

UNIVERSIDADE FEDERAL DE MINAS GERAIS - UFMG CURSO DE MESTRADO EM MATEMÁTICA

A CONJECTURA DE WILLMORE: UM CASO PARTICULAR

Douglas Claiton dos Passos Freitas

Belo Horizonte - MG2013

UNIVERSIDADE FEDERAL DE MINAS GERAIS - UFMG CURSO DE MESTRADO EM MATEMÁTICA

Douglas Claiton dos Passos Freitas

Orientador: Prof. Ezequiel Rodrigues Barbosa

A CONJECTURA DE WILLMORE: UM CASO PARTICULAR

Dissertação submetida à banca examinadora, designada pelo Programa de Pós-Graduação em Matemática da UFMG, como requisito parcial para a obtenção do título de mestre em Matemática.

Para minha família e para Ana Paula.

iv

Agradecimentos

Aos meus pais, Aderson e Lindaura, e aos meus irmãos, Igor e Anderson, pelo apoio e pela ajuda que sempre me deram.

Aos meus familiares, pelo apoio e compreensão.

À minha namorada, Ana Paula, e à sua família, pelo apoio e companheirismo que sempre me concederam.

A todos os meus amigos, pelos bons momentos que passamos juntos.

Ao professor Ezequiel, pela orientação e amizade.

Aos professores do departamento de Matemática da UFMG, pelos preciosos ensinamentos,

e a todos os outros colegas, pelo companheirismo.

À CAPES, pela bolsa de estudos.

"Por vezes sentimos que aquilo que fazemos não é senão uma gota de água no mar. Mas o mar seria menor se lhe faltasse uma gota." Madre Teresa de Calcutá

Resumo

Neste trabalho, provamos um caso particular da conjectura de Willmore, para toros $M \subset \mathbb{E}^3$ mergulhados no espaço Euclidiano \mathbb{E}^3 como tubos de seções circulares constantes. Para isso, estudamos algumas propriedades do funcional energia de Willmore, dado por

$$\mathcal{W}(M) = \int_M H^2 dS.$$

Provamos que ele é invariante sob transformações conformes do espaço Euclidiano \mathbb{E}^3 , e provamos também que a condição para que a integral acima, dada para variações normais de imersões da superfície orientável e compacta $M \subset \mathbb{E}^3$ em \mathbb{E}^3 , seja estacionária é a chamada equação de Euler: $\Delta H + 2H(H^2 - K) \equiv 0$.

viii

Abstract

In this paper, we prove a particular case of Willmore conjecture, for torus $M \subset \mathbb{E}^3$ embedded in Euclidean space \mathbb{E}^3 as tubes of constant circular sections. For this, we study some properties of the Willmore energy functional, given by

$$\mathcal{W}(M) = \int_M H^2 dS$$

We prove that it is invariant under conformal transformations of Euclidean space \mathbb{E}^3 , and we also prove that the condition for which the integral above, given to normal variations of immersions of the compact orientable surface $M \subset \mathbb{E}^3$ in \mathbb{E}^3 , is stationary is called Euler equation: $\Delta H + 2H(H^2 - K) \equiv 0$. х

Sumário

Introdução geral				
1	Noções Básicas de Geometria Diferencial, Análise e Campos Tensoriais			
	1.1	Geometria Diferencial Clássica	3	
	1.2	Análise no Espaço \mathbb{R}^n	13	
	1.3	Campos Tensoriais	16	
		1.3.1 Tensores	16	
		1.3.2 Campos Vetoriais e Tensoriais e Conexão de Levi-Civita	18	
		1.3.3 Exemplos de Campos Vetoriais e Campos Tensoriais	20	
2	A conjectura de Willmore			
	2.1	Invariância Conforme	27	
	2.2	A Equação de Euler	38	
	2.3	Conjectura de Willmore: Um caso particular	45	
Referências Bibliográficas				
Ín	Índice Remissivo			

xii

Introdução geral

Em 27 de Fevereiro de 2012, matemáticos do mundo inteiro presenciaram um fato histórico, protagonizado pelo matemático brasileiro Fernando Codá Marques juntamente com o matemático português André Neves: o anúncio da resolução da chamada *Conjectura de Willmore*. A conjectura foi proposta em 1965 pelo geômetra inglês Thomas Willmore [11] e nos diz que qualquer toro M imerso no espaço Euclidiano \mathbb{E}^3 satisfaz a inequação

$$\mathcal{W}(M) = \int_M H^2 dA \ge 2\pi^2,$$

onde H é a curvatura média e dA é o elemento de volume (da superfície imersa). Essa conjectura tem grande relevância em questões da relatividade geral e tem implicações também em aspectos da biologia celular e no desenho de lentes.

O desenrolar histórico da conjectura é caracterizado pela obtenção de diversos resultados parciais por diversos matemáticos. Por exemplo, Shiohama e Takagi [13] e Willmore [12] demonstraram a veracidade da conjectura quando M é um tubo ao redor de uma curva imersa fechada; Chen [14] a demonstrou para o caso de M ser a imagem conforme de um toro planar em \mathbb{S}^3 ; Langer e Singer [15] demonstraram-na para um toro de revolução.

Outros importantes resultados parciais foram encontrados por Li e Yau [16], que resolveram o problema considerando que a estrutura conforme induzida por uma imersão pertence a certo domínio limitado (descrito explicitamente) do espaço-módulo de estruturas conformes sobre o toro. Montiel e Ros [17] obtiveram um domínio mais amplo nesse espaço-módulo para o qual a conjectura é verdadeira. Simon [18] provou a existência de um toro em \mathbb{R}^3 que minimiza o funcional energia de Willmore, dado por $\int_M H^2 dA$, sendo esse toro imagem de um mergulho (veja Li e Yau [16]) e sem o formato de um nó (veja Langevin e Rosenberg [19]). Outros resultados importantes podem ser encontrados em Bryant [20], Kuhnel and Pinkall [21] and Kusner [22]. A solução do caso geral da conjectura foi encontrada por Fernando Codá e André Neves no ano de 2012 e publicada em um artigo intitulado: '*Min-max theory and the Willmore Conjecture*', [10], abrindo novos horizontes para a ciência moderna. E eles provaram um resultado ainda mais forte: Se $M \subset \mathbb{S}^3$ e se M é uma superfície fechada de gênero $g \ge 1$ que é imagem de um mergulho, a desigualdade acima é verdadeira, e a igualdade é atingida se e somente se M é o toro de Clifford $\mathbb{S}^1(\frac{1}{\sqrt{2}}) \times \mathbb{S}^1(\frac{1}{\sqrt{2}}) \subset \mathbb{S}^3$, a menos de transformações conformes de \mathbb{S}^3 .

O presente trabalho tem por objetivo estudar algumas propriedades do funcional energia de Willmore e expor a resolução de um caso particular da conjectura de Willmore, obtida por Shiohama e Takagi [13] e Willmore [12], quando a superfície é considerada como um tubo que é imagem de um mergulho em \mathbb{E}^3 e possui seções circulares constantes. Eles mostraram que a desigualdade acima é verdadeira e que a igualdade é atingida se, e somente se, M é um toro cuja razão dos raios menor e maior, nessa ordem, é igual a $1/\sqrt{2}$.

CAPÍTULO 1

Noções Básicas de Geometria Diferencial, Análise e Campos Tensoriais

Neste capítulo, apresentaremos alguns conceitos básicos da Geometria Diferencial clássica, de Análise no espaço \mathbb{R}^n e também alguns resultados fundamentais da teoria de Campos Tensoriais, que serão utilizados nesse trabalho. Alguns resultados desse capítulo serão expostos sem demonstração, pois trata-se de um capítulo preliminar, no qual iremos expor as ferramentas que serão utilizadas no estudo do funcional energia de Willmore, o qual se dará no capítulo seguinte. O leitor interessado em se aprofundar nos assuntos aqui expostos pode consultar as seguintes referências: [2], [3], [4], [5], [6], para as seções 1.2 e 1.3; e [7], para a seção 1.1.

1.1 Geometria Diferencial Clássica

Diremos que uma função de uma (ou mais) variável real é *diferenciável* (ou suave) se ela possui, em todos os pontos, derivadas de todas as ordens. Nosso objetivo, primeiramente, é caracterizar certos subconjuntos de \mathbb{R}^3 , chamados de curvas. Começamos com a seguinte definição:

Definição 1.1.1

Uma curva diferenciável parametrizada é uma aplicação diferenciável $\alpha : J \to \mathbb{R}^3$ de um intervalo aberto J = (a, b) da reta real \mathbb{R} em \mathbb{R}^3 . Ela é chamada regular se $\alpha'(t) \neq 0$ para todo $t \in J$.

De agora em diante, consideraremos apenas curvas diferenciáveis parametrizadas regulares

(e omitiremos o termo diferenciável).

4

Dado $t_0 \in J$, o comprimento de arco de uma curva parametrizada regular $\alpha : J \to \mathbb{R}^3$, a partir do ponto t_0 , é por definição

$$s(t) = \int_{t_0}^t |\alpha'(t)| dt.$$

Com isso, $|\alpha'(t)| = 1$ se e só se $s = t - t_0$, ou seja, t é o comprimento de arco de α medido a partir de algum ponto. Parametrizando α em relação a s, temos $s \in I = [0, l]$, onde lé o comprimento da curva α . O número $|\alpha''(s)| = k(s)$ chama-se *curvatura* de α em s. Denotaremos $\alpha'(s)$ por $\mathbf{t}(s), \forall s \in I$.

Nos pontos onde $k(s) \neq 0$, fica bem definido pela equação $\alpha''(s) = k(s)\mathbf{n}(s)$ um vetor unitário $\mathbf{n}(s)$ na direção de $\alpha''(s)$, normal a $\alpha'(s)$, chamado o vetor normal em s. O vetor unitário $\mathbf{b}(s) = \mathbf{t}(s) \wedge \mathbf{n}(s) = \mathbf{t}(s) \times \mathbf{n}(s)$ é chamado o vetor binormal em s. E é fácil ver que $\mathbf{b}'(s)$ é paralelo ao vetor $\mathbf{n}(s)$, $\forall s \in I$. Assim, temos $\mathbf{b}'(s) = \tau(s)\mathbf{n}(s)$, onde $\tau(s)$ é definido como a torção de α em $s \in I$.

Dessas fórmulas, obtemos as chamadas Fórmulas de Frenet :

$$\begin{aligned} \mathbf{t}' &= k\mathbf{n}, \\ \mathbf{n}' &= -k\mathbf{t} - \tau\mathbf{b}, \\ \mathbf{b}' &= \tau\mathbf{n} \end{aligned}$$

com as funções definidas em s.

No caso particular de uma curva plana $\alpha : I \to \mathbb{R}^2$, é possível associar um sinal à curvatura k da seguinte forma: seja $\{e_1, e_2\}$ uma base de \mathbb{R}^2 e defina o vetor normal $\mathbf{n}(s), s \in I$, de forma que as bases $\{\mathbf{t}(s), \mathbf{n}(s)\}$ e $\{e_1, e_2\}$ tenham a mesma orientação. A curvatura é então definida por

$$\frac{d\mathbf{t}}{ds} = k\mathbf{n}$$

É claro que |k| coincide com a definição anterior e que k muda de sinal quando mudamos a orientação de α ou a de \mathbb{R}^2 . Usando a expansão de Taylor de $\alpha(s)$ em $s_0 = 0$ e fixando a orientação de α como sendo a de sentido anti-horário, podemos obter facilmente que $\alpha(s)$ é uma curva convexa plana se e só se $k(s) \ge 0, \forall s \in I$. Com essa mesma orientação para α , também é possível obter que $\int_0^l k(s) ds \ge 2\pi$, para toda curva plana fechada como acima.

Vamos agora definir o conceito de superfície regular em \mathbb{R}^3 .

Definição 1.1.2

Um subconjunto $S \subset \mathbb{R}^3$ é uma superfície (ou superfície regular) se, para cada $p \in S$, existe uma vizinhança V de p em \mathbb{R}^3 e uma aplicação $\mathbf{x} : U \to V \cap S$ de um aberto U de \mathbb{R}^2 sobre $V \cap S \subset \mathbb{R}^3$ tal que: 1) \mathbf{x} é diferenciável (ou seja, se escrevemos $\mathbf{x}(u, v) =$ $(x(u, v), y(u, v), z(u, v)), (u, v) \in U$, as funções x(u, v), y(u, v), z(u, v) têm derivadas parciais contínuas de todas as ordens em U); 2) \mathbf{x} é um homeomorfismo; 3)Para todo $q \in U$, a diferencial d $\mathbf{x}_q : \mathbb{R}^2 \to \mathbb{R}^3$ é injetiva.

Uma aplicação \mathbf{x} que satisfaz as condições acima é chamada *parametrização* em (uma vizinhança de) p. Temos os seguintes exemplos de superfícies regulares:

Exemplo 1.1.1

O gráfico de uma função diferenciável $f: U \to \mathbb{R}$, onde $U \subset \mathbb{R}^2$ é aberto, é uma superfície regular.

Exemplo 1.1.2

As imagens inversas de valores regulares $a \in g(V)$ de funções $g: V \to \mathbb{R}$, onde $V \subset \mathbb{R}^3$ é aberto (os valores regulares são pontos em g(V) que não são imagens de pontos críticos da função g), são também superfícies. Por exemplo, o elipsóide determinado pela equação

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

é uma superfície dada por $f^{-1}(0)$, onde $f : \mathbb{R}^3 \to \mathbb{R}$,

$$f(x,y,z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1,$$

é uma função diferenciável e 0 é um valor regular de f. Este exemplo inclui a esfera unitária como um caso particular (a = b = c = 1).

Exemplo 1.1.3

As superfícies de revolução, que são cobertas por parametrizações do tipo

$$\mathbf{x}(u,v) = (f(v)\cos u, f(v)\sin u, g(v)),$$

onde $(u,v) \in (0,2\pi) \times (a,b)$, $a,b \in \mathbb{R}$, a < b, $e Y : (a,b) \to \mathbb{R}^2$ definida por Y(v) = (f(v),g(v)), f(v) > 0, é uma curva plana, são também superfícies. Um exemplo de superfície de revolução é o toro T, gerado pela rotação de um círculo \mathbb{S}^1 de raio r em

torno de uma reta pertencente ao plano do círculo e a uma distância a > r do centro do círculo. Ele é coberto por parametrizações do tipo

$$\boldsymbol{x}(u,v) = \left((r\cos v + a)\cos u, (r\cos v + a)\sin u, r\sin v \right)$$
(1.1)

Figura 1: O toro é uma superfície regular.

A condição 3 na definição de uma superfície regular S garante que, para cada $p \in S$, o conjunto de vetores tangentes às curvas parametrizadas de S, passando por p, constituem um plano, que é exatamente o subespaço vetorial $d\mathbf{x}_q(\mathbb{R}^2)$, onde $q = \mathbf{x}^{-1}(p)$. Esse plano não depende da parametrização \mathbf{x} e será chamado de *plano tangente* a Sem p, denotado por T_pS . A escolha de uma parametrização \mathbf{x} determina uma base $\{\mathbf{x}_u(q) = \partial \mathbf{x}/\partial u(q), \mathbf{x}_v(q) = \partial \mathbf{x}/\partial v(q)\}$ de T_pS .

Definição 1.1.3

Uma aplicação contínua $\varphi : V_1 \subset S_1 \to S_2$, de um conjunto aberto V_1 de uma superfície regular S_1 em uma superfície regular S_2 , é diferenciável em $p \in V_1$ se, dadas parametrizações $\mathbf{x}_1 : U_1 \subset \mathbb{R}^2 \to S_1$, $\mathbf{x}_2 : U_2 \subset \mathbb{R}^2 \to S_2$, com $p \in \mathbf{x}_1(U_1)$ e $\varphi(\mathbf{x}_1(U_1)) \subset \mathbf{x}_2(U_2)$, a aplicação

$$\boldsymbol{x}_2^{-1} \circ \varphi \circ \boldsymbol{x}_1 : U_1 \to U_2$$

é diferenciável em $q = \boldsymbol{x}_1^{-1}(p)$.

É fácil ver que essa definição não depende das parametrizações envolvidas. De agora em diante, usaremos a notação $\varphi(\mathbf{x}_1(u, v)) = \varphi(u, v) = (\varphi_1(u, v), \varphi_2(u, v))$ sem maiores comentários. Com essa definição, podemos mostrar que, se $\mathbf{x} : U \subset \mathbb{R}^2 \to S$ é uma parametrização, $\mathbf{x}^{-1} : \mathbf{x}(U) \to \mathbb{R}^2$ é diferenciável. Logo, toda superfície regular é localmente difeomorfa a um plano.

Podemos agora falar na diferencial de uma aplicação (diferenciável) entre superfícies.

Definição 1.1.4

Sejam S_1 e S_2 superfícies regulares e seja $\varphi: V \subset S_1 \to S_2$ diferenciável, onde V é aberto

de S_1 contendo $p \in S_1$. Seja $w = \alpha'(0)$, onde $\alpha : (-\epsilon, \epsilon) \to V$ é uma curva parametrizada tal que $\alpha(0) = p$. A aplicação $d\varphi_p : T_pS_1 \to T_{\varphi(p)}S_2$ definida por $d\varphi_p(w) = \beta'(0)$, onde $\beta = \varphi \circ \alpha$, é chamada de diferencial de φ em p.

Pode-se mostrar que $d\varphi_p$ é linear $\forall p \in S_1$, e que o vetor $\beta'(0)$ não depende da escolha de α .

Começaremos agora o estudo de algumas estruturas geométricas associadas a uma superfície regular S.

O produto interno natural do $\mathbb{R}^3 \supset S$ induz em cada plano tangente T_pS um produto interno, que indicaremos por \langle,\rangle (ou \langle,\rangle_p), da seguinte forma: se $w_1, w_2 \in T_pS \subset \mathbb{R}^3$, então $\langle w_1, w_2 \rangle$ é igual ao produto interno de w_1 e w_2 como vetores em \mathbb{R}^3 . A esse produto interno corresponde uma forma quadrática I (ou I_p), onde $I: T_pS \to \mathbb{R}$ é dada por

$$I(w) = \langle w, w \rangle = |w|^2 \ge 0.$$

Definição 1.1.5

A forma quadrática I em T_pS definida acima é chamada a primeira forma fundamental de S em p.

Seja $V \subset S$ é um conjunto aberto em S e $\mathbf{N} : V \to \mathbb{S}^2$ é uma aplicação diferenciável que associa a cada $q \in V$ um vetor normal unitário dado por

$$\mathbf{N}(q) = \frac{\mathbf{x}_u \times \mathbf{x}_v}{|\mathbf{x}_u \times \mathbf{x}_v|}(q).$$

Dizemos que \mathbf{N} é um campo diferenciável de vetores normais unitários em V. A aplicação \mathbf{N} , assim definida, é chamada a *aplicação de Gauss* de S. A superfície S é dita *orientável* se ela admite um campo \mathbf{N} definido em toda a superfície; a escolha de um tal campo é chamada uma *orientação* de S.

