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RESUMO

Nesse trabalho de tese estudamos flags de folheacdes holomorfas singulares, formandos por
2 folheacdes. Estamos interessados em investigar classes caracteristicas dessa estrutura e suas
consequéncias. Desenvolvemos uma teoria de residuos para esses flags. Para tal, provamos um
teorema de anulamento do tipo Bott para flags e um teorema do tipo Baum-Bott para tais flags.

Analisamos também a conjectura de racionalidade de Bott para flags. Nesse sentido, defi-
nimos o residuo de Nash para flags utilizando a constru¢do de Nash adaptada para tal situagdo.
Com isso, comparamos o residuo de Nash para flags com o tal residuo de Baum-Bott para flags,
mostrando assim a racionalidade dos residuos neste contexto.

Nesse ultimo capitulo tratamos com folhea¢des holomorfas. Nesse sentido, apresentamos
uma maneira efetiva de calcular residuos de folheagdes, quando a dimensdo do conjunto sin-
gular da folheacdo € um a menos que a dimensdo da folheacdo. Esse resultado generaliza o
resultado de Bott, uma vez que retiramos hipéteses.

Vi



ABSTRACT

In this thesis we study flags of singular holomorphic foliations, formed by two foliations.
We are interested in investigating characteristic classes for this structure and its consequences.
In this work we develop a residue theory for these flags. Then, we prove a Bott vanishing

theorem for flags. Next we proved a Baum-Bott type theorem for flags.

We treat also the Bott rationality conjecture for flags. In this sense we define the Nash
residue for flag utilising Nash construction adapted for flags. With this we can do the compari-
son of the Bott residue and Nash residue for flags, which show the rationality of residues in this

context.

In the last chapter we deal holomorphic foliations. For this purpose, we present an effective
way to calculate residues of the foliations, when the dimension of singular set of the foliation is

one less than the dimension of the foliation. This result generalizes the result of Bott.

vii



INTRODUCTION

A flag of singular holomorphic foliation on a complex manifold M, of dimension n, is a
finite sequence of foliations F = (F7, ..., Fi) such that, away from singular sets, each foliation
Fi11 1s tangent to the foliation F; and F; C F;.; (we call it subfoliation) foreach: =1, ..., k —
1.

When £ = 2 we have the diagram

\/\/
\/
/\

/\/\
/\

Feigin started the study of characteristic classes of flags in 1975, see [14], where the author
investigates an obstruction for existence of the flags integrably homotopic. Recently Mol in [22]
studied the behavior of singularities of flags and its polar varieties. In the same sense, Corréa

and Soares study the Poincaré problem for flags in [12].

Flags of holomorphic foliations appear naturally in the theory of foliation. For example,
a conjecture due to Marco Brunella says that a two-dimensional holomorphic foliation F» on

IP3 either admits an invariant algebraic surface or it is a flag of holomorphic foliations, i.e.,



F = (Fi1,F), where in this last case F; is a foliation by algebraic curves on P3. We hope
that a theorem of residues for flags can give important informations about the existence of this

structure.

In this work we develop a residues theory for flags. The residues theory has been widely
studied by Baum and Bott, see [3] and [2].

Theorem Let F be an one-dimensional singular foliation on a compact complex manifold M
of dimensional n and ¢ a symmetric homogeneous polynomial of degree d withn — k < d <n
and Z C S(F). Then there exists a homology class Res,(F; Z) € Hon_24(Z; C) such that

O(NF)[M ZRe&p (F; 7).

Forn — k 4+ 1 < deg(yp) < n we have the following

Rationality conjecture of Baum-Bott: In the situation above, if © has rational coefficients,
then
Res,(F:;Z) € H.(Z;Q).

Sertdz in [23] used Nash map to give a partial answer for this conjecture with certain hy-
pothesis of regularity in the Nash modification. Brasselet and Suwa in [5] used characteristic
classes on singular varieties to generalize the Sert6z’s work and showed an answer to the afore-

mentioned rationality conjecture.

Theorem Let F be a k dimensional holomorphic foliation on M. If ¢ = ¢;,...c;, withi, > n—Fk
for some v, then the Res,(F; Z) comes from an integral class, in particular it is a rational class,

where c¢; denotes the i-th Chern class.

Now, if deg ¢y = n — k + 1 the residue can be computed, whenever the singular set of the
foliation S(F) satisfies certain conditions of non-degeneration. Baum and Bott in [3, Theorem
3 pg 285] showed that we have

Res,(F; Z) Z)\

where ); is a Grothendieck residue, Z; is an irreducible complex analytic component of Z C

S(F) of dimension k — 1 and [Z;] denote the fundamental class of Z;. We prove the following

2



result.

Theorem Let F be a holomorphic foliation of codimension k on a compact complex ma-
nifold M. For each irreducible component Z of Singy.1(F) there exists a complex number
BB(F,¢; Z) which is determined by the local behavior of F near Z, and the residue is given
by

Res(F,p,Z) = BB(F,¢; Z)| 7],

where [Z] denotes the fundamental class of Z and BB(F, ¢; Z) is the Grothendieck residue of
Gatp
le VANPIRAN de_H

BB(F,¢;Z) =Res, |p(JX) XX
cee Jr

with G a one-dimension foliation on a disc H, X = (X1, ..., Xj.11) the vector field that induces

G around p and ¢ a homogeneous symmetric polynomials of degree k + 1.

We will work with flags formed by 2 foliations F = (F7, F»). The first result that we will
show is the Bott vanishing theorem for this flag

Theorem Let M be a complex manifold of dimension n and EE = E1 & Es a vector bundle on
M with Ey a F- bundle, F5 a F5-bundle with Fy C Fy, C T'M regular foliations. Let p, and
w9 be homogeneous symmetric polynomials of degree dy and ds, such that at least one of the

inequalities
dy > corank(Fy), dy > corank(Fy) or dy + dy > corank(F)) (1

is satisfied, then @1(E;) — po(Ey) = 0.

Here, note that this theorem is more "fine" than Bott vanishing theorem for foliation, see re-
mark 2.2.12. We obtain, by using characteristic classes via Chern-Weil theory with an approach

of Lehmann and Suwa, a Baum-Bott type theorem for flags

Theorem Let F = (Fi,F3) be a 2-flag of holomorphic foliations on a compact complex ma-
nifold M of dimension n. Let 1, ps be homogeneous symmetric polynomials , respectively of
degree dy and dy, satisfying (1). Then for each compact connected component S of S(F) there
exists Res,, o, (F, N7, S) € Hop_o(4,+d2)(S; C) such that

Z(LA)*ReSwa]:,N]:, S)\) = (SOI(NIQ)'902(N2)) — [M} in HQn—Q(d1+d2)(M;C)7 ()
A



where 1) denotes the embedding of Sy on M.

This theorem is very general and it says that the characteristic class ©(/NF) localizes at the
singular set S(F) := S(F1) U S(F2) of the flag. However we can refine this localization, i.e.,

if we request in (1) that

dy > corank(F}) and dy > corank(F})

we have that the characteristic class ¢(N7) localizes on the intersection S := S(F;) N S(Fz).

How to calculate residues of flags in general? This answer is not simple, but we will give,

in this thesis, a partial answer for some cases.

Let F = (Fi,F2) be a flag on M with codimension (k1, k2). If the singular set of the flag
S(F) has codimension bigger than k; + 1, we have for each 0 < j < ky

Theorem

&M (W) (N2) = > BBI(F, Z)[Z),

where BB (F, Z) is a complex number that depends of the singular component Z such that

For definition of BBY(F, Z), see section 2.4.

We studied a relationship between flag’s residues with residues of involved foliations as an

immediate consequence.

Corollary For each Z C Sing,. ,,(F) and hypothesis as above we have

ko
ki +1
Z ( 1 + >R65C/191+1jcjl' (f, N]:; Z) = RGScllclJrl(fl,Nl; Z) in H2(n—k1—1)(M§ (C)

=0 N/

In the third chapter we will study the Bott rationality conjecture for flags. For this we will
develop the theory of Nash for flags. We will define the Nash modification, of the complex
manifold M, with respect to the flag 7 = (Fy, F3), denoted by M*. With the projection map

T MY — M



Next, if Z C S(F) we can do the pull-back 77! (Z) =: Z” which we define

Definition We have well-defined the class Res,, ,,(F,N";Z") in  Hypn—q,—-4,)(2";C) and
we call it by Nash residue of the flag F.

The projection 7 : MY — M induces a homomorphism in homology level

Tt Hon—a,-a2) (2" C) — Ho(n—a,-a)(Z; C)

With this we prove the following

Theorem Let ¢ = (1, 2) be homogeneous symmetric polynomials, where @, is of degree d;

satisfying the condition (1). If @; is with integral coefficients, then the difference
Res@l#ﬂz (N]:7 fa S) - W*Resw,wz (Nyv F? SV)

is in the image of the canonical homomorphism Hay,_24(S;Z) — Ha,—24(S;C), i.e., is a sum

of integral classes.

Corollary If o1 = ¢;,...c;, and ps = cj, ...cj, with i, > codimF for some v € [1,...,r] oris >
codimF, for some s € [1, ..., t], then the Baum-Bott residue for the flag F, Resy, ,,(Nx, F,S),

is a (sum of) integral class.



Chapter 1

Basic material

1.1 Cech-de Rham cohomology and duality theorems

In this section, we present the theory of Cech-de Rham Cohomology and duality theorems.
For the background on the Cech-de Rham cohomology on complex manifold, we refer to [25,
4].

Let M be a C* manifold of dimension m and U = {U,}.c; an open covering of M.

Suppose that the index set [ is an ordered set with total order. We set

1P = {(ag,...,a) /| ag<..<a, in I}

We define C? (U, A7) = H AYUsyg...a )

(OL[) 7777 ap)el(p)

where A?(U,,..q,) is defined as the g-forms space.

It is possible to define the following coboundary operator, see [5, 25]

51 CP(U, A7) — CPHH (U, AT).

This operator together with the exterior derivation induces the following operator D :
A*(U) — A**Y(U). Then (A*(U), D) is called the Cech-de-Rham complex and its coho-
mology, denoted by H"(A*(U)), the Cech-de-Rham cohomology associated to the covering
Uu.
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Proposition 1.1.1 (25, Theorem 3.3, pg 48) We have the following isomorphism

Hip(M;C) — H"(A*(U)).

We define the cup product

AT(U) x AS(U) — A™U)

by assigning to o € A"(U) and 7 € A*(U) the element 0 — 7 € A"5(U{) given by

p
(U ~ T)ao...ap = (_1)(7"—1/)([7—1/)0_0[0”.0@ A Tay...ap-
v=0

Then o — 7 1s linear in o and 7 and we have

D(oc —7)=Do— 71+ (-1)'0c — Dr.

Thus it induces the cup product in cohomology level

H'(A*(U)) x H (A*(U)) — H™(A*(U)).

Now, we recall the integration on the Cech-de-Rham cohomology and duality theorems.

For this let i = {U, }ncs be an open covering of M as above.

Definition 1.1.2 A system of honey-comb cells adapted to U is a collection { Ry }ocr of m di-

mensional manifolds R, with piecewise C* boundary in M satisfying the following conditions:
(a) R, C U, and M = U,R,,
(b) intR, NintRs =0, if a#p,

()If Usg,.ap 0, Rag,..ap = o_gRa, isa(m- p)-dimensional manifold with piecewise

77777777

C* boundary,

(d) If the set {«v, ..., oy, } is maximal, Ry, ..., has no boundary.

