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que são as pessoas mais importantes para mim e sempre fizeram o posśıvel e
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que depositou em mim desde a nossa primeira conversa. Sem dúvida, foi

uma das pessoas responsáveis pelo sucesso deste trabalho.
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Abstract

The purpose of this work is to investigate some questions about the initial

value problem (IVP) for the inhomogeneous nonlinear Schrödinger equation

(INLS)

iut + ∆u+ λ|x|−b|u|αu = 0,

where λ = ±1, α and b > 0.

First, we consider the local and global well-posedness of the (IVP) for

the (INLS) with initial data in Hs(RN), 0 ≤ s ≤ 1. We study this problem

using the standard fixed point argument based on the Strichartz estimates

related to the linear problem. These results are showed in Chapter 2.

In the sequel, in Chapter 3, we study scattering for the (INLS) in H1(RN)

for the focusing case (λ = 1), with radial initial data. The method employed

here is parallel to the approach developed by Kenig-Merle [26] in their study

of the energy-critical NLS, Roudenko-Holmer [23] and Fang-Xie-Cazenave

[11] (see also Guevara [22]) for the mass-supercritical and energy-subcritical

NLS.

Keywords

Global well-posedness. Inhomogeneous nonlinear Schrödinger. Local

well-posedness. Scattering.
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Introduction

In this work, we study the initial value problem (IVP), also called the Cauchy

problem for the inhomogenous nonlinear Schrödinger equation (INLS) i∂tu+ ∆u+ λ|x|−b|u|αu = 0, t ∈ R, x ∈ RN ,

u(0, x) = u0(x),
(1)

where u = u(t, x) is a complex-valued function in space-time R×RN , λ = ±1

and α, b > 0. The equation is called “focusing INLS” when λ = +1 and

“defocusing INLS” when λ = −1.

The case b = 0 is the classical nonlinear Schrödinger equation (NLS) and

is named in honor of the Austrian physicist Erwin Schrödinger who was one

of the first researchers of Quantum Mechanics. It is a prototypical dispersive

nonlinear partial differential equation (PDE) that has been derived in many

areas of physics and analyzed mathematically for over 40 years. It appears

as a model in hydrodynamics, nonlinear optics, quantum condensates, heat

pulses in solids and various other nonlinear instability phenomena, see, for

instance, Newell [36] and Scott-Chu-McLaughlin [38].

In the end of the last century, it was suggested that stable high power

propagation can be achieved in a plasma by sending a preliminary laser beam

that creates a channel with a reduced electron density, and thus reduces the

nonlinearity inside the channel, see Gill [18] and Liu-Tripathi [34]. In this

case, the beam propagation can be modeled by the inhomogeneous nonlinear
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Schrödinger equation in the following form:

i∂tu+ ∆u+K(x)|u|αu = 0.

This model has been investigated by several authors, see, for instance, Merle

[35] and Raphaël-Szeftel [37], for k1 < K(x) < k2 with k1, k2 > 0, and Fibich-

Wang [13], for K(ε|x|) with ε small and K ∈ C4(RN) ∩ L∞(RN). However,

in these works K(x) is bounded which is not verified in our case.

Notice that if u(t, x) is solution of (1) so is uδ(t, x) = δ
2−b
α u(δ2t, δx), with

initial data u0,δ(x) for all δ > 0. Computing the homogeneous Sobolev norm

we get

‖u0,δ‖Ḣs = δs−
N
2

+ 2−b
α ‖u0‖Ḣs .

Thus, the scale-invariant Sobolev norm is Hsc(RN), where sc = N
2
− 2−b

α

(critical Sobolev index). Note that, if sc = 0 (alternatively α = 4−2b
N

) the

problem is known as the mass-critical or L2-critical; if sc = 1 (alternatively

α = 4−2b
N−2

) it is called energy-critical or Ḣ1-critical, finally the problem is

known as mass-supercritical and energy-subcritical if 0 < sc < 1. That is, 4−2b
N

< α <∞, N = 1, 2

4−2b
N

< α < 4−2b
N−2

, N ≥ 3.
(2)

On the other hand, the inhomogeneous nonlinear Schrödinger equa-

tion has the following conserved quantities: Mass ≡ M [u(t)] = M [u0] and

Energy ≡ E[u(t)] = E[u0], where

M [u(t)] =

∫
RN
|u(t, x)|2dx (3)

and

E[u(t)] =
1

2

∫
RN
|∇u(t, x)|2dx− λ

α + 2

∥∥|x|−b|u|α+2
∥∥
L1
x
. (4)

Moreover, since

‖uδ‖L2
x

= δ−sc‖u‖L2
x
, ‖∇uδ‖L2

x
= δ1−sc‖∇u‖L2

x
(5)
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and ∥∥|x|−b|uδ|α+2
∥∥
L1
x

= δ2(1−sc)
∥∥|x|−b|u|α+2

∥∥
L1
x
,

the following quantities enjoy a scaling invariant property, indeed

E[uδ]
scM [uδ]

1−sc = E[u]scM [u]1−sc , ‖∇uδ‖scL2
x
‖uδ‖1−sc

L2
x

= ‖∇u‖scL2
x
‖u‖1−sc

L2
x
.

(6)

These quantities were introduced in [23] in the context of mass-supercritical

and energy-subcritical NLS (equation (1) with b = 0), and they were used to

understand the dichotomy between blowup/global regularity.

By Duhamel’s Principle the solution of (1) is equivalent to

u(t, x) = U(t)u0(x) + iλ

∫ t

0

U(t− t′)
(
|x|−b|u(t′, x)|αu(t′, x)

)
dt′, (7)

where U(t) denotes the unitary group associated with the linear problem

i∂tu+ ∆u = 0, with initial data u0, defined by

U(t)u0 = u0 ∗ (e−it|ξ|
2

)∨.

Concerning the local and global well-posedness question, several results

have been obtained for (1). Hereafter, we refer to the expression “well-

posedness theory” in the sense of Kato according to the following definition.

Definition 0.1. We say that the IVP (1) is locally well-posed if for any u0 ∈

Hs(RN), there exist a time T > 0, a closed subspaceX of C([−T, T ];Hs(RN))

and a unique solution u such that

1. u is solution of the integral equation (7),

2. u ∈ X (Persistence),

3. the solution varies continuously depending upon the initial data (Con-

tinuous Dependence).
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Global well-posedness requires that the same properties hold for all time

T > 0.

The well-posedness theory for the INLS equation (1) was studied for

many authors in recent years. Let us briefly recall the best results available

in the literature. Cazenave [2] studied the well-posedness in H1(RN) using

an abstract theory. To do this, he analyzed (1) in the sense of distributions,

that is, i∂tu + ∆u + |x|−b|u|αu = 0 in H−1(RN) for almost all t ∈ I. There-

fore, using some results of Functional Analysis and Semigroups of Linear

Operators, he proved that it is appropriate to seek solutions of (1) satisfying

u ∈ C
(
[0, T );H1(RN)

)
∩ C1

(
[0, T );H−1(RN)

)
for some T > 0.

It was also proved that for the defocusing case (λ = −1) any local solution

of the IVP (1) with u0 ∈ H1(RN) extends globally in time.

Other authors like Genoud-Stuart [15] (see also references therein) also stud-

ied this problem for the focusing case (λ = 1). Using the abstract theory

developed by Cazenave [2], they showed that the IVP (1) is locally well-posed

in H1(RN) if 0 < α < 2∗, where

2∗ :=

 4−2b
N−2

N ≥ 3,

∞ N = 1, 2.
(8)

Recently, using some sharp Gagliardo-Nirenberg inequalities, Genoud [14]

and Farah [12] extended for the focusing INLS equation (1) some global

well-posedness results obtained, respectively, by Weinstein [42] for the L2-

critical NLS equation and by Holmer-Roudenko [23] for the L2-supercritical

and H1-subcritical case. These authors proved that the solution u of the

Cauchy problem (1) is globally defined in H1(RN) quantifying the smallness

condition in the initial data.

However, the abstract theory developed by Cazenave and later used by

Genoud-Stuart [15] to show well-posedness for (1), does not give sufficient
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tools to study other interesting questions, for instance, scattering and blow

up investigated by Kenig-Merle [26], Duyckaerts-Holmer-Roudenko [10] and

others, for the NLS equation. To study these problems, the authors rely on

the Strichartz estimates for NLS equation and the classical fixed point argu-

ment combining with the concentration-compactness and rigidity techniques.

Inspired by these papers and working toward the proof of scattering for

the INLS equation, our first main goal here is to establish local and global re-

sults for the Cauchy problem (1) in Hs(RN), with 0 ≤ s ≤ 1, applying Kato’s

method. Indeed, we construct a closed subspace of C
(
[−T, T ];Hs(RN)

)
such

that the operator defined by

G(u)(t) = U(t)u0 + iλ

∫ t

0

U(t− t′)|x|−b|u(t′)|αu(t′)dt′, (9)

is stable and contractive in this space, thus by the contraction mapping

principle we obtain a unique fixed point. The fundamental tools to prove

these results are the classic Strichartz estimates satisfied by the solution of

the linear Schrödinger equation. These results are presented in Chapter 2.

In the sequel, we consider the scattering problem for (1) in H1(RN).

First, we need the following definition

Definition 0.2. A global solution u(t) to the Cauchy problem (1) scatters

forward in time in H1(RN), if there exists φ+ ∈ H1(RN) such that

lim
t→+∞

‖u(t)− U(t)φ+‖H1
x

= 0.

Also, we say that u(t) scatters backward in time if there exists φ− ∈ H1(RN)

such that

lim
t→−∞

‖u(t)− U(t)φ−‖H1
x

= 0.

Similarly, we can define scattering in Hs(RN).
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For the 3D defocusing NLS equation, scattering has been established for

all H1 solutions (regardless of size) by Ginibre-Velo [21] using a Morawetz

inequality. This proof was simplified by Colliander-Keel-Staffilani-Takaoka-

Tao [7] using a new interaction Morawetz inequality they discovered. Other

authors like Killip-Tao-Visan [30], Tao-Visan-Zhang [40] and Killip-Visan-

Zhang [32] extended this result for arbitrary dimension N ≥ 1, showing

scattering for the L2-critical NLS in the defocusing case.

Regarding the focusing case, Kenig-Merle [26] developed a powerful

method to study scattering and blow-up for the energy-critical NLS equation,

which is commonly referred as the concentration-compactness and rigidity

technique. The concentration-compactness method previously appeared in

the context of the Wave equation in Gérard [16] and for the NLS equation

in Keraani [28]. The rigidity argument (estimates on a localized variance)

is the technique introduced by Merle in mid 1980’s. Years later, Killip and

Visan [31] extended Kenig-Merle’s result for N ≥ 5. Several authors also

applied the concentration compactness and rigidity approach to study the

L2-supercritical and H1-subcritical focusing NLS, see for instance [23], [10],

[22] and [11]. They showed that, if u0 ∈ H1(RN), E(u0)s
∗
cM(u0)1−s∗c <

E(Q)s
∗
cM(Q)1−s∗c and ‖∇u0‖s

∗
c

L2‖u0‖1−s∗c
L2 < ‖∇Q‖s

∗
c

L2‖Q‖1−s∗c
L2 , then the solution

u scatters in H1(RN). Here, the critical Sobolex index is given by s∗c = N
2
− 2

α

and Q is the ground state solution of the following equation

−Q+ ∆Q+ |Q|αQ = 0.

In the spirit of Holmer-Roudenko [23], we prove scattering with radial

data for the Cauchy Problem (1) in the case 0 < sc < 1, i.e. L2-supercritical

and H1-subcritical. This result is showed in Chapter 3.



Chapter 1

Preliminaries

In this first chapter, we introduce some general notations and give basic

results that will be used along the work.

1.1 Notations

• We use c to denote various constants that may vary line by line.

• Cp,q denotes a constant depending on p and q.

• Given any positive numbers a and b, the notation a . b means that

there exists a positive constant c that a ≤ cb.

• Given a set A ⊂ RN then AC = RN\A denotes the complement of A.

• Given x, y ∈ RN then x ·y denotes the inner product of x and y on RN .

• B denotes the unite ball in RN defined by B(0, 1) = {x ∈ RN : |x| ≤ 1}.

• For s ∈ R, Js and Ds denote the Bessel and the Riesz potentials of

order s, given via Fourier transform by the formulas

Ĵsf(ξ) = (1 + |ξ|2)
s
2 f̂(ξ) and D̂sf = |ξ|sf̂(ξ),
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where the Fourier transform of f(x) is given by

f̂(ξ) =

∫
RN
e−ix.ξf(x)dx.

• We denote the support of a function f , by

supp(f) = {f : RN → C : f(x) 6= 0}.

• C∞0 (RN) denotes the space of functions with continuous derivatives of

all orders and compact support in RN .

• We use ‖.‖Lp to denote the Lp(RN) norm with p ≥ 1. If necessary, we

use subscript to inform which variable we are concerned with.

1.2 Functional spaces

We start with the definition of the well-known Sobolev spaces and the mixed

“space-time” Lebesgue spaces.

Definition 1.1. Let s ∈ R, 1 ≤ p ≤ ∞. The homogeneous Sobolev space and

the inhomogeneous Sobolev space are defined, respectively, as the completion

of S(RN) with respect to the norms

‖f‖Hs,r := ‖Jsf‖Lr and ‖f‖Ḣs,r := ‖Dsf‖Lr .