A partir de agora, S denotará uma superfície regular orientável, com uma orientação **N**. Como dito anteriormente, a aplicação de Gauss é diferenciável, e a diferencial d**N** (ou d**N**_p) de **N** em $p \in S$ é uma aplicação linear de T_pS em T_pS (omitimos o índice p quando ficar claro a que ponto da superfície estamos nos referindo). Com isso, temos as seguintes definições:

Definição 1.1.6

A função II (ou II_p), definida em T_pS por $II(v) = -\langle d\mathbf{N}(v), (v) \rangle$, é chamada a segunda forma fundamental de S em p.

Definição 1.1.7

Seja C uma curva regular em S passando por $p \in S$ e k a curvatura de C em p. O número $k_n = k \langle n, \mathbf{N} \rangle$ é chamado a curvatura normal de $C \subset S$ em p.

É fácil ver que todas as curvas de S que têm, em um ponto $p \in S$, a mesma reta tangente têm, neste ponto, a mesma curvatura normal, o que nos permite falar em curvatura normal ao longo de uma dada direção em p.

Para cada $p \in S$, existe uma base ortonormal $\{e_1, e_2\}$ de T_pS tal que $d\mathbf{N}(e_1) = -k_1e_1$ e $d\mathbf{N}(e_2) = -k_2e_2$, onde k_1 e k_2 ($k_1 \ge k_2$) são o máximo e o mínimo da segunda forma fundamental II restrita ao círculo unitário de T_pS , chamados de *curvaturas principais* em p; as direções correspondentes e_1 e e_2 são chamadas de *direções principais* em p.

Definiremos agora dois conceitos fundamentais na geometria diferencial de superfícies.

Definição 1.1.8

Seja $p \in S$ e seja $d\mathbf{N}: T_pS \to T_pS$ a diferencial da aplicação de Gauss. O determinante de $d\mathbf{N}$ é chamado de curvatura Gaussiana K de S em p. O negativo da metade do traço de $d\mathbf{N}$ é chamado a curvatura média de S em p.

Quando escrevemos a matriz de $d\mathbf{N}$ em relação à base $\{e_1, e_2\}$ de T_pS , obtemos facilmente: $K = k_1k_2$ e $H = \frac{1}{2}(k_1 + k_2)$.

Um ponto de uma superfície S é chamado elíptico se $det(d\mathbf{N}) > 0$; é hiperbólico se $det(d\mathbf{N}) < 0$; parabólico se $det(d\mathbf{N}) = 0$, com $d\mathbf{N} \neq 0$; e planar se $d\mathbf{N} = 0$. Se tivermos $k_1 = k_2$ em $p \in S$, então p é chamado de ponto umbílico de S. É possível mostrar que se todos os pontos de uma superfície conexa são umbílicos, então S está contida em um plano ou em uma esfera.

Um outro resultado importante é o seguinte: Se $p \in S$ é um ponto elíptico, existe uma vizinhança V de p em S tal que todos os pontos de V estão do mesmo lado do plano tangente T_pS ; se p é um ponto hiperbólico, então em cada vizinhança de p existem pontos de ambos os lados de T_pS . Veja um exemplo na figura abaixo.

Figura 2: O ponto T da esfera de centro O é um ponto elíptico, pois toda a esfera se encontra em um lado do plano tangente α a ela em T.

Consideremos, novamente, que $\mathbf{x}(u, v)$ é uma parametrização de U em S em um ponto $p \in S$ compatível com a orientação \mathbf{N} de S (isto é, em $\mathbf{x}(U)$, $\mathbf{N} = \mathbf{x}_u \times \mathbf{x}_v / |\mathbf{x}_u \times \mathbf{x}_v|$), e seja $\alpha(t) = \mathbf{x}(u(t), v(t))$ uma curva parametrizada em S com $\alpha(0) = p$. Convencionaremos que todas as funções que aparecerem abaixo indicam seus valores no ponto p. Temos $\alpha' = \mathbf{x}_u u' + \mathbf{x}_v v'$ e $d\mathbf{N}(\alpha') = \mathbf{N}'(u(t), v(t)) = \mathbf{N}_u u' + \mathbf{N}_v v'$, e da relação $\langle \mathbf{N}, \mathbf{N} \rangle = 1$ obtemos que \mathbf{N}_u e \mathbf{N}_v pertencem a $T_p S$. Assim podemos escrever

$$\mathbf{N}_{u} = a_{11}\mathbf{x}_{u} + a_{21}\mathbf{x}_{v}$$
$$\mathbf{N}_{v} = a_{12}\mathbf{x}_{u} + a_{22}\mathbf{x}_{v}$$
(1.2)

е

$$d\mathbf{N}\begin{pmatrix} u'\\v'\end{pmatrix} = \begin{pmatrix} a_{11} & a_{12}\\a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} u'\\v' \end{pmatrix}.$$
 (1.3)

Por um cálculo direto, obtemos

$$a_{11} = \frac{fF - eG}{EG - F^2}, \qquad a_{12} = \frac{gF - fG}{EG - F^2}, a_{21} = \frac{eF - fE}{EG - F^2}, \qquad a_{22} = \frac{fF - gE}{EG - F^2},$$
(1.4)

onde

$$E = \langle \mathbf{x}_{u}, \mathbf{x}_{u} \rangle, \quad F = \langle \mathbf{x}_{u}, \mathbf{x}_{v} \rangle, \quad G = \langle \mathbf{x}_{v}, \mathbf{x}_{v} \rangle,$$

$$e = -\langle \mathbf{N}_{u}, \mathbf{x}_{u} \rangle = \langle \mathbf{N}, \mathbf{x}_{uu} \rangle,$$

$$f = -\langle \mathbf{N}_{v}, \mathbf{x}_{u} \rangle = \langle \mathbf{N}, \mathbf{x}_{uv} \rangle = \langle \mathbf{N}, \mathbf{x}_{vu} \rangle = -\langle \mathbf{N}_{u}, \mathbf{x}_{v} \rangle,$$

$$g = -\langle \mathbf{N}_{v}, \mathbf{x}_{v} \rangle = \langle \mathbf{N}, \mathbf{x}_{vv} \rangle.$$

Obtemos também

$$K = \det(a_{ij}) = \frac{eg - f^2}{EG - F^2}$$
(1.5)

е

$$H = -\frac{1}{2}(a_{11} + a_{22}) = \frac{1}{2} \left(\frac{eG - 2fF + gE}{EG - F^2} \right).$$
(1.6)

10 Noções Básicas de Geometria Diferencial, Análise e Campos Tensoriais

Com esses resultados, vemos que, para uma base $\{w_1, w_2\}$ de T_pS ,

$$d\mathbf{N}(w_1) \times d\mathbf{N}(w_2) = \det(d\mathbf{N})(w_1 \times w_2) = Kw_1 \times w_2.$$
(1.7)

Exemplo 1.1.4

Considere a superfície de revolução parametrizada por

$$\boldsymbol{x}(u,v) = (\varphi(v)\cos u, \varphi(v)\sin u, \psi(v)),$$

 $0 < u < 2\pi$, a < v < b, $\psi(v) = 0$. Por um cálculo direto, obtemos:

$$E = \varphi^2$$
, $F = 0$, $G = (\varphi')^2 + (\psi')^2$.

Convém supor que a curva geratriz é parametrizada pelo comprimento de arco, isto é, que $(\varphi')^2 + (\psi')^2 = 1$. Novamente por um cálculo direto, obtemos:

$$e = -\varphi \psi', \qquad f = 0, \qquad g = \psi' \varphi'' - \psi'' \varphi'.$$

Logo, pelas equações (1.5) e (1.6), chegamos a

$$K = -\frac{\psi'(\psi'\varphi'' - \psi''\varphi')}{\varphi}$$

e

$$H = \frac{-\psi' + (\psi'\varphi'' - \psi''\varphi')\varphi}{\varphi}.$$

Uma observação importante é a seguinte: Se $R \subset S$ é uma região limitada da superfície regular S contida na imagem da parametrização \mathbf{x} , o número positivo

$$\iint_{Q} |\mathbf{x}_{u} \times \mathbf{x}_{v}| du dv = \iint_{Q} \sqrt{EG - F^{2}} du dv = \iint_{Q} dA = A(R),$$
(1.8)

onde $Q = \mathbf{x}^{-1}(R)$, é a área da região R.

Convém fazermos um pequeno parêntese em nossos estudos para falarmos do conceito de superfície mínima. Uma superfície regular $S \subset \mathbb{R}^3$ é chamada *mínima* se, para cada uma de suas parametrizações, a curvatura média H relativa a elas é identicamente nula. Essa é uma classe especial de superfícies, muito estudada na geometria diferencial.

Retomando os conceitos acima definidos e utilizando as mesmas notações, podemos

expressar as derivadas dos vetores $\mathbf{x}_u \in \mathbf{x}_v$ na base $\{\mathbf{x}_u, \mathbf{x}_v, \mathbf{N}\}$, obtendo

$$\begin{aligned} \mathbf{x}_{uu} &= \Gamma_{11}^{1} \mathbf{x}_{u} + \Gamma_{11}^{2} \mathbf{x}_{v} + e \mathbf{N}, \\ \mathbf{x}_{uv} &= \Gamma_{12}^{1} \mathbf{x}_{u} + \Gamma_{12}^{2} \mathbf{x}_{v} + f \mathbf{N}, \\ \mathbf{x}_{vu} &= \Gamma_{21}^{1} \mathbf{x}_{u} + \Gamma_{21}^{2} \mathbf{x}_{v} + f \mathbf{N}, \\ \mathbf{x}_{vv} &= \Gamma_{22}^{1} \mathbf{x}_{u} + \Gamma_{22}^{2} \mathbf{x}_{v} + g \mathbf{N}, \end{aligned}$$
(1.9)

onde os coeficientes Γ_{ij}^k , i, j, k = 1, 2, são chamados símbolos de Christoffel de S na parametrização **x**.

Sejam agora $\mathbf{x} : U \subset \mathbb{R}^2 \to S$ uma parametrização de S compatível com a sua orientação e $R \subset \mathbf{x}(U)$ uma região limitada de S. Se f é uma função diferenciável em S, então se vê facilmente que a integral

$$\iint_{\mathbf{x}^{-1}(R)} f(u,v)\sqrt{EG - F^2} du dv \tag{1.10}$$

não depende da parametrização **x**. Esta integral tem, portanto, um significado geométrico e é chamada *integral de f sobre a região R*. É comum denotá-la por $\iint_R f d\sigma$, $\int_R f dS$ ou ainda $\int_R f dA$.

Vamos agora expor detalhes de um caso particular do teorema de Gauss-Bonnet. Para isso, precisamos de alguns preliminares topológicos.

Dizemos que uma região conexa $R \subset S$ é regular se R é compacta e a sua fronteira ∂R é uma união finita de curvas regulares por partes fechadas (e simples, ou seja, sem auto-interseções) que não se intersectam. Dizemos também que R (união de um conjunto aberto conexo com a sua fronteira) é uma região simples se R é homeomorfa a um disco e a fronteira ∂R de R é o traço de uma curva parametrizada simples, fechada e regular por partes $\alpha : I \to S$. Dizemos também que uma região simples que tem apenas três vértices é um triângulo.

Uma triangulação de uma região regular $R \subset S$ é uma família finita \mathcal{T} de triângulos $T_i, i = 1, ..., n$, tal que: 1) $\cup_{i=1}^n T_i = R$; 2)Se $T_i \cap T_j \neq \emptyset, i \neq j$, então $T_i \cap T_j$ é uma aresta comum de T_i e T_j ou um vértice comum de T_i e T_j .

Dada uma triangulação \mathcal{T} de uma região regular $R \subset S$, denotaremos por F o número de triângulos (faces), por E o número de lados (arestas), e por V o número de vértices da triangulação. O número

$$F - E + V = \chi$$

é chamado a característica de Euler-Poincaré da triangulação. É possível mostrar que toda

região regular R de uma superfície regular admite uma triangulação, e que a característica de Euler-Poincaré não depende da triangulação de R. Logo, a característica de Euler-Poincaré é um invariante topológico dessa região.

Um cálculo direto mostra que a característica de Euler-Poincaré da esfera é 2, a do toro é zero, a do bi-toro (ou 2-toro) é -2 e, em geral, a de um *n*-toro é -2(n-1).

Figura 3: O 2-toro.

Temos, então, a seguinte proposição:

Proposição 1.1.1

Seja $S \subset \mathbb{R}^3$ uma superfície compacta e conexa. Então, um dos valores 2,0,-2,...,-2n,... é assumido pela característica de Euler-Poincaré $\chi(S)$. Além disso, se $S' \subset \mathbb{R}^3$ é uma outra superfície compacta e conexa e $\chi(S) = \chi(S')$, então S é homeomorfa a S'.

A recíproca (S homeomorfa a S' implica que $\chi(S) = \chi(S')$) é verdadeira em \mathbb{R}^3 , e é bem intuitiva, pois não podemos ter, por exemplo, uma esfera homeomorfa a um toro (e são superfícies com características de Euler-Poincaré diferentes). O número

$$g = \frac{2 - \chi(S)}{2}$$

é chamado o gênero de S, e é também um invariante topológico de uma superfície.

Vamos finalizar esta seção expondo o seguinte teorema, que é um caso particular do conhecido teorema de Gauss-Bonnet para superfícies compactas e orientáveis:

Teorema 1.1.1

Seja $S \subset \mathbb{R}^3$ uma superfície compacta e orientável. Então,

$$\iint_{S} K dS = 2\pi \chi(S).$$

Note que esse resultado nos mostra, por exemplo, que uma superfície compacta com curvatura positiva é homeomorfa a uma esfera.

1.2 Análise no Espaço \mathbb{R}^n

Vamos agora expor alguns resultados bem conhecidos de Análise no espaço \mathbb{R}^n que serão úteis nesse trabalho.

Uma imersão do aberto $U \subset \mathbb{R}^m$ no espaço \mathbb{R}^n é uma aplicação diferenciável $f: U \to \mathbb{R}^n$ tal que, para todo $x \in U$, a derivada $df_x : \mathbb{R}^m \to \mathbb{R}^n$ é uma transformação linear injetiva $(m \leq n)$. A função f, como acima, é chamada de mergulho (ou parametrização) quando f é uma imersão e é um homeomorfismo entre U e f(U).

Uma imersão pode não ser bijetiva, enquanto que um mergulho é uma bijeção. Quando mergulhamos uma superfície $S \subset \mathbb{R}^3$ em \mathbb{R}^3 por um mergulho f, a imagem f(S) também é uma superfície em \mathbb{R}^3 . Mas quando imergimos uma superfície $S \subset \mathbb{R}^3$ em \mathbb{R}^3 , pode acontecer da imagem ter auto-interseções, ou seja, não ser uma superfície no sentido definido na seção 1. Mas é possível mostrar que toda imersão é localmente um mergulho, de forma que podemos utilizar as propriedades definidas na seção 1 em caráter local. Alguns resultados, como o teorema de Gauss-Bonnet, podem ser generalizados, e também valem para objetos que são imagens de imersões em \mathbb{R}^3 .

Podemos generalizar o conceito de superfície visto na seção anterior, da seguinte forma: Um conjunto $M \subset \mathbb{R}^n$ chama-se uma *superfície* de dimensão m, $m \leq n$, quando todo ponto $p \in M$ está contido em algum aberto $U \subset \mathbb{R}^n$ tal que $V = U \cap M$ é a imagem de uma parametrização $\varphi: V_0 \to V$, onde $V_0 \subset \mathbb{R}^m$ é aberto.

Uma forma diferencial de grau r num aberto $U \subset \mathbb{R}^n$ é uma aplicação $\omega : U \to \Lambda^r(\mathbb{R}^n)$, onde $\Lambda^r(\mathbb{R}^n)$ é o espaço das transformações \mathbb{R} -lineares alternadas de \mathbb{R}^n em \mathbb{R} . Para cada $x \in U, \, \omega(x)$ é uma forma (ou seja, uma aplicação) r-linear alternada em \mathbb{R}^n . Denotamos por $\{dx_1, ..., dx_n\} \subset (\mathbb{R}^n)^*$ a base dual da base canônica $\{e_1, ..., e_n\} \subset \mathbb{R}^n$, onde $(\mathbb{R}^n)^*$ é o espaço vetorial dual de \mathbb{R}^n . A base natural de $\Lambda^r(\mathbb{R}^n)$ consiste nas formas $dx_I = dx_{i_1} \wedge ... \wedge$ dx_{i_r} , onde $I = \{i_1 < ... < i_r\}$ percorre todos os subconjuntos com r elementos do conjunto $I_n = \{1, 2, ..., n\}$. As formas dx_I são definidas por: $dx_I(w_{i_1}, ..., w_{i_r}) = \det(dx_{i_k}(w_{i_l}))_{i_k, i_l \in I}$. Então, para cada $x \in U$, temos

$$\omega(x) = \sum_{I} a_{I}(x) dx_{I},$$

onde os $a_I(x) = \omega(x).(e_{i_1}, ..., e_{i_r})$ são as coordenadas de $\omega(x)$ relativas à base composta pelos dx_I . Quando as funções $a_I : U \to \mathbb{R}$ são diferenciáveis, dizemos que ω é uma forma diferenciável.

De forma análoga, se $M \subset \mathbb{R}^n$ é uma superfície *m*-dimensional, uma forma diferencial

em M de grau r é uma correspondência ω que associa a cada $x \in M$ uma forma r-linear alternada $\omega(x) \in \Lambda^r(T_xM)$. Se $\varphi: U_0 \to U \subset M$ é uma parametrização local na superfície m-dimensional $M \subset \mathbb{R}^n$, em cada ponto $x \in \varphi(U)$ indicaremos com $\{du_1, ..., du_m\} \subset$ $(T_xM)^*$ a base dual da base $\{\frac{\partial \varphi}{\partial u_1}(u), ..., \frac{\partial \varphi}{\partial u_m}(u)\} \subset T_xM$. As formas diferenciais $du_I =$ $du_{i_1} \wedge ... \wedge du_{i_r}, I = \{i_1 < ... < i_r\} \subset I_m$, constituem, em cada ponto $x \in U$, uma base de $\Lambda^r(T_xM)$, portanto toda forma diferencial ω de grau r em M se exprime, em termos da parametrização φ , como

$$\omega(x) = \sum_{I} a_{I}(u) du_{I}, \qquad x = \varphi(u).$$

Seja $f: V \to U$ uma função diferenciável, onde $V \subset \mathbb{R}^m$ e $U \subset \mathbb{R}^n$ são abertos. Se ω é uma *r*-forma diferenciável em U, o *pull-back* de ω pela função f é a *r*-forma $f^*(\omega)$ em V dada por

$$f^*(\omega)(p).(v_1,...,v_r) = \omega(f(p)).(df_p(v_1),...,df_p(v_r)),$$

para todo $p \in \mathbb{R}^m$ e quaisquer $v_1, ..., v_r \in \mathbb{R}^m$.

