Baum-Bott residues for flags of foliations

Tese apresentada à Universidade Federal de Minas Gerais, como parte das exigências do Programa de Pós Graduação em Matemática, para obtenção do título de Doctor.

Baum-Bott residues for flags of foliations

Tese apresentada à Universidade Federal de Minas Gerais, como parte das exigências do Programa de Pós graduação em Matemática, para obtenção do título de Doctor.

Maria Aparecida Ruas

Jean-Paul Brasselet (co-advisor)

Israel Vainsencher

Márcio Gomes Soares

Maurício Barros Corrêa Júnior
(Advisor)
"Só no conhecimento de sua própria essência, deixam de ser os homens, um bando de macacos". Aldoux Huxley.

AGRADECIMENTOS

Agradeço a minha esposa e companheira Caroline, pela paciência e compreensão nesse momento delicado e por toda ajuda desprendida.

Agradeço aos meus colegas, amigos e companheiros de doutorado.
Agradeço aos meus familiares, que sempre acreditaram nessa conquista.
Agradeço a Universidade de Marseille, por me receber durante o doutorado sanduíche.
Agradeço ao professor Jean-Paul Brasselet por me coorientar durante o tempo que me hospedei em Marseille.

Agradeço as Andreas, pelo trabalho árduo, preciso e muito competente.
Agradeço aos membros da banca, por me ajudar na correção do texto e pelas preciosas sugestões.

Agradeço ao professor e amigo Maurício Corrêa, meu orientador. Pelas longas discussões, pelos ensinamentos, por confiar no meu trabalho, por todas as oportunidades que me deu e por nunca negar um atendimento. Considero um exemplo de orientador.

Agradeço a CAPES-REUNI pelo apoio financeiro.
Enfim, agradeço a todos que participaram dessa conquista.

CONTENTS

RESUMO vi
ABSTRACT vii
INTRODUCTION 1
1 Basic material 6
1.1 Čech-de Rham cohomology and duality theorems 6
1.2 Characteristic classes via Chern-Weil theory 9
1.3 General localization principle 12
1.4 Singular holomorphic foliations 14
2 Characteristic classes of flags 17
2.1 Flags of holomorphic foliations 17
2.2 Bott vanishing theorem and residues for flags 19
2.3 Residues formula 27
2.4 Determination of certain Baum-Bott residues for flags 32
3 Nash residues and comparison of residues 39
3.1 Nash residues for flags 39
3.2 Comparison of Baum-Bott and Nash residues for flags 43
4 Determination of Baum-Bott residues of the foliations 48

RESUMO

Nesse trabalho de tese estudamos flags de folheações holomorfas singulares, formandos por 2 folheações. Estamos interessados em investigar classes características dessa estrutura e suas consequências. Desenvolvemos uma teoria de resíduos para esses flags. Para tal, provamos um teorema de anulamento do tipo Bott para flags e um teorema do tipo Baum-Bott para tais flags.

Analisamos também a conjectura de racionalidade de Bott para flags. Nesse sentido, definimos o resíduo de Nash para flags utilizando a construção de Nash adaptada para tal situação. Com isso, comparamos o resíduo de Nash para flags com o tal resíduo de Baum-Bott para flags, mostrando assim a racionalidade dos resíduos neste contexto.

Nesse último capítulo tratamos com folheações holomorfas. Nesse sentido, apresentamos uma maneira efetiva de calcular resíduos de folheações, quando a dimensão do conjunto singular da folheação é um a menos que a dimensão da folheação. Esse resultado generaliza o resultado de Bott, uma vez que retiramos hipóteses.

Abstract

In this thesis we study flags of singular holomorphic foliations, formed by two foliations. We are interested in investigating characteristic classes for this structure and its consequences. In this work we develop a residue theory for these flags. Then, we prove a Bott vanishing theorem for flags. Next we proved a Baum-Bott type theorem for flags.

We treat also the Bott rationality conjecture for flags. In this sense we define the Nash residue for flag utilising Nash construction adapted for flags. With this we can do the comparison of the Bott residue and Nash residue for flags, which show the rationality of residues in this context.

In the last chapter we deal holomorphic foliations. For this purpose, we present an effective way to calculate residues of the foliations, when the dimension of singular set of the foliation is one less than the dimension of the foliation. This result generalizes the result of Bott.

INTRODUCTION

A flag of singular holomorphic foliation on a complex manifold M, of dimension n, is a finite sequence of foliations $\mathcal{F}=\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{k}\right)$ such that, away from singular sets, each foliation \mathcal{F}_{i+1} is tangent to the foliation \mathcal{F}_{i} and $\mathcal{F}_{i} \subset \mathcal{F}_{i+1}$ (we call it subfoliation) for each $i=1, \ldots, k-$ 1.

When $k=2$ we have the diagram

Feigin started the study of characteristic classes of flags in 1975, see [14], where the author investigates an obstruction for existence of the flags integrably homotopic. Recently Mol in [22] studied the behavior of singularities of flags and its polar varieties. In the same sense, Corrêa and Soares study the Poincaré problem for flags in [12].

Flags of holomorphic foliations appear naturally in the theory of foliation. For example, a conjecture due to Marco Brunella says that a two-dimensional holomorphic foliation \mathcal{F}_{2} on \mathbb{P}^{3} either admits an invariant algebraic surface or it is a flag of holomorphic foliations, i.e.,
$\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$, where in this last case \mathcal{F}_{1} is a foliation by algebraic curves on \mathbb{P}^{3}. We hope that a theorem of residues for flags can give important informations about the existence of this structure.

In this work we develop a residues theory for flags. The residues theory has been widely studied by Baum and Bott, see [3] and [2].

Theorem Let \mathcal{F} be an one-dimensional singular foliation on a compact complex manifold M of dimensional n and φ a symmetric homogeneous polynomial of degree d with $n-k<d \leq n$ and $Z \subset S(\mathcal{F})$. Then there exists a homology class $\operatorname{Res}_{\varphi}(\mathcal{F} ; Z) \in H_{2 n-2 d}(Z ; \mathbb{C})$ such that

$$
\varphi\left(\mathcal{N}_{\mathcal{F}}\right)[M]=\sum_{Z} \operatorname{Res}_{\varphi}(\mathcal{F} ; Z) .
$$

For $n-k+1<\operatorname{deg}(\varphi) \leq n$ we have the following
Rationality conjecture of Baum-Bott: In the situation above, if φ has rational coefficients, then

$$
\operatorname{Res}_{\varphi}(\mathcal{F} ; Z) \in H_{*}(Z ; \mathbb{Q})
$$

Sertöz in [23] used Nash map to give a partial answer for this conjecture with certain hypothesis of regularity in the Nash modification. Brasselet and Suwa in [5] used characteristic classes on singular varieties to generalize the Sertöz's work and showed an answer to the aforementioned rationality conjecture.

Theorem Let \mathcal{F} be a k dimensional holomorphic foliation on M. If $\varphi=c_{i_{1}} \ldots c_{i_{r}}$ with $i_{\nu}>n-k$ for some ν, then the $\operatorname{Res}_{\varphi}(\mathcal{F} ; Z)$ comes from an integral class, in particular it is a rational class, where c_{i} denotes the i-th Chern class.

Now, if $\operatorname{deg} \varphi=n-k+1$ the residue can be computed, whenever the singular set of the foliation $S(\mathcal{F})$ satisfies certain conditions of non-degeneration. Baum and Bott in [3, Theorem 3 pg 285] showed that we have

$$
\operatorname{Res}_{\varphi}(\mathcal{F} ; Z)=\sum_{i} \lambda_{i}\left[Z_{i}\right]
$$

where λ_{i} is a Grothendieck residue, Z_{i} is an irreducible complex analytic component of $Z \subset$ $S(\mathcal{F})$ of dimension $k-1$ and $\left[Z_{i}\right]$ denote the fundamental class of Z_{i}. We prove the following
result.

Theorem Let \mathcal{F} be a holomorphic foliation of codimension k on a compact complex manifold M. For each irreducible component Z of $\operatorname{Sing}_{k+1}(\mathcal{F})$ there exists a complex number $B B(\mathcal{F}, \varphi ; Z)$ which is determined by the local behavior of \mathcal{F} near Z, and the residue is given by

$$
\operatorname{Res}(\mathcal{F}, \varphi, Z)=B B(\mathcal{F}, \varphi ; Z)[Z]
$$

where $[Z]$ denotes the fundamental class of Z and $B B(\mathcal{F}, \varphi ; Z)$ is the Grothendieck residue of \mathcal{G} at p

$$
B B(\mathcal{F}, \varphi ; Z)=\operatorname{Res}_{p}\left[\varphi(J X) \frac{d z_{1} \wedge \ldots \wedge d z_{k+1}}{X_{1} \ldots X_{k+1}}\right]
$$

with \mathcal{G} a one-dimension foliation on a disc $H, X=\left(X_{1}, \ldots, X_{k+1}\right)$ the vector field that induces \mathcal{G} around p and φ a homogeneous symmetric polynomials of degree $k+1$.

We will work with flags formed by 2 foliations $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$. The first result that we will show is the Bott vanishing theorem for this flag

Theorem Let M be a complex manifold of dimension n and $E=E_{1} \oplus E_{2}$ a vector bundle on M with E_{1} a F_{1} - bundle, E_{2} a F_{2}-bundle with $F_{1} \subset F_{2} \subset T M$ regular foliations. Let φ_{1} and φ_{2} be homogeneous symmetric polynomials of degree d_{1} and d_{2}, such that at least one of the inequalities

$$
\begin{equation*}
d_{1}>\operatorname{corank}\left(F_{1}\right), \quad d_{2}>\operatorname{corank}\left(F_{2}\right) \quad \text { or } \quad d_{1}+d_{2}>\operatorname{corank}\left(F_{1}\right) \tag{1}
\end{equation*}
$$

is satisfied, then $\varphi_{1}\left(E_{1}\right) \smile \varphi_{2}\left(E_{2}\right) \equiv 0$.
Here, note that this theorem is more "fine" than Bott vanishing theorem for foliation, see remark 2.2.12. We obtain, by using characteristic classes via Chern-Weil theory with an approach of Lehmann and Suwa, a Baum-Bott type theorem for flags

Theorem Let $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ be a 2-flag of holomorphic foliations on a compact complex manifold M of dimension n. Let φ_{1}, φ_{2} be homogeneous symmetric polynomials, respectively of degree d_{1} and d_{2}, satisfying (1). Then for each compact connected component S of $S(\mathcal{F})$ there exists $\operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(\mathcal{F}, \mathcal{N}_{\mathcal{F}}, S\right) \in H_{2 n-2\left(d_{1}+d_{2}\right)}(S ; \mathbb{C})$ such that

$$
\begin{equation*}
\sum_{\lambda}\left(\iota_{\lambda}\right)_{*} \operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(\mathcal{F}, \mathcal{N}_{\mathcal{F}}, S_{\lambda}\right)=\left(\varphi_{1}\left(\mathcal{N}_{12}\right) \cdot \varphi_{2}\left(\mathcal{N}_{2}\right)\right) \frown[M] \text { in } H_{2 n-2\left(d_{1}+d_{2}\right)}(M ; \mathbb{C}) \tag{2}
\end{equation*}
$$

where ι_{λ} denotes the embedding of S_{λ} on M.

This theorem is very general and it says that the characteristic class $\varphi\left(\mathcal{N}_{\mathcal{F}}\right)$ localizes at the singular set $S(\mathcal{F}):=S\left(\mathcal{F}_{1}\right) \cup S\left(\mathcal{F}_{2}\right)$ of the flag. However we can refine this localization, i.e., if we request in (1) that

$$
d_{1}>\operatorname{corank}\left(F_{1}\right) \text { and } d_{2}>\operatorname{corank}\left(F_{2}\right)
$$

we have that the characteristic class $\varphi\left(\mathcal{N}_{\mathcal{F}}\right)$ localizes on the intersection $S:=S\left(\mathcal{F}_{1}\right) \cap S\left(\mathcal{F}_{2}\right)$.
How to calculate residues of flags in general? This answer is not simple, but we will give, in this thesis, a partial answer for some cases.

Let $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ be a flag on M with codimension $\left(k_{1}, k_{2}\right)$. If the singular set of the flag $S(\mathcal{F})$ has codimension bigger than $k_{1}+1$, we have for each $0 \leq j \leq k_{2}$

Theorem

$$
c_{1}^{k_{1}+1-j}\left(\mathcal{N}_{12}\right) c_{1}^{j}\left(\mathcal{N}_{2}\right)=\sum_{Z} B B^{j}(\mathcal{F}, Z)[Z],
$$

where $B B^{j}(\mathcal{F}, Z)$ is a complex number that depends of the singular component Z such that $\operatorname{dim} Z=k_{1}+1$.

For definition of $B B^{j}(\mathcal{F}, Z)$, see section 2.4.
We studied a relationship between flag's residues with residues of involved foliations as an immediate consequence.

Corollary For each $Z \subset \operatorname{Sing}_{k_{1}+1}(\mathcal{F})$ and hypothesis as above we have

$$
\sum_{j=0}^{k_{2}}\binom{k_{1}+1}{j} \operatorname{Res}_{c_{1}^{k_{1}+1-j} c_{1}^{j}}\left(\mathcal{F}, \mathcal{N}_{\mathcal{F}} ; Z\right)=\operatorname{Res}_{c_{1}^{k_{1}+1}}\left(\mathcal{F}_{1}, \mathcal{N}_{1} ; Z\right) \text { in } H_{2\left(n-k_{1}-1\right)}(M ; \mathbb{C}) .
$$

In the third chapter we will study the Bott rationality conjecture for flags. For this we will develop the theory of Nash for flags. We will define the Nash modification, of the complex manifold M, with respect to the flag $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$, denoted by M^{ν}. With the projection map

$$
\pi: M^{\nu} \longrightarrow M
$$

Next, if $Z \subset S(\mathcal{F})$ we can do the pull-back $\pi^{-1}(Z)=: Z^{\nu}$ which we define Definition We have well-defined the class $\operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(\mathcal{F}, N^{\nu} ; Z^{\nu}\right)$ in $H_{2\left(n-d_{1}-d_{2}\right)}\left(Z^{\nu} ; \mathbb{C}\right)$ and we call it by Nash residue of the flag \mathcal{F}.

The projection $\pi: M^{\nu} \longrightarrow M$ induces a homomorphism in homology level

$$
\pi_{*}: H_{2\left(n-d_{1}-d_{2}\right)}\left(Z^{\nu} ; \mathbb{C}\right) \longrightarrow H_{2\left(n-d_{1}-d_{2}\right)}(Z ; \mathbb{C})
$$

With this we prove the following
Theorem Let $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$ be homogeneous symmetric polynomials, where φ_{i} is of degree d_{i} satisfying the condition (1). If φ_{i} is with integral coefficients, then the difference

$$
\operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(\mathcal{N}_{\mathcal{F}}, \mathcal{F}, S\right)-\pi_{*} \operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(N^{\nu}, \mathcal{F}, S^{\nu}\right)
$$

is in the image of the canonical homomorphism $H_{2 n-2 d}(S ; \mathbb{Z}) \longrightarrow H_{2 n-2 d}(S ; \mathbb{C})$, i.e., is a sum of integral classes.

Corollary If $\varphi_{1}=c_{i_{1}} \ldots c_{i_{r}}$ and $\varphi_{2}=c_{j_{1}} \ldots c_{j_{t}}$ with $i_{\nu}>\operatorname{codimF}_{1}$ for some $\nu \in[1, \ldots, r]$ or $i_{s}>$ codim \mathcal{F}_{2} for some $s \in[1, \ldots, t]$, then the Baum-Bott residue for the flag $\mathcal{F}, \operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(\mathcal{N}_{\mathcal{F}}, \mathcal{F}, S\right)$, is a (sum of) integral class.

Chapter 1

Basic material

1.1 Čech-de Rham cohomology and duality theorems

In this section, we present the theory of Čech-de Rham Cohomology and duality theorems. For the background on the Cech-de Rham cohomology on complex manifold, we refer to [25, 4].

Let M be a \mathcal{C}^{∞} manifold of dimension m and $\mathcal{U}=\left\{U_{\alpha}\right\}_{\alpha \in I}$ an open covering of M. Suppose that the index set I is an ordered set with total order. We set

$$
I^{(p)}=\left\{\left(\alpha_{0}, \ldots, \alpha_{p}\right) / \alpha_{0}<\ldots<\alpha_{p} \text { in } I\right\} .
$$

We define $C^{p}\left(\mathcal{U}, A^{q}\right)=\prod_{\left(\alpha_{0}, \ldots, \alpha_{p}\right) \in I^{(p)}} A^{q}\left(U_{\alpha_{0} \ldots \alpha_{p}}\right)$,
where $A^{q}\left(U_{\alpha_{0} \ldots \alpha_{p}}\right)$ is defined as the q-forms space.
It is possible to define the following coboundary operator, see [5, 25]

$$
\delta: C^{p}\left(\mathcal{U}, A^{q}\right) \longrightarrow C^{p+1}\left(\mathcal{U}, A^{q}\right)
$$

This operator together with the exterior derivation induces the following operator D : $A^{\bullet}(\mathcal{U}) \longrightarrow A^{\bullet+1}(\mathcal{U})$. Then $\left(A^{\bullet}(\mathcal{U}), D\right)$ is called the Čech-de-Rham complex and its cohomology, denoted by $H^{r}\left(A^{\bullet}(\mathcal{U})\right)$, the Čech-de-Rham cohomology associated to the covering \mathcal{U}.

Proposition 1.1.1 (25, Theorem 3.3, pg 48) We have the following isomorphism

$$
H_{d R}^{r}(M ; \mathbb{C}) \longrightarrow H^{r}\left(A^{\bullet}(\mathcal{U})\right)
$$

We define the cup product

$$
A^{r}(\mathcal{U}) \times A^{s}(\mathcal{U}) \longrightarrow A^{r+s}(\mathcal{U})
$$

by assigning to $\sigma \in A^{r}(\mathcal{U})$ and $\tau \in A^{s}(\mathcal{U})$ the element $\sigma \smile \tau \in A^{r+s}(\mathcal{U})$ given by

$$
(\sigma \smile \tau)_{\alpha_{0} \ldots \alpha_{p}}=\sum_{\nu=0}^{p}(-1)^{(r-\nu)(p-\nu)} \sigma_{\alpha_{0} \ldots \alpha_{\nu}} \wedge \tau_{\alpha_{\nu} \ldots \alpha_{p}}
$$

Then $\sigma \smile \tau$ is linear in σ and τ and we have

$$
D(\sigma \smile \tau)=D \sigma \smile \tau+(-1)^{r} \sigma \smile D \tau
$$

Thus it induces the cup product in cohomology level

$$
H^{r}\left(A^{\bullet}(\mathcal{U})\right) \times H^{s}\left(A^{\bullet}(\mathcal{U})\right) \longrightarrow H^{r+s}\left(A^{\bullet}(\mathcal{U})\right)
$$

Now, we recall the integration on the Čech-de-Rham cohomology and duality theorems. For this let $\mathcal{U}=\left\{U_{\alpha}\right\}_{\alpha \in I}$ be an open covering of M as above.

Definition 1.1.2 A system of honey-comb cells adapted to \mathcal{U} is a collection $\left\{R_{\alpha}\right\}_{\alpha \in I}$ of m dimensional manifolds R_{α} with piecewise C^{∞} boundary in M satisfying the following conditions:
(a) $R_{\alpha} \subset U_{\alpha}$ and $M=\cup_{\alpha} R_{\alpha}$,
(b) $\operatorname{int} R_{\alpha} \cap \operatorname{int} R_{\beta}=\emptyset$, if $\alpha \neq \beta$,
(c) If $U_{\alpha_{0}, \ldots, \alpha_{p}} \neq \emptyset, \quad R_{\alpha_{0}, \ldots, \alpha_{p}}=\cap_{\nu=0}^{p} R_{\alpha_{\nu}}$ is a (m-p)-dimensional manifold with piecewise C^{∞} boundary,
(d) If the set $\left\{\alpha_{0}, \ldots, \alpha_{p}\right\}$ is maximal, $R_{\alpha_{0}, \ldots, \alpha_{p}}$ has no boundary.

Also, let $\mathcal{U}=\left\{U_{\alpha}\right\}_{\alpha \in I}$ be an open covering of M as above and $\left\{R_{\alpha}\right\}_{\alpha \in I}$ a system of honeycomb cells adapted to \mathcal{U}. Suppose M is compact, each R_{α} is compact and we can define the
integration

$$
\int_{M}: A^{m}(\mathcal{U}) \longrightarrow \mathbb{C}
$$

by the sum

$$
\int_{M} \sigma=\sum_{p=0}^{m}\left(\sum_{\left(\alpha_{0}, \ldots, \alpha_{p}\right) \in I^{(p)}} \int_{R_{\alpha_{0}, \ldots, \alpha_{p}}} \sigma_{\alpha_{0}, \ldots, \alpha_{p}}\right)
$$

for $\sigma \in A^{m}(\mathcal{U})$. Then we say that
(1) if $D \sigma=0$ then the sum does not depend on the choice of $\left\{R_{\alpha}\right\}$,
(2) if $\sigma=D \tau$, than $\int_{M} \sigma=0$.

