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RESUMO

Nesse trabalho de tese estudamos flags de folheações holomorfas singulares, formandos por
2 folheações. Estamos interessados em investigar classes características dessa estrutura e suas
consequências. Desenvolvemos uma teoria de resíduos para esses flags. Para tal, provamos um
teorema de anulamento do tipo Bott para flags e um teorema do tipo Baum-Bott para tais flags.

Analisamos também a conjectura de racionalidade de Bott para flags. Nesse sentido, defi-
nimos o resíduo de Nash para flags utilizando a construção de Nash adaptada para tal situação.
Com isso, comparamos o resíduo de Nash para flags com o tal resíduo de Baum-Bott para flags,
mostrando assim a racionalidade dos resíduos neste contexto.

Nesse último capítulo tratamos com folheações holomorfas. Nesse sentido, apresentamos
uma maneira efetiva de calcular resíduos de folheações, quando a dimensão do conjunto sin-
gular da folheação é um a menos que a dimensão da folheação. Esse resultado generaliza o
resultado de Bott, uma vez que retiramos hipóteses.
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ABSTRACT

In this thesis we study flags of singular holomorphic foliations, formed by two foliations.
We are interested in investigating characteristic classes for this structure and its consequences.
In this work we develop a residue theory for these flags. Then, we prove a Bott vanishing
theorem for flags. Next we proved a Baum-Bott type theorem for flags.

We treat also the Bott rationality conjecture for flags. In this sense we define the Nash
residue for flag utilising Nash construction adapted for flags. With this we can do the compari-
son of the Bott residue and Nash residue for flags, which show the rationality of residues in this
context.

In the last chapter we deal holomorphic foliations. For this purpose, we present an effective
way to calculate residues of the foliations, when the dimension of singular set of the foliation is
one less than the dimension of the foliation. This result generalizes the result of Bott.
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INTRODUCTION

A flag of singular holomorphic foliation on a complex manifold M , of dimension n, is a
finite sequence of foliations F = (F1, ...,Fk) such that, away from singular sets, each foliation
Fi+1 is tangent to the foliation Fi and Fi ⊂ Fi+1 (we call it subfoliation) for each i = 1, ..., k−
1.

When k = 2 we have the diagram
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||

0
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!!

��
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bb >>
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<<

""
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==

!!
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��
0
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""

0

0

<<

0

Feigin started the study of characteristic classes of flags in 1975, see [14], where the author
investigates an obstruction for existence of the flags integrably homotopic. Recently Mol in [22]
studied the behavior of singularities of flags and its polar varieties. In the same sense, Corrêa
and Soares study the Poincaré problem for flags in [12].

Flags of holomorphic foliations appear naturally in the theory of foliation. For example,
a conjecture due to Marco Brunella says that a two-dimensional holomorphic foliation F2 on
P3 either admits an invariant algebraic surface or it is a flag of holomorphic foliations, i.e.,
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F = (F1,F2), where in this last case F1 is a foliation by algebraic curves on P3. We hope
that a theorem of residues for flags can give important informations about the existence of this
structure.

In this work we develop a residues theory for flags. The residues theory has been widely
studied by Baum and Bott, see [3] and [2].

Theorem Let F be an one-dimensional singular foliation on a compact complex manifold M

of dimensional n and ϕ a symmetric homogeneous polynomial of degree d with n− k < d ≤ n

and Z ⊂ S(F). Then there exists a homology class Resϕ(F ;Z) ∈ H2n−2d(Z;C) such that

ϕ(NF)[M ] =
∑
Z

Resϕ(F ;Z).

For n− k + 1 < deg(ϕ) ≤ n we have the following

Rationality conjecture of Baum-Bott: In the situation above, if ϕ has rational coefficients,

then

Resϕ(F ;Z) ∈ H∗(Z;Q).

Sertöz in [23] used Nash map to give a partial answer for this conjecture with certain hy-
pothesis of regularity in the Nash modification. Brasselet and Suwa in [5] used characteristic
classes on singular varieties to generalize the Sertöz’s work and showed an answer to the afore-
mentioned rationality conjecture.

Theorem LetF be a k dimensional holomorphic foliation onM . If ϕ = ci1 ...cir with iν > n−k
for some ν, then the Resϕ(F ;Z) comes from an integral class, in particular it is a rational class,

where ci denotes the i-th Chern class.

Now, if degϕ = n − k + 1 the residue can be computed, whenever the singular set of the
foliation S(F) satisfies certain conditions of non-degeneration. Baum and Bott in [3, Theorem
3 pg 285] showed that we have

Resϕ(F ;Z) =
∑
i

λi[Zi],

where λi is a Grothendieck residue, Zi is an irreducible complex analytic component of Z ⊂
S(F) of dimension k − 1 and [Zi] denote the fundamental class of Zi. We prove the following
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result.

Theorem Let F be a holomorphic foliation of codimension k on a compact complex ma-

nifold M . For each irreducible component Z of Singk+1(F) there exists a complex number

BB(F , ϕ;Z) which is determined by the local behavior of F near Z, and the residue is given

by

Res(F , ϕ, Z) = BB(F , ϕ;Z)[Z],

where [Z] denotes the fundamental class of Z and BB(F , ϕ;Z) is the Grothendieck residue of

G at p

BB(F , ϕ;Z) = Resp
[
ϕ(JX)

dz1 ∧ ... ∧ dzk+1

X1...Xk+1

]
with G a one-dimension foliation on a disc H , X = (X1, ..., Xk+1) the vector field that induces

G around p and ϕ a homogeneous symmetric polynomials of degree k + 1.

We will work with flags formed by 2 foliations F = (F1,F2). The first result that we will
show is the Bott vanishing theorem for this flag

Theorem Let M be a complex manifold of dimension n and E = E1 ⊕ E2 a vector bundle on

M with E1 a F1- bundle, E2 a F2-bundle with F1 ⊂ F2 ⊂ TM regular foliations. Let ϕ1 and

ϕ2 be homogeneous symmetric polynomials of degree d1 and d2, such that at least one of the

inequalities

d1 > corank(F1), d2 > corank(F2) or d1 + d2 > corank(F1) (1)

is satisfied, then ϕ1(E1) ^ ϕ2(E2) ≡ 0.

Here, note that this theorem is more "fine" than Bott vanishing theorem for foliation, see re-
mark 2.2.12. We obtain, by using characteristic classes via Chern-Weil theory with an approach
of Lehmann and Suwa, a Baum-Bott type theorem for flags

Theorem Let F = (F1,F2) be a 2-flag of holomorphic foliations on a compact complex ma-

nifold M of dimension n. Let ϕ1, ϕ2 be homogeneous symmetric polynomials , respectively of

degree d1 and d2, satisfying (1). Then for each compact connected component S of S(F) there

exists Resϕ1,ϕ2(F ,NF , S) ∈ H2n−2(d1+d2)(S;C) such that∑
λ

(ιλ)∗Resϕ1,ϕ2(F ,NF , Sλ) = (ϕ1(N12).ϕ2(N2)) _ [M ] in H2n−2(d1+d2)(M ;C), (2)
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where ιλ denotes the embedding of Sλ on M .

This theorem is very general and it says that the characteristic class ϕ(NF) localizes at the
singular set S(F) := S(F1) ∪ S(F2) of the flag. However we can refine this localization, i.e.,
if we request in (1) that

d1 > corank(F1) and d2 > corank(F2)

we have that the characteristic class ϕ(NF) localizes on the intersection S := S(F1) ∩ S(F2).

How to calculate residues of flags in general? This answer is not simple, but we will give,
in this thesis, a partial answer for some cases.

Let F = (F1,F2) be a flag on M with codimension (k1, k2). If the singular set of the flag
S(F) has codimension bigger than k1 + 1, we have for each 0 ≤ j ≤ k2

Theorem
ck1+1−j
1 (N12)c

j
1(N2) =

∑
Z

BBj(F , Z)[Z],

where BBj(F , Z) is a complex number that depends of the singular component Z such that

dimZ = k1 + 1.

For definition of BBj(F , Z), see section 2.4.

We studied a relationship between flag’s residues with residues of involved foliations as an
immediate consequence.

Corollary For each Z ⊂ Singk1+1(F) and hypothesis as above we have

k2∑
j=0

(
k1 + 1

j

)
Res

c
k1+1−j
1 cj1

(F ,NF ;Z) = Res
c
k1+1
1

(F1,N1;Z) in H2(n−k1−1)(M ;C).

In the third chapter we will study the Bott rationality conjecture for flags. For this we will
develop the theory of Nash for flags. We will define the Nash modification, of the complex
manifold M , with respect to the flag F = (F1,F2), denoted by Mν . With the projection map

π : Mν −→M

4



5

Next, if Z ⊂ S(F) we can do the pull-back π−1(Z) =: Zν which we define

Definition We have well-defined the class Resϕ1,ϕ2(F , Nν ;Zν) in H2(n−d1−d2)(Z
ν ;C) and

we call it by Nash residue of the flag F .

The projection π : Mν −→M induces a homomorphism in homology level

π∗ : H2(n−d1−d2)(Z
ν ;C) −→ H2(n−d1−d2)(Z;C)

With this we prove the following

Theorem Let ϕ = (ϕ1, ϕ2) be homogeneous symmetric polynomials, where ϕi is of degree di
satisfying the condition (1). If ϕi is with integral coefficients, then the difference

Resϕ1,ϕ2(NF ,F , S)− π∗Resϕ1,ϕ2(N
ν ,F , Sν)

is in the image of the canonical homomorphism H2n−2d(S;Z) −→ H2n−2d(S;C), i.e., is a sum

of integral classes.

Corollary If ϕ1 = ci1 ...cir and ϕ2 = cj1 ...cjt with iν > codimF1 for some ν ∈ [1, ..., r] or is >

codimF2 for some s ∈ [1, ..., t], then the Baum-Bott residue for the flag F , Resϕ1,ϕ2(NF ,F , S),

is a (sum of) integral class.



Chapter 1

Basic material

1.1 Čech-de Rham cohomology and duality theorems

In this section, we present the theory of Čech-de Rham Cohomology and duality theorems.
For the background on the Čech-de Rham cohomology on complex manifold, we refer to [25,
4].

Let M be a C∞ manifold of dimension m and U = {Uα}α∈I an open covering of M .
Suppose that the index set I is an ordered set with total order. We set

I(p) = {(α0, ..., αp) / α0 < ... < αp in I}.

We define Cp(U , Aq) =
∏

(α0,...,αp)∈I(p)
Aq(Uα0...αp),

where Aq(Uα0...αp) is defined as the q-forms space.

It is possible to define the following coboundary operator, see [5, 25]

δ : Cp(U , Aq) −→ Cp+1(U , Aq).

This operator together with the exterior derivation induces the following operator D :

A•(U) −→ A•+1(U). Then (A•(U), D) is called the Čech-de-Rham complex and its coho-
mology, denoted by Hr(A•(U)), the Čech-de-Rham cohomology associated to the covering
U .

6



CHAPTER 1. BASIC MATERIAL 7

Proposition 1.1.1 (25, Theorem 3.3, pg 48) We have the following isomorphism

Hr
dR(M ;C) −→ Hr(A•(U)).

We define the cup product

Ar(U)× As(U) −→ Ar+s(U)

by assigning to σ ∈ Ar(U) and τ ∈ As(U) the element σ ^ τ ∈ Ar+s(U) given by

(σ ^ τ)α0...αp =

p∑
ν=0

(−1)(r−ν)(p−ν)σα0...αν ∧ ταν ...αp .

Then σ ^ τ is linear in σ and τ and we have

D(σ ^ τ) = Dσ ^ τ + (−1)rσ ^ Dτ.

Thus it induces the cup product in cohomology level

Hr(A•(U))×Hs(A•(U)) −→ Hr+s(A•(U)).

Now, we recall the integration on the Čech-de-Rham cohomology and duality theorems.
For this let U = {Uα}α∈I be an open covering of M as above.

Definition 1.1.2 A system of honey-comb cells adapted to U is a collection {Rα}α∈I of m di-

mensional manifoldsRα with piecewise C∞ boundary inM satisfying the following conditions:

(a) Rα ⊂ Uα and M = ∪αRα,

(b) intRα ∩ intRβ = ∅, if α 6= β,

(c) If Uα0,...,αp 6= ∅, Rα0,...,αp = ∩pν=0Rαν is a (m - p)-dimensional manifold with piecewise

C∞ boundary,

(d) If the set {α0, ..., αp} is maximal, Rα0,...,αp has no boundary.

Also, let U = {Uα}α∈I be an open covering of M as above and {Rα}α∈I a system of honey-
comb cells adapted to U . Suppose M is compact, each Rα is compact and we can define the
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integration

∫
M

: Am(U) −→ C

by the sum

∫
M

σ =
m∑
p=0

( ∑
(α0,...,αp)∈I(p)

∫
Rα0,...,αp

σα0,...,αp

)

for σ ∈ Am(U). Then we say that

(1) if Dσ = 0 then the sum does not depend on the choice of {Rα},

(2) if σ = Dτ , than
∫
M

σ = 0.

Hence it induces the integration on the cohomology∫
M

: Hm(A•(U)) −→ C.

We have a bilinear pairing

Ar(U)× A2n−r(U) −→ A2n(U) −→ C

defined by composition of cup product and integration. We have the Poincaré duality

P : Hr
dR(M ;C) ' Hr(A•(U)) −→ H2n−r(A•(U))∗ ' H2n−r(M ;C).

