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Mauŕıcio Barros Corrêa Júnior
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Resumo

G. Darboux apresentou, em [32], uma teoria sobre a existência de integrais primeiras
para equações diferenciais polinomiais baseado na existência de um número sufi-
cientemente grande de soluções algébricas. Concomitantemente H. Poincaré, em
[69], considerou o problema da integrabilidade algébrica para equações diferenciais
polinomiais no plano. Ele observou que, neste caso, seria suficiente limitar o grau
das soluções algébricas. Nesta mesma direção, P. Painlevé, em [65], enunciou o
problema de integrabilidade como:

“ É posśıvel reconhecer o gênero de uma solução geral de uma equação diferencial
polinomial em duas variáveis com uma integral primeira racional?”

Hoje em dia esses problemas são conhecidos como Problema de Poincaré e
Problema de Painlevé. Em [53] A. Lins Neto construiu uma familia de folheações
em P2

C, com grau e tipo anaĺıtico das singularidades fixados, com integrais primeiras
de grau arbitrariamente grande, gerando assim contra-exemplos para os problemas
de Poincaré e de Painlevé. Entretanto, podemos obter uma resposta afirmativa
para tais problemas se forem impostas algumas condições sobre o tipo anaĺıtico
das singularidades ou sobre as posśıveis curvas invariantes.

O atual interesse no Problema de Poincaré foi estimulado por vários trabalhos,
como os trabalhos de D. Cerveau e A. Lins Neto [21] e M. Carnicer [18]. Muitos
autores vem trabalhando nestes problemas e em algumas de suas generalizações,
veja por exemplo os artigos de M. Soares [75], J.V. Pereira [67], M. Brunella & L.G.
Mendes [14], E. Esteves & S. Kleiman [35], Cavalier & Lehmann [19] e Zamora
[81].

O problema de limitar o gênero de uma curva invariante em termos do grau de
uma folheação unidimensional em PnC foi considerado por exemplo por Campillo,
Carnicer e de la Fuente em [16]. Eles mostraram que, se C é uma curva, com
singularidades nodais, invariante por uma folheação unidimensional F em PnC,
então

2pa(C)− 2

deg(C)
≤ deg(F)− 1, (1)

onde pa(C) é o gênero aritmético de C.
Em [34], Esteves e Kleiman estenderam o trabalho de Jouanolou sobre equações

de Pfaff algébricas sobre um esquema suave V . Eles introduziram o conceito de
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campos de Pfaff em V , que é um mapa de feixes η : Ωs
V → L, onde L é um feixe

inverśıvel em V , e o número inteiro 1 ≤ s ≤ n− 1 é chamado o posto de η. Uma
subvariedade X ⊂ V é dita invariante por η se o mapa η fatora a um mapa natural
Ωs
V |X → Ωs

X .
Nesta tese obtemos cotas para o gênero seccional de variedades Gorenstein que

são invariantes por um campo de Pfaff em Pnk , onde k é um corpo algebricamente
fechado e de caracteŕıstica zero. Mais precisamente, nosso resultado é o seguinte.

Teorema. Seja X ⊂ Pnk uma variedade projetiva Gorenstein invariante por um
campo de Pfaff holomorfo F em Pnk cujo o posto é igual a dimensão de X, e tal
que codim(Sing(X), X) ≥ 2. Então

2g(X,OX(1))− 2

deg(X)
≤ deg(F)− 1, (2)

onde g(X,OX(1)) é o gênero seccional de X com respeito ao fibrado em retas
OX(1) associado a uma seção hiperplana.

Este resultado generaliza a cota obida por Campillo, Carnicer e de la Fuente
em [16, Theorem 4.1 (a)].

Retornando ao problema de integrabilidade, lembramos que o trabalho de
J.P. Jouanolou em [49] também dá um melhoramento e generalização à teoria
de Darboux, caracterizando a existência de integrais primeiras racionais para uma
equação de Pfaff em Pnk , onde k é algébricamente fechado e de caracteŕıstica zero.
Mais precisamente, seja ω uma 1-forma torcida ω ∈ H0(Pnk ,Ω1

Pnk
⊗O(d+2)), onde d

é o que chamamos de grau de ω. Segue de [49] Teorema 3.3, p.g 102, que ω admite
uma integral primeira racional se, e somente se, possui infinitas hipersuperficies
algébricas irredut́ıveis invariantes. Mais geralmente, Jouanolou provou em [50]
que sobre uma variedade complexa compacta X, satisfazendo algumas condições
cohomológicas, uma equação de Pfaff ω ∈ H0(X,Ω1

X ⊗ L), onde L é um fibrado
em retas, admite uma integral primeira meromorfa se, e somente se, possui um
número infinito de divisores irredut́ıveis invariantes. Além disso, se ω não admite
integral primeira meromorfa, então o número de divisores irredut́ıveis invariantes
é no máximo

dimC(H0(X,Ω2
X ⊗ L)/ω ∧ H0(X,Ω1

X)) + ρ(X) + 1,

onde ρ(X) é o número de Picard de X.
Em [42] E. Ghys retirou todas as hipótese dadas por Jouanolou mostrando

que este resultado é válido para toda variedade complexa compacta. M. Brunella
e M. Nicolau em [15] provou este mesmo resultado para equações de Pfaff em
caracteŕıstica positiva e para folheações não-singulares de codimensão um sobre
variedades compactas e com estrutura transversal holomorfa. Recentemente, S.
Cantat em [17] mostrou uma versão dinâmica discreta deste resultado provando
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que se um endomorfismo sobrejetivo f de uma variedade complexa X possuir
um certo número de hipersuperficies anaĺıticas invariantes, então f preserva uma
fibração meromorfa.

Mostramos uma versão destes resultados para campos de vetores sobre var-
iedades tóricas completas e singulares. Seja P∆ uma variedade tórica simplicial
completa associada a um fan ∆ e T P∆ seu feixe de Zarisk. Uma folheação holo-
morfa singular F em P∆ é uma seção global de T P∆ ⊗KF , onde KF é um feixe
inverśıvel em P∆. Denotamos por Tn o toro agindo em P∆ e chamamos um Tn-
invariante divisor de Weil por Tn-divisor. Usamos a existência de coordenadas
homogêneas para variedades tóricas simpliciais para provar o seguinte resultado.

Teorema. Seja F uma folheação unidimensional sobre uma variedade tórica sim-
plicial completa P∆ de dimensão n e número de Picard ρ(P∆). Se F admite

h0(P∆,O(KF)) + ρ(P∆) + n

Tn-divisores irredut́ıveis invariantes, então F admite uma integral primeira racional.

Observe que , em geral P∆ é uma variedade singular com singularidades quo-
cientes. Portanto em dimensão dois este resultado mostra que o teorema de
Darboux-Jouanolou-Ghys é válido para uma classe de superf́ıcies tóricas singu-
lares.

A versão afim e não-singular deste resultado foi provada por J. LLibre e X.
Zhang em [57]. Eles mostraram que se o número de hipersuperficies algébricas
invariantes por um campo polinomial Z em Cn, de grau d, é pelo menos(

d+ n− 1

n

)
+ n

então Z admite uma integral primeira racional.
Além disso, estudamos folheações unidemmensionais em duas classes de var-

iedades tóricas, os espaços multiprojetivos e espaços projetivos com pesos. Com
hipóteses convenientes obtemos cotas para o problema de Poincaré nestas var-
iedades.

Finalmente, estendemos alguns resultados devidos a J. V. Pereira para inte-
grabilidade de folheações holomorfas F sobre uma variedade complexa M , usando
o conceito de seção extática com respeito a um sistema linear de dimensão finita
V ⊂ H0(M,O(D)), onde D é um divisor efetivo sobre M . O lugar de zeros da
seção extática é o lugar de inflexão do sistema liner com respeito a um campo de
vetores que induz F .

Denote por ε(V,F) a seção extática de F com respeito a V . Se F é uma
folheação unidimensional sobre uma variedade complexa M , então uma integral
primeira holomorfa (ou meromorfa) para F é um mapa holomorfo (resp. mero-
morfo) Θ : M −→ Y , onde Y é uma variedade complexa, tal que as fibras de Θ
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são invariantes por F . J. V. Pereira em [67] mostrou o seguinte teorema:

Teorema. Seja F uma folheação holomorfa unidimensional sobre uma var-
iedade complexa M . Se V é um sistema linear de dimensão finita tal que ε(V,F)
é identicamente nulo então existe um conjunto aberto denso U de M onde F|U
admite uma integral primeira holomorfa. Além disso, se M é uma variedade pro-
jetiva, então F admite uma integral primeira meromorfa.

Nos casos não-algébricos e não-compactos o resultado acima não garante que
o anulamento da seção extática ε(V,F) implica na existência de uma integral
primeira meromorfa para F . Forneceremos o seguinte adendo para o teorema de
J. V. Pereira.

Teorema. Sejam F uma folheação holomorfa unidimensional sobre uma variedade
complexa M e V sistema linear de dimensão finita. Se ε(V,F) é identicamente
nula, então F admite uma integral primeira meromorfa Θ : M → P1 .

J. V. Pereira em [67] mostrou que uma folheação em P2
C, de grau d > 1, que

não admite uma integral primeira racional de grau ≤ k, possui no máximo(
k + 2

k

)
+

(d− 1)

k
·
((k+2

k

)
2

)
.

curvas invariantes de grau k.
Seja (M,L) uma variedade projetiva polarizada e denote por N (F , V ) o número

de divisores F -invariantes contidos no sistema linear V ⊂ H0(M,O(D)). Usamos
o conceito de grau de folheações e divisores com respeito à polarização L e divisor
extático para o seguinte resultado.

Teorema. Seja F uma folheação unidimensional sobre uma variedade projetiva
polarizada (M,L) e D um divisor efetivo. Suponha que F admite integral primeira
racional. Então

degL(D) · (N (F , V )− h0(V )) ≤ (degL(F)− degL(M)) ·
(
h0(V )

2

)
,

onde h0(V ) = dimCV . Em particular, temos que :

i) o número de divisores F-invariantes contidos no sistema linear V ⊂ |O(D)|
é no máximo

(degL(F)− degL(M))

degL(D)
·
(
h0(V )

2

)
+ h0(V ),

onde h0(V ) = dimCV.
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ii) se H ⊂ |O(D)| é um pencil e N (F ,H) > 2, então

degL(D) ≤ degL(F)− degL(M)

A parte ii) deste teorema nos dá um critério numérico para decidir se uma
folheação holomorfa F sobre uma variedade polarizada (M,L) admite uma integral
primeira racional. Isto é, se supormos que o número de divisores F -invariantes
contidos em um pencil H é maior que 2 e que F possui um divisor invariante
C ∈ H satisfazendo a condição

degL(C) > degL(F)− degL(M),

então F admite uma integral primeira racional. Este resultado está relacionado a
uma conjecture de Alcides Lins Neto. Em [53] ele levantou a seguinte questão:

“Dado d ≥ 2, existe M(d) ∈ N tal que se uma folheação em P2, de grau d, tem
uma solução algébrica invariante de grau k ≥ M(d), então ela tem uma integral
primeira racional?”

Seja F uma folheação unidimensional em Pn de grau d ≥ 2. Segue do critério
mencionado acima que se o número de hipersuperf́ıcies de grau k invariantes por
F contidas em um pencil de mesmo grau é maior que 2 e k > M(d) = d− 1, então
F tem uma integral primeira racional.
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Introduction

G. Darboux presented , in [32], a theory on the existence of first integrals for poly-
nomial differential equations based on the existence of sufficiently many invariant
algebraic hypersurfaces. Concomitantly H. Poincaré, in [69], considered the prob-
lem of algebraic integration of polynomial differential equations in the plane. He
observed that, in this case, it would be sufficient to bound the degree of algebraic
solutions. In the same vein P. Painlevé, in [65], stated an integrability problem as
follows:

“Is it possible to recognize the genus of the general solution of an algebraic
differential equation in two variables which has a rational first integral?”

Nowadays these problems are known as Poincaré’s type Problems and Painlevé’s
type Problems. In [53] A. Lins Neto constructed families of foliations on P2

C, with
fixed degree and local analytic type of the singularities, where foliations with ratio-
nal first integrals of arbitrarily large degree appear. In other words, such families
show that the questions of Poincaré and Painlevé have a negative answer in gen-
eral. However, one can obtain an affirmative answer provided some additional
hypotheses are assumed.

The current interest in Poincaré’s problem was stimulated by several works,
like D. Cerveau and A. Lins Neto [21] and M. Carnicer [18]. Many authors have
been working on these problems and on some of its generalizations, see for instance
the papers M. Soares [75], J.V. Pereira [67], M. Brunella & L.G. Mendes [14], E.
Esteves & S. Kleiman [35], Cavalier & Lehmann [19], and Zamora [81].

The problem of bounding the genus of an invariant curve in terms of the degree
of a one-dimensional foliation on PnC was considered for instance by Campillo,
Carnicer and de la Fuente [16]. They showed that, if C is a reduced curve which
is invariant by a one-dimensional foliation F on PnC, then

2pa(C)− 2

deg(C)
≤ deg(F)− 1 + a, (3)

where pa(C) is the arithmetic genus of C and a is an integer obtained from the con-
crete problem of imposing singularities to projective hypersurfaces. For instance,
if C has only nodal singularities then a = 0, and thus formula (3.1) follows from
[38].
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In [34], Esteves and Kleiman had extended Jouanolou’s work on algebraic Pfaff
equations on a smooth scheme V . They introduced the notion of a Pffaf field in
V , which is a nontrivial sheaf map η : Ωs

V → L, where L is a invertible sheaf on
V , and the integer 1 ≤ s ≤ n − 1 is called the rank of η. A subvariety X ⊂ V
is said to be invariant under η if the map η factors through the natural map
Ωs
V |X → Ωs

X . A Pfaff system on V induces, via exterior powers and the perfect
pairing of differential forms, a Pffaf field on V .

In this thesis we establish upper bounds for the sectional genus of Gorenstein
varieties which are invariant under Pfaff fields on Pnk , where k is an algebraically
closed field of characteristic zero. More precisely, our result is the following.

Theorem. Let X ⊂ Pnk be a Gorenstein projective variety which is invariant
under a holomorphic Pfaff field F on Pnk whose rank is equal to the dimension of
X, and such that codim(Sing(X), X) ≥ 2. Then

2g(X,OX(1))− 2

deg(X)
≤ deg(F)− 1, (4)

where g(X,OX(1)) is the sectional genus of X with respect to the line bundle OX(1)
associated to the hyperplane section.

This generalizes a bound obtained by Campillo, Carnicer and de la Fuente in
[16, Theorem 4.1 (a)].

Let us return to the integrability problem. The work of J.P. Jouanolou in [49]
also gives an improvement and generalization of the Darboux theory of integrability
characterizing the existence of rational first integrals for Pfaff equations on Pnk ,
where k is an algebraically closed field of characteristic zero. Namely, let ω be a
twisted 1-form ω ∈ H0(Pnk ,Ω1

Pnk
⊗O(m+ 1)), where m was called by Jouanolou the

degree of ω 1. Then follows from [49] Theorem 3.3, p.g 102, that ω admits a rational
first integral if and only if possesses a infinite number of irreducibles hypersurfaces.
More generally, Jouanolou proved in [50] that on a complex compact manifold X
satisfying certain conditions on its Hodge-to-de Rham spectral sequence, a Pfaff
equation ω ∈ H0(X,Ω1

X⊗L), where L is a line bundle, admits a meromorphic first
integral if and only if possesses an infinite number of invariant irreducible divisors.
Moreover, if ω does not admit a meromorphic first integral, then the number of
invariant irreducible divisors is at most

dimC(H0(X,Ω2
X ⊗ L)/ω ∧ H0(X,Ω1

X)) + ρ(X) + 1,

where ρ(X) is the Picard number of X.

1Nowadays, a Pfaff equation ω on Pn
k is usually given by a global section of Ω1

Pn
k
⊗O(d + 2),

where d is the number of tangency points of a generic line with the distribution induced by ω.
Thus in the Jouanolou’s notation m = d + 1.

11



E. Ghys in [42] drops all hypotheses given by Jouanolou showing that this result
is valid for all compact complex manifold. M. Brunella and M. Nicolau in [15]
proved this same result for Pfaff equations in positive characteristic and for non-
singular codimension one transversal holomorphic foliations on compact manifolds.
A discrete dynamical version of Jouanolou’s theorem was recently proved by S.
Cantat. He proved In [17] that if there exist N invariant irreducible hypersurfaces
with

N ≥ dim(M) + h1,1(M)

then f preserves a nontrivial meromorphic fibration.
We show a version of this results for vector fields on complete singular toric

varieties. Let P∆ be a simplicial toric variety associated by a fan ∆ and T P∆ its
Zarisk’s sheaf. A singular holomorphic foliation F on P∆ is a global section of
T P∆ ⊗KF , where KF is a invertible sheaf on P∆. We denote Tn the torus acting
on P∆ and we call a Tn-invariant Weil divisor as Tn-divisor. We use the existence
of homogeneous coordinate for simplicial toric varieties to prove the following re-
sult.

Theorem. Let F be an one-dimensional foliation on a complete simplicial toric
varity P∆ of dimension n and picard number ρ(P∆). If F admits

h0(P∆,O(KF)) + ρ(P∆) + n

invariants irreducible Tn-divisors, then F admit a rational first integral.

Observe that, in general P∆ is a singular variety with quotient singularities.
Therefore, in two dimension this result show that the Darboux-Jouanolou-Ghys’s
theorem is valid for a class of singular toric variety .

The affine and non-singular version of this result was proved by J. LLibre and X.
Zhang in [57]. They showed that if the number of invariant algebraic hypersurfaces
of a polynomial vector field Z in Cn, of degree d, is at least(

d+ n− 1

n

)
+ n

then Z admits a rational first integral.
Moreover, we study one-dimensional foliations in two classes of toric varieties,

the multiprojective spaces and weighted projective planes. Under suitable hy-
potheses we obtain bounds for Poincaré’s problem in this varieties.

Finally, we extend some results due to J. V. Pereira for integrability of a one-
dimensional foliation F on a complex manifold M , using the concept of extatic
section with respect to the a finite dimensional linear system V ⊂ H0(M,O(D)),
where D is an effective divisor on M . The zero locus of extatic section is the
inflection locus of linear systems with respect to the vector field inducing F .
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Denote by ε(V,F) the extatic section of F with respect V . if F is a holo-
morphic one-dimensional foliation on a complex manifold M , then a holomorphic
(or meromorphic) first integral for F is a holomorphic (resp. meromorphic) map
Θ : M −→ Y , where Y is a complex manifold, such that the fibers of Θ are invari-
ants by F . J. V. Pereira showed in [67] the following theorem:

Theorem. Let F be a one-dimensional holomorphic foliation on a complex man-
ifold M . If V is a finite dimensional linear system such that ε(V,F) vanishes
identically, then there exits an open and dense set U where F|U admits a holo-
morphic first integral. Moreover, if M is a projective variety, then F admits a
meromorphic first integral.