-----

Also, letU = {U, }ocr be an open covering of M as above and { R,, } ocs @ system of honey-

comb cells adapted to U4. Suppose M is compact, each R, is compact and we can define the
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integration

/M CAMU) — C

by the sum

[o=3( 2 [ o)

=0 (ag,...,ap)EI® F0ses P

3

for o € A™(U). Then we say that

(1)if Do = 0 then the sum does not depend on the choice of {R,},
)if ¢ =Dr, than/ oc=0.
M

Hence it induces the integration on the cohomology

/ L H™(A*(U)) —> C.

We have a bilinear pairing

AT(U) x AP (U) — A*(U) —> C

defined by composition of cup product and integration. We have the Poincaré duality

P: Hjn(M;C)~ H(A*U)) — H*™ "(A*U))* ~ Hyy,_.(M;C).

Let us introduce the Alexander duality. Let S C M be a closed subset and U a neighborhood
of S'in M with U\S C M. Denote U\ S by Uy and consider the covering Y = {Uy,U; = U}

of U. We have a canonical projection

m: A"(U) — A"(Uy) (00,01,001) — 0o.

Denote by A"(U, Uy) the kernel of this projection. Then, we have the exact sequence

0— A"(U,Uy) — A"(U) — A"(Uy) — 0.
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We have the following commutative diagram

= H"H (AY(Uy)) —— H"(A*(U, Up)) —— H" (A*(U)) —— H"(A*(Up)) — -+

| | |

= HY U\ 8;C) —= H"(U,U\ S;C) —= H"(U; C) —= H"(U \ §;C) —> -+

Then, by the Five lemma, we have the isomorphism

HT(A*(U, Up)) =~ H" (U, U\Up; C).

By the cup product in Cech-de-Rham cohomology in A" () x A?*~"(U) — A>*(U) we
have

(00,01,00) — (70,71, T01) = (00 A To, 01 A1, (—1) 09 A To1 + 001 A T1).

Now, suppose that oy = 0, then the right hand side depends only on o1, 0¢; and 7;. Thus, we
have a pairing

ATU,Ty) x A (o) Loy ¢
This induces the Alexander duality

A:H (U U\S;C) ~ H (AU, Upy)) — H* " (U,,C)* ~ Hy,_.(S;C).  (1.1)

Proposition 1.1.3 (25, Proposition 3.11, pg 55) Let S C M be a closed subset such that, let a
neighborhood U of S we have Uy = U\S C M. Thus we have the commutative diagram

H™(A*(U, Uy)) ~ H" (M, M\S: C) — H"(A*(U)) ~ H"(M;C)

| | ,

H2n—r(5; C) = H2n—7‘<M; C)

1.2 Characteristic classes via Chern-Weil theory

Let M be a C* manifold of dimension m. For an open set U C M we denote by A°(U)

the C-algebra of C*°-functions. Also for a C>** complex vector bundle E of rank r on M, we set
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AP(U,E) := C®(U,NP(TM)* ® E). Thus A°(U, E) is the A°(U)- module of C*°-module of
C°-sections of F and if it is a trivial line bundle, i.e., E = M x C, then AP(U, E') denotes the

space of p-forms on U.

Definition 1.2.1 A connection for a complex vector bundle E on M is a C-linear map

V:AYM,E) — AY(M,E)

that satisfies

V(f.s)=df @ s+ f.N(s) for f € A" (M) and s € A°(M,E).

Lemma 1.2.2 A connection V is a local operator i.e., if a section s is identically zero on an

open set U, so is V(s).

Proof: See [25, Lemma 7.3, pg 67].
OJ

We say that a connection V is trivial on U with respect to a non-vanishing section s of F if
V(s) = 0.

Lemma 1.2.3 Ler V1, ...,V be connections for E and f1, ..., fr C>- functions on M with
> fi=1. Then)_ f;V, is a connection for E.

Lemma 1.2.4 Given E a vector bundle on M, there exists a connection V for E. In other

words: every C* vector bundle admits a connection.

Proof: Let {U,} be an open covering of M that trivializes the vector bundles 7'M and E.
Choose a k-frame s = {s1, ..., s, } of £ on U,. Let {p,} be a partition of unity subordinative to
the cover {U, }. Next define V* on U, by V(s¢) = 0 for all 7 and extend V* to an arbitrary
section on U, using the above definition of connection. Thus V = ) p,V® is a connection for
E.

If V is a connection for F, then it induces a C-linear map

V :=V?: AYM,E) — A*(M, E)
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satisfying
Viw®s)=dv®s—wAV(s), we A (M), s A°(M,E).

Definition 1.2.5 The composition K := VoV : A% (M, E) — A?(M, E) is called the curva-

ture of the connection V.

Here, note that the connection and the curvature are local operators. This allows us to get

representatives of it.

If V denotes the curvature for a vector bundle £ of rank  and £ is trivial on the open set

U,ie., Ely ~U x C" and if s = {s1, ..., 5, } is a frame of F on U, then we can write

V<S,) = ZQU@SJ' ; Qij € AI(U)

j=1

The connection matrix with respect to s is § = (6,;) . Also, using the curvature definition,

we get

K(Sz) = Z KijS]’, where Ki]’ = d@l] — Z 911.3 A ij.
j=1 k=1

The curvature matrix with respect to the frame s is X' = (K;). Now, to define the Chern
class of a vector bundle £, we consider 0;,¢ = 1, ..., r the ¢-th elementary symmetric functions

in the eigenvalues of the matrix /K

det(It + K) = 1+ o (K)t + oo( K)t* + ... 4+ o, (K)t".

Next, we define a 2i-form of Chern ¢; on U by

a(K) = o5 K).

In general, if ¢ is a symmetric polynomial in r variables of degree d, we can write p =

P(cy, ..., c,) for some polynomial P. Then we can define
oK) = P(ci(K), .y (K)

which is a closed form on M. Then, we have a cohomology class of £ on M, p(E) := ¢(K) €
H?¢(M;C). If I,(C) denotes the graduate algebra of invariant polynomial and £ — M is a
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vector bundle of rank r, we get the homomorphism of algebras , called Weil homomorphism
. I,(C) — H*(M;C).

o — (B

This theory is similarly developed for singular varieties, for this we refer to [4, 5].

1.3 General localization principle

In this section, we consider a general strategy for localization of characteristic classes. We
first explore the Cech-de-Rham cohomology for two open sets, this is because it will be widely

used in the whole of this thesis. We present the strategy of localization. We refer to [1, 27].

For M a C* manifold of dimension m we let i/ = {Uy, U;} be an open covering of M,

where we use the notation Uy, := Uy N U;. Now, define the vector space AP(U/) by

AP(U) = AP(Up) @ AP(Uy) © AP (Uy),

where A*(V) denote the space of i-forms in the open set V. Then, an element 0 € AP(U) is
given by a triple

0 = (007017001)

with o; a p-form in U; and 0¢; a (p — 1)-form on Up;.

Define the following operator D by

D : AP(U) — APHL(UY)

o = (00,01,001) +—— (dog,doy, 01 — 0y — dogy)
it satisfies D o D = 0.
Then we have a complex that we call Cech-de-Rham complex and will denote by (A?(U), D)

pp—1 pp+1

c—s AU S v ) B At ) S

By simplicity we use the notation D = DP for all p.
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Define, respectively, the closed forms and exact forms Z?(U/) = ker D? and BP(U) =
ImDP~'. We can define the p-th Cech-de Rham cohomology group with respect to the covering

U by
- zrU
- Br(U

~—

HP(U)

~—

Theorem 1.3.1 (27, Theorem 2.1.1, pg 3) If H? (M) denote the p-th de Rham cohomology group

of M we have the natural isomorphism

a: HP(M) — HP(U),

where this is induced by the map AP(M) > w — (w,w,0) € AP(U).

For the relative Cech-de-Rham cohomology we define the relative space

AP(U,Uy) = {0 = (00,01,001) € AP(U) ; 09 = 0}.

Observe that if o € AP(U, Uy) then Do € AP (U, Uy). Therefore, we have the relative com-
plex (A?(U,Uy), D)

pp+1

e APV YL U 2 AP, Uy s Art ) 2

Then, we can define the p-th relative Cech-de-Rham cohomology group with respect to
(uv UO) by ker DP
H (U, Up) = —

-~ ImDr-1’

Now, we explain the strategy for localization that will be used in this thesis. For a complex
manifold M let ¢ € H*(M) be an element of its cohomology. Such a class might represent the

obstruction to the existence of a certain global object.

Let P : H*(M) — Hs, «(M) be the Poincaré homomorphism. For S C M a closed

subset we set U = M — S and we have the exact sequence

o HYM,U) L5 HY(M) L HY(U) — -

Here assume that g(¢) = 0 € H*(U) (This hypothesis is verified by Bott vanishing theo-
rem). As Im(f) = ker(g) there exists a class ¢ € H*(M,U). Consider the Alexander homo-
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morphism
Al H*(M,U) — Ha,—o(S).

Then, we have the commutative diagram

H*(M,U) — H*(M)

a |»

H2n—0(S) i HQn_.(M)

Therefore, one has a general theorem of "residues"

P(p) = i*(Al(@)).

1.4 Singular holomorphic foliations

Let us begin by recalling the basic material in holomorphic foliations. Let M be a complex
manifold of dimension n, ©,; and (2, the sheaves of germs of holomorphic vector fields and

of holomorphic 1-forms on M respectively. We refer to [25, 17,3, 7 ].

Definition 1.4.1 A singular holomorphic foliation F of dimension k on M is a coherent sub-
sheaf of © s of rank k, which satisfies the following integrability condition

[(Fo, Fel CFy  forallz e M

such that, the normal sheaf, defined by Nr := O/ F, is torsion free. ( It means that F is

saturated).

We have the exact sequence

0—F — 0y —N—0.

The singular set S(F) of the foliation F is defined by points in M, where the sheaf N is
not locally free, that is, S(F) := Sing(N7). Here, we suppose that CodimS(F) > 2.

Now, we give a dual definition of singular foliation.
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Definition 1.4.2 A singular holomorphic foliation G, of codimension k, on M is a coherent

subsheaf of )y of rank k, which satisfies the following integrability condition
dG, C (U ANGy) forall x € M\S(G),

where S(G) := sing(Qx;/G) is the singular set of G.

We consider only reduced foliations, then the two definitions 1.4.1 and 1.4.2 are equivalent

by taking its annihilators, see [25 pg 178].
In case that M = P" we have

Proposition 1.4.3 (24, Proposition 4.1, pg 588) Let F be a holomorphic foliation of dimen-
sion k on P". Then F can be represented by a holomorphic section s : P* — A" *T*Pr@0(1)
for some | € 7. In particular, in each affine coordinate domain C", F can be represented by a

polynomial (n — k)-form w.

Given a holomorphic foliation F on the projective space P", we can associate an integer
number, denoted by deg(F) = d. The degree of the foliation. This number is defined as

follows.

Choose a (n — k)-plane H on the projective space P". Set F, the leaf of the foliation F
through p € P\ S(F). Now, the tangency set of F with H, denoted by V' (F, H), is defined by
the Zariski’s closure of the tangency variety of F with H, 7 (F, H) = {p € H/ dim(T,F, N H) > 1}.

