
UNIVERSIDADE FEDERAL DE MINAS GERAIS
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ABSTRACT The aim of this work is to study the existence of blender structure in a three-dimensional
family of diffeomorphisms derived from the canonical Henon family in dimension two by multiply it by a
convenient affine function in the z-direction. As in [1] we shall call the topological conjugacy class of this family
for Non-normally Henon-like family. A blender is an important concept in Dynamic from the geometric point
of view. The first time that the subject appears was in [2] where the authors define and use blender structure
to prove the existence of some kind of robust transitive diffeomeorphism far from hyperbolicity. The most deep
consequence of the blender structure is that one can have one dimensional submanifold of the ambient space
which behaves as two dimensional submanifold. Another fact about blenders is that one can construct affine
blender as we will show in this work.



Chapter 1

Introduction

Consider the family ψ((a, b), (x, y, )) = (1− ax2 + by, x). We know by Benedicks- Calerson (see [4]) that this
two dimensional family have some strange atractor(see[15] for definition) for some parameters values a and b
and we also kow that inside this atractor we have a homoclinic tangence (see [12] ).
This work is a detailed study of [1] where is considered the family ϕ : R4×R3 → R3 given by ϕ((a, b, c, d), (x, y, z)) =
(1− ax2 + by, x, cz + dx).
This is a 3-dimensional version of the Henon family called in [1] Non-Normally Henon Like family. It is proved
that if the parameters satisfy 

0 < |b| < δ;

a > 15(1+|b|)2
4

;
(
P .C

)
1 + |d| < c < 10

9
;

0 < |d| < 1
9
.

then this family have a blender (we are going to define Blender late). This object was used in [10] to obtain
robust heterodimensional cycle and in [2] to obtain non-uniformly hyperbolic robustly transitive diffeomorphism.
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Chapter 2

Background

Now we are going to present some definitions and results about hyperbolic dynamics. We will not prove no
result here but the reader can find a proof in [5, 14].

Definition 2.0.1 Let M be a Ck-manifold and let f ∈ C1(M,M). One say that a point x ∈ M is a hyperbolic
fix point of f when the spectrum of the linear function df(p) : TxM → TpM has no intersection with the circle
S1 ⊂ C. One say that a point p ∈ M is periodic hyperbolic point(with period k) of f when it is a hyperbolic fix
point of fk.

Definition 2.0.2 Let M be a metric space and let f ∈ C0(M,M) and x ∈M.

• One call stable set of a point x the set W s := {y ∈M| limn→∞Dist(f
n(y), fn(x)) = 0}

If f ∈ Homeom(M,M) then

• One call unstable set of x the set W u := {y ∈M| limn→∞Dist(f
−n(y), f−n(x)) = 0}, that is, the unstable

set of x is the stable set of x by f−1;

• One call local stable set of x (with size ε > 0) the set W s
ε (x) := {y ∈M| Dist(fn(y), fn(x)) < ε, ∀n ≥ 0};

• One call local unstable set of x (with size ε > 0) the set W u
ε (x) := {y ∈ M| Dist(f−n(y), f−n(x)) <

ε, ∀n ≥ 0};

Theorem 2.0.1 (The Hartman−Grobman Theorem)
Let M be a Ck-manifold and let f ∈ Diff 1(M) with a hyperbolic fix point p ∈M. Then there are neighborhoods
Vp ⊂M and V0 ⊂ TpM and a h ∈ Homeom(Vp, V0) such that

h ◦ f = df(p) ◦ h.

Corollary 2.0.1 Let M be a Ck-manifold, f ∈ C0(M,M) and p ∈M a hyperbolic fix point of f . Then there is
ε0 > 0 such that:

• W s
ε0

(p) ⊂ W s(p) and W u
ε0

(p) ⊂ W u(p);

• W s
ε0

(p) is a topological sub-manifold with the same dimension of Es(p);

• W u
ε0

(p) is a topological sub-manifold with the same dimension of Eu(p);
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Figure 2.1: λ-Lemma

• W s(p) =
⋃
n≤0 f

−n(W s
ε0

(p)) and W u(p) =
⋃
n≤0 f

n(W u
ε0

(p)) are immersed topological sub-manifolds

Proof: It follows immediately from the Hartman-Grobman Theorem.

Corollary 2.0.2 Suppose p is a hyperbolic fix point of f thus there is a neighborhood Vp ⊂ M such that if
fn(q) ∈ Vp for all n ∈ Z then q = p.

Lemma 2.0.1 (The λ− Lemma)
Suppose that

• M is a connected compact boundaryless Cr- Riemannian manifold of dimension n;

• f ∈ Diff r(M);

• p ∈M is a periodic hyperbolic point for f ;

• Du is a compact disc in W u(p);

• D is a disc centered in a point x ∈ W s(p) such that dim(D) = dim(W u(p)) and x ∈ D t W s(p).

Then for every ε > 0 there is an integer n0 > 0 such that for all n ≥ n0 there is a disc Dn ⊂ D so that
fn(Dn) is a disc ε− C1-near of Du.

Definition 2.0.3 (Hyperbolic set)
Let f ∈ Diff r(M) and Λ ∈M. We say that Λ is hyperbolic set for f when:
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1. Λ compact invariant ;

2. For every x ∈ Λ there is subspaces Es(x), Eu(x) ⊂ TxM such that:

(a) TxM = Es(x)⊕ Eu(x);

(b) df(x)(Es(x)) = Es(f(x)) and df(x)(Eu(x)) = Eu(f(x));

(c) There are constants c > 0 and 0 < λ < 1 such that:

i. ‖dfn(x)(v)‖ ≤ cλn‖v‖, ∀v ∈ Es(x) and ∀n ≥ 0;

ii. ‖df−n(x)(v)‖ ≤ cλn‖v‖, ∀v ∈ Eu(x) and ∀n ≥ 0.

The sub-bundles Es := ∪x∈Λ{(x, v)|x ∈ Λ and v ∈ Es(x)} and Eu := ∪x∈Λ{(x, v)|x ∈ Λ and v ∈ Eu(x)}
are called stable sub-bundle and unstable sub-bundle respectively and we have TΛM = Es ⊕ Eu.
On this way if p is a hyperbolic periodic point of f with period k, then Λ = {p, f(p), f 2(p), ...., fk−1(p)} is a
hyperbolic set for f . Note that hyperbolicity does not depends on the Riemannian Metric.

Proposition 2.0.1 If f ∈ Diff r(M) and Λ ∈M is a hyperbolic set for f then the subspaces Es(x) and Eu(x)
depends continuously on the point x.In particular , they have dimensions locally constant.

Proposition 2.0.2 (Adapted Meric) If f ∈ Diff r(M) and Λ ⊂ M is a hyperbolic set for f , then there is a
C∞- Riemannian Metric on M and a constant 0 < a < 1 such that:

• ‖df(x)(vs)‖∗ < a‖vs‖∗, ∀vs ∈ Es(x) and ∀x ∈ Λ;

• ‖df−1(x)(vu)‖∗ < a‖vu‖∗, ∀vu ∈ Eu(x) and ∀x ∈ Λ;

Where ‖.‖∗ is the norm which come from the metric.

Definition 2.0.4 Let V a real Hilbert space. We say that a set C ⊂ V is a cone on V if and only if ,V admits
a splitting V = E ⊕ F and there is a real number a > 0 such that

C = {(vE, vF ) ∈ V | ‖vE‖ ≤ a‖vF‖}

Proposition 2.0.3 Let V be a real Hilbert space. Then a set C ⊂ V is a cone on V if, and only if, there is a
continuous non-degenerated quadratic form B : V → R such that

C = {v ∈ V | B(v) ≤ 0}.

Definition 2.0.5 Let V be a Hilbert space with finite dimension and let C be a cone on V .

• We say that the cone C has dimension k when k = Max{dimW | W ⊂ C is a subspace of V }.

• We say that a non-degenerated quadratic form B : V → R has dimension k if k is the dimension of the
cone determined of it.

Definition 2.0.6 Let M be a Ck-manifold of dimension n and let Λ ⊂M.
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• One call a continuous field of quadratic form a function B which associates to each point x ∈ Λ a quadratic
form B(x) : TxM → R. By continuous one means that the coefficients of the quadratic forms B(x) are
continuous real functions on Λ.

• One call a continuous cone-field on Λ a function C which to each point x ∈ Λ associates a cone C(x) in
TxM. By continuous cone-field one means that the field of quadratic form determined by C is a continuous
field of quadratic form.

• If f ∈ C1(M,M) and B is a continuous field of quadratic form on Λ, one call the pull-back of B the field
of quadratic form defined by

(f ∗B)(x) = B(f(x))(df(x)(v))

where we are supposing that f(Λ) ⊂ Λ.

Theorem 2.0.2 (Characterization of hyperbolicity via cone− fields)
Suppose that

• M is a connected compact boundaryless Cr- Riemannian manifold of dimension n;

• f ∈ Diff r(M);

• Λ ⊂M is compact f -invariant.

The following statements are equivalent :

1. Λ is a hyperbolic set for f ;

2. There is a continuous field B of non-degenerated quadratic forms on Λ and whose dimension is constant
through the orbits of f in points of Λ and such that the quadratic form f ∗B −B is positive defined, where
f ∗B(v) = B(f(v)).

3. There is on Λ ,two continuous cone-fields Cs and Cu where the dimensions of them are point-wise com-
plements and constant through the orbits of f in points of Λ and such that :

(a) df(x)(Cu(x)) ⊂ Cu(f(x)) and df−1(x)(Cs(x)) ⊂ Cs(f−1(x));

(b) There is σ > 1 and m > 0 such that

i. ‖dfm(x)(v)‖ ≤ σ‖v‖ , ∀v ∈ Cu(x) and ∀x ∈ Λ;

ii. ‖df−m(x)(v)‖ ≤ σ‖v‖ , ∀v ∈ Cs(x) and ∀x ∈ Λ.

Theorem 2.0.3 (The Stable Manifold Theorem)
Suppose that

• M is a connected compact boundaryless Cr- Riemannian manifold of dimension n;

• f ∈ Diff r(M);

• Λ ⊂M is a hyperbolic set for f .

Then there is ε > 0 such that for every point x ∈ Λ the following holds:
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• W s
ε (x) is a Cr-Embedded sub-manifold of M so that TxW

s
ε (x) = Es(x);

• W s
ε (x) ⊂ W s(x);

• W s(x) =
⋃
n≤0 f

−n(W s
ε (fn(x))) and is a Cr-Immersed sub-manifold of M. Moreover W s(x) depends

continuously on the point x.

Obviously there is an analogously result for W u(x) because W u(x, f) = W s(x, f−1).

Corollary 2.0.3 In the same hypothesis of the previous theorem one can deduce that there is δ > 0 such that
for every x, y ∈ Λ with d(x, y) < δ one have W s

ε (x) t W u
ε (y) = {z}.



Chapter 3

Blender in 3D

In this chapter following [2] we are going to define blender and prove some properties of such object.
Rougly speaking a Blender is a hyperbolic set Λ, locally maximal invariant with a dense orbit such that W s(Λ)
is locally homeomorphic to the product of a Cantor set by an interval. But it bahaves as a topological surface
in the following sense: There is a conefield Cuu around the strong unstable direction of Λ so that every curve
γ tangent to Cuu intersects W s(Λ)(see lemma 3.0.6). That is why we need of the hyperbolicity theory in the
background.
So here is the definition of Blender.