Exemplo 1.2.1

Seja M uma superfície orientada de dimensão m. O elemento de volume de M é a forma diferencial ω , de grau m, definida pondo-se, para cada $x \in M$ e $w_1, ..., w_m \in T_x M$, $\omega(x).(w_1, ..., w_m) = \pm$ volume do paralelepípedo determinado por $w_1, ..., w_m$.

Se m = 2, obtemos facilmente, utilizando fatos da Álgebra Linear, que $\omega(x).(w_1, w_2) = |w_1 \times w_2| = |w_1 \times \tilde{w}_2|$, onde \tilde{w}_2 é a componente de w_2 ortogonal a w_1 . Dada uma parametrização $\varphi : U_0 \to U \subset M$, definimos as funções $g_{ij} : U_0 \to \mathbb{R}$ pondo $g_{ij} = \langle \frac{\partial \varphi}{\partial u_i}(u), \frac{\partial \varphi}{\partial u_j}(u) \rangle$ e pomos $g = \det(g_{ij})$. Então, é fácil ver que em cada ponto $x = \varphi(u) \in U$, o volume do paralelepípedo que tem $\frac{\partial \varphi}{\partial u_1}(u), ..., \frac{\partial \varphi}{\partial u_m}(u)$ como arestas é igual a \sqrt{g} , ou seja, $\omega(x).(\frac{\partial \varphi}{\partial u_1}(u), ..., \frac{\partial \varphi}{\partial u_m}(u)) = \sqrt{g}$. Como $\{du_1, ..., du_m\}$ é a base dual de $\{\frac{\partial \varphi}{\partial u_1}(u), ..., \frac{\partial \varphi}{\partial u_m}(u)\}$, isto significa que

$$\omega = \sqrt{g} \cdot du_1 \wedge \dots \wedge du_m. \tag{1.11}$$

Seja $\omega = \sum_I a_I dx_I$ uma forma diferenciável de grau r, definida no aberto $U \subset \mathbb{R}^n$. A forma diferenciável de grau r + 1

$$d\omega = \sum_{I} da_{I} \wedge dx_{I} = \sum_{j,I} \frac{\partial a_{I}}{\partial x_{j}} dx_{j} \wedge \partial x_{I},$$

definida em U, chama-se a diferencial exterior de ω .

A diferencial exterior $d\omega$ de uma forma ω numa superfície M é definida de forma análoga: Em termos de uma parametrização $\varphi : U_0 \to U \subset M$, a forma ω admite a expressão $\omega(x) = \sum_I a_I(u) du_I$, $x = \varphi(u)$. Então pomos

$$d\omega(x) = \sum_{I} da_{I}(u) \wedge du_{I}, \quad x = \varphi(u) \in U,$$

Vamos agora expor um resultado de grande importância em Análise, o chamado teorema de Stokes.

Teorema 1.2.1

(Stokes)

Seja $M \subset \mathbb{R}^n$ uma superfície de dimensão m com bordo ∂M e ω uma (m-1)-forma diferencial tal que supp $\omega = \overline{A}$ é compacto, onde $A = \{p \in M; \omega(p) \neq 0\}$. Nestas condições, temos que

$$\int_{\partial M} \omega = \int_M d\omega.$$

As consequências desse teorema são de grande número, dentre elas destacaremos duas:

Corolário 1.2.1

(Teorema da Divergência)

Seja $F : U \subset \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ um campo vetorial diferenciável ($U \subset \mathbb{R}^{n+1}$ aberto). Seja $M \subset U$ uma superfície de dimensão n+1, com bordo ∂M e compacta. A função div $F : U \to \mathbb{R}$ (divergente do campo F) é definida por: div $F(p) = \sum_{i=1}^{n+1} \frac{\partial F_i}{\partial x_i}(p)$. Então,

$$\int_{\partial M} \omega = \int_M div F. dx_1 \wedge \dots \wedge dx_{n+1},$$

onde $\omega = \sum_{i=1}^{n+1} (-1)^{i+1} F_i dx_1 \wedge \ldots \wedge \widehat{dx_i} \wedge \ldots \wedge dx_{n+1}.$

Façamos algumas observações:

- 1. Um campo vetorial diferenciável $F: U \subset \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ $(U \subset \mathbb{R}^{n+1} \text{ aberto})$ é uma correspondência F que associa a cada ponto $p \in U$ um vetor $F(p) \in \mathbb{R}^{n+1}$;
- 2. A notação $dx_1 \wedge \ldots \wedge dx_i \wedge \ldots \wedge dx_{n+1}$ indica que, na forma $dx_1 \wedge \ldots \wedge dx_{n+1}$, omitimos o termo dx_i ;
- 3. Se $M \subset \mathbb{R}^n$ é uma superfície de dimensão m e sem bordo, podemos acrescentar

no teorema de Stokes que $\int_M d\omega = 0$, para toda (m-1)-forma diferenciável ω em M. Assim, no corolário acima, obtemos $\int_M div F.dx_1 \wedge \ldots \wedge dx_{n+1} = 0$, se M é uma superfície sem bordo e compacta.

Corolário 1.2.2

(Identidades de Green)

Sejam $u, v : \overline{U} \subset \mathbb{R}^n \to \mathbb{R}$ funções diferenciáveis e \overline{U} o fecho do aberto limitado $U \subset \mathbb{R}^n$ tal que ∂U é uma superfície de dimensão n-1 e sem bordo. Então, se $\nabla u = (\frac{\partial u}{\partial x_1}, ..., \frac{\partial u}{\partial x_n})$ e $\Delta u = \sum_{i=1}^n \frac{\partial^2 u}{\partial x_i^2}$, temos:

$$\int_{\overline{U}} \langle \nabla u, \nabla v \rangle dx = -\int_{\overline{U}} (u.\Delta v) dx$$

e também

$$\int_{\overline{U}} (u.\Delta v) dx = \int_{\overline{U}} (v.\Delta u) dx$$

1.3 Campos Tensoriais

Vamos iniciar esta seção falando das variedades diferenciáveis. O conceito de variedade generaliza a noção de superfície vista nas seções anteriores. A grosso modo, uma variedade diferenciável é como uma superfície, só que não precisa estar contida em um espaço euclidiano. Considerações análogas podem ser feitas a respeito do espaço tangente a uma variedade (uma generalização da noção de espaço tangente vista na primeira seção). Todos os conceitos acima definidos (como as aplicações diferenciáveis entre superfícies, imersões, mergulhos, etc.) e alguns resultados (como o teorema de Gauss-Bonnet, etc.) também podem ser generalizados de forma análoga, considerando-se as variedades diferenciáveis; logo, todos eles serão utilizados de forma apropriada para as variedades, assim como foram definidos. Não entraremos em detalhes a respeito dessas generalizações (o leitor interessado pode consultar [1], [3] e [6]).

Uma variedade diferenciável M de dimensão n será, algumas vezes, denotada por M^n . O espaço tangente a M no ponto $p \in M$ será denotado por T_pM .

1.3.1 Tensores

Seja M uma variedade diferenciável. Um sistema de coordenadas locais ou carta local em M é um homeomorfismo $\varphi : U \to \varphi(U)$ de um subconjunto aberto $U \subset M$ sobre um aberto $\varphi(U) \subset \mathbb{R}^n$. Dados um sistema de coordenadas locais $\varphi : U \to \mathbb{R}^n$ em M e um ponto $p \in U$, indicamos por $\{\frac{\partial}{\partial x^1}(p), ..., \frac{\partial}{\partial x^n}(p)\}$ a base de T_pM (também chamada de base coordenada) que é levada por um isomorfismo (que depende de φ) à base canônica $\{e_1, ..., e_n\}$ (para mais detalhes, consulte [6]). Às vezes escreveremos ∂_i ou $\frac{\partial}{\partial x^i}$ em vez de $\frac{\partial}{\partial x^i}(p)$.

Estabeleceremos agora algumas notações e definições importantes.

Definição 1.3.1

Seja V um espaço vetorial real de dimensão n e seja V^{*} o espaço vetorial dual de V. Um tensor k-covariante é uma aplicação multilinear $T : V \times V \times ... \times V \to \mathbb{R}$, onde o produto cartesiano é contado k vezes. Um tensor l-contravariante em V é uma aplicação multilinear $S : V^* \times V^* \times ... \times V^* \to \mathbb{R}$, onde o produto cartesiano é contado l vezes. Um tensor do tipo (k,l) em V é uma aplicação multilinear $R : V^* \times ... \times V^* \times V \times ... \times V \to \mathbb{R}$, onde os produtos cartesianos são contados l+k vezes (como acima).

Vamos agora expor mais alguns resultados importantes.

Denotaremos $T^k(V)$ como o espaço dos tensores k-covariantes em V, $T_l(V)$ como o espaço dos tensores l-contravariantes em V e $T_l^k(V)$ como o espaço dos tensores do tipo (k, l) em V. Temos que o espaço $T_{l+1}^k(V)$ é linearmente isomorfo ao espaço $M\pounds(V^* \times ... \times$ $V^* \times V \times ... \times V, V)$ das transformações multilineares de $V^* \times ... \times V^* \times V \times ... \times V$ em V, onde os produtos cartesianos são contados l+k vezes (como acima).

Seja $B = \{E_1, ..., E_n\} \subset V$ uma base de V. Assim, construímos uma base $B' = \{E^1, ..., E^n\}$ de V^{*} pondo $E^j(E_i) = \delta_{ij}$. Em particular, se B é a base coordenada, denotamos $E^j = dx^j$ para j=1,...,n.

Definição 1.3.2

Sejam $F \in T_l^k(V)$ e $G \in T_s^r(V)$. O produto tensorial $F \otimes G \in T_{l+s}^{k+r}(V)$ é definido por: $(F \otimes G)(\omega^1, ..., \omega^{l+s}, v_1, ..., v_{k+r}) = F(\omega^1, ..., \omega^l, v_1, ..., v_k).G(\omega^{l+1}, ..., \omega^{l+s}, v_{k+1}, ..., v_{k+r}),$ onde $(\omega^1, ..., \omega^{l+s}, v_1, ..., v_{k+r}) \in V^* \times ... \times V^* \times V \times ... \times V$ contados l+k vezes como acima.

A partir de agora, utilizaremos a seguinte convenção, conhecida como *convenção de Einstein*: Se em um termo aparece um mesmo índice duas vezes, sendo um deles superior e outro inferior, entende-se como uma soma sobre todos os valores possíveis. Exemplos:

- a) O símbolo $A^{ij}.C_{jk}$ significa $\sum_{j=1}^{n} A^{ij}.C_{jk}$;
- b) O símbolo $A^{\alpha\beta}_{\alpha\gamma}$ significa $\sum_{\alpha=1}^{n} A^{\alpha\beta}_{\alpha\gamma}$.

Observação 1.3.1

 $\begin{array}{l} O \ conjunto \ B_{l}^{k} = \{E_{j_{1}} \otimes \ldots \otimes E_{j_{l}} \otimes E^{i_{1}} \otimes \ldots \otimes E^{i_{k}}; j_{1}, \ldots, j_{l}, i_{1}, \ldots, i_{k} \in \{1, \ldots, n\}\}(k, l \leq n) \\ e \ uma \ base \ do \ espaço \ T_{l}^{k}(V). \ Dessa \ forma, \ todo \ tensor \ T \in T_{l}^{k}(V) \ pode \ ser \ escrito \ como \ T = T_{i_{1} \ldots i_{k}}^{j_{1} \ldots j_{l}}.E_{j_{1}} \otimes \ldots \otimes E_{j_{l}} \otimes E^{i_{1}} \otimes \ldots \otimes E^{i_{k}}, \ onde \ T_{i_{1} \ldots i_{k}}^{j_{1} \ldots j_{l}} = T(E^{j_{1}}, \ldots, E^{j_{l}}, E_{i_{1}}, \ldots, E_{i_{k}}). \end{array}$

Exemplo 1.3.1

Se $\omega \in T^1(V)$, dizemos que ω é uma 1-forma em V. Se $\omega \in T^k(V), k \ge 2$, dizemos que ω é uma k-forma (uma generalização do conceito de formas diferenciais definido na seção anterior). Se $T^1, ..., T^k \in T^1(V)$, definimos a k-forma $T^1 \wedge T^2 \wedge ... \wedge T^k$ da seguinte maneira: $(T^1 \wedge T^2 \wedge ... \wedge T^k)(v_1, v_2, ..., v_k) = det((T^i(v_j))_{ij})$, onde $v_1, ..., v_k \in V$.

Para mais detalhes de todos esses resultados, veja [3].

1.3.2 Campos Vetoriais e Tensoriais e Conexão de Levi-Civita

Definição 1.3.3

Dada uma variedade M, um campo vetorial (tangente) definido em M é uma aplicação que a cada ponto $p \in M$ associa um vetor X(p) pertecente ao espaço tangente T_pM . Considerando uma carta local $\varphi: U \to \varphi(U)$ em M, podemos escrever, para cada $p \in U$,

$$X(p) = \sum_{i=1}^{n} \alpha_i(p) \frac{\partial}{\partial x^i}(p),$$

onde $\{\frac{\partial}{\partial x^1}(p), ..., \frac{\partial}{\partial x^n}(p)\}$ é a base de vetores tangentes associada a $\varphi \in \alpha_1, ..., \alpha_n$ são funções diferenciáveis em U. Podemos também pensar em um campo de vetores como uma aplicação $X : C^{\infty}(M) \to C^{\infty}(M)$, onde $C^{\infty}(M) = \{f : M \to \mathbb{R}; f \notin função de classe$ $C^{\infty}\}$, definida como:

$$X(f)(p) = \sum_{i=1}^{n} \alpha_i(p) \frac{\partial f}{\partial x^i}(p).$$

O conjunto de todos os campos vetoriais em M será denotado por $\mathcal{X}(M)$.

Sejam $X, Y \in \mathcal{X}(M)$. Definimos o *colchete de Lie* dos campos $X \in Y$ como o campo vetorial $[X, Y] \in \mathcal{X}(M), [X, Y] : C^{\infty}(M) \to C^{\infty}(M)$ dado por:

$$[X, Y](f) = X(Y(f)) - Y(X(f)).$$

Vamos agora definir o que são os campos tensoriais do tipo (k,l).

Definição 1.3.4

Um campo tensorial do tipo (k,l) é uma aplicação T que a cada ponto $p \in M$ associa um

tensor $T_p \in T_l^k(T_pM)$. Seja $\mathcal{T}^k(M) = \{ \omega : M \to T^k(T_pM); \ \omega(p) \ \acute{e} \ linear, \ \forall \ p \in M \}$ $(k \in \mathbb{N}).$

Podemos enxergar T da seguinte forma:

$$T: \mathcal{T}^1(M) \times \ldots \times \mathcal{T}^1(M) \times \mathcal{X}(M) \times \ldots \times \mathcal{X}(M) \to C^{\infty}(M)$$

do tipo (k,l) (como visto na definição de tensores), onde $T(\omega^1, ..., \omega^l, X_1, ..., X_k) \in C^{\infty}(M)$ ($(\omega^1, ..., \omega^l, X_1, ..., X_k) \in \mathcal{T}^1(M) \times ... \times \mathcal{T}^1(M) \times \mathcal{X}(M) \times ... \times \mathcal{X}(M)$) é C^{∞} -multilinear e definida como:

$$T(\omega^1, ..., \omega^l, X_1, ..., X_k)(p) = T_p(\omega^1(p), ..., \omega^l(p), X_1(p), ..., X_k(p))$$

Vamos passar agora à definição de conexão de Levi-Civita em uma variedade diferenciável.

Definição 1.3.5

Uma conexão de Levi-Civita em uma variedade diferenciável M é uma aplicação

$$\nabla: \ \mathcal{X}(M) \times \mathcal{X}(M) \to \ \mathcal{X}(M)$$
$$(X,Y) \mapsto \ \nabla_X Y$$

que possui as seguintes propriedades:

- 1. $\nabla_{fX+gY}Z = f\nabla_X Z + g\nabla_Y Z$; (C^{\infty}(M)-linearidade na primeira variável)
- 2. $\nabla_X(Y+Z) = \nabla_X Y + \nabla_X Z$; (aditividade na segunda variável)
- 3. $\nabla_X(fY) = f\nabla_X Y + X(f)Y$; (Regra de Leibniz)
- 4. $X \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$; (compatibilidade com a métrica)
- 5. $\nabla_X Y \nabla_Y X = [X, Y]$, (simetria)

onde $X, Y, Z \in \mathcal{X}(M)$ e $f, g \in C^{\infty}(M)$. O símbolo $\nabla_X Y$ é também chamado de derivada covariante de Y na direção de X.

De agora em diante, utilizaremos essa conexão em todos os cálculos que virão, e por isso faremos menção à conexão de Levi-Civita apenas com o nome de "conexão". Note que uma conexão é \mathbb{R} -linear na segunda variável, isto é, se $a, b \in \mathbb{R}$, então $\nabla_X(aY + bZ) =$ $a\nabla_X Y + b\nabla_X Z$. De fato, $\nabla_X(aY + bZ) = \nabla_X(aY) + \nabla_X(bZ) = a\nabla_X Y + b\nabla_X Z$, pela segunda e terceira propriedades da conexão. É possível mostrar que para toda variedade existe uma conexão sobre ela.

Observação 1.3.2

Se M é uma variedade de dimensão n, dados dois campos vetoriais $X, Y \in \mathcal{X}(M)$, podemos escreve-los em relação à base coordenada (definida em M) da seguinte forma: $X = \sum_{i=1}^{n} x_i \partial_i \ e \ Y = \sum_{i=1}^{n} y_i \partial_i$, onde $x_i \ e \ y_i$ são funções definidas em M para i=1,...n. Desse modo, utilizando as propriedades da conexão, obtemos:

$$\nabla_X Y = \sum_k (\sum_{i,j} x_i y_j \Gamma_{ij}^k + X(y_k)) \partial_k,$$

onde os coeficientes Γ_{ij}^k , definidos por

$$\nabla_{\partial_i}\partial_j = \Gamma^k_{ij}\partial_k,\tag{1.12}$$

são os chamados símbolos de Christoffel da conexão (note que, como a conexão é um campo vetorial por definição, ela pode ser escrita como combinação linear dos vetores da base coordenada como na equação (1.12) acima).

Para mais detalhes de todas as afirmações acima, veja [4].

1.3.3 Exemplos de Campos Vetoriais e Campos Tensoriais

Exemplo 1.3.2

Uma métrica Riemanniana sobre uma variedade M de dimensão n é um campo tensorial $g \in \mathcal{T}^2(M)$ que é simétrico (isto é, g(X,Y) = g(Y,X)) e positivo definido (isto é, g(X,X) > 0 se $X \neq 0$). Uma métrica Riemanniana determina, assim, um produto interno, para cada ponto $p \in M$, sobre cada espaço tangente T_pM , que é tipicamente escrito como $\langle X(p), Y(p) \rangle := g(X,Y)(p)$ para $X(p), Y(p) \in T_pM$. Uma variedade M junto com uma métrica Riemanniana g é chamada variedade Riemanniana (M,g). Usaremos, a partir de agora, os termos "métrica"e "variedade"(ou "n-variedade") para referir à métrica Riemanniana e à variedade Riemanniana acima descritas, respectivamente. É possível mostrar que para toda variedade existe uma métrica associada (para mais detalhes veja [3]).