In the non-algebraic and non-compact cases the result above does not guar-
antees that the vanishing of extatic section ε(V,F) implies in the existence of a
meromorphic integral first for F . We provided the following addendum for J. V.
Pereira’s theorem.

Theorem. Let F be a one-dimensional holomorphic foliation on a complex man-
ifold M and V a finite dimensional linear system. If ε(V,F) vanishes identically
then F admits a meromorphic first integral Θ : M → P1 .

J. V. Pereira in [67] showed that a foliation on P2
C, of degree d > 1, that does

not admit rational first integral of degree ≤ k, it has at most(
k + 2

k

)
+

(d− 1)

k
·
((k+2

k

)
2

)
.

invariant curves of degree k.
Let (M,L) be a polarized projective variety and denote by N (F , V ) the num-

ber of F -invariant divisors contained in the linear system V ⊂ H0(M,O(D)). We
use the concept of degree of foliations and divisors with respect to polarization L
and extatic divisor to show the following result.

Theorem. Let F be a one-dimensional foliation on a polarized projective al-
gebraic manifold (M,L) and D an effective F-invariant divisor. Suppose that F
does not admit a rational first integral. Then

degL(D) · (N (F , V )− h0(V )) ≤ (degL(F)− degL(M)) ·
(
h0(V )

2

)
,

where h0(V ) = dimCV . In particular, we have that:

i) the number of divisors F-invariant contained on the linear system V ⊂
|O(D)| is at most

(degL(F)− degL(M))

degL(D)
·
(
h0(V )

2

)
+ h0(V ),

13



where h0(V ) = dimCV.

ii) if H ⊂ |O(D)| is a pencil and suppose that N (F ,H) > 2, then

degL(D) ≤ degL(F)− degL(M)

The part ii) of this theorem give us a numerical criteria to decide if a holomor-
phic foliation F on the polarized variety (M,L) admits a rational first integral.
That is, if we suppose that the number of F -invariant divisors contained on the
pencil H is > 2 and F possesses a invariant effective divisor C ∈ H satisfying the
condition

degL(C) > degL(F)− degL(M),

then F admit a rational first integral. This result is related to a Lins Neto conjec-
ture. In [53] he stated the following problem:

“Given d ≥ 2, is there M(d) ∈ N such that if a foliation on P2, of degree d,
has an algebraic solution of degree greater than or equal to M(d), then it has a
rational first integral?”

Let F be a one-dimensional foliation on Pn of degree d ≥ 2. It follows that if
the number of F -invariant hypersurfaces of degree k contained on a pencil of the
same degree is > 2 and k > M(d) = d− 1, then F has a rational first integral.
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Chapter 1

The number of invariant divisors
and Poincaré’s problem

1.1 The degree of foliations with respect to a

polarization

Let (M,L) be a n-dimensional polarized projective variety, i.e, M is smooth and
L is a very ample line bundle on M . The degree of a holomorphic vector bundle
E on M related to the polarization L is defined by

degL(E) =

∫
M

c1(E) · Ln−1,

where

∫
M

denote the degree of cycle.

Proposition 1.1.1. Let H be a line bundle on M such that H0(M,H) 6= {0}.
Then degL(H) ≥ 0.

Proof. See [52, Theorem 1.24].

Remark 1.1.1. Let D be an effective divisor on M . The degree of D is defined
by degL(O(D)). Since D is effective we have that H0(M,O(D)) 6= {0}, thus
degL(O(D)) ≥ 0.

Definition 1.1.1. A one-dimensional foliation on M is a global holomorphic sec-
tion of TM ⊗KF , where KF is a line bundle on M .

Let D be an analytic hypersurface on M defined locally by functions {fα ∈
O(Uα)}∈Λ, where {Uα}∈Λ is an open covering of M . If Uαβ := Uα ∩ Uβ 6= ∅
then there exist fαβ ∈ O∗(Uα), such that fα = fαβfβ. Let F be a holomorphic
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foliation given by collections ({ϑα}; {Uα}; {gαβ ∈ O∗(Uα)})α∈Λ on M , where gαβ is
the cocycle inducing KF . Consider the following functions

ζ(F ,D)
α = ϑα(fα)|D ∈ O(Uα ∩D).

If Uα ∩ Uβ ∩D 6= ∅, using Leibniz’s rule we get ζ
(F ,D)
α = fαβgαβζ

(F ,D)
β . With this

we obtain a global section ζ(F ,D) of the line bundle (KF ⊗O(D))|D. The tangency
variety of F with D is given by

T (F , D) = {p ∈ D; ζ(F ,D)(p) = 0}.

Definition 1.1.2. Let (M,L) be a polarized variety and F an foliation on M of
dimeinsion one. The degree of F with respect to the polarization L is the intersec-
tion number

degL(F) :=

∫
L

T (F , L) · Ln−2.

Proposition 1.1.2. Let F be a foliation on a polarized variety (M,L). Then

degL(F) = degL(KF) + degL(M),

where degL(M) = degL(L) is the degree of M with respect to L.

Proof. We have the adjunction formula T (F , L) = (KF + L)|L and by definition

degL(F) =

∫
L

T (F , L) · Ln−2 =

∫
L

(KF + L) · Ln−2

=

∫
M

KF · Ln−1 +

∫
M

Ln

= degL(KF) + degL(M).

We shall assume degL(KF) ≥ 0, or equivalently degL(F)− degL(M) ≥ 0.

Example 1.1.1. Let F be a foliation on M , where Pic(M) ' Z. We can take a
hyperplane section H = H ∩M to be a positive generator of Pic(M), so we denote
by OM(k) := H⊗k the k-th tensor power of H. If we write KF = OM(d− 1), then
deg(KF) = (d− 1) deg(M). Hence

deg(F) = deg(KF) + deg(M) = (d− 1) deg(M) + deg(M) = d · deg(M).

In the case where M = Pn we will have, as is known, that deg(F) = d.
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1.2 The extatic divisor

The method adopted here stems from the work of J. V. Pereira [67], where the
notion of extactic variety is exploited. In this section we digress briefly on extactic
varieties and their main properties.

Let H be a holomorphic line bundle on M . Consider the linear system V ⊂
H0(M,H) and take an open covering {Uα}α∈Λ of M which trivializes H and KF .
In the open set Uα we can consider the morphism

T (k)
α : V ⊗OUα → OkUα

defined by

T (k)
α (sα) = sα +Xα(sα) · t+X2

α(sα) · t
2

2!
+ · · ·+X(k−1)

α (sα) · t(k−1)

(k − 1)!
,

where sα and Xα are local representations, respectively, of a section s ∈ V ⊂
H0(M,H) and the section XF ∈ H0(M,TM ⊗ KF) inducing F . If Uα ∩ Uγ 6= ∅
then sα = gαγsγ and Xα = fαγXα, where gαγ, fαγ ∈ O∗(Uα) are the cocycles which
define, respectively, the line bundles H and KF . Using the compatibility described
above and Leibniz’s rule we get

sα = gαβsβ
Xα(sα) = fαβXβ(gαγ) · sβ + gαβfαβ ·Xβ(sβ)

Following this process up to order k = dimC V , we obtain

sα

X2
α(sα)

X3
α(sα)

...

Xk−1
α (sα)


=



gαβ 0 0 0 0

Xβ(gαβ) · fαβ gαβ · fαβ 0 0 0

. . . . . . gαβ · f 2
αβ 0 0

. . . . . . . . . . . . 0

. . . . . . . . . . . . gαβ · fk−1
αβ


·



sβ

X2
β(sβ)

X3
β(sβ)

...

Xk−1
β (sβ)


Denoting the k × k matrix above by Θαβ(F , V ) ∈ GL(k,OUαβ), we see that

Θαβ(F , V )(p) ·Θβα(F , V )(p) = I, for all p ∈ Uα ∩ Uγ

Θαβ(F , V )(p) ·Θβλ(F , V )(p) ·Θλα(F , V )(p) = I, for all p ∈ Uα ∩ Uβ ∩ Uλ.

That is, the family of matrices {Θαγ(F , V )}αγ defines a cocycle of a vector bun-
dle of rank k on M that we denote by Jk−1

F H. Now, using the trivializations
{Θαγ(F , V )}α,β∈Λ we get the morphisms

T (k) : V ⊗OM → Jk−1
F H.
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Taking the determinant of T (k) we have the morphism

det(T (k)) :
∧k V ⊗OM →

∧k Jk−1
F H,

and tensorizing by (
∧k V )∗ we obtain a global section of

∧k Jk−1
F H⊗(

∧k V )∗ given
by

ε(F , V ) : OM →
∧k Jk−1

F H ⊗ (
∧k V )∗.

Remark 1.2.1. Note that the cocycle of
∧k Jk−1

F H is given by

det(Θαγ(F , V )) = gkαβ · f
(k2)
αβ ,

where gαβ and fαβ are respectively the trivializations of H and KF . Therefore, we

obtain the isomorphism
∧k Jk−1

F H ' H⊗k ⊗ (KF)⊗(k2).

Definition 1.2.1. The extatic divisor of F with respect to the linear system V ⊂
H0(M,H) is the divisor E(F , V ) = (ε(F , V )) given by the zeros of the section

ε(F , V ) ∈ H0
(
M,
∧k Jk−1

F H ⊗ (
∧k V )∗

)
.

The section ε(F , V ) is called extatic section of F with respect V .

J. V. Pereira [67] obtained the following results, which elucidate the role of the
extatic divisor :

Proposition 1.2.1. ([67], Proposition 5) Let F be a one-dimensional holomorphic
foliation on a complex manifold M . If V is a finite dimensional linear system,
then every F-invariant hypersurface which is contained in the zero locus of some
element of V must be contained in the zero locus of E(V,F).

Proof. Let {s1, . . . , sk} be a basis for V ⊂ H0(M,H). On the open Uα the extatic
section is given by

ε(V,F)α = det



sα1 sα2 · · · sαk

Xα(sα1 ) Xα(sα2 ) · · · Xα(sαk )

...
...

. . .
...

Xk−1
α (sα1 ) Xk−1

α (s2) · · · Xk−1
α (sαk )


,

where Xα is a vector field that induces F on Uα and sα1 is local representation of
the section si, i = 1, . . . , k. Let fα be the local equation defining an element on
V and suppose that (fα = 0) is F -invariant. Change basis so that V is generated
by fα, v2, . . . , v`. It follows that Xj

α(fα) = hjαfα, 1 ≤ j ≤ k − 1, where hjα is an
analytic function.
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If F is a holomorphic one-dimensional foliation on a complex manifold M ,
then a holomorphic (or meromorphic) first integral for F is a holomorphic (resp.
meromorphic) map Θ : M −→ Y , where Y is a complex manifold with dim(M) >
dim(Y ), such that the fibers of Θ are invariant by F . J. V. Pereira showed in [67]
the following theorem:

Theorem 1.2.1. ([67], Theorem 3). Let F be a one-dimensional holomorphic
foliation on a complex manifold M . If V is a finite dimensional linear system
such that ε(V,F) vanishes identically, then there exits an open and dense set U
where F|U admits a first integral. Moreover, if M is a projective variety, then F
admits a meromorphic first integral.

In the non-algebraic and non-compact cases Theorem 1.2.1 does not guarantee
that the vanishing of the extatic section ε(V,F) implies the existence of a mero-
morphic first integral for F . We show that if ε(V,F) vanishes identically, then F
admits a meromorphic first integral with values in P1.

Theorem 1.2.2. Let F be a one-dimensional holomorphic foliation on a com-
plex manifold M and V a finite dimensional linear system. If ε(V,F) vanishes
identically then F admits a meromorphic first integral Θ : M → P1 .

Proof. Suppose that the foliation F is given by the collections

({Uα}, {Xα}, {gαβ ∈ O∗(Uα ∩ Uα)})αβ∈Λ.

We will show the existence of a local meromorphic first integral on each open Uα.
That is, there exists a meromorphic function θα such that Xα(θα) = 0, where Xα

is the vector field defining F on Uα. After this, we must prove that θα = θβ on
Uα ∩ Uβ 6= ∅, thus we shall obtain a global meromorphic function defining a first
integral for F . For the existence of θβ on Uα, we will use the same arguments given
in the proof of Theorem 4.3 of [24] for the case of polynomial vector fields on C2.

Let {s1, . . . , sk} be a C-base for V . Suppose that ε(V,F) vanishes identically.
Then on the open Uα we have that

ε(V,F)α = det



sα1 sα2 · · · sαk

Xα(sα1 ) Xα(sα2 ) · · · Xα(sαk )

...
...

. . .
...

Xk−1
α (sα1 ) Xk−1

α (s2) · · · Xk−1
α (sαk )


≡ 0,

where Xα is a vector field that induces F on Uα and sαi is the local representation
of the section si, i = 1, . . . , k.
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To say that ε(V,F)α ≡ 0 means that the columns of the above matrix are
dependent over the field of meromorphic functions M (Uα). Hence, there are mero-
morphic functions θα1 , · · · , θαk on Uα, such that

Mα
i =

k∑
j=1

θαjX
i
α(sαj ) = 0, 0 ≤ i ≤ k − 1. (1.1)

Now, let r(α) be the smallest integer with the property that there exist mero-
morphic functions θα1 , · · · , θαr(α) and sα1 , . . . , s

α
r(α) ∈ V , linearly independent over C,

such that (1.1) holds. We clearly have 1 < r(α) ≤ k and we may assume θαr(α) = 1.

Applying the derivation Xα to both sides of (1.1) we get

Xα(Mα
i ) = Xα(θα1 )X i

α(sα1 ) + · · ·+Xα(θr(α))︸ ︷︷ ︸
0

X i
α(sαr(α)) + θαr(α)︸︷︷︸

1

X i+1
α (sαr(α)) = 0 (1.2)

for all 0 ≤ i ≤ r(α)− 2. Subtracting (1.2) from Mα
i+1 we obtain

Xα(Mα
i )−Mα

i+1 = Xα(θα1 )X i
α(sα1 )+· · ·+Xα(θαr(α)−1)X i

α(sr(α)−1) = 0, 0 ≤ i ≤ r(α)−2.

By the minimality of r(α) we must have Xα(θα1 ) = · · · = Xα(θαr(α)−1) = 0 and
hence, provided these are not all constants, we have a first integral for Xα on Uα.
This in fact occurs because, since Mα

0 is

Mα
0 = θα1 s

α
1 + · · ·+ θαs−1s

α
r(α)−1 + sαr(α) = 0,

we conclude that not all the θα’s could be constant since sα1 , . . . , s
α
r(α) ∈ V are

linearly independent over C. Now we will show that r = r(α) = r(β), for all
α, β ∈ Λ. Suppose that r(α) < r(β). In Uαβ we have that sαi = fαβs

β
i , i =

1, . . . , r(α), and Xα = gαβXβ, with fαβ, gαβ ∈ O∗(Uαβ). Using this we conclude
that Xβ(θαi ) = 0 on Uαβ, for all i = 1, . . . , r(α)− 1, and

θα1 s
β
1 + · · ·+ θαr(α)−1s

β
r(α)−1 + sβr(α) = 0.

Applying the derivation Xβ in this equation and using that Xβ(θαi ) = 0, for all
i = 1, . . . , r(α)− 1, we get

r(α)∑
j=1

θαjX
i
β(sβj ) = 0, 0 ≤ i ≤ r(α)− 1,

by the minimality of r(β) we can conclude that θα1 = · · · = θαr(α) = 0, but this

implies that Mα
0 = sαr(α) = 0, and this is a contradiction. The case r(β) < r(α) is

similar.
Now, consider the equations

θα1 s
α
1 + · · ·+ θαr−1s

α
r−1 + sαr = 0
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θβ1 s
α
1 + · · ·+ θβr−1s

α
r−1 + sαr = 0.

Subtracting these equations we obtain

(θα1 − θ
β
1 )sα1 + · · ·+ (θαr−1 − θ

β
r−1)sαr−1 = 0.

Define hαβi = (θαi − θ
β
i ) ∈ M (Uαβ), i = 1, . . . , r − 1. Applying the derivation Xα

to the last equation and using Xα(θαi ) = Xα(θβi ) = 0 we get

r−1∑
j=1

hαβj X i
α(sαj ) = 0, 0 ≤ i ≤ r − 2.

Again, by the minimality of r we have that hαβ1 = · · · = hαβr−1 = 0, i.e, θαi = θβi on
Uαβ, for all , i = 1, . . . , r − 1. Therefore, we obtain a meromorphic first integral
Θi locally given by Θi

|Uα
= θαi , for some i = 1, . . . , r − 1.

Let D =
∑

γ aγDγ be an effective divisor and F a one-dimensional foliation on
the complex manifold M . We say that D is F -invariant if Dγ is invariant by F
for all γ.

Theorem 1.2.3. Let F be a one-dimensional foliation on a polarized projective
algebraic manifold (M,L) and D an effective divisor. Suppose that F does not
admit a rational first integral. Then

degL(D) · (N (F , V )− h0(V )) ≤ (degL(F)− degL(M)) ·
(
h0(V )

2

)
,

where N (F , V ) is the number of F-invariant divisors contained on the linear
system V ⊂ |D| and h0(V ) = dimCV . In particular, we have that:

i) the number of F-invariant divisors contained on the linear system V ⊂
|O(D)| is at most

(degL(F)− degL(M))

degL(D)
·
(
h0(V )

2

)
+ h0(V ),

where h0(V ) = dimC V.

ii) if V ⊂ |O(D)| is a pencil and N (F , V ) > 2, then

degL(D) ≤ degL(F)− degL(M).

Proof. It follows from theorem 1.2.1 that if F does not have a rational first inte-
gral, then ε(F , V ) 6= 0. Thus, the extatic section ε

(F,V )
defines an effective divi-

sor E(F , V ) whose associated line bundle is
∧k Jk−1

F O(D) ⊗ (
∧k V )∗, where k =
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dimC V ≤ h0(D). Let N (F , V ) be the number of divisors of V ⊂ H0(M,O(D))
invariant by F . It follows from proposition 1.2.1 that every divisor C ∈ V invari-
ant by F is contained in the extatic divisor E(F , V ). Using this fact we can claim
that

degL(D) ·N (F , V ) ≤ degL(E(F , V )).

Indeed, it is enough to group the F -invariant divisors of the following form

E(F , V ) =

N (F ,V )∑
j=1

Cj +R

where Ci ∈ V is a divisor invariant by F and R is a divisor without F -invariant
divisor contained in V . Since degL(Cj) = degL(D), for all j = 1, . . . ,N (F , V ),
we get

degL(D) ·N (F , V ) =

N (F ,V )∑
j=1

degL(Cj) ≤ degL(E(F , V )).

