.

Example 3. For the cluster tool with two robots in the mainframe the tasks can be splitted
in two parts: those carried by Robot1 and those carried by Robot2.

• Robot1 “ R1 “ 21´ 23´ 25;

• Robot2 “ R2 “ 31´ 33´ 13.

CHAPTER 2. PRELIMINARIES 20

As can be seen in Figure 2.11.b, there are four main components in the cluster tool:
the load lock (LL) manages the interaction with the external world, two robots (R1 and
R2) in charge of the actions in the mainframe, six buffers (B1, B2, B3, B4, B5 and B6) and
four processes chambers (C1, C2, C3 and C4).

2.7.2 The Flexible Manufacturing System

The flexible manufacturing system (FMS) (De Queiroz et al., 2005) produces two types
of products (A and B). There are eight machines in the FMS, three Conveyors (C1, C2

and C3), a Mill, a Lathe, a Robot, a Painting Device (PD) and an Assembly Machine
(AM). These devices are connected through unitary buffers (B1 to B8). In the FMS the
controllable events are represented as odd numbers and the uncontrollable events as even
numbers, as shown in Figure 2.14.

Figure 2.14: Flexible Manufacturing System.

The manufacturing of each product (A and B) can be expressed by a sequence of
controllable events that needs to be executed in a specific order. The Product A is a block
with a conical pin on top and product B is a block with a cylindrical painted pin. To
manufacture one unit of product A, it is necessary to combine two parts: one Base and
one PinA. In a similar way, a product B is composed by the pair Base and PinB. The
sequence of controllable events representing these three elements are:

• Base : 11´ 31´ 41´ 35´ 61;

• PinA : 21´ 33´ 51´ 37´ 63;

CHAPTER 2. PRELIMINARIES 21

• PinB : 21´ 33´ 53´ 39´ 71´ 81´ 73´ 65.

These sequences can be interleaved with each other in order to generate batches with
different makespans. For each controllable event there is a correspondent uncontrollable
event and the time between their occurrences represents the amount of time needed
for a task to be completed. In the case of FMS there is an exception, the controllable
event 61 that belongs to the Assembly Machine (AM). It does not have a correspondent
uncontrollable event and after a minimal interval of 15 time units, it is followed by either
event 63, or 65.

Example 4. There are many ways of making one unit of product (A or B) in the FMS.
Choose a simple manufacturing sequence represented by a sequential process, where first a
Base is made and then Pin. These sequences of controllable events are as follows;

• Product A “ Base` PinA “ 11´ 31´ 41´ 35´ 61´ 21´ 33´ 51´ 37´ 63;

• Product B “ Base`PinB “ 11´ 31´ 41´ 35´ 61´ 21´ 33´ 53´ 39´ 71´ 81´ 73´ 65.

0 1

0 1

0 1

0

1

2

0

1 2

3

4
5

0 1
2

3

0 1

2

0 1

C1 :
11

12

C2 :

21

22

41

42

Mill :

51

52
53

54

Lathe :

31
33

35

37
39

32
34

36

38

30

Robot :

65

63

61AM :

64

66

72

7374

71
C3 :

81

82
PD :

Figure 2.15: Flexible Manufacturing System automata model.

In Figure 2.15 all eight machines of the FMS are modeled as an automaton. The
specifications used to compute the supremal controllable sublanguage are in Figure 2.16.
The control problem is to guarantee no overflow and nor underflow in the buffers and also
guarantee that the closed-loop behavior is nonblocking. To give an idea of the scale of this
problem, the monolithic supervisor of the FMS used as an intermediate step to find the
abstraction has 45, 504 states and 200, 124 transitions.

CHAPTER 2. PRELIMINARIES 22

Figure 2.16: Flexible Manufacturing System specifications.

2.7.3 The Search For the Optimal Sequences

In this work an evolutionary algorithm (CSA) was employed in conjunction with a theoretic
result that guarantees that under certain conditions an abstraction of the closed-loop
behavior can be used to find the shortest makespan in a scheduling problem. Despite
the promising aspect of this optimization technique, it is not possible to affirm that the
solutions found are globally optimal because the technique is not an exact method.

Although scheduling problems belong to the NP class, which makes them hard to solve,
it is known that the abstraction reduces the total search space. Therefore, the optimization
becomes less computational costly. This way, based on the physical similarities between
an abstraction automaton and an acyclic orientated graph, one can argue in favor of
applying a shortest path algorithm like Dijkstra’s algorithm (Dijkstra, 1959), A˚ (Hart
et al., 1968), or Dynamic Programming (Bellman, 1958). However, finding the optimal
path that leads to the smallest makespan is not a trivial problem. That is due to the fact
that in the abstraction there are three characteristics that makes very time consuming
and cumbersome to apply this methods, which are:

CHAPTER 2. PRELIMINARIES 23

1. The transitions do not represent a cost value, but the kind of event (controllable, or
uncontrollable);

2. If the time information is added, the weights become dynamic (varying in regard of
the chosen path);

3. All the paths must have the same size, otherwise they cannot be applied in a real
system.

Another way to search for the optimal solution within the abstraction is to evaluate
all possible solutions for the shortest makespan. To accomplish this task a graph, or tree
search algorithm, like the Breadth First Search (BFS) (Moore, 1959), should be applied on
the abstracted automaton. The BFS begins its search in an arbitrary node of a graph and
then explores all of the neighbor nodes at the same depth. Once it finishes the exploration,
then it moves to the nodes at the next depth level. In this work, the implemented version
of the BFS should begin in the initial state of the abstraction of the closed-loop behavior
and keep the search until it reaches a marked state. Then, all possible solutions for a given
batch of products can be checked and the shortest makespan found is the global optimum.

However, before starting to construct the production sequences from the abstraction of
the closed-loop behavior, the number of possible solutions, for each one of the study cases
(Cluster Tool and FSM) must be checked. Due to the explosion of states, it is important
to know the size of the problem, in order to have enough computational resources to solve
it. The effort necessary to do so can be measured and evaluated by applying the sequence
counting algorithm from Alves (2018). In Table 2.1 the number of sequences found in the
closed-loop behavior (monolithic supervisor) and their abstractions for four DES literature
plants are presented:

• Simplified Manufacturing System (SMS) an extension of the small factory problem
(Wonham, 2015),

• Industrial Transfer Line (ITL) (De Queiroz & Cury, 2000),

• Cluster Tool, with radial layout and one robot in the mainframe and four process
modules (chambers) Section 2.7.1,

• Flexible Manufacturing System (FMS) Section 2.7.2.

For each case, the number of products manufactured were varied with the goal of
understanding its impact on the number of possible sequences to be found. All the initial
tests were executed on a notebook with an Intel Core I7-3537U 2.0 GHz processor with
8.0 GB of RAM. In addition, the UltraDES library from Alves et al. (2017) was used to
compute the supervisor and the abstraction.

CHAPTER 2. PRELIMINARIES 24

Table 2.1: Scheduling problems and the number of solutions.

Scheduling
Problem

Num. of
Machines

Num. of
Products

Num. of Sequences
in the Supervisor

Num. of Sequences
in the Abstraction

SMS 5
4 444, 855, 492, 680 6, 392
5 8.5ˆ 1015 141, 696
6 1.6ˆ 1020 3, 140, 702

ITL 6
4 1.6ˆ 1019 6, 331, 920
5 1.7ˆ 1025 686, 056, 800
6 1.8ˆ 1031 74, 333, 515, 200

Cluster Tool 6
4 1.3ˆ 1039 1.0ˆ 1017

5 1.3ˆ 1052 8.3ˆ 1022

6 1.2ˆ 1065 6.5ˆ 1028

FMS 8
(1,1) 9.7ˆ 1016 466, 711, 684
(2,2) 3.9ˆ 1042 3.8ˆ 1021

(3,3) " 1065 4.1ˆ 1034

The results shown in Table 2.1 make clear the magnitude of the presented problems.
Even though the abstraction method reduces the search space, the number of solutions
is still very high. The magnitude order for the FMS to produce two products (A “ 2
and B “ 2) is 1021 different solutions. Another aspect that should be addressed is the
optimization time, because it can grow exponentially with the size of the problem. In
Table 2.2, two scheduling problems are used to exemplify this issue. In the SMS, the
manufacturing of 6 products has 3ˆ 106 feasible sequences (solutions). To generate and
evaluate all of them took on average 12 minutes.

