Superfícies em \mathbb{R}^3 de Curvatura Média Constante Invariantes por Subgrupos a 1-Parâmetro de Isometrias

Gil F. de Souza¹ Susana C. Fornari²

 $^1 \rm Aluno de pós-graduação em Matemática UFMG, e-mail: gil@mat.ufmg.br<math display="inline">^2 \rm Orientadora,$ e-mail: sfornari@mat.ufmg.br

Sumário

1	Isometrias e Grupos a um parâmetro	4					
	1.1 Um pouco sobre transformações lineares ortogonais.	4					
	1.2 Isometrias	5					
	1.3 O Grupo de Isometrias de \mathbb{R}^3	6					
2	Curvas e Superfícies	11					
	2.1 Curvas	11					
	2.2 Superfícies	12					
	2.3 Superfícies e Isometrias	14					
	2.4 A Imagem da ação dos grupos $G_{\alpha,\beta}$ em pontos de \mathbb{R}^3	15					
3 Superfícies Translacionais							
4	Superfícies Rotacionais	19					
	4.1 As Roulettes das cônicas	19					
	4.1.1 A Roulette da Parábola	20					
	4.1.2 Roulettes em relação a uma reta	22					
		20					
	4.1.3 A Ondulóide	$\frac{23}{25}$					
	4.1.3 A Ondulóide .	$\frac{23}{25}$ 28					
	4.1.3 A Ondulóide	25 25 28 30					
	4.1.3 A Ondulóide . . 4.1.4 A Nodária . . 4.2 As Curvaturas Médias do Catenóide, Ondulóide e Nodóide. . . 4.3 Superfícies Rotacionais de Curvatura Média Constante. . .	25 25 28 30 31					
5	4.1.3 A Ondulóide 4.1.4 A Nodária 4.2 As Curvaturas Médias do Catenóide, Ondulóide e Nodóide. 4.3 Superfícies Rotacionais de Curvatura Média Constante.	23 25 28 30 31 34					

Agradecimentos

Agradeço à minha orientadora Susana pela paciência e tempo empreendido não somente no desenvolvimento deste trabalho como, também, durante a minha Iniciação científica sempre me apresentando belos temas. Agradeço aos professores do Dmat-Icex e amigos dos demais cursos. Em especial à Sônia pelas dicas valiosas que tanto me ajudaram na correção deste trabalho e o enriqueceram. Agradeço ao professor Alberto Sarmiento pelas sugestões e críticas, ao Michel pelas belas figuras em Cabri e ao meu amigo Agnaldo pela confecção da figura 5.1.

Agradeço à minha noiva, Cristiane e aos meus familiares pelo apoio e incentivo nos momentos difíceis.

Introdução

Neste trabalho estudamos as superfícies em \mathbb{R}^3 de curvatura média constante invariantes por subgrupos a 1parâmetro de isometrias.

No capítulo 1, revisamos alguns conceitos de Álgebra Linear e Teoria de Grupos. Identificamos ainda o grupo $ISO(\mathbb{R}^3)$ das isometrias de \mathbb{R}^3 com o subgrupo G(4) de matrizes 4×4 da forma:

$$G(4) = \left\{ \begin{bmatrix} T & a \\ 0 & 1 \end{bmatrix}, \ T \in O(3), \ a \in M_{3 \times 1}(\mathbb{R}), \ 0 \in M_{1 \times 3}(\mathbb{R}) \right\}$$

e mostramos que subgrupos a 1-parâmetro de G(4) são, a menos de conjugação, da forma

$$G_{\alpha,\beta} = \left\{ \begin{bmatrix} \cos(\alpha t) & \sin(\alpha t) & 0 & 0\\ -\sin(\alpha t) & \cos(\alpha t) & 0 & 0\\ 0 & 0 & 1 & \beta t\\ 0 & 0 & 0 & 1 \end{bmatrix}; t \in \mathbb{R} \right\},$$

sendo α e β números reais.

No capítulo 2, revisamos alguns conceitos da Geometria das curvas e superfícies. Além de estudarmos a ação dos grupos $G_{\alpha,\beta}$ sob pontos de \mathbb{R}^3 . Grande parte dos capítulos 1 e 2 foi baseada em [8].

Se $\alpha = 0$, o grupo $G_{0,\beta}$ contém as translações e é denominado grupo de translação; no caso em que $\beta = 0$, $G_{\alpha,0}$ contém as rotações e é dito grupo de rotação; se $\alpha \in \beta$ são ambos não nulos, $G_{\alpha,\beta}$ é chamado grupo de movimentos helicoidais. Uma superfície S tal que g(S) = S para todo $g \in G_{\alpha,\beta}$ é dita $G_{\alpha,\beta}$ -invariante. As superfícies invariantes pelos grupos $G_{0,\beta}$, $G_{\alpha,0} \in G_{\alpha,\beta}$ são chamadas superfícies translacionais, rotacionais e helicoidais, respectivamente.

No capítulo 3, estudamos as superfícies translacionais, concluindo que as únicas superfícies translacionais de curvatura média constante são o cilindro circular e o plano.

No capítulo 4, estudamos as superfícies rotacionais e mostramos um resultado devido a Ch, Delaunay: "Superfícies rotacionais de curvatura média constante são obtidas pela rotação das roulettes das cônicas." Sendo roulette a trajetória descrita por um dos focos de uma cônica enquanto ela (a cônica) rola sobre uma reta sem deslizar. O conteúdo deste capítulo foi baseado no artigo [5] de J. Eells.

Seja:

 $\Sigma_H = \{ \text{superfícies helicoidais em } \mathbb{R}^3 \text{ de curvatura média } H = cte \neq 0 \}$

e S^1 o círculo unitário parametrizado por $(\cos \theta, \sin \theta)$ $(\theta \in [0, 2\pi))$. No capítulo 5, mostramos que existe uma aplicação diferenciável, 2π -periódica e sobrejetiva

$$\phi(\theta, B_0): S^1 \times [0, \infty) \to \Sigma_H,$$

tal que $\phi(0, [0, \infty))$ são as superfícies rotacionais em Σ_H . Para a superfície rotacional $S(B_0) = \phi(0, B_0)$ (B_0 fixo), $\phi(\theta, B_0)$ ($\theta \in [0, 2\pi)$) é uma família de superfícies helicoidais associada a $S(B_0)$ (no sentido de que cada superfície dessa família é isométrica a $S(B_0)$). O conteúdo deste capítulo foi baseado no trabalho de Manfredo P. do Carmo e Marcos Dajczer ([3]).

Capítulo 1

Isometrias e Grupos a um parâmetro

Para dar início ao estudo das superfícies invariantes por subgrupos a 1-parâmetro de isometrias \mathbb{R}^3 , faremos uma breve exposição sobre isometrias, grupos de isometrias e subgrupos a um parâmetro de isometrias.

1.1 Um pouco sobre transformações lineares ortogonais.

Definição 1.1 Uma transformação ortogonal, é uma transformação linear $C : \mathbb{R}^3 \to \mathbb{R}^3$ tal que

$$\langle Cv, Cw \rangle = \langle v, w \rangle,$$

para todo par de vetores $v \in w \in \mathbb{R}^3$.

Definição 1.2 Para cada transformação linear $T : \mathbb{R}^3 \to \mathbb{R}^3$, a adjunta de T é a transformação $T^* : \mathbb{R}^3 \to \mathbb{R}^3$ tal que

$$\langle Tu, v \rangle = \langle u, T^*v \rangle,$$

para todo par $u, v \in \mathbb{R}^3$.

Segue naturalmente de [7] que se C é uma transformação ortogonal, então:

- (a) $CC^* = C^*C = I$, onde I é a identidade de \mathbb{R}^3 .
- (b) C^* é uma transformação ortogonal.

(c) det
$$C = \pm 1$$
.

(d) C preserva a norma euclideana.

Definição 1.3 $O(3) = \{C : \mathbb{R}^3 \to \mathbb{R}^3; CC^* = I\}$ é o conjunto das transformações ortogonais de \mathbb{R}^3 .

Proposição 1.1 O conjunto O(3), em relação à operação de multiplicação de matrizes (ou composição de funções), é um grupo. ■

Demonstração:

(1) Vejamos que O(3) é fechado em relação à operação. Sejam $C \in C' \in O(3)$, então

$$\langle CC'u, CC'v \rangle = \langle C'u, C'v \rangle = \langle u, v \rangle.$$

Logo $CC' \in O(3)$.

- (2) Sabemos que a operação é associativa.
- (3) O elemento neutro é dado pela identidade I de \mathbb{R}^3 .

(4) Pela definição de O(3), o inverso de $C \in O(3)$ é C^* logo O(3) é um grupo.

Definição 1.4 Um subespaço $V \subset \mathbb{R}^3$ é dito invariante por uma transformação linear $T : \mathbb{R}^3 \to \mathbb{R}^3$ se T(V) = V.

Proposição 1.2 Sejam $C \in O(3)$ e V um subespaço invariante por C. Então o complemento ortogonal, V^{\perp} , de V é invariante por C.

Demonstração:

C é bijetora, pois det $C = \pm 1 \neq 0$. Sejam $x \in V \in y \in V^{\perp}$. Como V é invariante por $C, Cx \in V \in \log Q$

 $\langle Cx, y \rangle = 0.$

Como C é bijetora, existe $y' \in \mathbb{R}^3$ tal que y = Cy'. Portanto

$$0 = \langle Cx, y \rangle = \langle Cx, Cy' \rangle = \langle x, y' \rangle$$

e logo $y' \in V^{\perp}$, ou seja, V^{\perp} é invariante por C.

Proposição 1.3 Dada $C \in O(3)$, existe uma base ortonormal em que a representação de C é

$$C_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & \pm 1 \end{bmatrix}, \ \alpha \in \mathbb{R}.$$

Demonstração:

O polinômio característico de $C p(\lambda) = det(C - \lambda I)$ é um polinômio de coeficientes reais e grau três. Portanto $p(\lambda)$ possui pelo menos uma raiz real λ_0 . Então $Cv = \lambda_0 v$. Desde que C é transformação ortogonal o valor de λ_0 é 1 ou -1, pois $||Cv|| = ||v|| = |\lambda_0| ||v||$. Suponhamos que C possua apenas um autovalor real e que esse autovalor é 1. Consideremos a base ortonormal $\{v_1, v_2, v_3\}$ tal que v_3 é autovetor associado a $\lambda_0 = 1$ e os vetores $v_1 e v_2$ formam uma base (ortonormal) de $\{v : Cv = v\}^{\perp}$. Como C é transformação ortogonal e $v_1 \perp v_2$, resulta $Cv_1 \perp Cv_2$. Além disso, $Cv_1 e Cv_2$ são unitários e ,por hipótese, $\{v : Cv = v\}^{\perp}$ não possui nenhum subespaço de dimensão 1 deixado invariante por C. Portanto existe $\alpha \in \mathbb{R}$ tal que $Cv_1 = \cos \alpha v_1 - \sin \alpha v_2$ e $Cv_2 = \sin \alpha v_1 + \cos \alpha v_2$. Assim na base $\{v_1, v_2, v_3\}$ a representação de C é C_{α} .

No caso em que todas as raízes de $p(\lambda)$ são reais, \mathbb{R}^3 pode ser escrito como $\mathbb{R}^3 = \{v : Cv = v\} \oplus \{v : Cv = -v\}$. Nesse último caso, com a escolha de uma base ortonormal para esses dois subespaços, a representação matricial de $C \notin C_{\alpha}$, com $\alpha = 0$ ou $\alpha = \pi$, o que conclui a proposição.

1.2 Isometrias

Definição 1.5 Uma função $g : \mathbb{R}^3 \to \mathbb{R}^3$ tal que || g(u) - g(v) || = || u - v || para todo par $u, v \in \mathbb{R}^3$ é dita uma isometria.

Exemplo 1.1 Um exemplo trivial de isometria é a translação por um vetor $a \in \mathbb{R}^3$, $T_a(v) = a + v$, pois

$$|| T_a(u) - T_a(v) || = || a + u - (a + v) ||$$

= || u - v ||.

Exemplo 1.2 Um outro exemplo de isometria é uma transformação linear ortogonal $C \in O(3)$, pois

$$\| Cv - Cw \|^2 = \langle Cv, Cv \rangle + \langle Cw, Cw \rangle - 2 \langle Cv, Cw \rangle$$
$$= \langle v, v \rangle + \langle w, w \rangle - 2 \langle v, w \rangle$$
$$= \| v - w \|^2.$$

5

Exemplo 1.3 Uma função definida por g(v) = a + Cv, $a \in \mathbb{R}^3$ $e \in C \in O(3)$ é uma isometria pelos exemplos anteriores.

Na próxima proposição mostraremos que toda isometria g é da forma $g(v) = a + Cv, a \in \mathbb{R}^3$ e $C \in O(3)$.

Proposição 1.4 Seja $g: \mathbb{R}^3 \to \mathbb{R}^3$ uma isometria. Então existem $a \in \mathbb{R}^3$ $e \ C \in O(3)$ tais que

$$g(v) = a + Cv,$$

para todo $v \in \mathbb{R}^3$.

Demonstração:

Começamos definindo $a = g(0) \in C(v) = g(v) - a$. Mostraremos:

- (a) C preserva a norma,
- (b) C preserva o produto interno,
- (c) C é linear.

Prova de (a). || C(v) || = || g(v) - a || = || g(v) - g(0) || = || v - 0 || = || v ||. Logo C preserva a norma. Prova de (b). $(C(v) - C(w)) = - || C(v) - C(w) ||^2 - || C(v) ||^2 - || C(w) ||^2$

Portanto C preserva o produto interno.

Prova de (c). Da definição de C temos C(0) = 0. Além disso, dos itens (a) e (b) obtemos

$$\begin{split} \| C(v+w) - C(v) - C(w) \|^2 &= \langle C(v+w) - C(v) - C(w), C(v+w) - C(v) - C(w) \rangle \\ &= \| C(v+w) \|^2 + \| C(v) + C(w) \|^2 - 2\langle C(v+w), C(v) \rangle \\ &= \| C(v+w) \|^2 + \| C(v) \|^2 + \| C(w) \|^2 + 2\langle C(v), C(w) \rangle \\ &= \| v+w \|^2 + \| v \|^2 + \| w \|^2 + 2\langle v, w \rangle \\ &= \| v+w \|^2 + \| v \|^2 + \| w \|^2 + 2\langle v, w \rangle \\ &= \| v+w \|^2 + \| v \|^2 + \| w \|^2 + 2\langle v, w \rangle \\ &= \| v+w \|^2 + \| v + w \|^2 - 2\langle v + w, v + w \rangle \\ &= 0. \end{split}$$

Logo, C(v+w) = C(v) + C(w) para todo par $v, w \in \mathbb{R}^3$. Juntando ao fato de que C(0) = 0, obtemos que C é linear. Como C é linear e preserva produto interno, resulta que C é uma transformação ortogonal. O que conclui a

Como C e linear e preserva produto interno, resulta que C e uma transformação ortogonal. O que conclui a proposição.

1.3 O Grupo de Isometrias de \mathbb{R}^3 .

Proposição 1.5 $ISO(\mathbb{R}^3) = \{isometrias \ de \ \mathbb{R}^3\} \ e \ um \ grupo \ com \ a \ operação \ de \ composição \ de \ funções.$

Demonstração:

Se $g, h \in k \in ISO(\mathbb{R}^3)$, pela Proposição 1.4 existem $a, b, c \in \mathbb{R}^3 \in T, S, R \in O(3)$ tais que, g(u) = a + Tu, $h(u) = b + Su \in k(u) = c + Ru$. Temos então que

• $gh \in ISO(\mathbb{R}^3)$, pois $gh(u) = a + T(b + Su) = (a + Tb) + TSu \in ISO(\mathbb{R}^3)$, pois $a + Tb \in \mathbb{R}^3$ e $TS \in O(3)$;

• g(hk) = (gh)k, pois

$$g(hk)(u) = g((b + Sc) + SRu) = (a + T(b + Sc)) + TSRu = (a + Tb + TSc) + TSRu$$

e

$$(gh)k(u) = (a+Tb) + TS(c+Ru) = (a+Tb+TSc) + TSRu;$$

- o elemento neutro de $ISO(\mathbb{R}^3)$ é $e(u) = u, \forall u \in \mathbb{R}^3;$
- o inverso de $g \in g^{-1}(u) = -T^{-1}a + T^{-1}u$, pois $gg^{-1}(u) = a + T(-T^{-1}a + T^{-1}u) = u \in g^{-1}g(u) = -T^{-1}a + T^{-1}(a + Tu) = u$.

Portanto $ISO(\mathbb{R}^3)$ é um grupo.

Definição 1.6 Definimos por G(4), o subgrupo de matrizes 4×4 com a forma

$$G(4) = \left\{ \begin{bmatrix} T & a \\ 0 & 1 \end{bmatrix}, T \in O(3), a \in M_{3 \times 1}(\mathbb{R}), 0 = (0, 0, 0) \in M_{1 \times 3}(\mathbb{R}) \right\}.$$
(1.1)

Proposição 1.6 $ISO(\mathbb{R}^3)$ é isomorfo a G(4).