If r = 2 we denoteHs,2(RN) (or Ḣs,2(RN)) simply byHs(RN) (or Ḣs(RN)).

Definition 1.2. Let 1 ≤ q, r ≤ ∞ and T > 0, the Lq[0,T ]L
r
x and LqTL

r
x spaces

are defined, respectively, by

Lq[0,T ]L
r
x =

{
f : [0, T ]× RN → C : ‖f‖Lq

[0,T ]
Lrx

=

(∫ T

0

‖f(t, .)‖qLrxdt
) 1

q

< +∞

}

LqTL
r
x =

{
f : [T,+∞)× RN → C : ‖f‖LqTLrx =

(∫ +∞

T

‖f(t, .)‖qLrxdt
) 1

q

< +∞

}
.
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Remark 1.3. In the case when I = [0, T ] and we restrict the x-integration

to a subset A ⊂ RN then the mixed norm will be denoted by ‖f‖LqILrx(A).

In the same way, we also define

LqIH
s
x =

{
f : I × RN → C : ‖f‖LqIHs

x
=

(∫
I

‖f(t, .)‖qHs
x
dt

) 1
q

< +∞

}
,

where s ∈ R.

Remark 1.4. When f(t, x) is defined for every time t ∈ R, we shall consider

the notations ‖f‖LqtLrx and ‖f‖LqtHs
x
.

Next we recall some Strichartz norms. We begin with the following

definitions:

Definition 1.5. The pair (q, r) is called L2-admissible if it satisfies the con-

dition
2

q
=
N

2
− N

r
,

where 
2 ≤ r ≤ 2N

N−2
if N ≥ 3,

2 ≤ r < +∞ if N = 2,

2 ≤ r ≤ +∞ if N = 1.

(1.1)

Remark 1.6. We included in the above definition the improvement, due to

M. Keel and T. Tao [25], to the limiting case for Strichartz’s inequalities.

Definition 1.7. We say the pair (q, r) is Ḣs-admissible if1

2

q
=
N

2
− N

r
− s, (1.2)

1It is worth mentioning that the pair
(
∞, 2N

N−2s

)
also satisfies the relation (1.2), how-

ever, in our work we will not make use of this pair when we estimate the nonlinearity

|x|−b|u|αu.
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where 
2N
N−2s

< r ≤
(

2N
N−2

)−
if N ≥ 3,

2
1−s < r ≤

(
( 2

1−s)
+
)′

if N = 2,

2
1−2s

< r ≤ +∞ if N = 1.

(1.3)

Here, a− is a fixed number slightly smaller than a (a− = a − ε with ε > 0

small enough) and, in a similar way, we define a+. Moreover, (a+)′ is the

number such that
1

a
=

1

(a+)′
+

1

a+
, (1.4)

that is (a+)′ := a+.a
a+−a . Finally we say that (q, r) is Ḣ−s-admissible if

2

q
=
N

2
− N

r
+ s,

where 
(

2N
N−2s

)+ ≤ r ≤
(

2N
N−2

)−
if N ≥ 3,(

2
1−s

)+ ≤ r ≤
(
( 2

1+s
)+
)′

if N = 2,(
2

1−2s

)+ ≤ r ≤ +∞ if N = 1.

(1.5)

Given s ∈ R, let As = {(q, r); (q, r) is Ḣs − admissible} and (q′, r′) is

such that 1
q

+ 1
q′

= 1 and 1
r

+ 1
r′

= 1 for (q, r) ∈ As. We define the following

Strichartz norm

‖u‖S(Ḣs) = sup
(q,r)∈As

‖u‖LqtLrx

and the dual Strichartz norm

‖u‖S′(Ḣ−s) = inf
(q,r)∈A−s

‖u‖
Lq
′
t L

r′
x
.

Remark 1.8. Note that, if s = 0 then A0 is the set of all L2-admissible

pairs. Moreover, if s = 0, S(Ḣ0) = S(L2) and S ′(Ḣ0) = S ′(L2). We just

write S(Ḣs) or S ′(Ḣ−s) if the mixed norm is evaluated over R × RN . To

indicate a restriction to a time interval I ⊂ (−∞,∞) and a subset A of RN ,

we will consider the notations S(Ḣs(A); I) and S ′(Ḣ−s(A); I).
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1.3 Basic estimates

In this section we list (without proving) some well known estimates associated

to the linear Schrödinger propagator.

Lemma 1.9. If t 6= 0, 1
p

+ 1
p′

= 1 and p′ ∈ [1, 2], then U(t) : Lp
′
(RN) →

Lp(RN) is continuous and

‖U(t)f‖Lpx . |t|
−N

2
( 1
p′−

1
p

)‖f‖Lp′ .

Proof. See Linares-Ponce [33, Lemma 4.1].

Lemma 1.10. (Sobolev embedding) Let s ∈ (0,+∞) and 1 ≤ p < +∞.

(i) If s ∈
(

0, N
p

)
then Hs,p(RN) is continuously embedded in Lr(RN) where

s = N
p
− N

r
. Moreover,

‖f‖Lr ≤ c‖Dsf‖Lp . (1.6)

(ii) If s = N
2

then Hs(RN) ⊂ Lr(RN) for all r ∈ [2,+∞). Furthermore,

‖f‖Lr ≤ c‖f‖Hs . (1.7)

Proof. See Bergh-Löfström [1, Theorem 6.5.1] (see also Linares-Ponce [33,

Theorem 3.3] and Demenguel-Demenguel [9, Proposition 4.18]).

Remark 1.11. Using (i), with p = 2, we have that Hs(RN), with s ∈ (0, N
2

),

is continuously embedded in Lr(RN) and

‖f‖Lr ≤ c‖f‖Hs , (1.8)

where r ∈ [2, 2N
N−2s

].
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Lemma 1.12. (Fractional product rule) Let s ∈ (0, 1] and 1 < r, r1, r2, p1, p2 <

+∞ are such that 1
r

= 1
ri

+ 1
pi

for i = 1, 2. Then,

‖Ds(fg)‖Lr ≤ c‖f‖Lr1‖Dsg‖Lp1 + c‖Dsf‖Lr2‖g‖Lp2 .

Proof. See Kenig-Ponce-Vega [27].

Lemma 1.13. (Fractional chain rule) Suppose G ∈ C1(C), s ∈ (0, 1],

and 1 < r, r1, r2 < +∞ are such that 1
r

= 1
r1

+ 1
r2

. Then,

‖DsG(u)‖Lr ≤ c‖G′(u)‖Lr1‖Dsu‖Lr2 .

Proof. See Kenig-Ponce-Vega [27].

The main tool to show the local and global well-posedness are the well-

known Strichartz estimates. See for instance Linares-Ponce [33] and Kato

[24] (see also Holmer-Roudenko [23] and Guevara [22]).

Lemma 1.14. The following statements hold.

(i) (Linear estimates).

‖U(t)f‖S(L2) ≤ c‖f‖L2 , (1.9)

‖U(t)f‖S(Ḣs) ≤ c‖f‖Ḣs . (1.10)

(ii) (Inhomogeneous estimates).∥∥∥∥∫
R
U(t− t′)g(., t′)dt′

∥∥∥∥
S(L2)

+

∥∥∥∥∫ t

0

U(t− t′)g(., t′)dt′
∥∥∥∥
S(L2)

≤ c‖g‖S′(L2),

(1.11)∥∥∥∥∫ t

0

U(t− t′)g(., t′)dt′
∥∥∥∥
S(Ḣs)

≤ c‖g‖S′(Ḣ−s). (1.12)

The relations (1.11) and (1.12) will be very useful to perform estimates

on the nonlinearity |x|−b|u|αu.

We end this section with three important remarks.
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Remark 1.15. Let F (x, z) = |x|−b|z|αz, and f(z) = |z|αz. The complex

derivative of f is

fz(z) =
α + 2

2
|z|α and fz̄(z) =

α

2
|z|α−2z2.

For z, w ∈ C, we have

f(z)− f(w) =

∫ 1

0

[
fz(w + θ(z − w))(z − w) + fz̄(w + θ(z − w))(z − w)

]
dθ.

Thus,

|F (x, z)− F (x,w)| . |x|−b (|z|α + |w|α) |z − w|. (1.13)

Now we are interested in estimating ∇ (F (x, z)− F (x,w)). A simple

computation gives

∇F (x, z) = ∇(|x|−b)f(z) + |x|−b∇f(z) (1.14)

where

∇f(z) = f ′(z)∇z = fz(z)∇z + fz̄(z)∇z.

First we estimate |∇(f(z)− f(w))|. Note that

∇(f(z)− f(w)) = f ′(z)(∇z −∇w) + (f ′(z)− f ′(w))∇w. (1.15)

So, since (the proof of the following estimate can be found in Cazenave-Fang-

Han [3, Remark 2.3])

|fz(z)− fz(w)| .

 (|z|α−1 + |w|α−1)|z − w| if α > 1,

|z − w|α if 0 < α ≤ 1

and

|fz̄(z)− fz̄(w)| .

 (|z|α−1 + |w|α−1)|z − w| if α > 1,

|z − w|α if 0 < α ≤ 1,
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we get by (1.15)

|∇(f(z)− f(w))| . |z|α|∇(z − w)|+ (|z|α−1 + |w|α−1)|∇w||z − w| if α > 1

and

|∇(f(z)− f(w))| . |z|α|∇(z − w)|+ |z − w|α|∇w| if 0 < α ≤ 1.

Therefore, by (1.14), (1.13) and the two last inequalities we obtain

|∇ (F (x, z)− F (x,w))| . |x|−b−1(|z|α+|w|α)|z−w|+|x|−b|z|α|∇(z−w)|+M,

(1.16)

where

M .


|x|−b (|z|α−1 + |w|α−1) |∇w||z − w| if α > 1

|x|−b|∇w||z − w|α if 0 < α ≤ 1.

Remark 1.16. Let B = B(0, 1) = {x ∈ RN ; |x| ≤ 1} and b > 0. If x ∈ BC

then |x|−b < 1 and so

∥∥|x|−bf∥∥
Lrx
≤ ‖f‖Lrx(BC) +

∥∥|x|−bf∥∥
Lrx(B)

.

The next remark provides a condition for the integrability of |x|−b on B

and BC .

Remark 1.17. Note that if N
γ
− b > 0 then ‖|x|−b‖Lγ(B) < +∞. Indeed∫

B

|x|−γbdx = c

∫ 1

0

r−γbrN−1dr = c1 r
N−γb∣∣1

0
< +∞ if

N

γ
− b > 0.

Similarly, we have that ‖|x|−b‖Lγ(BC) is finite if N
γ
− b < 0.



Chapter 2

Well-posedness theory

In this chapter, we study the well-posedness of the Cauchy problem (1). We

obtain local and global results for initial data in Hs(RN), with 0 ≤ s ≤ 1.

To this end, we use a contraction mapping argument based on the Strichartz

estimates given in Lemma 1.14.

2.0.1 Introduction

As mentioned before, our goal here lies in establishing local and global results

for the Cauchy problem (1) in Hs(RN) using the Kato’s method. That is, we

construct a closed subspace of C
(
[−T, T ];Hs(RN)

)
such that the integral

equation (9) is stable and contractive in this space. Then by the Banach

Fixed Point Theorem we obtain a unique fixed point, which is the solution

of the integral equation (7).

Applying this technique in the case b = 0 (classical nonlinear Schrödinger

equation), the IVP (1) has been extensively studied over the three decades.

The L2-theory was obtained by Y. Tsutsumi [41] in the case 0 < α < 4
N

. The

H1-subcritical case was studied by Ginibre-Velo [19]-[20] and Kato [24] (these

papers also consider nonlinearities much more general than a pure power).
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Later, Cazenave-Weissler [4] treated the L2-critical case and the H1-critical

case.

We summarize the well known well-posedness theory for the NLS equa-

tion in the following theorem (we refer, for instance, to Linares-Ponce [33]

for a proof of these results).

Theorem 2.1. Consider the Cauchy problem for the NLS equation ((1) with

b = 0). Then, the following statements hold

1. If 0 < α < 4
N

, then the IVP (1) with b = 0 is locally and globally

well posed in L2(RN). Moreover if α = 4
N

, it is globally well posed in

L2(RN) for small initial data.

2. The IVP (1) with b = 0 is locally well posed in H1(RN) if 0 < α ≤ 4
N−2

for N ≥ 3 or 0 < α < +∞, for N = 1, 2. Also, it is globally well-posed

in H1(RN) if

(i) λ < 0,

(ii) λ > 0 and 0 < α < 4
N

,

(iii) λ > 0, 4
N
< α < 4

N−2
and small initial data,

(iv) λ > 0, α = 4
N−2

and small initial data.

In addition, Cazenave-Weissler [5] and recently Cazenave-Fang-Han [3] showed

that the IVP for the NLS is locally well posed in Hs(RN) if 0 < α ≤ 4
N−2s

and 0 < s < N
2

, moreover the local solution extends globally in time for small

initial data.

Our main interest in this chapter is to prove similar results for the INLS

equation. First, we show local-well posedness in Hs(RN), with 0 ≤ s ≤ 1.