Definition 3.0.7 Let M3 be a boundaryless Riemaniann manifold of dimension 3 and f ∈ Diff 1(M3). Con-
sider the box
B := [−1, 1]× [−1, 1]× [−1, 1] ⊂ R3 and D the image of an embedding E : O ⊃ B→M3.
Decompose the boundary of D into three parts as follow:

∂uuD = E(({−1} ∪ {+1})× [−1, 1]× [−1, 1])

∂uD = E([−1, 1]× [−1, 1]× ({−1} ∪ {+1}))

∂sD = E([−1, 1]× ({−1} ∪ {+1})× [−1, 1])

Suppose that :

• There is a connected component A of D ∩ f(D) disjoint from the union ∂sD ∪ f(∂uD);

• There are an integer n0 > 0 and a connected component B of fn0(D) ∩ D so that B is disjoint from ∂sD,
from f(∂uuD) and from E([−1, 1]× [−1, 1]× {+1}). (See Figure)

• There is a cone field Cu(q) on f−1(A) ∪ f−n0(B) such that :

– ∀q ∈ f−1(A)⇒ df(q)(Cu(q)) ⊂ Int(Cu(f(q)));

– ∀q ∈ f−n0(B)⇒ dfn0(q)(Cu(q)) ⊂ Int(Cu(fn0(q))).

• There is a cone field Cuu(q) ⊂ Cu(q) on f−1(A) ∪ f−n0(B) such that :

– ∀q ∈ f−1(A)⇒ df(q)(Cuu(q)) ⊂ Int(Cuu(f(q)));

– ∀q ∈ f−n0(B)⇒ dfn0(q)(Cuu(q)) ⊂ Int(Cuu(fn0(q))).

7
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• There is a cone field Cs(q) on A ∪ B such that :

– ∀q ∈ A⇒ df−1(q)(Cs(q)) ⊂ Int(Cs(f−1(q)));

– ∀q ∈ B⇒ df−n0(q)(Cs(q)) ⊂ Int(Cs(f−n0(q))).

Then we have the followings definitions:

• We say that a segment L of smooth curve in D is an unstable segment when L is tangent to Cuu and its
boundary ∂L is contained in ∂uuD. We shall denote an unstable segment for Lu.

• We say that a segment L of smooth curve in D is a stable segment when L is tangent to Cs and its boundary
∂L is contained in ∂sD and we shall denote a stable segment for Ls.

Note that if Ls is a stable segment in D such that Ls∩∂uD = ∅. Then in D/Ls there are just two homotopy
classes of unstable segments. One is the homotopy class of L+ := E([−1, 1] × {0} × {+1}) and the other
one is the homotopy class of L− := E([−1, 1]× {0} × {−1}).

• We say that an unstable segment Lu is on the upper region of Ls when Ls ∩ Lu = ∅ and Lu is homotopic
to L+ in D/Ls.

• We say that a stable segment Ls is on the lower region of Ls when Ls ∩ Lu = ∅ and Lu is homotopic to
L− in D/Ls.

• One call an unstable strip trough D an embedding Φ : [−1, 1]× [−1, 1]→ D such that for every t ∈ [−1, 1]
the image ct of [−1, 1] × {t} is an unstable segment through D and the image S of [−1, 1] × [−1, 1] is
tangent to Cu.

For the sake of notational simplicity given an unstable strip Φ : [−1, 1]× [−1, 1]→ D we also call unstable
strip the image S of [−1, 1]× [−1, 1] by Φ.

• The unstable boundary ∂S of an unstable strip S is the union of ∂±S, where ∂±S = Φ({±1} × [−1, 1]).

• An unstable strip S is maximal if its unstable boundary ∂S is contained in ∂uD.

• The width of an unsatable strip S, ωd(S), is

inf{`(α)/α is an arc in S joining the two components ∂±S of ∂S}.

Lemma 3.0.2 The following holds.

sup{wd(S)/S ⊂ D is unstable strip} < +∞.

To proof see [2] page 364.

Definition 3.0.8 Let M3 be a boundaryless Riemaniann manifold and f ∈ Diff 1(M3). Consider the box
B := [−1, 1]× [−1, 1]× [−1, 1] ⊂ R3 and D the image of an embedding E : O ⊃ B→M3.

We say that the pair (D, f) is a blender if it satisfies the following hypothesis:

• (H1) There is a connected component A of D ∩ f(D) disjoint from the union ∂sD ∪ f(∂uD);

• (H2) There are an integer n0 > 0 and a connected component B of fn0(D) ∩ D so that B is disjoint from
∂sD, from f(∂uuD) and from E([−1, 1]× [−1, 1]× {+1}).
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• (H3) (hyperbolicity conditions).

– There is a cone field Cu(q) on f−1(A) ∪ f−n0(B) such that :

∗ ∀q ∈ f−1(A)⇒ df(q)(Cu(q)) ⊂ Int(Cu(f(q)));

∗ ∀q ∈ f−n0(B)⇒ dfn0(q)(Cu(q)) ⊂ Int(Cu(fn0(q))).

– There is a cone field Cuu(q) ⊂ Cu(q) on f−1(A) ∪ f−n0(B) such that :

∗ ∀q ∈ f−1(A)⇒ df(q)(Cuu(q)) ⊂ Int(Cuu(f(q)));

∗ ∀q ∈ f−n0(B)⇒ dfn0(q)(Cuu(q)) ⊂ Int(Cuu(fn0(q))).

– There is a cone field Cs(q) on A ∪ B such that :

∗ ∀q ∈ A⇒ df−1(q)(Cs(q)) ⊂ Int(Cs(f−1(q)));

∗ ∀q ∈ B⇒ df−n0(q)(Cs(q)) ⊂ Int(Cs(f−n0(q))).

– There is an expanding constant ρ > 1 such that the derivatives df , df−1, dfn0 and df−n0 are uniformly
ρ-expanding through the cones fields above defined.

The Lemma below will assures us that as a consequence of (H1) and (H3) the diffeo f has a hyperbolic
fix point q whose index is 2. We denote by W s

D(q) the connected component of the intersection W s ∩ D
containing the point q. It is immediate that W s

D(q) is a stable segment through D.

• (H4) There is a neighborhood U− of the lower face E([−1, 1]× [−1, 1]×{−1}) of D so that every unstable
segment Lu on the upper region of W s

D(q) has no intersection with U−;

• (H5) There are a neighborhood O+ of the upper face E([−1, 1]× [−1, 1]× {+1}) of D and a neighborhood
V of W s

D(q) so that for every unstable segment Lu on the upper region of W s
D(q) one of the two possibilities

holds:

– f(Lu) ∩ A contains an unstable segment on the upper region of W s
D(q) and disjoint of O+;

– fn0(Lu) ∩ B contains an unstable segment on the upper region of W s
D(q) and disjoint of V.

Remark 3.0.1 One can note that both definitions above are the same of Bonatti-Dias [2] ,pages 365-369. Here
we just consider 3-dimensional manifolds and a slightly different nomination. But essentially are the same
things.

Lemma 3.0.3 Let (D, f) be pair satisfying (H1) and (H3) in the definition of blender. Then

• For every stable segment Ls the intersection A∩Ls is a segment of curve whose boundary ∂Ls is contained
in ∂sA. In particular, f−1(A ∩ Ls) is a stable segment on D;

• For every maximal unstable strip S the intersection f(S) ∩ A is a maximal unstable strip;

• The diffeo f has an unique fixed point ,say q, in A and whose index is 2. Moreover W s
D(q) is a stable

segment through D;

• If Lu is an unstable segment, then the intersection f(Lu)∩A contains at most one unstable segment through
D.

To proof see Bonatti-Dias Paper [2] page 366.
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Lemma 3.0.4 Let (D, f) be a blender as in definition above and S an unstable strip through D on the upper
region of W s

D(q).

If S̃ is an unstable strip through D that is either a connected component of f(S) ∩ A or a component of

fn0(S)∩B. Suppose yet that the unstable boundary ∂S̃ is included in the image of the one of S. Then the width

wd(S̃) of S̃ is bigger than ρ.wd(S).

Proof: Suppose that S̃ is a connected component of f(S) ∩ A. Then every arc α̃ in S̃ joining ∂−S̃ to ∂+S̃ is
the image by f of an arc γ in S joining ∂−S to ∂+S.Thus , from the expanding conditions for the cone field Cu,

ρ.`(γ) < `(α̃).

Lemma 3.0.5 Let (D, f) be a blender as in definition above and S an unstable strip through D on the upper
region of W s

D(q). Then there are two possibilities:

• Either f(S) ∪ fn0(S) intersects W s
D(q) or

• There is an unstable strip S̃ on the upper region of W s
D(q) and contained in f(S)∪fn0(S) so that its width

wd(S̃) is bigger than ρ.wd(S).

To proof see Bonatti-Dias Paper [2] page 368.

Lemma 3.0.6 For any unstable strip S on the upper region of W s
D(q) there is an integer m > 0 such that fm(S)

intersects W s
D(q).

Proof: Let S be an unstable strip as in the statement. By previous lemma either f(S) ∪ fn0(S) intersects
W s

D(q) and in this case we are done or there is an unstable strip S0 on the upper region of W s
D(q) and contained

in f(S) ∪ fn0(S) so that its width wd(S0) is bigger than ρ.wd(S).

• If (f(S0) ∪ fn0(S0)) ∩W s
D(q) 6= ∅ then [f 2n0(S) ∪ fn0+1(S) ∪ f 2(S)] ∩W s

D(q) 6= ∅ and we are done.

• If not then we take S1 ⊂ [fn0(S0) ∪ f(S0)] ∩ D with width wd(S1) ≥ ρwd(S0) ≥ ρ2wd(S).

• If [fn0(S1)∪f(S1)]∩W s
D(q) 6= ∅ then as S1 ⊂ [fn0(S0)∪f(S0)]∩D⇒ [f 2n0(S0)∪fn0+1(S0)∪f 2(S0)]∩W s

D(q) 6=
∅. But S0 ⊂ (f(S ∪ fn0(S)). Thus [f 3n0(S)∪ f 2n0+1(S)∪ fn0+2(S)∪ f 3(S)]∩W s

D(q) 6= ∅ and we are done .

• If not ,then we take S2 ⊂ [fn0(S1) ∪ f(S1)] ∩ D with width wd(S2) ≥ ρ.wd(S1) ≥ ρ2.wd(S0) ≥ ρ3.wd(S).
We can make this process ever and by induction we are going to obtain a sequence (Sn) with width
wd(Sn) ≥ ρn+1.wd(S). But by lemma 3.0.2 above that sequence must stop in some moment, that is, we
can find an m > 0 such that fm(S) ∩W s

D(q) 6= ∅.

Lemma 3.0.7 The stable manifold W s(q) of the hyperbolic point q intersects transversally every unstable strip
on the upper region of W s

D(q).
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Proof: Its immediate from the previous lemma.