Let us introduce the Alexander duality. Let S ⊂M be a closed subset and U a neighborhood
of S in M with U\S ⊂ M . Denote U\S by U0 and consider the covering U = {U0, U1 = U}
of U . We have a canonical projection

π : Ar(U) −→ Ar(U0) (σ0, σ1, σ01) 7−→ σ0.

Denote by Ar(U , U0) the kernel of this projection. Then, we have the exact sequence

0 −→ Ar(U , U0) −→ Ar(U) −→ Ar(U0) −→ 0.
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We have the following commutative diagram

· · · // Hr−1(A•(U0)) //

��

Hr(A•(U , U0)) // Hr(A•(U)) //

��

Hr(A•(U0)) −→ · · ·

��
· · · // Hr−1(U \ S;C) // Hr(U,U \ S;C) // Hr(U ;C) // Hr(U \ S;C) −→ · · ·

Then, by the Five lemma, we have the isomorphism

Hr(A•(U , U0)) ' Hr(U,U\U0;C).

By the cup product in Čech-de-Rham cohomology in Ar(U) × A2n−r(U) −→ A2n(U) we
have

(σ0, σ1, σ01) ^ (τ0, τ1, τ01) = (σ0 ∧ τ0, σ1 ∧ τ1, (−1)rσ0 ∧ τ01 + σ01 ∧ τ1).

Now, suppose that σ0 = 0, then the right hand side depends only on σ1, σ01 and τ1. Thus, we
have a pairing

Ar(U , U0)× A2n−r(U1)

∫
M−→ C

This induces the Alexander duality

A : Hr(U , U\S;C) ' Hr(A•(U , U0)) −→ H2n−r(U1,C)∗ ' H2n−r(S;C). (1.1)

Proposition 1.1.3 (25, Proposition 3.11, pg 55) Let S ⊂M be a closed subset such that, let a

neighborhood U of S we have U0 = U\S ⊂M . Thus we have the commutative diagram

Hr(A•(U , U0)) ' Hr(M,M\S;C) //

A
��

Hr(A•(U)) ' Hr(M ;C)

P
��

H2n−r(S;C) i∗ // H2n−r(M ;C).

1.2 Characteristic classes via Chern-Weil theory

Let M be a C∞ manifold of dimension m. For an open set U ⊂ M we denote by A0(U)

the C-algebra of C∞-functions. Also for a C∞ complex vector bundle E of rank r on M , we set
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Ap(U,E) := C∞(U,∧p(TM)∗ ⊗ E). Thus A0(U,E) is the A0(U)- module of C∞-module of
C∞-sections of E and if it is a trivial line bundle, i.e., E = M × C, then Ap(U,E) denotes the
space of p-forms on U .

Definition 1.2.1 A connection for a complex vector bundle E on M is a C-linear map

∇ : A0(M,E) −→ A1(M,E)

that satisfies

∇(f.s) = df ⊗ s+ f.∇(s) for f ∈ A0(M) and s ∈ A0(M,E).

Lemma 1.2.2 A connection ∇ is a local operator i.e., if a section s is identically zero on an

open set U , so is∇(s).

Proof: See [25, Lemma 7.3, pg 67].
�

We say that a connection ∇ is trivial on U with respect to a non-vanishing section s of E if
∇(s) = 0.

Lemma 1.2.3 Let ∇1, ...,∇k be connections for E and f1, ..., fk C∞- functions on M with∑
fi = 1. Then

∑
fi∇i is a connection for E.

Lemma 1.2.4 Given E a vector bundle on M , there exists a connection ∇ for E. In other

words: every C∞ vector bundle admits a connection.

Proof: Let {Uα} be an open covering of M that trivializes the vector bundles TM and E.
Choose a k-frame s = {s1, ..., sr} of E on Uα. Let {ρα} be a partition of unity subordinative to
the cover {Uα}. Next define ∇α on Uα by ∇α(sαi ) = 0 for all i and extend ∇α to an arbitrary
section on Uα using the above definition of connection. Thus∇ =

∑
ρα∇α is a connection for

E.

�

If ∇ is a connection for E, then it induces a C-linear map

∇ := ∇2 : A1(M,E) −→ A2(M,E)
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satisfying
∇(ω ⊗ s) = dω ⊗ s− ω ∧∇(s), ω ∈ A1(M), s ∈ A0(M,E).

Definition 1.2.5 The composition K := ∇◦∇ : A0(M,E) −→ A2(M,E) is called the curva-

ture of the connection∇.

Here, note that the connection and the curvature are local operators. This allows us to get
representatives of it.

If ∇ denotes the curvature for a vector bundle E of rank r and E is trivial on the open set
U , i.e., E|U ' U × Cr and if s = {s1, ..., sr} is a frame of E on U , then we can write

∇(si) =
r∑
j=1

θij ⊗ sj ; θij ∈ A1(U).

The connection matrix with respect to s is θ = (θij) . Also, using the curvature definition,
we get

K(si) =
r∑
j=1

Kijsj, where Kij = dθij −
r∑

k=1

θik ∧ θkj.

The curvature matrix with respect to the frame s is K = (Kij). Now, to define the Chern
class of a vector bundle E, we consider σi, i = 1, ..., r the i-th elementary symmetric functions
in the eigenvalues of the matrix K

det(It+K) = 1 + σ1(K)t+ σ2(K)t2 + ...+ σr(K)tr.

Next, we define a 2i-form of Chern ci on U by

ci(K) := σi(
i

2π
K).

In general, if ϕ is a symmetric polynomial in r variables of degree d, we can write ϕ =

P (c1, ..., cr) for some polynomial P . Then we can define

ϕ(K) := P (c1(K), ..., cr(K))

which is a closed form on M . Then, we have a cohomology class of E on M , ϕ(E) := ϕ(K) ∈
H2d(M ;C). If Ir(C) denotes the graduate algebra of invariant polynomial and E −→ M is a
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vector bundle of rank r, we get the homomorphism of algebras , called Weil homomorphism

: Ir(C) −→ H∗(M ;C).

ϕ 7−→ ϕ(E)

This theory is similarly developed for singular varieties, for this we refer to [4, 5].

1.3 General localization principle

In this section, we consider a general strategy for localization of characteristic classes. We
first explore the Čech-de-Rham cohomology for two open sets, this is because it will be widely
used in the whole of this thesis. We present the strategy of localization. We refer to [1, 27].

For M a C∞ manifold of dimension m we let U = {U0, U1} be an open covering of M ,
where we use the notation U01 := U0 ∩ U1. Now, define the vector space Ap(U) by

Ap(U) := Ap(U0)⊕ Ap(U1)⊕ Ap−1(U01),

where Ai(V ) denote the space of i-forms in the open set V . Then, an element σ ∈ Ap(U) is
given by a triple

σ = (σ0, σ1, σ01)

with σi a p-form in Ui and σ01 a (p− 1)-form on U01.

Define the following operator D by

D : Ap(U) −→ Ap+1(U)

σ = (σ0, σ1, σ01) 7−→ (dσ0, dσ1, σ1 − σ0 − dσ01)

it satisfies D ◦D = 0.

Then we have a complex that we call Čech-de-Rham complex and will denote by (Ap(U), D)

· · · −→ Ap−1(U)
Dp−1

−→ Ap(U)
Dp−→ Ap+1(U)

Dp+1

−→ · · ·

By simplicity we use the notation D = Dp for all p.
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Define, respectively, the closed forms and exact forms Zp(U) = kerDp and Bp(U) =

ImDp−1. We can define the p-th Čech-de Rham cohomology group with respect to the covering
U by

Hp(U) =
Zp(U)

Bp(U)
.

Theorem 1.3.1 (27, Theorem 2.1.1, pg 3) IfHp(M) denote the p-th de Rham cohomology group

of M we have the natural isomorphism

α : Hp(M) −→ Hp(U),

where this is induced by the map Ap(M) 3 ω 7−→ (ω, ω, 0) ∈ Ap(U).

For the relative Čech-de-Rham cohomology we define the relative space

Ap(U , U0) := {σ = (σ0, σ1, σ01) ∈ Ap(U) ; σ0 = 0}.

Observe that if σ ∈ Ap(U , U0) then Dσ ∈ Ap+1(U , U0). Therefore, we have the relative com-
plex (Ap(U , U0), D)

· · · −→ Ap−1(U , U0)
Dp−1

−→ Ap(U , U0)
Dp−→ Ap+1(U , U0)

Dp+1

−→ · · ·

Then, we can define the p-th relative Čech-de-Rham cohomology group with respect to
(U , U0) by

Hp(U , U0) =
kerDp

ImDp−1 .

Now, we explain the strategy for localization that will be used in this thesis. For a complex
manifold M let ϕ ∈ H•(M) be an element of its cohomology. Such a class might represent the
obstruction to the existence of a certain global object.

Let P : H•(M) −→ H2n−•(M) be the Poincaré homomorphism. For S ⊂ M a closed
subset we set U = M − S and we have the exact sequence

· · · −→ H•(M,U)
f−→ H•(M)

g−→ H•(U) −→ · · ·

Here assume that g(ϕ) = 0 ∈ H•(U) (This hypothesis is verified by Bott vanishing theo-
rem). As Im(f) = ker(g) there exists a class ϕ̂ ∈ H•(M,U). Consider the Alexander homo-
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morphism
Al : H•(M,U) −→ H2n−•(S).

Then, we have the commutative diagram

H•(M,U)

Al
��

// H•(M)

P
��

H2n−•(S) i∗ // H2n−•(M)

Therefore, one has a general theorem of "residues"

P (ϕ) = i∗(Al(ϕ̂)).

1.4 Singular holomorphic foliations

Let us begin by recalling the basic material in holomorphic foliations. Let M be a complex
manifold of dimension n, ΘM and ΩM the sheaves of germs of holomorphic vector fields and
of holomorphic 1-forms on M respectively. We refer to [25, 17, 3, 7 ].

Definition 1.4.1 A singular holomorphic foliation F of dimension k on M is a coherent sub-

sheaf of ΘM of rank k, which satisfies the following integrability condition

[Fx,Fx] ⊂ Fx for all x ∈M

such that, the normal sheaf, defined by NF := ΘM/F , is torsion free. ( It means that F is

saturated).

We have the exact sequence

0 −→ F −→ ΘM −→ NF −→ 0.

The singular set S(F) of the foliation F is defined by points in M , where the sheaf NF is
not locally free, that is, S(F) := Sing(NF). Here, we suppose that CodimS(F) ≥ 2.

Now, we give a dual definition of singular foliation.
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Definition 1.4.2 A singular holomorphic foliation G, of codimension k, on M is a coherent

subsheaf of ΩM of rank k, which satisfies the following integrability condition

dGx ⊂ (ΩM ∧ Gx) for all x ∈M\S(G),

where S(G) := sing(ΩM/G) is the singular set of G.

We consider only reduced foliations, then the two definitions 1.4.1 and 1.4.2 are equivalent
by taking its annihilators, see [25 pg 178].

In case that M = Pn we have

Proposition 1.4.3 (24, Proposition 4.1, pg 588) Let F be a holomorphic foliation of dimen-

sion k on Pn. ThenF can be represented by a holomorphic section s : Pn −→ ∧n−kT ∗Pn⊗O(l)

for some l ∈ Z. In particular, in each affine coordinate domain Cn, F can be represented by a

polynomial (n− k)-form ω.

Given a holomorphic foliation F on the projective space Pn, we can associate an integer
number, denoted by deg(F) = d. The degree of the foliation. This number is defined as
follows.

Choose a (n − k)-plane H on the projective space Pn. Set Fp the leaf of the foliation F
through p ∈ Pn\S(F). Now, the tangency set of F with H , denoted by V (F , H), is defined by
the Zariski’s closure of the tangency variety ofF withH , T (F , H) = {p ∈ H/ dim(TpFp ∩H) > 1}.

Definition 1.4.4 The degree of F , denoted by deg(F), is defined by the degree of the tangency

set V (F , H).

This is well-defined and does not depend on the choice of the plane H , for details see [24].
It is possible to define the degree of a foliation in a more general case: in polarized projective
varieties, for this see [10]. Now, note that, if F is a holomorphic foliation of one-dimension,
then it is possible to represent it by a section σ : Pn −→ TPn ⊗ O(r), where in this case, the
number r is determined. By Proposition 1.4.3 F is given by section s : Pn −→ T ∗Pn−1⊗O(l),
where locally it is represented by a polynomial (n− 1)-form ω. Then s is a section such that it
is represented locally by vector field X that satisfies iXω = 0. Moreover r = deg(F)− 1.

Example 1.4.5 Consider F an one-dimensional holomorphic foliation of degree 2 on P3 de-
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fined locally by the following vector field

X = (z31 − z22)
∂

∂z1
+ (z31z2 − z23)

∂

∂z2
+ (z31 − z21z3)

∂

∂z3
or

X = z21(z1
∂

∂z1
+ z2

∂

∂z2
+ z3

∂

∂z3
)− z22

∂

∂z1
− z23

∂

∂z2

The annihilator of X is the 2-form defined also locally by

ω = z21z3dz1 ∧ dz2 + (z23 − z21z2)dz1 ∧ dz3 + (z1
3 − z22)dz2 ∧ dz3

i.e., iXω = 0.

On the other hand, consider the rational map ϕ : P4 99K P3 induced by the linear submer-

sion
ϕ : C5 −→ C4.

(z0, z1, z2, z3, z4) 7−→ (z1, z2, z3, z4)

The pull-back of F to P4 by the rational map ϕ is a two-dimensional foliation, denoted by

G := ϕ∗F whose singular set is S(G) = {z1 = z2 = z3 = 0}.