Se $\{E_1, ..., E_n\}$ é uma base de T_pM e $\{E^1, ..., E^n\}$ é a base dual correspondente, uma métrica pode ser escrita em termos dessa base como (veja a observação 1.3.1 acima)

$$g = g_{ij}E^i \otimes E^j.$$

A matriz coeficiente, definida por $g_{ij} = \langle E_i, E_j \rangle$, é simétrica em i e j e depende de $p \in M$. Em particular, se a base acima é a base coordenada, g tem a forma

$$g = g_{ij} dx^i \otimes dx^j.$$

A notação acima pode ser reduzida introduzindo-se o *produto simétrico* de duas 1-formas $\omega \in \eta$, definido por:

$$\omega\eta := \frac{1}{2}(\omega \otimes \eta + \eta \otimes \omega).$$

Pelo fato de g_{ij} ser simétrica, a equação para g acima é equivalente a

$$g = g_{ij} dx^i dx^j \tag{1.13}$$

(para ver isso, basta calcular, pelo critério de Einstein, o somatório dessa última equação para g e em seguida utilizar a fórmula do produto simétrico que se chega facilmente à primeira equação para g).

Observação 1.3.3

Se p é um ponto qualquer de uma n-variedade M, é possível obter uma base ortonormal $\{E_1, ..., E_n\}$ definida em p para T_pM . Para mais detalhes, consulte [3].

Um exemplo de variedade é \mathbb{R}^n com a *métrica Euclidiana* \overline{g} , que é o produto interno usual sobre cada espaço tangente $T_x \mathbb{R}^n$, com a identificação natural $T_x \mathbb{R}^n = \mathbb{R}^n$. Essa métrica pode ser escrita de várias formas:

$$\overline{g} = \sum_i dx^i dx^i = \sum_i (dx^i)^2 = \delta_{ij} dx^i dx^j.$$

A matriz de \overline{g} nessas coordenadas é: $(\delta_{ij})_{1 \le i,j \le n}$.

Se \widetilde{M} é uma variedade, uma subvariedade (ou subvariedade imersa) de \widetilde{M} é uma variedade M junto com uma imersão injetiva $\iota : M \hookrightarrow \widetilde{M}$. A métrica induzida sobre M é o tensor $g = \iota^* \widetilde{g}$, que é somente a restrição de \widetilde{g} a vetores tangentes a M.

Exemplo 1.3.3

Seja (M, g) uma variedade com a métrica Euclidiana g e seja $p \in M$ qualquer. O produto interno natural induz um isomorfismo entre T_pM e seu dual T_p^*M . Tal isomorfismo faz corresponder a cada vetor $v \in T_pM$ o funcional $v^* \in T_p^*M$ com $v^*(X_p) = \langle v, X_p \rangle$, onde $X_p = X(p)$ e $X \in \mathcal{X}(M)$. Seja $f \in C^{\infty}(M)$. O gradiente de f, denotado por gradf, é o único campo vetorial em M (segundo o isomorfismo acima) que satisfaz

$$\langle gradf(p), X_p \rangle = X_p(f).$$
 (1.14)

Também denotaremos, às vezes, o gradiente de f por ∇f .

Convém agora definirmos duas funções que serão de grande utilidade.

Seja X um campo vetorial diferenciável em M. A divergência de X é a função diferenciável $divX: M \to \mathbb{R}$ definida por

$$(divX)(p) = trA = \sum_{i=1}^{n} \langle A(e_i), e_i \rangle,$$

onde tr denota o traço do operador linear $A: T_pM \to T_pM$ definido por $A(v) = \nabla_v X, \forall v \in T_pM$, e $\{e_1, ..., e_n\}$ é uma base ortonormal em p.

Note que é possível obtermos uma base ortonormal em p pela observação 1.3.3 acima.

Seja $f \in C^{\infty}(M)$. O laplaciano de f é a função $\Delta f : M \to \mathbb{R}$ dada por

$$\Delta f = div(gradf).$$

Exemplo 1.3.4

Seja $f \in C^{\infty}(M)$. Definimos o hessiano de f em $p \in M$ como sendo o campo tensorial Hess $f : \mathcal{X}(M) \times \mathcal{X}(M) \to C^{\infty}(M)$ dado por

$$(Hessf)(X,Y)(p) = (Hessf)_p(X_p,Y_p) = \langle \nabla_{X_p} gradf, Y_p \rangle,$$

onde X_p e Y_p pertencem a T_pM . Utilizaremos também as seguintes notações para o hessiano de f, aplicado aos campos X e Y: $\nabla \nabla f(X,Y)$ e $\langle \nabla_X \nabla f, Y \rangle$.

Vamos agora mostrar uma relação existente entre o laplaciano e o hessiano de uma função de classe C^{∞} em M.

Proposição 1.3.1

Se $f \in C^{\infty}(M)$, então

$$\Delta f = tr(Hessf).$$

Demonstração. Seja $p \in M$ qualquer e seja $\{e_1, ..., e_n\}$ uma base ortonormal em p. Como o hessiano, definido em p, é uma transformação bilinear, o traço do tensor hessiano em p é o traço do operador bilinear associado a ele (veja os comentários à frente), e é dado por $\sum_{i=1}^{n} (Hessf)_p(e_i, e_i)$. Então:

$$tr(Hessf)_p = \sum_{i=1}^n (Hessf)_p(e_i, e_i) = \sum_{i=1}^n \langle \nabla_{e_i} gradf, e_i \rangle = div(gradf)(p) = \Delta f(p).$$

Observação 1.3.4

Pela fórmula (1.14) que define o gradiente de f e pela propriedade 4 da definição de conexão (definição 1.3.5), obtemos:

$$X(Y(f)) = X(\langle \nabla f, Y \rangle) = \langle \nabla_X \nabla f, Y \rangle + \langle \nabla f, \nabla_X Y \rangle = \langle \nabla_X \nabla f, Y \rangle + (\nabla_X Y)(f)$$

assim

$$\nabla \nabla f(X,Y) = X(Y(f)) - (\nabla_X Y)(f).$$

Em particular, para $X = \partial_i e Y = \partial_j$, utilizando a fórmula (1.12), obtemos:

$$\nabla \nabla f(\partial_i, \partial_j) = \partial_i (\partial_j(f)) - (\nabla_{\partial_i} \partial_j)(f) = f_{ij} - f_k \Gamma_{ij}^k, \tag{1.15}$$

onde $f_k = \frac{\partial f}{\partial x_k} e f_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$. Denotaremos também $\nabla \nabla f(\partial_i, \partial_j)$ por $\nabla_i \nabla_j f$.

A fim de obtermos uma nova expressão para o traço do hessiano, vamos definir com mais precisão o que vem a ser o traço de tensores. Para isso, vamos utilizar o fato já comentado no início desta seção de que, se V é um espaço vetorial real de dimensão n, o espaço $T_{l+1}^k(V)$ é linearmente isomorfo ao espaço $M \pounds(V^* \times ... \times V^* \times V \times ... \times V, V)$, onde os produtos cartesianos são contados l+k vezes. Em um caso particular, é fácil descrever: o operador $tr: T_1^1(V) \to \mathbb{R}$, definido como $F \mapsto trF$, é somente o traço de Fquando ele é considerado (pelo isomorfismo acima) como um endomorfismo de V (ou seja, $trF = F_m^m = \sum_m F(E^m, E_m)$, onde $\{E_1, ..., E_n\}$ é uma base de V, e desde que o traço de um endomorfismo independe da base utilizada, isso é bem definido). De forma análoga, definimos $tr: T_{l+1}^{k+1}(V) \to T_l^k(V)$ fazendo $(trF)(\omega^1, ..., \omega^l, v_1, ..., v_k)$ (trF é um tensor que depende de $(\omega^1, ..., \omega^l, v_1, ..., v_k)$) igual ao traço do endomorfismo

$$F(\omega^1, ..., \omega^l, \cdot, v_1, ..., v_k, \cdot) \in T_1^1(V).$$

Em termos de uma base, as componentes de trF são (veja a observação 1.3.1)

$$(trF)_{i_1\dots i_k}^{j_1\dots j_l} = F_{i_1\dots i_k m}^{j_1\dots j_l m}.$$
(1.16)

Vamos agora extender o operador traço definido acima para tensores covariantes. Uma propriedade elementar mas importante das métricas é que elas nos permitem converter vetores em covetores (transformações lineares dos espaços duais) e vice-versa. Seja M

uma *n*-variedade, com $p \in M$ e sejam $X, Y, Z \in \mathcal{X}(M)$. Denotaremos a partir de agora X = X(p), Y = Y(p) e Z = Z(p) em T_pM . Dada uma métrica g sobre M, definimos uma aplicação, chamada *flat*, de T_pM em T_p^*M tal que leva um vetor X ao covetor X^{\flat} definido por

$$X^{\flat}(Y) := g(X, Y).$$

Em coordenadas (ou seja, em termos da base coordenada),

$$X^{\flat} = g(X^i \partial_i, \cdot) = g_{ij} X^i dx^i.$$

Podemos escrever X^{\flat} em coordenadas como $X^{\flat} = X_j dx^j$, onde

$$X_j := g_{ij} X^i. \tag{1.17}$$

Esta última igualdade mostra que a matriz do operador *flat* em coordenadas é portanto a matriz de g. Desde que a matriz de g é invertível (pois g é positiva definida), assim também o é o operador *flat*. Denotaremos seu inverso como (operador) *sharp*, tal que $\omega \mapsto \omega^{\sharp}$. Em coordenadas, ω^{\sharp} tem componentes

$$\omega^i := g^{ij} \omega_j,$$

onde, por definição, g^{ij} são os componentes da matriz inversa $((g_{ij})_{1 \le i,j \le n})^{-1}$ (isso porque, por simetria de g, $g_{ij} = g_{ji}$, e da equação (1.17) obtemos que $g^{lj}X_j = g^{lj}g_{ij}X^i = (g^{lj}g_{ji})X^i = \delta_{li}X^i = X^l$).

Os operadores *flat* e *sharp* podem ser aplicados a tensores de qualquer tipo, para converter tensores covariantes em tensores contravariantes e vice-versa. Por exemplo, se $B: V \times V^* \times V \to \mathbb{R}$ é um tensor com componentes dadas por $B_i{}^j{}_k = B(E_i, E^j, E_k)$, podemos obter um tensor covariante B^{\flat} com componentes

$$B_{ijk} := g_{jl} B_i^{\ l}{}_k.$$

donde podemos obter

$$B_i{}^j{}_k = g^{jl} B_{ilk}. (1.18)$$

Em coordenadas,

$$B(X,Y,Z) := B(X,Y^{\flat},Z).$$

Consideremos agora que h é um 2-tensor simétrico sobre uma variedade M. Então h^{\sharp} é um tensor do tipo (1,1), logo pela descrição que antecede a equação (1.16) o traço de h^{\sharp} é definido. Definimos então o traço de h com respeito a g como

$$tr_gh := trh^{\sharp}$$

(pelo fato de h ser simétrico, não importa em qual índice \sharp opera). De modo semelhante à equação (1.18), temos que h^{\sharp} tem coordenadas $h_i^j = g^{jl}h_{il}$, o que implica $h_i^i = g^{il}h_{il}$. Em termos de uma base, pela equação (1.16) temos

$$tr_g h = h_i^i = g^{ij} h_{ij}.$$
 (1.19)

Essa nova expressão para o traço de 2-tensores será útil no próximo capítulo, quando falarmos a respeito da equação de Euler no estudo do funcional energia de Willmore.

26 Noções Básicas de Geometria Diferencial, Análise e Campos Tensoriais

CAPÍTULO 2

A conjectura de Willmore

Neste capítulo, estudaremos algumas propriedades do funcional energia de Willmore, dado por

$$\mathcal{W}(M^2, f) = \int_{M^2} H^2 dS$$

Veremos que $\mathcal{W}(M^2, f)$ é invariante sob transformações conformes de \mathbb{E}^3 (espaço Euclidiano, que é a variedade \mathbb{R}^3 junto com a métrica Euclidiana g). Veremos também a condição para que a integral acima, dada para variações normais de imersões da superfície orientável (ou orientada) e compacta $M^2 \subset \mathbb{E}^3$ (M^2 é subvariedade de \mathbb{E}^3) em \mathbb{E}^3 , seja estacionária, através da equação de Euler. Por fim, demonstraremos um caso particular da conjectura de Willmore (para toros $M^2 \subset \mathbb{E}^3$ mergulhados em \mathbb{E}^3 como tubos de seções circulares constantes).

2.1 Invariância Conforme

Antes de iniciarmos o tema central desta seção, vamos fazer um comentário a respeito da integral acima. Quando denotamos \int_{M^2} significa que estamos integrando sobre $f(M^2) \subset \mathbb{E}^3$, imagem da superfície orientável e compacta $M^2 \subset \mathbb{E}^3$ pela função f, que pode ser uma imersão ou um mergulho, exatamente como é definido em (1.10) no capítulo 1, seção 1.

Exemplo 2.1.1

Vamos calcular o valor de $\mathcal{W}(M^2, f)$ quando f é uma imersão e quando a superfície imersa é a esfera unitária centrada na origem, parametrizada por

$$\boldsymbol{x}(u,v) = (r\sin u \cos v, r\sin u \sin v, r\cos u)$$

 $0 < u < \pi$, $0 < v < 2\pi$. Por um cálculo direto, obtemos:

$$E = r^2, \qquad F = 0, \qquad G = r^2 \sin^2 u;$$

e também

$$e = -r, \qquad f = 0, \qquad g = -r\sin^2 u.$$

Assim, pelas fórmulas (1.5) e (1.6), temos

$$K = \frac{1}{r^2} \qquad e \qquad H = \frac{-1}{r},$$

donde obtemos:

$$\mathcal{W}(M^2, f) = \int H^2 \cdot \sqrt{EG - F^2} dv du = \int_0^\pi \int_0^{2\pi} \frac{1}{r^2} \cdot r^2 \sin u dv du = 4\pi$$

Como veremos, o exemplo acima condiz exatamente com um teorema que será mostrado na seção 2.3 desse capítulo (teorema 2.3.1).

Comecemos então com a seguinte definição:

Definição 2.1.1

Um difeomorfismo $f : U \subset \mathbb{R}^n \to \mathbb{R}^n$, com $U \subset \mathbb{R}^n$ aberto, é chamado uma aplicação conforme se para todo $p \in U$ e para todos os pares de vetores v_1 e v_2 em p tem-se:

$$\langle df_p(v_1), df_p(v_2) \rangle = \lambda^2(p) \langle v_1, v_2 \rangle, \quad \lambda^2 \neq 0.$$
 (2.1)

Note que uma condição necessária e suficiente para que f seja conforme é que os ângulos (não orientados) de curvas que se intersectam são preservados, isto é, se os ângulos (não orientados) entre quaisquer dois vetores $v_1 \in v_2 \text{ em } p \in U$ é igual ao ângulo formado por $df_p(v_1) \in df_p(v_2)$. Para ver isso, note que, se a equação (2.1) é satisfeita, $|df_p(v)|^2 = \lambda^2 |v|^2$, para cada vetor v em p, logo, se $\alpha \in \beta$ são os ângulos entre $v_1 \in v_2$ e entre $df_p(v_1) \in df_p(v_2)$, respectivamente, temos:

$$\cos \beta = \frac{\langle df_p(v_1), df_p(v_2) \rangle}{|df_p(v_1)| |df_p(v_2)|} = \frac{\lambda^2 \langle v_1, v_2 \rangle}{|v_1| |v_2|} = \cos \alpha,$$
(2.2)

isto é, os ângulos (não orientados) são preservados. Reciprocamente, (2.2) implica que df_p leva um triângulo com vértice em p em um triângulo de mesmos ângulos com vértice em

f(p), podendo variar apenas os comprimentos de seus lados. Portanto, se v é um vetor em p que é um lado do vértice p, $|df_p(v)|^2 = \lambda^2 |v|^2$, para alguma função real λ que depende de p e para cada v em p. A mesma relação vale para v + w, com v e w vetores em p. Logo,

$$2\langle df_p(v), df_p(w) \rangle = |df_p(v+w)|^2 - |df_p(v)|^2 - |df_p(w)|^2 = \lambda^2 (|v+w|^2 - |v|^2 - |w|^2) = 2\lambda^2 \langle v, w \rangle$$

e assim obtemos (2.1).

A função positiva $\lambda : U \to \mathbb{R}$ definida em (2.1) será chamada de *coeficiente de confor*malidade de f.

Uma isometria de \mathbb{R}^n é uma transformação conforme de \mathbb{R}^n com coeficiente de conformalidade $\lambda \equiv 1$. A transformação linear $f(p) = \lambda I(p), p \in \mathbb{R}^n$, onde I é a matriz identidade e λ =constante > 0, é evidentemente uma transformação conforme com coeficiente de conformalidade λ ; f nesse caso é chamada uma dilatação. É fácil ver que a inversa de uma isometria é uma isometria e que a inversa de uma dilatação é uma dilatação. Vamos mostrar agora que a inversão com respeito à esfera unitária centrada em $p_0 \in \mathbb{R}^n$, definida por

$$f(p) = \frac{p - p_0}{|p - p_0|^2} + p_0, \quad p \in \mathbb{R}^n - \{p_0\},$$
(2.3)

é uma transformação conforme (o termo $\frac{p-p_0}{|p-p_0|^2}$ às vezes pode vir multiplicado por uma constante c positiva, mas vamos tomar c = 1 aqui para simplificar os cálculos). Para ver isso, observe que, se v é um vetor em p,

$$df_p(v) = \frac{v|p - p_0|^2 - 2\langle v, p - p_0 \rangle (p - p_0)}{|p - p_0|^4},$$

portanto

$$\begin{split} |df_p(v)|^2 &= \frac{\langle v, v \rangle}{|p - p_0|^4} + \frac{(4\langle v, p - p_0 \rangle^2 - 4\langle v, p - p_0 \rangle^2)|p - p_0|^2}{|p - p_0|^8} \\ &= \frac{\langle v, v \rangle}{|p - p_0|^4}, \end{split}$$

isto é, a inversão (2.3) é uma transformação conforme com coeficiente de conformalidade $\lambda = \frac{1}{|p-p_0|^2}.$

Como f é um difeomorfismo, se f(p) = q, $f^{-1}(f(p)) = p \quad \forall p \in \mathbb{R}^n - \{p_0\}$, o que implica que $(df^{-1})_q \circ df_p(v) = v$, $\forall v \in \mathbb{R}^n$. Como $df_p : \mathbb{R}^n \to \mathbb{R}^n$ e $(df^{-1})_q : \mathbb{R}^n \to \mathbb{R}^n$, pela equação anterior df_p é invertível com $(df_p)^{-1} = (df^{-1})_q$, e assim podemos escrever $df_p(v_i) = w_i, i = 1, 2 e$

$$\langle w_1, w_2 \rangle = \langle df_p(v_1), df_p(v_2) \rangle = \lambda^2 \langle v_1, v_2 \rangle,$$

o que implica

$$\frac{1}{\lambda^2} \langle w_1, w_2 \rangle = \langle v_1, v_2 \rangle = \langle (df^{-1})_q(w_1), (df^{-1})_q(w_2) \rangle.$$
(2.4)

Logo, f^{-1} é conforme, com coeficiente de conformalidade igual a $\frac{1}{\lambda}$.