Now we are going to prove the amazing global fact about the stable manifold of a blender which is :

Lemma 3.0.8 Suppose that there is a hyperbolic fixed point p , of f , with index 1 so that W u(p) ∩ D contains
an unstable segment through D on the upper region of W s

D(q). Then W s(p) ⊂ W s(q).

Proof: We fix a point q̂ in W s(p) and then we take an arbitrary neighborhood Vq̂ of it. The λ-Lemma assures
us that for some integer j > 0 the set f j(Vq̂) must contain an unstable strip on the upper region of W s

D(q). But
from the previous Lemma we must have f j(Vq̂)∩W s(q) 6= ∅. Since f is a diffeo and W s(q) is a stable manifold
the result is obvious.



Chapter 4

Examples of Blenders

4.1 The Affine Blender

In this section we will present an example of blender called affine blender. It is the most simple model of a
Blender. The reference is [8]
To begin let f ∈ Diff 1(R2) and R = [0, 1]× [0, 1] such that (f,R) is a Smale horseshoe for f , that is :

• R∩ f(R) has has two connected components J1 and J2 such that Ji = Ii× [0, 1] for some compact interval
Ii ⊂ Int[0, 1] where i = 1, 2;

• R ∩ f−1(R) has has two connected components R1 and R2 such that Ri = Ii × [0, 1] for some compact
interval Ii ⊂ Int[0, 1] where i = 1, 2;

• The restriction of f to R1 ∪R2 is affine with linear parts:[
±1

3
0

0 ±3

]
In particular, such restrictions preserves the horizontal and vertical directions (see figures 2.1).

Then one obtain that f has an unique hyperbolic fixed point, say q = (y0, z0) in J1 whose stable manifold is a
horizontal segment of line W s(q) = [0, 1]× {z0} and another fixed point p = (y1, z1) in J2.

Now consider a diffeomorphism F ∈ Diff 1(R3) such that on the box D := [−1, 1]×R has the following aspect:

F (x, y, z) =

{ (
5x
4
, f(y, z)

)
; if (x, y, z) ∈ H1 := [−1, 1]×R1;(

5x
4
− 1

2
, f(y, z)

)
; if (x, y, z) ∈ H2 := [−1, 1]×R2

Now we denote V1 = [−1, 1]× J1 and V2 =
[
− 1, 3

4

]
× J2. It follows that

V1 ⊂ F (H1) =
[−5

4
,
5

4

]
× J1 ⊂ F (D);

V2 ⊂ F (H2) =
[−7

4
,
3

4

]
× J2 ⊂ F (D).

12
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Figure 4.1: The Affine blender map and its invariant cones (figure from [1])
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Figure 4.2: On red color we have vertical strip and on blue a vertical segment

Then we get D ∩ F (D) = V1 ∪ V2 and D ∩ F−1(D) = H1 ∪H2 (disjoint unions !).
Note that

F−1(u, v, w) =

{ (
4u
5
, f−1(v, w)

)
; se (u, v, w) ∈ V1;(

4u
5

+ 2
5
, f−1(v, w)

)
; se (u, v, w) ∈ V2.

See figure 2.2.
So let us prove the existence of Blender.
Claim1. F has an unique hyperbolic fix point Q in V1 whose index is equal 2,that is, dimW u(Q) = 2.
In fact, we take Q = (0, q) = (0, y0, z0) where q is the fix point of f in V1. Then F (Q) = F (0, y0, z0) =
(0, f(y0, z0)) = (0, y0, z0) = Q and obviously Q ∈ V1.

Let W s
loc(Q) = {0} × [0, 1]× {z0} be the connected component of W s(Q) ∩ D which contains Q.
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Now consider the sets
X± := {±1} × [0, 1]× [0, 1]
Y + := [−1, 1]× {0} × [0, 1]
Y − := [−1, 1]× {1} × [0, 1]
Z+ := [−1, 1]× [0, 1]× {1}
Z− := [−1, 1]× [0, 1]× {0}

∂uuD = Z+ ∪ Z−;

∂uD = X+ ∪X− ∪ Z+ ∪ Z−;

∂sD = Y + ∪ Y −.

Claim 2. V1 ∩ ∂sD = ∅;
In fact, this follows from the construction of horseshoe (f,B) where we have I1 ⊂ Int([0, 1]).

Claim 3. V1 ∩ F (∂uD) = ∅;
Of course, if there is (u, v, w) ∈ V1 ∩ F (∂uD)⇒ (u, v, w) = F (x, y, z) where (x, y, z) ∈ ∂uD. Then x = ±1 and
(4u

5
, 3v, w

3
) = (±1, y, z)⇒ u = ±5

4
absurd!

Claim 4. V2 ∩ ∂sD = ∅;
In fact, otherwise we should have {0, 1} ∩ I2 6= ∅ an absurd!

Claim 5. V2 ∩ F (∂uuD) = ∅;
Of course,By construction of the Smale’s horseshoe (f,B) we have that f(∂uuB) = f([0, 1]× ({0} ∪ {+1})) has
no intersection with B. Then by construction of F we have the result.

Now note that as F is affine in D ∩ F (D) = V1 ∪ V2 and the tangent space is decomposed in one unstable
plane X

⊕
Z where Z is the strong unstable direction and X is the weak unstable direction, and the stable

direction which is Y-direction. This implies immediately that F satisfies the hyperbolicity condition H3 in the
definition of blender .Actually the maximal invariant set of F in D is hyperbolic set for F .

Claim 6. There is a neighborhood U− of the face {−1}× [0, 1]× [0, 1] of D such that every vertical segment
L to the right of W s

D(Q) has no intersection with U−.
Of course,in this case any vertical segment to the right of W s

D(Q) is exactly a segment of straight line parallel
to z-axis and it is far from that face.

Claim 7. For every vertical segment to the right of W s
D(Q) one of the two things holds:

• f(L) ∩ V1 is a vertical segment to the right of W s
D(Q);

• f(L) ∩ V2 is a vertical segment to the right of W s
D(Q).

Of course,If L is a vertical segment to the right of W s
D(Q) then L = {t} × {y} × [0, 1] with t > 0. Thus the

x-coordinate of f(L) ∩ V1 is 5t
4

and the x-coordinate of f(L) ∩ V2 is 5t
4
− 1

2
. Then we have two possibilities:

If t < 4
5

then we get f(L) ∩ V1 to the right of W s
D(Q).

If 4
5
≤ t ≤ 1 then we get 5t

4
− 1

2
> 1

2
and from that f(L) ∩ V2 is to the right of W s

D(Q).

Claim 8. There is a neighborhood O+ of the face X+ := {+1} × [0, 1]× [0, 1] of D and a neighborhood V
of W s

D(Q) so that for every vertical segment Lu to the right of W s
D(Q) one of the two possibilities holds:
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• f(L) ∩ V1 is disjoint of O+;

• f(L) ∩ V2) is disjoint of V .

In fact, suppose this is not true. Then we can find a sequence Ln of vertical segment to the right of W s
D(Q) such

that as n→∞ we have limn→∞Dist(F (Ln) ∩ V1, X
+) = 0 = limn→∞Dist(F (Ln) ∩ V2,W

s
D(Q)). So denote by

Lin = F (Ln ∩ Vi , xin the x-coordinate of Lin where i = 1, 2 and xn the x-coordinate of Ln. Since F preserves
vertical directions then we must have limn→∞ x

1
n = 1 and limn→∞ x

2
n = 0. On the other hand by using the

definition of F−1 in V1 ∪V2 we must have xn = 4x1n
5

= 4x2n
5

+ 2
5
. It follows that the sequence xn has two different

limits which impossible.
Note that the segments F−1(L1

n) = Ln ∩H1 and F−1(L2
n) = Ln ∩H2 must have the same x-coordinate.

Hence the pair (F,D) satisfies the blender conditions.
Now let us prove directly the main properties of blenders to (F,D).

Lemma 4.1.1 If ∆ is a vertical strip to the right of W s
loc(Q) then either F (∆) intersects W s

loc(Q) or else

F (∆) ∩ D must contain another vertical strip ∆̂ to the right of W s
loc(Q) with w(∆̂) = 5

4
w(∆).

Proof: Let ∆ = [x1, x2]× {y} × [0, 1] be a vertical strip to the right of W s
loc(Q).

Denote ∆1 = F (∆)∩V1 ⊂ D∩F (D) and ∆2 = F (∆)∩V2 ⊂ D∩F (D). Then F−1(∆1) = ∆∩F−1(V1) = ∆∩H1.
It follows that we must have F−1(∆1) = ∆ ∩H1 = [x1, x2]× {y} × [0, z]. So by definition of F the strip ∆1 has
wd(∆1) = 5x2

4
− 5x1

4
. On the other hand we have F−1(∆2) = ∆∩F−1(V2) = ∆∩H2 which implies in F−1(∆2) =

∆ ∩H2 = [x1, x2]× {y} × [0, z]. So again by definition of F the strip ∆2 has wd(∆2) = (5x2
4
− 1

2
)− (5x1

4
− 1

2
).

Now We have the following cases:
CASE 1 :If x2 ≤ 4

5
, then [5

4
x1,

5
4
x2] ⊂ (0, 1] and this implies that ∆1 must be a vertical strip to the right of

W s
loc(Q) and more w(∆1) = 5

4
w(∆).

CASE 2: If 4
5
< x2 ≤ 1 then 5

4
x2− 1

2
∈ (1

2
, 3

4
].By definition of F there exists a y′ such that ∆2 = F (∆)∩V2 =

[5
4
x1 − 1

2
, 5

4
x2 − 1

2
]× {y′} × [0, 1].This gives us more two subcases.

CASE 2.1 :If 5
4
x1− 1

2
> 0 then ∆2 shall be a vertical strip to the right of W s

loc(Q) with width w(∆2) = 5
4
w(∆).

CASE 2.2 : If 5
4
x1 − 1

2
≤ 0 then ∆2 meets W s

loc(Q) because W s
loc(Q) = {0} × [0, 1] × {z0} and the proof is

concluded.

Lemma 4.1.2 For any vertical strip ∆ to the right of W s
loc(Q) there exists an integer n > 0 such that F n(∆)

intersects W s
loc(Q). In particular every vertical strip ∆ to the right of W s

loc(Q) intersects W s(Q). See figure 4.3.

Proof: Let ∆ be a vertical strip to the right of W s
loc(Q). If F (∆) intersects W s

loc(Q) it is finished.Otherwise, as
we know there is a vertical strip ∆̂1 to the right of W s

loc(Q) so that ∆̂1 ⊂ F (∆)∩B and ω(∆̂1) = 5
4
ω(∆). If F (∆̂1)

intersects W s
loc(Q) it is finished because F (∆̂1) ⊂ F 2(∆)∩F (B) ⊂ F 2(∆). Otherwise there is a vertical strip ∆̂2

to the right of W s
loc(Q) such that ∆̂2 ⊂ F (∆̂1∩B and ω(∆̂2) = 5

4
ω(∆̂1) = (5

4
)2ω(∆). If F (∆̂2) intersects W s

loc(Q)

it finished since F (∆̂2) ⊂ F (∆̂1) ∩ F (B) ⊂ F 3(∆) ∩ F 2(B) ⊂ F 3(∆). Otherwise we may apply the previous
proposition again and since 5

4
> 1 it follows that for some n > 0 we shall obtain a vertical strip ∆̂n to the right

of W s
loc(Q) such that ω(∆̂n) = (5

4
)nω(∆) > 1 and ∆̂n ⊂ F ( ˆ∆n−1) ⊂ F n(∆). Hence for some n > 0 F n(∆) must

intersects W s
loc(Q).
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Figure 4.3: vertical strip eventually intersects stable manifold

4.2 Blender in the Henon-Like Family

On this section our main objective is study the blender structure for the non-normally Hénon-like family defined
as follows.

