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Abstract

In this thesis, we extend classic results of PI-theory to a new class of alge-
bras: the x-superalgebras, that is, algebras endowed with a graded involu-
tion. If a x-superalgebra A satisfies a non-trivial identity, then the sequence
{c&(A)},>1 of *-graded codimensions of A is exponentially bounded and we
study the *-graded exponent exp®i(A) := T}erolo /& (A) of A. To this end,
we prove a version of Wedderburn-Malcev theorem for x-superalgebras and
classify the finite dimensional simple x-superalgebras over an algebraically
closed field of characteristic zero. By using the representation theory of the
symmetric group, we give an alternative proof of the existence of the x-graded
exponent for any finite dimensional x-superalgebra over a field of character-
istic zero and we characterize, in four equivalent ways, the finite dimensional
x-superalgebras with polynomial growth of x-graded codimensions. Finally,

we classify the finite dimensional *-superalgebras A such that expsi(A) > 2.

Keywords: polynomial identity, graded involution, %-graded codimension,

cocharacter, exponential growth.
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Resumo estendido

Nesta tese, trabalhamos com superdlgebras sobre um corpo F' de ca-
racteristica zero munidas de uma involucao de modo que as componentes
homogeéneas sao invariantes sob a involugao. Mais precisamente, dizemos
que uma superalgebra A = A® @ A® munida de uma involucdo * é uma
x-superdlgebra se (A)* = A e (AW)* = AN Neste caso, dizemos que *
é uma involucao graduada.

Se A é uma &lgebra sobre um corpo de caracteristica zero, um método
bem estabelecido para o estudo do crescimento do correspondente ideal de
identidades polinomiais ¢ através de uma sequéncia numérica associada a
algebra chamada de sequéncia de codimensoes de A. Recentemente, varios re-
sultados foram estabelecidos permitindo definir alguns invariantes que podem
ser ligados a um determinado T-ideal (e.g., [5], [7], [6], [17], [23], [9]). Estes
resultados tém sido estendidos para algebras munidas de alguma estrutura
adicional, por exemplo, superalgebras, ou mais geralmente, algebras gradu-
adas por um grupo, algebras com involucoes, etc., permitindo o estudo das
correspondentes identidades (e.g., [8], [40], [15], [14]). Neste trabalho, intro-
duzimos a teoria de identidades polinomiais *-graduadas em *-superalgebras
e estendemos alguns destes resultados no contexto de x-superalgebras. No-
tamos que o estudo de identidades *-graduadas generalizam a teoria de *-

identidades em algebras com involucao.
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Vamos relembrar alguns fatos sobre Pl-algebras que serao importantes
no desenvolvimento deste texto. E sabido que se uma algebra A satisfaz uma
identidade polinomial ndo-trivial, entao sua sequéncia de codimensoes ¢, (A),
n > 1, é limitada exponencialmente, i.e. existem constantes a,a > 0 tais
que ¢,(A) < aa™ para todo n (veja [34]). Nos dltimos anos, vérios autores
tém estudado esta sequéncia no intuito de caracterizar variedades de dlgebras
var(A) através do comportamento assintético de ¢, (A).

Uma das primeiras caracterizagoes foi dada por Kemer em [23]. Ele
provou que a sequéncia ¢,(A) de codimensées de uma Pl-dlgebra A é poli-
nomialmente limitada, i.e. para todo n > 1, ¢,(A) < an' para algumas
constantes a,t, se, e somente se, nem a algebra de Grassmann de dimensao
infinita G e nem a algebra UT5(F) de matrizes triangulares superiores 2 x 2
pertencem & var(A). Em [24], Kemer deu uma caracteriza¢ao na linguagem
de S,-caracteres: ¢,(A) é limitada polinomialmente se, e somente se, existe
uma constante ¢, que depende somente de A, tal que os S,,-mddulos irre-

dutiveis nao-triviais que aparecem na decomposicao do S,-médulo P, (A) :=
P,
P,N1d(A)

q boxes abaixo da primeira linha, onde P, denota o espaco dos polindmios

correspondem a diagramas de Young que possuem no maximo

multilineares de grau n e Id(A) é o ideal das identidades de A.

Também, em [17], Giambruno e Zaicev deram uma caracterizacao de
variedades de dlgebras var(A) tais que ¢,(A) é limitada polinomialmente que
depende somente da estrutura da algebra A. Eles provaram que a sequéncia
de codimensoes ¢, (A) de uma algebra de dimensao finita é limitada polino-
mialmente se, e somente se, [d(A) = Id(B; @ --- @ B,,), onde as édlgebras Bis
possuem certas propriedades.

Tais caracterizacoes foram estendidas para algebras munidas de alguma

estrutura adicional, e.g. algebras com involucao e algebras G-graduadas,
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onde G é um grupo finito. Referimos ao leitor os artigos [17, 25, 32, 40].
Para dar exemplos de resultados importantes citados nas referéncias,
recordaremos alguns detalhes. Se G é um grupo, dizemos que uma algebra A

é G-graduada se A pode ser escrita como a soma de subespagos A = @ AW)

geG
tais que AWAM C AWM para todos ¢g,h € G. Em particular, se G = Z»,

dizemos que A é uma superdlgebra. Como no caso ordinario, podemos definir
a superdlgebra livre associativa e a sequéncia de codimensoes graduadas
c#(A), n > 1, de uma superdlgebra A. Em [15], Giambruno, Mishchenko
e Zaicev caracterizaram supervariedades V), i.e. variedades geradas por su-
peralgebras, de crescimento polinomial através da exclusao de cinco su-
perdlgebras de V e discutiremos isso abaixo.

Seja D = F @& F. Denotamos por D% a &lgebra D com graduacgao
Der=F(1,1)® F(1,-1).

a b

Seja UTy(F) = ca,b,c € F' } a algebra matrizes triangu-
0 ¢

lares superiores 2 x 2 sobre F. A élgebra UT(F') tem, a menos de isomor-
fismos, apenas duas graduagoes: a graduagao trivial e a graduagao canonica
UTy(F)© = Feyy + Fegy e UTy(F)M = Feyy, onde e;; denota as matrizes el-
ementares usuais. A algebra UTy(F') com graduagao canonica serd denotada
por UTy(F)# e UTy(F) denota a dlgebra UTy(F') com graduagao trivial.
Denotamos por G a algebra de Grassmann. A algebra G é gerada por um
conjunto infinito {ey, es,...} sujeito as condigdes e;e; = —eje;, para todos

i,j. A dlgebra G pode ser munida de uma graduacao G = GO o gM onde

GO = span{e; €, - €4y, 111 <y < - <o, k > 0}

1 . . .
g = span{e; €, - - - €y, 1l <dg < - <ldgpy1, k> 0}
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G®" denota a algebra G com esta graduacao e G denota a &dlgebra G com

graduagao trivial.

Theorem 0.1 ([15], Theorem 2). Seja V uma variedade de superdlgebras.
Entao V tem crescimento polinomial se, e somente se, G, G, UTy(F),

UTy(F)&, D ¢ V.

Uma involu¢do em uma algebra A é uma transformacao linear x : A — A
tal que (ab)* = b*a* and (a*)* = a, para todos a,b € A. Como acima,
podemos definir a algebra livre associativa com involugao e a sequéncia de
x-codimensdes ¢ (A), n > 1, de uma &lgebra com involugdo A. Em [14],
Giambruno e Mishchenko caracterizaram x-variedades )V, i.e. variedades
geradas por algebras com involucao, de crescimento polinomial através da
exclusao de duas algebras com involugao de V e discutiremos isso abaixo.

Como antes, denotaremos por D = F'@F. Denotaremos por D, a algebra
D munida da involugao (a,b)* = (b, a).

Agora, definimos M como sendo a seguinte subalgebra de UT,(F)

( )

a c 00
0 b 00
M = ca,b,c,d e F
0 0 b d
00 0 a
\ J

Denotamos por M, a algebra M munida da involugao reflexao, i.e. a in-

volucao obtida através da reflexao da matriz ao longo de sua diagonal se-

cundaria .
a c 0 0 a d 0 0
0b 00 10600
00bd| |00 e
000 a 000 a
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Theorem 0.2 ([14], Theorem 4.7). Seja V uma variedade de dlgebras com
involucao. Entao V tem crescimento polinomial se, e somente se, D,, M, &

V.

Em geral, se G é um grupo e A é uma algebra G-graduada munida de uma
involucao *, dizemos que x é G-graduada (com respeito a G-graduagao em
A) se (AW)* = AW para todo g € G. Involucdes G-graduadas em algebras
de matrizes apareceram nos trabalhos de Bahturin, Shestakov e Zaicev [1],
Bahturin e Zaicev [2] e Bahturin e Giambruno em [3].

Nesta tese, trabalhamos com o caso particular em que G = Zy e estu-
damos superalgebras munidas de involugoes Zy-graduadas, ou seja, x-superal-
gebras. O objetivo principal é classificar os ideais de identidades x-graduadas
Id®"(A) de uma *-superalgebra A cuja sequéncia de codimensoes *-graduadas
correspondente c8(A) cresce exponencialmente e possui a seguinte proprie-
dade adicional: se Id®"(B) é um ideal de identidades *-graduadas tais que
Id®(A) C 1d®(B), entdo ¢&(B) é limitada polinomialmente. Na linguagem
de variedades, nosso objetivo é classificar as variedades de x-superdlgebras de
crescimento quase polinomial. Nesta tese, atingimos este objetivo trabalhan-
do com algebras de dimensao finita. Além disso, estendemos outros resulta-
dos que sao validos para algebras, algebras com involugao e superalgebras no
contexto de x-superdlgebras.

Esta tese é composta de quatro capitulos dispostos da seguinte maneira.

No Capitulo 1, estabelecemos as principais propriedades de *-superalge-
bras e demonstramos uma versao do teorema de Wedderburn-Malcev para
x-superalgebras de dimensao finita. Também introduzimos o conceito de *-
superalgebras simples e classificamos as *-superalgebras simples de dimensao
finita sobre um corpo algebricamente fechado de caracteristica zero.

No Capitulo 2, definimos a x-superalgebra livre associativa e introduzi-
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mos as identidades polinomiais *-graduadas em x-superdlgebras. Também
definimos o principal objeto de estudo desta tese: a sequéncia de codi-
mensoes *-graduadas c8(A) de uma *-superdlgebra A e estudamos a acio do
produto de quatro grupos simétricos sobre o espago dos (Zs, *)-polinémios
multilineares. Na terceira sessao deste capitulo, definimos o expoente -
graduado exp®i(A) de uma *-superalgebra A. A existéncia de exp®i(A) foi
provada por Gordienko em [21], mas aqui damos uma demonstracao alter-
nativa de sua existéncia, para qualquer x-superalgebra de dimensao finita A,
que nao depende dos argumentos utilizados na demonstracao de Gordienko.
Na sessao final, caracterizamos x-superalgebras simples através do expoente
x-graduado.

O Capitulo 3 é o capitulo principal desta tese. Neste capitulo, damos
quatro caracterizacoes equivalentes de x-superalgebras de dimensao finita
de crescimento polinomial das codimensoes x-graduadas. Primeiro, carac-
terizamos *-superalgebras de crescimento polinomial através do expoente -
graduado. Na segunda caracterizacao, classificamos x-supervariedades de
crescimento polinomial geradas por x-superalgebras de dimensao finita pela
exclusao de cinco x-superdlgebras da x-supervariedade. Como consequéncia,
classificamos as *-supervariedades de crescimento quase polinomial geradas
por x-superalgebras de dimensao finita. Apds isso, provamos que se A é
uma *-superdlgebra de dimensdo finita, entdo a sequéncia c8(A) é limi-
tada polinomialmente se, e somente se, I (A) = Id®" (B, @ --- ® B,)
onde cada B;,7 = 1,...,n, é uma x-superalgebra de dimensao finita tal que
dim B;/J(B;) < 1. Finalmente, usamos a teoria de representagoes do pro-
duto de quatro grupos simétricos S,y := Sy, X Sy, X Sy, X Sy, para provar que
& (A) ¢ limitada polinomialmente se, e somente se, existe uma constante g,

que depende somente de A, tal que os S(,-moédulos irredutiveis nao-triviais
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que aparecem na decomposigao de P"(A) sao tais que o diagrama de Young
correspondente a A(1), sem a primeira linha, junto com os diagramas de
Young correspondentes & A\(2), A(3) e A(4) contém no maximo g boxes, onde
A(i) F n;, para 1 <i < 4.

No Capitulo 4, estudamos *-superalgebras A tais que exp®i(A) > 2.
Construimos onze x-superalgebras FE;,i = 1,...,11, com a seguinte pro-
priedade: exp®i(A) > 2 se, e somente se, E; € var®i(A), para algum
i € {1,...,11}. Como consequéncia, caracterizamos as #-superalgebras A
tais que exp®i(A) = 2.

Os resultados desta tese ja foram publicados em [10, 16, 37].

As principais técnicas utilizadas neste trabalho s@o métodos da teo-
ria de representacoes do grupo simétrico S,, e o estudo do comportamento
assintético dos graus de S,-representagoes irredutiveis. Sugerimos ao leitor
o livro [22] para o estudo de S,-representagoes e os livros [20] e [9] para mais

informacoes sobre a teoria de Pl-algebras.
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Introduction

In this thesis, we work with superalgebras over a field F' of characteristic
zero endowed with an involution such that the homogeneous components are
invariant under the involution. More precisely, we say that a superalgebra
A= A0 g AWM endowed with an involution * is a *-superalgebra if (A©)* =
A® and (AM)* = AW In this case, we say that * is a graded involution.

If A is an algebra over a field of characteristic zero, a well-established
method of studying the growth of the corresponding ideal of polynomial
identities is through a numerical sequence called the sequence of codimen-
sions of A. Several results have been established in recent years allowing
to define some invariants that can be attached to a given T-ideal (e.g., [5],
[7], [6], [17], [23], [9]). These results have been extended to algebras with
an additional structure such as superalgebras, group graded algebras, alge-
bras with involution, etc., allowing to study the corresponding identities (e.g.
(8], [40], [15], [14]). Here, we introduce the theory of x-graded polynomial
identities on *-superalgebras A and we extend some of those results in the
setting of k-superalgebras. We notice that the study of x-graded identities
on *-superalgebras generalize the theory of x-identities on algebras with in-
volution.

Let us recall some facts about Pl-algebras which will be important in

the development of this text. It is well known that if an algebra A satisfies
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a non-trivial polynomial identity, then its sequence of codimensions ¢, (A),
n > 1, is exponentially bounded, i.e. there exist constants a,a > 0 such
that ¢, (A) < aa” for all n (see [34]). In the last years, several authors have
studied this sequence in order to characterize varieties of algebras var(A)
through the asymptotic behavior of ¢,(A).

One of the first characterizations was given by Kemer in [23]. He
proved that the sequence ¢, (A) is polynomially bounded, i.e. for all n > 1,
cn(A) < an' for some constants a,t, if and only if neither the infinite di-
mensional Grassmann algebra G nor the algebra UTy(F') of the 2 x 2 upper
triangular matrices lie in var(A). In [24], Kemer gave such a characterization
in the language of the S,-characters: ¢,(A) is polynomially bounded if and
only if there exists a constant ¢ depending only on A such that the nonzero
irreducible S,,-modules appearing in the decomposition of the S,-module

Fald) = 55 ;d(m

below the first row, where P, denotes the space of multilinear polynomials

correspond to Young diagrams having at most ¢ boxes

of degree n and Id(A) is the ideal of identities of A.

Also, in [17], Giambruno and Zaicev gave a characterization of varieties of
algebras var(A) such that ¢,(A) is polynomially bounded that depends only
on the structure of the algebra A. They proved that the sequence ¢,(A) of a
finite dimensional algebra A is polynomially bounded if and only if Id(A) =
Id(By ®---® B,), where the Bs are suitable algebras with some properties.

Such characterizations were extended to algebras with some additional
structure, e.g. algebras with involution and G-graded algebras, where G is a
finite group. We refer to the reader the papers [17, 25, 32, 40].

To give examples of important results in the cited references, we will recall
some details. If GG is a group, we say that an algebra A is G-graded if A can

be written as a sum of subspaces A = @A(g) such that A@AM C Algh)
geG
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for all g,h € G. In particular, if G = Z,, we say that A is a superalgebra.
As in the ordinary case, we can define the free associative superalgebra and
the sequence of graded codimensions ¢8"(A), n > 1, of a superalgebra A. In
[15], Giambruno, Mishchenko and Zaicev characterized supervarieties V, i.e.
varieties generated by superalgebras, with polynomial growth by excluding
five superalgebras from V and we will discuss this below.

Let D = F @ F. We denote by D®" the algebra D with grading D& =
F(1,1)® F(1,-1).

a b

Let UT»(F) = ca,b,c € F 3 be the algebra of upper trian-
0 c

gular matrices over F'. The algebra UTy(F') has, up to isomorphism, only two
gradings: the trivial grading and the natural grading UT,(F)(®) = Fej+Feg
and UTy(F )(1) = Fleqa, where e;; denotes the usual elementary matrices. The
algebra UT,(F') with the natural grading will be denoted by UTy(F')8" and
UT,(F) denotes the algebra UTy(F') with trivial grading.

Let G denote the Grassmann algebra. The algebra G is generated by
an infinite set {ej, e, ...} subject to the conditions e;e; = —eje;, for all 7, j.

