Variedades Invariantes de Aplicações no Plano

Ivana de Vasconcellos Latosinski Sônia Pinto de Carvalho Sylvie Oliffson Kamphorst

Julho, 2005

Agradecimentos

- À Sylvie Oliffson Kamphorst, Sônia Pinto de Carvalho e Mário Jorge Dias Carneiro pela orientação.
- À Flávio Abdenur pela participação na banca examinadora.
- À Angela, Paulo e Vicente.
- À Carina, Gabriela e Leonardo.
- Aos meninos do laboratório: Éden, Luciano, Reginaldo, Renato e Samuel.
- Aos professores do Departamento de Matemática da UFMG.

Sumário

1	Introdução	3
2	Preliminares 2.1 Um Difeormofismo como um Sistema Dinâmico 2.2 Classificação de um ponto fixo quanto a estabilidade 2.3 Variedades Invariantes	4 4 5
3	Forma Normal de um Difeomorfismo 3.1 Introdução 3.2 Teorema de Sternberg 3.3 Métodos Numéricos	6 6 12
4	Variedades Invariantes Globais 1 4.1 Método Simples 1 4.2 Método Hobson 1 4.3 Análise do Erro 1	L4 15 15 18
5	Bilhares 5.1 5.1 Bilhar de Circulos não Concêntricos(BCNC) 5.1.1 5.1.1 A aplicação T_c 5.1.2 5.1.2 A aplicação T_i 5.1.3 Condições para as aplicações $T_c e T_i$ 5.1.4 A aplicação do BCNC 5.1.4 5.2 Pontos fixos do BCNC 5.1.4	19 20 21 24 26 27
6	Resultados 2 6.1 BCNC 2 6.2 Variedades Invariantes Locais 2 6.3 Variedades Invariantes Globais 2	29 29 29 32

Capítulo 1

Introdução

O objetivo deste trabalho é o estudo e visualização das Variedades Invariantes de Difeomorfismos Planares de classe C^k . Geralmente, é impossível determinar uma expressão analítica para as Variedades Invariantes sendo necessário computação numérica para visualizá-las.

Dividimos o problema em duas partes. Na primeira, fazemos uma aproximação não linear das Variedades Invariantes Locais. A seguir, encontramos as Variedades Invariantes Globais através de um método que resolve arbitrariamente longos segmentos requerendo um número mínimo de chamadas á aplicação.

No capítulo 1, definimos o que é um sistema dinâmico dado por um difeomorfismo de classe C^k , classificamos seus pontos fixos e definimos o conceito de Variedades Invariantes Locais e Globais.

No capítulo 2, demonstramos o teorema de conjugação de um Difeomorfismo na vizinhança de um ponto fixo hiperbólico com sua Forma Normal, o Teorema da Linearização de Sternberg, que garante uma conjugação de mesma classe do Difeomorfismo. A demonstração nos fornece um algoritmo para determinar as Variedades Invariantes Locais da aplicação dada pelo seu Polinômio de Taylor.

No terceiro capítulo, apresentamos dois métodos numéricos para determinar as Variedades Invariantes Globais. O primeiro utiliza somente as definições e o segundo apresenta uma otimização onde reduzimos o número de chamadas para o difeomorfismo enquanto mantemos uma boa resolução.

No capítulo seguinte, definimos o Problema do Bilhar como um sistema dinâmico discreto bidimensional e conservativo. Apresentamos o Bilhar de Círculos Não Concêntricos (BCNC) como um exemplo de Sistema Dinâmico Planar.

Terminamos com o Bilhar de Círculos Não Concêntricos como exemplo. Encontramos o polinômio de Taylor na vizinhança de um ponto fixo hiperbólico da aplicação que define o BCNC e aplicamos o Teorema da Linearização de Sternberg, obtendo as Variedades Invariantes Locais. Após, aplicamos os algoritmos descritos neste trabalho para encontrarmos as Variedades Invariantes Globais.

Capítulo 2

Preliminares

Neste capítulo introduzimos os conceitos de Sistemas Dinâmicos Discretos Bidimensionais. O objetivo principal é entender o comportamento de um ponto no plano quando iterado repetidamente por uma função.

2.1 Um Difeormofismo como um Sistema Dinâmico

Assumimos $f : \mathbb{R}^2 \to \mathbb{R}^2$ uma aplicação de classe C^r , $r \ge 0$, com inversa f^{-1} definida e de mesma classe. Consideramos a sequência $\{x_n\}_{n=0}^{\infty}$ definida por

$$x_{n+1} = f(x_n) \ n \in \mathbb{N}$$

onde $x_0 \in \mathbb{R}^2$. A cada ponto x_0 temos uma sequência $O(x_0) = \{x_n\}_{n=0}^{\infty}$ formada por pontos do plano que damos o nome de *Órbita* associada a condição inicial $x_0 \in \mathbb{R}^2$. O conjunto formado por Órbitas é chamado *Espaço de Fase*.

Se a sequência $O(x_0)$ for finita, então existe $n \in \mathbb{Z}$ tal que $f^n(x_0) = x_0$. Dizemos que a órbita associada ao ponto x_0 é *Periódica*. O menor inteiro para o qual a igualdade é satisfeita é denominado período da órbita. Chamamos *ponto fixo* um ponto que tenha uma órbita periódica de período 1, ou seja, $f(x_0) = x_0$.

A aplicação f preserva a medida μ se dada $U \subset \mathbb{R}^2$ e a imagem de U por f, f(U), então $\mu(U) = \mu(f(U))$. Dizemos que o difeomorfismo f preserva área se a medida μ for dada por $\mu(U) = \int_U dxdy$ que corresponde a |det(Df)| = 1. A partir deste ponto, consideramos f um difeomorfismo que preserva a área.

2.2 Classificação de um ponto fixo quanto a estabilidade

Seja x^* um ponto fixo da aplicação f, uma aplicação que preserva área, e Df_{x^*} a parte linear de f em x^* . Se λ_1 e λ_2 são os autovalores complexos de Df_{x^*} então $\lambda_1\lambda_2 = 1$. Distinguimos três casos possíveis:

• Hiperbólico

Os autovalores são diferentes e tem parte complexa nula satisfazendo $0 < \|\lambda_1\| < 1 < \|\lambda_2\|$.

• Elíptico

Os autovalores são tais que $\overline{\lambda}_1 = \lambda_2 \neq \lambda_1$. Note que $\|\lambda_1\| = \|\lambda_2\| = 1$.

• Parabólico

Os autovalores são reais e iguais a ± 1 ($\lambda_1 = \lambda_2$).

Dois difeomorfismos f e g são topologicamente conjugados se existe um homeomorfismo h tal que $f \circ h = g \circ h$. Dizemos que um difeomorfismo f de classe C^k é estruturalmente estável se existe um aberto no espaço dos difeomorfismos de mesma classe $U_f \subset C^k(\mathbb{R}^2)$ tal que os elementos deste aberto $g \in U_f$ são topologicamente conjugados a f. Se x^* é um ponto fixo hiperpólico de f então existe uma vizinhanca V_{x^*} de x^* tal que f restrita a esta vizinhança é estruturalmente estável.

A cada ponto fixo $x^* \in \mathbb{R}^2$ de f, podemos associar três subespaços denominados Auto Espaço Estável, Auto Espaço Instável e Auto Espaço Central, respectivamente:

$$\begin{split} \mathbb{E}^s_{x^*} &= span\{v: v \in G(\lambda) \ e \ Re(\lambda) < 1\} \\ \mathbb{E}^u_{x^*} &= span\{v: v \in G(\lambda) \ e \ Re(\lambda) > 1\} \\ \mathbb{E}^c_{x^*} &= span\{v: v \in G(\lambda) \ e \ Re(\lambda) = 1\} \end{split}$$

Onde o conjunto $G(\lambda)$ compreende os autovetores generalizados (dados pela Forma Canônica de Jordan) associados ao autovalor λ de Df_{x^*} , $Re(\lambda)$ é a parte real no número complexo λ e, finalmente, $span\{v_1, v_2, ..., v_n\}$ é o espaço gerado pelas combinações lineares dos vetores $v_1, v_2, ..., v_n$.

Estamos considerando x^* um ponto fixo hiperbólico de f logo $dim \mathbb{E}_{x^*}^c = 0$ e, além disso, $dim \mathbb{E}_{x^*}^s = dim \mathbb{E}_{x^*}^u = 1$

2.3 Variedades Invariantes

Um conjunto invariante é um conjunto formado por órbitas de f. Ou, equivalentemente, U é invariante se $f(U) \subset U$.

A Variedade Estável, $W^s(x^*)$, é definida como o conjunto dos pontos cujas iteradas por f se aproximam de x^* . Dessa forma,

$$W^s(x^*) = \{ x \in \mathbb{R}^2 : f^k(x) \to x^* \text{ quando } k \to \infty \}$$

onde f^k e a k-ésima iterada da aplicação f. Tal conjunto é invariante por f.

Se B_{β} é a bola aberta centrada em x^* com raio β , a Variedade Estável Local de tamanho β é o conjunto

$$W^s_{\beta}(x^*) = \{ x \in B_{\beta}; f^n(x) \in \mathbb{B}_{\beta}, \forall n \ge 0 \}$$

e a Variedade Estável Global

$$W^{s}(x^{*}) = \bigcup_{n \in \mathbb{N}} f^{-n}(W^{s}_{\beta}(x^{*}))$$

Similarmente, definimos Variedade Instável $W^u(x^*)$ como o conjunto dos pontos que se aproximam de x^* com as iteradas de f^{-1}

$$W^{u}(x^{*}) = \{ x \in \mathbb{R}^{2} : f^{-k}(x) \to x^{*} \text{ quando } k \to \infty \}$$

onde f^{-k} e a k-ésima iterada da aplicação inversa f^{-1} . O conjunto $W^u(x^*)$ é invariante por f. A Variedade Instável Local de tamanho β é o conjunto

$$W^u_\beta(x^*) = \{x \in B_\beta; f^{-n}(x) \in B_\beta, \forall n \ge 0\}$$

e a Variedade Instável Global é dada por

$$W^u(x^*) = \bigcup_{n \in \mathbb{N}} f^n(W^u_\beta(x^*))$$

Observamos que estes conjuntos não são órbitas simples de f. São compostos pela união de todos os pontos que se aproximam ou afastam de x^* , em cada caso. Cada uma desses conjuntos é formado por dois ramos semi-infinitos com x^* separando-os.

O Teorema da Variedade Estável garante que tais conjuntos são, de fato, variedades de mesma classe do difeomorfismo f. Então $W^s(x^*)$ é uma curva invariante unidimensional de classe C^r tangente em x^* a direção estável e a extensão global desta curva é garantida pela existência de f^{-1} . Da mesma forma, $W^u(x^*)$ é uma curva invariante unidimensional de classe C^r tangente em x^* a direção instável e a extensão global desta curva é garantida pela existência de f^{-1} .

Capítulo 3

Forma Normal de um Difeomorfismo

3.1 Introdução

Para entendermos a dinâmica de um difeomorfismo próximo a um ponto fixo, é util colocarmos as equações em uma forma mais simples. Procuramos então uma conjugação para o difeomorfismo numa vizinhamça do ponto fixo onde a expansão de Taylor do difeomorfismo conjugado esteja na forma normal.

Quando o ponto fixo é hiperbólico, queremos saber como o comportamento do difeomorfismo próximo ao ponto fixo é suavemente classificado pela sua parte linear. O Teorema de Grobman-Hartman não garante diferenciabilidade. Precisamos de condições para que o difeomorfismo seja diferenciavelmente conjugado com sua parte linear e, caso isso não seja possível, se ainda assim podemos encontrar uma conjugação apropriada.