Definition 4.2.1 (Non-Normally Henon-Like Family)Consider the function ϕ : R4 × R3 → R3 given by
ϕ((a, b, c, d), (x, y, z)) = (1 − ax2 + by, x, cz + dx). Thus for each point (a, b, c, d) ∈ R4 one have a smooth
function,which we shall call ϕ too, given by ϕ(x, y, z)) = (1 − ax2 + by, x, cz + dx) and this family depends
smoothly on the parameters (a, b, c, d)

Let us now state the main result of the reference [1] which is the following theorem:

Theorem 4.2.1 There exists a constant 0 < δ < 1
4

such that if the parameters a, b, c and d satisfies:
0 < |b| < δ;

a > 15(1+|b|)2
4

;
(
P .C

)
1 + |d| < c < 10

9
;

0 < |d| < 1
9
.

Then each diffeomorphisim ϕ has a blender Λ =
⋂
n∈Z f

n(D), for some cube D ⊂ R3, containing a saddle fix
point p = (xp, yp, zp) with index 2 and satisfying

dim
(
Πyz

(
W s(p)

)
∩ D

)
= 2.

Remark 4.2.1 Numerical simulations in figure 4.4 also support this main theorem. In fact,although uniformly
hyperbolicity of ϕ does not break down under (P .C

)
, geometrical dispersions of stable segment abruptly occurs if

d cross 0, which corresponds to the phase transition from the non-normally hyperbolic horseshoe to the blenders.

To prove the main theorem we are going to make various lemma as support for the proof. First of all let us
obtain some properties of ϕ around fix point and then classify it under hyperbolicity point of view.
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Figure 4.4: (a.1) Stable segments for ϕa,b,c,d for d = 0 and (a.2) their projective images on the yz-plane , (b.1) Stable
segments for ϕa,b,c,d when d = −0.1 and (b.2) their projective images on the yz-plane ,where (a, b, c) is fixed near
(5.0,−0.1, 1.11).(Figure from [1])
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When in the family above we have b 6= 0 and c 6= 0,then each function ϕ : R3 → R3 is a diffeomorphism.
In fact, it is easy verify that ϕ is a bijective function. Moreover in any point (x, y, z) the jacobian matrix is

Jϕ(x, y, z) =

−2ax b 0
1 0 0
d 0 c


whose determinant is det

[
Jϕ(x, y, z)

]
= −bc 6= 0. So from now on we shall consider only the case b 6= 0 and

c 6= 0 and with that we have a family of diffeomorphism .

Does that family ϕ(x, y, z) = (1− ax2 + by, x, cz + dx) have some fix point ?
Well 

1− ax2 + by = x
x = y
cz + dx = z

⇒


1− ax2 + by − x = 0
x = y
(1− c)z = dx

⇒


x =

(b−1)±
√

4a+(b−1)2

2a

y = x
(1− c)z = dx

Thus if we have d 6= 0 then z 6= 0 and c 6= 1 because x 6= 0 since (x, y, z) is a fix point.So in the case d 6= 0 the
point (x, y, z) is a fix point of ϕ if and only if

x =
(b−1)±

√
4a+(b−1)2

2a

y = x
z = dx

1−c

In the case d = 0 the fix point must be only
x =

(b−1)±
√

4a+(b−1)2

2a

y = x
z = 0

For now suppose d 6= 0 and let (x0, y0, z0) be the fixed point of ϕ. Then

Jϕ(x, y, z) =

(1− b)±
√

4a+ (1− b)2 b 0
1 0 0
d 0 c


which gives us the characteristic polynomial

P+(λ) = det

(1− b) +
√

4a+ (1− b)2 − λ b 0
1 −λ 0
d 0 c− λ


⇒ P+(λ) = −λ3 +

[√
4a+ (1− b)2 + c+ 1− b

]
λ2 +

[
b(1 + c)− c

[
1 +

√
4a+ (1− b)2

]]
λ− bc.

For the other case we obtain

P−(λ) = det

(1− b)−
√

4a+ (1− b)2 − λ b 0
1 −λ 0
d 0 c− λ


⇒ P−(λ) = −λ3 +

[
−
√

4a+ (1− b)2 + c+ 1− b
]
λ2 +

[
b(1 + c)− c(1−

√
4a+ (1− b)2)

]
λ− bc.

Now we have the following
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Lemma 4.2.1 There exists 0 < δ < 1
4

such that if the family ϕ(x, y, z) satisfies
(
P .C

)
then ϕ(x, y, z) =

(1− ax2 + by, x, cz + dx) has a fixed point p = (x0, y0, z0) of index 2.

Proof: We already saw that if d 6= 0 then the points of coordinates

x = y =
(b− 1)±

√
4a+ (b− 1)2

2a
, z =

d

1− c
x

are fixed points of ϕ.
Consider the fix point of coordinates

x = y =
(b− 1)−

√
4a+ (b− 1)2

2a
, z =

d

1− c
x

As we know the characteristic polynomial of the jacobian matrix of ϕ at this fixed point is

P−(λ) = −λ3 + [(1− b+ c)−
√

4a+ (1− b)2]λ2 + [b(1 + c)− c(1−
√

4a+ (1− b)2)]λ− bc

• Claim 1: P−(λ) has at least one real root in the interval (−1, 1)
In fact, we have that:

P−(1) = −1 + (1− b+ c)−
√

4a+ (1− b)2 + b+ bc− c+ c
√

4a+ (1− b)2 − bc =

= (c− 1)
√

4a+ (1− b)2

Since c > 1 it follows that P−(1) > 0. On the other side we have that:

P−(−1) = 1 + 1− b+ c−
√

4a+ (1− b)2 − b− bc+ c− c
√

4a+ (1− b)2 − bc =

= 2(1− bc− b+ c)− (c+ 1)
√

4a+ (1− b)2 =

= 2(1− b)(1 + c)− (c+ 1)
√

4a+ (1− b)2

Therefore
P−(−1) < 0⇔

2(1− b) <
√

4a+ (1− b)2 ⇔

4(1− 2b+ b2) < 4a+ 1− 2b+ b2 ⇔
3(1− b)2

4
< a

But by
(
P .C

)
we have a > 15(1+|b|)2

4
> 3(1−b)2

4
which implies P−(−1) < 0.

Hence by Intermediate Value Theorem for Continuous Functions follows that the claim is true.

• Claim 2: P−(λ) has at least one real root in the interval (1,+∞).
In fact, since P−(1) > 0 and limλ→+∞ P (λ) = −∞ this claim is true by Intermediate Value Theorem.

• Claim 3: P−(λ) has at least one real root in the interval (−∞,−1).
In fact, since P−(−1) < 0 and limλ→−∞ P (λ) = +∞ this claim is also true by Intermediate Value Theorem.
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Hence since we have a polynomial of degree 3 then by the claims above the fix point of coordinates

x = y =
(b− 1)−

√
4a+ (b− 1)2

2a
, z =

d

1− c
x

must be hyperbolic and its index is equal 2.

Now let us make some conventions.

1. r1 :=
3(1+|b|)+2

√
4a+(1+|b|)2

4a
;

2. r2 :=
|d||(b−1)−

√
4a+(b−1)2|

2a(c−1)

3. D = [−r1, r1]× [−r1, r1]× [zp − r2, zp + r2], where (x0, y0, z0) is the fixed point on of the lemma 4.2.1. As
we can see D depends on the parameters (a, b, c, d);

4. X+ := D ∩ ({r1} × R2) and X− := D ∩ ({−r1} × R2);

5. Y + := D ∩ (R× {r1} × R) and Y − := D ∩ (R× {−r1} × R);

6. Z+ := D ∩ (R2 × {z0 + r2}) and Z− := D ∩ (R2 × {z0 − r2}).

Lemma 4.2.2 The followings holds(see figure 4.5):

(I)
|b|+1+

√
4a+(|b|+1)2

2a
< r1 <

4
5
;

(II) d < 0⇒ Z− ⊂ R2 × {−2r2} and Z+ ⊂ R2 × {0};

(III) d > 0⇒ Z− ⊂ (R2 × {0}) ∩ D and Z+ ⊂ (R2 × {2r2}) ∩ D.

Proof: (I) The inequality
|b|+1+

√
4a+(|b|+1)2

2a
< r1 is immediate as a consequence of the definition of r1.

So let us prove that r1 <
4
5
. {

0 < |b| < δ < 1
4

a > 15(1+|b|)2
4

⇒
{

1 + |b| < 5
4

1
4a
< 1

15(1+|b|)2 <
1
15

So 1
16a2

< 1
225
. Thus :

r1 =
3(1 + |b|)

4a
+ 2

√
(1 + |b|)2

16a2
+

1

4a
< 3

1

15

5

4
+ 2

√
1

225
(
5

4
)2 +

1

15
=

1

4
+ 2

√
53

720
<

4

5

. (II) Suppose we have (x, y, z) ∈ Z−. Then z = z0 − r2 where

z0 =
d
[

(b−1)−
√

4a+(b−1)2
]

2a(1−c) and r2 =
−d
∣∣b−1−

√
4a+(b−1)2

∣∣
2a(c−1)

. It follows that:

z =
d

2a(1− c)
[
(b− 1)−

√
4a+ (b− 1)2 −

∣∣(b− 1)−
√

4a+ (b− 1)2
∣∣] =

d

2a(1− c)
[
2
∣∣(b− 1)−

√
4a+ (b− 1)2|] = −2r2 ⇒

⇒ (x, y, z) ∈ (R2 × {−2r2}) ∩ D.
Analogously one can show that z+ ⊂ (R2 × {0}) ∩ D and the same for the case d > 0.
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Figure 4.5: Position of D with respect to the xy-plane in the cases d < 0 and d > 0. (Figure from [1])
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Lemma 4.2.3 Suppose that the family ϕ(x, y, z) satisfies the P .C with d 6= 0

1. If d < 0 then the set ϕ(D) ∩ D possesses two connected components A and B on D such that:

• A ∩
[
Y + ∪ ϕ(X+ ∪ Z+)

]
= ∅;

• A ∩
[
Y − ∪ ϕ(X− ∪ Z−)

]
= ∅;

• B ∩
[
(Y + ∪ Z+) ∪ ϕ(X+ ∪ Z−)

]
= ∅;

• B ∩
[
(Y − ∪ Z+) ∪ ϕ(X− ∪ Z−)

]
= ∅

2. If d > 0 then the set ϕ(D) ∩ D possesses two connected components A and B on D such that:

• A ∩
[
Y + ∪ ϕ(X+ ∪ Z+)

]
= ∅;

• A ∩
[
Y − ∪ ϕ(X− ∪ Z−)

]
= ∅;

• B ∩
[
(Y + ∪ Z−) ∪ ϕ(X+ ∪ Z−)

]
= ∅;

• B ∩
[
(Y − ∪ Z−) ∪ ϕ(X− ∪ Z−)

]
= ∅.