Hence it induces the integration on the cohomology

$$
\int_{M}: H^{m}\left(A^{\bullet}(\mathcal{U})\right) \longrightarrow \mathbb{C}
$$

We have a bilinear pairing

$$
A^{r}(\mathcal{U}) \times A^{2 n-r}(\mathcal{U}) \longrightarrow A^{2 n}(\mathcal{U}) \longrightarrow \mathbb{C}
$$

defined by composition of cup product and integration. We have the Poincaré duality

$$
P: H_{d R}^{r}(M ; \mathbb{C}) \simeq H^{r}\left(A^{\bullet}(\mathcal{U})\right) \longrightarrow H^{2 n-r}\left(A^{\bullet}(\mathcal{U})\right)^{*} \simeq H_{2 n-r}(M ; \mathbb{C}) .
$$

Let us introduce the Alexander duality. Let $S \subset M$ be a closed subset and U a neighborhood of S in M with $U \backslash S \subset M$. Denote $U \backslash S$ by U_{0} and consider the covering $\mathcal{U}=\left\{U_{0}, U_{1}=U\right\}$ of U. We have a canonical projection

$$
\pi: A^{r}(\mathcal{U}) \longrightarrow A^{r}\left(U_{0}\right) \quad\left(\sigma_{0}, \sigma_{1}, \sigma_{01}\right) \longmapsto \sigma_{0}
$$

Denote by $A^{r}\left(\mathcal{U}, U_{0}\right)$ the kernel of this projection. Then, we have the exact sequence

$$
0 \longrightarrow A^{r}\left(\mathcal{U}, U_{0}\right) \longrightarrow A^{r}(\mathcal{U}) \longrightarrow A^{r}\left(U_{0}\right) \longrightarrow 0
$$

We have the following commutative diagram

Then, by the Five lemma, we have the isomorphism

$$
H^{r}\left(A^{\bullet}\left(\mathcal{U}, U_{0}\right)\right) \simeq H^{r}\left(U, U \backslash U_{0} ; \mathbb{C}\right)
$$

By the cup product in Čech-de-Rham cohomology in $A^{r}(\mathcal{U}) \times A^{2 n-r}(\mathcal{U}) \longrightarrow A^{2 n}(\mathcal{U})$ we have

$$
\left(\sigma_{0}, \sigma_{1}, \sigma_{01}\right) \smile\left(\tau_{0}, \tau_{1}, \tau_{01}\right)=\left(\sigma_{0} \wedge \tau_{0}, \sigma_{1} \wedge \tau_{1},(-1)^{r} \sigma_{0} \wedge \tau_{01}+\sigma_{01} \wedge \tau_{1}\right)
$$

Now, suppose that $\sigma_{0}=0$, then the right hand side depends only on σ_{1}, σ_{01} and τ_{1}. Thus, we have a pairing

$$
A^{r}\left(\mathcal{U}, U_{0}\right) \times A^{2 n-r}\left(U_{1}\right) \xrightarrow{\int_{M}} \mathbb{C}
$$

This induces the Alexander duality

$$
\begin{equation*}
A: H^{r}(\mathcal{U}, U \backslash S ; \mathbb{C}) \simeq H^{r}\left(A^{\bullet}\left(\mathcal{U}, U_{0}\right)\right) \longrightarrow H^{2 n-r}\left(U_{1}, \mathbb{C}\right)^{*} \simeq H_{2 n-r}(S ; \mathbb{C}) \tag{1.1}
\end{equation*}
$$

Proposition 1.1.3 (25, Proposition 3.11, pg 55) Let $S \subset M$ be a closed subset such that, let a neighborhood U of S we have $U_{0}=U \backslash S \subset M$. Thus we have the commutative diagram

1.2 Characteristic classes via Chern-Weil theory

Let M be a \mathcal{C}^{∞} manifold of dimension m. For an open set $U \subset M$ we denote by $A^{0}(U)$ the \mathbb{C}-algebra of \mathcal{C}^{∞}-functions. Also for a \mathcal{C}^{∞} complex vector bundle E of rank r on M, we set
$A^{p}(U, E):=\mathcal{C}^{\infty}\left(U, \wedge^{p}(T M)^{*} \otimes E\right)$. Thus $A^{0}(U, E)$ is the $A^{0}(U)$ - module of \mathcal{C}^{∞}-module of \mathcal{C}^{∞}-sections of E and if it is a trivial line bundle, i.e., $E=M \times \mathbb{C}$, then $A^{p}(U, E)$ denotes the space of p-forms on U.

Definition 1.2.1 A connection for a complex vector bundle E on M is a \mathbb{C}-linear map

$$
\nabla: A^{0}(M, E) \longrightarrow A^{1}(M, E)
$$

that satisfies

$$
\nabla(f . s)=d f \otimes s+f . \nabla(s) \text { for } f \in A^{0}(M) \text { and } s \in A^{0}(M, E)
$$

Lemma 1.2.2 A connection ∇ is a local operator i.e., if a section s is identically zero on an open set U, so is $\nabla(s)$.

Proof: See [25, Lemma 7.3, pg 67].

We say that a connection ∇ is trivial on U with respect to a non-vanishing section s of E if $\nabla(s)=0$.

Lemma 1.2.3 Let $\nabla_{1}, \ldots, \nabla_{k}$ be connections for E and $f_{1}, \ldots, f_{k} \mathcal{C}^{\infty}$ - functions on M with $\sum f_{i}=1$. Then $\sum f_{i} \nabla_{i}$ is a connection for E.

Lemma 1.2.4 Given E a vector bundle on M, there exists a connection ∇ for E. In other words: every \mathcal{C}^{∞} vector bundle admits a connection.

Proof: Let $\left\{U_{\alpha}\right\}$ be an open covering of M that trivializes the vector bundles $T M$ and E. Choose a k-frame $s=\left\{s_{1}, \ldots, s_{r}\right\}$ of E on U_{α}. Let $\left\{\rho_{\alpha}\right\}$ be a partition of unity subordinative to the cover $\left\{U_{\alpha}\right\}$. Next define ∇^{α} on U_{α} by $\nabla^{\alpha}\left(s_{i}^{\alpha}\right)=0$ for all i and extend ∇^{α} to an arbitrary section on U_{α} using the above definition of connection. Thus $\nabla=\sum \rho_{\alpha} \nabla^{\alpha}$ is a connection for E.

If ∇ is a connection for E, then it induces a \mathbb{C}-linear map

$$
\nabla:=\nabla^{2}: A^{1}(M, E) \longrightarrow A^{2}(M, E)
$$

satisfying

$$
\nabla(\omega \otimes s)=d \omega \otimes s-\omega \wedge \nabla(s), \omega \in A^{1}(M), s \in A^{0}(M, E)
$$

Definition 1.2.5 The composition $K:=\nabla \circ \nabla: A^{0}(M, E) \longrightarrow A^{2}(M, E)$ is called the curvature of the connection ∇.

Here, note that the connection and the curvature are local operators. This allows us to get representatives of it.

If ∇ denotes the curvature for a vector bundle E of rank r and E is trivial on the open set U, i.e., $\left.E\right|_{U} \simeq U \times \mathbb{C}^{r}$ and if $s=\left\{s_{1}, \ldots, s_{r}\right\}$ is a frame of E on U, then we can write

$$
\nabla\left(s_{i}\right)=\sum_{j=1}^{r} \theta_{i j} \otimes s_{j} ; \quad \theta_{i j} \in A^{1}(U)
$$

The connection matrix with respect to s is $\theta=\left(\theta_{i j}\right)$. Also, using the curvature definition, we get

$$
K\left(s_{i}\right)=\sum_{j=1}^{r} K_{i j} s_{j}, \quad \text { where } \quad K_{i j}=d \theta_{i j}-\sum_{k=1}^{r} \theta_{i k} \wedge \theta_{k j} .
$$

The curvature matrix with respect to the frame s is $K=\left(K_{i j}\right)$. Now, to define the Chern class of a vector bundle E, we consider $\sigma_{i}, i=1, \ldots, r$ the i-th elementary symmetric functions in the eigenvalues of the matrix K

$$
\operatorname{det}(I t+K)=1+\sigma_{1}(K) t+\sigma_{2}(K) t^{2}+\ldots+\sigma_{r}(K) t^{r}
$$

Next, we define a $2 i$-form of Chern c_{i} on U by

$$
c_{i}(K):=\sigma_{i}\left(\frac{i}{2 \pi} K\right)
$$

In general, if φ is a symmetric polynomial in r variables of degree d, we can write $\varphi=$ $P\left(c_{1}, \ldots, c_{r}\right)$ for some polynomial P. Then we can define

$$
\varphi(K):=P\left(c_{1}(K), \ldots, c_{r}(K)\right)
$$

which is a closed form on M. Then, we have a cohomology class of E on $M, \varphi(E):=\varphi(K) \in$ $H^{2 d}(M ; \mathbb{C})$. If $I_{r}(\mathbb{C})$ denotes the graduate algebra of invariant polynomial and $E \longrightarrow M$ is a
vector bundle of rank r, we get the homomorphism of algebras, called Weil homomorphism

$$
\begin{aligned}
: I_{r}(\mathbb{C}) & \longrightarrow H^{*}(M ; \mathbb{C}) . \\
\varphi & \longmapsto \varphi(E)
\end{aligned}
$$

This theory is similarly developed for singular varieties, for this we refer to [4, 5].

1.3 General localization principle

In this section, we consider a general strategy for localization of characteristic classes. We first explore the Čech-de-Rham cohomology for two open sets, this is because it will be widely used in the whole of this thesis. We present the strategy of localization. We refer to [1, 27].

For M a \mathcal{C}^{∞} manifold of dimension m we let $\mathcal{U}=\left\{U_{0}, U_{1}\right\}$ be an open covering of M, where we use the notation $U_{01}:=U_{0} \cap U_{1}$. Now, define the vector space $A^{p}(\mathcal{U})$ by

$$
A^{p}(\mathcal{U}):=A^{p}\left(U_{0}\right) \oplus A^{p}\left(U_{1}\right) \oplus A^{p-1}\left(U_{01}\right),
$$

where $A^{i}(V)$ denote the space of i-forms in the open set V. Then, an element $\sigma \in A^{p}(\mathcal{U})$ is given by a triple

$$
\sigma=\left(\sigma_{0}, \sigma_{1}, \sigma_{01}\right)
$$

with σ_{i} a p-form in U_{i} and σ_{01} a $(p-1)$-form on U_{01}.
Define the following operator D by

$$
\begin{array}{rlcc}
D: & A^{p}(\mathcal{U}) & \longrightarrow & A^{p+1}(\mathcal{U}) \\
\sigma=\left(\sigma_{0}, \sigma_{1}, \sigma_{01}\right) & \longmapsto & \left(d \sigma_{0}, d \sigma_{1}, \sigma_{1}-\sigma_{0}-d \sigma_{01}\right)
\end{array}
$$

it satisfies $D \circ D=0$.
Then we have a complex that we call Čech-de-Rham complex and will denote by $\left(A^{p}(\mathcal{U}), D\right)$

$$
\cdots \longrightarrow A^{p-1}(\mathcal{U}) \xrightarrow{D^{p-1}} A^{p}(\mathcal{U}) \xrightarrow{D^{p}} A^{p+1}(\mathcal{U}) \xrightarrow{D^{p+1}} \cdots
$$

By simplicity we use the notation $D=D^{p}$ for all p.

Define, respectively, the closed forms and exact forms $Z^{p}(\mathcal{U})=$ ker D^{p} and $B^{p}(\mathcal{U})=$ Im D^{p-1}. We can define the p-th Čech-de Rham cohomology group with respect to the covering \mathcal{U} by

$$
H^{p}(\mathcal{U})=\frac{Z^{p}(\mathcal{U})}{B^{p}(\mathcal{U})}
$$

Theorem 1.3.1 (27, Theorem 2.1.1, pg 3) If $H^{p}(M)$ denote the p-th de Rham cohomology group of M we have the natural isomorphism

$$
\alpha: H^{p}(M) \longrightarrow H^{p}(\mathcal{U})
$$

where this is induced by the map $A^{p}(M) \ni \omega \longmapsto(\omega, \omega, 0) \in A^{p}(\mathcal{U})$.

For the relative Čech-de-Rham cohomology we define the relative space

$$
A^{p}\left(\mathcal{U}, U_{0}\right):=\left\{\sigma=\left(\sigma_{0}, \sigma_{1}, \sigma_{01}\right) \in A^{p}(\mathcal{U}) ; \sigma_{0}=0\right\}
$$

Observe that if $\sigma \in A^{p}\left(\mathcal{U}, U_{0}\right)$ then $D \sigma \in A^{p+1}\left(\mathcal{U}, U_{0}\right)$. Therefore, we have the relative complex $\left(A^{p}\left(\mathcal{U}, U_{0}\right), D\right)$

$$
\cdots \longrightarrow A^{p-1}\left(\mathcal{U}, U_{0}\right) \xrightarrow{D^{p-1}} A^{p}\left(\mathcal{U}, U_{0}\right) \xrightarrow{D^{p}} A^{p+1}\left(\mathcal{U}, U_{0}\right) \xrightarrow{D^{p+1}} \cdots
$$

Then, we can define the p-th relative Čech-de-Rham cohomology group with respect to $\left(\mathcal{U}, U_{0}\right)$ by

$$
H^{p}\left(\mathcal{U}, U_{0}\right)=\frac{\operatorname{ker} D^{p}}{I m D^{p-1}}
$$

Now, we explain the strategy for localization that will be used in this thesis. For a complex manifold M let $\varphi \in H^{\bullet}(M)$ be an element of its cohomology. Such a class might represent the obstruction to the existence of a certain global object.

Let $P: H^{\bullet}(M) \longrightarrow H_{2 n-\bullet}(M)$ be the Poincaré homomorphism. For $S \subset M$ a closed subset we set $U=M-S$ and we have the exact sequence

$$
\cdots \longrightarrow H^{\bullet}(M, U) \xrightarrow{f} H^{\bullet}(M) \xrightarrow{g} H^{\bullet}(U) \longrightarrow \cdots
$$

Here assume that $g(\varphi)=0 \in H^{\bullet}(U)$ (This hypothesis is verified by Bott vanishing theorem). As $\operatorname{Im}(f)=\operatorname{ker}(g)$ there exists a class $\widehat{\varphi} \in H^{\bullet}(M, U)$. Consider the Alexander homo-
morphism

$$
A l: H^{\bullet}(M, U) \longrightarrow H_{2 n-\bullet}(S) .
$$

Then, we have the commutative diagram

Therefore, one has a general theorem of "residues"

$$
P(\varphi)=i^{*}(A l(\widehat{\varphi}))
$$

1.4 Singular holomorphic foliations

Let us begin by recalling the basic material in holomorphic foliations. Let M be a complex manifold of dimension n, Θ_{M} and Ω_{M} the sheaves of germs of holomorphic vector fields and of holomorphic 1-forms on M respectively. We refer to [25, 17, 3, 7].

Definition 1.4.1 A singular holomorphic foliation \mathcal{F} of dimension k on M is a coherent subsheaf of Θ_{M} of rank k, which satisfies the following integrability condition

$$
\left[\mathcal{F}_{x}, \mathcal{F}_{x}\right] \subset \mathcal{F}_{x} \quad \text { for all } x \in M
$$

such that, the normal sheaf, defined by $\mathcal{N}_{\mathcal{F}}:=\Theta_{M} / \mathcal{F}$, is torsion free. (It means that \mathcal{F} is saturated).

We have the exact sequence

$$
0 \longrightarrow \mathcal{F} \longrightarrow \Theta_{M} \longrightarrow \mathcal{N}_{\mathcal{F}} \longrightarrow 0
$$

The singular set $S(\mathcal{F})$ of the foliation \mathcal{F} is defined by points in M, where the sheaf $\mathcal{N}_{\mathcal{F}}$ is not locally free, that is, $S(\mathcal{F}):=\operatorname{Sing}\left(\mathcal{N}_{\mathcal{F}}\right)$. Here, we suppose that $\operatorname{Codim} S(\mathcal{F}) \geq 2$.

Now, we give a dual definition of singular foliation.

Definition 1.4.2 A singular holomorphic foliation \mathcal{G}, of codimension k, on M is a coherent subsheaf of Ω_{M} of rank k, which satisfies the following integrability condition

$$
d \mathcal{G}_{x} \subset\left(\Omega_{M} \wedge \mathcal{G}_{x}\right) \text { for all } x \in M \backslash S(\mathcal{G})
$$

where $S(\mathcal{G}):=\operatorname{sing}\left(\Omega_{M} / \mathcal{G}\right)$ is the singular set of \mathcal{G}.

We consider only reduced foliations, then the two definitions 1.4.1 and 1.4.2 are equivalent by taking its annihilators, see [25 pg 178].

In case that $M=\mathbb{P}^{n}$ we have

Proposition 1.4.3 (24, Proposition 4.1, pg 588) Let \mathcal{F} be a holomorphic foliation of dimension k on \mathbb{P}^{n}. Then \mathcal{F} can be represented by a holomorphic section $s: \mathbb{P}^{n} \longrightarrow \wedge^{n-k} T^{*} \mathbb{P}^{n} \otimes \mathcal{O}(l)$ for some $l \in \mathbb{Z}$. In particular, in each affine coordinate domain $\mathbb{C}^{n}, \mathcal{F}$ can be represented by a polynomial $(n-k)$-form ω.

Given a holomorphic foliation \mathcal{F} on the projective space \mathbb{P}^{n}, we can associate an integer number, denoted by $\operatorname{deg}(\mathcal{F})=d$. The degree of the foliation. This number is defined as follows.

Choose a $(n-k)$-plane H on the projective space \mathbb{P}^{n}. Set \mathcal{F}_{p} the leaf of the foliation \mathcal{F} through $p \in \mathbb{P}^{n} \backslash S(\mathcal{F})$. Now, the tangency set of \mathcal{F} with H, denoted by $V(\mathcal{F}, H)$, is defined by the Zariski's closure of the tangency variety of \mathcal{F} with $H, \mathcal{T}(\mathcal{F}, H)=\overline{\left\{p \in H / \operatorname{dim}\left(T_{p} \mathcal{F}_{p} \cap H\right) \geqslant 1\right\}}$.

Definition 1.4.4 The degree of \mathcal{F}, denoted by $\operatorname{deg}(\mathcal{F})$, is defined by the degree of the tangency set $V(\mathcal{F}, H)$.

This is well-defined and does not depend on the choice of the plane H, for details see [24]. It is possible to define the degree of a foliation in a more general case: in polarized projective varieties, for this see [10]. Now, note that, if \mathcal{F} is a holomorphic foliation of one-dimension, then it is possible to represent it by a section $\sigma: \mathbb{P}^{n} \longrightarrow T \mathbb{P}^{n} \otimes \mathcal{O}(r)$, where in this case, the number r is determined. By Proposition 1.4.3 \mathcal{F} is given by section $s: \mathbb{P}^{n} \longrightarrow T^{*} \mathbb{P}^{n-1} \otimes \mathcal{O}(l)$, where locally it is represented by a polynomial $(n-1)$-form ω. Then s is a section such that it is represented locally by vector field X that satisfies $i_{X} \omega=0$. Moreover $r=\operatorname{deg}(\mathcal{F})-1$.

Example 1.4.5 Consider \mathcal{F} an one-dimensional holomorphic foliation of degree 2 on \mathbb{P}^{3} de-
fined locally by the following vector field

$$
\begin{gathered}
X=\left(z_{1}^{3}-z_{2}^{2}\right) \frac{\partial}{\partial z_{1}}+\left(z_{1}^{3} z_{2}-z_{3}^{2}\right) \frac{\partial}{\partial z_{2}}+\left(z_{1}^{3}-z_{1}^{2} z_{3}\right) \frac{\partial}{\partial z_{3}} \text { or } \\
X=z_{1}^{2}\left(z_{1} \frac{\partial}{\partial z_{1}}+z_{2} \frac{\partial}{\partial z_{2}}+z_{3} \frac{\partial}{\partial z_{3}}\right)-z_{2}^{2} \frac{\partial}{\partial z_{1}}-z_{3}^{2} \frac{\partial}{\partial z_{2}}
\end{gathered}
$$

The annihilator of X is the 2-form defined also locally by

$$
\omega=z_{1}^{2} z_{3} d z_{1} \wedge d z_{2}+\left(z_{3}^{2}-z_{1}^{2} z_{2}\right) d z_{1} \wedge d z_{3}+\left(z_{1}^{3}-z_{2}^{2}\right) d z_{2} \wedge d z_{3}
$$

i.e., $i_{X} \omega=0$.

On the other hand, consider the rational map $\varphi: \mathbb{P}^{4} \longrightarrow \mathbb{P}^{3}$ induced by the linear submersion

$$
\varphi: \begin{array}{ccc}
\mathbb{C}^{5} & \longrightarrow & \mathbb{C}^{4} . \\
\left(z_{0}, z_{1}, z_{2}, z_{3}, z_{4}\right) & \longmapsto\left(z_{1}, z_{2}, z_{3}, z_{4}\right)
\end{array}
$$

The pull-back of \mathcal{F} to \mathbb{P}^{4} by the rational map φ is a two-dimensional foliation, denoted by $\mathcal{G}:=\varphi^{*} \mathcal{F}$ whose singular set is $S(\mathcal{G})=\left\{z_{1}=z_{2}=z_{3}=0\right\}$.

Example 1.4.6 Another example of the foliation in this context is as follows: In particular φ is a rational fibration for which the fiber at each point $p \in \mathbb{P}^{3}$ is the line in \mathbb{P}^{4} through by p. Then, it induces an one-dimensional foliation \mathcal{F}_{1} on \mathbb{P}^{4}, where these lines are the leaves of the foliation and the singular set of \mathcal{F}_{1} is the degeneracy locus of φ, i.e., $S\left(\mathcal{F}_{1}\right)=\{[1: 0: 0: 0: 0]\}$. The last foliation has the particular property, that its leaves are contained in leaves of the foliation \mathcal{G}.

Chapter 2

Characteristic classes of flags

In this chapter, we consider flags of holomorphic foliations on a complex manifold M of dimension n. We study, in this context, a Baum-Bott type residue. Regular \mathcal{C}^{∞} flags were studied by Feigin in [14], where he proposed two constructions for characteristic classes of these flags in an attempt to answer a question about the obstruction for the existence of integrability foliations. Several authors studied characteristic classes, see [25, 27, 14]. R. Mol in [22] studied polar classes of flags of foliations.

Other motivation of for the study of flags is a conjecture due to Brunella: any two-dimensional holomorphic foliation \mathcal{F}_{2} on \mathbb{P}^{3} either admits an invariant algebraic surface or it is a flag of holomorphic foliations, i.e., $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$, where in this last case \mathcal{F}_{1} is a foliation by algebraic curves on \mathbb{P}^{3}.

2.1 Flags of holomorphic foliations

Let M be a complex manifold of dimension n. Let us denote by Θ_{M} the tangent sheaf of M and Ω_{M} the sheaf of germs of holomorphic 1-forms on M.

Definition 2.1.1 Let $\mathcal{F}_{1}, \ldots, \mathcal{F}_{t}$ be t holomorphic foliations on M of dimensions $q=\left(q_{1}, \ldots, q_{t}\right)$. We say that $\mathcal{F}:=\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{t}\right)$ is a flag of holomorphic foliations if for each $i=1, \ldots, t-1, \mathcal{F}_{i}$ is a coherent sub \mathcal{O}_{M}-module of \mathcal{F}_{i+1}. We call $\mathcal{F}_{i} \subset \mathcal{F}_{i+1}$ a subfoliation of \mathcal{F}_{i+1}.

In the above definition, we say that \mathcal{F}_{i} leaves $\mathcal{F}_{j}(i<j)$ invariant for each $i=1, \ldots, t-1$. Note that, for $x \in M \backslash \cup_{i=1}^{t} S\left(\mathcal{F}_{i}\right)$ the inclusion relation $T_{x} \mathcal{F}_{1} \subset \ldots \subset T_{x} \mathcal{F}_{t}$ holds, giving that
the leaves of \mathcal{F}_{i} are contained in leaves of \mathcal{F}_{j} for $i<j$. Here $T \mathcal{F}_{i}$ is the tangent sheaf of the foliation \mathcal{F}_{i}. For simplicity we denote $T \mathcal{F}$ by \mathcal{F}. When $t=2$, we have a diagram of exact sequences of sheaves, as in studies of Feigin for the real case, see [9, pg 64].

We define the singular set $S(\mathcal{F})$ of the flag \mathcal{F} to be the analytic set $S\left(\mathcal{F}_{1}\right) \cup \ldots \cup S\left(\mathcal{F}_{t}\right)$ and $\mathcal{N}_{\mathcal{F}}=\mathcal{N}_{1,2} \oplus \ldots \oplus \mathcal{N}_{t-1, t} \oplus \mathcal{N}_{t}$ be the normal sheaf of the flag, where $\mathcal{N}_{i, j}$ is the quotient sheaf $\mathcal{F}_{i} / \mathcal{F}_{j}(i<j)$.

Example 2.1.2 A meromorphic map $\varphi: X \rightarrow Y$, where X and Y are complex manifolds, is a first integral of a foliation \mathcal{F} on X, if the leaves of \mathcal{F} are contained in the fibers of φ. Then, in this situation, \mathcal{F} is a subfoliation of the meromorphic fibration induced by φ.