This shows the claim above. However, the line bundle associated to the extatic
divisor E(F , V ) is given by

∧k Jk−1
F O(D)⊗ (

∧k V )∗. This implies that

[E(F , V )] =
∧k Jk−1

F O(D)⊗ (
∧k V )∗.

It follows from remark 1.2.1 that
∧k Jk−1

F O(D) ' O(D)⊗k ⊗ (KF)⊗(k2), thus

[E(F , V )] = O(D)⊗k ⊗ (KF)⊗(k2) ⊗ (
∧k V )∗.

Calculating the degree degL(E(F , V )), we obtain

degL(E(F , V )) = degL

(
O(D)⊗k ⊗ (KF)⊗(k2)

)
+ degL

(
k∧
V ∗

)
︸ ︷︷ ︸

q
0

= k · degL(D) + degL(KF)

(
k

2

)
.

Finally, the result it follows from degL(D) ·N (F , V ) ≤ degL(E(F , V )) and propo-
sition 1.1.2.

Proposition 1.2.2. Let F be a foliation without rational first integral. If E(F , V )
is irreducible then F does not admit invariant divisors contained in the linear
system V ⊂ |O(D)|.
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Proof. Suppose that F possesses an invariant divisor C ∈ V . Since all divisors
C ∈ V invariant by F are contained in the extatic divisor and by hypothesis
E(F , V ) is irreducible, we have that C = E(F , V ). But

degL(C) = degL(D) < k · degL(D) + degL(KF)

(
k

2

)
= degL(E(F , V )),

which is an absurd.

Let F be a foliation andH ⊂ PH0(M,O(D)) a pencil. Suppose that N (F ,H) >
2. It follows from Theorem 1.2.3 part ii) that if F possesses an invariant effective
divisor C, contained in the pencil H, satisfying the condition

degL(C) = degL(D) > degL(F)− degL(M)

then F admits a rational first integral. This result is related to a conjecture of
Lins Neto. In [53] he stated the following problem:

“Given d ≥ 2, is there M(d) ∈ N such that if a foliation on P2, of degree d,
has an algebraic solution of degree greater than or equal to M(d), then it has a
rational first integral?”

Let F be a one-dimensional foliation on Pn of degree d > 2. It follows that if
the number of F -invariant hypersurfaces of degree k contained on a pencil of the
same degree is greater than 2 and k > M(d) = d − 1, then F has a rational first
integral.

J. Moulin Ollagnier showed in [64] that when d = 2 this question has a negative
answer. He exhibited a countable family of Lotka-Volterra foliations given by

SLV (`) = x(y/2 + z)
∂

∂x
+ y(2z + x)

∂

∂y
+ z

(
y − 2`+ 1

2`− 1
x

)
∂

∂z

without rational first integrals which has an irreducible algebraic solution of degree
2`. C. Christopher and J. LLibre in [23] also exhibit a family of foliations of degree
d = 2 without rational first integral which contains irreducible algebraic solutions
of arbitrarily high degree. But, it follows from Theorem 1.2.3 part i) that, for a
foliation of degree d = 2 the number of invariant curves of degree k contained on
a pencil of the same degree is ≤ 2.

Bounding invariant hyperplane sections

Using Zak’s bound for h0(M,O
M

(1)) we get the following.
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Corollary 1.2.1. Let F be a one-dimensional foliation on a smooth algebraic
variety Mn ⊂ PN . Suppose that F does not admit a rational first integral, then
the number of F-invariant hyperplane sections is at most(

deg(F)

deg(M)
− 1

)
·
([ (4n−N+3)2

8(2n−N+1)

]
2

)
+

[
(4n−N + 3)2

8(2n−N + 1)

]
,

where [x] denote the largest integer not exceeding x.

Proof. It follows from theorem 1.2.3, and the fact that degO
M

(1)(OM
(1)) = deg(M),

that the number of F -invariant hyperplane sections is at most(
deg(F)

deg(M)
− 1

)
·
(
h0(M,O

M
(1))

2

)
+ h0(M,O

M
(1)).

Now, the result follows from

h0(M,O
M

(1)) ≤
[

(4n−N + 3)2

8(2n−N + 1)

]
,

see [79] pg. 117, Theorem 2.10.

Example 1.2.1. Let F be a one-dimensional foliation on a smooth algebraic
variety Mn ⊂ PNC . Suppose that F does not admit a rational first integral. Then,
if N ≤ 2n, the number of F -invariant hyperplane sections is at most(

deg(F)

deg(M)
− 1

)
·
((n+2

2

)
2

)
+

(
n+ 2

2

)
This is a consequence of corollary 1.2.1 and of the following result (see [79] corollary
2.9): if N ≤ 2n, then h0(M,O

M
(1)) ≤

(
n+2

2

)
.

Example 1.2.2. We recall that a nonsingular algebraic variety Mn ⊂ PNC is called
linearly normal if h0(M,O

M
(1)) = N + 1. Zak’s Linear Normality theorem say

that if N < 3
2
n+1 then Mn is linearly normal, see [80]. Let F be a one-dimensional

foliation on a linearly normal smooth algebraic variety M ⊂ PN . Suppose that F
does not admit a rational first integral. Then it follows from Corollary 1.2.1 that
the number of F -invariant hyperplane sections is at most(

deg(F)

deg(M)
− 1

)
·
(
N + 1

2

)
+N + 1.
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1.3 Optimal examples on projective spaces

In this section we will consider foliations on PnC. We will construct some examples
of foliations with the maximum number of invariant hyperplanes. Let F be a
one-dimensional holomorphic foliation on PnC, of degree d > 0, and suppose that F
does not admit a rational first integral. It follows from example 1.2.2 that number
of F -invariant hyperplanes is bounded by

n+ 1 +

(
n+ 1

2

)
(d− 1).

The next result gives us the number of invariant hyperplanes by a foliation on
PnC which contain a fixed `-plane, particularly the number of invariant hyperplanes
through a point and the number of invariant hyperplanes containing an invariant
line.

Corollary 1.3.1. Let F be a one-dimensional holomorphic foliation on PnC of
degree d > 0 and suppose F does not admit a rational first integral. Then, the
number of F-invariant hyperplanes which contain a fixed `-plane, 0 ≤ ` ≤ n − 1,
is bounded by

n− `+

(
n− `

2

)
(d− 1).

Proof. We may assume the `-plane L` is the base locus of the linear subsystem
Vn−` ⊂ |OPnC (1)| generated by z`+1, · · · , zn. Any hyperplane containing L` belongs
to Vn−`. The result follows by observing that h0(Vn−`) = n− `.

Consider the vector fields, defined in affine coordinates z0 = 1, by

X0
d =

n∑
i=1

(zd−1
i − 1)zi

∂

∂zi
.

X1
d =

∂

∂z1

+
n∑
i=2

(zd−1
i − 1)zi

∂

∂zi
.

X`
d =

∑̀
i=1

(zd1 + · · ·+ ẑdi + · · ·+ zd` )
∂

∂zi
+

n∑
i=`+1

(zd−1
i − 1)zi

∂

∂zi
, 2 ≤ ` ≤ n− 1.

Remark that the foliations FX`
d

on PnC induced by X`
d, 0 ≤ ` ≤ n− 1, do all leave

the hyperplane at infinity invariant.
X0
d is a n-dimensional version of a member of the so called “family of degree

four” in P2
C, one of the examples given by A.Lins Neto in [53]. A straightforward

calculation shows that the n+1+
(
n+1

2

)
(d−1) hyperplanes listed below are invariant

by FX0
d
:

(z0 . . . zn)
∏

0≤i,j≤n

(zd−1
i − zd−1

j ) = 0.
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It’s worth remarking that all the singularities of X0
d have the same analytic type

and are determined precisely by the intersections of these hyperplanes.
X1 leaves invariant the line L1 = {z2 = · · · = zn = 0}, which is the base locus

of the linear system
∑n

j=2 λizi. Moreover, n− 1 +
(
n−1

2

)
(d− 1) hyperplanes listed

below are X1-invariant and contain L1:

(z2 . . . zn)
∏

2≤i,j≤n

(zd−1
i − zd−1

j ) = 0.

As for X`, 2 ≤ ` ≤ n − 1, the `-plane L` = {z`+1 = · · · = zn = 0} is left
invariant, as are the n− `+

(
n−`

2

)
(d− 1) hyperplanes, which do all contain L`,

(z`+1 . . . zn)
∏

`+1≤i,j≤n

(zd−1
i − zd−1

j ) = 0.

In this case the (n − `)-plane L⊥` = {z1 = · · · = z` = 0} is FX`-invariant whereas
the hyperplane {zi = 0}, 1 ≤ i ≤ ` are not.

Remark 1.3.1. The foliation FX0
d

on PnC induced by the vector field X0
d is the

unique foliation of degree d that leaves invariant the following arrangement of
hyperplanes

Ad =

{
(z0 . . . zn)

∏
0≤i,j≤n

(zd−1
i − zd−1

j ) = 0

}
.

Indeed, the singular set Sing(F) of F is isolated and non-degenerated. On the other
hand, we can see that Sing(F) is determined by intersection of the hyperplanes of
Ad. It follows from [43] that F is unique.

The linear extatic

Consider the extatic divisor of a foliation F on PnC, associated to the linear system

|O(1)| = H0(PnC,O(1)) ' 〈z0, . . . , zn〉C,

given by

E (|O(1)|,FX) = det



z0 z1 · · · zn

X(z0) X(z1) · · · X(zn)

...
...

. . .
...

Xn(z0) Xn(z1) · · · Xn(zn)


,
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Let Z(E(|O(1)|,X )) be the extatic variety. This variety will be called linear
extatic.
Lemma 1.3.1. Let X be a polynomial vector field on Cn and V = Z(f1, . . . , fk)
an irreducible complete intersection. Then V is X -invariant if and only if X (fi) ∈
I(f1, . . . , fk), for all i = 1, . . . , k.

Proof. Consider the polynomial map F = (f1, . . . , fk) : Cn −→ Ck. Suppose that
V = F−1(0) is X -invariant. Then

DFp · X (p) = (X (f1)(p), . . . ,X (f`)(p)) = 0,

for all p ∈ V . This implies that X (fi) ∈ I(Z(I(f1, . . . , f`))). Therefore, from
Hilbert’s zeros theorem and using that V = Z(I(f1, . . . , f`)) is irreducible, we get

X (fi) ∈ I(f1, . . . , f`),

for all i = 1, . . . , `. The converse is immediate.

Proposition 1.3.1. Let F be a foliation on PnC that does not admit a rational
first integral. Then all the F-invariant linear subspaces are contained in the linear
extatic Z(E (|O(1)|,FX)), where X is a vector field which induces F in homoge-
neous coordinates.

Proof. If F admits no rational first integral then E(|O(1)|, X) 6= 0. Every linear
k-codimensional subspace on PnC is the intersection of the zeros of k homogeneous
polynomials of degree one, linearly independent, let us say f1, . . . , fk ∈ |O(1)|.
Then we can take

{f1, . . . , fk, hk+1, . . . , hn+1}
to form a basis for |O(1)|. Now, if Z(f1, . . . , fk) is F -invariant, it follows from
proposition 1.3.1 that X(fi) ∈ I(f1, . . . , fk), for all i = 1, . . . , k, and so we get
Xj(fi) ∈ I(f1, . . . , fk). Expanding the determinant

E (|O(1)|, X) = det



f1 · · · fk · · · hn+1

X(f1) · · · X(fk) · · · X(hn+1)

...
...

...
. . .

...

Xn(f1) · · · Xn(fk) · · · Xn(hn+1)


in any of the k-th first columns we see that E (|O(1)|, X) ∈ I(f1, . . . , fk). Therefore

Z(E (|O(1)|,X )) ⊃ Z(f1, . . . , fk).
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Chapter 2

Foliations on simplicial toric
varieties

We use the existence of homogeneous coordinates for simplicial toric varieties
to prove a result analogous to the Darboux-Jouanolou-Ghys integrability theo-
rem for the existence of rational first integrals for one-dimensional foliations. We
study one-dimensional foliations in two classes of toric varieties, the multiprojec-
tive spaces and weighted projective planes. Under suitable hypotheses we obtain
bounds for Poincaré’s problem in thise varieties.

2.1 Toric Varieties

Firstly, we recall some basic definitions and results about simplicial complete toric
varieties emphasizing Cox’s quotient construction and homogeneous coordinates.
For more details, we refer the reader to the literature (e.g., to [32], [28], [40], [62]).

Let N be a free Z-module of rank n and M = Hom(N,Z) be its dual. A subset
σ ⊂ N ⊗Z R ' Rn is called a strongly convex rational polyhedral cone if there
exists a finite number of elements ϑ1, . . . , ϑk ∈ Zd in the lattice N such that

σ = {a1ϑ1 + · · ·+ akϑk; ai ∈ R, ai ≥ 0.}

We say that a subset τ of σ given by some ai being equal to zero is a proper face of
σ, and we write τ ≺ σ. A cone σ is called simplicial if its generators can be chosen
to be linearly independent over R. The dimension of a cone σ is, by definition, the
dimension of a minimal subspace of Rn containing σ.

Definition 2.1.1. A non-empty collection ∆ = {σ1, . . . , σs} of k-dimensional
strongly convex rational polyhedral cones in N ⊗Z R ' Rn is called a complete
fan if it satisfies:

i) if σ ∈ ∆ and τ ≺ σ, then τ ∈ ∆;
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ii) if σi, σj ∈ ∆, then σi ∩ σj ≺ σi and σi ∩ σj ≺ σj;

iii) N ⊗Z R = σ1 ∪ · · · ∪ σs.
The dimension of a fan is the maximal dimension of its cones. An n-dimensional

complete fan is simplicial if all its n-dimensional cones are simplicial.
Let ∆ be a fan in N ⊗Z R. It follows from Gordan’s Lemma (see [41]) that

each k-dimensional cone σk in ∆ (let us say generated by vij) defines a finitely
generated semigroup σ ∩N . The dual (n− k)-dimensional cone

σ̌ = {m ∈M ⊗Z R, 〈m, vij〉 ≥ 0}

is then a rational polyhedral cone in M ⊗Z R and σ̌∩M is also a finitely generated
semigroup. An affine n-dimensional toric variety corresponding to σk is the variety

Uσ := SpecC[σ̌ ∩M ].

If a cone τ is a face of σ then τ̌ ∩M is a subsemigroup of σ̌ ∩M , hence Uτ is
embedded into Uσ as an open subset. The affine varieties corresponding to all
cones of the fan ∆ are glued together according to this rule into the toric variety
P∆ associated with ∆. It is possible to show that a toric variety P∆ contains a
complex torus Tn = (C∗)n as a Zariski open subset such that the action of Tn on
itself extends to an action of Tn on P∆.

Theorem 2.1.1. [41] Let P∆ be the toric variety determined by a simplicial com-
plete fan ∆. Then P∆ is projective and has quotient singularities.

For more details see [41].

Example 2.1.1. Tn, Cn and Pn are toric varieties.

Example 2.1.2 (Weighted projective spaces). Let $ = {$0, . . . , $n} be the set
of positive integers satisfying the condition gcd($0, . . . , $n) = 1. Choose n + 1
vectors e0, . . . , en in Rn such that Rn is spanned by e0, . . . , en and satisfies the
linear relation

$0e0 + · · ·+$nen = 0.

Define N to be the lattice in Rn consisting of all integral linear combinations of
e0, . . . , en. Let ∆(w) be the set of all possible simplicial cones in Rn generated
by proper subsets of {e0, . . . , en}. Then ∆(w) is a rational simplicial complete
n-dimensional fan. The corresponding variety P∆(w) is the n-dimensional weighted
projective space P($0, . . . , $n). We will see in the next section that P($0, . . . , $n)
is a quotient of Cn+1\{0} by the diagonal action of the torus C∗

(z0, . . . , zn) 7−→ (λ$0z0, . . . , λ
$nzn), λ ∈ C∗.

In particular, if ($0, . . . , $n) = (1, . . . , 1), then P(1, . . . , 1) = Pn.
Example 2.1.3 (Multiprojective spaces). If X and Y are toric varieties then
X×Y so is. Thus, the multiprojective spaces Pn1×· · ·×Pnr are examples of toric
varities.
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2.1.1 The toric homogeneous coordinates

Let P∆ be the toric variety determined by a fan ∆ in N ' Zn. As usual, M
will denote the Z-dual of N , and cones in ∆ will be denoted by σ. The one-
dimensional cones of ∆ form the set ∆(1) = {ϑ1, . . . , ϑn+r}, where ϑi denotes
the unique generator of the one-dimensional cone. If σ is any cone in ∆, then
σ(1) = {ϑi ∈ ∆(1); ρ ⊂ σ} is the set of one-dimensional faces of σ. We will assume
that ∆(1) spans NR := N ⊗Z R.

Each ϑi ∈ ∆(1) corresponds to an irreducible T-invariant Weil divisor Di in
P∆, where T = N ⊗Z C∗ is the torus acting on P∆, see [41, chapter 3]. It follows
from [41, chapter 5] that the T-invariant Weil divisors on P∆ form a free abelian
group of rank n+r, that will be denoted Zn+r. Thus an element D ∈ Zn+r is a sum∑n+r

i=1 aiDi. The T-invariant Cartier divisors form a subgroup DivT(P∆) ⊂ Zn+r.
Each m ∈ M gives a character χm : T → C∗, and hence χm is a rational

function on P∆. As is well-known, χm gives the Cartier divisor

n+r∑
i=1

−〈m,ϑi〉Di,

see [41, section 3.3]. We will consider the map

M −→ Zn+r

m 7−→
∑n+r

i=1 −〈m,ϑi〉Di.

This map is injective since ∆(1) spans NR. By [41], we have a commutative
diagram

0 → M → DivT(P∆) → Pic(P∆) → 0
q ↓ ↓

0 → M → Zn+r → An−1(P∆) → 0,
(2.1)

where An−1(P∆) is the Chow group of (n−1)-cycles. For each ϑi ∈ ∆(1), introduce
a variable zi, and consider the polynomial ring

S = C[zi;ϑi ∈ ∆(1)].

Note that a monomial
∏n+r

i=1 z
aρ
ρ determines a divisor

∑n+r
i=1 aiDi and to emphasize

this relationship, we will write the monomial as zD. We will grade S as follows,
the degree of a monomial zD is deg(zD) = [D] ∈ An−1(P∆).