These results are presented in Section 2.2. Next, in Section 2.3, we establish

the global theory.
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2.1 Local well posedness

In this section we give the precise statements of our main local results. First,

we consider the local well posedness of the IVP (1) in L2(RN).

Theorem 2.2. Let 0 < α < 4−2b
N

and 0 < b < min{2, N}, then for all

u0 ∈ L2(RN) there exist T = T (‖u0‖L2 , N, α) > 0 and a unique solution u of

the integral equation (7) satisfying

u ∈ C
(
[−T, T ];L2(RN)

)
∩ Lq

(
[−T, T ];Lr(RN)

)
,

for any (q, r) L2-admissible. Moreover, the continuous dependence upon the

initial data holds.

It is worth mentioning that the last theorem is an extension of the result

by Tsutsumi [41] (which asserts local well-posedness for the NLS equation,

(1) with b = 0, when 0 < α < 4
N

) to the INLS model.

Next, we treat the local well posedness in Hs(RN) for 0 < s ≤ 1. Before

stating the theorem, we define the following numbers

2̃ :=

 N
3

if N = 1, 2, 3,

2 if N ≥ 4
and αs :=

 4−2b
N−2s

if s < N
2
,

+∞ if s = N
2
.

(2.1)

Theorem 2.3. Assume 0 < α < αs, 0 < b < 2̃ and max{0, sc} < s ≤

min{N
2
, 1}. If u0 ∈ Hs(RN) then there exist T = T (‖u0‖Hs , N, α) > 0 and a

unique solution u of the integral equation (7) with

u ∈ C
(
[−T, T ];Hs(RN)

)
∩ Lq

(
[−T, T ];Hs,r(RN)

)
for any (q, r) L2-admissible. Moreover, the continuous dependence upon the

initial data holds.
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Remark 2.4. Note that α < 4−2b
N−2s

is equivalent to sc < s. On the other

hand, if 0 < α < 4−2b
N

then sc < 0, for this reason we add the restriction

s > max{0, sc} (recalling that sc = N
2
− 2−b

α
) in the above statement.

As an immediate consequence of Theorem 2.3, we have that the Cauchy

problem (1) is locally well-posed in H1(RN).

Corollary 2.5. Assume N ≥ 2, 0 < α < αs and 0 < b < 2̃. If u0 ∈ H1(RN)

then the initial value problem (1) is locally well posed and

u ∈ C
(
[−T, T ];H1(RN)

)
∩ Lq

(
[−T, T ];H1,r(RN)

)
,

for any (q, r) L2-admissible.

Remark 2.6. One important difference of the previous results and its coun-

terpart for the NLS model (see Theorem 2.1-(2)) is that we do not treat the

critical case here, i.e. α = 4−2b
N−2s

with 0 ≤ s ≤ 1 and N ≥ 3. It is still an

open problem.

Our plain is the following: Subsection 2.2.1 will be devoted to prove

Theorem 2.2 and in Subsection 2.2.2 we show Theorem 2.3 and Corollary

2.5.

2.1.1 L2-Theory

We begin with the following lemma. It provides an estimate for the INLS

model nonlinearity in the Strichartz spaces.

Lemma 2.7. Let 0 < α < 4−2b
N

and 0 < b < min{2, N}. Then,

∥∥|x|−b|u|αv∥∥
S′(L2;I)

≤ c(T θ1 + T θ2)‖u‖αS(L2;I)‖v‖S(L2;I), (2.2)

where I = [0, T ] and c, θ1, θ2 > 0.



2.1 Local well posedness 13

Proof. By Remark 1.16, we have∥∥|x|−b|u|αv∥∥
S′(L2;I)

≤ ‖|u|αv‖S′(L2(BC);I) +
∥∥|x|−b|u|αv∥∥

S′(L2(B);I)

≡ A1 + A2.

Note that in the norm A1 we do not have any singularity, so we know that

A1 ≤ cT θ1‖u‖αS(L2;I)‖v‖S(L2;I), (2.3)

where θ1 > 0. See Kato [24, Theorem 0] (also see Linares-Ponce [33, Theorem

5.2 and Corollary 5.1]).

On the other hand, we need to find an admissible pair to estimate A2.

In fact, using the Hölder inequality twice we obtain

A2 ≤
∥∥|x|−b|u|αv∥∥

Lq
′
I L

r′
x (B)

≤
∥∥∥‖|x|−b‖Lγ(B)‖u‖αLαr1x

‖v‖Lrx
∥∥∥
Lq
′
I

≤ ‖|x|−b‖Lγ(B)T
1
q1 ‖u‖α

L
αq2
I L

αr1
x
‖v‖LqILrx

≤ T
1
q1 ‖|x|−b‖Lγ(B)‖u‖αLqILrx‖v‖LqILrx ,

if (q, r) L2-admissible and
1
r′

= 1
γ

+ 1
r1

+ 1
r

1
q′

= 1
q1

+ 1
q2

+ 1
q

q = αq2 , r = αr1.

(2.4)

In order to have ‖|x|−b‖Lγ(B) < +∞ we need N
γ
> b, by Remark 1.17. Hence,

in view of (2.4) (q, r) must satisfy
N
γ

= N − N(α+2)
r

> b

1
q1

= 1− α+2
q
.

(2.5)

From the first equation in (2.5) we haveN−b−N(α+2)
r

> 0, which is equivalent

to

α <
r(N − b)− 2N

N
, (2.6)
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for r > 2N
N−b . By hypothesis α < 4−2b

N
, then setting r such that

r(N − b)− 2N

N
=

4− 2b

N
,

we get1 r = 4−2b+2N
N−b satisfying (2.6). Consequently, since (q, r) is L2-admissible

we obtain q = 4−2b+2N
N

. Next, applying the second equation in (2.5) we de-

duce
1

q1

=
4− 2b− αN
4− 2b+ 2N

,

which is positive by the hypothesis α < 4−2b
N

. Thus,

A2 ≤ cT θ2‖u‖αS(L2;I)‖v‖S(L2;I), (2.7)

where θ2 = 1
q1

. Therefore, combining (2.3) and (2.7) we prove (2.2).

Our goal now is to show Theorem 2.2.

Proof of Theorem 2.2. We define

X = C
(
[−T, T ];L2(RN)

)⋂
Lq
(
[−T, T ];Lr(RN)

)
,

for any (q, r) L2-admissible, and

B(a, T ) = {u ∈ X : ‖u‖S(L2;[−T,T ]) ≤ a},

where a and T are positive constants to be determined later. We follow

the standard fixed point argument to prove this result. It means that for

appropriate values of a, T we shall show that

G(u)(t) = Gu0(u)(t) = U(t)u0 + iλ

∫ t

0

U(t− t′)(|x|−b|u|αu)(t′)dt′ (2.8)

defines a contraction map on B(a, T ).

1Note that, since 0 < b < min{N, 2} the denominator of r is positive and r > 2N
N−b .

Moreover, by a simple computations we have 2 ≤ r ≤ 2N
N−2 if N ≥ 3, and 2 ≤ r < +∞ if

N = 1, 2, that is r satisfies (1.1). Therefore, the pair (q, r) above defined is L2-admissible.
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Without loss of generality we consider only the case t > 0. Applying

Strichartz inequalities (1.9) and (1.11), we have

‖G(u)‖S(L2;I) ≤ c‖u0‖L2 + c‖|x|−b|u|α+1‖S′(L2;I),

where I = [0, T ]. Moreover, Lemma 2.7 yields

‖G(u)‖S(L2;I) ≤ c‖u0‖L2 + c(T θ1 + T θ2)‖u‖α+1
S(L2;I)

≤ c‖u0‖L2 + c(T θ1 + T θ2)aα+1,

provided u ∈ B(a, T ). Hence,

‖G(u)‖S(L2;[−T,T ]) ≤ c‖u0‖L2 + c(T θ1 + T θ2)aα+1.

Next, choosing a = 2c‖u0‖L2 and T > 0 such that

caα(T θ1 + T θ2) <
1

4
, (2.9)

we conclude G(u) ∈ B(a, T ).

Now we prove that G is a contraction. Again using Strichartz inequality

(1.11) and (1.13), we deduce

‖G(u)−G(v)‖S(L2;I) ≤ c
∥∥|x|−b(|u|αu− |v|αv)

∥∥
S′(L2;I)

≤ c
∥∥|x|−b|u|α|u− v|∥∥

S′(L2;I)

+ c
∥∥|x|−b|v|α|u− v|∥∥

S′(L2;I)

≤ c(T θ1 + T θ2)‖u‖αS(L2;I)‖u− v‖S(L2;I)

+c(T θ1 + T θ2)‖v‖αS(L2;I)‖u− v‖S(L2;I),

where I = [0, T ]. That is,

‖G(u)−G(v)‖S(L2;I) ≤ c(T θ1 + T θ2)
(
‖u‖αS(L2;I) + ‖v‖αS(L2;I)

)
‖u− v‖S(L2;I)

≤ 2c(T θ1 + T θ2)aα‖u− v‖S(L2;I),
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provided u, v ∈ B(a, T ). Therefore, the inequality (2.9) implies that

‖G(u)−G(v)‖S(L2;[−T,T ]) ≤ 2c(T θ1 + T θ2)aα‖u− v‖S(L2;[−T,T ])

<
1

2
‖u− v‖S(L2;[−T,T ]),

i.e., G is a contraction on S(a, T ).

The proof of the continuous dependence is similar to the one given above

and it will be omitted.

2.1.2 Hs-Theory

The aim of this subsection is to prove the local well posedness in Hs(RN)

with 0 < s ≤ 1 (Theorem 2.3) as well as Corollary 2.5. Before doing that we

establish useful estimates for the nonlinearity |x|−b|u|αu. First, we consider

the nonlinearity in the space S ′(L2) and in the sequel in the space D−sS ′(L2),

that is, we estimate the norm
∥∥|x|−b|u|αu∥∥

S′(L2;I)
and

∥∥Ds(|x|−b|u|αu)
∥∥
S′(L2;I)

.

We start this subsection with two remarks.

Remark 2.8. Since we will use the Sobolev embedding (Lemma 1.10), we

divide our study in three cases: N ≥ 3 and s < N
2

; N = 1, 2 and s < N
2

;

N = 1, 2 and s = N
2

. (see respectively Lemmas 2.10, 2.11 and 2.12 bellow).

Remark 2.9. Another interesting remark is the following claim

Ds(|x|−b) = CN,b|x|b−s. (2.10)

Indeed, we use the facts D̂sf = |ξ|sf̂ and (̂|x|−β) =
CN,β
|ξ|N−β for β ∈ (0, N). Let

f(x) = |x|−b, we have

̂Ds(|x|−b) = |ξ|s(̂|x|−b) = |ξ|s CN,β
|ξ|N−b

=
CN,β

|ξ|N−(b+s)
.

Since 0 < b < 2̃ and 0 < s ≤ min{N
2
, 1} then 0 < b + s < N , so taking

β = s+ b, we get

Ds(|x|−b) =

(
CN,β

|y|N−(b+s)

)∨
= CN,β|x|b−s.
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Lemma 2.10. Let N ≥ 3 and 0 < b < 2̃. If s < N
2

and 0 < α < 4−2b
N−2s

then

the following statements hold:

(i)
∥∥|x|−b|u|αv∥∥

S′(L2;I)
≤ c(T θ1 + T θ2)‖Dsu‖αS(L2;I)‖v‖S(L2;I)

(ii)
∥∥Ds(|x|−b|u|αu)

∥∥
S′(L2;I)

≤ c(T θ1 + T θ2)‖Dsu‖α+1
S(L2;I),

where I = [0, T ] and c, θ1, θ2 > 0.

Proof. (i) We divide the estimate in the regions B and BC , indeed∥∥|x|−b|u|αv∥∥
S′(L2;I)

≤
∥∥|x|−b|u|αv∥∥

S′(L2(BC);I)
+
∥∥|x|−b|u|αv∥∥

S′(L2(B);I)

≡ B1 +B2.

First, we consider B1. Let (q0, r0) L2-admissible given by2

q0 =
4(α + 2)

α(N − 2s)
and r0 =

N(α + 2)

N + αs
. (2.11)

If s < N
2

then s < N
r0

and so using the Sobolev inequality (1.6) and the Hölder

inequality twice, we get

B1 ≤
∥∥|x|−b|u|αv∥∥

L
q′0
I L

r′0
x (BC)

≤
∥∥∥‖|x|−b‖Lγ(BC)‖u‖αLαr1x

‖v‖Lr0x
∥∥∥
L
q′0
I

≤‖|x|−b‖Lγ(BC)

∥∥∥‖Dsu‖α
L
r0
x
‖v‖Lr0x

∥∥∥
L
q′0
I

≤‖|x|−b‖Lγ(BC)T
1
q1 ‖Dsu‖α

L
αq2
I L

r0
x
‖v‖Lq0I Lr0x

=‖|x|−b‖Lγ(BC)T
1
q1 ‖Dsu‖α

L
q0
I L

r0
x
‖v‖Lq0I Lr0x , (2.12)

where 
1
r′0

= 1
γ

+ 1
r1

+ 1
r0

1
q′0

= 1
q1

+ 1
q2

+ 1
q0

q0 = αq2 , s = N
r0
− N

αr1
.