Definition 1.4.4 The degree of F , denoted by deg(F), is defined by the degree of the tangency
set V(F, H).

This is well-defined and does not depend on the choice of the plane H, for details see [24].
It is possible to define the degree of a foliation in a more general case: in polarized projective
varieties, for this see [10]. Now, note that, if F is a holomorphic foliation of one-dimension,
then it is possible to represent it by a section o : P* — TP™ ® O(r), where in this case, the
number r is determined. By Proposition 1.4.3 F is given by section s : P" — T*P"~1 @ O(1),
where locally it is represented by a polynomial (n — 1)-form w. Then s is a section such that it

is represented locally by vector field X that satisfies i xw = 0. Moreover r = deg(F) — 1.

Example 1.4.5 Consider F an one-dimensional holomorphic foliation of degree 2 on P* de-
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fined locally by the following vector field

0
(.32 3 2
X = (21 32)_821 + (2122 )322 +( 2133)_823 or
0 0 e, 5 O

0
X = 2(21—+22 + z3

9. T Pa, TR TRy, T AaL,

The annihilator of X is the 2-form defined also locally by
w = 2izzdzy Ndzy + (25 — 2229)dzy Adzs + (21° — 22)dzo A dzs
ie.,ixw=0.

On the other hand, consider the rational map ¢ : P* - P3 induced by the linear submer-
sion
© C® — C*.

(ZOJ 215 %2, %3, Z4) — (Zla 22, 23, Z4)

The pull-back of F to P* by the rational map o is a two-dimensional foliation, denoted by
G := ¢*F whose singular set is S(G) = {z1 = 20 = z3 = 0}.

Example 1.4.6 Another example of the foliation in this context is as follows: In particular ¢ is
a rational fibration for which the fiber at each point p € P3 is the line in P* through by p. Then,
it induces an one-dimensional foliation F, on P4, where these lines are the leaves of the foliation
and the singular set of F, is the degeneracy locus of o, i.e., S(F1) ={[1:0:0:0:0]}. The
last foliation has the particular property, that its leaves are contained in leaves of the foliation

g.



Chapter 2

Characteristic classes of flags

In this chapter, we consider flags of holomorphic foliations on a complex manifold M of
dimension n. We study, in this context, a Baum-Bott type residue. Regular C*> flags were
studied by Feigin in [ 14], where he proposed two constructions for characteristic classes of these
flags in an attempt to answer a question about the obstruction for the existence of integrability
foliations. Several authors studied characteristic classes, see [25, 27, 14]. R. Mol in [22] studied

polar classes of flags of foliations.

Other motivation of for the study of flags is a conjecture due to Brunella: any two-dimensional
holomorphic foliation F, on P? either admits an invariant algebraic surface or it is a flag of
holomorphic foliations, i.e., F = (F, F3), where in this last case F; is a foliation by algebraic

curves on P3.

2.1 Flags of holomorphic foliations
Let M be a complex manifold of dimension n. Let us denote by ©,, the tangent sheaf of M
and §2,; the sheaf of germs of holomorphic 1-forms on M.

Definition 2.1.1 Let F, ..., F; be t holomorphic foliations on M of dimensions ¢ = (q1, ..., q;)-
We say that F := (F1, ..., JF3) is a flag of holomorphic foliations if for each i = 1,....t — 1, F;
is a coherent sub O yr-module of F;. 1. We call F; C F;.1 a subfoliation of F; 1.

In the above definition, we say that F; leaves F;(i < j) invariant for eachi = 1,....t — 1.
Note that, for z € M \ U._,S(F;) the inclusion relation 7.7, C ... C T,F; holds, giving that

17
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the leaves of F; are contained in leaves of F; for ¢« < j. Here T'F; is the tangent sheaf of the
foliation ;. For simplicity we denote T°'F by /. When ¢t = 2, we have a diagram of exact

sequences of sheaves, as in studies of Feigin for the real case, see [9, pg 64].

\/\/
\/
/\

/\/\
/\

We define the singular set S(F) of the flag F to be the analytic set S(F;) U... U S(F;) and
Nr =N, 120 ...6 J\/}_l,t @ N be the normal sheaf of the flag, where /\/'” is the quotient sheaf
Fif Fi(i < ).

Example 2.1.2 A meromorphic map ¢ : X --+ Y, where X and Y are complex manifolds, is
a first integral of a foliation F on X, if the leaves of F are contained in the fibers of p. Then,

in this situation, F is a subfoliation of the meromorphic fibration induced by .

Example 2.1.3 Let F; be a foliation on a polarized smooth projective variety (X, H) satisfying
w(TF3) > 0 (slope, for definition see [19], 2.2 pg 7). If T F> is not semi-stable then there exists
a semi-stable foliation F such that F = (Fy, F2) is a 2-flag satisfying (T Fy) > p(TFy), see
[21].

Example 2.1.4 Let 7 : X — Y be a surjective holomorphic map, where X and Y are com-
plex manifolds. Given a regular holomorphic foliation G of codimension one on'Y one has that
Fo = G is a codimension one foliation on X. We set F the foliation induced by . Then,
we have that F = (F1,F3) is a flag on X with S(Fy) = S(Fy) = {singular set of w}.

9,
Example 2.1.5 Let X = Z fz be a holomorphic vector field on (C", (21, ..., 2,)). Then,

7

X is tangent to a 1-form w = Z g;dz; if and only if we have 0 = ixw.
i=1
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2.2 Bott vanishing theorem and residues for flags

In this section, we prove a residues theorem for flags of holomorphic foliations by applying
the localization theory of characteristic classes developed by D. Lehmann and T. Suwa. We will
start with the review of the Chern-Weil theory of characteristic classes of vector bundles. For
details we refer to [18] and [25].

Definition 2.2.1 A connection for a complex vector bundle E on M is a C-linear map

V: AYM,E) — AY(M, E)

such that

V(fs)=df @ s+ fV(s) for fec A"M) and s A°(M,E).

If H is a subbundle of the complexified tangent bundle 7°M, then its dual H* is canonically
viewed as a quotient of (7°M )*. We denote by p the canonical projection (7°M)* — H*.

Definition 2.2.2 A partial connection for E is a pair (H, ) of a subbundle H of T°M and a
C-linear map
§: A°%ME) — A°(M,H*® E)

such that
§(fs) = p(df) @ s+ fo(s) for fe A" M) and s € A°(M,E).

Definition 2.2.3 Let (H,0) be a partial connection for E. We say that a connection V for E

extends (H, 0) if the following diagram is commutative

AN M, E) — A9 (M, T°M* @ E)

e

AY(M,H* @ E)

Lemma 2.2.4 (25, Lemma 9.3, pg 75) For an arbitrary partial connection for E, there is a

connection that extends it.
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An important class of partial connections comes from "actions" of involutive subbundles of

tangent bundle of manifolds.

Definition 2.2.5 Let F' C T'M be a regular foliation on M. An action of F' on a vector bundle

E is a C-bilinear map:

a: A°(M, E) x A°(M, F) — A°(M, E)

satisfying the following conditions for f € A°(M) u,v € A*(M,F) s € A°(M, E):

1) a([u,v], s) = alu, (v, 5)) — a(v, a(u, 5)) ;
2) a(fou,s) = falu,s);

3) o(u, f.5) = u(f).s + fo(u,s) ;

4) a(u, s) is holomorphic whenever u and s are.

Lemma 2.2.6 (25, Lemma 9.8, pg 76) Let o be an action of F' on E and let

60 : A°(M,E) — A" (M, F* ® E) ~ A" (M, Hom(F, E))

be defined by 0,,(s,u) = a(u, s). Then the pair (F,d,) is a partial connection for E.

Definition 2.2.7 Let « be an action of ' on E. A F-connection for E is a connection which
extends the partial connection (F & TM, 6, @ 0).

Now, we will use the Chern-Weil theory of characteristic classes, in order to describe the
Bott vanishing Theorem for flags. This is a holomorphic version of the vanishing theorem due

to Cordero-Masa, see [9, Theorem 3.9, pg 71].

Theorem 2.2.8 Let M be a complex manifold of dimension n and E = FE, ® E5 a vector bundle
on M with Ey a F\-bundle, Fy a F5-bundle with Fy C Fy, C T'M regular foliations. Let v, and
w9 be homogeneous symmetric polynomials, of degrees dy and ds, such that at least one of the

inequalities

dy > n —rank(Fy) or dy >n —rank(Fy) or dy + dy > n — rank(Fy) 2.1

is satisfied. Then p1(F1) — o E) = 0.
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Proof: Let us denote rank(F}) = py, rank(F3) = po, rank(E;) = ry and rank(Es) =

Let a; : A°(M, F;) x A°(M, E;) — A°(M, E;) be an action of F} in E;, fori = 1,2 and /' a
F;-connection for FE;.

Now, let {U, (21, ..., 2,)} be a coordinate neighborhood on M such that F} and F can be
written(spanned) by:

Fy =<wv,...,v,, > and Iy =<wvy,...,0p,...,Up, >, Where v, = =
T

It follows from [25] that there exist holomorphic frames S* = (s1, ..., s% ) of Ey|y and S? =

(s1, ..., s2,) of Es|y such that
(v, s0) =0 for i=1,...,p; and v=1,...,7. 2.2)

as(vi,s2) =0 for i=1,...,py and v =1,...,79. (2.3)

Now, let ©' = (0},,) and ©* = (O7,) be the connection matrices of V' and V?, respectively,

1.e;

Z@wu and V2 Z@W“

It follows form (2.2) and (2.3) that

Vs (vi) = ai(vi,s) =0 and  V?(s2)(v;) = ag(v;, s2) = 0.

v

Then we have 0 = i%(%ll,u forall +=1,...,p1 and v,pu = 1,...,r. It implies that each

©,,, is of the form Z it dz; with f7* € O(U). In particular, the curvature matrix has the

i=p1+1
following property

K'=(K,,) with K, = Z n*dz;, where n* € QY(U).

i=p1+1

Similarly ©2, = Y g¢dz and K}, = Y w™dz. Then o(E) = ¢1(E)) —
i=p2+1 i=p2+1

P2(E2) = 01 (K') ~ @a(K?).
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Therefore, if either d; > n — py or dy > n — py or dy + ds > n — p; then p(E) = 0.

O

Now, we prove a Baum-Bott type residues theorem for flags of singular holomorphic folia-

tions.

Theorem 2.2.9 Let F = (F1, F2) be a 2-flag of holomorphic foliations on a compact complex
manifold M of dimension n. Let o1, s be homogeneous symmetric polynomials , respectively
of degrees d and dy, satisfying (2.1). Then for each compact connected component S of S(F)
there exists a class Resy, ,(F, N7, S) € Hon_2(4,+d,)(S; C) such that

D (12)Resp, oo (F N7, S3) = (91(N12)02(N2)) ~ [M] in Hyy oy +a)(M;C), (24)
A

where 1y, denotes the embedding of S, on M.

Proof: Note that away from the singular set of the flag, /; and F;, are free sheaves. So
there exist vector bundles F and Fy on M \ S(F) such that O(FY) = F, and O(FY) = F,.
Denoting M \ S(F) by M° we have that F? C TM° are subbundles for i = 1,2. Also, let
Npp = TMP/Fy and Nyy = F3/F}, then Ny = O(Npg) and Nyp := Fp/Fy = O(Nyy).

The exact sequences

00— F — Oy — Ny — 0.