Example 1.4.6 Another example of the foliation in this context is as follows: In particular ϕ is

a rational fibration for which the fiber at each point p ∈ P3 is the line in P4 through by p. Then,

it induces an one-dimensional foliationF1 on P4, where these lines are the leaves of the foliation

and the singular set of F1 is the degeneracy locus of ϕ, i.e., S(F1) = {[1 : 0 : 0 : 0 : 0]}. The

last foliation has the particular property, that its leaves are contained in leaves of the foliation

G.



Chapter 2

Characteristic classes of flags

In this chapter, we consider flags of holomorphic foliations on a complex manifold M of
dimension n. We study, in this context, a Baum-Bott type residue. Regular C∞ flags were
studied by Feigin in [14], where he proposed two constructions for characteristic classes of these
flags in an attempt to answer a question about the obstruction for the existence of integrability
foliations. Several authors studied characteristic classes, see [25, 27, 14]. R. Mol in [22] studied
polar classes of flags of foliations.

Other motivation of for the study of flags is a conjecture due to Brunella: any two-dimensional
holomorphic foliation F2 on P3 either admits an invariant algebraic surface or it is a flag of
holomorphic foliations, i.e., F = (F1,F2), where in this last case F1 is a foliation by algebraic
curves on P3.

2.1 Flags of holomorphic foliations

Let M be a complex manifold of dimension n. Let us denote by ΘM the tangent sheaf of M
and ΩM the sheaf of germs of holomorphic 1-forms on M .

Definition 2.1.1 Let F1, ...,Ft be t holomorphic foliations on M of dimensions q = (q1, ..., qt).

We say that F := (F1, ...,Ft) is a flag of holomorphic foliations if for each i = 1, ..., t− 1, Fi
is a coherent sub OM -module of Fi+1. We call Fi ⊂ Fi+1 a subfoliation of Fi+1.

In the above definition, we say that Fi leaves Fj(i < j) invariant for each i = 1, ..., t − 1.
Note that, for x ∈ M \ ∪ti=1S(Fi) the inclusion relation TxF1 ⊂ ... ⊂ TxFt holds, giving that

17
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the leaves of Fi are contained in leaves of Fj for i < j. Here TFi is the tangent sheaf of the
foliation Fi. For simplicity we denote TF by F . When t = 2, we have a diagram of exact
sequences of sheaves, as in studies of Feigin for the real case, see [9, pg 64].

0

��

0

||

0

F1

!!

��

N2

bb >>

ΘM

<<

""
F2

==

!!

N1

OO

��
0

??

N1,2

==

""

0

0

<<

0

We define the singular set S(F) of the flag F to be the analytic set S(F1) ∪ ... ∪ S(Ft) and
NF = N1,2 ⊕ ...⊕Nt−1,t ⊕Nt be the normal sheaf of the flag, whereNi,j is the quotient sheaf
Fi/Fj(i < j).

Example 2.1.2 A meromorphic map ϕ : X 99K Y , where X and Y are complex manifolds, is

a first integral of a foliation F on X , if the leaves of F are contained in the fibers of ϕ. Then,

in this situation, F is a subfoliation of the meromorphic fibration induced by ϕ.

Example 2.1.3 LetF2 be a foliation on a polarized smooth projective variety (X,H) satisfying

µ(TF2) > 0 (slope, for definition see [19], 2.2 pg 7). If TF2 is not semi-stable then there exists

a semi-stable foliation F1 such that F = (F1,F2) is a 2-flag satisfying µ(TF1) > µ(TF2), see

[21].

Example 2.1.4 Let π : X −→ Y be a surjective holomorphic map, where X and Y are com-

plex manifolds. Given a regular holomorphic foliation G of codimension one on Y one has that

F2 := π∗G is a codimension one foliation on X . We set F1 the foliation induced by π. Then,

we have that F = (F1,F2) is a flag on X with S(F1) = S(F2) = {singular set of π}.

Example 2.1.5 Let X =
n∑
i=1

fi
∂

∂zi
be a holomorphic vector field on

(
Cn, (z1, ..., zn)

)
. Then,

X is tangent to a 1-form ω =
n∑
i=1

gidzi if and only if we have 0 = iXω.
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2.2 Bott vanishing theorem and residues for flags

In this section, we prove a residues theorem for flags of holomorphic foliations by applying
the localization theory of characteristic classes developed by D. Lehmann and T. Suwa. We will
start with the review of the Chern-Weil theory of characteristic classes of vector bundles. For
details we refer to [18] and [25].

Definition 2.2.1 A connection for a complex vector bundle E on M is a C-linear map

∇ : A0(M,E) −→ A1(M,E)

such that

∇(fs) = df ⊗ s+ f∇(s) for f ∈ A0(M) and s ∈ A0(M,E).

IfH is a subbundle of the complexified tangent bundle T cM , then its dualH∗ is canonically
viewed as a quotient of (T cM)∗. We denote by ρ the canonical projection (T cM)∗ −→ H∗.

Definition 2.2.2 A partial connection for E is a pair (H, δ) of a subbundle H of T cM and a

C-linear map

δ : A0(M,E) −→ A0(M,H∗ ⊗ E)

such that

δ(fs) = ρ(df)⊗ s+ fδ(s) for f ∈ A0(M) and s ∈ A0(M,E).

Definition 2.2.3 Let (H, δ) be a partial connection for E. We say that a connection ∇ for E

extends (H, δ) if the following diagram is commutative

A0(M,E) ∇//

δ ((

A0(M,T cM∗ ⊗ E)

ρ⊗Id
��

A0(M,H∗ ⊗ E)

Lemma 2.2.4 (25, Lemma 9.3, pg 75) For an arbitrary partial connection for E, there is a

connection that extends it.
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An important class of partial connections comes from "actions" of involutive subbundles of
tangent bundle of manifolds.

Definition 2.2.5 Let F ⊂ TM be a regular foliation on M . An action of F on a vector bundle

E is a C-bilinear map:

α : A0(M,E)× A0(M,F ) −→ A0(M,E)

satisfying the following conditions for f ∈ A0(M) u, v ∈ A0(M,F ) s ∈ A0(M,E):

1) α([u, v], s) = α(u, α(v, s))− α(v, α(u, s)) ;

2) α(f.u, s) = f.α(u, s) ;

3) α(u, f.s) = u(f).s+ fα(u, s) ;

4) α(u, s) is holomorphic whenever u and s are.

Lemma 2.2.6 (25, Lemma 9.8, pg 76) Let α be an action of F on E and let

δα : A0(M,E) −→ A0(M,F ∗ ⊗ E) ' A0(M,Hom(F,E))

be defined by δα(s, u) = α(u, s). Then the pair (F, δα) is a partial connection for E.

Definition 2.2.7 Let α be an action of F on E. A F -connection for E is a connection which

extends the partial connection (F ⊕ TM, δα ⊕ ∂).

Now, we will use the Chern-Weil theory of characteristic classes, in order to describe the
Bott vanishing Theorem for flags. This is a holomorphic version of the vanishing theorem due
to Cordero-Masa, see [9, Theorem 3.9, pg 71].

Theorem 2.2.8 Let M be a complex manifold of dimension n and E = E1⊕E2 a vector bundle

on M with E1 a F1-bundle, E2 a F2-bundle with F1 ⊂ F2 ⊂ TM regular foliations. Let ϕ1 and

ϕ2 be homogeneous symmetric polynomials, of degrees d1 and d2, such that at least one of the

inequalities

d1 > n− rank(F1) or d2 > n− rank(F2) or d1 + d2 > n− rank(F1) (2.1)

is satisfied. Then ϕ1(E1) ^ ϕ2(E2) = 0.
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Proof: Let us denote rank(F1) = p1, rank(F2) = p2, rank(E1) = r1 and rank(E2) = r2.

Let αi : A◦(M,Fi) × A◦(M,Ei) → A◦(M,Ei) be an action of Fi in Ei, for i = 1, 2 and 5i a
Fi-connection for Ei.

Now, let {U, (z1, ..., zn)} be a coordinate neighborhood on M such that F1 and F2 can be
written(spanned) by:

F1 =< v1, ..., vp1 > and F2 =< v1, ..., vp1 , ..., vp2 >, where vi =
∂

∂zi
.

It follows from [25] that there exist holomorphic frames S1 = (s11, ..., s
1
r1

) of E1|U and S2 =

(s21, ..., s
2
r2

) of E2|U such that

α1(vi, s
1
ν) = 0 for i = 1, ..., p1 and ν = 1, ..., r1. (2.2)

α2(vi, s
2
ν) = 0 for i = 1, ..., p2 and ν = 1, ..., r2. (2.3)

Now, let Θ1 = (Θ1
νµ) and Θ2 = (Θ2

νµ) be the connection matrices of ∇1 and ∇2, respectively,
i.e;

∇1(s1ν) =

r1∑
µ=1

Θ1
νµs

1
µ and ∇2(s2ν) =

r2∑
µ=1

Θ2
νµs

2
µ.

It follows form (2.2) and (2.3) that

∇1(s1ν)(vi) = α1(vi, s
1
ν) = 0 and ∇2(s2ν)(vi) = α2(vi, s

2
ν) = 0.

Then we have 0 = i ∂
∂zi

Θ1
νµ for all i = 1, ..., p1 and ν, µ = 1, ..., r1. It implies that each

Θ1
νµ is of the form

n∑
i=p1+1

f νµi dzi with f νµi ∈ O(U). In particular, the curvature matrix has the

following property

K1 = (K1
νµ) with K1

νµ =
n∑

i=p1+1

ηνµi dzi, where ηνµi ∈ Ω1(U).

Similarly Θ2
νµ =

n∑
i=p2+1

gνµi dzi and K2
νµ =

n∑
i=p2+1

ωνµi dzi. Then ϕ(E) = ϕ1(E1) `

ϕ2(E2) = ϕ1(K
1) ` ϕ2(K

2).
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Therefore, if either d1 > n− p1 or d2 > n− p2 or d1 + d2 > n− p1 then ϕ(E) = 0.

�

Now, we prove a Baum-Bott type residues theorem for flags of singular holomorphic folia-
tions.

Theorem 2.2.9 Let F = (F1,F2) be a 2-flag of holomorphic foliations on a compact complex

manifold M of dimension n. Let ϕ1, ϕ2 be homogeneous symmetric polynomials , respectively

of degrees d1 and d2, satisfying (2.1). Then for each compact connected component S of S(F)

there exists a class Resϕ1,ϕ2(F ,NF , S) ∈ H2n−2(d1+d2)(S;C) such that∑
λ

(ιλ)∗Resϕ1,ϕ2(F ,NF , Sλ) = (ϕ1(N12).ϕ2(N2)) _ [M ] in H2n−2(d1+d2)(M ;C), (2.4)

where ιλ denotes the embedding of Sλ on M .

Proof: Note that away from the singular set of the flag, F1 and F2 are free sheaves. So
there exist vector bundles F 0

1 and F 0
2 on M \ S(F) such that O(F 0

1 ) = F1 and O(F 0
2 ) = F2.

Denoting M \ S(F) by M0 we have that F 0
i ⊂ TM0 are subbundles for i = 1, 2. Also, let

NF 0
2

= TM0/F 0
2 and N12 = F 0

2 /F
0
1 , then N2 = O(NF 0

2
) and N12 := F2/F1 = O(N12).

The exact sequences
0 −→ F2 −→ ΘM −→ N2 −→ 0.

0 −→ F1 −→ F2 −→ N12 −→ 0

induce, respectively, actions α2 of F 0
2 on NF 0

2
and α1 of F 0

1 on N12, see [3, 25].

Now, denote by ∇12 the F 0
1 -connection for N12 and ∇2 the F 0

2 -connection for NF 0
2
. Let S

be a compact connected component of S(F) and U a relatively compact open neighborhood of
S on M disjoint from the other components of S(F). We set U0 = U \ S and U1 = U and
consider the covering U = {U0, U1} of U . We take resolutions of the normal sheaves N12 and
N2 by real analytic vector bundles E12

i and E2
j on U

0 −→ AU(E12
q ) −→ ... −→ AU(E12

0 ) −→ AU ⊗N12 −→ 0.