(2.13)

2It is not difficult to check that q0 and r0 satisfy the conditions of admissible pair, see

(1.1).
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In view of Remark 1.17 in order to show that the first norm in the right hand

side of (2.12) is bounded we need N
γ
− b < 0. Indeed, (2.13) is equivalent to

N
γ

= N − 2N
r0
− Nα

r0
+ αs

1
q1

= 1− α+2
q0
,

which implies, by (2.11)

N

γ
= 0 and

1

q1

=
4− α(N − 2s)

4
. (2.14)

Therefore N
γ
− b < 0 and 1

q1
> 0, by our hypothesis α < 4−2b

N−2s
. Therefore,

setting θ1 = 1
q1

we deduce

B1 ≤ cT θ1‖Dsu‖αS(L2;I)‖v‖S(L2;I). (2.15)

We now estimate B2. To do this, we use similar arguments as the ones

in the estimation of A2 in Lemma 2.7. It follows from Hölder’s inequality

twice and Sobolev embedding (1.6) that

B2 ≤
∥∥|x|−b|u|αv∥∥

Lq
′
I L

r′
x (B)

≤
∥∥∥‖|x|−b‖Lγ(B)‖u‖αLαr1x

‖v‖Lrx
∥∥∥
Lq
′
I

≤
∥∥‖|x|−b‖Lγ(B)‖Dsu‖αLrx‖v‖Lrx

∥∥
Lq
′
I

≤ ‖|x|−b‖Lγ(B)T
1
q1 ‖Dsu‖α

L
αq2
I Lrx
‖v‖LqILrx

= ‖|x|−b‖Lγ(B)T
1
q1 ‖Dsu‖αLqILrx‖v‖LqILrx

if (q, r) L2-admissible and the following system is satisfied

1
r′

= 1
γ

+ 1
r1

+ 1
r

s = N
r
− N

αr1
, s < N

r

1
q′

= 1
q1

+ 1
q2

+ 1
q

q = αq2.

(2.16)
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Similarly as in Lemma 2.7 we need to check that N
γ
> b (so that ‖|x|−b‖Lγ(B)

is finite) and 1
q1
> 0 for a certain choice of (q, r) L2-admissible pair. From

(2.16) this is equivalent to
N
γ

= N − 2N
r
− Nα

r
+ αs > b

1
q1

= 1− α+2
q
> 0.

(2.17)

The first equation in (2.17) implies that α < (N−b)r−2N
N−rs (assuming s < N

r
),

then let us choose r such that

(N − b)r − 2N

N − rs
=

4− 2b

N − 2s

since, by our hypothesis α < 4−2b
N−2s

. Therefore r and q are given by3

r =
2N [N − b+ 2(1− s)]
N(N − 2s) + 4s− bN

and q =
2[N − b+ 2(1− s)]

N − 2s
, (2.18)

where we have used that (q, r) is a L2-admissible pair to compute the value

of q. Note that s < N
r

if, and only if, b+ 2s−N < 0. Since s ≤ 1, b < 2̃ (see

(2.1)) and N ≥ 3 it is easy to see that s < N
r

holds. In addition, from the

second equation of (2.17) and (2.18) we also have

1

q1

=
4− 2b− α(N − 2s)

2(N − b+ 2− 2s)
> 0, (2.19)

since α < 4−2b
N−2s

.

Hence,

B2 ≤ cT θ2‖Dsu‖αS(L2;I)‖v‖S(L2;I), (2.20)

where θ2 is given by (2.19). Finally, collecting the inequalities (2.15) and

(2.20) we obtain (i).

(ii) Observe that∥∥Ds(|x|−b|u|αu)
∥∥
S′(L2;I)

≤ C1 + C2,

3It is easy to see that r > 2 if, and only if, s < N
2 and r < 2N

N−2 if, and only if, b < 2.

Therefore the pair (q, r) given in (2.18) is L2-admissible.
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where

C1 =
∥∥Ds(|x|−b|u|αu)

∥∥
S′(L2(BC);I)

and C2 =
∥∥Ds(|x|−b|u|αu)

∥∥
S′(L2(B);I)

.

We first consider C1. To this end, we use the same admissible pair (q0, r0)

used to estimate the term B1 in item (i). Indeed, let

C11(t) =
∥∥Ds(|x|−b|u|αu)

∥∥
L
r′0
x (BC)

then Lemma 1.12 (fractional product rule), Lemma 1.13 (fractional chain

rule) and Remark 2.9 yield

C11(t) ≤‖|x|−b‖Lγ(BC)‖Ds(|u|αu)‖Lβx + ‖Ds(|x|−b)‖Ld(BC)‖u‖α+1

L
(α+1)e
x

≤‖|x|−b‖Lγ(BC)‖u‖ααr1‖D
su‖Lr0x + ‖|x|−b−s‖Ld(BC)‖Dsu‖α+1

L
r0
x

≤‖|x|−b‖Lγ(BC)‖Dsu‖α+1
L
r0
x

+ ‖|x|−b−s‖Ld(BC)‖Dsu‖α+1
L
r0
x
, (2.21)

where we also have used the Sobolev inequality (1.6) and (2.10). Moreover,

we have the following relations

1
r′0

= 1
γ

+ 1
β

= 1
d

+ 1
e

1
β

= 1
r1

+ 1
r0

s = N
r0
− N

αr1
; s < N

r0

s = N
r0
− N

(α+1)e

which implies that 
N
γ

= N − 2N
r0
− αN

r0
+ αs

N
d

= N − 2N
r0
− αN

r0
+ αs+ s.

(2.22)

Note that, in view of (2.11) we have N
γ
− b < 0 and N

d
− b − s < 0. These

relations imply that ‖|x|−b‖Lγ(BC) and ‖|x|−b−s‖Ld(BC) are bounded quantities

(see Remark 1.17). Therefore, it follows from (2.21) that

C11(t) ≤ c‖Dsu‖α+1
L
r0
x
.
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On the other hand, using 1
q′0

= 1
q1

+ α+1
q0

and applying the Hölder inequality

in the time variable we conclude

‖C11‖
L
q′0
I

≤ cT
1
q1 ‖Dsu‖α+1

L
q0
I L

r0
x
,

where 1
q1

is given in (2.14). The estimate of C1 is finished since C1 ≤ ‖C11‖
L
q′0
I

.

Next, we consider C2. Let C22(t) =
∥∥Ds(|x|−b|u|αu)

∥∥
Lr′x (B)

, we have

C2 ≤ ‖C22‖Lq′I . Using the same arguments as in the estimate of C11 we

obtain

C22(t) ≤ ‖|x|−b‖Lγ(B)‖Dsu‖α+1
Lrx

+ ‖|x|−b−s‖Ld(B)‖Dsu‖α+1
Lrx

, (2.23)

if (2.22) is satisfied replacing r0 by r (to be determined later), that is
N
γ

= N − 2N
r
− αN

r
+ αs

N
d

= N − 2N
r
− αN

r
+ αs+ s.

(2.24)

In order to have that ‖|x|−b‖Lγ(B) and ‖|x|−b−s‖Ld(B) are bounded, we need

N
γ
> b and N

d
> b + s, respectively, by Remark 1.17. Therefore, since the

first equation in (2.24) is the same as the first one in (2.17), we choose r as

in (2.18). So we get N
γ
> b, which also implies that N

d
−s > b. Finally, (2.23)

and the Hölder inequality in the time variable yield

C2 ≤ cT
1
q1 ‖Dsu‖α+1

L
(α+1)q2
I Lrx

= cT
1
q1 ‖Dsu‖α+1

LqIL
r
x
,

where
1

q′
=

1

q1

+
1

q2

q = (α + 1)q2. (2.25)

Notice that (2.25) is exactly to the second equation in (2.17), so 1
q1
> 0 (see

the relation (2.19)). This completes the proof of Lemma 2.10.
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Notice that Lemma 2.10 only holds for N ≥ 3, since the admissible par

(q, r) defined in (2.18) doesn’t satisfy the condition s < N
r

, for N = 1, 2. In

the next lemma we study these cases.

Lemma 2.11. Let N = 1, 2 and 0 < b < 2̃. If s < N
2

and 0 < α < 4−2b
N−2s

then

(i)
∥∥|x|−b|u|αv∥∥

S′(L2;I)
≤ c(T θ1 + T θ2)‖Dsu‖αS(L2;I)‖v‖S(L2;I)

(ii)
∥∥Ds(|x|−b|u|αu)

∥∥
S′(L2;I)

≤ c(T θ1 + T θ2)‖Dsu‖α+1
S(L2;I),

where I = [0, T ] and c, θ1, θ2 > 0.

Proof. (i) As before, we divide the estimate in B and BC . The estimate on

BC is the same as the term B1 in Lemma 2.10 (i), since (q0, r0) given in

(2.11) is L2-admissible for s < N
2

in all dimensions. Thus we only consider

the estimate on B.

Indeed, set the L2-admissible pair (q̄, r̄) = ( 8
2N−s ,

4N
s

). We deduce from

the Hölder inequality twice and Sobolev embedding (1.6)

∥∥|x|−b|u|αv∥∥
Lq̄
′
I L

r̄′
x (B)

≤
∥∥∥‖|x|−b‖Lγ(B)‖u‖αLαr1x

‖v‖Lrx
∥∥∥
Lq
′
I

≤ ‖|x|−b‖Lγ(B)T
1
q1 ‖Dsu‖α

L
αq2
I Lrx
‖v‖LqILrx

= ‖|x|−b‖Lγ(B)T
1
q1 ‖Dsu‖αLqILrx‖v‖LqILrx

if (q, r) is L2-admissible and the following system is satisfied

1
r̄′

= 1
γ

+ 1
r1

+ 1
r

s = N
r
− N

αr1
; s < N

r

1
q̄′

= 1
q1

+ 1
q2

+ 1
q

q = αq2.

(2.26)



2.1 Local well posedness 23

Using the values of q̄ and r̄ given above, the previous system is equivalent to
N
γ

= 4(N−b)−s
4

− N
r
− α(N−sr)

r
+ b

1
q1

= 8−2N−s
8
− α+1

q
.

(2.27)

From the first equation in (2.27) if α < r(4(N−b)−s)−4N
N−sr then N

γ
> b, and so

|x|−b ∈ Lγ(B). Now, in view of the hypothesis α < 4−2b
N−2s

we set r such that

r (4(N − b)− s)− 4N

4(N − sr)
=

4− 2b

N − 2s
,

that is4

r =
4N (N − 2s+ 4− 2b)

4s(4− 2b) + (N − 2s) (4N − 4b− s)
. (2.28)

Note that, in order to satisfy the second equation in the system (2.26) we

need to verify that s < N
r

. A simple calculation shows that it is true if, and

only if, 4b+ 5s < 4N and this is true since b < N
3

and s < N
2

.

On the other hand, since we are looking for a pair (q, r) L2-admissible

we deduce

q =
8(N − 2s+ 4− 2b)

(8− 2N + s)(N − 2s)
. (2.29)

Finally, from (2.29) the second equation in (2.27) is given by

1

q1

=

(
8− 2N + s

8

)(
4− 2b− α(N − 2s)

N − 2s+ 4− 2b

)
. (2.30)

which is positive, since α < 4−2b
N−2s

, s < N
2

and N = 1, 2.

(ii) Similarly as in item (i) we only consider the estimate on B. Let

D2(t) =
∥∥|x|−b|u|αu∥∥

Lr̄′x (B)
.

We use analogous arguments as the ones in the estimate of C2 in Lemma

2.10 (ii). Lemmas 1.12-1.13, the Hölder inequality, the Sobolev embedding

4We claim that r satisfies (1.1). In fact, obviously r < +∞. Moreover r ≥ 2 if, and

only if, 8− 2N + s ≥ 0 and this is true since s > 0 and N = 1, 2.
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(1.6) and Remark 2.9 imply that

D2(t) ≤‖|x|−b‖Lγ(B)‖Ds(|u|αu)‖Lβx + ‖Ds(|x|−b)‖Ld(B)‖u‖α+1

L
(α+1)e
x

≤‖|x|−b‖Lγ(B)‖u‖ααr1‖D
su‖Lrx + ‖|x|−b−s‖Ld(B)‖Dsu‖α+1

Lrx

≤‖|x|−b‖Lγ(B)‖Dsu‖α+1
Lrx

+ ‖|x|−b−s‖Ld(B)‖Dsu‖α+1
Lrx

, (2.31)

where 

1
r̄′

= 1
γ

+ 1
β

= 1
d

+ 1
e

1
β

= 1
r1

+ 1
r

s = N
r
− N

αr1
; s < N

r

s = N
r
− N

(α+1)e
,

which is equivalent to
N
γ

= N − N
r̄
− (α+1)N

r
+ αs

N
d

= N − N
r̄
− (α+1)N

r
+ αs+ s.

(2.32)

Hence, setting again (q̄, r̄) = ( 8
2N−s ,

4N
s

) the first equation in (2.32) the same

as the first one in (2.27). Therefore choosing r as in (2.28) we have N
γ
> b,

which also implies N
d
> b + s. Therefore, it follows from Remark 1.17 and

(2.31) that

D2(t) ≤ c‖Dsu‖α+1
Lrx

.