Demonstração:

Recordemos que dois grupos $G_1 \in G_2$, são isomorfos quando existe uma função bijetora $\psi : G_1 \to G_2$ tal que $\psi(g.g') = \psi(g).\psi(g')$, para todo $g \in g' \in G_1$. Seja

$$\phi: \quad ISO(\mathbb{R}^3) \quad \longrightarrow \quad G(4)$$

$$g(u) = a + Tu \quad \mapsto \quad \begin{bmatrix} T & a \\ 0 & 1 \end{bmatrix}.$$
Para $g(u) = a + Tu, \ h(u) = b + Su \text{ temos } g.h = (a + Tb) + TSu \in \phi(g) = \begin{bmatrix} T & a \\ 0 & 1 \end{bmatrix} \in \phi(h) = \begin{bmatrix} S & b \\ 0 & 1 \end{bmatrix}.$ Então
$$\phi(g).\phi(h) = \begin{bmatrix} T & a \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} S & b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} TS & Tb + a \\ 0 & 1 \end{bmatrix} = \phi(gh).$$

Agora devemos mostrar que ϕ é um isomorfismo, i.e, uma aplicação bijetora. Ora ϕ é injetora, pois se $\phi(g) = \phi(h)$ então T = S e a = b, portanto g = h. Para mostrar a sobrejetividade, seja

$$\begin{bmatrix} T & a \\ 0 & 1 \end{bmatrix} \in G(4),$$
$$\begin{bmatrix} T & a \\ 0 & 1 \end{bmatrix} = \phi(g),$$

então

 $\operatorname{com}\,g(u) = a + Tu.$

Definição 1.7 Dizemos que um subgrupo H de G é subgrupo a 1-parâmetro se existe uma aplicação contínua e sobrejetora ψ : $(\mathbb{R}, +) \rightarrow G$ tal que $\psi(r + s) = \psi(r).\psi(s)$ para todo $r \in s \in \mathbb{R}$.

Lema 1.0.1 Sejam $H \subset G(4)$ um subgrupo a 1-parâmetro e $h \in H$. Então det h = 1.

Demonstração:

Com efeito, seja $h = \begin{bmatrix} C & a \\ 0 & 1 \end{bmatrix} \in G(4)$. O determinante de h é dado por det $h = \det C = \pm 1$. Como H é subgrupo a 1-parâmetro, existe um homomorfismo sobrejetivo $\psi : (\mathbb{R}, +) \to H$ tal que $\psi(1) = h$. Mas $\psi(1) = \psi(\frac{1}{2}).\psi(\frac{1}{2}) = (\psi(\frac{1}{2}))^2$. Assim

$$\det h = \det \psi(1) = \det \left(\psi\left(\frac{1}{2}\right)\right)^2 = \left(\det \psi\left(\frac{1}{2}\right)\right)^2 > 0.$$

Logo det h = 1.

Definição 1.8 $g_1 e g_2 \in G$ são conjugados, se existe $g \in G$ tal que $g_2 = gg_1g^{-1}$, analogamente dois subgrupos $H_1 e H_2$ de G são conjugados, se existe $g \in G$ tal que $H_2 = gH_1g^{-1}$.

Exemplo 1.4 Se $C \in O(3)$, da Proposição 1.3, existe uma base ortonormal $\mathcal{B} = \{u_1, u_2, u_3\}$ tal que a representação de C é C_{α} . Denotemos por A a matriz de passagem da base ortonormal fixa para a base \mathcal{B} . Então $C_{\alpha} = A^{-1}CA$. Assim $C \in C_{\alpha}$ são conjugadas.

Lema 1.0.2 Seja $H \subset G(4)$ um subgrupo a 1-parâmetro Então todo

$$h = \begin{bmatrix} C & a \\ 0 & 1 \end{bmatrix} \in H$$

é conjugado, por elemento de G(4), a uma matriz da forma

$$\phi_{\alpha,\beta} = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 & 0 \\ -\sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & \beta \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} & 0 & 0 & 0 \\ C_{\alpha} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

onde $\alpha, \beta \in \mathbb{R}$.

Demonstração:

Seja $h = \begin{bmatrix} C & a \\ 0 & 1 \end{bmatrix} \in H$ e suponhamos que exista $g = \begin{bmatrix} S & b \\ 0 & 1 \end{bmatrix} \in G(4)$ tal que $h = g\phi_{\alpha,\beta}g^{-1}$, i.e, $hg = g\phi_{\alpha,\beta}$, ou seja

$$\begin{bmatrix} C & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} S & b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} S & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} C & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} C_{\alpha} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
 (1.2)

O que faremos é determinar S, b e β satisfazendo a equação (1.2). Por igualdade de matrizes em (1.2), obtemos

$$CS = SC_{\alpha},\tag{1.3}$$

$$Cb + a = S(0, 0, \beta) + b.$$
(1.4)

De (1.3) vemos que, S é a matriz de passagem da base canônica para a base formada por vetores ortonormais tal que a matriz de C tem a representação C_{α} . Portanto $S \in O(3)$. Consideremos $S = [v_1 \ v_2 \ v_3]$, sendo $v_1, v_2 \in v_3$ vetores coluna de S. Além disto, de (1.3) temos que v_3 é base do subespaço de dimensão 1 invariante por C. Temos então que

$$(C-I)b = \beta v_3 - a,$$

Assim, perguntamos: Para qual β o vetor $\beta v_3 - a \in Im(C - I)$? Respondendo a esta pergunta encontraremos $b \in \beta$ e, finalmente, determinaremos g.

Pelo Lema 1.0.1, det h = 1, pois h é um elemento de um subgrupo a 1-parâmetro. Logo o número de subespaços de dimensão 1 da forma $\{v : Cv = v\}$ deixados invariantes por C é 1 ou 3. Além disso, o número de subespaços de dimensão 1 da forma $\{v : Cv = -v\}$ é 0 ou 2, pois senão teríamos det C = -1. Assim dividimos a pergunta acima em dois casos:

1° Caso) dimIm(C - I) = 2: Nesse caso dimNuc(C - I) = 1 e v_3 é base de Nuc(C - I), pois v_3 é base de $\{v : Cv = v\} = Nuc(C - I)$. Como v_1, v_2 e v_3 formam uma base ortonormal de \mathbb{R}^3 temos que

$$Cv_1 = (\cos\alpha)v_1 + (\sin\alpha)v_2$$

$$Cv_2 = -(\operatorname{sen}\alpha)v_1 + (\cos\alpha)v_2,$$

para algum $\alpha \in \mathbb{R}$. Temos então que

$$(C-I)v_1 = (\cos\alpha - 1)v_1 + (\sin\alpha)v_2$$

е

$$(C-I)v_2 = -(\operatorname{sen}\alpha)v_1 + (\cos\alpha - 1)v_2.$$

Logo $\langle (C-I)v_1, (C-I)v_2 \rangle = (\cos \alpha - 1) \sin \alpha - \sin \alpha (\cos \alpha - 1) = 0$ e $\{(C-I)v_1, (C-I)v_2\}$ é um conjunto linearmente independente que gera Im(C-I), ou seja, $\{(C-I)v_1, (C-I)v_2\}$ é base para Im(C-I). Desde que $(C-I)v_1$ e $(C-I)v_2$ são escritos como combinação linear de v_1 e v_2 , então podemos tomar $\{v_1, v_2\}$ base para Im(C-I). Além disso $\mathbb{R}^3 = Im(C-I) \oplus Nuc(C-I)$. Então todo vetor de $v \in \mathbb{R}^3$ pode ser escrito na forma

$$v = \tilde{v} + \beta v_3$$
, com $\tilde{v} \in Im(C - I)$, $v_3 \in Nuc(C - I) \in \beta \in \mathbb{R}$.

Assim, escrevemos

$$a = \underbrace{\langle a, v_1 \rangle v_1 + \langle a, v_2 \rangle v_2}_{\in Im(C-I)} + \underbrace{\langle a, v_3 \rangle v_3}_{\in Nuc(C-I)}.$$

Tomamos $\beta = \langle a, v_3 \rangle$ e escolhemos b na imagem inversa do vetor $\langle a, v_1 \rangle v_1 + \langle a, v_2 \rangle v_2$ por (C - I). O que conclui a primeira parte.

2º Caso) dimIm(C-I) = 0: Escolhemos uma nova base ortonormal de \mathbb{R}^3 tal que a matriz de passagem para esta base seja dada por $S = [v_1 \ v_2 \ v_3]$, com o vetor v_3 que forma a terceira coluna de S sendo $v_3 = \frac{a}{\|a\|} (a \neq 0)$, $\beta = \|a\| \in b = 0$, o que conclui o Lema.

Teorema 1.1 Todo subgrupo a 1-parâmetro de G(4) é conjugado (por elemento de G(4)) a um subgrupo da forma

$$G_{\alpha,\beta} = \left\{ \begin{bmatrix} & & 0 \\ & C_{\alpha t} & & 0 \\ & & & \beta t \\ & 0 & 0 & 0 & 1 \end{bmatrix}; t \in \mathbb{R} \right\}, \ \alpha \ e \ \beta \in \mathbb{R} \ fixes$$

Demonstração do Teorema 1.1:

Sejam e H grupo a 1-parâmetro de G(4) e $h \in H$. Suponhamos que h tenha a representação abaixo,

$$h = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 & 0 \\ -\sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & \beta \\ 0 & 0 & 0 & 1 \end{bmatrix},$$
(1.5)

com $\alpha, \beta \in \mathbb{R}$. Então existe um homomorfismo contínuo $\psi : (\mathbb{R}, +) \to H$ tal que $\psi(1) = h$. Temos

$$\psi(n) = \psi^n(1) = h^n = \begin{bmatrix} \cos(n\alpha) & \sin(n\alpha) & 0 & 0\\ -\sin(n\alpha) & \cos(n\alpha) & 0 & 0\\ 0 & 0 & 1 & n\beta\\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Analogamente $\psi(1) = \psi^m(1/m)$ sendo

$$\psi(1/m) = \begin{bmatrix} \cos(\alpha/m) & \sin(\alpha/m) & 0 & 0\\ -\sin(\alpha/m) & \cos(\alpha/m) & 0 & 0\\ 0 & 0 & 1 & \beta/m\\ 0 & 0 & 0 & 1 \end{bmatrix},$$

com $n, m \neq 0 \in \mathbb{Z}$. Então

$$\psi(n/m) = \begin{bmatrix} \cos(\frac{n}{m}\alpha) & \sin(\frac{n}{m}\alpha) & 0 & 0\\ -\sin(\frac{n}{m}\alpha) & \cos(\frac{n}{m}\alpha) & 0 & 0\\ 0 & 0 & 1 & \frac{n}{m}\beta\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Como ψ é contínua, para $t\in\mathbb{R}$ resulta

$$\psi(t) = \begin{bmatrix} \cos(\alpha t) & \sin(\alpha t) & 0 & 0\\ -\sin(\alpha t) & \cos(\alpha t) & 0 & 0\\ 0 & 0 & 1 & \beta t\\ 0 & 0 & 0 & 1 \end{bmatrix},$$

e esta é a expressão do homomorfismo $\psi.$

Agora seja $\tilde{H} \subset G(4)$ um subgrupo a 1-parâmetro qualquer. Então existe um homomorfismo contínuo $\tilde{\psi}$: $(\mathbb{R}, +) \to \tilde{H}$ tal que

$$\tilde{\psi}(1) = \begin{bmatrix} T & a \\ 0 & 1 \end{bmatrix} = g \begin{bmatrix} \cos \alpha & \sin \alpha & 0 & 0 \\ -\sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & \beta \\ 0 & 0 & 0 & 1 \end{bmatrix} g^{-1},$$

com g dado pelo Lema 1.0.2. Repetindo o raciocínio anterior

$$\tilde{\psi}(t) = g \begin{bmatrix} \cos(\alpha t) & \sin(\alpha t) & 0 & 0\\ -\sin(\alpha t) & \cos(\alpha t) & 0 & 0\\ 0 & 0 & 1 & \beta t\\ 0 & 0 & 0 & 1 \end{bmatrix} g^{-1},$$

portanto, um subgrupo H a 1-parâmetro de G(4) é conjugado a um $G_{\alpha,\beta}$.

O Teorema 1.1 afirma que podemos considerar apenas os grupos $G_{\alpha,\beta}$ como subgrupos a 1-parâmetro de G(4), ou $ISO(\mathbb{R}^3)$, pois se H é subgrupo a 1-parâmetro, podemos por mudança de coordenadas tomá-lo como um $G_{\alpha,\beta}$.

Capítulo 2

Curvas e Superfícies

2.1 Curvas

Definição 2.1 Uma curva parametrizada diferenciável de \mathbb{R}^n é uma aplicação α , de classe C^{∞} , de um intervalo aberto $I \subset \mathbb{R}$ em \mathbb{R}^n . O conjunto dos pontos de \mathbb{R}^n formado pelos pontos $\alpha(t)$, $t \in I$, é o traço de α . A curva α é regular se seu vetor tangente é não nulo para todo $t \in I$, ou seja, $\alpha'(t) \neq 0$ para todo $t \in I$.

Neste trabalho estamos interessados apenas nos casos em que n = 2 ou 3.

Exemplo 2.1 $\alpha(t) = (x_0 + at, y_0 + bt, z_0 + ct), t \in \mathbb{R}$, é uma parametrização da reta de \mathbb{R}^3 que passa pelo ponto (x_0, y_0, z_0) na direção do vetor (a, b, c).

Exemplo 2.2 $\beta(t) = (x_0 + r \cos t, y_0 + r \sin t, z_0), t \in \mathbb{R}$, é uma parametrização de um círculo de centro (x_0, y_0, z_0) e raio r > 0.

Exemplo 2.3 $\gamma(t) = (r \cos t, r \operatorname{sent}, \delta t), t \in \mathbb{R}$, é uma parametrização da hélice circular de passo δ e eixo z.

Definição 2.2 Uma curva α está parametrizada pelo comprimento de arco s se $\parallel \alpha'(s) \parallel = 1$ para todo valor do parâmetro s. Ou seja, se $\alpha : J \subset \to \mathbb{R}^n$, então α é parametrizada pelo comprimento de arco se $\alpha'(s)$ é unitário para todo $s \in J$.

Exemplo 2.4 A curva $\alpha(s) = (r \cos\left(\frac{s}{r}\right), r \sin\left(\frac{s}{r}\right)) \mod s \in [0, 2\pi)$ e r > 0 é parametrizada pelo comprimento de arco, pois

$$\| \alpha'(s) \| = \| \left(-\operatorname{sen}\left(\frac{s}{r}\right), \cos\left(\frac{s}{r}\right) \right) \| = \sqrt{\operatorname{sen}^2\left(\frac{s}{r}\right) + \cos^2\left(\frac{s}{r}\right)} = 1$$

Definição 2.3 A curvatura k(t) de uma curva $\alpha(t) = (x(t), y(t))$ de \mathbb{R}^2 é dada por

$$k(t) = \frac{x'(t)y''(t) - y'(t)x''(t)}{\left(x'(t)^2 + y'(t)^2\right)^{3/2}}$$
(2.1)

ou

$$k(s) = x'(s)y''(s) - y'(s)x''(s)$$
(2.2)

se α está parametrizada pelo comprimento de arco s.

Exemplo 2.5 A curva $\alpha(t) = (a \cos t, b \sin t), t \in \mathbb{R}$ é a curva cujo traço é a elipse de equação $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ e sua curvatura é

$$k(t) = \frac{ab}{\left(a^2 \mathrm{sen}^2 t + b^2 \cos^2 t\right)^{3/2}}$$

Observamos que a curvatura da elipse não se anula.

Exemplo 2.6 A curva $\alpha(t) = (a \cosh t, b \sinh t), t \in \mathbb{R}$ é a curva cujo traço é a hipérbole de equação $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ e sua curvatura é

$$k(t) = \frac{-ab}{\left(a^2 \mathrm{senh}^2 t + b^2 \cosh^2 t\right)^{3/2}}.$$

Observamos que a curvatura da hipérbole é não nula para todo $t \in \mathbb{R}$.

Definição 2.4 Seja α uma curva parametrizada pelo comprimento de arco em \mathbb{R}^2 e seja n(s) o vetor normal unitário à α no ponto $\alpha(s)$. As Fórmulas de Frenet são:

$$\begin{cases} \alpha^{"}(s) = k(s)n(s) \\ n'(s) = -k(s)\alpha'(s) \end{cases}$$
(2.3)

2.2 Superfícies

Definição 2.5 Uma superfície parametrizada regular é uma aplicação X : $U \subset \mathbb{R}^2 \to \mathbb{R}^3$, onde U é um aberto, tal que

- (a) X é diferenciável de classe C^{∞} ;
- (b) para todo par $(u, v) \in U$, temos $X_u(u, v) \wedge X_v(u, v) \neq 0$, onde $X_u(u, v) \wedge X_v(u, v)$ denota o produto vetorial de $X_u(u, v) e X_v(u, v)$.

O subconjunto S de \mathbb{R}^3 formado pelos pontos X(u, v) é o traço da aplicação X.

Exemplo 2.7 O traço de $X(u, v) = (r \cos u, r \sin u, v)$, com $(u, v) \in \mathbb{R}^2$ e r > 0, é o cilindro de equação $x^2 + y^2 = r^2$.