The algebra G can be endowed with grading G = GO ¢ G where
GO = span{e; e;, - -+ €y, 11 < dg < -+ <o,k >0}

and

g(l) = span{eilew “ Cigpgy 1 <lg < < i2k+1, k > O}
G*" denotes the algebra G with this grading and G denotes the algebra G with
trivial grading.
Theorem 0.3 ([15], Theorem 2). Let V be a variety of superalgebras. Then
V has polynomial growth if and only if G,G® , UTy(F),UTy(F)%, D& & V.

An inwvolution on an algebra A is a linear transformation * : A — A such

that (ab)* = b*a* and (a*)* = a, for all a,b € A. As above, we can define
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the free algebra with involution and the sequence of *-codimensions ¢ (A),
n > 1, of an algebra with involution A. In [14], Giambruno and Mishchenko
characterized *-varieties V), i.e. varieties generated by algebras with involu-
tion, with polynomial growth by excluding two algebras with involution from
V and we will discuss this below.

As before, we denote by D = F' & F. We denote by D, the algebra D
endowed with the involution (a,b)* = (b, a).

Next, we define M to be the following subalgebra of UT,(F)

( )

a ¢ 0 0

0 b 00
M = ca,b,c,d e F
0 0 b d

000 a

\ /

We denote by M, the algebra M with reflection involution, i.e. the involution

obtained by flipping the matrix along its secondary diagonal

*

a c 00 a d 0 0
ob00| f[oboo
oobd| |oo0ub e
000 a 000 a

Theorem 0.4 ([14], Theorem 4.7). Let V be a variety of algebras with invo-
lution. Then V' has polynomial growth if and only if D, M, & V.

In general, if G is a group and A is a G-graded algebra endowed with an
involution %, we say that the involution x is G-graded (with respect to the
G-grading on A) if (AW)* = AW for all ¢ € G. G-Graded involutions on
matrices algebras have appeared in the papers of Bahturin, Shestakov and
Zaicev [1], Bahturin and Zaicev [2] and Bahturin and Giambruno [3].

In this thesis, we work in the particular case that G = Z, and we study

superalgebras endowed with Zs-graded involutions, that is, x-superalgebras.
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The main goal of this thesis is to classify the ideals of *-graded identities
Id®(A) of a x-superalgebra A whose corresponding sequence of codimen-
sions c8"(A) grows exponentially and have the following further property: if
Id®(B) is an ideal of *-graded identities such that Id®"(A) C 1d®"(B), then
c&(B) is polynomially bounded. In the language of varieties, our aim is to
classify the varieties of x-superalgebras of almost polynomial growth. We
reach our goal in the setting of finite dimensional algebras. In addition, we
extend other results which are valid for algebras, algebras with involution
and for superalgebras to the set of x-superalgebras.

This thesis is composed by four chapters disposed in the following way.

In Chapter 1, we establish the principal properties of x-superalgebras
and describe a Wedderburn-Malcev theorem for finite dimensional x-superal-
gebras. We also introduce the concept of simple x-superalgebras and classify
all finite dimensional simple x-superalgebras over an algebraically closed field
of characteristic zero.

In Chapter 2, we define the free associative x-superalgebra and introduce
the x-graded polynomial identities on *-superalgebras. We also define the
main object of study of this thesis: the *-graded codimensions c&"(A) of
a x-superalgebra A and study the action of the product of four symmetric
groups on the space of multilinear (Zy, *)-polynomials. In the third section of
this chapter, we define the *-graded exponent exp®i(A) of a *-superalgebra
A. The existence of exp®’(A) was proved by Gordienko in [21], but here
we give an alternative proof of its existence, for any finite dimensional *-
superalgebra A, which does not depend on the arguments of Gordienko’s
proof. In the final section, we characterize simple x-superalgebras through
the x-graded exponent.

Chapter 3 is the main chapter of this thesis. In this chapter, we give
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four characterizations of finite dimensional *-superalgebras with polynomial
growth. First, we characterize finite dimensional x-superalgebras with poly-
nomial growth through the x-graded exponent. In the second characteriza-
tion, we classify the x-supervarieties of polynomial growth generated by finite
dimensional x-superalgebras by the exclusion of five suitable x-superalgebras
from the x-supervariety. As a consequence, we classify the k-supervarieties
generated by finite dimensional x-superalgebras of almost polynomial growth.
Next, we prove that if A is a finite dimensional *-superalgebra, then the se-
quence c2(A) is polynomially bounded if and only if Id®(A) = Id* (B, &
.-+ @ B,) where each B;,i = 1,...,n, is a finite dimensional x-superalgebra
such that dim B;/J(B;) < 1. Finally, we use the representation theory of
the product of four symmetric groups Sy, := Sy, X Sy, X Sy, X Sy, to prove
that c&"(A) is polynomially bounded if and only if there exists a constant
q depending only on A such that the nonzero irreducible Si,y-modules ap-
pearing in the decomposition of P&(A) are such that the Young diagram
corresponding to A(1), without its first row, along with the Young diagrams
corresponding to A(2), A(3) and A(4) contain in all at most ¢ boxes, where
M) Fny, for 1 <i < A4.

In Chapter 4, we study *-superalgebras such that exp®(A) > 2. We con-
struct eleven x-superalgebras F;,i = 1,...,11, with the following property:
exp®i(A) > 2 if and only if E; € var®(A), for some i € {1,...,11}. As a
consequence, we characterize the *-superalgebras A such that exp®i(A) = 2.

The results of this thesis have already been published in [10, 16, 37].

The main techniques employed in this work are methods of representation
theory of the symmetric group S,, and computations of the asymptotics for
the degrees of the irreducible S,-representations. We refer the reader to the

book [22] for the study of S,-representations and the books [20] and [9] for
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more about the theory of Pl-algebras.



Chapter 1

Superalgebras with graded

involution

In this chapter we introduce the concept of x-superalgebras and their prin-
cipal properties. So, we start by considering A = A©® @ AWM a superalge-
bra over a field F' of characteristic different from 2. We remind the reader
that, if A = A® @ AW is a superalgebra, then ¢ € Aut(A) defined by
0(@® 4+ aV) = a® — gM where a® € A® oV € AW is an auto-
morphism of order at most 2. Moreover, any automorphism ¢ € Aut(A)
of order at most 2 determines a structure of superalgebra on A by setting
A® ={fa+ ¢(a):a € A} and AY = {a — ¢(a) : a € A}.

Recall that an involution on an algebra A is just an antiautomorphism
on A of order at most 2 which we shall denote by *. We write AT = {a €
A:a* =a}and A~ = {a € A: a* = —a} for the sets of symmetric and
skew-symmetric elements of A, respectively. Clearly A = AT @& A~, since

char(F) # 2.

Definition 1.1. Let A = A @ A®M be a superalgebra over a field F of char-

acteristic different from 2 and suppose that A is endowed with an involution



*. We say that the involution * is a graded involution if (A®)* = A and
(AM)* = AM_ In this case, we say that A is a x-superalgebra.

It is clear that any algebra with involution * endowed with trivial grading
is a x-superalgebra and for a commutative superalgebra A, the identity map
is a graded involution on A.

Next, we give important examples of x-superalgebras that will be useful

along the thesis.

Example 1.2. Let D = F & F. The algebra D can be endowed with the
exchange involution, i.e. the involution defined as (a,b)* = (b,a). By
considering D with trivial grading, D has a structure of x-superalgebra
with this involution, that, with this structure of x-superalgebra, will be de-
noted by D,. Now, let D®" be the algebra D endowed with the grading
D& = F(1,1) ® F(1,—1). If % is the exchange involution, then * is a graded
involution on D®'. The superalgebra D®" with exchange involution will be
denoted by D&, Also, since D# is a commutative superalgebra, the identity

map is a graded involution on D*".

Example 1.3. Let M be the following subalgebra of UT,(F')

( 3\

ca,b,c,deF

-~

0
b 0 0
d

o o O
o
=

0 0 a

\ Vs

We denote by M, the algebra M with reflection involution, i.e. the involution



obtained by flipping the matrix along its secondary diagonal

*

a c 0 0 a d 0 0
0Obo0o0] 0000
oo0bd| [o000b e
000 a 000 a

By considering M, with trivial grading, M, is a x-superalgebra. Now, the
algebra M can be endowed with the grading

a 000 0b 00
0 ¢c 00 0000
00co| loood
000 a 0000

If we consider the reflection involution, we have that (M (®)* = M© (A/(V)* =
M® and so the reflection involution is graded. Also, (M©)* = M©),
(M)~ = {0}, (MW)* = F(ey + e34) and (M)~ = F(ejy — e34). The al-
gebra M endowed with this grading and with this involution will be denoted
by M8,

It is clear that there exist involutions on superalgebras that are not

graded. For instance, consider the superalgebra

0 F 0 0 0 F
A= O F 01],]00 F
0 0 0 0 0 O

endowed with reflection involution. Then the reflection involution is not a
graded involution on A.
The connection between the superstrucure and the involution on A is

given in the next lemma.



Lemma 1.4. Let A be a superalgebra over a field F' of characteristic different
from 2 endowed with an involution x and ¢ the automorphism of order at

most 2 determined by the superstructure. Then A is a x-superalgebra if and

only if x o = pox*.

Proof. Suppose that A = A® @ AW is a s-superalgebra and let a = a(® +
a € A,a® € A0 ¢ ¢ AW Then p(a®) = a® and p(a™) = —a.
Since A is a *-superalgebra, we get that (a(®)* € A© and (aM)* € AD.
Thus, ¢((a®)*) = (a®)* and ¢((aM)*) = —(aM)*. Therefore, p(a*) =
o((a)* + (aM)*) = (a)* — (aM)* = (p(a))*, for all @ € A. Hence,
%0 = o .

Conversely, suppose that x o ¢ = @ o *. We want to prove that if a =
a® +a® € A, a® € AO o) € AW then (a¥)* € A® and (aM)* € AW,
We have that ¢((a©)) = (p(a®))* = (a©)* and p((@®)") = (p(aD))* =
—(aM)*. Hence, (a®)* € A® (aM)* € AM and A is a *-superalgebra. [

Corollary 1.5. Let A be a superalgebra over a field F' of characteristic dif-
ferent from 2 endowed with an involution x. Then A is a *-superalgebra if
and only the subspaces AT and A~ are graded subspaces. As a consequence,

any x-superalgebra can be written as a sum of 4 subspaces
A= (AT g (AT @ (AD)" g (AW

In order to avoid confusion, we shall adopt the following notation: given
a *-superalgebra A, we shall write A, to denote the algebra A with involution
x and trivial grading. We also denote by A#" the algebra with Zs-grading

and trivial involution (notice that in this case A must be commutative).
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1.1 The Wedderburn-Malcev theorem

In this section, we deal with finite dimensional x-superalgebras and we ex-
tend the Wedderburn’s theorem on simple and semisimple algebras and the
Wedderburn-Malcev theorem to the setting of finite dimensional *-superal-

gebras.

Definition 1.6. Let A be a x-superalgebra, ¢ the automorphism of order at
most 2 determined by the superstructure and I an ideal of A. We say that
I is a x-graded ideal if [¥ = [ and I* = I. A x-superalgebra A is a simple
x-superalgebra if A*> # {0} and A has no non-zero proper *-graded ideals.

Notice that, with this definition, if A is simple as an algebra or as an
algebra with involution or as a superalgebra, then A is also simple as a *-
superalgebra. On the other hand, the reverse is not true (cf. Theorem 1.12).

We start with the following result of independent interest. We recall that
if A is a finite dimensional algebra then J(A), the Jacobson radical of A, is

a nilpotent ideal.

Proposition 1.7 ([16], Proposition 7.1). Let A be a finite dimensional al-
gebra over a field with a Wedderburn-Malcev decomposition A = By @ --- @
By + J(A), where By, ..., By are simple algebras. If B is a simple ideal of A
then B = B;, for some i € {1,...,k}, and J(A) acts trivially on B by left

and right multiplication.

Proof. Let B be a simple ideal of A and write J = J(A). Then BN J is an
ideal of B and, since B is simple, BN J = {0} or BN J = B. Since J is a
nilpotent ideal and B is not nilpotent we get that BN .J = {0}.

We claim that B C A, = B ® --- @ B, and B = B;, for some ¢ €
{1,...,k}. In fact, since B ¢ J, B is not a nil ideal and, so, there exists
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b € B such that b" # 0, for all n > 1. Now, we can write b = x + y, where
T € Ags, v #0and y € J. Since BJ C BN J = {0}, b* = bx = xb and by
induction we get b = 2"~ 1b, for all n > 2, and b"z™ = ba" ™ = p*t™, for
all n,m > 1. Notice that ™ # 0, for all n > 1, since b" # 0, for all n > 1. If
q is the index of nilpotence of J, then y? = (b — 2)? = 0 and we have

0 = (b—2x) = i(_l)i<§>bq—ixi

=0

= (—1)%27 + jil(_ni (j) pa—in

_ (—1)mt+ Z(—w‘(‘;) e

i=0
= (=1)%7 + (=1)1pe.
It follows that 29 = (—1)2@+Dp? = b? € B.

Let I be the ideal generated by x9. Then [ is a non-zero ideal of B.
Since B is simple, we must have I = B. Notice that Jz? = z7J = {0},
since 7 € B. Hence, B = Bx?’B C Ax?A = A, x%A,, C A, and, so, B
is a simple ideal of A ;. Being A, a semisimple algebra, B = B;, for some

ie€{l,...,k}. Also JB = BJ = {0} says that J acts trivially on B. O

Recall that an algebra A with an automorphism or antiautomorphism
1 is P-simple if A2 # {0} and A has no non-zero proper ideals I such that
IV =1.

Lemma 1.8 ([16], Lemma 7.2). Let A be an algebra with an automorphism
or antiautomorphism 1 of order 2. If A is 1-simple then either A is simple

or A= B @ BY, for some simple subalgebra B of A.

Proof. If A is simple, we are done. Suppose that A is -simple but not
simple. Let B be a proper ideal of A. Then BY is still an ideal of A and,
since A is ¢-simple, we have that BY # B. Now, B + BY is a 1-ideal of A
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and, since A is 1-simple, A = B + B¥. Also, the ¢-simplicity of A implies
that B is simple and A = B @ BY. O

The next theorem is a generalization of the Wedderburn and Wedderburn-

Malcev theorems.

Theorem 1.9 ([16], Theorem 7.3). Let A be a finite dimensional *-super-
algebra over a field F' of characteristic zero and let @ be the automorphism

induced by the superstructure. Then:
1. J(A) is a *-graded ideal;

2. If A is a simple x-superalgebra, then either A is simple or A is x-simple

or A= B ® B¥ for some x-simple ideal B;
3. If A is semisimple, then A is a finite direct sum of simple x-superalgebras;

4. If F is algebraically closed, then A = A1 @---® A, + J(A), where each

algebra A;, i =1,...,m, is a simple *-superalgebra.

Proof. (1) Let J = J(A). It is well known that if ¢ is an automorphism or
an antiautomorphism of order 2 then J¥ = J, i.e. J is a *-ideal and a graded
ideal. Hence, J is a *-graded ideal.

(2) Suppose that A is a simple x-superalgebra. Since J(A) is a x-graded
ideal and A is not a nilpotent algebra, we have that J(A) = {0} and A is a
semisimple algebra. Take I a minimal ideal of A. Then [ is a simple algebra
and either I* = I or I & I"* is a simple x-ideal of A. Hence A contains a
simple x-ideal B. If B = B¥, then B is a *-graded ideal of A and, since A is
a simple *-superalgebra, we get that A = B. In case B # B¥Y, B® B¥ is a
x-graded ideal of A and so A = B & B¥ and we are done.

Part (3) follows from Wedderburn’s theorem and (2). Part (4) follows
from [38] and (3). O
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1.2 Simple *-superalgebras

In this section, we classify the finite dimensional simple x-superalgebras over
an algebraically closed field of characteristic zero.
We recall the classification of the simple superalgebras and of the x-
simple algebras. Given k > 1> 0, k > 1, My, (F) is the algebra My, (F') with
P 0 0 Q@

grading , , where P,QQ, R, S are k x k, k x [, [ x k
0 S R 0

and [ x [ matrices, respectively. Also we consider the algebra M, (F + cF) =
M, (F) + c¢M,(F), where ¢* = 1, with grading (M, (F),cM,(F)).

Theorem 1.10 ([20], Theorem 3.5.3). Let A be a finite dimensional sim-
ple superalgebra over an algebraically closed field F of characteristic zero.
Then A is isomorphic either to My, (F),k > 1,k > 1> 0, or to M,(F) +
cM,(F),c? = 1.

Notice that, in light of Lemma 1.8, A is isomorphic to My ;(F) when
B¥ = B and A is isomorphic to M, (F) + ¢M,(F) when B? # B.

Theorem 1.11 ([36], Proposition 2.13.24). Let A be a finite dimensional *-
simple algebra over an algebraically closed field F' of characteristic zero. Then
A is isomorphic to either M, (F') with transpose or symplectic involution or
to M, (F) & M, (F)° with exchange involution, where M,(F)° denotes the

opposite algebra of M, (F).

We remark that, in light of Lemma 1.8, A is isomorphic to M, (F') with
transpose or symplectic involution when B* = B and A is isomorphic to
M, (F) & M, (F)° with exchange involution when B* # B.

In the next theorem, we classify the finite dimensional simple *-super-

algebras over an algebraically closed field of characteristic zero. We remark



1.2 Simple x-superalgebras 9

that, if M, (F) is endowed with the symplectic involution, then n must be

even.