3.2 Teorema de Sternberg

Seguindo a estratégia de [1], encontramos os coeficientes da série de Taylor da aplicação que conjuga formalmente os jatos de f
 com sua parte linear. O segundo passo é mostrar que a série encontrada corresponde a uma aplicação
 C^{∞} . Finalmente, mostramos que todas funções com mesma série de Taylor são conjugadas.

Fixando coordenadas locais próximo ao ponto fixo x^* da aplicação f, os coeficientes do polinômio de Taylor de grau k de f formam o conjunto $J_p^k(f)$ que chamamos de k-ésimo jato de f em x^* . Duas aplicações C^{∞} , $f \in g$, são C^{∞} tangentes em x_* se $J_{x^*}^k(f) = J_{x^*}^k(g)$ para todo $k \in \mathbb{N}$, ou seja, se as séries de Taylor de $f \in g$ coincidem neste ponto.

Lembramos que λ_1 e λ_2 são os autovalores complexos de Df_{x_*} . Uma relação da forma $\lambda_k = \lambda_1^i \lambda_2^j$, $k \in \{1, 2\}$ é chamada relação de ressonância. Definimos o Cone Horizontal H_p^{γ} no ponto x^* , como o conjunto satisfazendo:

$$H_{x^*}^{\gamma} = \{(u, v) \in T_{x^*} \mathbb{R}^n | \|v\| \le \gamma \|u\|\}$$

Analogamente, temos o Cone Vertical:

$$V_{x^*}^{\gamma} = \{(u, v) \in T_{x^*} \mathbb{R}^n | \|u\| \le \gamma \|v\|\}$$

Proposição 1 Suponhamos que $\lambda_k \neq \lambda_1^i \lambda_2^j$ (autovalores não ressonantes) para todo k e todo $i, j \in \mathbb{N}$. Considere a série de potências formal de f dada por

$$f_k(x,y) = \sum_{i+j=1}^{\infty} f_{k,i,j} x_1^i x_2^j$$

com termo constante igual a zero e parte linear igual a diag (λ_1, λ_2) (ou seja, matriz diagonal com autovalores λ_1, λ_2). Seja g a parte linear de f. Então existe uma série de potências formal resolvendo a conjugação

$$h \circ f = g \circ h$$

Demonstração: De acordo com a hipótese feita sobre g (parte linear de f), podemos reescrever:

$$f_k = \lambda_k x_1^i x_2^j + \sum_{i+j>1} f_{k,i,j} x_1^i x_2^j$$

Afirmação: A parte linear de h comuta com g. Se o l indica o termo linear e os indica os termos de ordem superior, temos:

$$\begin{aligned} h \circ f &= g \circ h \\ (h_l + h_{os}) \circ (f_l + f_{os}) &= g \circ (h_l + h_{os}) \\ h_l \circ (f_l + f_{os}) + h_{os} \circ (f_l + f_{os}) &= g \circ h_l + g \circ h_{os} \\ h_l \circ f_l + h_l \circ f_{os} + h_{os} \circ (f_l + f_{os}) &= g \circ h_l + g \circ h_{os} \end{aligned}$$

Tomando os termos lineares

$$h_l \circ g = g \circ h_l$$

temos demonstrada a afirmação. Assim, do fato se g ser diagonal, segue que h_l é diagonal e h pode ser escrita na forma:

$$h(x_1, x_2) = (\alpha_1 x_1 + \sum_{i+j>1} h_{1,i,j} x_1^i x_2^j, \alpha_2 x_2 + \sum_{i+j>1} h_{2,i,j} x_1^i x_2^j)$$

Tomamos a k-ésima coordenada da equação de conjugação $h\circ g=g\circ h~(k\in\{1,2\}$):

$$h_k(f(x_1, x_2)) = gh_k(x, y)$$
$$\sum_{i+j=1}^{\infty} h_{k,i,j} f_1(x_1, x_2)^i f_2(x_1, x_2)^j = \lambda_k h_k(x_1, x_2).$$

Utilizando as definições de $f \in h$, reescrevemos:

$$\begin{aligned} h_k(f(x_1, x_2)) &= & \alpha_k f_k + \sum_{i+j>1} h_{k,i,j} f_1(x_1, x_2)^i f_2(x_1, x_2)^j \\ &= & \alpha_k \lambda_k x_k + \alpha_k \sum_{i+j>1} f_{k,i,j} x_1^i x_2^j + \sum_{i+j>1} h_{k,i,j} f_1(x_1, x_2)^i f_2(x_1, x_2)^j \\ &= & \alpha_k \lambda_k x_k + \alpha_k \sum_{i+j>1} f_{k,i,j} x^i x_2^j + \\ & \sum_{i+j>1} h_{k,i,j} (\lambda_1 x + \sum_{s+t>1} f_{1,s,t} x_1^s x_2^t)^i (\lambda_2 y + \sum_{s+t>1} f_{2,s,t} x_1^s x_2^t)^j \\ gh_k(x, y) &= & \lambda_k h_k(x_1, x_2) \\ &= & \lambda_k \alpha_k x_k + \lambda_k \sum_{i+j>1} h_{k,i,j} x_1^i x_2^i \end{aligned}$$

Resolveremos a equação indutivamente em m = i + j. Para m=1 a escolha é arbitrária. Podemos tomar Dh = Id. Neste caso, $\alpha_i = 1$ para $i \in \{1, 2\}$. Suponhamos que temos determinados os coeficientes $h_{k,i,j}$ para i + j < m. Os termos envolvendo i + j = m são:

$$\alpha_k f_{k,i,j} x_1^i x_2^j + h_{k,i,j} \lambda_1^i \lambda_2^j x_1^i x_2^j + C_{k,i,j} x_1^i x_2^j = \lambda_k h_{k,i,j} x_1^i x_2^j$$

onde $C_{k,i,j}$ são termos que envolvem coeficientes com índices i, j tais que i + j < m. Portanto, o termo $h_{k,i,j}$ é da forma:

$$h_{k,i,j} = \frac{f_{k,i,j} - C_{k,i,j}}{\lambda_k - \lambda_1^i \lambda_2^j}$$

Vemos que, o denominador não se anula pois assumimos $\lambda_k \neq \lambda_1^i \lambda_2^j$. Veja no apêndice os cálculos para m = 2 e m = 3.

Supondo que ainda estamos nas condições da proposição anterior mas agora $\lambda_k = \lambda_1^i \lambda_2^j$ para algum k, i, j então os termos com coeficientes $h_{k,i,j}$ desaparecem e não podemos remover o termo envolvendo $x_1^i x_2^j$ da k-ésima coordenada da equação.

Definição 1 Um termo não nulo $cx_1^i x_2^j$ na i-ésima função coordenada proveninente da ressonância $\lambda_k = \lambda_1^i \lambda_2^j$ é chamado termo ressonante. A forma normal de uma aplicação é a aplicação pertencente a classe de equivalência de f cuja série de potências contém somente os termos linear e ressonantes.

Passaremos agora à generalização onde g possui termos não lineares:

$$g_k = \sum_{i+j=1}^{\infty} g_{k,i,j} x_1^i x_2^j = \lambda_k x_k + \sum_{i+j>1} g_{k,i,j} x_1^i x_2^j$$

Neste caso, o lado direito da k-ésima coordenada da equação de conjugação se torna:

$$\begin{split} (g \circ h(x,y))_k &= \sum_{i+j=1}^{\infty} g_{k,i,j} h_1(x_1,x_2)^i h_2(x_1,x_2)^j \\ &= \lambda_k (\alpha_k x_k + \sum_{i+j>1} h_{k,i,j} x_1^i x_2^j) \\ &+ \sum_{i+j>1} g_{k,i,j} (\alpha_1 x + \sum_{s+t>1} h_{1,s,t} x_1^s x_2^t)^i (\alpha_2 y + \sum_{s+t>1} h_{2,s,t} x_1^s x_2^t)^j \end{split}$$

Os coeficientes dos termos de grau i + j = m satisfazem:

$$\alpha_k f_{k,i,j} + h_{k,i,j} \lambda_1^i \lambda_2^j + C_{k,i,j} = \lambda_k h_{k,i,j} + \alpha_k g_{k,i,j}$$

Com $C_{k,i,j}$ determinado pelos passos anteriores (envolve apenas termos de menor grau). Se fixarmos a parte linear de h, por exemplo, como a identidade ($\alpha_k = 1$), ainda temos que os termos não ressonantes satisfazem:

$$h_{k,i,j} = \frac{f_{k,i,j} - C_{k,i,j}}{\lambda_k - \lambda_1^i \lambda_2^j} \quad (g_{k,i,j} = 0)$$

Para os termos ressonantes, temos:

$$g_{k,i,j} = f_{k,i,j} - C_{k,i,j}$$

Ou seja, os termos ressonantes são unicamente definidos se existir uma conjugação formal. Provaremos agora que para qualquer série formal existe função C^{∞} com série de Taylor igual a série formal dada.

Proposição 2 Para qualquer sequência $a_{k,i,j}$ $(k \in \{1,2\} e i+j \in \mathbb{N})$ existe função $f : \mathbb{R}^2 \to \mathbb{R}^2$ de classe C^{∞} tal que a_k são os coeficientes da série de Taylor de f.

Uma Bump Function é uma função não nula definida num conjunto aberto com suporte compacto. Exemplos em \mathbb{R} podem ser:

$$b_1(x) = \begin{cases} e^{2-(x+1)^{-2}-(x-1)^{-2}} & |x| \le 1\\ 0 & |x| > 1 \end{cases}$$
$$b_2(x) = \frac{\int_{|x|}^{\infty} b_1(t-2)dt}{\int_{-1}^{1} b_1(t)dt}$$

A função $b_1(x)$ se anula, em todas as ordens, fora de [-1,1]. Já a função $b_2(x)$ assume o valor 1 no intervalo [-1,1] e se anula fora do intervalo [-2,2]. Utilizaremos Bump Functions do segundo tipo.

