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Resumo

G. Darboux apresentou, em [32], uma teoria sobre a existéncia de integrais primeiras
para equagoes diferenciais polinomiais baseado na existéncia de um nimero sufi-
cientemente grande de solucoes algébricas. Concomitantemente H. Poincaré, em
[69], considerou o problema da integrabilidade algébrica para equagoes diferenciais
polinomiais no plano. Ele observou que, neste caso, seria suficiente limitar o grau
das solugoes algébricas. Nesta mesma dire¢ao, P. Painlevé, em [65], enunciou o
problema de integrabilidade como:

“ E possivel reconhecer o género de uma solucdao geral de uma equagdo diferencial
polinomial em duas varidveis com uma integral primeira racional?”

Hoje em dia esses problemas sao conhecidos como Problema de Poincaré e
Problema de Painlevé. Em [53] A. Lins Neto construiu uma familia de folheagoes
em P2, com grau e tipo analitico das singularidades fixados, com integrais primeiras
de grau arbitrariamente grande, gerando assim contra-exemplos para os problemas
de Poincaré e de Painlevé. Entretanto, podemos obter uma resposta afirmativa
para tais problemas se forem impostas algumas condigoes sobre o tipo analitico
das singularidades ou sobre as possiveis curvas invariantes.

O atual interesse no Problema de Poincaré foi estimulado por varios trabalhos,
como os trabalhos de D. Cerveau e A. Lins Neto [21] e M. Carnicer [18]. Muitos
autores vem trabalhando nestes problemas e em algumas de suas generalizacoes,
veja por exemplo os artigos de M. Soares [75], J.V. Pereira [67], M. Brunella & L.G.
Mendes [14], E. Esteves & S. Kleiman [35], Cavalier & Lehmann [19] e Zamora
[81].

O problema de limitar o género de uma curva invariante em termos do grau de
uma folheacao unidimensional em P{ foi considerado por exemplo por Campillo,
Carnicer e de la Fuente em [16]. Eles mostraram que, se C' é uma curva, com
singularidades nodais, invariante por uma folheacao unidimensional F em P¢,
entao

2p.(C) — 2
deg(C)
onde p,(C) é o género aritmético de C.

Em [34], Esteves e Kleiman estenderam o trabalho de Jouanolou sobre equagoes
de Pfaff algébricas sobre um esquema suave V. Eles introduziram o conceito de

< deg(F) -1, (1)



campos de Pfaff em V', que é um mapa de feixes n : 0}, — L, onde L é um feixe
inversivel em V', e o niimero inteiro 1 < s < n — 1 é chamado o posto de 1. Uma
subvariedade X C V ¢ dita invariante por 7 se o mapa 7 fatora a um mapa natural
Qp[x — Q%

Nesta tese obtemos cotas para o género seccional de variedades Gorenstein que
sao invariantes por um campo de Pfaff em P}, onde k£ é um corpo algebricamente
fechado e de caracteristica zero. Mais precisamente, nosso resultado é o seguinte.

Teorema. Seja X C P} uma variedade projetiva Gorenstein invariante por um
campo de Pfaff holomorfo F em P} cujo o posto € igual a dimensao de X, e tal
que codim(Sing(X), X) > 2. Entao

29(X,Ox(1)) — 2
deg(X)

S deg(:’r) - 17 (2)

onde g(X,0x(1)) € o género seccional de X com respeito ao fibrado em retas
Ox(1) associado a uma se¢do hiperplana.

Este resultado generaliza a cota obida por Campillo, Carnicer e de la Fuente
em [16, Theorem 4.1 (a)].

Retornando ao problema de integrabilidade, lembramos que o trabalho de
J.P. Jouanolou em [49] também d4 um melhoramento e generalizagdo a teoria
de Darboux, caracterizando a existéncia de integrais primeiras racionais para uma
equacao de Pfaff em P}, onde k é algébricamente fechado e de caracteristica zero.
Mais precisamente, seja w uma 1-forma torcida w € HO(PY, Qﬁnz ®0O(d+2)), onde d
é o que chamamos de grau de w. Segue de [49] Teorema 3.3, p.g 102, que w admite
uma integral primeira racional se, e somente se, possui infinitas hipersuperficies
algébricas irredutiveis invariantes. Mais geralmente, Jouanolou provou em [50]
que sobre uma variedade complexa compacta X, satisfazendo algumas condicoes
cohomoldgicas, uma equagiao de Pfaff w € H(X, QL ® £), onde £ ¢ um fibrado
em retas, admite uma integral primeira meromorfa se, e somente se, possui um
numero infinito de divisores irredutiveis invariantes. Além disso, se w nao admite
integral primeira meromorfa, entao o nimero de divisores irredutiveis invariantes
¢ no maximo

dimc(HY(X, Q% @ £)/w AHY (X, Q%)) + p(X) + 1,

onde p(X) é o numero de Picard de X.

Em [42] E. Ghys retirou todas as hipétese dadas por Jouanolou mostrando
que este resultado é valido para toda variedade complexa compacta. M. Brunella
e M. Nicolau em [15] provou este mesmo resultado para equagoes de Pfaff em
caracteristica positiva e para folheagoes nao-singulares de codimensao um sobre
variedades compactas e com estrutura transversal holomorfa. Recentemente, S.
Cantat em [17] mostrou uma versdo dindmica discreta deste resultado provando
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que se um endomorfismo sobrejetivo f de uma variedade complexa X possuir
um certo nimero de hipersuperficies analiticas invariantes, entao f preserva uma
fibragao meromorfa.

Mostramos uma versao destes resultados para campos de vetores sobre var-
iedades toricas completas e singulares. Seja Pn uma variedade térica simplicial
completa associada a um fan A e 7Pa seu feixe de Zarisk. Uma folheagao holo-
morfa singular F em P é uma secao global de 7PA ® Kz, onde Kx é um feixe
inversivel em PA. Denotamos por T™ o toro agindo em PA e chamamos um T"-
invariante divisor de Weil por T"-divisor. Usamos a existéncia de coordenadas
homogéneas para variedades téricas simpliciais para provar o seguinte resultado.

Teorema. Seja F uma folheagao unidimensional sobre uma variedade torica sim-
plicial completa Pa de dimensio n e nimero de Picard p(Pa). Se F admite

ho(Pa, O(Kr)) + p(Pa) +n

T™-divisores irredutiveis invariantes, entao F admite uma integral primeira racional.

Observe que , em geral Po é uma variedade singular com singularidades quo-
cientes. Portanto em dimensao dois este resultado mostra que o teorema de
Darboux-Jouanolou-Ghys é vélido para uma classe de superficies toricas singu-
lares.

A versao afim e nao-singular deste resultado foi provada por J. LLibre e X.
Zhang em [57]. Eles mostraram que se o nimero de hipersuperficies algébricas
invariantes por um campo polinomial Z em C", de grau d, é pelo menos

(d—l—n—l)
+n
n

entao Z admite uma integral primeira racional.

Além disso, estudamos folheagdes unidemmensionais em duas classes de var-
iedades téricas, os espacos multiprojetivos e espagos projetivos com pesos. Com
hipdteses convenientes obtemos cotas para o problema de Poincaré nestas var-
iedades.

Finalmente, estendemos alguns resultados devidos a J. V. Pereira para inte-
grabilidade de folheagoes holomorfas F sobre uma variedade complexa M, usando
o conceito de secao extdtica com respeito a um sistema linear de dimensao finita
V C H°(M,O(D)), onde D é um divisor efetivo sobre M. O lugar de zeros da
secao extatica é o lugar de inflexao do sistema liner com respeito a um campo de
vetores que induz F.

Denote por £(V,F) a segao extatica de F com respeito a V. Se F é uma
folheacao unidimensional sobre uma variedade complexa M, entao uma integral
primeira holomorfa (ou meromorfa) para F é um mapa holomorfo (resp. mero-
morfo) © : M — Y, onde Y é uma variedade complexa, tal que as fibras de ©
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sao invariantes por F. J. V. Pereira em [67] mostrou o seguinte teorema:

Teorema. Seja F uma folhea¢ao holomorfa unidimensional sobre uma var-
iedade complexa M. Se V é um sistema linear de dimensao finita tal que €(V,F)
¢ identicamente nulo entao existe um conjunto aberto denso U de M onde F
admite uma integral primeira holomorfa. Além disso, se M ¢é uma variedade pro-
jetiva, entao F admite uma integral primeira meromorfa.

Nos casos nao-algébricos e nao-compactos o resultado acima nao garante que
o anulamento da segao extética e(V,F) implica na existéncia de uma integral
primeira meromorfa para F. Forneceremos o seguinte adendo para o teorema de
J. V. Pereira.

Teorema. Sejam F uma folheagao holomorfa unidimensional sobre uma variedade
complexa M eV sistema linear de dimensao finita. Se €(V,F) € identicamente
nula, entao F admite uma integral primeira meromorfa © : M — P* .

J. V. Pereira em [67] mostrou que uma folheagao em P%, de grau d > 1, que
nao admite uma integral primeira racional de grau < k, possui no maximo

(1) (1),

curvas invariantes de grau k.

Seja (M, L) uma variedade projetiva polarizada e denote por .4 (F, V') o nimero
de divisores F-invariantes contidos no sistema linear V- C H°(M, O(D)). Usamos
o conceito de grau de folheagoes e divisores com respeito a polarizacao L e divisor
extatico para o seguinte resultado.

Teorema. Seja F uma folheagao unidimensional sobre uma variedade projetiva
polarizada (M, L) e D um divisor efetivo. Suponha que F admite integral primeira
racional. Entao

degp (D) - (N (F,V) = (V) < (deg,,(F) — deg (M)) - (ho(zw),

onde h°(V') = dimcV. Em particular, temos que :

i) o numero de divisores F-invariantes contidos no sistema linear V C |O(D)|
€ no mdzrimo

(deg (F) — degy (M) (HO(V)Y
deg, (D) ( 2 )”‘(V)’

onde h°(V') = dimcV.



it) se H C |O(D)| é um pencil e /' (F, H) > 2, entdo

deg, (D) < deg(F) — deg (M)

A parte ii) deste teorema nos da um critério numérico para decidir se uma
folheagao holomorfa F sobre uma variedade polarizada (M, L) admite uma integral
primeira racional. Isto é, se supormos que o numero de divisores JF-invariantes
contidos em um pencil H é maior que 2 e que F possui um divisor invariante
C € 'H satisfazendo a condicao

deg, (C) > deg(F) — deg, (M),

entao F admite uma integral primeira racional. Este resultado esta relacionado a
uma conjecture de Alcides Lins Neto. Em [53] ele levantou a seguinte questao:

“Dado d > 2, existe M(d) € N tal que se uma folheagao em P?, de grau d, tem
uma solugdo algébrica invariante de grau k > M(d), entao ela tem uma integral
primeira racional?”

Seja F uma folheagao unidimensional em P” de grau d > 2. Segue do critério
mencionado acima que se o nimero de hipersuperficies de grau k invariantes por
F contidas em um pencil de mesmo grau é maior que 2 e k > M(d) = d — 1, entao
F tem uma integral primeira racional.



Introduction

G. Darboux presented , in [32], a theory on the existence of first integrals for poly-
nomial differential equations based on the existence of sufficiently many invariant
algebraic hypersurfaces. Concomitantly H. Poincaré, in [69], considered the prob-
lem of algebraic integration of polynomial differential equations in the plane. He
observed that, in this case, it would be sufficient to bound the degree of algebraic
solutions. In the same vein P. Painlevé, in [65], stated an integrability problem as
follows:

“Is 1t possible to recognize the genus of the general solution of an algebraic
differential equation in two variables which has a rational first integral?”

Nowadays these problems are known as Poincaré’s type Problems and Painlevé’s
type Problems. In [53] A. Lins Neto constructed families of foliations on PZ, with
fixed degree and local analytic type of the singularities, where foliations with ratio-
nal first integrals of arbitrarily large degree appear. In other words, such families
show that the questions of Poincaré and Painlevé have a negative answer in gen-
eral. However, one can obtain an affirmative answer provided some additional
hypotheses are assumed.

The current interest in Poincaré’s problem was stimulated by several works,
like D. Cerveau and A. Lins Neto [21] and M. Carnicer [18]. Many authors have
been working on these problems and on some of its generalizations, see for instance
the papers M. Soares [75], J.V. Pereira [67], M. Brunella & L.G. Mendes [14], E.
Esteves & S. Kleiman [35], Cavalier & Lehmann [19], and Zamora [81].

The problem of bounding the genus of an invariant curve in terms of the degree
of a one-dimensional foliation on P¢ was considered for instance by Campillo,
Carnicer and de la Fuente [16]. They showed that, if C' is a reduced curve which
is invariant by a one-dimensional foliation F on Pg, then

2pa(C> -2

deg(C) <deg(F)—-1+a, (3)

where p,(C') is the arithmetic genus of C' and a is an integer obtained from the con-
crete problem of imposing singularities to projective hypersurfaces. For instance,
if C' has only nodal singularities then a = 0, and thus formula (3.1) follows from

[38).
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In [34], Esteves and Kleiman had extended Jouanolou’s work on algebraic Pfaff
equations on a smooth scheme V. They introduced the notion of a Pffaf field in
V', which is a nontrivial sheaf map 7 : {2j, — L, where L is a invertible sheaf on
V', and the integer 1 < s < n — 1 is called the rank of 7. A subvariety X C V
is said to be invariant under 7 if the map n factors through the natural map
QO |x — Q%. A Pfaff system on V' induces, via exterior powers and the perfect
pairing of differential forms, a Pffaf field on V.

In this thesis we establish upper bounds for the sectional genus of Gorenstein
varieties which are invariant under Pfaff fields on P}, where k is an algebraically
closed field of characteristic zero. More precisely, our result is the following.

Theorem. Let X C P} be a Gorenstein projective variety which is invariant
under a holomorphic Pfaff field F on P} whose rank is equal to the dimension of
X, and such that codim(Sing(X), X) > 2. Then

29(X, Ox (1)) — 2
deg(X)

S deg(:'r) - 17 (4)

where g(X, Ox (1)) is the sectional genus of X with respect to the line bundle Ox (1)
associated to the hyperplane section.

This generalizes a bound obtained by Campillo, Carnicer and de la Fuente in
[16, Theorem 4.1 (a)].

Let us return to the integrability problem. The work of J.P. Jouanolou in [49]
also gives an improvement and generalization of the Darboux theory of integrability
characterizing the existence of rational first integrals for Pfaff equations on P},
where £ is an algebraically closed field of characteristic zero. Namely, let w be a
twisted 1-form w € HO(PY, Qﬁmz ®O(m+1)), where m was called by Jouanolou the
degree of w !. Then follows from [49] Theorem 3.3, p.g 102, that w admits a rational
first integral if and only if possesses a infinite number of irreducibles hypersurfaces.
More generally, Jouanolou proved in [50] that on a complex compact manifold X
satisfying certain conditions on its Hodge-to-de Rham spectral sequence, a Pfaff
equation w € HY(X, Q% ® £), where £ is a line bundle, admits a meromorphic first
integral if and only if possesses an infinite number of invariant irreducible divisors.
Moreover, if w does not admit a meromorphic first integral, then the number of
invariant irreducible divisors is at most

dimc(HY(X, Q% @ £)/w AHY (X, Q%)) + p(X) + 1,

where p(X) is the Picard number of X.