Example 2.1.3 Let \mathcal{F}_{2} be a foliation on a polarized smooth projective variety (X, H) satisfying $\mu\left(T \mathcal{F}_{2}\right)>0$ (slope, for definition see [19], 2.2 pg 7). If $T \mathcal{F}_{2}$ is not semi-stable then there exists a semi-stable foliation \mathcal{F}_{1} such that $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ is a 2-flag satisfying $\mu\left(T F_{1}\right)>\mu\left(T F_{2}\right)$, see [21].

Example 2.1.4 Let $\pi: X \longrightarrow Y$ be a surjective holomorphic map, where X and Y are complex manifolds. Given a regular holomorphic foliation \mathcal{G} of codimension one on Y one has that $\mathcal{F}_{2}:=\pi^{*} \mathcal{G}$ is a codimension one foliation on X. We set \mathcal{F}_{1} the foliation induced by π. Then, we have that $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ is a flag on X with $S\left(\mathcal{F}_{1}\right)=S\left(\mathcal{F}_{2}\right)=\{$ singular set of $\pi\}$.

Example 2.1.5 Let $X=\sum_{i=1}^{n} f_{i} \frac{\partial}{\partial z_{i}}$ be a holomorphic vector field on $\left(\mathbb{C}^{n},\left(z_{1}, \ldots, z_{n}\right)\right)$. Then, X is tangent to a 1-form $\omega=\sum_{i=1}^{n} g_{i} d z_{i}$ if and only if we have $0=i_{X} \omega$.

2.2 Bott vanishing theorem and residues for flags

In this section, we prove a residues theorem for flags of holomorphic foliations by applying the localization theory of characteristic classes developed by D. Lehmann and T. Suwa. We will start with the review of the Chern-Weil theory of characteristic classes of vector bundles. For details we refer to [18] and [25].

Definition 2.2.1 A connection for a complex vector bundle E on M is a \mathbb{C}-linear map

$$
\nabla: A^{0}(M, E) \longrightarrow A^{1}(M, E)
$$

such that

$$
\nabla(f s)=d f \otimes s+f \nabla(s) \text { for } f \in A^{0}(M) \text { and } \quad s \in A^{0}(M, E)
$$

If H is a subbundle of the complexified tangent bundle $T^{c} M$, then its dual H^{*} is canonically viewed as a quotient of $\left(T^{c} M\right)^{*}$. We denote by ρ the canonical projection $\left(T^{c} M\right)^{*} \longrightarrow H^{*}$.

Definition 2.2.2 A partial connection for E is a pair (H, δ) of a subbundle H of $T^{c} M$ and a \mathbb{C}-linear map

$$
\delta: A^{0}(M, E) \longrightarrow A^{0}\left(M, H^{*} \otimes E\right)
$$

such that

$$
\delta(f s)=\rho(d f) \otimes s+f \delta(s) \text { for } f \in A^{0}(M) \text { and } s \in A^{0}(M, E)
$$

Definition 2.2.3 Let (H, δ) be a partial connection for E. We say that a connection ∇ for E extends (H, δ) if the following diagram is commutative

Lemma 2.2.4 (25, Lemma 9.3, pg 75) For an arbitrary partial connection for E, there is a connection that extends it.

An important class of partial connections comes from "actions" of involutive subbundles of tangent bundle of manifolds.

Definition 2.2.5 Let $F \subset T M$ be a regular foliation on M. An action of F on a vector bundle E is a \mathbb{C}-bilinear map:

$$
\alpha: A^{0}(M, E) \times A^{0}(M, F) \longrightarrow A^{0}(M, E)
$$

satisfying the following conditions for $f \in A^{0}(M) u, v \in A^{0}(M, F) s \in A^{0}(M, E)$:

1) $\alpha([u, v], s)=\alpha(u, \alpha(v, s))-\alpha(v, \alpha(u, s))$;
2) $\alpha(f . u, s)=f . \alpha(u, s)$;
3) $\alpha(u, f . s)=u(f) . s+f \alpha(u, s)$;
4) $\alpha(u, s)$ is holomorphic whenever u and s are.

Lemma 2.2.6 (25, Lemma 9.8, pg 76) Let α be an action of F on E and let

$$
\delta_{\alpha}: A^{0}(M, E) \longrightarrow A^{0}\left(M, F^{*} \otimes E\right) \simeq A^{0}(M, \operatorname{Hom}(F, E))
$$

be defined by $\delta_{\alpha}(s, u)=\alpha(u, s)$. Then the pair $\left(F, \delta_{\alpha}\right)$ is a partial connection for E.
Definition 2.2.7 Let α be an action of F on E. A F-connection for E is a connection which extends the partial connection $\left(F \oplus \overline{T M}, \delta_{\alpha} \oplus \bar{\partial}\right)$.

Now, we will use the Chern-Weil theory of characteristic classes, in order to describe the Bott vanishing Theorem for flags. This is a holomorphic version of the vanishing theorem due to Cordero-Masa, see [9, Theorem 3.9, pg 71].

Theorem 2.2.8 Let M be a complex manifold of dimension n and $E=E_{1} \oplus E_{2}$ a vector bundle on M with E_{1} a F_{1}-bundle, E_{2} a F_{2}-bundle with $F_{1} \subset F_{2} \subset T M$ regular foliations. Let φ_{1} and φ_{2} be homogeneous symmetric polynomials, of degrees d_{1} and d_{2}, such that at least one of the inequalities

$$
\begin{equation*}
d_{1}>n-\operatorname{rank}\left(F_{1}\right) \quad \text { or } \quad d_{2}>n-\operatorname{rank}\left(F_{2}\right) \quad \text { or } \quad d_{1}+d_{2}>n-\operatorname{rank}\left(F_{1}\right) \tag{2.1}
\end{equation*}
$$

is satisfied. Then $\varphi_{1}\left(E_{1}\right) \smile \varphi_{2}\left(E_{2}\right)=0$.

Proof: Let us denote $\operatorname{rank}\left(F_{1}\right)=p_{1}, \operatorname{rank}\left(F_{2}\right)=p_{2}, \operatorname{rank}\left(E_{1}\right)=r_{1}$ and $\operatorname{rank}\left(E_{2}\right)=r_{2}$.
Let $\alpha_{i}: A^{\circ}\left(M, F_{i}\right) \times A^{\circ}\left(M, E_{i}\right) \rightarrow A^{\circ}\left(M, E_{i}\right)$ be an action of F_{i} in E_{i}, for $i=1,2$ and ∇^{i} a F_{i}-connection for E_{i}.

Now, let $\left\{U,\left(z_{1}, \ldots, z_{n}\right)\right\}$ be a coordinate neighborhood on M such that F_{1} and F_{2} can be written(spanned) by:

$$
F_{1}=<v_{1}, \ldots, v_{p_{1}}>\text { and } F_{2}=<v_{1}, \ldots, v_{p_{1}}, \ldots, v_{p_{2}}>\text {, where } v_{i}=\frac{\partial}{\partial z_{i}}
$$

It follows from [25] that there exist holomorphic frames $S^{1}=\left(s_{1}^{1}, \ldots, s_{r_{1}}^{1}\right)$ of $\left.E_{1}\right|_{U}$ and $S^{2}=$ $\left(s_{1}^{2}, \ldots, s_{r_{2}}^{2}\right)$ of $\left.E_{2}\right|_{U}$ such that

$$
\begin{align*}
& \alpha_{1}\left(v_{i}, s_{\nu}^{1}\right)=0 \text { for } i=1, \ldots, p_{1} \text { and } \nu=1, \ldots, r_{1} . \tag{2.2}\\
& \alpha_{2}\left(v_{i}, s_{\nu}^{2}\right)=0 \text { for } i=1, \ldots, p_{2} \text { and } \nu=1, \ldots, r_{2} . \tag{2.3}
\end{align*}
$$

Now, let $\Theta^{1}=\left(\Theta_{\nu \mu}^{1}\right)$ and $\Theta^{2}=\left(\Theta_{\nu \mu}^{2}\right)$ be the connection matrices of ∇^{1} and ∇^{2}, respectively, i.e;

$$
\nabla^{1}\left(s_{\nu}^{1}\right)=\sum_{\mu=1}^{r_{1}} \Theta_{\nu \mu}^{1} s_{\mu}^{1} \quad \text { and } \quad \nabla^{2}\left(s_{\nu}^{2}\right)=\sum_{\mu=1}^{r_{2}} \Theta_{\nu \mu}^{2} s_{\mu}^{2}
$$

It follows form (2.2) and (2.3) that

$$
\nabla^{1}\left(s_{\nu}^{1}\right)\left(v_{i}\right)=\alpha_{1}\left(v_{i}, s_{\nu}^{1}\right)=0 \quad \text { and } \quad \nabla^{2}\left(s_{\nu}^{2}\right)\left(v_{i}\right)=\alpha_{2}\left(v_{i}, s_{\nu}^{2}\right)=0
$$

Then we have $0=i_{\frac{\partial}{\partial z_{i}}} \Theta_{\nu \mu}^{1} \quad$ for all $\quad i=1, \ldots, p_{1} \quad$ and $\quad \nu, \mu=1, \ldots, r_{1}$. It implies that each $\Theta_{\nu \mu}^{1}$ is of the form $\sum_{i=p_{1}+1}^{n} f_{i}^{\nu \mu} d z_{i}$ with $f_{i}^{\nu \mu} \in \mathcal{O}(U)$. In particular, the curvature matrix has the following property

$$
K^{1}=\left(K_{\nu \mu}^{1}\right) \text { with } K_{\nu \mu}^{1}=\sum_{i=p_{1}+1}^{n} \eta_{i}^{\nu \mu} d z_{i}, \quad \text { where } \eta_{i}^{\nu \mu} \in \Omega^{1}(U)
$$

Similarly $\Theta_{\nu \mu}^{2}=\sum_{i=p_{2}+1}^{n} g_{i}^{\nu \mu} d z_{i} \quad$ and $\quad K_{\nu \mu}^{2}=\sum_{i=p_{2}+1}^{n} \omega_{i}^{\nu \mu} d z_{i}$. Then $\varphi(E)=\varphi_{1}\left(E_{1}\right) \smile$ $\varphi_{2}\left(E_{2}\right)=\varphi_{1}\left(K^{1}\right) \smile \varphi_{2}\left(K^{2}\right)$.

Therefore, if either $d_{1}>n-p_{1}$ or $d_{2}>n-p_{2}$ or $d_{1}+d_{2}>n-p_{1}$ then $\varphi(E)=0$.

Now, we prove a Baum-Bott type residues theorem for flags of singular holomorphic foliations.

Theorem 2.2.9 Let $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ be a 2-flag of holomorphic foliations on a compact complex manifold M of dimension n. Let φ_{1}, φ_{2} be homogeneous symmetric polynomials, respectively of degrees d_{1} and d_{2}, satisfying (2.1). Then for each compact connected component S of $S(\mathcal{F})$ there exists a class $\operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(\mathcal{F}, \mathcal{N}_{\mathcal{F}}, S\right) \in H_{2 n-2\left(d_{1}+d_{2}\right)}(S ; \mathbb{C})$ such that

$$
\begin{equation*}
\sum_{\lambda}\left(\iota_{\lambda}\right)_{*} \operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(\mathcal{F}, \mathcal{N}_{\mathcal{F}}, S_{\lambda}\right)=\left(\varphi_{1}\left(\mathcal{N}_{12}\right) \cdot \varphi_{2}\left(\mathcal{N}_{2}\right)\right) \frown[M] \text { in } H_{2 n-2\left(d_{1}+d_{2}\right)}(M ; \mathbb{C}), \tag{2.4}
\end{equation*}
$$

where ι_{λ} denotes the embedding of S_{λ} on M.

Proof: Note that away from the singular set of the flag, \mathcal{F}_{1} and \mathcal{F}_{2} are free sheaves. So there exist vector bundles F_{1}^{0} and F_{2}^{0} on $M \backslash S(\mathcal{F})$ such that $\mathcal{O}\left(F_{1}^{0}\right)=\mathcal{F}_{1}$ and $\mathcal{O}\left(F_{2}^{0}\right)=\mathcal{F}_{2}$. Denoting $M \backslash S(\mathcal{F})$ by M^{0} we have that $F_{i}^{0} \subset T M^{0}$ are subbundles for $i=1,2$. Also, let $N_{F_{2}^{0}}=T M^{0} / F_{2}^{0}$ and $N_{12}=F_{2}^{0} / F_{1}^{0}$, then $\mathcal{N}_{2}=\mathcal{O}\left(N_{F_{2}^{0}}\right)$ and $\mathcal{N}_{12}:=\mathcal{F}_{2} / \mathcal{F}_{1}=\mathcal{O}\left(N_{12}\right)$.

The exact sequences

$$
\begin{aligned}
& 0 \longrightarrow \mathcal{F}_{2} \longrightarrow \Theta_{M} \longrightarrow \mathcal{N}_{2} \longrightarrow 0 \\
& 0 \longrightarrow \mathcal{F}_{1} \longrightarrow \mathcal{F}_{2} \longrightarrow \mathcal{N}_{12} \longrightarrow 0
\end{aligned}
$$

induce, respectively, actions α_{2} of F_{2}^{0} on $N_{F_{2}^{0}}$ and α_{1} of F_{1}^{0} on N_{12}, see [3, 25].
Now, denote by ∇_{12} the F_{1}^{0}-connection for N_{12} and ∇_{2} the F_{2}^{0}-connection for $N_{F_{2}^{0}}$. Let S be a compact connected component of $S(\mathcal{F})$ and U a relatively compact open neighborhood of S on M disjoint from the other components of $S(\mathcal{F})$. We set $U_{0}=U \backslash S$ and $U_{1}=U$ and consider the covering $\mathcal{U}=\left\{U_{0}, U_{1}\right\}$ of U. We take resolutions of the normal sheaves \mathcal{N}_{12} and \mathcal{N}_{2} by real analytic vector bundles E_{i}^{12} and E_{j}^{2} on U

$$
\begin{gathered}
0 \longrightarrow A_{U}\left(E_{q}^{12}\right) \longrightarrow \ldots \longrightarrow A_{U}\left(E_{0}^{12}\right) \longrightarrow A_{U} \otimes \mathcal{N}_{12} \longrightarrow 0 . \\
0 \longrightarrow A_{U}\left(E_{r}^{2}\right) \longrightarrow \ldots \longrightarrow A_{U}\left(E_{0}^{2}\right) \longrightarrow A_{U} \otimes \mathcal{N}_{2} \longrightarrow 0 .
\end{gathered}
$$

Since the characteristic class $\varphi_{1}\left(\mathcal{N}_{12}\right)$ is the characteristic class $\varphi_{1}\left(\xi^{12}\right)$ of the virtual bundle $\xi^{12}=\sum_{i=0}^{q}(-1)^{i} E_{i}^{12}$ and $\varphi_{2}\left(\mathcal{N}_{2}\right)=\varphi_{2}\left(\xi^{2}\right)$ for $\xi^{2}=\sum_{i=0}^{r}(-1)^{i} E_{i}^{2}$, we define the characteristic class $\varphi\left(\mathcal{N}_{\mathcal{F}}\right)$, of the normal sheaf of the flag by $\varphi_{1}\left(\mathcal{N}_{12}\right) \smile \varphi_{2}\left(\mathcal{N}_{2}\right)$. On U_{0} we have the exact sequences of vector bundles

$$
\begin{gather*}
0 \longrightarrow E_{q}^{12} \longrightarrow \ldots \longrightarrow E_{0}^{12} \longrightarrow \mathcal{N}_{12} \longrightarrow 0 \tag{2.5}\\
0 \longrightarrow E_{r}^{2} \longrightarrow \ldots \longrightarrow E_{0}^{2} \longrightarrow \mathcal{N}_{2} \longrightarrow 0 \tag{2.6}
\end{gather*}
$$

There exist connections ${ }^{12} \nabla_{0}^{i}$ on U_{0} for each E_{i}^{12} such that the family of connections $\left({ }^{12} \nabla_{0}^{q}, \ldots,{ }^{12} \nabla_{0}^{0}, \nabla_{1}\right)$ is compatible with (2.5). Analogously, there exists connections ${ }^{2} \nabla_{0}^{i}$ on M for each E_{i}^{2} with the same property, see [3]. We denote ${ }^{12} \nabla_{0}^{\boldsymbol{\bullet}}$ by $\left({ }^{12} \nabla_{0}^{(q)}, \ldots,{ }^{12} \nabla_{0}^{(0)}\right)$ and ${ }^{2} \nabla_{0}^{\bullet}$ by $\left({ }^{2} \nabla_{0}^{(r)}, \ldots,{ }^{2} \nabla_{0}^{(0)}\right)$. Then it follows from [25, Proposition $\left.8.4, \operatorname{pg} 73\right]$ that

$$
\begin{equation*}
\varphi_{1}\left({ }^{12} \nabla_{0}^{\bullet}\right)=\varphi_{1}\left(\nabla^{1}\right) \text { and } \varphi_{2}\left({ }^{2} \nabla_{0}^{\bullet}\right)=\varphi_{2}\left(\nabla^{2}\right) . \tag{2.7}
\end{equation*}
$$

On U_{1} we take an arbitrary family ${ }^{12} \nabla_{i}=\left({ }^{12} \nabla_{1}^{(q)}, \ldots,{ }^{12} \nabla_{1}^{(0)}\right) \quad$ of connections, where each ${ }^{12} \nabla_{1}^{(i)}$ is a connection for E_{i}^{12} on U_{1}. Similarly, we take other arbitrary family ${ }^{2} \nabla_{i}^{\bullet}=$ $\left({ }^{2} \nabla_{1}^{(r)}, \ldots,{ }^{2} \nabla_{1}^{(0)}\right)$. Then the class $\varphi\left(\mathcal{N}_{\mathcal{F}}\right)=\varphi_{1}\left(\mathcal{N}_{12}\right) \smile \varphi_{2}\left(\mathcal{N}_{2}\right)=\varphi_{1}\left(\xi^{12}\right) \smile \varphi_{2}\left(\xi^{2}\right)$ in $H^{2\left(d_{1}+d_{2}\right)}(U ; \mathbb{C})$ is represented in $A^{2\left(d_{1}+d_{2}\right)}(U)$ by the cocycle

$$
\begin{aligned}
& \varphi\left({ }_{2}^{12} \nabla_{*}^{\bullet}\right)=\left(\varphi_{1}\left({ }^{12} \nabla_{0}^{\bullet}\right), \varphi_{1}\left({ }^{12} \nabla_{\mathbf{i}}^{\bullet}\right), \varphi_{1}\left({ }^{12} \nabla_{0}^{\mathbf{\bullet}},{ }^{12} \nabla_{\mathrm{i}}^{\mathbf{\bullet}}\right)\right) \smile\left(\varphi_{2}\left({ }^{2} \nabla_{0}^{\mathbf{\bullet}}\right), \varphi_{2}\left({ }^{2} \nabla_{\mathrm{i}}\right), \varphi_{2}\left({ }^{2} \nabla_{0}^{\mathbf{0}},{ }^{2} \nabla_{\mathrm{i}}\right)\right)= \\
& =\left(\varphi_{1}\left({ }^{12} \nabla_{0}^{\mathbf{\bullet}}\right) \wedge \varphi_{2}\left({ }^{2} \nabla_{0}^{\mathbf{0}}\right), \varphi_{1}\left({ }^{12} \nabla_{\mathbf{i}}^{\mathbf{\bullet}}\right) \wedge \varphi_{2}\left({ }^{2} \nabla_{\mathbf{i}}^{\mathbf{0}}\right), \varphi_{1}\left({ }^{12} \nabla_{0}^{\mathbf{0}}\right) \wedge \varphi_{2}\left({ }^{2} \nabla_{0}^{\mathbf{0}},{ }^{2} \nabla_{\mathbf{i}}^{\mathbf{0}}\right)+\varphi_{1}\left({ }^{12} \nabla_{0}^{\mathbf{\bullet}},{ }^{12} \nabla_{\mathbf{i}}^{\mathbf{0}}\right) \wedge\right. \\
& \left.\varphi_{2}\left({ }^{2} \nabla_{1}\right)\right) .
\end{aligned}
$$

Then by Bott vanishing Theorem for flags (Theorem 2.2.8), $\varphi\left({ }_{2}^{12} \nabla_{*}^{*}\right) \in A^{2\left(d_{1}+d_{2}\right)}\left(U, U_{0}\right)$. Denoting $\left[\varphi\left({ }_{2}^{12} \nabla_{*}^{\bullet}\right)\right]=\varphi_{S}\left(\mathcal{N}_{\mathcal{F}}, \mathcal{F}\right) \in H^{2\left(d_{1}+d_{2}\right)}(U, U \backslash S ; \mathbb{C})$ we have the residue $\operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(\mathcal{N}_{\mathcal{F}}, \mathcal{F} ; S\right)=A\left(\varphi_{S}\left(\mathcal{N}_{\mathcal{F}}, \mathcal{F}\right)\right) \in H_{2 n-2\left(d_{1}+d_{2}\right)}(S ; \mathbb{C})$, where A is Alexander duality.

Definition 2.2.10 We call the class $\operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(\mathcal{N}_{\mathcal{F}}, \mathcal{F} ; S\right)$ by the Baum-Bott residue for the flag \mathcal{F} with respect to φ_{1} and φ_{2}.

Example 2.2.11 Let \mathbb{P}^{n} be the complex projective space ($n \geq 3$) with homogeneous coordinates $\left[z_{0}: \ldots: z_{n}\right]$. Consider an one-dimensional holomorphic foliation \mathcal{F}_{1} induced by the vector field $X=\frac{\partial}{\partial z_{3}}$. Consider the codimension one holomorphic foliation, denoted by \mathcal{F}_{2}
induced by 1-form $\omega=z_{0} d z_{1}-z_{1} d z_{0}$. Note that $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ in fact is a flag, since $\omega(X)=0$

The singular set of \mathcal{F}_{1} is the set of dependence of vector field X with the radial vector field $R=\sum_{0}^{n} z_{i} \frac{\partial}{\partial z_{i}}$,i.e.,

$$
S\left(\mathcal{F}_{1}\right)=\left\{p \in \mathbb{P}^{n} ; \frac{\partial}{\partial z_{3}} \wedge \sum z_{i} \frac{\partial}{\partial z_{i}}=0\right\}=\{p=[0: 0: 0: 1: 0: \ldots: 0]\} .
$$

On the other hand, the singular set of \mathcal{F}_{2} is given by $S\left(\mathcal{F}_{2}\right)=S=\left\{z_{0}=z_{1}=0\right\}$. We remark that $S\left(\mathcal{F}_{1}\right) \subset S\left(\mathcal{F}_{2}\right)$. Therefore, S is the singular set of the flag \mathcal{F}. Now, we calculate the residues of this flag.

We have the following
$\operatorname{deg}\left(\mathcal{F}_{2}\right)=\operatorname{deg}\left(\mathcal{F}_{1}\right)=0, \quad \mathcal{F}_{1}=\mathcal{O}(1), \quad$ then $\quad c_{1}\left(\mathcal{F}_{1}\right)=c_{1}(\mathcal{O}(1))=1 h, \quad$ where h is the hyperplane class.