Since, 1
q̄′

= 1
q1

+ α+1
q

(recall that q is given in (2.29)) and applying the Hölder

inequality in the time variable, we conclude

‖D2‖Lq̄′T ≤ cT
1
q1 ‖Dsu‖α+1

LqTL
r
x
,

where 1
q1
> 0 (see (2.30)).

We finish the estimates for the nonlinearity considering the case s = N
2

.

Note that this case can only occur if N = 1, 2, since here we are interested

in local (and global) results in Hs(RN) for max{0, sc} < s ≤ min{N
2
, 1}.
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Lemma 2.12. Let N = 1, 2 and 0 < b < N
3

. If s = N
2

and 0 < α < +∞

then

(i)
∥∥|x|−b|u|αv∥∥

S′(L2;I)
≤ cT θ1‖u‖αL∞I Hs

x
‖v‖L∞I L2

x

(ii)
∥∥Ds(|x|−b|u|αu)

∥∥
S′(L2;I)

≤ cT θ1‖u‖α+1
L∞I H

s
x
,

where I = [0, T ] and c, θ1 > 0.

Proof. (i) First, we define the following numbers

r =
N(α + 2)

N − 2b
and q =

4(α + 2)

Nα + 4b
, (2.33)

it is easy to check that (q, r) is L2-admissible.

We divide the estimate in B and BC . We first consider the estimate on

B. From Hölder’s inequality∥∥|x|−b|u|αv∥∥
Lr′x (B)

≤ ‖|x|−b‖Lγ(B)‖u‖αLαr1x
‖v‖L2

x
,

where
1

r′
=

1

γ
+

1

r1

+
1

2
. (2.34)

In view of Remark 1.17 to show that |x|−b ∈ Lγ(B), we need N
γ
− b > 0. So,

the relations (2.33) and (2.34) yield

N

γ
− b =

α(N − 2b)

2(α + 2)
− N

r1

. (2.35)

If we choose αr1 ∈
(

2N(α+2)
N−2b

,+∞
)

then the right hand side of (2.35) is

positive. Therefore, ∥∥|x|−b|u|αv∥∥
Lr′x (B)

≤ c‖u‖α
L
αr1
x
‖v‖L2

x
.

On the other hand, since 2N(α+2)
N−2b

> 2 we can apply the Sobolev embedding

(1.7) to obtain ∥∥|x|−b|u|αv∥∥
Lr′x (B)

≤ c‖u‖αHs‖v‖L2
x
. (2.36)
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Next, we consider the estimate on BC . Using the same argument as in

the first case, we get∥∥|x|−b|u|αv∥∥
Lr′x (BC)

≤ ‖|x|−b‖Lγ(BC)‖u‖αLαr1x
‖v‖L2

x
,

where the relations (2.34) and (2.35) hold. Thus, choosing αr1 ∈
(

2, 2N(α+2)
N−2b

)
we have that N

γ
− b < 0, which implies |x|−b ∈ Lγ(BC), by Remark 1.17.

Therefore, again by the Sobolev embedding (1.7), we obatin∥∥|x|−b|u|αv∥∥
Lr′x (BC)

≤ c‖u‖αHs
x
‖v‖L2

x
.

Finally, it follows from the Hölder inequality in time variable, (2.36) and

the last inequality that∥∥|x|−b|u|αv∥∥
Lq
′
I L

r′
x
≤ cT θ1‖u‖αL∞I Hs‖v‖L∞I L2

x
,

where θ1 = 1
q′
> 0, by (2.33).

(ii) Similarly as in the proof of item (i), we start setting

r =
N(α + 2)

N − b− s
and q =

4(α + 2)

αN + 2b+ 2s
. (2.37)

Note that, since s = N
2

and 0 < b < N
3

the denominator of r is a positive

number. Furthermore it is easy to verify that (q, r) is L2-admissible.

First, we consider the estimate on B. Lemma 1.13 together with the

Hölder inequality and (2.10) imply

E1(t) ≤ ‖|x|−b‖Lγ(B)‖Ds(|u|αu)‖Lβx + ‖Ds(|x|−b)‖Ld(B)‖u‖α+1

L
(α+1)e
x

≤ ‖|x|−b‖Lγ(B)‖u‖αLαr1x
‖Dsu‖L2

x
+ ‖|x|−b−s‖Ld(B)‖u‖α+1

L
(α+1)e
x

,

where E1(t) =
∥∥Ds(|x|−b|u|αu)

∥∥
Lr′x (B)

and
1
r′

= 1
γ

+ 1
β

= 1
d

+ 1
e

1
β

= 1
r1

+ 1
2
,
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which implies 
N
γ

= N
2
− N

r
− N

r1

N
d

= N − N
r
− N

e
.

(2.38)

Now, we claim that ‖|x|−b‖Lγ(B) and ‖|x|−b−s‖Ld(B) are bounded quanti-

ties for a suitable choice of r1 and e. Indeed, using the value of r in (2.37),

(2.38) and the fact that s = N
2

, we deduce
N
γ
− b = (α+1)(N−2b)

2(α+2)
− N

r1

N
d
− b− s = (α+1)(N−2b)

2(α+2)
− N

e
.

(2.39)

Note that, by Remark 1.17, if r1, e >
2N(α+2)

(α+1)(N−2b)
then the right hand side of

both equations in (2.39) are positive, so |x|−b ∈ Lγ(B) and |x|−b−s ∈ Ld(B).

Hence

E1(t) ≤ c‖u‖α
L
αr1
x
‖Dsu‖L2

x
+ c‖u‖α+1

L
(α+1)e
x

.

Choosing r1 and e as before, it is easy to see that5 αr1 > 2 and (α+ 1)e > 2,

thus we can use the Sobolev inequality (1.7)

E1(t) ≤ c‖u‖αHs
x
‖Dsu‖L2

x
+ c‖u‖α+1

Hs
x

≤ c‖u‖α+1
Hs
x
. (2.40)

To complete the proof, we need to consider the estimate on BC . Using

the same arguments as before we have

E2(t) ≤ ‖|x|−b‖Lγ(BC)‖u‖αLαr1x
‖Dsu‖L2

x
+ ‖|x|−b−s‖Ld(BC)‖u‖α+1

L
(α+1)e
x

,

where E2(t) =
∥∥Ds(|x|−b|u|αu)

∥∥
Lr′x (BC)

and (2.39) holds. Similarly as in item

5Increasing the value of r1 if necessary.
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(i), since6 2Nα(α+2)
(α+1)(N−2b)

, 2N(α+2)
N−b−s > 2, we can choose r1 and e such that

αr1 ∈
(

2,
2Nα(α + 2)

(α + 1)(N − 2b)

)
and (α + 1)e ∈

(
2,

2N(α + 2)

N − 2b

)
,

and thus we get from (2.39) that N
γ
−b < 0 and N

d
−b−s < 0. In other words,

‖|x|−b‖Lγ(BC) and ‖|x|−b−s‖Ld(BC) are bounded quantities for these choices of

r1 and e (see Remark 1.17). Furthermore, by the Sobolev inequality (1.7) we

conclude

E2(t) ≤ c‖u‖α+1
Hs
x
.

Finally, (2.40) and the last inequality lead to

∥∥Ds(|x|−b|u|αu)
∥∥
Lq
′
I L

r′
x
≤ cT

1
q′ ‖u‖α+1

L∞I H
s
x
,

where 1
q′
> 0 by (2.37).

We now have all tools to prove Theorem 2.3.

Proof of Theorem 2.3. We define

X = C
(
[−T, T ];Hs(RN)

)⋂
Lq
(
[−T, T ];Hs,r(RN)

)
,

for any (q, r) L2-admissible and

‖u‖T = ‖u‖S(L2;[−T,T ]) + ‖Dsu‖S(L2;[−T,T ]).

We shall show that G = Gu0 defined in (2.8) is a contraction on the complete

metric space

S(a, T ) = {u ∈ X : ‖u‖T ≤ a}
6Notice that, since N = 1, 2 and by hypothesis α > 4−2b

N we have

2Nα(α+ 2)

(α+ 1)(N − 2b)
>

2Nα

N − 2b
>

2(4− 2b)

N − 2b
> 2.
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with the metric

dT (u, v) = ‖u− v‖S(L2;[−T,T ]),

for a suitable choice of a and T .

First, we claim that S(a, T ) with the metric dT is a complete metric

space. Indeed, the proof follows similar arguments as in [2] (see Theorem

1.2.5 and the proof of Theorem 4.4.1 page 94). Since S(a, T ) ⊂ X and X

is a complete space, it suffices to show that S(a, T ), with the metric dT , is

closed in X. Let un ∈ S(a, T ) such that dT (un, u)→ 0 as n→ +∞, we want

to show that u ∈ S(a, T ). If un ∈ C
(
[−T, T ];Hs(RN)

)
(see the definition of

S(a, T )) we have, for almost all t ∈ [−T, T ], un(t) bounded in Hs(RN) and

so (since Hs(RN) is reflexive)

un(t) ⇀ v(t) in Hs(RN) and ‖v(t)‖Hs ≤ lim inf
n→+∞

‖un‖Hs ≤ a. (2.41)

On the other hand, the hypothesis dT (un, u)→ 0 implies that un → u in LqIL
r
x

for all (q, r) L2-admissible. Since (∞, 2) is L2-admissible we get un(t)→ u(t)

in L2, for almost all t ∈ [−T, T ]. Therefore, by uniqueness of the limit we

deduce that u(t) = v(t). Moreover, we have from (2.41)

‖u(t)‖Hs
x
≤ a.

That is, u ∈ C
(
[−T, T ];Hs(RN)

)
.

From similar arguments, if un ∈ Lq
(
[−T, T ];Hs,r(RN)

)
we obtain u ∈ S(a, T ).

This completes the proof of the claim.

Returning to the proof of the theorem, it follows from the Strichartz

inequalities (1.9) and (1.11) that

‖G(u)‖S(L2;[−T,T ]) ≤ c‖u0‖L2 + c‖F‖S′(L2;[−T,T ])

and

‖DsG(u)‖S(L2;[−T,T ]) ≤ c‖Dsu0‖L2 + c‖DsF‖S′(L2;[−T,T ]),
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where F (x, u) = |x|−b|u|αu. Similarly as in the proof of Theorem 2.2, without

loss of generality we consider only the case t > 0. So, using Lemmas 2.10-

2.11-2.12 and (2.1.2) we deduce

‖F‖S′(L2;I) ≤ c(T θ1 + T θ2)‖u‖α+1
I

and

‖DsF‖S′(L2;I) ≤ c(T θ1 + T θ2)‖u‖α+1
I ,

where I = [0, T ] and θ1, θ2 > 0. Hence, if u ∈ S(a, T ) we get

‖G(u)‖T ≤ c‖u0‖Hs + c(T θ1 + T θ2)aα+1.

Now, choosing a = 2c‖u0‖Hs and T > 0 such that

caα(T θ1 + T θ2) <
1

4
, (2.42)

we obtain G(u) ∈ S(a, T ). Such calculations establish that G is well defined

on S(a, T ).

On the other hand, using (1.13), an analogous argument as before yields

dT (G(u), G(v)) ≤ c‖F (x, u)− F (x, v)‖S′(L2;[−T,T ])

≤ c(T θ1 + T θ2) (‖u‖αT + ‖v‖αT ) dT (u, v),

and so, taking u, v ∈ S(a, T ), the last inequality imply

dT (G(u), G(v)) ≤ c(T θ1 + T θ2)aαdT (u, v).

Therefore, from (2.42), G is a contraction on S(a, T ) and by the Contraction

Mapping Theorem we have a unique fixed point u ∈ S(a, T ) of G such that

(7) holds.

We finish this section noting that Corollary 2.5 follows directly from

Theorem 2.3. It is worth to mention that Corollary 2.5 only holds for N ≥ 2

since we assume s ≤ min{N
2
, 1} in Theorem 2.3.
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2.2 Global well posedness

This section is devoted to study the global well-posedness of the Cauchy

problem (1). Similarly as the local theory we use the fixed point theorem

to prove our small data results in Hs(RN). We start with a global result in

L2(RN), which does not require any smallness assumption.

Theorem 2.13. If 0 < α < 4−2b
N

and 0 < b < min{2, N}, then for all

u0 ∈ L2(RN) the local solution u of the IVP (1) extends globally with

u ∈ C
(
R;L2(RN)

)
∩ Lq

(
R;Lr(RN)

)
,

for any (q, r) L2-admissible.

Next, we establish a small data global theory for the INLS model (1).

Theorem 2.14. Let 4−2b
N

< α < αs with 0 < b < 2̃ (see definition (2.1)),

sc < s ≤ min{N
2
, 1} and u0 ∈ Hs(RN). If ‖u0‖Hs ≤ A then there exists

δ = δ(A) such that if ‖U(t)u0‖S(Ḣsc ) < δ, then the solution of (7) is globally

defined. Moreover,

‖u‖S(Ḣsc ) ≤ 2‖U(t)u0‖S(Ḣsc )

and

‖u‖S(L2) + ‖Dsu‖S(L2) ≤ 2c‖u0‖Hs .

Remark 2.15. Note that in the last result we do not need the condition

s > max{0, sc} as in Theorem 2.3, since α > 4−2b
N

implies sc > 0.