Table 2.2: Scheduling problems and the total optimization time.

Scheduling
Problem

Number of
Machines

Number of
Products

Num. of Sequences
in Abstraction

Optimization time
(min.)

SMS 5 6 3.1ˆ 106 12
ˆ148FMS 8 (1,1) 4.6ˆ 108 1, 776˚

Based on SMS optimization time and the fact that the FMS is around 148 times bigger
than SMS (in terms of number of sequences) the total optimization time for the FMS
would take 1, 776 minutes (29.6 hours). And this is only for a small instance (manufacturing
two products), even if the problem scaled linearly, it would be impracticable to solve it for
larger batches due to time and computational constraints.

2.8 Final Remarks

This chapter presented the main concepts related to Discrete Events Systems. It covered
the most important concepts used to understand the DES modeling of the scheduling
problems and the supporting ideas. Besides, the optimization method and its main features
were explained. At the end, based on the Section 2.7.3 an alternative to the optimization

CHAPTER 2. PRELIMINARIES 25

method was introduced. In the next chapter it is going to be presented how the ideas
introduced can be combined with the optimization methods.

3
Methodology

The goal of this work is to extend the results of the SCO and also to solve its main drawback,
the generation of infeasible solutions. This issue deeply impacts the SCO efficiency, by
increasing the optimization time. To solve this problem, a methodology that applies the
theoretical results of Vilela & Pena (2016), that allows the use of the abstraction of the
closed-loop behavior to generate strings for the optimization, is presented. These strings
are used as individuals for the chosen optimization method (CSA), which has among
the inputs, the set of individuals (population) and a mutation operator. Therefore, an
algorithm that uses the abstraction for creating individuals and also controlling mutation
was developed.

In this chapter two algorithms are going to be presented, the first is used to create the
population and to generate mutations for the CSA algorithm. The second is a heuristic
method that can be used as an alternative to the the CSA. However, before presenting
some definitions, the optimization problem is going to be stated.

3.1 Problem Statement

The optimization problem is to minimize the total production time (makespan) required
for a batch of products in a manufacturing system. Here, the problem is formally presented
as stated in Pena et al. (2016):

• Let Σ be the set of events associated to a plant (commands and responses), which is
divided into controllable events Σc and uncontrollable events Σuc;

26

CHAPTER 3. METHODOLOGY 27

• Let P be the set of instances of events from Σ which are associated to the production
of the complete batch, and let P c “ P X Σc be the subset of controllable events of P
which are associated to the production of the complete batch;

• Let Pk be an ordered set of the events of P , representing a production schedule
candidate, |P | “ |Pk|, and let P c

k denote the ordered subset of controllable events in
Pk;

• Let N “ tP c
1 , P

c
2 , ..., P

c
|N |u be the set of all permutations of the elements of Pc, which

result in feasible sequences, i.e., all ordered sets composed with the elements of Pc;

• Let Tk denote the time elapsed while the plant processes the sequence Pk. If the
sequence is unfeasible, Tk “ 8.

The scheduling optimization problem can be stated as:

P ˚ “ argmin
kPt1,...,|N |u

Tk.

3.2 Definitions

Before starting the optimization, two new properties regarding the transitions in and
out of a given state are presented. They will be used in conjunction with two notable
characteristics of an automaton state, the initial and marked states.

Definition 5. Let G “ pQ,Σ, δ, q0, Qmq be a deterministic automaton. A state q is called
a divergent state (DS) if |Γpqq| ą 1. The set QD “ tq P Q | Γpqq ą 1u is the set of all DS
states.

In words, if the number of active events is greater than one, this state is called a
divergent state and they can all be grouped in QD.

Definition 6. Consider s P LmpGq, then QDSpsq “ tq P QD | δpq0, s
1q “ q, s1 P su is the set

of divergent states in relation to s.

Definition 6 establishes the relationship between a string s and the DS states along its
path.

Example 5. To clarify Definitions 5 and 6, let G be the automaton, which has only
controllable events, Figure 3.1. The set of all DS is QD “ t2, 3, 6u. Consider a sequence of
events s “ abcabc in G. The set of all DS states in the path of s is QDSpsq “ t2, 3u.

To find a sequence of events that minimizes the makespan we can use the abstraction
(Theorem 1), Definitions 5 and 6. The aim is to create an initial sequence of controllable
events in which making a small change in the events will not turn it infeasible, then
evaluate the impact of such change in the overall makespan of the sequence.

CHAPTER 3. METHODOLOGY 28

1 2

5

3

6

9 10 11

4

7

8

a b
a

b
c

c

c

a

bb

b

a

c

Figure 3.1: Automaton G and its DS states filled in gray

Example 6. Consider a string of controllable events s “ α1α2α3α4α1α2α3α4, in G, where
the set of all DS is QD “ t2, 4, 5u. In this scenario, QDSpsq “ t2, 4u, Figure 3.2.

0 1 2

3

4

5

6 7

8

9 10 11
α1 α2

α1

α3

α2

α4α4

α2

α1

α3

α4
α1

α4

α3

Figure 3.2: Automaton G.

In order to produce a new string (snew), we change a subset of QDSpsq by picking, from
a divergent state, another path. Typically, we keep the initial part of the sequence (first
states in the path). The idea is to find a slightly different sequence. So, we can pick state
4 P QDSpsq and instead of continuing the sequence with event α4, we pick α1 and complete
the sequence until the marked state. The new sequence starts with α1α2α3α1 reaching a new
divergent state. At this point, another choice has to be made, between continuing with a4

or a2. Consider that α4 is picked, then the complete sequence is snew “ α1α2α3α1α4α2α3α4

and the new set QDSpsnewq “ t2, 4, 5u. This sequence is feasible when lifted to the complete
alphabet because P pSq has the observer property (Theorem 1). An algorithm is provided to
make such changes in the individual, in order to find other individuals.

In the next section, the process of creating individuals for the clonal selection algorithm
(discussed in Section 2.6) is going to be presented.

3.3 Individual Generation algorithm

This algorithm uses the closed-loop behavior of the system to encode a sequence of events
(an individual) s P LmpGq and through a series of modifications (mutations) in the original
sequence s a new individual for the optimization is generated.

Initially, an individual (Ind) is represented by a 3-tuple (Ind “ ps,QDS,Mspq), where s
is a sequence of controllable events, QDS is the set of divergent states in relation to s and
Msp is the makespan.

CHAPTER 3. METHODOLOGY 29

In order to generate a new individual from Ind one parameter should be defined. This
parameter is an analogy for the mutation and controls how much of the sequence is going
to be modified. Its implementation in the algorithm is given by the percentage of preserved
states or mutation rate (λ) of QDSpsq.

Besides, the active event function (Γ), the set of all states Q and the set of marked
states (Qm) are the inputs to the algorithm. The output solution is a 2-tuple pQDSnew , snewq

where Qnew Ď Q is the set of divergent states and snew is the new complete sequence of
controllable events.

Algorithm 2: Individual Generator
Input : PEqpQ,Σ, δ, q0, Qmq,Γ, QDS, s, λ

Output :QDSnew , snew,Msp

1 QDSnew Ð SelectDSpQDS, λq

2 q Ð LastpQDSnewq

3 snew Ð NewSequenceps, qq

4 while q R Qm do
5 if |Γpqq| ą 1 then
6 if q R QDSnew then QDSnew Y tqu

7 σ Ð RandompΓpqqq
8 else
9 σ Ð Γpqq

10 end
11 snew Ð snewσ

12 q Ð δpq, σq

13 end
14 MspÐMakespan.Evaluationpsnew, QDSnewq

In Algorithm 2, lines 1 to 3, the initial roundpλ ¨ |QDSpsq|q states are kept and included
in QDSnew (line 1) and the current state q becomes the last state in QDSnew(line 2). Also, the
prefix of the new sequence is obtained (line 3), by running the automaton from the initial
state to state q passing through states of QDSnew . The sequence snew is then interactively
generated based on the possible continuations from the states reached (lines 4 to 13) until
the marked state is reached. If another divergent state is reached in the path (line 5 to
8), the continuation from there is picked randomly and the state is added to QDSnewpsnewq.
Otherwise, the available event (in a none divergent state) is concatenated with snew. The
end of the execution of this algorithm happens when it reaches the marked state. Two
important aspects of the generating sequences from the closed-loop behavior are: the
guarantee of none blocking states and no presence of loops which allows any path naturally
flows to the marked state.