Proof: If d < 0 we fixed some special points in the edge of D.

• P1 := (0,−r1, 0) P2 := (0,−r1,−2r2);

• P±1 := (±r1,−r1, 0) P±2 := (±r1,−r1,−2r2);

• Q1 := (0, r1, 0) Q2 := (0, r1,−2r2);

• Q±1 := (±r1, r1, 0) Q±2 := (±r1, r1,−2r2);

In the figure 4.6 we can see that points in D.
Now consider Πxy : R3 → R2 the projection in the xy-plane. Then Πxy ◦ ϕ(x, y, z) = (1− ax2 + by, x, ) that is ,
the projection on the xy-plane gives us the Henon-Family.Let us analyze the points :

• Πxy ◦ ϕ(P1) = (1− br1, 0);

• Πxy ◦ ϕ(P−1 ) = (1− ar2
1 − br1,−r1) = Πxy ◦ ϕ(P−2 );

• Πxy ◦ ϕ(P+
1 ) = (1− ar2

1 − br1, r1) = Πxy ◦ ϕ(P+
2 );

• Πxy ◦ ϕ(Q−1 ) = (1− ar2
1 + br1, r1) = Πxy ◦ ϕ(Q−2 );

• Πxy ◦ ϕ(Q+
1 ) = (1− ar2

1 + br1, r1) = Πxy ◦ ϕ(Q+
2 );

• Πxy ◦ ϕ(Q1) = (1 + br1, 0);

Let us now From the parameter condition and by definition of r1 we have that 1 ± br1 ≥ 1 − |b|r1 >
4
5
> r1.

This shows that the points Πxy ◦ ϕ(P1) and Πxy ◦ ϕ(Q1) are points of the semi-plane {(x, y) ∈ R2/x > r1}.
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Figure 4.6: D and ϕ(D) when b, d < 0.(Figure from [1])
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• Claim 1: 1− ar2
1 + |b|r1 < −r1.

In fact ,we have that r1 =
3(1+|b|)2+2

√
4a+(1+|b|)2

4a
. Thus 1− ar2

1 + |b|r1 < −r1 ⇔ 1− ar2
1 + (1 + |b|)r1 < 0⇔

⇔ 1−
[9(1+|b|)2+12(1+|b|)

√
4a+(1+|b|)2+16a

16a

]
+

3(1+|b|)2+2(1+|b|)
√

4a+(1+|b|)2
4a

< 0⇔

⇔ 1−
[9(1+|b|)2+12(1+|b|)

√
4a+(1+|b|)2

16a

]
− 16a

16a
+

3(1+|b|)2+2(1+|b|)
√

4a+(1+|b|)2
4a

< 0⇔

⇔ 3(1+|b|)2−4(1+|b|)
√

4a+(1+|b|)2
16a

< 0⇔
↔ 3(1 + |b|) < 4

√
4a+ (1 + |b|)2. But this last inequality is true by the parameters conditions.

As 1− ar2
1 ± br1 ≤ 1− ar2

1 + |b|r1. It follows from the previous claim that 1− ar2
1 ± br1 < −r1.

This shows that all of the points Πxy ◦ ϕ(P±1 ),Πxy ◦ ϕ(P±2 ),Πxy ◦ ϕ(Q±1 ) and Πxy ◦ ϕ(Q±2 ) lies in the
semi-plane {(x, y) ∈ R2/x < −r1}.

• Claim 2: Πxy ◦ϕ(Y +) is a quadratic curve between the points Πxy ◦ϕ(Q−1 ) = Πxy ◦ϕ(Q−2 ), Πxy ◦ϕ(Q+
1 ) =

Πxy ◦ ϕ(Q+
2 ) and whose critical point is Πxy ◦ ϕ(Q1) = Πxy ◦ ϕ(Q2).

Of course ,as Y + = {(x, y, z) ∈ D/y = r1} then given (x, y, z) ∈ Y + ⇒
⇒ ϕ(x, y, z) = (1−ax2 + br1, x, cz+dx)⇒ Π◦ϕ(x, y, z) = (1−ax2 + br1, x). But (x, y, z) ∈ D⇒ |x| ≤ r1.
On this way we have:

– when x = −r1 ⇒ Π ◦ ϕ(x, y, z) = (1− ar2
1 + br1,−r1);

– when x = 0⇒ Π ◦ ϕ(x, y, z) = (1 + br1, 0);

– when x = r1 ⇒ Π ◦ ϕ(x, y, z) = (1− ar2
1 + br1, r1);

which means that the quadratic curve (1− ax2 + br1, x) pass by the points
Πxy ◦ ϕ(Q−1 ) = Πxy ◦ ϕ(Q−2 ) = (1− ar2

1 + br1,−r1),
Πxy ◦ ϕ(Q+

1 ) = Πxy ◦ ϕ(Q+
2 ) = (1− ar2

1 + br1, r1) and
Πxy ◦ ϕ(Q1) = Πxy ◦ ϕ(Q2).
See the figure 2.7

• Claim 3:Πxy ◦ ϕ(Y −) is a quadratic curve between the points Πxy ◦ ϕ(P−1 ) = Πxy ◦ ϕ(P−2 ), Πxy ◦ ϕ(P+
1 ) =

Πxy ◦ ϕ(P+
2 ) and Πxy ◦ ϕ(P1) = Πxy ◦ ϕ(P2.)

Of course, as Y + = {(x, y, z) ∈ D/y = −r1} then given (x, y, z) ∈ Y − ⇒
⇒ ϕ(x, y, z) = (1− ax2 + br1, x, cz+ dx)⇒ Π ◦ϕ(x, y, z) = (1− ax2− br1, x). This sows that Πxy ◦ϕ(Y −)
is a quadratic curve.In another side (x, y, z) ∈ Y − ⇒ |x| ≤ r1. Thus

– when x = −r1 ⇒ Π ◦ ϕ(x, y, z) = (1− ar2
1 − br1,−r1);

– when x = 0⇒ Π ◦ ϕ(x, y, z) = (1− br1, 0) and

– when x = r1 ⇒ Π ◦ ϕ(x, y, z) = (1− ar2
1 − br1, r1).

But
Πxy ◦ ϕ(P−1 ) = Πxy ◦ ϕ(P−2 ) = (1− ar2

1 − br1,−r1),
Πxy ◦ ϕ(P+

1 ) = Πxy ◦ ϕ(P+
2 ) = (1− ar2

1 − br1, r1),
Πxy ◦ ϕ(P1) = Πxy ◦ ϕ(P2) = (1− br1, 0).
See the figure 2.7

Now fix a number δ,−r1 < δ < r1 and denote Ω := {(x, y, z) ∈ D/y = δ}.
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• Claim 4: Πxy ◦ ϕ(Ω) is a quadratic curve between the curves Πxy ◦ ϕ(Y +) and Πxy ◦ ϕ(Y −).
In fact, if (x, y, z) ∈ Ω then ϕ(x, y, z) = (1 − ax2 + br1, x, cz + dx) ⇒ Π ◦ ϕ(x, y, z) = (1 − ax2 + brδ, x).
This sows that Πxy ◦ ϕ(Ω) is a quadratic curve.
Now as {

Πxy ◦ ϕ(Y +) = (1− ax2 + br1, x), |x| ≤ r1

Πxy ◦ ϕ(Y −) = (1− ax2 − br1, x), |x| ≤ r1.

and we have −r1 < δ < r1 then

– If b > 0⇒ −br1 < bδ < br1 ⇔ 1− ax2 − br1 < 1− ax2 + bδ < 1− ax2 + br1.

– If b < 0 and −r1 < 0 < δ < r1 then br1 < bδ < 0 < −br1 ⇔
⇔ 1− ax2 + br1 < 1− ax2 + bδ < 1− ax2 − br1.

The following figure shows Πxy ◦ ϕ(D) in the case b < 0 and d < 0.
Since the connectedness is invariant by continuous functions we obtain that D∩ ϕ(D) must possesses two
connected components in D.
Now we are going to determine the projection of D and ϕ(D) in the xz-plane,that is ,the sets Πxz(D) and
Πxz◦ϕ(D). As we have d < 0 it is immediate verify that Πxz(D) is the rectangle [−r1, r1]×[zp−r2, zp+r2] =
[−r1, r1]× [−2r2, 0]. Also is immediate verify that

– Πxz ◦ ϕ(P1) = (1− br1, 0) , Πxz ◦ ϕ(P2) = (1− br1,−2cr2);

– Πxz ◦ ϕ(Q1) = (1 + br1, 0) , Πxz ◦ ϕ(Q2) = (1 + br1,−2cr2);

– Πxz ◦ ϕ(P−1 ) = (1− ar2
1 − br1,−dr1);

– Πxz ◦ ϕ(P−2 ) = (1− ar2
1 − br1,−2cr1 − dr1);

– Πxz ◦ ϕ(P+
1 ) = (1− ar2

1 − br1, dr1);

– Πxz ◦ ϕ(P+
2 ) = (1− ar2

1 − br1,−2cr1 + dr1);

– Πxz ◦ ϕ(Q−1 ) = (1− ar2
1 + br1,−dr1);

– Πxz ◦ ϕ(Q−2 ) = (1− ar2
1 + br1,−2cr1 − dr1);

– Πxz ◦ ϕ(Q+
1 ) = (1− ar2

1 + br1, dr1);

– Πxz ◦ ϕ(Q+
2 ) = (1− ar2

1 + br1,−2cr1 + dr1);

• Claim 5: The segment of line between Πxz ◦ ϕ(P1) and Πxz ◦ ϕ(P−1 ) has no intersection with the segment
Πxz(Z

+).
Of course,as Z+ = {(x, y, z) ∈ D/z = zp + r2} then Πxz(Z

+) = {(x, z) ∈ R2/|x| ≤ r1, z = zp + r2} =
{(x, 0) ∈ R2/|x| ≤ r1} since by Claim 1 which precedes the proposition 1 we have Z+ ⊂ R2 × {0}.
The segment of line between Πxz ◦ ϕ(P1) and Πxz ◦ ϕ(P−1 ) is given by :
{tΠxz ◦ ϕ(P1) + (1− t)Πxz ◦ ϕ(P−1 )} =
= {((1− br1)t, 0) + ((1− t)(1− ar2

1 − br1),−(1− t)dr1)/t ∈ [0.1]} =
{([1− br1]t+ [1− t][1− ar2

1 − br1], [t− 1]dr1)/t ∈ [0, 1]}.
Thus if the segment intersects Πxz(Z

+) there would be a parameter t0 ∈ [0, 1] such that (t0 − 1)dr1 = 0.
As d 6= 0 and r1 > 0⇒ t0−1 = 0⇒ t0 = 1. But this would means that the point Πxz ◦ϕ(P1) = (1−br1, 0)
should be in the Πxz(Z

+) = {(x, 0)/|x| ≤ r1}. However we have 1± br1 ≥ 1− |b|r1 >
4
5
> r1 what shows

that the point Πxz ◦ ϕ(P1) is not on the segment Πxz(Z
+).
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Figure 4.7: projections of D and ϕ(D) in xy-plane and xz-plane when b, d < 0. (Figure from [1])



Blender in the Henon-Like Family 28

• Claim 6 : dr1 > −2r2.
In fact, as dr1 > −2r2 ⇔ −dr1 < 2r2 ⇔ |d|r1 < 2r2 = 2|d||xp|

c−1
⇔ r1 <

2|xp|
c−1
⇔

⇔ 3(1 + |b|) + 2
√

4a+ (1 + |b|)2 <
2[(1−b)+

√
4a+(1−b)2]

2a(c−1)
⇔

⇔ 3(1 + |b|) + 2
√

4a+ (1 + |b|)2 <
4[(1−b)+

√
4a+(1−b)2]

c−1
.