We know that $c_{1}\left(\mathcal{N}_{2}\right)=\left(2+\operatorname{deg}\left(\mathcal{F}_{2}\right)\right) h=2 h$ and from the exact sequence

$$
0 \longrightarrow \mathcal{F}_{2} \longrightarrow T \mathbb{P}^{n} \longrightarrow \mathcal{N}_{2} \longrightarrow 0
$$

we have $c_{1}\left(\mathcal{F}_{2}\right)=\left(\operatorname{dim}\left(\mathcal{F}_{2}\right)-\operatorname{deg}\left(\mathcal{F}_{2}\right)\right) h=(n-1) h$. Then

$$
c_{1}\left(\mathcal{N}_{12}\right)=c_{1}\left(\mathcal{F}_{2}\right)-c_{1}\left(\mathcal{F}_{1}\right)=(n-1) h-1 h=(n-2) h .
$$

By Theorem 2.2.9 (Baum-Bott for flags) one has for each $j=0, \ldots, n-1$

$$
\begin{aligned}
\operatorname{Res}_{c_{1}^{n-1-j} c_{1}^{1+j}}\left(\mathcal{F}, \mathcal{N}_{\mathcal{F}} ; S\right) & =\int_{\mathbb{P}^{n}} c_{1}^{n-1-j}\left(\mathcal{N}_{12}\right) c_{1}^{1+j}\left(\mathcal{N}_{2}\right)=\int_{\mathbb{P}^{n}}(n-2)^{n-1-j} 2^{1+j} h^{n} \\
& =(n-2)^{n-1-j} 2^{1+j} .
\end{aligned}
$$

Remark 2.2.12 Note that the Theorem 2.2 .8 is legitime of the flag and more "fine" than Bott vanishing Theorem, see condition (2.1). Observe that, with this theorem we can compute the classes:

$$
\varphi\left(\mathcal{N}_{\mathcal{F}}\right)=\varphi_{1}\left(\mathcal{N}_{12}\right) \varphi_{1}\left(\mathcal{N}_{2}\right)
$$

with $d_{i} \leq \operatorname{codim}\left(F_{i}\right)$ for $i=1,2$ but with $d_{1}+d_{2}>\operatorname{codim}\left(\mathcal{F}_{1}\right)$. An important fact is that for these polynomials it is not possible to apply the classical Bott vanishing Theorem. Then in this case, the residue $\operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(\mathcal{F}, \mathcal{N}_{\mathcal{F}}, S\right)$ is a specific residue of the flag.

Remark 2.2.13 Observe that if we consider $\varphi_{1}=$ "constant polynomial" then the residue $\operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(\mathcal{F}, \mathcal{N}_{\mathcal{F}}, S\right)$ is exactly the residue of \mathcal{F}_{2}. But it is not clear in general the relationship between flag residue and foliation residue involved in the flag. We will do this in the section 2.4, see Corollary 2.4.3.

Now, we study a refinement of Theorem 2.2.9. It is because for some polynomials we can detect superfluous components, i.e., components that do not participate of the sum in (2.4).

Theorem 2.2.14 The characteristic class $\varphi\left(\mathcal{N}_{\mathcal{F}}\right)=\varphi_{1}\left(\mathcal{N}_{12}\right) \cdot \varphi_{2}\left(\mathcal{N}_{2}\right)$ is localized at the intersection $S:=S\left(\mathcal{F}_{1}\right) \cap S\left(\mathcal{F}_{2}\right)$ if $d_{1}>\operatorname{codim} \mathcal{F}_{1}$ and $d_{2}>\operatorname{codim}_{\mathcal{F}_{2}}$.

Proof: Consider $S(\mathcal{F})=S \cup \bar{S}\left(\mathcal{F}_{1}\right) \cup \bar{S}\left(\mathcal{F}_{2}\right)$, where $\bar{S}\left(\mathcal{F}_{i}\right)$ are irreducible components only of \mathcal{F}_{i} and U_{1} a neighborhood of $S(\mathcal{F})$. We set $U_{0}:=U_{1} \backslash S:=U_{0}^{1} \cup U_{0}^{2}$, where $U_{0}^{1}:=U_{1} \backslash S \cup \bar{S}\left(\mathcal{F}_{2}\right)$ represents a neighborhood of the components only of \mathcal{F}_{1} and U_{0}^{2} is defined in the same way. Then the characteristic class $\varphi\left(\mathcal{N}_{\mathcal{F}}\right) \in H^{2\left(d_{1}+d_{2}\right)}(M ; \mathbb{C})$ is represented by the cocycle

$$
\begin{aligned}
\varphi\left({ }_{2}^{12} \nabla_{*}^{\bullet}\right)= & \left(\varphi_{1}\left({ }^{12} \nabla_{0}^{\mathbf{0}}\right) \wedge \varphi_{2}\left({ }^{2} \nabla_{0}^{\mathbf{0}}\right), \varphi_{1}\left({ }^{12} \nabla_{1}^{\bullet}\right) \wedge \varphi_{2}\left({ }^{2} \nabla_{1}^{\bullet}\right), \varphi_{1}\left({ }^{12} \nabla_{0}^{\bullet}\right) \wedge \varphi_{2}\left({ }^{2} \nabla_{0}^{\mathbf{0}}{ }^{2} \nabla_{1}^{\bullet}\right)+\right. \\
& \left.+\varphi_{1}\left({ }^{12} \nabla_{0}^{\mathbf{0}}{ }^{12} \nabla_{i}^{\bullet}\right) \wedge \varphi_{2}\left({ }^{2} \nabla_{1}^{\bullet}\right)\right)
\end{aligned}
$$

We claim that $\varphi_{1}\left({ }^{12} \nabla_{0}^{\mathbf{0}}\right) \wedge \varphi_{2}\left({ }^{2} \nabla_{0}^{\mathbf{\bullet}}\right)=\left.\varphi\left({ }_{2}^{12} \nabla_{*}^{\bullet}\right)\right|_{U_{0}}=0$. In fact as $U_{0}:=U_{0}^{1} \cup U_{0}^{2}$, we can represent this form in Čech-de-Rham cohomology in the open U_{0} with covering $\left\{U_{0}^{1}, U_{0}^{2}\right\}$

$$
\varphi_{1}\left({ }^{12} \nabla_{0}^{\boldsymbol{\bullet}}\right) \wedge \varphi_{2}\left({ }^{2} \nabla_{0}^{\bullet}\right)=\left(\left.\varphi_{1}\left({ }^{12} \nabla_{0}^{\bullet}\right) \wedge \varphi_{2}\left({ }^{2} \nabla_{0}^{\bullet}\right)\right|_{U_{0}^{1}},\left.\varphi_{1}\left({ }^{12} \nabla_{0}^{\boldsymbol{\bullet}}\right) \wedge \varphi_{2}\left({ }^{2} \nabla_{0}^{\bullet}\right)\right|_{U_{0}^{2}},\left.\varphi_{1}\left({ }^{12} \nabla_{0}^{\boldsymbol{*}}\right) \wedge \varphi_{2}\left({ }^{2} \nabla_{0}^{\boldsymbol{\bullet}}\right)\right|_{U_{0}^{1} \cap U_{0}^{2}}\right)
$$

Finally, we can see that
$\left.\varphi_{2}\left({ }^{2} \nabla_{0}^{\boldsymbol{\bullet}}\right)\right|_{U_{0}^{1}}=0,\left.\quad \varphi_{1}\left({ }^{12} \nabla_{0}^{\boldsymbol{\bullet}}\right)\right|_{U_{0}^{2}}=0$ and $\varphi_{2}\left({ }^{2} \nabla_{0}^{\mathbf{\bullet}}\right)=\left.\varphi_{1}\left({ }^{12} \nabla_{0}^{\mathbf{\bullet}}\right)\right|_{U_{0}^{1} \cap U_{0}^{2}}=0$ by Bott vanishing theorem. Now, the remainder is as in the proof of the Theorem 2.2.9.

Corollary 2.2.15 Given a 2 -flag $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ on \mathbb{P}^{n} with $n \geq 5$ such that $\operatorname{codim}\left(\mathcal{F}_{1}\right)+$ $\operatorname{codim}\left(\mathcal{F}_{2}\right)<n-1$. If $S\left(\mathcal{F}_{1}\right) \cap S\left(\mathcal{F}_{2}\right)=\emptyset$ then $\operatorname{dim}\left(\mathcal{F}_{2}\right)+\operatorname{deg}\left(F_{1}\right)=\operatorname{dim}\left(\mathcal{F}_{1}\right)+\operatorname{deg}\left(F_{2}\right)$.

Proof: Consider $\varphi_{1}:=c_{1}^{d_{1}}$ and $\varphi_{2}:=c_{1}^{d_{2}}$ polynomials, where $d_{1}=\operatorname{codim}\left(\mathcal{F}_{1}\right)+r$ and $d_{2}=\operatorname{codim}\left(\mathcal{F}_{2}\right)+1$, for any $r \in \mathbb{Z}_{+}$such that $d_{1}+d_{2}=n$. Note that, this is possible since $\operatorname{codim}\left(\mathcal{F}_{1}\right)+\operatorname{codim}\left(\mathcal{F}_{2}\right)<n-1$. Then, by Theorem 2.2.14 we have that

$$
\begin{equation*}
\int_{\mathbb{P}^{n}} c_{1}^{d_{1}}\left(\mathcal{N}_{12}\right) c_{1}^{d_{2}}\left(\mathcal{N}_{2}\right)=\sum_{S \in S\left(\mathcal{F}_{1}\right) \cap S\left(\mathcal{F}_{2}\right)} \operatorname{Res}_{c_{1}^{d_{1}}, c_{1}^{d_{2}}}\left(\mathcal{F}, \mathcal{N}_{\mathcal{F}} ; S\right) . \tag{2.8}
\end{equation*}
$$

On the other hand
$c_{1}\left(\mathcal{F}_{1}\right)=\left(\operatorname{dim}\left(\mathcal{F}_{1}\right)-\operatorname{deg}\left(\mathcal{F}_{1}\right)\right) h$ and $c_{1}\left(\mathcal{F}_{2}\right)=\left(\operatorname{dim}\left(\mathcal{F}_{2}\right)-\operatorname{deg}\left(\mathcal{F}_{2}\right)\right) h$, where h is the hyperplane class. Then, by exact sequence

$$
0 \longrightarrow \mathcal{F}_{2} \longrightarrow \Theta_{\mathbb{P}^{n}} \longrightarrow \mathcal{N}_{2} \longrightarrow 0
$$

we have

$$
\begin{aligned}
& c_{1}\left(\mathcal{N}_{2}\right)=(n+1) h-\left(\operatorname{dim}\left(\mathcal{F}_{2}\right)-\operatorname{deg}\left(\mathcal{F}_{2}\right)\right) h, \text { with } n+1-\left(\operatorname{dim}\left(\mathcal{F}_{2}\right)-\operatorname{deg}\left(\mathcal{F}_{2}\right)\right) \neq 0 \\
& c_{1}\left(\mathcal{N}_{12}\right)=c_{1}\left(\mathcal{F}_{2}\right)-c_{1}\left(\mathcal{F}_{1}\right)=\left(\operatorname{dim}\left(\mathcal{F}_{2}\right)-\operatorname{deg}\left(\mathcal{F}_{2}\right)-\operatorname{dim}\left(\mathcal{F}_{1}\right)+\operatorname{deg}\left(\mathcal{F}_{1}\right)\right) h
\end{aligned}
$$

Now, by equation (2.8) and hypothesis $S\left(\mathcal{F}_{1}\right) \cap S\left(\mathcal{F}_{2}\right)=\emptyset$, we have the result $\left(\operatorname{dim}\left(\mathcal{F}_{2}\right)-\right.$ $\left.\operatorname{deg}\left(\mathcal{F}_{2}\right)-\operatorname{dim}\left(\mathcal{F}_{1}\right)+\operatorname{deg}\left(\mathcal{F}_{1}\right)\right)=0$.

Now, we quote the following conjecture
Rationality conjecture for flags 2.2.16 Let $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ be a 2-flag of holomorphic foliations on a complex manifold M. Also let S be a compact connected component of the singular set of the flag and $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$, where φ_{i} is a homogeneous symmetric polynomial of degree d_{i} satisfying (2.1). If φ_{i} is with rational coefficients, then

$$
\operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(\mathcal{F}, \mathcal{N}_{\mathcal{F}}, S\right) \in H_{2 n-2\left(d_{1}+d_{2}\right)}(S ; \mathbb{Q})
$$

Next section, we will give a partial answer for this conjecture.

2.3 Residues formula

In this part of the work we will show a formula that calculates some residues of a flag \mathcal{F}. Naturally appears, as a consequence, a relationship between flag residue and residues of the involved foliations. For a basic reference, see [11, 22, 13, 6, 18].

Let $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ be a flag on a compact complex manifold M of dimension n. We denote by $\left(k_{1}, k_{2}\right)$ the codimension of this flag and by $\operatorname{Sing}_{k_{i}+1}\left(\mathcal{F}_{i}\right)$ the set of irreducible components of $S\left(\mathcal{F}_{i}\right)$ of pure codimension $k_{i}+1$.

Let us fix some notation: Let $S\left(\mathcal{F}_{i}\right):=\operatorname{Sing}\left(\mathcal{N}_{i}\right)$ be the singular set of the foliation \mathcal{F}_{i}. Recall that the singular set of flag is defined by $S(\mathcal{F}):=S\left(\mathcal{F}_{1}\right) \cup S\left(\mathcal{F}_{2}\right)$ and the relative normal sheaf by $\mathcal{N}_{12}:=\mathcal{F}_{2} / \mathcal{F}_{1}$.

Proposition 2.3.1 Given a 2-flag $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ on a complex manifold M. On $M_{0}:=M \backslash S\left(\mathcal{F}_{2}\right)$ we have $\operatorname{Sing}\left(\mathcal{N}_{1}\right) \cap M_{0}=\operatorname{Sing}\left(\mathcal{N}_{12}\right) \cap M_{0}$.

Proof: We recall the exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{N}_{12} \longrightarrow \mathcal{N}_{1} \longrightarrow \mathcal{N}_{2} \longrightarrow 0 \tag{2.9}
\end{equation*}
$$

Away from the singular set of \mathcal{F}_{2}, i.e., for $p \in M \backslash S\left(\mathcal{F}_{2}\right)$ one has that the stalk at $p \mathcal{N}_{2, p}$ is $\mathcal{O}_{M, p}$ - free. The sequence (2.9) induces the exact sequence of $\mathcal{O}_{M, p}$-modules

$$
\begin{equation*}
0 \longrightarrow \mathcal{N}_{12, p} \longrightarrow \mathcal{N}_{1, p} \longrightarrow \mathcal{N}_{2, p} \longrightarrow 0 \tag{2.10}
\end{equation*}
$$

Since $\mathcal{N}_{2, p}$ is a free module it implies that, by the splitting lemma see [15, pg 147], the sequence (2.10) splits (here $\mathcal{O}_{M, p}$ is a local ring, then projective and free modules are equivalent):

$$
\mathcal{N}_{1, p}=\mathcal{N}_{12, p} \oplus \mathcal{N}_{2, p}
$$

in which the module $\mathcal{N}_{1, p}$ is free, if and only if, $\mathcal{N}_{12, p}$ is free.

Corollary 2.3.2 If the sheaf $\mathcal{N}_{12}=\frac{\mathcal{F}_{2}}{\mathcal{F}_{1}}$ is locally-free then we have $S\left(\mathcal{F}_{1}\right) \subset S\left(\mathcal{F}_{2}\right)$.

Proof: Apply the Proposition 2.3.1.

Example 2.3.3 Let \mathcal{F} be the foliation in \mathbb{P}^{3} induced by the polynomial vector field

$$
X=\lambda_{1} z_{1} \frac{\partial}{\partial z_{1}}+\lambda_{2} z_{2} \frac{\partial}{\partial z_{2}}+\lambda_{3} z_{3} \frac{\partial}{\partial z_{3}} \text { with } \lambda_{i} \neq 0 \text { for all } i .
$$

Consider the osculating planes distribution \mathcal{F}_{2} associate to X, generated by X and $Y:=$ $D X . X$. It is integrable and also given by the logarithmic 1-form

$$
\omega=\frac{\lambda_{3}-\lambda_{2}}{\lambda_{1}} \frac{d z_{1}}{z_{1}}+\frac{\lambda_{1}-\lambda_{3}}{\lambda_{2}} \frac{d z_{2}}{z_{2}}+\frac{\lambda_{2}-\lambda_{1}}{\lambda_{3}} \frac{d z_{3}}{z_{3}} .
$$

We have that, in fact, $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ is a flag, since a simple calculation shows that $\omega(X)=$ 0 . For this we have the following

$$
\begin{gathered}
S\left(\mathcal{F}_{1}\right)=\{[1: 0: 0: 0],[0: 1: 0: 0],[0: 0: 1: 0],[0: 0: 0: 1]\} . \\
S\left(\mathcal{F}_{2}\right)=S=\bigcup S_{i j} \text { for } i=0,1,2, j=1,2,3 \text { and } i \neq j
\end{gathered}
$$

where $S_{i j}:=\left\{z_{i}=z_{j}=0\right\}$.
We observe that $S\left(\mathcal{F}_{1}\right) \subset S\left(\mathcal{F}_{2}\right)$ and that the relative normal sheaf $\mathcal{N}_{12}:=\mathcal{F}_{2} / \mathcal{F}_{1}$ is locally-free, since $\mathcal{F}_{1}=\mathcal{O}_{\mathbb{P}^{3}} \subset \mathcal{F}_{2}=\mathcal{O}_{\mathbb{P}^{3}} \oplus \mathcal{O}_{\mathbb{P}^{3}}$.

Example 2.3.4 Let $\pi: \mathbb{P}^{3} \rightarrow \mathbb{P}^{2}$ be the rational map given in homogeneous coordinates by $\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \longmapsto\left[z_{0}: z_{1}: z_{2}\right]$. This is a rational fibration which induces an onedimensional foliation on \mathbb{P}^{3}, we call it \mathcal{F}_{1}. The singular set of \mathcal{F}_{1} is $S\left(\mathcal{F}_{1}\right)=\{[0: 0: 0: 1]\}$.

On the other hand, let \mathcal{G} be a codimension one foliation on \mathbb{P}^{2} of degree d with singular set given by $S(\mathcal{G})=\left\{p_{1}, \ldots, p_{l}\right\}$. Now, consider the pull-back of \mathcal{G} by π and denote it by $\mathcal{F}_{2}=\pi^{*} \mathcal{G}$. We have that $S\left(\mathcal{F}_{2}\right)=\bigcup_{p_{i} \in S(\mathcal{G})} \pi^{-1}\left(p_{i}\right)$.

Note that, we have $\mathcal{F}_{1}=\mathcal{O}_{\mathbb{P}^{3}}(1)$ since the degree of \mathcal{F}_{1} is 0 and $\mathcal{G}=\mathcal{O}_{\mathbb{P}^{2}}(1-d)$, then $\mathcal{F}_{2}=\mathcal{O}_{\mathbb{P}^{3}}(1-d) \oplus \mathcal{O}_{\mathbb{P}^{3}}(1)$. Then, the relative sheaf \mathcal{N}_{12} is $\mathcal{O}_{\mathbb{P}^{3}}(1-d)$, in particular it is locally free. Moreover one has $S\left(\mathcal{F}_{1}\right) \subset S\left(\mathcal{F}_{2}\right)$.

Proposition 2.3.5 Let $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ be a flag on a complex manifold M with $\operatorname{dim}\left(\mathcal{F}_{1}\right)=$ $\operatorname{codim}\left(\mathcal{F}_{2}\right)=1$. Then \mathcal{F}_{1} has no isolated singularities in $M \backslash S\left(\mathcal{F}_{2}\right)$.

Proof: The situation is local. Suppose that p is an isolated singularity of \mathcal{F}_{1} and pick a neighborhood $\left\{U,\left(z_{1}, \ldots, z_{n}\right)\right\}$ of p, where $\left.\mathcal{F}_{2}\right|_{U}$ is regular. On this open subset we can consider \mathcal{F}_{2} induced by the 1-form $\omega=d z_{1}$ and \mathcal{F}_{1} by the vector field $X=\sum_{i=1}^{n} f_{i} d z_{i}$.

Since that $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ is a flag, we have

$$
0=\iota_{X} \omega=f_{1} .
$$

But this show that $\left.S\left(\mathcal{F}_{1}\right)\right|_{U}=\left\{f_{2}=\ldots=f_{n}=0\right\}$ is not an isolated singularity.

Corollary 2.3.6 Let $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ be a flag on a complex manifold M with $\operatorname{dim}\left(\mathcal{F}_{1}\right)=$ $\operatorname{codim}\left(\mathcal{F}_{2}\right)=1$. If $S_{0}\left(\mathcal{F}_{i}\right)$ denotes the isolated singularities of the foliation \mathcal{F}_{i}, for $i=1,2$, we have that $S_{0}\left(\mathcal{F}_{1}\right)=S_{0}\left(\mathcal{F}_{2}\right)$.

Proof: See Proposition 2.3.5 and [22, Corollary 1, pg 778].

Proposition 2.3.7 For a flag $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ on M with $\operatorname{dim}\left(\mathcal{F}_{1}\right)=\operatorname{codim}\left(\mathcal{F}_{2}\right)=1$ and $S\left(\mathcal{F}_{1}\right) \cap$ $S\left(\mathcal{F}_{2}\right)$ admitting isolated singularities (only) we have

$$
\operatorname{Res}_{c_{n}}\left(\mathcal{F}_{2}, \mathcal{N}_{2}, p\right)=(-1)^{n}(n-1)!\operatorname{Res}_{c_{n}}\left(\mathcal{F}_{1}, \mathcal{N}_{1}, p\right),
$$

where the residues involved are of the foliations \mathcal{F}_{1} and \mathcal{F}_{2}.

Proof: Let $p \in S\left(\mathcal{F}_{1}\right) \cap S\left(\mathcal{F}_{2}\right)$ be an isolated singulary. We know that near p we can consider \mathcal{F}_{1} as induced by a vector field $X=\sum_{i=1}^{n} f_{i} \frac{\partial}{\partial z_{i}}$ and \mathcal{F}_{2} by a 1 -form $\eta=\sum_{i=1}^{n} g_{i} d z_{i}$. Then, $\operatorname{Res}_{c_{n}}\left(\mathcal{F}_{1}, \mathcal{N}_{1} ; p\right)=\mu(f ; p)$ is the Milnor number of $f=\left(f_{1}, \ldots, f_{n}\right)$ at p. On the other hand, we have $\operatorname{Res}_{c_{n}}\left(\mathcal{F}_{2}, \mathcal{N}_{2} ; p\right)=(-1)^{n}(n-1)!\mu(g ; p)$, where $g=\left(g_{1}, \ldots, g_{n}\right)$ with $n=\operatorname{dim}_{\mathbb{C}} M$, see Suwa [26, Proposition 3.12, pg 41]. Since $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ is a flag we have

$$
\begin{equation*}
0=\iota_{X} \eta=\sum f_{i} g_{i}=0 \tag{2.11}
\end{equation*}
$$

We claim that $\left(f_{1}, \ldots, f_{n}\right)=\left(g_{1}, \ldots, g_{n}\right)$ as generated ideals.

In fact, consider the exact Koszul complex of regular sequence $\left(f_{1}, \ldots, f_{n}\right)$,

where $r\left(e_{i} \wedge e_{j}\right)=f_{i} e_{j}-f_{j} e_{i}$ and $s\left(e_{i}\right)=f_{i}$. From (2.11) one has that $\left(g_{1}, \ldots, g_{n}\right) \in \operatorname{Ker}(s)=$ $\operatorname{Im}(r)$, then

$$
r\left(\sum P_{i j} e_{i} \wedge e_{j}\right)=\sum P_{i j}\left(f_{i} e_{j}-f_{j} e_{i}\right)=\sum g_{i} e_{i}
$$

This implies that $\left(g_{1}, \ldots, g_{n}\right) \subset\left(f_{1}, \ldots, f_{n}\right)$. If we consider the Koszul complex of $\left(g_{1}, \ldots, g_{n}\right)$ we have the equality of ideals.