Theorem 1.12 ([16], Theorem 7.6). Let A be a finite dimensional simple *-
superalgebra over an algebraically closed field F of characteristic zero. Then

A 1s isomorphic to one of the following x-superalgebras:

1. My (F), with k> 1,k > 1> 0, with transpose or symplectic involution

(the symplectic involution can occur only when k =1);

2. My (F) @& My, (F)®, with k> 1, k> 1> 0, with induced grading and

exchange involution;

3. M, (F)+ cM,(F), with involution given by (a + cb)" = a* — cb*, where

x denotes the transpose or symplectic involution;

4. M, (F)+ eM,(F), with involution given by (a + cb)! = a* + cb*, where

x denotes the transpose or symplectic involution;
5. (M, (F) + cM,(F)) ® (M, (F) + cM,(F))°, with grading
(M (F) @ My, (F)?, (M (F) © My (F)))
and exchange involution.

Proof. Let A be a simple s-superalgebra. By Theorem 1.9, (2), we have
that either A is simple or A is *-simple or A = B & B¥ for some *-simple
subalgebra B of A. If A is simple, by Theorem 1.10 and Theorem 1.11, we
have (1).

Suppose that A is s-simple, but not simple. Then, by Theorem 1.11,
A = B® B, for some simple subalgebra B of A. If B¥ = B, then (B%?)¥ =
B and, by Theorem 1.10, B = M} ,;(F') and we have (2).
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If B¥ # B, then BY = B°. For every (a,b) € A, write p(a,b) =
(©o(b), ¢1(a)) where ¢g, 1 : B — B are linear mappings. Denote by * the

exchange involution. We have that

p(a,0)" = (o(b), p1(a))® = (¢1(a), wo(D))

and
p((a,0)") = p(b,a) = (po(a), pr(b)).

Since ¢ commutes with *, ¢y = ¢; and ¢(a,b) = (o(b), po(a)), for ev-
ery (a,b) € A. Also, since ¢ is an automorphism, we have that, for ev-
ery (ay,b1),(az,b2) € A, o((a1,b1)(az,b2)) = @(ai,br)p(az,bs) and thus
wo(ab) = @o(b)po(a), for every a,b € B. Since p? = 1, 92 = 1 and so
©o is an involution on B. Let ¢y = *. Thus ¢(a,b) = (b*,a*).

Notice that (a,b) = 2(a+b*,a* +b) + 2(a — b*, —a* + b). Recalling that
AO) = {(a,b) + ¢(a,b) : (a,b) € A} and AD = {(a,b) — ¢(a,b) : (a,b) €
A}, we can write A®) = {(a,a*) : a € B} and AV = {(a,—a*) : a €
B}. Therefore A = A©® @ AW is a grading compatible with the exchange
involution. Now, it is easily seen that A® = M, (F), AD = (1,-1)A©®) =
cAO®) = M, (F), ¢ =1 and ¢* = —c. Hence, by Theorem 1.10 and Theorem
1.11, A 2 M, (F) + ¢M,(F) with involution given by (a + cb)! = a* — cb*,
where * denotes the transpose or symplectic involution and we have (3).

Now, suppose that A is not x-simple. Then A = B & B¥ for some
x-simple subalgebra B of A. If B is simple, then, by Theorem 1.11, B =
M, (F) with transpose or symplectic involution. Hence, by Theorem 1.10,
A= M,(F)+ cM,(F), with grading (M, (F),cM,(F')) and with involution
given by (a + cb)! = a* + cb*, where * denotes the transpose or symplectic
involution and we have (4).

Finally, if B is not simple, then, by Theorem 1.11, B = C & C?, C' =
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M, (F), with exchange involution and

A = (CaCP? & (CoCr)»
= (CaC? @ (CPa (CP)?)
> (M, (F)+ cM,(F)) @ (M, (F) 4 cM,(F)),

with grading
(Mo, (F) & My (F), (M (F) & My (F)))
and exchange involution. The proof of the theorem is complete. O
As a consequence of Theorems 1.9 and 1.12 we get the following theorem.

Theorem 1.13. Let A be a finite dimensional x-superalgebra over an alge-
braically closed field F' of characteristic zero. Then A = B + J(A) where B
s a maximal semisimple x-superalgebra of A. Moreover, B is a finite direct
sum of simple x-superalgebras each isomorphic to one of the x-superalgebras

given in Theorem 1.12.



Chapter 2

The x-graded exponent

It is well known that the sequence of codimensions of a Pl-algebra is expo-
nentially bounded [34] and also the exponent of a Pl-algebra exists and is
a non-negative integer [17, 18]. In this chapter, we extend the asymptotic
methods developed in the context of algebras, superalgebras and algebras
with involution to x-superalgebras in order to study the behavior of the se-
quence of x-graded codimensions of a x-superalgebra A. From now on, F will
denote a field of characteristic zero.

Consider F = F(X|Zy, x) the free s-superalgebra of countable rank on
X. Such an algebra is defined by a universal property and can be explicitly
described as follows. We write the set X as the disjoint union of four count-
able sets X = YoUY1UZ,UZy, where Yy = {10, Y20, -- -}, Y1 = {¥11, Y21, - - -},
Zy = {210,220, ...} and Z1 = {211,221, ...}. We define a superstructure on
F by requiring that the variables of YyU Zj are homogeneous of degree 0 and
those of Y7 U Z; are homogeneous of degree 1. We also define an involution
on F by requiring that the variables of Yy U Y] are symmetric and those of
ZyU Z; are skew. If F(© is the vector space spanned by all monomials in the

variables of X which have an even number of variables of degree 1 and F()
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is the vector space spanned by all monomials in the variables of X which
have an odd number of variables of degree 1 then F = F© @ FO has a
structure of *-superalgebra, since clearly (F(@)* = F(© and (FW)* = F,
The elements of F are called (Zs, *)-polynomials.

We remark that we can view the free algebra F'(X), the free algebra
with involution F(X|*) and the free superalgebra F'(X)&" as embedded in
F as follows: F(X) is the free algebra on the set {zy,xs,...}, where x; =
Yio+Yin+2zio+2i1; F(X|*) is the free x-algebra on the symmetric elements
Yio+vi1, and the skew elements z; o+ 2; 1; F'(X)®" is the free superalgebra on
the elements y; o+ 2; o of homogeneous degree 0 and on the elements v, 1 + 2; 1
of homogeneous degree 1.

Let A be a x-superalgebra and let

f = f(yLO? ey Ym0y Y11 -y Yn 1y Z1,05 - - -5 Zp,0y RLLs - - - s Zq71) & F<X|ZQ, >l<>
be a (Zs, *)-polynomial. We say that f is a (Zs, x)-identity for the algebra

A, and we write f =0 on A, if

f(aio7 . ,afn’o, ail, . ,ail, A1 s s Qpgs Gy gy 7%,1) =0,
for all afy,...,a} o€ (AT afy, .. at, € (AT ary,... a0 € (AD)”
and ajy,...,a,; € (AM)=. The set
[d&"(A) := {f € F(X|Zy,*): f =0on A}

is an ideal of F(X|Zy, x) called the ideal of (Zs, x)-identities of A.

Notice that Id®"(A) is a Tj-ideal of F(X|Zy, ), i.e. an ideal invariant
under all endomorphisms of F'(X|Zs, *) that preserve the superstructure and
commute with the involution.

As in the ordinary case, since char(F) = 0, Id®"(A) is determined by its

multilinear polynomials and so we define

P = Span p{We(1) * - Wo(n) : O € Spy Wi = Yig, OF W3 = Zig,, g5 = 0,1},
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the space of multilinear polynomials in the first n variables. Clearly
. Pgri
P&(A) = —
PN 1d%(A)

is the space of multilinear elements of degree n of the relative free x-superal-

gebra F(X|Zy, ) /1d®"(A) and its dimension ¢8"(A) is called the nth *-graded

codimension of A.

The study of the sequence {c&"(A)},>; and its growth is the main object
of study of this thesis. Such growth is the growth of the x-supervariety
generated by the sx-superalgebra A.

In what follows we shall make use of several other sets of polynomials
that here we recall. We let P, be the space of multilinear polynomials in the
first n variables of F(X), P* the space of multilinear *-polynomials in the
first n variables of F'(X|) and P2" the space of multilinear graded polyno-
mials in the first n variables of F'(X)&". If A is an algebra (a x-algebra or a
superalgebra) we denote by Id(A) (Id*(A), Id&"(A), resp.) the ideal of iden-
tities (x-identities, graded identities, resp.) of A. We also write ¢, (A), ¢ (A)
and ¢&'(A) for the nth ordinary codimension, *-codimension and graded codi-
mension of A, respectively.

Since we can identify in a natural way P,, Py and P2 with suitable
subspaces of P&, in what follows we shall consider Id(A) C Id*(A) C Id®(A)
and Id(A) C 1d#"(A) C Id®"(A). Similarly we have P,NId(A) = P,NId®"(A),
PrNId*(A) = P N1d®(A) and P& NId%(A) = P& N1d®(A).

If A is a x-superalgebra, we can consider its identities, x-identities and
graded identities. The relation among the corresponding codimensions is
given in the following lemma whose proof can be easily derived from the

literature (see [20]).

Lemma 2.1 ([16], Lemma 3.1). Let A be a *-superalgebra. Then for any

n > 1, we have
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1 en(A) < (A) < 5i(A);
2 u(A) < E(A) < @ (A);
3. cEi(A) < 4"c,(A).

By [34], an algebra A is a Pl-algebra if and only if ¢, (A) is exponentially
bounded. Thus, as an immediate consequence of the previous lemma, we

have the following corollary.

Corollary 2.2 ([16], Corollary 3.2). Let A be a x-superalgebra. Then A is a
Pl-algebra if and only if its sequence of x-graded codimensions {c&(A)}n>1

15 exponentially bounded.

Since any finite dimensional algebra A is a Pl-algebra, we have the fol-

lowing corollary.

Corollary 2.3. Let A be a finite dimensional x-superalgebra. Then the se-

quence of x-graded codimensions {c&(A)},>1 is exponentially bounded.

2.1 The S;-action and the (n)-cocharacter

For an integer number n > 1, we write n = ny + no + n3 + ny as a sum of
four non-negative integers and write (n) = (n1, no, ng,n4). We define Py, to
be the space of multilinear (Zs, *)-polynomials in which the first n; variables
are symmetric of homogeneous degree 0, the next ny variables are symmetric
of homogeneous degree 1, the next ns variables are skew of homogeneous
degree 0 and the next n, variables are skew of homogeneous degree 1.

We can notice that for any choice of (n) = (ny,ng,ng,ny) there are

subspaces isomorphic to P, where = denotes the
<Z> (n) (Z) §

ni,n2z,n3,n4
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multinomial coefficient and it is clear that Py, is embedded into Pg". Also

we have that
Pgri = @ ( " )P(n>.
w \{n)

Let us consider

and C<n>(A) = dimF P<n>(A).

By the above, it is also clear that

) =3 (1) el

(n)

The representation theory of the product of four symmetric groups
Stny = Spy X Sny X Spy X Sy, will be used to prove our results about the
x-graded codimensions of a x-superalgebra A. We refer [9] for the study of
S,-representations.

Recall that there is an one-to-one correspondence between the irreducible
Sp-characters and the partitions of n. We denote by y, the irreducible .S,,-
character corresponding to the partition A - n and d) denotes the degree of
X, given by the hook formula.

A multipartition (A) = (A(1),...,A(4)) F n is such that A(7) = (A\(2)1,
Ai)a,...) F ny, for 1 < i < 4 and it is well known that the irreducible
Sny-characters are the outer tensor products of irreducible characters of

Snys -« 5n,, respectively. So we denote by
X = XA(1) @ - @ Xa)
the irreducible Sy,)-character corresponding to () and by
dpy = dxay -+ da

its degree.
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Now we consider the natural left action of S, on P, by permuting four

sets of variables separately, that is, for f € Py, and (01,...,04) € Sy we

have
(0'1, e ,0'4)f(y1,0, e 7yn1,07 y171, e 7yn2,17 Zl’g, e 7an’()7 21’1, e 7Zn4,1> =
f(y0'1(1),07 s 7y01(n1),07 yO'Q(l),la s 7y0'2(n2),17 20'3(1),07 s 72:0'3(713),0’ 20'4(1),17 R 20'4(714),1)

and so P, is a S(,y-module.
Furthermore, P,y(A) also inherits a structure of S,)-module, since T5-
ideals are invariant under the given action. By complete reducibility, we can

write the character x ) (A) of Py (A) as
Xim(A) = D mpyx, (2.1)
(A)Fn

where myyy are the corresponding multiplicities. We call x ) (A) the nth

(n)-cocharacter of A.

Remark 2.4. Let A be a x-superalgebra. By [4, Theorem 13(b) and the
remark after Theorem 14], if the (n)-cocharacter of A has the decomposition
as in (2.1), then there exist constants o and ¢ such that m,, < an’, for all
(A F n.

Given a partition A\ F n, we denote by T\ the Young tableau of shape A
and by er, the minimal essential idempotent of FS,, associated to Ty. If () is
a multipartition of n, we denote by T(ny = (Thq), - - -, Tx)) the multitableau
of shape (). It is well known that we can make the identification 'S,y =
FS, ® --®FS,,. Thus, if €Ty is the minimal essential idempotent of F'S,,,
associated to T)(;) then €T,y = €Ty ® - - D ery, is the minimal essential
idempotent of ISy, associated to T}, . Furthermore, if A is a *-superalgebra
and the (n)-cocharacter of A has the decomposition as in (2.1), then my =0
if and only if for any multitableau 77y of shape (A) and for any polynomial
[ € Py we have that eg,, f € Id®(A).
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2.2 The x-graded exponent

Let A be a finite dimensional *-superalgebra. By Corollary 2.3, the sequence
of x-graded codimension {c#"(A)},>; is exponentially bounded. This is a

motivation for the next definition.

Definition 2.5. Let A be a finite dimensional #-superalgebra. We define
exp®i(A) := liminf {/c&"(A) and exp#i(A) := limsup {/c&"(A). In case of
EEEE— n—00

n—o0

equality,
exp¥i(A) := lim {/c&(A)

n—o0

is called the x-graded exponent of A.

The existence of the x-graded exponent of a finite dimensional *-super-
algebra was proved by Gordienko [21] in another context. Here, we present
an alternative and independent proof and we use the x-graded exponent to
characterize simple x-superalgebras and x-superalgebras having polynomial
growth of x-graded codimensions.

Throughout this section, A denotes a x-superalgebra over an algebraically
closed field F' of characteristic zero. By Theorem 1.9, we can write A =
B+ J(A), where B = B; @& --- ® B,, and each B;,i = 1,...,m, is a simple

x-superalgebra. Consider all possible non-zero products of the type
C1JCyJ -+ JCy_1JCy # {0},

where (1, . . ., Cy are distinct x-superalgebras taken from the set { By, ..., B},
kE>1. 1f k=1, we take C; = B;, for some i € {1,...,m}. We define

d=d(A) =maxdim(C, & --- & Cy),
where C4,...,Cy € {By,..., By} are distinct and satisfy

C1JCoJ - JCy_1JCy, # {0}
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The main goal of this section is to show that exp®’(A) = d. We start with

the following lemma.

Lemma 2.6. Suppose that C1,...C} are simple x-superalgebras from the set
{By,...,Bn}, not necessarily distinct, and C1JCyJ -+ JCyx_1JC) # {0}.
Then dim(Cy @ - -- & C) < d.

Proof. 1f in the product C1JCqJ -+ - JC,_1JC) # {0} some simple x-superal-
gebra C; appears more than once then, since JC;J C J, we can reduce this
product to get a non-zero product of the type C1JCsyJ --- JC;_1JC; # {0}
where the C}’s are all distinct. O

Throughout this section, we shall use the following notations.

We denote by S = AT and K = A~. If C C A, we denote by Sg = C™*
and Ko = C~ the sets of symmetric and skew elements of C, respectively.
Since A is a x-superalgebra, by Corollary 1.5, S and K are graded subspaces
and

A=80g KO g s q gM,

If dimp(S©) = 50, dimp(SV) = 51, dimp(K©®) = ky and dimp(KW) = k,
then dimg(A) = sg + s1 + ko + k1.

We denote by Wy the irreducible S(,)-module associated to the multi-
partition (A\) = n. Thus, Wiy = FSmer,,, .

Given variables w; ; € X, we denote w, jy = (w1, ..., Wy ). When there
is no danger of confusing, w, ;) also denotes the elements wy ;,...,wy, ;.

We denote by X (i) = (N (i), N(7)a,...) the conjugate partition of A(i).
Then h(A(i)) = N(i); is the height of the correspondent Young tableau.

Lemma 2.7. Lett > 0, m+n+p+q > d and let f(Yum.0), Yn,1)s 2(p,0)> 2(g.1)> T(t))

be a multilinear polynomial alternating on {ym.o0)}, {vm1)}: {20} and on
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{2} I G0y € S, Gy € S5, 2oy € K5, Zg) € S and Ty € A,
then f(Um.0)> Yn,1)s Z(p,0)> Z(q,1)s Tr)) = 0.