Using the exact sequence (2.1), it follows that two monomials
∏n+r

i=1 z
ai
i and∏n+r

i=1 z
bi
i in S have the same degree if and only if there is some m ∈ M such that

ai = 〈m,ϑi〉+ bi for each i = 1, . . . , n+ r. Then

S =
⊕

α∈An−1(P∆)

Sα,
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where Sα =
⊕

deg(zD)=α

C · zD. S is called Cox’s homogeneous coordinate ring of the

toric variety P∆.
Let O(D) be the coherent sheaf on X determined by a Weil divisor D, then

Sdeg(D) ' H0(X,O(D)),

moreover there is a commutative diagram

Sdeg(D) ⊗ Sdeg(E) −→ Sdeg(D+E)

↓ ↓
H0(X,O(D))⊗ H0(X,O(E)) −→ H0(X,O(D + E))

where the top arrow is polynomial multiplication. If P∆ is a complete toric variety,
then:

i) Sα is finite dimensional for every α, and in particular, S0 = C.

ii) If α = [D] for an effective divisor D =
∑n+r

i=1 aiDi, it follows from [27] that
dimC Sα = #(PD ∩M), where

PD = {m ∈MR; 〈m,ϑi〉 ≥ −ai for all i = 1, . . . , n+ r}.

We get the monomial

zσ̂ =
∏
ϑi /∈σ

zi

which is the product of all variables not coming from edges of σ. Then define
Z(∆) = V (zσ̂;σ ∈ ∆) ⊂ Cn+r. Now consider the group G(∆) ⊂ Tr given by

G(∆) =

{
(t1, . . . , tr) ∈ Tr;

r∏
i=1

t
〈ej ,ϑi〉
i = 1, j = 1, . . . , r

}

Define an action of G(∆) on Cn+r −Z(∆) by

G(∆)× (Cn+r −Z(∆)) −→ Cn+r −Z(∆)
(g, (z1, . . . , zn+r)) 7−→ (g(D1)z1, . . . , g(Dn+r)zn+r).

Theorem 2.1.2 (D. Cox, [27]). If P∆ is a n-dimensional toric variety where
ϑ1, . . . , ϑn+r span Rn, then:

i) P∆ is a universal categorical quotient (Cn+r −Z)/G(∆)

ii) P∆ is an orbifold (Cn+r −Z)/G(∆) if, and only if, P∆ is simplicial.

Remark 2.1.1. We have that cod(Sing(P∆)) ≥ 2. See [27].
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To describe the action of G(∆) when it has no torsion we consider the lattice
of relations between generators of ∆, i.e., r linearly independent relations over Z
between ϑ1, . . . , ϑn+r 

a11ϑ1 + · · ·+ a1(n+r)ϑn+r = 0
...

...
ar1ϑ1 + · · ·+ ar(n+r)ϑn+r = 0

(2.2)

Thus by (2.1) the factor of G(∆) isomorphic to Tr defines an equivalence relation
on (Cn+r − Z)/G(∆): let u, v ∈ Cn+r − Z, with v = (v1, . . . , vn+r), then u ∼ v if,
and only if,

∃ (λ1, . . . , λr) ∈ Tr;u = (λa11
1 · · ·λar1r v1, . . . , λ

a1(n+r)

1 · · ·λar(n+r)
r vn+r), (2.3)

Therefore, when G(∆) has no torsion, the equivalence relation on (Cn+r − Z) is
given by this formula. If f ∈ Sα, it follows from [6, Lemma 3.8] the Euler’s formula

iRidf = θi(α)f,

where θi ∈ C andRi =
∑n+r

j=1 aijzij
∂
∂zij

, i = 1, . . . , r.Moreover, Lie(G) = 〈R1, . . . , Rr〉,
see [27].

An element α ∈ An−1(P∆) gives the character χα : G(∆) → T. The action of
G(∆) on Cn+r induces an action on S with the property that given f ∈ S , we
have

f ∈ Sα ⇔ f(g · z) = χα(g)f(z), for all g ∈ G(∆), z ∈ Cn+r.

The graded pieces of S are the eigenspaces of the action of G(∆) on S. We say
that f ∈ Sα is homogeneous of degree α. It follows that the equation {f(z) = 0}
is well-defined in P∆ and it defines a hypersurface.

We shall consider the subfield of C(z1, . . . , zn+r) given by

K̃(P∆) =

{
P

Q
∈ C(z1, . . . , zn+r); deg(P ) = α, deg(Q) = β, α, β ∈ An−1(P∆)

}
.

Thus, the field of rational functions on P∆, denoted by K(P∆), is the subfield of

K̃(P∆) such that deg(P ) = deg(Q).

2.1.2 Existence of rational first integrals

In this section we shall use the homogeneous coordinates for toric varieties to prove
the following result.

Theorem 2.1.3. Let F be a one-dimensional foliation on a complete simplicial
toric varity P∆ of dimension n and Picard number ρ(P∆). If F admits
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N (P∆, KF , n) := h0(P∆,O(KF)) + ρ(P∆) + n

invariant irreducible Tn-divisors, then F admits a rational first integral.

It follows from the Hirzebruch-Riemann-Roch theorem for toric varieties (see
[41]) that

h0(P∆,O(KF)) =
n∑
k=0

1

k!
deg([KF ]k ∩ Tdk(P∆)),

where Tdk(P∆)) is the k-th homology Todd class. Therefore, we have that

N (P∆, KF , n) =
∑n

k=0
1
k!

deg([KF ]k ∩ Tdk(P∆)) + ρ(P∆) + n.

Observe that, in general, P∆ is a singular variety with quotient singularities.
Therefore, in two dimensions this result shows that the theorem of Darboux-
Joanoulou-Ghys is valid for a class of singular toric varieties.

One-dimensional foliations

We use the generalized Euler exact sequence for simplicial toric varieties in order
to consider a holomorphic foliation as a polynomial vector field in homogeneous
coordinates.

Let P∆ be a complete simplicial toric variety of dimension n, and denoteOP∆
:=

O. There exists an exact sequence known as the generalized Euler sequence [27]

0→ O⊕r →
n+r⊕
i=1

O(Di)→ T P∆ → 0,

where T P∆ = Hom(Ω1
P∆
,O) is the so-called Zariski sheaf of P∆. LetO(d1, . . . , dn+r) =

O(
∑n+r

i=1 diDi), where
∑n+r

i=1 diDi is a Weil divisor. Tensorizing Euler’s sequence
by O(d1, . . . , dn+r) we get

0→ O(d1, . . . , dn+r)
⊕r →

n+r⊕
i=1

O(d1, . . . , di+1, . . . , dn+r)→ T P∆(d1, . . . , dn+r)→ 0

Definition 2.1.2. A holomorphic foliation F on P∆ of multidegree (d1, . . . , dn+r)
is a global section of T P∆ ⊗O(d1, . . . , dn+r).

Proposition 2.1.1. Let Fol((d1, . . . , dn+r),P∆) be the space of foliations of multi-
degree (d1, . . . , dn+r). Let Dj = (dj + 1)Dj +

∑n+r
i=1

i 6=j
diDi and D =

∑n+r
i=1 diDi. Then

Fol((d1, . . . , dn+r),P∆) is isomorphic to a complex projective space PN−1, where

N =
n+r∑
j=1

#(PDj ∩M)− r · [#(PD ∩M)].
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From the above exact sequence, we conclude that a foliation on P∆ of multide-
gree (d1, . . . , dr) is given by a polynomial vector field in homogeneous coordinates
of the form

X =
n+r∑
i=1

Pi
∂

∂zi
,

where Pi is a polynomial of multidegree (d1, . . . , di + 1, . . . , dr) for all i = 1, . . . , r,
modulo addition of a vector field of the form

∑n+r
i=1 giRi. Therefore

Sing(F) = {p ∈ Cn+r;R1 ∧ · · · ∧Rn+r ∧X(p) = 0}.

Example 2.1.4 (Rational scroll). Let a1, . . . , an be integers. Consider the T2-
action on (C2 − {0})× (Cn − {0}) given as follows:

T2 × (C2 − {0})× (Cn − {0}) −→ (C2 − {0})× (Cn − {0})

((λ, µ), ((x1, x2), (z1, . . . , zn)) −→ ((λx1, λx2), (µλ−a1z1, . . . , µλ
−anzn)).

The rational scroll F(a1, . . . , an) is the quotient variety of (C2−{0})× (Cn−{0})
by this action.

Let E =
⊕n

i=1OP1(ai) be the vector bundle over P1. Write P(E) for the
projectivized vector bundle

P(E)→ P1

and letOP(E)(1) be the tautological line bundle. It is possible show that F(a1, . . . , an)
is the image of P(E) by the embedding given by OP(E)(1), see [46].

Tow examples of this construction are:

1. F(0, . . . , 0) ' P1 × Pn−1;

2. F(a, 0) is a Hirzebruch surface; see [71].

We have that Pic(F(a1, . . . , an)) ' ZL⊕ZM , where L is the class of a fibre of π
and M the class of any monomial xb1x

c
2zi, with b+ c = ai. If all the ai > 0, then M

is the divisor class of the hyperplane section under the embedding F(a1, . . . , an) ⊂
Pn+

∑n
i=1 ai−1. Let O(d1, d2) := O(d1L+ d2M). Thus, a foliation on F(a1, . . . , an) is

a global section of TF(a1, . . . , an) ⊗ O(d1, d2) and has a bidegree (d1, d2). In this
case Euler’s sequence is given by

0→ O⊕2 → O(1, 0)⊕2 ⊕
n⊕
i=1

O(−ai, 1)→ T F→ 0,

and tensorizing by O(d1, d2) we get the sequence

0→ O(d1, d2)⊕2 → O(d1 + 1, d2)⊕2⊕
n⊕
i=1

O(d1−ai, d2 + 1)→ T F⊗O(d1, d2)→ 0.
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Therefore, a foliation on F(a1, . . . , an) is given, in homogeneous coordinates, by a
vector field

X = Q1
∂

∂x1

+Q2
∂

∂x2

+
n∑
i=0

Pi
∂

∂zi
,

where Qi is bihomogeneous of bidegree (d1 + 1, d2) and Pi bihomogeneous of bide-
gree (d1 − ai, d2 + 1), modulo g1R1 + g2R2, where

R1 =
n∑
i=1

zi
∂

∂zi
, R2 = x1

∂

∂x1

+ x2
∂

∂x2

+
n∑
i=1

−aizi
∂

∂zi

and gi has bidegree (d1, d2).

Proof of Theorem 2.1.3.

Proof. Let f1, f2, . . . , fN+n+r be defining functions for F -invariant irreducible hy-
persurfaces, where N = h0(P∆,O(KF)). Let X =

∑n+r
i=1 Pi

∂
∂zi

be a polynomial
vector field that defines F in homogeneous coordinates. It follows that

X(fj)

fj
= hj ∈ S[KF ], j = 1, 2, . . . , N + n+ r.

We get the following relations

λ11h1 + λ12h2 + λ13h3 + · · ·+ λ1(N+1)hN+1 = 0

λ22h2 + λ23h3 + · · ·+ λ2(N+1)hN+1 + λ2(N+2)hN+2 = 0

λ33h3 + λ34h4 + · · ·+ λ3(N+2)hN+2 + λ3(N+3)hN+3 = 0

. . . . . . . . . . . . . . . . . . . . . . . .

λjjhj + λj(j+1)hj+1 + · · ·+ λj(N+j)hN+j = 0,

where j = n + r. We can suppose that λii 6= 0, for all i = 1, . . . , n. Define the
rational 1-form on Cn+r

ηk =
N+k∑
j=k

λkj
dfj
fj
, k = 1, . . . , n+ r.

Observe that by construction |ηi|∞ 6= |ηj|∞ for all i 6= j, where | · |∞ denote the
sets of poles. Contracting by X we get

i
X
ηk =

N+k∑
j=k

λkj
X(fj)

fj
=

N+k∑
j=k

λkjhj = 0,
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for all k = 1, . . . , n + r. We claim that η1, . . . , ηn+r are linearly dependent over
the field of rational functions K̃(P∆). Otherwise, there exists a rational function
R 6= 0 such that

η = η1 ∧ · · · ∧ ηn+r = Rdz1 ∧ · · · ∧ dzn+r,

Contracting η by X =
∑n+r

i=1 Pi
∂
∂zi

we have Rı
X

(dz1 ∧ · · · ∧ dzn+r) = 0, since
i
X
ηk = 0, for all k = 1, . . . , n+ r. But R 6= 0, thus

0 = ı
X

(dz1 ∧ · · · ∧ dzn) =
n+r∑
i=1

(−1)i+1Pidz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn+r,

This implies that P1 = · · · = Pn+r = 0, i.e, X ≡ 0, a contradiction. Let V be the
K̃(P∆)-linear space generated by {η1, . . . , ηn+r}, suppose that dimK̃(P∆)V = k and

V = 〈η1, . . . , ηk〉K̃(P∆),

for some 1 ≤ k < n+ r. There exist rational functions R1, . . . , Rk, Rk+1 ∈ K̃(P∆),
with Rk+1 6= 0, such that

R1η1 + · · ·+Rkηk +Rk+1ηk+1 = 0,

multiplying this equation by lcm(R1, . . . , Rk+1) we obtain

Q1η1 + · · ·+Qkηk +Qk+1ηk+1 = 0,

where eachQi is a homogenous polynomial in the Cox ring of P∆. Now, we multiply
this equation by F =

∏N+n+r
i=1 fi

Q1η̃1 + · · ·+Qkη̃k +Qk+1η̃k+1 = 0, (2.4)

where η̃i = Fηi. Since η̃i are all homogeneous of the same degree, we can extract
from relation (2.4) a relation

Qi1 η̃i1 + · · ·+Qi` η̃i` +Qk+1η̃k+1 = 0,

where deg(Qij) = deg(Qk+1), ij ∈ {1, . . . , k} and j = 1, . . . , ` ≤ k. Hence, we get

Fηk+1 = Ri1Fηi1 + · · ·+Ri`Fηi` , (2.5)

where Rij = − Qij
Qk+1

∈ K(P∆). Dividing by F and differentiating

0 = dRi1 ∧ ηij + · · ·+ dRi` ∧ ηi` ,

Now, contracting by X results

0 = X(Ri1)ηi1 + · · ·+X(Ri`)ηi` .

Since ` ≤ k then X(Ri1) = · · · = X(Ri`) = 0. That is, the rational function Rij ,
j = 1, . . . , `, is either a first integral for the foliation F induced by the vector field
X or it is constant. It remains to observe that at least one rational function Rij

is not constant. Indeed, this follows from relation (2.5) and the fact that the set
of poles |ηij |∞ 6= |ηir |∞, for all j 6= r.
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Example 2.1.5. It follows from [60] that

h0(F(a1, . . . , an),O(d1, d2)) =

(
n∑
i=1

ai

)(
d1 + n− 1

n

)
+ (d2 + 1)

(
d1 + n− 1

n− 1

)
Let F be a foliation on F(a1, . . . , an)) of bidegree (d1, d2). If F admits

N (a1, . . . , an, d1, d2, n) =

(
n∑
i=0

ai

)(
d1 + n− 1

n

)
+ (d2 + 1)

(
d1 + n− 1

n− 1

)
+ n+ 2

invariant irreducible algebraic hypersurfaces, then F admits a rational first inte-
gral.

Example 2.1.6. Let F be a foliation on Pn1 × · · · × Pnr of multidegree (e1 −
1, . . . , er − 1). If F admits

N (n1, . . . , nr, e1, . . . , er, r) =
r∏
i=1

(
ei + ni − 1

ni

)
+

r∑
i=1

ni + r

invariants irreducible algebraic hypersurfaces, then F admits a rational first inte-
gral.

The extatic hypersurface

The extatic divisor is defined on complex smooth varieties, see chapter 1. The
homogeneous coordinates allows us to define the extatic divisor globally for all
simplicial toric varieties even for the singular case.
Definition 2.1.3. Let X be a vector field on Cn+r which induces a foliation F on
P∆ and consider the linear system Sα = H0(P∆,O(α)). The extatic hypersurface
of F associated to the linear system Sα is defined by

E(Sα,F) = det



s1 s2 · · · s`

X(s1) X(s2) · · · X(s`)

...
... · · · ...

X`−1(s1) X `−1(s2) · · · X`−1(s`)


,

where dimC Sα = ` and {s1, · · · , s`} is a base for Sα. The extatic hypersurface is
E(F , Sα) = Z(E(F , Sα)).
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Proposition 2.1.2. Let F be a one-dimensional holomorphic foliation on a toric
variety P∆ and let |D| be a linear system. Then every F-invariant hypersurface
which is contained in the zero locus of some element of |D| , must be contained
Z(E(F , |D|)).

Proposition 2.1.3. Let F be a one-dimensional holomorphic foliation on a toric
variety P∆ and let V ⊂ |D| be a linear system. Then F admit rational first integral
if and only if E(V,X) ≡ 0

Proof. Let {s1, . . . , sk} be a C-base for V . Suppose that E(V,F) vanishes identi-
cally. Fix 0 ≤ i ≤ k − 1, we have that deg(X i(s1)) = · · · = deg(X i(sk)). For each
j = 1, . . . , k choose a non-zero polynomial fi such that deg(fi) = deg(X i(sj)), and
consider the matrix

E =



s1
f0

s2
f0

· · · sk
f0

X(s1)
f1

X(s2)
f1

· · · X(sk)
f1

...
...

. . .
...

Xk−1(s1)
fk−1

Xk−1(s2)
fk−1

· · · Xk−1(sk)
fk−1


.

We have that E ∈ Mk×k(K(P∆)), where Mk×k(K(P∆)) is the K(P∆)-vector space
of matrices with entries in the field K(P∆). Since det(E) = f0 · · · fk−1 ·E(V,F) ≡ 0
the columns of the matrix E are dependent over field of rational functions K(P∆).
Hence, there are rational functions θ1, · · · , θk ∈ K(P∆), such that

Mα
i =

k∑
j=1

θjX
i
α(sj) = 0, 0 ≤ i ≤ k − 1. (2.6)

The proof follows as in the Theorem 1.2.2.

Corollary 2.1.1. Let F be a foliation of degree d on a weighted projective space
of dimension n and V a hypersurface F-invariant of degree k. If F does not admit
a rational first integral, then

N (d, k) ≤ h0(O(k)) +
(d− 1)

k

(
h0(O(k))

2

)
,

where N (F , k) is the number of F-invariant hypersurfaces of degree k.

2.2 Multiprojective foliations

Consider the product of complex projective spaces Pn1 × . . . × Pnr and let πi :
Pn1 × . . . × Pnr −→ Pni be the natural projections, i = 1, . . . , r. Set P(n1,...,nr) =
Pn1 × . . .× Pnr , where n = n1 + · · ·+ nr .
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We give P(n1,...,nr) the natural manifold structure, that is, in Cnj+1 choose
coordinates Zj = (Z0j , . . . , Znj), j = 1, . . . , r, consider the multihomogeneous

system of coordinates Z = (Z1, . . . , Zr) ∈ Cn1+1×· · ·×Cnr+1 and cover P(n1,...,nr)

by the open sets

U(i1,...,ir) = {([Z1], . . . , [Zr]) ∈ P(n1,...,nr) : Zi1 6= 0, . . . , Zir 6= 0, 0 ≤ is ≤ ns, 1 ≤ s ≤ r}.