Demonstração: Seja

$$f(x_1, x_2) = \sum_{i+j=1}^{\infty} a_{k,i,j} x_1^i x_2^j b_2((i+j)! C_{k,(i+j)} || (x_1, x_2) ||^2)$$

com $C_{k,N} = (\sum_{l=0}^{N} \sum_{i+j=l} |a_{k,i,j}|)^{\frac{2}{N}}$. Fixado $(x_1, x_2) \neq (0, 0)$, temos $(i+j)!C_{k,(i+j)} ||(x_1, x_2)||^2$ ilimitada e estritamente crescente em i, j. Assim, existe somente um número finito e termos diferentes de zero e a série é convergente. Observe que, para os termos não nulos, $(i+j)!C_{k,(i+j)} ||(x_1, x_2)||^2 \leq 2$ então

$$\begin{aligned} \|a_{k,i,j}x_1^i x_2^j b_2((i+j)! C_{k,(i+j)} \| (x_1, x_2) \|^2) &\leq \|a_{k,i,j}\| \| (x,y) \|^{(i+j)} \\ &\leq \|a_{k,i,j}| \left(\frac{2}{C_{k,(i+j)}(i+j)!}\right)^{\frac{(i+j)}{2}} \\ &\leq \left(\frac{2}{(i+j)!}\right)^{\frac{(i+j)}{2}} \end{aligned}$$

a última desigualdade vem do fato que $|a_{k,i,j}| \leq \sum_{l=0}^{N} \sum_{s+t=l} |a_{k,s,t}|$. Logo a soma converge uniformemente. Para avaliar a derivada de ordem N na origem, consideramos os pontos (x_1, x_2) tais que $(i+j)!C_{(i+j)}||(x_1, x_2)||^2 \leq 1$ para $i+j \leq N$:

$$f(x_1, x_2) = \sum_{i+j \le N} a_{i,j} x_1^i x_2^j + \sum_{i+j \ge N} a_{i,j} x_1^i x_2^j b_2((i+j)! C_{k,(i+j)} || (x_1, x_2) ||^2)$$

Obtemos os coeficientes de Taylor através do cálculo das derivadas parciais $\frac{\partial^{s+t} f(x_1, x_2)}{\partial x_1^s \partial x_2^t}$ para s + t = N na origem.

$$\frac{\partial^{s+t} f(x_1, x_2)}{\partial x_1^s \partial x_2^t} = \frac{\partial^{s+t} (\sum_{i+j \le N} a_{i,j} x_1^i x_2^j + \sum_{i+j \ge N} a_{i,j} x_1^i x_2^j b_2((i+j)! C_{k,(i+j)} \| (x,y) \|^2)}{\partial x_1^s \partial x_2^t}$$

Existem 3 possibilidades:

• i < s ou j < t Então

$$\frac{\partial(a_{k,i,j}x_1^i x_2^j)}{\partial x_1^i \partial x_2^i} = \frac{\partial(a_{i,j}x_1^i x_2^j b_2((i+j)!C_{k,(i+j)} \| (x,y) \|^2)}{\partial x_1^i \partial x_2^i} = 0$$

- $i > s \in j > t$ com a igualdade podendo valer somente para um das desigualdades. Possível quando s+t=N>i+j, ou seja, elementos do segundo somatório. Ao calcularmos $\frac{\partial^{s+t}(a_{k,i,j}x_1^i x_2^j)}{\partial x_1^s \partial x_2^t}$ obtemos todas as potências em $x_1 \in x_2$ não negativas. A derivada parcial $\frac{\partial^{s+t}b_2((i+j)!C_{k,(i+j)}||(x_1,x_2)|^2)}{\partial x_1^s \partial x_2^t}$ é uma soma de termos da forma $((i+j)!C_{k,(i+j)})^m x_1^p x_2^q b_2^{(n)}$ sendo igual a zero se s ou t forem maior que 2. Pela regra do produto, concluimos que a derivada parcial $\frac{\partial^{s+t}a_{k,i,j}x_1^i x_2^j b_2(|k|!C_{|k|}||x||^2)}{\partial x_1^s \partial x_2^t}$ é uma soma de termos nulos ou com potências positivas de $x_1 \in x_2$. Ao substituirmos o ponto zero, as parcelas desta soma se anulam.
- $i = s \in j = t$ Finalmente,

$$\frac{\partial^{s+t}(a_{k,i,j}x_1^i x_2^j)}{\partial x_1^s \partial x_2^t} = a_{k,i,j}i!j!$$

e portanto, f tem a propriedades desejada.

Corolário 1 Seja f uma aplicação C^{∞} com ponto fixo x^* com parte linear diag (λ_1, λ_2) (ou seja, matriz diagonal com autovalores λ_1, λ_2) satisfazendo a condição de não ressonância $\lambda_k \neq \lambda_1^i \lambda_2^j$ para todo k e todo $i, j \in \mathbb{N}$. Então localmente existe uma aplicação h de classe C^{∞} tal que $h \circ f \circ h^{-1}$ é C^{∞} tangente a parte linear de f.

Demonstração: Tome a série de potências formal da proposição [1] e construa a partir desta uma aplicação C^{∞} usando a proposição [2].

Até este ponto não sabemos se a g encontrada pela conjugação de f por h é realmente a forma normal de f. Apenas temos que estas aplicações são C^{∞} tangente. O próximo teorema nos fornece a conjugação com a forma normal de f propriamente dita.

Teorema 1 Seja f uma aplicação C^{∞} com um ponto fixo hiperbólico x^* e g uma aplicação C^{∞} , C^{∞} tangente a f. Então existe uma vizinhança U de x^* e um difeomorfismo h de classe C^{∞} tangente a identidade tal que $g = h \circ f \circ h^{-1}$.

Demonstração:Supomos, sem perda de generalidade, $x^* = 0$. Pelo Teorema da Variedade Estável, a Variedade Estável Local do ponto fixo x^* , $W^s_{loc}(0)$, é o gráfico de uma aplicação C^{∞} , $\phi_s : B^s_{\beta} \to \mathbb{E}^u$ tal que $\phi_s(0) = 0$ e $D\phi_s(0) = 0$. Denotamos $B^s_{\beta}(0)$ a bola de centro p e raio β . Da mesma forma, a Variedade Instável local $W^u_{\beta}(0)$ é o gráfico da aplicação C^{∞} , $\phi_u : B^u_{\beta} \to \mathbb{E}^s$ tal que $\phi_u(0) = 0$ e $D\phi_u(0) = 0$. Considere aplicação $\phi : B^s_{\beta} \oplus B^u_{\beta} \to \mathbb{E}^s \oplus \mathbb{E}^u$ definida por $\phi(x_s, x_u) = (x_s - \phi_u(x_u), x_u - \phi_s(x_s))$. A aplicação $\tilde{f} = \phi \circ f \circ \phi^{-1}$ é um difeomorfismo numa vizinhança de 0 com $\tilde{f}(0) = 0$ e $D\tilde{f}(0) = Df(0)$. Além disso, a Variedade Estável Local de \tilde{f} é uma vizinhança da origem em \mathbb{E}^s enquanto que a Variedade Instável Local é uma vizinhança da origem em \mathbb{E}^u . O mesmo vale para o difeomorfismo g.

Tomamos $\rho : \mathbb{R}^2 \to [0,1]$ tal que $\rho \equiv 1 \text{ em } B^s_{\frac{\beta}{2}}(0) \text{ e } \rho \equiv 0 \text{ em } B^s_{\beta}(0)$. Defina $\tilde{f} = \rho f + (1-\rho)Df(0)$. Então \tilde{f} é um difeomorfismo que coincide com $f \text{ em } B^s_{\frac{\beta}{2}}(0)$ e é igual a Df(0) em $B^s_{\beta}(0)$.

Portanto podemos construir $\tilde{f} \in \tilde{g}$ difeormofismos tais que a Variedade Estável Local (resp. a Variedade instável Local) do ponto fixo hiperbólico 0 é uma vizinhança do ponto fixo no subespaço Estável (resp. Instável) da parte linear de $f \in g$ e ainda fora de uma vizinhança os difeomorfismos $\tilde{f} \in \tilde{g}$ coincidem com as partes lineares, $Df(0) \in Dg(0)$. Por abuso de notação, chamaremos estas aplicações de $f \in g$.

Seja $\alpha = g - f$. Esta aplicação tem jato nulo no ponto fixo 0 e fora de uma vizinhança de 0.

Construiremos uma conjugação C^{∞} tangente a identidade entre $f \in w = f + \alpha^+$. Após conjugaremos $w \in g$. A aplicação α pode ser decomposta em:

$$\alpha = \alpha^+ + \alpha^-$$

Onde α^+ tem jato nulo em \mathbb{R}^{n-k} (Variedade Instável) e α^- tem jato nulo em \mathbb{R}^k (Variedade Estável). Para construir tal conjugação, seja ρ uma função C^{∞} definida na esfera unitária S tal que $\rho \equiv 1$ na interseção de S com o cone horizontal $H_{1/2}$, $S \cap H_{1/2}$, $e \rho \equiv 0$ na interseção de S com o cone vertical $V_{1/2}$, $S \cap V_{1/2}$. Defina:

$$\alpha^{-}(x) = \begin{cases} \alpha(x)\rho(\frac{x}{\|x\|}) & se \ x \neq 0\\ 0 & se \ x = 0 \end{cases}$$

A aplicação α^- é diferenciável fora da origem. Pela regra da cadeia, a expressão para $D^k \alpha^-$ é um polinômio nas derivadas de α , $\rho \in \frac{x}{\|x\|}$. Cada monômio das derivadas de $D^k \alpha^-$ contém α ou (inclusive) suas derivadas. Sabendo que a série de Taylor $T^k_{\alpha^-}(x)$ de ordem k de α^- na origem é nula temos que numa vizinhança da origem é válido $\alpha^-(x) = T^k_{\alpha^-}(x) + R(x) = R(x)$. A função resto R(x) satisfaz $\lim_{x\to 0} \frac{R(x)}{\|x\|^k} = 0$ para todo $k \in \mathbb{N}$. As derivadas de $\frac{x}{\|x\|}$ assumem a forma $\frac{p(x)}{\|x\|^l}$ onde p(x) é um polinômio em $x \in \|x\|$. Pela regra do produto, os monômios da k-ésima derivada de α^- são da forma

$$\alpha^{(i)}(x)\rho^{(j)}(x)\frac{p(x)}{\|x\|^{l}} = \frac{\alpha^{(i)}(x)}{\|x\|^{l}}\rho^{(j)}(x)p(x)$$

Mas ρ e suas derivadas são limitadas. O polinômio p converge para zero quando x tende a zero. E, conforme visto acima, o limite de $\frac{\alpha(i)}{\|x\|^l}$ também é zero. Assim concluimos que α^- é C^{∞} na origem.

Definimos $f(t, x) = f + t\alpha^-$ para $t \in [0, 1]$. Dado t_0 , denotamos f_{t_0} a função $f(t_0, x)$. Procuramos por uma familia de difeomorfismos h_t de classe C^{∞} que satisfaça (Método do Caminho):

$$f_0 = h_t^{-1} \circ f_t \circ h_t$$

Derivando $h_s \circ h_t^{-1} \circ f_t = f_s \circ h_s \circ h_t^{-1}$ em relação a s em s = t, temos

$$\frac{\partial h_s}{\partial s} \circ h_t^{-1} \circ f_t = \frac{\partial f_s}{\partial s} \circ h_s \circ h_t^{-1} + Df_s \frac{\partial h_s}{\partial s} \circ h_t^{-1}$$

Finalmente, se $v_t = \frac{d(h_s h_t^{-1})}{ds}|_{s=t}$

 $v_t \circ f_t = \alpha^- + Df_t(v_t)$

Multiplicando por f_t^{-1} à direita e denotando $f_*(v_t) = Df_t(v_t \circ f_t^{-1})$:

$$v_t - f_*(v_t) = \alpha^- \circ f_t^{-1}$$

Observe que:

$$(Id - (f_t)_*) \sum_{j=0}^{\infty} (f_t)_*^j = \sum_{j=0}^{\infty} (f_t)_*^j - \sum_{j=1}^{\infty} (f_t)_*^j = Id.$$

Então a inversa de $Id - f_t \in \sum_{j=0}^{\infty} (f_t)^j_*$ Podemos escrever

$$v_t = \sum_{m=0}^{\infty} (f_t)_*^m \alpha^- \circ f_t^{-1} = \sum_{m=0}^{\infty} Df_t^m \alpha^- \circ f_t^{-m-1}$$

Precisamos mostrar que v_t é um campo vetorial C^{∞} numa vizinhança da origem. Para isto, provaremos que a soma converge na topologia C^{∞} , ou seja, que a soma da k-ésima derivada converge para todo $k \in \mathbb{N}$.