!'Nowadays, a Pfaff equation w on P} is usually given by a global section of Q]%,k ® O(d+2),
where d is the number of tangency points of a generic line with the distribution induced by w.
Thus in the Jouanolou’s notation m = d + 1.
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E. Ghys in [42] drops all hypotheses given by Jouanolou showing that this result
is valid for all compact complex manifold. M. Brunella and M. Nicolau in [15]
proved this same result for Pfaff equations in positive characteristic and for non-
singular codimension one transversal holomorphic foliations on compact manifolds.
A discrete dynamical version of Jouanolou’s theorem was recently proved by S.
Cantat. He proved In [17] that if there exist N invariant irreducible hypersurfaces
with

N > dim(M) + "1 (M)

then f preserves a nontrivial meromorphic fibration.

We show a version of this results for vector fields on complete singular toric
varieties. Let Pao be a simplicial toric variety associated by a fan A and 7P, its
Zarisk’s sheaf. A singular holomorphic foliation F on PA is a global section of
TP ® Kz, where Kz is a invertible sheaf on Po. We denote T" the torus acting
on Pa and we call a T™invariant Weil divisor as T"-divisor. We use the existence
of homogeneous coordinate for simplicial toric varieties to prove the following re-
sult.

Theorem. Let F be an one-dimensional foliation on a complete simplicial toric
varity Pa of dimension n and picard number p(PA). If F admits

hO(PA, O(K]:)) + p(IP’A) +n

invariants irreducible T"-divisors, then F admit a rational first integral.

Observe that, in general PA is a singular variety with quotient singularities.
Therefore, in two dimension this result show that the Darboux-Jouanolou-Ghys’s
theorem is valid for a class of singular toric variety .

The affine and non-singular version of this result was proved by J. LLibre and X.
Zhang in [57]. They showed that if the number of invariant algebraic hypersurfaces
of a polynomial vector field Z in C”, of degree d, is at least

(d—l—n—l)
+n
n

then Z admits a rational first integral.

Moreover, we study one-dimensional foliations in two classes of toric varieties,
the multiprojective spaces and weighted projective planes. Under suitable hy-
potheses we obtain bounds for Poincaré’s problem in this varieties.

Finally, we extend some results due to J. V. Pereira for integrability of a one-
dimensional foliation F on a complex manifold M, using the concept of extatic
section with respect to the a finite dimensional linear system V C H°(M, O(D)),
where D is an effective divisor on M. The zero locus of extatic section is the
inflection locus of linear systems with respect to the vector field inducing F.
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Denote by e(V,F) the extatic section of F with respect V. if F is a holo-
morphic one-dimensional foliation on a complex manifold M, then a holomorphic
(or meromorphic) first integral for F is a holomorphic (resp. meromorphic) map
©: M — Y, where Y is a complex manifold, such that the fibers of © are invari-
ants by F. J. V. Pereira showed in [67] the following theorem:

Theorem. Let F be a one-dimensional holomorphic foliation on a complex man-
ifold M. If V is a finite dimensional linear system such that e(V,F) vanishes
identically, then there exits an open and dense set U where Fjy admits a holo-
morphic first integral. Moreover, if M s a projective variety, then F admits a
meromorphic first integral.

In the non-algebraic and non-compact cases the result above does not guar-
antees that the vanishing of extatic section ¢(V,F) implies in the existence of a
meromorphic integral first for F. We provided the following addendum for J. V.
Pereira’s theorem.

Theorem. Let F be a one-dimensional holomorphic foliation on a complexr man-
ifold M and V' a finite dimensional linear system. If e(V,F) vanishes identically
then F admits a meromorphic first integral © : M — P! |

J. V. Pereira in [67] showed that a foliation on P%, of degree d > 1, that does
not admit rational first integral of degree < k, it has at most

(k—]:2) N (d; 1) ((’22))‘

invariant curves of degree k.

Let (M, L) be a polarized projective variety and denote by .4 (F, V) the num-
ber of F-invariant divisors contained in the linear system V' C H°(M, O(D)). We
use the concept of degree of foliations and divisors with respect to polarization L
and extatic divisor to show the following result.

Theorem. Let F be a one-dimensional foliation on a polarized projective al-
gebraic manifold (M, L) and D an effective F-invariant divisor. Suppose that F
does not admit a rational first integral. Then

ho(V
degy (D) - (A (F.V) = h(V)) < (degy(F) — degy (M) - ( (2 )>,
where h°(V') = dimcV. In particular, we have that:

i) the number of divisors F-invariant contained on the linear system V C
|O(D)] is at most

(degy (F) — deg(M)) (hO(V)
deg,, (D) 2

) + RhO(V),
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where h°(V') = dimcV.
i1) if H C |O(D)] is a pencil and suppose that N (F,H) > 2, then

degy (D) < degp(F) — deg (M)

The part 7i) of this theorem give us a numerical criteria to decide if a holomor-
phic foliation F on the polarized variety (M, L) admits a rational first integral.
That is, if we suppose that the number of F-invariant divisors contained on the
pencil H is > 2 and F possesses a invariant effective divisor C' € H satisfying the
condition

deg;,(C) > deg(F) — deg, (M),

then F admit a rational first integral. This result is related to a Lins Neto conjec-
ture. In [53] he stated the following problem:

“Given d > 2, is there M(d) € N such that if a foliation on P2, of degree d,
has an algebraic solution of degree greater than or equal to M(d), then it has a
rational first integral?”

Let F be a one-dimensional foliation on P of degree d > 2. It follows that if

the number of F-invariant hypersurfaces of degree k contained on a pencil of the
same degree is > 2 and k > M(d) = d — 1, then F has a rational first integral.

14



Chapter 1

The number of invariant divisors
and Poincaré’s problem

1.1 The degree of foliations with respect to a
polarization

Let (M, L) be a n-dimensional polarized projective variety, i.e, M is smooth and
L is a very ample line bundle on M. The degree of a holomorphic vector bundle
E on M related to the polarization L is defined by

deg, (F) = / e (B) - 1L,

M

where / denote the degree of cycle.
M

Proposition 1.1.1. Let H be a line bundle on M such that H°(M, H) # {0}.
Then deg; (H) > 0.

Proof. See [52, Theorem 1.24]. O

Remark 1.1.1. Let D be an effective divisor on M. The degree of D is defined
by deg, (O(D)). Since D is effective we have that H°(M,O(D)) # {0}, thus
deg, (O(D)) = 0.

Definition 1.1.1. A one-dimensional foliation on M is a global holomorphic sec-
tion of TM ® Kz, where Kz is a line bundle on M.

Let D be an analytic hypersurface on M defined locally by functions {f, €
OUa)}Yen, where {U,}en is an open covering of M. If Uys = Uy NUz #
then there exist f,3 € O*(U,), such that f, = f.sfs. Let F be a holomorphic
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foliation given by collections ({Ua}; {Ua}; {gap € OF(Ua)})aea on M, where g,p is
the cocycle inducing Kz. Consider the following functions

PP =9 (fa)p € O(Us N D).

«

If U, N"Uz N D # 0, using Leibniz’s rule we get CC(f’D) = fagga,@Céf’D)- With this
we obtain a global section (") of the line bundle (K ® O(D))|p. The tangency
vartety of F with D is given by

T(F,D) = {p € D;¢"P(p) = 0}.

Definition 1.1.2. Let (M, L) be a polarized variety and F an foliation on M of
dimeinsion one. The degree of F with respect to the polarization L is the intersec-
tion number

deg, (F) = / T(F,L)- "2
L
Proposition 1.1.2. Let F be a foliation on a polarized variety (M, L). Then
deg, (F) = deg, (Kr) + deg, (M),
where deg; (M) = deg; (L) is the degree of M with respect to L.

Proof. We have the adjunction formula 7 (F, L) = (K# + L), and by definition

degp(F) = /T(f, L)-L”‘Qz/(Kf+L).L"—2

— /K]:-Ln_l—l—/Ln
M

M

= deg,(Kr) + deg,(M).

We shall assume deg; (Kx) > 0, or equivalently deg, (F) — deg, (M) > 0.

Example 1.1.1. Let F be a foliation on M, where Pic(M) ~ Z. We can take a
hyperplane section H = H N M to be a positive generator of Pic(M), so we denote
by Opr(k) := H®* the k-th tensor power of H. If we write Kz = Oy(d — 1), then
deg(Kx) = (d — 1) deg(M). Hence

deg(F) = deg(Kr) + deg(M) = (d — 1) deg(M) + deg(M) = d - deg(M).

In the case where M = P" we will have, as is known, that deg(F) = d.
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1.2 The extatic divisor

The method adopted here stems from the work of J. V. Pereira [67], where the
notion of extactic variety is exploited. In this section we digress briefly on extactic
varieties and their main properties.

Let H be a holomorphic line bundle on M. Consider the linear system V C
HO(M, H) and take an open covering {U, }aea of M which trivializes H and K.
In the open set U, we can consider the morphism

TH V@ 0y, — Of,

defined by

t? t(k_l)
To(lk)(sa) = Sq T+ Xa(sa) “t+ ng(Sa) oy Tt Xékil)(sa) . (k 1)"

2!
where s, and X, are local representations, respectively, of a section s € V C
H°(M, H) and the section Xz € H*(M,TM ® Kr) inducing F. If U, NU, # 0
then s, = goysy and X, = for X, where go., foy, € OF(U,) are the cocycles which
define, respectively, the line bundles H and K. Using the compatibility described
above and Leibniz’s rule we get

Sa = JaBSp
Xa(sa) = faﬁXﬁ(goz'y) © S8 + gaﬂfaﬁ : Xﬁ(sﬂ)

Following this process up to order £ = dim¢ V', we obtain

Denoting the k x k matrix above by O.5(F,V) € GL(k, Oy, ,), we see that
Ous(F,V)(p) - Opu(F,V)(p) =1, forall pel, NU,

Ous(F, V)(p) - Opa(F, V)(p) - ©ra(F,V)(p) = I, forall p € Us MUz NU,.

That is, the family of matrices {O,(F,V)}a, defines a cocycle of a vector bun-
dle of rank k£ on M that we denote by ij:_lH . Now, using the trivializations
{Oay(F,V)}a,pen we get the morphisms

T® .V © Oy — JE'H.
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Taking the determinant of 7®) we have the morphism
det(T™) : N*V @ Oy — N JE1H,

and tensorizing by (A" V))* we obtain a global section of A* JEH® (A" V)* given
by

e(F,V): Oy — N JETH @ (N V)™
Remark 1.2.1. Note that the cocycle of /\k Jﬁ_lH is given by

k

Aet(Or (7, V) = oy 13
where g,3 and f,s are respectively the trivializations of H and Kz. Therefore, we
obtain the isomorphism A" JE ' H ~ H®* @ (Kf)®(§).
Definition 1.2.1. The extatic divisor of F with respect to the linear system V C
HO(M, H) is the divisor E(F,V) = (e(F,V)) given by the zeros of the section

e(F,V) e (M, AT H @ (A V)*> .

The section e(F,V) is called extatic section of F with respect V.

J. V. Pereira [67] obtained the following results, which elucidate the role of the
extatic divisor :

Proposition 1.2.1. ([67], Proposition 5) Let F be a one-dimensional holomorphic
foliation on a complex manifold M. If V is a finite dimensional linear system,
then every F-invariant hypersurface which is contained in the zero locus of some
element of V. must be contained in the zero locus of E(V,F).

Proof. Let {si,..., s} be a basis for V.C H°(M, H). On the open U, the extatic
section is given by

s¢ 55 X sp
Xa(st)  Xalsy) Xa(sy)
e(V,F)q = det )
Xa ' (s9) Xa7H(s2) - XaTH(sP)

where X, is a vector field that induces F on U, and s{ is local representation of
the section s;, ¢ = 1,..., k. Let f, be the local equation defining an element on
V' and suppose that (f, = 0) is F-invariant. Change basis so that V' is generated
by fa,V2,...,ve. It follows that X7 (f,) = bl fe, 1 < j < k —1, where hJ is an
analytic function.

]
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If F is a holomorphic one-dimensional foliation on a complex manifold M,
then a holomorphic (or meromorphic) first integral for F is a holomorphic (resp.
meromorphic) map © : M — Y, where Y is a complex manifold with dim(M) >
dim(Y), such that the fibers of © are invariant by F. J. V. Pereira showed in [67]
the following theorem:

Theorem 1.2.1. ([67], Theorem 3). Let F be a one-dimensional holomorphic
foliation on a complex manifold M. If V s a finite dimensional linear system
such that e(V,F) vanishes identically, then there exits an open and dense set U
where Fy admits a first integral. Moreover, if M is a projective variety, then F
admits a meromorphic first integral.

In the non-algebraic and non-compact cases Theorem 1.2.1 does not guarantee
that the vanishing of the extatic section e(V, F) implies the existence of a mero-
morphic first integral for 7. We show that if (V, F) vanishes identically, then F
admits a meromorphic first integral with values in P*.

Theorem 1.2.2. Let F be a one-dimensional holomorphic foliation on a com-
plex manifold M and V' a finite dimensional linear system. If e(V,F) vanishes
identically then F admits a meromorphic first integral © : M — P! .

Proof. Suppose that the foliation F is given by the collections

({ua}7 {Xa}v {gaﬁ € O*(ua N ua)})aﬂ€A~

We will show the existence of a local meromorphic first integral on each open U,,.
That is, there exists a meromorphic function 6% such that X,(0%) = 0, where X,
is the vector field defining F on U,. After this, we must prove that % = 6° on
U, NUz # 0, thus we shall obtain a global meromorphic function defining a first
integral for F. For the existence of #” on U,,, we will use the same arguments given
in the proof of Theorem 4.3 of [24] for the case of polynomial vector fields on C2.

Let {s1,...,s;} be a C-base for V. Suppose that (V, F) vanishes identically.
Then on the open U, we have that

9 sg . 52
Xao(s7) Xa(s3) o Xa(sy)
e(V,F)q = det =0,
XEHst) X5 (o) oo XETU(sR)

where X, is a vector field that induces F on U,, and s is the local representation
of the section s;, i =1,... k.
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To say that e(V,F), = 0 means that the columns of the above matrix are
dependent over the field of meromorphic functions .# (U,,). Hence, there are mero-

morphic functions 6¢,--- , 07 on U,, such that
k
M =Y 09X.(s$) =0, 0<i<k—1. (1.1)
j=1

Now, let r(«) be the smallest integer with the property that there exist mero-
morphic functions 07, --- ,0% . and s7,..., ) € V', linearly independent over C,

2 O1(a)

e
such that (1.1) holds. We clearly have 1 < r(a) < k and we may assume 6, = 1.
Applying the derivation X, to both sides of (1.1) we get

«

Xo( M) = Xo(09) XL (s7) 4+ + Xa(Or() Xi(s50) +6070) X;“(sj}(a)) =0 (1.2)
0
1

for all 0 <i < r(a) — 2. Subtracting (1.2) from M, we obtain
Xo(MP)=M7 = Xq (9?)){3(3?)*‘ : ‘+Xoc(9g(a)—1)Xﬁy(3r(a)fl) =0, 0<i<r(a)-2.

By the minimality of r(a) we must have Xq(67) = -+ = Xa(07,)_;) = 0 and
hence, provided these are not all constants, we have a first integral for X, on U,.
This in fact occurs because, since M is

MG =07y + - + 071570 1 + 57y =0,

we conclude that not all the 6%’s could be constant since s, ..., Sp(a) € V are
linearly independent over C. Now we will show that r = r(a) = r(f), for all
a,f € A. Suppose that r(a) < r(6). In U,z we have that s¢ fagsf, 1=
L...,r(a), and X, = gapXp, With fos,gag € O*(Uapg). Using this we conclude
that X3(609) =0 on U,g, for alli =1,...,7(a) — 1, and

G?Sf +ooet 9? 1Sr(a) 1 + Sr(a) =0.