O—>./—'.1—>f2HN12—>0

induce, respectively, actions a; of F on Ny and a; of F} on Ny, see [3, 25].

Now, denote by V5 the F-connection for N, and Vs, the Fy-connection for N - Let S
be a compact connected component of S(F) and U a relatively compact open neighborhood of
S on M disjoint from the other components of S(F). We set Uy = U \ S and U; = U and
consider the covering U = {Uy, U, } of U. We take resolutions of the normal sheaves N2 and
N, by real analytic vector bundles £;* and E? on U

0— AU(E;2) — ... — AU<E32) — AU ®N12 — 0.

0— Ay(E?) — ... — Ap(E}) — Ay @ Ny — 0.
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Since the characteristic class (1 (A7) is the characteristic class ¢y (£?) of the virtual bundle
2 =31 (—1)'E}? and po(N3) = @o(&?) for £ = Y7 (—1)"E?, we define the character-
istic class ¢(Nx), of the normal sheaf of the flag by ¢1(Ni2) — @2(N2). On Uy we have the
exact sequences of vector bundles

0— E? — ... — E? — Ny, — 0. (2.5)

0— E>— ... — E5 — Ny — 0. (2.6)

There exist connections >V} on U, for each E!? such that the family of connections
(12vi,...,12 V), V1) is compatible with (2.5). Analogously, there exists connections 2V} on
M for each E2 with the same property, see [3]. We denote 12V¢ by (12v( .. 127" and 2V
by 2V, ... 2 V"), Then it follows from [25, Proposition 8.4, pg 73] that

©1(*V9) = p1(V!) and 2 (°V8) = ¢ (V?). 2.7)

On U; we take an arbitrary family 12V3 = (22v{? _12v)  of connections, where
each 12V!" is a connection for E!? on U;. Similarly, we take other arbitrary family 2V¢ =
(V{7 ..2 V). Then the class p(NF) = @1(N2) — @a(Na) = ©1(612) — 9y(€?) in
HXdi+d2)([]; C) is represented in A2(41+42) () by the cocycle

p(°Ve) = (%(”Va), P1(PV1), 01 (V52 V) ~ (02(PV0), 02 (PV1), 2 PV, VY)) =
= (p1(PVE) A pa(PVE), 01(P V1) A 2(PV1), 01 (PVE) A 0a(PVE,2 V) + 1 (125,12 V) A
72 (2V1)).

Then by Bott vanishing Theorem for flags (Theorem 2.2.8), p(32V?) € A2d+d)(U ;).
Denoting [¢(32V?)] = ¢s(NF, F) € HA+d)(U U\S; C) we have the residue
Resy, o, (NF, F; S) = A(ps(Nr, F)) € Hon_o(a,+4,)(S; C), where A is Alexander duality.

O

Definition 2.2.10 We call the class Res,, ,,(Nr, F;S) by the Baum-Bott residue for the flag
F with respect to p, and ps.

Example 2.2.11 Let P" be the complex projective space (n > 3) with homogeneous coordi-

nates |z : ... : z,]. Consider an one-dimensional holomorphic foliation F, induced by the

vector field X = PR Consider the codimension one holomorphic foliation, denoted by JF>
Z3
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induced by 1-form w = zodz, — z1dzy. Note that F = (Fy, F3) in fact is a flag, since w(X) =0

The singular set of JF1 is the set of dependence of vector field X with the radial vector field

R = Z Zl% ie.,

0 )

S(fl):{pGJP’”; %/\Zzi£:0}:{p:[0:0:0:1:0:...:0]}.

On the other hand, the singular set of F» is given by S(F2) = S = {20 = z1 = 0}. We
remark that S(Fy) C S(Fs). Therefore, S is the singular set of the flag F. Now, we calculate
the residues of this flag.

We have the following

deg(Fz) = deg(F1) =0, Fy=0(), then ci(F1) =c1(O(1)) = 1h, where h is the
hyperplane class.

We know that ¢,(N3) = (2 + deg(F2))h = 2h and from the exact sequence

0— Fo — TP" — Ny — 0

we have ¢i(F2) = (dim(F,) — deg(F2))h = (n — 1)h. Then
Cl(Nu) = Cl(fg) - Cl<f1) = (Tl — 1>h —1h = (n — 2)h
By Theorem 2.2.9 (Baum-Bott for flags) one has for each j =0, ....n — 1

Resc?fl—jci+j (}", ,/\/}_—; S) — / C?ilij(ng)Ci+j(N2) _ / (n N 2)n—1—j21+jhn

n n

= (n —2)" 12,

Remark 2.2.12 Note that the Theorem 2.2.8 is legitime of the flag and more "fine" than Bott
vanishing Theorem, see condition (2.1). Observe that, with this theorem we can compute the

classes:

P(NF) = p1(NMa2)p1(N2)
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with d; < codim(F;) for i = 1,2 but with dy + dy > codim(F,). An important fact is that for
these polynomials it is not possible to apply the classical Bott vanishing Theorem. Then in this

case, the residue Res,, ,,(F,Nx,S) is a specific residue of the flag.

Remark 2.2.13 Observe that if we consider @, = "constant polynomial" then the residue
Resy, »,(F, Nz, S) is exactly the residue of F». But it is not clear in general the relationship
between flag residue and foliation residue involved in the flag. We will do this in the section 2.4,

see Corollary 2.4.3.

Now, we study a refinement of Theorem 2.2.9. It is because for some polynomials we can

detect superfluous components, i.e., components that do not participate of the sum in (2.4).
Theorem 2.2.14 The characteristic class o(N7) = ¢1(N12).02(N2) is localized at the inter-
section S := S(F1) N S(Fz) if di > codimF; and dy > codimFs.

Proof: Consider S(F) = SUS(F,)US(F,), where S(F;) are irreducible components only of
F; and U; aneighborhood of S(F). We set Uy := U\ S := UUUZ, where U} := U;\SUS(F>)
represents a neighborhood of the components only of F; and UZ is defined in the same way.
Then the characteristic class (NF) € HX4+42) ()M C) is represented by the cocycle

p(’V3) = (@1(12V5) A 2(*V5), 01 (VD) A 02(*VE), 01 (P V) A 02 (PVE,2 VY +
+o1(12V5,2 V1) A ea(2V1) ).

We claim that 1 (12V9) A 02(2V8) = ©(32V?) |y, = 0. In fact as Uy := U}l U U2, we can
represent this form in Cech-de-Rham cohomology in the open Uy with covering {UZ, U2}

1PV AR (PVE) = (@1(12V5)Aw2(2va)lug7 21(PVE) A2 (V) vz, ¢1(12V5)A902(2V5)|Ugmug>

Finally, we can see that

P2Vl = 0, @1(*VE)lyz = 0 and o(*V§) = ¢1(*V§)|yanpz = 0 by Bott vanishing
theorem. Now, the remainder is as in the proof of the Theorem 2.2.9.

0

Corollary 2.2.15 Given a 2-flag F = (Fi,F2) on P" with n > 5 such that codim(F,) +
codim(Fy) <n—1.If S(F1) N S(Fz) = 0 then dim(F3) + deg (Fy) = dim(F;) + deg (F»).
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Proof: Consider p; = ¢ and ¢, := ¢ polynomials, where d; = codim(F;) + r and
dy = codim(Fy) + 1, for any r € Z, such that d; + dy = n. Note that, this is possible since
codim(Fy) + codim(Fz) < n — 1. Then, by Theorem 2.2.14 we have that

/ (NP (Ne) = Y- Res a(F . NES). (2.8)
" SeS(F1)NS(Fa)
On the other hand

c1(F1) = (dim(Fy) — deg(F1))h and ¢ (Fz) = (dim(F,) — deg(F2))h, where h is the
hyperplane class. Then, by exact sequence

00— Fy — Opn — Ny — 0

we have
c1(N2) = (n+ 1)h — (dim(F) — deg(F2))h, with n+1— (dim(F,) — deg(Fz)) # 0

Whe) = e1(F2) = () = (dim(F) - deg(F) — dim(F,) + deg(F1) ) b

Now, by equation (2.8) and hypothesis S(F;) N S(F2) = (), we have the result (dim(fQ) —
deg(F2) — dim(Fy) + deg(}"l)) =0.

Now, we quote the following conjecture

Rationality conjecture for flags 2.2.16 Let F = (F1,F2) be a 2-flag of holomorphic folia-
tions on a complex manifold M. Also let S be a compact connected component of the singular
set of the flag and ¢ = (1, 2), where p; is a homogeneous symmetric polynomial of degree d;

satisfying (2.1). If @; is with rational coefficients, then

Res<p1,<p2 (]:a N]-'7 S) € H2n72(d1+d2)(5; Q)

Next section, we will give a partial answer for this conjecture.
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2.3 Residues formula

In this part of the work we will show a formula that calculates some residues of a flag F.
Naturally appears, as a consequence, a relationship between flag residue and residues of the

involved foliations. For a basic reference, see [11, 22, 13, 6, 18].

Let F = (Fi, F2) be a flag on a compact complex manifold M/ of dimension n. We denote
by (k1, k2) the codimension of this flag and by Singy, 11 (F;) the set of irreducible components
of S(F;) of pure codimension k; + 1.

Let us fix some notation: Let S(F;) := Sing(\;) be the singular set of the foliation ;.
Recall that the singular set of flag is defined by S(F) := S(F;) U S(F2) and the relative normal
sheaf by Vo := Fo/ Fi.

Proposition 2.3.1 Given a 2-flag F = (Fy, F2) on a complex manifold M. On My := M\S(F3)
we have Sing(N7) N My = Sing(Ni2) N M.

Proof: We recall the exact sequence

O—>N12 —>N1 —>NQ—>0 (29)

Away from the singular set of F>, i.e., for p € M \ S(F2) one has that the stalk at p N5, is

O, - free. The sequence (2.9) induces the exact sequence of Oy ,-modules

0— N127p — NLP — NQ}p — 0. (210)

Since N>, is a free module it implies that, by the splitting lemma see [15, pg 147], the se-
quence (2.10) splits (here Oy, is a local ring, then projective and free modules are equivalent):

Nip =Ny Ny,

in which the module N , is free, if and only if, A2, is free.

Corollary 2.3.2 If the sheaf N5 = % is locally-free then we have S(Fy) C S(F3).
1
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Proof: Apply the Proposition 2.3.1.

Example 2.3.3 Let F be the foliation in P? induced by the polynomial vector field

0 0 0
X =M Nz1=— + dozo— + A3z3— with \; #0 for all i.
821 822 823

Consider the osculating planes distribution Fy associate to X, generated by X and Y =

DX.X. It is integrable and also given by the logarithmic 1-form

oM hedn N ddn | de— My
N )\1 21 )\2 29 >\3 23‘

We have that, in fact, F = (F1,F2) is a flag, since a simple calculation shows that w(X) =
0. For this we have the following

S(]—"l):{[1:0:0:0],[0:1:0:0],[0:0:1:0],[0:0:0:1]}.
S(F)=8=USi; for 1=0,1,2,7=1,2,3 and i# j,

where S;; = {z; = z; = 0}.

We observe that S(Fy) C S(Fz) and that the relative normal sheaf N1y = Fo/F; is
locally-free, since F1 = Ops C Fo = Ops @ Ops .