Therefore $\mu(f ; p)=\mu(g ; p)$ and $\operatorname{Res}_{c_{n}}\left(\mathcal{F}_{2}, \mathcal{N}_{2} ; p\right)=(-1)^{n}(n-1)!\operatorname{Res}_{c_{n}}\left(\mathcal{F}_{1}, \mathcal{N}_{1} ; p\right)$.

The next example is inspired by the example of Izawa in [29, Example 5, pg 907].
Example 2.3.8 Let $Y:=\mathbb{P}^{5} \times \mathbb{P}^{1}$ with homogeneous coordinates $\left(\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right] ;\left[y_{0}: y_{1}\right]\right)$. We consider a regular foliation on Y given by $\widetilde{\mathcal{G}}:=\pi^{-1} \Omega_{\mathbb{P}^{1}}$, where π is the standard projection of $\mathbb{P}^{5} \times \mathbb{P}^{1}$ in \mathbb{P}^{1}. Let

$$
X:=V\left(x_{0}^{l}+x_{1}^{l}+x_{2}^{l}+x_{3}^{l}+x_{4}^{l}+x_{5}^{l}\right) \cap V\left(x_{0} y_{0}+x_{1} y_{1}\right) \quad l \in \mathbb{Z}_{+} .
$$

This is a regular sub-manifold of Y. We consider the inclusion map $i: X \longrightarrow Y$. Put $\mathcal{F}_{2}=$ $i^{-1} \widetilde{\mathcal{G}}$, the inverse image of $\widetilde{\mathcal{G}}$, which defines a singular foliation of codimension one on X. In this case, the non-transversal locus of i to $\widetilde{\mathcal{G}}$ determines $S\left(\mathcal{F}_{2}\right)$, the singular set of the foliation \mathcal{F}_{2}. To see the non-transversal points, we take the inhomogeneous coordinates over $x_{0} \neq 0$ and $y_{0} \neq 0$ as $(s, x, y, w, t)=\left(\frac{x_{1}}{x_{0}}, \frac{x_{2}}{x_{0}}, \frac{x_{3}}{x_{0}}, \frac{x_{4}}{x_{0}}, \frac{x_{5}}{x_{0}}\right)$ and $z=\left(\frac{y_{1}}{y_{0}}\right)$. With these coordinates we can express, locally, X by

$$
X=\left\{(s, x, y, w, t ; z) ; 1+x^{l}+y^{l}+w^{l}+t^{l}=0 \text { and } 1+s z=0\right\} .
$$

With this we have that $z=-(-1)^{\frac{-1}{l}}\left(1+x^{l}+y^{l}+w^{l}+t^{l}\right)^{\frac{-1}{l}}$. We know that \mathcal{F}_{2} is given by the 1 -form $\omega=d z$, i.e.,

$$
\omega=d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y+\frac{\partial z}{\partial w} d w+\frac{\partial z}{\partial t} d t .
$$

Here, we use the following notation for coordinates of the 1-form that induces \mathcal{F}_{2}

$$
\begin{aligned}
& \varphi_{1}=\frac{\partial z}{\partial x}=(-1)^{\frac{-1}{l}} x^{l-1}\left(1+x^{l}+y^{l}+w^{l}+t^{l}\right)^{\frac{-l-1}{2}} \\
& \varphi_{2}=\frac{\partial z}{\partial y}=(-1)^{\frac{-1}{l}} y^{l-1}\left(1+x^{l}+y^{l}+w^{l}+t^{l}\right)^{\frac{-l-1}{2}} \\
& \varphi_{3}=\frac{\partial z}{\partial w}=(-1)^{\frac{-1}{l}} w^{l-1}\left(1+x^{l}+y^{l}+w^{l}+t^{l}\right)^{\frac{-l-1}{2}} \\
& \varphi_{4}=\frac{\partial z}{\partial t}=(-1)^{\frac{-1}{l}} t^{l-1}\left(1+x^{l}+y^{l}+w^{l}+t^{l}\right)^{\frac{-l-1}{2}}
\end{aligned}
$$

Since the z-axis is a transversal direction for the leaves of \mathcal{F}_{2}, the non-transversal conditions are given by $\varphi_{1}=\varphi_{2}=\varphi_{3}=\varphi_{4}=0$ such that $(x, y, w, t)=(0,0,0,0)$. Then, with the defining equations, we see that the non-transversal points are given by

$$
(s, x, y, w, t ; z)=\left(\omega_{k}, 0,0,0,0 ;-\omega_{l-k-1}\right)_{k=0, \ldots, l-1}
$$

where we denote by ω_{k} the l-roots of -1 . Therefore, the singular set of \mathcal{F}_{2} is given by these points. Consider the one-dimensional foliation on X, denoted by \mathcal{F}_{1}, given locally by the following vector field $X=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$, where

$$
\begin{gathered}
X_{1}=(-1)^{\frac{-1}{l}}\left(-y^{l-1}\right)\left(1+x^{l}+y^{l}+w^{l}+t^{l}\right)^{\frac{-l-1}{2}}=-\varphi_{2} \\
X_{2}=(-1)^{\frac{-1}{l}} x^{l-1}\left(1+x^{l}+y^{l}+w^{l}+t^{l}\right)^{\frac{-l-1}{2}}=\varphi_{1} \\
X_{3}=(-1)^{\frac{-1}{l}}\left(-t^{l-1}\right)\left(1+x^{l}+y^{l}+w^{l}+t^{l}\right)^{\frac{-l-1}{2}}=-\varphi_{4} \\
X_{4}=(-1)^{\frac{-1}{l}} w^{l-1}\left(1+x^{l}+y^{l}+w^{l}+t^{l}\right)^{\frac{-l-1}{2}}=\varphi_{3} .
\end{gathered}
$$

Note that $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ is in fact a flag, since the following holds

$$
i_{X} \omega=\omega(X)=X_{1} \varphi_{1}+X_{2} \varphi_{2}+X_{3} \varphi_{3}+X_{4} \varphi_{4}=0
$$

Observe that $S\left(\mathcal{F}_{1}\right)=S\left(\mathcal{F}_{2}\right)$. Now, using the local coordinates of the vector field and the 1-form as above, we have for each $p \in S\left(\mathcal{F}_{2}\right)$

$$
\begin{aligned}
\operatorname{Res}_{c_{4}}\left(\mathcal{F}_{2}, \mathcal{N}_{2} ; p\right) & =(-1)^{4} 3!\left(\frac{1}{2 \pi i}\right)^{4} \int_{T} \frac{d \varphi_{1} \wedge d \varphi_{2} \wedge d \varphi_{3} \wedge d \varphi_{4}}{\varphi_{1} \cdot \varphi_{2} \cdot \varphi_{3} \cdot \varphi_{4}} \\
& =\int_{T}\left((l-1)^{2}+\left(l^{2}-1\right) \frac{x^{l}+y^{l}+w^{l}+t^{l}}{1+x^{l}+y^{l}+w^{l}+t^{l}}\right) \frac{d x}{x} \wedge \frac{d y}{y} \wedge \frac{d w}{w} \wedge \frac{d t}{t}=6 .(l-1)^{2}
\end{aligned}
$$

where T is given by $\{|x|=|y|=|w|=|t|=\epsilon\}$. On the other hand, as we have

$$
\frac{d X_{1} \wedge d X_{2} \wedge d X_{3} \wedge d X_{4}}{X_{1} \cdot X_{2} \cdot X_{3} \cdot X_{4}}=\frac{d\left(-\varphi_{2}\right) \wedge d\left(\varphi_{1}\right) \wedge d\left(-\varphi_{4}\right) \wedge d\left(\varphi_{3}\right)}{\left(-\varphi_{2}\right) \varphi_{1}\left(-\varphi_{4}\right) \varphi_{3}}=\frac{d \varphi_{1} \wedge d \varphi_{2} \wedge d \varphi_{3} \wedge d \varphi_{4}}{\varphi_{1} \cdot \varphi_{2} \cdot \varphi_{3} \cdot \varphi_{4}}
$$

It follow that

$$
\operatorname{Res}_{c_{4}}\left(\mathcal{F}_{1}, \mathcal{N}_{1} ; p\right)=\left(\frac{1}{2 \pi i}\right)^{4} \int_{T} \frac{d X_{1} \wedge d X_{2} \wedge d X_{3} \wedge d X_{4}}{X_{1} \cdot X_{2} \cdot X_{3} \cdot X_{4}}=(l-1)^{2}
$$

Therefore, we have

$$
\operatorname{Res}_{c_{4}}\left(\mathcal{F}_{2}, \mathcal{N}_{2} ; p\right)=(-1)^{4} 3!(l-1)^{2}=(-1)^{4} 3!\operatorname{Res}_{c_{4}}\left(\mathcal{F}_{1}, \mathcal{N}_{1} ; p\right)
$$

2.4 Determination of certain Baum-Bott residues for flags

In this section, we will consider the Baum-Bott theorem for a flag $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ with codimension $\left(k_{1}, k_{2}\right)$. We will denote by $\operatorname{Sing}_{k_{i}+1}\left(\mathcal{F}_{i}\right)$ the union of irreducible components of $S\left(\mathcal{F}_{i}\right)$ of pure codimension $k_{i}+1$ for $i=1,2$. Next, we will show that the characteristic classes $c_{1}^{k_{1}-j+1}\left(\mathcal{N}_{12}\right) c_{1}^{j}\left(\mathcal{N}_{2}\right)$ can be localized at $\operatorname{Sing}_{k_{1}+1}\left(\mathcal{F}_{1}\right)$. We consider the following notation

$$
S_{*}(\mathcal{F}):=\operatorname{Sing}_{k_{1}+1}\left(\mathcal{F}_{1}\right) \cup \operatorname{Sing}_{k_{2}+1}\left(\mathcal{F}_{2}\right), \quad M^{0}:=M \backslash S(\mathcal{F}) \text { e } M^{*}:=M \backslash S_{*}(\mathcal{F})
$$

In the regular case (on M^{0}) there exist locally forms ω_{α}^{2} and ω_{α}^{12}, where ω_{α}^{2} is a k_{2}-form that induces \mathcal{F}_{2} and ω_{α}^{12} is a $\left(k_{1}-k_{2}\right)$-form such that $\omega_{\alpha}^{1}:=\omega_{\alpha}^{2} \wedge \omega_{\alpha}^{12}$ induces \mathcal{F}_{1} satisfying the following two conditions

1) These forms are decomposable

$$
\omega_{\alpha}^{2}=\eta_{1}^{\alpha} \wedge \ldots \wedge \eta_{k_{2}}^{\alpha} \text { and } \omega_{\alpha}^{12}=\eta_{k_{2}+1}^{\alpha} \wedge \ldots \wedge \eta_{k_{1}}^{\alpha} .
$$

2) Integrability condition: There are matrices of 1-forms $\left(\theta_{u v}^{\alpha}\right),\left(\theta_{a v}^{\alpha}\right)$ and $\left(\theta_{a b}^{\alpha}\right)$ with $1 \leq u, v \leq$ k_{2} and $k_{2}+1 \leq a, b \leq k_{1}$ such that

$$
d \eta_{u}^{\alpha}=\sum_{v=1}^{k_{2}} \theta_{u v}^{\alpha} \wedge \eta_{v}^{\alpha} \text { and } d \eta_{a}^{\alpha}=\sum_{v=1}^{k_{2}} \theta_{a v}^{\alpha} \wedge \eta_{v}^{\alpha}+\sum_{b=k_{2}+1}^{k_{1}} \theta_{a b}^{\alpha} \wedge \eta_{b}^{\alpha} .
$$

We define $\theta_{\alpha}^{2}=\sum_{u=1}^{k_{2}}(-1)^{u+1} \theta_{u u}^{\alpha}, \quad \theta_{\alpha}^{12}=\sum_{a=k_{2}+1}^{k_{1}}(-1)^{a+1} \theta_{a a}^{\alpha}$ and put $\theta_{\alpha}^{1}:=\theta_{\alpha}^{2}+\theta_{\alpha}^{12}$.
We define $\gamma_{\alpha \beta}^{2}:=d g_{\alpha \beta}^{2} / g_{\alpha \beta}^{2}-\theta_{\beta}^{2}+\theta_{\alpha}^{2} \quad$ and $\quad \gamma_{\alpha \beta}^{12}:=d g_{\alpha \beta}^{12} / g_{\alpha \beta}^{12}-\theta_{\beta}^{12}+\theta_{\alpha}^{12}$, where $\omega_{\alpha}^{2}=g_{\alpha \beta}^{2} \omega_{\beta}^{2}, \quad \omega_{\alpha}^{1}=g_{\alpha \beta}^{1} \omega_{\beta}^{1}$ with $g_{\alpha \beta}^{12}:=g_{\alpha \beta}^{1} / g_{\alpha \beta}^{2}$. The cocycle of 1-forms $\left\{\gamma_{\alpha \beta}^{12}\right\}$ corresponds to a cohomology class in $H^{1}\left(M^{0}, \mathcal{N}_{12}^{*}\right)$. Analogously the cocycle $\left\{\gamma_{\alpha \beta}^{2}\right\}$ corresponds to a class in $H^{1}\left(M^{0}, \mathcal{N}_{2}^{*}\right)$.

We will consider now the Baum-Bott theorem for flags. For this we consider the local generators as above $\omega_{2}=\eta_{1} \wedge \ldots \wedge \eta_{k_{2}}$ and $\omega_{12}=\eta_{k_{2}+1} \wedge \ldots \wedge \eta_{k_{1}}$ with $\omega_{1}=\omega_{2} \wedge \omega_{12}$. Take smooth sections of \mathcal{N}_{12}^{*} and \mathcal{N}_{2}^{*} instead of holomorphic ones. Then, the cohomology groups $H^{1}\left(B_{p}^{*}, \mathcal{N}_{12}^{*}\right)$ and $H^{1}\left(B_{p}^{*}, \mathcal{N}_{2}^{*}\right)$ are trivial. It is possible to find matrices of (1,0)-forms $\left(\theta_{u v}\right),\left(\theta_{a v}\right)$ and $\left(\theta_{a b}\right)$ such that

$$
d \eta_{u}=\sum \theta_{u v} \wedge \eta_{v} \text { and } d \eta_{a}=\sum \theta_{a v} \wedge \eta_{v}+\sum \theta_{a b} \wedge \eta_{b}
$$

We define $\theta^{2}=\sum(-1)^{u+1} \theta_{u u}$ and $\theta^{12}=\sum(-1)^{a+1} \theta_{a a}$. Now, observe that the following forms for $0 \leq j \leq k_{2}$

$$
\begin{gathered}
\psi_{j}:=(2 \pi i)^{-k_{1}-1} \theta^{12} \wedge\left(d \theta^{2}\right)^{j} \wedge\left(d \theta^{12}\right)^{k_{1}-j} \\
\varphi:=(2 \pi i)^{-k_{2}-1} \theta^{2} \wedge\left(d \theta^{2}\right)^{k_{2}} \\
\tau:=(2 \pi i)^{-k_{1}-1} \theta^{2} \wedge \theta^{12} \wedge\left(d \theta^{2}\right)^{j} \wedge\left(d \theta^{12}\right)^{k_{1}-j}
\end{gathered}
$$

are closed in de Rham cohomology, see Dominguez [13, Théorème 5.2, pg 830]. These forms correspond to cohomology classes in $H^{*}\left(B_{p}^{*}, \mathbb{C}\right)$.

Take now an irreducible component $Z \subset \operatorname{Sing}_{k_{1}+1}\left(\mathcal{F}_{1}\right)$ and a generic point $p \in Z$. Pick B_{p} a small ball centered at p such that $S\left(B_{p}\right) \subset B_{p}$ is a sub-ball of dimension $n-k_{1}-1$ (same dimension than the component Z). The de Rham class can be integrated over an oriented $\left(2 k_{1}+1\right)$-sphere $L_{p} \subset B_{p}^{*}$

$$
B B^{j}(\mathcal{F}, Z):=(2 \pi i)^{-k_{1}-1} \int_{L_{p}} \theta^{12} \wedge\left(d \theta^{2}\right)^{j} \wedge\left(d \theta^{12}\right)^{k_{1}-j} \text { for each } 0 \leq j \leq k_{2}
$$

Theorem 2.4.1 (Baum-Bott for flags) Let $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ be a 2-flag of codimension (k_{1}, k_{2}) on a compact complex manifold M. If codim $S(\mathcal{F}) \geq k_{1}+1$, then for each $0 \leq j \leq k_{2}$ we have

$$
c_{1}^{k_{1}-j+1}\left(\mathcal{N}_{12}\right) \smile c_{1}^{j}\left(\mathcal{N}_{2}\right)=\sum_{Z \subset \operatorname{Sing}_{k_{1}+1}\left(\mathcal{F}_{1}\right) \cup \operatorname{Sing}_{k_{1}+1}\left(\mathcal{F}_{2}\right)} \lambda_{Z}^{j}(\mathcal{F})[Z],
$$

where $\lambda_{Z}^{j}(\mathcal{F})=B B^{j}(\mathcal{F}, Z)$.

Proof: The flag $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ can be locally defined on open an subset U_{α} by $\omega_{2}=\eta_{1} \wedge \ldots \wedge$ $\eta_{k_{2}}, \quad \omega_{12}=\eta_{k_{2}+1} \wedge \ldots \wedge \eta_{k_{1}}$ and $\omega_{1}=\omega_{2} \wedge \omega_{12}$ as above. Then, we can find matrices of $(1,0)$-forms $\left(\theta_{u v}^{\alpha}\right),\left(\theta_{a v}^{\alpha}\right)$ and $\left(\theta_{a b}^{\alpha}\right)$ with $\theta_{i j}^{\alpha} \in A^{1,0}\left(B_{p}^{*}\right)$ such that

$$
d \eta_{u}=\sum_{v=1}^{k_{2}} \theta_{u v}^{\alpha} \wedge \eta_{v} \text { and } d \eta_{a}=\sum_{v=1}^{k_{2}} \theta_{a v}^{\alpha} \wedge \eta_{v}+\sum_{b=k_{2}+1}^{k_{1}} \theta_{a b}^{\alpha} \wedge \eta_{b}
$$

Roughly speaking, we say that $\nabla=\left(\begin{array}{cc}\theta_{u v}^{\alpha} & 0 \\ \theta_{a v}^{\alpha} & \theta_{a b}^{\alpha}\end{array}\right)$ represents the curvature matrix of the flag \mathcal{F}. Let us fix a neighborhood V of $S_{*}(\mathcal{F})$, then we can find $\widehat{\theta}_{\alpha}^{2}=\sum_{u}^{k_{2}+1}(-1)^{u+1} \widehat{\theta}_{u u}^{\alpha}$ and $\widehat{\theta}_{\alpha}^{12}=$ $\sum_{a=k_{2}+1}^{k_{1}}(-1)^{a+1} \widehat{\theta}_{a a}^{\alpha}$, where $\widehat{\theta}_{i j}^{\alpha}$ is a suitable modification of $\theta_{i j}^{\alpha}$, for more details, see [11, 6].

Now, let us consider $\Theta^{2}:=(2 \pi i)^{-1} d \widehat{\theta}_{\alpha}^{2}$ and $\Theta^{12}:=(2 \pi i)^{-1} d \widehat{\theta}_{\alpha}^{12}$ globally defined closed forms which represent in de Rham cohomology the Chern classes of \mathcal{N}_{2} and \mathcal{N}_{12} respectively. Therefore $\left(\Theta^{2}\right)^{j} \wedge\left(\Theta^{12}\right)^{k_{1}-j+1}$ represent $c_{1}^{k_{1}-j+1}\left(\mathcal{N}_{12}\right) \smile c_{1}^{j}\left(\mathcal{N}_{2}\right)$ and moreover, by Bott vanishing theorem for flags, see Theorem 2.2.8, we have

$$
\operatorname{Supp}\left(c_{1}^{k_{1}-j+1}\left(\mathcal{N}_{12}\right) \smile c_{1}^{j}\left(\mathcal{N}_{2}\right)\right) \subset \bar{V}
$$

Take $T \subset M$ a ball of real dimension $2\left(k_{1}+1\right)$ intersecting transversally $\operatorname{Sing}_{k_{1}+1}\left(\mathcal{F}_{1}\right)$ at a single point $p \in Z$, with $V \cap T \Subset T$. Then by Stokes formula

$$
\begin{align*}
B B^{j}(\mathcal{F}, Z)=(2 \pi i)^{-k_{1}-1} & \int_{\partial T} \widehat{\theta}_{\alpha}^{12} \wedge\left(d \widehat{\theta}_{\alpha}^{2}\right)^{j} \wedge\left(d \theta_{\alpha}^{12}\right)^{k_{1}-j}= \\
& =(2 \pi i)^{-k_{1}-1} \int_{T}\left(d \widehat{\theta}_{\alpha}^{2}\right)^{j} \wedge\left(d \widehat{\theta}_{\alpha}^{12}\right)^{k_{1}-j+1} \tag{2.12}
\end{align*}
$$

This means that the $2\left(k_{1}+1\right)$-form $\left(\Theta^{2}\right)^{j} \wedge\left(\Theta^{12}\right)^{k_{1}-j+1}=\left(d \widehat{\theta}_{\alpha}^{2}\right)^{j} \wedge\left(d \widehat{\theta}_{\alpha}^{12}\right)^{k_{1}-j+1}$ is cohomologous, as a current, to the integration current over $B B^{j}(\mathcal{F}, Z)[Z]$, i.e.,

$$
c_{1}^{k_{1}-j+1}\left(\mathcal{N}_{12}\right) \smile c_{1}^{j}\left(\mathcal{N}_{2}\right)=\sum_{Z} B B^{j}(\mathcal{F}, Z)[Z] .
$$

This theorem answers, partially, to the question: How to calculate residues to flags? As above is the Baum-Bott theorem for flags, we have

$$
\operatorname{Res}_{c_{1}^{k_{1}-j+1} c_{1}^{j}}\left(\mathcal{F}, \mathcal{N}_{\mathcal{F}} ; Z\right)=\alpha_{*}\left(B B^{j}(\mathcal{F} ; Z)[Z]\right),
$$

where α_{*} is the Poincaré duality isomorphism

$$
H^{2\left(k_{1}+1\right)}(M ; \mathbb{C}) \xrightarrow{\alpha_{*}} H_{2\left(n-k_{1}-1\right)}(M ; \mathbb{C})
$$

Corollary 2.4.2 If either \mathcal{N}_{12} or \mathcal{N}_{2} is ample then, there exist at least one irreducible component $Z \subset \operatorname{Sing}_{k_{1}+1}\left(\mathcal{F}_{1}\right)$ of codimension $k_{1}+1$.

Proof: By hypothesis either \mathcal{N}_{12} or \mathcal{N}_{2} is ample then, we have that either $c_{1}\left(\mathcal{N}_{12}\right)$ or $c_{1}\left(\mathcal{N}_{2}\right)$ is non zero. Using Theorem 2.4.1 one has the result.

We prove a formula that compares the (sum) flag's residues with residues of the involved foliations.