Exemplo 2.8 O traço de $X(u, v) = (\cos u \sin v, \sin u \sin v, \cos v)$, com $(u, v) \in (0, 2\pi) \times (0, \pi)$ é a esfera S^2 de centro na origem e raio 1 menos um meridiano.

Exemplo 2.9 Seja $\alpha(u) = (f(u), 0, g(u)), u \in I \subset \mathbb{R}$ uma curva regular tal que $g'(u) \neq 0$ para todo u do intervalo I. Então a superfície obtida pela rotação de $\alpha(u)$ em torno do eixo z é uma superfície regular parametrizada por $X(u, v) = (f(u) \cos v, f(u) \sin v, g(u)), v \in [0, 2\pi].$

Exemplo 2.10 O traço de $X(u, v) = (u \cos v, u \sin v, v)$, com $(u, v) \in \mathbb{R}^2$, é chamado helicóide.

Figura 2.1: O traço do Helicóide

Exemplo 2.11 Consideramos superfície obtida pela rotação de ângulo v em torno do eixo z seguida da elevação de δv da curva $(2 + \cos u, 0, \operatorname{senu})$. Uma parametrização para tal superfície é $X(u, v) = ((2 + \cos u) \cos v, (2 + \cos u) \operatorname{senu}, \operatorname{senu} + \delta v), (u, v) \in \mathbb{R}^2$, onde δ é um número real e seu caso particular $\delta = 0$. Observamos que se $\delta = 0$, a parametrização X(u, v) descreve o toro obtido pela rotação do círculo no plano xOz de raio 1 e centro (0, 2, 0).

Figura 2.2: O traço das superfícies do exemplo 2.11

Definição 2.6 A aplicação de Gauss $N: U \to S^2$ de uma superfície $X: U \to \mathbb{R}^3$ é definida por

$$N(u,v) = \frac{\mathbf{X}_u(u,v) \wedge \mathbf{X}_v(u,v)}{\parallel \mathbf{X}_u(u,v) \wedge \mathbf{X}_v(u,v) \parallel} = \frac{\mathbf{X}_u \wedge \mathbf{X}_v}{\parallel \mathbf{X}_u \wedge \mathbf{X}_v \parallel},$$

onde $X_u = \frac{\partial X}{\partial u} e X_v = \frac{\partial X}{\partial v}.$

Definição 2.7 A curvatura média H de uma superfície S, parametrizada por X(u, v) e a curvatura Gaussianna K são dadas respectivamente por

$$H = \frac{gE - 2fF + eG}{2(EG - F^2)}$$
(2.4)

e

$$K = \frac{eg - f^2}{EG - F^2},$$
 (2.5)

onde

$$\begin{cases} E = \langle \mathbf{X}_s, \mathbf{X}_s \rangle \\ F = \langle \mathbf{X}_s, \mathbf{X}_t \rangle \\ G = \langle \mathbf{X}_t, \mathbf{X}_t \rangle \end{cases}$$
(2.6)

são os coeficientes da Primeira Forma Fundamental e

$$\begin{cases} e = \langle \mathbf{X}_{ss}, N \rangle \\ f = \langle \mathbf{X}_{st}, N \rangle \\ g = \langle \mathbf{X}_{tt}, N \rangle \end{cases}$$
(2.7)

são os coeficientes da Segunda Forma Fundamental.

Exemplo 2.12 As curvaturas média e gaussiana do cilindro circular reto do exemplo 2.7, com parametrização dada por $\mathbf{X}(u,v) = (r \cos u, rsenu, v)$ são $H = -\frac{1}{2r}$ e K = 0.

Exemplo 2.13 Seja S a superfície obtida pela rotação da curva $(x(u), y(u), 0), u \in I \subset \mathbb{R}$, em torno do eixo x. S é parametrizada por $\mathbf{X}(u,v) = (x(u), y(u)\cos v, y(u)\operatorname{sen} v), \ v \in \mathbb{R}.$

$$\begin{cases} \text{Temos} \\ \text{X}_{u} = (x'(u), y'(u) \cos v, y'(u) \operatorname{sen} v) \\ \text{N}(u, v) = \frac{1}{(x'(u)^{2} + y'(u)^{2})^{1/2}} (-y'(u), x'(u) \cos u, x'(u) \operatorname{sen} v) \\ \text{X}_{uu} = (x''(u), y''(u) \cos v, y''(u) \operatorname{sen} v) \\ \text{X}_{uv} = (0, -y'(u) \operatorname{sen} v, y'(u) \cos v) \\ \text{Assim} \\ \begin{cases} E = x'(u)^{2} + y'(u)^{2} \\ e = \frac{x''(u)y'(u) - x'(u)y''(u)}{(x'(u)^{2} + y'(u)^{2})^{3/2}} \\ f = 0 \\ g = -\frac{y(u)x'(u)}{(x'(u)^{2} + y'(u)^{2})^{1/2}} \end{cases} \\ \text{Fortanto,} \end{cases}$$

Р

$$H = \frac{x''(u)y'(u) - x'(u)y''(u)}{(x'(u)^2 + y'(u)^2)^{3/2}} - \frac{x'(u)}{y(u)(x'(u)^2 + y'(u)^2)^{1/2}}.$$
(2.8)

Observemos que a primeira parcela de H em (2.8) é a curvatura da curva (x(u), y(u), 0) (da curva geratriz de S).

$\mathbf{2.3}$ Superfícies e Isometrias

Veremos que a curvatura média H de uma superfície S e a curvatura média \tilde{H} da superfície h(S), onde h pertence a um subgrupo a 1-parâmetro de $ISO(\mathbb{R}^3)$, são iguais (i.e, $H = \tilde{H}$).

Proposição 2.1 Sejam $h \in G$, G subgrupo a 1-parâmetro de $ISO(\mathbb{R}^3)$, S parametrizada por $X(u, v) \in h(S)$ parametrizada por h(X(u, v)). Então as curvaturas médias H e H, respectivamente, são iquais.

Demonstração:

Mostraremos:

- (a) Os coeficientes $E, F \in G$ de S são iguais aos coeficientes $\tilde{E}, \tilde{F} \in \tilde{G}$ de h(S) são iguais.
- (b) Os coeficientes e, f e g de S são iguais aos coeficientes \tilde{e} , $\tilde{f} \in \tilde{g}$ de h(S) são iguais.

Do capítulo 1, temos que se $h \in ISO(\mathbb{R}^3)$, então h(u) = a + Tu, $a \in \mathbb{R}^3$, $T \in O(3)$. Logo: z(u, v) = h(X(u, v)) = h(X(u, v)) $a + T(\mathbf{X}(u, v))$. Portanto

$$\begin{cases} z_u = TX_u \\ z_v = TX_v \end{cases}$$

Então

$$\tilde{E} = \langle z_u, z_v \rangle = \langle \mathbf{X}_u, \mathbf{X}_v \rangle = E.$$

Analogamente temos que $\tilde{F} = F$ e $\tilde{G} = G$. Temos ainda;

$$\begin{cases} z_{uu} = TX_{uu} \\ z_{uv} = TX_{uv} \\ z_{vv} = TX_{vv} \end{cases}$$

No vetor normal $\tilde{N}(u, v) = \frac{z_u \times z_v}{\parallel z_u \times z_v \parallel} = \frac{TX_u \times TX_v}{\parallel TX_u \times TX_v \parallel}$, podemos escrever $\parallel TX_u \times TX_v \parallel = \parallel X_u \times X_v \parallel$, pois pela *identidade de Lagrange*

$$\| TX_u \times TX_v \|^2 = \| TX_u \|^2 \| TX_v \|^2 - (\langle TX_u, TX_v \rangle)^2 = \| X_u \|^2 \| X_v \|^2 - (\langle X_u, X_v \rangle)^2 = \| X_u \times X_v \|^2.$$

Assim

$$\tilde{N}(u,v) = \frac{T\mathbf{X}_u \times T\mathbf{X}_v}{\|\mathbf{X}_u \times \mathbf{X}_v\|}$$

Γ πv

٦

Calculando o coeficiente \tilde{e} da Segunda Forma Fundamental.

$$\tilde{e} = \langle TX_{uu}, \tilde{N}(u, v) \rangle = \left\langle TX_{uu}, \frac{TX_u \times TX_v}{\|X_u \times X_v\|} \right\rangle = \frac{\det \left[\begin{array}{c} TX_{uu} \\ TX_u \\ \|X_u \\ X_v \end{array} \right]}{\|X_u \times X_v\|} = \frac{\det(h)}{\|X_u \times X_v\|} = \frac{\det(h)\langle X_{uu}, N(u, v) \rangle}{\|X_u \times X_v\|} = \frac{\det(h)\langle X_{uu}, N(u, v) \rangle}{\|X_u \times X_v\|}$$

Sendo N(u, v) o vetor normal de X(u, v). Pelo Lema 1.0.1, det(h) = 1. Logo $e = \tilde{e}$. Analogamente, $\tilde{f} = f \in \tilde{g} = g$. Juntando (a) e (b) com a expressão (2.4), obtemos $H = \tilde{H}$.

Definição 2.8 Dizemos que uma superfície S é invariante por um subgrupo $G \subset ISO(\mathbb{R}^3)$ (*G*-invariante) se h(S) = S para todo $h \in G$.

Unindo a Proposição 2.1 com o Teorema 1.1, vemos que para estudar as superfícies em \mathbb{R}^3 de curvatura média constante invariantes por subgrupos a 1-parâmetro de $ISO(\mathbb{R}^3)$, basta estudar as superfícies de curvatura média constante invariantes pelos grupos $G_{\alpha,\beta}$. A nossa próxima seção se dedicará a descrever as formas que os grupos $G_{\alpha,\beta}$ podem assumir e estudar a imagem da ação desses grupos.

2.4 A Imagem da ação dos grupos $G_{\alpha,\beta}$ em pontos de \mathbb{R}^3

No capítulo 1, vimos que o grupo $ISO(\mathbb{R}^3)$ é isomorfo ao grupo G(4). Além disso, todo subgrupo a 1-parâmetro de $ISO(\mathbb{R}^3)$ é identificado, a menos de conjugação, com um subgrupo de G(4) da forma

$$G_{\alpha,\beta} = \left\{ \begin{bmatrix} \cos(\alpha t) & \sin(\alpha t) & 0 & 0\\ -\sin(\alpha t) & \cos(\alpha t) & 0 & 0\\ 0 & 0 & 1 & \beta t\\ 0 & 0 & 0 & 1 \end{bmatrix} \right\},\$$

onde $\alpha \in \beta \in \mathbb{R}$.

Primeiramente, veremos como $G_{\alpha,\beta}$ age sobre pontos de \mathbb{R}^3 . Recordemos que uma isometria h de \mathbb{R}^3 é da forma $h(u) = a + Tu, a \in \mathbb{R}^3$ e $T \in O(3)$. Após a identificação com G(4), temos $\tilde{h} = \begin{bmatrix} T & a \\ 0 & 1 \end{bmatrix}$. Observamos que \tilde{h} age

sobre
$$\begin{bmatrix} u\\1 \end{bmatrix} = \begin{bmatrix} u_1\\u_2\\u_3\\1 \end{bmatrix}$$
 do mesmo modo que *h* age sobre o vetor $u = (u_1, u_2, u_3) \in \mathbb{R}^3$, pois

$$\tilde{h} \begin{bmatrix} u \\ 1 \end{bmatrix} = \begin{bmatrix} T & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ 1 \end{bmatrix} = \begin{bmatrix} Tu + a \\ 1 \end{bmatrix}.$$

Portanto, $\tilde{h} \in G(4)$ age sobre vetores $(u_1, u_2, u_3, 1) \in \mathbb{R}^4$ da mesma forma que $h \in ISO(\mathbb{R}^3)$ age sobre $(u_1, u_2, u_3) \in \mathbb{R}^3$.

Agora, estudaremos as formas de $G_{\alpha,\beta}$ e sua ação em vetores (u_1, u_2, u_3) (estamos identificando $(u_1, u_2, u_3, 1) \in \mathbb{R}^4$ com o vetor $(u_1, u_2, u_3) \in \mathbb{R}^3$).

O grupo $G_{\alpha,\beta}$ assume três formas:

CAPÍTULO 2. CURVAS E SUPERFÍCIES

(a) $\alpha = 0$ e $G_{0,\beta}$ contém translações na direção do eixo z. A imagem da ação de $G_{0,\beta}$ sobre (x_0, y_0, z_0) é uma reta na direção do eixo z, pois

$$\begin{bmatrix} & & & 0 \\ I & & & 0 \\ & & & \beta t \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \\ z_0 \\ 1 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 + \beta t \\ 1 \end{bmatrix}$$

.

(b) $\beta = 0$ e $G_{\alpha,0}$ contém as rotações em torno do eixo z. A imagem da ação de $G_{\alpha,0}$ sobre (x_0, y_0, z_0) é um círculo de centro $(0, 0, z_0)$ e raio $\sqrt{x_0^2 + y_0^2}$.

$$\begin{bmatrix} \cos(\alpha t) & \sin(\alpha t) & 0 & 0\\ -\sin(\alpha t) & \cos(\alpha t) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_0\\ y_0\\ z_0\\ 1 \end{bmatrix} = \begin{bmatrix} x_0 \cos(\alpha t) - y_0 \sin(\alpha t)\\ x_0 \sin(\alpha t) + y_0 \cos(\alpha t)\\ z_0\\ 1 \end{bmatrix}$$

(c) No caso $\alpha \neq 0$ e $\beta \neq 0$, temos $G_{\alpha,\beta} = G_{1,\delta}$, onde $\delta = \alpha/\beta$, pois, seja

$$\phi_{\alpha t,\beta t} = \begin{bmatrix} \cos(\alpha t) & \sin(\alpha t) & 0 & 0\\ -\sin(\alpha t) & \cos(\alpha t) & 0 & 0\\ 0 & 0 & 1 & \beta t\\ 0 & 0 & 0 & 1 \end{bmatrix} \in G_{\alpha,\beta}.$$

Então $\phi_{\alpha t,\beta t} = \phi_{1,\alpha t,\beta,\delta t} \in G_{1,\delta}$. Reciprocamente, temos $\phi_{t,\delta t} = \phi_{\alpha,\frac{t}{\alpha},\beta,\frac{t}{\alpha}} \in G_{\alpha,\beta}$, logo $G_{\alpha,\beta} = G_{1,\delta}$. Quanto à ação de $G_{1,\delta}$ sobre um ponto (x_0, y_0, z_0) , temos

$$\begin{bmatrix} \cos t & \operatorname{sent} & 0 & 0 \\ -\operatorname{sent} & \cos t & 0 & 0 \\ 0 & 0 & 1 & \delta t \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \\ z_0 \\ 1 \end{bmatrix} = \begin{bmatrix} x_0 \cos t - y_0 \operatorname{sent} \\ x_0 \operatorname{sent} + y_0 \cos t \\ z_0 + \delta t \\ 1 \end{bmatrix},$$

ou seja, uma hélice circular de passo δ e eixoz.

Capítulo 3

Superfícies Translacionais

Superfícies Translacionais são aquelas invariantes por translações em uma dada direção de \mathbb{R}^3 .

Exemplo 3.1 O cilindro $\alpha(t) + r\mathbf{w}$, sendo $\alpha(t) = (x(t), y(t), 0)$, t definida no intervalo $I \subset \mathbb{R}$, $r \in \mathbb{R}$ e $\mathbf{w} = (w_1, w_2, w_3)$, é invariante pela translação de qualquer múltiplo de \mathbf{w} .

Figura 3.1: Um cilindro.

Proposição 3.1 Seja S uma superfície translacional de curvatura média constante, então ou S é um plano, ou S é um cilindro.

Demonstração:

Pelo Teorema 1.1, o subgrupo a 1-parâmetro das translações em uma dada direção é identificado, via mudança de coordenadas, com o subgrupo a um parâmetro $G_{0,\beta}$. As superfícies translacionais são então superfícies invariantes por $G_{0,\beta}$. Observamos que uma superfície $G_{0,\beta}$ -invariante possui um ponto da forma (x, y, 0), pois se $(x, y, z) \in S$, como S é $G_{0,\beta}$ -invariante e a translação g dada por (0, 0, -z) pertence a $G_{0,\beta}$, resulta $g(x, y, z) = (x, y, 0) \in S$.

Se S uma superfície $G_{0,\beta}$ -invariante parametrizada por $\mathcal{X}(u,v)$, $(u,v) \in U \subset \mathbb{R}^2$. Como para todo $p \in S$ existe uma reta na direção de (0,0,1), consideramos a parametrização de uma destas retas dada por $\mathcal{X}(u(t),v(t))$, $t \in \mathbb{R}$, então

$$\frac{d\mathbf{X}}{dt} = \mathbf{X}_u \frac{du}{dt} + \mathbf{X}_v \frac{dv}{dt}$$

é um vetor na direção de (0, 0, 1), portanto (0, 0, 1) pertence a todo plano tangente de S. Logo seu vetor normal em cada ponto é linearmente independente com o vetor (0, 0, 1) o que faz da intersecção de S com o plano xOy uma curva regular plana, denotemos esta curva por $\gamma(s) = (x(s), y(s), 0)$, já tomando-a com o parâmetro comprimento de arco s, então uma parametrização para S é $\overline{X}(s,t) = (x(s), y(s), t)$.