0 −→ AU(E2
r ) −→ ... −→ AU(E2

0) −→ AU ⊗N2 −→ 0.
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Since the characteristic class ϕ1(N12) is the characteristic class ϕ1(ξ
12) of the virtual bundle

ξ12 =
∑q

i=0(−1)iE12
i and ϕ2(N2) = ϕ2(ξ

2) for ξ2 =
∑r

i=0(−1)iE2
i , we define the character-

istic class ϕ(NF), of the normal sheaf of the flag by ϕ1(N12) ^ ϕ2(N2). On U0 we have the
exact sequences of vector bundles

0 −→ E12
q −→ ... −→ E12

0 −→ N12 −→ 0. (2.5)

0 −→ E2
r −→ ... −→ E2

0 −→ N2 −→ 0. (2.6)

There exist connections 12∇i
0 on U0 for each E12

i such that the family of connections
(12∇q

0, ...,
12∇0

0,∇1) is compatible with (2.5). Analogously, there exists connections 2∇i
0 on

M for each E2
i with the same property, see [3]. We denote 12∇•0 by (12∇(q)

0 , ...,12∇(0)
0 ) and 2∇•0

by (2∇(r)
0 , ...,2∇(0)

0 ). Then it follows from [25, Proposition 8.4, pg 73] that

ϕ1(
12∇•0) = ϕ1(∇1) and ϕ2(

2∇•0) = ϕ2(∇2). (2.7)

On U1 we take an arbitrary family 12∇•1 = (12∇(q)
1 , ...,12∇(0)

1 ) of connections, where
each 12∇(i)

1 is a connection for E12
i on U1. Similarly, we take other arbitrary family 2∇•1 =

(2∇(r)
1 , ...,2∇(0)

1 ). Then the class ϕ(NF) = ϕ1(N12) ` ϕ2(N2) = ϕ1(ξ
12) ` ϕ2(ξ

2) in
H2(d1+d2)(U ;C) is represented in A2(d1+d2)(U) by the cocycle

ϕ(122 ∇•∗) =
(
ϕ1(

12∇•0), ϕ1(
12∇•1), ϕ1(

12∇•0,12∇•1)) ` (ϕ2(
2∇•0), ϕ2(

2∇•1), ϕ2(
2∇•0,2∇•1)) =

= (ϕ1(
12∇•0) ∧ ϕ2(

2∇•0), ϕ1(
12∇•1) ∧ ϕ2(

2∇•1), ϕ1(
12∇•0) ∧ ϕ2(

2∇•0,2∇•1) + ϕ1(
12∇•0,12∇•1) ∧

ϕ2(
2∇•1)

)
.

Then by Bott vanishing Theorem for flags (Theorem 2.2.8), ϕ(122 ∇•∗) ∈ A2(d1+d2)(U,U0).
Denoting [ϕ(122 ∇•∗)] = ϕS(NF ,F) ∈ H2(d1+d2)(U,U\S;C) we have the residue
Resϕ1,ϕ2(NF ,F ;S) = A(ϕS(NF ,F)) ∈ H2n−2(d1+d2)(S;C), where A is Alexander duality.

�

Definition 2.2.10 We call the class Resϕ1,ϕ2(NF ,F ;S) by the Baum-Bott residue for the flag

F with respect to ϕ1 and ϕ2.

Example 2.2.11 Let Pn be the complex projective space (n ≥ 3) with homogeneous coordi-

nates [z0 : ... : zn]. Consider an one-dimensional holomorphic foliation F1 induced by the

vector field X =
∂

∂z3
. Consider the codimension one holomorphic foliation, denoted by F2
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induced by 1-form ω = z0dz1− z1dz0. Note that F = (F1,F2) in fact is a flag, since ω(X) = 0

.

The singular set of F1 is the set of dependence of vector field X with the radial vector field

R =
n∑
0

zi
∂

∂zi
, i.e.,

S(F1) =
{
p ∈ Pn;

∂

∂z3
∧
∑

zi
∂

∂zi
= 0
}

=
{
p = [0 : 0 : 0 : 1 : 0 : ... : 0]

}
.

On the other hand, the singular set of F2 is given by S(F2) = S = {z0 = z1 = 0}. We

remark that S(F1) ⊂ S(F2). Therefore, S is the singular set of the flag F . Now, we calculate

the residues of this flag.

We have the following

deg(F2) = deg(F1) = 0, F1 = O(1), then c1(F1) = c1(O(1)) = 1h, where h is the

hyperplane class.

We know that c1(N2) = (2 + deg(F2))h = 2h and from the exact sequence

0 −→ F2 −→ TPn −→ N2 −→ 0

we have c1(F2) = (dim(F2)− deg(F2))h = (n− 1)h. Then

c1(N12) = c1(F2)− c1(F1) = (n− 1)h− 1h = (n− 2)h.

By Theorem 2.2.9 (Baum-Bott for flags) one has for each j = 0, ..., n− 1

Rescn−1−j
1 c1+j1

(F ,NF ;S) =

∫
Pn
cn−1−j1 (N12)c

1+j
1 (N2) =

∫
Pn

(n− 2)n−1−j21+jhn

= (n− 2)n−1−j21+j.

Remark 2.2.12 Note that the Theorem 2.2.8 is legitime of the flag and more "fine" than Bott

vanishing Theorem, see condition (2.1). Observe that, with this theorem we can compute the

classes:

ϕ(NF) = ϕ1(N12)ϕ1(N2)
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with di ≤ codim(Fi) for i = 1, 2 but with d1 + d2 > codim(F1). An important fact is that for

these polynomials it is not possible to apply the classical Bott vanishing Theorem. Then in this

case, the residue Resϕ1,ϕ2(F ,NF , S) is a specific residue of the flag.

Remark 2.2.13 Observe that if we consider ϕ1 = "constant polynomial" then the residue

Resϕ1,ϕ2(F ,NF , S) is exactly the residue of F2. But it is not clear in general the relationship

between flag residue and foliation residue involved in the flag. We will do this in the section 2.4,

see Corollary 2.4.3.

Now, we study a refinement of Theorem 2.2.9. It is because for some polynomials we can
detect superfluous components, i.e., components that do not participate of the sum in (2.4).

Theorem 2.2.14 The characteristic class ϕ(NF) = ϕ1(N12).ϕ2(N2) is localized at the inter-

section S := S(F1) ∩ S(F2) if d1 > codimF1 and d2 > codimF2.

Proof: Consider S(F) = S∪S(F1)∪S(F2), where S(Fi) are irreducible components only of
Fi andU1 a neighborhood of S(F). We setU0 := U1\S := U1

0∪U2
0 ,whereU1

0 := U1\S∪S(F2)

represents a neighborhood of the components only of F1 and U2
0 is defined in the same way.

Then the characteristic class ϕ(NF) ∈ H2(d1+d2)(M ;C) is represented by the cocycle

ϕ(122 ∇•∗) =
(
ϕ1(

12∇•0) ∧ ϕ2(
2∇•0), ϕ1(

12∇•1) ∧ ϕ2(
2∇•1), ϕ1(

12∇•0) ∧ ϕ2(
2∇•0,2∇•1)+

+ϕ1(
12∇•0,12∇•1) ∧ ϕ2(

2∇•1)
)
.

We claim that ϕ1(
12∇•0) ∧ ϕ2(

2∇•0) = ϕ(122 ∇•∗)|U0 = 0. In fact as U0 := U1
0 ∪ U2

0 , we can
represent this form in Čech-de-Rham cohomology in the open U0 with covering {U1

0 , U
2
0}

ϕ1(
12∇•0)∧ϕ2(

2∇•0) =
(
ϕ1(

12∇•0)∧ϕ2(
2∇•0)|U1

0
, ϕ1(

12∇•0)∧ϕ2(
2∇•0)|U2

0
, ϕ1(

12∇•0)∧ϕ2(
2∇•0)|U1

0∩U2
0

)

Finally, we can see that

ϕ2(
2∇•0)|U1

0
= 0, ϕ1(

12∇•0)|U2
0

= 0 and ϕ2(
2∇•0) = ϕ1(

12∇•0)|U1
0∩U2

0
= 0 by Bott vanishing

theorem. Now, the remainder is as in the proof of the Theorem 2.2.9.

�

Corollary 2.2.15 Given a 2-flag F = (F1,F2) on Pn with n ≥ 5 such that codim(F1) +

codim(F2) < n− 1 . If S(F1) ∩ S(F2) = ∅ then dim(F2) + deg (F1) = dim(F1) + deg (F2).
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Proof: Consider ϕ1 := cd11 and ϕ2 := cd21 polynomials, where d1 = codim(F1) + r and
d2 = codim(F2) + 1, for any r ∈ Z+ such that d1 + d2 = n. Note that, this is possible since
codim(F1) + codim(F2) < n− 1. Then, by Theorem 2.2.14 we have that

∫
Pn
cd11 (N12)c

d2
1 (N2) =

∑
S∈S(F1)∩S(F2)

Res
c
d1
1 ,c

d2
1

(F ,NF ;S). (2.8)

On the other hand

c1(F1) = (dim(F1) − deg(F1))h and c1(F2) = (dim(F2) − deg(F2))h, where h is the
hyperplane class. Then, by exact sequence

0 −→ F2 −→ ΘPn −→ N2 −→ 0

we have

c1(N2) = (n+ 1)h− (dim(F2)− deg(F2))h, with n+ 1− (dim(F2)− deg(F2)) 6= 0

c1(N12) = c1(F2)− c1(F1) =
(

dim(F2)− deg(F2)− dim(F1) + deg(F1)
)
h

Now, by equation (2.8) and hypothesis S(F1) ∩ S(F2) = ∅, we have the result
(

dim(F2) −

deg(F2)− dim(F1) + deg(F1)
)

= 0.

�

Now, we quote the following conjecture

Rationality conjecture for flags 2.2.16 Let F = (F1,F2) be a 2-flag of holomorphic folia-

tions on a complex manifold M . Also let S be a compact connected component of the singular

set of the flag and ϕ = (ϕ1, ϕ2), where ϕi is a homogeneous symmetric polynomial of degree di
satisfying (2.1). If ϕi is with rational coefficients, then

Resϕ1,ϕ2(F ,NF , S) ∈ H2n−2(d1+d2)(S;Q).

Next section, we will give a partial answer for this conjecture.
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2.3 Residues formula

In this part of the work we will show a formula that calculates some residues of a flag F .
Naturally appears, as a consequence, a relationship between flag residue and residues of the
involved foliations. For a basic reference, see [11, 22, 13, 6, 18].

Let F = (F1,F2) be a flag on a compact complex manifold M of dimension n. We denote
by (k1, k2) the codimension of this flag and by Singki+1(Fi) the set of irreducible components
of S(Fi) of pure codimension ki + 1.

Let us fix some notation: Let S(Fi) := Sing(Ni) be the singular set of the foliation Fi.
Recall that the singular set of flag is defined by S(F) := S(F1)∪S(F2) and the relative normal
sheaf by N12 := F2/F1.

Proposition 2.3.1 Given a 2-flagF = (F1,F2) on a complex manifoldM . OnM0 := M\S(F2)

we have Sing(N1) ∩M0 = Sing(N12) ∩M0.

Proof: We recall the exact sequence

0 −→ N12 −→ N1 −→ N2 −→ 0. (2.9)

Away from the singular set of F2, i.e., for p ∈M \ S(F2) one has that the stalk at p N2,p is
OM,p - free. The sequence (2.9) induces the exact sequence of OM,p-modules

0 −→ N12,p −→ N1,p −→ N2,p −→ 0. (2.10)

Since N2,p is a free module it implies that, by the splitting lemma see [15, pg 147], the se-
quence (2.10) splits (hereOM,p is a local ring, then projective and free modules are equivalent):

N1,p = N12,p ⊕N2,p

in which the module N1,p is free, if and only if, N12,p is free.

�

Corollary 2.3.2 If the sheaf N12 =
F2

F1

is locally-free then we have S(F1) ⊂ S(F2).
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Proof: Apply the Proposition 2.3.1.
�

Example 2.3.3 Let F be the foliation in P3 induced by the polynomial vector field

X = λ1z1
∂

∂z1
+ λ2z2

∂

∂z2
+ λ3z3

∂

∂z3
with λi 6= 0 for all i.

Consider the osculating planes distribution F2 associate to X , generated by X and Y :=

DX.X . It is integrable and also given by the logarithmic 1-form

ω =
λ3 − λ2
λ1

dz1
z1

+
λ1 − λ3
λ2

dz2
z2

+
λ2 − λ1
λ3

dz3
z3
.

We have that, in fact, F = (F1,F2) is a flag, since a simple calculation shows that ω(X) =

0. For this we have the following

S(F1) =
{

[1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1]
}
.

S(F2) = S =
⋃
Sij for i = 0, 1, 2, j = 1, 2, 3 and i 6= j,

where Sij := {zi = zj = 0}.

We observe that S(F1) ⊂ S(F2) and that the relative normal sheaf N12 := F2/F1 is

locally-free, since F1 = OP3 ⊂ F2 = OP3 ⊕OP3 .

Example 2.3.4 Let π : P3 99K P2 be the rational map given in homogeneous coordinates by

[z0 : z1 : z2 : z3] 7−→ [z0 : z1 : z2]. This is a rational fibration which induces an one-

dimensional foliation on P3, we call it F1. The singular set of F1 is S(F1) = {[0 : 0 : 0 : 1]}.

On the other hand, let G be a codimension one foliation on P2 of degree d with singular set

given by S(G) = {p1, ..., pl}. Now, consider the pull-back of G by π and denote it by F2 = π∗G.

We have that S(F2) =
⋃

pi∈S(G)

π−1(pi).

Note that, we have F1 = OP3(1) since the degree of F1 is 0 and G = OP2(1 − d), then

F2 = OP3(1−d)⊕OP3(1). Then, the relative sheafN12 isOP3(1−d), in particular it is locally

free. Moreover one has S(F1) ⊂ S(F2).

Proposition 2.3.5 Let F = (F1,F2) be a flag on a complex manifold M with dim(F1) =

codim(F2) = 1. Then F1 has no isolated singularities in M�S(F2).
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Proof: The situation is local. Suppose that p is an isolated singularity of F1 and pick a
neighborhood {U, (z1, ..., zn)} of p, where F2|U is regular. On this open subset we can consider

F2 induced by the 1-form ω = dz1 and F1 by the vector field X =
n∑
i=1

fidzi.

Since that F = (F1,F2) is a flag, we have

0 = ιXω = f1.

But this show that S(F1)|U = {f2 = ... = fn = 0} is not an isolated singularity.
�

Corollary 2.3.6 Let F = (F1,F2) be a flag on a complex manifold M with dim(F1) =

codim(F2) = 1 . If S0(Fi) denotes the isolated singularities of the foliation Fi, for i = 1, 2, we

have that S0(F1) = S0(F2).