Corollary 2.4.3 For each $Z \subset \operatorname{Sing}_{k_{1}+1}\left(\mathcal{F}_{1}\right)$ and the above hypotheses we have

$$
\begin{equation*}
\sum_{j=0}^{k_{2}}\binom{k_{1}+1}{j} B B^{j}(\mathcal{F}, Z)=B B\left(\mathcal{F}_{1}, Z\right) \tag{2.13}
\end{equation*}
$$

where the term in the right side of (2.13) is defined in [11, pg 6] and [6, pg 300] for $k_{1}=1$.
Note also that if $k_{1}=n-1$ then $\sum_{j=0}^{k_{2}}\binom{k_{1}+1}{j} B B^{j}(\mathcal{F}, Z)="$ Grothendieck Residue".
Proof: By Dominguez [13, Remarque 1, pg 830], we have

$$
\sum_{j=0}^{k_{2}}\binom{k_{1}+1}{j}\left[\theta^{12} \wedge\left(d \theta^{2}\right)^{j} \wedge\left(d \theta^{12}\right)^{k_{1}-j}\right]=\left[\theta^{1} \wedge\left(d \theta^{1}\right)^{k_{1}}\right]
$$

in the de Rham cohomology, where $\theta^{1}=\theta^{2}+\theta^{12}$. Thus

$$
\sum_{j=0}^{k_{2}}\binom{k_{1}+1}{j} \theta^{12} \wedge\left(d \theta^{2}\right)^{j} \wedge\left(d \theta^{12}\right)^{k_{1}-j}-\theta^{1} \wedge\left(d \theta^{1}\right)^{k_{1}}=d \sigma
$$

for some form σ. Now, integrating over a sphere ∂T as above, we have

$$
\sum_{j=0}^{k_{2}}\binom{k_{1}+1}{j} B B^{j}(\mathcal{F}, Z)=B B\left(\mathcal{F}_{1}, Z\right)
$$

Therefore the corollary is proved.

Corollary 2.4.4 Let $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ be a flag such that $\operatorname{dim}\left(\mathcal{F}_{1}\right)=\operatorname{codim}\left(\mathcal{F}_{2}\right)=1$ and the singular set of the flag is composed of isolated singularities (only). Then, we have

$$
\operatorname{Res}_{c_{1}^{n}}\left(\mathcal{F}, \mathcal{N}_{12} ; p\right)=\operatorname{Res}_{c_{1}^{n}}\left(\mathcal{F}_{1}, \mathcal{N}_{1} ; p\right)
$$

where $p \in S(\mathcal{F})=S\left(\mathcal{F}_{1}\right)=S\left(\mathcal{F}_{2}\right)$.

Proof: By Corollary 2.4.3 and the hypothesis that $k_{1}=n-1$ and $k_{2}=1$ we have

$$
B B^{0}(\mathcal{F} ; p)+n B B^{1}(\mathcal{F} ; p)=B B\left(\mathcal{F}_{1} ; p\right)
$$

Since the singularities are isolated, we have

$$
\operatorname{Res}_{c_{1}^{n}}\left(\mathcal{F}, \mathcal{N}_{12} ; p\right)+\operatorname{Res}_{c_{1}^{n-1}, c_{1}}\left(\mathcal{F}, \mathcal{N}_{\mathcal{F}} ; p\right)=\operatorname{Res}_{c_{1}^{n}}\left(\mathcal{F}_{1}, \mathcal{N}_{1} ; p\right)
$$

where

$$
\operatorname{Res}_{c_{1}^{n-1}, c_{1}}\left(\mathcal{F}, \mathcal{N}_{\mathcal{F}} ; p\right)=\left(\frac{1}{2 \pi i}\right)^{n} \int_{L_{p}} \theta^{12} \wedge\left(d \theta^{2}\right)^{1} \wedge\left(d \theta^{12}\right)^{n-2}
$$

with θ^{2} is a (1,0 -form such that if ω is the 1 -form that induces locally \mathcal{F}_{2}, we have

$$
d \omega=\theta^{2} \wedge \omega
$$

By Malgrange, see [20, Théorème 0.I, pg 163], we have that ω admits an integral factor, i.e., there are holomorphic functions f and g with $f(p) \neq 0$ such that $\omega=f d g$. This implies that

$$
d \omega=d f \wedge d g=\frac{d f}{f} \wedge(f . d g)=\frac{d f}{f} \wedge \omega .
$$

Then, we can consider $\theta^{2}=\frac{d f}{f}=d(\log f)$. Since this is an exact form, we have $d \theta^{2}=0$ and $\operatorname{Res}_{c_{1}^{n-1}, c_{1}}\left(\mathcal{F}, \mathcal{N}_{\mathcal{F}} ; p\right)=0$. Therefore, the result is proved.

Example 2.4.5 Let $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ be the flag on the manifold $X \subset \mathbb{P}^{5} \times \mathbb{P}^{1}$ of the Example 2.3.8. By Corollary 2.4.4 we have

$$
\operatorname{Res}_{c_{1}^{n}}\left(\mathcal{F}, \mathcal{N}_{12} ; p\right)=\operatorname{Res}_{c_{1}^{n}}\left(\mathcal{F}_{1}, \mathcal{N}_{1} ; p\right)
$$

where $\operatorname{Res}_{c_{1}^{n}}\left(\mathcal{F}_{1}, \mathcal{N}_{1} ; p\right)=\left(\frac{1}{2 \pi i}\right)^{4} \int_{T} \operatorname{tr}(J X)^{4} \frac{d x \wedge d y \wedge d w \wedge d t}{X_{1} X_{2} X_{3} X_{4}}$.
We can check that $\operatorname{tr}(J X)=0$. Therefore we have the flag's residue

$$
\operatorname{Res}_{c_{1}^{4}}\left(\mathcal{F}, \mathcal{N}_{12} ; p\right)=0 .
$$

Chapter 3

Nash residues and comparison of residues

In this chapter, we propose to analyze the rationality of the Baum-Bott residues for flags. We consider the Nash modification M^{ν} of a complex manifold M with respect to a flag $\mathcal{F}=$ $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ and we will give a partial answer for this conjecture. In the foliation context, Sertöz in [23, Theorem V 1, pg 242] studied this conjecture with the hypothesis that M^{ν} is non-singular and he gave a partial answer to Baum-Bott conjecture. In [5, Theorem 4.1, pg 44] Brasselet and Suwa generalized the work of Sertöz, where they use characteristic classes on singular varieties. For characteristic classes in singular varieties, we refer to [4].

3.1 Nash residues for flags

Let M be a complex manifold of dimension n and $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ a 2-flag of singular holomorphic foliations of dimension $\left(q_{1}, q_{2}\right)$ on M. Then for each point $x \in M$, we set

$$
F_{i}(x)=\left\{v(x) / v \in \mathcal{F}_{i, x}\right\} \subset T_{x} M .
$$

This is a q_{i}-dimensional subspace if and only if $x \notin S(\mathcal{F})$, for $i=1,2$. Thus we have a flag of subspaces $F_{1}(x) \subset F_{2}(x) \subset T_{x} M$ for each point $x \in M \backslash S(\mathcal{F})$. We will consider the flag bundle using the Grassmann bundle of q_{i}-planes.

Let $\widetilde{\pi}_{2}: G_{q_{2}}(T M) \longrightarrow M$ be the Grassmann bundle of q_{2}-planes in $T M$. We have the Nash modification of M with respect to $\mathcal{F}_{2}, \quad M_{2}^{\nu}=\overline{\operatorname{Im} \sigma_{2}}$, where σ_{2} is a natural section induced by
\mathcal{F}_{2}. We have the exact sequence on M_{2}^{ν}

$$
\begin{equation*}
0 \longrightarrow T_{2}^{\nu} \longrightarrow \pi_{2}^{*} T M \longrightarrow N_{2}^{\nu} \longrightarrow 0 \tag{3.1}
\end{equation*}
$$

Analogously, we consider the Grassmann bundle of q_{1}-planes in $T M$ denoted by $\widetilde{\pi}_{1}$: $G_{q_{1}}(T M) \longrightarrow M$ and we obtain the Nash modification of M with respect to $\mathcal{F}_{1}, \quad M_{1}^{\nu}=\overline{\operatorname{Im} \sigma_{1}}$ and the exact sequence on M_{1}^{ν}

$$
\begin{equation*}
0 \longrightarrow T_{1}^{\nu} \longrightarrow \pi_{1}^{*} T M \longrightarrow N_{1}^{\nu} \longrightarrow 0 \tag{3.2}
\end{equation*}
$$

Now, if we consider the Grassmann bundle of $\left(n-q_{2}\right)$-planes in $T M$, i.e.,

$$
\widetilde{\pi}_{n-q_{2}}: G_{n-q_{2}}(T M) \longrightarrow M,
$$

then we have the exact sequence

$$
0 \longrightarrow \widetilde{T}_{n-q_{2}}^{\nu} \longrightarrow \widetilde{\pi}_{n-q_{2}}^{*} T M \longrightarrow \widetilde{N}_{n-q_{2}}^{\nu} \longrightarrow 0
$$

Remark 3.1.1 The fiber of the fibre bundle $N_{n-q_{2}}^{\nu} \longrightarrow G_{n-q_{2}}(T M)$ over a $\left(n-q_{2}\right)$-plane $E_{n-q_{2}} \in G_{n-q_{2}}(T M)$ is the q_{2}-plane

$$
\left(\widetilde{N}_{n-q_{2}}^{\nu}\right)_{E_{n-q_{2}}} \simeq \frac{T_{x} M}{E_{n-q_{2}}} \simeq E_{q_{2}},
$$

where $\widetilde{\pi}_{n-q_{2}}\left(E_{n-q_{2}}\right)=x$.

If we let $\widetilde{\pi}_{q_{1}}: G_{q_{1}}\left(\widetilde{N}_{n-q_{2}}^{\nu}\right) \longrightarrow G_{n-q_{2}}(T M)$ be the Grassmann bundle of p_{1}-planes in $\widetilde{N}_{n-q_{2}}^{\nu}$, we have the flag bundle $\tilde{\pi}: F_{q_{1}, q_{2}}(T M) \longrightarrow M$ of $\left(q_{1}, q_{2}\right)$-planes in $T M$, where $\widetilde{\pi}=\widetilde{\pi}_{n-q_{2}} \circ \widetilde{\pi}_{q_{1}}$.

Remark 3.1.2 A point of $F_{q_{1}, q_{2}}(T M)$ over $x \in M$ means first a q_{2}-plane $E_{q_{2}}$ in $T_{x} M$ and then a q_{1}-plane $E_{q_{1}}$ in $E_{q_{2}}$; this is a flag in $T_{x} M$.

For details see [16].
Definition 3.1.3 We define the Nash modification of M with respect of the flag $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ by

$$
M^{\nu}=\overline{I m \sigma}
$$

where the closure is taken in the fibre bundle $F_{q_{1}, q_{2}}(T M)$ and σ is the natural section induced by the flag \mathcal{F}.

If we consider the projections $\widetilde{p}_{i}: F_{q_{1}, q_{2}}(T M) \longrightarrow G_{q_{i}}(T M) ; \quad i=1,2$, then we can take the pull-back of the exact sequences (3.1) and (3.2) to M^{ν}.

$$
\begin{align*}
& 0 \longrightarrow p_{1}^{*} T_{1}^{\nu} \longrightarrow p_{1}^{*} \pi_{1}^{*} T M \longrightarrow p_{1}^{*} N_{1}^{\nu} \longrightarrow 0 . \tag{3.3}\\
& 0 \longrightarrow p_{2}^{*} T_{2}^{\nu} \longrightarrow p_{2}^{*} \tau_{2}^{*} T M \longrightarrow p_{2}^{*} N_{2}^{\nu} \longrightarrow 0 . \tag{3.4}
\end{align*}
$$

Proposition 3.1.4 The following diagram

is commutative.
Proposition 3.1.5 On M^{ν} we have the exact sequences

$$
\begin{gather*}
0 \longrightarrow N_{12}^{\nu} \longrightarrow p_{1}^{*} N_{1}^{\nu} \longrightarrow p_{2}^{*} N_{2}^{\nu} \longrightarrow 0 \tag{3.5}\\
0 \longrightarrow p_{1}^{*} T_{1}^{\nu} \longrightarrow p_{2}^{*} T_{2}^{\nu} \longrightarrow N_{12}^{\nu} \longrightarrow 0 \tag{3.6}
\end{gather*}
$$

where $N_{12}^{\nu}:=p_{2}^{*} T_{2}^{\nu} / p_{1}^{*} T_{1}^{\nu}$.

It follows from the Proposition 3.1.4 and Proposition 3.1.5, that $p_{1}^{*} \pi_{1}^{*} T M=p_{2}^{*} \tau_{2}^{*} T M=$ $\pi^{*} T M$. Therefore, we have the following diagram on M^{ν}.

We define the normal bundle N^{ν} over M^{ν} by $N_{12}^{\nu} \oplus p_{2}^{*} N_{2}^{\nu}$ and also we define

$$
\varphi\left(N^{\nu}\right):=\varphi_{1}\left(N_{12}^{\nu}\right) \smile \varphi_{2}\left(p_{2}^{*} N_{2}^{\nu}\right),
$$

where φ_{i} is a homogeneous symmetric polynomial of degree d_{i}.
Let S be a compact connected component of $S(\mathcal{F})$ and let $S^{\nu}=\pi^{-1}(S)$. Also, let U^{ν} be a neighborhood of S^{ν} in M^{ν} disjoint from the other components of $S(\mathcal{F})^{\nu}$. Let \widetilde{U}_{1}^{ν} be a regular neighborhood of S^{ν} in $F_{q_{1}, q_{2}}(T M)$ with $\widetilde{U}_{1}^{\nu} \cap M^{\nu} \subset U^{\nu}$ and \widetilde{U}_{0}^{ν} be a tubular neighborhood of $U_{0}^{\nu}=U^{\nu} \backslash S^{\nu}$ in $F_{q_{1}, q_{2}}(T M)$ with the projection ρ. We consider the covering $\widetilde{\mathcal{U}}^{\nu}=\left\{\widetilde{U}_{0}^{\nu}, \widetilde{U}_{1}^{\nu}\right\}$ of $\widetilde{U}^{\nu}=\widetilde{U}_{0}^{\nu} \cup \widetilde{U}_{1}^{\nu}$. The characteristic class $\varphi\left(N^{\nu}\right)$ is represented by the cocycle

$$
\varphi\left({ }_{2}^{12} \nabla_{*}^{\nu}\right)=\varphi_{1}\left({ }^{12} \nabla_{*}^{\nu}\right) \smile \varphi_{2}\left({ }^{2} \nabla_{*}^{\nu}\right) \in A^{2\left(d_{1}+d_{2}\right)}\left(\tilde{\mathcal{U}}^{\nu}\right),
$$

where

$$
\varphi_{1}\left({ }^{12} \nabla_{*}^{\nu}\right)=\left(\varphi_{1}\left({ }^{12} \nabla_{0}^{\nu}\right), \varphi_{1}\left({ }^{12} \nabla_{1}^{\nu}\right), \varphi_{1}\left({ }^{12} \nabla_{0}^{\nu}{ }^{12} \nabla_{1}^{\nu}\right)\right)
$$

and

$$
\varphi_{2}\left({ }^{2} \nabla_{*}^{\nu}\right)=\left(\varphi_{2}\left({ }^{2} \nabla_{0}^{\nu}\right), \varphi_{2}\left({ }^{2} \nabla_{1}^{\nu}\right), \varphi_{2}\left({ }^{2} \nabla_{0}^{\nu},{ }^{2} \nabla_{1}^{\nu}\right)\right) .
$$

Here ${ }^{12} \nabla_{0}^{\nu}$ and ${ }^{12} \nabla_{1}^{\nu}$ are connections on N_{12}^{ν} over \widetilde{U}_{0}^{ν} and \widetilde{U}_{1}^{ν}, respectively, and ${ }^{2} \nabla_{0}^{\nu}$ and ${ }^{2} \nabla_{1}^{\nu}$ are connections on $p_{2}^{*} N_{2}^{\nu}$ over \widetilde{U}_{0}^{ν} and \widetilde{U}_{1}^{ν}, respectively.

If we set $U=\pi\left(U^{\nu}\right)$, i.e., a neighborhood of S on M, then π induces a biholomorphic $\operatorname{map} U_{0}^{\nu} \longrightarrow U_{0}=U \backslash S$. On U_{0} we have basic (Bott) connections ∇_{12} and ∇_{2} a N_{12} and $N_{F_{2}^{0}}$ respectively. We take as ${ }^{12} \nabla_{0}^{\nu}$ the connection for N_{12}^{ν} given by ${ }^{12} \nabla_{0}^{\nu}=\pi^{*}\left(\nabla_{12}\right)$ and analogously ${ }^{2} \nabla_{0}^{\nu}=\pi^{*}\left(\nabla_{2}\right)$ for $p_{2}^{*} N_{2}^{\nu}$ then

$$
\varphi\left({ }_{2}^{12} \nabla_{0}^{\nu}\right)=\varphi_{1}\left({ }^{12} \nabla_{0}^{\nu}\right) \smile \varphi_{2}\left({ }^{2} \nabla_{0}^{\nu}\right)=0 .
$$

The cocycle $\varphi\left({ }_{2}^{12} \nabla_{*}^{\nu}\right) \in A^{2\left(d_{1}+d_{2}\right)}\left(\widetilde{\mathcal{U}}^{\nu}, \widetilde{U}_{0}^{\nu}\right)$ defines a class $\varphi_{S^{\nu}}\left(N^{\nu} ; \mathcal{F}\right) \in H^{2\left(d_{1}+d_{2}\right)}\left(U^{\nu}, U^{\nu} \backslash\right.$ $\left.S^{\nu} ; \mathbb{C}\right)$. We denote its image in $H_{2\left(n-d_{1}-d_{2}\right)}\left(S^{\nu} ; \mathbb{C}\right)$ by Alexander homomorphism by $\operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(N^{\nu}, \mathcal{F}, S^{\nu}\right)$.

Definition 3.1.6 We call the class $\operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(N^{\nu}, \mathcal{F}, S^{\nu}\right)$ the Nash residue of the flag \mathcal{F} with respect to $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$ at S^{ν}.

3.2 Comparison of Baum-Bott and Nash residues for flags

After the definition of the Nash residue for flags above, we can compare it with the BaumBott residue for flags. The result is analogous to [5]. This comparison gives a partial answer to the Rationality conjecture for flags, see (2.2.16).

Let M be a complex manifold of dimension n and $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ a 2-flag of singular holomorphic foliations of dimension $\left(q_{1}, q_{2}\right)$ on M. Also let $S \subset S(\mathcal{F})$ be a compact connected component and $S^{\nu}=\pi^{-1}(S)$ as above. Then, there is a canonical homomorphism

$$
\pi_{*}: H_{2 n-2 d}\left(S^{\nu} ; \mathbb{C}\right) \longrightarrow H_{2 n-2 d}(S ; \mathbb{C})
$$

Theorem 3.2.1 Let $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$ where φ_{i} is a homogeneous symmetric polynomial of degree d_{i} satisfying the condition of the Bott vanishing theorem for flags (2.1). If φ_{i} has integral coefficients, then the difference

$$
\operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(\mathcal{N}_{\mathcal{F}}, \mathcal{F}, S\right)-\pi_{*} \operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(N^{\nu}, \mathcal{F}, S^{\nu}\right)
$$

is in the image of the canonical homomorphism $H_{2 n-2 d}(S ; \mathbb{Z}) \longrightarrow H_{2 n-2 d}(S ; \mathbb{C})$, i.e., it is a (sum of) integral class.

Proof: Take analytic resolutions of the sheaves \mathcal{F}_{1} and \mathcal{F}_{2}

$$
\begin{gathered}
0 \longrightarrow A_{U}\left(E_{q}^{12}\right) \longrightarrow \ldots \longrightarrow A_{U}\left(E_{1}^{12}\right) \longrightarrow A_{U} \otimes \mathcal{F}_{1} \longrightarrow 0 \\
0 \longrightarrow A_{U}\left(E_{r}^{2}\right) \longrightarrow \ldots \longrightarrow A_{U}\left(E_{1}^{2}\right) \longrightarrow A_{U} \otimes \mathcal{F}_{2} \longrightarrow 0 .
\end{gathered}
$$

The exact sequences

provide a resolution of the sheaves \mathcal{N}_{12} and \mathcal{N}_{2}.

$$
\begin{aligned}
& 0 \longrightarrow A_{U}\left(E_{q}^{12}\right) \xrightarrow{\eta_{q}^{12}} \ldots \longrightarrow A_{U}\left(E_{1}^{1}\right) \xrightarrow{\eta_{1}^{12}} A_{U}\left(F_{2}^{0}\right) \longrightarrow A_{U} \otimes \mathcal{N}_{12} \longrightarrow 0 \\
& 0 \longrightarrow A_{U}\left(E_{q}^{2}\right) \xrightarrow{\eta_{r}^{2}} \ldots \longrightarrow A_{U}\left(E_{1}^{2}\right) \xrightarrow{\eta_{1}^{2}} A_{U}(T M) \longrightarrow A_{U} \otimes \mathcal{N}_{2} \longrightarrow 0
\end{aligned}
$$

Then, we have exact sequences of vector bundles on U_{0}.

$$
\begin{gather*}
0 \longrightarrow E_{q}^{12} \longrightarrow \ldots \longrightarrow E_{1}^{12} \longrightarrow F_{2}^{0} \longrightarrow N_{12} \longrightarrow 0 \tag{3.7}\\
0 \longrightarrow E_{r}^{2} \longrightarrow \ldots \longrightarrow E_{1}^{2} \longrightarrow T M \longrightarrow N_{F_{2}^{0}} \longrightarrow 0 \tag{3.8}
\end{gather*}
$$

The sheaves homomorphisms η_{j}^{12} and η_{i}^{2} induce bundles homomorphisms on U and U^{ν}

$$
h_{j}^{12}: E_{j}^{12} \longrightarrow E_{j-1}^{12}
$$

$$
\begin{gathered}
h_{i}^{2}: E_{i}^{2} \longrightarrow E_{i-1}^{2} . \\
\pi^{*} h_{j}^{12}: \pi^{*} E_{j}^{12} \longrightarrow \pi^{*} E_{j-1}^{12} \\
\pi^{*} h_{i}^{2}: \pi^{*} E_{i}^{2} \longrightarrow \pi^{*} E_{i-1}^{2} .
\end{gathered}
$$

We claim that

$$
\begin{equation*}
\operatorname{Im}\left(\pi^{*} h_{1}^{2}\right) \subset p_{2}^{*} T_{2}^{\nu} \text { and } \operatorname{Im}\left(\pi^{*} h_{1}^{12}\right) \subset p_{1}^{*} T_{1}^{\nu} \text { on } U^{\nu} \tag{3.9}
\end{equation*}
$$

In fact, away from the singular set we have equivalent sequences

$$
\begin{gathered}
0 \longrightarrow \mathcal{F}_{1} \longrightarrow \mathcal{F}_{2} \longrightarrow \mathcal{N}_{12} \longrightarrow 0 \\
0 \longrightarrow p_{1}^{*} T_{1}^{\nu} \longrightarrow p_{2}^{*} T_{2}^{\nu} \longrightarrow N_{12}^{\nu} \longrightarrow 0
\end{gathered}
$$

Note that $T_{1}^{\nu}=\pi_{1}^{*} F_{1}^{0}$ (on M_{1}^{ν}) implies that $p_{1}^{*} T_{1}^{\nu}=\pi^{*} F_{1}^{0}$. Analogously we have $p_{2}^{*} T_{2}^{\nu}=$ $\pi^{*} F_{2}^{0}$.