Example 7. We apply Algorithm 2 to Example 6 and the result is presented in Figure
3.3. The idea is to show how it can be used to generate a new sequence snew from s. So,

CHAPTER 3. METHODOLOGY 30

let s “ α1α2α3α1α2α4α3α4 and let λ “ 0.7. The set QDSpsq “ t2, 4, 5u is the set of divergent
states that are in the path o string s.

0 1 2

3

4

5

6 7

8

9 10 11
α1α1 α2

α1

α3

α2

α4α4

α2

α1

α3

α4
α1

α4

α3

Figure 3.3: PEq and the sequence s highlighted in gray.

With λ “ 0.7, 70% of the DS states in QDSpsq are added to QDSpsnewq “ t2, 4u. Then
the string snew is initialized as snew “ α1α2α3, in line 3. At this point, the execution
enters the while loop. Since state 4 P QDS, we run lines 5 to 8, and pick a continuation
randomly. Suppose that event α4 is picked in line 7. Then, snew “ α1α2α3α4 and q Ð 6.
From state 6 on, no divergent states are reached, so the complete sequence is going to
be snew “ α1α2α3α4α1α2α3α4, obtained by the execution of the “else” in lines 8 and 9 until
state 11 P Qm is reached. In Figure 3.4, the resulting sequence snew and its two DS states
QDSpsnewq “ t2, 4u are highlighted in gray.

0 1 2

3

4

5

6 7

8

9 10 11
α1α1 α2

α1

α3

α2

α4α4

α2

α1

α3

α4
α1

α4

α3

Figure 3.4: PEq and the sequence snew highlighted in gray.

By applying the individual generator algorithm it is possible to create new feasible
sequences of controllable events. This technique represents an efficient way to produce
solutions to the optimization problem, because the new individual has embedded in its
sequence of events the closed-loop behavior of the system which guarantees that it will run
in the complete (non abstracted) system. Although the individual generator algorithm
manages the creation of a new solution there are many other parameters responsible
to improve the performance of the optimization. The behavior of these parameters is
explained in Section 3.4.

3.3.1 Integration: CSA and DS states

Now that the basic concepts are presented, it is going to be explained how they are
integrated with the CSA algorithm. A population with size N is generated by applying

CHAPTER 3. METHODOLOGY 31

Algorithm 2 N times which creates random individuals for this population. Each individual
(Ind) is represent by 3-tuple Ind “ pseq,QDSpseqq,Msppseqqq:

• seq: Sequence of controllable events that produces a number of products;

• QDSpseqq : Set of divergent states related to the path of seq (Section 3.2);

• Msppseqq: Total production time (makespan) of the sequence seq.

In this scenario, there are two parameters that directly impact the individuals of the
new generation: the makespan and the set of divergent states. The first is used as fitness
value and to sort the population in rising order so the best individual is on top with the
smallest makespan and the sequence with the worst production time is on the bottom of
the ledger. The second parameter holds a crucial information about the mutation process.
As presented in Definition 6, the set of divergent states (QDS) is associated with the
sequence of events (s). Therefore, controlling the number of DS states preserved in QDSpsq

allows us to determine the intensity of the mutation. In the CSA method, Algorithm 1,
the parameter λ is responsible for the mutation rate. It controls how much an individual
will be modified this is analogous to how many DS states are going to be preserved in QDS.

Example 8. To better understand and clarify the mutation and the cloning processes
a diagram is provided, Figure 3.5. On the Population box, the N individuals of a given
population are presented sorted by makespan, from the best (on top) to the worst (on
bottom). In front of each individual, there is a rectangle with its own set of DS states QDS.
On top of all DS states sets, there is a ruler showing how much of its sequence is going to
be preserved and inside the rectangle a light blue shade highlights the mutated DS states.
The remaining area, the white part, represents the preserved DS states. In this example,
the best individual has 80% of its DS states preserved and 20% of mutation, while the worst
individual has only 10% preserved and 90% mutation. On the Offspring box, it is possible
to observe that the best individual not only has more clones, but also a small part of its
DS states are mutated. On the other hand, the worst individual (in the bottom) only has
one clone and a small fraction of the parent’s DS states is preserved.

3.4 Setting the optimization parameters

The clonal search algorithm implemented has seven parameters, that are responsible for
controlling the algorithm’s ability of converging to a better solution and influence the
optimization time. These parameters are:

• Population Size (N): sets the number of individuals in a population;

• Number of clones (nClones): represents the number of copies of a given individual;

CHAPTER 3. METHODOLOGY 32

Figure 3.5: Cloning process diagram.

• Initial population (popRandom or popMixed): indicates the source of the individuals
in the initial population, they can be randomly created or mixed (X%MPT +
Y%Random), the quantities of X and Y are predetermined;

• Mutation rate (λ): determines the percentage of the individual that will be mutated;

• Stop criteria (nGen): sets the number of generations without improvements in the
solution, in this case, without reaching a shorter makespan than the current one;

• Number of executions of the algorithm (nExec): indicates the number of executions
of the optimization.

To assist the reader to understand how these parameters impact the overall performance
of the clonal search algorithm, the FMS case was selected and the parameters (population
size, number of Clones, mix initial population, mutation rate (λ) and number of generations)
were tested. Despite of individual analysis of some parameters they are all correlated and
to have a deep understanding of them a statistical analyses is necessary. However, the
goal here is to give an overview of their behavior. In this analysis some basic values were
predetermined and classified as fixed, if they do not change over the experiments and as
variable, when they change. The parameters values and their classification are:

• Production of ten items (A “ 5, B “ 5) (Fixed),

• Number of Executions (nExec “ 50) (Fixed),

• Number of individuals selected (nIndSel “ 1) (Fixed),

CHAPTER 3. METHODOLOGY 33

• Population Size (N “ 100) (Variable),

• Number of clones (nClones “ 5) (Variable),

• Mutation rate (λ “ 5%) (Variable),

• Stop criteria (nGen “ 5) (Variable),

• Mixed initial population (Variable).

The first parameter analyzed was the population size and how it impacts the average
makespan and the total optimization time, which in these tests considered the total
number of executions. Figure 3.6 shows the decrease of the average makespan as the size
of the population increases as well as the the total optimization time. The reduction of
the average makespan means that CSA is capable of finding more solutions with shorter
makespan. On the other hand, the optimization time increases in what appears to be
a linear rate as the population becomes larger. However, for populations larger than 50
individuals, the increase in time is more significant than the reduction of the average
makespan. This way, a vertical rectangle is used to show the region, where the population
size presents best trade off regarding the average makespan.

Figure 3.6: The population size impacts in the average makespan and optimization time.

Another parameter that impacts the CSA performance (total time and average
makespan convergence) is the number of clones for each individual. As can be seen
in Figure 3.7, values larger than 15 clones per individual do not have a significant reduction

CHAPTER 3. METHODOLOGY 34

on the average makespan, but it can drastically increase the total optimization time. This
time the vertical rectangle area encapsulates the best values for the number of clones
found during practical tests.

Figure 3.7: The population size impacts in the average makespan and optimization time.

In the clonal algorithm, the parameter related with making modifications in the
individual is the mutation rate. Each generation the best individuals (the ones with
the shortest makespan) have less intense mutation and the worst have a more aggressive
mutation. Figure 3.8 shows the effects of varying this parameter.It can be noticed that
the increase of the mutation rate leads to the reduction of the total optimization time.
However, the mutation rate values above 0.5, or 50% increases of the average makespan,
which reduces the capability of the algorithm to converge. During tests, the most significant
results were found in the area inside the vertical rectangle in Figure 3.8.

The stop criteria used in this implementation of the CSA algorithm was the number of
generations without improvements, which means, once a certain amount of generations
is reached and the makespan has not got smaller, the algorithm stops the optimization,
otherwise it resets the count and starts it all over again. It can observed in Figure 3.9
that above 5 generation without improvements the total optimization time does not vary
much, but the average makespan oscillates around the value of 900. Since the number
of generations does not have a considerable impact in the overall time, the stop criteria
choice relays in the values with the smaller average makespan.