Proof: See Proposition 2.3.5 and [22, Corollary 1, pg 778].
�

Proposition 2.3.7 For a flagF = (F1,F2) onM with dim(F1) = codim(F2) = 1 and S(F1)∩
S(F2) admitting isolated singularities (only) we have

Rescn(F2,N2, p) = (−1)n(n− 1)!Rescn(F1,N1, p),

where the residues involved are of the foliations F1 and F2.

Proof: Let p ∈ S(F1) ∩ S(F2) be an isolated singulary. We know that near p we can consider

F1 as induced by a vector field X =
n∑
i=1

fi
∂

∂zi
and F2 by a 1-form η =

n∑
i=1

gidzi. Then,

Rescn(F1,N1; p) = µ(f ; p) is the Milnor number of f = (f1, ..., fn) at p. On the other hand,
we have Rescn(F2,N2; p) = (−1)n(n − 1)!µ(g; p), where g = (g1, ..., gn) with n = dimCM ,
see Suwa [26, Proposition 3.12, pg 41]. Since F = (F1,F2) is a flag we have

0 = ιXη =
∑

figi = 0. (2.11)

We claim that (f1, ..., fn) = (g1, ..., gn) as generated ideals.
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In fact, consider the exact Koszul complex of regular sequence (f1, ..., fn),

0 −→
n∧
On −→ · · · −→

2∧
On r−→ On s−→ O −→ 0,

where r(ei ∧ ej) = fiej − fjei and s(ei) = fi. From (2.11) one has that (g1, ..., gn) ∈ Ker(s) =

Im(r), then
r(
∑

Pijei ∧ ej) =
∑

Pij(fiej − fjei) =
∑

giei.

This implies that (g1, ..., gn) ⊂ (f1, ..., fn). If we consider the Koszul complex of (g1, ..., gn)

we have the equality of ideals.

Therefore µ(f ; p) = µ(g; p) and Rescn(F2,N2; p) = (−1)n(n− 1)!Rescn(F1,N1; p).

�

The next example is inspired by the example of Izawa in [29, Example 5, pg 907].

Example 2.3.8 Let Y := P5 × P1 with homogeneous coordinates(
[x0 : x1 : x2 : x3 : x4 : x5]; [y0 : y1]

)
. We consider a regular foliation on Y given by

G̃ := π−1ΩP1 , where π is the standard projection of P5 × P1 in P1. Let

X := V (xl0 + xl1 + xl2 + xl3 + xl4 + xl5) ∩ V (x0y0 + x1y1) l ∈ Z+.

This is a regular sub-manifold of Y . We consider the inclusion map i : X −→ Y . Put F2 =

i−1G̃, the inverse image of G̃, which defines a singular foliation of codimension one on X . In

this case, the non-transversal locus of i to G̃ determines S(F2), the singular set of the foliation

F2. To see the non-transversal points, we take the inhomogeneous coordinates over x0 6= 0 and

y0 6= 0 as (s, x, y, w, t) = (
x1
x0
,
x2
x0
,
x3
x0
,
x4
x0
,
x5
x0

) and z = (
y1
y0

). With these coordinates we can

express, locally, X by

X = {(s, x, y, w, t; z); 1 + xl + yl + wl + tl = 0 and 1 + sz = 0}.

With this we have that z = −(−1)
−1
l (1 + xl + yl +wl + tl)

−1
l . We know that F2 is given by the

1-form ω = dz, i.e.,

ω = dz =
∂z

∂x
dx+

∂z

∂y
dy +

∂z

∂w
dw +

∂z

∂t
dt.
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Here, we use the following notation for coordinates of the 1-form that induces F2

ϕ1 =
∂z

∂x
= (−1)

−1
l xl−1(1 + xl + yl + wl + tl)

−l−1
2

ϕ2 =
∂z

∂y
= (−1)

−1
l yl−1(1 + xl + yl + wl + tl)

−l−1
2

ϕ3 =
∂z

∂w
= (−1)

−1
l wl−1(1 + xl + yl + wl + tl)

−l−1
2

ϕ4 =
∂z

∂t
= (−1)

−1
l tl−1(1 + xl + yl + wl + tl)

−l−1
2 .

Since the z-axis is a transversal direction for the leaves ofF2, the non-transversal conditions

are given by ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0 such that (x, y, w, t) = (0, 0, 0, 0). Then, with the

defining equations, we see that the non-transversal points are given by

(s, x, y, w, t; z) = (ωk, 0, 0, 0, 0;−ωl−k−1)k=0,...,l−1,

where we denote by ωk the l-roots of −1. Therefore, the singular set of F2 is given by these

points. Consider the one-dimensional foliation on X , denoted by F1, given locally by the

following vector field X = (X1, X2, X3, X4), where

X1 = (−1)
−1
l (−yl−1)(1 + xl + yl + wl + tl)

−l−1
2 = −ϕ2

X2 = (−1)
−1
l xl−1(1 + xl + yl + wl + tl)

−l−1
2 = ϕ1

X3 = (−1)
−1
l (−tl−1)(1 + xl + yl + wl + tl)

−l−1
2 = −ϕ4

X4 = (−1)
−1
l wl−1(1 + xl + yl + wl + tl)

−l−1
2 = ϕ3.

Note that F = (F1,F2) is in fact a flag, since the following holds

iXω = ω(X) = X1ϕ1 +X2ϕ2 +X3ϕ3 +X4ϕ4 = 0.
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Observe that S(F1) = S(F2). Now, using the local coordinates of the vector field and the

1-form as above, we have for each p ∈ S(F2)

Resc4(F2,N2; p) = (−1)43!(
1

2πi
)4
∫
T

dϕ1 ∧ dϕ2 ∧ dϕ3 ∧ dϕ4

ϕ1.ϕ2.ϕ3.ϕ4

=

∫
T

(
(l−1)2+(l2−1)

xl + yl + wl + tl

1 + xl + yl + wl + tl

)dx
x
∧dy
y
∧dw
w
∧dt
t

= 6.(l−1)2,

where T is given by {|x| = |y| = |w| = |t| = ε}. On the other hand, as we have

dX1 ∧ dX2 ∧ dX3 ∧ dX4

X1.X2.X3.X4

=
d(−ϕ2) ∧ d(ϕ1) ∧ d(−ϕ4) ∧ d(ϕ3)

(−ϕ2)ϕ1(−ϕ4)ϕ3

=
dϕ1 ∧ dϕ2 ∧ dϕ3 ∧ dϕ4

ϕ1.ϕ2.ϕ3.ϕ4

.

It follow that

Resc4(F1,N1; p) = (
1

2πi
)4
∫
T

dX1 ∧ dX2 ∧ dX3 ∧ dX4

X1.X2.X3.X4

= (l − 1)2.

Therefore, we have

Resc4(F2,N2; p) = (−1)43!(l − 1)2 = (−1)43!Resc4(F1,N1; p).

2.4 Determination of certain Baum-Bott residues for flags

In this section, we will consider the Baum-Bott theorem for a flag F = (F1,F2) with
codimension (k1, k2). We will denote by Singki+1(Fi) the union of irreducible components of
S(Fi) of pure codimension ki+1 for i = 1, 2. Next, we will show that the characteristic classes
ck1−j+1
1 (N12)c

j
1(N2) can be localized at Singk1+1(F1). We consider the following notation

S∗(F) := Singk1+1(F1) ∪ Singk2+1(F2), M0 := M \ S(F) e M∗ := M \ S∗(F).

In the regular case (on M0) there exist locally forms ω2
α and ω12

α , where ω2
α is a k2-form that

induces F2 and ω12
α is a (k1 − k2)-form such that ω1

α := ω2
α ∧ ω12

α induces F1 satisfying the
following two conditions
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1) These forms are decomposable

ω2
α = ηα1 ∧ ... ∧ ηαk2 and ω12

α = ηαk2+1 ∧ ... ∧ ηαk1 .

2) Integrability condition: There are matrices of 1-forms (θαuv), (θ
α
av) and (θαab) with 1 ≤ u, v ≤

k2 and k2 + 1 ≤ a, b ≤ k1 such that

dηαu =

k2∑
v=1

θαuv ∧ ηαv and dηαa =

k2∑
v=1

θαav ∧ ηαv +

k1∑
b=k2+1

θαab ∧ ηαb .

We define θ2α =

k2∑
u=1

(−1)u+1θαuu, θ
12
α =

k1∑
a=k2+1

(−1)a+1θαaa and put θ1α := θ2α + θ12α .

We define γ2αβ := dg2αβ/g
2
αβ − θ2β + θ2α and γ12αβ := dg12αβ/g

12
αβ − θ12β + θ12α , where

ω2
α = g2αβω

2
β, ω

1
α = g1αβω

1
β with g12αβ := g1αβ/g

2
αβ . The cocycle of 1-forms {γ12αβ} corresponds to

a cohomology class in H1(M0,N ∗12). Analogously the cocycle {γ2αβ} corresponds to a class in
H1(M0,N ∗2 ).

We will consider now the Baum-Bott theorem for flags. For this we consider the local
generators as above ω2 = η1 ∧ ... ∧ ηk2 and ω12 = ηk2+1 ∧ ... ∧ ηk1 with ω1 = ω2 ∧ ω12.
Take smooth sections of N ∗12 and N ∗2 instead of holomorphic ones. Then, the cohomology
groups H1(B∗p ,N ∗12) and H1(B∗p ,N ∗2 ) are trivial. It is possible to find matrices of (1,0)-forms
(θuv), (θav) and (θab) such that

dηu =
∑

θuv ∧ ηv and dηa =
∑

θav ∧ ηv +
∑

θab ∧ ηb.

We define θ2 =
∑

(−1)u+1θuu and θ12 =
∑

(−1)a+1θaa. Now, observe that the following
forms for 0 ≤ j ≤ k2

ψj := (2πi)−k1−1θ12 ∧ (dθ2)j ∧ (dθ12)k1−j

ϕ := (2πi)−k2−1θ2 ∧ (dθ2)k2

τ := (2πi)−k1−1θ2 ∧ θ12 ∧ (dθ2)j ∧ (dθ12)k1−j

are closed in de Rham cohomology, see Dominguez [13, Théorème 5.2, pg 830]. These forms
correspond to cohomology classes in H∗(B∗p ,C).
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Take now an irreducible component Z ⊂ Singk1+1(F1) and a generic point p ∈ Z. Pick Bp

a small ball centered at p such that S(Bp) ⊂ Bp is a sub-ball of dimension n − k1 − 1(same
dimension than the component Z). The de Rham class can be integrated over an oriented
(2k1 + 1)-sphere Lp ⊂ B∗p

BBj(F , Z) := (2πi)−k1−1
∫
Lp

θ12 ∧ (dθ2)j ∧ (dθ12)k1−j for each 0 ≤ j ≤ k2.

Theorem 2.4.1 (Baum-Bott for flags) Let F = (F1,F2) be a 2-flag of codimension (k1, k2)

on a compact complex manifold M . If codim S(F) ≥ k1 + 1, then for each 0 ≤ j ≤ k2 we have

ck1−j+1
1 (N12) ^ cj1(N2) =

∑
Z ⊂ Singk1+1(F1)∪Singk1+1(F2)

λjZ(F)[Z],

where λjZ(F) = BBj(F , Z).

Proof: The flag F = (F1,F2) can be locally defined on open an subset Uα by ω2 = η1 ∧ ... ∧
ηk2 , ω12 = ηk2+1 ∧ ... ∧ ηk1 and ω1 = ω2 ∧ ω12 as above. Then, we can find matrices of
(1,0)-forms (θαuv), (θ

α
av) and (θαab) with θαij ∈ A1,0(B∗p) such that

dηu =

k2∑
v=1

θαuv ∧ ηv and dηa =

k2∑
v=1

θαav ∧ ηv +

k1∑
b=k2+1

θαab ∧ ηb.

Roughly speaking, we say that ∇ =

(
θαuv 0

θαav θαab

)
represents the curvature matrix of the flag

F . Let us fix a neighborhood V of S∗(F), then we can find θ̂2α =

k2+1∑
u

(−1)u+1θ̂αuu and θ̂12α =

k1∑
a=k2+1

(−1)a+1θ̂αaa, where θ̂αij is a suitable modification of θαij , for more details, see [11, 6].

Now, let us consider Θ2 := (2πi)−1dθ̂2α and Θ12 := (2πi)−1dθ̂12α globally defined closed
forms which represent in de Rham cohomology the Chern classes of N2 and N12 respectively.
Therefore (Θ2)j ∧ (Θ12)k1−j+1 represent ck1−j+1

1 (N12) ^ cj1(N2) and moreover, by Bott van-
ishing theorem for flags, see Theorem 2.2.8, we have
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Supp
(
ck1−j+1
1 (N12) ^ cj1(N2)

)
⊂ V .

Take T ⊂M a ball of real dimension 2(k1 + 1) intersecting transversally Singk1+1(F1) at a
single point p ∈ Z, with V ∩ T b T . Then by Stokes formula

BBj(F , Z) = (2πi)−k1−1
∫
∂T

θ̂12α ∧ (dθ̂2α)j ∧ (dθ12α )k1−j =

= (2πi)−k1−1
∫
T

(dθ̂2α)j ∧ (dθ̂12α )k1−j+1. (2.12)

This means that the 2(k1 + 1)-form (Θ2)j ∧ (Θ12)k1−j+1 = (dθ̂2α)j ∧ (dθ̂12α )k1−j+1 is coho-
mologous, as a current, to the integration current over BBj(F , Z)[Z], i.e.,

ck1−j+1
1 (N12) ^ cj1(N2) =

∑
Z

BBj(F , Z)[Z].