Vamos agora caracterizar as transformações conformes em termos das isometrias, dilatações e inversões. Temos o seguinte teorema:

Teorema 2.1.1

(Liouville)

Seja $f: U \to \mathbb{R}^n$, $n \ge 3$, uma transformação conforme de um conjunto aberto $U \subset \mathbb{R}^n$. Então, f é a restrição a U de uma composição de isometrias, dilatações ou inversões, no máximo uma de cada.

Demonstração. Seja $p \in U$ arbitrário. Para simplificar as notações, consideraremos que todas as derivadas e funções envolvidas estão sendo tomadas no ponto p. Seja $\{a_1 = (1, 0, ..., 0), ..., a_n = (0, 0, ..., 0, 1)\}$ a base canônica de \mathbb{R}^n e $(x_1, ..., x_n)$ as coordenadas cartesianas de \mathbb{R}^n relativas a essa base. Seja $\{e_1, ..., e_n\}$ uma base ortonormal em p. Se λ é o coeficiente de conformalidade de f, podemos escrever

$$\langle df(e_i), df(e_k) \rangle = \lambda^2 \delta_{ik}, \qquad i, k = 1, ..., n.$$
(2.5)

Seja $d^2 f$ a derivada segunda de f; da Análise, sabemos que $d^2 f = \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ é uma aplicação bilinear simétrica com valores em \mathbb{R}^n e tal que, na base canônica, $d^2 f(a_i, a_j) = \frac{\partial^2 f}{\partial x_i \partial x_j}$. Tomando os índices i, j, k distintos e diferenciando (2.5), obtemos:

$$\langle d^2 f(e_i, e_j), df(e_k) \rangle + \langle df(e_i), d^2 f(e_k, e_j) \rangle = 0 \langle d^2 f(e_j, e_k), df(e_i) \rangle + \langle df(e_j), d^2 f(e_i, e_k) \rangle = 0 \langle d^2 f(e_k, e_i), df(e_j) \rangle + \langle df(e_k), d^2 f(e_j, e_i) \rangle = 0$$

Somando as primeiras duas equações acima e subtraindo a terceira, temos

$$\langle d^2 f(e_k, e_j), df(e_i) \rangle = 0,$$
 se i, j, k são distintos.

Fixando k, j e fazendo i variar nos (n-2) índices restantes, concluímos que $d^2 f(e_k, e_j)$

pertence ao plano gerado por $df(e_j) \in df(e_k)$. Portanto,

$$d^2 f(e_k, e_j) = \mu df(e_k) + \upsilon df(e_j),$$

e desde que $\langle df(e_k), df(e_k) \rangle = \langle df(e_j), df(e_j) \rangle = \lambda^2$, derivando ambas as igualdades e utilizando fatos da Álgebra Linear, obtemos:

$$\mu = \frac{\langle d^2 f(e_k, e_j), df(e_k) \rangle}{\lambda^2} = \frac{\lambda d\lambda(e_j)}{\lambda} = \frac{d\lambda(e_j)}{\lambda},$$
$$\upsilon = \frac{d\lambda(e_k)}{\lambda},$$

isto é,

$$d^{2}f(e_{k},e_{j}) = \rho \Big(df(e_{k})d\lambda(e_{j}) + df(e_{j})d\lambda(e_{k}) \Big),$$
(2.6)

onde $\rho = \frac{1}{\lambda}$.

Pelo fato de termos $d(\rho f) = d\rho f + \rho df$, obtemos, usando (2.6),

$$d^{2}(\rho f)(e_{k}, e_{j}) = d^{2}\rho(e_{k}, e_{j})f + \rho d^{2}f(e_{k}, e_{j}) + d\rho(e_{k})df(e_{j}) + d\rho(e_{j})df(e_{k})$$

$$= d^{2}\rho(e_{k}, e_{j})f + \frac{1}{\lambda}d^{2}f(e_{k}, e_{j}) - \frac{1}{\lambda^{2}}\left(d\lambda(e_{k})df(e_{j}) + d\lambda(e_{j})df(e_{k})\right)$$

$$= d^{2}\rho(e_{k}, e_{j})f.$$
 (2.7)

Afirmamos que $d^2\rho(e_k, e_j) = 0$, para $k \neq j$. Para ver isso, calculemos a derivada terceira $d^3(\rho f)$, que, da Análise, sabemos que é a aplicação trilinear simétrica $d^3(\rho f) : \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ com valores em \mathbb{R}^n e tal que, na base canônica, $d^3(\rho f)(a_i, a_j, a_k) = \frac{\partial^3(\rho f)}{\partial x_i \partial x_j \partial x_k}$. Usando (2.7), obtemos

$$d^{3}(\rho f)(e_{k}, e_{j}, e_{i}) = d^{3}\rho(e_{k}, e_{j}, e_{i})f + d^{2}\rho(e_{k}, e_{j})df(e_{i})$$

Como $d^3(\rho f)(e_k, e_j, e_i)$ e $d^3\rho(e_k, e_j, e_i)f$ são simétricos em relação aos índices i, j, k, da igualdade acima obtemos que o mesmo acontece com o termo $d^2\rho(e_k, e_j)df(e_i)$. Concluímos então que

$$d^2\rho(e_k, e_j)df(e_i) = d^2\rho(e_k, e_i)df(e_j).$$

Desde que $df(e_i)$ e $df(e_j)$ são linearmente independentes (pois f é conforme) e i, j, k são distintos mas arbitrários, obtemos que $d^2\rho(e_k, e_j) = 0$, para todo $j \neq k$, como temos afirmado.

Como a relação $d^2\rho(e_k, e_j) = 0$ é válida em p para cada base ortonormal nesse ponto e

como p é arbitrário, o mesmo acontece em todo o conjunto U, logo essa relação vale para os vetores $\frac{e_j+e_k}{\sqrt{2}}$ e $\frac{e_j-e_k}{\sqrt{2}}$, pois eles são ortonormais. Logo,

$$d^{2}\rho\left(\frac{e_{j}+e_{k}}{\sqrt{2}},\frac{e_{j}-e_{k}}{\sqrt{2}}\right) = \frac{1}{2}\left(d^{2}\rho(e_{j},e_{j})-d^{2}\rho(e_{k},e_{k})\right),$$

donde concluímos que $d^2\rho(e_j, e_j) = d^2\rho(e_k, e_k)$, para todo $j \neq k$. Ou seja, para cada $p \in U$ e para qualquer base ortonormal $e_1, ..., e_n$ em p, temos que $d^2\rho(e_j, e_k) = \sigma \delta_{jk}$, onde σ é uma função de $p \in U$. Tomando, em particular, a base canônica, temos

$$d^2 \rho(a_i, a_j) = \frac{\partial^2 \rho}{\partial x_i \partial x_j} = \sigma \delta_{ij}.$$
(2.8)

Calculando a derivada de ambos os membros de (2.8), concluímos que (para $i \neq j$)

$$\frac{\partial \sigma}{\partial x_i} = \frac{\partial \sigma}{\partial x_i} \delta_{jj} = \frac{\partial}{\partial x_i} \left(\frac{\partial^2 \rho}{\partial x_j \partial x_j} \right) = \frac{\partial}{\partial x_j} \left(\frac{\partial^2 \rho}{\partial x_i \partial x_j} \right) = 0,$$

isto é, σ = constante.

Temos, então, dois casos: $\sigma \neq 0$ e $\sigma = 0$. Consideremos agora que $\sigma \neq 0$. Da equação (2.8), obtemos $\frac{\partial^2 \rho}{\partial x_i^2} = \sigma$, donde

$$\frac{\partial \rho}{\partial x_i} = \sigma x_i + \sigma b_i,$$

onde b_i é uma função que não depende de x_i ; desde que $\frac{\partial^2 \rho}{\partial x_i \partial x_j} = 0$, b_i também não depende de x_j , $j \neq i$. Portanto b_i é constante, e

$$\rho = \frac{1}{2}\sigma x_i^2 + \sigma b_i x_i + \varphi_i,$$

onde φ_i é uma função que não depende de x_i . Da equação acima, temos $\frac{\partial \varphi_i}{\partial x_j} = \frac{\partial \rho}{\partial x_j} = \sigma x_j + \sigma b_j, \ j \neq i$, donde concluímos que

$$\varphi_i = \frac{1}{2}\sigma x_j^2 + \sigma b_j x_j + \varphi_{ij},$$

onde φ_{ij} não depende de x_i e x_j . Procedendo indutivamente, obtemos que

$$\rho = \frac{\sigma}{2} \sum x_i^2 + \sigma \sum b_i x_i + c, \quad b_i \in c \text{ constantes.}$$

Portanto, se $\sigma \neq 0$, podemos escrever a equação acima na forma $\rho = \frac{\sigma}{2} (\sum (x_i^2 + 2b_i x_i + c_i^2)),$

onde c_i , i = 1, ..., n, são constantes tais que $\sum_{i=1}^n c_i^2 = c$. Logo, podemos escrever:

$$\frac{1}{\lambda} = \rho = a_1 |p - p_0|^2 + k_1,$$

onde $a_1 = \frac{\sigma}{2}$, $k_1 = \text{constante e } p_0$ é algum vetor de \mathbb{R}^n .

A prova estará completa, para o caso $\sigma \neq 0$, se mostrarmos que $k_1 = 0$, pois tendo isso em mãos, considerando a inversão $g: U \to \mathbb{R}^n$, onde

$$g(p) = \frac{p - p_0}{|p - p_0|^2} + p_0,$$

e tendo em vista a equação (2.4) e os comentários que a precedem, tomando a composição $h = g \circ f^{-1}$, temos que h é uma transformação conforme cujo coeficiente de conformalidade é

$$a_1|p-p_0|^2 \frac{1}{|p-p_0|^2} = a_1.$$

Portanto, h é uma isometria α seguida por uma dilatação β , ou seja, $h = \beta \circ \alpha$, daí $f = h^{-1} \circ g = \alpha^{-1} \circ \beta^{-1} \circ g$ é uma inversão seguida por uma dilatação, seguida por uma isometria, como queremos.

Vamos então provar que $k_1 = 0$. Observe que aplicando o argumento acima para a função f^{-1} , obtemos

$$\lambda = a_2 |f(p) - q_0|^2 + k_2, \quad a_2 \in k_2 \text{ constantes } e q_0 \in \mathbb{R}^n,$$

dai

$$(a_1|p - p_0|^2 + k_1)(a_2|f(p) - q_0|^2 + k_2) = 1.$$
(2.9)

A equação (2.9) mostra que (a interseção com U de) uma esfera de centro p_0 é levada pela função f em uma esfera de centro q_0 , pois se $|p - p_0|$ é constante implica que $|f(p) - q_0|$ é constante. Como f preserva ângulos, os raios da primeira esfera são levados nos raios da segunda. Seja, então, p(s), $0 \le s \le s_0$, um segmento de raio da primeira esfera contido em U, onde s é o seu comprimento de arco, e seja $f \circ p(s)$ sua imagem. Se $p' = \frac{dp}{ds}$, como p(s)é parametrizado pelo comprimento de arco, $|df(p)| = \sqrt{\langle df(p'), df(p') \rangle} = \lambda \sqrt{\langle p', p' \rangle} = \lambda$, assim o comprimento do segmento imagem é dado por

$$\int_0^{s_0} \left| df(\frac{dp}{ds}) \right| ds = \int_0^{s_0} \frac{ds}{a_1 |p(s) - p_0|^2 + k_1} = \left| f(p(s_0)) - f(p(0)) \right|,$$

pelo Teorema Fundamental do Cálculo. Sabemos do Cálculo que, se $k_1 \neq 0$, $|f(p(s_0)) - f(p(0))|$ é uma função transcendental (função que não pode ser construída por meio de um

número finito de operações algébricas a partir de polinômios) de $|p(s) - p_0|$, pois é, pela equação acima, a inversa de uma função trigonométrica. Por outro lado, a equação (2.9) nos diz que $|f(p(s_0)) - f(p(0))|$ é uma função algébrica (função que não é transcendental), uma contradição. Isso mostra que devemos ter $k_1 = 0$, como queríamos.

Nos resta agora considerar o caso $\sigma = 0$. Nesta situação,

$$\rho = \frac{1}{\lambda} = \sum a_i x_i + c_1 = A_1(x) + c_1, \quad c_1 = \text{constante}$$

onde escrevemos, por conveniência, $\sum a_i x_i = A_1(x)$, $x = (x_1, ..., x_n)$. Exatamente da mesma maneira como antes, aplicando o argumento inicial para f^{-1} , obtemos uma equação com a seguinte forma:

$$(A_1(x) + c_1)(A_2(x) + c_2) = 1. (2.10)$$

Sabemos, da Análise, que a equação $\sum a_i x_i = A_1(x)$ representa um hiperplano quando $A_1(x)$ =constante. Logo, a equação (2.10) mostra que (a interseção com U de) um hiperplano paralelo a $A_1 = 0$ (ou seja, A_1 =constante) é levada pela função f em um hiperplano paralelo a $A_2 = 0$ (ou seja, A_2 =constante), pois $A_1(x)$ =constante implica $A_2(x)$ =constante. Como f preserva ângulos, uma linha perpendicular ao hiperplano $A_1 = 0$ é levada pela f em uma linha perpendicular ao hiperplano $A_2 = 0$. Considerando um segmento $p(s), 0 \le s \le s_0$, de tal linha, parametrizado pelo comprimento de arco s, obtemos, de maneira análoga a que fizemos anteriormente, que

$$\left|f(p(s_0)) - f(p(0))\right| = \int_0^{s_0} \frac{ds}{A_1(p(s)) + c_1}$$

A expressão acima contradiz (2.10), exceto se $A_1(p(s))$ fosse zero, pelo mesmo argumento utilizado acima.

Com isso, concluímos que se $\sigma = 0$, λ =constante. Neste caso, os comprimentos dos vetores tangentes são multiplicados por uma constante λ e, como é fácil verificar, f é uma isometria, seguida por uma dilatação. Isso conclui o caso $\sigma = 0$ e a prova do Teorema de Liouville.

Vamos agora demonstrar um resultado que avalia o valor do funcional energia de Willmore sob transformações conformes de \mathbb{E}^3 .

Teorema 2.1.2

(Blaschke - 1929) Seja $f: M^2 \to \mathbb{E}^3$ uma imersão de uma superfície orientável e compacta $M^2 \subset \mathbb{E}^3$ no espaço Euclidiano \mathbb{E}^3 . Considere o funcional energia de Willmore

$$\mathcal{W}(M^2, f) = \int_{M^2} H^2 dS$$

Então, $\mathcal{W}(M^2, f)$ é invariante sob transformações conformes de \mathbb{E}^3 .

Demonstração. Em primeiro lugar, pelo teorema anterior, sabemos que qualquer transformação conforme de \mathbb{E}^3 pode ser decomposta em uma isometria, uma dilatação ou uma inversão (no máximo uma de cada). É bem fácil ver, por um cálculo direto, utilizando a fórmula (1.8) que define dA = dS, que $\mathcal{W}(M^2, f)$ é invariante sob transformações isométricas e dilatações, logo é suficiente considerar invariância sob inversões.

Seja, então, φ uma inversão restrita a $f(M^2)$. Tomemos o centro de φ como sendo a origem do espaço \mathbb{E}^3 que, a menos de uma translação (que é uma isometria), podemos assumir que não pertence a $f(M^2)$. Como uma superfície imersa em \mathbb{E}^3 é localmente uma superfície parametrizável (veja o comentário feito no início da seção 1.2), todo ponto \mathbf{x} em $f(M^2)$ arbitrário é coberto por uma parametrização (que também denotaremos por) $\mathbf{x} : U \subset \mathbb{R}^2 \to f(M^2)$, com $\mathbf{x} = \mathbf{x}(u, v)$, $(u, v) = p \in U$. A esse ponto \mathbf{x} associamos o seu inverso $\mathbf{\bar{x}} \in \varphi(f(M^2))$, onde (veja a equação (2.3) considerando $p_0 = 0$ e c não necessariamente igual a 1)

$$\varphi(\mathbf{x}) = \overline{\mathbf{x}} = c^2 \frac{\mathbf{x}}{r^2}, \qquad c \in \mathbb{R}, \quad r^2 = \langle \mathbf{x}, \mathbf{x} \rangle.$$
 (2.11)

Denotando também $\overline{\mathbf{x}} = \varphi$ e tomando a derivada das funções de ambos os lados da equação, obtemos:

$$d\overline{\mathbf{x}} = c^2 \frac{d\mathbf{x}}{r^2} - 2c^2 dr \frac{\mathbf{x}}{r^3}.$$
(2.12)

Convém fazermos uma observação. Ao calcularmos $d\mathbf{x}$ estamos na verdade olhando para a derivada $d\mathbf{x}_p : \mathbb{R}^2 \to T_{\mathbf{x}}(f(M^2))$. Como essa derivada é bijetiva, dado um vetor $w \in T_{\mathbf{x}}(f(M^2))$ qualquer, existe $v \in \mathbb{R}^2$ tal que $d\mathbf{x}(v) = w$. Assim, por abuso de notação, denotaremos os vetores $d\mathbf{x}_p(.)$ por $d\mathbf{x}$ (considerações análogas valem para $d\overline{\mathbf{x}}$, que representa os vetores provenientes da derivada da composição $\overline{\mathbf{x}}(\mathbf{x}(.))$).