A k-ésima derivada da composição m vezes de uma função f cresce à taxa de, no máximo $C^{mk}m^{k-1}$, com C uma cota máxima para as derivadas de até ordem k dos termos individuais. Para mostrar este fato, observamos que para a primeira derivada temos, se $||Df|| < C_1$:

$$Df^m = Df|_{f^{m-1}} \circ Df|_{f^{m-2}} \circ \dots \circ Df|_x < C_1^m$$

Para a segunda derivada:

$$D^{2}f^{m} = \sum_{i} Df|_{f^{m-1}} ... D^{2}f_{m-i}(Df)^{2}|_{m-i-1} ... Df|_{x} < mC_{2}^{2m}$$

Prosseguindo analogamente, verificamos que a k-ésima derivada é cotada por $m^{k-1}C_k^{mk}$ onde C_k é uma cota superior para as derivadas de f até ordem k. Portanto, podemos cotar $D^k f_t^m$ por $m^{k-1}C_k^{mk}$ se $\|D^{(l)}f\| < C_k$

superior para as derivadas de f até ordem k. Portanto, podemos cotar $D^* f_t^{-m}$ por $m^{k-1}C_k^{-m}$ se $||D^{(k)}f|| < C_k$ para $l \le k$ e, da mesma forma, cotamos f_t^{-m-1} por $(m+1)^{k-1}D_k^{(m+1)k}$ se $||D^{(l)}f^{-1}|| < D_k$ para $l \le k$. Por Grobman-Hartman, a (-m-1)-ésima iterada de f_t^{-m-1} está exponencialmente próxima de R^k (Var-iedade Estável) logo $\alpha^-(f_t^{-m-1}(x))$ e $D^k\alpha^-(f_t^{-m-1}(x))$ são arbitrariamente pequenos, pela construção de α^- . As derivadas de $\alpha^- \circ f_t^{m-1}$ são polinômios em α^- e f_t^{-m-1} e suas derivadas. Consistem então, em termos que contém α ou uma de suas derivadas avaliadas em f^{-m-1} e as derivadas de f^{-m-1} já cotadas. Portanto cada termo é exponencialmente pequeno pois é formado pelo produto de um termo exponencialmente pequeno por um termo da forma $m^{k-1}C_k^{mk}$. Logo a série v_t e suas derivadas convergem.

Conseguimos a família h_t e portanto a conjugação entre f e w. A segunda conjugação (entre w e g) é feita similarmente usando iteradas positivas de f e α^+ no lugar de α^- .

Completamos a prova do Teorema da Linearização de Sternberg:

Teorema 2 Seja f um difeomorfismo C^{∞} com um ponto fixo hiperbólico p tal que a parte linear de f em p não tem ressonâncias. Então existe uma vizinhança de p onde f é conjugada com sua parte linear.

Teorema 3 Seja f um difeomorfismo C^{∞} com um ponto fixo hiperbólico p tal que a parte linear de f é diagonal e a forma normal de f em p é uma série de potências convergente. Então f é localmente C^{∞} conjugada a forma normal.

A hipótese de preservação da área gera ressonâncias dos tipos:

$$\lambda_1^{i+1}\lambda_2^i = \lambda_1$$
$$\lambda_1^i\lambda_2^{i+1} = \lambda_2$$

Isto implica que não podemos conjugar o difeomorfismo f com sua parte linear. Ao resolver a equação de conjugação envolvendo os polinômios de Taylor de f e g (a forma normal a f), não será possível anular termos não lineares que envolvem as ressonâncias.Estamos portanto na situação do Teorema 3.

3.3 Métodos Numéricos

Seja f um difeomorfismo no plano que preserva área de classe C^r , $r \ge 1$, com um ponto fixo hiperbólico na origem O = (0, 0). O Polinômio de Taylor de f no ponto fixo de grau $n \le r$ é dado por

$$P(f)_o = Df_o + \frac{D^2 f_o}{2} + \dots + \frac{D^n f_o}{n!}.$$

Consideramos M a aplicação linear que diagonaliza Df_o , ou seja, $M^{-1}DfM = diag(\lambda_1, \lambda_2)$ onde $diag(\lambda_1, \lambda_2)$ é a matriz diagonal formada pelos autovalores de Df_o , $\lambda_1 \in \lambda_2$ (M é formada por autovetores de norma 1).

A aplicação $\bar{f} = M^{-1}P(f)_o M$ é um polinômio com parte linear diagonal que satisfaz as hipóteses do Teorema da Linearização de Sternberg. Logo temos garantida a existência de uma aplicação \bar{h} de classe C^r que conjuga \bar{f} com sua forma normal \bar{g} de mesma classe.

A fim de definir tal conjugação explicitamente, calculamos os coeficientes da aplicação formal \bar{h} até ordem r. Para isto, seguimos o mesmo procedimento da primeira etapa da demonstração do teorema.

Definimos $\bar{h} \in \bar{g}$ dois polinômios de grau n com coeficientes a determinar

$$\bar{h} = \sum_{i+j=1}^{n} h_{ij} x_1^i x_2^j$$
$$\bar{g} = \sum_{i+j=1}^{n} g_{ij} x_1^i x_2^j$$

Fazemos a parte linear de \bar{h} como a identidade e a parte linear de \bar{g} igual a $diag(\lambda_1, \lambda_2)$. Os coeficientes dos termos de grau maior que 1 são encontrados indutivamente. Coletamos os coeficientes c_{ij} dos termos de grau k da forma $c_{ij}x^iy^j$, com i + j = k para k inteiro variando entre 2 e n. Estes coeficientes devem satisfazer a equação de conjugação $\bar{h}^{-1}\bar{f}\bar{h} = \bar{g}$ em cada coordenada:

$$f_{m,k} + h_{m,k}\lambda_1^i\lambda_2^j + C_{m,k} = \lambda_i h_{m,k} + g_{m,k}$$

onde $C_{i,k}$ são os termos que envolvem coeficientes com índices i, j tais que i + j < k.

- Se $\lambda_i \neq \lambda_1^{k_1} \lambda_2^{k_2}$ então podemos fazer $g_{i,k} = 0$ e temos o coeficiente $h_{i,k}$ unicamente determinado.
- Se $\lambda_i = \lambda_1^{k_1} \lambda_2^{k_2}$ (condição de ressonância) então não é possível anular o coeficiente $g_{i,k}$ e podemos atribuir qualquer valor a h_{ij} . Escolhemos $h_{ij} = 0$.

Após todo o processo, temos os polinômios \bar{h} e \bar{g} determinados.O fato de f preservar área implica que \bar{f} também preserva. Então $det(D\bar{f}) = \lambda_1 \lambda_2 = 1$, ou seja, $\lambda_2 = \frac{1}{\lambda_1}$. Esta igualdade nos leva a ressonâncias de forma que \bar{g} pode ser escrita na forma:

$$g(x,y) = (\lambda x \omega_1(x_1 x_2), \lambda^{-1} y \omega_2(x_1 x_2))$$

onde $\omega_i(t) = 1 + \sum_{k=1}^{\infty} w_i^k t^k$ são séries de potências formais.

Observamos que os eixos coordenados são as Variedades Invariantes de \bar{g} pois

$$g^{n}(x,0) = (\lambda^{n}x,0)$$

 $g^{n}(0,y) = (0,\lambda^{-n}y)$

Se aplicarmos a conjugação \bar{h} aos eixos obteremos as Variedades Invariantes de \bar{f} . Finalmente, aplicando a mudança de coordenadas linear M às Variedades Invariantes de \bar{f} , correspondem as Variedades Invariantes locais de f.

Se o autovalor associado a primeira coordenada satisfizer $\lambda = \lambda_1 > 1$ então as Variedades Invariantes Locais de f
 são dadas por

$$W^{u}_{\delta}(0) = \{ M\bar{g}(x,0) \in B(o,\delta) \} \\ W^{s}_{\delta}(0) = \{ M\bar{g}(0,y) \in B(o,\delta) \}.$$

Para o cálculo das Variedades Invariantes Locais, existem duas fontes de erro. A primeira é devido a aproximação feita da aplicação f por seu polinômio de Taylor. A segunda fonte provém do erro numérico (erro de máquina), ao calcular a imagem dos eixos coordenados pela conjugação h. Observe que os erros não se acumulam, pois não estamos calculando os iterados dos pontos.

Capítulo 4

Variedades Invariantes Globais

Utilizamos o Teorema de Linearização de Sterberg para encontrar as variedades invariantes locais de um difeomorfismo f. Apresentaremos agora uma aproximação das variedades invariantes globais a partir das locais. Trataremos apenas a Variedade Instável uma vez que a Variedade Estável de f corresponde à Variedade Instável de f^{-1} .

A Variedade Instável $W^u(x^*)$ é dividida pelo ponto x_* em dois ramos semi-infinitos, que chamaremos $W^u_+(x^*)$ e $W^u_-(x^*)$.

Figura 4.1: Os ramos $W^u_+(x^*) \in W^u_-(x^*)$ da Variedade Instável

Encontraremos a componente $W^u_+(x^*)$ da Variedade Instável. A outra componente é encontrada de forma análoga.

Suponha λ_1 e λ_2 positivos, então o difeomorfismo f preserva orientação. Isto significa que pontos na componente $W^u_+(x^*)$ tem sua imagem nesta mesma componente da Varieade Instável. O mesmo é válido para pontos em $W^u_-(x^*)$.

Seja x_N um ponto qualquer em $W^u_+(x^*)$ e x_0 a pré-imagem de x_N por f, $x_0 = f^{-1}(x_N) \in W^u_+(x^*)$. O segmento $U_0 \in W^u_+(x^*)$ com extremos em x_0 e x_N é um domínio fundamental para a componente $W^u_+(x^*)$ da Variedade Instável:

$$W^u_+(x^*) = \cup_{-\infty}^{+\infty} f^i(U)$$

Denotamos a k-ésima iterada de U_0 por f como U_k .

Escolhemos $x_N = f(x_0)$ para que a imagem U_{i+1} do segmento U_i seja tenha um de seus extremos igual á um extremo de U_i . Portanto U_{i+1} está concatenado com U_i formando então um único segmento conforme indicado na figura.

Seja V uma discretização de U_0 : V é uma sequência formada por pontos $\{x_n\}_{n=0}^N \operatorname{com} x_i \in U_0$.

Os métodos descritos a seguir são baseados em iteracões de pontos sobre os segmentos U_i . Com a restrição $x_N = f(x_0)$ garantimos que não perdemos informação sobre os extremos destes segmentos.

Nosso objetivo é utilizar V para resolver a componente $W^u_+(0)$ da Variedade Instável, ou seja, procuramos por um conjunto de pontos que seja uma discretização da Variedade Instável. Estes pontos devem estar sobre a variedade (ou suficientemente próximos) além de indicar as variações de curvatura desta.

Figura 4.2: Segmento $W^u_+(0)$ da Variedade Instável

4.1 Método Simples

Dada a sequência V formada por pontos contidos na Variedade Instável Local, o Método Simples consiste em apenas iterar V por f sucessivamente. Chamamos de X_0 a sequência V e definimos X_{k+1} como a imagem de X_k por f, ou seja, $X_{k+1} = f(X_k), i \in \mathbb{N}$.

Fazendo $x_N = f_{x_0}$ garantimos que nao perderemos informação correspondente aos extremos dos segmentos U_0 . E por conseguinte, não perderemos informações nos extremos de U_k calculando as sucessivas imagens de X_k .