The last parameter is the rate of individuals provided by the algorithm Timed Maximum
Parallelism (MPT) in the initial population used. Mixing the individuals (random and

CHAPTER 3. METHODOLOGY 35

Figure 3.8: The population size impacts in the average makespan and optimization time.

Figure 3.9: The stop criteria and impacts in the average makespan and optimization time.

from other methods) in the first population can help the optimization algorithm to wide
its search, but it is necessary to determine the right ratio otherwise one type of solution
becomes predominant and gets the algorithm stucked in a local solution. In order to
understand how rate of individuals from the MPT influences the optimization three aspects

CHAPTER 3. METHODOLOGY 36

were observed: the average and the shortest makespan, and the total optimization time,
Figure 3.10.

Figure 3.10: The effects of different amounts of TMP individuals in the average makespan
and in the optimization time.

The analysis of Figure 3.10 makes clear that the lack of diversity (populations with
more than 60% of individuals from the Timed Maximum Parallelism) resulted in solutions
that were not able to assist the CSA algorithm to avoid the local optimum in most cases.
Besides, as the diversity increases, in other words the percentage of individuals from MPT
reduces (less than 50%), the average makespan becomes smaller than the value found by
the MPT alone (885) and most instances tested were capable of finding the value of 866,
which is the shortest found. Another impacted factor was the total optimization time.
Its value decreases as the percentage of individuals from the MPT reduces. Besides, the
dashed lines shows that most solutions below 0.65 of MPT individuals were capable to find
the shortest value. Another significant aspect of having more than just one individual form
for the MPT (despite of their similarity) is the fact that they suffer different mutation
rates. This allows the algorithm to escape the local optimum because as the mutation
rate increases the number of modifications on the individual increases too.

In this section a small over view on the CSA optimization parameters was provided
by showing how their values impact the average makespan and the total optimization
time. For each case study it was necessary to repeat these tests to understand how these
parameters respond in a different problem and choose the appropriated values.

CHAPTER 3. METHODOLOGY 37

3.5 Most Frequent Event Algorithm

During some preliminary tests it was possible to observe one characteristic emerging from
all the evaluated instances. In most of the cases, when a DS state was reached it became
noticeable that the best solution always privileged events that had already happened, than
events waiting for their first execution. This leads as to believe that the events on the
beginning of the production are prioritized over the ones at the end of the process.

Example 9. Consider the automaton G, in Figure 3.11 state 2, it is possible to make
events α1 and α3, but only event α1 was already made prior than reaching state 2. The
same can be observed in the DS states 4 and 5.

0 1 2

3

4

5

6 7

8

9 10 11
α1 α2

α1

α3

α2

α4α4

α2

α1

α3

α4
α1

α4

α3

Figure 3.11: The automaton G illustrates the presence of the most frequent events.

Based on the characteristics observed the Most Frequent Event algorithm was developed,
Algorithm 3. This method uses the automaton of the abstraction of the closed-loop behavior
to generate a sequence of controllable events that minimizes the production time. In lines
1 and 2, the current state q becomes the initial state of G and Qm is the set of marked
states of G. This algorithm goes from the initial state q until the marked state qm P Qm

passing through DS states along the way. The sequence snew is iteratively generated (lines
11). Every DS state reached is stored in QDSnew and the selected event σ is chosen by the
function GetMostFrequentEvent(), line 6. This method returns the most frequent event
based on the set of available events provided by the active events function Γpqq and the
events in the most frequent in the Events Table. If no divergent state is reached in the
path (line 7 to 9), the available event is concatenated with the sequence snew and saved,
line 11. The final steps are the updates of the Events Table by increasing the frequency of
the selected event σ, and the current state, lines 11 and 12

3.6 Final Remarks

In this chapter some new properties regarding the states of an automaton are introduced.
Then, it develops showing how this new properties are integrated in an algorithm to
generate sequences/individuals for the optimization. In addition an exploratory example
is given. It concludes by presenting a heuristic based on this new technique that works

CHAPTER 3. METHODOLOGY 38

Algorithm 3: Most Frequent Event
Input : G
Output : QDSnew , snew,Msp

1 Qm ÐMarkedStatepGq

2 q Ð InitialStatepGq

3 while q R Qm do
4 if |Γpqq| ą 1 then
5 QDSnew Ð q

6 σ Ð GetMostFrequentEventp Γpqq, EventsTablepqq
7 else
8 σ Ð Γpqq
9 end

10 snew Ð snewσ

11 Updatep EventsTable, σq

12 q Ð δpq, σq

13 end
14 MspÐMakespan.Evaluationpsnew, QDSnewq

independently of an optimization method to find solutions. In the next chapter, this two
new methods (the individual generator algorithm and the most frequent event algorithm)
will be applied on three study cases to evaluate their performances.

4
Experimental Results

In this chapter, the methodology presented in Chapter 3 was applied in two problems of
the DES literature, the Cluster Tool (Uzsoy et al., 1994) and the Flexible Manufacturing
System (De Queiroz et al., 2005). Each problem presented unique optimization challenges
related to their layout and the amount of manufactured products. To accomplish this task,
for each problem a set of production batches was established with different number of
products to be made. Moreover, the timed maximum parallelism (Alves et al., 2016a) was
used as a baseline method against the CSA algorithm and the MFE heuristic. In order to
compare the results, the run time and makespan were used. However to assure that the
abstraction presented in Section 2.4 could be used with these problems they were checked
for the presence of the observer property. This was accomplished by applying the observer
check method implemented in TCT (Feng & Wonham, 2006), all case studies presented
passed in the evaluation. Finally, all tests were executed on a notebook with an Intel Core
I7-3537U 2.0 GHz processor with 8.0 GB of RAM. In addition, the UltraDES library from
Alves et al. (2017) was used to compute the supervisor and the abstraction.

4.1 Procedure

In order to apply the results presented in this work (Algorithms 2 and 3) to solve a
scheduling problem, the following steps were performed:

• Obtain the model and specifications and compute the supremal controllable and
nonblocking sublanguage S;

39

CHAPTER 4. EXPERIMENTAL RESULTS 40

• Apply the natural projection (P) to the controllable events over S ;

• Check the Observer Property in P pSq. If the projection is OP, then proceed;

• Make the parallel composition between the natural projection and the product
specification, PEq “ P pSq||Eq;

• Apply an optimization technique to find a sequence (sopt) that minimizes makespan.
In this work, two optimization techniques were proposed:

• In the CSA (Algorithm 1):

– Input the abstraction PEq and the parameters (population size, mutation rate,
number of clones and stop criteria). Those parameters are adjusted with a
series of tests, as described in Section 3.4;

– Generate the population (Algorithm 2), clone and mutate.

– Evaluate each individual and the best one of each population survives to
compose the next generation. This process is repeated until the stop criteria is
reached.

– Execute the CSA 30 times to calculate the average and the standard deviation
of the makespan for a given production batch;

– Output sopt, the sequence with smaller makespan found.

• The MFE (Algorithm 3) can be executed directly.

In addition to basic CSA with random individuals in the initial population, two
other sources of individuals were tested: MPT and MFE individuals. The reason for
this approach is to understand the impact of these new sources of solutions in the CSA
algorithm. In the next few sections, we present the results on each one of the systems
described in Section 2.7.

4.2 The Cluster Tool

This manufacturing system can be constructed with many different layouts, for the
purpose of this work, the radial architecture with one and two robots in the mainframe
were considered.

Initially, five different batches of wafers had their makespan evaluated, with sizes of
6, 12, 25, 50 and 100. For each production batch, 30 runs of the optimization method CSA
with three different initial populations (random, MPT and MFE individuals) were made.
The algorithm Most Frequent Event (Section 3.5) was also applied.

CHAPTER 4. EXPERIMENTAL RESULTS 41

4.2.1 One Robot Cluster Tool

The first problem tested was the radial cluster tool layout with one robot and the results
can be seen in Table 4.3. Before starting to evaluate the makespan of the batches, it is
necessary to know the production time associated with each machine presented in the
set up. The CSO uses the time interval, between a pair of events (a controllable and its
counter part uncontrollable) to evaluate the makespan. For the cluster tool with one robot,
these time intervals are shown in Table 4.1.

Table 4.1: Time interval for the Cluster Tool with one robot and four process modules,
(Nunes, 2018).