Proof. Let A= B1®---® B+ J(A) be a Wedderburn-Malcev decomposition
of A, B; be a #-graded basis of By, i =1,...,k, B; = S5  USy UKy UK

k
and J be a *-graded basis of J = J(A). Then B = U B; is a *-graded basis

of By @ - @® By and A = BU J is a x-graded ’tg;is of A. Since f is a
multilinear polinomial, it is enough to evaluate f on the x-graded basis A.
If we evaluate f on the elements of B, since B;B; = {0}, if ¢ # j, we will
get a zero value unless all elements come from one single B;. In this case,
since dimp(B;) < d and m +n +p+ ¢ > d, we get that either m > |ng)|
orn > |ng_)| orp > |Kéoi)| or q > |Kz(31i)|- Since f is alternating on the sets
{vmo}, {vmn}s {zpo} and on {z41)}, the value of f will still be zero.
Therefore, in order to get a non-zero value of f we must evaluate at least one
element of J. In this case, any monomial of f takes values in a subspace of

one of the following types:

Bi,JB,J - JB
Bi,JB:,J - JB

JB
JB

JB
JB

it JBiJBi,J - JB
J, JBi JB;,J---JB

id+l Y

ld+1)

J,

Td+i—1 Tq1—1

Tdti—1 Tdti—1 Td+1
for some [ > 1, where the B;,’s are not necessarily distinct. Thus, dimp(B;, +
---+ B;,,,) > d+1 and all the above products are equal to zero. Hence, f

takes zero value on these elements. O

Lemma 2.8. Let (A\) = n and Wiy C Py be an irreducible S,y-module.
Then there exists f € Wiy such that f # 0 and f is alternating on each one
of the sets of variables {yéx(l)i,o)}’ {yg)d(z)j,o)}’ {zé\/(s)k,o)} and {zé/\/(@l’o)},
1<i<AD, 1<i< A2, 1<k <AB), 1< 1< A4):.

Proof. Let g € Wiy be a non-zero (Zs, *)-polynomial. Then there exists a

multitableau Ty = (Txa), Th2), Ths)s Tha)) and a polynomial h such that
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g = er,,h # 0. Consider

35 5 (fle)s

=1 UiECT/\(Z-) 7=1
Then f is a polynomial with the prescribed property. O

Lemma 2.9. Let (A\) = n and Wiy C Ppy be an irreducible S,y-module.
If Wiy & Py N 1A% (A), then X(1); < dlmF(S(O)), N(2); < dlmF(S(l)),
4

X (3); < dimp(K©), N(4); < dimp(KW) and Y N (i) < d, where J&H =

i=1
4

{0}. Moreover, dimp(Wy) < n® H(}\/<i)l+1)ni7 for some a > 1.

i=1

Proof. Let f be a polynomial as in Lemma 2.8. Since Wy is an irreducible

Smy-module, we have that Wiy = FSy, f. Since f is alternating on the set

{Uv )00} it follows that A(A(1)) = X'(1); < dimp(S©). Similarly, X'(2); <

dimp(SM), XN(3); < dimp(K®) and N (4); < dimp(K™). Suppose, by

contradiction, that i N(i)i41 > d. Then i N(); >d, forall j=1,... 1L
— —

Since, by hypothesis, f ¢ I1d*(A), by Lemma 2.7, in each one of the sets
{yé/\’(l)i,o)’yfk’(2)i,1)72€/\’(3)1 z(A, .} i =1,....1+1, there exists at least

one variable which will be evaluated on one element of J. Since J™ = {0},
4

we have that f vanishes on A, a contradiction. Hence, Z N ()11 < d. Now,

=1
if X0 = Xa) ® -+ ® xaa) is the irreducible Sy,)-character associated to (\),

we have, by hook formula, that

(1) <N (1)g)™,  xae) (1) < 01 (N (2)40)™
@) (1) <o (N (3)ia)™, xaw (1) < (N (4))m.

4

Hence, dimp(Wy) = HX/\(i)(l) <n® H(X(i)lﬂ)”i, where a = [ dimp(A).
‘ i=1

[l
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Proposition 2.10. & (A) < Cyn'd™, for some constants Co, t.

Proof. Write Aj,; = N(1)i41 + -+ + N (4)141. By Lemma 2.9, we have that

Xo(A) = D > mpyxo-
A

2+1§d (A)Fn

Thus,

coy(A) < Y0 D mpyn® [V (@)™,

Al <d (A i=1
for some constant a. Since, by Remark 2.4, the multiplicities m ) are poly-

nomially bounded, we have, by Lemma 2.9,

) = X (1 Jewla)

where Cy = ad?. O

The existence of central alternating polynomials in M, (F') was conjec-

tured by Regev (see [35]) and proved by Formanek (see [11]).
Theorem 2.11 ([11], Theorem 16). The polynomial

Fro(@1, ooy @02 Y1, ooy Yn2) =

Z (881(07T))To(1)Yr(1)To(2)To(3) To(4) Yr(2)Yr(3)Yr(4) = * To(n2—2n+42) " * To(n2)

o,T€S, 2

Yr(n2—2n42) * " Yr(n2)

is central in M, (F) and is not an identity on M, (F).
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Notice that the polynomial F,(z1,...,Z,2;y1,...,ys2) is alternating on

{z1,..., 22} and on {y1,..., Y2}

Lemma 2.12. Let C be a finite dimensional simple x-superalgebra over an al-
gebraically closed field of characteristic zero, p = dimF(Sg))), q= dimF(S’g)),
r= dimF(K(CO)) and s = dimF(K(Cl)). For each m > 1, there exists a multi-

linear polynomaial

=Wy Vi Yy Yiays 20y -+ 5oy Aty -+ o)

such that:

1. f is alternating on each set of variables {yép’o)}, {yf%l)}, {zqu’o)} and
{zfs 1)}, i=1,...,2m;

2. There exist gjfp’o) € Sg]), gjé%l) € S(Cl), 2@70) c K(CO), 2@,1) € K(Cl), i =

1,...,2m, such that

F @0y - Tty Tays - - Uiad) Zn0)s - - 20y Zsys - -+ Zay) = L
Proof. By Theorem 1.9, we have that either C' is simple (and hence iso-
morphic to M, (F), for some n > 1) or C = C; & C} or C = C; & Cf or
C=0C10CraCYa(Cr)?, for some simple algebra C (and hence isomorphic
to M, (F), for some n > 1), where ¢ denotes the automorphism of order 2
determined by the superstructure. Let F,, be the Regev’s polynomial given
in the previous theorem. If C' is simple, F,, is alternating in two distinct sets
of variables of order p + ¢ +r + s = dim C. By taking the product of m > 1
of such polynomials in distinct sets of variables, we obtain the existence of a
multilinear polynomial f, alternating in each of the 2m sets of variables and
f is a central polynomial for C'. It is clear that f can be viewed as alternating

on 2m disjoint sets of symmetric and skew variables of homogeneous degree
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0 and 1. If C' is not simple, let f be the polynomial obtained above. Then
the polynomial

f= f(y(lp,0)7 e 7y(2£6))f(2/(1q,1)a e 711(2;71)),70(2(17«,0)7 ce Z?r%))f(z(ls,n, ce 2(2211))

is the required one. O

Lemma 2.13. Let C1JCsJ -+ JCy_1JCy # {0}, where C,...,Cy are dis-
tinct simple x-graded subalgebras of A and C' = C1+- - -4+Cy = C1®- - -®Cy. If
p= dimF(Sg))), q= dimF(Sg)), r= dimF(Kg))) and s = dimF(Kg)), then,
for each m > 1, there exists a multilinear polynomial
_ 1 2m 1 2m 1 2m 1 2m
F= W0y Yoy Yiay -+ gy 20y -+ 2 200y 2o,y -+ 2ty
Y(k1,0)> Y(ka,1)s Z(k3,0)5 Z(ka,1))>
where ky + -+ + ky = 2k — 1, such that:

1. f is alternating on each set of variables {yép’o)}, {yf%l)}, {Zf},o)} and
{zfs 1)}, i=1,...,2m;

2. f does not vanish on A.

Proof. For every i = 1,...,k, let p; = dimF(S(Cg)), g = dimF(S(Cli)), r; =

dimF(K((;Oi)) and s; = dimF(Kgi)) and let
1, 2mi 1, 2myi 1y 2mi 2mi
fi= fi(y(pho)a o Y00 Y1) Y g 1) Fr0) 0 F(r,0) F(sin1)r T Z(si,l))
be the polynomial constructed in Lemma 2.12. Let

f= Z(/Sm) ?;m) mAemT1N1T122fols - Tpo1 fo1Tp—1 2k S,

where Ay = AV AY w € {yo, 41,20, 21}, and A%’ means alternation on

the p variables yé’)ll 0 ,ygz 0)" AY' means alternation on the ¢ variables
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y{(’; 1) ...,y(qk N , A2 means alternation on the r variables z(r oy zgri 0)
and AZ1 means alternation on the s variables z(s EILRRRE z(s 1) Notice that

each polynomial f; corresponds to a multitableau (77, T%, Ts, T}i) where T} is
a p; X 2m rectangle, Ts is a g; X 2m rectangle, T4 is a r; X 2m rectangle and T}
is a s; X 2m rectangle and the variables in each column of Tj, 71 =1,2,3,4, are
alternating. Then, f corresponds to the multitableau (74, 7%, T3, T,) where
T;,j = 1,2,3,4, is obtain by gluing the rectangles T;,z =1,...,k, one on
top of the other and by alternating the variables. Hence, Ajyo is alternation
on the variables in the jth column of 77, Agl is alternation on the variables
in the jth column of T3, A2 is alternation on the variables in the jth column
of T3 and A7' is alternation on the variables in the jth column of T}. Since
C1JCyJ -+ JC,_1JCy # {0}, there exist ¢; € Cj,i =1,...,k, by,... by €
J such that cibicobs---br_1cp # 0. For every ¢+ = 1,... )k, let gjafi’o) €

Sev gy € Sy Ay € KL AL € K&t = 1,...,2m, such that
f‘(il’i —2m,i -1 —2m,i 712 ZZm,i Zl,i 22m,i)
W00+ Ywi0) Vi) - Yiai 1) .00 200 Fsit) 0 Fsis)

Notice that, since C;C; = {0}, for i # j, alternation on the columns of

= 1,

T;,i = 1,...,4, can be replaced with alternation on the columns of each
Tij ,j =1,...k, respectively. Hence,

f(71,1 _omk  —1,1 _omk 1,1 _2mk 1,1 _2m.k
Y0 Y00 Va1 0 Yard)r 21,007 0 Z,0)7 Z(s1,1)7 0 70 Zspod)?

Cla"'ackablw"abkfl) =

(p! o pelan! gty orglsy ! Sk!)2m01b102bz ~bpgcp # 0.

We may assume that ¢1,..., ¢ b1 ..., 01 € SOUSOUKOUK® . Suppose
that k; of them belong to S, k, of them belong to S, ks of them belong
to K@ and k, of them belong to KM, ky + ky + ks + ks = 2k — 1. Then

f f( 2m,k 1,1 2m,k 1,1 ZQm,k Zl,l Z2m,k
p10>= Y0y Va1 Yiae) Fra0) 0 F e 0)7 A1) Fsgd)

Y(k1,0)5 Y(ka,1)5 Z(k3,0)5 Z(k4,l))
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does not vanish on A and is the desired polynomial. O
(a+b+c)! - (a+b)!

al(b+c)! = albl
Remark 2.15 ([20], Lemma 6.2.5). Let A = (n™). Then dy ~ a(nm)*m™™ n —

Remark 2.14. For every a,b,c € N,

oo, for some non-zero constants a and b.

Theorem 2.16. Let A be a finite dimensional x-superalgebra over an alge-

braically closed field of characteristic zero. Then
Cin"'d™ < &(A) < Con'2d™,
for some non-zero constants Cy, Cy, t1,ts. Hence, exp®(A) = d.

Proof. The upper bound for ¢&(A) was obtained in Lemma 2.10. Now we
will obtain the lower bound. Let A = By ®---® B,,+J(A) be a Wedderburn-
Malcev decomposition of A and let Cy,...,Cy € {By,..., By} be distinct

x-superalgebras such that
C1JCyJ -+ Cr1 JC # {0}.

Write C = C; + - 4+ Cj, and let p = dimF(Sg))), q = dimF(Sg)), r o=
dimF(K(CO)), s = dimF(K(cl)) and d = p+q+r+s. Let n > 2d+ki+ko+ks+ky,
where ki, ..., ks are as in Lemma 2.13, and divide n — (k1 + ks + k3 + k4) by

2d. Then we can write
n=2m(p+q+r+s)+ (ki +ko+ ks + ks) + ¢,

for some m,t where 0 < ¢t < 2d. Set ny = 2mp + k1 + t, no = 2mq + ko,
ng = 2mr + k3 and ngy = 2ms + k4. Let f be the polynomial constructed
in Lemma 2.13 of degree 2m(p + ¢+ r + s) + (k1 + ko + k3 + k4) and set
9= fYri4+1,0"* Yki+t,0 € Pry. We have that g does not vanish on A, since f

does not vanish on A and we may evaluate yx, 110 = = Yk, 410 = 1lc. The
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group H = Sopmp X Somg X Somr X Soms < Spy X Spy X Spy X Sy, = G acts
on f in a natural way and then H acts on g. Let M be the H-submodule
of Py generated by g. Then M contains an irreducible H-submodule of
the form Wiy = FHer, g, where (A) = 2md, (A) = (A(1), A(2), A(3), A(4)),
A1) F 2mp, A(2) & 2mg, A(3) = 2mr, A(4) = 2ms and er,, = er,,, @+ @
ety Now, for all o € Syyp, o(g) is still alternating on 2m disjoint sets

of variables {yép 0)},2' =1,...,2m, and Z o acts on g by symmetrizing
UGRTX(I)
A(1); variables. Thus, if A(1); > 2m, we get er,,,g = 0, a contradiction.

Similarly for A(7)1,7 = 2, 3,4. Hence, A(i); < 2m,i = 1,2,3,4. Thus, N'(1); >
p, N(2)1 > q, N(3)1 > r and N (4); > s. Suppose that either N'(1); > p
or N(2); > g or N(3); > r or X(4); > s and the total number of boxes
out of the first p rows of the diagram D)), out of the first ¢ rows of the
diagram D)), out of the first r rows of the diagram D)) and out of the
first s rows of the diagram Dy is at least [ + 1, where J™' = {0}. Since
FHeTQ> is a minimal left ideal of F'H, then FHC’TmeTm = FHeTW, where
C_'T<A> = OTA(1> ® - ® OTA<4)’ OTA(i) = Z (sgn(o))o,i = 1,2,3,4. Set

O'GCTA(”

g= CT<A> ety 9- Let
A/(l) = (p +p17 Y % +pa> )\,(1)@+17 sy A/(l)ml)a

)\/(2) = (q + q1,---,4 + Ab, )\,<2)b+17 ey )\,(2>m2)7
NGB) = (471,74 e, NB)erts oy N (3 ),

and

)\/(4) = (S + S1,...,8+ 84, )\,(4)d+1, N )\/(4)7”4),

where

Pt Pt @ttt s sy > U+
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N(Datts s N (D < p,
N(2)br1s -, N (2)my < g,
N(B) ety s N(B)my <1y
and
NDarts o N4, < s.
Now, the polynomial g is alternating on each one of the a sets of variables

Yi0 of order p + p1,...,p + p,, on each one of the b sets of variables y;, of

order ¢ + qi,...,q + @, on each one of the c sets of variables z; ¢ of order
r 4 ri,...,7 + 1. and on each one of the d sets of variables z;; of order
S+ 81,...,5 + sq. If we substitute on any of these sets of variables only

elements from C, we would get zero, since p = dimF(Sg))), q= dimF(Sg)),
r= dimF(Kg))) and s = dimF(K((jl)). It follows that we have to substitute

into these sets of variables at least
pr+- A ptra ottt retsi o+ sg >+ 1

elements from the Jacobson radical J. Since J!™!' = {0}, we get that g
vanishes on A, a contradiction. Hence, A(1) must contain the rectangle
u(l) = ((2m — 1)P), A\(2) must contain the rectangle p(2) = ((2m — 1)9),
A(3) must contain the rectangle p(3) = ((2m —[)") and A(4) must contain
the rectangle p(4) = ((2m — 1)*). By Remark 2.15, when m — oo,

H deg(u(i)) =~ a((2m —1)p)**((2m —1)g)*((2m — D)r)*((2m — I)s)"

p(2m—l)pq(2m—l)q7,(2m—l)rs(2m—l)s

2mpq2mq,r.2mr 2ms

> nl2p C

for some constants a, by, ..., bs,ts. Notice that the constant t, is possibly

non-positive. Hence, since

dimp (W) = ] [ deg(A(3)) = [ ] deg(u(@)).
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we obtain

-----

Therefore,

. n
C%n(A) - Z (ﬁl ﬁ4)cﬁ1 ~~~~~ ﬁ4(A>

> Cny

Z ntgmep

NnNy,...,Ny

2mqr2mr 2ms

q S

Now, ny = 2mp + ki + t, no = 2mq + ko, n3 = 2mr + k3, ny = 2ms + k4 and
n=2m(p+q+r+s)+ (ki + ks + ks + ky) +t. Thus, by Remark 2.14,

n S (2mp + 2mq + 2mr + 2ms)!
ni,...,ng) — (2mp)(2mq)!(2mr)!(2ms)!

Now, recalling the Stirling formula
n! ~v2mn (E>n > <E>n,
e e

(2mp + 2mq + 2mr + 2m3)(2mp+2mq+2mr+2ms)

we get that

(2mp + 2mq + 2mr 4 2ms)!
(2mp)!(2mq)!(2mr)!(2ms)!

>

Hence
ari £ (2mp + qu —+ 2mr + Qms)(Qmp+2mq+2mr+2ms) mp, 2ma..2mr 2ms
(&4 (A) 2 2mp 2mgq 2mr 2ms p q r o
@imp) 2 2rmg a2 ) (2ms)
ntdemd
= C’lnthn,
where C) = d~(t+katt) ig constant. O

Corollary 2.17. Let A be a finite dimensional *-superalgebra over an alge-
braically closed field F' of characteristic zero and let B be a maximal semisim-

ple x-graded subalgebra of A. Then

expgri(A) = max dimF(Cy) 4+ C,gi)),
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where C’{i), TN C’,Ef) are distinct simple x-graded subalgebras of B and
P ICP g - O JC # {0}

The next lemma will be useful in the proofs of next results. It can be

easily checked and the proof will be omitted.