Iterando M vezes X_0 , obtemos uma aproximação da Variedade Instável formada por NM pontos

$$X = \bigcup_{k=0}^{M} X_k.$$

Com este método, a distribuição dos pontos sobre os segmentos não é controlada. Após algumas iterações de X_0 , podemos ver pontos muito próximos numa região enquanto que outros se apresentam muito distantes, fazendo aparecer "buracos" ao longo da curva. Além disso, o tamanho da curva tende a crescer rapidamente (de fato, exponencialmente) com o número e iterações. Então a quantidade de pontos necessários resolver um dado segmento correspondente à sequência X_i é muito maior do que a quantidade para resolver os segmentos anteriores. Porém cada sequência X_k tem o mesmo tamanho, então após algumas iterações não será mais possível resolver a curva. E, se aumentarmos o número de pontos nas sequências iniciais, faremos muitas chamadas desnecessárias, no sentido de resolver o segmento corrente, à aplicação f.

4.2 Método Hobson

Nesta seção, apresentaremos um método para encontrar a Variedade Instável Global que melhora o Método Simples descrito anteriormente.

Consideramos como segmento inicial uma curva Y_0 gerada pela interpolação dos pontos da sequência V. Utilizamos a curva Y_0 para mapear sua imagem por f, o segmento Y_1 . Dessa forma, além dos pontos de V contamos com os pontos interpolados de Y_0 para determinar o próximo segmento que aproxima a Variedade Instável, diferentemente do Método Simples onde trabalhávamos apenas com os pontos de V.

O método interpolador deve ser tal que os segmentos Y_k resolvam a Variedade Instável. A princípio, um número arbitrário de pontos pode ser interpolado sobre Y_0 para produzir Y_1 . A questão é encontrar um conjunto mínimo de forma que U_1 seja resolvido em um número mínimo de chamadas á aplicação f.

Parametrizamos o segmento Y_0 com o parâmetro s variando no intervalo [0, 1]. Então o valor s = 0 corresponde ao ponto x_0 e s = 1 corresponde a x_N . Começamos com s = 0 e prosseguimos ao longo de Y_0 com incrementos Δs , que variam ao longo do processo, no parâmetro s. Em cada passo, tomamos o ponto em Y_0 que corresponde ao valor do parâmetro s atual. Este ponto em Y_0 é a pré-imagem de um ponto em Y_1 . Continuamos este processo enquanto s < 1. Finalmente, tomamos o ponto x_N como a última pré-imagem.

Devemos garantir que o último ponto de Y_0 corresponda á imagem por f do primeiro ponto deste segmento para que o os segmentos Y_k se concatenem e assim a nossa aproximação da Variedade Instável não contém buracos correspondendo á falta de pontos nos extremos de Yk. Para o valor de parâmetro s, denotamos a pré-imagem correspondente por $y_0^s \in Y_0$ e a imagem deste ponto por $y_1^s = f(y_0^s) \in Y_1$. Queremos determinar o incremento Δs de forma que a pré-imagem $y_0^{s+\Delta s}$ em Y_0 produza um ponto $y_1^{s+\Delta s}$ a uma distância apropriada da última imagem y_1^s .

Figura 4.3: Pré imagens e suas respectivas imagens formando um novo segmento.

Este é ponto crucial do método. Tomar, a cada passo, o incremento Δs apropriado de forma que os pontos na imagem resultante estejam à uma distância adequada. Fazemos isto essencialmente por tentativa e erro, monitorando dois parâmetros ($\alpha \in \beta$) que definiremos a seguir.

Medimos a resolução de Y_1 , através do parâmetro α , determinado com o auxílio de um ponto que chamaremos *Ponto de Diagnóstico*. Com o incremento Δs corrente, o ponto de diagnóstico é dado por $y_1^{s+2\Delta s} = f(y_0^{s+2\Delta s})$. Então calculamos o ângulo α entre a linha passando pelos pontos y_1^s e $y_1^{s+\Delta s}$ e linha passando por $y_1^{s+\Delta s}$ e $y_1^{s+2\Delta s}$.

$$\cos \alpha = \frac{\langle v_1, v_2 \rangle}{\|v_1\| \|v_2\|}$$

Figura 4.4: Ângulo α utilizado para determinar a resolução da curva a partir de três imagens sucessivas

Este ângulo é uma medida do espaçamento entre as imagens relativo ao raio de curvatura local de Y_1 . De acordo com o valor de α , ajustamos Δs de acordo com os valores α_{min} e α_{max} dados:

- $\alpha \geq \alpha_{max}$

Os pontos y_1^s e $y_1^{s+\delta s}$ estão muito distantes. Reduzimos o incremento Δs e produzimos outro Ponto de Diagnóstico até encontrarmos um ângulo α satisfatório.

- $\alpha_{min} \leq \alpha \leq \alpha_{max}$.

Aceitamos a pré-imagem tentativa $y_0^{s+\Delta s}$ e sua imagem $y_1^{s+\Delta s}$. Prosseguimos utilizando estes novos pontos, com o parâmetro s incrementado de Δs .

- $\alpha < \alpha_{min}$

Os pontos y_1^s e $y_1^{s+\Delta s}$ estão muito próximos. Aceitamos estes pontos mas aumentamos o valor de Δs .

Em todos os casos, os pontos $y_0^{s+2\Delta s}$ e $y_1^{s+2\Delta s}$ são descartados. No caso em que $\Delta s = \Delta s_{min}$, também imposto, aceitamos o ponto $y_0^{s+\Delta s_{min}}$ e $y_1^{s+\Delta s_{min}}$ e prosseguimos.

Observamos que monitorar a resolução a cada passo, antes de aceitar cada novo ponto, é necessário para garantir uma boa resolução em toda a variedade. Não monitorar o incremento Δs pode resultar em uma resolução pobre nas curvas onde ocorre uma rápida transição dos valores de curvatura. Qualquer método que assume que a curvatura não varia bruscamente ao longo da variedade falhará nestes casos. O custo de resolver este tipo de curvas é checar a resolução a cada passo e repetir, se necessário, o passo com incrementos menores.

O trabalho extra em gerar o ponto de diagnóstico também e necessário. Se usássemos o último ponto calculado $y_1^{s-\Delta s}$ e os pontos y_1^s e $y_1^{s+\Delta s}$ para determinar o ângulo α teriamos menos chamadas para a aplicação f. Entretanto isto pode novamente resultar em resolução pobre. É possível que o ângulo entre $y_1^{s-\Delta s}$, y_1^s e $y_1^{s+\Delta s}$ seja aceitável enquanto que o ângulo entre y_1^s , $y_1^{s+\Delta s}$ e qualquer imagem subsequente não seja aceitável não importanto o quanto esta imagem esteja próxima de $y_1^{s+\Delta s}$. Isto ocorre quando a tangente no ponto $y_1^{s+\Delta s}$ faz um ângulo maior que α com a reta determinada pelos pontos y_1^s e $y_1^{s+\Delta s}$. Este problema é evitado utilizando

Figura 4.5: Determinação de α através do último ponto calculado.

o ponto de diagnóstico conforme descrito acima.

Monitorar α garante resolução qualitativa da variedade, ou seja, os pontos resolvem toda curva quando plotados. Podemos melhorar nossa aproximação monitorando mais um parâmetro β que definimos como o produto de α pela distância d entre os pontos $y_1^s \in y_1^{s+\Delta s}$.

Para uma interpolação linear, a distância entre a curva interpolada e a curva real idealizada que supomos sendo um círculo é cotada por ϵ .

Figura 4.6: Três imagens sucessivas em um círculo

$$\epsilon \approx r(1 - \cos\frac{\alpha}{2}) \approx \frac{r\alpha^2}{8} \approx \frac{d\alpha}{8}$$

Observe que se optarmos por monitorar apenas $d \in \alpha$, as seções retilíneas são calculadas com mais pontos do que o necessário. Por outro lado, monitorar somente β falha em resolver curvas com brusca variação de curvatura pois, mesmo próximos, os pontos podem não resolver a curva. Portanto, obtemos melhores resultados controlando $\alpha \in \beta$.

4.3 Análise do Erro

Faremos uma breve discussão sobre as fontes de erro dos métodos descritos no capítulo.

Chamamos U o subconjunto da Variedade Instável obtido pela concatenação dos segmentos $U_0, U_1, ..., U_n, ...$ satisfazendo $U_{n+1} = f(U_n)$. Similarmente, seja X a sequência de pontos obtida pela concatenação das sequências $X_0, X_1, ..., X_n$... calculadas pelo Método Simples, ou seja, aplicando a aplicação $f^i, i \in \mathbb{N}$, a todos os pontos da sequência inicial X_0 .

Estimaremos agora, a distância entre a curva X, produzida pelo Método Simples, e a curva U. Assumimos que o ponto inicial x_0 de X_0 e o ponto inicial u_0 na variedade instável real U_0 estão a uma distância ϵ_i , ou seja $d(x_0, u_0) < \epsilon_i$ onde d é a distância Euclideana. O parâmetro ϵ_i é uma cota para o erro devido a aproximação do segmento inicial.

Uma segunda fonte de erro no Método Simples é o erro de máquina. Ao avaliar a imagem dos pontos numericamente a sequência $x_k = f^k(x_0)$ formada pelas imagens de x_0 formam uma δ -pseudo órbita. Ou seja, $d(x_{k+1}, f(x_k)) < \delta$ para todo k, onde δ é o erro de máquina na avaliação das imagens. O Lema do Sombreamento diz que dado $\epsilon_s > 0$ existe $\delta > 0$ tal que cada δ -pseudo órbita é sombreada por uma órbita real $\{v_k = f^k(v_0)\}$, onde $d(x_k, v_k) < \epsilon_s$ para todo k. Isto é útil se o erro de máquina, aproximadamente δ , é pequeno o suficiente para aplicar valores ϵ_s de interesse. O Teorema do Valor Médio implica que $d(u_k, v_k) \leq Cd(u_{k-1}, v_{k-1})$ onde C é o máximo da norma $\|Df\|$ sobre uma porção apropriada do plano onde a variedade U está contida. Repetidas aplicações deste cálculo implica $d(u_k, v_k) \leq C^k d(u_0, v_0) < C^k(\epsilon_i + \epsilon_s)$. Pela desigualdade triangular

$$d(x_k, u_k) \le d(x_k, v_k) + d(v_k, u_k) < \epsilon_s + C^k(\epsilon_i + \epsilon_s)$$

Então o ponto inicial x_0 do segmento X_0 gera uma sequência numérica que permanece a uma distância da curva U cotada exponencialmente.

Finalmente, faremos uma estimativa para a distância entre a curva calculada pelo Método Hobson e a curva real. Seja Y a curva produzida pelos segmentos $Y_0, Y_1, ..., Y_n$... calculados utilizando o Método Hobson. Encontraremos cotas para a distância entre Y e X.

Cada segmento Y_k de Y é imagem de pontos interpolados do segmento anterior. Será necessário considerar os pontos interpolados explicitamente. Seja Z_k a curva interpoladora dos pontos de Y_k , então as pré-imagens são tomadas sobre a curva Z_k . A princípio, temos $Y_{k+1} \subset f(Z_k)$.

Se a interpolação produz um erro máximo ϵ_r então para cada $z_k \in Z_k$ existe um ponto $y_k \in Y_k$ tal que $d(z_k, y_k) < \epsilon_r$. Similar a discussão sobre a análise do erro no método anterior, derivamos a desigualdades

$$d(y_{k+1}, x_{k+1}) = d(f(z_k), f(x_x))$$

$$\leq Cd(z_k, x_k)$$

$$\leq C(d(z_k, y_k) + d(y_k, x_k))$$

$$\leq C(\epsilon_r + d(y_k, x_k))$$

onde C é o máximo da norma $\|Df\|$ sobre uma porção apropriada do plano onde a variedade U está contida.