Thus it is enough show the following inequality ⇔ 3(1 + |b|) + 2
√

4a+ (1 + |b|)2 <
4[(1−b)+

√
4a+(1−b)2]

c−1
⇔

⇔ (c− 1)[3(1 + |b|) + 2
√

4a+ (1 + |b|)2] < 4[(1− |b|) +
√

4a+ (1− |b|)2].
By parameters conditions c− 1 > 1

9
and thus the last inequality is true since the inequality

3(1+|b|)+2
√

4a+(1+|b|)2
9

< 4[(1− |b|) +
√

4a+ (1− |b|)2]⇔
3(1 + |b|) + 2

√
4a+ (1 + |b|)2 < 36(1− |b|) + 36

√
4a+ (1− |b|)2 (∗∗) is true.

Finally (∗∗) will be true since the followings inequalities hold.{
(α) 36

√
4a+ (1− |b|)2 > 2

√
4a+ (1 + |b|)2

(β) 36(1− |b|) > 3(1 + |b|).
But (α) is true iff 182[(1− |b|)2 + 4a] > (1 + |b|)2 + 4a⇔ 4a(182 − 1) > (1 + |b|)2 − 182(1− |b|)2 ⇔
⇔ 4a > (1+|b|)2−182(1−|b|)2

182−1
⇔ 4a > 1+2|b|+|b|2−324(1−2|b|+|b|2)

323
⇔ 4a > −323|b|2+650|b|−323

323
⇔

⇔ 4a > −|b|2 + 650|b|
323
− 1 which is true by parameter condition.

On the other side ,the inequality on (β) is true iff 33 ≥ 39|b| and this last is true again by parameters
conditions.

• Claim 7: The segment of line between Πxz ◦ϕ(P1) and Πxz ◦ϕ(P+
1 ) not intersects the segment Πxz(Z

+).But
it intersects the segments Πxz(X

+) and Πxz(X
−) passing trough the interior of Πxz(D).

In fact ,as we have d < 0 then by claim 1 before the proposition 1, we obtain
Πxz(D) = {(x, z) ∈ R2/|x| ≤ r1 and − 2r2 ≤ z ≤ 0}
Since Πxz◦ϕ(P1) = (1−br1, 0) and Πxz◦ϕ(P+

1 ) = (1−ar2
1−br1, dr1) then from 1±br1 ≥ 1−|b|r1 >

4
5
> r1 we

see that Πxz◦ϕ(P1) is not on Pixz(D). On the other hand from claim 1 above 1−ar2
1±br1 ≤ 1−ar2

1+|b|r1 <
r1 implies that Πxz ◦ ϕ(P+

1 ) is not on Πxz(D). So from that and from claim 6 above the result follows.See
figure 4.7

• Claim 8 : −2cr2 − dr1 < −2r2.
In fact, this is immediate from the claim 6 above .

• Claim 9 : The segment of line between Πxz ◦ϕ(P2) and Πxz ◦ϕ(P−2 ) has no intersection with the segment
Πxz(Z

−).
Of course, we have Πxz(Z

−) = {(x,−2r2)/|x| ≤ r1}, Πxz ◦ ϕ(P2) = (1− br1,−2cr2) and
Πxz ◦ϕ(P−2 ) = (1−ar2

1−br−1,−2cr2−dr1). Thus the segment of line between Πxz ◦ϕ(P2) and Πxz ◦ϕ(P−2 )
is the set
Ŝ := {(t[1 − br1] + [1 − t][1 − ar2

1 − br1],−2tcr2 + [1 − t][−2cr2 − dr1])/t ∈ [0, 1]} so one point of Ŝ also
belongs to Πxz(Z

−) iff there exists t0, 0 ≤ t0 ≤ 1 such that
−2t0cr2 + [1 − t0][−2cr2 − dr1] = −2r2 ⇔ t0 = 2cr2+dr1−2r2

dr1
. But d < 0 and r1 > 0 which means that

t0 ∈ [0, 1] implies in 2cr2 + dr1 ≤ 2r2 what is a contradiction by claim 8 above.

• Claim 10 : The segment of line between Πxz ◦ϕ(P2) and Πxz ◦ϕ(P+
2 ) has no intersection with the segment

Πxz(Z
−).
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Of course, since Πxz(Z
−) = {(x,−2r2)/|x| ≤ r1}, Πxz ◦ ϕ(P2) = (1− br1,−2cr2) and

Πxz ◦ ϕ(P−2 ) = (1− ar2
1 − br1,−2cr2 + dr1). So the segment of line between Πxz ◦ ϕ(P2) and Πxz ◦ ϕ(P+

2 )
is the set
S = {([1 − t][1 − ar2

1 − br1] + t[1 − br − 1], [1 − t][−2cr1 + dr1] + −2cr2t)/ 0 ≤ t ≤ 1}. Then one
point of S belongs to Πxz(Z

−) iff there is 0 ≤ t0 ≤ 1 such that −2cr2t− 0 + [1− t0][−2cr2 + dr1] = −2r2.

This implies in t0 = 2r2−2cr2+dr1
dr1

. But d < 0, c > 1 and r1 > 0⇒ t0 = 1+ 2r2(1−c)
dr1

> 1 which a contradiction .

Finally let us determine the sets A and B.
Now fixing d < 0 we have two cases to treat which are b < 0 and b > 0.Here we are going to treat the case
b < 0 the other one is similar.
We start by fixing one point x0 , −r1 ≤ x0 ≤ r1. Now fix a point (x̂, ŷ, ẑ) ∈ D ∩ ϕ(D) such that x̂ = x0.
Then there exist an unique point (x, y, z) ∈ D such that (x̂, ŷ, ẑ) = ϕ(x, y, z) =

(
1− ax2 + by, x, cz + dx

)
.

Thus 
x̂ = 1− ax2 + by = x0

ŷ = x where |y| ≤ r1 and |x| ≤ r1

ẑ = cz + dx.

From 1 − ax2 + by = x0 ⇒ ax2 = 1 + by − x0. But b < 0 and −r1 ≤ y ≤ r1 ⇒ r1 < 1 + br1 ≤ 1 − br1.
Since −r1 ≤ x0 ≤ r1 we obtain 1 + br1 − r1 ≤ 1 + by − x− 0 ≤ 1− br1 + r1. But 1 + br1 > r1 ⇒
0 < 1 + br1 − r1 ≤ 1 + by − x0 ≤ 1 + br1 + r1. So we have x = ±

√
1+by−x0

a
. Hence

ŷ = ±
√

1 + by − x0

a
, −r1 ≤ y ≤ r1

As b < 0 the function y 7→
√

1+by−x0
a

is decreasing and y 7→ −
√

1+by−x0
a

is increasing.

– If x0 = −r1 then (−r1, ŷ, ẑ) ∈ D ∩ ϕ(D)⇒
√

1+br1+r1
a

≤ ŷ =
√

1+by+r1
a
≤
√

1−br1+r1
a

or

−
√

1−br1+r1
a

≤ ŷ = −
√

1+by+r1
a
≤ −

√
1+br1+r1

a
where −r1 ≤ y ≤ r1.

From the Claim 1 above it follows that 1− ar2
1 − br1 < r1 ⇔ ar2

1 > 1− br1 + r1 ⇔ r1 >
√

1−br1+r1
a

⇔

−
√

1−br1+r1
a

> −r1. Thus ŷ > −r1 ever.

Also by Claim 1 above we obtain
√

1−br1+r1
a

< r1, that is, ŷ < r1 ever.

– If x0 = r1 then (r1, ŷ, ẑ) ∈ D ∩ ϕ(D)⇒
√

1+br1−r1
a

≤ ŷ =
√

1+by−r1
a
≤
√

1−br1−r1
a

or

−
√

1−br1−r1
a

≤ ŷ = −
√

1+by−r1
a
≤ −

√
1+br1−r1

a
where −r1 ≤ y ≤ r1.

Hence ,fixed −r1 ≤ x0 ≤ r1 and given a point (x̂, ŷ, ẑ) ∈ D ∩ ϕ(D) such that x̂ = x0 then ŷ = ±
√

1+bt−x0
a

where −r1 ≤ t ≤ r1.

– If ŷ = −
√

1+bt−x0
a

then −r1 < −
√

1−br1+r1
a

≤ ŷ ≤ −
√

1+br1−r1
a

< 0.

– If ŷ =
√

1+bt−x0
a

then 0 <
√

1+br1−r1
a

≤ ŷ ≤
√

1−br1+r1
a

< r1.
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Figure 4.8: In red color we see the projection of D ∩ ϕ(D) in the yz-plane and in green color we see the projection of
D ∩ ϕ(D) in the xy-plane with d, b < 0

Now we are going to project (x̂, ŷ, ẑ) =
(
1− ax2 + by, x, cz + dx

)
on the yz-plane.

Πyz(x̂, ŷ, ẑ) = (ŷ, ẑ) =
(
x, cz + dx

)
where −2r2 ≤ z ≤ 0 and x = ±

√
1+bt−x0

a
, −r1 ≤ t ≤ r − 1 ,

−r1 ≤ x0 ≤ r − 1. So we have to consider x < 0 and x > 0.

– If x < 0 then

−r1 < −
√

1−br1+r1
a

≤ x ≤ −
√

1+br1−r1
a

⇒ 0 < −d
√

1+br1−r1
a

≤ dx ≤ −d
√

1−br1+r1
a

< −dr1.

So from that −2cr2 − d
√

1+br1−r1
a

≤ cz + dx ≤ −d
√

1−br1+r1
a

< −dr1.

– If x > 0 then

0 <
√

1+br1−r1
a

≤ x ≤
√

1−br1+r1
a

< r1 ⇒ dr1 < d
√

1−br1+r1
a

≤ dx ≤ d
√

1+br1−r1
a

< 0.

So from that −2cr2 + dr1 < −2cr2 + d
√

1−br1+r1
a

≤ cz + dx ≤ d
√

1+br1−r1
a

< 0.

Thus we take A := {(x, y, z) ∈ D ∩ ϕ(D)/y < 0} and B := {(x, y, z) ∈ D ∩ ϕ(D)/y > 0} on the statement.
From all facts proved above it is immediate verify that this choice of A and B satisfies the requirement in the
statement. One can check similarly the case d > 0.

The next lemma will be usefull for the construction of the cone-fields.

Lemma 4.2.4 Suppose that

• The family ϕ(x, y, z) satisfies the parameters conditions P .C;

• A and B are the connected components of ϕ(D) ∩ D.