Example 2.3.4 Let 7 : P --» P? be the rational map given in homogeneous coordinates by
[20 : 21 ¢ 22 @ 23] V> [20 : 21 : 23]. This is a rational fibration which induces an one-
dimensional foliation on 3, we call it Fy. The singular set of Fy is S(F;) = {[0:0:0: 1]}.

On the other hand, let G be a codimension one foliation on P? of degree d with singular set
given by S(G) = {p1, ..., i }- Now, consider the pull-back of G by w and denote it by Fo = 1*G.

We have that S(F») = U T (py).
pi€S(G)

Note that, we have F; = Ops(1) since the degree of Fy is 0 and G = Opz(1 — d), then

Fo = Ops(1—d) ® Ops(1). Then, the relative sheaf N1 is Ops (1 —d), in particular it is locally
free. Moreover one has S(Fy) C S(Fz).

Proposition 2.3.5 Let F = (Fi,F2) be a flag on a complex manifold M with dim(F,) =
codim(Fs) = 1. Then F, has no isolated singularities in M\ S(F3).
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Proof: The situation is local. Suppose that p is an isolated singularity of /; and pick a

neighborhood {U, (21, ..., z,) } of p, where F3|y is regular. On this open subset we can consider

F» induced by the 1-form w = dz; and F; by the vector field X = ) _ fidz;.

=1

Since that F = (Fy, F») is a flag, we have

0=1xw=f1.

But this show that S(F})|y = {fs = ... = f, = 0} is not an isolated singularity.
U

Corollary 2.3.6 Let F = (F1,F2) be a flag on a complex manifold M with dim(F;) =
codim(Fy) = 1. If So(F;) denotes the isolated singularities of the foliation F;, fori = 1,2, we
have that So(.F1> = So(fg)

Proof: See Proposition 2.3.5 and [22, Corollary 1, pg 778].
O

Proposition 2.3.7 Foraflag F = (Fi, F2) on M with dim(F;) = codim(F3) = 1 and S(F;)N
S(F2) admitting isolated singularities (only) we have

Res. (F2,Na,p) = (—1)"(n — 1)!Res., (F1, N1, p),

where the residues involved are of the foliations F1 and F.

Proof: Letp € S(Fi) N S(F2) be an isolated singulary. We know that near p we can consider
8 n

JF1 as induced by a vector field X = g fZ and F, by a 1-form n = g gidz;. Then,
ZA

2

i=1
Res,, (F1,N1;p) = p(f;p) is the Milnor number of f = (fi,..., fn) at p. On the other hand,
we have Res,, (Fa, N2;p) = (—=1)"(n — 1)!u(g; p), where g = (g1, ..., gn) With n = dime M,
see Suwa [26, Proposition 3.12, pg 41]. Since F = (Fi, F2) is a flag we have

0=1xn=7)_ figi=0. 2.11)

We claim that (f1, ..., fn) = (91, ---, gn) as generated ideals.



CHAPTER 2. CHARACTERISTIC CLASSES OF FLAGS 30

In fact, consider the exact Koszul complex of regular sequence (f1, ..., f,),
n 2
OH/\O"H---—>/\O”L>O”1>O—>O,

where 7(e; A e;) = fie; — fje; and s(e;) = f;. From (2.11) one has that (g1, ..., g») € Ker(s) =
Im(r), then
T‘(Z Pijei Nej) = Z Py(fiej — [i€i) = Zgiei-

This implies that (g1, ..., g») C (fi1, ..., fn). If we consider the Koszul complex of (g1, ..., g»)

we have the equality of ideals.

Therefore 4u(f;p) = p(g; p) and Res,., (F2, N2;p) = (—1)"(n — 1)!Res,, (F1, N1i;p).

The next example is inspired by the example of Izawa in [29, Example 5, pg 907].

Example 2.3.8 Let Y := P° x P! with homogeneous coordinates
([xo DXy Xe Ty Tyt Tsli (Yo - y1]>. We consider a regular foliation on 'Y given by

G := 7 LQp1, where 7 is the standard projection of P> x P! in PL. Let

X = V(zh+ ot +ab+ab + 2l +2b) NV (zoyo + 2101) [ € Zy.

This is a regular sub-manifold of Y. We consider the inclusion map i : X — Y. Put F, =
i~\G, the inverse image of G, which defines a singular foliation of codimension one on X. In
this case, the non-transversal locus of 1 to G determines S (F»), the singular set of the foliation

Fo. To see the non-transversal points, we take the inhomogeneous coordinates over xy # 0 and
Ty Ty T3 Ty X . :

Yo # 0 as (s,z,y,w,t) = (—1, —2, —3, —4, —5) and z = (ﬂ) With these coordinates we can
To To To To Lo Yo

express, locally, X by

X ={(s,z,y,w, t;2); 1 + 2" +y' +w' +t' =0 and 1+ sz =0}.

With this we have that z = —(—1)T (1+ ' +y' + w' + )T . We know that F, is given by the
I-form w = dz, i.e.,
0z 0z 0z 0z

w=dz = %daﬂ— 8_ydy+ %dwjt Edt'
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Here, we use the following notation for coordinates of the 1-form that induces F»

P B L
gol:8—;:(—1)71951—1(1+xl+yl+wl+tl)%
0z =11 ! ! I, gy =t
0z 111 1,1 N
9032%2(—1)110 (I+2"+y +w +1')2

D) .
014 = a—j = ()T A+ 2ty ot 1

-1
2 .

Since the z-axis is a transversal direction for the leaves of F, the non-transversal conditions
are given by p1 = ps = p3 = ¢, = 0 such that (z,y,w,t) = (0,0,0,0). Then, with the

defining equations, we see that the non-transversal points are given by
(sal‘7yawat; Z) = (Wk,0,0,0,0; _wl—k—1>k:0 ..... -1,
where we denote by wy, the [-roots of —1. Therefore, the singular set of F5 is given by these

points. Consider the one-dimensional foliation on X, denoted by JFi, given locally by the
following vector field X = (X1, Xo, X3, X4), where

-1

X = ()T (= YA+ +y+ul +t) T = —py

—l-1

X, = (—1)7T1xl*1(1+xl+yl+wl+tl) T =

-1

Xy = ()T (812 4yl 6) 7 = g,

-1 —i-1
[ =

Xy= (D7 A+t +y +w +)72 3.

Note that F = (Fi, F2) is in fact a flag, since the following holds

ixw = w(X) = X191 + Xows + X33 + Xups = 0.
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Observe that S(Fy) = S(F3). Now, using the local coordinates of the vector field and the
1-form as above, we have for each p € S(F3)

L>4/ ngl VAN d(pg A dgﬁg N ng4
T

Res.,(Fa, No; p) = (—1)*3!(=—
T2 Neip) = (=1) (2m 01020304

l ! l l

+y +w +t dr dy dw dt
— 1—1)24+(12=1)—2 )—/\—/\—/\—:6. [—1)?
/T(< )+ )1+xl+yl+wl+tl Ty w ot =05

where T is given by {|x| = |y| = |w| = |t| = €}. On the other hand, as we have

X1.X5.X3.Xy (—902)901(—904)903 P1-P2.93-P4 .

It follow that

1
Res.,(Fi,Ni;p) = (2_m

)4/ AXi A dXo NAXs N X
T

X1.X5.X3.Xy

Therefore, we have

Rese, (Fo, Nosp) = (—1)'31(1 = 1)* = (=1)"3IResc, (F1, Vi p).

2.4 Determination of certain Baum-Bott residues for flags

In this section, we will consider the Baum-Bott theorem for a flag F = (F;, F2) with
codimension (k1, k3). We will denote by Singy, 1 (F;) the union of irreducible components of
S(F;) of pure codimension k; + 1 for i = 1, 2. Next, we will show that the characteristic classes
&I (N, )l (NV2) can be localized at Singy, 1 (F;). We consider the following notation

S.(F) = Sing, ,,(F1) USing,, . (F2), M°:= M\ S(F) e M":=M\S.(F).
In the regular case (on M) there exist locally forms w? and w'?, where w? is a ky-form that

induces F and w'? is a (k; — ky)-form such that w} := w? A w!'? induces F; satisfying the

following two conditions



CHAPTER 2. CHARACTERISTIC CLASSES OF FLAGS 33

1) These forms are decomposable

wi =i AL AN and Wl =np g AL AT

2) Integrability condition: There are matrices of 1-forms (62,), (6%,) and (6%) with 1 < u,v <
ke and ko + 1 < a,b < k; such that

ko ko k1
= 30 and i =SS0 A S 0 A
v=1 v=1

b=ko+1

kg kl

We define 62 = Z(—l)““@a = Z (—=1)**g>  and put 6. := 6% 4 6!2.

uu?

u=1 a=ka+1
We define 125 = dgis/g2s — 05 + 02 and 3% = dgis/ghs — 05 + 0.7, where
Wi = 92w, Wi = gapwp With 1% = g 5/g7 5. The cocycle of 1-forms {723} corresponds to
a cohomology class in H'(M°, N7,). Analogously the cocycle {+2,} corresponds to a class in
gy 12 gously y Vap P

HY(M®,N5).

We will consider now the Baum-Bott theorem for flags. For this we consider the local
generators as above wy = M A ... A1, and wie = Ng,q1 A o A Mg, With wp = wa A wio.
Take smooth sections of N7, and N5 instead of holomorphic ones. Then, the cohomology
groups H'(B}, N7,) and H' (B}, N) are trivial. It is possible to find matrices of (1,0)-forms
(Ouv), (0ay) and (fyp) such that

dnu:ZOW/\m and dnazz&v/\m—i—z&b/\m.

We define 6% = > (—1)*"10,, and 6'* = > (—1)*"16,,. Now, observe that the following
forms for 0 < j < ko

V= (2mi) "R LO A (dO?)T A (612 )R
@ = (2mi) k27102 A (d6?)*>
7= (2mi) M2 A O12 A (dB?)T A (dOYE)R

are closed in de Rham cohomology, see Dominguez [13, Théoréme 5.2, pg 830]. These forms

correspond to cohomology classes in H*(By;, C).
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Take now an irreducible component Z C Sing, (/1) and a generic point p € Z. Pick B,
a small ball centered at p such that S(B,) C B, is a sub-ball of dimension n — k; — 1(same
dimension than the component Z). The de Rham class can be integrated over an oriented
(2k1 + 1)-sphere L, C B}

BB(F, Z) = (2mi) 7! / 6" A (d6%)7 A (d0™2)"7 for each 0 < j < k.
L

P

Theorem 2.4.1 (Baum-Bott for flags) Let F = (Fi, F2) be a 2-flag of codimension (ky, ks)
on a compact complex manifold M. If codim S(F) > ki + 1, then for each 0 < j < ky we have

T (Niz) — A (Ne) = > Az (F)IZ],

z c Sing,, ., (F)uSing, ., (F2)
where X,,(F) = BBI(F, Z).

Proof: The flag F = (Fi, F2) can be locally defined on open an subset U, by wy = n; A ... A
Mhyy W12 = Mkyt1 N .. A, and w; = we A wio as above. Then, we can find matrices of
(1,0)-forms (6,), (05,) and (65,) with 655 € A°(By) such that

ko ko k1
dije =y 05, Any and dijo =Y 65, An.+ Y 6o A,
v=1 v=1

b=ko+1

(e}
uv

« e
eav Hab

Roughly speaking, we say that V = ( ) represents the curvature matrix of the flag

ko+1
F. Let us fix a neighborhood V' of S,(F), then we can find @Z = Z (=1)“*19*, and @:lf =

u
k1

Z (—1)‘”1@\3‘@, where é\,f; is a suitable modification of 6
a=ko+1

e
172

for more details, see [11, 6].
Now, let us consider ©2 := (2mi)~'df2 and ©'2 := (2i)~'d6}2 globally defined closed

forms which represent in de Rham cohomology the Chern classes of N3 and N, respectively.