Machine Controllable
Event

Uncontrollable
Event

Time Interval
(t.u.)

LL
11 12 535
13 14 706

R1

21 22 474
23 24 739
25 26 781
27 28 781
29 30 690

C1 101 102 50
C2 201 202 50
C3 301 302 50
C4 401 402 50

Due to the possibility of varying the process chambers (C1, C2, C3 and C4) production
time, they will be presented along with the optimization parameters in Table 4.2. In
this table, the two first’s columns show the cluster tool layout’s configuration (number of
chambers and process modules time interval), then the parameters for the optimization
algorithm are presented, which tuning process was explained in Section 3.4. To simplify
the tests, only one set of the optimization parameters was used to evaluate all five batches.

Table 4.2: Optimization parameters used for the cluster tool with one robot problem.

CT Characteristics Optimization Parameters
Number of
Chambers

Process
Module

Population
Size

Mutation
Rate %

Gen. Without
Improvement

Number
of Clones

Maximum of
Generations

4 50 20 25 5 5 40

For this experiment, the two proposed optimization methods, the MFE algorithm and
the CSA with three variation are going to be tested:

• the Most Frequent Event (MFE);

• the CSA ` MFE: combines the CSA algorithm with an initial population of 20% of
its individuals from the MFE heuristic and 80% randomly created;

CHAPTER 4. EXPERIMENTAL RESULTS 42

• the CSA ` MPT: combines the CSA algorithm with an initial population of 20% of
its individuals from the MPT heuristic and 80% randomly created;

• the CSA with random initial population (CSA Rand Pop).

In Table 4.3, each optimization technique is represented by two columns, one for the
Runtime (total simulation time in minutes - RT) and another for the makespan (MKS).
Under both CSA variants, the runtime represents the total optimization time with the 30
executions of the optimization algorithm and in the makespan column only the shortest
makespan was presented. All the proposed methods are compared against the MPT

algorithm.

Table 4.3: One robot cluster tool makespan optimization results

MPT MFE CSA + MPT CSA Rand.

Prod. RT
(min.)

MKS
(t.u.)

RT
(min.)

MKS
(t.u.)

RT
(min.)

MKS
(t.u.)

RT
(min.)

MKS
(t.u.)

(6) 0.00143 22,131 0.00017 22,131 0.50 22,131 0.53 22,131
(12) 0.0022 42,921 0.00007 42,921 1.04 42,921 0.98 42,921
(25) 0.0052 87,966 0.00015 87,966 2.16 87,966 2.26 87,966
(50) 0.0110 174,591 0.00028 174,591 4.34 174,591 4.58 174,591
(100) 0.0223 347,841 0.0005 347,841 8.46 347,841 9.13 347,841

The results presented in Table 4.3 show that all proposed methods were capable of
finding the same solution for the shortest makespan, which was the same found by the
MPT. In addition, the MFE heuristic was the fastest method, regarding the runtime for
all batches evaluated. Although, the CSA variants found the same makespan values as the
MPT, in most instances tested the CSA with mixed initial population was faster than the
CSA with random population.

In Table 4.4, the average makespan and the standard deviation (S.D.) found during the
30 runs of the CSA algorithm are presented. In this table, the results for all three variants
of the CSA algorithm are the same as the smallest values in Table 4.3. The standard
deviation value confirms that, in all runs the same makespan was found.

Table 4.4: One robot cluster tool makespan optimization results for the average makespan
in 30 runs.

CSA + MFE
Initial Population

CSA + MPT
Initial Population

CSA Random
Initial Population

Prods
Average

Makespan
(t.u.)

S.D.
Average

Makespan
(t.u.)

S.D.
Average

Makespan
(t.u.)

S.D.

(6) 22,131 0 (t.u.) 0 22,131 0
(12) 42,921 0 42,921 0 42,921 0
(25) 87,966 0 87,966 0 87,966 0
(50) 174,591 0 174,591 0 174,591 0

(100) 347,841 0 347,841 0 347,841 0

CHAPTER 4. EXPERIMENTAL RESULTS 43

4.2.2 Two Robots Cluster Tool

The second architecture of the cluster tool evaluated had two robots working in the
mainframe. Each robot is responsible for half of the wafer manufacturing process. As in
Section 4.2.1, it is necessary to know the production time of each machine in this new
set up, which is also done by using the time interval between events (controllable and its
counter part uncontrollable), Table 4.5.

Table 4.5: Time interval for the Cluster Tool with two robot and four PM modules,(Nunes,
2018).

Machine Controllable
Event

Uncontrollable
Event

Time Interval
(t.u.)

LL
11 12 535
13 14 706

R1

21 22 474
23 24 739
25 26 781

R2
31 32 672
33 34 690

C1 101 102 50
C2 201 202 50
C3 301 302 50
C4 401 402 50

Once more, the optimization parameters used were found after applying a similar
process to the one explained in Section 3.4 and they can be seen in Table 4.6. In this
table, under CT Characteristics column there are the CT’s number of process chambers
(C1, C2, C3, ..., CN) and process modules time interval and under Optimization Parameters
the values employed in optimization algorithm. Despite of the fact that this problem has
one extra robot in the mainframe the parameters were similar to the case with one robot.

Table 4.6: Optimization parameters used for the cluster tool with two robots problem.

CT Characteristics Optimization Parameters
Number of
Chambers

Process
Module

Population
Size

Mutation
Rate %

Gen. Without
Improvement

Number
of Clones

Maximum of
Generations

4 50 20 25 5 5 40

Again, the two optimization methods proposed the Most Frequent Event (MFE) and
the CSA with three different initial populations (MFE, MPT and Random) are going to
be tested. Here 20% of the initial population comes from the MPT, or MFE heuristic and
80% are randomly created for the CSA.

The results presented in Table 4.7 show that all CSA variants tested were capable of
reaching the same shortest makespan value in all batches evaluated, as accomplished by

CHAPTER 4. EXPERIMENTAL RESULTS 44

MPT. Despite of its shortest runtime for all batches, the pure MFE heuristic was not
capable to find the same, or a smaller, value for the shortest makespan than the MPT.

Table 4.7: Two robots cluster tool makespan optimization results

MPT MFE CSA + MPT CSA Rand

Prod RT
(min.)

MKS
(t.u.)

RT
(min.)

MKS
(t.u)

RT
(min.)

MKS
(t.u.)

RT
(min.)

MKS
(t.u.)

(6) 0.0002 14,767 0.0002 18,367 0.49 14,767 0.66 14,767
(12) 0.0003 26,731 0.0001 34,771 0.96 26,731 1.19 26,731
(25) 0.0007 52,653 0.0001 70,313 1.97 52,653 2.53 52,653
(50) 0.0012 102,503 0.0003 138,663 3.86 102,503 4.81 102,503
(100) 0.0026 202,203 0.0006 275,363 7.54 202,203 9.38 202,203

Once again, the results in Table 4.8 show that in all 30 runs the algorithm (in its
three variants of the CSA) converged for the smallest solution found (similar to the MPT
method). This is confirmed with the standard deviation equals to zero.

Table 4.8: Two robots cluster tool makespan optimization results

CSA + MFE
Initial Population

CSA + MPT
Initial Population

CSA Random
Initial Population

Prods
Average
Makespan

(t.u.)
S.D.

Average
Makespan

(t.u.)
S.D.

Average
Makespan

(t.u.)
S.D.

(6) 14,767 0 14,767 0 14,767 0
(12) 26,731 0 26,731 0 26,731 0
(25) 52,653 0 52,653 0 52,653 0
(50) 102,503 0 102,503 0 102,503 0
(100) 202,203 0 202,203 0 202,203 0

4.3 The Flexible Manufacturing System

The FMS can manufacture two types of products (A and B). Each batch, the same amount
of products A and B were made with batches ranging from 1 to 10 products.

The first step before starting to evaluate the makespan of the batches is to know the
production time associated with each machine presented in the set up. In Table 4.9, the
time intervals for the machines in FMS expressed in time units (t.u) are shown. In this
table the controllable event 61 does not have an uncontrollable counterpart, so after it
happens 15 t.u later, it allows the events 63 or 65 to happen. The optimization parameters
used are presented in Table 4.10.