Vamos, a partir de agora, identificar $M \operatorname{com} f(M^2) \in \overline{M} \operatorname{com} \varphi(f(M^2))$. Assim, da equação (2.11), obtemos

$$rdr = \langle \mathbf{x}, d\mathbf{x} \rangle$$
 e $r(dr)^2 = \langle \mathbf{x}, d\mathbf{x} \rangle dr$,

daí, de (2.12),

$$\langle d\overline{\mathbf{x}}, d\overline{\mathbf{x}} \rangle = c^4 \frac{\langle d\mathbf{x}, d\mathbf{x} \rangle}{r^4} - 4c^4 \frac{\langle d\mathbf{x}, dr\mathbf{x} \rangle}{r^5} + 4c^4 r^2 \frac{(dr)^2}{r^6} = c^4 \frac{\langle d\mathbf{x}, d\mathbf{x} \rangle}{r^4}.$$
 (2.13)

Sejam dS e $d\overline{S}$ os elementos de volume correspondentes a M e a \overline{M} , respectivamente. Sejam dx_1 e dx_2 vetores em $T_{\mathbf{x}}M$ e $d\overline{x}_1$ e $d\overline{x}_2$ os vetores correspondentes em $T_{\overline{\mathbf{x}}}\overline{M}$ pela inversão φ . Se $d\tilde{x}_2$ é a componente de dx_2 ortogonal a dx_1 , então o vetor $d\tilde{x}_2$ correspondente a $d\tilde{x}_2$ pela inversão φ também é a componente de $d\overline{x}_2$ ortogonal a $d\overline{x}_1$, pois, como vimos nos comentários abaixo da equação (2.3), a inversão φ é uma transformação conforme, logo preserva ângulos. Assim, pelo exemplo (1.2.1), temos

$$d\overline{S}(\overline{\mathbf{x}}).(d\overline{x}_1, d\overline{x}_2) = |d\overline{x}_1 \times d\overline{x}_2| = |d\overline{x}_1 \times d\overline{\tilde{x}}_2| = \sqrt{|d\overline{x}_1|^2 |d\overline{\tilde{x}}_2|^2 - \langle d\overline{x}_1, d\overline{\tilde{x}}_2 \rangle^2} = |d\overline{x}_1| |d\overline{\tilde{x}}_2|,$$

e, como $d\tilde{x}_2$ é a componente de dx_2 ortogonal a dx_1 , obtemos que $|dx_1||d\tilde{x}_2| = |dx_1 \times dx_2|$, da mesma forma como na equação acima. Logo, da equação (2.13), obtemos

$$d\overline{S}(\overline{\mathbf{x}}).(d\overline{x}_1, d\overline{x}_2) = |d\overline{x}_1| |d\widetilde{\overline{x}}_2| = \frac{c^4}{r^4} |dx_1| |d\widetilde{x}_2| = \frac{c^4}{r^4} |dx_1 \times dx_2| = \frac{c^4}{r^4} dS(\mathbf{x}).(dx_1, dx_2).$$

Portanto

$$d\overline{S} = \frac{c^4}{r^4} dS. \tag{2.14}$$

Seja \mathbf{e}_3 o vetor normal unitário a M em \mathbf{x} . Afirmamos que

$$\overline{\mathbf{e}}_3 = \frac{2}{r^2} \langle \mathbf{x}, \mathbf{e}_3 \rangle \mathbf{x} - \mathbf{e}_3 \tag{2.15}$$

é um vetor unitário normal a \overline{M} . Para isso, como representamos os vetores $d\overline{\mathbf{x}}(.)$ por $d\overline{\mathbf{x}}$, basta-nos mostrar que $\overline{\mathbf{e}}_3$ é ortogonal a $d\overline{\mathbf{x}}$ (pois aí $\overline{\mathbf{e}}_3$ será ortogonal a todos os vetores $\overline{w} = d\overline{\mathbf{x}}(v) \in T_{\overline{\mathbf{x}}}\overline{M})$ e que $\overline{\mathbf{e}}_3$ é unitário. Temos

$$\langle \overline{\mathbf{e}}_3, d\overline{\mathbf{x}} \rangle = \langle \frac{2}{r^2} \langle \mathbf{x}, \mathbf{e}_3 \rangle \mathbf{x} - \mathbf{e}_3, \frac{c^2}{r^2} d\mathbf{x} - \frac{2c^2}{r^3} dr \mathbf{x} \rangle = \frac{2c^2}{r^3} \langle \mathbf{x}, \mathbf{e}_3 \rangle dr - \frac{4c^2}{r^3} \langle \mathbf{x}, \mathbf{e}_3 \rangle dr + \frac{2c^2}{r^3} \langle \mathbf{x}, \mathbf{e}_3 \rangle dr = 0$$

е

$$\langle \overline{\mathbf{e}}_3, \overline{\mathbf{e}}_3 \rangle = \frac{4}{r^2} \langle \mathbf{x}, \mathbf{e}_3 \rangle \langle \mathbf{x}, \mathbf{e}_3 \rangle + 1 - \frac{4}{r^2} \langle \mathbf{x}, \mathbf{e}_3 \rangle \langle \mathbf{x}, \mathbf{e}_3 \rangle = 1,$$

como queríamos. Vamos calcular agora o valor de $-d\overline{\mathbf{e}}_3 \cdot d\overline{\mathbf{x}}$. Temos, de (2.15), que

$$d\overline{\mathbf{e}}_3 = -\frac{4}{r^3} dr \langle \mathbf{x}, \mathbf{e}_3 \rangle \mathbf{x} + \frac{2}{r^2} \langle \mathbf{x}, d\mathbf{e}_3 \rangle \mathbf{x} + \frac{2}{r^2} \langle \mathbf{x}, \mathbf{e}_3 \rangle d\mathbf{x} - d\mathbf{e}_3,$$

onde $d\mathbf{e}_3$ denotam os vetores $d(\mathbf{e}_3)(.) = d\mathbf{e}_3(d\mathbf{x}(.))$ (e $d\mathbf{\overline{e}}_3 = d\mathbf{\overline{e}}_3(d\mathbf{\overline{x}}(d\mathbf{x}(.)))$, de forma análoga); logo, de (2.12) e da equação acima, obtemos a expressão de $d\mathbf{\overline{e}}_3 \cdot d\mathbf{\overline{x}}$, que contém os seguintes termos:

$$-\frac{4c^2}{r^4}dr^2\langle \mathbf{x}, \mathbf{e}_3 \rangle + \frac{2c^2}{r^3}\langle \mathbf{x}, d\mathbf{e}_3 \rangle dr + \frac{2c^2}{r^4}\langle \mathbf{x}, \mathbf{e}_3 \rangle \langle d\mathbf{x}, d\mathbf{x} \rangle - \frac{c^2}{r^2} \langle d\mathbf{x}, d\mathbf{e}_3 \rangle$$

е

$$\frac{8c^2}{r^4}dr^2\langle \mathbf{x}, \mathbf{e}_3 \rangle - \frac{4c^2}{r^3}\langle \mathbf{x}, d\mathbf{e}_3 \rangle dr - \frac{4c^2}{r^4}\langle \mathbf{x}, \mathbf{e}_3 \rangle dr^2 + \frac{2c^2}{r^3}dr \langle \mathbf{x}, d\mathbf{e}_3 \rangle,$$

cuja soma se simplifica em

$$\frac{2c^2}{r^4} \langle \mathbf{x}, \mathbf{e}_3 \rangle \langle d\mathbf{x}, d\mathbf{x} \rangle - \frac{c^2}{r^2} \langle d\mathbf{x}, d\mathbf{e}_3 \rangle;$$

ou seja,

$$-d\overline{\mathbf{e}}_3 \cdot d\overline{\mathbf{x}} = \frac{c^2}{r^2} \langle d\mathbf{x}, d\mathbf{e}_3 \rangle - \frac{2c^2}{r^4} \langle \mathbf{x}, \mathbf{e}_3 \rangle \langle d\mathbf{x}, d\mathbf{x} \rangle.$$

Como as transformações $-d\mathbf{e}_3(.) \in d\mathbf{x}(.)$ são sobrejetivas, existem vetores $v_i \in U$, i = 1, 2, tais que os vetores $d\mathbf{x}(v_i)$ são as direções principais da transformação $-d\mathbf{e}_3(.)$, cujos autovalores são as curvaturas principais k_i (veja a seção 1 do capítulo 1). Assim, da equação acima e da equação (2.13), obtemos, aplicando as transformações na equação acima aos vetores v_i , que

$$-\frac{c^{2}}{r^{2}}k_{i}\langle d\mathbf{x}, d\mathbf{x} \rangle - \frac{2c^{2}}{r^{4}}\langle \mathbf{x}, \mathbf{e}_{3} \rangle \langle d\mathbf{x}, d\mathbf{x} \rangle = \left[-\frac{r^{2}}{c^{2}}k_{i} - \frac{2}{c^{2}}\langle \mathbf{x}, \mathbf{e}_{3} \rangle \right] \cdot \frac{c^{4}}{r^{4}} \langle d\mathbf{x}, d\mathbf{x} \rangle$$
$$= \overline{k}_{i} \langle d\overline{\mathbf{x}}, d\overline{\mathbf{x}} \rangle$$
$$= \langle -d\overline{\mathbf{e}}_{3}(d\overline{\mathbf{x}}), d\overline{\mathbf{x}} \rangle, \qquad (2.16)$$

onde

$$\overline{k}_i = -\frac{r^2}{c^2}k_i - \frac{2}{c^2}\langle \mathbf{x}, \mathbf{e}_3 \rangle, \qquad i = 1, 2.$$

Assim,

$$\overline{k}_1 - \overline{k}_2 = -\frac{r^2}{c^2}(k_1 - k_2),$$

e elevando ambos os lados dessa equação ao quadrado, temos

$$\overline{k}_1^2 + \overline{k}_2^2 - 2\overline{k}_1\overline{k}_2 = \frac{r^4}{c^4}(k_1^2 + k_2^2 - 2k_1k_2),$$

logo

$$\frac{(\overline{k}_1 + \overline{k}_2)^2}{4} - \overline{k}_1 \overline{k}_2 = \frac{r^4}{c^4} \Big[\frac{(k_1 + k_2)^2}{4} - k_1 k_2 \Big].$$

Pela equação (2.16), $\overline{k}_1 \in \overline{k}_2$ são autovalores da transformação $-d\overline{\mathbf{e}}_3(.)$. Logo, $\frac{\overline{k}_1 + \overline{k}_2}{2} \in \overline{k}_1 \overline{k}_2$ representam o traço e o determinante de $-d\overline{\mathbf{e}}_3(.)$, logo representam a curvatura média \overline{H} e Gaussiana \overline{K} de $-d\overline{\mathbf{e}}_3(.)$, respectivamente. Analogamente, $\frac{k_1+k_2}{2} \in k_1k_2$ representam a curvatura média H e Gaussiana K da transformação $-d\mathbf{e}_3(.)$, respectivamente. Assim, da equação acima, obtemos

$$\overline{H}^2 - \overline{K} = \frac{r^4}{c^4} (H^2 - K),$$

e então, utilizando a equação (2.14), chegamos a

$$(\overline{H}^2 - \overline{K})d\overline{S} = (H^2 - K)dS.$$

Como a inversão φ é um homeomorfismo, utilizando o teorema (1.1.1) e o comentário após a proposição (1.1.1), concluímos que:

$$\int \overline{H}^2 d\overline{S} - 2\pi \chi(M^2) = \int H^2 dS - 2\pi \chi(M^2).$$

Assim, concluímos que $\int H^2 dS$ é invariante sob transformações conformes de \mathbb{E}^3 .

Vamos agora obter a chamada equação de Euler, que determina uma condição para o ínfimo do funcional energia de Willmore sobre todas as variações normais de imersões de $M^2 \subset \mathbb{E}^3$ em \mathbb{E}^3 .

2.2 A Equação de Euler

Uma superfície $M^2 \subset \mathbb{E}^3$ pode ser imersa em \mathbb{E}^3 de várias maneiras, ou seja, para cada imersão de M^2 em \mathbb{E}^3 , obtemos uma superfície imersa diferente. Por exemplo, podemos imergir a esfera unitária \mathbb{S}^2 em \mathbb{E}^3 de tal forma que se obtém uma esfera de raio r > 0 e centro em um ponto qualquer $p \in \mathbb{R}^3$, ou então podemos imergir a esfera unitária \mathbb{S}^2 em \mathbb{E}^3 de maneira que ela não fique "redonda": pode ficar, por exemplo, como um elipsóide. E ainda mais: a imagem de uma imersão pode ter auto-interseções, não sendo, dessa forma, uma superfície no sentido definido no capítulo 1. Vamos considerar então, nessa seção, apenas as imersões de M^2 em \mathbb{E}^3 tais que $f(M^2)$ seja uma superfície compacta e orientável em \mathbb{E}^3 . Seja, então, Ω o espaço dessas imersões. Para cada imersão $f \in \Omega$, considere a integral de $H^2 dS$ sobre $f(M^2)$.

Fixemos agora a imersão f e, consequentemente, a superfície $f(M^2)$. Vamos descobrir uma condição necessária e suficiente para que a integral $\int H^2 dS$ sobre essa superfície seja o ínfimo dessa integral sobre todas as variações normais dessa superfície. Para isso, vamos aplicar técnicas do cálculo de variações. As superfícies que satisfazem essa condição são chamadas superfícies de Willmore; veremos isso com mais detalhes à frente.

A partir de agora, vamos denotar por M a superfície compacta e orientável em \mathbb{E}^3 que é imagem de $M^2 \subset \mathbb{E}^3$ por uma imersão qualquer $f : M^2 \to \mathbb{E}^3$ em Ω , coberta por parametrizações do tipo $\mathbf{x}(u^1, u^2)$, onde $(u^1, u^2) \in U$ e U é um aberto de \mathbb{R}^2 (como feito na seção 1 do capítulo 1). A convenção de Einstein vista na seção 1.3 será também utilizada aqui, com índices $i, j, k, l, p \in q$ variando entre 1 e 2.

O vetor normal unitário \mathbf{N} em \mathbf{x} é dado por $\mathbf{x}_1 \times \mathbf{x}_2/|\mathbf{x}_1 \times \mathbf{x}_2|$, onde $\mathbf{x}_i = \partial \mathbf{x}/\partial u^i$, i = 1, 2(o índice 1 indica derivação parcial em relação a u^1 , e o índice 2 indica derivação parcial em relação a u^2 . Seja $g_{ij} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle = g_{ji}$, onde g é a métrica induzida (ver comentário anterior ao exemplo 1.3.3) da métrica Euclidiana sobre M pela inclusão $\iota : M \to \mathbb{R}^3$. Então, tendo em vista os conceitos de formas fundamentais e formas diferenciais introduzidos nas seções 1 e 2 do capítulo 1 e a equação (1.13), a primeira forma fundamental sobre M é dada por

$$I = \langle d\mathbf{x}, d\mathbf{x} \rangle = g_{ij} du^i du^j,$$

onde $\{du^1, du^2\}$ é a base dual de $\{\mathbf{x}_1, \mathbf{x}_2\}$. A segunda forma fundamental (como foi tratada no final da seção anterior e pela equação (1.13)) é dada por

$$II = -\langle d\mathbf{N}, d\mathbf{x} \rangle = h_{ij} dv^i du^j$$

onde $h_{ij} = -\langle \mathbf{N}_i, \mathbf{x}_j \rangle = h_{ji}, \mathbf{N}_i = \partial \mathbf{N} / \partial u^i, h$ é a métrica induzida da métrica Euclidiana sobre M pela inclusão $\iota : M \to \mathbb{R}^3$ e $\{dv^1, dv^2\}$ é a base dual de $\{\mathbf{N}_1, \mathbf{N}_2\}$ (vetores tangentes a M).

Se denotarmos a matriz inversa de $A = (g_{ij})$ por $A^{-1} = (g^{ij})$, obtemos

$$A^{-1} = \frac{1}{g_{11}g_{22} - g_{12}^2} \begin{pmatrix} g_{22} & -g_{12} \\ -g_{21} & g_{11} \end{pmatrix} = (g^{ij}), \qquad (2.17)$$

logo $g^{ij} = g^{ji}$ e, se denotarmos $W^2 = \det(A) = g_{11}g_{22} - g_{12}^2$, teremos

$$g_{ij} = g^{(3-i)(3-j)} W^2(-1)^{i+j}, \quad i, j = 1, 2.$$
 (2.18)

O vetor curvatura média **H**, tendo em vista as equações $g_{ij} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$ e $h_{ij} = -\langle \mathbf{N}_i, \mathbf{x}_j \rangle$, a equação (1.6) e a equação (2.18) acima, é dado por

$$\mathbf{H} = H\mathbf{N} = \left(\frac{Eg - 2fF + eG}{EG - F^2}\right)\mathbf{N} = \left(\frac{1}{2}g^{ij}h_{ij}\right)\mathbf{N}.$$
(2.19)

As equações de \mathbf{x}_{ij} (veja (1.9)) podem ser escritas da seguinte forma:

$$\mathbf{x}_{ij} = \Gamma^k_{ij} \mathbf{x}_k + h_{ij} \mathbf{N}.$$
 (2.20)

Vemos facilmente das equações (1.4) e da equação (2.18) que $a_{ji} = -g^{jk}h_{ki}$. Logo, podemos escrever as equações (1.2) de \mathbf{N}_1 e \mathbf{N}_2 da seguinte forma:

$$\mathbf{N}_i = -h_i^j \mathbf{x}_j, \tag{2.21}$$

onde $h_i^j = g^{jk} h_{ki}$.

Consideremos agora a variação normal da imersão f, dada por

$$\overline{\mathbf{x}}(u^1, u^2, t) = \mathbf{x}(u^1, u^2) + t\phi(u^1, u^2)\mathbf{N},$$

onde ϕ é uma função real diferenciável definida em U e t é um número real tal que $-\frac{1}{2} < t < \frac{1}{2}$. Denotemos por δ o operador $\partial/\partial t|_{t=0}$. Para cada $t \in (-\frac{1}{2}, \frac{1}{2})$, seja $\overline{M} = \overline{M}(t)$ a superfície formada de $\overline{\mathbf{x}}(u^1, u^2, t)$ com esse valor de t. Todas as funções acima definidas valem para a superfície \overline{M} , as quais estarão indicadas, para \overline{M} , com o sinal de barra sobre elas.

Uma observação: Como $\overline{M}(0) = M$, todas as funções consideradas para a superfície $\overline{M}(0)$ são exatamente as funções consideradas para a superfície M. Por exemplo, da igualdade $A.A^{-1} = I$ obtemos $\overline{g}_{ij}\overline{g}^{jk} = \delta_i^k$, onde δ_i^k é definido de forma que $\delta_i^k = 1$ (se k = i) ou $\delta_i^k = 0$ (se $k \neq i$); logo $\frac{\partial}{\partial t}(\overline{g}_{ij}\overline{g}^{jk})|_{t=0} = \delta \overline{g}_{ij}g^{jk} + g_{ij}\delta \overline{g}^{jk} = 0$ (ou seja, por exemplo, $\overline{g}_{ij}(0) = g_{ij}$). De agora em diante, utilizaremos essas conclusões nas notações que virão sem mais comentários.

Outra observação: Dizemos que M é uma superfície de Willmore se

$$\delta \int \overline{H}^2 d\overline{S} = 0,$$

ou seja, é uma superfície que satisfaz a condição descrita no início dessa seção.