Remark 2.16. Also note that by the Strichartz estimates (1.10), the condi-

tion ‖U(t)u0‖S(Ḣsc ) < δ is automatically satisfied if ‖u0‖Ḣsc ≤ δ
c
.

A similar small data global theory for the NLS model can be found in

Cazenave-Weissler [6], Holmer-Roudenko [23] and Guevara [22].
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2.2.1 L2-Theory

The global well-posedness result in L2(RN) (see Theorem 2.13) is an im-

mediate consequence of Theorem 2.2. Indeed, using (2.9) we have that

T (‖u0‖L2) = C
‖u0‖d

L2
for some C, d > 0, then the conservation law (3) al-

lows us to reapply Theorem 2.2 as many times as we wish preserving the

lenght of the time interval to get a global solution.

2.2.2 Hs-Theory

In this subsection, we turn our attention to proof the Theorem 2.14 and again

the heart of the proof is to establish good estimates on the nonlinearity

F (x, u) = |x|−b|u|αu. First, we estimate the norm ‖F (x, u)‖S′(Ḣ−sc ) (see

Lemma 2.17 below), next we estimate ‖F (x, u)‖S′(L2) (see Lemma 2.18) and

finally we consider the norm ‖DsF (x, u)‖S′(L2) (see Lemmas 2.19, 2.21 and

2.23).

We start defining the following numbers (depending only on N,α and b)

q̂ =
4α(α + 2− θ)

α(Nα + 2b)− θ(Nα− 4 + 2b)
r̂ =

Nα(α + 2− θ)
α(N − b)− θ(2− b)

(2.43)

and

ã =
2α(α + 2− θ)

α[N(α + 1− θ)− 2 + 2b]− (4− 2b)(1− θ)
â =

2α(α + 2− θ)
4− 2b− (N − 2)α

,

(2.44)

where θ > 0 sufficiently small7. It is easy to see that (q̂, r̂) is L2-admissible,

7First note that, since θ > 0 is sufficiently small, we have that the denominators of q̂, r̂, â

and ã are all positive numbers. Moreover, it is easy to see that r̂ satisfies (1.3). In fact â can

be rewritten as â = α+2−θ
1−sc and since θ < α we have â > 2

1−sc , which implies that r̂ < 2N
N−2 ,

for N ≥ 3. We also note that r̂ ≤ (( 2
1+sc

)+)′, for N = 2. Indeed, the last inequality is
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(â, r̂) is Ḣsc-admissible8 and (ã, r̂) is Ḣ−sc-admissible. Moreover, we observe

that
1

â
+

1

ã
=

2

q̂
. (2.45)

Using the same notation of the previous section, we set B = B(0, 1) and

we recall that |x|−b ∈ Lγ(B) if N
γ
> b. Similarly, we have that |x|−b ∈ Lγ(BC)

if N
γ
< b (see Remark 1.17).

Our first result reads as follows.

Lemma 2.17. Let 4−2b
N

< α < αs and 0 < b < 2̃. If sc < s ≤ min{N
2
, 1}

then the following statement holds

∥∥|x|−b|u|αv∥∥
S′(Ḣ−sc )

≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

S(Ḣsc )
‖v‖S(Ḣsc ), (2.46)

where c > 0 and θ ∈ (0, α) is a sufficiently small number.

Proof. The proof follows from similar arguments as the ones in the previous

lemmas. We study the estimates in B and BC separately.

We first consider the set B. From the Hölder inequality we deduce

∥∥|x|−b|u|αv∥∥
Lr̂′x (B)

≤ ‖|x|−b‖Lγ(B)‖u‖θLθr1x
‖u‖α−θ

L
(α−θ)r2
x

‖v‖Lr̂x
= ‖|x|−b‖Lγ(B)‖u‖θLθr1x

‖u‖α−θ
Lr̂x
‖v‖Lr̂x , (2.47)

where
1

r̂′
=

1

γ
+

1

r1

+
1

r2

+
1

r̂
and r̂ = (α− θ)r2. (2.48)

equivalent to εr̂ < ( 2
1+sc

)+( 2
1+sc

) (recall (1.4)) and this is true since ε > 0 is a small enough

number. For N = 1, we see that r̂ <∞. Finally, we have r̂ > 2N
N−sc = Nα

2−b . Indeed, this is

equivalent to (α+2−θ)(2−b) > α(N−b)−θ(2−b)⇔ (α+2)(2−b) > α(N−b)⇔ α < 4−2b
N−2 .

So, since α < 4−2b
N−2s and s ≤ 1 (our hypothesis), we have that α < 4−2b

N−2 holds, consequently

r̂ > 2N
N−sc .

8Recall that sc is the critical Sobolev index given by sc = N
2 −

2−b
α .
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Now, we make use of the Sobolev embedding (Lemma 1.10), so we consider

two cases: s = N
2

and s < N
2

.

Case s = N
2

. Since s ≤ min{N
2
, 1}, we only have to consider the cases

where (N, s) is equal to (1, 1
2
) or (2, 1). In order to have the norm ‖|x|−b‖Lγ(B)

bounded we need N
γ
> b. In fact, observe that (2.48) implies

N

γ
= N − N(α + 2− θ)

r̂
− N

r1

,

and from (2.43) it follows that

N

γ
− b =

θ(2− b)
α

− N

r1

. (2.49)

Since α > 4−2b
N

then Nα
2−b > 2, therefore choosing

θr1 ∈
(
Nα

2− b
,+∞

)
, (2.50)

we have N
γ
> b. Hence, inequality (2.47) and the Sobolev embedding (1.7)

yield ∥∥|x|−b|u|αv∥∥
Lr̂
′
x (B)

≤ c‖u‖θHs
x
‖u‖α−θ

Lr̂x
‖v‖Lr̂x . (2.51)

Case s < N
2

. In this case, we will also obtain the inequality (2.51).

Indeed, we already have the relation (2.49), then the only change is the choice

of θr1 since we can not apply the Sobolev embedding (1.7) when s < N
2

. In

this case we set

θr1 =
2N

N − 2s
, (2.52)

so
N

γ
− b = θ(s− sc) > 0,

that is, the quantity ‖|x|−b‖Lγ(B) is finite. Therefore by the Sobolev embed-

ding (1.8) we obtain the desired inequality (2.51).

Next, we consider the set BC . We claim that∥∥|x|−b|u|αv∥∥
Lr̂′x (BC)

≤ c‖u‖θHs
x
‖u‖α−θ

Lr̂x
‖v‖Lr̂x . (2.53)
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Indeed, arguing in the same way as before we deduce

∥∥|x|−b|u|αv∥∥
Lr̂′x (BC)

≤ ‖|x|−b‖Lγ(BC)‖u‖θLθr1x
‖u‖α−θ

Lr̂x
‖v‖Lr̂x ,

where the relation (2.49) holds. We first show that ‖|x|−b‖Lγ(BC) is finite

for a suitable of r1. Similarly as before, we consider two cases: s = N
2

and

s < N
2

. In the first case, we choose r1 such that

θr1 ∈
(

2,
Nα

2− b

)
(2.54)

then, from (2.49), N
γ
− b < 0, so |x|−b ∈ Lγ(BC). Thus, by the Sobolev

inequality (1.7) and using the last inequality we deduce (2.53). Now if s < N
2

,

choosing again θr1 as (2.54) we obtain N
γ
−b < 0. In addition, since α < 4−2b

N−2s

we have Nα
2−b <

2N
N−2s

, therefore the Sobolev inequality (1.8) implies (2.53).

This completes the proof of the claim.

Now, inequalities (2.51) and (2.53) yield

∥∥|x|−b|u|αv∥∥
Lr̂′x
≤ c‖u‖θHs

x
‖u‖α−θ

Lr̂x
‖v‖Lr̂x (2.55)

and the Hölder inequality in the time variable leads to

∥∥|x|−b|u|αv∥∥
Lã
′
t L

r̂′
x
≤ c‖u‖θL∞t Hs

x
‖u‖α−θ

L
(α−θ)a1
t Lr̂x

‖v‖LâtLr̂x
= c‖u‖θL∞t Hs

x
‖u‖α−θ

LâtL
r̂
x
‖v‖LâtLr̂x ,

where
1

ã′
=
α− θ
â

+
1

â
.

Since â and ã defined in (2.44) satisfy the last relation we conclude the proof

of (2.46).9

9Recall that (â, r̂) is Ḣsc-admissible and (ã, r̂) is Ḣ−sc-admissible.
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Lemma 2.18. Let 4−2b
N

< α < αs and 0 < b < 2̃. If sc < s ≤ min{N
2
, 1}

then ∥∥|x|−b|u|αv∥∥
S′(L2)

≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

S(Ḣsc )
‖v‖S(L2), (2.56)

where c > 0 and θ ∈ (0, α) is a sufficiently small number.

Proof. By the previous lemma we already have (2.55), then applying Hölder’s

inequality in the time variable we obtain∥∥|x|−b|u|αv∥∥
Lq̂
′
t L

r̂′
x
≤ c‖u‖θL∞t Hs

x
‖u‖α−θ

LâtL
r̂
x
‖v‖

Lq̂tL
r̂
x
,

since
1

q̂′
=
α− θ
â

+
1

q̂
(2.57)

by (2.43) and (2.44). The proof is finished in view of (q̂, r̂) be L2-admissible.

We now estimate
∥∥Ds

(
|x|−b|u|αu

)∥∥
S′(L2)

. We divide our study in three

cases: N ≥ 4, N = 3 and N = 1, 2.

Lemma 2.19. Let N ≥ 4, 0 < b < 2̃ and 4−2b
N

< α < αs. If sc < s ≤ 1 then

the following statement holds∥∥Ds
(
|x|−b|u|αu

)∥∥
S′(L2)

≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

S(Ḣsc )
‖Dsu‖S(L2), (2.58)

where c > 0 and θ ∈ (0, α) is a sufficiently small number.

Proof. First note that we always have s < N
2

in this lemma, since we are

assuming N ≥ 4 and sc < s ≤ 1. Here, we also divide the estimate in B and

BC separately.

We begin estimating on B. The fractional product rule (Lemma 1.12)

yields ∥∥Ds
(
|x|−b|u|αu

)∥∥
Lr̂′x (B)

≤ N1(t, B) +N2(t, B),



2.2 Global well posedness 37

where

N1(t, B) =
∥∥|x|−b∥∥

Lγ(B)
‖Ds(|u|αu)‖Lβx N2(t, B) =

∥∥Ds(|x|−b)
∥∥
Ld(B)

‖|u|αu‖Lex

and
1

r̂′
=

1

γ
+

1

β
=

1

d
+

1

e
. (2.59)

First, we consider N1(t, B). It follows from the fractional chain rule (Lemma

1.13) and Hölder’s inequality that

N1(t, B) ≤ ‖|x|−b‖Lγ(B)‖u‖θLθr1x
‖u‖α−θ

L
(α−θ)r2
x

‖Dsu‖Lr̂x
= ‖|x|−b‖Lγ(B)‖u‖θLθr1x

‖u‖α−θ
Lr̂x
‖Dsu‖Lr̂x , (2.60)

where
1

β
=

1

r1

+
1

r2

+
1

r̂
and r̂ = (α− θ)r2. (2.61)

Note that, the right hand side of (2.60) is the same as the right hand side

of (2.47), with v = Dsu, so combining (2.59) and (2.61) we also have (2.48).

Thus, arguing in the same way as in Lemma 2.17 we obtain (recall that (2.51)

also holds when s < N
2

)

N1(t, B) ≤ c‖u‖θHs
x
‖u‖α−θ

Lr̂x
‖Dsu‖Lr̂x . (2.62)

On the other hand, from (2.10), Hölder’s inequality and the Sobolev emdeb-

bing (1.6) we deduce

N2(t, B) ≤ ‖|x|−b−s‖Ld(B)‖u‖θLθr1x
‖u‖α−θ

L
(α−θ)r2
x

‖u‖Lr3x
= ‖|x|−b−s‖Ld(B)‖u‖θLθr1x

‖u‖α−θ
Lr̂x
‖Dsu‖Lr̂x , (2.63)

where 
1
e

= 1
r1

+ 1
r2

+ 1
r3

r̂ = (α− θ)r2

s = N
r̂
− N

r3
with s < N

r̂
,

(2.64)
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which implies using (2.59) that

N

d
− s = N − N(α + 2− θ)

r̂
− N

r1

and so, by (2.43)
N

d
− b− s =

θ(2− b)
α

− N

r1

. (2.65)

Note that the right hand side of (2.65) is the same as the right hand side

of (2.49). Hence, choosing θr1 as in (2.52) (recall that s < N
2

) we have

N
d
− b − s > 0, so the quantity ‖|x|−b−s‖Ld(B) is bounded, by Remark 1.17.

Now, the Sobolev embedding (1.8) and (2.63) imply that

N2(t, B) ≤ c‖u‖θHs
x
‖u‖α−θ

Lr̂x
‖Dsu‖Lr̂x .

Therefore, from the last inequality together with (2.62) we obtain

∥∥Ds
(
|x|−b|u|αu

)∥∥
Lr̂′x (B)

≤ c‖u‖θHs
x
‖u‖α−θ

Lr̂x
‖Dsu‖Lr̂x .