�

This theorem answers, partially, to the question: How to calculate residues to flags? As
above is the Baum-Bott theorem for flags, we have

Res
c
k1−j+1
1 cj1

(F ,NF ;Z) = α∗
(
BBj(F ;Z)[Z]

)
,

where α∗ is the Poincaré duality isomorphism

H2(k1+1)(M ;C)
α∗−→ H2(n−k1−1)(M ;C).

Corollary 2.4.2 If either N12 or N2 is ample then, there exist at least one irreducible compo-

nent Z ⊂ Singk1+1(F1) of codimension k1 + 1.

Proof: By hypothesis either N12 or N2 is ample then, we have that either c1(N12) or c1(N2) is
non zero. Using Theorem 2.4.1 one has the result.
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�

We prove a formula that compares the (sum) flag’s residues with residues of the involved
foliations.

Corollary 2.4.3 For each Z ⊂ Singk1+1(F1) and the above hypotheses we have

k2∑
j=0

(
k1 + 1

j

)
BBj(F , Z) = BB(F1, Z), (2.13)

where the term in the right side of (2.13) is defined in [11, pg 6] and [6, pg 300] for k1 = 1.

Note also that if k1 = n− 1 then
k2∑
j=0

(
k1 + 1

j

)
BBj(F , Z) = ”Grothendieck Residue”.

Proof: By Dominguez [13, Remarque 1, pg 830], we have

k2∑
j=0

(
k1 + 1

j

)
[θ12 ∧ (dθ2)j ∧ (dθ12)k1−j] = [θ1 ∧ (dθ1)k1 ]

in the de Rham cohomology, where θ1 = θ2 + θ12. Thus

k2∑
j=0

(
k1 + 1

j

)
θ12 ∧ (dθ2)j ∧ (dθ12)k1−j − θ1 ∧ (dθ1)k1 = dσ

for some form σ. Now, integrating over a sphere ∂T as above, we have

k2∑
j=0

(
k1 + 1

j

)
BBj(F , Z) = BB(F1, Z).

Therefore the corollary is proved.

�

Corollary 2.4.4 Let F = (F1,F2) be a flag such that dim(F1) = codim(F2) = 1 and the

singular set of the flag is composed of isolated singularities (only). Then, we have
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Rescn1 (F ,N12; p) = Rescn1 (F1,N1; p),

where p ∈ S(F) = S(F1) = S(F2).

Proof: By Corollary 2.4.3 and the hypothesis that k1 = n− 1 and k2 = 1 we have

BB0(F ; p) + nBB1(F ; p) = BB(F1; p).

Since the singularities are isolated, we have

Rescn1 (F ,N12; p) + Rescn−1
1 ,c1

(F ,NF ; p) = Rescn1 (F1,N1; p),

where
Rescn−1

1 ,c1
(F ,NF ; p) = (

1

2πi
)n
∫
Lp

θ12 ∧ (dθ2)1 ∧ (dθ12)n−2

with θ2 is a (1,0)-form such that if ω is the 1-form that induces locally F2, we have

dω = θ2 ∧ ω.

By Malgrange, see [20, Théorème 0.I, pg 163], we have that ω admits an integral factor, i.e.,
there are holomorphic functions f and g with f(p) 6= 0 such that ω = fdg. This implies that

dω = df ∧ dg =
df

f
∧ (f.dg) =

df

f
∧ ω.

Then, we can consider θ2 =
df

f
= d(log f). Since this is an exact form, we have dθ2 = 0

and Rescn−1
1 ,c1

(F ,NF ; p) = 0. Therefore, the result is proved.

�

Example 2.4.5 Let F = (F1,F2) be the flag on the manifold X ⊂ P5 × P1 of the Example

2.3.8. By Corollary 2.4.4 we have

Rescn1 (F ,N12; p) = Rescn1 (F1,N1; p),
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where Rescn1 (F1,N1; p) = (
1

2πi
)4
∫
T

tr(JX)4
dx ∧ dy ∧ dw ∧ dt

X1X2X3X4

.

We can check that tr(JX) = 0. Therefore we have the flag’s residue

Resc41(F ,N12; p) = 0.



Chapter 3

Nash residues and comparison of residues

In this chapter, we propose to analyze the rationality of the Baum-Bott residues for flags.
We consider the Nash modification Mν of a complex manifold M with respect to a flag F =

(F1,F2) and we will give a partial answer for this conjecture. In the foliation context, Sertöz in
[23, Theorem V 1, pg 242] studied this conjecture with the hypothesis that Mν is non-singular
and he gave a partial answer to Baum-Bott conjecture. In [5, Theorem 4.1, pg 44] Brasselet and
Suwa generalized the work of Sertöz, where they use characteristic classes on singular varieties.
For characteristic classes in singular varieties, we refer to [4].

3.1 Nash residues for flags

Let M be a complex manifold of dimension n and F = (F1,F2) a 2-flag of singular holo-
morphic foliations of dimension (q1, q2) on M . Then for each point x ∈M , we set

Fi(x) = {v(x) / v ∈ Fi,x} ⊂ TxM.

This is a qi-dimensional subspace if and only if x /∈ S(F), for i = 1, 2. Thus we have a flag
of subspaces F1(x) ⊂ F2(x) ⊂ TxM for each point x ∈ M \ S(F). We will consider the flag
bundle using the Grassmann bundle of qi-planes.

Let π̃2 : Gq2(TM) −→M be the Grassmann bundle of q2-planes in TM . We have the Nash
modification of M with respect to F2, Mν

2 = Imσ2, where σ2 is a natural section induced by

39
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F2. We have the exact sequence on Mν
2

0 −→ T ν2 −→ π∗2TM −→ N ν
2 −→ 0. (3.1)

Analogously, we consider the Grassmann bundle of q1-planes in TM denoted by π̃1 :

Gq1(TM) −→M and we obtain the Nash modification of M with respect to F1, M
ν
1 = Imσ1

and the exact sequence on Mν
1

0 −→ T ν1 −→ π∗1TM −→ N ν
1 −→ 0. (3.2)

Now, if we consider the Grassmann bundle of (n− q2)-planes in TM , i.e.,

π̃n−q2 : Gn−q2(TM) −→M,

then we have the exact sequence

0 −→ T̃ νn−q2 −→ π̃∗n−q2TM −→ Ñ ν
n−q2 −→ 0.

Remark 3.1.1 The fiber of the fibre bundle N ν
n−q2 −→ Gn−q2(TM) over a (n − q2)-plane

En−q2 ∈ Gn−q2(TM) is the q2-plane

(Ñν
n−q2)En−q2 '

TxM

En−q2
' Eq2 ,

where π̃n−q2(En−q2) = x.

If we let π̃q1 : Gq1(Ñ
ν
n−q2) −→ Gn−q2(TM) be the Grassmann bundle of p1-planes in Ñ ν

n−q2 ,
we have the flag bundle π̃ : Fq1,q2(TM) −→M of (q1, q2)-planes in TM , where π̃ = π̃n−q2◦π̃q1 .

Remark 3.1.2 A point of Fq1,q2(TM) over x ∈M means first a q2-plane Eq2 in TxM and then

a q1-plane Eq1 in Eq2; this is a flag in TxM .

For details see [16].

Definition 3.1.3 We define the Nash modification of M with respect of the flag F = (F1,F2)

by



CHAPTER 3. NASH RESIDUES AND COMPARISON OF RESIDUES 41

Mν = Imσ,

where the closure is taken in the fibre bundle Fq1,q2(TM) and σ is the natural section induced

by the flag F .

If we consider the projections p̃i : Fq1,q2(TM) −→ Gqi(TM); i = 1, 2, then we can take
the pull-back of the exact sequences (3.1) and (3.2) to Mν .

0 −→ p∗1T
ν
1 −→ p∗1π

∗
1TM −→ p∗1N

ν
1 −→ 0. (3.3)

0 −→ p∗2T
ν
2 −→ p∗2π

∗
2TM −→ p∗2N

ν
2 −→ 0. (3.4)

Proposition 3.1.4 The following diagram

Mν

π

��

p2

""

p1

||
Mν

1

π1 ""

Mν
2

π2||
M

is commutative.

Proposition 3.1.5 On Mν we have the exact sequences

0 −→ N ν
12 −→ p∗1N

ν
1 −→ p∗2N

ν
2 −→ 0 (3.5)

0 −→ p∗1T
ν
1 −→ p∗2T

ν
2 −→ N ν

12 −→ 0, (3.6)

where Nν
12 := p∗2T

ν
2 /p

∗
1T

ν
1 .

It follows from the Proposition 3.1.4 and Proposition 3.1.5, that p∗1π
∗
1TM = p∗2π

∗
2TM =

π∗TM . Therefore, we have the following diagram on Mν .
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0

!!

0

zz

0

p∗1T
ν
1

$$

��

p∗2N
ν
2

dd ==

π∗TM

::

$$
p∗2T

ν
2

::

$$

p∗1N
ν
1

OO

!!
0

>>

N ν
12

::

$$

0

0

::

0

We define the normal bundle N ν over Mν by Nν
12 ⊕ p∗2N ν

2 and also we define

ϕ(Nν) := ϕ1(N
ν
12) ^ ϕ2(p

∗
2N

ν
2 ),

where ϕi is a homogeneous symmetric polynomial of degree di.

Let S be a compact connected component of S(F) and let Sν = π−1(S). Also, let Uν be a
neighborhood of Sν in Mν disjoint from the other components of S(F)ν . Let Ũν

1 be a regular
neighborhood of Sν in Fq1,q2(TM) with Ũν

1 ∩Mν ⊂ Uν and Ũν
0 be a tubular neighborhood of

Uν
0 = Uν \ Sν in Fq1,q2(TM) with the projection ρ. We consider the covering Ũν = {Ũν

0 , Ũ
ν
1 }

of Ũν = Ũν
0 ∪ Ũν

1 . The characteristic class ϕ(N ν) is represented by the cocycle

ϕ(122 ∇ν
∗) = ϕ1(

12∇ν
∗) ^ ϕ2(

2∇ν
∗) ∈ A2(d1+d2)(Ũν),

where
ϕ1(

12∇ν
∗) = (ϕ1(

12∇ν
0), ϕ1(

12∇ν
1), ϕ1(

12∇ν
0,

12∇ν
1))

and
ϕ2(

2∇ν
∗) = (ϕ2(

2∇ν
0), ϕ2(

2∇ν
1), ϕ2(

2∇ν
0,

2∇ν
1)).

Here 12∇ν
0 and 12∇ν

1 are connections on Nν
12 over Ũν

0 and Ũν
1 , respectively, and 2∇ν

0 and
2∇ν

1 are connections on p∗2N
ν
2 over Ũν

0 and Ũν
1 , respectively.
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If we set U = π(Uν), i.e., a neighborhood of S on M , then π induces a biholomorphic
map Uν

0 −→ U0 = U \ S. On U0 we have basic (Bott) connections ∇12 and ∇2 a N12 and NF 0
2

respectively. We take as 12∇ν
0 the connection forNν

12 given by 12∇ν
0 = π∗(∇12) and analogously

2∇ν
0 = π∗(∇2) for p∗2N

ν
2 then

ϕ(122 ∇ν
0) = ϕ1(

12∇ν
0) ^ ϕ2(

2∇ν
0) = 0.

The cocycleϕ(122 ∇ν
∗) ∈ A2(d1+d2)(Ũν , Ũν

0 ) defines a classϕSν (N ν ;F) ∈ H2(d1+d2)(Uν , Uν\
Sν ;C). We denote its image in H2(n−d1−d2)(S

ν ;C) by Alexander homomorphism by
Resϕ1,ϕ2(N

ν ,F , Sν).

Definition 3.1.6 We call the class Resϕ1,ϕ2(N
ν ,F , Sν) the Nash residue of the flag F with

respect to ϕ = (ϕ1, ϕ2) at Sν .

3.2 Comparison of Baum-Bott and Nash residues for flags

After the definition of the Nash residue for flags above, we can compare it with the Baum-
Bott residue for flags. The result is analogous to [5]. This comparison gives a partial answer to
the Rationality conjecture for flags, see (2.2.16).

Let M be a complex manifold of dimension n and F = (F1,F2) a 2-flag of singular holo-
morphic foliations of dimension (q1, q2) on M . Also let S ⊂ S(F) be a compact connected
component and Sν = π−1(S) as above. Then, there is a canonical homomorphism

π∗ : H2n−2d(S
ν ;C) −→ H2n−2d(S;C).

Theorem 3.2.1 Let ϕ = (ϕ1, ϕ2) where ϕi is a homogeneous symmetric polynomial of degree

di satisfying the condition of the Bott vanishing theorem for flags (2.1). If ϕi has integral

coefficients, then the difference

Resϕ1,ϕ2(NF ,F , S)− π∗Resϕ1,ϕ2(N
ν ,F , Sν)

is in the image of the canonical homomorphism H2n−2d(S;Z) −→ H2n−2d(S;C), i.e., it is a

(sum of) integral class.
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Proof: Take analytic resolutions of the sheaves F1 and F2

0 −→ AU(E12
q ) −→ ... −→ AU(E12

1 ) −→ AU ⊗F1 −→ 0

0 −→ AU(E2
r ) −→ ... −→ AU(E2

1) −→ AU ⊗F2 −→ 0.