Tome $D_k = d(y_k, x_x)$ e note que $D_0 = 0$ (pois o Método Hobson e o Método Simples utilizam a mesma sequência inicial, $X_0 = Y_0$). Então

$$D_k < C(1+C+C^2+\ldots+C^{k-1})\epsilon_r$$

= $C\frac{C^k-1}{C-1}\epsilon_r$

Isto vale para todo ponto $y_k \in Y$, então este é um limite superior para a distância entre X e Y sobre o k-ésimo segmento. A Desigualdade Triangular pode ser usada para encontrar uma cota entre Y e U. Os erros no Método simples e no Método Hobson se acumulam exponencialmente. Portanto, assim como qualquer método baseado no mapeamento de um segmento inicial por f inúmeras vezes, os métodos descritos neste trabalho eventualmente falharão para porções da variedade suficientemente distantes do segmento inicial.

Capítulo 5

Bilhares

Um bilhar é um sistema formado por uma partícula que se movimenta numa região plana Ω cuja fronteira $\partial \Omega$ é composta por curvas simples. Consideramos este sistema conservativo, logo a partícula se desloca em movimento retilíneo uniforme no interior de Ω até colidir com a fronteita $\partial \Omega$. Devido a preservação de energia, a colisão é elástica e segue as Leis da Reflexão.

Figura 5.1: O bilhar na elipse

Podemos descrever uma colisão a partir do ponto w de choque da partícula com a fronteira e a direção α de movimento desta imediatamente após o choque. Uma vez se deslocando no interior da região, necessariamente ocorrerá uma colisão dada unicamente pela interseção da reta suporte ao movimento da partícula e a fronteira. Logo o seu comportamento é determinístico. As sucessivas colisões da partícula descrevem completamente o seu movimento. O Problema do Bilhar consiste no estudo deste movimento e constitui um sistema dinâmico bidimensional conservativo discreto.

5.1 Bilhar de Circulos não Concêntricos(BCNC)

Neste bilhar, o movimento é restrito externamente por um círculo de raio unitário e, internamente por um círculo de raio r com centro deslocado de δ em relação ao centro do círculo externo. A partícula se movimenta na região entre os dois círculos.

Os parâmetros r e δ devem satisfazer $(r+\delta)<1$ afim de que o círculo interno esteja estritamente contido no externo.

Figura 5.2: O Bilhar de Círculos não Concêntricos

Buscaremos agora a definição da aplicação T que caracteriza o movimento da partícula no BCNC. Para isto, é suficiente levarmos em conta as colisões com o círculo externo. Tomando w o ângulo central do círculo externo e α o ângulo que a normal a fronteira no ponto w faz com a direção de movimento da partícula imediatamente após a colisão em w então a aplicação T está definida em $\Delta = [0, 2\pi] \times (\frac{-\pi}{2}, \frac{\pi}{2})$. Dado um ponto w_0 no círculo externo e uma direção α_0 , a aplicação T levará $(w_0, \alpha_0) \in \Delta$ em $(w_1, \alpha_1) \in \Delta$ que corresponde a uma colisão também sobre o círculo externo. A *órbita do bilhar* com condiçao inicial $(w_0, \alpha_0) \in \Delta$ é formada pelos pontos

$$O_T(w_0, \alpha_0) = T^n(w_0, \alpha_0) \ n \in \mathbb{Z}$$

Observamos que T é inversível:

$$T^{-1}(w_1, \alpha_1) = (\pi_1(T(w_1, -\alpha_1)), -\pi_2(T(w_1, -\alpha_1)))$$

Onde π_i , $i \in \{1, 2\}$ são as projeções em cada coordenada. Existem dois tipos de movimentos possíveis para o sistema:

 T_c A partícula parte do círculo externo e a colisão seguinte é novamente sobre o círculo externo. Então BCNC é equivalente ao bilhar circular. Chamaremos de T_c a aplicação T neste caso.

Figura 5.3: Aplicação T_c do BCNC que corresponde ao bilhar circular.

 T_i A partícula colide com o círculo interno entre duas colisões com o externo. A restrição de T a este caso será chamada T_i

A seguir, deduziremos $T_c \in T_i \in O$ domínio de validade de cada uma. Utilizaremos os pontos geométricos O e I que são os centros dos círculos externo e interno, respectivamente.

5.1.1 A aplicação T_c

Seja (w_0, α_0) o ponto inicial e (w_1, α_1) a colisão seguinte. Os pontos $O, P_0 = (\cos w_0, senw_0)$ e $P_1 = (\cos w_1, senw_1)$ formam um triângulo isósceles:

A partir disto, podemos tirar duas conclusões:

Figura 5.4: Aplicação T_i do BCNC. Uma colisão interna entre as colisões externas.

Figura 5.5: Aplicaca
o ${\cal T}_c$ no BCNC.

- 1. Os ângulos da base são iguais, logo $\alpha_1 = \alpha_0$.
- 2. Os ângulos internos satisfazem $(w_1 w_0) + \alpha_1 + \alpha_0 = \pi$, ou seja,

$$w_1 = w_0 - 2\alpha_0 + \pi.$$

Estas equações determinam:

$$T_c = \begin{cases} \alpha_1 = \alpha_0 \\ \omega_1 = \omega_0 + \pi - 2\alpha_0 \\ se \mid sen\alpha_0 + \delta sen(\alpha_0 - w_0) \mid \ge r \end{cases}$$

cuja derivada é

$$DT_c = \left(\begin{array}{cc} 1 & 2\\ 0 & 1 \end{array}\right)$$

Esta aplicação equivale ao movimento no bilhar circular. Observamos que uma trajetória mantém a segunda coordenada constante. A estrutura do Espaço de Fase do Bilhar é caracterizada pelas curvas invariantes $F(w_n, \alpha_n) = \alpha_0$.

5.1.2 A aplicação T_i

O objetivo desta seção é determinar as equações que definem o comportamento da partícula quando ocorre uma colisão com o círculo interno entre duas com o círculo externo.

Figura 5.6: Plano de Fase do Bihar Circular.

Figura 5.7: A aplicação T_i no BCNC.

Para determinarmos a aplicação T_i , dividiremos o movimento em duas etapas. Na primeira, a partícula parte do círculo externo no ponto w_2 e colide com o círculo interno no ponto p e na segunda, a partícula parte do círculo interno no ponto p e colide novamente com o externo no ponto w_3 . Em cada etapa, analisaremos os momentos angulares ora referente ao ponto O ora referente ao ponto I e, da relação geométrica entre eles, encontraremos uma equação implícita para o movimento. Chamaremos β o ângulo de saída nas colisões com o círculo interno.

- Primeira Etapa :

Figura 5.8: Primeira Etapa do Movimento.

Considerando o módulo da velocidade da partícula, ||v||, igual à 1, o momento angular l_{oe} em relação a O após a colisão em w_2 e o momento angular l_{ii} em relação a I para a colisão em p satisfazem:

Figura 5.9: Relação geométrica entre os momentos

Observamos que

$$\|l_{oe}\| = \|l_{ii}\| + \delta sen\gamma.$$

Além disso, $\gamma = \pi - w_2 + \alpha_2$ então $\delta sen \gamma = \delta sen(\pi - w_2 + \alpha_2) = -\delta sen(w_2 - \alpha_2)$. Substituindo os valores obtidos acima, temos a equação implícita que define a primeira etapa do movimento:

$$sen\alpha_2 = rsen\beta - \delta sen(\alpha_2 - w_2)$$

- Segunda Etapa:

Figura 5.10: Segunda Etapa do Movimento.

O momento angular l_{ii} em relação a I após a colisão em p e o momento angular l_{oe} em relação a O imediatamente antes da colisão em w_3 e satisfazem:

Figura 5.11: Relação geométrica entre os momentos.

$$\begin{array}{rcl} l_{ii} & = & \vec{r} \times \vec{v} & \Rightarrow & \|l_{ii}\| & = & rsen\beta \\ l_{oe} & = & \vec{r}_{oe} \times \vec{v} & \Rightarrow & \|l_{oe}\| & = & sen\alpha_3 \end{array}$$

Da figura, observamos que

$$\|l_{ii}\| = \|l_{oe}\| + \delta sen\gamma$$

O ângulo γ satisfaz $\pi = \gamma + \alpha_3 + w_3$. Finalmente, temos a equação implícita que determina a segunda etapa do movimento

$$rsen\beta = sen\alpha_3 + \delta sen(\alpha_3 + w_3)$$

Resta apenas determinar o ângulo β . Considere os triângulos $T_1 \in T_2$ formados por O, $w_2 \in p \in \text{por } O$, $p \in w_3$, respectivamente. Fazendo $\gamma_1 + \gamma_2 = w_1 - w_0$, conforme a figura, temos

$$\gamma_1 + \alpha_0 = \beta$$
$$\gamma_2 + \alpha_1 = \beta$$

Somando as duas equações, temos que o ângulo
 β satisfaz

$$2\beta = \alpha_3 + \alpha_2 + w_3 - w_2.$$

Figura 5.12: O ângulo β

Concluimos que a aplicação T_i é dada por

$$T_{i} = \begin{cases} sen\alpha_{0} + \delta sen(\alpha_{0} - w_{0}) = rsen\beta \\ sen\alpha_{1} + \delta sen(\alpha_{1} + w_{1}) = rsen\beta \\ 2\beta = \alpha_{0} - w_{0} + w_{1} + \alpha_{1} \end{cases}$$

e sua derivada

$$DT_i = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$$

com entradas iguais à:

$$a11 = -\frac{1}{\cos(\alpha_1)r\cos(\beta)} \left((2\delta\cos(\alpha_0 - w_0)\cos(\alpha_1) - r\cos(\beta)\cos(\alpha_1) + 2\delta^2\cos(\alpha_1 + w_1)\cos(\alpha_0 - w_0) - \delta\cos(\alpha_1 + w_1)r\cos(\beta) - r\cos(\beta)\delta\cos(\alpha_0 - w_0)) \right)$$

$$a12 = -\frac{1}{\cos(\alpha_1)r\cos(\beta)} \left(-2\cos(\alpha_0)\cos(\alpha_1) - 2\delta\cos(\alpha_0 - w_0)\cos(\alpha_1) + r\cos(\beta)\cos(\alpha_1) - 2\delta\cos(\alpha_1 + w_1)\cos(\alpha_0) - 2\delta^2\cos(\alpha_1 + w_1)\cos(\alpha_0 - w_0) + \delta\cos(\alpha_1 + w_1)r\cos(\beta) + r\cos(\beta)\cos(\alpha_0) + r\cos(\beta)\delta\cos(\alpha_0 - w_0) \right)$$

$$a21 = \frac{1}{\cos(\alpha_1)r\cos(\beta)} \left((2\delta^2\cos(\alpha_1 + w_1)\cos(\alpha_0 - w_0) - \delta\cos(\alpha_1 + w_1)r\cos(\beta) - r\cos(\beta)\delta\cos(\alpha_0 - w_0)) \right)$$

$$a22 = \frac{1}{\cos(\alpha_1)r\cos(\beta)} \left((-2\delta\cos(\alpha_1 + w_1)\cos(\alpha_0) - 2\delta^2\cos(\alpha_1 + w_1)\cos(\alpha_0) + \delta\cos(\alpha_1 + w_1)r\cos(\beta) + r\cos(\beta)\cos(\alpha_0 - w_0) + \delta\cos(\alpha_1 - w_0) + \delta\cos(\alpha_1 + w_1)r\cos(\beta) + r\cos(\beta)\cos(\alpha_0 - w_0) + \delta\cos(\alpha_1 + w_1)r\cos(\beta) + r\cos(\beta)\cos(\alpha_0 - w_0) + \delta\cos(\alpha_1 - w_0) + \delta\cos(\alpha_1 + w_1)r\cos(\beta) + r\cos(\beta)\cos(\alpha_0 - w_0) + \delta\cos(\alpha_1 - w_0) + \delta\cos(\alpha_1 + w_1)r\cos(\beta) + r\cos(\beta)\cos(\alpha_0 - w_0) + \delta\cos(\alpha_1 - w_0) + \delta\cos(\alpha_1 + w_1)r\cos(\beta) + r\cos(\beta)\cos(\alpha_0 - w_0) + \delta\cos(\alpha_1 - w_0) + \delta\cos(\alpha_1 + w_1)r\cos(\beta) + r\cos(\beta)\cos(\alpha_0 - w_0) + \delta\cos(\alpha_1 - w_0) + \delta\cos(\alpha_1 + w_1)r\cos(\beta) + r\cos(\beta)\cos(\alpha_0 - w_0) + \delta\cos(\alpha_0 - w_0) + \delta\cos(\alpha_1 - w_0) + \delta\cos(\alpha_0 -$$