The changes of coordinates are given by ϕ(i1,...,ir) = (ϕi1 , . . . , ϕir), with

ϕis(Z0s , . . . , Zns) =

(
Z0s

Zis
, . . . ,

Zi(s−1)

Zis
,
Zi(s+1)

Zis
, . . . ,

Zns
Zis

)
.

The local coordinates are, then

zks =
Zks
Zis

, ks 6= is.

Equivalently, we have an action

(C∗)r × (Cn1+1\{0})× · · · × (Cnr+1\{0}) −→ (Cn1+1\{0})× · · · × (Cnr+1\{0})
((t1, . . . , tr), (v1, . . . , vr)) 7−→ (t1v1, . . . , trvr),

where vi = (v0i , . . . , vni) ∈ Cni+1\{0}, and hence a quotient map

π : (Cn1+1\{0})× · · · × (Cnr+1\{0}) −→ P(n1,...,nr),

given by π(v1, . . . , vr) = [v1, . . . , vr] := ([v1], . . . , [vr]).

SetO(0) = C andO(d1, . . . , dr) := π∗1O(d1)⊗· · ·⊗π∗rO(dr). The Euler sequence
over PmC

0 −→ C −→ O(1)⊕m+1 −→ TPmC −→ 0 (2.7)

gives, by direct summation, the exact sequence:

0 −→ Cr−→
r⊕
j=1

O(0, . . . , 1︸︷︷︸
j

, . . . , 0)⊕nj+1−→TP(n1,...,nr) −→ 0, (2.8)

Multiprojective foliations

Definition 2.2.1. A one-dimensional holomorphic foliation on P(n1,...,nr) = Pn1
C ×

. . .×PnrC of multidegree d = (d1, . . . , dr) ∈ Zr is a section of the holomorphic vector
bundle TP(n1,...,nr) ⊗O(d1 − 1, . . . , dr − 1). We say that di is the i-th degree of F .
These can be given by a morphism

Φ : O(1− d1, . . . , 1− dr) −→ TP(n1,...,nr).

We will call these foliations multiprojective.
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Remark 2.2.1. A priori di ∈ Z, i = 1, . . . , r, but we will see below that di ≥ 0.

Example 2.2.1. A foliation on P×P can also be given by a 1-form on homogeneous
coordinates. Consider the rational map ζ : P×P 99K P2, given by ζ([x, y], [z, w]) =
[xz, yw, xw]. Let Fd be a foliation on P2 of degree d and ω ∈ Ω1

P2 ⊗ OP2(d + 2)
the 1-form that induces Fd in homogeneous coordinate. Let π : C3\{0} → P2

and % : C4\{0} → P × P be the quotient maps. Then we have the following
commutative diagram

C4\{0} ζ̃→ C3\{0}
↓ ↓

P× P
ζ

99K P2

where ζ̃(x, y, z, w) = (xz, yw, xw). We have that ζ̃∗(ω) induces a foliation F(d,d) :=
ζ∗(Fd) on P× P of bidegree (d, d). Indeed, since F has degree d then

ω = a(x, y, z)dx+ b(x, y, z)dy + c(x, y, z)dz

where a, b and c are homogeneous polynomials of degree d+ 1. Therefore

ζ̃∗(ω) = (Az + Cw)dx+Bwdy + Axdz + (By + Cx)dw,

where A = a◦ζ̃ , B = b◦ζ̃ and C = c◦ζ̃. It is not difficult to see that (Az+Cw) and
Bw are bihomogeneous of bidegree (d, d+1), (By+Cx) and Ax are bihomogeneous

of bidegree (d+1, d). This shows that ζ̃∗(ω) induces a foliation on P×P of bidegree
(d, d).

Normal form in affine coordinates

Let P (X1, . . . , Xr) ∈ C[X1, . . . , Xr], where Xi = (xi1 , . . . , xni) ∈ Cni . Consider

P as an element of (C[X1, . . . , X̂j, . . . , Xr])[Xj], and we will denote the degree of
P with respect to the variable Xj by degXj(P ).

Proposition 2.2.1. Let F be a multiprojective foliation on P(n1,...,nr) of multide-
gree d = (d1, . . . , dr). Then F is given in affine coordinates (X1, . . . , Xr) ∈ U '
Cn1+···+nr , with Xi = (xi1 , . . . , xni), by a polynomial vector field of the form

r∑
i=1

(Pi(X1, . . . , Xr) + gi(X1, . . . , Xr)Ri),

where:

i) Ri =

ni∑
j=1

xij
∂

∂xij
is the radial vector field of Cni, i = 1, . . . , r.

ii) gi is a multihomogeneous polynomial of multidegree (d1−1, . . . , di, . . . , dr−1),
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iii) Pi =

ni∑
j=1

Pij
∂

∂xij
, satisfying degXi(Pij) ≤ di, for all j = 1, . . . , ni and i =

1, . . . , r.

iv) The hyperplane at infinity Pn1
C × · · · ×H i

∞ × · · · × PnrC is invariant by F if,
and only if, gi ≡ 0.

Proof. The foliation F is given by a morphism X : O(k1, . . . , kr) → TP(n1,...,nr),
with (k1, . . . , kr) ∈ Zr, and O(k1, . . . , kr) = K∗F . By definition 2.2.1 we have
that ki = 1 − di. Let (Z1, . . . , Zr) be a multihomogeneous coordinate system on
P(n1,...,nr) and take σ to be the meromorphic section of O(k1, . . . , kr) induced by
zk1

01
· · · zkr0r . The image of σ by the morphism X is a meromorphic vector field ζ on

P(n1,...,nr), that is holomorphic over the open

U(01,...,0r) = {([Z1, . . . , Zr]) ∈ P(n1,...,nr); z01 6= 0, . . . , z0r 6= 0}

and ζ induces F in this set. Moreover, each one of the hyperplanes {z0i = 0},
i = 1, . . . , r, is either a divisor of poles or a divisor of zeros of ζ with multiplicity
ki. Therefore we have

ζ|U(01,...,0r)
=

r∑
i=1

ni∑
j=1

Pij
∂

∂xij
,

where Pij ∈ O(U(01,...,0r)), for all i = 1, . . . r e j = 1, . . . , nr. We are going to
consider the decomposition of these polynomials into multihomogenous parts,

Pij =
∑
s1,...,sr

P
(s1,...,sr)
ij

,

that is, P
(s1,...,sr)
ij

is multihomogeneous of degree (s1, . . . , sr). We will see what
happens when we change to the coordinate system U(i1,...,ir), where is 6= 0 for all
s = 1, . . . , r. Without loss of generality, it is enough to make the change from the
coordinate system U(01,...,0r) to U(11,...,1r) = {z11 6= 0, . . . , z1r 6= 0}. This change is
given by

Φ01(X1, . . . , Xr) = (ϕ1
01

(X1), . . . , φr01
(Xr)),

where ϕi01
(Xi) =

(
1

x1i

,
x2i

x1i

, . . . ,
xni
x1i

)
= (y1i , . . . , yni), com i = 1, . . . , r. The Jaco-

bian matrix of Φ01 is

DΦ01 =

 Dϕ1
01
· · · 0

...
. . .

...
0 · · · Dϕr01
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where

Dϕi01
=


− 1
x2

1i

0 · · · 0

−x2i

x2
1i

1
x1i
· · · 0

...
...

. . .
...

−xni
x2

1i

0 · · · 1
x1i

 =


−y2

1i
0 · · · 0

−y2iy1i y1i · · · 0
...

...
. . .

...
−yniy1i 0 · · · y1i


Now, by push-forward we get

(Φ01)∗ζ|U(01,...,0r)
= −

r∑
j=1

[ ∑
s1,...,sr

y2
1j
P

(s1,...,sr)
1j

]
∂

∂y1j

+

+
r∑
j=1

ni∑
i=2

[ ∑
s1,...,sr

−y1jyijP
(s1,...,sr)
1j

+ y1jP
(s1,...,sr)
ij

]
∂

∂yij

Taking in to account that

P
(s1,...,sr)
ij

(Φ−1
01

(Y1, . . . , Yr)) = P
(s1,...,sr)
ij

(
1

y11

,
y21

y11

, . . . ,
yn1

y11

, . . . ,
1

y1r

,
y2r

y1r

, . . . ,
ynr
y1r

)
= y−s111

· · · y−sr1r P
(s1,...,sr)
ij

(1, y21 , . . . , yn1 , . . . , 1, y2r , . . . , ynr)

we get

(Φ01)∗ζ|U(01,...,0r)
= −

r∑
j=1

[ ∑
s1,...,sr

y2−s1
11

y−s212
· · · y−sr1r P

(s1,...,sr)
1j

]
∂

∂y1j

+

+
r∑
j=1

ni∑
i=2

[ ∑
s1,...,sr

y1−s1
11

y−s212
· · · y−sr1r (−yijP

(s1,...,sr)
1j

+ P
(s1,...,sr)
ij

)

]
∂

∂yij

Remark that the hyperplane (z0j = 0) corresponds to the hyperplane (y1j = 0)
on U(11,...,1r), j = 1, . . . , r. If

−yijP
(k1,...,kr)
1j

+ P
(k1,...,kr)
ij

≡ 0 (2.9)

for all j = 1, . . . , r and i = 1, . . . , nr, (y1j = 0) is a divisor of poles with order
2 − k1 if j = 1, and order −ki = di − 1 for i 6= j and ki ≤ 1. In this case, the
equation (3.3.1) gives

P
(k1,...,kr)
ij

= yijP
(k1,...,kr)
1j

,
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and changing to the coordinates yij =
xij
x1j

we obtain

P
(k1,...,kr)
ij

=
xij
x1j

P
(k1,...,kr)
1j

.

Defining P
(k1,...,kr)
1j

/x1j = gj, we get that P
(k1,...,kr)
ij

= xijgj, where gj is multihomo-
geneous of multidegree

(−k1, . . . , 1− kj, . . . ,−kr) = (d1 − 1, . . . , di, . . . , dr − 1).

Therefore

ζ|U(01,...,0r)
=

r∑
i=1

(Pi(X1, . . . , Xr) + gi(X1, . . . , Xr)Ri)

We can see that the hyperplane (z0j = 0) = Pn1 × · · · × (Pnj −Cnj)× · · · × Pnr is
F -invariant if, and only, if gi ≡ 0.

Representation in multihomogeneous coordinates

The Euler sequence over the multiprojective space P(n1,...,nr) is given by

0 −→ O⊕r−→
r⊕
j=1

O(0, . . . , 1︸︷︷︸
j

, . . . , 0)⊕nj+1−→TP(n1,...,nr) −→ 0, (2.10)

Tensorizing this sequence by O(d1 − 1, . . . , dr − 1) we get the exact sequence

0 −→ O(d1 − 1, . . . , dr − 1)⊕r −→
r⊕
i=1

O(d1 − 1, . . . , di, . . . , dr − 1)⊕ni+1 −→

−→ TP(n1,...,nr)(d1 − 1, . . . , dr − 1) −→ 0.

We conclude that a foliation on P(n1,...,nr) of multidegree (d1, . . . , dr) can be repre-
sented in multihomogenous coordinates of C

∑r
i=1(ni+1) by a polynomial vector field

of the form

X =
r∑
i=1

Xi

with Xi =

ni∑
j=0

Pij
∂

∂zij
, and Pij is a multihomogenous polynomial of multidegree

(d1 − 1, . . . , di, . . . , dr − 1) modulo

r∑
i=1

giRi,

where gi has multidegree d = (d1 − 1, . . . , dr − 1) and Ri =

ni∑
j=0

zij
∂

∂zij
.

Geometric interpretation of multidegree
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Recall that the Chow group of P(n1,...,nr) is given by

A?(P(n1,...,nr)) ' Z[h1, . . . , hr]

〈hni1 , . . . , h
nr
r 〉

,

where hi = π∗iHi and Hi is the hyperplane class of Pni , i = 1, . . . , r.
The following proposition gives a geometric interpretation of the i-th degree di

of a foliation of multidegree (d1, . . . , dr).

Proposition 2.2.2. Let F be a foliation on P(n1,...,nr) of multidegree (d1, . . . , dr)
and hi a generic hypersurface of multidegree (0, . . . , 1︸︷︷︸

i

, . . . , 0) . The i-th degree

di of F is given by the intersection number

di = T (F , hi) · [hn1
1 · · ·h

ni−2
i · · ·hnrr ],

where T (F , hi) is the cycle of the tangency variety of F with respect to hi.

Proof. Since the cycle T (F , hi) is given by the zeros of a section of the line bundle
(KF ⊗O(hi))|hi , then

T (F , hi) = c1(KF ⊗O(hi)) ∩ hi ∈ An−2(P(n1,...,nr))

Since KF = O(d1 − 1, . . . , dr − 1) and O(hi) = O(0, . . . , 1︸︷︷︸
i

, . . . , 0), we have

KF ⊗O(hi) = O(d1 − 1, . . . , di, . . . , dr − 1),

so c1(KF ⊗O(hi)) = (d1 − 1)h1 + · · ·+ dihi + · · ·+ (dr − 1)hr. Therefore

T (F , hi) =

[
dihi +

∑
j 6=i

(dj − 1)hj

]
∩ hi = dih

2
i +

∑
j 6=i

(dj − 1)hj ∩ hi (2.11)

Applying the cycle hn1
1 ∩ · · · ∩ h

ni−2
i ∩ · · · ∩ hnrr to equation (2.11) and using that

hn1
1 ∩ · · · ∩ h

ni
i ∩ · · · ∩ hnrr = 1 and h

nj+1
j = 0, for all j = 1, . . . , r, we get

T (F , hi) · [hn1
1 ∩ · · · ∩ h

ni−2
i ∩ · · · ∩ hnrr ] = di.

The degree of a multiprojective foliation via the Segre
embedding

The multiprojective space P(n1,...,nr) can be embedded into projective space PN ,
where N =

∏r
i=1(ni + 1) − 1, via the Segre embedding iO(1,...,1) : P(n1,...,nr) → PN

through the linear system |O(1, . . . , 1)|. Moreover we have i∗O(1,...,1)(OPN (1)) =
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O(1, . . . , 1). Hence, c1[O(1, . . . , 1)] = c1[i∗O(1,...,1)(OPN (1))] = i∗O(1,...,1)[c1(OPN (1))].

If we denote c1(OPN (1)) = H we conclude that

i∗O(1,...,1)H = c1[O(1, . . . , 1)] = h1 + · · ·+ hr.

Therefore, if L is a line bundle on P(n1,...,nr) then the degree of L with respect to
the Segre embedding is given by

degO(1,...,1)(L) =

∫
P(n1,...,nr)

c1(L) · (h1 + · · ·+ hr)
n−1.

Let F be a foliation on P(n1,...,nr) and iO(1,...,1)(P
(n1,...,nr)) = Σn1,...,nr . We will

determine the degree of F with respect to the Segree embedding.

Notation: n = n1 + · · ·+ nr and(
n

n1, . . . , nr

)
=

(n1 + · · ·+ nr)!

n1! · · ·!nr
.

Proposition 2.2.3. Let F be a foliation on P(n1,...,nr) of degree (d1, . . . , dr). Then

degO(1,...,1)(F) =
r∑
i=1

di

(
n− 1

n1, . . . , ni − 1, . . . , nr

)
.

Proof. Since KF = O(d1 − 1, . . . , dr − 1), we get

degO(1,...,1)(F) = deg(KF)+deg(Σn1,...,nr) = degO(1,...,1)(O(d1−1, . . . , dr−1))+deg(Σn1,...,nr).

We have

deg(O(d1 − 1, . . . , dr − 1)) =

∫
P(n1,...,nr)

c1(O(d1 − 1, . . . , dr − 1)) · (h1 + · · ·+ hr)
n−1

=

∫
P(n1,...,nr)

(
r∑
i=1

(di − 1)hi

)
·

∑
s1+···+sr=n−1

(
n− 1

s1, . . . , sr

)
hs11 · · ·hsrr

=
r∑
i=1

(di − 1)

(
n− 1

n1, . . . , ni − 1, . . . , nr

) ∫
P(n1,...,nr)

hn1
1 · · ·hnrr

=
r∑
i=1

(di − 1)

(
n− 1

n1, . . . , ni − 1, . . . , nr

)
.

45



On the other hand, deg(Σn1,...,nr) =
(n1 + · · ·+ nr)!

n1! · · ·nr!
=

r∑
i=1

(
n− 1

n1, . . . , ni − 1, . . . , nr

)
.

Hence

degO(1,...,1)(F) =
r∑
i=1

(di − 1)

(
n− 1

n1, . . . , ni − 1, . . . , nr

)
+

r∑
i=1

(
n− 1

n1, . . . , ni − 1, . . . , nr

)

=
r∑
i=1

di

(
n− 1

n1, . . . , ni − 1, . . . , nr

)
.

Example 2.2.2. Let F be a foliation on P(n1,...,nr). If F has multidegree (d, . . . , d)
then

degOM (1)(F) = d · deg(P(n1,...,nr)),

In particular, if ni = 1 for all i = 1, . . . , r, we get degOM (1)(F) = d · r!,

Projections

Let O(d− 1) := O(d1 − 1, . . . , dr − 1) and O(di) := O(d1 − 1, . . . , di, . . . , dr − 1).
We have the following comutative diagram

0 → O(d− 1)⊕r →
⊕r

i=1O(di)
⊕ni+1 → TP(n1,...,nr) ⊗O(d− 1) → 0

↓ ρi ↓ %i ↓ %i
0 → OPni (di − 1) → OPni (di)

⊕ni+1 → TPni ⊗OPni (di − 1) → 0

where the vertical maps are defined as

ρi(g1(Z1, . . . , Zr), . . . , gr(Z1, . . . , Zr)) = gi(1, . . . , 1, Zi, 1, . . . , 1)

and

%i(X1(Z1, . . . , Zr), . . . , Xr(Z1, . . . , Zr)) = Xi(1, . . . , 1, Zi, 1, . . . , 1),

with gi ∈ H0(P(n1,...,nr),O(d− 1)) and Xi ∈ H0(P(n1,...,nr),O(di)
⊕ni+1). Hence, we

conclude that there is a rational projection

%i : PH0(P(n1,...,nr), TP(n1,...,nr) ⊗O(d− 1)) 99K PH0(Pn, TPni ⊗OPni (di − 1))
F (d1,...,di,...,dr) 7→ Fdi

that associates to each foliation F (d1,...,dr) of multidegree d = (d1, . . . , dr) on
P(n1,...,nr) a foliation Fdi on Pni of degree di, by the construction above. We call
Fdi the projected foliation of F (d1,...,dr) in Pni .
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Proposition 2.2.4. Let H = {p1}× · · · × Pni × · · · × {pr} ' Pni , where pj = (1 :
· · · : 1) ∈ Pnj , j 6= i. The i-th degree of a foliation Fd on P(n1,...,nr) is the degree
of the foliation on Pni given by

Fdi = Fd
|H.