Applying the derivation Xz in this equation and using that Xg(65) = 0, for all
i=1,...,r(a) — 1, we get

7(a)
Zeyxg(sf) =0, 0<i<r(a)—1,

by the minimality of r(3) we can conclude that 69 = --. = 07y = 0, but this
implies that Mg = s, = 0, and this is a contradiction. The case r(8) < r(a) is
similar.

Now, consider the equations

07sy + - +0 157 +s =0
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0050 4 407 s 452 =0.

Subtracting these equations we obtain
(07 — 6755 + -+ + (07, — 6] 1)s7, = 0.

Define h?” = (0% — 6°) € . (Uyp), i = 1,...,7 — 1. Applying the derivation X,
to the last equation and using X, (0%) = X, (67) = 0 we get

r—1
D> hPXi(s5) =0, 0<i<r-—2
j=1

Again, by the minimality of 7 we have that h%” = ... = B’ =0, i.e, 02 = 0 on
Unp, for all , i =1,...,r — 1. Therefore, we obtain a meromorphic first integral
©' locally given by @Iiu =02 forsomei=1,...,r — 1.

: O

Let D =}__a,D, be an effective divisor and F a one-dimensional foliation on
the complex manifold M. We say that D is F-invariant if D, is invariant by F
for all ~.

Theorem 1.2.3. Let F be a one-dimensional foliation on a polarized projective
algebraic manifold (M, L) and D an effective divisor. Suppose that F does not
admit a rational first integral. Then

deg;, (D) - (N (F, V) = B*(V)) < (degy,(F) — deg, (M)) - (h (2V>>,

where N (F,V) is the number of F-invariant divisors contained on the linear
system V. C |D| and h°(V') = dimcV. In particular, we have that:

i) the number of F-invariant divisors contained on the linear system V C
|O(D)] is at most

(degy, (F) — deg,(M)) ) (ho(v)
deg. (D) 2

) + V),
where h°(V') = dim¢ V.
it) if V. .C |O(D)| is a pencil and N (F,V) > 2, then

deg, (D) < deg(F) — deg,(M).

Proof. Tt follows from theorem 1.2.1 that if F does not have a rational first inte-
gral, then e(F,V) # 0. Thus, the extatic section & defines an effective divi-

(F:V)

sor £(F, V) whose associated line bundle is A* J51O(D) @ (A" V)*, where k =
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dim¢ V' < R%(D). Let A (F,V) be the number of divisors of V' C H(M,O(D))
invariant by F. It follows from proposition 1.2.1 that every divisor C' € V' invari-
ant by F is contained in the extatic divisor £(F, V). Using this fact we can claim
that

deg, (D) - A (F,V) < deg (E(F,V)).

Indeed, it is enough to group the F-invariant divisors of the following form
N (F,V)
EF V)= > Ci+R
j=1

where C; € V is a divisor invariant by F and R is a divisor without F-invariant
divisor contained in V. Since deg;(C;) = deg; (D), for all j =1,..., 4 (F,V),

we get
N (FV)

deg (D) A (F,V) = ) degy(C;) < deg,(E(F,V)).
j=1
This shows the claim above. However, the line bundle associated to the extatic
divisor £(F,V) is given by A" JE1O(D) ® (A" V)*. This implies that
EF V=N T @ (N V)
It follows from remark 1.2.1 that A" J5O(D) ~ O(D)** ® (Kf)@’(l;), thus
E(F V)] = 0(D)* & (Kx)*B) @ (N V)"
Calculating the degree deg; (E(F,V)), we obtain

deg, (E(F,V)) = deg, (O(D)®’“ ® (Kf)®(§)> + deg;, ( A v*)
~———

= k- deg,(D) + deg,(Kr) (g) :

Finally, the result it follows from deg; (D) - A (F,V) < deg,(E(F,V)) and propo-
sition 1.1.2. [l

Proposition 1.2.2. Let F be a foliation without rational first integral. If E(F,V)
1s irreducible then F does not admait invariant divisors contained in the linear
system V C |O(D)].
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Proof. Suppose that F possesses an invariant divisor C' € V. Since all divisors
C € V invariant by F are contained in the extatic divisor and by hypothesis
E(F,V) is irreducible, we have that C' = E(F, V). But

o, (C) = degy (D) < - dey (D) + dogy () (3 ) = ey (€7, V).

which is an absurd. O

Let F be a foliation and H C PH°(M, O(D)) a pencil. Suppose that A (F, H) >
2. Tt follows from Theorem 1.2.3 part i) that if F possesses an invariant effective
divisor C', contained in the pencil H, satisfying the condition

deg, (C) = deg (D) > deg, (F) — deg, (M)

then F admits a rational first integral. This result is related to a conjecture of
Lins Neto. In [53] he stated the following problem:

“Given d > 2, is there M(d) € N such that if a foliation on P?, of degree d,
has an algebraic solution of degree greater than or equal to M(d), then it has a
rational first integral?”

Let F be a one-dimensional foliation on P™ of degree d > 2. It follows that if
the number of F-invariant hypersurfaces of degree k£ contained on a pencil of the
same degree is greater than 2 and k > M(d) = d — 1, then F has a rational first
integral.

J. Moulin Ollagnier showed in [64] that when d = 2 this question has a negative
answer. He exhibited a countable family of Lotka-Volterra foliations given by

9
0z

20+ 1

SLV(£) = x(y/2 + z)% +y(2e+ a:)(% +2 ( - %—i_lx>
without rational first integrals which has an irreducible algebraic solution of degree
2¢. C. Christopher and J. LLibre in [23] also exhibit a family of foliations of degree
d = 2 without rational first integral which contains irreducible algebraic solutions
of arbitrarily high degree. But, it follows from Theorem 1.2.3 part i) that, for a
foliation of degree d = 2 the number of invariant curves of degree k contained on
a pencil of the same degree is < 2.

Bounding invariant hyperplane sections

Using Zak’s bound for h°(M, O,,(1)) we get the following.
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Corollary 1.2.1. Let F be a one-dimensional foliation on a smooth algebraic
variety M™ C PY. Suppose that F does not admit a rational first integral, then
the number of F-invariant hyperplane sections is at most

<deg(.7—") _1> | ([%]) .\ l(4n—N+3)2} |

deg(M) 8(2n — N +1)

where [z] denote the largest integer not exceeding x.

Proof. It follows from theorem 1.2.3, and the fact that degy, (1)(O,,(1)) = deg(M),
that the number of F-invariant hyperplane sections is at most

(ﬁﬂfl_g.(m“LOMU)

Tos (1] ) > +10(M,0,,(1)).

Now, the result follows from

01,0, < [P,

see [79] pg. 117, Theorem 2.10. O

Example 1.2.1. Let F be a one-dimensional foliation on a smooth algebraic
variety M™ C PY. Suppose that F does not admit a rational first integral. Then,
if N < 2n, the number of F-invariant hyperplane sections is at most

deg(F) ) ("% (" +2

deg(M) 2 2
This is a consequence of corollary 1.2.1 and of the following result (see [79] corollary
2.9): if N < 2n, then h°(M, 0, (1)) < ("3?).

Example 1.2.2. We recall that a nonsingular algebraic variety M™ C PY is called
linearly normal if h°(M, O, (1)) = N + 1. Zak’s Linear Normality theorem say
that if N < 3n+1 then M™ is linearly normal, see [80]. Let F be a one-dimensional
foliation on a linearly normal smooth algebraic variety M C P¥. Suppose that F
does not admit a rational first integral. Then it follows from Corollary 1.2.1 that
the number of F-invariant hyperplane sections is at most

(e 1) (7)1
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1.3 Optimal examples on projective spaces

In this section we will consider foliations on P¢. We will construct some examples
of foliations with the maximum number of invariant hyperplanes. Let F be a
one-dimensional holomorphic foliation on P¢, of degree d > 0, and suppose that F
does not admit a rational first integral. It follows from example 1.2.2 that number
of F-invariant hyperplanes is bounded by

n+1+<”;1>(d—1).

The next result gives us the number of invariant hyperplanes by a foliation on

¢ which contain a fixed ¢-plane, particularly the number of invariant hyperplanes

through a point and the number of invariant hyperplanes containing an invariant
line.

Corollary 1.3.1. Let F be a one-dimensional holomorphic foliation on P¢ of
degree d > 0 and suppose F does not admit a rational first integral. Then, the
number of F-invariant hyperplanes which contain a fized {-plane, 0 < { < n — 1,

15 bounded by
n— 0+ <”;€>(d—1).

Proof. We may assume the /-plane L is the base locus of the linear subsystem
Ve C |Opr(1)] generated by g1, -« , 2,. Any hyperplane containing L¢ belongs
to V,,_¢. The result follows by observing that h°(V,,_,) = n — /. O

Consider the vector fields, defined in affine coordinates zy = 1, by

1 Y d—1
X} = 5+ iZQ(ZZ 1)z o
: ~ 0 n B

Xﬁ:Z(zf+---+z§l+---+zZ) '+'Z (Zid_l—l)ZiaZ’ 2<(<n-—1.

i=1 i=l+1

Remark that the foliations F x4 on P2 induced by X4, 0 < ¢ <n—1, do all leave
the hyperplane at infinity invariant.

XY is a n-dimensional version of a member of the so called “family of degree

four” in P4, one of the examples given by A.Lins Neto in [53]. A straightforward

calculation shows that the n+1+ (";1) (d—1) hyperplanes listed below are invariant

by Fxo:

7



It’s worth remarking that all the singularities of X$ have the same analytic type
and are determined precisely by the intersections of these hyperplanes.

X; leaves invariant the line L; = {25 = --- = 2, = 0}, which is the base locus
of the linear system Z?:Q Aiz;. Moreover, n — 1 + (";1) (d — 1) hyperplanes listed
below are X;-invariant and contain L':

(z2...2n) H (2871 — z?lil) = 0.

2<i,5<n

As for Xy, 2 < ¢ < n —1, the ¢-plane L, = {2041 = -+ = 2z, = 0} is left

invariant, as are the n — £ + (”;Z) (d — 1) hyperplanes, which do all contain L,

(ze01-.2) [ =2 =0

1+1<i,5<n

In this case the (n — ¢)-plane L} = {z; = --- = 2, = 0} is Fy,-invariant whereas
the hyperplane {z; = 0}, 1 <i </ are not.

Remark 1.3.1. The foliation F x9 on P¢ induced by the vector field X9 is the
unique foliation of degree d that leaves invariant the following arrangement of

hyperplanes
Ay = {(zo...zn) H (287t — Z;l_l) = 0} :

0<i,j<n

Indeed, the singular set Sing(F) of F is isolated and non-degenerated. On the other
hand, we can see that Sing(F) is determined by intersection of the hyperplanes of
oy 1t follows from [43] that F is unique.

The linear extatic

Consider the extatic divisor of a foliation F on P¢, associated to the linear system

|O(1)| = HY(PZ, O(1)) ~ (20, ..., 2n)c,

given by
X(Zo) X(Zl) X(Zn>
E (JO1)|, Fx) = det ,
X"(z0) X™(z1) -+ X"(zn)



Let Z(E(|O(1)|,X)) be the extatic variety. This variety will be called linear
extatic.

Lemma 1.3.1. Let X be a polynomial vector field on C" and V = Z(f1,..., fx)
an irreducible complete intersection. Then V is X -invariant if and only if X(f;) €

Z(f1, -y fr), foralli=1,... k.

Proof. Consider the polynomial map F = (fi,..., fx) : C® — C*. Suppose that
VY = F~0) is X-invariant. Then

DF,-X(p) = (X(f))p),...,X(fo)p) = 0,

for all p € V. This implies that X(f;) € I(Z(Z(f1,..., f¢))). Therefore, from
Hilbert’s zeros theorem and using that V = Z(Z(f1,..., f¢)) is irreducible, we get

X(fl) EI(flw'wff)a

forallz=1,...,¢. The converse is immediate. O

Proposition 1.3.1. Let F be a foliation on P¢ that does not admit a rational
first integral. Then all the F-invariant linear subspaces are contained in the linear
extatic Z(E (|O(1)], Fx)), where X is a vector field which induces F in homoge-

neous coordinates.

Proof. If F admits no rational first integral then E(]O(1)], X) # 0. Every linear
k-codimensional subspace on P¢ is the intersection of the zeros of k& homogeneous
polynomials of degree one, linearly independent, let us say fi,..., fr € |O(1)].
Then we can take

{fh"'7fk7hk+17"’7hn+1}

to form a basis for |O(1)|. Now, if Z(f1,..., fx) is F-invariant, it follows from
proposition 1.3.1 that X(f;) € Z(f1,..., fx), for all i = 1,... k, and so we get
XI(f:) € Z(f1, ..., fr). Expanding the determinant

fl fk hn+1

X(f) - X(fe) o X(hata)
E(O1)],X) = det

X(f) - X™fe) oo X"(hng)

in any of the k-th first columns we see that F (|O(1)|, X) € Z(f1,. .., fr). Therefore

Z(E(OW)], X)) D Z(f1,- - fr):
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Chapter 2

Foliations on simplicial toric
varieties

We use the existence of homogeneous coordinates for simplicial toric varieties
to prove a result analogous to the Darboux-Jouanolou-Ghys integrability theo-
rem for the existence of rational first integrals for one-dimensional foliations. We
study one-dimensional foliations in two classes of toric varieties, the multiprojec-
tive spaces and weighted projective planes. Under suitable hypotheses we obtain
bounds for Poincaré’s problem in thise varieties.

2.1 Toric Varieties

Firstly, we recall some basic definitions and results about simplicial complete toric
varieties emphasizing Cox’s quotient construction and homogeneous coordinates.
For more details, we refer the reader to the literature (e.g., to [32], [28], [40], [62]).
Let N be a free Z-module of rank n and M = Hom(N, Z) be its dual. A subset
0 C N ®z R ~ R" is called a strongly convex rational polyhedral cone if there
exists a finite number of elements ¥4, ..., Y, € Z¢ in the lattice N such that

U:{a1191+~-~+ak19k;a2- ER,(LZ» ZO}

We say that a subset 7 of o given by some a; being equal to zero is a proper face of
o, and we write 7 < 0. A cone o is called simplicial if its generators can be chosen
to be linearly independent over R. The dimension of a cone o is, by definition, the
dimension of a minimal subspace of R" containing o.

Definition 2.1.1. A non-empty collection A = {o1,...,0s} of k-dimensional
strongly convex rational polyhedral cones in N ®7 R ~ R" is called a complete
fan if it satisfies:

i) ifo € A and T <0, then T € A;
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i) if 0,05 € A, then 0, No; < 0; and 0; Noj < 0j;
ZZZ) N®ZR:01U"'U0'5.

The dimension of a fan is the maximal dimension of its cones. An n-dimensional
complete fan is simplicial if all its n-dimensional cones are simplicial.

Let A be a fan in N ®z R. It follows from Gordan’s Lemma (see [41]) that
each k-dimensional cone 0" in A (let us say generated by v;;) defines a finitely
generated semigroup o N N. The dual (n — k)-dimensional cone

6:{mEM®ZR7 <m,U7;j> ZO}

is then a rational polyhedral cone in M ®7 R and ¢ N M is also a finitely generated
semigroup. An affine n-dimensional toric variety corresponding to o is the variety

U, := SpecC[s N M].

If a cone 7 is a face of o then 7 N M is a subsemigroup of & N M, hence U, is
embedded into U, as an open subset. The affine varieties corresponding to all
cones of the fan A are glued together according to this rule into the toric variety
PA associated with A. It is possible to show that a toric variety Pao contains a
complex torus T" = (C*)™ as a Zariski open subset such that the action of T on
itself extends to an action of T" on Pa.