The exact sequences

0

��
0 // F1

// F2
//

��

N12
// 0

ΘM

��
N2

��
0

provide a resolution of the sheaves N12 and N2.

0 −→ AU(E12
q )

η12q−→ ... −→ AU(E1
1)

η121−→ AU(F 0
2 ) −→ AU ⊗N12 −→ 0

0 −→ AU(E2
q )

η2r−→ ... −→ AU(E2
1)

η21−→ AU(TM) −→ AU ⊗N2 −→ 0.

Then, we have exact sequences of vector bundles on U0.

0 −→ E12
q −→ ... −→ E12

1 −→ F 0
2 −→ N12 −→ 0 (3.7)

0 −→ E2
r −→ ... −→ E2

1 −→ TM −→ NF 0
2
−→ 0. (3.8)

The sheaves homomorphisms η12j and η2i induce bundles homomorphisms on U and Uν

h12j : E12
j −→ E12

j−1
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h2i : E2
i −→ E2

i−1.

π∗h12j : π∗E12
j −→ π∗E12

j−1

π∗h2i : π∗E2
i −→ π∗E2

i−1.

We claim that

Im(π∗h21) ⊂ p∗2T
ν
2 and Im(π∗h121 ) ⊂ p∗1T

ν
1 on Uν . (3.9)

In fact, away from the singular set we have equivalent sequences

0 −→ F1 −→ F2 −→ N12 −→ 0.

0 −→ p∗1T
ν
1 −→ p∗2T

ν
2 −→ N ν

12 −→ 0.

Note that T ν1 = π∗1F
0
1 (on Mν

1 ) implies that p∗1T
ν
1 = π∗F 0

1 . Analogously we have p∗2T
ν
2 =

π∗F 0
2 .

Then, we have the exact sequences

...

��
π∗E12

1

π∗h121
��

0 // π∗F 0
1

// π∗F 0
2

// π∗N1,2
// 0.

Therefore, away from singular sets, which is dense in Uν , we have the equalities in (3.9).
Then, by the continuity arguments we have the inequalities of (3.9) in Uν . We have two com-
plexes of vector bundles on Uν , which are exact on Uν

0 .

0 −→ π∗(E12
q ) −→ ... −→ π∗(E12

1 ) −→ π∗F 0
2 −→ Nν

12 −→ 0. (3.10)

0 −→ π∗(E2
r ) −→ ... −→ π∗(E2

1) −→ π∗TM −→ p∗2N
ν
2 −→ 0. (3.11)

We consider the virtual bundles ε̃12 = π̃∗(ξ12) − Nν
12 and ε̃2 = π̃∗(ξ2) − p∗2N

ν
2 or
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π̃∗(ξ12) = Nν
12 + ε̃12 and π̃∗(ξ2) = p∗2N

ν
2 + ε̃2.

By classical properties of characteristic classes we can write

ϕ1(π̃
∗(ξ12)) = ϕ1(N

ν
12) +

∑
ϕi1(N

ν
12)ψ

i
1(ε̃12), (3.12)

where the ϕi1 are symmetric polynomials with integral coefficients and ψi1 are symmetric poly-
nomials with integral coefficients without constant term. Analogously

ϕ2(π̃
∗(ξ2)) = ϕ2(p

∗
2N

ν
2 ) +

∑
ϕi2(p

∗
2N

ν
2 )ψi2(ε̃2). (3.13)

By taking the cap product of (3.12) with (3.13) we have

ϕ1(π̃
∗ξ12).ϕ2(π̃

∗ξ2) =

= ϕ1(N
ν
12).ϕ2(p

∗
2N

ν
2 ) + ϕ1(N

ν
12).
∑
ϕi2(p

∗
2N

ν
2 )ψi2(ε̃2)+

+
∑
ϕi1(N

ν
12)ψ

i
1(ε̃1).ϕ2(p

∗
2N

ν
2 ) +

∑
ϕi1(N

ν
12)ψ

i
1(ε̃12).ϕ

i
2(p
∗
2N

ν
2 )ψi2(ε̃2).

on H2(d1+d2)(Uν).

We claim that we have a good localization, i.e., in A∗(Ũν , Ũν
0 ) we have

ϕ(π̃∗(122 ∇•∗)) = ϕ1(π̃
∗(12∇•∗)).ϕ2(π̃

∗(2∇•∗)) =

= ϕ1(
12∇ν

∗).ϕ2(
2∇ν
∗) + ϕ1(

12∇ν
∗).
∑
ϕi2(

2∇ν
∗)ψ

i
2(

2∇ε
∗)+

+
∑
ϕi1(

12∇ν
∗)ψ

i
1(

12∇ε
∗).ϕ2(

2∇ν
∗) +

∑
ϕi1(

12∇ν
∗)ψ

i
1(

12∇ε
∗).ϕ

i
2(

2∇ν
∗)ψ

i
2(

2∇ε
∗) +Dτ,

where τ = (0, 0, τ01)

with τ01 = ϕ1(
12∇ν

0).2τ01 +12 τ01.ϕ2(
2∇ν

1) +12 τ01.
∑
ϕi2(

2∇ν
1).ψi2(

2∇ε
1)

For further details of the 2τ01 and 1τ01, we refer to [5, pg 46].

The above claim shows that we have in H2(d1+d2)(Uν , Uν\Sν ,C)

π∗ϕS(NF ,F , ) = ϕSν (N
ν ,F) +

∑
ϕ1(N

ν
12).ϕ

i
2(p
∗
2N

ν
2 ).ψi2,S(ε2)+

+
∑
ϕi1(N

ν
12).ψ

i
1,S(ε12).ϕ2(p

∗
2N

ν
2 ) +

∑
ϕi1(N

ν
12).ψ

i
1,S(ε12).ϕ

i
2(p
∗
2N

ν
2 ).ψi2,S(ε2).
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Thus, by the commutative diagram

H2(d1+d2)(Uν , Uν \ Sν ,C)

A
��

H2(d1+d2)(U,U \ S,C)π∗
oo

A
��

H2n−2(d1+d2)(S
ν ,C) π∗

// H2n−2(d1+d2)(S,C)

we obtain that the difference between these residues in H2n−2(d1+d2)(S,C) is a sum of integral
classes.

�

Corollary 3.2.2 If ϕ1 = ci1 ...cir and ϕ2 = cj1 ...cjt with iν > codim(F1) for some ν ∈
[1, ..., r] or is > codim(F2) for some s ∈ [1, ..., t], then the Baum-Bott residue for the flag

F , Resϕ1,ϕ2(NF ,F , S), is a (sum of) integral class.



Chapter 4

Determination of Baum-Bott residues of
the foliations

The purpose of this chapter is twofold. First, we give a generalization of a construction of
Brunella-Perrone in [6] and Corrêa-Pérez in [11, Theorem 4.1, pg 6], for any polynomial ϕ of
degree k+ 1; and second, we show that, in this theorem, the complex number BB(F , Z) can be
calculated as a Grothendieck residue.

LetF be a holomorphic foliation of codimension k on a complex manifoldM with dimM =

n. Assume that F is induced by ω ∈ H0(M,Ωk
M ⊗ N ). Denote by Singk+1(F), the union of

the irreducible components of S(F) of pure codimension k + 1. Assume that

Codim S(F) ≥ k + 1.

We can consider ω decomposable and integrable, i. e., locally ω is given by a product of k
1-forms η1 ∧ ... ∧ ηk. Then, it is possible to find a matrix of (1, 0)-forms (θls) such that

dηl =
k∑
s=1

θls ∧ ηs ∀ l = 1, ..., k.

Set θ :=
∑k

l=1(−1)l+1θll. Observe that the smooth (2k + 1)-form

(
1

2πi
)k+1θ ∧ dθ ∧ ... ∧ dθ︸ ︷︷ ︸

k−th

48
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is closed. Its the de Rham cohomology class in H2k+1(B∗p ;C) does not depend on the choice of
ω and θ.

Take now an irreducible component Z ⊂ Singk+1(F) and a generic point p ∈ Z. Pick Bp

a small ball centered at p such that S(Bp) ⊂ Bp is a sub-ball of dimension n − k − 1. The
de-Rham class can be integrated over an oriented (2k + 1)-sphere Lp ⊂ B∗p

BB(F , Z) := (
1

2πi
)k+1

∫
Lp

θ ∧ (dθ)k.

Corrêa and Pérez in [11, Theorem 4.1, pg 6] give a new proof of the Baum-Bott theorem and
presented an effective way (different of Baum-Bott) to calculate residues of a foliations, when
the dimension of the singular set of the foliation is one less than the dimension of the foliation.

Theorem 4.0.3 Let F be a holomorphic foliation of codimension k on a complex manifold M .

Then the following hold:

(i) for each irreducible componentZ of Singk+1(F) there exists a complex number λZ(F) which

is determined by the local behavior of F near Z.

(ii) If M is compact

ck+1
1 (NF) =

∑
Z

λZ(F)[Z],

where the sum is done over all irreducible components of Singk+1(F). We will show λZ(F) =

BB(F , Z).

We will show the following result

Corollary 4.0.4 Let F be a holomorphic foliation of codimension one on M induced by ω ∈
H0(M,Ω1 ⊗ det(NF)). Consider Z ⊂ Sing2(F). If dω ≡ 0 in a neighborhood of Z then

Resc21(F ;Z) = 0.

Proof: By Theorem 4.0.3 one has

Resc21(F ;Z) = α∗(BB(F , Z)[Z]),
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where α∗ is the Poincaré duality isomorphism

H2(2)(M ;C)
α∗−→ H2(n−2)(M ;C).

I will show that BB(F , Z) = 0.

Recall the definition of this complex number BB(F , Z), see [6]. There is a (1, 0)-form
β ∈ A(1,0)(B∗p) such that

dω = β ∧ ω,

where B∗p is defined as follow.

Take a point p ∈ Sing2(F). We consider a ball Bp ⊂ M centered at p, next consider
S(Bp) = Sing2(F) ∩Bp and B∗p = Bp\S(Bp).

By hypothesis dω|Z = β ∧ ω|Z = 0 then, by the division lemma, there is a holomorphic
function f such that

β = fω.

On the other hand, we have

BB(F , Z) = (
1

2πi
)2
∫
Lp

β ∧ dβ,

where, β ∧ dβ = fω ∧ df ∧ ω = 0.

�

Example 4.0.5 Let F be the logarithmic foliation on P3 induced, locally in

(C3, (x, y, z)) by the 1-form

ω = yzdx+ xzdy + xydz.

In this chart, the singular set of ω is the union of the irreducible compoents Z1, Z2 and Z3,

where Z1 = {x = y = 0}; Z2 = {x = z = 0} and Z3 = {y = z = 0}. Note that dω|Zi = 0
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for i = 1, 2, 3. Therefore, BB(F ;Zi) = 0 and, we have

Resc21(F ;Zi) = α∗(BB(F ;Zi)[Zi]) = 0.

We show that the Theorem 4.0.3, with the construction that appears in [11], is valid for any
polynomial ϕ = cα1

1 c
α2
2 ...c

αk
k with 1α1 + 2α2 + ... + kαk = k + 1, where ci denotes the i-th

Chern class.

Given a multi-index α = (α1, ..., αk) with αj ≥ 0 for j = 1, ..., k, we can associate a
homogeneous symmetric polynomial of degree k + 1, ϕ = cα1

1 c
α2
2 ...c

αk
k with 1α1 + 2α2 + ...+

kαk = k + 1. Denote by θ the Bott connection matrix of the foliation F and K its curvature
matrix. Next, consider the unique complete polarization of the polynomial ϕ, denoted by ϕ̃,
that is, ϕ̃ is a symmetric k-linear map that satisfies

ϕ̃(K, ...,K) = ϕ(K) = cα1
1 (K)cα2

2 (K)...cαkk (K).

Define the polynomial ϕj for j = 1, ..., k as follow

ϕj(θ,K) := ϕ̃(θ,−2θ ∧ θ, ...,−2θ ∧ θ︸ ︷︷ ︸
j−1

, K, ...,K︸ ︷︷ ︸
k−j

)

= cα1
1 (θ)cα2

2 (−2θ ∧ θ)...cαkk (K).

Now, we consider the (2k + 1)- form

ϕα(θ,K) =
k−1∑
j=0

(−1)j
(k − 1)!

2j(k − j − 1)!(k + j)!
ϕj+1(θ,K).

Note that ϕ(K) = cα1
1 (K)cα2

2 (K)...cαkk (K) represents, in de Rham sense, the characteristic
class ϕ(NF). It follows from the Bott vanishing theorem, see [25, Theorem 9.11, pg 76], that
ϕ(K) = 0 outside V , where V is a small neighborhood of Singk+1(F).

Let Z be an irreducible component of Singk+1(F). Take a generic point p ∈ Z, that is, p
is a point where Z is smooth and disjoint from the other singular component. Pick Bp a ball
centered at p sufficiently small, such that S(Bp) := Z ∩ Bp is a subball of Bp of dimension
n−k−1. Then, the de Rham class ϕα(θ,K) can be integrated over an oriented (2k+1)-sphere
Lp ⊂ B∗p := Bp\S(Bp) positively linked with S(Bp):
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BB(F , ϕ;Z) := (
1

2πi
)k+1

∫
Lp

ϕα(θ,K). (4.1)

Theorem 4.0.6 Let F be a holomorphic foliation of codimension k on a complex manifold M .