Então calculamos os vetores $\overline{\mathbf{X}}_s \in \overline{\mathbf{X}}_t$, tangentes a S.

$$\overline{\mathbf{X}}_s = (x'(s), y'(s), 0), \tag{3.1}$$

 \mathbf{e}

$$\overline{\mathbf{X}}_t = (0, 0, 1).$$
 (3.2)

Seu vetor normal é dado por,

 $\overline{\mathbf{X}}_s \wedge \overline{\mathbf{X}}_t = \beta(y'(s), -x'(s), 0).$

Então a aplicação normal de S é N(s,t) = (y'(s), -x'(s), 0), pois $\| \overline{X}_s \wedge \overline{X}_t \| = 1$. Temos

ſ	\mathbf{x}_{ss}	=	(x"(s), y"(s), 0)
ł	\mathbf{x}_{st}	=	(0, 0, 0)
l	\mathbf{x}_{tt}	=	(0,0,0)

е

$$\begin{cases}
e = x''(s)y'(s) - x'(s)y''(s) \\
f = 0 \\
q = 0
\end{cases}$$

a expressão da curvatura média de Sé,

$$2H = x''(s)y'(s) - x'(s)y''(s).$$
(3.3)

A expressão obtida em (3.3) é a expressão da curvatura de γ a menos de sinal, portanto $\gamma(s)$ é uma reta ou uma circunferência. Reciprocamente, se S é um cilindro circular reto de raio a > 0, sua curvatura média é $H = \frac{1}{2a}$ ([2], pg 147); se S é um plano então H = 0 ([2], pg 147). Portanto se S é uma superfície $G_{0,\beta}$ -invariante de curvatura média constante, então S é um cilindro circular reto ou um plano.

Capítulo 4

Superfícies Rotacionais

Superfícies rotacionais são as superfícies que são invariantes por rotações em \mathbb{R}^3 , ou seja, por rotações em relação a uma dada reta. Seu estudo se reduz ao estudo da *curva geratriz*, isto é, a curva descrita pela intersecção da superfície com um plano que contenha o eixo de rotação.

Figura 4.1: Uma superfície de rotação de eixo z.

Pelo Teorema 1.1, o subgrupo das rotações em relação a um determinado eixo é identificado, via mudança de coordenadas, com o subgrupo a um parâmetro $G_{\alpha,0}$. As superfícies rotacionais, são, então, superfícies invariantes por $G_{\alpha,0}$.

Neste capítulo mostraremos os seguinte resultado provado por C. Delaunay em 1841 [4]:

Teorema 4.1 (Delaunay) Uma superfície rotacional de curvatura média constante é obtida pela rotação da roulette de uma cônica.

A demonstração apresentada se baseia no artigo de Eells [5] e segue as seguintes etapas:

 1^{o}) descreveremos as roulettes das cônicas;

 2^{o}) iremos calcular as curvaturas médias das superfícies obtidas pela rotação destas curvas;

 3^{o}) via expressão da curvatura média, demonstraremos que a curva geratriz de uma superfície de rotação de curvatura média constante não-nula satisfaz às equações das roulettes da elipse ou da hipérbole.

4.1 As Roulettes das cônicas.

Descreveremos as roulettes das cônicas.

4.1.1A Roulette da Parábola.

Como ilustração, determinaremos, primeiro a roulette da parábola. Uma parábola de foco F e reta diretriz r é o conjunto { $K \in \mathbb{R}^2$: dist(K, F) = dist(K, r)}. O ponto V da parábola com a menor distância a r é denominado vértice da parábola. V está na reta perpendicular a <math>r que contém o foco F da parábola, pois a reta que é perpendicular a r e passa por F é a que dá a menor distância entre F e a diretriz, portanto a menor distância entre a parábola e a diretriz.

Figura 4.2: Parábola com foco F=(0,c).

Tomando o sistema de coordenadas cartesianas (x, y) em que V=(0,0) e o eixo x é paralelo à reta diretriz, sejam F = (0, c) o foco e y = -c a reta diretriz. A equação da parábola é

$$y = \frac{x^2}{4c}.\tag{4.1}$$

Definição 4.1 A roulette do foco F em relação a uma reta tangente à parábola é a trajetória que F descreve enquanto a parábola rola sobre esta reta sem deslizar.

O objetivo desta seção é mostrar que esta roulette é uma catenária. Para tal vamos mostrar os seguintes lemas:

Lema 4.1.1 Sejam t a reta tangente à parábola $y = \frac{x^2}{4c}$ em um ponto $K = (x_0, \frac{x_0^2}{4c})$ e P o ponto de intersecção de t com o eixo x. Então $P = \left(\frac{x_0}{2}, 0\right).$

Demonstração:

A equação de $t \notin y = \frac{x_0}{2c}x - \frac{x_0}{2c}x - \frac{x_0^2}{4c}$. Logo, para y = 0 temos $P = \left(\frac{x_0}{2}, 0\right)$. Para determinar a coordenada y da roulette, encontraremos um ponto P' de t tal que P'F seja perpendicular a t. O próximo lema determinará P'.

Lema 4.1.2 Com a notação do Lema 4.1.1, FP é perpendicular à reta t.

Demonstração:

Sejam m := coeficiente angular da reta $FP \in m' :=$ coeficiente angular de t. Basta mostrar que m.m' = -1. Como $m = \frac{-c}{x_0/2} = -\frac{2c}{x_0} \in m' = \frac{x_0}{2c}$ e portanto, $m.m' = -\frac{2c}{x_0} \cdot \frac{x_0}{2c} = -1$. Logo $FP \perp t$. A figura 4.3 representa dois instantes diferentes em que a parábola rola sem deslizar sobre o eixo x, que é a reta

tangente do vértice.

• o primeiro instante (em linha cheia) representa o momento inicial do movimento em que a parábola é tangente ao eixo x em V = (0,0) e o foco está em F = (0,c) e está representada também a reta tangente t em K;

• o segundo instante (em linha tracejada) representa o momento em que a parábola rolou até o ponto K, agora representado por \tilde{K} , ser tangente ao eixo x. O lema seguinte determinará equações para as coordenadas da roulette da parábola.

Figura 4.3: Parábola rolando.

Lema 4.1.3 Uma parametrização em coordenadas cartesianas da roulette da parábola de equação $y = \frac{x^2}{4c}$ é

$$\beta(x) = \left(\int_0^x \sqrt{1 + \frac{r^2}{4c^2}} dr - \frac{x}{2}\sqrt{1 + \frac{x^2}{4c^2}}, \ c\sqrt{1 + \frac{x^2}{4c^2}}\right)$$
(4.2)

Demonstração: A parábola de equação $y = \frac{x^2}{4c}$ pode ser parametrizada por $\alpha(x) = \left(x, \frac{x^2}{4c}\right)$. Pelo Lema 4.1.1, $P = \left(\frac{x}{2}, 0\right)$ e logo $|PF| = \left(c^2 + \frac{x^2}{4}\right)^{1/2} = c\left(1 + \frac{x^2}{4c^2}\right)^{1/2}$. Analisando o instante em que o ponto $K = \left(x, \frac{x^2}{4c}\right)$ é tangente ao eixo x, as coordenadas do foco (agora representado por \tilde{F}) são dadas por $(|V\tilde{P}|, |\tilde{P}\tilde{F}|) = (|V\tilde{P}|, |PF|)$. Ora

$$|V\tilde{P}| = |V\tilde{K}| - |\tilde{P}\tilde{K}|,$$

onde $|V\tilde{K}|$ é o comprimento do arco da parábola de 0 até x,ou seja

$$|V\tilde{K}| = \int_0^x \left(1 + \frac{r^2}{4c^2}\right)^{1/2} dr.$$

Por outro lado,

$$|PK| = \left(\left(x - \frac{x}{2}\right)^2 + \left(\frac{x^2}{4c}\right)\right)^{1/2} = \frac{x}{2}\left(1 + \frac{x^2}{4c^2}\right)^{1/2}.$$

Logo

$$|V\tilde{P}| = \int_0^x \left(1 + \frac{r^2}{4c^2}\right)^{1/2} dr - \frac{x}{2} \left(1 + \frac{x^2}{4c^2}\right)^{1/2}.$$

Lema 4.1.4 Seja $\alpha(s) = (x(s), y(s))$ a reparametrização por comprimento de arco da roulette da parábola dada por $\beta(x) = (\overline{x}(x), \overline{y}(x))$ do Lema 4.1.3. Então

$$\frac{dx}{ds} = \frac{c}{y(s)}.\tag{4.3}$$

Demonstração:

Ora

$$\overline{x}(x) = \int_0^x \left(1 + \frac{r^2}{4c^2}\right)^{1/2} dr - \frac{x}{2} \left(1 + \frac{x^2}{4c^2}\right)^{1/2}$$
. Calculando a derivada de $\overline{x}(x)$, temos

$$\overline{y}(x) = c \left(1 + \frac{x^2}{4c^2}\right)^{1/2}$$

$$\overline{x}'(x) = \left(1 + \frac{x^2}{4c^2}\right)^{1/2} - \frac{1}{2} \left(1 + \frac{x^2}{4c^2}\right)^{1/2} - \frac{x}{2} \frac{(2x)}{(4c^2)} \frac{1}{2} \left(1 + \frac{x^2}{4c^2}\right)^{-1/2} = \frac{1}{2} \left(1 + \frac{u^2}{4c^2}\right)^{1/2}$$

Calculando a derivada de $\overline{y}(x)$, temos

$$\overline{y}'(x) = c\frac{2x}{4c^2}\frac{1}{2}\left(1 + \frac{x^2}{4c^2}\right)^{-1/2} = \frac{x}{4c}\left(1 + \frac{x^2}{4c^2}\right)^{-1/2}$$

Logo

 \mathbf{e}

$$\overline{x}'(x)^2 + \overline{y}'(x)^2 = \frac{1}{4} \left(1 + \frac{x^2}{4c^2} \right)^{-1} + \frac{x^2}{16c^2} \left(1 + \frac{x^2}{4c^2} \right)^{-1} = \frac{1}{4}.$$

Como o parâmetro comprimento de arco s de β é dado por $s(x) = \int_0^x |\beta'(r)| dr = \int_0^u \sqrt{\overline{x'(r)^2 + \overline{y'(r)^2}}} dr$, temos $\frac{ds}{dx} = \sqrt{\overline{x'(x)^2 + \overline{y'(x)^2}}}$. Logo $\frac{d\overline{x}}{ds} = \frac{1}{\sqrt{\overline{x'(x(s))^2 + \overline{y'(x(s))^2}}} = 2$. Assim, pela regra da cadeia,

$$\frac{d\overline{x}}{ds} = \frac{d\overline{x}}{dx} \cdot \frac{dx}{ds} = \frac{1}{2} \left(1 + \frac{x(s)^2}{4c^2} \right)^{1/2} \cdot 2 = \frac{c}{y(x(s))} = \frac{c}{y(s)}$$

Proposição 4.1 A roulette da parábola de equação $y = \frac{x^2}{4c}$ é a catenária de equação $y = c \cosh(\frac{x}{c})$

Demonstração:

Pela equação (4.3) $\frac{d\overline{x}}{ds} = \frac{c}{\overline{y}(s)}$. Como $\beta(x(s)) = \beta(s)$ é regular, temos que a roulette da parábola é (localmente)

o gráfico de uma função (x, y(x)). Além disso, $\frac{ds}{dx} = \left(1 + \left(\frac{dy}{dx}\right)^2\right)^{1/2} \neq 0$, portanto,

$$\frac{dx}{ds} = \left(1 + \left(\frac{dy}{dx}\right)^2\right)^{-1/2}$$

Então reescrevemos (4.3) como,

$$\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{-1/2} = \frac{c}{y}.$$
(4.4)

Logo,

$$1 + \left(\frac{dy}{dx}\right)^2 = \frac{y^2}{c^2}$$
$$\frac{dy}{dx} = \pm \left(\left(\frac{y}{c}\right)^2 - 1\right)^{1/2}.$$

1/2

Observando que $z/c \ge 1$ (c é a menor distância do foco a parábola) e resolvendo a equação diferencial acima por separação de variáveis obtemos

$$y = y(x) = c \cosh\left(\pm \frac{x}{c} + const.\right)$$

Considerando y(0) = c, resulta *const.* = 0. Como cosh é uma função par, obtemos

$$y(x) = c \cosh\left(\pm \frac{x}{c}\right) = c \cosh\left(\frac{x}{c}\right).$$

Figura 4.4: A Catenária.

4.1.2 Roulettes em relação a uma reta

A subseção anterior é a motivação desta subseção. Determinaremos propriedades úteis das roulettes em relação a uma reta.

Definição 4.2 A roulette de um ponto F associado a curva C em relação a uma reta tangente à C é a trajetória descrita por F enquanto C rola sobre esta reta tangente sem deslizar.

Proposição 4.2 Sejam C uma curva regular com curvatura que não se anula e F um ponto que não pertence a C. Seja β a roulette de F associado a C em relação a uma retra tangente à C. Sejam \tilde{F} um ponto de β e \tilde{K} o ponto de contato de C com o eixo x (nesse instante). Então a roulette de F em relação à reta tangente de C é uma curva regular, além disso a reta normal a roulette em \tilde{F} passa por \tilde{K} , ou seja o segmento $\tilde{F}\tilde{K}$ é perpendicular à reta tangente à roulette em \tilde{F} .

Demonstração:

Consideramos a roulette de $F = (x_0, y_0)$ associada à curva C parametrizada por $\alpha(\overline{s})$, onde \overline{s} é o parâmetro comprimento de arco da curva C.

A figura 4.5 representa dois instantes diferentes:

- No primeiro instante, antes de C começar a rolar, estão indicados o ponto $F = (x_0, y_0)$, a reta t, tangente a C em $K = \alpha(\overline{s})$, o ponto $P \in t$ tal que $FP \perp t$ e os vetores tangente e normal à C $(\alpha'(\overline{s}) = \alpha' e n(\overline{s}) = n)$;
- o segundo momento representa o instante em que C rolou sobre o eixo x, sem deslizar, até o ponto K (agora representado por \tilde{K}) ser tangente ao eixo x.

A demonstração da proposição será feita em três etapas:

Figura 4.5: Uma roulette.

- 1. determinamos o vetor \overrightarrow{FK} ;
- 2. determinamos uma parametrização $\beta(\overline{s})$ para a roulette;
- 3. calculamos $\langle \overline{\tilde{F}} \widetilde{K}, \overline{\alpha}'(\overline{s}) \rangle$, concluindo a proposição.

Suponhamos C orientada de tal modo que o vetor normal unitário $n(\overline{s})$ em $K = \alpha(\overline{s})$ aponte para "dentro" (fig. 4.5).

Temos $\overrightarrow{FK} = \langle \overrightarrow{FK}, \alpha' \rangle \alpha' + \langle \overrightarrow{FK}, n \rangle n = (|PK|)\alpha' - (|PF|)n.$

No segundo instante, C rolou até K ser tangente ao eixo x (K agora é representado por \tilde{K}). Nesse instante os vetores (1,0) e (0,1) desempenham o papel de vetores tangente e normal, respectivamente, à C em \tilde{K} e

 $\overline{\tilde{F}K} = (\langle \overline{FK}, \alpha' \rangle , \langle \overline{FK}, n' \rangle) = (|PK|, -|PF|).$ As coordenadas de $\tilde{F} = (\tilde{x}, \tilde{y})$ são dadas por

$$\begin{cases} \tilde{x} = |V\tilde{K}| - |\tilde{P}\tilde{K}| = |V\tilde{K}| - |PK| \\ \tilde{y} = |\tilde{P}\tilde{F}| = |PF| \end{cases}$$

$$(4.5)$$

 $|V\tilde{K}|$ é igual ao comprimento de arco de C entre $V = \alpha(0)$ e $K = \alpha(\overline{s})$. Logo $|V\tilde{K}| = \overline{s}$, pois \overline{s} é o parâmetro comprimento de arco de C. Como $|PK| = \langle \overline{FK}, \alpha' \rangle$ e $|PF| = -\langle \overline{FK}, n \rangle$, uma parametrização da roulette de F é

$$\beta(\overline{s}) = (\overline{s} - \langle \overline{FK}, \alpha' \rangle, - \langle \overline{FK}, n \rangle).$$
(4.6)

O vetor $\overrightarrow{FK} = \overrightarrow{FK} = \alpha(\overline{s}) - F$ e logo $\frac{d}{d\overline{s}}\overrightarrow{FK} = \alpha'$. Então o vetor tangente de $\beta(\overline{s})$ é

$$\begin{split} \beta'(\overline{s}) &= (1 - \frac{d}{d\overline{s}} \langle \overrightarrow{FK}, \alpha' \rangle , \frac{d}{d\overline{s}} \langle \overrightarrow{FK}, n \rangle) \\ &= \left(1 - \left(\left\langle \frac{d}{d\overline{s}} \overrightarrow{FK}, \alpha' \right\rangle + \langle \overrightarrow{FK}, \alpha'' \rangle \right) , \left\langle \frac{d}{d\overline{s}} \overrightarrow{FK}, n' \right\rangle + \langle \overrightarrow{FK}, n' \rangle \right) \\ &= \left(1 - \left(\langle \alpha', \alpha' \rangle + \langle \overrightarrow{FK}, \alpha'' \rangle \right) , \langle \alpha', n \rangle + \langle \overrightarrow{FK}, n' \rangle \right) \\ &= \left(- \langle \overrightarrow{FK}, \alpha'' \rangle , \langle \overrightarrow{FK}, n' \rangle \right) \\ &= k \left(- \langle \overrightarrow{FK}, n \rangle , - \langle \overrightarrow{FK}, \alpha' \rangle \right) \\ &= k \left(- |PF|, -|PK| \right), \end{split}$$

pois pelas fórmulas de Frenet, $\alpha'' = kn e n' = -k\alpha'$, onde k a curvatura de $C em \alpha(\overline{s})$. Portanto

$$\langle \overline{\tilde{F}} \widetilde{K}, \overline{F}'(\overline{s}) \rangle = k \left(-|PK|.|PF| + (-|PF|)(-|PK|) \right) = 0$$

o que conclui a demonstração. A afirmação de que a roulette é uma curva regular é resultado imediato da equação $\beta'(s) = k (-|PF|, -|PK|)$, pois $k \neq 0$.