Remark 2.2.2. When di = 1 we have %i = Dπi.

The number of singularities of a multiprojective foliation

In this section we determine the number of isolated singularities of a multiprojec-
tive foliation.
Lemma 2.2.1. Let P(n1,...,nr) and hi = π∗iHi , where Hi is the hyperplane class in
PniC , with i = 1, . . . , r. Then

ck(P
(n1,...,nr)) =

∑
i1+···+ir=k

r∏
s=1

(
ns + 1

is

)
hiss ,

for all 1 ≤ k ≤ n = n1 + · · ·+ nr.

Proof. From the Euler sequence we have

c

(
r⊕
i=1

O(0, . . . , 1︸︷︷︸
i

, . . . , 0)⊕ni+1

)
= c(TP(n1,...,nr)) · c(Cr) = c(P(n1,...,nr))

therefore

c(TP(n1,...,nr)) =
r∏
i=1

(1 + hi)
ni+1, (2.12)

where hi = c1(O(0, . . . , 1︸︷︷︸
i

, . . . , 0)). On the other hand, we have that

(1 + hj)
nj+1 =

nj∑
ij=0

(
ni + 1

i

)
h
ij
j ,

for all j = 1, . . . , r. If we substitute this in equation (2.12) we get

c(TP(n1,...,nr)) =
∑
i1,...,ir

(
n1 + 1

i1

)
· · ·
(
nr + 1

ir

)
hi11 · · ·hirr .

Hence

ck(TP(n1,...,nr)) =
∑

i1+···+ir=k

(
n1 + 1

i1

)
· · ·
(
nr + 1

ir

)
hi11 · · ·hirr .
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Theorem 2.2.1. Let F be a multiprojective foliation on P(n1,...,nr), of multidegree
d = (d1, . . . , dr), whose zeros are isolated. Then

∑
p∈Sing(F)

µp(F) =
∑

0≤k1≤n1
···

0≤kr≤nr

(
k

k1, . . . , kr

) r∏
s=1

(
ns + 1

ns − ks

)
(ds − 1)ks ,

where µp(F) is the algebraic multiplicity or Milnor number of F at p ∈ Sing(F).

Proof. We will use the following notation

cn(TP(n1,...,nr)(d1 . . . , dr)) = cn(TP(n1,...,nr) ⊗O(d1 − 1, . . . , dr − 1)).

It follows from Baum-Bott’s theorem that∑
p∈Sing(F)

µp(F) =

∫
P(n1,...,nr)

cn(P(n1,...,nr)(d1 . . . , dr)).

On the other hand,

cn(TP(n1,...,nr)(d1 . . . , dr)) =
n∑
j=0

cj(TP(n1,...,nr))c1(O(d1 − 1, . . . , dr − 1))n−j.

From lemma 2.2.1 and as c1(O(d1 − 1, . . . , dr − 1))n−j = ((d1 − 1)h1 + · · · +
(dr − 1)hr)

n−j we obtain

cn(TP(n1,...,nr)(d1 . . . , dr)) =
n∑
j=0

∑
i1+···+ir=j

r∏
s=1

(
ns + 1

is

)
hiss (d1h1 + · · ·+ drhr)

n−j.

Now, ((d1 − 1)h1 + · · · + (dr − 1)hr)
n−j =

∑
k1+···+kr=n−j

(n − j)!
r∏
s=1

(ds − 1)ks

ks!
hkss .

Substituting this in the above equation, we get

cn(TP(n1,...,nr)(d1 . . . , dr)) =
n∑
j=0

∑
i1+···+ir=j

k1+···+kr=n−j

r∏
s=1

(
ns + 1

is

)
hiss (n− j)!

r∏
s=1

(ds − 1)ks

ks!
hkss

=
n∑
j=0

∑
i1+···+ir=j

k1+···+kr=n−j

(n− j)!
r∏
s=1

(
ns + 1

is

)
(ds − 1)ks

ks!
hks+iss

=
∑

i1+···+ir+
+k1+···+kr=n

(n1 − i1 + · · ·+ nr − ir)!
r∏
s=1

(
ns + 1

is

)
(ds − 1)ks

ks!
hks+iss

48



Integration gives∑
i1+···+ir+

+k1+···+kr=n

(n1 − i1 + · · ·+ nr − ir)!
k1! · · · kr!

r∏
s=1

(
ns + 1

is

)
(ds−1)ks

∫
P(n1,...,nr)

hi1+k1
1 · · ·hir+krr .

It is not difficult to see that the n-form hi1+k1
1 · · ·hi1+k1

r 6= 0 if, and only if,
is + ks = ns, s = 1, . . . , r. That is n1 − i1 + · · ·+ nr − ir = k1 + · · ·+ kr . Since∫

P(n1,...,nr)

hn1
1 · · ·hnrr =

∫
Pn1

Hn1
1 · · ·

∫
Pn1

Hn1
1 = 1,

we get∫
P(n1,...,nr)

cn(TP(n1,...,nr)(d1 . . . , dr)) =
∑

0≤k1≤n1
···

0≤kr≤nr

(
k

k1, . . . , kr

) r∏
r=1

(
nr + 1

nr − kr

)
(dr−1)kr .

Example 2.2.3. Let F be a multiprojective foliation on P× · · · × P︸ ︷︷ ︸
n−times

, of multide-

gree d = (d1, . . . , dn), with isolated singularities. Then∑
p∈Sing(F)

µp(F) =
n∑
j=0

2j(n− j)!σn−j(d1 − 1, . . . , dn − 1)

where σn−i is the (n−i)-th elementary symmetric function. In particular, if di = d,
for all i = 1 . . . , n, we have that∑

p∈Sing(F)

µp(F) = n!
n∑
j=0

2j

j!
(d− 1)n−j.

In this case ni = 1, for all i = 1, . . . , n and
(

k
k1,...,kn

)
= (k1 + · · · + kn)! . From

Theorem 2.2.1 we have that∑
p∈Sing(F)

µp(F) =
∑

1≤s≤n
0≤kr≤1

(k1 + · · ·+ kn)!
n∏
r=1

(
2

1− kr

)
(dr − 1)kr .

Since
(

2
1−kr

)
= 21−kr we obtain

∑
p∈Sing(F)

µp(F) =
n∑
j=0

(n− j)!2j
∑

k1+···+kn=j

(d1 − 1)k1 · · · (dn − 1)kn

=
n∑
j=0

(n− j)!2jσn−j(d1 − 1, . . . , dn − 1).
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Corollary 2.2.1. The number of singularities of a non-degenerated multiprojective
foliation on P(n1,...,nr), of multidegree d = (d1, . . . , dr) is given by

∑
0≤k1≤n1
···

0≤kr≤nr

(
k

k1, . . . , kr

) r∏
r=1

(
nr + 1

nr − kr

)
(dr − 1)kr ,

The number of singularities of a non-degenerated multiprojective foliation on
P(n1,...,nr), of multidegree d = (1, . . . , di, . . . , 1) is∑

p∈Sing(F)

µp(F) = (n1 + 1) · · · ̂(ni + 1) · · · (nr + 1)(dnii + dni−1
i + · · ·+ di + 1)

Let N
(
Fd
)

=
∑

p∈Sing(Fd) µp(Fd), where Fd is a foliation on P(n1,...,nr) of mul-

tidegree d = (d1, . . . , dr). Let Fdi be the projected foliation on Pni . A natural
question is: what relation there exists between N

(
Fd
)

and N
(
Fdi
)
? For in-

stance, if d = (1, . . . , di, . . . , 1) then

N
(
Fd
)

=
r∏
i=1

N
(
Fdi
)
.

In general we have

Corollary 2.2.2. Let Fd be a foliation on P(n1,...,nr) of multidegree d = (d1, . . . , dr)
and Fdi the projected foliation on Pni. Then

N
(
F (d1,...,dr)

)
−

r∏
i=1

N
(
Fdi
)

=
∑

0≤k1≤n1
···

0≤kr≤nr

[(
k

k1, . . . , kr

)
− 1

]
·
r∏
r=1

(
nr + 1

nr − kr

)
(dr−1)kr .

Proof. From theorem 2.2.1 we have that N
(
Fdi
)

=
∑

0≤ki≤ni

(
ni + 1

nr − ki

)
(di − 1)ki ,

therefore
r∏
i=1

N
(
Fdi
)

=
∑

0≤k1≤n1
···

0≤kr≤nr

r∏
r=1

(
nr + 1

nr − kr

)
(dr − 1)kr .

Also, from theorem 2.2.1 we have

N
(
F (d1,...,dr)

)
=

∑
0≤k1≤n1
···

0≤kr≤nr

(
k

k1, . . . , kr

) r∏
r=1

(
nr + 1

nr − kr

)
(dr − 1)kr .

The result follows by subtracting N
(
F (d1,...,dr)

)
−
∏r

i=1 N
(
Fdi
)
.
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2.2.1 Riccati foliations

Definition 2.2.2. [73] Let ζ = (E, π,B, F ) be a holomorphic bundle , with total
space E, projection π, base B and fibre F . Let F be a singular holomorphic
foliation on E. We say that F is transversal to almost every fibre of ζ if there
is an analytic subset Λ(F) ⊂ E which is a union of fibers of ζ, such that the
restriction of F to E0 = E\Λ(F) is transversal to the natural subbundle ζ0 of ζ
having E0 as total space. By a Riccati foliation we mean a foliation F as above,
for which the exceptional set Λ(F) is F-invariant.

F. Santos e B. Scárdua showed the following result about Riccati’s foliations.

Theorem 2.2.2. [73] Let F be a one-dimensional singular holomorphic foliation
on P×M , transversal to almost every fibre of the bundle π : P×M −→ P, where
π(x, y) = x and M = P× · · · × P︸ ︷︷ ︸

n−times

or M = P2. Then F is Riccati. Moreover,

i) If M = P× · · · × P︸ ︷︷ ︸
n−times

then F is given in affine coordinates by a vector field of

the form

X = p(x)
∂

∂x
+

n∑
i=1

(y2
i ai2(x) + yiai1(x) + ai0(x))

∂

∂y1

ii) If M = P2 then F is given in affine coordinates by a vector field of the form

X = p(x)
∂

∂x
+Q(x, y, z)

∂

∂y
+R(x, y, z)

∂

∂z
,

where

Q(x, y, z) = A(x) +B(x)y + C(x)z +D(x)yz + E(x)y2

R(x, y, z) = a(x) + b(x)y + c(x)z + E(x)yz +D(x)y2

We will use the multindex notation Js = (js1 , . . . , jns), |Js| = js1 + · · · + jns
and Y Js

s = y
js1
s1 · · · y

jns
ns , with s = 1, . . . , r.

Theorem 2.2.3. Let F be as in theorem 2.2.2 where M = P(n1,...,nr). Then F is
Riccati and given in affine coordinates by a vector field of the form

X = p(x)
∂

∂x
+

r∑
j=1

Zi,

where

Zi =

ni∑
k=1

∑
|Js|≤2

1≤s≤r

akJ1···Jr(x)Y J1
1 · · ·Y Jr

r

 ∂

∂yik
.
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Moreover, there exists k ≤ deg(p(x)) such that∑
p∈Sing(F)∩Λ(F)

µp(F) = k(n1 + 1) · · · (nr + 1).

Proof. Suppose that F has multidegree (d, d1, . . . , dr). It follows from Proposition
2.2.1 that F is given in affine coordinates (x, Y1 . . . , Yr) ∈ C × Cn1 × . . . × Cnr ,
with Yi = (yi1 , . . . , yni), by a polynomial vector field of the form

[p(x, Y1 . . . , Yr) + g0(x, Y1 . . . , Yr)x]
∂

∂x
+

r∑
i=1

Zi,

where Zi =

ni∑
k=1

(P k
i (x, Y1 . . . , Yr) + gi(x, Y1 . . . , Yr)yik)

∂

∂yik
, satisfying degYi(P

k
i ) ≤

di, for all j = 1, . . . , ni and i = 1, . . . , r. Moreover, gi is a multihomogeneous
polynomial of multidegree (d− 1, d1 − 1, . . . , di, . . . , dr − 1), i = 0, 1, . . . , r.

Set Q(x, Y1 . . . , Yr) = p(x, Y1 . . . , Yr) + g0(x, Y1 . . . , Yr)x. Let {x0} × P(n1,...,nr)

be a fibre of π which is not invariant by F . Then, by compactness of fibers of π, F
is transverse to {x}×P(n1,...,nr) for all x in a neighborhood U of x0. Therefore, the
polynomial Q(x, Y1 . . . , Yr) 6= 0 for all x ∈ U and all (Y1 . . . , Yr) ∈ Cn1 × . . .×Cnr

and thus Q(x, Y1 . . . , Yr) = Q(x), and so g(x, z1 . . . , zr) = g(x). This implies that
di−1 = degYi(g) = 0, i.e, F has multidegree (d, 1, . . . , 1). Hence degYi(P

k
i +giyik) ≤

2. The fibre x = c is F -invariant if, and only if, Q(c) = 0. Thus, the exceptional
set Λ(F) =

⋃k
i=1({ci} × P(n1,...,nr)), where k ≤ deg(Q(x)). Denote by Fi the one-

dimensional foliation on {ci} × P(n1,...,nr) ' P(n1,...,nr) induced by restriction of
F . Since Fi is a foliation on P(n1,...,nr) of multidegree (1, . . . , 1), it follows from
theorem 2.2.1 that∑

(ci,q)∈Sing(F)∩Λ(F)

µp(F) = k ·
∑

q∈Sing(Fi)

µq (Fi) = k(n1 + 1) · · · (nr + 1).

2.2.2 Totally invariant hypersurfaces

Let V be a hypersurface on P(n1,...,nr) given by zeros of a multihomogeneous polyno-
mial f ∈ C[Z1, . . . , Zr], where Zi = (zi0 , . . . , zni), i = 1, . . . , r. Consider a foliation
FX on P(n1,...,nr) of multidegree (d1, . . . , dr) induced, in multihomogeneous coordi-
nates, by a vector field X =

∑r
i=1 Xi. We say that V is i-invariant by F if

Xi(f) = hif, (2.13)

where hi is a multihomogeneous polynomial of degree (d1− 1, . . . , dr − 1). We say
that V is totally invariant if it is i-invariant for all i = 1, . . . , r. Let CV be the
tangent cone of V , i.e, CV = π−1(V), where

π : (Cn1+1\{0})× · · · × (Cnr+1\{0}) −→ P(n1,...,nr)
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is the quotient projection. The condition (2.13) means that the vector field Xi is
tangent to CV .

Remark 2.2.3. The definition of i-invariant is independent of the vector field X
which defines the foliation F . Indeed, if F is induced by Y =

∑r
i=1 Yi, so there

exist polynomials gi, of degree (d1 − 1, . . . , dr − 1), such that

Y =
r∑
i=1

(Xi + giRi).

Therefore, using the Euler formula Ri(f) = kif , we get

Yi(f) = Xi(f) + giRi(f) = hif + kigif = (hi + kigi)f.

Example 2.2.4. Let F be a foliation of multidegree (d1, . . . , dr) on P(n1,...,nr).
Then, every hypersurface of multidegree (0, . . . , di, . . . , 0) invariant by F is totally
invariant.

2.2.3 The polar divisor

Let F be a foliation on P(n1,...,nr), where n = n1+· · ·+nr, of multidegree (d1, . . . , dr)
and with singular set Sing(F) of codimension at least 2. Consider a pencil of
hyperplanes Hi = {H i

λ}λ∈P1 , with base locus
⋂
λ∈P1 H i

λ = Ln−2
i , where Ln−2

i is a
linear subspace of dimension n− 2 which is not contained in Sing(F). The polar
divisor of F with respect Hi is

DHi =
⋃
λ∈P1

T (H i
λ,F).

Lemma 2.2.2. DHi is either P(n1,...,nr) or a hypersurface of multidegree

(d1 − 1, . . . , di + 1, . . . , dr − 1).

Proof. If all hyperplanes of the pencil Hi are F -invariant then T (H i
λ,F) = H i

λ, for
all λ ∈ P1

C, then DHi =
⋃
λ∈P1

C
T (H i

λ,F) =
⋃
λ∈P−1 H i

λ = P(n1,...,nr). On the other

hand, if there exists a hyperplane H i
λ ∈ Hi that is not F -invariant, we can set it

to be the hyperplane at infinity with respect to the factor PniC . Thus we choose
coordinates in P(n1,...,nr) such that Hi is given, in affine coordinates, by

xni − µ = 0,

with µ ∈ C. It follows from 2.2.1 that in this coordinate system the vector field
inducing F has an expression of the form

XF =
r∑
j=1

(Pj(X1, . . . , Xr) + gj(X1, . . . , Xr)Rj),
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where Xi = (xi1 , . . . , xni) and Rj =

nj∑
k=1

xjk
∂

∂xjk
is the radial vector field on Cni ,

j = 1, . . . , r, gj(X1, . . . , Xr) is a multihomogeneous polynomial of multidegree (d1−

1, . . . , dj, . . . , dr − 1) and Pj(X1, . . . , Xr) =

nj∑
j=1

Pjk(X1, . . . , Xr)
∂

∂xjk
, satisfying

deg
Xj

(Pjk(X1, . . . , Xr)) ≤ dj, for all j = 1, . . . , ni and k = 1, . . . , r. Moreover

gi(X1, . . . , Xr) 6= 0. Then the polar divisor DHi is given by

P(F ,Hi) = {(xnigi + Pini) = 0}.

Note that deg(P(F ,Hi)) = (d1 − 1, . . . , di + 1, . . . , dr − 1).

Let V be a smooth hypersurface of multidegree (k1, . . . , kr) given by the zeros of
a multihomogeneous polynomial f ∈ C[Z1, . . . , Zr]. Consider the algebraic subset
of V given by

Sing(V)i =

{
q ∈ V ;

∂f

∂zi0
(q) = · · · = ∂f

∂zni
(q) = 0

}
.

If Sing(V)i = ∅, then we define the i-th embedded tangent space of V at p given,
in homogeneous coordinates, by

Ti
pV =

{
[Z1, . . . , Zr] ∈ P(n1,...,nr);

ni∑
j=0

zij
∂f

∂zij
(p) = 0

}
.

Remark 2.2.4. Observe that V is i-invariant if, and only if, p ∈ T (Ti
pV ,F) for

all p ∈ V .

We fix a flag, with respect to factor i, of linear subspaces on P(n1,...,nr)

F `(i) : Ln−k
i ⊂ Ln−k+1

i ⊂ · · · ⊂ Ln−2
i ⊂ P(n1,...,nr),

where codimC(Ln−k
i ) = k. The k-th polar variety of V in the factor i, with respect

to F `(i) is given by

P in−k(V) = {p ∈ V ; Ti
pV ⊃ Ln−k−1

i }.