Therefore (©2)7 A (©'2)k1-7+1 represent ¢i* 7' (Nq,) — ¢ (N3) and moreover, by Bott van-

ishing theorem for flags, see Theorem 2.2.8, we have
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Supp(c]fl_jH(J\/'lg) — c{(/\/é)) cV.

Take 7" C M aball of real dimension 2(k; + 1) intersecting transversally Singy, 1 (F7) ata
single point p € Z, with V. N'T" € T'. Then by Stokes formula

BBI(F,Z) = (2ri) ™~ [ 02 A (dO2) A (dO22) T =
or

= (2mi) Tt / (dB2) A (dB12)Fr—itT (2.12)
T

This means that the 2(k; + 1)-form (©2)7 A (©12)R1—=3+1 = (d§2)i A (df'2)¥1=3+1 is coho-

mologous, as a current, to the integration current over BB/ (F, Z)|Z], i.e.,

' M (Ni2) — Al (N2) = > BBI(F, Z)(2).

O

This theorem answers, partially, to the question: How to calculate residues to flags? As

above is the Baum-Bott theorem for flags, we have

Res 15114 (F, NFi Z) = (BB/(F; Z)[2)),

where a, is the Poincaré duality isomorphism

H*MHD (M C) 2 Hynpy—1y(M; C).

Corollary 2.4.2 If either N5 or N5 is ample then, there exist at least one irreducible compo-
nent 7 C Singy, +1(F1) of codimension ky + 1.

Proof: By hypothesis either A5 or A5 is ample then, we have that either ¢; (Nq2) or ¢1(N3) is

non zero. Using Theorem 2.4.1 one has the result.
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O

We prove a formula that compares the (sum) flag’s residues with residues of the involved

foliations.

Corollary 2.4.3 For each Z C Sing;,, . ,(F:1) and the above hypotheses we have

ko
> (kl;rl)BBj(f,Z) = BB(F1, Z), (2.13)
j=0

where the term in the right side of (2.13) is defined in [ 11, pg 6] and [6, pg 300] for k; = 1.

2+ 1
Note also that ifklzn—lthenz< !

J=0

>BBj (F,Z) =" Grothendieck Residue”.

Proof: By Dominguez [13, Remarque 1, pg 830], we have

ko k1+1 12 2\j 12\k1—357 _ [pl 1\ k1
Z( ; )[9 A (6P A (d672)913) = (9" A (d6")M]

J=0

in the de Rham cohomology, where ' = 6% + 0'2. Thus

ko
ky+1 , :
Z ( 1+ )912 A (d62) A (62T — 91 A (A9 = do

=0\ 7

for some form o. Now, integrating over a sphere 07" as above, we have

S (k41 i _
Z( ; )BB (F,Z) = BB(F., 2).

J=0

Therefore the corollary is proved.

O

Corollary 2.4.4 Let F = (F1,F) be a flag such that diim(F,) = codim(Fz) = 1 and the

singular set of the flag is composed of isolated singularities (only). Then, we have
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Rescn (F, Ni2; p) = Resen (F1, N1 p),
where p € S(F) = S(F1) = S(Fa).

Proof: By Corollary 2.4.3 and the hypothesis that k& = n — 1 and k; = 1 we have

BB°(F;p) + nBB'(F;p) = BB(Fy;p).

Since the singularities are isolated, we have

RCSC’;(}—,Nm;p) +Resc?717q (F,Nr;p) = Rescy(}_h/\/&%p),

where )
Res -1, (.7-"7 /\/'f;p) = (_)n/ 012 A (d62)1 A (d012)n—2
o 2mi’ Jp
with 62 is a (1,0)-form such that if w is the 1-form that induces locally F,, we have
dw = 60> A w.

By Malgrange, see [20, Théoreme 0.1, pg 163], we have that w admits an integral factor, i.e.,
there are holomorphic functions f and g with f(p) # 0 such that w = fdg. This implies that

dw—df/\dg—%/\(f.dg)—%/\w.

df

Then, we can consider * = —- = d(log f). Since this is an exact form, we have df* = 0

and Resclz_1761 (F, Nz;p) = 0. Therefore, the result is proved.

O

Example 2.4.5 Let F = (F,F») be the flag on the manifold X C P° x P! of the Example
2.3.8. By Corollary 2.4.4 we have

Resc? (f, ng;p) = Resc? (fl,Nl;p),
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dr Ndy A\ dw A dt
X1 X0 X3X,

where Resn (Fy, Ni;p) = (%)4/ tr(JX)*
T

iy

We can check that tr(JX) = 0. Therefore we have the flag’s residue

Resc‘{(fa/\/lz;p) =0.

38



Chapter 3

Nash residues and comparison of residues

In this chapter, we propose to analyze the rationality of the Baum-Bott residues for flags.
We consider the Nash modification M" of a complex manifold M with respect to a flag 7 =
(F1, F») and we will give a partial answer for this conjecture. In the foliation context, Sertdz in
[23, Theorem V 1, pg 242] studied this conjecture with the hypothesis that A" is non-singular
and he gave a partial answer to Baum-Bott conjecture. In [5, Theorem 4.1, pg 44] Brasselet and
Suwa generalized the work of Sert6z, where they use characteristic classes on singular varieties.

For characteristic classes in singular varieties, we refer to [4].

3.1 Nash residues for flags

Let M be a complex manifold of dimension n and F = (F;, F») a 2-flag of singular holo-

morphic foliations of dimension (¢;, g2) on M. Then for each point x € M, we set

Fi(z) ={v(z) /| ve F,} CT,M.

This is a ¢;-dimensional subspace if and only if z ¢ S(F), for i = 1, 2. Thus we have a flag
of subspaces Fi(z) C Fy(xz) C T, M for each point x € M \ S(F). We will consider the flag

bundle using the Grassmann bundle of g;-planes.

Let 7y : Gy, (T'M) — M be the Grassmann bundle of ¢»-planes in 7'M/. We have the Nash

modification of M with respect to F», M} = I'mos, where o, is a natural section induced by

39
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F». We have the exact sequence on M

0 —T1) — m3TM — Ny — 0. (3.1)

Analogously, we consider the Grassmann bundle of ¢;-planes in 7'M denoted by 7 :
Gy, (M) — M and we obtain the Nash modification of M with respect to Fy, M} = Imo;

and the exact sequence on M{

0 — 1y — miTM — Ny — 0. (3.2)

Now, if we consider the Grassmann bundle of (n — ¢2)-planes in 7'M, i.e.,

Foeay : Gogy(TM) — M,

then we have the exact sequence

0— T —>%;_q2TM—>]V” — 0.

n—aq2 n—aq2z

Remark 3.1.1 The fiber of the fibre bundle N}_, — G,_4,(T'M) over a (n — g2)-plane

n—q2
En_g € Gug,(T' M) is the qo-plane
_ T, M
(Nn—QQ)En7q2 = E = Eq27

n—qz

where T, g, (En—g,) = .

If welet7, : G, (NY_ ) — Gn—g, (T"M) be the Grassmann bundle of p;-planes in N

n—q2 n—qz’

we have the flag bundle 7 : Fy,, ,,(TM) — M of (¢q1, g2)-planes in T'M, where T = 7,,_ 4,07, -

Remark 3.1.2 A point of F,, ,,(TM) over x € M means first a qa-plane E,, in T,,M and then
a qi-plane I, in E,,; this is a flag in T, M.

For details see [16].

Definition 3.1.3 We define the Nash modification of M with respect of the flag F = (F1, F2)
by
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MY = Imo,

where the closure is taken in the fibre bundle F,, ,,(T'M) and o is the natural section induced

by the flag F .

If we consider the projections p; : Fy, ,,(TM) — G, (T'M); i = 1,2, then we can take
the pull-back of the exact sequences (3.1) and (3.2) to M".

0 — piTyY — pimiTM — pi Ny — 0. (3.3)

0 — 3Ty — poymyTM — py Ny — 0. (3.4)

Proposition 3.1.4 The following diagram

MU
2N
My T M3
N A
M

Is commutative.

Proposition 3.1.5 On M" we have the exact sequences

0 — N5, — pi N/ — p5NJ — 0 (3.5)

0 — i1y — p5Ty — Ny, — 0, (3.6)

where N, := p3T¥ [piTY .

It follows from the Proposition 3.1.4 and Proposition 3.1.5, that pim;T'M = pin3TM =

7*T M. Therefore, we have the following diagram on M".
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NN

pily PNy
\ /
T M
/ \
Py piNY
AN N
N,
0/ \O

We define the normal bundle N” over M" by Ny, @ p5 /N5 and also we define

O(N”) := 1(Nyy) — w2(p3Ny),

where ¢; is a homogeneous symmetric polynomial of degree d;.

Let S be a compact connected component of S(F) and let S” = 7—1(S). Also, let U be a
neighborhood of S” in M" disjoint from the other components of S(F)”. Let (71” be a regular
neighborhood of S” in F, ,,(T'M) with U¥ N M” C U” and U¢ be a tubular neighborhood of
Uy = U”\ ¥ in F,, ,,(TM) with the projection p. We consider the covering f* = {UY¥, U}
of U = 170” uU V. The characteristic class ¢(/N”) is represented by the cocycle

P(PVY) = o1 (1PVY) — (YY) € AR ),

where
21 (292) = (1295, 01 (295), 91 (12V5,2 V)

and
©2(*°VY) = (02(°V8), 02(°VY), 2 (*V§,2 V).

Here '2VY and 2V are connections on N}, over UY and UY, respectively, and >V} and

2V/Y are connections on piNJ over U} and UY, respectively.
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If we set U = w(U"), i.e., a neighborhood of S on M, then 7 induces a biholomorphic
map Uy — Uy = U \ S. On U, we have basic (Bott) connections V1 and V5 a Ny, and NF20

respectively. We take as >V} the connection for N, given by V¥ = 7*(V2) and analogously
2VY = 7*(Vs) for p3NY then

e(3°VE) = 1(PV) — w2 (PV§) = 0.

The cocycle p(}2VY) € A2di+d2)(14v ) defines a class g (NV: F) € H2di+d2) (v v\
S¥; C). We denote its image in Hy(,—q,—4,)(S”; C) by Alexander homomorphism by
Res@l,WQ(NV7 f? SV)

Definition 3.1.6 We call the class Res,, ,,(NV,F,S") the Nash residue of the flag F with
respect to p = (@1, p2) at S”.

3.2 Comparison of Baum-Bott and Nash residues for flags

After the definition of the Nash residue for flags above, we can compare it with the Baum-
Bott residue for flags. The result is analogous to [5]. This comparison gives a partial answer to

the Rationality conjecture for flags, see (2.2.16).

Let M be a complex manifold of dimension n and F = (F;, F») a 2-flag of singular holo-
morphic foliations of dimension (g, ¢2) on M. Also let S C S(F) be a compact connected
component and S” = 771(.9) as above. Then, there is a canonical homomorphism

T+ Hop0q(5"; C) — Hop—24(S;C).