Observação 4.1 Na demonstração da Proposição 4.2, para a deduzir uma equação para $\beta(\bar{s})$ utilizamos a hipótese de que a reta t, tangente à C, tem inclinação positiva (figura 4.5). No entanto, se t tivesse inclinação negativa, com a mesma escolha de orientação em C, obteríamos a mesma parametrização $\beta(\bar{s})$ para a roulette.

Observação 4.2 A Proposição 4.2 foi demonstrada sob a hipótese de que a curvatura de C não se anula, o que garante que a trajetória de F é uma curva regular.

Corolário 4.2.1 Seja $\gamma(s) = (x(s), y(s))$ a reparametrização de $\beta(\overline{s})$ pelo parâmetro comprimento de arco s. Então, com a mesma notação da Proposição 4.2,

$$|\tilde{F}\tilde{K}| = \pm |\tilde{P}\tilde{F}| \left(\frac{dx}{ds}\right)^{-1} = \pm y(s) \left(\frac{dx}{ds}\right)^{-1}, \tag{4.7}$$

onde \tilde{K} é o ponto de contato de C com o eixo x.

Demonstração: Com efeito, como visto na proposição anterior, $\beta'(\bar{s}) = k(-|PF|, -|PK|) = -k(|PF|, |PK|)$, logo

$$\| \beta'(\overline{s}) \| = |k| \sqrt{(|PF|)^2 + (|PK|)^2} = |k| \cdot |FK|.$$

Por hipótese $k \neq 0$, daí

$$\frac{\beta'(\overline{s})}{\parallel \beta'(\overline{s}) \parallel} = \pm \left(\frac{|PF|}{|FK|} , \frac{|PK|}{|FK|} \right).$$

Como $\gamma(s) = (x(s), y(s))$ é a reparametrização pelo comprimento, então

$$\frac{dx}{ds} = \pm \frac{|PF|}{|FK|} = \pm \frac{y(s)}{|FK|}.$$

4.1.3 A Ondulóide

A elipse de focos $F_1 = (-c, 0)$ e $F_2 = (c, 0)$ é o conjunto dos pontos $K \in \mathbb{R}^2$ tais que a soma dos comprimentos dos raios focais é constante, ou seja $|F_1K| + |F_2K| = 2a > 0$, onde a > c é o comprimento do semi-eixo maior e $b = \sqrt{a^2 - c^2}$ o comprimento do semi-eixo menor.

Do Exemplo 2.5 e pela Proposição 4.2 segue imediatamente que

Figura 4.6: A Elipse.

Proposição 4.3 A roulette de um dos focos de uma elipse(ondulária) em elação a uma reta tangente é uma curva regular.

Analogamente ao caso da parábola, faremos uso de propriedades da tangente t, para deduzir uma equação para a ondulóide.

Proposição 4.4 Seja $\beta(s) = (x(s), y(s))$ a parametrização da ondulária pelo comprimento de arco. Então a função coordenada x(s) satisfaz

$$\frac{dx}{ds} = \pm \frac{y(s)^2 + b^2}{2ay(s)},\tag{4.8}$$

sendo "a" o semi-eixo maior e "b" o semi-eixo menor da elipse.

Demonstração:

Vamos considerar a elipse de centro O e semi-eixos maior e menor dados por a e b. Consideramos ainda o círculo de centro O e raio a. Relativamente à elipse e o círculo, temos:

- O ângulo formado pelos raios focais e a tangente t são iguais (figura 4.7).
- Os pontos $P_1 \in P_2$ de intersecção de t com o círculo de centro O e raio a, são tais que $P_1F_1 \perp t \in P_2F_2 \perp t$. - $|P_1F_1|.|P_2F_2| = b^2$.

As duas últimas propriedades são menos conhecidas. Para uma demonstração das mesmas, ver [9], página 111. Na figura 4.8, consideramos a trajetória do foco F_2 da elipse enquanto ela rola sem deslizar sobre o eixo x. Os triângulos

 F_1P_1K e F_2P_2K são semelhantes. Logo

$$\frac{|P_1F_1|}{|P_2F_2|} = \frac{|F_1K|}{|F_2K|}.$$
(4.9)

Manipulando (4.9),

$$\frac{|P_1F_1|}{|P_2F_2|} = \frac{|P_1F_1| \cdot |P_2F_2|}{\left(|P_2F_2|\right)^2} = \frac{b^2}{\left(|P_2F_2|\right)^2}.$$

Figura 4.7: Segmentos ortogonais na elipse.

Figura 4.8: Elipse rolando.

Além disso

$$\frac{F_1K|}{F_2K|} = \frac{|F_1K| + |F_2K|}{|F_2K|} - \frac{|F_2K|}{|F_2K|} = \frac{2a}{|F_2K|} - 1$$

e portanto

$$\frac{b^2}{\left(|P_2F_2|\right)^2} = \frac{2a}{|F_2K|} - 1. \tag{4.10}$$

Pela Proposição 4.3 a roulette de uma elipse é uma curva regular e portanto admite parametrização pelo comprimento de arco. O segmento $|P_2F_2|$ é a coordenada y da roulette da elipse e pelo Corolário 4.2.1, $|F_2K| = \pm y(s) \left(\frac{dx}{ds}\right)^{-1}$ que ao ser substituída em (4.10) dá

$$\frac{b^2}{y(s)^2} = \pm \frac{2a}{y(s)} \frac{dx}{ds} - 1 \tag{4.11}$$

sendo so parâmetro comprimento de arco da roulette. Então

$$\frac{dx}{ds} = \pm \frac{y(s)^2 + b^2}{2ay(s)},$$

o que demonstra a Proposição.

Esta última equação possui solução em termos de funções

elípticas (ver [4]).

Observação 4.3 Considerações sobre a equação $\frac{dx}{ds} = \pm \frac{y(s)^2 + b^2}{2ay(s)}$: a) No caso em que a = b a elipse é um círculo de raio a de "focos" $F_1 = F_2$ e a roulette se reduz a uma reta da forma y = a;

b) no caso limite b = 0 (i.e, $\lim_{b\to 0} \frac{dx}{ds}$) a elipse degenera-se em um segmento de reta de comprimento $2a \in F_2$ em um dos extremos do segmento. Nesse caso, a roulette é constituida por semi-círculos de raio 2a.

A Nodária 4.1.4

A Hipérbole de focos F_1 e F_2 é o conjunto dos pontos K do plano tais que

$$|F_1K| - |F_2K| = \pm 2a; \tag{4.12}$$

em que a < c. Sendo o semi-eixo tranverso o valor $a \in b = \sqrt{c^2 - a^2}$ o semi-eixo conjugado. Os segmentos $|F_1K| \in |F_2K|$ são denominados por *raios focais* (fig. 3.12).

Figura 4.9: Hipérbole.

Segue da *Proposição* 4.3 que

Proposição 4.5 A roulette de um dos focos de uma hipérbole (nodária) em relação a uma reta tangente é uma curva regular.

Analogamente aos casos da parábola e da elipse, faremos uso de propriedades da tangente t, para de deduzir uma equação para a nodária.

Proposição 4.6 Seja $\beta(s) = (x(s), y(s))$ a parametrização da nodária pelo comprimento de arco. Então

$$\frac{dx}{ds} = \pm \frac{y(s)^2 - b^2}{2ay(s)},\tag{4.13}$$

sendo a e b os semi-eixos transverso e conjugado da hipérbole.

Demonstração:

Relativamente à hipérbole de semi-eixos $a \in b$, centro $O \in focos F_1 \in F_2$. Temos;

- Seja t a reta tangente à hipérbole em K, então t é a bissetriz do ângulo determinado pelos raios focais.

Figura 4.10: Segmentos ortogonais na hipérbole

Figura 4.11: Hipérbole rolando.

- t intercepta o círculo de raio a e centro O, em pontos P_1 e P_2 tais que $P_1F_1 \perp t$ e $P_2F_2 \perp t$. item $|P_1F_1|.|P_2F_2| = b^2$.

Na figura 4.11, consideramos a trajetória do foco F_2 enquanto a hipérbole rola sobre o eixo x. Como $P_2\hat{K}P_1 = P_1\hat{K}F_2$ e $F_1\hat{P}_1K = K\hat{P}_2F_2 = \frac{\pi}{2}$, observamos que os triângulos F_1KP_1 e F_2KP_2 são semelhantes (três ângulos iguais), logo

$$\frac{|P_1F_1|}{|P_2F_2|} = \frac{|F_1K|}{|F_2K|}.$$
(4.14)

Manipulando (4.14),

$$\frac{|P_1F_1|}{|P_2F_2|} = \frac{|P_1F_1| \cdot |P_2F_2|}{\left(|P_2F_2|\right)^2} = \frac{b^2}{\left(|P_2F_2|\right)^2},$$

além disso,

$$\frac{|F_1K|}{|F_2K|} = \frac{|F_1K| - |F_2K|}{|F_2K|} + \frac{|F_2K|}{|F_2K|} = \pm \frac{2a}{|F_2K|} + 1,$$

portanto

$$\frac{b^2}{\left(|P_2F_2|\right)^2} = \pm \frac{2a}{|F_2K|} + 1.$$
(4.15)

Pela Proposição 4.5 a roulette da hipérbole

é uma curva regular. Pelo Corolário 4.2.1 $|F_2K| = \pm y(s) \left(\frac{dx}{ds}\right)^{-1}$ que ao ser substituída em (4.15), mostra que a equação da roulette de F_2 satisfaz

$$\frac{b^2}{y(s)^2} = \pm \frac{2a}{y(s)} \frac{dx}{ds} + 1, \tag{4.16}$$

sendo so parâmetro comprimento de arco da roulette, então

$$\frac{dx}{ds} = \pm \frac{y(s)^2 - b^2}{2ay(s)},$$

o que demonstra a Proposição.

Novamente, a equação anterior possui solução em termos de funções elípticas (veja [4]).

4.2 As Curvaturas Médias do Catenóide, Ondulóide e Nodóide.

Nesta seção realizaremos o cálculo das curvaturas médias das superfícies obtidas pela rotação das roulettes, a *catenária*, a *ondulária* e a *nodária* que originam o *catenóide*, o *ondulóide* e o *nodóide*, respectivamente.

No Capítulo 2, observamos que uma superfície de rotação pode ser parametrizada por $X(u, v) = (x(x), y(x) \cos v, y(x) \sin v)$ e que a expressão de sua curvatura média é dada por

$$H = \frac{x''(x)y'(x) - x'(x)y''(x)}{(x'(x)^2 + y'(x)^2)^{3/2}} - \frac{x'(x)}{y(x)(x'(x)^2 + y'(x)^2)^{1/2}}$$

ou

$$H = x^{"}(s)y'(s) - x'(s)y^{"}(s) - \frac{x'(s)}{y(s)}$$
(4.17)

se a curva geratriz da superfície está parametrizada pelo parâmetro comprimento de arco.

Lema 4.1.5 Se a curva geratriz de uma superfície de rotação com eixo de rotação x está parametrizada e x'(s) = f(y(s)), então

$$H = -\frac{1}{2} \left(f'(y) + \frac{f(y)}{y} \right).$$
(4.18)

Demonstração:

Se x'(s) é como acima, então

$$y'(s) = \pm (1 - f^2(y))^{1/2} \Rightarrow y" = \mp (1 - f^2(z))^{-1/2} f f' y' = -f(y) f'(y)$$

enquanto

$$x'' = f'(y)y' \Rightarrow x''y' = f'(y)(y')^2 = f'(y)(1 - f^2(y))$$

Então pela equação (4.17),

$$H = -\frac{1}{2} \left(f^2(y) f'(y) + f'(y)(1 - f^2(y)) + \frac{f(y)}{y} \right) = -\frac{1}{2} \left(f'(y) + \frac{f(y)}{y} \right).$$

Pela equação (4.3) $\frac{dx}{ds} = \frac{c}{y}$, por (4.8) $\frac{dx}{ds} = \pm \frac{y^2 + b^2}{2ay}$, de (4.13) $\frac{dx}{ds} = \pm \frac{y^2 - b^2}{2ay}$ e por (4.18) calculamos H das superfícies obtidas pela rotação das roulettes das cônicas:

* **Catenóide**; $f(y) = \frac{c}{y}$

$$H = -\frac{1}{2} \left(-\frac{c}{y^2} + \frac{c}{y^2} \right) = 0.$$

Pelos cálculos acima, a curvatura média do catenóide é H = 0, portanto o catenóide é uma superfície mínima, a única superfície mínima de revolução (ver [2]).

* Ondulóide, Cilindro e Esfera ; $f(y) = \pm \frac{y^2 + b^2}{2ay}$ $H = -\frac{1}{2} \left(\pm \frac{4ay^2 - (y^2 + b^2)2a}{4a^2y^2} \pm \frac{y^2 + b^2}{2ay^2} \right) = \mp \frac{1}{2a}.$ * Nodóide; $f(y) = \pm \frac{y^2 - b^2}{2ay}$ $H = -\frac{1}{2} \left(\pm \frac{4ay^2 - (y^2 - b^2)2a}{4a^2y^2} \pm \frac{y^2 - b^2}{2ay^2} \right) = \mp \frac{1}{2a}.$

4.3 Superfícies Rotacionais de Curvatura Média Constante.

Pelo que vimos anteriormente, se uma superfície rotacional S com curva geratriz parametrizada pelo comprimento de arco (x(s), y(s), 0) satisfaz

$$\frac{dx}{ds} = \pm \frac{y(s)^2 \pm b^2}{2ay(s)},$$

para constantes $a \in b$, então a curvatura média de S é não nula.

Proposição 4.7 Uma superfície rotacional S possui curvatura média constante $H \neq 0$ se, e só se, a curva geratriz de S satizfaz

$$y^2 \pm 2ay \frac{dx}{ds} \pm b^2 = 0, a \in b \text{ constantes.}$$
 (4.19)

Demonstração:

Como S é uma superfície parametrizada regular podemos supor que localmente a sua curva geratriz é o gráfico de uma função, i.e, sua curva geratriz pode ser parametrizada por $(x, \tilde{y}(x), 0)$. Logo,

$$H = \frac{1}{2} \left(\frac{\tilde{y}''(x)}{(1 + \tilde{y}'(x)^2)^{3/2}} - \frac{1}{\tilde{y}(x)(1 + \tilde{y}'(x)^2)^{1/2}} \right).$$
(4.20)

Como S é de curvartura média constante, escrevemos $H = \frac{1}{2a} > 0$. Logo

$$\begin{split} & \left(\frac{\tilde{y}''(x)}{(1+\tilde{y}'(x)^2)^{3/2}} - \frac{1}{\tilde{y}(x)(1+\tilde{y}'(x)^2)^{1/2}}\right) = \frac{1}{a} \\ & a\frac{\tilde{y}''(x) - (1+\tilde{y}'(x)^2)}{\tilde{y}(x)(1+\tilde{y}'(x)^2)^{3/2}} = 1, \\ & a\frac{\tilde{y}''(x) - (1+\tilde{y}'(x)^2)}{(1+\tilde{y}'(x)^2)^{3/2}} - \tilde{y}(x) = 0. \end{split}$$

Multiplicando ambos os membros desta última expressão por $2\tilde{y}'(x)$, obtemos

$$2a\tilde{y}'(x)\frac{\tilde{y}''(x) - (1 + \tilde{y}'(x)^2)}{(1 + \tilde{y}'(x)^2)^{3/2}} - 2\tilde{y}(x)\tilde{y}'(x) = 0.$$
(4.21)

A expressão (4.21), pode ser integrada em x. E assim,

$$-\frac{2a\tilde{y}(x)}{(1+\tilde{y}'(x)^2)^{1/2}} - \tilde{y}(x)^2 = \pm b^2,$$
(4.22)

sendo b^2 uma constante. Agora, reparametrizando pelo parâmetro comprimento de arco $s = \int_0^x \sqrt{1 + \tilde{y}'(t)^2} dt$, obtemos

$$-2ay(s)\frac{dx}{ds} - y(s)^2 = \pm b^2,$$
(4.23)

pois $\frac{dx}{ds} = (1 + \tilde{y}'(x)^2)^{-1/2}$. Isolando $\frac{dx}{ds}$ em (4.23), resulta

$$\frac{dx}{ds} = \frac{y(s)^2 \pm b^2}{2ay(s)}$$

Considerando também o caso a < 0, obtemos

$$\frac{dx}{ds} = \pm \frac{y(s)^2 \pm b^2}{2ay(s)}.$$

Considerando, também, o caso em que H = 0 e já tomando da curva geratriz da superfície parametrizada pelo comprimento de arco, obtemos

$$H = \frac{1}{2} \left(\frac{\tilde{y}''(x)}{(1 + \tilde{y}'(x)^2)^{3/2}} - \frac{1}{\tilde{y}(x)(1 + \tilde{y}'(x)^2)^{1/2}} \right).$$

Fazendo H = 0 em (2.8) obtemos

$$\frac{\tilde{y}''(x)}{1+\tilde{y}'(x)^2} = \frac{1}{\tilde{y}(x)}.$$

Definindo $u(x) = \tilde{y}'(x)$, obtemos $\tilde{y}''(x) = \frac{du}{dx} = \frac{du}{d\tilde{y}}\tilde{y}'(x) = \frac{du}{d\tilde{y}}u$. Substituindo este resultado na última equação, obtemos

$$\frac{\frac{du}{d\tilde{y}}u}{1+\tilde{u}^2} = \frac{1}{\tilde{y}}$$

que possui $y = c(1 + u^2)$ como solução, onde $c \neq 0$ é uma constante. Daí $\tilde{y}' = \sqrt{\left(\frac{y}{c}\right)^2 - 1}$, cuja solução é $y = c \cosh\left(\frac{x}{c} + \tilde{c}\right)$, ou seja, a catenária. Reciprocamente, se a curva geratriz de uma superfície rotacional S satisfaz (4.19) ou é uma catenária, pelos cálculos da seção anterior concluímos que S possui curvatura média constante.