The results using the MFE heuristic and the CSA algorithm variants are presented in
Table 4.11, where the number of products (Prods) A and B are identified as (nA, nB). For

CHAPTER 4. EXPERIMENTAL RESULTS 45

Table 4.9: Time interval between controllable and uncontrollable events for the FSM.

Machine Control.
Events

Uncontrol.
Events

Time Interval
(t.u.)

C1 11 12 26
C2 21 22 26

Robot

31 32 22
33 34 20
35 36 17
37 38 25
39 30 21

Mill 41 42 31

Lathe 51 52 39
53 54 33

AM
61 - 15
63 64 27
65 66 27

C3 71 72 26
73 74 26

PD 81 82 25

Table 4.10: Optimization parameters used for the FMS problem.

Optimization Parameters
Population Size Mutation Rate % Stop Criteria Number of Clones Maximum of Generations

25 15 11 15 30

this experiment, the CSA with mixed initial population (from MFE and MPT) had 15%
of the total initial population and 85% randomly created, this values were defined during
preliminary tests.

Table 4.11: FMS Makespan optimization using the proposed methods

MFE CSA + MFE
Initial Population

CSA + MPT
Initial Population

CSA Random
Initial Population

Prods. RT
(min.)

MKS
(t.u)

RT
(min.)

MKS
(t.u)

RT
(min.)

MKS
(t.u)

RT
(min.)

MKS
(t.u)

(1, 1) 0.0002 307 0.81 238 0.45 238 0.50 238
(2, 2) 0.00002 590 1.44 395 0.83 395 0.85 395
(3, 3) 0.00002 807 1.49 552 1.11 552 1.25 552
(4, 4) 0.00002 1,027 1.96 709 1.22 709 1.52 709
(5, 5) 0.00005 1,247 2.21 866 1.37 866 1.53 866
(6, 6) 0.0001 1,467 2.87 1,023 1.53 1,023 2.03 1,023
(7, 7) 0.00011 1,670 3.56 1,180 1.44 1,180 2.40 1,180
(8, 8) 0.00011 1,907 4.26 1,337 1.64 1,337 3.30 1,337
(9, 9) 0.00012 2,127 5.03 1,494 1.75 1,513 3.81 1,494
(10, 10) 0.00025 2,347 4.44 1,651 2.01 1,670 4.98 1,651

As can be seen in Table 4.11, the three CSA variants performed better than the MFE

CHAPTER 4. EXPERIMENTAL RESULTS 46

approach. The CSA using a random initial population performed slightly better than the
CSA ` MFE in regard to the optimization time. A surprising result came from the CSA `

MPT, which was not able to find the smallest makespan for a couple of batches (p9, 9q and
p10, 10q). It was expected that the populations with the mixed individuals would perform
better once pre-optimized individuals were used. It turned out that the algorithm was
stuck in local optimal sequences while the random population allowed a wider exploration
of the search universe.

In order to understand the differences among the three variants of the initial population
of the CSA, the average and the standard deviation of the makespan were analyzed and
the results placed in Table 4.12. This table shows that for the batches of sizes p1, 1q and
p2, 2q the three variants of the CSA were capable of finding the smallest makespan on every
run with zero standard deviation. But only the CSA ` MPT and the CSA Random were
able to have the same result for the batch p3, 3q. When compared with the CSA ` MFE,
the CSA Random had the smallest standard deviation in most of the tested instances.
And despite the fact that the CSA ` MPT has the smallest standard deviation, it was
capable of finding the smallest makespan for the batches of p9, 9q and p10, 10q. For this
reason the CSA Random is going to be used as base case to compare with other methods.

Table 4.12: Average and standard deviation of the FMS makespan in 30 runs of the CSA.

CSA + MFE
Initial Population

CSA + MPT
Initial Population

CSA Random
Initial Population

Prods.
Average

Makespan.
(t.u.)

S.D.
Average

Makespan.
(t.u.)

S.D.
Average

Makespan.
(t.u.)

S.D.

(1, 1) 238.0 0 238.0 0 238.0 0
(2, 2) 395.0 0 395.0 0 395.0 0
(3, 3) 553.1 4.1 552.0 0 552.0 0
(4, 4) 713.1 7.3 713.2 7.3 714.0 8,3
(5, 5) 878.5 9.9 878.1 8.4 874.9 9.5
(6, 6) 1,044.8 15.0 1,043.2 11.8 1,037.3 6.7
(7, 7) 1,208.9 18.1 1,196.4 5.7 1,204.2 12.1
(8, 8) 1,365.13 20.9 1,355.7 0.79 1,358.7 12.9
(9, 9) 1,525.3 15.2 1,513 0 1,522.9 15.1
(10, 10) 1,693.9 26.27 1669.4 3.5 1687.1 16.8

In Table 4.13, the optimization results applying the CSA with random initial population,
the MPT method and the formal verification approach (Malik & Pena, 2018) are presented.
The formal verification evaluates each and every sequence that produces a batch of each
size, so it finds the optimal sequence. That justifies its always higher runtime. Using Malik
& Pena (2018), it is possible to evaluate the quality of the solution.

In this context, one surprising result came from the CSA using random initial population.
The CSA algorithm was capable of finding the sequence with the optimal makespan value

CHAPTER 4. EXPERIMENTAL RESULTS 47

Table 4.13: CSA with random initial population versus the MPT and the Formal Verifica-
tion in the FMS Makespan optimization.

MPT Formal
Verification

CSA Random
Initial Population

Prods. RT
(min.)

MKS
(t.u.)

RT
(min.)

MKS
(t.u.)

RT
(min.)

MKS
(t.u.)

(1, 1) 0.002 272 0.6 238 0.50 238
(2, 2) 0.004 414 2.7 395 0.85 395
(3, 3) 0.009 571 5.0 552 1.25 552
(4, 4) 0.018 728 7.5 709 1.52 709
(5, 5) 0.027 885 10.2 866 1.53 866
(6, 6) 0.04 1,042 14.0 1,023 2.03 1,023
(7, 7) 0.056 1,199 17.5 1,180 2.40 1,180
(8, 8) 0.074 1,356 21.5 1,337 3,29 1,337
(9, 9) 0.095 1,513 24.5 1,494 3.81 1,494
(10, 10) 0.12 1,670 30.2 1,651 4.98 1,651
(11, 11) 0.48 1,827 36.4 1,808 5.87 1,808
(12, 12) 0.54 1,984 42.0 1,965 6.75 1,983
(13, 13) 0.62 2,141 45.1 2,122 7.42 2,155
(14, 14) 0.71 2,298 53.4 2,279 8.66 2,297
(15, 15) 0.84 2,455 61.7 2,436 8.55 2,469
(16, 16) 0.96 2,612 - - 9.17 2,644
(17, 17) 1.07 2,769 - - 10.06 2,798
(18, 18) 1.21 2,926 - - 10.24 2,979
(19, 19) 1.41 3,083 - - 11.23 3,144
(20, 20) 1.48 3,240 - - 14.39 3,308

for instances ranging from p1, 1q until p11, 11q. Besides, it was accomplished six times faster,
than the verification method in the production batch p11, 11q, Table 4.13. The fact that
the algorithm is capable of evaluating batches larger than p15, 15q, it is another advantage
over the Formal Verification that is limited to p15, 15q.

However, despite the success on evaluating larger batches, from the instance p12, 12q
on, the decay in performance became noticeable and was evidentiated by the increase
on the makespan, when compared with the MPT. A possible solution for this issue is to
re-calibrate the algorithm’s parameters, because as they are presented in Table 4.10, it
seems that they are better adjusted for batches p1, 1q to p11, 11q.

To understand the level of progress brought by the new method of generating individuals
(proposed in this work) for the SCO, the number of evaluations of the objective function
and the total optimization time (in minutes) were compared to Costa et al. (2018). The
results can be seen in Table 4.14, where four initial batches (from 1, 1 to 4, 4) are tested.

In all instances tested the CSA with Random initial population made less evaluations
of the objective function (O.F.) and in the worst cases the batch with size p4, 4q the number
of evaluation was around 3, 500 times smaller. For this instance the SCO normally spent

CHAPTER 4. EXPERIMENTAL RESULTS 48

Table 4.14: SCO (Costa et al., 2018) versus CSA with random initial population in the
FMS Makespan optimization.

SCO CSA Random Population

Products Average Number of
Evaluation of O.F.