Lemma 2.18. Let F be a field of characteristic zero, F its algebraic closure
and A a x-superalgebra over F. Then the algebra A = A®p F has an induced
structure of *-superalgebra, c&(A) = c&"(A) and exp®(A) = exp®i(A). Fur-

thermore, 1d®"(A) = 1d®"(A), viewed as *-superalgebras over F.

Corollary 2.19. Let A be a finite dimensional x-superalgebra over a field

of characteristic zero. Then exp®'(A) ezists, is a non-negative integer and

exp(A) < dimp(A).

2.3 A characterization of simple x-superalge-
bras

In this section, we characterize finite dimensional simple x-superalgebras by
using the x-graded exponent.

For a x-superalgebra A, let Z = Z(A) be the center of A. We start with
the following result about Z(A).

Lemma 2.20 ([37], Lemma 9). Let A be a x-superalgebra and consider Z =
Z(A). Then:

1. Z is a *-graded subalgebra of A. As a consequence,

Z=(ZNt g2zt g (Z20) @ (20);
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2. If A is a finite dimensional *-superalgebra, simple as an algebra, then
Z = 3(a, ), where a € (ZO)= 8 € ZW and 3 = (ZO)*. As a

consequence, [Z : 3] < 4.

Proof. 1. Let ¢ be the automorphism of order two determined by the Z,-
grading and let a € Z. If b € A, then there exists ¢ € A such that
c¢? =b and

a¥b = a?c? = (ac)? = (ca)? = ba®.

Hence, Z¥ = Z. Analogously, Z* = Z and hence Z is a *-graded
subalgebra of A.

2. Let A be a finite dimensional x-superalgebra, simple as an algebra.
Then Z is a field and F € 3 € 20 C Z are fields extensions, where
3=(Z)* Let a € (Z@)~. Then a and —a are the roots of f(x) =
2?2 — a? € 3[x] and so f(z) is irreducible in 3[z]. Hence [Z(©) : 3] =2
and Z© = 3(a). Analogously, Z = Z(3), where 3 € Z1) and
[Z: 2] = 2. Hence, Z = 3(, ) and [Z : 3] < 4.

We are in condition to prove the main theorem of this section.

Theorem 2.21 ([37], Theorem 10). Let A be a finite dimensional *-super-
algebra over a field F of characteristic zero and 3 = (Z(A)O)*,

1. If A is a simple x-superalgebra, then exp®(A) = dims(A);

2. If A is a semisimple x-superalgebra and A = A1®- - -BA,, is a decompo-
sition of A into simple *-superalgebras, then exp®(A) = max dims,(A;),

1<i<m
where 3; = (Z(A;)O)F;

3. exp®(A) = dimp(A) if and only if A is a simple x-superalgebra and
F=3.



2.3 A characterization of simple *-superalgebras 32

Proof. 1. Let A be a simple x-superalgebra. By Theorem 1.9, we have
that either A is simple or A is *-simple or A = B & BY¥, where B is a
simple x-ideal of A. First, suppose that A is simple. Then, by Lemma
2.20, Z is a field and either Z = 3 or Z = 3(a),a € (Z©)7, or
Z=3(3),8€ 2 or Z=23(a,p),ac (20,3 ZW If Z =3,
then

I
>
3
X
|
B

3@ F

« B
where [; & F, for all i = 1,...,[3 : F]. Therefore

ARpF 2 A®330pF
[3:F]

@(A ®3 F;),

i=1

I

where A®3 F} is a central simple algebra over F' with induced structure

of x-superalgebra. Moreover,
[3: F]dim3(A) = dimp(A) = dimp(A @ F) = [3 : F]dimz(A ®3 F}).
Thus, dim3(A) = dimz(A ®3 F;) and, by Theorem 2.16, we have that

dim3(A) = dimp(A ®3 F}) = exp? (A @p F) = expi(A).
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Now, suppose that Z = 3(a),a € (Z©)~. Then

ZerpF = Z®33®FF

1%
N
&

(oY)
P
e
@

T
!

12
N
g
el

I
(Y]
®
o
&
=

= ’L@E7

where F; & F for all i = 1,...,[3 : F]. Therefore

A@prF =2 ARz ZepF

[3:F]

~ @ ARz (F, @ F)
i=1
[3:F]

~ (PAe:zF) o (AR:z F).

On ecach (A®z F) @ (A®z F), ¢ acts as (a1 ®@ fi + ay @ fo)¥ =
ai ® fi+ad ® fo and * acts as (a1 ® f1+ a2 ® fo)* = af ® fo+as @ fi.
Hence, (A ®z F}) © (A ®z F;) is a simple *-superalgebra over F' and,

as in the previous case, it follows that
dim3(A) = dimp((A®z F) ® (A®z F})) = exp® (A®F F) = exp®'(A).

If Z=3(83),5 € ZW, then, as in the previous case,

where F; 2 F, for alli = 1,...,[3 : F], and

[3:F]
A@p F = @(A@zpi) ® (Awz F).

i=1
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On each (A®z F) ® (A®z F), ¢ acts as (a1 @ fi + aa @ fo)¥ =
af ® fa+a3 ® fi and * acts as (1 ® fi+ a2 @ fo)* = a1 @ fi +a; @ fo, if
pe(2W)r andas (m® fit+a:® fo)* = ai® fo+az@ f1,if f € (2W)7.
In any case, (A ®z F;) @ (A ®z F;) is a simple *-superalgebra over F

and, as in the previous case, it follows that
dim3(A) = dimp((A®z F)® (A®z F)) = exp™ (Agy F) = expi(A).

Finally, if Z = 3(a,8),a € (Z2)~, 3 € (ZW) then, as before,

3:F)
zorF=@FroFo
i=1

e

D F;

where F; & F, for alli = 1,...,[3: F], and

[3:F]
AQp F = @(A@z oAz F) e (Awz F) e (Awz F).
i=1

Oneach (ARz F;)® (A®z F) @ (A®z ) ® (A®z F;), ¢ acts as
(1@ fitaz® fotaz® fa+ai1®f1)? = af @ fotai ® fr+al® fa+ai® f3
and * acts as

(1@ fi+a® f2+a3® f3+aa® f1)" = 1@ f3+a;@ fi+a; @ fi+a; @ fo,
if € (Z2M)* and as

(1@ fi+as® fot+as® fs+as® f1)" = a1 @ fa+a5@ f3+a; @ fo+a; R f1,

if 3 € (ZM)~. In any case, (AQz F})®(AQz F)®(AQ: ) ®(A®z F})
is a simple *-superalgebra over F and hence
dim3(A) = dimp(A®zF)®(A@:z F)® (Ac: K)o (Aez F))
= engri(A XRF F)
= exp®i(A).
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This proves (1) in case A is a simple algebra.

Now, suppose that A is #-simple but not simple. Then A = C' ¢ C*
where C'is a simple algebra. Notice that the map ¢ : CHC* — CHCP,
where CP denotes de opposite algebra of C, defined by ¢ (a, b*) = (a,b)
is an isomorphism of algebras with involution, when C'®C*? is endowed
with the exchange involution. If C¥ = C, then (C?)? = C° and
3= Z(C)O. 1f 2(0)© = Z(C), then

Z(C):
Z(C F =~ @

=1
where F; @ F, for all i = 1,... [Z(C) : F']. Therefore,
Z(C):
A@p F = A®z
71

9

= @ C@z (C ®Z(C)F)

and (C ®z(c) F;) ® (C* ®z(c) Fi) is a simple *-superalgebra over F.
Thus, as before, we get
dim3(4) = dimp((C' ®@z(c) Fi) & (C* @z(c) F3))
= exp®(A®p F )
= exp®i(A).

If Z(C)© # Z(0), then Z(C) = 3(v), where v € Z(C)M. We have
that

AgpF = P Azc (FioF)
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Each summand ((C' & C*) ®z(c) Fi) ® ((C & C*) ®@z(c) F;) is a simple
x-superalgebra over F and
dims(4) = dimp(((C® C) @20 F) & (C & C) @(0) F)
— expS(A®y F)
= exp®i(A).
If C¥ # C, then C¥ = C and 3 = Z(C). Thus

ZC):F)
£,

I

Z(C)®p F
=1
where F; 2 F, for alli = 1,...,[Z(C) : F]. Therefore,

Z(0):
A@pF = EB (A®sz(c

QH

= @ (C @z Fi) ® (C* ®@z(0) F)

and (C ®zc) F;) & (C* @z(c) Fi) is a simple #-superalgebra over F.
Thus, as before, we get
dim3(4) = dimz((C ®@z(c) ;) @ (C* @zc) F))
= exps(A®p F)
= exp®i(A).

Finally, suppose that A = B @ B?, where B is a simple x-algebra.
In this case, 3 = Z(B)". If B is a simple algebra, then, as in the
previous case, we get that dims(A) = exp®i(A). If B is not simple,
then B = C' @ C*, where C is a simple algebra, 3 = Z(B)* = Z(C)
and, as before, dimz(A) = exp#(A). This proves (1).

2. Suppose that A is a semisimple *-superalgebra. Then A = A; @ --- P

A, where each A;, i =1,...,m, is a simple *-superalgebra. Thus,

AepF=PA;rpF.

i=1
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Now, by part (1), for each i =1,... ,m,
Ai@p F=Bj & & By,

Whereti: [31 : F],F] gp,]: 17---7ti7 Bil =... gBiti,eaChBij isa
simple *-superalgebra over I and dimp(B;;) = dims, (A;), j = 1,...,t;.
Hence, by Theorem 2.16,

exp(A) = exp(A®@p F)
= max dimp(Ba)

= max dims, (4;).

3. In order to prove (3), by part (1), we only need to show that exp®(A) =
dimp(A) implies that A is a simple *-superalgebra and F' = 3. Let
A= A®p F. Then dimp(A) = dimp(A) = exp?i(A) = exp#i(A). If
A is nilpotent, then exp#(A) = 0, a contradiction. Thus A contains a
maximal semisimple *-superalgebra B = By ®- - -® By, and dimz(A4) =
exp®(A) = dimp(C), where C' is a suitable *-graded subalgebra of B.
Hence, A is a semisimple *-superalgebra and, by part (2), dimp(A) =
dimp By, for some i € {1,...,m}, and so A is a simple *-superalgebra.
Hence, by part (1), dimp(A) = exp®i(A) = dim3(A) implies that F' =

3. This complete the proof of the theorem.



Chapter 3

x-Superalgebras of polynomial

growth

Let V be a variety of x-superalgebras. We write V = var®(A) in case V is
generated by a *-superalgebra A. We also write c&(V) = ¢&(A) and the
growth of V is the growth of the sequence ¢&(V),n > 1.

We say that a x-supervariety V has polynomial growth if there exist
constants a,t such that c&(V) < an!, for all n > 1. We say that V has
almost polynomial growth if ¢&(V) cannot be bounded by any polynomial
function but any proper subvariety of V' has polynomial growth.

This chapter is mainly devoted to the characterization of x-supervarieties
of polynomial growth. The main references are [10, 16, 37]. We shall
characterize x-supervarieties in four ways: through the *-graded exponent,
the exclusion of *-superalgebras from the *-supervariety, 75-equivalence and
through the decomposition of the (n)-cocharacter.

In what follows, given a *-superalgebra A, we shall denote by var(A) the
variety of algebras (with no additional structure) generated by A, by var*(A)

the variety of x-algebras generated by A as an algebra with involution and
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by varg"(A) the variety of superalgebras generated by A as a superalgebra.

3.1 Through the x-graded exponent

The main result of this section characterizes finite dimensional x-superalgebras
with polynomial growth in terms of the %-graded exponent.

Let m,n be positive integers. We denote by P(n,m) the number of
partitions of 7 in no more than m parts. Notice that when m > n, P(n,m) =

P(n), the number of partitions of n. We have the following technical lemma.

Lemma 3.1 ([16], Lemma 8.2). Let n > 1 be an integer and write n = ny +
no+ns+nyg, a sum of four non-negative integers. If n—ny = no+nz+ny < q,

then

Z( b >S6P(q,3>nq-
N1, Ng, N3, Ny

n—ni1<q
Proof. If we write n = (n — k) + k, with 1 < k < ¢, then k can be written as

k = ngy + ng + ny in at most 3!P(k, 3) = 6P(k, 3) different ways. Hence,

q—1
n n!
<N 6P(k, 3 < 6P(q, 3)n’.
Z <n1>n2an3an4) B % ( )(n_k)' (q )

n—mi<q

]

In the next lemma we provide a connection between the (n)-codimensions

and the ordinary codimensions of a x-superalgebra A.

Lemma 3.2 ([16], Remark 4.1). Let A be a x-superalgebra. Then cyy(A) <
cn(A), for alln > 1.

Proof. If f(xy1,...,x,) € P, N1d(A), then

f(yl,o, ey Yn,0oY115 - -5 Yno 15, 21,0 - - -5 Bng,05 21,15 - - - Zn4,1) € P(n) N Idgri(A)-
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Since P, N1d(A) can be canonically embedded in P,y NId®'(A) we derive
that ¢ (A) < cn(A). O

Next we characterize the finite dimensional x-superalgebras over an alge-
braically closed field of characteristic zero whose sequence of *-graded codi-

mensions is polynomially bounded.

Theorem 3.3 ([16], Theorem 8.3). Let A be a finite dimensional *-superal-
gebra over an algebraically closed field F of characteristic zero. Then c&(A)

1s polynomially bounded if and only if
1. ¢, (A) is polynomially bounded;

2. A= B+ J(A), where B is a mazimal semisimple subalgebra of A with

trivial induced Zo-grading and trivial induced involution.

Proof. Suppose that ¢&(A) is polynomially bounded. Since, by Lemma 2.1,
cn(A) < 8(A), we have that ¢, (A) is also polynomially bounded. Let A =
B+ J(A) be a Wedderburn-Malcev decomposition of A where B is a maximal
semisimple *-graded subalgebra. Now, since, by Lemma 2.1, ¢ (A) < ¢&(A),
the x-codimensions are polynomially bounded. Hence, by regarding A as an
algebra with involution, by [19], we get that B = By @ - - @ By, where B; = F
forall i =1,...,k, and * is the identity map on B.

If we now regard B as a superalgebra, since, by Lemma 2.1, ¢8"(A) <
c&(A), by [20, Theorem 11.9.3], we get that B has trivial Z,-grading.

Conversely, suppose that (1) and (2) are satisfied. Then ¢, (A) is poly-
nomially bounded, A = By @ --- & B,,, + J(A) and, for all i« = 1,...,m,
B; = F,Bf = B; and BY = B;, where ¢ is the automorphism of or-
der 2 determined by the superstructure. In order to prove that c&(A) is

polynomially bounded, we shall make use of ¢(,y(A). Now, by Lemma 3.2,
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cmy(A) < cn(A) and since, by hypothesis, c,(A) is polynomially bounded,
we get that cq,y(A) < an', for some a,t > 0. Let ¢ be the index of nilpo-
tence of J(A). Since B = B~ = {0}, we have that A®Y) C J(A) and
A= C J(A). This says that, whenever n — n; = ny + ng + ny > ¢, we have
that Pp,y N Idgri(A) = Py and so ¢y(A) = 0. Thus, for all n such that
n —ny < q, by Lemma 3.1, we get

) = (0 )ew

(n)

Z n
ni,Ng, N3, N4

n—ni1<q
< 6aP(q,3)n'".
This says that c&"(A) is polynomially bounded and the proof is complete.
O

Finally, we have the our first characterization.

Theorem 3.4 ([37], Theorem 3.7). Let A be a finite dimensional *-superal-
gebra over a field F of characteristic zero. Then exp®i(A) < 1 if and only if
A has polynomial growth.

Proof. By Lemma 2.18, we may assume that the field F' is algebraically
closed. Tt is clear that if A has polynomial growth, then exp#i(A4) < 1.
Conversely, suppose that exp®i(A4) < 1. Let A = A @ -+ @ Ay + J(A)
be a Wedderburn-Malcev decomposition of A. By Theorem 2.16, we have
that, for any 4,5 € {1,...,k},i # j, A;J(A)A; = {0} and dim(4;) = 1,
for every ¢ = 1,...,k. This says that A; = F, for every ¢ = 1,...,k, and
B = A& --® A, has trivial induced involution and grading. Now, since
exp(A) < exp®(A) < 1, we get that ¢,(A) is polynomially bounded and, by
Theorem 3.3, we have that &"(A) is polynomially bounded. This proves the

theorem. O
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3.2 Through the exclusion of x-superalgebras

from var®"(A)

In this section, we classify the x-supervarieties of almost polynomial growth
generated by finite dimensional *-superalgebras.
We have seen in Theorems 0.3 and 0.4 that var®(D#"), var*(D,) and

var*(M,) are varieties of almost polynomial growth. We have the following.

Theorem 3.5 ([16], Theorem 5.1). var™(D,), var®"(M,) and vars(D#") are

x-supervarieties of almost polynomial growth.