If Codim S(F) ≥ k + 1, then the following hold:

(i) for each irreducible component Z of Singk+1(F) there exist a complex number λZ(F) which

is determined by the local behavior of F near Z.

(ii) If M is compact

ϕ(NF) =
∑
Z

λZ(F ;ϕ)[Z] in H2(k+1)(M ;C),

where the sum is done over all irreducible components of Singk+1(F). We will show that

λZ(F ;ϕ) = BB(F , ϕ;Z).

Proof: Let us consider L ⊂M a (k + 1)-ball intersecting transversally Singk+1(F) at a single
point p ∈ Z, with V ∩ T b T .

For the form ϕα(θ,K), one has

d(ϕα(θ,K)) = ϕ(K).

See Vishik [28, Lemma 2.3, pg 5].

Then by Stokes theorem we have

BB(F , ϕ;Z) = (
1

2πi
)k+1

∫
∂L

ϕα(θ,K)

= (
1

2πi
)k+1

∫
L

d(ϕα(θ,K)) = (
1

2πi
)k+1

∫
L

ϕ(K).

This means that the 2(k + 1)-form d(ϕα) = ϕ(K) is cohomologous, as a current, to the
integration current over BB(F , ϕ;Z)[Z], i.e.,

ϕ(NF) =
∑
Z

BB(F , ϕ;Z)[Z].
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Corollary 4.0.7 For k = n− 1 we have

BB(F , ϕ;Z = q) = Resq
[
ϕ(JX)

dz1 ∧ ... ∧ dzn
X1...Xn

]
,

where the right side is the Grothendieck residue of F around at the singular point q.

Now, we will apply the "transversal disc method" of Baum-Bott and Vishik. However we do
not use the hypothesis that at the singular set of foliation all p ∈ S(F) are a Baum-Kupka type
singularities, see [3, Theorem 3, pg 285]. We do not use also the non degeneration condition
used by Vishik in [28, Theorem 2, pg 3].

For this, consider give a transversal discH ⊂M of dimension k+1 such thatH∩Z = {p},
where Z ⊂ Singk+1(F). Taking local coordinates z = (z1, ..., zk+1) in H around p, we can
assume p = 0. Then, the restriction F|H =: G is an one-dimensional foliation on H of which
the singular set is given by S(G) = S(F) ∩H .

Given Z ⊂ Singk+1(F) an irreducible component. Let us denote by [Z] ∈ H2(n−k−1)(Z;C)

its fundamental class and consider ηZ its Poincaré dual in H2(k+1)(M ;C). On the other hand,
let TZ be the integration current associated to Z, that can be conveniently interpreted as a coho-
mology class in M , that is, TZ ∈ H2(k+1)(M ;C).

Proposition 4.0.8 TZ and ηZ represent the same class in H2(k+1)(M ;C).

Proof: We will verify that the two 2(k+1)-forms, seen as linear functional inH2(n−k−1)(M ;C),
act in the same way.

In fact, given ω a 2(n − k − 1)- form, we have by definition that TZ(ω) =

∫
Z

ω. On the

other hand, we recall the Poincaré duality(
H2r(M)

)∗
' H2(n−r)(M).

We have the Poincaré dual, ηZ , associates a linear functional, denoted by ( by abuse of

notation), ηZ which satisfies ηZ(ω) =

∫
Z

i∗ω =

∫
Z

ω, where i denotes the inclusion map

Z ↪→M . Therefore, TZ(ω) = ηZ(ω).
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Theorem 4.0.9 Let F be a holomorphic foliation of codimension k on a compact complex

manifold M . If Codim S(F) ≥ k + 1 for each irreducible component Z of Singk+1(F) there

exists a complex number BB(F , ϕ;Z) which is determined by the local behavior of F near Z,

and is given by

BB(F , ϕ;Z) = Resp
[
ϕ(JX)

dz1 ∧ ... ∧ dzk+1

X1...Xk+1

]
,

where X = (X1, ..., Xk+1) is the vector field that induces G around p and ϕ is a homogeneous

symmetric polynomial of degree k + 1.

Proof: We have that, locally, there is a k-form ω that induces the foliation F . Then, G is
induced by restriction of this form to H , i.e.,

ω̃ := ω|H .

We recall the isomorphism between ΘU and Ωk
U defined by the contraction by a vector field

i ∂
∂zi

dz1 ∧ ... ∧ dzk+1 = (−1)idz1 ∧ ... ∧ d̂zi ∧ ... ∧ dzk+1.

We can consider the vector field X = (X1, ..., Xk+1) in H dual to this k - form ω̃ in H . If
we denote by Θ = (θls) the Bott connection matrix of F , then Θ̃ := Θ|H = (θls|H) represents
the Bott connection matrix of G and we denote by K̃ its curvature matrix to G. The (2k + 1) -
form ϕα(θ̃, K̃) := ϕα(θ,K)|H in H satisfies

dϕα(θ̃, K̃) = ϕ(K̃),

where ϕ(K̃) represents, in de Rham sense, the characteristic class ϕ(NG).

We consider a (2k + 1)- sphere Lp ⊂ H ∩M then, we have by Corollary 4.0.7

Resp
[
ϕ(JX)

dz1 ∧ ... ∧ dzk+1

X1...Xk+1

]
= BB(G, ϕ; p).

By definition of the complex number BB(G, ϕ; p), see (4.1), one has
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BB(G, ϕ; p) =
( 1

2πi

)k+1
∫
Lp

ϕα(θ̃, K̃)

=
( 1

2πi

)k+1
∫
Lp

ϕα(θ,K)|H

=
( 1

2πi

)k+1
∫
Lp

ϕα(θ,K) = BB(F , ϕ, Z).

�

Corollary 4.0.10 Considering the notations of Theorem 4.0.9, we have

Res(F , ϕ, Z) = Resp
[
ϕ(JX)

dz1 ∧ ... ∧ dzk+1

X1...Xk+1

]
[Z],

where [Z] denotes the fundamental class of Z and Resp
[
ϕ(JX)

dz1 ∧ ... ∧ dzk+1

X1...Xk+1

]
denotes the

Grothendieck residue of G at p.

Example 4.0.11 Recall the example 4.0.5, of the logarithmic foliationF on P3. In local coordi-

nates {C3, (x, y, z)}, the singular set of F has one component Z with 3 irreducible components

Z1, Z2, Z3. The Corollary 4.0.4 affirms that BB(F , c21;Zi) = 0, for i = 1, 2, 3. We will see this

by applying the Corollary 4.0.10.

In fact, by Corollary 4.0.9, we have BB(F , c21;Zi) = Resc21(G; pi), where G is a foliation

on Di with Di a 2-disc cutting transversally Zi.

Consider D1 given by {z = 1} then, we have

ω|D1 =: ω1 = ydx+ xdy with dual vector field X1 = x
∂

∂x
− y ∂

∂y
.

Then, D1 ∩ Z1 = {p1 = (0, 0, 1)}. Now, a straightforward calculation shows that

JX1 =

(
1 0

0 −1

)
then, JX1(p1) =

(
1 0

0 −1

)
.

Thus,
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BB(F , c21;Z1) = Resc21(G; p1) =
c21(JX1(p1))

det(JX1(p1))
= 0.

The same holds for Z2 and Z3.

The following example is due to D. Cerveau and A. Lins Neto, see [8]. It originates from
the so-called exceptional component of the space of codimension one holomorphic foliations of
degree 2 of Pn.

Example 4.0.12 Consider F be a holomorphic foliation of codimension one on P3, given lo-

cally by the 1-form

ω = z(2y2 − 3x)dx+ z(3z − xy)dy − (xy2 − 2x2 + yz)dz.

The singular set of this foliation has one connect component, denoted by Z, with 3 irre-

ducible components, given by:

1) the twisted cubic Γ : y 7−→ (2/3y2, y, 2/9y3)

2) the quadric Q : y 7−→ (y2/2, y, 0)

3) the line L : y 7−→ (0, y, 0).

We consider the 2-plane H given by {y = 1} and we do the restriction of F to H . We have

an one-dimensional holomorphic foliation, denoted by G, given by the 1-form on H

ω̃ = (2z − 3xz)dx+ (2x2 − x− z)dz

with dual vector field

X = (2x2 − x− z)
∂

∂x
+ (−2z + 3xz)

∂

∂z
.

The singular set of G is given by

S(X) =
{
p1 = (2/3, 1, 2/9); p2 = (1/2, 1, 0); p3 = (0, 1, 0)

}
.

We know how to calculate the Grothendieck residue of the foliation G
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Resc21(G; p1) =
c21(JX(p1))

det(JX(p1))
=

25

6

Resc21(G; p2) =
c21(JX(p2))

det(JX(p2))
= −1

2

Resc21(G; p3) =
c21(JX(p3))

det(JX(p3))
=

9

2
.

Therefore, we get

Resc21(F ;Z) = Resc21(G; p1)[Γ] + Resc21(G; p2)[Q] + Resc21(G; p3)[L]

=
25

6
[Γ] + (

−1

2
)[Q] +

9

2
(G; p3)[L],

where [Γ] denotes de fundamental class of the component Γ. By Baum-Bott theorem

c21(NF) _ [P3] = Resc21(F ;Z)

(2 + deg(F))2h2 = Resc21(G; p1)[Γ] + Resc21(G; p2)[Q] + Resc21(G; p3)[L]

16h2 =
25

6
[Γ] + (

−1

2
)[Q] +

9

2
(G; p3)[L],

where h represent the hyperplane class. This exemple was considered by M. Soares in [24] with

another calculations.

The next example is very import, since we can use the Theorem 4.0.9 but we cannot use the
Bott’s Theorem in [3, Theorem 3, pg 285]. This confirms that our result is more general than
Bott’s result.

Example 4.0.13 We recall the logarithmic foliation F on P3 with homogeneous coordinates

[X, Y, Z, T ], see examples 4.0.11 and 4.0.5, given locally by the following 1-form in the chart

{T = 1}.
ω = yzdx+ xzdy + xydz.

If we pull-back ω by the biholomorphism

ϕ : P3 −→ C3

[X : Y : Z : T ] 7−→ (X/T, Y/T, Z/T ) = (x, y, z)
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we have the forms that defines globally F in homogeneous coordinates

ω̃ = Y ZTdX +XZTdY +XY TdZ − 3XY ZdT.

The singular set of F is the union of the lines Z1, Z2, Z3, Z4 = {T = X = 0}, Z5 = {T =

Y = 0} and Z6 = {T = X = 0}. Note that dω|Zi is nowhere vanishing for i = 4, 5, 6 . We

can use the process of the Theorem 4.0.9 to computing the residue of these components.

For Z4 = {X = T = 0} we can consider the local chart Uy = {Y = 1}. Then, we have,

ωy := ω̃|Uy = ztdx+ xtdz − 3xzdt.

Take, a 2-disc transversal to this component, for example, D2 = {z = 1}.

ω2 := ωy|D2 = tdx− 3xdt.

The dual vector field is X2 = −3x
∂

∂x
− t ∂

∂t
with singularity Z4 ∩D2 = {(0, 1, 0) =: p4}.

JX2(p4) =

(
−3 0

0 −1

)

then, Resc21(G; p4) = BB(F , c21;Z4) =
c21(JX2)(p4)

det(JX2)(p4)
=

16

3
.

An analogous calculation shows that

Resc21(G; p5) = BB(F , c21;Z5) =
16

3
.

Resc21(G; p6) = BB(F , c21;Z6) =
16

3
.

Therefore, Theorem 4.0.6 and Theorem 4.0.9 combine to imply

c21(NF) _ [P3] =
6∑
i=1

BB(F , c21;Zi)[Zi]
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(2 + deg(F))2h2 =
16

3
[Z4] +

16

3
[Z5] +

16

3
[Z6]

16h2 =
16

3
[Z4] +

16

3
[Z5] +

16

3
[Z6],

where h represents the hyperplane class.

Note that our result in Theorem 4.0.9 generalizes the Bott Theorem, because if we consider
the hypothesis in [3], the Theorem 4.0.9 provides the Theorem 3 in [3].

Let F be a holomorphic foliation on M of codimension k. We have that, in general, a
connected irreducible component Z of Singk+1(F) comes endowed with a filtration. For given
p ∈ Z let us choose holomorphic vector fields X1, ...Xs defined on an open neighborhood Up
of p ∈M and such that for all x ∈ Up, the germs at x of the holomorphic vector fields X1, ...Xs

are in Fx and span Fx as a Ox-module.

Define a subspace Vp(F) ⊂ TpM by letting Vp(F) be the subspace of TpM spanned by
X1(p), ...Xs(p). We have

Z(i) = {p ∈ Z; dimVp(F) ≤ n− k − i} for i = 1, ..., n− k.

Then,
Z ⊇ Z(1) ⊇ Z(2) ⊇ ... ⊇ Z(n−k)

is a filtration of Z.

If we assume that

Codim Z = k + 1 and Codim Z(2) < k + 1

we have

Corollary 4.0.14 (3, Theorem 3, pg 285) Let F be a holomorphic foliation of codimension k

on M . Then,

ϕ(NF) =
∑
Z

BB(F , ϕ;Z)[Z],

where the sum is done over all irreducible components of Singk+1(F). Then α∗(BB(F , ϕ;Z)[Z])
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is the residue of F in Z and moreover

BB(F , ϕ;Z) = Resϕ(G; p)

withResϕ(G; p) representing the Grothendieck residue at p of the foliation G, i.e., of the restric-

tion of the foliation F on a (k + 1) - disc H with p = Z ∩H .
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