Theorem 2.1.1. [41] Let Pa be the toric variety determined by a simplicial com-
plete fan A. Then Pa is projective and has quotient singularities.

For more details see [41].
Example 2.1.1. T", C" and P" are toric varieties.

Example 2.1.2 (Weighted projective spaces). Let @ = {wy,...,w,} be the set
of positive integers satisfying the condition ged(wy,...,w,) = 1. Choose n + 1
vectors eq,...,e, in R™ such that R™ is spanned by e, ..., e, and satisfies the
linear relation

woeg + -+ + wpe, = 0.

Define N to be the lattice in R™ consisting of all integral linear combinations of
€o, - -, €n. Let A(w) be the set of all possible simplicial cones in R™ generated
by proper subsets of {eg,...,e,}. Then A(w) is a rational simplicial complete
n-dimensional fan. The corresponding variety PA(, is the n-dimensional weighted
projective space P(wy, ..., w,). We will see in the next section that P(wy, ..., w,)
is a quotient of C"*'\{0} by the diagonal action of the torus C*

(20, 2n) > (A2, ..., A""z,), A e C".
In particular, if (w, ..., w,) = (1,...,1), then P(1,...,1) =P

Example 2.1.3 (Multiprojective spaces). If X and Y are toric varieties then
X xY sois. Thus, the multiprojective spaces P™ x - - - x P" are examples of toric
varities.
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2.1.1 The toric homogeneous coordinates

Let Pao be the toric variety determined by a fan A in N ~ Z". As usual, M
will denote the Z-dual of N, and cones in A will be denoted by o. The one-
dimensional cones of A form the set A(1) = {t1,...,9,4,}, where ¥; denotes
the unique generator of the one-dimensional cone. If ¢ is any cone in A, then
o(1) = {v; € A(1); p C o} is the set of one-dimensional faces of 0. We will assume
that A(1) spans Ng := N ®z R.

Each ¥; € A(1) corresponds to an irreducible T-invariant Weil divisor D; in
Pa, where T = N ®z C* is the torus acting on Pa, see [41, chapter 3]. It follows
from [41, chapter 5] that the T-invariant Weil divisors on Pa form a free abelian
group of rank n+r, that will be denoted Z"*". Thus an element D € Z"*" is a sum
Z?j{ a;D;. The T-invariant Cartier divisors form a subgroup Divy(Pa) C Z"".

Each m € M gives a character " : T — C*, and hence x™ is a rational
function on Pa. As is well-known, x gives the Cartier divisor

n-+r

Z —<m, ’191>D1,

i=1
see [41, section 3.3]. We will consider the map

M — zZntr
m — Y —(m, %) D;.

This map is injective since A(1) spans Ng. By [41], we have a commutative
diagram
0 - M — Divy(Pa) — Pic(Pn) — 0
I ! ! (2.1)
0 - M — 72"  — A,.1(Pa) — 0,

where A,,_1(Pa) is the Chow group of (n—1)-cycles. For each ¥; € A(1), introduce
a variable z;, and consider the polynomial ring

S = Clz;;0; € A(1)].

Note that a monomial []Z] z5” determines a divisor 7" a;D; and to emphasize
this relationship, we will write the monomial as z”. We will grade S as follows,
the degree of a monomial z” is deg(2?) = [D] € A,_1(P,).

Using the exact sequence (2.1), it follows that two monomials []/) 2 and
H?:f 2% in S have the same degree if and only if there is some m € M such that
a; = (m,¥;) + b; foreach i =1,...,n+r. Then

S= P S

aEAn_l(PA)
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where S, = @ C - 2P. Sis called Coz’s homogeneous coordinate ring of the
deg(zP)=a
toric variety Pa.
Let O(D) be the coherent sheaf on X determined by a Weil divisor D, then

Sdeg(D) = HO(X> O<D))7
moreover there is a commutative diagram

Sdeg(D) @ Sdeg(E) — Sdeg(D+E)
! !
HO(X,O(D))®HO(X,O(E)) — HO(X,O(D—l-E))

where the top arrow is polynomial multiplication. If P is a complete toric variety,
then:

i) S, is finite dimensional for every «, and in particular, So = C.

i) If a = [D] for an effective divisor D = 3 7" a;D;, it follows from [27] that
dime S, = #(Zp N M), where

Pp={m e Mg;(m,V;) > —a; foralli=1,...,n+r}.
We get the monomial

2% = ||zz

9;&o

which is the product of all variables not coming from edges of o. Then define
Z(A) =V (2°;0 € A) C C™". Now consider the group G(A) C T" given by

G(A) = {(tl,...,tr) e [t =1, = 1,...,r}
=1

Define an action of G(A) on C"" — Z(A) by

G(A) x (C™" — Z(A)) — Crtr — Z(A)
(g, (21, ceey ZnJrr)) — (g(Dl)Zh e 79<Dn+r>zn+r>’

Theorem 2.1.2 (D. Cox, [27]). If Pa is a n-dimensional toric variety where
D1, .o, ey span R™, then:

i) Pa is a universal categorical quotient (C"" — Z)/G(A)
ii) Pa is an orbifold (C**" — Z)/G(A) if, and only if, Pa is simplicial.

Remark 2.1.1. We have that cod(Sing(Pa)) > 2. See [27].
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To describe the action of G(A) when it has no torsion we consider the lattice
of relations between generators of A, i.e., r linearly independent relations over Z
between ¥4, ..., 0,1,

anty + -+ al(n—l—r)ﬁn—ﬁ—r =0
: : (2.2)
arlﬁl + ar(n+r)7~9n+r =0

Thus by (2.1) the factor of G(A) isomorphic to T” defines an equivalence relation
on (C™" — Z)/G(A): let u,v € C"*" — Z, with v = (vq,...,Un4,), then u ~ v if,
and only if,

F A, A) €T = (AP X%y, AT ATy, ), (2.3)

Therefore, when G(A) has no torsion, the equivalence relation on (C"*" — Z) is
given by this formula. If f € S,, it follows from [6, Lemma 3.8] the Euler’s formula

Zdef = 61<Oé)f,

where §; € Cand R; = Z?;T aijzij%,z' =1,...,r. Moreover, Lie(G) = (Ry, ..., R.),
see [27].

An element o € A,,_1(Pa) gives the character x® : G(A) — T. The action of
G(A) on C™" induces an action on S with the property that given f € S | we
have

feS.ae flg-2)=x%9)f(z), for all ge G(A), € C"".

The graded pieces of S are the eigenspaces of the action of G(A) on S. We say
that f € S, is homogeneous of degree . It follows that the equation {f(z) = 0}
is well-defined in P and it defines a hypersurface.

We shall consider the subfield of C(z1, ..., z,.,) given by

[A{'(]P)A> = {g € C('zla s >Zn+r);deg(P) = a,deg(Q) = ﬁa a:ﬁ € Anl(PA)} :

Thus, the field of rational functions on PA, denoted by K (PA), is the subfield of

K (PA) such that deg(P) = deg(Q).

2.1.2 Existence of rational first integrals

In this section we shall use the homogeneous coordinates for toric varieties to prove
the following result.

Theorem 2.1.3. Let F be a one-dimensional foliation on a complete simplicial
toric varity Pa of dimension n and Picard number p(Pa). If F admits
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N(PA, Kj:, n) = hO(PA, O(K]:)) + p(IP’A) +n
invariant irreducible T™-divisors, then F admits a rational first integral.

It follows from the Hirzebruch-Riemann-Roch theorem for toric varieties (see
[41]) that

R(Pa, O(KF) = Y % deg([K 7JF N Tdy(Pa)),

where T'di(PA)) is the k-th homology Todd class. Therefore, we have that
N(Pa, Kr,n) =31 5 deg([Kx]F N Td(Pa)) + p(Pa) + n.

Observe that, in general, PA is a singular variety with quotient singularities.
Therefore, in two dimensions this result shows that the theorem of Darboux-
Joanoulou-Ghys is valid for a class of singular toric varieties.

One-dimensional foliations

We use the generalized Euler exact sequence for simplicial toric varieties in order
to consider a holomorphic foliation as a polynomial vector field in homogeneous
coordinates.

Let Pa be a complete simplicial toric variety of dimension n, and denote Op, :=
O. There exists an exact sequence known as the generalized Euler sequence [27]

n+r
0— 0% — @O(Di) — TPA — 0,

i=1
where TPp = Hom(QﬁDA, O) is the so-called Zariski sheaf of Pa. Let O(dy, ..., dytr) =

O d;D;), where Y77 d;D; is a Weil divisor. Tensorizing Euler’s sequence
by O(dy, ..., d,..) we get

n-+r

0= O(dy,....dni)* - @O, ... di+1, .. dpir) = TPa(dy, ... dpyy) — 0
=1

Definition 2.1.2. A holomorphic foliation F on Pa of multidegree (dy, ..., dpiy)
is a global section of TPA ® O(dy, ..., dysr).

Proposition 2.1.1. Let Fol((dy,...,dn+),Pa) be the space of foliations of multi-
degree (dy, ..., dpy,). Let DI = (d; +1)D; + 374 d;D; and D = 317 d;D;. Then
i#

Fol((dy, ... ,dny,),Pa) is isomorphic to a complex projective space PN~ where
n+r
N =Y #(Ppi N M) —r-[#(Ppn M)
j=1
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From the above exact sequence, we conclude that a foliation on Pa of multide-
gree (dy,...,d,) is given by a polynomial vector field in homogeneous coordinates

of the form
n—+r a

Xzzﬂaz/

where P; is a polynomial of multidegree (dy,...,d; +1,...,d,) foralli=1,... r,
modulo addition of a vector field of the form Z?jf g;R;. Therefore

SZﬂg("T) = {p € Cn+r;Rl ARERNA Rn+r /\X(p) = 0}

Example 2.1.4 (Rational scroll). Let ay,...,a, be integers. Consider the T?*-
action on (C? — {0}) x (C™ — {0}) given as follows:

T2 x (C* = {0}) x (C* = {0}) — (C* —{0}) x (C* —{0})

(), ((e1,22), (21,5 20))  — (Azq, Ama), (AT 21, .o, AT 2,).

The rational scroll F(ay, ..., a,) is the quotient variety of (C? — {0}) x (C" — {0})
by this action.
Let E = @}, Opi(a;) be the vector bundle over P'. Write P(E) for the

projectivized vector bundle
P(E) — P!

and let Op(p)(1) be the tautological line bundle. It is possible show that F(a, ..., a,)
is the image of P(&) by the embedding given by Opg)(1), see [46].
Tow examples of this construction are:

1. F(0,...,0) ~ P! x P
2. F(a,0) is a Hirzebruch surface; see [71].

We have that Pic(F(ay,...,a,)) ~ ZL®ZM, where L is the class of a fibre of 7
and M the class of any monomial 2825z;, with b+ ¢ = ;. If all the a; > 0, then M
is the divisor class of the hyperplane section under the embedding F(ay, ..., a,) C
Prt2izia=l Let O(dy,ds) := O(dyL +dyM). Thus, a foliation on F(ay, ..., a,) is
a global section of TF(ay,...,a,) ® O(dy,dy) and has a bidegree (dy, ds). In this
case Euler’s sequence is given by

0— 0% - 0(L0)* o @ O(~a;, 1) - TF — 0,
i=1
and tensorizing by O(dy, d2) we get the sequence
0 — O(dy,dy)®* — O(dy +1,d0)** &P Odi — ay, dy + 1) = TF @ O(dy, da) — 0.
i=1

34



Therefore, a foliation on F(a4,...,a,) is given, in homogeneous coordinates, by a
vector field

where @); is bihomogeneous of bidegree (d1 +1, dg) and P; bihomogeneous of bide-
gree (dy — a;,dy + 1), modulo g1 Ry + g2 Rs, where

- 0 0
R1=ZZia—Zi , Ry = 1U18—1+332a—x2+z azzz
i=1 i1

and g¢; has bidegree (d;, dy).

Zq

Proof of Theorem 2.1.3.

Proof. Let f1, fo,..., fNtnir be defining functions for F-invariant irreducible hy-
persurfaces, where N = h*(Pa, O(Kr)). Let X = 377 P2 be a polynomial
vector field that defines F in homogeneous coordinates. It follows that

X(/f3)
fi
We get the following relations
Atihy + Aghg + Aishs + - + Ayveny vy = 0

:thS[K]_.], 1=L12....,N+n+r.

Ao2hg + Agzhs + - + Aovinyhv 1 + Aavy2) vz = 0

Aszhs + Asaha + -+ + Ag(vr2) vy + A3(visyhiviz =0

Ajihi + Ajgrn i + -+ v = 0,
where j = n + r. We can suppose that \; # 0, for all ¢ = 1,...,n. Define the
rational 1-form on C™*"

N+k

Uk—Z)\k] /{3—1 n—+r.

Observe that by construction |1, # |7j]e for all @ # j, where | - |, denote the
sets of poles. Contracting by X we get

N+k N+k

Xk—ZAk] ZA,wh—O
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for all & = 1,...,n +r. We claim that n,...,n,,, are linearly dependent over
the field of rational functions K (Pa). Otherwise, there exists a rational function
R # 0 such that

77:7]1/\"'/\77n+rZRdZ1/\"'/\dZn+r7
Contracting n by X = Y7 P2 we have R, (dzy A -+ A dzny,) = 0, since

10z
it e =0, forall k=1,... ,n+r. But R# 0, thus
n+r ' .
0=1,(dz1 A+ Ndz,) = Z(—l)’“Pidzl Ao ANdzi N Ndzpy,
i=1
This implies that P, = --- = P,y, = 0, i.e, X = 0, a contradiction. Let V' be the

K (Pa)-linear space generated by {ny, ..., 7,1}, suppose that dimgp, )V =k and
V= <7717 o 777]?)[?(]IDA)7

for some 1 < k < n + r. There exist rational functions Ry, ..., Ry, Rpi1 € [?(IP’A),
with Rj.1 # 0, such that

Rim + -+ + R, + Riane+1 = 0,
multiplying this equation by lem(Ry, ..., Rx+1) we obtain

Qi+ + Qe + Qr1Mk+1 = 0,
where each @); is a homogenous polynomial in the Cox ring of Po. Now, we multiply
this equation by F = H?S”J“T fi

Qi+ -+ Qe + Qi1 = 0, (2.4)

where 7; = F'n;. Since 7; are all homogeneous of the same degree, we can extract
from relation (2.4) a relation

Qi Miy + -+ QiyMiy + Qi1 = 0,
where deg(Q;;) = deg(Qr41), 75 € {1,...,k} and j=1,...,¢ < k. Hence, we get
Fnk+1 = Rianil +oee Rianiw (25)

Qi
Qr+1

where R;, = — € K(PA). Dividing by F' and differentiating
0=dR; Nni; + -+ dRi, Ny,
Now, contracting by X results
0= X(Ri)niy + -+ X(Ri,)ni,-

Since ¢ < k then X (R;,) = --- = X(R;,) = 0. That is, the rational function R,
j=1,...,¢, is either a first integral for the foliation F induced by the vector field
X or it is constant. It remains to observe that at least one rational function R,
is not constant. Indeed, this follows from relation (2.5) and the fact that the set

of poles [n;, | # |1, |oc for all j # r. -
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Example 2.1.5. It follows from [60] that

RO (F(ay, ..., a,),0(dy, dy)) = (zn: ai) (d1 +;Lz — 1) + (dy + 1) (dl;rill— 1)

=1

Let F be a foliation on F(ay,...,a,)) of bidegree (dy,ds). If F admits

- di+n—1 dy+n—1
N(%;---,an,dl?dzan): (Zai> ( ! " )+(d2+1)< ln—l >+n+2

=0

invariant irreducible algebraic hypersurfaces, then F admits a rational first inte-
gral.