Observe that
P in−1(V) ⊂ P in−2(V) ⊂ · · · ⊂ P in−ni+1(V) ⊂ V .

Now, consider the flag F `(i) : Ln−k
i ⊂ Ln−k+1

i ⊂ · · · ⊂ Ln−2
i ⊂ P(n1,...,nr), where

Ln−k
i = {zi0 = · · · = zik−1

= 0}. We conclude that

P in−k(V) =

{
p ∈ V ;

∂f

∂zik
(p) = · · · = ∂f

∂zni
(p) = 0

}
.

54



Thus the class of P in−k(V) is given by

[P in−k(V)] =

[
r∑
j=1

kjhj

]
∩

(ki − 1)hi +
r∑
j=1

j 6=i

kjhj


∩(ni−k+1)

.

Lemma 2.2.3. Let V be a hypersurface i-invariant by a foliation F , such that
Sing(V)i = ∅. Consider a pencil of hyperplanes Hi

r = {H i
λ}λ∈P1 , with base locus⋂

λ∈P1 H i
λ = Ln−2

i . Then

P in−1(V) ⊂ DHi and V 6⊂ DHi.

Proof. If p ∈ P in−1(V), then Ln−2
i ⊂ Ti

pV and this implies that Ti
pV = H i

λ for
some λ ∈ P1. On the other hand, since V is i-invariant p ∈ T (H i

λ,F) ⊂ DHi , so
P in−1(V) ⊂ DHi .

Theorem 2.2.4. Let V be a hypersurface of multidegree (k1, . . . , kr), with ki > 1
and Sing(V)i = ∅. If V is i-invariant by a foliation F on P(n1,...,nr) of multidegree
(d1, . . . , dr), then

ki ≤ di + 2.

Proof. Consider the cycle

S ik = hn1
1 · · ·h

ni−1

i−1 h
k−2
i h

ni+1

i+1 · · ·hnrr ∈ An1+···+ni−1+k−2+ni+1+···+nr(P
(n1,...,nr)).

Since P in−1(V) ⊂ DHi and V * DHi , we can conclude that there exists k such that
P in−k(V) ⊂ DHi and P in−k−1(V) * DHi , thus P in−k(V) ⊆ P in−k−1(V) ∩ DHi . Then

[P in−k(V)] ∩ S ik ≤ [P in−k−1(V)] ∩ [DHi ] ∩ S ik ∈ A0(P(n1,...,nr)) ' Z. (2.14)

We have that

[P in−k(V)] =
r∑
`=1

ni−k+1∑
s=0

(
ni − k + 1

s

)
k`(ki − 1)ni−k+1−shni−k+1−s

i h`

 r∑
j=1

j 6=i

kjhj


s

and

[P in−k(V)]∩[DHi ] =
r∑
`=1

ni−k∑
s=0

(
ni − k
s

)
k`(di+1)(ki−1)ni−k−shni−k+1−s

i h`

 r∑
j=1

j 6=i

kjhj


s

+

+
r∑
t=1

t 6=i

r∑
`=1

ni−k∑
s=0

(
ni − k + 1

s

)
k`(dt − 1)(ki − 1)ni−k−shni−k−si hth`

 r∑
j=1

j 6=i

kjhj


s

.
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Therefore

[P in−k(V)] ∩ S ik = ki(ki − 1)ni−k+1hn1
1 · · ·hnrr = ki(ki − 1)ni−k+1

and

[P ini−k−1(V)]∩DHi ∩S ik = ki(ki− 1)ni−k(di + 1)hn1
1 · · ·hnrr = ki(ki− 1)ni−k(di + 1).

Now, using the inequality (2.14) we obtain ki(ki− 1) ≤ ki(di + 1), and this implies
that

ki ≤ di + 2.

Corollary 2.2.3. Let V be a hypersurface with Sing(V)i = ∅ for all i = 1, . . . , r.
If V is totally invariant by a foliation F on P(n1,...,nr) , then

deg(V) ≤ deg(F) + 2 deg(P(n1,...,nr)),

where the degree is with respect to the Segre embedding.

Proof. Multiplying each inequality ki ≤ di + 2 by
(

n−1
n1,...,ni−1,...,nr

)
and summing in

i we have

deg(V) =
r∑
i=1

ki

(
n− 1

n1, . . . , ni − 1, . . . , nr

)
≤

r∑
i=1

(di + 2)

(
n− 1

n1, . . . , ni − 1, . . . , nr

)
.

The result follows from proposition 2.2.3 and deg(P(n1,...,nr)) = (n1+···+nr)!
n1!···nr! =

∑r
i=1

(
n−1

n1,...,ni−1,...,nr

)
.

2.3 Weighted projective foliations

In this section we study Poincaré’s problem for foliations on weighted projective
spaces PC($0, . . . , $n).

Weighted projective space P($0, . . . , $n)

Let $0, . . . , $n be integers ≥ 1 pairwise coprime. Consider the C∗-action on
Cn+1\{0} given by

λ · (z0, . . . , zn) = (λ$0z0, . . . , λ
$nzn),

where λ ∈ C∗ and (z0, . . . , zn) ∈ Cn+1\{0}. The quotient space P($0, . . . , $n) =
(Cn+1\{0}/ ∼), induced by the action above is the weighted projective space of
type ($0, . . . , $n). We will abbreviate P($0, . . . , $n) := P($).
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Consider the open Ui = {[z0 : · · · : zn] ∈ P($0, . . . , $n); zi 6= 0} ⊂ P($0, . . . , $n),
with i = 0, 1, . . . , n. Let µ$i ⊂ C∗ be the subgroup of $i-th roots of unity. We can
define the homeomorphisms φi : Ui −→ Cn/µ$i , by

φi([z0 : · · · : zn]) =

(
z0

z
$0/$i,
i

, . . . ,
ẑi
zi
, . . . ,

zn

z
$n/$i,
i

)
$i

where the symbol ”̂” means omission and (·)$i is a $i-conjugacy class in Cn/µ$i
with µ$i acting on Cn by

λ · (z0, . . . , zn) = (λ$0z0, . . . ẑi, . . . , λ
$nzn), λ ∈ µ$i .

On φi(Ui ∩ Uj) ⊂ Cn/µ$i we have the transitions maps

φi ◦ φ−1
j ((z1, . . . , zn)$i) =

(
z0

z
$0/$j ,
j

, . . . ,
ẑj
zj
, . . . ,

1

z
$i/$j
j

, . . . ,
zn

z
$n/$j
j

)
$j

We conclude that {φi,Ui}ni=0 is a holomorphic orbifold atlas for P($0, . . . , $n).
Also, {Cn, µ$i , π◦φi}ni=0 is an n-dimensional uniformizing system for P($0, . . . , $n).

Since $0, . . . , $n are pairwise coprime, the singular set of P($0, . . . , $n) is the
set of n+ 1 points

[1, 0, . . . , 0], [0, 1, . . . , 0], . . . , [0, . . . , 0, 1].

There exists another orbifold structure for P($0, . . . , $n). This is induced by
the action of the group (µ$0 × · · · × µ$n) on Pn given by

(µ$0 × · · · × µ$n)× Pn −→ Pn

((λ0, . . . , λn), [z0, . . . , zn]) 7−→ [λ0z0, . . . , λnzn].

Now consider the map ϕ : Pn −→ P($0, . . . , $n) defined by ϕ([z0, . . . , zn]) =
[z$0

0 , . . . , z$nn ]. ϕ induces a homeomorphism

ϕ̃ : Pn/(µ$0 × · · · × µ$n) −→ P($0, . . . , $n)

and P($0, . . . , $n) ' Pn/(µ$0×· · ·×µ$n) is an orbifold structure given as a global
quotient.

Remark 2.3.1. The degree of the map ϕ : Pn −→ P($) is equal the order of the
group (µ$0 × · · · × µ$n), i.e, deg(ϕ) = $0 · · ·$n. For details see [1].
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Q-line bundles on P($0, . . . , $n)

Let d
r
∈ Q , with gcd(r, d) = 1 and r > 0. Consider the C∗-action ζ( dr )

on

Cn+1\{0} × C given by

ζ( dr )
: C∗ × Cn+1\{0} × C −→ Cn+1\{0} × C
(λ, (z0, . . . , zn), t) 7−→ ((λr$0z0, . . . , λ

r$nzn), λ−dt).

We denote the quotient space induced by the action ζ( dr )
by

OP($)(d/r) := (Cn+1\{0} × C)/ ∼ ζ( dr )
.

The space OP($)(d/r) is a line orbibundle on P($). We shall describe the global
holomorphic sections of OP($)(d/r), for d > 0.

Proposition 2.3.1. Let P($) := P($0, . . . , $n), then

H0(P($),OP($)(d/r)) =
⊕

$0k0+···+$nkn= d
r

C · (zk1
0 · · · zknn ).

Proof. A global section of this line orbibundle is a linear combination of the mono-
mials zk = zk1

0 · · · zknn , invariant by the action ζ( dr )
, that is, ζ( dr )

([z, zk]) = [z, zk].

Using this action we obtain

[(z0 . . . , zn), (zk1
0 · · · zknn )] = [(λr$0z0, . . . , λ

r$nzn), λ
∑n
i=0 r$iki(zk1

0 · · · zknn )]

= [(z0 . . . , zn), λ−d+
∑n
i=0 r$iki(zk1

0 · · · zknn )].

Therefore
∑n

i=0 r$iki = d, hence the proposition follows.

The orbibundles OP($)(d/r) can therefore be considered as elements of the
rational Picard group of P($), that is, as Q-line bundles. It is possible to show
that the Q-Picard group is generated by OP($)(1), that is

Pic(P($))⊗Q := Pic(P($))Q = Q · OP($)(1).

Remark 2.3.2. It is possible to show that OP($)(1) = ϕ∗(OPn(1)), where OPn(1)
is the hyperplane bundle on Pn, see [58].

The Euler sequence on P($) reads

0 −→ C ς−→
n⊕
i=0

OP($)($i) −→ TP($) −→ 0

where C is the trivial line orbibundle on P($). The map ς is given by ς(1) =
($0z0, . . . , $nzn), see [58].
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Definition 2.3.1. Let X be a n-dimensional compact complex orbifold with uni-
formizing system {(Ui, Gi, πi)}i∈Λ and ω ∈ Ωn

X a n-form. The orbifold integral of
ω over X is defined by ∫ orb

X

ω =
∑
i∈Λ

1

|Gi|

∫
Ui
π∗i ω,

where |Gi| is the order of the group Gi, see [2].

Remark 2.3.3. Let Ker(X) = {g ∈
∐

i∈ΛGi; g(x) = x,∀ x ∈ X} and Xreg =
X\Sing(X). Then ∫ orb

X

ω =
1

#Ker(X)

∫
Xreg

ω,

see [58].

Proposition 2.3.2. [58] Let OP($)(1) be the hyperplane bundle on P($). Then∫ orb

P($)

c1(OP($)(1))n =
1

$0 . . . $n

,

Proof. From the definition of orbifold integral we have∫ orb

P($)

c1(OP($)(1))n =
1

#Ker(P($))

∫
P($)reg

c1(OP($)(1))n.

Since P($0, . . . , $n) ' Pn/(µ$0 × · · · × µ$n) we conclude that

Ker(P($)) =
n⋂
i=0

µ$i = {1},

hence #Ker(P($)) = 1. On the other hand, since ϕ∗(OP($)(1)) = OPn(1) we get∫ orb

P($)

c1(OP($(1))n =

∫
P($)reg

c1(OP($)(1))n =
1

deg(ϕ)

∫
Pn
c1(OPn(1))n =

1

$0 . . . $n

.

Q-line bundles on simplicial toric varieties and in-

tersection numbers

Let X be a normal toric variety. Since a Weil divisor is a cycle in X of real
dimension 2n− 2, we have a homomorphism

ϑ :W(X) −→ H2n−2(X,Z)
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which associates to each Weil divisor its homology class. On the other hand, there
exists (see [47]) an isomorphism

α : C(X)
'−→ Pic(X)

between the group of classes of Cartier divisors and the Picard group. This latter
is the group of isomorphism classes of line bundles (or isomorphism classes of
invertible sheaves) on X. By composition of α with the morphism c1 : Pic(X)→
H2(X,Z), we obtain a morphism

c1 : C(X) −→ H2(X,Z).

When X is smooth we have that c1(O(D)) is the Poincaré dual of the cycle rep-
resented by D ∈ C(X). In the general case, we cannot guarantee this, but we will
see that it is true if D is an invariant divisor by a torus action.

Let T be the torus which acts in X. Denote by CT(X) and WT(X), respec-
tively, the groups of T-invariant divisors of Cartier and Weil, modulo equivalence
of principal T-invariant divisors .

Theorem 2.3.1. [7] Let X be a compact toric variety. There exists a commutative
diagram

CT(X) ↪→ WT(X)
↓' ↓'

H2(X,Z)
_[X]−→ H2n−2(X,Z)

where the vertical isomorphisms correspond to the morphisms c1 and ϑ.

When X is simplicial we have Pic(X)⊗Q ' CT(X)⊗Q =WT(X)⊗Q. Using
these identifications and tensorizing the diagram of the theorem 2.3.1 by Q we
have

Pic(X)⊗Q '−→ CT(X)⊗Q
↓' ↓'

H2(X,Q)
_[X]−→ H2n−2(X,Q)

Let X be a two dimensional complete simplicial toric variety and let D be a
Q-Cartier divisor on X . Then from theorem 2.3.1 we conclude that c1(O(D)) is
the Poincaré dual of the cycle represented by D. Therefore, we have the inter-
section numbers with rational coefficients. For instance, let D1, D2 ∈ WT(X) the
intersection number is the rational number

D1 ·D2 = 〈c1(O(D1)) ∩ c1(O(D2)), [X]〉 ∈ Q,

as in the case with integer coefficients.
We will use the Poincaré-Satake duality to express the number of intersection

in terms of the orbifold integral.
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Proposition 2.3.3. Let X be a simplicial compact toric variety and L1, L2 ∈
Pic(X)⊗Q. Then

L1 · L2 =

∫ orb

X

c1(L1) ∧ c1(L2).

Proof. Since X be a simplicial compact toric variety, it follows from theorem 2.1.2
that X is a compact complex orbifold. Let Hi(X) be the cohomology group of
i-forms on X (in orbifold’s sense). We have the following Poincaré duality for
orbifolds showed by Satake in [74]:

Hi(X)⊗ Hn−i(X) −→ Q

α ∧ η 7−→
∫ orb

X

α ∧ η.

From this we get

L1 · L2 = 〈c1(L1) ∩ c1(L2), [X]〉 =

∫ orb

X

c1(L1) ∧ c1(L2).

Therefore, if D1, D2 ∈ WT(X) we have

D1 ·D2 =

∫ orb

X

c1(O(D1)) ∧ c1(O(D2)).

Example 2.3.1. LetD1 ∈ H0(P($0, $1, $2),O(d1)) andD2 ∈ H0(P($0, $1, $2),O(d2)).
It follows from propositions 2.3.2 and 2.3.3 that

D1 ·D2 =

∫ orb

X

c1(O(d1)) ∧ c1(O(d2)) =

∫ orb

X

(d1d2) · c1(O(1))2 =
d1d2

$0$1$2

.

2.3.1 Poincaré’s problem for quasi-homogeneous foliations

In this section we consider the question of bounding the degree of curves which are
invariant by a holomorphic foliation of a given degree on a well-formed weighted
projective plane.

Foliations on weighted projetive planes

Let us to denote P($) := P(w0, w1, w2). The Chern-Weil theory of Chern classes
holds as well in P($) as in projective spaces, see [58]. Denoting by ζ = c1(OP($)(1))
we have, from Euler sequence,

c(TP($)) = (1 + w0ζ)(1 + w1ζ)(1 + w2ζ) (2.15)
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and hence
ci(TP($)) = σi(w0, w1, w2) (2.16)

where σi is the i-th elementary symmetric function.
Now, let X be a quasi-homogeneous vector field of type (w0, w1, w2) and degree

d in C3, that is, writing X =
2∑
i=0

Pi(z) ∂
∂zi

we have that Pi(λ
w0z0, λ

w1z1, λ
w2z2) =

λd+wi−1Pi(z0, z1, z2). These descend well to P($). In fact, we may tensorize the
Euler sequence by OPw(d− 1) to get

0 −→ OP($)(d− 1) −→
2⊕
i=0

OP($)(d+ wi − 1) −→ TP($)⊗OP($)(d− 1) −→ 0.

(2.17)
It follows that a quasi-homogeneous vector field X induces a foliation F of P($)
and that g Rw + X defines the same foliation as X, where Rw is the adapted
radial vector field Rw = w0z0

∂
∂z0

+w0z1
∂
∂z1

+w2z2
∂
∂z2

, with g a quasi-homogeneous
polynomial of type (w0, w1, w2) and degree d− 1.

Dually, noting that |w| = w0 + w1 + w2, we have the exact sequence

0→ Ω1
P($)⊗OP($)(d+|w|−1)→

2⊕
i=0

OP($)(d+|w|−wi−1)→ OP($)(d+|w|−1)→ 0.

(2.18)
Hence, a foliation F of P($) is also induced by a 1-form η = A0 dz0+A1 dz1+A2 dz2,
with Ai a quasi-homogeneous polynomial of type (w0, w1, w2), degree d+|w|−wi−1
and ıRwη = w0z0A0 + w1z1A1 + w2z2A2 ≡ 0.
Example 2.3.2. (logarithmic foliations )
Let f1, . . . , fk quasi-homogeneous polynomial of type ($0, $1, $2) and degrees
d1, . . . , dk, respectively, with k ≥ 3. Let λ1, . . . , λk ∈ C∗ be such that

∑k
=1 λidi = 0.

Define the 1-form

η = (f1 · · · fk) ·
k∑

=1

λi
dfi
fi
.

By Euler’s formula, iR$(η) = (f1 · · · fk) ·
(∑k

=1 λidi

)
= 0. Therefore, η define a

foliation on P($) of degree
∑k

=1 di − |$|+ 1.

From now on we shall assume that

Sing(F) ∩ Sing(P($)) = ∅. (2.19)

This assumption is fairly generic in that it requires X, or η, not to have zeros
along the coordinate axes of C3 and it assures us that the leaves of F are orbifolds.

We proceed now to define the “degree” of such a foliation. Recall that, in the
usual projective situation, degF is the degree of the variety of tangencies of F
with a generic hyperplane.

62



An analogous geometric interpretation holds in the weighted situation and
we similarly have the corresponding canonical Q -bundles KP($), KF and the Q -
bundles TF , NF , N∗F , all lying in Pic(P($))⊗Q. The adjunction formula

KP($) = KF ⊗N∗F (2.20)

still holds and we point out that KP($) = OP($)(−|w|), KF = OP($)(d − 1) and
NF = OP($)(d+ |w| − 1).