Juntando as Proposições 4.1, 4.4, 4.6 e 4.7 concluímos o Teorema 4.1 de Delaunay.

As superfícies rotacionais de curvartura média constante não nula são ditas Superfícies de Delaunay.

0

Figura 4.13: As roulettes de Delaunay.

Figura 4.14: As superfícies de Delaunay com $H\neq 0.$

Capítulo 5

Superfícies Helicoidais

Superfícies Helicoidais são aquelas invariantes por movimentos helicoidais em \mathbb{R}^3 , ou seja, por movimentos helicoidais em relação a uma dada reta. Pelo que vimos no capítulo 2, um exemplo de superfície helicoidal é dado pela superfície parametrizada por $X(u, v) = (x(u)\cos(\alpha v) + y(u)\sin(\alpha v), -x(u)\sin(\alpha v) + y(u)\cos(\alpha v), z(u) + \beta v).$

Como vimos, pelo Teorema 1.1, o subgrupo a 1-parâmetro de movimentos helicoidais em relação a um determinado eixo é identificado, via mudança de coordenadas, com o subgrupo a 1-parâmetro $G_{1,\delta}$. As superfícies helicoidais de passo δ são então superfícies invariantes por $G_{1,\delta}$.

Nos exemplos 2.10 e 2.11 são descritas duas superfícies helicoidais.

O objetivo deste capítulo é encontrar uma representação para as superfícies helicoidais de Curvatura Média constante não nula. Esta representação é uma generalização do resultado obtido por K. Kenmotsu no artigo [6]. O Lema de Bour e O Teorema de Lawson são peças chaves para a obtenção dessa representação.

5.1 Parametrização Natural e o Lema de Bour.

Seja $W \subset \mathbb{R}^2$ um aberto e X: $W \to \mathbb{R}^3$ uma parametrização tal que X(W) é o traço de uma superfície helicoidal de passo δ . Suponhamos que para um aberto $V \subset W$, a intersecção de X(V) com um plano $\Pi \supset \{\text{eixo } z\}$, seja localmente o gráfico de uma função $\lambda(\rho) \operatorname{com} \rho \in \Pi \cap \{z = 0\}$. Renomeando eixos podemos supor $\Pi \cap \{z = 0\} = \operatorname{eixo} x$. Então uma parametrização para X(V) $\cap \Pi$

Kenomeando eixos podemos supor $\Pi \cap \{z = 0\} = eixo x$. Então uma parametrização para $X(V) \cap \Pi$ é $\beta(\rho) = (\rho, 0, \lambda(\rho))$. Rodando $\beta(\rho)$ em torno do eixo z de um ângulo $\varphi \in \mathbb{R}$ simultaneamente com uma elevação de $\delta_0 \varphi$ ($\delta_0 = cte$) obtemos a seguinte parametrização para X(V)

$$\mathbf{X}(\rho,\varphi) = (\rho\cos\varphi, \rho \mathrm{sen}\varphi, \lambda(\rho) + \delta_0\varphi), \ \rho \in \Pi \cap \{z=0\}, \ \varphi \in \mathbb{R}.$$
(5.1)

Seja $Imm(W, \mathbb{R}^3) = \{ \text{parametrizações de } W \text{ em } \mathbb{R}^3 \}.$ Dado $H \in \mathbb{R}$ consideremos

 $\Sigma_H = \{ \mathbf{X} \in Imm(W, \mathbb{R}^3) : \mathbf{X} \in \text{superfície helicoidal de} \}$

curvatura média constante $H \neq 0$ }.

Definição 5.1 Seja $X(s,t) : W \to \mathbb{R}^3 \in Imm(W,\mathbb{R}^3)$ uma superfície helicoidal parametrizada por parâmetros (s,t) tais que as s-curvas (t = cte) são parametrizadas pelo comprimento de arco e as t-curvas (s = cte) são hélices ortogonais às s-curvas, então os parâmetros (s,t) são ditos parâmetros naturais.

Observação 5.1 Pela definição, a Primeira Forma Fundamental de uma superfície helicoidal parametrizada por parâmetros naturais (s,t) é dada por

$$d\sigma^2 = ds^2 + U^2(s)dt^2.$$
 (5.2)

Figura 5.1: A intersecção de X(W) com Π .

Exemplo 5.1 Para o helicóide do Exemplo 2.10 parametrizado por

 $(u\cos v, u\sin v, v), (u, v) \in \mathbb{R}^2,$

a Primeira Forma Fundamental é:

$$d\sigma^2 = du^2 + (1+u^2)dv^2.$$

As v-curvas são hélices, sendo estas ortogonais às u-curvas. Fazendo a mudança de coordenadas $u(s,t) = s \ e \ v(s,t) = t$, a Primeira Forma Fundamental do helicóide será,

$$d\sigma^2 = ds^2 + (1+s^2)dt^2.$$

Então para o helicóide, a função U(s) é definida por $U(s)^2 = 1 + s^2$. Lema 5.0.6 (Bour) Seja S uma superfície helicoidal de passo δ_0 parametrizada por,

$$\mathbf{X}(\rho,\varphi) = (\rho\cos\varphi, \rho \sin\varphi, \lambda(\rho) + \delta_0\varphi), \ (\rho,\varphi) \in U \subset \mathbb{R}^2$$

então S admite reparametrização por parâmetros naturais (s,t). Além disso, existe uma família a 2parâmetros de superfícies helicoidais isométricas a S e tal família contém uma superfície de rotação.

Demonstração:

Para a superfície ${\cal S}$ a Primeira Forma Fundamental é dada por

$$d\sigma^{2} = (1+\lambda^{\prime 2})d\rho^{2} + 2\delta_{0}\lambda^{\prime}d\rho d\varphi + (\rho^{2}+\delta_{0}^{2})d\varphi^{2} = \left(1+\frac{\rho^{2}\lambda^{\prime 2}}{\rho^{2}+\delta_{0}^{2}}\right)d\rho^{2} + (\rho^{2}+\delta_{0}^{2})\left(d\varphi + \frac{\delta_{0}\lambda^{\prime}}{\rho^{2}+\delta_{0}^{2}}\right)^{2}.(5.3)$$

Definamos novas variáveis $s=s(\rho,\varphi)$
e $t=t(\rho,\varphi)$ pelas relações,

$$ds = \left(1 + \frac{\rho^2 \lambda'^2}{\rho^2 + \delta_0^2}\right)^{1/2} d\rho,$$
(5.4)

$$dt = d\varphi + \frac{\delta_0 \lambda'}{\rho^2 + \delta_0^2} d\rho.$$
(5.5)

A matriz jacobiana dessa mudança é,

$$J = \begin{bmatrix} \left(1 + \frac{\rho^2 \lambda'^2}{\rho^2 + \delta_0^2}\right)^{1/2} & 0\\ \frac{\delta_0 \lambda'}{\rho^2 + \delta_0^2} & 1 \end{bmatrix}.$$

Como de
t $J \neq 0$, podemos fazer uma mudança de variáveis. Pelo Teorema da função inversa e a Regra da Cadeia a matriz
 jacobiana da mudança $\rho = \rho(s,t)$ e $\varphi = \varphi(s,t)$ é

$$\begin{bmatrix} \left(1 + \frac{\rho^2 + \lambda'^2}{\rho^2 + \delta_0^2}\right)^{-1/2} & 0\\ \frac{\delta\lambda'}{\rho^2 + \delta_0^2} \left(1 + \frac{\rho^2 + \lambda'^2}{\rho^2 + \delta_0^2}\right)^{-1/2} & 1 \end{bmatrix} = \begin{bmatrix} \frac{\partial\rho}{\partial s} & \frac{\partial\rho}{\partial t}\\ \frac{\partial\varphi}{\partial s} & \frac{\partial\varphi}{\partial t} \end{bmatrix},$$

portanto $\frac{\partial \rho}{\partial t} = 0$, logo $\rho(s,t) = \rho(s)$. $\lambda = \lambda(s)$, pois λ é função de ρ . Para concluirmos que (s,t) é uma parametrização natural em $V \subset W$, definamos $U(s)^2 = \rho(s)^2 + \delta_0^2$. Então, substituindo (5.4) e (5.5) em (5.3), obtemos $d\sigma^2 = ds^2 + U(s)^2 dt^2$.

A conclusão da segunda parte do enunciado do Lema de Bour vem da resposta dada a seguinte pergunta: - "Dada uma função U = U(s) > 0, existe superfície helicoidal da forma $X(\rho, \varphi) = (\rho \cos \varphi, \rho \operatorname{sen} \varphi, \lambda(\rho) + \delta \varphi)$ parametrizada por *parâmetros naturais* (s, t) e primeira forma dada por $d\sigma^2 = ds^2 + U(s)^2 dt^2$?"Dito de outro modo: o objetivo é encontrar funções $\rho, \varphi \in \lambda$ de (s, t) para valores arbitrários de δ , satisfazendo,

$$ds^2 = d\rho^2 + \frac{\rho^2}{\rho^2 + \delta^2} d\lambda^2, \qquad (5.6)$$

 \mathbf{e}

$$Udt = \pm (\rho^2 + \delta^2)^{1/2} \left(d\varphi + \frac{\delta}{\rho^2 + \delta^2} d\lambda \right).$$
(5.7)

Pelas expressões de $\rho \in \lambda$ em (5.6), $\rho \in \lambda$ não dependem de t. Já de (5.7),

$$\frac{\partial\varphi}{\partial s} = -\frac{\delta\lambda'}{\rho^2 + \delta^2} \tag{5.8}$$

 \mathbf{e}

$$\frac{\partial\varphi}{\partial t} = \pm \frac{U}{\rho^2 + \delta^2}.$$
(5.9)

Por (5.8), $\frac{\partial^2 \varphi}{\partial t \partial s} = 0$, o que quer dizer que $\frac{\partial \varphi}{\partial t}$ não depende da variável s, mas por (5.9) $\frac{\partial \varphi}{\partial t}$ é escrito como função de $\rho(s)$ e $\lambda(s)$, logo

$$\frac{\partial\varphi}{\partial t} = \pm \frac{U}{(\rho^2 + \delta^2)^{1/2}} = \frac{1}{m},\tag{5.10}$$

sendo $m \neq 0$ uma constante. Portanto, reformulamos (5.7) por

$$d\varphi = \frac{1}{m}dt - \frac{\delta}{\rho^2 + \delta^2}d\lambda.$$
(5.11)

Por (5.10), $m^2 U^2 = \rho^2 + \delta^2$ e derivando-a relação
as,obtemos

36

$$\begin{array}{rcl} m^2 U \dot{U} &=& \rho \dot{\rho}, \\ \frac{m^2 U \dot{U}}{\rho} &=& \dot{\rho}. \end{array}$$

Elevando ao quadrado ambos os membros da última expressão temos

$$\dot{\rho}^2 = \frac{m^4 U^2 \dot{U}^2}{m^2 U^2 - \delta^2},\tag{5.12}$$

pois por (5.10), $\rho^2 = m^2 U^2 - \delta^2$. O ponto em (5.12) denota derivação em relação a s. Então aplicando os resultados acima a (5.6) obtemos

$$d\lambda^2 = \frac{m^2 U^2}{(m^2 U^2 - \delta^2)^2} (m^2 U^2 (1 - m^2 \dot{U}^2) - \delta^2) ds^2.$$
(5.13)

Integrando em s obtemos, a menos de sinal,

$$\lambda = \int \frac{mU}{(m^2U^2 - \delta^2)} (m^2U^2(1 - m^2\dot{U}^2) - \delta^2)^{1/2} ds + c_1.$$

Eliminamos a constante c_1 por uma translação no eixo z. Pela equação (5.11),

$$\varphi = \frac{1}{m} \int dt - \int \frac{\delta \lambda'}{\rho^2 + \delta^2} d\lambda + c_2$$

e fazendo $\tilde{t} := t + mc_2$, eliminamos a constante c_2 , logo,

$$\begin{cases} \rho = (m^2 U^2 - \delta^2)^{1/2} \\ \lambda = \int \frac{mU}{(m^2 U^2 - \delta^2)} (m^2 U^2 (1 - m^2 \dot{U}^2) - \delta^2)^{1/2} ds \\ \varphi = \int \frac{1}{m} dt - \frac{\delta}{m} \int \frac{(m^2 U^2 (1 - m^2 \dot{U}^2) - \delta^2)^{1/2}}{U(m^2 U^2 - \delta^2)} ds \end{cases}$$
(5.14)

Substituindo m = 1 e $\delta = \delta_0$ em (5.14) encontramos a parametrização da superfície S do enunciado do *Lema de Bour* em parâmetros naturais, já a escolha de $\delta = 0$ fornece uma superfície de rotação isométrica a S. Portanto as expressões em (5.14) dão uma família a 2-parâmetros de superfícies helicoidais isométricas a superfície S e a família (5.14) é denominada por *Família de Bour*.

Observação 5.2 O Lema de Bour foi demonstrado sob a hipótese de que superfícies helicoidais possam ser escritas da forma $\mathbf{x}(\rho, \varphi) = (\rho \cos \varphi, \rho \operatorname{sen} \varphi, \lambda(\rho) + \delta \varphi)$ em um aberto $V \subset W$. No entanto, se observamos a relação da primeira das equações de (5.14) com as duas últimas, vemos que a família de Bour está bem definida para superfícies tais que $\rho(s) \neq 0$.

Pelo Lema de Bour, uma superfície da família a 2-parâmetros é determinada por uma função U(s) > 0 e constantes m e δ .