Theorem 3.2.1 Let ¢ = (1, p2) where p; is a homogeneous symmetric polynomial of degree
d; satisfying the condition of the Bott vanishing theorem for flags (2.1). If p; has integral

coefficients, then the difference

Resy, o, (N7, F,S) — mResy, ,,(N”, F,S")

is in the image of the canonical homomorphism Ha, 24(S;7Z) — Hap,_04(S;C), ie., it is a

(sum of) integral class.
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Proof: Take analytic resolutions of the sheaves F; and F»
0— AU(E;2> — . — AU(EIH) — AU ®RF1—0

0 — Ap(E?) — ... — Ap(E?) — Ay @ Fo, — 0.

The exact sequences

provide a resolution of the sheaves N5 and Nj.

12 12
0 — Ap(E2) ™5 .. — Ap(ED ™5 Ap(F) — Au @ Nig — 0

0 — Ap(E2) " . — Ap(E}) 5% Ap(TM) — Ay @ Ny — 0.

Then, we have exact sequences of vector bundles on Uj.

0—E?— .. — E?— F) — Ni; —0 (3.7)

0— E!—..— E} — TM — Npg — 0. (3.8)

The sheaves homomorphisms 77]1.2 and n)? induce bundles homomorphisms on U and U

12, 12 12
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2. 2 2
*x1.12 . % 12 * 112
wh;” B — RS
W*h? : W*E? — W*Ei{l.
We claim that

Im(7*hi) C p3T¥ and Im(m*h}?) C piT} on U”. 3.9

In fact, away from the singular set we have equivalent sequences
00— F1 — Fs —>N12—>0.

0 — piTy — psTy — Ni; — 0.

Note that 7¢ = 7} F} (on M} ) implies that p;77 = 7*F}. Analogously we have p;Ty =

* 170
T F5.

Then, we have the exact sequences

7T*E112

lw*hF

0— =" F) — " F) — = 7" Ny 5 —> 0.

Therefore, away from singular sets, which is dense in U”, we have the equalities in (3.9).
Then, by the continuity arguments we have the inequalities of (3.9) in U”. We have two com-

plexes of vector bundles on U", which are exact on Uy .

0 — 7" (E)?) — ... — " (E}*) — 7 F) — Ny — 0. (3.10)

0 — 7 (E?) — ... — 7*(E}) — 7" TM — p3Ny — 0. (3.11)

We consider the virtual bundles 15 = 7*(£'?) — N}, and & = 7(&?) — p3Ny  or
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TH(E12) = Ny + 212 and 7(€%) = pyNY + &,.

By classical properties of characteristic classes we can write

@1(%*(512)) = p1(N75) + Z ‘Pi(Nfz)@/)i(g12)a

46

(3.12)

where the ¢! are symmetric polynomials with integral coefficients and ¢} are symmetric poly-

nomials with integral coefficients without constant term. Analogously

P2(7(6%) = a5 N) + Y D5 (D5 NS5 ().

By taking the cap product of (3.12) with (3.13) we have
P1(TE).02(T°E%) =
= p1(N12).pa(P5N) + @1 (NTo). - b (p5 N3 )5 (82) +
+ 20 1 (V1)U (B1)-p2(p3 N5 ) + 32 01 (N12) ¥ (E12) -5 (D3NS )15 (E2).
on H2(di+da) (7).
We claim that we have a good localization, i.e., in A*(U”, UY) we have
p(T*(5°V2)) = e (T (V)2 (T (2 V1)) =
= 01(2VY).p2(PVY) + 01 (V). 2 b (VU5 (PVE) +
+ 22 PPV (VD)0 (CVY) + 2t (VUL (V)0 (VYL (V) + D,
where 7 = (0,0, 791)
with 701 = @1 (V). 2701 +1 701,02 (PVY) +12 701 2 05 (V) 45 (PV9)
For further details of the ?7; and '7y;, we refer to [5, pg 46].

The above claim shows that we have in H2(@+%) (v ¥\ S¥, C)
T os(NF, F,) = @ov (NV, F) + 3 01(Ny) b (05 NG ) 5 g (€2)+

+ 2001 (N) U g(e12)-02(D5NS ) + 3 @5 (NT,) 4 g(12)- b (D3NS )5 g(£2).

(3.13)
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Thus, by the commutative diagram

H2(d1+d2)(UV7 Uv \ SI/7 (C) T ]__]2(d1+d2)((]7 U \ S, C)

2 2

HZn—Z(dl-i—dg)(SVa (C) L HZn—Z(d1+d2)(S7 (C)

we obtain that the difference between these residues in Ha, 24, +d,) (S,C) is a sum of integral

classes.
O

Corollary 3.2.2 If o1 = ¢;,...c;, and vy = c¢j,...c;, with i, > codim(Fy) for some v €

T

[1,..,7] or iy > codim(F,) for some s € [1,...,t], then the Baum-Bott residue for the flag
F, Resy, o, (NF, F,S), is a (sum of) integral class.



Chapter 4

Determination of Baum-Bott residues of

the foliations

The purpose of this chapter is twofold. First, we give a generalization of a construction of
Brunella-Perrone in [6] and Corréa-Pérez in [11, Theorem 4.1, pg 6], for any polynomial ¢ of
degree k + 1; and second, we show that, in this theorem, the complex number BB(F, Z) can be

calculated as a Grothendieck residue.

Let F be a holomorphic foliation of codimension &k on a complex manifold M with dim M =
n. Assume that F is induced by w € H°(M,Q%, @ N). Denote by Sing;, ;(F), the union of

the irreducible components of S(F) of pure codimension k£ + 1. Assume that

Codim S(F) > k + 1.

We can consider w decomposable and integrable, i. e., locally w is given by a product of k
1-forms 7y A ... A . Then, it is possible to find a matrix of (1,0)-forms (6;5) such that

k
dy =Y O Ane ¥V 1=1,..k
s=1

Set 6 := Zle(—l)”l@l. Observe that the smooth (2k + 1)-form

(L)’“He AdONA ... \df
—_—

271
k—th

48
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is closed. Its the de Rham cohomology class in H 2! (By; C) does not depend on the choice of

w and 6.

Take now an irreducible component Z C Sing, ,,(F) and a generic point p € Z. Pick B,
a small ball centered at p such that S(B,) C B, is a sub-ball of dimension n — k — 1. The

de-Rham class can be integrated over an oriented (2% + 1)-sphere L, C B

BB(F, Z) = (i)’fﬂ/ 6 A (d6)".

271

Corréa and Pérez in [11, Theorem 4.1, pg 6] give a new proof of the Baum-Bott theorem and
presented an effective way (different of Baum-Bott) to calculate residues of a foliations, when

the dimension of the singular set of the foliation is one less than the dimension of the foliation.

Theorem 4.0.3 Let F be a holomorphic foliation of codimension k on a complex manifold M.
Then the following hold:

(i) for each irreducible component Z of Singy.+1(F) there exists a complex number \z(F) which

is determined by the local behavior of F near Z.

(ii) If Mis compact
AT WNE) =D M (F)Z),
Z

where the sum is done over all irreducible components of Singj.1(F). We will show \z(F) =
BB(F, Z).

We will show the following result

Corollary 4.0.4 Let F be a holomorphic foliation of codimension one on M induced by w €
HY(M, Q' ® det(NF)). Consider Z C Singy(F). If dw = 0 in a neighborhood of Z then

Res(F;Z) = 0.

Proof: By Theorem 4.0.3 one has

Res:(F; Z) = au(BB(F, 2)[Z]),
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where a, is the Poincaré duality isomorphism

HQ(Q)(M; C) S HQ(n—Z)(M; C)-

I will show that BB(F, Z) = 0.

Recall the definition of this complex number BB(F, Z), see [6]. There is a (1,0)-form
B € AL9(Br) such that
dw = Nw,

where B; is defined as follow.

Take a point p € Sing,(F). We consider a ball B, C M centered at p, next consider
S(B,) = Sing,(F) N B, and By = B,\S(B,).

By hypothesis dw|z; = 6 A w|z = 0 then, by the division lemma, there is a holomorphic

function f such that

On the other hand, we have

BB(F,Z) = (QLM)?/L BAdp,

where, S A dS = fw ANdf ANw = 0.

Example 4.0.5 Let F be the logarithmic foliation on P induced, locally in
(C3,(x,y,2)) by the 1-form
w = yzdr + rzdy + rydz.

In this chart, the singular set of w is the union of the irreducible compoents Z, Zy and Zs,
where Zy = {x =y =0}; Zy={x=2=0} and Z3 = {y = z = 0}. Note that dw|z, =0
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fori=1,23. Therefore, BB(F; Z;) = 0 and, we have

Res.z (F; Z;) = a(BB(F; Z)[Z;]) = 0.

We show that the Theorem 4.0.3, with the construction that appears in [11], is valid for any
a1 o

polynomial ¢ = ¢'c5?...c;* with 1oy + 20 + ... + kay = k + 1, where ¢; denotes the i-th
Chern class.

Given a multi-index o = (ay, ..., o) with o; > 0 for j = 1,...,k, we can associate a
homogeneous symmetric polynomial of degree k + 1, p = ¢ ¢5*...ci* with lag + 2a9 + ... +
kay = k + 1. Denote by 6 the Bott connection matrix of the foliation F and K its curvature
matrix. Next, consider the unique complete polarization of the polynomial ¢, denoted by ¢,

that is, © is a symmetric k-linear map that satisfies

O(K,....K)=p(K) =" (K)S*(K)...cit (K).

Define the polynomial ¢, for j = 1, ..., k as follow

0;i(0,K) =0, —20N0,..,—20 N0, K, ..., K)
N ZR y

-

Jj=1 k—j

=1 (0)cx? (=20 N )..c. (K).

Now, we consider the (2k + 1)- form

o

-1

va(0,K) = . (—1)’ (k—1)!

2i(k—j—Dlk+j)

'@j+1 (9’ K)

<
Il
o

Note that ¢(K) = "' (K)c3?(K)...c;* (K) represents, in de Rham sense, the characteristic
class ¢ (NF). It follows from the Bott vanishing theorem, see [25, Theorem 9.11, pg 76], that
¢(K) = 0 outside V, where V' is a small neighborhood of Singj 1 (F).

Let Z be an irreducible component of Sing; 1 (F). Take a generic point p € Z, that is, p
is a point where Z is smooth and disjoint from the other singular component. Pick B, a ball
centered at p sufficiently small, such that S(B,) := Z N B, is a subball of B, of dimension
n—k — 1. Then, the de Rham class ¢, (0, K) can be integrated over an oriented (2% + 1)-sphere
L, C By := By\S(B,) positively linked with S(B5,):



CHAPTER 4. DETERMINATION OF BAUM-BOTT RESIDUES OF THE FOLIATIONS 52

1
BB(F.:2):= (52" [ al0.K). @

Theorem 4.0.6 Let F be a holomorphic foliation of codimension k on a complex manifold M.
If Codim S(F) > k + 1, then the following hold:

(i) for each irreducible component Z of Singy.11(F) there exist a complex number \z(F) which

is determined by the local behavior of F near Z.
(ii) If Mis compact

eWNF) =D Aa(Fi9)2] in  H*D(MC),

where the sum is done over all irreducible components of Singy.1(F). We will show that
Az(F;p) = BB(F, ¢; Z).

Proof: Let us consider L C M a (k + 1)-ball intersecting transversally Singy;(F) at a single
pointp e Z,withV NT €T.