Then

• 1+|b|
a

< |x| for (x, y, z) ∈ ϕ−1(A ∪ B);

• 1+|b|
a

< |y| for (x, y, z) ∈ A ∪ B.
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Proof: Suppose (x, y, z) ∈ ϕ−1(A ∪ B). It follows that |1− ax2 + by| ≤ r1. Thus r1 ≥ |1− ax2 + by| ≥
≥ |1 + by| − ax2 ⇒ ax2 ≥ |1 + by| − r1 ≥ 1− |b||y| − r1 ≥ 1− |b|r1 − r1 = 1− r1(1 + |b|)⇒
⇒ |x| ≥ 1√

a

√
1− r1(1 + |b|)(∗). Now we replace r1 =

3(1+|b|)+2
√

4a+(1+|b|)2
4a

in (∗) to obtain

|x| ≥ 1
2a

√
4a− [1 + |b|]

[
3(1 + |b|) + 2

√
4a+ (1 + |b|)2

]
(∗∗). Now we put ρ := 15(1+|b|)2

4
and we consider the

function f : [ρ,+∞)→ R given by f(a) =
√

4a− [1 + |b|]
[
3(1 + |b|) + 2

√
4a+ (1 + |b|)2

]
.

Since r1 <
4
5

and |b| < 1
4

we have f is a smooth function well defined and f ′(a) = 4
2f(a)

[
1− 1+|b|√

4a+(1+|b|)2

]
> 0.

So f is increasing and this implies in

f(a)
2a

> f(ρ)
2a

= 1
2a

√
15(1 + |b|)2 − (1 + |b|)

[
3(1 + |b|) + 2

√
15(1 + |b|)2 + (1 + |b|)2

]
= 1+|b|

a
. Thus f(a)

2a
> 1+|b|

a
for

any a > ρ = 15(1+|b|)2
4

. By inequality (∗∗) we obtain |x| > 1+|b|
a

.
The other item can be proved in a similar way.

Now let us see the construction of the cone fields.

Lemma 4.2.5 Suppose that

• The family ϕ(x, y, z) satisfies P .C;

• A and B are the connected components of ϕ(D) ∩ D;

• Cs
b (q) := {(α, β, γ) ∈ TqD/

√
|b||β| ≥

√
α2 + γ2} for each q ∈ A ∪ B.

Then

• For each v ∈ Cs
b (q)⇒ dϕ−1(q)(v) ∈ Cs

b (ϕ
−1(q);

• There exists a constant ρ > 1 such that for every q ∈ A ∪ B and every v ∈ Cs
b (q) one have

‖dϕ−1(q)(v)‖ > ρ‖v‖.

Proof: We shall write q = (x, y, z) ∈ A ∪ B and fix v = (α, β, γ) ∈ Cs
b (q).Thus we have

ϕ−1(x, y, z) =

(
y, ay

2+x−1
b

, z−dy
c

)
and

dϕ−1(q) =

0 1 0
1
b

2ay
b

0
0 0 −d

c


Thus dϕ−1(q)(v) =

(
β, α+2ayβ

b
, γ−dβ

c

)
. We shall denote dϕ−1(q)(v) = v−1 = (α−1, β−1, γ−1). So as we have v ∈

Cs
b (q)⇒ |b| >

√
|b||β| ≥

√
α2 + γ2 ⇒ |β| >

√
α2 + γ2 ≥ Max{|α|, |γ|}. By P .C , 1 + |d| < c < 10

9
and |d| < 1

9
.

Thus α2
−1 +γ2

−1 = β2 + (γ−dβ)2

c2
≤ β2 + (|γ|+|d||β|)2

c2
< β2 + (|β|+|d||β|)2

c2
= β2

[
1 + (1+|d|)2

c2

]
< β2

[
1 +

[
1 + 1

9

]2]
= 181β2

81
.

On the other side ,by previous lemma and 0 < |b| < 1
4

we obtain

β2
−1 =

(
α+2ayβ

b

)2

≥ (2a|y||β|−|α|)2
|b|2 ≥ (2a|y||β|−|β|)2

|b|2 = β2(2a|y|−1)2

|b|2 ≥ β2(2a|y|−1)2

|b| ≥ 4β2[(1+|b|)−1]2
|b| > 4β2

|b| .β
2
−1|b| > 4β2 >
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181β2

81
> α2

−1+γ2
−1 ⇒

√
|b||β1| ≥

√
α2
−1 + γ2

−1}, that is, v1 = dϕ−1(q)(v) = (α−1, β−1, γ−1) ∈ Cs
b (ϕ

−1(q). Moreover

, |β1| > 2|β|√
|b|
> 4|β|. So now we consider in R3 the maximum norm ‖.‖M . Then we have ‖dϕ−1(q)(v)‖M =

|β−1| > 4|β| = 4‖v‖M . It follows that if ‖.‖ is the euclidean Norm then ‖dϕ−1(q)(v)‖ ≥ ‖dϕ−1(q)(v)‖M >
4‖v‖M ≥ 4.1

3
‖v‖ ⇒ ‖dϕ−1(q)(v)‖ > 4

3
‖v‖. So we can take constant ρ = 4

3
.

Lemma 4.2.6 Suppose that

• The family ϕ(x, y, z) satisfies P .C;

• A and B are the connected components of ϕ(D) ∩ D;

• Cu(q) := {(α, β, γ) ∈ TqD/
√
α2 + γ2 ≥

√
2|β|} for each q ∈ ϕ−1(A ∪ B).

Then

• For each v ∈ Cu(q)⇒ dϕ(q)(v) ∈ Cu(ϕ(q);

• There exists a constant ρ > 1 such that for every q ∈ ϕ−1(A ∪ B) and every v ∈ Cu(q) one have
‖dϕ(q)(v)‖ > ρ‖v‖.

Proof: For any q = (x, y, z) ∈ ϕ−1(A ∪ B) and v = (α, β, γ) ∈ Cu(q) we have

dϕ−1(q) =

−2ax b 0
1 0 0
d 0 c


So dϕ(q)(v) =

(
− 2axα + bβ, α, cγ + dα

)
. We shall write w = (α1, β1, γ1) := dϕ(q)(v). Now we start by using

the maximum norm ‖.‖M . Thus by P .C 1 + |d| < c⇒
⇒ ‖w‖M = Max{|α1|, |β1|, |γ1|} = Max{| − 2axα + bβ|, |α|, |cγ + dα|} ≥ |cγ + dα| ≥ c|γ| − |d||α| (∗).
Case1 : |α| ≥ |β|.
Then α2

1 + γ2
1 =

(
− 2axα + bβ

)2
+
(
cγ + dα

)2 ≥
(
2a|x||α| − |b||β|

)2
+
(
c|γ| − |d||α|

)2 ≥
[
2a|x||α| − |b||β|

]2 ≥[
2|α|(1 + |b|) − |b||α|

]2
. Note that here we used the lemma above . So α2

1 + γ2
1 ≥

[
2|α|(1 + |b|) − |b||α|

]2 ≥
4|α|2 = 4α2 = 4β2

1 > 2β2
1 ⇒ α2

1 + γ2
1 >
√

2|β1|. Thus w ∈ Cu(ϕ(q)). Now we have the followings subcases:
Case1.1 : |α| ≥ |γ|
Then as

√
α2 + γ2 ≥

√
2|β| > |β| it follows that ‖v‖M = |α|. By lemma above one have

‖v‖M = Max{|α1|, |β1|, |γ1|} ≥ |α1| = | − 2axα + bβ| ≥ 2a|x||α| − |b||β| > 2|α|,that is ,‖v‖M > 2‖v‖M .
Case1.2 : |α| < |γ|
That implies in ‖v‖M = Max{|α|, |β|, |γ|} = |γ| since v ∈ Cu(q). By (∗) above we obtain ‖w‖M ≥ c|γ|−|d||α| >(
c − |d|

)
|γ| > |γ|. So ‖w‖M ≥ ρ1‖v‖M for some constant ρ1 > 1 and as we can see such constant does not

depends on the point q and vector v ∈ TqD as well .
Case2 : |β| > |α| and |γ| >

√
2|α|

Since 1 + |d| < c we have α2
1 + γ2

1 ≥
(
2a|x||α| − |b||β|

)2
+
(
c|γ| − |d||α|

)2 ≥
(
c|γ| − |d||α|

)2
>
(
c|γ| − |d||γ|

)2
=

|γ|2
[
c− |d|

]2 ≥ |γ|2 > 2|α|2 = 2|β1|2 that is,
√
α2

1 + γ2
1 >
√

2|β1|. Hence , w ∈ Cu(ϕ(q)).

Since
√

2|β| ≥
√
α2 + γ2 <

√
β2 + γ2 one can obtain 2β2 < β2 + γ2 ⇒ |β| < |γ| which implies in ‖v‖M =

Max{|α|, |β|, |γ|} = |γ| (∗∗). So from (∗) above ‖w‖M ≥ c|γ| − |d||α| ⇒ ‖w‖M > |γ|
(
|c − |d|

)
> |γ|. Thus

‖w‖M > ρ2‖v‖M for some constant ρ2 > 1.
Case3 : |β| > |α| and |γ| ≤

√
2|α|.



Blender in the Henon-Like Family 33

From
√

2|β| ≤
√
α2 + γ2 and |β| > |α| we obtain

√
2|α| ≥ |γ| > |β| > |α|. Then from lemma above it follows

that
α2

1 + γ2
1 ≥

[
2a|x||α| − |b||β|

]2
+
[
‖γ| − |d||α|

]2 ≥ [2|α|(1 + |b|)− |b||β|
]2 ≥ [2|α|(1 + |b|)−

√
2|α||b|

]2
> 4|α|2 =

4β2
1 > 2β2

1 , that is,
√
α2

1 + γ2
1 ≥
√

2|β1|. Hence w ∈ Cu(ϕ(q)).
Also the lemma above assures us that ‖w‖M ≥ |α1| = | − 2axα+ bβ| ≥ 2a|x||α| − |b||β| ≥ 2|α|(1 + |b|)− |b||γ| >
2(1 + |b|)

√
2

2
|γ| − |b||γ| =

√
2|γ|+

√
2|b||γ| − |b||γ| >

√
2|γ| =

√
2‖v‖M . That is, ‖w‖M ≥

√
2‖v‖M .

Hence we take ρ := Max{ρ1, ρ2,
√

2, 2} on the announcement .

Lemma 4.2.7 Suppose that

• The family ϕ(x, y, z) satisfies P .C;

• A and B are the connected components of ϕ(D) ∩ D;

• Cuu(q) := {(α, β, γ) ∈ TqD/|α| ≥
√

2
√
β2 + γ2} for each q ∈ ϕ−1(A ∪ B).

Then for vector v ∈ Cuu(q)⇒ dϕ(q)(v) ∈ Cuu(ϕ(q)).

Proof: For any q = (x, y, z) ∈ ϕ−1(A ∪ B) and v = (α, β, γ) ∈ Cuu(q). We shall write w = (α1, β1, γ1) :=

dϕ(q)(v) =
(
− 2axα+ bβ, α, cγ + dα

)
. Since v ∈ Cuu(q)⇒ |α|√

2
≥Max{|β|, |γ|}. So from lemma above one can

obtain α2
1 ≥ [2a|x||α| − |b||β|

]2 ≥ [2(1 + |b|)|α| − |b||α|√
2

]2

≥ 4α2.