Then, we have the exact sequences

Therefore, away from singular sets, which is dense in U^{ν}, we have the equalities in (3.9). Then, by the continuity arguments we have the inequalities of (3.9) in U^{ν}. We have two complexes of vector bundles on U^{ν}, which are exact on U_{0}^{ν}.

$$
\begin{gather*}
0 \longrightarrow \pi^{*}\left(E_{q}^{12}\right) \longrightarrow \ldots \longrightarrow \pi^{*}\left(E_{1}^{12}\right) \longrightarrow \pi^{*} F_{2}^{0} \longrightarrow N_{12}^{\nu} \longrightarrow 0 \tag{3.10}\\
0 \longrightarrow \pi^{*}\left(E_{r}^{2}\right) \longrightarrow \ldots \longrightarrow \pi^{*}\left(E_{1}^{2}\right) \longrightarrow \pi^{*} T M \longrightarrow p_{2}^{*} N_{2}^{\nu} \longrightarrow 0 \tag{3.11}
\end{gather*}
$$

We consider the virtual bundles $\widetilde{\varepsilon}_{12}=\widetilde{\pi}^{*}\left(\xi^{12}\right)-N_{12}^{\nu} \quad$ and $\quad \widetilde{\varepsilon}_{2}=\widetilde{\pi}^{*}\left(\xi^{2}\right)-p_{2}^{*} N_{2}^{\nu} \quad$ or
$\widetilde{\pi}^{*}\left(\xi^{12}\right)=N_{12}^{\nu}+\widetilde{\varepsilon}_{12}$ and $\widetilde{\pi}^{*}\left(\xi^{2}\right)=p_{2}^{*} N_{2}^{\nu}+\widetilde{\varepsilon}_{2}$.

By classical properties of characteristic classes we can write

$$
\begin{equation*}
\varphi_{1}\left(\widetilde{\pi}^{*}\left(\xi^{12}\right)\right)=\varphi_{1}\left(N_{12}^{\nu}\right)+\sum \varphi_{1}^{i}\left(N_{12}^{\nu}\right) \psi_{1}^{i}\left(\widetilde{\varepsilon}_{12}\right), \tag{3.12}
\end{equation*}
$$

where the φ_{1}^{i} are symmetric polynomials with integral coefficients and ψ_{1}^{i} are symmetric polynomials with integral coefficients without constant term. Analogously

$$
\begin{equation*}
\varphi_{2}\left(\widetilde{\pi}^{*}\left(\xi^{2}\right)\right)=\varphi_{2}\left(p_{2}^{*} N_{2}^{\nu}\right)+\sum \varphi_{2}^{i}\left(p_{2}^{*} N_{2}^{\nu}\right) \psi_{2}^{i}\left(\widetilde{\varepsilon}_{2}\right) \tag{3.13}
\end{equation*}
$$

By taking the cap product of (3.12) with (3.13) we have
$\varphi_{1}\left(\widetilde{\pi}^{*} \xi^{12}\right) \cdot \varphi_{2}\left(\widetilde{\pi}^{*} \xi^{2}\right)=$
$=\varphi_{1}\left(N_{12}^{\nu}\right) \cdot \varphi_{2}\left(p_{2}^{*} N_{2}^{\nu}\right)+\varphi_{1}\left(N_{12}^{\nu}\right) \cdot \sum \varphi_{2}^{i}\left(p_{2}^{*} N_{2}^{\nu}\right) \psi_{2}^{i}\left(\widetilde{\varepsilon}_{2}\right)+$
$+\sum \varphi_{1}^{i}\left(N_{12}^{\nu}\right) \psi_{1}^{i}\left(\widetilde{\varepsilon}_{1}\right) \cdot \varphi_{2}\left(p_{2}^{*} N_{2}^{\nu}\right)+\sum \varphi_{1}^{i}\left(N_{12}^{\nu}\right) \psi_{1}^{i}\left(\widetilde{\varepsilon}_{12}\right) \cdot \varphi_{2}^{i}\left(p_{2}^{*} N_{2}^{\nu}\right) \psi_{2}^{i}\left(\widetilde{\varepsilon}_{2}\right)$.
on $H^{2\left(d_{1}+d_{2}\right)}\left(U^{\nu}\right)$.
We claim that we have a good localization, i.e., in $A^{*}\left(\widetilde{U}^{\nu}, \widetilde{U}_{0}^{\nu}\right)$ we have
$\varphi\left(\widetilde{\pi}^{*}\left({ }_{2}^{12} \nabla_{*}^{\bullet}\right)\right)=\varphi_{1}\left(\widetilde{\pi}^{*}\left({ }^{12} \nabla_{*}^{\bullet}\right)\right) \cdot \varphi_{2}\left(\widetilde{\pi}^{*}\left({ }^{2} \nabla_{*}^{*}\right)\right)=$
$=\varphi_{1}\left({ }^{12} \nabla_{*}^{\nu}\right) \cdot \varphi_{2}\left({ }^{2} \nabla_{*}^{\nu}\right)+\varphi_{1}\left({ }^{12} \nabla_{*}^{\nu}\right) \cdot \sum \varphi_{2}^{i}\left({ }^{2} \nabla_{*}^{\nu}\right) \psi_{2}^{i}\left({ }^{2} \nabla_{*}^{\varepsilon}\right)+$
$+\sum \varphi_{1}^{i}\left({ }^{12} \nabla_{*}^{\nu}\right) \psi_{1}^{i}\left({ }^{12} \nabla_{*}^{\varepsilon}\right) \cdot \varphi_{2}\left({ }^{2} \nabla_{*}^{\nu}\right)+\sum \varphi_{1}^{i}\left({ }^{12} \nabla_{*}^{\nu}\right) \psi_{1}^{i}\left({ }^{12} \nabla_{*}^{\varepsilon}\right) \cdot \varphi_{2}^{i}\left({ }^{2} \nabla_{*}^{\nu}\right) \psi_{2}^{i}\left({ }^{2} \nabla_{*}^{\varepsilon}\right)+D \tau$,
where $\tau=\left(0,0, \tau_{01}\right)$
with $\tau_{01}=\varphi_{1}\left({ }^{12} \nabla_{0}^{\nu}\right) .{ }^{2} \tau_{01}+{ }^{12} \tau_{01} \cdot \varphi_{2}\left({ }^{2} \nabla_{1}^{\nu}\right)+{ }^{12} \tau_{01} \cdot \sum \varphi_{2}^{i}\left({ }^{2} \nabla_{1}^{\nu}\right) \cdot \psi_{2}^{i}\left({ }^{2} \nabla_{1}^{\varepsilon}\right)$
For further details of the ${ }^{2} \tau_{01}$ and ${ }^{1} \tau_{01}$, we refer to [5, pg 46].
The above claim shows that we have in $H^{2\left(d_{1}+d_{2}\right)}\left(U^{\nu}, U^{\nu} \backslash S^{\nu}, \mathbb{C}\right)$

$$
\begin{aligned}
& \pi^{*} \varphi_{S}\left(\mathcal{N}_{\mathcal{F}}, \mathcal{F},\right)=\varphi_{S^{\nu}}\left(N^{\nu}, \mathcal{F}\right)+\sum \varphi_{1}\left(N_{12}^{\nu}\right) \cdot \varphi_{2}^{i}\left(p_{2}^{*} N_{2}^{\nu}\right) \cdot \psi_{2, S}^{i}\left(\varepsilon_{2}\right)+ \\
& +\sum \varphi_{1}^{i}\left(N_{12}^{\nu}\right) \cdot \psi_{1, S}^{i}\left(\varepsilon_{12}\right) \cdot \varphi_{2}\left(p_{2}^{*} N_{2}^{\nu}\right)+\sum \varphi_{1}^{i}\left(N_{12}^{\nu}\right) \cdot \psi_{1, S}^{i}\left(\varepsilon_{12}\right) \cdot \varphi_{2}^{i}\left(p_{2}^{*} N_{2}^{\nu}\right) \cdot \psi_{2, S}^{i}\left(\varepsilon_{2}\right)
\end{aligned}
$$

Thus, by the commutative diagram

we obtain that the difference between these residues in $H_{2 n-2\left(d_{1}+d_{2}\right)}(S, \mathbb{C})$ is a sum of integral classes.

Corollary 3.2.2 If $\varphi_{1}=c_{i_{1}} \ldots c_{i_{r}}$ and $\varphi_{2}=c_{j_{1}} \ldots c_{j_{t}}$ with $i_{\nu}>\operatorname{codim}\left(\mathcal{F}_{1}\right)$ for some $\nu \in$ $[1, \ldots, r]$ or $i_{s}>\operatorname{codim}\left(\mathcal{F}_{2}\right)$ for some $s \in[1, \ldots, t]$, then the Baum-Bott residue for the flag $\mathcal{F}, \operatorname{Res}_{\varphi_{1}, \varphi_{2}}\left(\mathcal{N}_{\mathcal{F}}, \mathcal{F}, S\right)$, is a (sum of) integral class.

Chapter 4

Determination of Baum-Bott residues of the foliations

The purpose of this chapter is twofold. First, we give a generalization of a construction of Brunella-Perrone in [6] and Corrêa-Pérez in [11, Theorem 4.1, pg 6], for any polynomial φ of degree $k+1$; and second, we show that, in this theorem, the complex number $\mathrm{BB}(\mathcal{F}, Z)$ can be calculated as a Grothendieck residue.

Let \mathcal{F} be a holomorphic foliation of codimension k on a complex manifold M with $\operatorname{dim} M=$ n. Assume that \mathcal{F} is induced by $\omega \in H^{0}\left(M, \Omega_{M}^{k} \otimes \mathcal{N}\right)$. Denote by $\operatorname{Sing}_{k+1}(\mathcal{F})$, the union of the irreducible components of $S(\mathcal{F})$ of pure codimension $k+1$. Assume that

$$
\operatorname{Codim} \mathrm{S}(\mathcal{F}) \geq k+1
$$

We can consider ω decomposable and integrable, i. e., locally ω is given by a product of k 1 -forms $\eta_{1} \wedge \ldots \wedge \eta_{k}$. Then, it is possible to find a matrix of $(1,0)$-forms $\left(\theta_{l s}\right)$ such that

$$
d \eta_{l}=\sum_{s=1}^{k} \theta_{l s} \wedge \eta_{s} \quad \forall \quad l=1, \ldots, k
$$

Set $\theta:=\sum_{l=1}^{k}(-1)^{l+1} \theta_{l l}$. Observe that the smooth $(2 k+1)$-form

$$
\left(\frac{1}{2 \pi i}\right)^{k+1} \theta \wedge \underbrace{d \theta \wedge \ldots \wedge d \theta}_{k-t h}
$$

CHAPTER 4. DETERMINATION OF BAUM-BOTT RESIDUES OF THE FOLIATIONS 49

is closed. Its the de Rham cohomology class in $H^{2 k+1}\left(B_{p}^{*} ; \mathbb{C}\right)$ does not depend on the choice of ω and θ.

Take now an irreducible component $Z \subset \operatorname{Sing}_{k+1}(\mathcal{F})$ and a generic point $p \in Z$. Pick B_{p} a small ball centered at p such that $S\left(B_{p}\right) \subset B_{p}$ is a sub-ball of dimension $n-k-1$. The de-Rham class can be integrated over an oriented $(2 k+1)$-sphere $L_{p} \subset B_{p}^{*}$

$$
B B(\mathcal{F}, Z):=\left(\frac{1}{2 \pi i}\right)^{k+1} \int_{L_{p}} \theta \wedge(d \theta)^{k} .
$$

Corrêa and Pérez in [11, Theorem 4.1, pg 6] give a new proof of the Baum-Bott theorem and presented an effective way (different of Baum-Bott) to calculate residues of a foliations, when the dimension of the singular set of the foliation is one less than the dimension of the foliation.

Theorem 4.0.3 Let \mathcal{F} be a holomorphic foliation of codimension k on a complex manifold M. Then the following hold:
(i) for each irreducible component Z of $\operatorname{Sing}_{k+1}(\mathcal{F})$ there exists a complex number $\lambda_{Z}(\mathcal{F})$ which is determined by the local behavior of \mathcal{F} near Z.
(ii) If Mis compact

$$
c_{1}^{k+1}\left(\mathcal{N}_{\mathcal{F}}\right)=\sum_{Z} \lambda_{Z}(\mathcal{F})[Z]
$$

where the sum is done over all irreducible components of $\operatorname{Sing}_{k+1}(\mathcal{F})$. We will show $\lambda_{Z}(\mathcal{F})=$ $B B(\mathcal{F}, Z)$.

We will show the following result

Corollary 4.0.4 Let \mathcal{F} be a holomorphic foliation of codimension one on M induced by $\omega \in$ $H^{0}\left(M, \Omega^{1} \otimes \operatorname{det}\left(\mathcal{N}_{\mathcal{F}}\right)\right)$. Consider $Z \subset \operatorname{Sing}_{2}(\mathcal{F})$. If $d \omega \equiv 0$ in a neighborhood of Z then

$$
\operatorname{Res}_{c_{1}^{2}}(\mathcal{F} ; Z)=0 .
$$

Proof: By Theorem 4.0.3 one has

$$
\operatorname{Res}_{c_{1}^{2}}(\mathcal{F} ; Z)=\alpha_{*}(B B(\mathcal{F}, Z)[Z]),
$$

CHAPTER 4. DETERMINATION OF BAUM-BOTT RESIDUES OF THE FOLIATIONS 50

where α_{*} is the Poincaré duality isomorphism

$$
H^{2(2)}(M ; \mathbb{C}) \xrightarrow{\alpha_{*}} H_{2(n-2)}(M ; \mathbb{C}) .
$$

I will show that $B B(\mathcal{F}, Z)=0$.
Recall the definition of this complex number $B B(\mathcal{F}, Z)$, see [6]. There is a $(1,0)$-form $\beta \in A^{(1,0)}\left(B_{p}^{*}\right)$ such that

$$
d \omega=\beta \wedge \omega
$$

where B_{p}^{*} is defined as follow.
Take a point $p \in \operatorname{Sing}_{2}(\mathcal{F})$. We consider a ball $B_{p} \subset M$ centered at p, next consider $S\left(B_{p}\right)=\operatorname{Sing}_{2}(\mathcal{F}) \cap B_{p}$ and $B_{p}^{*}=B_{p} \backslash S\left(B_{p}\right)$.

By hypothesis $\left.d \omega\right|_{Z}=\left.\beta \wedge \omega\right|_{Z}=0$ then, by the division lemma, there is a holomorphic function f such that

$$
\beta=f \omega .
$$

On the other hand, we have

$$
B B(\mathcal{F}, Z)=\left(\frac{1}{2 \pi i}\right)^{2} \int_{L_{p}} \beta \wedge d \beta
$$

where, $\beta \wedge d \beta=f \omega \wedge d f \wedge \omega=0$.

Example 4.0.5 Let \mathcal{F} be the logarithmic foliation on \mathbb{P}^{3} induced, locally in $\left(\mathbb{C}^{3},(x, y, z)\right)$ by the 1-form

$$
\omega=y z d x+x z d y+x y d z .
$$

In this chart, the singular set of ω is the union of the irreducible compoents Z_{1}, Z_{2} and Z_{3}, where $Z_{1}=\{x=y=0\} ; Z_{2}=\{x=z=0\}$ and $Z_{3}=\{y=z=0\}$. Note that $\left.d \omega\right|_{Z_{i}}=0$
for $i=1,2,3$. Therefore, $B B\left(\mathcal{F} ; Z_{i}\right)=0$ and, we have

$$
\operatorname{Res}_{c_{1}^{2}}\left(\mathcal{F} ; Z_{i}\right)=\alpha_{*}\left(B B\left(\mathcal{F} ; Z_{i}\right)\left[Z_{i}\right]\right)=0 .
$$

We show that the Theorem 4.0.3, with the construction that appears in [11], is valid for any polynomial $\varphi=c_{1}^{\alpha_{1}} c_{2}^{\alpha_{2}} \ldots c_{k}^{\alpha_{k}}$ with $1 \alpha_{1}+2 \alpha_{2}+\ldots+k \alpha_{k}=k+1$, where c_{i} denotes the i-th Chern class.

Given a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ with $\alpha_{j} \geq 0$ for $j=1, \ldots, k$, we can associate a homogeneous symmetric polynomial of degree $k+1, \varphi=c_{1}^{\alpha_{1}} c_{2}^{\alpha_{2}} \ldots c_{k}^{\alpha_{k}}$ with $1 \alpha_{1}+2 \alpha_{2}+\ldots+$ $k \alpha_{k}=k+1$. Denote by θ the Bott connection matrix of the foliation \mathcal{F} and K its curvature matrix. Next, consider the unique complete polarization of the polynomial φ, denoted by $\widetilde{\varphi}$, that is, $\widetilde{\varphi}$ is a symmetric k-linear map that satisfies

$$
\widetilde{\varphi}(K, \ldots, K)=\varphi(K)=c_{1}^{\alpha_{1}}(K) c_{2}^{\alpha_{2}}(K) \ldots c_{k}^{\alpha_{k}}(K)
$$

Define the polynomial φ_{j} for $j=1, \ldots, k$ as follow

$$
\begin{aligned}
\varphi_{j}(\theta, K) & :=\widetilde{\varphi}(\theta, \underbrace{-2 \theta \wedge \theta, \ldots,-2 \theta \wedge \theta}_{j-1}, \underbrace{K, \ldots, K}_{k-j}) \\
& =c_{1}^{\alpha_{1}}(\theta) c_{2}^{\alpha_{2}}(-2 \theta \wedge \theta) \ldots c_{k}^{\alpha_{k}}(K) .
\end{aligned}
$$

Now, we consider the $(2 k+1)$ - form

$$
\varphi_{\alpha}(\theta, K)=\sum_{j=0}^{k-1}(-1)^{j} \frac{(k-1)!}{2^{j}(k-j-1)!(k+j)!} \varphi_{j+1}(\theta, K)
$$

Note that $\varphi(K)=c_{1}^{\alpha_{1}}(K) c_{2}^{\alpha_{2}}(K) \ldots c_{k}^{\alpha_{k}}(K)$ represents, in de Rham sense, the characteristic class $\varphi\left(\mathcal{N}_{\mathcal{F}}\right)$. It follows from the Bott vanishing theorem, see [25, Theorem 9.11, pg 76], that $\varphi(K)=0$ outside V, where V is a small neighborhood of $\operatorname{Sing}_{k+1}(\mathcal{F})$.

Let Z be an irreducible component of $\operatorname{Sing}_{k+1}(\mathcal{F})$. Take a generic point $p \in Z$, that is, p is a point where Z is smooth and disjoint from the other singular component. Pick B_{p} a ball centered at p sufficiently small, such that $S\left(B_{p}\right):=Z \cap B_{p}$ is a subball of B_{p} of dimension $n-k-1$. Then, the de Rham class $\varphi_{\alpha}(\theta, K)$ can be integrated over an oriented ($2 k+1$)-sphere $L_{p} \subset B_{p}^{*}:=B_{p} \backslash S\left(B_{p}\right)$ positively linked with $S\left(B_{p}\right)$:

CHAPTER 4. DETERMINATION OF BAUM-BOTT RESIDUES OF THE FOLIATIONS 52

$$
\begin{equation*}
B B(\mathcal{F}, \varphi ; Z):=\left(\frac{1}{2 \pi i}\right)^{k+1} \int_{L_{p}} \varphi_{\alpha}(\theta, K) . \tag{4.1}
\end{equation*}
$$

Theorem 4.0.6 Let \mathcal{F} be a holomorphic foliation of codimension k on a complex manifold M. If Codim $S(\mathcal{F}) \geq k+1$, then the following hold:
(i) for each irreducible component Z of $\operatorname{Sing}_{k+1}(\mathcal{F})$ there exist a complex number $\lambda_{Z}(\mathcal{F})$ which is determined by the local behavior of \mathcal{F} near Z.
(ii) If Mis compact

$$
\varphi\left(\mathcal{N}_{\mathcal{F}}\right)=\sum_{Z} \lambda_{Z}(\mathcal{F} ; \varphi)[Z] \quad \text { in } \quad H^{2(k+1)}(M ; \mathbb{C})
$$

where the sum is done over all irreducible components of $\operatorname{Sing}_{k+1}(\mathcal{F})$. We will show that $\lambda_{Z}(\mathcal{F} ; \varphi)=B B(\mathcal{F}, \varphi ; Z)$.

Proof: Let us consider $L \subset M$ a $(k+1)$-ball intersecting transversally $\operatorname{Sing}_{k+1}(\mathcal{F})$ at a single point $p \in Z$, with $V \cap T \Subset T$.

For the form $\varphi_{\alpha}(\theta, K)$, one has

$$
d\left(\varphi_{\alpha}(\theta, K)\right)=\varphi(K)
$$

See Vishik [28, Lemma 2.3, pg 5].
Then by Stokes theorem we have

$$
\begin{aligned}
B B(\mathcal{F}, \varphi ; Z) & =\left(\frac{1}{2 \pi i}\right)^{k+1} \int_{\partial L} \varphi_{\alpha}(\theta, K) \\
& =\left(\frac{1}{2 \pi i}\right)^{k+1} \int_{L} d\left(\varphi_{\alpha}(\theta, K)\right)=\left(\frac{1}{2 \pi i}\right)^{k+1} \int_{L} \varphi(K) .
\end{aligned}
$$

This means that the $2(k+1)$-form $d\left(\varphi_{\alpha}\right)=\varphi(K)$ is cohomologous, as a current, to the integration current over $B B(\mathcal{F}, \varphi ; Z)[Z]$, i.e.,

$$
\varphi\left(\mathcal{N}_{\mathcal{F}}\right)=\sum_{Z} B B(\mathcal{F}, \varphi ; Z)[Z] .
$$

Corollary 4.0.7 For $k=n-1$ we have

$$
B B(\mathcal{F}, \varphi ; Z=q)=\operatorname{Res}_{q}\left[\varphi(J X) \frac{d z_{1} \wedge \ldots \wedge d z_{n}}{X_{1} \ldots X_{n}}\right]
$$

where the right side is the Grothendieck residue of \mathcal{F} around at the singular point q.

Now, we will apply the "transversal disc method" of Baum-Bott and Vishik. However we do not use the hypothesis that at the singular set of foliation all $p \in S(\mathcal{F})$ are a Baum-Kupka type singularities, see [3, Theorem 3, pg 285]. We do not use also the non degeneration condition used by Vishik in [28, Theorem 2, pg 3].

For this, consider give a transversal disc $H \subset M$ of dimension $k+1$ such that $H \cap Z=\{p\}$, where $Z \subset \operatorname{Sing}_{k+1}(\mathcal{F})$. Taking local coordinates $z=\left(z_{1}, \ldots, z_{k+1}\right)$ in H around p, we can assume $p=0$. Then, the restriction $\left.\mathcal{F}\right|_{H}=: \mathcal{G}$ is an one-dimensional foliation on H of which the singular set is given by $S(\mathcal{G})=S(\mathcal{F}) \cap H$.