Temos $\delta \overline{\mathbf{x}} = \phi \mathbf{N},$ logo $\delta \overline{\mathbf{x}}_i = \phi_i \mathbf{N} + \phi \mathbf{N}_i$ e

$$\begin{split} \overline{g}_{ij} &= \langle \mathbf{x}_i + t\phi_i \mathbf{N} + t\phi \mathbf{N}_i, \mathbf{x}_j + t\phi_j \mathbf{N} + t\phi \mathbf{N}_j \rangle \\ &= g_{ij} + t\phi \langle \mathbf{x}_i, \mathbf{N}_j \rangle + t^2 \phi_i \phi_j + t\phi \langle \mathbf{N}_i, \mathbf{x}_j \rangle + t^2 \langle \mathbf{N}_i, \mathbf{N}_j \rangle \\ &= g_{ij} - t\phi h_{ij} + t^2 \phi_i \phi_j - t\phi h_{ij} + t^2 \langle \mathbf{N}_i, \mathbf{N}_j \rangle. \end{split}$$

Assim, $\delta \overline{g}_{ij}=-2\phi h_{ij}.$ Usando a relação $\overline{g}_{ij}\overline{g}^{jk}=\delta^k_i,$ temos

$$\delta \overline{g}_{ij} g^{jk} + g_{ij} \delta \overline{g}^{jk} = 0,$$

e como

$$\delta \overline{g}_{ij} g^{jk} = -2\phi h_{ij} g^{jk} = -2\phi h_i^k$$

obtemos

$$g_{ij}\delta\overline{g}^{jk} = 2\phi h_i^k.$$

Como os índices i, j, k variam entre 1 e 2, a última equação acima forma uma equação matricial, onde temos o seguinte produto de matrizes:

$$(g_{ij}).(\delta \overline{g}^{ij}) = (2\phi h_i^j).$$

Multiplicando ambos os lados dessa equação matricial pela matriz (g^{ij}) , obtemos

$$(\delta \overline{g}^{ij}) = (g^{ij}).(2\phi h_i^j),$$

e de (2.17), obtemos que $\overline{g}^{ij} = \overline{g}^{ji}$, donde podemos obter as seguintes equações:

$$\delta \overline{g}^{ij} = \delta \overline{g}^{ji} = 2\phi g^{jk} h_k^i. \tag{2.22}$$

Denotaremos $\overline{W}^2 = \det(\overline{g}_{ij})$ assim como em (2.18). Então, derivando ambos os lados dessa equação em relação a t no ponto t = 0, temos

$$2W\delta\overline{W} = \delta\overline{g}_{ij}W^2g^{ij}$$

(o segundo termo da igualdade acima foi obtido assim: derivamos a expressão $\overline{W}^2 = \overline{g}_{11}\overline{g}_{22} - \overline{g}_{12}^2$ e obtivemos $\delta(\overline{W}^2) = \delta \overline{g}_{11}g_{22} + g_{11}\delta \overline{g}_{22} - 2g_{12}\delta \overline{g}_{12}$; utilizando as fórmulas

(2.18), obtivemos a expressão desejada). Daí,

$$\delta \overline{W} = \frac{1}{2} \delta \overline{g}_{ij} W g^{ij} = \frac{1}{2} (-2\phi W h_{ij} g^{ij}),$$

assim, por (2.19), obtemos

$$\delta \overline{W} = -2\phi HW. \tag{2.23}$$

Vamos agora obter uma expressão para $\delta \overline{\mathbf{N}}$. Desde que $\langle \overline{\mathbf{N}}, \overline{\mathbf{x}}_i \rangle = 0$, temos $\langle \delta \overline{\mathbf{N}}, \mathbf{x}_i \rangle + \langle \mathbf{N}, \delta \overline{\mathbf{x}}_i \rangle = 0$, e como $\delta \overline{\mathbf{x}}_i = \phi_i \mathbf{N} + \phi \mathbf{N}_i$, temos

$$\langle \delta \overline{\mathbf{N}}, \mathbf{x}_i \rangle = -\langle \mathbf{N}, \phi_i \mathbf{N} + \phi \mathbf{N}_i \rangle = -\phi_i.$$
 (2.24)

Desde que $\langle \overline{\mathbf{N}}, \overline{\mathbf{N}} \rangle = 1$, temos $\langle \delta \overline{\mathbf{N}}, \mathbf{N} \rangle = 0$, logo $\delta \overline{\mathbf{N}}$ pode ser escrito em função da base $\{\mathbf{x}_1, \mathbf{x}_2\}$ de vetores tangentes a \overline{M} . Escreveremos $\delta \overline{\mathbf{N}} = b^j \mathbf{x}_j$. Tomando o produto interno de ambos os lados desta última igualdade por $\mathbf{x}_1 \in \mathbf{x}_2$, obtemos, usando (2.24), as seguintes equações:

$$b^1g_{11} + b^2g_{12} = -\phi_1$$
 e $b^1g_{12} + b^2g_{22} = -\phi_2$.

Elas podem ser escritas em forma matricial como

$$\begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} = \begin{pmatrix} b^1 \\ b^2 \end{pmatrix} = \begin{pmatrix} -\phi_1 \\ -\phi_2 \end{pmatrix},$$

logo

$$\begin{pmatrix} b^1 \\ b^2 \end{pmatrix} = (g^{ij}) \cdot \begin{pmatrix} -\phi_1 \\ -\phi_2 \end{pmatrix},$$

e então temos as equações $b^i = -g^{ij}\phi_j, \ i, j = 1, 2$, donde

$$\delta \overline{\mathbf{N}} = -g^{ij} \phi_i \mathbf{x}_i. \tag{2.25}$$

Das equações (2.20), temos

$$\langle \delta \overline{\mathbf{N}}, \mathbf{x}_{ij} \rangle = -\langle g^{pq} \phi_q \mathbf{x}_p, \Gamma^k_{ij} \mathbf{x}_k \rangle = -(g^{qp} g_{pk}) \phi_q \Gamma^k_{ij} = -\delta^q_k \phi_q \Gamma^k_{ij} = -\phi_k \Gamma^k_{ij}.$$
(2.26)

Afirmamos que $\langle \mathbf{N}, \delta \overline{\mathbf{x}}_{ij} \rangle = \phi_{ij} - \phi h_i^k h_{jk}$ (como $\delta \overline{\mathbf{x}}_{ij} = \delta \overline{\mathbf{x}}_{ji}$, podemos escrever também

 $\langle \mathbf{N}, \delta \overline{\mathbf{x}}_{ij} \rangle = \phi_{ij} - \phi h_j^k h_{ik}$). Para vermos isso, note que, por derivações sucessivas,

$$\begin{aligned} \overline{\mathbf{x}} &= \mathbf{x} + t\phi \mathbf{N}, \\ \overline{\mathbf{x}}_i &= \mathbf{x}_i + t(\phi_i \mathbf{N} + \phi \mathbf{N}_i), \\ \overline{\mathbf{x}}_{ij} &= \mathbf{x}_{ij} + t(\phi_{ij} \mathbf{N} + \phi_i \mathbf{N}_j + \phi_j \mathbf{N}_i + \phi \mathbf{N}_{ij}). \end{aligned}$$

Daí,

$$\delta \overline{\mathbf{x}}_{ij} = \phi_{ij} \mathbf{N} + \phi_i \mathbf{N}_j + \phi_j \mathbf{N}_i + \phi \mathbf{N}_{ij}$$

logo, como \mathbf{N}_i é ortogonal a \mathbf{N} para i = 1, 2, por (2.21) obtemos

$$\begin{aligned} \langle \mathbf{N}, \delta \overline{\mathbf{x}}_{ij} \rangle &= \phi_{ij} + \phi \langle \mathbf{N}, \mathbf{N}_{ij} \rangle = \phi_{ij} - \phi \langle \mathbf{N}_i, \mathbf{N}_j \rangle \\ &= \phi_{ij} - \phi \langle h_i^p \mathbf{x}_p, h_j^q \mathbf{x}_q \rangle = \phi_{ij} - \phi h_i^p h_j^q g_{pq} \\ &= \phi_{ij} - \phi (g^{pk} h_{ki}) (g^{ql} h_{lj}) g_{pq} = \phi_{ij} - \phi g^{pk} h_{ki} h_{lj} (g^{lq} g_{qp}), \end{aligned}$$

e como $g^{lq}g_{qp} = \delta_p^l$, obtemos

$$\langle \mathbf{N}, \delta \overline{\mathbf{x}}_{ij} \rangle = \phi_{ij} - \phi g^{lk} h_{lj} h_{ki} = \phi_{ij} - \phi h_j^k h_{ik}$$

como desejado. Temos $\langle \overline{\mathbf{N}}, \overline{\mathbf{x}}_{ij} \rangle = \overline{h}_{ij}$, daí, utilizando a equação (2.26),

$$\delta \overline{h}_{ij} = \langle \delta \overline{\mathbf{N}}, \mathbf{x}_{ij} \rangle + \langle \mathbf{N}, \delta \overline{\mathbf{x}}_{ij} \rangle = -\phi_k \Gamma_{ij}^k + \phi_{ij} - \phi h_i^k h_{jk},$$

e, da equação (1.15) e da observação 1.3.4 do capítulo 1, obtemos

$$\delta \overline{h}_{ij} = \nabla_i \nabla_j \phi - \phi h_i^k h_{jk}.$$

Vamos analisar agora $\delta \overline{H}$. Da equação acima, de (2.19) e de (2.22), temos

$$\begin{split} \delta \overline{H} &= \delta \Big(\frac{1}{2} \overline{g}^{ij} \overline{h}_{ij} \Big) = \frac{1}{2} \Big(\delta \overline{g}^{ij} \Big) h_{ij} + \frac{1}{2} g^{ij} \Big(\delta \overline{h}_{ij} \Big) \\ &= \frac{1}{2} \cdot 2 \phi g^{jk} h_k^i h_{ij} + \frac{1}{2} g^{ij} \nabla_i \nabla_j \phi - \frac{1}{2} g^{ij} \phi h_i^k h_{kj} \\ &= \phi h_k^i h_i^k + \frac{1}{2} g^{ij} \nabla_i \nabla_j \phi - \frac{1}{2} \phi h_i^k h_k^i. \end{split}$$

Pela observação 1.3.4 e pela equação (1.19) do capítulo 1, $g^{ij}\nabla_i\nabla_j\phi$ é igual ao traço do hessiano de ϕ (lembre-se que, pela definição 1.3.4, $\nabla_i\nabla_j\phi$ definido em M pode ser

visto como um tensor e que a função traço independe da base utilizada), logo é igual ao laplaciano de ϕ , pela proposição 1.3.1. Portanto, das equações acima, obtemos

$$\delta \overline{H} = \frac{1}{2} (\Delta \phi + \phi h^k_i h^i_k)$$

Como $-h_k^i = a_{ik}$, temos por (1.3) que a matriz $h = (h_k^i)$ possui como autovalores as curvaturas principais k_1 e k_2 relativas à superfície M. Da Álgebra Linear, podemos dizer: $h_i^k h_k^i = trh^2 = k_1^2 + k_2^2 = 4(\frac{k_1+k_2}{2})^2 - 2k_1k_2 = 4H^2 - 2K$. Assim, obtemos

$$2\delta \overline{H} = \Delta \phi + \phi (4H^2 - 2K).$$

Da Análise, sabemos que, como $\delta(\overline{H}^2 d\overline{S})$ é contínua, podemos derivar $\int \overline{H}^2 d\overline{S}$ (em relação a δ) sob o sinal de integral; e das equações (1.11) e (2.23) obtemos $\delta(d\overline{S}) = -2\phi H dS$. Logo,

$$\begin{split} \delta \int \overline{H}^2 d\overline{S} &= \int 2H \delta \overline{H} dS + \int H^2 \delta d\overline{S} \\ &= \int H (\Delta \phi + \phi (4H^2 - 2K)) dS - 2 \int H^2 \phi H dS. \end{split}$$

Desde que M é uma superfície sem bordo e compacta, segue-se, do teorema da divergência (corolário 1.2.1) e das fórmulas de Green (corolário 1.2.2) que

$$\int H\Delta\phi dS = \int \phi\Delta H dS,$$

assim,

$$\delta \int \overline{H}^2 d\overline{S} = \int \phi(\Delta H + 2H(H^2 - K))dS.$$
(2.27)

Portanto, a condição para que a integral $\int \overline{H}^2 d\overline{S}$ seja estacionária para toda função ϕ é:

$$\Delta H + 2H(H^2 - K) = 0.$$

Note que essa condição é necessária e suficiente: Se $\Delta H + 2H(H^2 - K) = 0$, por (2.27) obviamente a integral acima é estacionária. Reciprocamente, suponha por absurdo que a integral $\int \overline{H}^2 d\overline{S}$ seja estacionária e que $F = \Delta H + 2H(H^2 - K) \neq 0$ para algum $p \in U$. Escolha $\phi : U \to \mathbb{R}$, diferenciável, com $U \subset \mathbb{R}^2$ aberto, tal que satisfaça: $\phi(p) = F(p)$; $\phi F > 0$ em uma pequena vizinhança de U e ϕF seja identicamente nula fora dessa vizinhança. Como F é diferenciável, isso nos diz, por (2.27), que $\delta \int \overline{H}^2 d\overline{S} > 0$, o que é uma contradição.

Esses resultados mostram o seguinte teorema, atribuído a Thomsen e Schadow:

Teorema 2.2.1

(Thomsen e Schadow - 1923)

Seja M uma superfície compacta e orientável em \mathbb{E}^3 , que é imagem de uma imersão $f: M^2 \subset \mathbb{E}^3 \to \mathbb{E}^3$. Então, M é uma superfície de Willmore se, e somente se, satisfaz a condição:

$$\Delta H + 2H(H^2 - K) \equiv 0.$$

Vamos agora demonstrar um caso particular da chamada conjectura de Willmore. Esse é o tema da próxima seção.

2.3 Conjectura de Willmore: Um caso particular

Trataremos agora de um caso particular da conjectura de Willmore. Esta seção tem como objetivo expor as ferramentas e a resolução obtida independentemente por Shiohama e Takagi (1970) e por Willmore (1971) para esse caso particular.

Seja $S \subset \mathbb{R}^3$ uma superfície compacta e orientável que é imagem de uma imersão em \mathbb{R}^3 , coberta por parametrizações do tipo $\mathbf{x}(u, v)$, onde $(u, v) \in U$ e U é um aberto de \mathbb{R}^2 . Seja $K^+ = \max\{K, 0\}$, isto é, K^+ é a função definida sobre S cujo valor é igual à curvatura de Gauss K onde K > 0 e é zero onde $K \leq 0$. Temos o seguinte lema:

Lema 2.3.1

Seja S uma superfície compacta e orientável em \mathbb{R}^3 . Então

$$\int_{S} K^{+} dA \ge 4\pi. \tag{2.28}$$

Demonstração. Note primeiramente que o lado esquerdo de (2.28) representa a área da imagem da aplicação normal de Gauss da parte de S onde $K \ge 0$ (essa parte de S denotaremos por S^+), pois por (1.7),

$$\int_{S^+} |d\mathbf{N}_p(\mathbf{x}_u) \times d\mathbf{N}_p(\mathbf{x}_v)| du dv = \int_{S^+} K dA = \int_S K^+ dA.$$

Daí, será suficiente mostrar que essa imagem cobre toda a esfera S^2 . Note que ao tomarmos um plano em uma direção qualquer do espaço, podemos aproximá-lo à superfície de forma que ambos se encontrem em pelo menos um ponto. Nesse ponto, a curvatura de Gauss é não-negativa, porque em um ponto onde K < 0 (que é hiperbólico) a superfície atravessa o plano (veja os comentários abaixo da definição 1.1.8), o que não ocorre aqui. Como esse plano pode estar em qualquer direção, obtemos um ponto em S onde $K \ge 0$ relativo a cada direção normal (pois cada direção normal corresponde a um plano ortogonal em \mathbb{R}^3). Assim, $\mathbf{N}(S^+)$ cobre toda a esfera \mathbb{S}^2 e, como a área dessa esfera é 4π , a equação (2.28) é válida.

Com a ajuda desse lema, obtemos o seguinte teorema:

Teorema 2.3.1

Seja S uma superfície que é imagem de um mergulho $f: M^2 \to \mathbb{E}^3$, onde $M^2 \subset \mathbb{E}^3$ é uma superfície fechada e orientável. Então

$$\mathcal{W}(M^2, f) = \int_{M^2} H^2 dS \ge 4\pi.$$
 (2.29)

Além disso, $\mathcal{W}(M^2, f) = 4\pi$ se e somente se S é uma esfera.

Demonstração. Suponha que vamos dividir a superfície S em uma parte S^+ onde a curvatura Gaussiana $K = k_1 k_2$ é positiva e outra onde K é negativa, como no lema anterior $(k_1 e k_2 são as curvaturas principais da superfície). Desde que <math>H^2 - K = \left(\frac{(k_1+k_2)}{2}\right)^2 - k_1 k_2 = \left[\frac{1}{2}(k_1 - k_2)\right]^2 \ge 0$, temos, pelo lema,

$$\int_{S} H^{2} dA \geq \int_{S^{+}} H^{2} dA \geq \int_{S^{+}} K dA \geq 4\pi$$

Assim, (2.29) é válida. Além disso, a igualdade na equação (2.29) é válida, pelas equações acima, se e somente se $\int_S H^2 dA = \int_S K dA$, ou seja, se e somente se $H^2 - K = 0$, ou seja, se e só se $k_1 = k_2$ em cada ponto. Como a imagem de uma superfície por um mergulho é também uma superfície, concluimos que cada ponto de S é umbílico (veja os comentários abaixo da definição 1.1.8), e então S é uma superfície compacta contida em uma esfera; logo, S é por si só uma esfera.

Vamos agora provar o seguinte teorema, atribuído a W. Fenchel.

Teorema 2.3.2

(W. Fenchel)

Seja C uma curva regular fechada e simples em \mathbb{E}^3 , parametrizada pelo comprimento de

arco s, e κ (ou k) sua função curvatura. Então,

$$\int_C |\kappa| ds \ge 2\pi,\tag{2.30}$$

onde a igualdade vale se e somente se C é uma curva convexa plana.

Demonstração. Consideremos um tubo S suficientemente "fino" ao redor de C (explicaremos isso melhor à frente). A prova consiste em mostrar que o lado esquerdo da equação (2.28) é igual a duas vezes o lado esquerdo de (2.30).

Convém fazermos uma observação: Quando olhamos para o valor da integral $\int_C |\kappa| ds$, onde C é parametrizada (pelo comprimento de arco) por $\mathbf{r}(s)$, $\mathbf{r} : I \to \mathbb{R}^3$, nos interessa apenas os pontos $s \in I$ onde $\kappa(s) \neq 0$ (ou seja, pelas definições dos vetores \mathbf{t} , $\mathbf{n} \in \mathbf{b}$ da seção 1 do capítulo 1, são os pontos $s \in I$ onde $\mathbf{n}(s) \in \mathbf{b}(s)$ são não-nulos). Por isso, consideraremos sem perda de generalidade que $\kappa \neq 0$ em todos os pontos de C (logo, os vetores $\mathbf{n} \in \mathbf{b}$ estão bem definidos).