Proof. Since the grading on D, is trivial, we have that
Idgri(D*) = <Id*(D*), Y11, 21,1>T2*7

the Ty-ideal generated by Id*(D,), y1.1, 21.1- Also ¢&(D,) = ¢ (D.). Let U be
a proper subvariety of var#(D,). Since U C var®(D,), y1.1, 211 € 1d®(U).
Hence 1d®" (i) = 1d*(U), y11, z11)1y, E(U) = ¢ (U) and & (U) is polyno-
mially bounded. Analogously, var8(M,) and varg" (D) are x-supervarieties

of almost polynomial growth. O

Now, we will study two others *-superalgebras that appear in this char-

acterization: the x-superalgebra M#! and the *-superalgebra D",

3.2.1 The *-superalgebra M

Recall that we denote by M#& the algebra M endowed with the grading

a 0 0

o

o o O
o O o
o0 e}
S oS O
o o o O
o o O >
o o o O
S an o O
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and endowed with the reflection involution. We have that (M©)* = M©),
(M)~ = {0}, (MW)* = F(e1z + esq) and (MM)~ = F(e1s — es4). Notice
that 21,0 and X1,1T2,1 are identities of Mgri’ where Ti1 = Yi1 O Ty1 = Z51- Let

us denote by I the T5-ideal generated by the polynomials 21 and 1 129 ;.

Remark 3.6. For any polynomial f € F(X|Zy,*) we have that 1 fxe; € I.

Proof. We may clearly assume that f is a monomial of homogeneous degree

0. Since [z11, f] € F(X]|, Za, )V, we get
11 f21 = w11, flro1 + fr11290 =0 (mod ).
[

Remark 3.7. For any o € Sy, we have ¥1)0 " Yo(n),0 = Y10 Yno (mod I).

Proof. Notice that [y;0,v0] = 0 (mod I). Hence v;0yj0 = y;0¥i0 (mod I)

and the conclusion is clear. O

Theorem 3.8 ([16], Theorem 6.3). 1d®" (M#") = (21, x1122,1)73 . Moreover,

g (MeE) grows exponentially.

Proof. Since, by Lemma 2.1, ¢t (M,) < & (M®™) and ¢’ (M,) grows exponen-
tially, we get that c8'(Me") grows exponentially. Let I = (21,0, T11021) 75
By the discussion above, I C Id&"(Ar&).

We shall prove that if f € Id®(Me&7), then f = 0 (mod I). To this
end, we may clearly assume that f is a multilinear polynomial of degree,
say, n. Then, by Remark 3.6 and Remark 3.7, we get that either f =
ayio- - Yno (mod I), for some av € F, or f can be written (mod /) as a

linear combination of monomials of the type

Yir 0" Yi ,001,1Y4011,0 *** Yi_1,05
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where 0 <t <n—1,4; < - <iggand 4441 < -+ < lp_1.
In the first case, by making the evaluation y;o = 1, for ¢ = 1,...,n, we
get a =0 and so f € [ as wished.

In the second case, write

n—1
f= E E iy i Yin,0 " Yie 0011 Yi1,0 *** Yin_r,0  (mod I),

t=0 1<iy <--<iy<n—1
with a5, 4 € F. If for some ¢y < -+ < 4, ;. # 0, we make the
evaluation y;, 0 = -+ = Y;,0 = €11 + €44, Yirs10 = *** = Yin_1,0 = €22 + €33 and
Z1,1 = €12 + €34, in case Z1,1 is symmetric, Or Iy = €12 — €34, in case Z1,1 is
skew. It is easily seen that f evaluates to o, (€11 + €sq)(€12 £ e34)(e22 +
es3) = a4, €12 (mod I) and «;, ; = 0. Thus f € I and the proof is

complete. O

In the next theorem, we will use the representation theory of the general

linear group. We refer [9] for more details.

Theorem 3.9 ([16], Theorem 6.4). M®" generates a x-supervariety of almost

polynomial growth.

Proof. By Theorem 3.8, ¢&"(M®™) grows exponentially. Hence, M8 gener-
ates a x-supervariety of exponential growth.
We start by computing the decomposition of the (n)-cocharacter of A&

into irreducible characters. Let

Xy (MEY) = Z T X () (3.1)

be the decomposition of the (n)-cocharacter of M8,
Now, since 21 is an identity of M if X(n appears with non-zero mul-

tiplicity in (3.1), we must have A(3) = 0. Moreover, by Remark 3.6, two
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variables of homogeneous degree 1 cannot appear in any non-zero mono-
mial (mod Id#(M& ). Thus my # 0 in (3.1) implies that either (\) =
(A(1),(1),2,2) or (\) = (A(1),9,2,(1)) or (A\) = (A(1),9,D,2). Since
dimp((M@)*) = 2, any polynomial alternating on three symmetric vari-
ables of homogeneous degree 0 vanishes in M#". By standard arguments (see
[20]) this says that my # 0 implies that A(1) = (p+g¢,p), wherep > 0,¢ > 0,
is a partition with at most two parts.

By Remark 3.7, symmetric variables of homogeneous degree 0 commute
(mod Id#"(M#?)). Hence we have that my # 0 implies that either (\) =
((n),2,2,2) or (A\) = ((p+4,p),2,2,(1)) or (A) = ((p+¢,p),(1),2,9),
where p > 0,¢>0and n =2p+q+ 1.

We claim that m(p1q,p),0,2,(1)) = M((p+a,p),(1),2,2) = ¢+ 1. To this end, we
follow closely the proof of [32] (or [39]), taking into account the due changes.

Define, for 0 < i < ¢, the polynomials

i I S ~ - ~ q—i
aé,?;(yl,m Y2,0, $1,1) =Yr0¥10 Y0011 Y20 Y20Y10

~~ ~~
p p

where — and ~ mean alternation on the corresponding variables and z;; =
Y1,1 O T11 = 2Z1,1-

As in the proof of [32] (or [39]), we can use the representation theory
of the general linear group and the following can be shown: the polyno-
mials a% are highest weight vectors corresponding to Young tableaux and
they are linearly independent (mod Id#"(M®%)). Hence mpiqp)o.0,(1) =
M((p+ap),(1),2,2) = ¢ + 1 as claimed. Also, through an obvious evaluation, it

is clear that m(,),0,0.¢) = 1, for all n > 1.

Now, let U be a proper subvariety of vars(A/&"). Then, if

Xmy(U) = Z M X ()
(A)Fn
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is its (n)-cocharacter, by comparing with (3.1) we must have that for some
(n1,...,n4) and for some (A) = (n1,...,na), miy, < my).

Let T = Id®(U). If (\) = ((n), @, @, D), this means that y1¢- - Yno is
an identity of /. But then also aj(f;z] e I as soon as p > n. It follows that
m’</\> = 0 for all (\) F (ny,...,n4) with ny +---+mng > 2n+ 1 and U has
polynomial growth.

In case (A) = ((p+ ¢.4), (1), 2,8) or () = (p + 4,0), 2,2, (1)), then
m’</\> < myyy says that the corresponding polynomials al(,?], 0 <1 <gq, are
linearly dependent (mod I ). Notice that g1 021,172, is symmetric of homoge-

neous degree 1 and %1 0y1,192,0 is skew of homogeneous degree 1. Hence, by

substituting y; ;1 with i 021,1%2,0 we get that if

q
Zai@%(ym, Y2.0,Y11) =0 (mod I)
=0

then

q
Z aiaz(oa)rl,q(yl,(]aylm 211) =0 (mod I).
i=0

Similarly, from

q
Zaia%@l,ovyzo, z11) =0 (mod I)
i=0

we get

q
Zaial(j-l)-l,q(yl,m Y20,Y11) =0 (mod I).
i=0

As in the proof of [32] (or [39]) one deduces that for N = 3p+ ¢ —1 and
suitable M < N,
y%m;y{\j@_M = Z aiyioxl’ly{\f({i (mod ]~)
<M

By proceeding as in that proof, we finally get that

M((N+1)2),(1),2.2) = M((N+1)2),2,2,(1)) = L.
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The outcome of this is that if A = (A, Ay) F n — 1 is such that Ay > N + 1,

then m,(1),2,0) = M(r2,2,1)) = 0. Thus
X%Té,o,o(u) = X((n),2,2,2)

Xfﬁm,o,o(u) = Z ()‘1 — A2+ 1)X((>\1,>\2),(1),®,®)a

(A1, 2)Fn—1
Ao <N

X 00 @) = > (=Xt DX e
(A, h2)Fn—1
Ao<N
and x(n) () = 0 for all other (A) F n. Now, for a partition A = (A, A2) F n—1
such that Ay < N, it is easily seen, by the hook formula, that deg(x,) =
xa(l) = (1) %=22 <M. Hence, ¢y (U) < 1+ 20N and & (U) is polynomi-
ally bounded. O]

3.2.2 The *-superalgebra D&

Recall that we denote by D#' the algebra D = F @ F, with grading
(F(1,1), F(1,—1)) and exchange involution. Notice that D& = F + cF,
with ¢ = 1 and ¢* = —c. We have that (D©)* = DO (D)~ = {0},
(DM)* = {0} and (DW)~ = DW. Hence, z; ¢ and y; ; are *-graded identities
of De™,

Theorem 3.10. 1d*(D#%) = (210, y11)73. Moreover, c&(D#%) grows expo-

nentially.

Proof. Since, by Lemma 2.1, ¢*(D,) < &%(D®") and c:(D,) grows expo-
nentially, we get that c&(D8") grows exponentially. Let us denote by I
the Ty-ideal generated by the polynomials 2z and y;;. By the above,
I C 1d®(D#%). Notice that [y10,120] = 0 (mod I), [21.1, 2] = 0 (mod I)
and [y1,0,21.1] =0 (mod I).
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We shall prove that if f € Id®(D#), then f = 0 (mod I). To this
end, we may clearly assume that f is multilinear polynomial of degree say,
n. Since [y10,Yy20] = 0 (mod I), [z11,221] = 0 (mod I) and [y10,211] =0
(mod 1), we get that f can be written (mod I) as a linear combination of

monomials of the type

Yir, 0" Yiy 0%i1401,1 °° * Zip, 15

where 0 <t <n, i) <--- <iggand 4401 < -+ < iyp.

Write
n
f= E E iy inYi,0 ° " Yiy,0%00401,1 "7 Rig,1 (mod [),
t=0 1<iy <--<iz<n—1
with «;,,. ;. € F. If for some 43 < -+ < 4y, ;. ;. # 0, we make the
evaluation y;, 0 = -+ = y;0=1and z;,,,1 = -+ = 2,1 = ¢. It is easily seen

77777777

proof is complete. O

Theorem 3.11. Let A be a x-superalgebra. Then 1d®"(A) ¢ 1d®"(De) if

and only if 2| € 1d*'(A), for some d > 1.

Proof. Since z{, ¢ Id®(De™), for every d > 1, we have that Id®"(A) ¢
Id&"(De).
Suppose that 1d8"(A) ¢ 1d® (D). Let f € 1d®(A), f ¢ 1d&"(D#), a

multilinear polynomial of degree n. Since f ¢ Id&"(D#),

= f(yl,O; ey Yros 21,1 - ;anr,l)

and f does not vanish on a basis of D&, We have that {1, c} is a x-graded
basis of D& and by the above,

f(l,....1,c....c) = f(c*,...c% ¢, ...,c) = ac™'",
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with a # 0. Since zil is symmetric of homogeneous degree 0, we get that

f(Zfl, . 72%,1? 1y 211) = azﬁr € Idgri(A). n

In the proof of the next theorem, as in Theorem 3.9, we will use the

representation theory of the general linear group.
Theorem 3.12. X<n>(Dgri) = ZX(H*T),@,Z,T'
r=0

Proof. Let

X(ny(DE) = Z M) X (A (3.2)
(AN)Fn

be the decomposition of the (n)-cocharacter of D#.

Since z19 and y; 1 are identities of D8, if x(\ appears with non-zero
multiplicity in (3.2), we must have A(2) = A(3) = 0. Thus, m # 0 in (3.2)
implies that (\) = ((n —r),@,,(r)). Since dim(D®)* = dim(DW)~ =
1, any polynomial alternating on two symmetric variables of homogeneous
degree 0 or on two skew variables of homogeneous degree 1 vanishes in D',
The commutativity of D#" implies that my < 1. Also, since Yio 211 does

not vanish in D&, we get that mgy = 1. O
Corollary 3.13. ¢&"(D#) = 27,
Theorem 3.14. D&% generates a x-supervariety of almost polynomial growth.

Proof. By Theorem 3.10, we have that c&(D®%) grows exponentially. Let
U = var®(A) be a proper subvariety of var¢”(D#"). By Theorem 3.12, we
have that

X(n) (Z/{) = ZmO\)X(n—r),@,@,r;
r=0

with myy € {0,1}. Since, by Theorem 3.11, 2¢ | € 1d®"(A), for some d > 1,

it follows that m(y = 0 as soon as r > d. This means that &"(U) =
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d—1
Z (n> < n? and U has polynomial growth. This complete the proof of the
r
r=0

theorem. ]

In order to prove the main theorem of this section, we need of two

technical lemmas.

Lemma 3.15 ([16], Lemma 8.4). Let A and B be x-superalgebras. If B has
trivial grading and B & var#i(A), then B ¢ var*(A©).

Proof. Clearly, Id®"(A©) = (Id*(A©), y 1, z1,1)1; and also 1d®(B) = (1d*(B),
Y11, 21,1)1y- Hence, if B € var*(A©®), then B € var®(A©). Since A is a
subalgebra of A, var®(A©) C var#™(A) which says that B € var#i(A4). O

Lemma 3.16 ([16], Lemma 8.5). Let A be a finite dimensional x-superalgebra
over an algebraically closed field of characteristic zero. Let A = Ay @ -+ @
Ag + J be a Wedderburn-Malcev decomposition of A, where Ay,..., Ay are
simple x-superalgebras. If for some i,l € {1,... k},i # I, we have that
AP JOAD £ L0V then M € varsi(A).

Proof. Suppose that there exist i,1 € {1,...,k},7 # [, such that AEO)J(l)Al(O)
# {0} and let a € AED), be Al(o),j/ € JW such that aj’b # 0. If e; and e, are
the unit elements of AZ(.O) and Al(o), respectively, then ejaj’bes # 0 and if we
set aj’b = j, we have that e jes # 0 with j € JO).
Let k& > 1 be the largest integer such that e;Je, C J*¥ and let A’ =
A/J*L Since J is a *-graded ideal, A’ is a x-superalgebra and A’ € varg"i(A).
Let é1,€2,j be the images of eq,es,j in A’, respectively. Since J =

J(A") = J/J*1 we have that é;.Jé; # {0}. Let C' = span{eéy, €, e1jea, eaj*er }.

Since e; and ey are orthogonal idempotents and e JeyJ, esJe;J C JE1 we
get that C' is a subalgebra of A’. Moreover, C is a x-superalgebra and
(CON*T = span{éy, &}, (CO)~ = {0}, (CW)T = span{e jes + exj*e;} and
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(CW)~ = span{e;jes —egj*e1 }. Recalling the multiplication table of M& we

obtain that the map 1 : C — M#" defined by €; — €11 + eas, €3 — €29 + €33,

e1jes > €19, €3j*e; — ezy is an isomorphism of x-superalgebras. Hence

M#t € varg(C) C var®i(A’) C varg™(A) and we are done. O

In the following theorem we characterize varieties of almost polynomial

growth which are generated by finite dimensional x-superalgebras.

Theorem 3.17 ([16], Theorem 8.6). Let A be a finite dimensional x-superal-
gebra over a field of characteristic zero. Then c8(A) is polynomially bounded

if and only if M*, D*’ Dgr’ Dgri’ Mgri ¢ Vargri(A).

Proof. By Lemma 2.18, we may assume that the field F' is algebraically
closed. Suppose that ¢&(A) is polynomially bounded. Since, by Theorem
3.5, by Theorem 3.8 and by Theorem 3.10, the *-graded codimensions of M,,
D,, D&, D# and M#! grow exponentially we get that M,, D,, D&, D
Me & vars'i(A).

Conversely, suppose that M,, D,, D" D&% Me" & varsi(A). Let A =
B + J be a Wedderburn-Malcev decomposition of A, where B is a maximal
semisimple *-superalgebra. Write B = A; @& --- & A, where the Als are

simple x-superalgebras. Then
A = BO 4 JO = A0 g ... g A,(f) + JO

is an algebra with involution and with trivial grading. Since, by Lemma
3.15, M., D, ¢ var®(A©®), we have, by [14], that c:(A©) = &(A©) is
polynomially bounded. Also, by [19], AEO) > F foralli=1,...,k, and * is
the identity map on B(©. Since ¢, (A®) < ¢ (A©®) is polynomially bounded,
exp(A©) < 1 and so AV JOA = (0}, for alli,l € {1,... k},i #1.

Since Ago) =~ F forall i =1,...,k, we must have either Agl) = {0} or
AZQ) = F, foreach i = 1,...,k. If AZQ) = F, for some ¢ = 1,...,k, then
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either D# or D8 € var#(A), a contradiction. Thus A" = {0} for every
1=1,...,k, and B has trivial grading and trivial involution.

Now, suppose that there exist ¢,0 € {1,...,k},7 # [, such that A;JA;, =
AP g A £ {0}, Then, by Lemma 3.16, M# € var#i(A), a contradiction.
Therefore, we have that, for all i,1 € {1,...,k},i # 1, A;JA; = {0}. By the
properties of exp(A), we have that exp(A4) < 1 and ¢,(A) is polynomially
bounded. Hence, by Theorem 3.3, ¢I™(A) is polynomially bounded and this
completes the proof of the theorem. n

As an immediately consequence of the above theorem, we have the fol-

lowing two corollaries.

Corollary 3.18 ([16], Corollary 8.7). Let A be a finite dimensional x-super-
algebra over a field of characteristic zero. Then the sequence c&(A), n > 1,

1s either polynomially bounded or grows exponentially.