Para encontrarmos elementos da família de Bour com curvatura média constante não nula, precisaremos encontrar a expressão da curvatura média H da superfície helicoidal $[U, m, \delta]$ (determinada por U(s), $m \in \delta$). De modo que a seguir, precisaremos calcular a expressão da curvatura média de $[U, m, \delta]$. Então formulamos seguinte a proposição:

Proposição 5.1 $[U, m, \delta]$ é uma superfície de curvatura média constante H se, e só se, satisfaz

$$m^{2}U\ddot{U} + m^{2}\dot{U}^{2} - 1 = 2H\left(m^{2}U^{2}(1 - m^{2}\dot{U}^{2}) - \delta^{2}\right)^{1/2}.$$
(5.15)

Demonstração:

Para calcular H, determinaremos os coeficientes da Segunda Forma Fundamental. Logo, necessitaremos das expressões dos vetores X_{ρ} , X_{φ} , $X_{\rho\rho}$, $X_{\rho\varphi}$, $X_{\varphi\varphi} \in X_{\varphi} \wedge X_{\rho}$, descritos abaixo,

$$\begin{split} \mathbf{X}_{\rho} &= (\cos\varphi, \operatorname{sen}\varphi, \lambda'(\rho)), \quad \mathbf{X}_{\varphi} = (-\rho \operatorname{sen}\varphi, \rho \cos\varphi, \delta), \\ \mathbf{X}_{\rho\rho} &= (0, 0, \lambda''(\rho)), \quad \mathbf{X}_{\rho\varphi} = (-\operatorname{sen}\varphi, \cos\varphi, 0), \quad \mathbf{X}_{\varphi\varphi} = (-\rho \cos\varphi, -\rho \operatorname{sen}\varphi, 0) \\ \mathbf{e} \\ \mathbf{X}_{\varphi} \wedge \mathbf{X}_{\rho} &= (-\delta \operatorname{sen}\varphi + \rho\lambda'(\rho) \cos\varphi, \delta \cos\varphi + \rho\lambda'(\rho) \operatorname{sen}\varphi, -\rho), \\ \mathrm{onde} \ \mathbf{X}_{\rho} &= \frac{\partial \mathbf{X}}{\partial \rho}, \text{ idem para } \mathbf{X}_{\varphi}, \text{ enquanto } \mathbf{X}_{\rho\rho}, \mathbf{X}_{\rho\varphi} \operatorname{e} \mathbf{x}_{\varphi\varphi} \text{ indicam as derivadas de segunda ordem de x.} \end{split}$$

Também é interessante termos em mãos as expressões

$$\begin{cases} \langle \mathbf{X}_{\varphi\varphi}, \mathbf{X}_{\varphi} \wedge \mathbf{X}_{\rho} \rangle &= -\rho^{2}\lambda'(\rho) \\ \langle \mathbf{X}_{\rho\varphi}, \mathbf{X}_{\varphi} \wedge \mathbf{X}_{\rho} \rangle &= \delta \end{cases}$$
(5.16)

Como X=X($\rho(s),\varphi(s,t)),$ pela regra da cadeia, os vetores tangentes de X podem ser escritos como abaixo,

$$\mathbf{X}_{s} = \mathbf{X}_{\rho}\dot{\rho} + \mathbf{X}_{\varphi}\frac{\partial\varphi}{\partial s} \quad \mathbf{e} \quad \mathbf{X}_{t} = \mathbf{X}_{\varphi}\frac{\partial\varphi}{\partial t}$$

Pela equação (5.11), $\frac{\partial \varphi}{\partial t} = \frac{1}{m} e \frac{\partial \varphi}{ds} = -\frac{\delta \lambda'}{\rho^2 + \delta^2} \text{ por (5.8), assim}$ $X_t = \frac{1}{m} X_{\varphi}, X_{tt} = \frac{1}{m^2} X_{\varphi\varphi} e X_{st} = \frac{1}{m} \dot{\rho} X_{\varphi\rho} + \frac{1}{m} \frac{\partial \varphi}{\partial s} X_{\varphi\varphi}.$ Então,

$$\begin{split} \langle \mathbf{X}_{tt}, \mathbf{X}_t \wedge \mathbf{X}_s \rangle &= \left\langle \frac{1}{m^2} \mathbf{X}_{\varphi\varphi}, \frac{1}{m} \mathbf{X}_{\varphi} \wedge \left(\mathbf{X}_{\rho} \dot{\rho} + \mathbf{X}_{\varphi} \frac{\partial \varphi}{\partial s} \right) \right\rangle &= \\ &= \left\langle \frac{1}{m^2} \mathbf{X}_{\varphi\varphi}, \frac{1}{m} \mathbf{X}_{\varphi} \wedge \mathbf{X}_{\rho} \dot{\rho} \right\rangle &= \\ &= \frac{\dot{\rho}}{m^3} \left\langle \mathbf{X}_{\varphi\varphi}, \mathbf{X}_{\varphi} \wedge \mathbf{X}_{\rho} \right\rangle. \end{split}$$

Pela primeira equação de (5.16) e pela regra da cadeia, reescrevemos esta última expressão como,

$$\langle \mathbf{X}_{tt}, \mathbf{X}_t \wedge \mathbf{X}_s \rangle = -\frac{\rho^2 \lambda'(\rho) \dot{\rho}}{m^3} = -\frac{\rho^2 \dot{\lambda}}{m^3}.$$
(5.17)

Calculando,

$$\begin{aligned} \langle \mathbf{X}_{st}, \mathbf{X}_t \wedge \mathbf{X}_s \rangle &= \left\langle \frac{1}{m} \dot{\rho} \mathbf{X}_{\varphi \rho} + \frac{1}{m} \frac{\partial \varphi}{\partial s} \mathbf{X}_{\varphi \varphi}, \frac{1}{m} \mathbf{X}_{\varphi} \wedge \mathbf{X}_{\rho} \dot{\rho} \right\rangle &= \\ &= \frac{\dot{\rho}^2}{m^2} \langle \mathbf{X}_{\varphi \rho}, \mathbf{X}_{\varphi} \wedge \mathbf{X}_{\rho} \rangle + \frac{\dot{\rho}}{m^2} \frac{\partial \varphi}{\partial s} \langle \mathbf{X}_{\varphi \varphi}, \mathbf{X}_{\varphi} \wedge \mathbf{X}_{\rho} \rangle \end{aligned}$$

e fazendo uso das equações em (5.16) e a regra da cadeia, resulta

$$\langle \mathbf{X}_{st}, \mathbf{X}_t \wedge \mathbf{X}_s \rangle = \frac{1}{m^2} \left(\delta \dot{\rho}^2 - \dot{\lambda} \rho^2 \frac{\partial \varphi}{\partial s} \right).$$
 (5.18)

Por (5.12), $\dot{\rho}^2 = \frac{m^4 U^2 \dot{U}^2}{m^2 U^2 - \delta^2}$ e por (5.8), $\frac{\partial \varphi}{\partial s} = -\frac{\delta \lambda'}{\rho^2 + \delta^2}$. Portanto, desenvolvemos a equação (5.18) em

$$\begin{aligned} \langle \mathbf{X}_{st}, \mathbf{X}_t \wedge \mathbf{X}_s \rangle &= \frac{1}{m^2} \left(\delta \frac{m^4 U^2 \dot{U}^2}{m^2 U^2 - \delta^2} + \frac{\delta m U (m^2 U^2 - \delta^2)}{(m^2 U^2 - \delta^2)^2 m U} (m^2 U^2 (1 - m^2 \dot{U}^2) - \delta^2) \right) \\ &= \frac{\delta}{m^2} \left(\frac{m^4 U^2 \dot{U}^2}{m^2 U^2 - \delta^2} + \frac{(m^2 U^2 (1 - m^2 \dot{U}^2) - \delta^2))}{m^2 U^2 - \delta^2} \right), \end{aligned}$$

daí,

$$\langle \mathbf{X}_{st}, \mathbf{X}_t \wedge \mathbf{X}_s \rangle = \frac{\delta}{m^2}.$$
 (5.19)

Determinaremos o valor de $\parallel \mathbf{X}_s \wedge \mathbf{X}_t \parallel$. Utilizando a fórmula dada para $\parallel \mathbf{X}_s \wedge \mathbf{X}_t \parallel$ na página 98 de [2],

$$||X_s \wedge X_t|| = \sqrt{EG - F^2} = \sqrt{1.U^2 - 0^2} = U.$$
 (5.20)

Calculando os coeficientes f e g da Segunda Forma, pelas equações em (2.7), observamos que

$$f = \langle \mathbf{X}_{st}, N(s,t) \rangle = \left\langle \mathbf{X}_{st}, \frac{\mathbf{X}_s \wedge \mathbf{X}_t}{\| \mathbf{X}_s \wedge \mathbf{X}_t \|} \right\rangle = \frac{1}{\| \mathbf{X}_s \wedge \mathbf{X}_t \|} \langle \mathbf{X}_{st}, \mathbf{X}_s \wedge \mathbf{X}_t \rangle$$
$$g = \left\langle \mathbf{X}_{tt}, N(s,t) \right\rangle = \left\langle \mathbf{X}_{tt}, \frac{\mathbf{X}_s \wedge \mathbf{X}_t}{\| \mathbf{X}_s \wedge \mathbf{X}_t \|} \right\rangle = \frac{1}{\| \mathbf{X}_s \wedge \mathbf{X}_t \|} \langle \mathbf{X}_{tt}, \mathbf{X}_s \wedge \mathbf{X}_t \rangle,$$

e

$$g = \langle \mathbf{X}_{tt}, N(s, t) \rangle = \left\langle \mathbf{X}_{tt}, \frac{\mathbf{X}_s \wedge \mathbf{X}_t}{\|\mathbf{X}_s \wedge \mathbf{X}_t\|} \right\rangle = \frac{1}{\|\mathbf{X}_s \wedge \mathbf{X}_t\|} \langle \mathbf{X}_{tt}, \mathbf{X}_s \wedge \mathbf{X}_t$$

portanto, por (5.18), (5.19) e (5.20), obtemos os seguintes valores para $f \in g$,

$$f = \frac{\delta}{m^2 U},\tag{5.21}$$

е

 $g = -\frac{\rho^2 \dot{\lambda}}{m^3 U}.$ (5.22)

Para determinar o coeficiente e da Segunda Forma Fundamental, teremos um pouco mais de "trabalho". Recordemos da seguinte expressão da curvatura gaussiana, para superfícies tais que F = 0 ([2], pág. 237).

$$K = -\frac{1}{2\sqrt{EG}} \left(\left(\frac{G_s}{\sqrt{EG}} \right)_s + \left(\frac{E_t}{\sqrt{EG}} \right)_t \right)$$
(5.23)

e como a superfície helicoidal S está parametrizada por parâmetros naturais, temos

$$E = 1 \qquad \Rightarrow \quad E_t = 0,$$

 $G = U^2(s) \Rightarrow G_s = 2U\dot{U},$

então

$$\left(\frac{G_s}{\sqrt{EG}}\right)_s = 2\left(\frac{U\dot{U}}{U}\right)_s = 2\ddot{U}$$

logo,

$$K = -\frac{2\ddot{U}}{2U} = -\frac{\ddot{U}}{U}.$$
(5.24)

Por (2.5), a fórmula da curvatura gaussiana de uma superfície qualquer é dada por $K = \frac{eg - f^2}{EG - F^2}$. Observado que F = 0, esta última expressão se reduz a equação abaixo,

$$K = \frac{eg - f^2}{U^2}.$$
 (5.25)

Substituindo (5.21), (5.22) e (5.24) em (5.25),

$$-\frac{\ddot{U}}{U} = \frac{e\left(-\rho^2\dot{\lambda}/(mU)\right) - \left(\delta/(m^2U)\right)^2}{U}$$

e obtemos

$$e = \frac{m^4 U^3 \dot{U} - \delta^2}{m^2 U^2 (m^2 U^2 (1 - m^2 \dot{U}^2) - \delta^2)^{1/2}}.$$
(5.26)

Como a superfície S está parametrizada por parâmetros naturais, a expressão para a curvatura média dada por (2.4) é $H = \frac{eG - 2fF + gE}{2(EG - F^2)}$, que podemos reescrever como

$$2H = e + \frac{g}{U^2}$$

e utilizando (5.26) nesta última expressão, obtemos

$$m^{2}U\ddot{U} + m^{2}\dot{U}^{2} - 1 = 2H\left(m^{2}U^{2}(1 - m^{2}\dot{U}^{2}) - \delta^{2}\right)^{1/2},$$

ou seja, a expressão (5.15). Portanto, um elemento $[U, m, \delta]$ da família de Bour, possui curvatura média $H = cte \neq 0$ se, e só se, satisfaz à equação (5.15).

A seguir determinaremos expressões explícitas para as superfícies helicoidais da família de Bour com curvatura média constante $H \neq 0$. No entanto, durante a determinação dessas expressões explícitas, surge um novo parâmetro, mostrando que tais superfícies estão em uma família maior. Então superfícies helicoidais de curvatura média constante pertencem a uma família a 3-parâmetros. Além disso, as superfícies da família a 3-parâmetros não são isométricas.

Dada uma superfície $[U, m, \delta]$ da família de Bour, pela Proposição 5.1, se $[U, m, \delta]$ possui curvatura média constante, então $[U, m, \delta]$ satisfaz a equação

$$m^{2}U\ddot{U} + m^{2}\dot{U}^{2} - 1 = 2H\left(m^{2}U^{2}(1 - m^{2}\dot{U}^{2}) - \delta^{2}\right)^{1/2}$$

Fazendo x = mU nessa última expressão, resulta

$$x\ddot{x} + \dot{x}^2 - 1 = 2H\left(x^2(1 - \dot{x}^2) - \delta^2\right)^{1/2},$$
(5.27)

definindo $y=(x^2-x^2\dot{x}^2-\delta^2)^{1/2}$ em (5.27), obtemos

$$x\ddot{x} + \dot{x}^2 - 1 = 2Hy.$$

Além disso,

$$\dot{y} = (x^2 - x^2 \dot{x}^2 - \delta^2)^{-1/2} (x\dot{x} - x\dot{x}^3 - x^2 \dot{x}\dot{x}) = y^{-1} x\dot{x} (1 - \dot{x}^2 - x\ddot{x})$$

portanto

$$-y\dot{y}(x\dot{x})^{-1} = x\ddot{x} + \dot{x}^2 - 1,$$

 $-y\dot{y}\left(x\dot{x}\right)^{-1} = 2Hy.$

Daí

logo

$$\dot{y} = -2Hx\dot{x}.\tag{5.28}$$

Integrando (5.28),

$$y = -Hx^2 + a, \ a = \text{constante.}$$
(5.29)

 Como

$$(x^{2} - x^{2}\dot{x}^{2} - \delta^{2})^{1/2} = -Hx^{2} + a \Rightarrow \dot{x}^{2} = \frac{x^{2} - \delta^{2} - (Hx^{2} - a)^{2}}{x^{2}},$$

definindo $z = x^2$ e supondo $H \neq 0$,

$$\frac{1}{4}\dot{z}^2 = z - \delta^2 - (Hz - a)^2 \tag{5.30}$$

Manipulando esta última expressão,

$$z - \delta^{2} - (Hz - a)^{2} = \frac{(2Ha + 1)^{2}}{4H^{2}} - (a^{2} + \delta^{2}) - \left(Hz - \frac{(2Ha + 1)}{2H}\right)^{2}.$$

Portanto,

$$\begin{aligned} \frac{1}{4}\dot{z}^2 &= \frac{(2Ha+1)^2}{4H^2} - (a^2 + \delta^2) - \left(Hz - \frac{(2Ha+1)}{2H}\right)^2, \\ \dot{z} &= 2\left(\frac{(2Ha+1)^2}{4H^2} - (a^2 + \delta^2) - \left(Hz - \frac{(2Ha+1)}{2H}\right)^2\right)^{1/2} \end{aligned}$$

fazendo separação de variáveis, temos

$$\frac{dz}{\left(\frac{(2Ha+1)^2}{4H^2} - (a^2 + \delta^2) - \left(Hz - \frac{(2Ha+1)}{2H}\right)^2\right)^{1/2}} = 2ds,$$

que ao ser integrada, dá

$$2Hs = \operatorname{sen}^{-1} \left(\frac{Hz - \frac{2Ha + 1}{2H}}{\left(\frac{(2Ha + 1)^2}{4H^2} - (a^2 + \delta^2)\right)^{1/2}} \right) + c.$$

Removemos a constante de integração por reajuste do parâmetro $s,\, \log o$

$$\operatorname{sen}(2Hs) = \frac{Hz - \frac{2Ha + 1}{2H}}{\left(\frac{(2Ha + 1)^2}{4H^2} - (a^2 + \delta^2)\right)^{1/2}},$$

 $\operatorname{da}\!i$

$$z = \frac{1}{2H^2} \left(2Ha + 1 + \left(1 - 4H^2\delta^2 + 4Ha \right)^{1/2} \operatorname{sen}(2Hs) \right).$$

No entanto $z = m^2 U^2$, logo

$$m^{2}U^{2} = \frac{1}{2H^{2}} \left(2Ha + 1 + \left(1 + 4Ha - 4H^{2}\delta^{2} \right)^{1/2} \operatorname{sen}(2Hs) \right).$$
(5.31)

A equação (5.31) fornece uma família de funções U_a (o que mostra que, embora as superfícies dessa família estejam em parâmetros naturais, não são isométricas), para simplificar a notação, seja

$$B = \left(1 + 4Ha - 4H^2\delta^2\right)^{1/2} \tag{5.32}$$

e supondo $B \neq 0,$ reescrevemos (5.31) como

$$m^{2}U^{2} = \frac{1}{2H^{2}} \left(2Ha + 1 + B\operatorname{sen}(2Hs) \right).$$
(5.33)

Derivando (5.33) em relação
a $\boldsymbol{s},$

 $2m^2U\dot{U}=\frac{B\mathrm{sen}(2Hs)}{2H^2}2H.$

Logo,

$$m^2 \dot{U} = \frac{B}{2HU} \cos(2Hs). \tag{5.34}$$

Agora serão necessárias as expressões de $m^2 U^2 - \delta^2$ e $m^2 U^2 \left(1 - m^2 \dot{U}^2\right) - \delta^2$ para que sejam feitas suas respectivas substituições em (5.14), escrita abaixo

$$\begin{cases} \rho = (m^2 U^2 - \delta^2)^{1/2} \\ \lambda = \int \frac{mU}{(m^2 U^2 - \delta^2)} (m^2 U^2 (1 - m^2 \dot{U}^2) - \delta^2)^{1/2} ds \\ \varphi = \int \frac{1}{m} dt - \frac{\delta}{m} \int \frac{(m^2 U^2 (1 - m^2 \dot{U}^2) - \delta^2)^{1/2}}{U(m^2 U^2 - \delta^2)} ds \end{cases}$$