Thus, applying Hölder’s inequality in the time variable and recalling (2.57)

we get

∥∥Ds
(
|x|−b|u|αu

)∥∥
Lq̂
′
t L

r̂′
x (B)

≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

LâtL
r̂
x
‖Dsu‖

Lq̂tL
r̂
x

≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

S(Ḣsc )
‖Dsu‖S(L2). (2.66)

Next we consider the norm
∥∥Ds

(
|x|−b|u|αu

)∥∥
Lr̂
′
x (BC)

. Similarly as before,

replacing B by BC , we also get (2.60)-(2.61) and consequently, by the proof

of Lemma 2.17, the inequality (2.62), that is

N1(t, BC) ≤ c‖u‖θHs
x
‖u‖α−θ

Lr̂x
‖Dsu‖Lr̂x .

We also have (replacing B by BC)

N2(t, BC) ≤ ‖|x|−b−s‖Ld(BC)‖u‖θLθr1x
‖u‖α−θ

Lr̂x
‖Dsu‖Lr̂x ,
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where the relation (2.65) holds, thus setting θr1 = 2 we deduce

N

d
− b− s = −θsc < 0,

which implies that |x|−b−s ∈ Ld(BC), by Remark 1.17. Now, the Sobolev

embedding (1.8) yields

N2(t, BC) ≤ c‖u‖θHs
x
‖u‖α−θ

Lr̂x
‖Dsu‖Lr̂x .

Therefore, ∥∥Ds
(
|x|−b|u|αu

)∥∥
Lr̂′x (BC)

≤ N1(t, B) +N2(t, BC)

≤ c‖u‖θHs
x
‖u‖α−θ

Lr̂x
‖Dsu‖Lr̂x .

Finally, using Hölder’s inequality in the time variable, the last inequality

(recalling (2.57)) and the relation (2.66) we deduce the estimate (2.58).

Remark 2.20. Notice that Lemma 2.19 does not hold in dimension three

for every α < αs (recall (2.1)). In fact, the condition s < N
r̂

(used in (2.64))

is only true for N ≥ 4. Indeed, since s ≤ 1 it suffices to verify 1 < N
r̂

and

the last inequality is equivalent to

θ(2− b) < α(N − 2− b+ θ − α) (2.67)

Now if N = 3, we have θ(2− b) < α(1− b + θ − α), which cannot holds for

every α < 4−2b
3−2s

(take s = 1 and α = 2 for example).

On the other hand, if N ≥ 4 we claim that the inequality (2.67) holds for

θ > 0 small enough. Indeed, in this case we haveN−2−b+θ−α ≥ 2−b+θ−α,

so

α(N − 2− b+ θ − α)− θ(2− b) ≥ α(2− b+ θ − α)− θ(2− b)

= (α− θ)(2− b− α).
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Since α > θ, (2.67) holds if

2− b− α > 0. (2.68)

By our assumption α < 4−2b
N−2s

and the fact that 2 − b ≥ 4−2b
N−2

> 4−2b
N−2s

, for

N ≥ 4 and s ≤ 1, we deduce (2.68). In the next lemma we consider the case

N = 3.

Before stating the lemma, we define the following numbers:

k =
4α(α + 1− θ)

4− 2b− α
p =

6α(α + 1− θ)
(4− 2b)(α− θ) + α

(2.69)

and

l =
4α(α + 1− θ)

α(3α− 2 + 2b)− θ(3α− 4 + 2b)
, (2.70)

where θ ∈ (0, α). It is not difficult to verify that (l, p) is L2-admissible and

(k, p) is Ḣsc-admissible10.

We also define

m =
4D

D − ε
n =

6D

2D + ε
(2.71)

and

a∗ =
4θ

2 + ε−D
r∗ =

6αθ

(4− 2b)θ − (2 + ε−D)α
, (2.72)

where D = α − θ + µ with µ ∈ (b, 1) and ε is a sufficiently small number

such that ε < µ − b. Note that 2 < n < 3 (n satisfies the condition (1.1)

for N = 3) and (m,n) is L2-admissible. Moreover, choosing θ = Fα with11

10We claim 3α
2−b = 6

3−2sc < p < 6, i.e., p satisfies the condition (1.3) (and therefore (1.1),

since 6
3−2sc > 2) for N = 3. Indeed, 3α

2−b < p⇔ (4−2b)(α−θ)+α < (4−2b)(α+1−θ)⇔

α < 4 − 2b. Moreover, p < 6 ⇔ α(α + 1 − θ) < (4 − 2b)(α − θ) + α ⇔ α(α − θ) <

(4 − 2b)(α − θ) ⇔ α < 4 − 2b. Now α < 4 − 2b always holds under the assumptions

α < 4−2b
3−2s and s ≤ 1.

11It is easy to check that F ∈
(
1
2 , 1
)

if ε < µ − b. Therefore, since θ = Fα, we have

θ < α.
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F = 2−ε+µ−2b
4−2b

we claim that (a∗, r∗) is Ḣsc-admissible. We first show that

the denominators of a∗ and r∗ are positive numbers. Indeed

2+ε−D = 2+ε−µ+Fα−α = 2+ε−µ−α(1−F ) = 2+ε−µ−α
(

2 + ε− µ
4− 2b

)
,

so by the hypothesis α < 4−2b
3−2s

and since s ≤ 1 we deduce 2 + ε−D > 0. We

also have (using the value of F and the fact that D > µ)

(4− 2b)θ − (2 + ε−D)α = α ((4− 2b)F − 2− ε+D) > (2(µ− b)− 2ε) ,

which is positive setting ε < µ− b.

Next, we show that r∗ satisfies the condition (1.3), with N = 3. Note that

r∗ can be rewritten as r∗ = 6αF
2(µ−b−ε)+α(1−F )

. Hence, r∗ < 6 is equivalent to

αF < 2(µ− b− ε) + α(1− F ) ⇔ α <
2(µ− b− ε)

2F − 1
= 4− 2b,

which is true since α < 4−2b
3−2s

and s ≤ 1. In addition, r∗ > 6
3−2sc

= 3α
2−b is

equivalent to

(4− 2b)F > 2(µ− b− ε) + α(1− F ) ⇔ α < 4− 2b.

Finally, it is easy to see that (a∗, r∗) satisfy the condition (1.2).

The next lemma is concerned with the case N = 3.

Lemma 2.21. Let N = 3, 4−2b
3

< α < 4−2b
3−2s

and 0 < b < 1. If sc < s ≤ 1

then there exists µ ∈ (b, 1) such that

∥∥Ds
(
|x|−b|u|αu

)∥∥
S′(L2)

≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

S(Ḣsc )

(
‖Dsu‖S(L2) + ‖u‖S(L2)

)
+c‖u‖1−µ

L∞t H
s
x
‖u‖θ

S(Ḣsc )
‖Dsu‖α−θ+µS(L2) , (2.73)

where c > 0, θ = αF with F = 2−ε+µ−2b
4−2b

and ε > 0 is a sufficiently small

number.
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Proof. Note that

∥∥Ds
(
|x|−b|u|αu

)∥∥
S′(L2)

≤
∥∥Ds

(
|x|−b|u|αu

)∥∥
S′(L2(B))

+
∥∥Ds

(
|x|−b|u|αu

)∥∥
S′(L2(BC))

.

Let A ⊂ RN that can be B or BC . Since (2, 6) is L2-admissible in 3D we

have ∥∥Ds
(
|x|−b|u|αu

)∥∥
S′(L2(A))

≤
∥∥Ds

(
|x|−b|u|αu

)∥∥
L2′
t L

6′
x (A)

.

As before, applying the fractional product rule (Lemma 1.12) we have

∥∥Ds
(
|x|−b|u|αu

)∥∥
L6′
x (A)

≤ M1(t, A) +M2(t, A), (2.74)

where

M1(t, A) =
∥∥|x|−b∥∥

Lγ(A)
‖Ds(|u|αu)‖Lβx , M2(t, A) =

∥∥Ds(|x|−b)
∥∥
Ld(A)

‖|u|αu‖Lex

and
1

6′
=

1

γ
+

1

β
=

1

d
+

1

e
. (2.75)

First, we estimate M1(t, A). It follows by the fractional chain rule

(Lemma 1.13) and Hölder’s inequality that

M1(t, A) ≤ ‖|x|−b‖Lγ(A)‖u‖θLθr1x
‖u‖α−θ

L
(α−θ)r2
x

‖Dsu‖Lpx

= ‖|x|−b‖Lγ(A)‖u‖θLθr1x
‖u‖α−θ

Lpx
‖Dsu‖Lpx , (2.76)

where
1

β
=

1

r1

+
1

r2

+
1

p
and p = (α− θ)r2. (2.77)

Combining (2.75) and (2.77) we obtain

3

γ
=

5

2
− 3

r1

− 3(α + 1− θ)
p

,

which implies, by (2.69)

3

γ
− b =

θ(2− b)
α

− 3

r1

. (2.78)
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In to order to show that ‖|x|−b‖Lγ(A) is finite we need to verify that 3
γ
− b > 0

if A = B and 3
γ
− b < 0 if A = BC , by Remark 1.17. Indeed if θr1 = 6

3−2s
,

by (2.78), we have
3

γ
− b = θ(s− sc) > 0

and if θr1 = 2 then
3

γ
− b = −θsc < 0.

Therefore, the inequality (2.76) and the Sobolev embedding (1.8) yield

M1(t, A) ≤ c‖u‖θHs
x
‖u‖α−θ

Lpx
‖Dsu‖Lpx . (2.79)

Next, we estimate M2(t, A). Let A = BC , applying the Hölder inequality

and (2.10) we have

M2(t, BC) ≤ ‖|x|−b−s‖Ld(BC)‖u‖θLθr1x
‖u‖α−θ

L
(α−θ)r2
x

‖u‖Lpx

≤ ‖|x|−b−s‖Ld(BC)‖u‖θLθr1x
‖u‖α−θ

Lpx
‖u‖Lpx ,

where
1

e
=

1

r1

+
1

r2

+
1

p
and p = (α− θ)r2.

The relation (2.75) and the last relation imply

3

d
=

5

2
− 3

r1

− 3(α + 1− θ)
p

.

In view of (2.69) we deduce

3

d
− b =

θ(2− b)
α

− 3

r1

.

Setting θr1 = 2 we have 3
d
− b = −θsc, so 3

d
− b − s = −θsc − s < 0, i.e.,

|x|−b−s ∈ Ld(BC). Thus, by the Sobolev inequality (1.8)

M2(t, BC) ≤ c‖u‖θHs
x
‖u‖α−θ

Lpx
‖u‖Lpx . (2.80)
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We now consider M2(t, B). From the Hölder inequality, the Sobolev

embedding12 (1.6) and (2.10), we deduce

M2(t, B) ≤ ‖|x|−b−s‖Ld(B)‖u‖θLθr1x
‖u‖α−θ

L
(α−θ)r2
x

‖u‖µ
L
µr3
x
‖u‖1−µ

L
(1−µ)r4
x

≤ ‖|x|−b−s‖Ld(B)‖u‖θLθr1x
‖Dsu‖α−θLnx

‖Dsu‖µLnx‖u‖
1−µ
L

(1−µ)r4
x

= ‖|x|−b−s‖Ld(B)‖u‖θLr∗x ‖D
su‖α−θ+µLnx

‖u‖1−µ
L

(1−µ)r4
x

,

if the following system is satisfied
1
e

= 1
r1

+ 1
r2

+ 1
r3

+ 1
r4

s = 3
n
− 3

(α−θ)r2 s = 3
n
− 3

µr3

r∗ = θr1.

It follows from (2.75) and the previous system that

3

d
=

5

2
+ sD − 3θ

r∗
− 3D

n
− 3

r4

,

which implies by (2.71) and (2.72)

3

d
=

7

2
+ sD − (2− b)θ

α
− 3D

2
− 3

r4

,

where D = α− θ+ µ. In view of Remark 1.17 to show that ‖|x|−b−s‖Ld(B) is

bounded we need 3
d
− b− s > 0. In fact, choosing (1− µ)r4 = 6

3−2s
we have

3

d
− b− s = 2− b− 3α

2
+

3θ

2
+ s(α− θ)− (2− b)θ

α

= −α
(

3

2
− 2− b

α

)
+ θ

(
3

2
− 2− b

α

)
+ s(α− θ)

= (s− sc)(α− θ),

which is positive since s > sc. So |x|−b−s ∈ Ld(B) and we have

M2(t, B) ≤ c‖u‖1−µ
Hs
x
‖u‖θLr∗x ‖D

su‖α−θ+µLnx
, (2.81)

12We can use the Sobolev embedding (1.6) since s ≤ 1 < 3
n .
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where we have used the Sobolev embedding (1.8).

Therefore, combining (2.74), (2.79) with A = BC and (2.80) we obtain

∥∥Ds
(
|x|−b|u|αu

)∥∥
L6′
x (BC)

≤ c‖u‖θHs
x
‖u‖α−θ

Lpx
‖Dsu‖Lpx + c‖u‖θHs

x
‖u‖α−θ

Lpx
‖u‖Lpx .