Corollary 3.19 ([16], Corollary 8.8). var®(MM,), vars(D,), vars"(De"),
varé"(D8™) and var® (Me™) are the only *-supervarieties of almost polyno-

mial growth generated by finite dimensional x-superalgebras.

3.3 Through T5-equivalence

In this section, our goal is to prove that a finite dimensional *-superalgebra
A has polynomial growth if and only if any finite dimensional x-superalgebra
B such that Id®"(A) = Id®(B) has an explicit decomposition into suitable
subalgebras with induced graded involution *. The next result will be useful

to this end.

Lemma 3.20 ([10], Lemma 3.4). Let F' be the algebraic closure of the field F

of characteristic zero and let A be a finite dimensional x-superalgebra over F'.
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Then var®(A) = var®(B), where B is a finite dimensional *-superalgebra

over F' such that dimp A/J(A) = dimp B/J(B).

Proof. By Theorem 1.9, we may write A = A;®---®A,,+J, where each A; is
a simple *-superalgebra, i = 1,...,m, and J = J(A) is the Jacobson radical
of A. By Theorem 1.12, the structure constants of each A; are rational. Let
A; be a basis of A; consisting of symmetric and skew elements of homogeneous
degree 0 and 1 and let B; be the x-superalgebra generated by A; over F.
Since char(F') =0, Q C F and so B; is finite dimensional over F'. Let J be a
basis of J over F consisting of symmetric and skew elements of homogeneous
degree 0 and 1 and let B be the algebra generated by A;U---UA,, UJ over

F. Since J is nilpotent, B is finite dimensional over F'. Moreover,
dimp A/J(A) = dimp(A1®- - -DA,,) = dimp(B1®- - -®B,,) = dimp B/J(B).

Now, it is clear that Id®"(A) C Id®(B). On the other hand, let f €
I1d®"(B), that we may suppose multilinear. Then f vanishes on the set A; U
-~ UA,, UJ, which is a basis of A over F. Hence 1d®"(B) C 1d®"(A) and
varg(A) = var®(B). O

Now we present the main result of this section.

Theorem 3.21 ([10], Theorem 3.5). Let A be a finite dimensional *-super-
algebra over a field F' of characteristic zero. Then &"(A) is polynomially
bounded if and only if var®i(A) = var®"(B; @ - - - @ B,,), where each B; is a
finite dimensional x-superalgebra over F such that dimp B;/J(B;) < 1, for

alli=1,...,m.

Proof. Suppose that ¢&"(A) is polynomially bounded. First, suppose that F'
is an algebraically closed field. Then, by Theorem 1.9, A = B + J, where
B is a maximal semisimple x-graded subalgebra of A and J = J(A) is the
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Jacobson radical of A. Since ¢&"(A) is polynomially bounded, by Theorem
34, B=A®---® A, where A; = F  foralli =1,...,m, and A;A; =
A;JA, = {0}, for all i # k.

Let £, = A;+J,i=1,....,m. Then A = FE,+---+ E,, and J; =
J(E;) = J C E; is the Jacobson radical of E;. We claim that

1459 (A) = 1d(By + o+ Ey)
= 1d®(Ey) N - N1d(E,,) N1d&(J).

This completes the proof in this case, since
Id*(E) N --- N IdEY(E,,) N1dE(J) = 1d* (B @ --- @ E,, @ J)

In fact, it is clear that
Id®(A) C Id®(Ey) N --- N Id¥(E,,) N1 ().

Let f € Id*(E)) N --- N 1d#(E,,) N 1d(J) multilinear and suppose that
f €1d®(A). Let B and J be basis consisting of symmetric and skew elements
of homogeneous degree 0 and 1 of B and J, respectively. Then A = BU J
is a basis of A and it is enough to evaluate f on this basis.

Since f ¢ 1d®"(A), there exist s1,...,s, € A such that f(sy,...,s,) #
0. Since f € Id®(J), there exists at least one element, say s, that does
not belong to J. Then s, € A;, for some i € {1,...,m}. Recalling that
AiAy = AjJA, = {0}, for all ¢ # k, we have that s1,...,s, € A; U J,
otherwise f € 1d#"(A). Thus sy,...,s, € A; +J = E;, a contradiction, since
f € 1d#"(E;). This proves the claim.

If F is arbitrary, we consider the algebra A = A ®p F, where F is the
algebraic closure of F. Since dimp A = dimy A, by the first part, Id®"(A4) =

Idgri(Bl @ --- @ B,,) where each B; is a finite dimensional *-superalgebra



3.4 Through the decomposition of the (n)-cocharacter 55

over F' and dimp B;/J(B;) < 1, for all i = 1,...,m. By Lemma 3.20, for
all i = 1,...,m, 1d®(B;) = Id®(C;), where C; is a finite dimensional *-
superalgebra over F such that dimp C;/J(C;) = dimp B;/J(B;) < 1. Since
I8 (A) = 1d®(A), viewed as x-superalgebras over F', we get that

Id®(A) = 1d*(B,&--- @ B,,)
= Id®(By)N---NI1d®(B,,)
= Id#(Cy)N---NId*(C,)
= 1d¥(Ci @@ Cy)

(4).

Conversely, suppose that varg™(A) = var®(B; @ - -- @ B,,), where each

= Id*

B; is a finite dimensional x-superalgebra such that dimp B;/J(B;) < 1, for
all 2 = 1,...,m. Then either B; is nilpotent or B; = C; + J;, where C; = F
and J; = J(B;). Since B;B, = {0}, if i # k, it follows that J = J; +

-+ J,, is a nilpotent ideal, By & --- & B,, = C; & ---d C,, + J and
C;JCy = {0}, for i # k. Therefore, by Theorem 3.4, &"(B; & --- & B,,)
is polynomially bounded. Hence, c8"(A) is polynomially bounded and the

proof of the theorem is complete. m

3.4 Through the decomposition of the (n)-co-
character

The main result of this section characterizes finite dimensional x-superalgebras
having polynomial growth in terms of the decomposition of its (n)-cocharacter.

We start with the following technical lemma.

Lemma 3.22 ([10], Lemma 4.1). Let § € N and let

(A\) be a multipartition
of n. If n; — X(i)1 <6, for alli=1,2,3,4, then d»y < n*
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Proof. Let i € {1,2,3,4}. Since n; — A(i); < §, by hook formula, we get
that d)\(i) < #1)'1, < (njl—j&), < nf Hence, d<)\> = d)\(l) . --d)\(4) < (n1 .- -714)5 <

nAs. O
In order to prove the next proposition, we use the Lemmas 3.1 and 3.22.

Proposition 3.23 ([10], Proposition 4.4). Let A be a finite dimensional -

superalgebra and let

Xy (A) = D mpyxo
(ANFn

be its (n)-cocharacter. If, for some positive integer §, m(yy = 0 whenever

n— i), >0, for some i € {1,2,3,4}, then c&(A) is polynomially bounded.

Proof. Suppose that there exists a constant ¢ that satisfies the hypothesis
of the proposition. Then my # 0 implies that n — A(i); < 6, for all i €
{1,2,3,4}. Notice that, since n—A(7); < 9, we have that n—n; < n—A(i); <
d, for all i € {1,2,3,4}. Then, by Lemma 3.22, dyy, < n*.

By Remark 2.4, we have that my < an’, for some constants « and t,

for all (\) - n. Hence
com(A) = Y mydy

= ) mpydy

n—X(4)1<6
1<i<4

S ant+46 Z 1

n—X(4)1<d
1<i<4

t+46
< aCn'™°,

where C' is a constant that depends only on §.



3.4 Through the decomposition of the (n)-cocharacter 57

Thus, by Lemma 3.1, we have that

w = 3 ()

n—nm;<d
1<i<4

< acnts 3 (1)

n—nm;<d
1<i<4

< pnf,
where 3 = 6aCP(4,3) and k = t+55. Hence c8"(A) is polynomially bounded.
[

Now we are in condition to prove the main result of this section.

Theorem 3.24 ([10], Theorem 4.5). Let A be a finite dimensional *-super-
algebra over a field F of characteristic zero. Then &"(A) is polynomially

bounded if and only if

Xy (A) = D mpyxe
(A)Fn

n—XA(1)1<q

where q is such that J(A)? = {0}.

Proof. By Lemma 2.18, we may assume that the field F' is algebraically
closed. Suppose that ¢&(A) is polynomially bounded. Then, by Theorem
3.3, A=A1® - @A,+J, where J = J(A) is the Jacobson radical of A. Also,
by Theorem 3.4, A; = F, for all i = 1,...,m, and A;A; = A;JA;, = {0}, for
all i # k.

Let (A) be a multipartition of n such that n — A(1); > ¢ and suppose
by contradiction that m ) # 0. Then there exist a multitableau 7}, and
f € Py, such that g = er,, [ ¢ Id#"(A). Notice that g is, in particular,
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a linear combination of alternating polynomials in A(1); sets of symmetric
variables of homogeneous degree 0.

Let h be a summand of g. We shall prove that h € Id®"(A) and so
g € 1d®"(A), a contradiction. Since A;Ay = A;JA;, = {0}, if i # k, in order
to get a non-zero value of h, we must evaluate its variables in elements of J
and in elements of one simple component, say A;. Since dim(A;) = 1, we can
substitute at most one element in each alternating set of symmetric variables
of homogeneous degree 0. Thus, we can evaluate at most A(1); elements of
A; and at least n — A(1); elements of J. Since n — A\(1); > ¢ and J? = {0},
we get that A = 0 and hence g € 1d®(A). This contradiction proves that
myy = 0 for all (A\) - n such that n — A(1); > q.

Conversely, suppose that the (n)-cocharacter of A has the decomposition

Xny(A4) = Z MY X (A5
A)Fn
n—=A(1)1<q
where ¢ is such that J(A)? = {0}. In this case, m,y = 0 whenever n—X\(1); >
q. Then, by Proposition 3.23, we have that c&(A) is polynomially bounded.
The proof of the theorem is complete. n

By Theorems 3.4, 3.17, 3.21 and 3.24, we have the following equiva-
lent characterizations of finite dimensional x-superalgebras with polynomial

growth.

Theorem 3.25. Let A be a finite dimensional *-superalgebra over a field F'

of characteristic zero. The following conditions are equivalent:
1. exp#i(A) < 1;
2. & (A) < an', for some constants o and t;

3. M., D,, D&, D= Mt & varsti(A):
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4. var®(A) = var®" (B, @ - - - @ B,,,), where each B; is a finite dimensional

x-superalgebra such that dimp B;/J(B;) <1, for alli=1,...,m;

5. Xmy(A) = Z moy Xy where q is such that J(A)? = {0}.
(A)Fn

n—X(1)1<q



Chapter 4

x-Superalgebras with

exptt(A) > 2

In the previous chapter, we classified finite dimensional *-superalgebras such
that exp®(A) < 1. In this chapter, we shall classify finite dimensional -
superalgebras such that exp®i(A) > 2. The main reference for this chapter
is [37].

Recall that the algebra UT,, of upper triangular matrices of order n can
be endowed with the involution (a;;)* = @nt1-jnt1-i, called reflection invo-
lution. This involution is obtained by flipping the matrix along its secondary
diagonal. Any subalgebra of UT,,, for some n > 1, appearing in this chapter
will be endowed with this involution.

Consider the following x-superalgebras:
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with grading

a e 0 0 ab af 0 0
0d oo 0 0 0 0
00dgl|l | o 0o 0 ahn
000 a 0 0 0 ab

and reflection involution;
7. E; = My(F) with trivial grading and transpose involution;
8. Eg = My(F) with trivial grading and symplectic involution;
9. Ey = M, 1(F) with transpose involution;
10. Eyg = M1 (F) with symplectic involution;

11. By = (F+cF)&(F+cF) with grading (F'+ F, ¢(F'+ F')) and exchange

involution.

In the next 4 lemmas, by Lemma 2.18, we assume that the field F' is

algebraically closed.
Lemma 4.1 ([37], Lemma 13). exp®(E;) = 3,i =1,2,3.

Proof. We have that the Wedderburn-Malcev decompositions as *x-superal-
gebras of F;,i = 1,2, 3, are the same: F; = A1 © Ay ® Az + J(E;),i = 1,2,3,
where Al = F(Gu + 666)7 A2 = F(€22 + 655), Ag = F(€33 + 644) and

J(E;) = Feia ® Feyz @ Feas @ Feys @ Feas @ Fegg.

We get that Ay J(FE;)AyJ(E;)As # {0} and, by Theorem 2.16, it follows
that exp®i(E;) = 3,i = 1,2, 3. 0

Lemma 4.2 ([37], Lemma 14). exp®(E;) = 3,i = 4,5.
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Proof. We have that the Wedderburn-Malcev decompositions as *x-superal-
gebras of E;,i = 4,5, are the same: E; = Ay ® Ay + J(E;),i = 4,5, where
Ay = Feyy @ Fyy, Ay = Fegy + e33) and J(E;) = Fejs @ Fesy. We get that
A J(E;)Ay # {0} and, by Theorem 2.16, it follows that exp®i(E;) = 3,i =
4,5, u

Lemma 4.3 ([37], Lemma 15). exp®(Fs) = 3.

Proof. We have that the Wedderburn-Malcev decomposition as x-superal-
gebra of Fg is Fg = Ay @ Ay + J(FEg), where Ay = FZsy(e11 + e4q), Ay =
F(ega+ess) and J(Eg) = FZy(e12)®FZy(ezq). We get that Ay J(Eg)As # {0}
and, by Theorem 2.16, it follows that exp®i(Eg) = 3. O

Lemma 4.4 ([37], Lemma 16). exp®(E;) =4,i =7,...,11.
Proof. The result follows from Theorems 1.12 and 2.21. O

We remind the reader that we denote by D, the algebra D = F'@ F with
trivial grading and exchange involution and by D# the algebra D = F & F
with grading F(1,1) ® F(1,—1) & F + cF,c® = 1, and trivial involution.

From now on F' will be a field of characteristic zero and A a finite
dimensional x-superalgebra over F'. By Theorem 1.9, if F' is an algebraically
closed field, we can write A = A; & --- @& A,, + J, where each algebra A;,
i=1,...,m,is asimple x-superalgebra and J = J(A) is the Jacobson radical

of A.

Lemma 4.5 ([37], Lemma 17). Suppose that F is algebraically closed and
exp®i(A) > 2. If there exist three distinct x-graded simple components A; =
Ay @2 A & F such that A JALJA; # {0}, then E; € var®(A) for some
i€ {1,2,3).
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Proof. Let eq, es, e3 be the unit elements of A;, A, and A;, respectively. Then
ez =e,, e, € A%O), el = e, and e.eg = d,5¢, for r,s =1,2,3 and n € {i, k, [}.

Since e;JegJes # {0}, let m > 1 be the greatest integer such that

# {0} and e, JepJe. C J™, for all permutations (a, b, c) of (1,2,3). Let
A = A/J™L. Then A is a *-superalgebra and A € var®i(A). Let ¢; =

+ Jm*+ i =1,2,3. Then ¢;,7 = 1,2,3, are orthogonal idempotents of A

such that, by eventually renaming the idempotents, €, Jé;Jes # {0}, where
J = J(A) is the Jacobson radical of A. Also, &,.Jé,Je.J = Je,JeyJe, = {0},
for all permutations (a, b, ¢) of (1,2,3). Hence, we may assume that in A we
have e; JegJes # {0} and Je,JepJe, = e JepJe.J = {0} for all permutations
(a,b,c) of (1,2,3).

Let I be the ideal of A generated by {e,Je,Je, : m,n € {1,2,3},m #
n}. Since the idempotents e;, i = 1,2, 3, are symmetric and have homogeneous
degree 0, we get that I is a *-graded ideal of A, e;JesJes ¢ I and A/I €
var®i(A). Hence, we may assume that in A we have e;JesJez # {0} and
emdenden = {0}, m,n € {1,2,3},m # n.

Since 61J62J€3 + {O} there exist j; = jf ) —i—jil), Jo = jéo) +j§1) e J,
with {7 50 e g ;0 50 O such that

€1j1€2j263 = (J§ ) +J§ ))62@50) +j§1))

= 61]§ )6235 )63 + 61]§ )€2J§ )63 + €1J£ )62]§ )63 + 61]§ )6235 )63

£ 0.

Therefore, one of the following inequalities must hold:

:(0)

1. e1j\Vesses # 0;
2. 15\ eqjses # 0;
3. e\ eajes # 0;
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(1)

4. ey, egjél)eg#o.

Suppose that (1) holds. Then €1j£0)62 # 0 and €2j§0)€3 # 0. Let Uy
be the x-superalgebra linearly generated by the elements ey, es, €3, €; j§0)62,
eg(jfo)) e, egjé es, 63(]§ )) e, 61j§0)€2j§ es, 63(]5 )) 62(j§0)) e1. Notice that
U, has trivial induced Zs-grading. Then, the map v : U; — F; defined by

€1 — e11 + €6, €y > €22 1 €55,
€3 > €33 + ey, 1\ ey > e,
62(]£0))*€1 = €56, €2j§0)€3 = €23,
63(]50))*62 = €45, € J§ )€2J§ )63 = é13,

e3(35) ea(710) e = eus

is an isomorphism of *-superalgebras. Hence, E; € varé(A).
Now, suppose that (2) holds. Then €1j£0)€2 # 0 and €2j§1)€3 # 0. Let Us

be the x-superalgebra linearly generated by the elements ey, es, €3, €; j§0)€2,

(J%O)) er, ez]g ‘e, 63(]5 )) €2, €1J§ )6235 s, 63(]§ )> 62(]50)) e1. Notice that

Us, has induced Zs-grading U, = (U2 ,U2 ) where

)

UZ(O) - SpaﬂF{€17€27637€1]£ 62762( ) 61}

and

UsY = spanp{eajses, es(j57) ea, 17\ eajs es, e3(75) ea(51”) er}.