Example 2.1.6. Let F be a foliation on P" x .- x P" of multidegree (e; —
1,...,e, — 1). If F admits

- e;+mn; —1
N(nl,...,nr,el,...,er,r):H( ) an%—r
i=1

invariants irreducible algebraic hypersurfaces, then F admits a rational first inte-
gral.

The extatic hypersurface

The extatic divisor is defined on complex smooth varieties, see chapter 1. The
homogeneous coordinates allows us to define the extatic divisor globally for all
simplicial toric varieties even for the singular case.

Definition 2.1.3. Let X be a vector field on C™*" which induces a foliation F on
Pa and consider the linear system S, = H(Pa, O(«)). The extatic hypersurface
of F associated to the linear system S, is defined by

S1 S9 e Sy
X(s1) X(s2) -+ X(sp)
ESy, F) = det :
Xé—l(sl) Xé_l(SQ) .. Xé_l(Sg)
where dime S, = € and {s1, - , 3¢} is a base for S,. The extatic hypersurface is

E(F,Sa) = Z(E(F,S,))-
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Proposition 2.1.2. Let F be a one-dimensional holomorphic foliation on a toric
variety Pa and let |D| be a linear system. Then every F-invariant hypersurface
which is contained in the zero locus of some element of |D| , must be contained

Z(E(F,|D])).

Proposition 2.1.3. Let F be a one-dimensional holomorphic foliation on a toric
variety Pa and let V' C |D| be a linear system. Then F admit rational first integral
if and only if E(V,X) =0

Proof. Let {s1,...,sx} be a C-base for V. Suppose that E(V,F) vanishes identi-
cally. Fix 0 <14 < k — 1, we have that deg(X%(s;)) = - -+ = deg(X*(sx)). For each
j =1,...,k choose a non-zero polynomial f; such that deg(f;) = deg(X"(s;)), and
consider the matrix

51 52 Sk
fo fo fo
X(s1) X(s2) X (sk)
fi fi f1
E =
XE (1) XFTM(s2) . XFTM(sw)
fr—1 Jr—1 fr—1

We have that E € Mgy, (K(Pa)), where Mgy« (K(Pa)) is the K(Pa)-vector space
of matrices with entries in the field K(Pa). Since det(E) = fo--- fi—1- E(V,.F) =0
the columns of the matrix E are dependent over field of rational functions K (Pa).

Hence, there are rational functions 6y, -- 0, € K(Pa), such that
k
M= 0;Xi(s;) =0, 0<i<k-—1 (2.6)
j=1
The proof follows as in the Theorem 1.2.2. O

Corollary 2.1.1. Let F be a foliation of degree d on a weighted projective space
of dimension n andV a hypersurface F-invariant of degree k. If F does not admit
a rational first integral, then

riam < o)+ L (TR

k 2
where N (F, k) is the number of F-invariant hypersurfaces of degree k.

2.2 Multiprojective foliations
Consider the product of complex projective spaces P x ... x P™ and let =; :

P™ x ... x P — P™ be the natural projections, i = 1,...,r. Set P("nr) —
P"x ... xP", wheren=ny+---+n, .
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We give P the natural manifold structure, that is, in C%*! choose
coordinates Z; = (Zo,,...,Zn;), j = 1,...,r, consider the multihomogeneous
system of coordinates Z = (Zy,...,7,) € C™*! x ... x C™*! and cover P(nr)
by the open sets

i ={(2),...,1Z]) e Plmm) o 72 20,0 Zi #0,0 <idg <ng,1<s<rh

-----

The changes of coordinates are given by ¢, i) = (@i, - -, ¥i,), with

ZOS Zi<571) Zi<s+1) Zns
7. e 7, , Z, e Zis .

(piS<Z0S7 . '7Zns) - (

The local coordinates are, then

A .
2k, = Z—l:, ks # 1.

Equivalently, we have an action

(C)" x (CmF{0}) x -+ x (C™FI{0}) — (C™FI{0}) x -+ x (C™1\{0})
((t1, ... t), (v, ..., 0,)) — (tiv1, ..., tyy),

where v; = (v, ..., v,,) € C"T\{0}, and hence a quotient map

given by m(vi,...,v.) = [vg,..., 0] = ([v1], ..., [v]).

Set O(0) = Cand O(dy, . ..,d,) == 110(d;)®- - -@m;O(d,). The Euler sequence
over P¢¥

0—C — 0¥ — TPZ —0 (2.7)
gives, by direct summation, the exact sequence:
0— C' — @1 O0,..., 1 ,...,0)@u+_7pn) (2.8)
= J

Multiprojective foliations

These can be given by a morphism
d:0(1—dy,...,1—d,) — TP,

We will call these foliations multiprojective.
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Remark 2.2.1. A priorid; € Z, i =1,...,r, but we will see below that d; > 0.

Example 2.2.1. A foliation on Px P can also be given by a 1-form on homogeneous
coordinates. Consider the rational map ¢ : Px P --» P2 given by (([x, ], [z, w]) =
[z, yw, zw]. Let F; be a foliation on P? of degree d and w € Qf; ® Op2(d + 2)
the 1-form that induces F; in homogeneous coordinate. Let m : C*\{0} — P?
and ¢ : C*\{0} — P x P be the quotient maps. Then we have the following
commutative diagram

ch{o} & cC\{o}
! l
PxP -% P2

where C(z,y, z,w) = (zz, yw, zw). We have that *(w) induces a foliation Fad) =
C*(Fq) on P x P of bidegree (d,d). Indeed, since F has degree d then

w = a(z,y, z)dx + bz, y, 2)dy + c(z,y, 2)dz

where a,b and ¢ are homogeneous polynomials of degree d + 1. Therefore

(*(w) = (Az + Cw)dx + Bwdy + Azdz + (By + Cz)dw,

where A = aog, B = bogand C = coz. It is not difficult to see that (Az+Cw) and
Buw are bihomogeneous of bidegree (d, d+1), (By+Cx) and Az are bihomogeneous
of bidegree (d+1, d). This shows that (*(w) induces a foliation on P x IP of bidegree
(d, d).

Normal form in affine coordinates

Let P(Xy,...,X,) € C[Xy,...,X,], where X; = (x;,,...,x,,) € C". Consider
P as an element of (C[X7, ... ,5(;, .., X, ])[X]], and we will denote the degree of
P with respect to the variable X; by degx (P).
Proposition 2.2.1. Let F be a multiprojective foliation on P"m) of multide-
gree d = (dy,...,d.). Then F is given in affine coordinates (X1,...,X,) € U ~
Crmttmr Dith Xy = (x4, ..., ), by a polynomial vector field of the form

r

S (P(Xy, . X))+ gi(X L XD Ry),

=1

where:
i) Ry = ix ? is the radial vector field of C", i =1 r
z*jZI zjaxij y 6 Ly ey
i) g; is a multihomogeneous polynomial of multidegree (dy—1,...,d;, ..., d,—1),
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iii) Py = ZPijaT, satisfying degx,(P;,) < d;, for all j = 1,...,n; and i =
j=1 K
1,...,7

w) The hyperplane at infinity Pt X -+ x H. x -+« X P is invariant by F if,
and only if, g; = 0.

Proof. The foliation F is given by a morphism X : O(ky, ..., k) — TP@-nr)
with (k1,...,k;) € Z", and O(ky,...,k;) = K. By definition 2.2.1 we have
that k; = 1 —d;. Let (Z1,...,Z,) be a multihomogeneous coordinate system on
P(nr) and take o to be the meromorphic section of O(ky, ..., k,) induced by
z{;; e z('f:. The image of ¢ by the morphism & is a meromorphic vector field ¢ on

P(m0) that is holomorphic over the open

Uor,.on = (21, Z]) € P29, 20, 2, # 0}

and ¢ induces F in this set. Moreover, each one of the hyperplanes {z,, = 0},

1 =1,...,r,is either a divisor of poles or a divisor of zeros of { with multiplicity
k;. Therefore we have
T ng a
C|M(01 ..... 0r) - z; Z; Pij 35% )
1= J=

where P;, € OUq,,.0,), for alli = 1,...7 e j = 1,...,n,. We are going to
consider the decomposition of these polynomials into multihomogenous parts,

P X

S1yeeySp
that is, Pigsl’“"sr) is multihomogeneous of degree (si,...,s,). We will see what
happens when we change to the coordinate system U, . .y, where iy # 0 for all
s=1,...,r. Without loss of generality, it is enough to make the change from the

coordinate system U, . o,) to Ua,,..1,) = {z1, #0,...,21, # 0}. This change is
given by
O, (X1,..., X)) = (go(l)l(Xl), ey (bgl(X,.)),

. 1 x5 Ty )
where ¢ (X;) = (E, x?,..., 9612) = Y1,y +Yn,;), com i = 1,...,7. The Jaco-

7

bian matrix of @, is

D‘Pél 0
D(I)01 = '
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where

1
a0 , —yi, 0 0

—2 0 _ o0

—50 e Yoy 0y
x1, 1;

Now, by push-forward we get
®0) G  =~ S| X AP s
01/l .. yl Oy,
S1y.-05S7

A 81,0, 51400,y 0
+ZZ [ Z _yljyijpl(jh ’ )—"_ylj'P’l'g‘l’ ' )] ayij

7j=1 =2 Ls1,...,5¢r

Taking in to account that

S S —_ S S 1 n ]_
Piglm.., r)(q)()ll(}/l’“.,}/;)) :Pi(jl,..., r) (_7&7-“,&,.-.,—,&,._
Yu Y Y1, Y1, Y1,
= yl—l Yy ST]DZ(JSI, o) (17 Y2155 Ynys -
we get
- o
2—s — 5 (81,381
(QOI)*C‘I/{(O """ [ Z y 1 ylr P(]l )] @—i—
]_1 S1,.4yS7 J

0

(515e-55r) (515e-55r)
ylr ( yiJ'Pj +P )] ayw

Remark that the hyperplane (2, = 0) corresponds to the hyperplane (y,

onUu,,.1,),J=1,...,r. If

0

_ysz(].ﬂ’ 7kT)+P(klr R )

forall j =1,....,rand i =1,...,

"717@/%7'-'

Y1,

7y’n7‘)

= 0)

(2.9)

n., (y1; = 0) is a divisor of poles with order

2—kyif 5 =1, and order —k; = d; — 1 for © # j and k; < 1. In this case, the

equation (3.3.1) gives
plkreke) _ k)

ij - yij 15 )
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and changing to the coordinates y;, = ;CTJ we obtain
J

s
PA(kl"“’kT) _ _]Pl(fl,...,kT).

ij 1,

Defining Pl(fl"”’k")/xlj = g;, we get that Pi(jkl’“"k’") = 1,9;, where g; is multihomo-
geneous of multidegree

(—kl,...71—kj,...,—kr>:(dl—l,...,di,...,dr—l).
Therefore .
C|“<01 ,,,,, 0r) - (Pi(le"'vXT>+gi(X1=---7X7")Ri)
i=1
We can see that the hyperplane (2o, = 0) = P™ x - x (P —C") x --- x P is
F-invariant if, and only, if g; = 0. O

Representation in multihomogeneous coordinates

The Euler sequence over the multiprojective space P(™m) is given by

0— 0"—EPOO,..., L, ....08H—TPm—m) (2.10)
j=1 j
Tensorizing this sequence by O(d; — 1,...,d, — 1) we get the exact sequence
0— O@d; —1,...,d, —1)® —aEBOdy—l dy — 1)t

—s TP (g — 1, d, — 1) — 0.

We conclude that a foliation on P™") of multidegree (di, ..., d,) can be repre-

sented in multihomogenous coordinates of CXi=1("+1) by a polynomial vector field

of the form .
X=>X
i=1
with X; = Z P, , and P;; is a multihomogenous polynomial of multidegree

8211
(dy —1,. cl ,...,d, — 1) modulo

Z gi R,
i=1

where g; has multidegree d = (dy — 1,...,d, — 1) and R; = Z i

Zl] .
=0 0zij

Geometric interpretation of multidegree
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Recall that the Chow group of P(™»+m) is given by

N Zlhy, ..., h,]
(k)
where h; = nH; and H; is the hyperplane class of P", ¢ =1,... 7.

The following proposition gives a geometric interpretation of the i-th degree d;
of a foliation of multidegree (dy,...,d,).

Proposition 2.2.2. Let F be a foliation on P"™»") of multidegree (di,. .., d,)
and h; a generic hypersurface of multidegree (0,..., 1 ,...,0) . The i-th degree
d; of F is given by the intersection number

G = T(F ) (B B B,
where T (F, h;) is the cycle of the tangency variety of F with respect to h;.

Proof. Since the cycle T (F, h;) is given by the zeros of a section of the line bundle
(K]: ® O(hz))\hm then

T(f, hz) = Cl(K]-‘ & O(hz)) N hz € An_Q(P(nl """ n,))

Since Kz = O(dy — 1,...,d, — 1) and O(h;) = O(0, ..., 1 ..., 0), we have

K}‘@O(hjl):O(dl—l,,d“,dr—l),

so i (Kr ® O(hy)) = (dy — 1)y + - - - + d;ihy + - - - + (d, — 1)h,.. Therefore

T(F h) = |dihi+ > _(d;j — 1)h;

JFi

Nh=dh? +> (d;— Dbk (2.11)
J#i

Applying the cycle R N --- A AM 2N - N A to equation (2.11) and using that
Ri*N---NhN---N A =1 and h?jﬂ:O, forall j =1,...,r, we get

T(F,h)- [0 nh™] = d;.

The degree of a multiprojective foliation via the Segre
embedding

where N = [[;_,(n; + 1) — 1, via the Segre embedding ipn,. 1) : Pane) PN

.....
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O(1,...,1). Hence, a1[O(1,...,1)] = c1lityy, 1y (Opv (1))] = 551, 1y[e1(Opn(1))].

..........

-----

Therefore, if L is a line bundle on P™") then the degree of L with respect to
the Segre embedding is given by

n,.- We will

,,,,,

determine the degree of F with respect to the Segree embedding.

77777

Notation: n =n; +---+n, and

( n )_(n1+---+m)!
Ny, ..., Ny nyl--n,

Proposition 2.2.3. Let F be a foliation on P™ ") of degree (di,...,d,). Then

7777777777777

We have

7777 TL»,«)'

deg(O(d —1,....dr — 1)) = / A (Ody =1, dy = 1)) (i 4+ + B

- [ (e x (e

P(n1,nr) i=1 s1+-+spr=n—1
IS
n—1
_ 2:(@-1)( ) / o
i=1 n, . — 1, y Ny

i=1



! r -1
On the other hand, deg(X,, . ,.) = (1 + -+ ) = n ‘
" ny!---n,l niy,...,n;—1,...,n,

=1

Hence

T n _ 1 r n J— 1
degoq,..(F) = Y (di—1) n,... n;—1 2 n,...om— 1

2:1 L) (] b) b T Z:1 ) b (3 b

" —1

=l )
i—1 ni,. >nz_17 y T

O

then
In particular, if n; = 1 for all i = 1,...,r, we get degp,, 1) (F) =d -7,

Projections

Let O(d— 1) = O(dl - 17~--7dr - 1) and O(dl) = O(dl - 1,...,di,...,d7« - 1)
We have the following comutative diagram

0 — 0d-1)" — @._,0d)°m+ — TP g0d—1) — 0

J/Pi ‘J'@i l@
0 — Opui(di—1) —  Opn(d)® ™ — TP"@Opu(di—1) — 0

where the vertical maps are defined as
pi(gl(Z]J"‘7Z7”)7"‘7gT(Zl7"'7ZT)) :gi(lw"alaZi?la"'al)
and

Qi<X1(Z1,...,ZT)7...,XT(Zl,...,ZT)):Xi(l,...,l,ZZ‘ 17...,]_),

f(dl ..... di ..... dr-) — fdl
a) of multidegree d = (di,...,d,) on
P(nr) g foliation F% on P™ of degree d;, by the construction above. We call
F% the projected foliation of F(@-dr) in Pr.