For the form ¢, (0, K), one has

d(pa(0, K)) = ().

See Vishik [28, Lemma 2.3, pg 5].

Then by Stokes theorem we have

BB(F.¢; ) = (— ! / pul0.)

211

— (L / A pa(6, ) = ()1 / o(K).

21 2m

This means that the 2(k + 1)-form d(¢,) = ¢(K) is cohomologous, as a current, to the
integration current over BB(F, ¢; Z)[Z], i.e.,

p(NF) =Y BB(F,¢; Z)[Z].
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Corollary 4.0.7 For k = n — 1 we have

dzy A ... Ndz,
BB(F,¢; Z = q) = Res, go(JX)M],

Xp...X,
where the right side is the Grothendieck residue of F around at the singular point q.

Now, we will apply the "transversal disc method" of Baum-Bott and Vishik. However we do
not use the hypothesis that at the singular set of foliation all p € S(F) are a Baum-Kupka type
singularities, see [3, Theorem 3, pg 285]. We do not use also the non degeneration condition
used by Vishik in [28, Theorem 2, pg 3].

For this, consider give a transversal disc H C M of dimension &+ 1 such that HNZ = {p},
where Z C Sing, ,,(F). Taking local coordinates z = (21, ..., 2x41) in H around p, we can
assume p = 0. Then, the restriction 7|y =: G is an one-dimensional foliation on H of which
the singular set is given by S(G) = S(F) N H.

Given Z C Sing,,,,(F) an irreducible component. Let us denote by [Z] € Hy(,—x-1)(Z; C)
its fundamental class and consider 7 its Poincaré dual in H2*+1)(M;C). On the other hand,
let T, be the integration current associated to Z, that can be conveniently interpreted as a coho-
mology class in M, that is, T, € H**+Y(M; C).

Proposition 4.0.8 T, and 1, represent the same class in H**+V(M; C).

Proof: We will verify that the two 2(k+-1)-forms, seen as linear functional in H2"~*=D(M/; C),

act in the same way.

In fact, given w a 2(n — k — 1)- form, we have by definition that 77 (w) = / w. On the
z
other hand, we recall the Poincaré duality

(H”(M)) ~ {2 (M),
We have the Poincaré dual, 7, associates a linear functional, denoted by ( by abuse of

notation), 1z which satisfies nz(w) = w = w, where 7 denotes the inclusion ma
n Ui p
z

Z — M. Therefore, Tz (w) = nz(w).
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O

Theorem 4.0.9 Let F be a holomorphic foliation of codimension k on a compact complex
manifold M. If Codim S(F) > k + 1 for each irreducible component Z of Singy.1(F) there
exists a complex number BB(F, p; Z) which is determined by the local behavior of F near Z,

and is given by e n A
21 Zk+1

Xl...Xk_|_1 ’

BB(F,;Z) = Res, [go(JX)

where X = (X, ..., Xyy1) is the vector field that induces G around p and  is a homogeneous

symmetric polynomial of degree k + 1.

Proof: We have that, locally, there is a k-form w that induces the foliation F. Then, G is

induced by restriction of this form to H, i.e.,

W= w|g.

We recall the isomorphism between O and §2F; defined by the contraction by a vector field

Z-aidzl VANPPRVAN deJrl = (—1)1d21 VANRVAN C?Z\Z AN deJrl.

We can consider the vector field X = (X3, ..., Xj,1) in H dual to this &k - form @ in H. If
we denote by © = (6;,) the Bott connection matrix of F, then © := O|y = (;,|x) represents
the Bott connection matrix of G and we denote by K its curvature matrix to G. The (2k+1) -
form ¢o (0, K) := (6, K)|; in H satisfies

dipa (0, K) = (K),

where ¢(K) represents, in de Rham sense, the characteristic class ¢(Ng).

We consider a (2k + 1)- sphere L, C H N M then, we have by Corollary 4.0.7

le VANRAN de_H
X1 Xpoin

Res, [o(JX) — BB(G, p:p).

By definition of the complex number BB(G, ¢; p), see (4.1), one has
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BB(G,p;p) = (L)Hl/L va(l, K)

271

~(55)" [ @al6. 50l

P

_ <L>k+1/L ¢a(0,K) = BB(F,p, 7).

P

Corollary 4.0.10 Considering the notations of Theorem 4.0.9, we have

dzi A ... N dzgyq
X1 X

Res(F, ¢, Z) = Res, [¢(JX) ] 2],

le VANRVAN d2k+1
X1 Xps1

where [Z] denotes the fundamental class of Z and Res,, [gp(J X)
Grothendieck residue of G at p.

} denotes the

Example 4.0.11 Recall the example 4.0.5, of the logarithmic foliation F on P, In local coordi-

nates {C3, (x,y, 2)}, the singular set of F has one component Z with 3 irreducible components
Z1, Zy, Zs. The Corollary 4.0.4 affirms that BB(F,c%; Z;) = 0, fori = 1,2, 3. We will see this
by applying the Corollary 4.0.10.

In fact, by Corollary 4.0.9, we have BB(F, ci; Z;) = Res.(G;pi), where G is a foliation

on D; with D; a 2-disc cutting transversally Z;.

Consider D, given by {z = 1} then, we have

0 0
w|p, =: w1 = ydx + xdy with dual vector field X, =z— —y—.
ox oy

Then, D; N Zy = {p1 = (0,0, 1)}. Now, a straightforward calculation shows that

1 0 1 0
JX| = then, JX = .
1 (0 _1> 1(291) <O _1)

Thus,
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) o AUXa)
BB(F,c}; Z) = Resz2(G;p1) = det(TX: ()

The same holds for Zy and Zs.

The following example is due to D. Cerveau and A. Lins Neto, see [8]. It originates from
the so-called exceptional component of the space of codimension one holomorphic foliations of
degree 2 of P".

Example 4.0.12 Consider F be a holomorphic foliation of codimension one on P3, given lo-

cally by the 1-form
w = 2(2y* — 3z)dr + 2(32 — xy)dy — (vy* — 22* + y2)dz.

The singular set of this foliation has one connect component, denoted by 7, with 3 irre-

ducible components, given by:

1) the twisted cubic T :  y v+ (2/3y2,y,2/93)
2) the quadric Q :  y+— (y*/2,y,0)

3) the line L : y+— (0,y,0).

We consider the 2-plane H given by {y = 1} and we do the restriction of F to H. We have

an one-dimensional holomorphic foliation, denoted by G, given by the 1-form on H

@ = (22 — 3xz)dr + (22° — v — 2)dz

with dual vector field

0 0
— 2 _ . — —_
X =(22"—x z)ax + (—22+ 3xz)az.

The singular set of G is given by

S(X) = {pl - (2/3’ 172/9);])2 - (1/2’ 170);]?3 - (07 170)}‘

We know how to calculate the Grothendieck residue of the foliation G
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2
Rescf(g;l)l) = —CI(JX(pI» %

" det(JX(p1)) 6
oy dlJX@)) 1
Rescg(g,pz) T det(JX () 5
. B C?(JX(Z?:s)) _9
Rescz(G;ps) = det(JX (ps)) _ 2"

Therefore, we get

Res3(F; Z) = Res2(G; p1)[I'] + Resc2 (G p2)[Q] + Res.2 (G: ps)[L]

25

=i+ (5

9
5 @] +§(Q;p3)[L],

where [I'] denotes de fundamental class of the component I'. By Baum-Bott theorem
i(NF) ~ [P*] = Res 2 (F; Z)

(2 + deg(F))*h* = Resez (G p1)[T] + Res3 (G: p2)[Q] + Resz (G ps) [ L]

25 —1
16h? = ~~[I'] + (7

9
5 )@+ 5 (Gips) L,

where h represent the hyperplane class. This exemple was considered by M. Soares in [24] with
another calculations.

The next example is very import, since we can use the Theorem 4.0.9 but we cannot use the

Bott’s Theorem in [3, Theorem 3, pg 285]. This confirms that our result is more general than
Bott’s result.

Example 4.0.13 We recall the logarithmic foliation F on P? with homogeneous coordinates

[(X,Y, Z,T), see examples 4.0.11 and 4.0.5, given locally by the following 1-form in the chart
{T =1}.

w = yzdr + rzdy + rydz.

If we pull-back w by the biholomorphism

QO P3 — Cc?
X:Y:Z:T) — (X/T,Y/T,Z/T) = (z,y,z)
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we have the forms that defines globally F in homogeneous coordinates
w=YZTdX + XZTdY + XYTdZ —3XY ZdT.
The singular set of F is the union of the lines Zy, Zo, Zs, Z, = {T = X =0}, Zs={T =

Y =0} and Zg = {T = X = 0}. Note that dw

can use the process of the Theorem 4.0.9 to computing the residue of these components.

z, IS nowhere vanishing for i = 4,5,6. We

For Zy = {X =T = 0} we can consider the local chart U, = {Y = 1}. Then, we have,

wy = Wy, = ztdr + vtdz — 3wzdt.

Take, a 2-disc transversal to this component, for example, Dy = {z = 1}.

W = wy|p, = tdx — 3xdt.

0 0
The dual vector field is Xy = —Bxa— — ta with singularity Zy N Dy = {(0,1,0) =: ps}.
T

JXo(ps) = <_03 _01>

A(JX5)(ps) 16
h . Res 2(G: — BB(F 2-Z :1—:—
en Res(Gips) = BB(F, e Zs) = i v o5 = 3

An analogous calculation shows that

16
Rescf (g;pf)) = BB(-Fa C%; ZS) = E

16
Res;2(G;ps) = BB(F, cf; Zg) = 3

Therefore, Theorem 4.0.6 and Theorem 4.0.9 combine to imply

C%(N}') - [PB] = ZBB(}-’ C%;Zi)[Zi]
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(2.4 deg(F)?0 = T2 + 1] + 5 1]

16 16 16
16h% = ?[24] + ?[25] + ?[Zﬁ],

where h represents the hyperplane class.

Note that our result in Theorem 4.0.9 generalizes the Bott Theorem, because if we consider
the hypothesis in [3], the Theorem 4.0.9 provides the Theorem 3 in [3].

Let F be a holomorphic foliation on M of codimension k. We have that, in general, a
connected irreducible component Z of Singy.1(F) comes endowed with a filtration. For given
p € Z let us choose holomorphic vector fields X, ... X, defined on an open neighborhood U,
of p € M and such that for all z € U, the germs at x of the holomorphic vector fields X, ... X

are in JF, and span F, as a O,-module.

Define a subspace V,,(F) C T,M by letting V,,(F) be the subspace of 7,,M spanned by
Xi(p),...Xs(p). We have

ZW={peZ; dmVy(F)<n—k—i} fori=1,...,n—k.

Then,

is a filtration of Z.

If we assume that

CodimZ =k +1 and Codim Z® <k +1

we have

Corollary 4.0.14 (3, Theorem 3, pg 285) Let F be a holomorphic foliation of codimension k
on M. Then,

p(NF) =Y BB(F,¢; Z)Z],

where the sum is done over all irreducible components of Singy1(F). Then o.(BB(F, p; Z)[Z])
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is the residue of F in Z and moreover
BB(F,¢; Z) = Res,(G;p)

with Res,(G; p) representing the Grothendieck residue at p of the foliation G, i.e., of the restric-
tion of the foliation F on a (k + 1) - disc H withp = Z N H.
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