Total Time
(Min.)

Average Number of
Evaluation of O.F.

Total Time
(Min.)

(1,1) 34,680 5.09 2,171 0.56
(2,2) 541,970 95.62 2,216 0.94
(3,3) 2,151,400 636.18 2,345 1.49
(4,4) 6,746,900 3,256.16 1,946 1.67

3, 256 minutes, which are equivalent to 54 hours while the CSA Random would need 1.67
minutes.

4.4 Final Remarks

This chapter presented the experimental results for the proposed techniques on three
optimization problems. It was possible to see that the two new methods (the CSA +
individual generation heuristic and the MFE heuristic) were capable of producing solutions
that in some cases were faster than the baseline (MPT) and in others it was able to find
the same solution as the exactly method but faster than it. Besides when compared with
the previous version of the SCO significant gains in speed were reported.

5
Conclusions

In this dissertation two methods for solving the problem of finding the optimal scheduling
were presented. The first was an algorithm that creates solutions/individuals for an
evolutionary algorithm (the clonal selection algorithm). One particular aspect of these
methods was the use of the abstraction of the closed-loop behavior in the creation of
individuals. The second method was the Most Frequent Event algorithm which is a heuristic
algorithm that favors the events that more often are available during the operation of
the system. In spite of not guaranteeing optimal results both methods in general were
capable of finding the best solutions. The MFE was the fastest regarding the run time in
all instances tested, while the CSA + Random individual generation algorithm presented
the shortest makespan values.

This work applies the theoretical result of Vilela & Pena (2016) to generate solutions
for the optimization of scheduling problems. One of the major advantages of using the
abstraction is the reduction of the problem’s search universe. The proposed method used
the supervisor control theory to create a solution that encodes the closed-loop behavior
of the system and combine it with the clonal search algorithm. In addition with this
technique no unfeasible sequence is produced, in another words, all solutions found can be
executed in the system making the approach very efficient.

Our findings in the studies cases show that, in problems were the optimal solution
is known, the proposed method was able to find it. That was shown in the FMS study
case, where the same solution obtained by the formal verification method could be found
for production batches ranging from p1, 1q to p11, 11q when using the CSA with random

49

CHAPTER 5. CONCLUSIONS 50

individuals. This result was presented in Rafael & Pena (2018). Besides, the proposed
method was capable of solving the FMS problem for batches larger than the Formal
Verification. Despite this fortunate outcome the process of setting the optimization
parameters proved to be one of the biggest challenges of this work because of considerable
number of parameters to set and their correlation.

5.1 Future Research

Some possible future developments:

• Evaluate the SCO-CONCAT performance, when the traditional SCO is replaced for
the results found in this work, in the process of generating the MPS;

• Use other heuristic methods integrated with the proposed methodology like the VNS,
the Ant colony algorithm among others;

• Extend the methodology proposed to multiobjective optimization problems;

• Develop an automatic method for setting the parameters of the CSA;

• Adjust the most frequently event heuristic to improve its solutions for inbalenced
number of events systems.

Bibliography

Abdeddaïm, Y., Asarin, E., Maler, O., et al. (2006). Scheduling with timed automata.
Theoretical Computer Science, 354(2), 272–300. Cited in page 1.

Akesson, K., Fabian, M., Flordal, H., & Malik, R. (2006). Supremica-an integrated
environment for verification, synthesis and simulation of discrete event systems. In 8th
International Workshop on Discrete Event Systems (WODES) (pp. 384–385).: IEEE.
Cited in page 5.

Alves, L. V., Bravo, H. J., Pena, P. N., & Takahashi, R. H. (2016a). Planning on discrete
events systems: A logical approach. In International Conference on Automation Science
and Engineering (CASE) (pp. 1055–1060).: IEEE. Cited 4 times in the pages 1, 3, 4,
and 39.

Alves, L. V., Martins, L. R., & Pena, P. N. (2017). Ultrades - a library for modeling,
analysis and control of discrete event systems. Proceedings of the 20th World Congress
of the International Federation of Automatic Control, 50(1), 5831–5836. Cited 3 times
in the pages 13, 23, and 39.

Alves, L. V., Pena, P. N., & Takahashi, R. H. (2016b). Planejamento da produção baseado
no critério do máximo paralelismo com restrições temporais. Anais do XXI Congresso
Brasileiro de Automática, CBA. Cited 2 times in the pages 4 and 15.

Alves, M. C. (2018). Abstrações de supervisores localmente modulares para aplicação na
solução de problemas de planejamento, dissertação (mestrado), 2018. Programa de Pós -
Graduação em Engenharia Elétrica - PPGEE. Cited 3 times in the pages 9, 10, and 23.

Arisha, A., Young, P., & El Baradie, M. (2001). Job shop scheduling problem: an overview.
International Conference for Flexible Automation and Intelligent Manufacturing (FAIM
01), (pp. 682–689). Cited 2 times in the pages 2 and 3.

Aytug, H., Lawley, M. A., McKay, K., Mohan, S., & Uzsoy, R. (2005). Executing production
schedules in the face of uncertainties: A review and some future directions. European
Journal of Operational Research, 161(1), 86–110. Cited in page 2.

51

BIBLIOGRAPHY 52

Baker, K. R. & Trietsch, D. (2013). Principles of sequencing and scheduling. John Wiley
& Sons. Cited 2 times in the pages 2 and 3.

Bellman, R. (1958). On a routing problem. Quarterly of applied mathematics, 16(1), 87–90.
Cited in page 22.

Bellman, R. E. & Dreyfus, S. E. (2015). Applied dynamic programming. Princeton
University Press. Cited 2 times in the pages 2 and 3.

Brucker, P., Jurisch, B., & Sievers, B. (1994). A branch and bound algorithm for the
job-shop scheduling problem. Discrete Applied Mathematics, 49(1-3), 107–127. Cited in
page 3.

Cassandras, C. G. & Lafortune, S. (2009). Introduction to discrete event systems. Springer
Science & Business Media. Cited in page 1.

Charnes, A. & Cooper, W. W. (1962). Programming with linear fractional functionals.
Naval Research logistics quarterly, 9(3-4), 181–186. Cited in page 3.

Costa, T. A., de Oliveira, A. C., Pena, P. P., & Takahashi, R. H. (2012). An ant system
algorithm for task scheduling in a flexible manufacturing cell with supervisory control.
In XIX Congresso Brasileiro de Automática, CBA, volume 12 (pp. 2515–2522). Cited
in page 5.

Costa, T. A., Pena, P. N., & Takahashi, R. H. (2018). Sco-concat: a solution to a
planning problem in flexible manufacturing systems using supervisory control theory
and optimization techniques. Journal of Control, Automation and Electrical Systems,
(pp. 1–12). Cited 5 times in the pages xi, 1, 5, 47, and 48.

Cury, J. E. R. (2001). Teoria de controle supervisório de sistemas a eventos discretos. V
Simpósio Brasileiro de Automação Inteligente (Minicurso). Cited in page 8.

De Castro, L. N. & Von Zuben, F. J. (2002). Learning and optimization using the clonal
selection principle. IEEE Transactions on Evolutionary Computation, 6(3), 239–251.
Cited 2 times in the pages 6 and 15.

De Queiroz, M. H. & Cury, J. E. (2000). Modular supervisory control of large scale discrete
event systems. In Discrete Event Systems (pp. 103–110). Springer. Cited in page 23.

De Queiroz, M. H., Cury, J. E., & Wonham, W. M. (2005). Multitasking supervisory
control of discrete event systems. Discrete Event Dynamic Systems, 15(4), 375–395.
Cited 4 times in the pages 5, 17, 20, and 39.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
mathematik, 1(1), 269–271. Cited in page 22.

BIBLIOGRAPHY 53

Feng, L. & Wonham, W. M. (2006). Tct: A computation tool for supervisory control
synthesis. In 8th International Workshop on Discrete Event Systems(WODES) (pp.
388–389).: IEEE. Cited 2 times in the pages 17 and 39.

Garey, M. R. & Johnson, D. S. (1979). Computers and intractability: a guide to np-
completeness. Cited in page 1.

Garey, M. R. & Johnson, D. S. (1980). Computers and intractability: A guide to the
theory of np-completeness. Bulletin (New Series) of the American Mathematical Society,
3(2), 898–904. Cited in page 2.