Then, the map 1y : Uy — FE5 defined by

€1 > €11 + €6, €2 > €22 1 €55,

€3 > €33 1 €uy, €1j§0)62 > €12,
62(j£0))*61 = €56, €2j§1)€3 = €23,
es(j) es > eus, ey eajses v+ e,
63(j§1))*€2(j§ )>*€1 = €46
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is an isomorphism of x-superalgebras. Hence, Fy € var®"(A). Analogously,
if (3) holds, then Fy € vars(A).
Finally, suppose that (4) holds. Then eljil)@ # 0 and e2j§1)63 # 0. Let

Us be the x-superalgebra linearly generated by the elements eq, es, €3, eljg)eg,

62(‘7;1))*61, €2j§1)€3, 63(151))*62, €1j§1)€2j§1)€37 63(j§1))*62(j§1))*€1- Notice that

Us has induced Zs-grading Us = (U3(0), Uél)) where

(1)

UgEO) = spanp{e1, ez, €3, eljll 2

. (1) % (1) %
eagises, es (G5 ea (i) er )

and
Ug(,l) = SpanF{elj§1)62; 62(j£1))*€1, 62151)637 63(j§1))*€2}-

Then, the map 3 : U3 — Ej3 defined by

€1 > e11 + €66, €9 > €22 + €55,

(1) (1)
€3 > €33 + €44, €1)1 "€2)s €3 > €13,

63(j§1))*62(j£1))*61 > €46, 61(]{1)62 > €12,

62(]'§1))*61 — €56, €2Jé1)€3 = €23,

es(5V) es > eus

is an isomorphism of *-superalgebras. Hence, E3 € var#"(A). This completes

the proof. O

Lemma 4.6 ([37], Lemma 18). Suppose that F is algebraically closed and
exp®i(A) > 2. If there erist two *-graded simple components A; = F and
Ap 2 D, or D such that either A;J Ay, # {0} or AyJA; # {0} then E,; or
Es € var®(A).

Proof. Suppose first that A;JA, # {0}. Let e; and e, be the unit elements

*
n?

of A; and Ay, respectively. Then e = e, = ¢, e, € A%O), eres = Opg€, for

r,s,n € {i,k}.
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Since e;Jex, # {0}, let m > 1 be the greatest integer such that J™ # {0}
and e, Jey, € J™, a,b € {i,k}. Let A = A/J™!. Then A is a *-super-
algebra and A € var®i(A). Let €, = e, + J™' n = i k. Then &,,n =
i, k, are orthogonal idempotents of A such that, by eventually renaming the
idempotents, ¢&;Jée, # {0}, where J = J(A) is the Jacobson radical of A.
Also, e,Jey] = Je,Jey, = {0}, a,b € {i,k}. Hence, we may assume that in
A we have e;Je, # {0} and Je,Je, = e Jep = {0}, a,b € {i,k}. Writing
e; = e and e, = ey + ez, we have that e] = e; and e = es.

Since A;J Ay # {0}, there exists j = 7@ +;0) € J, j©@ ¢ JO 0 ¢ jO)
such that

e1(jO 4+ 7MY (e + e3) = €1jVex + €1 Ves + €1 Ves + e1jMes # 0.
Therefore, one of the following inequalities must hold:

1. ej©@ey #0;

2. €17 Oey # 0;

3. erjWMey #£ 0;

4. erjMes # 0.

Suppose that (1) holds. Let H; be the k-superalgebra linearly gener-
ated by the elements ey, ey, €3, €17V ey, e3(7(?))*e;. Notice that H; has trivial

induced Zs-grading. Then, the map v : H; — FEj defined by
€1 > €92 + €33, €2 > €y
e3 > €11 e1jVey — e34
63(j(0))*61 = €12

is an isomorphism of *-superalgebras. Hence, £, € var"(A). Analogously,

if (2) holds, then E, € var®i(A).
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Suppose that (3) holds. Let Hy be the x-superalgebra linearly generated
by the elements e, s, es,e17M ey, e3(jV)*e;. Notice that Hy has induced

Zo-grading Hy = (H”, H") where
Héo) = spang{ep, e, €3}

and

H2(1) — spang{ej ey, e5(5V) ey}
Then, the map v : Hy — E5 defined by

€1 > €92 + €33, €9 > €44
(1
€3 — €11 61]( )62 = €34

63(j(1))*€1 = €12

is an isomorphism of *-superalgebras. Hence, E5 € var"(A). Analogously,
if (4) holds, then Fj € varg(A).
The case A, JA; # {0} is analogous. O

Lemma 4.7 ([37], Lemma 19). Suppose that F is algebraically closed and
expi(A) > 2. If there exist two x-graded simple components A; = F and
Ay, = D# such that either A;J Ay, # {0} or AyJA; # {0} then Eg € varg™(A).

Proof. Let e; and es be the unit elements of A; and Ay, respectively. Then
e =e,, e, € A;O), er = e, and e.e; = 0,4¢, for r,s = 1,2 and n € {i, k}.
Since ey Jes # {0}, let m > 1 be the greatest integer such that J™ #
{0} and e, Je, € J™, a,b € {1,2}. Let A = A/J™L. Then A is a *-su-
peralgebra and A € var®(A). Let &; = ¢; + J™1 i = 1,2. Then é&;,i =
1,2, are orthogonal idempotents of A such that, by eventually renaming the
idempotents, é,Jé; # {0}, where J = J(A) is the Jacobson radical of A.
Also, e,Jéy] = JegJe, = {0}, a,b € {1,2}. Hence, we may assume that in

A we have ey Jey # {0} and Je,Je, = e, JepJ = {0}, a,b € {1,2}.
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Since e;Jey # {0}, there exists j = j© 4 ;M € J, ;O ¢ JO 1) ¢ jO)
such that
61(j(0) +j(1))€2 = elj(o)eg —+ Glj(l)eg 7& 0

Thus, we must have either e;jey # 0 or e;jMey # 0. If e15Mey # 0, by
multiplying by ¢ on the right, we may assume that e;7@e, # 0, for some
5O e g,

Let H be the x-superalgebra linearly generated by the elements ey, es,
cey, €150y, ce1j ey, e3(5) er, cea(5@)*ey. Notice that H has induced

HO = spanp{ey, eq, 15 Veq, e2(59) e, }

and

H®Y = SpanF{Cez, ce1j(0) €2, CC2 (j(o))*el}'

Then, the map ¢ : H — FEg defined by

€1 > €29 + €33 €y > €11 + €eas
(0
cey = alerr +eqy) e17es > esy
(0 (0
ce1jWey = aesy 62(j( ))*61 — ey

cea (5O e > aers

is an isomorphism of *-superalgebras. Hence Eg € vars'(A).

The case A, JA; # {0} is analogous. O

The next remark will be useful in the proof of the main theorem.

Remark 4.8. 1. If My, (F), with k +1 > 2,1 > 0, with transpose or
symplectic involution lies in var®(A), then either Ms(F) with triv-
ial grading or M ,(F), with transpose or symplectic involution, lies in

vars'i(A);
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2. If My (F) @ My, (F)°, with k41 > 2,1 > 0, with induced grading and
exchange involution lies in var®”(A), then either My(F) with trivial

grading or M, ;(F'), with transpose involution, lies in vars"(A);

3. If M,(F) + c¢M,(F), n > 2, with involution given by (a + cb)l =
a* + cb*, where * denotes the transpose or symplectic involution lies in
var®(A), then M, (F) with trivial grading and transpose or symplectic
involution and (F'+cF) @ (F +cF') with grading (F + F, c¢(F' + F')) and
exchange involution lie in varg™(A). Hence, Mo(F) with trivial grading
and transpose or symplectic involution and (F' + c¢F') & (F + ¢F') with
grading (F + F,c¢(F + F)) and exchange involution lie in varg™(A).

4. If (M, (F) 4+ cM,(F)) & (M,(F) + c¢M,(F))°?, n > 2, with grading
(M (F) & My, (F), c(My(F) @ Mo(F)™))

and exchange involution lies in var®(A), then M, (F) + cM,(F), with
involution given by (a+ cb)" = a* £ cb*, where * denotes the transpose
or symplectic involution lies in var®(A). Hence, My(F) with trivial

grading and transpose or symplectic involution lies in varé(A).

Now we are in condition to proof the main theorem of this chapter.

Theorem 4.9 ([37], Theorem 20). Let A be a finite dimensional x-superal-
gebra over a field F of characteristic zero. Then exp®i(A) > 2 if and only if
E; € var®(A), for somei € {1,...,11}.

Proof. By Lemma 2.18, we may assume that F' is an algebraically closed
field. If, for some i € {1,...,11}, E; € var®i(A) then, by Lemmas 4.1, 4.2,
4.3 and 4.4, exp#(A) > 2.

Conversely, suppose that exp®i(A) > 2. By Theorem 1.9, we can write

A=A @ ---d A, +J, where each algebra A;, © = 1,...,m, is a simple
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«-superalgebra and J = J(A) is the Jacobson radical of A. If, for some
i€ {l,...,m}, A; is isomorphic to one of the simple x-superalgebras given
in Theorem 1.12 with dimg(A;) > 4, then, by Remark 4.8, E; € var#"(A) for
some ¢ € {7,8,9,10, 11}.

Since exp®(A) > 2, by Theorem 2.16, there exist distinct *-graded sim-
ple components A;,,..., A;, such that A, J---JA; # {0} and dimg(A;, +
-+ A; ) > 2. By the above, we may assume that one of the following

possibilities occurs:

1. there exist distinct A;, Ag, A; such that A;JA,JA; # {0} and A; =

2. for some i # k, A;JAy # {0} where A; 2 F and Ay, = D,;
3. for some i # k, A;JA, # {0} where A; =2 F and A, = D¥".

If (1) holds, then, by Lemma 4.5, E; € varg(A), for some i € {1,2,3}.
If (2) holds, then, by Lemma 4.6, either £, or E5 € varg"(A). Finally, if (3)
holds, then, by Lemma 4.7, Eg € var®"(A). The proof is complete. H

We can notice that the above list of x-superalgebras cannot be reduced.

In fact, we have the following proposition.

Proposition 4.10 ([37], Proposition 21). For all i,j € {1,...,11},i #
7, 1d%(E;) ¢ 1d%(E;).

Proof. We shall prove the proposition into several steps by utilizing different

arguments.

e it is clear that if 1d®"(F;) C Id®(E}), then exp#(E;) < exp®i(E;).
Hence, by Lemmas 4.1, 4.2, 4.3 and 4.4, 1d®"(E;) ¢ 1d®"(E}) for i €
{1,2,3,4,5,6} and j € {7,8,9,10,11};
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the x-superalgebras E;,i € {1,4,7,8} have trivial Z,-grading. Hence
1d#(E;) ¢ 1d#(E;), i € {1,4,7,8}, j € {2,3,5,6,9,10,11};

22y € Id¥(E;),i € {2,3,6} and 2}, ¢ 1d*"(E;),i € {1,4,5}. Hence
1 (E;) ¢ 1d®(E;), i € {2,3,6}, 7 € {1,4,5};

2o € 1d%(Ey) and 23, ¢ 1d®"(E,). Hence 1d*"(E,) ¢ 1d%"(Ey);

yi, € 1d*(Ey) and yi, ¢ 1d®(E;),j € {3,6}. Hence 1d*(E,) ¢
1*(E;), j € {3,6};

21 0Y11 € Idgri(Eg) and 21 0y1,1 ¢ Idgri(Ej),j € {2,6}. Hence Idgri(Eg) 7
Idgri(Ej>7 j € {27 6}a

[91,07 92,0][?/3,07 y470] € Idgri(E4) and [yl,o, yzo] [93,0, y4,o] ¢ Idgri(El)- Hence
1d®(E,) ¢ 1d&"(E,);

[%,o,yzo] € Idgri(Ei),i € {578, 10} and [yl,an2,0] ¢ Idgri(@);
j €{1,2,3,4,6,7}. Hence 1d*"(E;) ¢ 1d#"(E;), i € {5,8, 10},
j E {]'7 27 37 47 6’ 7}’

21,0%1,1 S Idgri<E6> and 21,0”1,1 ¢ Idgri<E2>. Hence Idgri<E6> gZ Idgri(EQ);
z 1 € 1d®(Eg) and 27, ¢ 1d*"(E3). Hence 1d*"(Eg) ¢ 1d®" (E3);

[2170, 2’270] c Idgri(Ei), 7 € {7, 10} and [21,07 zQ,O] ¢ Idgri<Ej),j < {1, 4, 8}
Hence 1d*"(E;) ¢ 1d®(E;), i € {7,10}, j € {1,4,8};

210 € 1d#(Ey) and 21 ¢ 1d®(E;), j € {1,2,3,4,5,6,7,8,10,11}.
Hence 1d*"(Ey) ¢ 1d®(E;), j € {1,2,3,4,5,6,7,8,10,11};

Y11 € 1d¥(Ey) and y11 ¢ Id¥(E;), 7 € {2,3,5,6,9,11}. Hence
1d&"(Ey) ¢ 1d®(E;), j € {2,3,5,6,9,11};
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e the x-superalgebra Fy; is commutative and the *-superalgebras E; are

not, j € {1,...,10}. Hence 1d®"(Ey,) ¢ 1d®(E;), j € {1,...,10}.
These facts prove the proposition. O]

Let V be a x-supervariety and k a positive integer. We say that ) is a
minimal *-supervariety of x-graded exponent greater than k, if expe™(V) > k
and for every proper *-graded subvariety U of V, exp®i(U) < k. If we denote
by V;,© = 1,...,11, the x-supervariety generated by the x-superalgebra Fj;,

as a consequence of the previous proposition, we have the following corollary.

Corollary 4.11. The x-supervarieties V;, 1 = 1,...,11, are the only minimal

x-supervarieties of x-graded exponent greater than 2.

As a consequence of Theorems 3.17 and 4.9, we have the following char-

acterization of finite dimensional *-superalgebras A such that exp®’(A) = 2.

Corollary 4.12 ([37], Corollary 22). Let A be a finite dimensional x-super-
algebra over a field F of characteristic zero. Then exp®i(A) = 2 if and only
if E; & var®i(A), for every i € {1,...,11}, and either D,, D&, M,, D& or
Me" € vargi(A).



Final considerations

In this thesis, we study the theory of *-graded identities on finite dimensional
x-superalgebras. It is clear that the results presented here generalize the
results for algebras with involution. In fact, if A is a x-superalgebra with
trivial involution, then ¢8"(A) = c*(A). Moreover, if B is a *-superalgebra
with non-trivial grading, then B ¢ var®"(A). Hence, for example, if A has
trivial grading, then D& D" Me & vars(A) and Theorem 3.17 becomes
Theorem 0.4 (in case A is finite dimensional).

Here, we have just started the study of x-graded identities on finite
dimensional x-superalgebras. The next step is to extend classic results on
PI-theory to this new class of algebras and to work with the problems listed
below.

We characterized finite dimensional x-superalgebras A such that ¢&(A) <
an', for some constants a,t. Now, we would like to classify the types of poly-
nomial growth, i.e. to give a classification in terms of the exponent ¢. Such
a classification has already been given in the setting of algebras [12, 43|,
superalgebras [13] and algebras with involution [30].

We classified x-supervarieties generated by finite dimensional x-superal-
gebras of almost polynomial growth. Now, we would like to characterize the
x-graded subvarieties of the x-supervarieties of almost polynomial growth.

Such a characterization has already been given in the setting of algebras
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[26], superalgebras [28] and algebras with involution [29].

For a finite dimensional x-superalgebra A, we consider its (n)-cocharacter
Xy (A) = D mpyxo
(ANFn

and we would like to classify finite dimensional x-superalgebras A such that
the multiplicities m ) are bounded by a constant K. Such a classification
has already been given in the setting of algebras [31], superalgebras [33] and
algebras with involution [42].

Another sequence that can be attached to a x-superalgebra A is the

sequence of *-graded colength 8"(A),n > 1. This sequence is defined to be

lin(A) = Z m<)\>.
(AN)Fn

By Remark 2.4, we have that this sequence is polynomially bounded. We
would like to classify finite dimensional *-superalgebras A such that [8(A) <
K, for specific values of a constant K. Such a classification has already been
given in the setting of algebras [12, 27] and superalgebras [41].

Finally, we intend to work with algebras with GG-graded involution, that
is, G-graded algebras endowed with a G-graded involution %, where G is a
group. In this case, we say that A is a (G, *)-algebra. It is possible to show
that a G-graded algebra A endowed with an involution « is a (G, x)-algebra if
and only if the subspaces AT and A~ are G-graded. As we have done in this
work, we may consider the sequence of (G, %)-codimensions C%G’*)(A), n>1,
and prove that, if G is a finite group, then C%G’*)(A) < 2"G|™¢,(A). Thus,
we have that c,(lG’*)(A) is exponentially bounded if and only if A is a PI-
algebra. In this case, we may define the (G, %)-exponent of A exp(©*)(A). We

notice that we can apply the same arguments used in the proof of Theorem

2.16 to show that, if A is a finite dimensional (G, x)-algebra over a field of
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characteristic zero, then exp(©*)(A) exists and is a non-negative integer. It
would be interesting to extend the results presented in this thesis and the

problems presented above to (G, x)-algebras, where G is a finite group.
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