Proposition 2.2.4. Let H={p;} x --- xP" x --- x {p,} ~P" , where p; = (1:

of the foliation on P™ given by
Fh = F.

Remark 2.2.2. When d; = 1 we have p; = D;.

The number of singularities of a multiprojective foliation

In this section we determine the number of isolated singularities of a multiprojec-
tive foliation.

Lemma 2.2.1. Let P™™) and h; = 7w H; , where H; is the hyperplane class in
P, withi=1,...,r. Then

n n - n5+]‘ )
NP | (G
i14-Fip=k s=1 s

foralll<k<n=n;+---+n,.

Proof. From the Euler sequence we have

c<@0(o,..., 1 ,...,0)%“) = ¢(TP™")) . ¢(CT) = ¢(PMm))
i=1

~
therefore ,
(TP )y = TT( + ha) (2.12)
i=1
where h; = ¢;(O(0,..., 1 ,...,0)). On the other hand, we have that

" 7 n; +1 ij
<1+hj> ]+1:Z( i )hj7

ij:(]

for all j =1,...,r. If we substitute this in equation (2.12) we get

1 41\ .
C(TP(nl ..... m«)) — Z (nlz+ ) . (n Z+ )hlll o h;r
1 T

11500y iy

1 1\ .
cp(TPMmr)y — Z <n1i+ > (n ;’ )h?---hi".
1 r

Hence
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Theorem 2.2.1. Let F be a multiprojective foliation on PT-m0) - of multidegree

d=(dy,...,d.), whose zeros are isolated. Then
k (g +1
= ’ ds — 1)
S owe= 3 (i, ) (e
pESing(F) O<’€1<n1 s=1
0<kT<nT

where p,(F) is the algebraic multiplicity or Milnor number of F at p € Sing(F).

Proof. We will use the following notation
e (TP (dy o d)) = e (TP @ O(dy — 1,...,d, — 1)).

It follows from Baum-Bott’s theorem that

S m®= [ e )

pESing(F)

On the other hand,

cn(TP(”l ..... nr)(dl o 7dr)) = ZCj(TP(”l ..... ’nr))cl(o(dl —1,...,d, — 1))7%1_

From lemma 2.2.1 and as ¢;(O(dy — 1,...,d, — 1))"7 = ((dy — D)hy + -+ +
(d, — 1)h,)"7 we obtain

Cﬂ(TP(Tn ..... nr) Z Z H (ns + 1) hzg dlhl + o+ doh )

7=0 i14-+ir=35 s=1

n—j . - (ds — l)ks
Now, ((dy = Dby -+ (d = D)7 = 37 (0= [ =gt
Kyt kr=n—j s=1 s
Substituting this in the above equation, we get

r

Co(TPOLn) ()L d,)) = E: > II(M+J>h%n ijI

= i1+ Fir=3  s=1
k1+ Akp=n—j

= Z > (”_‘j)!H<nS¢j 1)—<d51;!1>k5h’;s”s

= i1+ tir=j s=1
k1+ Fkp=n—j

: 1\ (ds — 1)k
— Z (nl_i1+-~-+nr_ir)!H (ns;‘ )%hgs“’?ﬂ

i tint s=1
+ky+thr=n
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Integration gives

<n1 e o ZT)' - s + 1 ks 11tk irt+kp
Z k- k! H ;. (ds—1) it it

i1tetint s=1
+ky+thr=n

It is not difficult to see that the n-form A% ... pa+ke =£ (0 if and only if,
is+ks=mng,s=1,...,r. Thatisny —41+---4+n, —i, =k +---+ k. . Since

,,,,,

we get
k S n,+1
cp(TPTm)(dy o d,)) = ( ) < ) (d,—1)".
\/;(nl ,,,,, ny) Ofklzfnl kl, ey k',r —1 nr - kT
Osk;é"r

O
Example 2.2.3. Let F be a multiprojective foliation on P x --- x P | of multide-
—_—

n—times

gree d = (dy, . ..,d,), with isolated singularities. Then

S w(F) =Y 2 - jlonj(di—1,...,d, — 1)

pESing(F) Jj=0

where o,,_; is the (n—1)-th elementary symmetric function. In particular, if d; = d,
for all i =1...,n, we have that

27 »
> (P =Y Sd=1),
pESing(F) j=0 7"

In this case n; = 1, for all ¢ = 1,...,n and (k1 k kn> = (k1 + -+ kp)! . From
Theorem 2.2.1 we have that

YDIVTC I SRCERRETSY ) { (R [T

pESing(F) 1<s<n re1
0<kr<1
Since (1_2,%) = 2'7% we obtain
Do ml(F) = Y=Y Y (d =) (dy -
p€ESing(F) 7=0 kit tkn=j
= Y (- Do j(di —1,... dy —1).
§=0
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Corollary 2.2.1. The number of singularities of a non-degenerated multiprojective
foliation on PM=m) - of multidegree d = (dy, . .., d,) is given by

k - L+ 1
2 (k1k> Ul (Z—kr)w’“_l)kr’

0<kp<ni
ng;é”'r
The number of singularities of a non-degenerated multiprojective foliation on
Pumn) of multidegree d = (1,...,d;, ..., 1) is

Z #p(f):(n1+1)---(7;+\1)---(nr—|—1)(d?i+d?i*1+...+di_|_1)
pESing(F)

Let A (FY) = 32 coimg(ra) Ho(F), where F is a foliation on P of mul-
tidegree d = (dy,...,d,). Let F% be the projected foliation on P™. A natural
question is: what relation there exists between .4 (}" d) and A (Fdi)? For in-
stance, if d = (1,...,d;,...,1) then

11 )

In general we have

Corollary 2.2.2. Let F¢ be a foliation on P™ ") of multidegree d = (dy, . . ., d,)
and F% the projected foliation on P". Then

XEs | CRCO D ol [ (R BEID 1 (S [T

i=1 0<k1<n1 o r—=1

0<kr<nr

therefore

- Pt 1 |
gﬂ/(fd Z H1 (g_k) 1)k

0<k:7~<n»,«

Also, from theorem 2.2.1 we have

k Hr Pl
J‘/ (f(dl ..... dr)) — E (kl k > <: _ k )(dr - 1)kr
yeeeafr) T

0<ky <ny

0<kyr<np

The result follows by subtracting A~ (F(@--d)) — T A (F%). O
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2.2.1 Riccati foliations

Definition 2.2.2. [73] Let ( = (E,w, B, F) be a holomorphic bundle , with total
space E, projection w, base B and fibre F. Let F be a singular holomorphic
foliation on E. We say that F is transversal to almost every fibre of C if there
is an analytic subset A(F) C E which is a union of fibers of , such that the
restriction of F to Ey = E\A(F) is transversal to the natural subbundle o of ¢
having Ey as total space. By a Riccati foliation we mean a foliation F as above,
for which the exceptional set A(F) is F-invariant.

F. Santos e B. Scardua showed the following result about Riccati’s foliations.

Theorem 2.2.2. [73] Let F be a one-dimensional singular holomorphic foliation

on P x M, transversal to almost every fibre of the bundle m : P x M — P, where
n(z,y) =2 and M =P x --- x P or M = P2 Then F is Riccati. Moreover,
—_——

n—times

i) If M =P x --- x P then F is given in affine coordinates by a vector field of

n—times

the form

n

X = plo)g + Y (sPan(o) + pan(e) + aalo) 5 -

i) If M =TP? then F is given in affine coordinates by a vector field of the form

0 0 0
X = p(ﬂf)% + Q('x?ya z)a_y + R(:U,y,z)&,

where

Q(z,y,2) = A(x)

+ B(x)y + C(x)z + D(z)yz + E(z)y?
R(z,y,z) =a(x)+b

(2)y + c(x)z + E(x)yz + D(x)y?

We will use the multindex notation J; = (js, -, Jn,), [Js| = Js + -+ + Jn,
and Yo =yt -y with s =1,... 7.

Theorem 2.2.3. Let F be as in theorem 2.2.2 where M = P™mr) - Then F s
Riccati and given in affine coordinates by a vector field of the form

a T
X = p@)% + Z Z;,
=1

ZZ 3 § aJ J'r< )} Jl e ) / 9 °
v " ylk

k=1 [Js|<2
1<s<r

o1



Moreover, there exists k < deg(p(x)) such that
ST F) = k1) (g + 1),

peSing(F)NA(F)

Proof. Suppose that F has multidegree (d,dy,...,d,). It follows from Proposition
2.2.1 that F is given in affine coordinates (z,Y;...,Y,) € Cx C™ x ... x C",
with ¥; = (yi,,- .-, Yn,), by & polynomial vector field of the form

9 r

where Z; = Z(Pf(x, Yi..., V) +gi(z, Yr... ,Y})yik)w, satisfying degy, (P}) <
i

d;, for all j :1 1,...,n;, and ¢« = 1,...,r. Moreover, g; is a multihomogeneous
polynomial of multidegree (d —1,dy — 1,...,d;,...,d, —1),i=0,1,...,7.

Set Q(z,Y:...,Y,) =p(x,Y1....Y,) + go(z,Y1...,Y,)z. Let {xg} x Pr-mr)
be a fibre of m which is not invariant by F. Then, by compactness of fibers of 7, F

polynomial Q(z,Y;...,Y,) #0forallz € U and all (Y;...,Y,) e C™ x...xC"
and thus Q(x,Y7...,Y,) = Q(x), and so g(z, 21 ...,2,) = g(x). This implies that
d;—1 = degy.(g) = 0, i.e, F has multidegree (d, 1, ..., 1). Hence degy. (PF+g;y;,) <
2. The fibre z = ¢ is F-invariant if, and only if, Q(c¢) = 0. Thus, the exceptional

theorem 2.2.1 that

Z pp(F) =k - Z pg (Fi) = k(ny +1) -« (n, +1).

(ci,q)E€Sing(F)NA(F) g€Sing(F;)

2.2.2 Totally invariant hypersurfaces

Let V be a hypersurface on P("r) given by zeros of a multihomogeneous polyno-
mial f € C[Zy,...,Z,], where Z; = (2iy, ..., 2n,), i = 1,...,7r. Consider a foliation
Fx on P-m) of multidegree (dy, ..., d,) induced, in multihomogeneous coordi-
nates, by a vector field X = > | X;. We say that V is i-invariant by F if

Xi(f) = hif, (2.13)

where h; is a multihomogeneous polynomial of degree (dy —1,...,d, —1). We say
that V is totally invariant if it is i-invariant for all ¢ = 1,...,r. Let CV be the
tangent cone of V, i.e, CV = 7w~ 1(V), where
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is the quotient projection. The condition (2.13) means that the vector field X is
tangent to C)V.

Remark 2.2.3. The definition of ¢-invariant is independent of the vector field X
which defines the foliation F. Indeed, if F is induced by Y = >"7_ |V}, so there
exist polynomials g;, of degree (d; — 1,...,d, — 1), such that

Y =) (Xi+giR).
=1

Therefore, using the Euler formula R;(f) = k;f, we get

Yi(f) = Xi(f) + giRi(f) = hif + kigif = (hi + kigi) [

Example 2.2.4. Let F be a foliation of multidegree (di,...,d,) on P»-mr),
Then, every hypersurface of multidegree (0,...,d;,...,0) invariant by F is totally
invariant.

2.2.3 The polar divisor

Let F be a foliation on P where n = n;+- - -+n,, of multidegree (dy, . .., d,)
and with singular set Sing(F) of codimension at least 2. Consider a pencil of
hyperplanes H' = {H\}, _,, with base locus (y.p H} = L'2 where L2 is a
linear subspace of dimension n — 2 which is not contained in Sing(F). The polar
divisor of F with respect H® is

Dy = | T(H}, F).
P

Lemma 2.2.2. Dy is either PMm) or q hypersurface of multidegree
(dy—1,...,d;+1,...,d, —1).

Proof. 1f all hyperplanes of the pencil H' are F-invariant then 7 (H}, F) = Hi, for

hand, if there exists a hyperplane H} € H' that is not F-invariant, we can set it
to be the hyperplane at infinity with respect to the factor P¢. Thus we choose
coordinates in P("1-") guch that H’ is given, in affine coordinates, by

xnl_,u:()a

with p € C. It follows from 2.2.1 that in this coordinate system the vector field
inducing F has an expression of the form

T

Xr=) (Pi(X1,.... X,) + g;(X1,...,X,)Ry),

j=1
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where X; = (z;,,...,2y,) and R; = Zx]k 0 is the radial vector field on C™,

@l’jk
j=1...,1rgi(Xq,....X,)isa multlhomogeneous polynomial of multidegree (d; —
0
1,...,dj,....d. — 1) and Pj(Xy,..., X Z (X1, o, X )%, satisfying

deg, (Pjx(X1,...,X,)) < dj, forall j = 1,...,n; and k = 1,...,7. Moreover
gi(X1,...,X,) # 0. Then the polar divisor D'Hi is given by

Note that deg(P(F,H")) = (dy — 1,...,d; +1,...,d, — 1). O

Let V be a smooth hypersurface of multidegree (k1, ..., k) given by the zeros of
a multihomogeneous polynomial f € C[Z;, ..., Z,]. Consider the algebraic subset
of V given by

@ == 5@ =0},

10 azm

Sing(V); = {q €V

If Sing(V); = 0, then we define the i-th embedded tangent space of V at p given,
in homogeneous coordinates, by

. —_ Of
7 o N1yeeny nr)- . —
Tpv_{[Zl,...,ZT]EP( ,E} 25— (p) = }

Remark 2.2.4. Observe that V is i-invariant if, and only if, p € T(T;V,}") for
all p e V.

We fix a flag, with respect to factor ¢, of linear subspaces on P(n,nr)
yé(@) : ]L:L_k C L?_k'i_l C.---C ]L’fb—Q C P(n1 ..... nr)7

where codime(IL} %) = k. The k-th polar variety of V' in the factor i, with respect
to F (i) is given by
ok(V) = {p € VTV DL,
Observe that . . .
n1(V) C P (V) C - C Py a(V) C V.
Now, consider the flag .Z¢(i) : L}™% c L' "™ ¢ ... ¢ LP™? ¢ P™»™) where
L% ={z,=---=2z,, =0} We conclude that

)= {pevig?