5.1.3 Condições para as aplicações $T_c \in T_i$

Partindo de um ponto no círculo externo, o limite onde a partícula colide com o círculo interno ocorre quando o ângulo de reflexão β assume os valores $\pm \frac{\pi}{2}$, ou seja, quando a trajetória da partícula tangencia o círculo interno.

Substituindo o valor de β nas equações que definem T_i :

$$sen\alpha_{max} + \delta sen(\alpha_{max} - w) = rsen\left(\frac{\pi}{2}\right) = r$$
$$sen\alpha_{min} + \delta sen(\alpha_{min} - w) = rsen\left(-\frac{\pi}{2}\right) = -r$$

Figura 5.13: Trajeória limite entre $T_c \in T_i$.

Logo, para colidir com o círculo interno, o ângulo α deve satisfazer:

 $-r < sen\alpha + \delta sen(\alpha - w) < r$

Determinaremos a equação de α em função de w a fim de visualizar a região onde ocorre a transição da aplicação T_c para a aplicação T_i . A fronteira da região em Δ onde e válida a aplicação T_c é dada por

 $sen\alpha + \delta sen(\alpha - w) = \pm r$

Com os parâmetros $r, \delta \in w$ fixos e algumas igualdades trigonométricas temos que

 $sen\alpha + \delta(sen\alpha \cos w - \cos \alpha senw) = \pm r$

é equivalente a a equação do 2° grau

$$(1 + 2\delta\cos w + \delta^2)x^2 \pm 2r(1 + \delta\cos w)x + (r^2 - \delta^2 sen^2 w) = 0$$

cujas raízes são

Figura 5.14: As curvas dividem o Plano de Fase em duas regiões: A região central corresponde ao dominio de T_i e as regiões superior e inferior correspondem ao domínio de T_c

5.1.4 A aplicação do BCNC

A aplicação que define o Bilhar de Círculos não Concêntricos é dada por

 $T = \begin{cases} T_c = \begin{cases} \alpha_1 = \alpha_0 \\ \omega_1 = \omega_0 + \pi - 2\alpha_0 \\ se \mid sen\alpha_0 + \delta sen(\alpha_0 - w_0) \mid \ge r \\ sen\alpha_0 + \delta sen(\alpha_0 - w_0) = rsen\beta \\ sen\alpha_1 + \delta sen(\alpha_1 + w_1) = rsen\beta \\ 2\beta = \alpha_0 - w_0 + w_1 + \alpha_1 \\ se \mid sen\alpha_0 + \delta sen(\alpha_0 - w_0) \mid < r \end{cases}$

Teorema 4 A aplicação T, definida acima, é uma aplicação continua porém não diferenciável.

Demonstração:

As aplicações $T_c \in T_i$ são C^{∞} em seus respectivos domínios de definição. Vamos analisar a continuidade de T. Seja (α_n, w_n) uma sequência contida no domínio de validade de T_i , ou seja , $|sen\alpha_n + \delta sen(\alpha_n - w_n)| < r$, tal que (α_n, w_n) converge para um ponto (α, w) na fronteira desta região. Para cada n, chame $T(w_n, \alpha_n) = (w_n^*, \alpha_n^*)$. Quando $n \to \infty$ temos que β tende a $\pm \frac{\pi}{2}$ e as equações de T_i satisfazem (podemos supor $\beta \to +\frac{\pi}{2}$ pois o caso em que $\beta \to -\frac{\pi}{2}$ é análogo)

$$sen\alpha_n^* + \delta sen(\alpha_n^* + w_n^*) = r sen\beta$$

$$sen\alpha_n^* + \delta sen(2\beta - \alpha_n + w_n) = r sen\beta$$

$$sen\alpha_n^* + \delta sen(\pi - \alpha_n + w_n) = r$$

$$sen\alpha_n^* = r - \delta sen(\alpha_n - w_n)$$

$$sen\alpha_n^* = r - (rsen\beta - sen\alpha_n)$$

$$sen\alpha_n^* = sen\alpha_n$$

Para o valor de w_n^* temos:

$$w_n^* = 2\beta - (\alpha_n - w_n + \alpha_n^*)$$
$$w_n^* = 2\beta - 2\alpha_n^* + w_n$$

igual a T_c . Portanto quando $n \to \infty$ Temos $T_i(w_n, \alpha_n) \to T_c(w, \alpha)$, ou seja, T é continua.

Cada entrada da matriz que define a derivada de T_c é da forma $\frac{a}{\cos(\beta)} + b$ com $a \in b$ funções limitadas. Quando β tende a $\pm \frac{\pi}{2}$ estas entradas divergem. Portanto T não é diferenciável.

Teorema 5 Seja T a aplicação que define o Bilhar de Círculos não Concêntricos. Então T preserva medida, ou seja, para todo subconjunto mensurável $\Lambda \subset \Delta$, a medida μ definida por

$$\mu(\Lambda) = \int \int_{\Lambda} sen \alpha d\alpha dw$$

satisfaz $\mu(\Lambda) = \mu(T(\Lambda)).$

Demostração:

Se $sen \alpha d \alpha d w$ é invariante então

$$\mu(\Lambda) = \int \int_{\Lambda} sen\alpha d\alpha dw = \int \int_{T(\Lambda)} sen\alpha d\alpha dw = \mu(T(\Lambda))$$

De acordo com o Teorema Fundamental das Trocas de Variáveis, a integral à direita é igual à

$$\int \int_{T(\Lambda)} sen\alpha d\alpha dw = \int \int_{\Lambda} sen\alpha |J| d\alpha dw$$

onde J é o Jacobiano da aplicação T. Comparando esta expressão com a integral à esquerda, deduzimos que a relação

$$sen\alpha_1|J| = sen\alpha_0$$

é necessária e suficiente para a invariância da medida. Então precisamos mostrar que

$$J = \left| \frac{sen\alpha_0}{sen\alpha_1} \right|.$$

Tomando a derivada de T, igual à $DT_c \in DT_i$ nos respectivos domínios de definição e realizando o cálculo dos determinantes, temos

$$det(DT_c) = det(DT_i) = \frac{sen\alpha_0}{sen\alpha_1}$$

conforme desejávamos. Logo T preserva a medida μ .

5.2 Pontos fixos do BCNC

Analisaremos os pontos fixos da aplicação T, ou seja, pontos que satisfazem $T(w, \alpha) = (w, \alpha)$. A aplicação T_c não tem pontos fixos, apenas órbitas periódicas que correspondem à rotações racionais. Já T_i possui 2 pontos fixos. Se $T(w, \alpha) = (w, \alpha)$, da relação $2\beta = \alpha_0 - w_0 + w_1 + \alpha_1$ temos $\beta = \alpha$. E das outras duas relações que definem T_i concluímos que $sen(\alpha - w) = sen(\alpha + w)$. Então

$$\alpha - w = \pi - \alpha + w + 2k\pi \quad ou \quad \alpha - w = \alpha + w + 2k\pi \quad k \in \mathbb{Z}$$

A primeira possibilidade implica que $\alpha = \frac{\pi}{2}$, que está fora do intervalo permitido. Logo esta igualdade não nos dá informações sobre os pontos fixos de T_i . A partir da segunda, temos $w = k\pi$, o que nos leva às soluções w = 0 e $w = \pi$.

O valor de α em w = 0 segue da igualdade

$$sen\alpha + \delta sen(\alpha - w) = rsen\beta$$
$$(1 + \delta - r)sen\alpha = 0$$
$$\Rightarrow \alpha = 0$$

Para $w=\pi$ a mesma igualdade acima nos leva a

$$sen\alpha + \delta sen(\alpha - w) = rsen\beta$$
$$(1 - \delta - r)sen\alpha = 0$$
$$\Rightarrow \alpha = 0$$

Concluímos que os pontos fixos de T são (0,0) e $(\pi,0)$. Analisaremos, a seguir, a estabilidade destes pontos:

- $(w, \alpha) = (0, 0)$

A linearização de $T = T_i$ no ponto (0,0) é dada por

$$Df_{(0,0)} = \begin{pmatrix} r + 2\delta r - 2\delta - 2\delta^2 & 2(1+\delta)(1+r-\delta) \\ 2\delta(\delta-r) & r + 2\delta r - 2\delta - 2\delta^2 \end{pmatrix}$$

cujos autovalores são

$$\lambda_{1,2} = \frac{1}{r}(r + 2\delta r - 2\delta - 2\delta^2) \pm \frac{1}{r}\sqrt{4\delta(1+\delta)(\delta-r)(1-r+\delta)}$$

com autovetores correspondentes

$$\begin{aligned} v_1 &= \frac{1}{r} (\sqrt{2(1+\delta)(1-r+\delta)}, i\sqrt{2\delta(r-\delta)}) \\ v_2 &= \frac{1}{r} (\sqrt{2(1+\delta)(1-r+\delta)}, -i\sqrt{2\delta(r-\delta)}) \end{aligned}$$

Observamos a estabilidade do ponto fixo (0,0) depende dos parâmetros $r \in \delta$:

 $r > \delta$ Autovalores complexos conjugados e o ponto fixo é eliptíco.

- $r = \delta$ Autovalores iguais a $-1 \in (0,0)$ é parabólico.
- $r < \delta$ Autovalores reais e com módulo diferente de 1 então o ponto é hiperbólico.

-
$$(w,\alpha) = (\pi,0)$$

A linearização de T no ponto $(\pi, 0)$ é dada por

$$Df_{(\pi,0)} = \begin{pmatrix} r - 2\delta r + 2\delta - 2\delta^2 & 2(1-\delta)(1-r-\delta) \\ 2\delta(r+\delta) & r - 2\delta r + 2\delta - 2\delta^2 \end{pmatrix}$$

cujos autovalores são

$$\lambda_{1,2} = \frac{1}{r}(r - 2\delta r + 2\delta - 2\delta^2) \pm \frac{2}{r}\sqrt{\delta(1-\delta)(r+\delta)(1-r-\delta)}$$

e os autovetores correspondentes

$$v_{1} = \frac{1}{r} (\sqrt{2(1-\delta)(1-r-\delta)}, \sqrt{2\delta(r+\delta)})$$

$$v_{2} = \frac{1}{r} (\sqrt{2(1-\delta)(1-r-\delta)}, -\sqrt{2\delta(r+\delta)})$$

Como os valores de $r \in \delta$ são positivos, com $(r + \delta) < 1$ verificamos que os fatores da raiz quadrada são sempre positivos se $\delta \neq 0$, satisfazendo a condição de hiperbolicidade. Portanto o ponto fixo $(\pi, 0)$ é sempre hiperbólico.