Given $Z \subset \operatorname{Sing}_{k+1}(\mathcal{F})$ an irreducible component. Let us denote by $[Z] \in H_{2(n-k-1)}(Z ; \mathbb{C})$ its fundamental class and consider η_{Z} its Poincaré dual in $H^{2(k+1)}(M ; \mathbb{C})$. On the other hand, let T_{Z} be the integration current associated to Z, that can be conveniently interpreted as a cohomology class in M, that is, $T_{Z} \in H^{2(k+1)}(M ; \mathbb{C})$.

Proposition 4.0.8 T_{Z} and η_{Z} represent the same class in $H^{2(k+1)}(M ; \mathbb{C})$.

Proof: We will verify that the two $2(k+1)$-forms, seen as linear functional in $H^{2(n-k-1)}(M ; \mathbb{C})$, act in the same way.

In fact, given ω a $2(n-k-1)$ - form, we have by definition that $T_{Z}(\omega)=\int_{Z} \omega$. On the other hand, we recall the Poincaré duality

$$
\left(H^{2 r}(M)\right)^{*} \simeq H^{2(n-r)}(M)
$$

We have the Poincaré dual, η_{Z}, associates a linear functional, denoted by (by abuse of notation), η_{Z} which satisfies $\eta_{Z}(\omega)=\int_{Z} i^{*} \omega=\int_{Z} \omega$, where i denotes the inclusion map $Z \hookrightarrow M$. Therefore, $T_{Z}(\omega)=\eta_{Z}(\omega)$.

Theorem 4.0.9 Let \mathcal{F} be a holomorphic foliation of codimension k on a compact complex manifold M. If Codim $S(\mathcal{F}) \geq k+1$ for each irreducible component Z of $\operatorname{Sing}_{k+1}(\mathcal{F})$ there exists a complex number $B B(\mathcal{F}, \varphi ; Z)$ which is determined by the local behavior of \mathcal{F} near Z, and is given by

$$
B B(\mathcal{F}, \varphi ; Z)=\operatorname{Res}_{p}\left[\varphi(J X) \frac{d z_{1} \wedge \ldots \wedge d z_{k+1}}{X_{1} \ldots X_{k+1}}\right]
$$

where $X=\left(X_{1}, \ldots, X_{k+1}\right)$ is the vector field that induces \mathcal{G} around p and φ is a homogeneous symmetric polynomial of degree $k+1$.

Proof: We have that, locally, there is a k-form ω that induces the foliation \mathcal{F}. Then, \mathcal{G} is induced by restriction of this form to H, i.e.,

$$
\widetilde{\omega}:=\left.\omega\right|_{H} .
$$

We recall the isomorphism between Θ_{U} and Ω_{U}^{k} defined by the contraction by a vector field

$$
i_{\frac{\partial}{\partial z_{i}}} d z_{1} \wedge \ldots \wedge d z_{k+1}=(-1)^{i} d z_{1} \wedge \ldots \wedge \widehat{d z_{i}} \wedge \ldots \wedge d z_{k+1}
$$

We can consider the vector field $X=\left(X_{1}, \ldots, X_{k+1}\right)$ in H dual to this k - form $\widetilde{\omega}$ in H. If we denote by $\Theta=\left(\theta_{l s}\right)$ the Bott connection matrix of \mathcal{F}, then $\widetilde{\Theta}:=\left.\Theta\right|_{H}=\left(\left.\theta_{l s}\right|_{H}\right)$ represents the Bott connection matrix of \mathcal{G} and we denote by \widetilde{K} its curvature matrix to \mathcal{G}. The $(2 k+1)$ form $\varphi_{\alpha}(\widetilde{\theta}, \widetilde{K}):=\left.\varphi_{\alpha}(\theta, K)\right|_{H}$ in H satisfies

$$
d \varphi_{\alpha}(\widetilde{\theta}, \widetilde{K})=\varphi(\widetilde{K})
$$

where $\varphi(\widetilde{K})$ represents, in de Rham sense, the characteristic class $\varphi\left(\mathcal{N}_{\mathcal{G}}\right)$.
We consider a $(2 k+1)$ - sphere $L_{p} \subset H \cap M$ then, we have by Corollary 4.0.7

$$
\operatorname{Res}_{p}\left[\varphi(J X) \frac{d z_{1} \wedge \ldots \wedge d z_{k+1}}{X_{1} \ldots X_{k+1}}\right]=B B(\mathcal{G}, \varphi ; p)
$$

By definition of the complex number $B B(\mathcal{G}, \varphi ; p)$, see (4.1), one has

$$
\begin{aligned}
B B(\mathcal{G}, \varphi ; p) & =\left(\frac{1}{2 \pi i}\right)^{k+1} \int_{L_{p}} \varphi_{\alpha}(\widetilde{\theta}, \widetilde{K}) \\
& =\left.\left(\frac{1}{2 \pi i}\right)^{k+1} \int_{L_{p}} \varphi_{\alpha}(\theta, K)\right|_{H} \\
& =\left(\frac{1}{2 \pi i}\right)^{k+1} \int_{L_{p}} \varphi_{\alpha}(\theta, K)=B B(\mathcal{F}, \varphi, Z) .
\end{aligned}
$$

Corollary 4.0.10 Considering the notations of Theorem 4.0.9, we have

$$
\operatorname{Res}(\mathcal{F}, \varphi, Z)=\operatorname{Res}_{p}\left[\varphi(J X) \frac{d z_{1} \wedge \ldots \wedge d z_{k+1}}{X_{1} \ldots X_{k+1}}\right][Z]
$$

where $[Z]$ denotes the fundamental class of Z and $\operatorname{Res}_{p}\left[\varphi(J X) \frac{d z_{1} \wedge \ldots \wedge d z_{k+1}}{X_{1} \ldots X_{k+1}}\right]$ denotes the Grothendieck residue of \mathcal{G} at p.

Example 4.0.11 Recall the example 4.0.5, of the logarithmic foliation \mathcal{F} on \mathbb{P}^{3}. In local coordinates $\left\{\mathbb{C}^{3},(x, y, z)\right\}$, the singular set of \mathcal{F} has one component Z with 3 irreducible components Z_{1}, Z_{2}, Z_{3}. The Corollary 4.0.4 affirms that $B B\left(\mathcal{F}, c_{1}^{2} ; Z_{i}\right)=0$, for $i=1,2$, 3 . We will see this by applying the Corollary 4.0.10.

In fact, by Corollary 4.0.9, we have $B B\left(\mathcal{F}, c_{1}^{2} ; Z_{i}\right)=\operatorname{Res}_{c_{1}^{2}}\left(\mathcal{G} ; p_{i}\right)$, where \mathcal{G} is a foliation on D_{i} with D_{i} a 2-disc cutting transversally Z_{i}.

Consider D_{1} given by $\{z=1\}$ then, we have

$$
\left.\omega\right|_{D_{1}}=: \omega_{1}=y d x+x d y \quad \text { with dual vector field } \quad X_{1}=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y} .
$$

Then, $D_{1} \cap Z_{1}=\left\{p_{1}=(0,0,1)\right\}$. Now, a straightforward calculation shows that

$$
J X_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \text { then, } \quad J X_{1}\left(p_{1}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Thus,

CHAPTER 4. DETERMINATION OF BAUM-BOTT RESIDUES OF THE FOLIATIONS 56

$$
B B\left(\mathcal{F}, c_{1}^{2} ; Z_{1}\right)=\operatorname{Res}_{c_{1}^{2}}\left(\mathcal{G} ; p_{1}\right)=\frac{c_{1}^{2}\left(J X_{1}\left(p_{1}\right)\right)}{\operatorname{det}\left(J X_{1}\left(p_{1}\right)\right)}=0 .
$$

The same holds for Z_{2} and Z_{3}.

The following example is due to D . Cerveau and A . Lins Neto, see [8]. It originates from the so-called exceptional component of the space of codimension one holomorphic foliations of degree 2 of \mathbb{P}^{n}.

Example 4.0.12 Consider \mathcal{F} be a holomorphic foliation of codimension one on \mathbb{P}^{3}, given locally by the 1-form

$$
\omega=z\left(2 y^{2}-3 x\right) d x+z(3 z-x y) d y-\left(x y^{2}-2 x^{2}+y z\right) d z .
$$

The singular set of this foliation has one connect component, denoted by Z, with 3 irreducible components, given by:

1) the twisted cubic $\Gamma: \quad y \longmapsto\left(2 / 3 y^{2}, y, 2 / 9 y^{3}\right)$
2) the quadric $Q: \quad y \longmapsto\left(y^{2} / 2, y, 0\right)$
3) the line $L: \quad y \longmapsto(0, y, 0)$.

We consider the 2-plane H given by $\{y=1\}$ and we do the restriction of \mathcal{F} to H. We have an one-dimensional holomorphic foliation, denoted by \mathcal{G}, given by the 1-form on H

$$
\widetilde{\omega}=(2 z-3 x z) d x+\left(2 x^{2}-x-z\right) d z
$$

with dual vector field

$$
X=\left(2 x^{2}-x-z\right) \frac{\partial}{\partial x}+(-2 z+3 x z) \frac{\partial}{\partial z}
$$

The singular set of \mathcal{G} is given by

$$
S(X)=\left\{p_{1}=(2 / 3,1,2 / 9) ; p_{2}=(1 / 2,1,0) ; p_{3}=(0,1,0)\right\} .
$$

We know how to calculate the Grothendieck residue of the foliation \mathcal{G}

CHAPTER 4. DETERMINATION OF BAUM-BOTT RESIDUES OF THE FOLIATIONS 57

$$
\begin{aligned}
& \operatorname{Res}_{c_{1}^{2}}\left(\mathcal{G} ; p_{1}\right)=\frac{c_{1}^{2}\left(J X\left(p_{1}\right)\right)}{\operatorname{det}\left(J X\left(p_{1}\right)\right)}=\frac{25}{6} \\
& \operatorname{Res}_{c_{1}^{2}}\left(\mathcal{G} ; p_{2}\right)=\frac{c_{1}^{2}\left(J X\left(p_{2}\right)\right)}{\operatorname{det}\left(J X\left(p_{2}\right)\right)}=-\frac{1}{2} \\
& \operatorname{Res}_{c_{1}^{2}}\left(\mathcal{G} ; p_{3}\right)=\frac{c_{1}^{2}\left(J X\left(p_{3}\right)\right)}{\operatorname{det}\left(J X\left(p_{3}\right)\right)}=\frac{9}{2} .
\end{aligned}
$$

Therefore, we get

$$
\begin{aligned}
\operatorname{Res}_{c_{1}^{2}}(\mathcal{F} ; Z) & =\operatorname{Res}_{c_{1}^{2}}\left(\mathcal{G} ; p_{1}\right)[\Gamma]+\operatorname{Res}_{c_{1}^{2}}\left(\mathcal{G} ; p_{2}\right)[Q]+\operatorname{Res}_{c_{1}^{2}}\left(\mathcal{G} ; p_{3}\right)[L] \\
& =\frac{25}{6}[\Gamma]+\left(\frac{-1}{2}\right)[Q]+\frac{9}{2}\left(\mathcal{G} ; p_{3}\right)[L],
\end{aligned}
$$

where $[\Gamma]$ denotes de fundamental class of the component Γ. By Baum-Bott theorem

$$
\begin{gathered}
c_{1}^{2}\left(\mathcal{N}_{\mathcal{F}}\right) \frown\left[\mathbb{P}^{3}\right]=\operatorname{Res}_{c_{1}^{2}}(\mathcal{F} ; Z) \\
(2+\operatorname{deg}(\mathcal{F}))^{2} h^{2}=\operatorname{Res}_{c_{1}^{2}}\left(\mathcal{G} ; p_{1}\right)[\Gamma]+\operatorname{Res}_{c_{1}^{2}}\left(\mathcal{G} ; p_{2}\right)[Q]+\operatorname{Res}_{c_{1}^{2}}\left(\mathcal{G} ; p_{3}\right)[L] \\
16 h^{2}=\frac{25}{6}[\Gamma]+\left(\frac{-1}{2}\right)[Q]+\frac{9}{2}\left(\mathcal{G} ; p_{3}\right)[L],
\end{gathered}
$$

where h represent the hyperplane class. This exemple was considered by M. Soares in [24] with another calculations.

The next example is very import, since we can use the Theorem 4.0.9 but we cannot use the Bott's Theorem in [3, Theorem 3, pg 285]. This confirms that our result is more general than Bott's result.

Example 4.0.13 We recall the logarithmic foliation \mathcal{F} on \mathbb{P}^{3} with homogeneous coordinates $[X, Y, Z, T]$, see examples 4.0.11 and 4.0.5, given locally by the following 1 -form in the chart $\{T=1\}$.

$$
\omega=y z d x+x z d y+x y d z .
$$

If we pull-back ω by the biholomorphism

$$
\begin{array}{rccc}
\varphi: & \mathbb{P}^{3} & \longrightarrow & \mathbb{C}^{3} \\
& {[X: Y: Z: T]} & \longmapsto & (X / T, Y / T, Z / T)=(x, y, z)
\end{array}
$$

CHAPTER 4. DETERMINATION OF BAUM-BOTT RESIDUES OF THE FOLIATIONS 58

we have the forms that defines globally \mathcal{F} in homogeneous coordinates

$$
\widetilde{\omega}=Y Z T d X+X Z T d Y+X Y T d Z-3 X Y Z d T
$$

The singular set of \mathcal{F} is the union of the lines $Z_{1}, Z_{2}, Z_{3}, Z_{4}=\{T=X=0\}, Z_{5}=\{T=$ $Y=0\}$ and $Z_{6}=\{T=X=0\}$. Note that $\left.d \omega\right|_{Z_{i}}$ is nowhere vanishing for $i=4,5,6$. We can use the process of the Theorem 4.0.9 to computing the residue of these components.

For $Z_{4}=\{X=T=0\}$ we can consider the local chart $U_{y}=\{Y=1\}$. Then, we have,

$$
\omega_{y}:=\left.\widetilde{\omega}\right|_{U_{y}}=z t d x+x t d z-3 x z d t .
$$

Take, a 2-disc transversal to this component, for example, $D_{2}=\{z=1\}$.

$$
\omega_{2}:=\left.\omega_{y}\right|_{D_{2}}=t d x-3 x d t
$$

The dual vector field is $X_{2}=-3 x \frac{\partial}{\partial x}-t \frac{\partial}{\partial t}$ with singularity $Z_{4} \cap D_{2}=\left\{(0,1,0)=: p_{4}\right\}$.

$$
J X_{2}\left(p_{4}\right)=\left(\begin{array}{cc}
-3 & 0 \\
0 & -1
\end{array}\right)
$$

then, $\operatorname{Res}_{c_{1}^{2}}\left(\mathcal{G} ; p_{4}\right)=B B\left(\mathcal{F}, c_{1}^{2} ; Z_{4}\right)=\frac{c_{1}^{2}\left(J X_{2}\right)\left(p_{4}\right)}{\operatorname{det}\left(J X_{2}\right)\left(p_{4}\right)}=\frac{16}{3}$.
An analogous calculation shows that

$$
\begin{aligned}
& \operatorname{Res}_{c_{1}^{2}}\left(\mathcal{G} ; p_{5}\right)=B B\left(\mathcal{F}, c_{1}^{2} ; Z_{5}\right)=\frac{16}{3} \\
& \operatorname{Res}_{c_{1}^{2}}\left(\mathcal{G} ; p_{6}\right)=B B\left(\mathcal{F}, c_{1}^{2} ; Z_{6}\right)=\frac{16}{3} .
\end{aligned}
$$

Therefore, Theorem 4.0.6 and Theorem 4.0.9 combine to imply

$$
c_{1}^{2}\left(\mathcal{N}_{\mathcal{F}}\right) \frown\left[\mathbb{P}^{3}\right]=\sum_{i=1}^{6} B B\left(\mathcal{F}, c_{1}^{2} ; Z_{i}\right)\left[Z_{i}\right]
$$

CHAPTER 4. DETERMINATION OF BAUM-BOTT RESIDUES OF THE FOLIATIONS 59

$$
\begin{gathered}
(2+\operatorname{deg}(\mathcal{F}))^{2} h^{2}=\frac{16}{3}\left[Z_{4}\right]+\frac{16}{3}\left[Z_{5}\right]+\frac{16}{3}\left[Z_{6}\right] \\
16 h^{2}=\frac{16}{3}\left[Z_{4}\right]+\frac{16}{3}\left[Z_{5}\right]+\frac{16}{3}\left[Z_{6}\right],
\end{gathered}
$$

where h represents the hyperplane class.

Note that our result in Theorem 4.0.9 generalizes the Bott Theorem, because if we consider the hypothesis in [3], the Theorem 4.0.9 provides the Theorem 3 in [3].

Let \mathcal{F} be a holomorphic foliation on M of codimension k. We have that, in general, a connected irreducible component Z of $\operatorname{Sing}_{k+1}(\mathcal{F})$ comes endowed with a filtration. For given $p \in Z$ let us choose holomorphic vector fields $X_{1}, \ldots X_{s}$ defined on an open neighborhood U_{p} of $p \in M$ and such that for all $x \in U_{p}$, the germs at x of the holomorphic vector fields $X_{1}, \ldots X_{s}$ are in \mathcal{F}_{x} and span \mathcal{F}_{x} as a \mathcal{O}_{x}-module.

Define a subspace $V_{p}(\mathcal{F}) \subset T_{p} M$ by letting $V_{p}(\mathcal{F})$ be the subspace of $T_{p} M$ spanned by $X_{1}(p), \ldots X_{s}(p)$. We have

$$
Z^{(i)}=\left\{p \in Z ; \operatorname{dim} V_{p}(\mathcal{F}) \leq n-k-i\right\} \text { for } i=1, \ldots, n-k
$$

Then,

$$
Z \supseteq Z^{(1)} \supseteq Z^{(2)} \supseteq \ldots \supseteq Z^{(n-k)}
$$

is a filtration of Z.

If we assume that

$$
\operatorname{Codim} Z=k+1 \text { and } \operatorname{Codim} Z^{(2)}<k+1
$$

we have
Corollary 4.0.14 (3, Theorem 3, pg 285) Let \mathcal{F} be a holomorphic foliation of codimension k on M. Then,

$$
\varphi\left(\mathcal{N}_{\mathcal{F}}\right)=\sum_{Z} B B(\mathcal{F}, \varphi ; Z)[Z]
$$

where the sum is done over all irreducible components of $\operatorname{Sing}_{k+1}(\mathcal{F})$. Then $\alpha_{*}(B B(\mathcal{F}, \varphi ; Z)[Z])$
is the residue of \mathcal{F} in Z and moreover

$$
B B(\mathcal{F}, \varphi ; Z)=\operatorname{Res}_{\varphi}(\mathcal{G} ; p)
$$

with $\operatorname{Res}_{\varphi}(\mathcal{G} ; p)$ representing the Grothendieck residue at pof the foliation \mathcal{G}, i.e., of the restriction of the foliation \mathcal{F} on a $(k+1)$ - disc H with $p=Z \cap H$.

Bibliography

[1] Abate, M. \& Braccii, F. \& Tovena, F. Index theorems for holomorphic maps and foliations, Indiana Univ. Math. J. 57 (2008), 2999-3048.
[2] Baum, P. \& Bott, R. On the zeroes of meromorphic vector fields, Essays on Topology and Related Topics. Mémoires dédiés à Georges de Rham, Springer, Berlin, 1970, 29-47.
[3] Baum, P. \& Bott, R. Singularities of holomorphic foliations, J. Differential Geom. 7(1972), 279-342.
[4] Brasselet, J.-P. \& Seade, J. \& Suwa, T. Vector fields on singular varieties, Lecture Notes in Mathematics, 1987. Springer-Verlag, Berlin, 2009.
[5] Brasselet, J.-P. \& Suwa T. Nash residues of singular holomorphic foliations, Asian J. Math., 4 (2000), 37-50.
[6] Brunella, M. \& Perrone C. Exceptional singularities of codimension one holomorphic foliations, Publicacions Matemàtiques 55 (2011), 295-312.
[7] Calvo-Andrade, O. \& Corrêa, M. \& Fernandez-Perez, A. Higher codimensional foliations with Kupka singularities, http://arxiv.org/abs/1408.7020.
[8] Cerveau, D. \& Lins Neto, A. Irreducible components of the space of holomorphic foliations of degree two in CP(n), Ann. Math. 143 (1996) 577-612.
[9] Cordero, L. \& Masa, X. Characteristic classes of subfoliations, Ann. l'inst. Fourier, 31 n. 2, pp. 61-96, 1981.
[10] Corrêa, M. Algebraic integrability of holomorphic foliations and the Poincaré problem, Thesis (2010).
[11] Corrêa, M. \& Fernández Pérez A. Absolutely k-convex domains and holomorphic foliations on homogeneous manifolds, Preprint arXiv: 1403.4286v5.
[12] Corrêa, M. \& Soares, M. Inequalities for characteristic numbers of flags of distributions and foliations , Int. J. Math. 25, 1492001 (2014).
[13] Dominguez, D. Sur les classes caractéristiques des sous-feuilletages, Publ. RIMS, Kyoto Univ. 23 (1987), 813-840.
[14] Feigin, B.L. Characteristic classes of flags of foliations, Functional Anal. Appl., 9 (1975), 312-317.
[15] Hatcher, A. Algebraic topology, 2002 by Cambridge University Press.
[16] Ilori, S.A. Flag bundles, Chern class and natural lifts, Ann. Mat. Pura Appl. (4) 115 (1977), 155-167 (1978).
[17] Jouanolou, J. P. Equations de Pfaff algébriques, 1979 Lecture Notes in Mathematics, 708. Springer-Verlag, Berlin.
[18] Lehmann, D. Résidus des sous-variétés invariantes d'un feuilletage singulier, Ann. Inst. Fourier 41 (1991), 211-258.
[19] Loray, F. \& Pereira, J. V. \& Touzet, F. Singular foliations with trivial canonical class, Preprint arXiv:1107.1538.
[20] Malgrange, B. Frobenius avec singularités I. Codimension un, Inst. Haute Ètudes Sci. Publ. Math. 46(1976), 163-173.
[21] Miyaoka, Y. Deformation of a morphism along a foliations, In S. Bloch, editor, Algebraic Geometry, volume 46 of Proceedings of Symposia in pure Mathematics, pages 245-269, Providence, Rhode Island, 1985. American Mathematical Society.
[22] Mol, R.S. Flags of holomorphic foliations, An Acad Bras Cienc 83 (3) (2011), 775-786.
[23] Sertöz, S. Residues of holomorphic foliations, Compositio Math., 70 (1989), pp.227243.
[24] Soares, M. Holomorphic foliations and characteristic numbers, Comm. Contemporary Maths. 7(5) (2005), 583-596.
[25] Suwa, T. Indices of vector fields and residues of singular holomorphic foliations, Actualités Mathématiques, Hermann, Paris 1998.
[26] Suwa, T. Residues of complex analytic foliations singularities, J. Math. Soc. Japan., 36 (1984), 37-45.
[27] Suwa, T. \& Bracci, F. Localization of characteristic classes and applications, Notes of a course given by Prof. Tatsuo Suwa in September 2001.
[28] Vishik, S. M. Singularities of analytic foliations and characteristic classes, Functional Anal. Appl. 7 (1973) 1-15.
[29] Izawa, T. Residues for non-transversality of a holomorphic map to a codimension one holomorphic foliation, J. Math. Soc. Japan Vol. 59, N ${ }^{\circ} 3$ (2007) pg. 899-910.