Ghallab, M., Nau, D., & Traverso, P. (2016). Automated planning and acting. Cambridge
University Press. Cited in page 3.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2), 100–107. Cited in page 22.

Hill, R. C. & Lafortune, S. (2016). Planning under abstraction within a supervisory control
context. In 55th Conference on Decision and Control (CDC) (pp. 4770–4777).: IEEE.
Cited in page 4.

Hoitomt, D. J., Luh, P. B., & Pattipati, K. R. (1993). A practical approach to job-shop
scheduling problems. IEEE Transactions on Robotics and Automation, 9(1), 1–13. Cited
in page 3.

Jula, P. & Leachman, R. C. (2010). Coordinated multistage scheduling of parallel batch-
processing machines under multiresource constraints. Operations Research, 58(4-part-1),
933–947. Cited in page 17.

Kobetski, A. & Fabian, M. (2006). Scheduling of discrete event systems using mixed
integer linear programming. In 2006 8th International Workshop on Discrete Event
Systems (pp. 76–81).: IEEE. Cited 2 times in the pages 3 and 4.

Lee, C.-Y., Piramuthu, S., & Tsai, Y.-K. (1997). Job shop scheduling with a genetic
algorithm and machine learning. International Journal of Production Research, 35(4),
1171–1191. Cited in page 3.

Lee, S. & Ni, J. (2012). Genetic algorithm for job scheduling with maintenance consideration
in semiconductor manufacturing process. Mathematical Problems in Engineering, 2012.
Cited 2 times in the pages ix and 17.

López-Mellado, E., Villanueva-Paredes, N., & Almeyda-Canepa, H. (2005). Modelling
of batch production systems using petri nets with dynamic tokens. Mathematics and
Computers in Simulation, 67(6), 541–558. Cited in page 1.

BIBLIOGRAPHY 54

Malik, R. & Pena, P. N. (2018). Optimal task scheduling in a flexible manufacturing
system using model checking. In 2018 14th International Workshop on Discrete Event
Systems (WODES): IEEE. Cited 4 times in the pages ix, 3, 4, and 46.

Masud, A., Al Bashir, M., & Islam, M. Z. (2011). Approach to job-shop scheduling problem
using rule extraction neural network model. Global Journal of Computer Science and
Technology. Cited in page 3.

Meziane, F., Vadera, S., Kobbacy, K., & Proudlove, N. (2000). Intelligent systems in
manufacturing: current developments and future prospects. Integrated Manufacturing
Systems, 11(4), 218–238. Cited in page 3.

Moore, E. F. (1959). The shortest path through a maze. In Procedings of the International
Symposium on Switching Theory, 1959 (pp. 285–292). Cited in page 23.

Nunes, M. J. (2018). Estudo de desempenho do cluster tool - abordagem baseada na teoria
de controle supervisório, dissertação (mestrado), 2018. Programa de Pós - Graduação
em Engenharia Elétrica - PPGEE. Cited 3 times in the pages xi, 41, and 43.

Oliveira, A. C., Costa, T. A., Pena, P. N., & Takahashi, R. H. (2013). Clonal selection
algorithms for task scheduling in a flexible manufacturing cell with supervisory control.
In 2013 IEEE Congress on Evolutionary Computation (CEC) (pp. 982–988).: IEEE.
Cited in page 5.

Panek, S., Stursberg, O., & Engell, S. (2004). Job-shop scheduling by combining reachability
analysis with linear programming. In Proceedings of the 7th International Workshop on
Discrete Event Systems (pp. 199–204). Cited 2 times in the pages 3 and 4.

Pena, P. N., Bravo, H. J., da Cunha, A. E., Malik, R., Lafortune, S., & Cury, J. E. (2014).
Verification of the observer property in discrete event systems. IEEE Transactions on
Automatic Control, 59(8), 2176–2181. Cited in page 10.

Pena, P. N., Costa, T. A., Silva, R. S., & Takahashi, R. H. (2016). Control of flexible
manufacturing systems under model uncertainty using supervisory control theory and
evolutionary computation schedule synthesis. Information Sciences, 329, 491–502. Cited
5 times in the pages 3, 4, 5, 6, and 26.

Pinedo, M. L. (2016). Scheduling: theory, algorithms, and systems. Springer. Cited 3
times in the pages 1, 2, and 4.

Rafael, G. C. & Pena, P. N. (2018). Using an abstraction of the supervisor to solve a
planning problem in manufacturing systems. Anais do XXII Congresso Brasileiro de
Automática, CBA. Cited 3 times in the pages v, vi, and 50.

BIBLIOGRAPHY 55

Ramadge, P. J. & Wonham, W. M. (1989). The control of discrete event systems.
Proceedings of the IEEE, 77(1), 81–98. Cited 3 times in the pages 2, 3, and 10.

Shin, Y.-H., Lee, T.-E., Kim, J.-H., & Lee, H.-Y. (2001). Modeling and implementing a
real-time scheduler for dual-armed cluster tools. Computers in Industry, 45(1), 13–27.
Cited in page 17.

Silva, R. S., Oliveira, A. C., Pena, P. N., & Takahashi, R. H. (2011). Algoritmo clonal para
job shop scheduling com controle supervisório. X Simpósio Brasileiro de Automação
Inteligente, (pp. 1376–1381). Cited in page 5.

Su, R. (2012). Abstraction-based synthesis of timed supervisors for time-weighted systems.
Proceedings of the International Federation of Automatic Control, IFAC, Volume, 45(29),
128–134. Cited 2 times in the pages 1 and 4.

Su, R., Van Schuppen, J. H., & Rooda, J. E. (2012). The synthesis of time optimal
supervisors by using heaps-of-pieces. IEEE Transactions on Automatic Control, 57(1),
105–118. Cited in page 3.

Su, R. & Woeginger, G. (2011). String execution time for finite languages: Max is easy,
min is hard. Automatica, 47(10), 2326–2329. Cited in page 11.

Uzsoy, R., Lee, C.-Y., & Martin-Vega, L. A. (1994). A review of production planning
and scheduling models in the semiconductor industry part ii: Shop-floor control. IIE
Transactions, 26(5), 44–55. Cited 2 times in the pages 17 and 39.

Vilela, J. N. & Pena, P. N. (2016). Supervisor abstraction to deal with planning problems
in manufacturing systems. In 13th International Workshop on Discrete Event Systems
(WODES) (pp. 117–122). Cited 6 times in the pages 2, 6, 12, 17, 26, and 49.

Wagner, H. M. (1959). An integer linear-programming model for machine scheduling.
Naval Research Logistics Quarterly, 6(2), 131–140. Cited in page 3.

Wang, W., Yuan, C., & Liu, X. (2008). A fuzzy approach to multi-product mixed
production job shop scheduling algorithm. In Fifth International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD), volume 1 (pp. 95–99).: IEEE. Cited in
page 1.

Wong, K. (1998). On the complexity of projections of discrete-event systems. In Proceedings
of the International Workshop on Discrete Event Systems (WODES) (pp. 201–206).
Cited in page 9.

Wonham, W. M. (2015). Supervisory control of discrete-event systems. Encyclopedia of
Systems and Control, (pp. 1396–1404). Cited 2 times in the pages 12 and 23.

	List of Figures
	List of Tables
	Acronyms
	List of Symbols
	Introduction
	Motivations
	Scheduling
	Scheduling and Supervisory Control Theory
	Objectives
	Thesis structure
	Final Remarks

	Preliminaries
	Discrete Events Systems
	Automata and Language Theory
	Languages
	Natural Projection
	Automata

	Supervisory Control Theory
	Supervisor Abstraction
	Makespan evaluation
	Clonal Selection Algorithm
	 The case studies
	 The Cluster Tool
	 The Flexible Manufacturing System
	 The Search For the Optimal Sequences

	Final Remarks

	Methodology
	Problem Statement
	Definitions
	 Individual Generation algorithm
	Integration: CSA and DS states

	 Setting the optimization parameters
	Most Frequent Event Algorithm
	Final Remarks

	Experimental Results
	 Procedure
	 The Cluster Tool
	One Robot Cluster Tool
	Two Robots Cluster Tool

	 The Flexible Manufacturing System
	Final Remarks

	Conclusions
	Future Research

	Bibliography