Parametrizando esse tubo S de raio r, obtemos

$$\mathbf{r}(s,t) = \mathbf{r}(s) + r(\cos t\mathbf{n}(s) + \sin t\mathbf{b}(s)) = \mathbf{r} + r(\cos t\mathbf{n} + \sin t\mathbf{b}), \quad (2.31)$$

onde $0 \le t \le 2\pi$ e $s \in I$ (de modo semelhante ao que foi feito na seção 1.1), com C orientada no sentido anti-horário. Temos, para S (veja a seção 1.1),

$$K = \frac{eg - f^2}{EG - F^2},$$

onde denotamos

$$E = \mathbf{r}_1 \cdot \mathbf{r}_1, \qquad F = \mathbf{r}_1 \cdot \mathbf{r}_2, \qquad G = \mathbf{r}_2 \cdot \mathbf{r}_2,$$

е

$$e = -\mathbf{N}_1 \cdot \mathbf{r}_1, \qquad f = -\mathbf{N}_1 \cdot \mathbf{r}_2, \qquad g = -\mathbf{N}_2 \cdot \mathbf{r}_2$$

Aqui, o índice 1 denota derivação parcial com respeito a s e o índice 2 denota derivação

parcial com respeito a t. Usando as fórmulas de Frenet, obtemos:

$$\mathbf{r}_{1} = (1 - r\kappa \cos t)\mathbf{t} - r\tau \sin t\mathbf{n} + r\tau \cos t\mathbf{b},$$

$$\mathbf{r}_{2} = -r\sin t\mathbf{n} + r\cos t\mathbf{b},$$

$$\mathbf{r}_{1} \times \mathbf{r}_{2} = -r(1 - r\kappa \cos t)(\cos t\mathbf{n} + \sin t\mathbf{b}),$$

$$\mathbf{N} = \frac{\mathbf{r}_{1} \times \mathbf{r}_{2}}{|\mathbf{r}_{1} \times \mathbf{r}_{2}|} = (\cos t\mathbf{n} + \sin t\mathbf{b}),$$

e pelas equações acima,

$$E = (1 - r\kappa \cos t)^2 + r^2 \tau^2; \qquad F = r^2 \tau; \qquad G = r^2,$$

$$EG - F^2 = r^2 (1 - r\kappa \cos t)^2,$$

$$\mathbf{N}_1 = -\kappa \cos t \mathbf{t} - \tau \sin t \mathbf{n} + \tau \cos t \mathbf{b},$$

$$\mathbf{N}_2 = -\sin t \mathbf{n} + \cos t \mathbf{b},$$

$$e = -r\tau^2 + \kappa \cos t (1 - r\kappa \cos t),$$

$$f = -r\tau,$$

$$g = -r.$$

Pela fórmula de K acima, encontramos

$$K = -\kappa \cos t / r(1 - r\kappa \cos t). \tag{2.32}$$

Aqui se explica o fato de tomarmos o tubo S suficientemente fino: como C é compacta e $\kappa(s)$ é uma função contínua em C, tomamos r > 0 suficientemente pequeno tal que $1 - r\kappa \cos t > 0 \forall s, t$. Daí, pelas fórmulas acima, $|\mathbf{r}_1 \times \mathbf{r}_2| = r(1 - r\kappa \cos t)$ e

$$KdA = K|\mathbf{r}_1 \times \mathbf{r}_2|dtds = -\kappa \cos tdtds.$$

Vemos que K é não-negativo quando $\kappa \leq 0$ para $0 \leq t \leq \frac{\pi}{2}$ e $\frac{3\pi}{2} \leq t \leq 2\pi$, ou quando $\kappa \geq 0$ para $\frac{\pi}{2} \leq t \leq \frac{3\pi}{2}$. Denotando $C^+ = \{s \in I; \kappa(s) \geq 0\}$ e $C^- = \{s \in I; \kappa(s) < 0\}$, temos

$$\begin{split} \int_{S^+} K dA &= \int_{C^+} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} -\kappa \cos t dt ds + \int_{C^-} (\int_0^{\frac{\pi}{2}} -\kappa \cos t dt ds + \int_{\frac{3\pi}{2}}^{2\pi} -\kappa \cos t dt ds) \\ &= 2 \int_{C^+} \kappa ds - 2 \int_{C^-} \kappa ds = 2 \int_C |\kappa| ds. \end{split}$$

Usando o lema anterior, obtemos

$$\int_C |\kappa| ds \ge 2\pi$$

Note que a imagem da aplicação normal de Gauss quando restrita a cada círculo s=constante é bijetiva e que esta imagem é um grande círculo $\Gamma_s \subset \mathbb{S}^2$. Denotamos por Γ_s^+ o semicírculo fechado de Γ_s correspondente a pontos onde $K \ge 0$. Assuma agora que C é uma curva convexa plana (ou seja, como visto na seção 1.1, isso significa que $\kappa(s) \ge 0, \forall s \in I$). Então, como, nesse caso, temos $K \ge 0$ quando $\frac{\pi}{2} \le t \le \frac{3\pi}{2}$, todos os semicírculos Γ_s^+ têm os mesmos pontos extremos $p \in q$, correspondentes a $t = \frac{\pi}{2}$ e $t = \frac{3\pi}{2}$, respectivamente. Desde que C é convexa, segue-se que $\Gamma_{s_1}^+ \cap \Gamma_{s_2}^+ = \{p\} + \{q\}$ para $s_1 \ne s_2$ (veja a figura 4 abaixo, que é um exemplo do que foi falado acima, onde S é um toro e C é o seu círculo maior).

Figura 4: As imagens $\Gamma_{s_1} \in \Gamma_{s_2}$ dos círculos s_1 =constante e s_2 =constante no toro S pela aplicação normal de Gauss **N** dão origem a dois semicírculos $\Gamma_{s_1}^+ \in \Gamma_{s_2}^+$, cujos pontos de interseção são os pólos $p \in q$ da esfera \mathbb{S}^2 .

Daí, a área de $\mathbf{N}(S)$, que é $\int_{S^+} K dA$, é, pela igualdade $\Gamma_{s_1}^+ \cap \Gamma_{s_2}^+ = \{p\} + \{q\}$, igual a 4π (pois $\mathbf{N}(S)$ é exatamente \mathbb{S}^2), logo $\int_C |\kappa| ds = 2\pi$, como desejado.

Reciprocamente, vamos assumir que $\int_C |\kappa| ds = 2\pi$. Isto implica em $\int_{S^+} K dA = 4\pi$. Afirmamos que todos os semicírculos Γ_s^+ devem ter os mesmos pontos extremos $p \in q$. Do contrário, haveriam dois grandes círculos distintos $\Gamma_{s_1} \in \Gamma_{s_2}$, com s_2 arbitrariamente próximo de s_1 , que intersectariam em dois outros pontos diametralmente opostos, e por isso esses pontos não poderiam estar ambos na imagem da aplicação de Gauss restrita a $S^+ \cap S^-$, onde S^- é o conjunto de pontos em S com curvatura Gaussiana não-positiva. Então, haveriam dois pontos $c \in d$ em S onde essa curvatura seria positiva que seriam levados pela aplicação \mathbf{N} em um único ponto de \mathbb{S}^2 (veja a figura 5 abaixo).

Figura 5: Os pontos $c, d \in S^+$ seriam levados pela aplicação **N** no mesmo ponto $\mathbf{N}(c) = \mathbf{N}(d).$

Desde que a aplicação normal de Gauss é um difeomorfismo local em tais pontos (pois como $\mathbf{N}(c) = \mathbf{N}(d)$, teríamos $K(c) = \det(dN_c) = \det(dN_d) = K(d) > 0$, e como dN_c e dN_d são isomorfismos, pelo teorema da aplicação inversa, \mathbf{N} é um difeomorfismo local em ce d), existem duas vizinhanças em \mathbb{S}^2 que estão na imagem de S^+ pela aplicação de Gauss \mathbf{N} e que se intersectam; e desde que cada ponto de \mathbb{S}^2 é imagem de pelo menos um ponto de S^+ pelo lema anterior, concluímos que $\int_{S^+} K dA > 4\pi$, o que é uma contradição com o que assumimos inicialmente. Assim, todos os semicírculos Γ_s^+ têm os mesmos pontos extremos p e q.

Vamos mostrar agora que C está contida em um plano normal à reta que contém os pontos $p \in q$. Para ver isso, note que, pela equação (2.32), como supomos $\kappa \neq 0$ em C, K = 0 em um ponto qualquer $a \in S$ se e só se cos t = 0, e, pela equação (2.31), isso ocorre se e somente se $(r \cos t)\mathbf{n}$ é um vetor nulo, ou seja, (novamente pela equação (2.31)) se e só se o ponto a considerado é interseção da reta que contém um vetor \mathbf{b} com a superfície. Ou seja, a cada vetor \mathbf{b} associa-se um ponto $a \in S$ onde K = 0. Logo, os vetores \mathbf{b} binormais a todos os pontos de C são paralelos à reta que passa pelos pontos $p \in q$ (isso pela própria definição desses pontos, por estarem em $\mathbf{N}(S^+ \cap S^-)$), e nesse caso \mathbf{b} é constante em C, e assim $\mathbf{b}' = \tau \mathbf{n} = 0$ implica $\tau = 0$ em C. Assim, podemos dizer que C está contida em um plano normal a essa reta.

Vamos, enfim, mostrar que C é convexa. Des de que assumimos que $\int |\kappa| ds = 2\pi,$ temos

$$2\pi = \int_0^l |\kappa| ds \ge \int_0^l \kappa ds,$$

mas como vimos no início da seção 1.1 do capítulo 1, também vale que

$$\int_J \kappa ds \ge 2\pi,$$

para qualquer curva fechada e plana com orientação positiva, donde concluímos que

$$\int_0^l \kappa ds = \int_0^l |\kappa| ds = 2\pi.$$

Portanto, $\kappa \geq 0$ e, assim a curva C é convexa.

Vamos agora demonstrar o seguinte teorema, que é a conjectura de Willmore para um caso particular, e é o tema central dessa seção. Ela é uma aplicação do teorema de Fenchel.

Teorema 2.3.3

(Shiohama e Takagi - 1970, Willmore - 1971)

Seja $M^2 \subset \mathbb{E}^3$ um toro mergulhado em \mathbb{E}^3 como um tubo de seção circular constante. Mais precisamente, considere que a superfície mergulhada é formada de forma que o pequeno círculo se move ao redor de uma curva fechada C no espaço (para a qual $\kappa \neq 0$), o centro desse pequeno círculo se move ao longo da curva C e o plano do círculo está no plano normal da curva em cada ponto. Então,

$$\int_{M^2} H^2 dA \ge 2\pi^2,$$

e a igualdade vale se e somente se a curva C é um círculo e a razão dos raios menor e maior do tubo, nessa ordem, é igual a $1/\sqrt{2}$.

Demonstração. De nossos cálculos dos coeficientes fundamentais para o tubo de raio r sobre a curva fechada C de comprimento l (veja a demonstração do teorema anterior) encontramos que a curvatura média, dada pela fórmula $H = Eg - 2Ff + Ge/2(EG - F^2)$ (veja (1.6)), é dada por $H = -(1 - 2r\kappa \cos t)/2r(1 - r\kappa \cos t)$. Assim,

$$\int_{M^2} H^2 dA = \int_0^l \int_0^\pi \frac{(1 - 2r\kappa \cos t)^2}{2r(1 - r\kappa \cos t)} dt ds.$$

Calculando uma das integrais acima (usando um programa computacional, por exemplo), obtemos

$$\int_{M^2} H^2 dA = \pi \int_0^l \frac{ds}{2r\sqrt{1 - r^2\kappa^2}}$$

Note que essa expressão não depende da torsão da curva C. Podemos reescrever essa expressão como

$$\frac{\pi}{2} \int_0^l \frac{|\kappa| ds}{|\kappa r| \sqrt{1 - r^2 \kappa^2}}.$$

Obtemos do cálculo que, para qualquer número real y que esteja no domínio da expressão real $y\sqrt{1-y^2}$, que é o intervalo [-1,1], essa expressão atinge seu máximo, que é 1/2, quando $y = 1/\sqrt{2}$. Tomando $y = |\kappa r|$, com r suficientemente pequeno de forma que $|\kappa r| \in [-1, 1]$, obtemos $1/|\kappa r|\sqrt{1-\kappa^2r^2} \ge 2$ e, pela equação acima,

$$\int_{M^2} H^2 dA \ge \pi \int_0^l |\kappa| ds.$$

Fazendo uso do teorema de Fenchel, obtemos a relação

$$\int_{M^2} H^2 dA \ge \pi \int_0^l |\kappa| ds \ge 2\pi^2.$$

A segunda desigualdade acima se torna uma igualdade se e somente se C é uma curva convexa plana, pelo teorema de Fenchel. A primeira desigualdade se torna uma igualdade se e só se $\kappa r = 1/\sqrt{2}$. Logo, a igualdade $\int_{M^2} H^2 dA = 2\pi^2$ vale se e somente se $\kappa r = 1/\sqrt{2}$, C é um círculo de curvatura $\kappa = 1/r\sqrt{2}$ e S é um toro. Considerando a fórmula geral do toro (veja (1.1))

$$x = (a + b\cos u)\cos v, \quad y = (a + b\cos u)\sin v, \quad z = b\sin u,$$

temos que C como obtido acima é um círculo de raio $a \in r$ é igual ao valor de b. Como a curvatura de C é 1/a em todos os seus pontos (esse resultado é facilmente obtido na Geometria Diferencial; veja por exemplo [7]), obtemos que a igualdade acima vale se e só se $\kappa r = b/a = 1/\sqrt{2}$, ou seja, a razão dos raios menor e maior do toro, nessa ordem, é igual a $1/\sqrt{2}$.

Esse resultado mostra, como queríamos, um caso particular da conjectura de Willmore, e quando o comparamos ao resultado demonstrado por Fernando Codá e André Neves (veja a introdução geral), vemos que o tubo considerado no teorema precedente (que é uma superfície de gênero g = 1) é um caso particular de superfícies de gênero $g \ge 1$ que satisfazem as condições desse que é, sem dúvida, um surpreendente resultado demonstrado por esses dois matemáticos.

Referências Bibliográficas

- [1] WILLMORE, T. J. Riemannian Geometry. Claredon Press, Oxford, 1993.
- [2] CHAVEL, I. Eigenvalue in Remannian Geometry. New York, Academic Press, 1984.
- [3] LEE, John M. Riemannian Manifolds: An Introduction to Curvature. New York: Springer-Verlag, 1997.
- [4] CARMO, Manfredo Perdigão do. Riemannian geometry. Translated from the second Portuguese edition by Francis Flaherty. Mathematics: Theory and Applications. Birkhäuser Boston, Inc., Boston, MA, 1992.
- [5] LIMA, E.L. Curso de Análise, v. 2. IMPA, Rio de Janeiro, 2009.
- [6] LIMA, E.L.. Variedades Diferenciáveis. Publicações Matemáticas, IMPA, 2011.
- [7] CARMO, Manfredo P. do. Geometria Diferencial de Curvas e Superfícies. Rio de Janeiro: Instituto de Matemática Pura e Aplicada, 2008.
- [8] S. MONTIEL and A. ROS. Curves and Surfaces. Graduate Studies in Mathematics, Vol.69, American Mathematical Society, Providence, RI, (2005).
- [9] ALÍAS, Luis J. Análisis Geométrico y Geometría Global de Superficies: Una Introducción Elemental. In: XIV Escola de Geometria Diferencial, 2006, Salvador, Bahia.
- [10] F. MARQUES and A. NEVES. Min-max theory and the Willmore Conjecture. To appear in Annals of Mathematics, 2013.
- [11] T.J. WILLMORE. Note on embedded surfaces. An. Sti. Univ. 'Al. I. Cuza' Iasi Sect. I a Mat. 11 (1965) 493 to 496.
- [12] T.J. WILLMORE. Mean curvature of Riemannian immersions. J. London Math. Soc. (2) 3 (1971) 307 to 310.

- [13] K. SHIOHAMA and R. TAKAGI. A characterization of a standard torus in E³. J. Diff. Geom. 4 (1970) 477 to 485.
- [14] B.Y. CHEN. On the total curvature of immersed manifolds V. C-surfaces in Euclidean *m*-space. Bull. Inst. Math. Acad. Sinica 9 (1981) 509 to 516.
- [15] J. LANGER and D. SINGER. Curves in the hyperbolic plane and mean curvature of tori in 3-space. Bull. London Math. Soc. 16 (1984) 531 to 534.
- [16] P. LI and S.-T. YAU. A new conformal invariant and its applications to the Willmore conjecture and first eigenvalue of compact surfaces. Invent. Math. 69 (1982) 269 to 291.
- [17] S. MONTIEL and A. ROS. Minimal immersions of surfaces by the first eigenfunctions and conformal area. Invent. Math. 83 (1986) 153 to 166.
- [18] L. SIMON. Existence of surfaces minimizing the Willmore functional. Comm. Anal. Geom. 2 (1993) 281 to 326.
- [19] R. LANGEVIN and H. ROSENBERG. On curvature integrals and knots. Topology 15 (1976) 405 to 416.
- [20] R. BRYANT. A duality theorem for Willmore surfaces. J. Diff. Geom. 20 (1984) 23 to 53.
- [21] W. KUHNEL and U. PINKALL. On total mean curvatures. Quart. J. Math. Oxford Ser. (2) 37 (1986) 437 to 447.
- [22] R. KUSNER. Comparison surfaces for the Willmore problem. Pacific J. Math. 138 (1989) 317 to 345.

Índice Remissivo

Aplicação conforme, 28	Gradiente, 21	
Aplicação de Gauss, 7	Hessiano, 22	
Base coordenada, 17	Identidades de Green, 16	
Campo tensorial, 18	Imersão, 13	
Campo vetorial tangente, 18	Inversão, 29	
Característica de Euler-Poincaré, 11	Isometria, 29	
Colchete de Lie, 18	Laplaciano, 22	
Conexão de Levi-Civita, 19		
Conjectura de Willmore, 1, 51	Métrica	
Convenção de Einstein, 17	Euclidiana, 21	
Curva regular, 3	induzida, 21	
Curvatura Gaussiana, 8	Riemanniana, 20 Mergulho, 13	
Curvatura média, 8		
Curvaturas principais, 8	Parametrização, 5	
Derivada covariante, 19	Ponto	
Dilatação, 29	elíptico, 8	
Divergência, 22	hiperbólico, 8	
	parabólico, 8	
Elemento de volume, 14	umbílico, 8	
Fórmulas de Frenet, 4	Primeira forma fundamental, 7	
Flat, 24	Região	
Forma diferencial, 13	regular, 11	
em uma superfície, 14	simples, 11	
Função diferenciável, 3		
Funcional energia de Willmore, 27	Simbolos de Christoffel, 11, 20	
	Segunda forma fundamental, 7	
Gênero de uma superfície, 12	Sharp, 24	

Sistema de coordenadas locais, 16

Subvariedade, 21

Superfície, 5, 13

Superfície

de Willmore, 40

mínima, 10

Teorema

da Divergência, 15 de Blaschke, 34 de Liouville, 30 de Stokes, 15 de Thomsen e Schadow, 45 de W. Fenchel, 46 Toro, 5 de Clifford, 2 Triangulação, 11 Tubo, 47 Variação normal, 40 Variedade Riemanniana, 20