From P .C we have |d|+ c√
2
< 1 . Therefore one can obtain β2

1 +γ2
1 ≥ α2+

[
|d||α|+c|γ|

]2

≥ |α|2
[
1+

[
|d|+ c√

2

]2]
≥

2α2 < 4α2.
Thus α2

1 ≥ 4α2 > 2
(
β2

1 + γ2
1

)
⇒ |α1| >

√
2
√
β2

1 + γ2
1 , that is, w ∈ Cuu(ϕ(q)).

The next lemma and its proof will be usefull in the proof of the lemma 4.2.10

Lemma 4.2.8 Let be the family ϕ(x, y, z) satisfies P .C, ∂+B and ∂+B be respectively the upper and the lower
boundary of B and p ∈ A be the hyperbolic fixed point of the lemma 4.2.1.

• If d < 0 there exists a small neighborhood V + of ∂+B such that V + ∩W s
D(p) = ∅;

• If d > 0 there exists a small neighborhood V − of ∂−B such that V − ∩W s
D(p) = ∅.

Proof: The upper bound δ for |b| in P .C will be decided definitely on this proof.
Suppose d < 0. As we know B := {(x, y, z) ∈ D ∩ ϕD/y > 0}. If (x̂, ŷ, ẑ) ∈ ∂−B then there exists
an unique point (x0, y0, z0) ∈ D such that (x̂, ŷ, ẑ) = ϕ(x0, y0, z0) =

(
1 − ax2

0 + by0, x0, cz0 + dx0

)
. As

(x̂, ŷ, ẑ) ∈ B ⇒ ŷ > 0 ⇒ x0 > 0. But ẑ = cz0 + dx0, d < 0 and −2r2 ≤ z0 ≤ 0. Then ẑ will be maxi-
mum if and only if z0 = 0. Thus ẑ = dx0. From the calculus on Lemma 2.0.8 we have dx0 > dr1. So ẑ > dr1.
Now by knowing that W s

D(p) is a segment through P = (xp, yp, zp) for which the tangent space is contained in

the stable cone Cs
b (P ) with opening slope is smaller than

√
|b| as given in Lemma 2.0.5. Hence, for any point

(x̃, ỹ, z̃) ∈ W s
D(p),

|z̃ − zp|
2r1

<
√
|b|
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Figure 4.9: Positional relation between W s
D(p) and B(Figure from [1])

z̃ − zp ≤ |z̃ − zp| < 2r1

√
|b|

z̃ < zp + 2r1
√
|b|.

Now note that for |b| −→ 0 one get

dr1 =
d[3(1 + |b|) + 2

√
4a+ (b− 1)2]

4a
−→ d[3 + 2

√
4a+ 1]

4a

and

zp + 2r1

√
|b| −→ d(−1−

√
1 + 4a)

2a(1− c)
.

By P .C we obtain d(−1−
√

1+4a)
2a(1−c) < d[3+2

√
4a+1]

4a
. Therefore, by taking δ > 0 small enough ,for any 0 < |b| < δ, one

obtain
zp + 2r1

√
|b| < dr1.

This implies that, for d < 0, W s
D(p) is located below ∂+B. Hence, one can take a neighborhood V + of ∂+B such

that V + ∩W s
D(p) = ∅.

For d > 0,it is clear that the claim can be shown similarly.This ends the proof.

Lemma 4.2.9 Suppose the family ϕ(x, y, z) satisfies P .C.

• If d < 0 there exists a neighborhood U− of the lower face Z− of D such that every unstable curve Lu,
trough D , in the upper region of W s

D(p) has no intersection with U−;

• If d > 0 there exists a neighborhood U+ of the upper face Z+ of D such that every unstable curve Lu,
trough D , in the lower region of W s

D(p) has no intersection with U+;

Proof: Suppose d < 0.

• Claim 1 :

[
W s

D(p) ∩ A
]
∩
[
Z± ∪X±

]
= ∅.

Of course, Since p ∈ Int(A) and W s(p) is the stable manifold of pthen, we get ϕ(W s(p) ∩ A) ⊂ Int(A).
By Lemma 4.2.3 above this claim follows immediately.
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Figure 4.10: Lu is located in the upper region of W s
D(p) (Figure from [1])

• Claim 2 : W s
D(p) ⊂ Int

(
ϕ−1

(
A
))

.
In fact, we have W s

D(p) := W s(p) ∩ D. Thus ϕ
(
W s

D(p)
)

= ϕ
(
W s(p)

)
∩ ϕ
(
D
)

= W s(p) ∩ ϕ
(
D
)
. But the

Claim 1 above assures us that W s(p)∩ϕ
(
D
)
⊂
[
W s(p)∩A

]
∪
[
W s(p)∩B

]
. However, W s

D(p) is a connected
set. Thus ϕ

(
W s

D(p)
)

must be connected too. So ϕ
(
W s

D(p)
)

= W s(p) ∩ A ⊂ Int
(
A
)

since p ∈ W s
D ∩ A.

Hence W s
D(p) ⊂ Int

(
ϕ−1

(
A
))

.

From Lemma 4.2.3 above we can get immediately

ϕ−1
(
A
)
∩
[
Z± ∪X±

]
= ∅.

That is, it implies the existence of a sufficiently small neighborhood U− of the lower face Z− satisfying
U− ∩ ϕ−1

(
A
)

= ∅. Hence, one can get not only W s
D(p) ∩ U− = ∅ but Lu ∩ U− = ∅ for any unstable segment Lu

on the upper region of W s
D(p).

The case d > 0 can be proved in similar way.

Lemma 4.2.10 Suppose that

• The family ϕ(x, y, z) satisfies P .C;

• A and B are the connected components of ϕ(D) ∩ D.
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Then

• If d < 0 then there exists a neighborhood O+ of Z+ and a neighborhood V of W s
D(p) such that for every

unstable segment Lu on the upper region of W s
D(p), ϕ(Lu) ∩ B contains an unstable segment on the upper

region of W s
D(p) and disjoint of V .

• If d > 0 then there exists a neighborhood O− of Z− and a neighborhood V of W s
D(p) such that for every

unstable segment Lu on the lower region of W s
D(p) , ϕ(Lu) ∩ B contains an unstable segment on the lower

region of W s
D(p) and disjoint of V .

Proof: We are going to prove the case d < 0. The other one can be proved in similar way.

Claim 1. The segments ϕ(Lu) ∩ A and ϕ(Lu) ∩ B has no intersection with W s
D(p).

Of course, as Lu is on the upper region of W s
D(p) we have W s

D(p) ∩ Lu = ∅ ⇔
[
W s(p) ∩ D

]
∩ Lu = ∅. So

∅ = ϕ
([
W s(p)∩D

]
∩Lu

)
⇒ ∅ = D∩ϕ

([
W s(p)∩D

]
∩Lu

)
= D∩ϕ(W s(p))∩ϕ(D)∩ϕ(Lu) =

[
D∩ϕ(D

]
∩W s(p)∩

ϕ(Lu) =
[
A∪B

]
∩W s(p)∩ϕ(Lu) =

[
ϕ
(
Lu
)
∩A
]
∩W s(p)∪

[
ϕ
(
Lu
)
∩B
]
∩W s(p). Hence

[
ϕ
(
Lu
)
∩A
]
∩W s(p) = ∅

and
[
ϕ
(
Lu
)
∩ B
]
∩W s(p) = ∅.

Claim 2. There is a neighborhood V of W s
D(p) such that for every unstable segment Lu ⊂ D on the upper

region of W s
D(p) one have ϕ(Lu) ∩ B is disjoint of V .

In fact, suppose that is not true. Then we can find a sequence (Lun) ⊂ D of unstable segment in the upper
region of W s

D(p) so that
lim
n→∞

Dist(ϕ(Lun) ∩ B,W s
D(p)) = 0.

Thus there is a sequence of points qnB ∈ ϕ(Lun) ∩ B and a point qB ∈ W s
D(p) such that limn→∞ qnB = qB. It

follows that ϕ−1(qnB) ∈ Lun ∩ϕ−1(B) and limn→∞ ϕ
−1(qnB) = ϕ−1(qB) ∈ W s(p) (invariant manifold). But that is

a contradiction because as we know Lun ⊂ D, W s
D(p) ⊂ Int(ϕ−1(A)) and ϕ−1(A) is disjoint of ϕ−1(B).

Claim 3 For every unstable segment Lu ⊂ D on the upper region of W s
D(p) one have ϕ(Lu) ∩ B is an

unstable segment on the upper region of W s
D(p).

In fact, it is clear that ϕ(Lu) ∩ B is an unstable segment. Now suppose z0 is the maximum hight of W s
D(p).

Then as we saw in the Lemma 4.2.8 we must have z0 < zp + 2r1

√
|b| < dr1. Thus −dr1 < −z0 = |z0| ⇔

−dr1+(c−1)|z0|
c

< |z0|. So now we take δ > 0 such that −dr1+(c−1)|z0|
c

< δ < |z0| and consider the unstable segment
Lu := [−r1, r1]×{y0}×{z0 +δ} ⊂ D. It follows that ϕ(Lu)∩B = {(1−ax2 +by0, x, cz0 +cδ+dx)/ 0 ≤ x ≤ r1}.
By the choice of δ we have (c−1)z0+cδ

|d| ≥ r1 which implies x < (c−1)z0+cδ
|d| ⇔ c(z0 + δ) + dx > z0 which means

that ϕ(Lu) ∩ B is on the upper region of W s
D(p). Now we take 0 < δ1 <

−dr1+(c−1)|z0|
c

. Let us show that if
Lu1 := [−r1, r1] × {y0} × {z0 + δ1} then ϕ(Lu1) ∩ B is on the upper region of W s

D(p). Then suppose that is not
true, that is ,suppose ϕ(Lu1)∩B is on the lower region of W s

D(p) and consider Lu2 := [−r1, r1]× {y0} × {z0 + δ2}
where −dr1+(c−1)|z0|

c
< δ2 < |z0| and S ⊂ D to be the unstable strip whose edges are Lu1 and Lu2 . It follows that

ϕ(S) ∩ B is an unstable strip which intersects W s
D(p) . Then S contains unstable segments Lu on the upper

region of W s
D(p) such that ϕ(Lu)∩B intersects the neighborhood V (see claim 2 !) of W s

D(p) what can not occur.
This shows what we desire.
From all arguments above we can conclude that for every unstable segment of straight line ,Lu, on the upper
region of W s

D(p) one have ϕ(Lu) ∩ B on the upper region of W s
D(p). In the general case where Lu is a segment
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of curve then we consider a neighborhood U of Lu constituted by segments unstable of straight line and by
continuity of ϕ we get ϕ(Lu) ∩ B on the upper region of W s

D(p).

Hence as a consequence of the lemmas 4.2.1, 4.2.3, 4.2.5, 4.2.6, 4.2.7, 4.2.9, 4.2.10 above we see that the pair
(ϕ,D) satisfies the blender’s conditions.
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