Let C be a compact connected curve (possibly singular), whose irreducible
components are not F -invariant. Then, for p ∈ C, the index tang(F , C, p) is
defined as in [12] and, writing tang(F , C) =

∑
p∈C

tang(F , C, p), we have that

tang(F , C) = KF · C + C · C ≥ 0. (2.21)

We define the degree of F just as in the usual projective situation, that is,

deg(F) := tang(F , H) (2.22)

where H is a generic element of the linear system H0(P($),OP($)(1)).
Poincaré’s duality holds, as shown by I. Satake (see [74] and [58]). Hence,

(2.22) reads

deg(F) = KF .H +H.H =

orb∫
H

c1(OP($)(d− 1)) +

orb∫
H

c1(OP($)(1))

=

orb∫
P($)

c1(OP($)(d− 1)) ∧ c1(OP($)(1)) +

orb∫
P($)

c1(OP($)(1)) ∧ c1(OP($)(1))

=
d− 1

w0w1w2

+
1

w0w1w2

=
d

w0w1w2

.

(2.23)
Now, suppose that
(i) C is a quasi-smooth curve in Pw, that is, is defined by a quasi-homogeneous

polynomial P (z0, z1, z2), of degree do, whose only singularity is at 0 ∈ C3.
(ii) C contains no codimension 2 singular stratum of P($).

Then the usual adjunction formula holds (see [9]):

KC = KP($)|C ⊗NC . (2.24)

With this at hand we have, using Poincaré’s duality,

deg(C) =

orb∫
C

c1(OP($)(1)) =

orb∫
P($)

c1(OP($)(d
o)) ∧ c1(OP($)(1)) =

do

w0w1w2

. (2.25)
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We show the following result:

Theorem 2.3.2. Let F be a singular holomorphic foliation on P($) = P(w0, w1, w2),
of degree deg(F), C a quasi-smooth curve of degree deg(C), which avoids the sin-
gular locus of P($) and is invariant by F . Then,

deg(C) ≤ deg(F) +
w0 + w1 + w2 − 2

w0w1w2

.

Remark 2.3.4. This bound cannot be improved. Let f(x, y, z) = xmk + ymk −
zk and g(x, y, z) = axm + bym + cz, m, k ∈ N. These are quasi-homogeneous
polynomials of type (1, 1,m) and degrees km and m, both defining quasi-smooth
curves of degrees k and 1, respectively, which avoid the singularity of P(1, 1,m).
The 1-form ω = k f dg−g df defines a foliation F on P(1, 1,m) of degree deg(F) =
k − 1/m. The orbifold C = (f = 0) is F -invariant and

deg(C) = k ≤ k − 1

m
+ 1 = deg(F) + 1.

Proof of theorem 2.3.2.

Suppose C is quasi-smooth, avoids the singularities of P($) and is F -invariant.
The sum of the Camacho-Sad indices, CS(F , C), over C ∩ Sing(F) satisfies

(see [11])

CS(F , C) =
∑

p∈C ∩ Sing(F)

CS(F , C, p) = C · C (2.26)

and, since the adjunction formula (2.24) holds, we have

C · C =
deg(C)2

w0w1w2

> 0 (2.27)

so that C ∩ Sing(F) 6= ∅. On the other hand, by (2.15) and (2.24),

orb∫
C

c1

(
TC ⊗OPw(d− 1)

)

=
deg(C)

(
w0 + w1 + w2 − deg(C)

)
w0w1w2

+
(d− 1) deg(C)

w0w1w2

= deg(C)
w0 + w1 + w2 − deg(C)− 1 + d

w0w1w2

.

(2.28)

Now, F|C induces a non-zero holomorphic section of TC ⊗OPw(d− 1) and the
number in (2.28) is the degree of this line Q -bundle. Since C ∩ Sing(F) is non-
empty and finite, this degree is positive and it follows that deg(C) ≤ deg(F) +
|w| − 2

w0w1w2

.
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Chapter 3

Bound for the sectional genus of a
variety invariant by Pfaff fields

The problem of bounding the genus of an invariant curve in terms of the degree of a
one-dimensional foliation on PnC has been considered, for instance, by A. Campillo,
M. Carnicer and J. Garćıa de la Fuente which, in [16], showed that if C is a reduced
curve which is invariant by a one-dimensional foliation F on PnC then

2pa(C)− 2

deg(C)
≤ deg(F)− 1 + a, (3.1)

where pa(C) is the arithmetic genus of C and a is an integer obtained from the con-
crete problem of imposing singularities to projective hypersurfaces. For instance,
if C has only nodal singularities then a = 0, and thus formula (3.1) follows from
[38]. This bound has been improved by E. Esteves and S. L. Kleiman in [35].

In [34], Esteves and Kleiman extended Jouanolou’s work on algebraic Pfaff
equations to smooth schemes V . An algebraic Pfaff equation of rank s on a smooth
scheme X of pure dimension n is, according to Jouanolou [49, pp. 136-38], a
nonzero map u : E → Ω1

X where E is a locally free sheaf of constant rank s with
1 ≤ s ≤ n − 1. Esteves and Kleiman introduced the notion of a Pffaf field in V ,
which is a nontrivial sheaf map η : Ωs

V → L, where L is an invertible sheaf on
V , and the integer 1 ≤ s ≤ n − 1 is called the rank of η. A subvariety X ⊂ V
is said to be invariant under η if the map η factors through the natural map
Ωs
V |X → Ωs

X . A Pfaff system on V induces, via exterior powers and the perfect
pairing of differential forms, a Pffaf field on V . However, the converse is not true;
see [34, Section 3] for more details.

In this chapter we establish upper bounds for the sectional genus of Gorenstein
varieties which are invariant under Pfaff fields on Pnk , where k is an algebraically
closed field of characteristic zero.
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3.1 Sectional genus of a polarized variety

We work over a fixed an algebraically closed field. Let (V, L) be a Gorenstein
projective variety V of dimension n equipped with a very ample line bundle L;
recall that, since V is Gorenstein, the canonical divisor KV is a Cartier divisor.

Definition 3.1.1. The sectional genus of V with respect to L, denoted g(V, L), is
defined by the formula:

2g(V, L)− 2 = (KV + (dim(V )− 1)L) · Ldim(V )−1.

This quantity has the following geometric interpretation. Suppose that V is
nonsingular, and let H1, . . . , Hn−1 be generic elements in the linear system |L|,
such that Bs|L| = ∅, where Bs|L| = ∅ denote the base locus of |L|. By Bertini’s
theorem, one can assume that the curve Vn−1 = H1 ∩ · · · ∩ Hn−1 is nonsingular.
Then g(V, L) coincides with the geometric genus of Vn−1, see [39, Remark 2.5].

3.2 Pfaff fields

Definition 3.2.1. A holomorphic Pfaff field F of rank k on V is a global holo-
morphic section of

∧k ΘV ⊗ N , where ΘV is the tangent sheaf and N is a line
bundle.

A Pfaff field of rank k on Pn is a section of
∧k ΘPn⊗OPn(s), and degOPn (1)(F) =

s+k is by definition the degree of the Pfaff field F . It follows from Bott’s formula
that deg(F) ≥ 0. For Bott’s formula see the reference [63, Chapter I, section 1.1]).

Since
∧k ΘV ⊗N ' Hom(N∗,

∧k ΘV ) ' Hom(Ωk
V , N), a Pfaff field can also be

regarded as a sheaf map ξF : N∗ →
∧k ΘV . The singular set of F is given by

Sing(F) = {x ∈ V ; ξF(x) is not injective} = {x ∈ V ; ξ∨F(x) is not surjective}.

Alternatively, a holomorphic Pfaff field can also be defined as a global holo-
morphic section of Ωn−k

V ⊗ N ′, where N ′ = N ⊗ K−1
V . If V is nonsingular, this

definition is equivalent to the one above.
Let X ⊂ V be a closed subscheme of dimension larger than or equal to the

rank of a holomorphic Pfaff field F . Following [25, Subsection 2.2], we introduce
the following definition.

Definition 3.2.2. We say X is invariant under F if there exists a morphism of
sheaves φ : Ω1

X → N |X such that the following diagram

Ωk
V |X

��

ξ∨F |X // N |X

Ωk
X

φ
<<xxxxxxxxx

commute.
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Applying the functor Hom(·,OX) to the above diagram, we get the following
commutative diagram:

N∗|X

��

ξF |X

%%KKKKKKKKK

(Ωk
X)∨ // ∧k ΘV |X

.

Therefore, X is invariant under F if it induces a global section of (Ωk
X)∨ ⊗N |V .

Our first main result is the following.

Theorem 3.2.1. Let X ⊂ Pn be a Gorenstein projective variety which is invariant
under a holomorphic Pfaff field F on Pn whose rank is equal to the dimension of
X, and such that cod(Sing(X), X) ≥ 2. Then

2g(X,OX(1))− 2

deg(X)
≤ deg(F)− 1, (3.2)

where g(X,OX(1)) is the sectional genus of X with respect to the line bundle OX(1)
associated to the hyperplane section.

Proof. Let X ⊂ Pn be a Gorenstein variety such that cod(Sing(X), X) ≥ 2; let
X0 := X − Sing(X). Then there exists a canonical map γX : Ωk

X → ωX , where
ωX is the dualizing sheaf of X, see [26, p. 7]. Clearly, γX is an isomorphism away
from the singular set of X, thus so is also the map

γ̃X = γ∨X ⊗ 1OX(d−k) : ω∨X ⊗OX(d− k)→ (Ωk
X)∨ ⊗OX(d− k).

Since X is Gorenstein, ω∨X is locally-free, hence, in particular, reflexive. From [52,
Proposition 5.21], we also conclude that ω∨X is normal, since cod(Sing(X)) ≥ 2.

If X is invariant under a holomorphic Pfaff field F on Pn of rank k and degree
d, then we have a global section ζF of (Ωk

X)∨ ⊗OX(d− k); consider its restriction
ζF ,0 = ζF |X0 to X0. Composing it with the the inverse of γ̃X |X0 , the restriction of
the map γ̃X to X0, we obtain a section

γ̃X |X0(ζF ,0) ∈ H0(X0, ω
∨
X ⊗OX(d− k)|X0).

However, ω∨X ⊗ OX(d − k)|X0 is a normal sheaf, so the above section extends to
a global section of ω∨X ⊗ OX(d − k). In particular, H0(X0, ω

∨
X ⊗ OX(d − k)) 6= 0,

therefore
deg(ω∨X ⊗OX(d− k)) ≥ 0. (3.3)

Let i : X → Pn be an embedding, and set, as usual, OX(1) = i∗OPn(1). Let
KX be a Cartier divisor such that OX(KX) = ωX .

Now, consider the following diference

(2g(X)− 2)− [OX(d− k) + (k − 1)OX(1)] · OX(1)k−1 =
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= −
(
K−1
X +OX(d− k))

)
· OX(1)k−1 = − deg(ω∨X ⊗OX(d− k)) ≤ 0

It follows from (3.3) that the first expression must be less than or equal to zero,
hence

2g(X)− 2 ≤ [OX(d− k) + (k − 1)OX(1)] · OX(1)k−1 = deg(X)(d− 1),

as desired.

Corollary 3.2.1. Let X be a smooth Fano variety of Picard number one that is
invariant under a Pfaff field F of rank k = dim(X). Then

degK−1
X

(X) ≤ kk(deg(F) + 2)k,

where degK−1
X

(X) is the degree of X with respect to anticanonical polarization.

Proof. Indeed, in this case we have

2g(X,K−1
X )− 2 = (k − 2) degK−1

X
(X).

Thus, it follows from Theorem 3.2.1 that k ≤ deg(F) + 1. On the other hand, it
follows from [59] that d(X) ≤ k + 1 and deg(X) ≤ (d(X)k)k , where d(X) is the
least positive number integer d for which X can be covered by rational curves of
(anticanonical) degree at most d, see [59, Subsection 1.3].

Finally, we also consider the case when the invariant variety is Calabi-Yau, i.e.
deg(KX) = 0.

Corollary 3.2.2. If X is Calabi-Yau and invariant by F then dim(X) ≤ deg(F).

In other words, holomorphic Pfaff fields of small degree do not admit invariant
Calabi-Yau varieties.

Complete intersections invariant by Pfaff field

Let us now consider the application of Theorem 3.2.1 to the case when the invariant
variety X is a complete intersection, one obtains the following statement.

Corollary 3.2.3. Let X be a k-dimensional complete intersection variety of multi-
degree (d1, . . . , dn−k), and such that cod(Sing(X), X) ≥ 2. If X is invariant under
a holomorphic Pfaff field F of rank k on Pn, then

d1 + · · ·+ dn−k ≤ deg(F) + n− k + 1.
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Proof. Notice that

2g(X)− 2 = deg(X) (d1 + · · ·+ dn−k − n+ k − 2) .

By Theorem 3.2.1 this is less than or equal to (deg(F)−1) deg(X), and the desired
inequality follows easily.

Remark 3.2.1. It follows from [26, Corollary 4.5] that if X and F are as above
and

dim(Sing(F) ∩X) < k,

then

d1 + · · ·+ dn−r ≤


deg(F) + n− k, if ρ ≤ 0,

deg(F) + n− k + ρ, if, ρ > 0

where ρ := σ + n − r + 1 − d1 − · · · − dn−r, with σ denoting the Castelnuovo-
Mumford regularity of the singular locus of X. Therefore, Corollary 3.2.3 allow us
to conclude that if cod(Sing(X), X) ≥ 2, then one can take ρ = 1, regardless of
dim(Sing(F) ∩X).

Let V be an algebraic manifold with Pic(V ) ' Z. If D is a divisor on V then
OV (D) = OV (dD), for some dD ∈ Z. In this case, we denote κ(V ) = dKV . A Pfaff

field of rank k on V is a section of
∧k ΘV ⊗ OV (s), for some s ∈ Z. Thus, we

define dF := s+ k, naturally. In this case, we get the following.

Proposition 1. Let V be a n-dimensional algebraic manifold with Pic(V ) ' Z.
Let X be a k-dimensional smooth complete intersection of nonsingular hypersur-
faces D1, . . . , Dn−k on V . If X is invariant under a holomorphic Pfaff field F of
rank k on V , then

dD1 + · · ·+ dDn−k ≤ dF − k − κ(V ).

Proof. SinceX is invariant by F we have that H0(X,
∧k ΘX⊗OV (dF−k)|X) 6= {0},

then deg(
∧k ΘX ⊗OV (dF − k)|X) ≥ 0. Let OV (Di) be the line bundle associated

to hypersurface Di, i = 1, . . . , n− k. We have the following adjunction formula

k∧
ΘX =

n∧
ΘV |X ⊗OV (−D1)|X ⊗ · · ·OV (−Dn−k)|X .

Therefore
∧k ΘX = OV (−κ(V )− dD1 − · · · − dDn−k)|X , thus

deg(OV (dF −k−κ(V )−dD1−· · ·−dDn−k)|X) = deg(
k∧

ΘX ⊗OV (dF −k)|X) ≥ 0.

Note that this last inequality coincides with the given in Corollary 3.2.3 when
V = Pn and X is a non-singular complete intersection.
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3.3 Bound for invariant varieties with stable tan-

gent bundle

Our second main result uses the hypothesis of stability (in the sense of Mumford-
Takemoto) of the tangent bundle of X to establish another upper bound for the
sectional genus in terms of the degree and rank of a holomorphic Pfaff field. It
generalizes the previous result for nonsingular invariant varieties by allowing its
dimension to be larger than the rank of the Pfaff field. To the best of our knowl-
edge, this is the first time that the stability of the tangent bundle is used to obtain
such bounds. Notice that if ΘX is stable, then each

∧k ΘX is semistable, see [3].
Examples of projective varieties with stable tangent bundle are Calabi-Yau [78],
Fano [36, 48, 68, 76] and complete intersection [68, 77] varieties.

Definition 3.3.1. Let E be a torsion-free sheaf on V . The ratio µL(E) = degL(E)/rk(E)
is called the slope of E, where degL(E) = degL(det(E)). Recall that a E is
semistable (in the sense of Mumford-Takemoto) if every torsion-free subsheaf E ′

of E satisfies µL(E ′) ≤ µL(E). Furthermore, E is stable if the strict inequality is
satisfied.

Theorem 3.3.1. Let X be a nonsingular projective variety of dimension m which
is invariant under a holomorphic Pfaff field F of rank k on Pn; assume that m ≤ k.
If the tangent bundle ΘX is stable, then

2g(X,OX(1))− 2

deg(X)
≤ deg(F)− k(

m−1
k−1

) +m− 1. (3.4)

Proof. The proof follows the same argument of the proof of Theorem 3.2.1. Since
X is invariant under F , we can conclude that H0(X,

∧k ΘX ⊗OX(d− k)) 6= {0}.
It then follows from the semistability of

∧k ΘX that
∧k ΘX ⊗ OX(d − k) is also

semistable, thus deg(
∧k ΘX ⊗OX(d− k)) ≥ 0. On the other hand, note that

deg(
k∧
TX) = −

(
dim(X)− 1

k − 1

)
deg(KX).

Now, it is enough to consider the difference

(2g(X)− 2)−

[
OX(d− k)(

m−1
k−1

) + (m− 1)OX(1)

]
· OX(1)m−1.

A straight forward calculation leads to the inequality in Theorem 3.3.1.

However, the inequality of Theorem 3.3.1 is not sharp in general. To see
this, let X be a complete intersection variety of dimension m and multidegree
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(d1, . . . , dn−m), which is invariant under a k-dimensional Pfaff field F on Pn; as-
sume that m ≥ k. Then

d1 + · · ·+ dn−m ≤
deg(F)− k(

m−1
k−1

) + n+ 1.

Setting m = k = 1, the inequality reduced to d1 ≤ deg(F) + n. However, Mar-
cio Soares has shown, under the same circumstances, that d1 ≤ deg(F) + 1 [75,
Theorem B].
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cions Mathemàtiques 41: 527-544, 1997.

[11] M. Brunella, Foliations on complex projective surfaces.
arXiv:math/0212082v1 [math.CV] 5 Dec 2002.

[12] M. Brunella, Birational Geometry of Foliations. First Latin American
Congress of Mathematicians, IMPA, ISBN 85-244-0161-3 (2000).

72



[13] M. Brunella, Inexistence of invariant measures for generic rational differential
equations in the complex domain. Bol. Soc. Mat. Mexicana (3) 12 (2006), no.
1, 43-49.

[14] M. Brunella and L. G. Mendes, Bounding the degree of solutions to Pfaff
equations, Publ. Mat. 44 (2000), 593-604

[15] M. Brunella, M. Nicolau, Sur les hypersurfaces solutions des équations de
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