9o, W= =g )= }

i
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Thus the class of P¢_, (V) is given by

N(n;—k+1)

ijhj] N | (ki = Dhi+ Y kihy
j=1

Prs (V)] =

j=1

JF#i

Lemma 2.2.3. Let V be a hypersurface i-invariant by a foliation F, such that
Sing(V); = 0. Consider a pencil of hyperplanes H; = {H\},_,, with base locus
Maepr Hy = L7 2. Then

: (V) C Dyi and V ¢ Dyyi.

n—1

Proof. If p € P._;(V), then L!* C T.V and this implies that TV = Hj for
some A € P'. On the other hand, since V is i-invariant p € T (Hj, F) C Dy, s0
7Z1—1(V) C D’Hz

]

Theorem 2.2.4. Let V be a hypersurface of multidegree (ky, ..., k), with k; > 1
and Sing(V); = 0. If V is i-invariant by a foliation F on PT-m) of multidegree
(dy,...,d,), then

Proof. Consider the cycle
SIZG = h7111 e hzli_llhf_QhZﬁl Y h? S An1+--~+ni—1+k—2+ni+1+~~-+m-(P(nl 7777 nr))‘
Since P!_,(V) C Dy and V € Dyyi, we can conclude that there exists & such that
i (V) C Dy and P, (V) ¢ Dy, thus P._, (V) C P!, (V) N Dyes. Then

[PrkWIN S < [P s (V)] N [Dri] N S € Ag(PU1") ~ Z. (2.14)

n

We have that

r n;—k+1 n — k + 1 T
[ ;L,k(V)] _ ( i >k’g<kz . 1>mfk+lfsh;’bi—k+l—she Z kjhj
/=1 s=0 5 Jj=1
J#i
and

S

r n;—k r
. : n; —k N —k—8 1 M;— _s
P (V)INDse] = ( )ke<di+1><kz-—1>z’“ A T
j=1

S
J#i

S

r r n;—k r
. i—k+1 ; n;i—k—s
+> (" * )kg(dt—n(ki—nm—k-%g “hehe | > kb

1 /=1 s=0 j=1
A FE
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Therefore
[P s WINS), = ki(ki = 1) R b = ky(ky — 1)
and
[Pi e O N Dy N S) = k(b — 1)™ 5 (dy + DAY - B = k(K — 1)™ % (d; + 1).

Now, using the inequality (2.14) we obtain k;(k; — 1) < k;(d; + 1), and this implies
that
k; < d;+ 2.

[]

Corollary 2.2.3. Let V be a hypersurface with Sing(V); = 0 for all i = 1,... 7.
If V is totally invariant by a foliation F on P-mr)  thep

where the degree is with respect to the Segre embedding.

Proof. Multiplying each inequality k; < d; + 2 by (m ::11 m) and summing in
¢ we have

! n—1 - n—1
= y < ) ’
deg(V) Zkl(n17-~‘7ni_17“'7n7‘) —Z<dl+2)(n1,...,m‘—1,...,nr>

=1

nylng!

The result follows from proposition 2.2.3 and deg(P("--mr)) = bttt _ s~ (m nl
[

2.3 Weighted projective foliations

In this section we study Poincaré’s problem for foliations on weighted projective
spaces Pc(wy, . .., wn)-

Weighted projective space P(wy, ..., w,)

Let wy,...,w, be integers > 1 pairwise coprime. Consider the C*-action on

C"\ {0} given by
A (20, 00y 2n) = (A2, ..., A 2,),

where A € C* and (2o, ..., 2,) € C""\{0}. The quotient space P(wy,...,w@,) =
(C"*1\{0}/ ~), induced by the action above is the weighted projective space of
type (wo, . .., w,). We will abbreviate P(wy, ..., w,) = P(w).
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Consider the openU; = {[zo : -+ - : 2,] € P(wy, ..., w,); 2z # 0} C P(wy, ..., o),
with ¢ =0,1,...,n. Let u,, C C* be the subgroup of w;-th roots of unity. We can
define the homeomorphisms ¢; : Uy — C" /iy, by

20 Z z
¢i<[20:.“:zn]): (Z?O/wm"”’z_z-’.”’ wn?“'i»)
@;

7 .
(2 ZZ

~ 9

where the symbol ” 7" means omission and (+), is a w;-conjugacy class in C"/ i,
with p, acting on C" by

A (200000 2n) = (A%, Ziy o AT 20 ), A € i,

On ¢;(U; NU;) C C"/ i, we have the transitions maps

-1 o 20 é\] 1 Zn
¢lo¢] ((21’...’Zn)Wi>_(ZWO/wj’7...7Z_’...’Zwi/wj’”.7zwn/wj>
i i i -

We conclude that {¢;,U;}, is a holomorphic orbifold atlas for P(wy,...,w,).
Also, {C", ti,, o, } 1 is an n-dimensional uniformizing system for P(zwy, . . ., w,,).

Since wy, . . ., @, are pairwise coprime, the singular set of P(wy, ..., w,) is the
set of n 4+ 1 points

[1,0,...,0],[0,1,...,0],...,[0,...,0,1].

There exists another orbifold structure for P(wy, ..., w,). This is induced by
the action of the group (fm, X -+ X fiw, ) on P" given by

(Mwox"'xﬂzml)XPn - P

((Aoy o5 An)s [205 - -5 20)) = [Xo20y- -y AnZnl.

Now consider the map ¢ : P" — P(wy,...,w,) defined by ¢([z0,...,2,]) =
(257, ..., 2%"]. ¢ induces a homeomorphism

O P (e X+ X fhew, ) — P(wo, ..., w0)

and P(wo, ..., @n) = P"/(fawy X -+ X liw, ) is an orbifold structure given as a global
quotient.

Remark 2.3.1. The degree of the map ¢ : P" — P(w) is equal the order of the
group (fiwy X *+* X i, ), 1.6, deg(p) = wyq - - - w,,. For details see [1].
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Q-line bundles on P(wy, ..., w,)

Let ¢ € Q , with ged(r,d) = 1 and r > 0. Consider the C*-action C(g) on
C"1\ {0} x C given by

C(4> :Crx C"TI\{0} xC — C"\{0} x C
(A, (20, -5 20), 1) s (A0, ..., NP 2,), A7),

We denote the quotient space induced by the action ¢ (4) by

Op(w)(d/r) := (C\{0} x C)/ ~ ((ay.

The space Op(zy(d/r) is a line orbibundle on P(ww). We shall describe the global
holomorphic sections of Op()(d/r), for d > 0.

Proposition 2.3.1. Let P(w) := P(wy, ..., w,), then

H*(P(w), Op(ary (d/1)) = D C- (25" 2n").

w0k0++wnkn:%

Proof. A global section of this line orbibundle is a linear combination of the mono-

M ...k invariant by the action ((4), that is, (<4)([2, %) = [z, 2F].

mials 2% = 2z

Using this action we obtain

(20, 20), (200 -+ 2F0)] = [(N™02, ..., N'¥nz,), Aizo @ik (g5 phkn)]
[(20...,2n), A4 iz ””“'“(zé“1 co k]
Therefore Y, rw;k; = d, hence the proposition follows. O

The orbibundles Op(s)(d/r) can therefore be considered as elements of the
rational Picard group of P(w), that is, as Q-line bundles. It is possible to show
that the Q-Picard group is generated by Op(1), that is

Pic(P(w)) ® Q := Pic(P(w))g = Q - Opa) ().

Remark 2.3.2. It is possible to show that Op(z)(1) = ¢*(Opn (1)), where Opn (1)
is the hyperplane bundle on P", see [58].

The Euler sequence on P(w) reads
0 — C = P Op(w)(wi) — TP(w) — 0
i=0

where C is the trivial line orbibundle on P(w). The map ¢ is given by ¢(1) =
(w020, - - - Wn2n), see [58].
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Definition 2.3.1. Let X be a n-dimensional compact complex orbifold with uni-
formizing system {(U;, G;, ;) }ien and w € Q% a n-form. The orbifold integral of

w over X is defined by
/ =26 7,

where |G| is the order of the group G;, see [2].

1

Remark 2.3.3. Let Ker(X) = {g € [[,cAGiig(x) = 2,V v € X} and X,; =
X\Sing(X). Then
orb 1
w=——— w,
o= e .

Proposition 2.3.2. [58] Let Opw)(1) be the hyperplane bundle on P(w). Then

orb 1
/P 1 (Op (1) = — 1

(@) wWo...TWy

see [58].

Proof. From the definition of orbifold integral we have

orb - 1 . - n
/ () = s / a0

Since P(eg, . .., @n) = P"/(figy X =+ X i, ) We conclude that
Ker(P(w)) = () s = {1},
i=0

hence #Ker(P(w)) = 1. On the other hand, since ¢*(Opx)(1)) = Opn (1) we get

orb n . 1 . . 1
/P(w) 1 (Op((1) _/Mw)mg A0 D) = o / (O (V) =
]

Q-line bundles on simplicial toric varieties and in-
tersection numbers

Let X be a normal toric variety. Since a Weil divisor is a cycle in X of real
dimension 2n — 2, we have a homomorphism

¥V W(X) — Hy, (X, Z)
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which associates to each Weil divisor its homology class. On the other hand, there
exists (see [47]) an isomorphism

o : C(X) — Pic(X)

between the group of classes of Cartier divisors and the Picard group. This latter
is the group of isomorphism classes of line bundles (or isomorphism classes of
invertible sheaves) on X. By composition of a with the morphism ¢; : Pic(X) —
H?(X,Z), we obtain a morphism

c:C(X) — H*(X,Z).

When X is smooth we have that ¢;(O(D)) is the Poincaré dual of the cycle rep-
resented by D € C(X). In the general case, we cannot guarantee this, but we will
see that it is true if D is an invariant divisor by a torus action.

Let T be the torus which acts in X. Denote by CT(X) and W'(X), respec-
tively, the groups of T-invariant divisors of Cartier and Weil, modulo equivalence
of principal T-invariant divisors .

Theorem 2.3.1. [7] Let X be a compact toric variety. There ezists a commutative
diagram
ClX) = WIX)
I I~

12X, 2) N H,, o(X,7)

where the vertical isomorphisms correspond to the morphisms ¢ and 9.

When X is simplicial we have Pic(X)®@Q ~ CT(X)® Q = WT(X) ® Q. Using
these identifications and tensorizing the diagram of the theorem 2.3.1 by Q we
have

Pic(X)®Q — CNX)®Q
L I~
~[X
B(X,Q) — Hya(X,Q)

Let X be a two dimensional complete simplicial toric variety and let D be a
Q-Cartier divisor on X . Then from theorem 2.3.1 we conclude that ¢;(O(D)) is
the Poincaré dual of the cycle represented by D. Therefore, we have the inter-
section numbers with rational coefficients. For instance, let Dy, Dy € WT(X) the
intersection number is the rational number

Dy - Dy = {i(O(Dy)) N er(O(D2)), [X]) € Q,

as in the case with integer coefficients.
We will use the Poincaré-Satake duality to express the number of intersection
in terms of the orbifold integral.
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Proposition 2.3.3. Let X be a simplicial compact toric variety and Ly, Ly €
Pic(X) ® Q. Then

orb
Ll . LQ = / Cl(Ll) N Cl(LQ).
X

Proof. Since X be a simplicial compact toric variety, it follows from theorem 2.1.2
that X is a compact complex orbifold. Let H(X) be the cohomology group of
i-forms on X (in orbifold’s sense). We have the following Poincaré duality for
orbifolds showed by Satake in [74]:

H(X)oH(X) — Q
orb
aAn »—>/ aAn.
X

From this we get

orb
L1 . LQ = <01(L1) N Cl(LQ), [X]) = /); Cl(Ll) N Cl(LQ).

Therefore, if Dy, Dy € WT(X) we have

Dy Dy = / 1 (O(D1) A er(O(Dy)).

X

Example 2.3.1. Let D; € HO(P(YDQ, w1, ’ZDQ), O(dl)) and D, € HO(]P)(YE(), w1, WQ), O(dg))
It follows from propositions 2.3.2 and 2.3.3 that

Dl-Dzz/w c1(O(d)) A e1(O(dy)) =/OT (dydy) - c1(O(1))? = drdy

X X WoW1W2

2.3.1 Poincaré’s problem for quasi-homogeneous foliations

In this section we consider the question of bounding the degree of curves which are
invariant by a holomorphic foliation of a given degree on a well-formed weighted
projective plane.

Foliations on weighted projetive planes
Let us to denote P(w) := P(wq, wy, ws). The Chern-Weil theory of Chern classes

holds as well in P(w) as in projective spaces, see [58]. Denoting by ¢ = ¢1(Op(1))
we have, from Euler sequence,

(TP(w)) = (1 + wol)(1 + wi{)(1 + ws() (2.15)
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and hence
¢i(TP(w)) = o(wo, wy, we) (2.16)

where o; is the i-th elementary symmetric function.
Now, let X be a quasi-homogeneous vector field of type (wp, wy,ws) and degree
2
d in C?, that is, writing X = Y Pi(2);= we have that P;(A\"0z, A" 21, A"225) =
i=0 ’
A=l P20, 21, 29). These descend well to P(ww). In fact, we may tensorize the
Euler sequence by Op, (d — 1) to get

2
0 — Op(e)(d — 1) — @D Obe)(d + w; — 1) — TP(w) @ Op(er)(d — 1) — 0.
i=0

(2.17)
It follows that a quasi-homogeneous vector field X induces a foliation F of P(w)
and that g R, + X defines the same foliation as X, where R, is the adapted
radial vector field R,, = woz[)a%o + wozla%l + wQZQa%Q, with ¢ a quasi-homogeneous
polynomial of type (wg, w;,wy) and degree d — 1.

Dually, noting that |w| = wy + w; + ws, we have the exact sequence

0— Q]P’(w ®O[p> d+|w|— @ O[p d+|w|—wl—1) — O[p: (d—l—]w[—l) — 0.

(2.18)
Hence, a foliation F of P(w) is also induced by a 1-form n = Ag dzo+A; dz1+ Ay dzs,
with A; a quasi-homogeneous polynomial of type (wg, wy, ws), degree d+ |w|—w; —1
and 1p, N = wozoAg + w121 A1 + w2z Ay = 0.
Example 2.3.2. (logarithmic foliations )
Let fi,..., fr quasi-homogeneous polynomial of type (wy,w;,ws2) and degrees
dy,...,dy, respectively, with & > 3. Let A\{,..., Ay € C* be such that Zil Aid; = 0.

Define the 1-form
df;
) Z A f

By Euler’s formula, ig_(n) = (f1--- fx) - <Z:1 )xz-dz-) = 0. Therefore, n define a
foliation on P(w) of degree S2F  d; — |w| + 1.
From now on we shall assume that
Sing(F) N Sing(P(w)) = 0. (2.19)

This assumption is fairly generic in that it requires X, or 7, not to have zeros
along the coordinate axes of C? and it assures us that the leaves of F are orbifolds.