Pelas equações (5.33) e (5.34),

$$\begin{split} m^2 U^2 (1 - m^2 \dot{U}^2) &= \frac{1}{2H^2} \left(2Ha + 1 + B \text{sen}(2Hs) \right) - \frac{B^2}{4H^2} \cos^2(2Hs), \\ m^2 U^2 (1 - m^2 \dot{U}^2) &= \frac{4Ha + 1 - B^2}{4H^2} + \frac{1}{4H^2} \left(1 + B \text{sen}(2Hs) \right)^2, \\ \text{mas por (5.32), o valor de } \delta^2 \acute{\text{e}} \\ \delta^2 &= \frac{4Ha + 1 - B^2}{4H^2}. \end{split}$$

Logo

$$m^{2}U^{2}(1 - m^{2}\dot{U}^{2}) = \delta^{2} + \frac{1}{4H^{2}}\left(1 + B\mathrm{sen}(2Hs)\right)^{2},$$

$$m^{2}U^{2}(1 - m^{2}\dot{U}^{2}) - \delta^{2} = \frac{1}{4H^{2}}\left(1 + B\mathrm{sen}(2Hs)\right)^{2}.$$
 (5.35)

Já por (5.31) e (5.32), determinamos $m^2 U^2 - \delta^2,$

$$m^{2}U^{2} - \delta^{2} = \frac{1}{2H^{2}} \left(2Ha + 1 + B\operatorname{sen}(2Hs) \right) - \frac{1 + 4Ha - B^{2}}{4H^{2}}$$

portanto

$$m^{2}U^{2} - \delta^{2} = \frac{1}{4H^{2}} \left(1 + B^{2} + 2B\operatorname{sen}(2Hs) \right).$$
(5.36)

,

Substituindo (5.33), (5.34), (5.35) e (5.36) em

$$\begin{cases} \rho = (m^2 U^2 - \delta^2)^{1/2} \\ \lambda = \int \frac{mU}{(m^2 U^2 - \delta^2)} (m^2 U^2 (1 - m^2 \dot{U}^2) - \delta^2)^{1/2} ds \\ \varphi = \int \frac{1}{m} dt - \frac{\delta}{m} \int \frac{(m^2 U^2 (1 - m^2 \dot{U}^2) - \delta^2)^{1/2}}{U(m^2 U^2 - \delta^2)} ds \end{cases}$$

obtemos assim que uma superfície helicoidal pos
sui curvatura média constante $H\neq 0$ se, e somente se, satisfa
z(5.37)escrita abaixo

$$\begin{cases} \rho = \frac{1}{2H} \left(1 + B^2 + 2B \operatorname{sen}(2Hs) \right)^{1/2} \\ \lambda = \int \frac{(1 + 4H^2 \delta^2 + B^2 + 2B \operatorname{sen}(2Hs))^{1/2} (1 + B \operatorname{sen}(2Hs)) ds}{(1 + B^2 + 2B \operatorname{sen}(2Hs))} \\ \varphi = \frac{t}{m} - 4H^2 \delta \int \frac{1 + B \operatorname{sen}(2Hs)}{(1 + 4H^2 \delta^2 + B^2 + 2B \operatorname{sen}(2Hs))^{1/2} (1 + B^2 + 2B \operatorname{sen}(2Hs))} ds \\ \varphi = \int \frac{1}{m} \left(\frac{1}{2H} - \frac{1}{2H} \left(\frac{1}{2H} + \frac{1}{2H} \right) \right)^{1/2} \left(\frac{1}{2H} + \frac{1}{2H} + \frac{1}{2H} + \frac{1}{2H} \right)^{1/2} \left(\frac{1}{2H} + \frac{1}{2H} + \frac{1}{2H} + \frac{1}{2H} \right)^{1/2} \left(\frac{1}{2H} + \frac{1}{2H} + \frac{1}{2H} + \frac{1}{2H} \right)^{1/2} \left(\frac{1}{2H} + \frac{1}{2H} \right)^{1/2} \left(\frac{1}{2H} + \frac{1}{$$

sendo *B* definido pela relação (5.32). A superfície com parametrização dada no Lema 5.0.6 (com m = 1 e $\delta = \delta_0$) está incluída na família a 3-parâmetros, para ver isto, basta substituir m = 1 e $\delta = \delta_0$ em (5.37) e esta superfície possui $H \neq 0$ se, e só se, as funções $\rho(s)$, $\varphi(s,t) \in \lambda(s)$ são dadas por (5.37), obtidas pela substituição de m = 1 e $\delta = \delta_0$. Pelo que acabamos de calcular demonstramos a

Proposição 5.2 As superfícies helicoidais dadas por (5.1), i.e., as superfícies de parametrização $X(\rho, \varphi) = (\rho \cos \varphi, \rho \sin \varphi, \lambda(\rho) + \delta \varphi)$, que possuem curvatura média constante $H \neq 0$ constituem uma família a 3-parâmetros, sendo B, $\delta e m$ os parâmetros. Cada superfície dessa família (i.e., B, $\delta e m$ fixos), é parametrizada de forma natural pela substituição de ρ, λ , $e \varphi em$ (5.1) pelas suas respectivas expressões obtidas abaixo,

$$\begin{cases} \rho = \frac{1}{2H} \left(1 + B^2 + 2B \operatorname{sen}(2Hs) \right)^{1/2} \\ \lambda = \int \frac{(1 + 4H^2 \delta^2 + B^2 + 2B \operatorname{sen}(2Hs))^{1/2} (1 + B \operatorname{sen}(2Hs)) ds}{(1 + B^2 + 2B \operatorname{sen}(2Hs))} & . \quad (5.37) \\ \varphi = \frac{t}{m} - 4H^2 \delta \int \frac{1 + B \operatorname{sen}(2Hs)}{(1 + 4H^2 \delta^2 + B^2 + 2B \operatorname{sen}(2Hs))^{1/2} (1 + B^2 + 2B \operatorname{sen}(2Hs))} ds \end{cases}$$

Figura 5.2: Uma superfície da família a 3-parâmetros.

Observação 5.3 Considerações sobre a representação (5.37)

- 1. O parâmetro m não é efetivamente importante, pois os diferentes valores de m, apenas mudam a parametrização da superfície, enquanto a imagem permanece inalterada. Portanto podemos definir uma nova variável $\tilde{t} := \frac{t}{m}$ em (5.37). (O parâmetro m apenas muda a velocidade de φ .)
- 2. Segue das expressões em (5.37) que, exceto quando $B = \pm 1$, temos $\rho(s) \neq 0$. Mesmo quando $B = \pm 1$, $\rho(s) = 0$ apenas para valores de s tais que sen $(2Hs) = \pm 1$.
- 3. Se permitimos B = 0, então os cilindros estão incluídos na representação dada por $(5.37)^1$.

¹No caso em que B = 0, a representação dada por (5.37) fornece,

4. Para $B \neq 1$ fixo e δ arbitrário, obtemos da representação (5.37), que as superfícies helicoidais de curvatura média constante que possuem mesmo valor de B estão todas contidas entre dois cilindros pois,

$$\frac{(1-B)}{2H} \le \rho(s) \le \frac{1+B}{2H}.$$

Para ver isto, observamos que

$$(1-B)^2 = 1 + B^2 - 2B \le 1 + B^2 + 2B\operatorname{sen}(2Hs) \le 1 + B^2 + 2B = (1+B)^2.$$

Uma superfície delimitada por dois cilindros é dita cilindricamente delimitada.

5. As superfícies dadas por (5.37) estão definidas para todos os valores dos parâmetros (s, t), o que dá uma parametrização global por parâmetros naturais.

Figura 5.3: Uma superfície helicoidal cilindricamente delimitada.

Observação 5.4 Antes do resultado principal, devemos fazer algumas considerações de sinais:

- Como $H \neq 0$, podemos considerar H > 0,
- Do modo como B é definido, resulta $B \ge 0$,

$$\left\{ \begin{array}{rrl} \rho &=& \frac{1}{2H} \\ \lambda &=& (1+4H^2\delta^2)s \\ \varphi &=& \frac{t}{m}-\frac{4H^2\delta s}{1+4H^2\delta^2} \end{array} \right. ,$$

observamos que as curvas s = cte e t = cte são hélices que preenchem o cilindro de raio $\frac{1}{2H}$.

• Como visto anteriormente, para diferentes valores de m em (5.37), com $B \in \delta$ fixos, existem parametrizações com mesma imagem, então podemos considerar m > 0.

Deste ponto em diante sempre consideraremos $H \in m$ positivos.

Teorema 5.1 Existe uma aplicação sobrejetiva $\phi : S^1 \times [0, \infty) \to \Sigma_H$, tal que $\phi(0, [0, \infty))$ são as superfícies de rotação em Σ_H e $\phi(\theta, B_0)$, $B_0 \in [0, \infty)$, $\theta \in [0, 2\pi]$, é a família associada à superfície de rotação $\phi(0, B_0)$ (no sentido de que cada elemento da família é isométrico a $\phi(0, B_0)$). Além disso, exceto para $(\theta, 1)$, $\phi(\theta, B_0) = X : W \to \mathbb{R}^3$ é dada explicitamente em uma parametrização global em parâmetros naturais.

Demonstração:

A demonstração completa se encontra em [3]. Aqui, daremos apenas um roteiro. Seja $U(a, \delta, m)$ a expressão para U obtida por (5.31),

$$m^{2}U^{2} = \frac{1}{2H^{2}} \left(2Ha + 1 + \left(1 + 4Ha - 4H^{2}\delta^{2} \right)^{1/2} \operatorname{sen}(2Hs) \right),$$

ou seja

$$U(a,\delta,m)^2 = \frac{1}{2m^2H^2} \left(2Ha + 1 + B\operatorname{sen}(2Hs)\right).$$
(5.38)

Para encontrar uma família a 2-parâmetros de superfícies helicoidais de H = cte isométricas a uma superfície de rotação com mesmo H, introduzimos novos parâmetros (a_0, θ) definidos por,

$$a(a_0, \theta) = \frac{a_0 \cos \theta}{1 + 2a_0 H(1 - \cos \theta)},$$

$$\delta(a_0, \theta) = \frac{a_0 \sin \theta}{1 + 2a_0 H(1 - \cos \theta)}, \quad a_0 \ge 0, \ \theta \in [0, 2\pi].$$

$$m(a_0, \theta)^2 = \frac{1}{1 + 2a_0 H(1 - \cos \theta)}.$$
(5.39)

 $U(a_0, 0, m)$ é o coeficiente G de uma superfície de rotação da família a 3-parâmetros, denotemos por $X(a_0)$ esta superfície. Então, devemos mostrar com o auxílio das equações em (5.39), que

$$U(a, \delta, m) = U(a_0, 0, 1).$$

Antes de prosseguir, enunciamos uma versão "adaptada" do *Teorema de Lawson* que é de vital importância para da demonstração do Teorema 5.1. A demonstração deste teorema pode ser vista em [1], página 21.

Teorema 5.2 (Lawson) Sejam $W \subset \mathbb{R}^2$ um aberto e S uma superfície com curvatura média constante H parametrizada por X: $W \to \mathbb{R}^3$. Então existe uma família diferenciável, 2π -periódica de superfícies $X_{\theta}: W \to \mathbb{R}^3, \theta \in [0, 2\pi], X_0 = X$, com a mesma métrica induzida e com curvatura média H. Além disso, a família X_{θ} contém todas as (extensões de) superfícies localmente isométricas a S com H dado.

Juntando $U(a, \delta, m) = U(a_0, 0, 1)$, com o Teorema 5.2, obtemos que a família $X_{\theta}(a_0), \theta \in [0, 2\pi]$ é a família associada a $X(a_0)$. Para ver que dada uma superfície helicoidal \overline{X} da família (5.37) com parâmetros $\overline{a}, \overline{\delta} \in \overline{m}$ existe uma superfície de rotação $X(a_0)$ (5.37) e um número $\theta \in [0, 2\pi]$ tal que $\overline{X} = X_{\theta}(a_0)$, devemos considerar a expressão de $U(\overline{a}, \overline{\delta}, \overline{m})$ e encontrar uma superfície de rotação $X(\tilde{a}_0)$ tal que $U(\overline{a}, \overline{\delta}, \overline{m}) = U(\tilde{a}_0, 0, 1)$. Para mostrar que $U(\overline{a}, \overline{\delta}, \overline{m}) = U(\tilde{a}_0, 0, 1)$, devemos trabalhar a hipótese de que X e $X(\tilde{a}_0)$ possuem mesma curvatura média constante H e relacionar os coeficientes da segunda forma $e, f \in g$ de X e $e_0, f_0 \in g_0$ de $X(a_0)$. Demonstrada essa segunda parte, será conveniente expressar a família a 3-parâmetros da Proposição 5.2 em termos de (θ, a_0) . Como

$$B(\theta, a_0) = (1 + 4a_0H)^{1/2}(1 + 2a_0H(1 - \cos\theta))^{-1}.$$
(5.40)

Então definimos $B_0 = B(0, a_0)$ e portanto

$$B_0^2 = 1 + 4a_0 H. (5.41)$$

Isolando $a_0 \text{ em } (5.41)$

$$a_0 = (B_0^2 - 1)/(4H)$$

e substituindo a_0 em (5.39),

$$B(\theta, B_0) = \frac{2B_0}{2 + (B_0^2 - 1)(1 - \cos \theta)}$$

$$\delta(\theta, B_0) = \frac{(B_0^2 - 1)\sin\theta}{2H(2 + (B_0^2 - 1)(1 - \cos \theta))} , \qquad (5.42)$$

$$m^2(\theta, B_0) = \frac{2}{2 + (B_0^2 - 1)(1 - \cos \theta)}$$

o que prova a primeira parte do Teorema 5.1. O problema é quando B = 1. A superfície de rotação da família associada, i.e., $\theta = 0$, é dada por $B_0 = 1$. Assim $m^2(\theta, 1) = 1 = B(\theta, 1) \in \delta(\theta, 1) = 0$ para todo θ . Então, $B_0 = 1$ corresponde à esfera² e a família associada à esfera é a própria esfera. Neste caso a parametrização natural possui uma singularidade em exatamente dois pontos, justificando a exceção feita no Teorema 5.1.

Se $\delta = 0$ e $B_0 = 0$, por (5.42) obtemos $B(\theta, 0) = 0$ para todo valor de θ , além disso $\rho(s) = \frac{1}{2H}$, portanto temos um cilindro circular reto o que mostra que a família associada ao cilindro é o próprio cilindro. cilindro.

²De $B_0 = 1$, resulta $a_0 = 0$ (veja (5.41)), então

 $U(a_0, 0, 1) = U(0, 0, 1) = (2H)^{-1} \operatorname{sen}(2Hs) \text{ e } \ddot{U}(0, 0, 1) = -2H\operatorname{sen}(2Hs).$ Para uma superfície helicoidal parametrizada por parâmetros naturais, a expressão da curvatura gaussiana é $K = -\ddot{U}U^{-1}$, então $K = -\ddot{U}(0, 0, 1)U(0, 0, 1)^{-1} = 2H\operatorname{sen}(2Hs) \left((2H)^{-1}\operatorname{sen}(2Hs)\right)^{-1} = 4H^2$, daí suponhamos que a curvatura média de U(0, 0, 1) seja $H = (2a)^{-1} > 0$, então a curvatura gaussiana de U(0, 0, 1) será $K = 4(2a)^{-2} = a^{-2}$, ou seja U(0, 0, 1) é uma esfera.

Referências Bibliográficas

- Barrientos, Javier O., Superfícies Helicoidais com Curvartura Constante no Espaço de Formas Tridimensional. Tese de Doutorado, Departamento de Matemática da Pontifície Universidade Católica do Rio de Janeiro, 1995.
- [2] do Carmo, Manfredo P., Differential Geometry of Curves and Surfaces. Prentice-Hall, Englwood, New Jersey, (1976).
- [3] do Carmo, Manfredo P. e Dajczer, Marcos, Helicoidal Surfaces with Constant Mean Curvature. Tôhoku Math. Journal nº 34, (1982), 425-435.
- [4] Delaunay, Charles; Sur la Surface de Revolution dont la Courbure Mouyenne est Constante, Journal de Mathematiques Pures e Appliquées, (1841), 309-320, Paris.
- [5] Eells, James, The Surfaces of Delaunay. The Math. Int. vol. 9, n°1, Springer-Verlag New York, (1987), 53-57.
- [6] Kenmotsu, K., Surfaces of Revolution with prescribed mean curvature. Tôhoku Math. J. 32(1980),147-153.
- [7] Lima, Elon Lages ; Álgebra Linear, terceira edição. SBM, Coleção Matemática Universitária, (1998).
- [8] Ripoll, J. B. & Medeiros, Nubem ; *Hipersuperfícies Invariantes de Curvatura Média Constante*. Matemática Universitária nº13, junho de 1991, 39-63.
- [9] Zwikker, *The Advanced Geometry o Plane Curves and their Applications*. Dover, Publications, Inc., New York (1963).