Capítulo 6

Resultados

Neste capítulo aplicaremos os resultados discutidos ao longo do trabalho para um exemplo de bilhar: O Bilhar de Círculos não Concêntricos. Tomaremos o ponto fixo hiperbólico $(w, \alpha) = (\pi, 0)$ e encontraremos as Variedades Invariantes Locais utilizando o Teorema da Linearização de Sternberg. A seguir, através do Método Simples e do Método Dana Hobson encontraremos as Variedades Invariantes Globais.

6.1 BCNC

Consideramos o BCNC com parâmetros $\delta = 0.2$ e r = 0.7.

Figura 6.1: BCNC com parâmetros $\delta = 0.2$ e r = 0.7

cujo Espaço de Fase tem a estrutura:

6.2 Variedades Invariantes Locais

Colocaremos a aplicação que define o BCNC nas hipóteses do Teorema de Linearização de Sternberg para encontrar o difeomorfismo conjugado a f cujas Variedades Invariantes correspondem aos eixos coordenados. O ponto fixo hiperbólico $(\pi, 0)$ está contido do domínio da aplicação T_i . Substituindo as funções trigonométricas desta aplicação por séries de potências de grau 8, obtemos na vizinhança do ponto fixo uma aproximação de grau 8 de T_i para termos uma aproximação de T razoável pelo seu Polinômio de Taylor. Denotamos este polinômio por $f(w, \alpha) = (f_1(w, \alpha), f_2(w, \alpha))$. Além disso, os pontos na imagem devem satisfazer $||sen\alpha + \delta sen(\alpha - w)|| < r$ para que T seja dada por T_i .

$$f_1(w,\alpha) = .228571\alpha + 1.057143w$$

Figura 6.2: Plano de Fase para o BCNC com parâmetros $\delta = 0.2$ e r = 0.7. As condições iniciais foram iteradas 200 vezes e são dadas por $(-3.14 + i\frac{3.14}{30}, -i\frac{1}{30})$ e $(i\frac{3.14}{30}, i\frac{1}{30})$ para $i \in \{0...29\}$

$$\begin{aligned} &.138667\alpha^3 + .142367\alpha^2 w + .380898\alpha w^2 + .070041w^3 \\ &.126389\alpha^5 + .176349\alpha^4 w + .344618\alpha^3 w^2 + .235879\alpha^2 w^3 \\ &+ .060183\alpha w^4 - .017178w^5 \\ &.128193\alpha^7 + .21834\alpha^6 + .420154\alpha^5 w^2 + .374924\alpha^4 w^3 \\ &+ .207528\alpha^3 w^4 + .016583\alpha^2 w^5 - .034069\alpha w^6 - .001950w^7 \end{aligned}$$

$$f_{2}(w, \alpha) = 1.057143\alpha + .514286w$$

$$-.004665\alpha^{3} - .342274\alpha^{2}w - .141691\alpha w^{3} - .180175w^{3}$$

$$-.005355\alpha^{5} - .115877\alpha^{4}w - .037020\alpha^{3}w^{2} - .014163\alpha^{2}w^{3}$$

$$-.008755\alpha w^{4} + .039467w^{5}$$

$$-.006175\alpha^{7} - .079386\alpha^{6}w - .046760\alpha^{5}w^{2} - .060543\alpha^{4}w^{3}$$

$$-.033476\alpha^{3}w^{4} + .007397\alpha^{2}w^{5} + .017324\alpha w^{6} - .006811w^{7}$$

Realizando a mudança de coordenadas

$$M = \left(\begin{array}{cc} 0.7680 & -0.8320\\ 0.5120 & 0.5547 \end{array}\right)$$

que diagonaliza a aproximação de f, temos $\bar{f}(w, \alpha) = M^{-1} \circ f \circ M(w, \alpha) = (\bar{f}_1(w, \alpha), \bar{f}_2(w, \alpha)).$

$$\bar{f}_{1}(w,\alpha) = 1.4w \\ -.1738\alpha^{3} + .1516\alpha^{2}w - .1384\alpha w^{2} + .0990w^{3} \\ -.0508\alpha^{5} + .2153\alpha^{4}w - .3434\alpha^{3}w^{2} + .3505\alpha^{2}w^{3} - .3052\alpha w^{4} + .1474w^{5} \\ -.0297\alpha^{7} + .1781\alpha^{6}w - .4880\alpha^{5}w^{2} + .8253\alpha^{4}w^{3} \\ -.9654\alpha^{3}w^{4} + .8314\alpha^{2}w^{5} - .4990\alpha w^{6} + .1352\alpha w^{7}$$

$$\bar{f}_{2}(w,\alpha) = .7142\alpha -.0257\alpha^{3} + .0706\alpha^{2}w - .1516\alpha w^{1}w + .3408w^{3} -.0255\alpha^{5} + .1120\alpha^{4}w - .3098\alpha^{3}w^{2} + .4072\alpha^{2}w^{3} - .4450\alpha w^{4} + .1952w^{5} -.0171\alpha^{7} + .1196\alpha^{6}w - .3841\alpha^{5}w^{2} + .8079\alpha^{4}w^{3} -1.0754\alpha^{3}w^{4} + 1.0128\alpha^{2}w^{5} - .6281\alpha w^{6} + .1691w^{7}$$

Figura 6.3: As curvas são imagens dos eixos coordenados pela aplicação \bar{h} , ou seja, são as Variedades Invariantes de \tilde{f} . Os pontos são órbitas calculadas numericamente com condições iniciais sobre as Variedades Instável e Estável, respectivamente.

Estamos nas condições do Teorema de Linearização de Sternberg. Resolvendo as equações de conjugação, encontramos $\bar{h}(w, \alpha) = (\bar{h}_1(w, \alpha), \bar{h}_2(w, \alpha)).$

$$\begin{split} \bar{h}_1(w,\alpha) &= 1.0w \\ 0.1679\alpha^3 - 0.2211\alpha^2w + 0.07371w^3 \\ 0.0525\alpha^5 - 0.1346\alpha^4w 0.1625\alpha^3w^2 - 0.1369\alpha w^4 + 0.03672w^5 \\ 0.0203\alpha^7 - 0.1092\alpha^6w + 0.1326\alpha^5w^2 - 0.1078\alpha^4w^3 + \\ 0.1738\alpha^2w^5 - 0.08568\alpha w^6 + 0.0157w^7 \end{split}$$

$$\bar{h}_2(w,\alpha) &= 1.0\alpha \\ 0.0737\alpha^3 - 0.2211\alpha w^2 + 0.1679w^3 \\ 0.0367\alpha^5 - 0.1369\alpha^4w + 0.1625\alpha^2w^3 - 0.1346\alpha w^4 + 0.0525w^5 \\ 0.0157\alpha^7 - 0.0856\alpha^6w + 0.1738\alpha^5w^2 - 0.1078\alpha^3w^4 \\ + 0.1326\alpha^2w^5 - 0.1091\alpha w^6 + 0.02033w^7 \end{split}$$

Além disso, encontramos a aplicação \bar{w} que caracteriza a Forma Normal de \bar{f} .

 $\bar{w}_1(t) = 1 - 0.0989t + 0.1009t^2 - 0.1208t^3$ $\bar{w}_2(t) = 1 + 0.0989t - 0.09117t^2 + 0.1018t^3$

Finalmente, aplicando \bar{h} sobre os eixos coordenados e voltando às coordenadas originais, temos uma aproximação das Variedades Invariantes apresentadas na figura 5.3.

Observamos que os pontos tomados sobre a Variedade Instável, se iterados, permanecem sobre tal curva. Para a Variedade Estável, após algumas iterações, pontos tomados sobre a variedade se afastam desta. Devemos este comportamento ao erro numérico.

Figura 6.4: Método Simples - Variedade Estável (10 iterações do segmento inicial).

Figura 6.5: Método Simples - Variedade Instável (10 iterações do segmento inicial).

6.3 Variedades Invariantes Globais

Fora da vizinhança do ponto fixo onde não necessariamente vale o Teorema da Linearização de Sternberg, encontramos a Variedade Instável Global através dos Métodos Simples e Dana Hobson. Para determinarmos a Variedade Estável, calculamos a Variedade Instável de f^{-1} . Nesta seção, apresentamos os resultados obtidos da aplicação deste procedimento ao Bilhar de Círculos não Concêntricos

No método Dana Hobson utilizamos os parâmetros

- $\alpha_{min} = 0.99$
- $\alpha_{max} = 0.999$
- $\Delta s_{min} = 0.00001$

Figura 6.6: Método Dana Hobson - Variedade Estável Global (10 iterações do segmento inicial).

Figura 6.7: Método Dana Hobson - Variedade Instável Globais (11 iterações do segmento inicial).

De fato, o Método Simples deixa buracos em algumas regiões das Variedades Invariantes. Já o Método Dana Hobson, além de não deixar tais buracos faz uma aproximação linear (nesta implementação) das variedades. A figura 5.8 apresenta a superposição do espaço de Fase e as Variedades encontradas.

Figura 6.8: Superposição dos resultados.

Os pontos que definem as variedades não se distinguem quando muito próximos e, devido ao fato das Variedades Invariantes se acumularem nelas próprias, podemos realizar poucas iterações. A solução para este problema seria aumentar o número de casas decimais na representação dos pontos.

O Plano de Fase aporesenta 4 regiões distintas: Duas ilhas, Curvas Invariantes Correspondentes ás Òrbitas próximas ao bordo do bilhar, Variedades Invariantes no ponto fixo hiperbólico e uma região de aparência caótica.

Referências Bibliográficas

- HASSELBLATT B.; KATOK A. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, 1995.
- [2] PALIS; DE MELO. Introdução aos Sistemas Dinâmicos. Rio de Janeiro: IMPA, 1978. (Projeto Euclides)
- [3] ROBINSON, K. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. Segunda Edição. Boca Raton: CRC Press, 1998.
- [4] BOHIGAS, O.; BOOSÉ, D.; EGYDIO DE CARVALHO, R.; MARVULLE, V. Quantum Tunnelling and Chaotic Dynamics. Nuclear Physics A, Holanda, 1993. 360, p. 197 - 210.
- [5] HOBSON, D. An efficient method for computing invariant manifolds of planar maps. Journal of Computacional Physics, San Diego, 1993. 104, p. 14-22.
- [6] SAITÔ, N.; HIROOKA, H.; FORD, J.; VIVALDI, F.; WALKER, G. H. Physica D , Amsterdam, 1982. 5, p. 273 - 286.
- [7] COSTA, M. Estudo de Órbitas Periódicas no Bilhar de Círculos não Concêntricos (Mestrado em Física) -Instituto de Ciências Exatas, Universaidade Federal de Minas Gerais, Belo Horizonte, 2001.
- [8] PIMENTEL, F. Pontos Heteróclinos de um Bilhar Elíptico Perturbado. (Mestrado em Matemática) Instituto de Ciências Exatas, Universaidade Federal de Minas Gerais, Belo Horizonte, 1993.