We proceed now to define the “degree” of such a foliation. Recall that, in the
usual projective situation, deg F is the degree of the variety of tangencies of F
with a generic hyperplane.
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An analogous geometric interpretation holds in the weighted situation and
we similarly have the corresponding canonical Q-bundles Kp(), K7 and the Q-
bundles T, Nz, N, all lying in Pic(P(w)) ® Q. The adjunction formula

Kpw) = K7 ® Ni (2.20)
still holds and we point out that Kpm) = Op)(—|w|), K5 = Op)(d — 1) and
Let C' be a compact connected curve (possibly singular), whose irreducible

components are not F-invariant. Then, for p € C, the index tang(F,C,p) is
defined as in [12] and, writing tang(F,C) = > tang(F,C,p), we have that

peC
tang(F,C)=Kr-C+C-C > 0. (2.21)
We define the degree of F just as in the usual projective situation, that is,
deg(F) := tang(F, H) (2.22)

where H is a generic element of the linear system H°(P(w), Op(z)(1)).
Poincaré’s duality holds, as shown by I. Satake (see [74] and [58]). Hence,
(2.22) reads

orb orb
deg(F) = Kr.H+ H.H = /cl((’)]p(w)(d —-1))+ /cl(Op(w)(l))
H H
orb orb
= / ¢1(Op(w)(d — 1)) A c1(Op() (1)) + / c1(Or) (1)) A c1(Or) (1))
P(w) P(w)
d—1 1 d

N WoW1W2 WoW1W2 N wowlwg'
(2.23)
Now, suppose that
(1) C'is a quasi-smooth curve in P, that is, is defined by a quasi-homogeneous
polynomial P(zp, 21, 22), of degree d°, whose only singularity is at 0 € C3.
(i7) C contains no codimension 2 singular stratum of P(w).
Then the usual adjunction formula holds (see [9]):

Ko = Kp(w)w ® N¢. (224)

With this at hand we have, using Poincaré’s duality,

deg(C) — / 1 (Opion(1)) = / cl(op(w)u«)))Acl(op(w)u)):wOfM. (2.95)
c P{w)
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We show the following result:

Theorem 2.3.2. Let F be a singular holomorphic foliation on P(w) = P(wy, wy, ws),
of degree deg(F), C a quasi-smooth curve of degree deg(C), which avoids the sin-
gular locus of P(w) and is invariant by F. Then,
Wo + W1 + Wy — 2

WoW1W2 ’

deg(C) < deg(F) +

Remark 2.3.4. This bound cannot be improved. Let f(x,y,2) = 2™ + y™* —
2% and g(x,y,2) = ax™ + by™ + cz, m,k € N. These are quasi-homogeneous
polynomials of type (1,1, m) and degrees km and m, both defining quasi-smooth
curves of degrees k and 1, respectively, which avoid the singularity of P(1,1,m).
The 1-form w = k f dg— g df defines a foliation F on P(1, 1, m) of degree deg(F) =
k —1/m. The orbifold C' = (f = 0) is F -invariant and

1
deg(C’):kSk—E%—l:deg(}")%—l.

Proof of theorem 2.3.2.

Suppose C' is quasi-smooth, avoids the singularities of P(w) and is F -invariant.
The sum of the Camacho-Sad indices, C'S(F,C), over C' N Sing(F) satisfies
(see [11])

CS(F.C)= Y CS(F.Cp=C-C (2.26)
p € CNSing(F)
and, since the adjunction formula (2.24) holds, we have
deg(C)?
WoW1W2

so that C' N Sing(F) # 0. On the other hand, by (2.15) and (2.24),

C-C= >0 (2.27)

orb

/ a1 (TC @ Op,(d— 1))

C

_ deg(C) (wo + wy + wy — deg(C)) N (d—1)deg(C) (2.28)

WoW1Ws2 WoW1 W2

wo + wy + wy — deg(C) —1+d
Wowiws '
Now, Fjc induces a non-zero holomorphic section of T7C'® Op, (d — 1) and the
number in (2.28) is the degree of this line Q-bundle. Since C' N Sing(F) is non-

empty and finite, this degree is positive and it follows that deg(C') < deg(F) +
jw| —2

wowle'

= deg(C)
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Chapter 3

Bound for the sectional genus of a
variety invariant by Pfaff fields

The problem of bounding the genus of an invariant curve in terms of the degree of a
one-dimensional foliation on P has been considered, for instance, by A. Campillo,
M. Carnicer and J. Garcia de la Fuente which, in [16], showed that if C' is a reduced
curve which is invariant by a one-dimensional foliation F on P{ then

2pa(C> -2

deg(C) < deg(F)—1+a, (3.1)

where p,(C) is the arithmetic genus of C' and a is an integer obtained from the con-
crete problem of imposing singularities to projective hypersurfaces. For instance,
if C' has only nodal singularities then a = 0, and thus formula (3.1) follows from
[38]. This bound has been improved by E. Esteves and S. L. Kleiman in [35].

In [34], Esteves and Kleiman extended Jouanolou’s work on algebraic Pfaff
equations to smooth schemes V. An algebraic Pfaff equation of rank s on a smooth
scheme X of pure dimension n is, according to Jouanolou [49, pp. 136-38], a
nonzero map u : E — Q% where E is a locally free sheaf of constant rank s with
1 <s<n-—1. Esteves and Kleiman introduced the notion of a Pffaf field in V',
which is a nontrivial sheaf map 7 : ), — L, where L is an invertible sheaf on
V', and the integer 1 < s < n — 1 is called the rank of 7. A subvariety X C V
is said to be invariant under 7 if the map 7 factors through the natural map
QF|x — Q%. A Pfaff system on V' induces, via exterior powers and the perfect
pairing of differential forms, a Pffaf field on V. However, the converse is not true;
see [34, Section 3] for more details.

In this chapter we establish upper bounds for the sectional genus of Gorenstein
varieties which are invariant under Pfaff fields on P}, where k is an algebraically
closed field of characteristic zero.
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3.1 Sectional genus of a polarized variety

We work over a fixed an algebraically closed field. Let (V,L) be a Gorenstein
projective variety V' of dimension n equipped with a very ample line bundle L;
recall that, since V' is Gorenstein, the canonical divisor Ky, is a Cartier divisor.

Definition 3.1.1. The sectional genus of V' with respect to L, denoted g(V, L), is
defined by the formula:

29(V,L) — 2 = (Ky + (dim(V) — 1)L) - Lm(V)=1,

This quantity has the following geometric interpretation. Suppose that V' is
nonsingular, and let Hy,..., H,_1 be generic elements in the linear system |L|,
such that Bs|L| = 0, where Bs|L| = () denote the base locus of |L|. By Bertini’s
theorem, one can assume that the curve V,,_; = Hy N ---N H,_; is nonsingular.
Then ¢(V, L) coincides with the geometric genus of V,,_1, see [39, Remark 2.5].

3.2 Pfaff fields

Definition 3.2.1. A holomorphic Pfaff field F of rank k on V is a global holo-
morphic section of /\k Oy ® N, where Oy is the tangent sheaf and N is a line
bundle.

A Pfaff field of rank k on P is a section of A" ©pn @ Opn(s), and degp,, 1) (F) =
s+ k is by definition the degree of the Pfaff field F. It follows from Bott’s formula
that deg(F) > 0. For Bott’s formula see the reference [63, Chapter I, section 1.1]).

Since A* Oy @ N ~ Hom(N*, \* ©y) ~ Hom(Qk, N), a Pfaff field can also be
regarded as a sheaf map {7 : N* — /\1C Oy. The singular set of F is given by

Sing(F) = {x € V; &#(x) is not injective} = {x € V; £f(x) is not surjective}.

Alternatively, a holomorphic Pfaff field can also be defined as a global holo-
morphic section of Q%% @ N’, where N’ = N ® K;'. If V is nonsingular, this
definition is equivalent to the one above.

Let X C V be a closed subscheme of dimension larger than or equal to the
rank of a holomorphic Pfaff field F. Following [25, Subsection 2.2], we introduce
the following definition.

Definition 3.2.2. We say X s invariant under F if there exists a morphism of
sheaves ¢ : Q% — N|x such that the following diagram

5\/
Q| x LlX>N|X

e

Q%

commute.
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Applying the functor Hom(-, Ox) to the above diagram, we get the following
commutative diagram:
N*|x

v

(Qlﬁc)v - /\k Ov|x

Therefore, X is invariant under JF if it induces a global section of (%)Y @ Ny .
Our first main result is the following.

Theorem 3.2.1. Let X C IP" be a Gorenstein projective variety which is invariant
under a holomorphic Pfaff field F on P™ whose rank is equal to the dimension of
X, and such that cod(Sing(X), X) > 2. Then

29(X,O0x(1)) —2
deg(X)

S deg(:'r) - 17 (32)

where g(X, Ox(1)) is the sectional genus of X with respect to the line bundle Ox(1)
associated to the hyperplane section.

Proof. Let X C P™ be a Gorenstein variety such that cod(Sing(X), X) > 2; let
X := X — Sing(X). Then there exists a canonical map vyx : Q% — wx, where
wy is the dualizing sheaf of X, see [26, p. 7]. Clearly, vx is an isomorphism away
from the singular set of X, thus so is also the map

Tx = 7% ® Loy : wx ® Ox(d—k) — (%)Y ® Ox(d — k).

Since X is Gorenstein, wy is locally-free, hence, in particular, reflexive. From [52,
Proposition 5.21], we also conclude that wy is normal, since cod(Sing(X)) > 2.

If X is invariant under a holomorphic Pfaff field F on P" of rank k£ and degree
d, then we have a global section (r of (%)Y ® Ox(d — k); consider its restriction
Cro = Crlx, to Xo. Composing it with the the inverse of vx|x,, the restriction of
the map vx to Xy, we obtain a section

Vx| x0(Cr0) € HY(Xo,wy ® Ox(d — k)| x,)-

However, w} ® Ox(d — k)|x, is a normal sheaf, so the above section extends to
a global section of w% ® Ox(d — k). In particular, H*(Xy,w¥% ® Ox(d — k)) # 0,
therefore
deg(wy ® Ox(d —k)) > 0. (3.3)
Let ¢ : X — P" be an embedding, and set, as usual, Ox (1) = i*Opn(1). Let
Kx be a Cartier divisor such that Ox(Kx) = wy.
Now, consider the following diference

(29(X) —2) — [Ox(d — k) + (k — 1)Ox(1)] - Ox (1) =
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=— (Kx'+ O0x(d—k))) - Ox(1)* ' = — deg(wy ® Ox(d —k)) <0

It follows from (3.3) that the first expression must be less than or equal to zero,
hence

29(X) — 2 < [Ox(d — k) + (k — 1)Ox(1)] - Ox (1) ! = deg(X)(d — 1),

as desired.
O

Corollary 3.2.1. Let X be a smooth Fano variety of Picard number one that is
invariant under a Pfaff field F of rank k = dim(X). Then

deg e (X) < K (deg(F) +2)",
where degK;(X ) is the degree of X with respect to anticanonical polarization.

Proof. Indeed, in this case we have
29(X, Kx') =2 = (k — 2) deg 1 (X).

Thus, it follows from Theorem 3.2.1 that & < deg(F) + 1. On the other hand, it
follows from [59] that d(X) < k + 1 and deg(X) < (d(X)k)* , where d(X) is the
least positive number integer d for which X can be covered by rational curves of
(anticanonical) degree at most d, see [59, Subsection 1.3]. O

Finally, we also consider the case when the invariant variety is Calabi-Yau, i.e.
deg(Kx) = 0.

Corollary 3.2.2. If X is Calabi-Yau and invariant by F then dim(X) < deg(F).

In other words, holomorphic Pfaff fields of small degree do not admit invariant
Calabi-Yau varieties.

Complete intersections invariant by Pfaff field

Let us now consider the application of Theorem 3.2.1 to the case when the invariant
variety X is a complete intersection, one obtains the following statement.

Corollary 3.2.3. Let X be a k-dimensional complete intersection variety of multi-
degree (dy, . ..,d,—r), and such that cod(Sing(X), X) > 2. If X is invariant under
a holomorphic Pfaff field F of rank k on P™, then

di+ - +dp g <deg(F)+n—k+1.

68



Proof. Notice that
29(X) —2=deg(X)(di + - +dpt —n+k—-2).

By Theorem 3.2.1 this is less than or equal to (deg(F)—1) deg(X), and the desired
inequality follows easily. O

Remark 3.2.1. It follows from [26, Corollary 4.5] that if X and F are as above
and
dim(Sing(F) N X) < k,

then

deg(F) +n —k, if p<0,

d1+"'+dn—r S

deg(F)+n—k+p, if, p>0
where p == 0 +n—-—r+1—-dy —--- — d,—,, with o denoting the Castelnuovo-
Mumford regularity of the singular locus of X. Therefore, Corollary 3.2.3 allow us

to conclude that if cod(Sing(X), X) > 2, then one can take p = 1, regardless of
dim(Sing(F) N X).

Let V be an algebraic manifold with Pic(V') ~ Z. If D is a divisor on V' then
Oy (D) = Oy (dp), for some dp € Z. In this case, we denote k(V') = dg,,. A Pfaff
field of rank k on V is a section of A" Oy ® Oy(s), for some s € Z. Thus, we
define dg := s + k, naturally. In this case, we get the following.

Proposition 1. Let V' be a n-dimensional algebraic manifold with Pic(V) ~ Z.
Let X be a k-dimensional smooth complete intersection of nonsingular hypersur-
faces Dq,...,D,_r on V. If X is invariant under a holomorphic Pfaff field F of
rank k£ on V', then

dD1+"'+an,k gd]:—k—/-i(V).

Proof. Since X is invariant by F we have that HO(X, A*¥ ©x®@0y (dz—Fk)|x) # {0},
then deg(A* ©x @ Oy (dr — k)|x) > 0. Let Oy (D;) be the line bundle associated
to hypersurface D;, 1 = 1,...,n — k. We have the following adjunction formula

k n
/\ Ox = /\@V|X ® Ov(—D1)|x ® -+ Oy (—Dp_i)|x-

Therefore /\k Ox =O0v(—k(V)—dp, —---—dp,_,)|x, thus

k
deg(Oy(dy —k— (V) —dp, — - —dp,_,)|x) = deg(/\ Ox @ Oy (dr —k)|x) > 0.
]

Note that this last inequality coincides with the given in Corollary 3.2.3 when
V =P" and X is a non-singular complete intersection.
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3.3 Bound for invariant varieties with stable tan-
gent bundle

Our second main result uses the hypothesis of stability (in the sense of Mumford-
Takemoto) of the tangent bundle of X to establish another upper bound for the
sectional genus in terms of the degree and rank of a holomorphic Pfaff field. It
generalizes the previous result for nonsingular invariant varieties by allowing its
dimension to be larger than the rank of the Pfaff field. To the best of our knowl-
edge, this is the first time that the stability of the tangent bundle is used to obtain
such bounds. Notice that if O is stable, then each A" ©x is semistable, see [3].
Examples of projective varieties with stable tangent bundle are Calabi-Yau [78],
Fano [36, 48, 68, 76] and complete intersection [68, 77] varieties.

Definition 3.3.1. Let E be a torsion-free sheaf on V. The ratio u(E) = deg (E)/rk(E)
is called the slope of E, where deg;(E) = deg;(det(E)). Recall that a E is
semistable (in the sense of Mumford-Takemoto) if every torsion-free subsheaf E'

of E satisfies pp(E') < pp(E). Furthermore, E is stable if the strict inequality is
satisfied.

Theorem 3.3.1. Let X be a nonsingular projective variety of dimension m which
is invariant under a holomorphic Pfaff field F of rank k on P™; assume that m < k.
If the tangent bundle ©x is stable, then

2g(X,0x(1)) =2 < deg(F) — k

deg(X) - ()

+m — 1. (3.4)

Proof. The proof follows the same argument of the proof of Theorem 3.2.1. Since
X is invariant under F, we can conclude that HO(X, A" ©x ® Ox(d — k)) # {0}.
It then follows from the semistability of A*©x that A*©x @ Ox(d — k) is also
semistable, thus deg(A\* Ox ® Ox(d — k)) > 0. On the other hand, note that

deg(/\ TX)=— (dimkf)_()l— 1) deg(Kx).

Now, it is enough to consider the difference

Ox(d— k)
(+7)

A straight forward calculation leads to the inequality in Theorem 3.3.1.

(29(X) - 2) — [ +(m—1)0x(1)] - Ox (1)1,

]

However, the inequality of Theorem 3.3.1 is not sharp in general. To see
this, let X be a complete intersection variety of dimension m and multidegree
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(dq,...,dp_m), which is invariant under a k-dimensional Pfaff field F on P™; as-
sume that m > k. Then

deg(F) — k
T m—1\
(i)
Setting m = k = 1, the inequality reduced to d; < deg(F) + n. However, Mar-

cio Soares has shown, under the same circumstances, that d; < deg(F) + 1 [75,
Theorem B].

d1+"'+dnfm§ +n+1
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