Moreover, by (2.79) with A = B and (2.81) we have

∥∥Ds
(
|x|−b|u|αu

)∥∥
L6′
x (B)

≤ c‖u‖θHs
x
‖u‖α−θ

Lpx
‖u‖Lpx + c‖u‖1−µ

Hs
x
‖u‖θLr∗x ‖D

su‖α−θ+µLnx
.

Finally, since
1

2′
=
α− θ
k

+
1

l

and
1

2′
=

θ

a∗
+
α− θ + µ

m
,

we can use Hölder’s inequality in the time variable in the last two inequalities

to conclude

∥∥Ds
(
|x|−b|u|αu

)∥∥
L2′
t L

6′
x (BC)

≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

LktL
p
x

(
‖Dsu‖LltLpx + ‖u‖LltLpx

)

and

∥∥Ds
(
|x|−b|u|αu

)∥∥
L2′
t L

6′
x (B)

≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

LktL
p
x
‖Dsu‖LltLpx

+ c‖u‖1−µ
L∞t H

s
x
‖u‖θ

La
∗
t Lr∗x
‖Dsu‖α−θ+µLmt L

n
x
.

The proof is completed recalling that (m,n) and (l, p) are L2-admissible

as well as (k, p) and (a∗, r∗) are Ḣsc-admissible.

Remark 2.22. Note that in the previous lemma θ > 0 is given by θ = Fα

and since F < 1, we only have that θ < α and it might be not true that θ

is close to 0. In Lemma 3.12 below we show that if s = 1 we can actually

choose θ to be a small number.
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Before proving our global well-posedness results, we finish estimating the

norm
∥∥Ds

(
|x|−b|u|αu

)∥∥
S′(L2)

in dimensions N = 1, 2.

Lemma 2.23. Let N = 1, 2 and 4−2b
N

< α < αs with 0 < b < 2̃. If sc < s ≤

min{N
2
, 1} then∥∥Ds

(
|x|−b|u|αu

)∥∥
S′(L2)

≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

S(Ḣsc )
‖Dsu‖S(L2)

+ c‖u‖1+θ
L∞t H

s
x
‖u‖α−θ

S(Ḣsc )
, (2.82)

where c > 0 and θ ∈ (0, α) is a sufficiently small number.

Proof. The proof follows from analogous arguments as the ones used in the

previous lemmas. Let A ⊂ RN that can be B or BC and (q, r) any L2-

admissible pair. By the fractional product rule (Lemma 1.12) we get∥∥Ds
(
|x|−b|u|αu

)∥∥
Lr′x (A)

≤ P1(t, A) + P2(t, A), (2.83)

where

P1(t, A) =
∥∥|x|−b∥∥

Lγ(A)
‖Ds(|u|αu)‖Lβx , P2(t, A) =

∥∥Ds(|x|−b)
∥∥
Ld(A)

‖|u|αu‖Lex
(2.84)

and
1

r′
=

1

γ
+

1

β
=

1

d
+

1

e
. (2.85)

To estimate P1(t, A) and P2(t, A), we consider three cases: N = 1 and

s < 1
2
; N = 2 and s < 1; N = 1, 2 and s = N

2
.

Case N = 1 and s < 1
2
. We define the following numbers

k∗ =
4α(α + 1− θ)

(4− 2b)(α− θ + 1)− α
l∗ =

4(α + 1− θ)
α− θ

p∗ = 2(α + 1− θ)

(2.86)

q0 =
2α

αb+ θ(2− b)
and r0 =

2α

α(1− 2b)− θ(4− 2b)
. (2.87)
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It is straightforward to verify that, if θ > 0 is a small enough number, the

assumption 0 < b < 1
3

implies that the denominators of q0, r0, k∗ and l∗ are

all positive numbers. Furthermore, (q0, r0), (l∗, p∗) are L2-admissible13 and

(k∗, p∗) is Ḣsc-admissible.

First, we estimate P1(t, A) with r = r0. The fractional chain rule (Lemma

1.13) and Hölder’s inequality yield

P1(t, A) ≤ ‖|x|−b‖Lγ(A)‖u‖θLθr1x
‖u‖α−θ

L
(α−θ)r2
x

‖Dsu‖
Lp
∗
x

= ‖|x|−b‖Lγ(A)‖u‖θLθr1x
‖u‖α−θ

Lp
∗
x
‖Dsu‖

Lp
∗
x
,

where
1

β
=

1

r1

+
1

r2

+
1

p∗
and p∗ = (α− θ)r2. (2.88)

This implies
1

γ
− b =

θ(2− b)
α

− 1

r1

,

where we have used (2.85), (2.88), (2.86) and (2.87). Now, if A = B and

setting θr1 = 2
1−2s

we get 1
γ
− b = θ(s− sc) > 0, furthermore, taking A = BC

and choosing θr1 = 2 one has 1
γ
− b = −θsc < 0. Hence, from the Sobolev

embedding14 (1.8) and Remark 1.17 we deduce

P1(t, A) ≤ c‖u‖θHs
x
‖u‖α−θ

Lp
∗
x
‖Dsu‖

Lp
∗
x
. (2.89)

We now consider P2(t, A) with r = r0. It follows from (2.84) and (2.10)

that

P2(t, A) ≤ ‖|x|−b−s‖Ld(A)‖u‖θ+1

L
(θ+1)e
x

‖u‖α−θL∞x
(2.90)

and by (2.85)
1

d
− b =

1

2
+
θ(2− b)

α
− 1

e
. (2.91)

13Note that, r0 > 2 (see (1.1) for N = 1). Moreover, since 0 < b < 1
3 we have

p∗ ≥ 2
1−2sc = α

2−b (see (1.2) for N = 1).
14Since θr1 ∈ [2, 2

1−2s ] in both cases.
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We claim that ‖|x|−b−s‖Ld(A) is a finite quantity for a suitable choice of e. If

A = B we choose (θ+ 1)e = 2
1−2s

, and if A = BC we set (θ+ 1)e = 2. In the

first case we obtain
1

d
− b− s = θ(s− sc) > 0,

and in the second case we have

1

γ
− b− s = −θsc < 0.

So, the Sobolev embedding (1.8), Remark 1.17 and (2.90) yield

P2(t, A) ≤ c‖u‖θ+1
Hs
x
‖u‖α−θL∞x

.

Therefore, the relations (2.83), (2.89) and the last inequality with A = B

and A = BC imply that

∥∥Ds
(
|x|−b|u|αu

)∥∥
L
r′0
x (B)

≤ c‖u‖θHs
x
‖u‖α−θ

Lp
∗
x
‖Dsu‖

Lp
∗
x

+ c‖u‖θ+1
Hs
x
‖u‖α−θL∞x

and

∥∥Ds
(
|x|−b|u|αu

)∥∥
L
r′0
x (BC)

≤ c‖u‖θHs
x
‖u‖α−θ

Lp
∗
x
‖Dsu‖

Lp
∗
x

+ c‖u‖θ+1
Hs
x
‖u‖α−θL∞x

.

Finally since
1

q′0
=
α− θ
k∗

+
1

l∗

we apply the Hölder inequality in the time variable to get (recalling (l∗, p∗)

is L2-admissible and (k∗, p∗) is Ḣsc-admissible)

∥∥Ds
(
|x|−b|u|αu

)∥∥
L
q′0
t L

r′0
x

≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

Lk
∗
t Lp

∗
x
‖Dsu‖

Ll
∗
t L

p∗
x

+ c‖u‖θ+1
L∞t H

s
x
‖u‖α−θ

L
(α−θ)q′0
t L∞x

≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

S(Ḣsc )
‖Dsu‖S(L2)

+ c‖u‖θ+1
L∞t H

s
x
‖u‖α−θ

S(Ḣsc )
.
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where we have used the fact that (α−θ)q′0 = 4
1−2sc

, by (2.87), and ( 4
1−2sc

,∞)

is Ḣsc-admissible.

Case N = 2 and s < 1. We start defining

q̃ =
2α

α[b+ 2ε(α− θ)] + θ(2− b)
r̃ =

2α

α[1− b− 2ε(α− θ)]− θ(2− b)
,

(2.92)

l0 =
2(α + 1− θ)

(α− θ)(1− 2ε)
p0 =

2(α + 1− θ)
1 + 2ε(α− θ)

(2.93)

and

k0 =
2α(α + 1− θ)

α[1− b− 2ε(α− θ)] + (2− b)(1− θ)
(2.94)

Note that, (q̃, r̃), (l0, p0) are L2-admissible15 and (k0, p0) is Ḣsc-admissible16.

We first estimate P1(t, A) (recall (2.84)-(2.85)) with r = r̃. Analogous as

before, the fractional chain rule (Lemma 1.13) and Hölder’s inequality lead

to

P1(t, A) ≤ ‖|x|−b‖Lγ(A)‖u‖θLθr1x
‖u‖α−θ

L
(α−θ)r2
x

‖Dsu‖Lp0x
= ‖|x|−b‖Lγ(A)‖u‖θLθr1x

‖u‖α−θ
L
p0
x
‖Dsu‖Lp0x ,

where
1

β
=

1

r1

+
1

r2

+
1

p0

and p0 = (α− θ)r2, (2.95)

15The hypothesis 0 < b < N
3 with N = 2 guarantee that the denominators of q̃, r̃, k0, l0

and p0 are all positive numbers. Moreover, r̃ > 2 is equivalent to α(b+2ε(α−θ)) > −θ(2−b)

which is true, therefore r̃ satisfies (1.1) for N = 2.
16We claim that 2α

2−b = 2
1−sc ≤ p0 ≤ (( 2

1−sc )+)′. Indeed, the first inequality is equivalent

to α(1 − b) + (1 − θ)(2 − b) ≥ 2εα(α − θ) which holds true since ε > 0 is a small enough

number. On the other hand, the later inequality holds since εp0 ≤ ( 2
1−sc )+( 2

1−sc ) (recall

(1.4)) can be verified for ε > 0 small enough.
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so the relations (2.85), (2.95), (2.93) and (2.92) imply

2

γ
− b =

θ(2− b)
α

− 2

r1

.

As in the previous case, if A = B we set θr1 = 2
1−s and then 2

γ
− b > 0. On

the other hand, if A = BC , we set θr1 = 2 and then 2
γ
− b < 0. Hence, the

Sobolev embedding (1.8) and Remark 1.17 yield

P1(t, A) ≤ c‖u‖θHs
x
‖u‖α−θ

L
p0
x
‖Dsu‖Lp0x . (2.96)

Next we estimate P2(t, A) with r = r̃. An application of the Hölder

inequality together with (2.84) and (2.10) imply

P2(t, A) ≤ ‖|x|−b−s‖Ld(A)‖u‖θ+1

L
(θ+1)r1
x

‖u‖α−θ
L

(α−θ)r2
x

≤ ‖|x|−b−s‖Ld(A)‖u‖θ+1

L
(θ+1)r1
x

‖u‖α−θ
L

1
ε
x

,

where
1

e
=

1

r1

+
1

r2

, (α− θ)r2 =
1

ε
. (2.97)

We deduce from (2.97) and (2.85)

2

d
= 2− 2

r̃
− 1

r1

− 2ε(α− θ)

= 1 + b+
θ(2− b)

α
− 2

r1

,

where we have used (2.92). In addition, if A = B and (θ+ 1)r1 = 2
1−s we get

2

d
− b− s = θ(s− sc) > 0,

likewise if A = BC and (θ + 1)r1 = 2, we have

2

d
− b− s = −θsc − s < 0.

Thus

P2(t, A) ≤ c‖u‖θ+1
Hs
x
‖u‖α−θ

L
1
ε
x

,
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where we have used the Sobolev inequality (1.8) and Remark 1.17.

Hence, the relations (2.83), (2.96) and the last inequality lead to∥∥Ds
(
|x|−b|u|αu

)∥∥
Lr̃x
≤ c‖u‖θHs

x
‖u‖α−θ

L
p0
x
‖Dsu‖Lp0x + c‖u‖θ+1

Hs
x
‖u‖α−θ

L
1
ε
x

.

Finally, from (2.92) and (2.94), we have that

1

q̃′
=
α− θ
k0

+
1

l0
,

so applying the Hölder inequality in the time variable one has∥∥Ds
(
|x|−b|u|αu

)∥∥
Lq̃
′
t L

r̃′
x
≤ c‖u‖θL∞t Hs

x
‖u‖α−θ

L
k0
t L

p0
x

‖Dsu‖
L
l0
t L

p0
x

+ c‖u‖θ+1
L∞t H

s
x
‖u‖α−θ

L
(α−θ)q̃′
t L

1
ε
x

≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

S(Ḣsc )
‖Dsu‖S(L2)

+ c‖u‖θ+1
L∞t H

s
x
‖u‖α−θ

S(Ḣsc )
,

where we have used the fact that (α − θ)q̃′ = 2α
2−b−2εα

and
(

2α
2−b−2εα

, 1
ε

)
is

Ḣsc-admissible17.

Case N = 1, 2 and s = N
2
. As before, we start defining the following

numbers

ā =
2(α + 1− θ)

2− sc
q̄ =

2(α + 1− θ)
2 + sc(α− θ)

(2.98)

r̄ =
2N(α + 1− θ)

N(α + 1− θ)− 2sc(α− θ)− 4
(2.99)

and

k̄ =
2(α + 1− θ)2

2(α− θ)(1− sc)− sc
l̄ =

2(α + 1− θ)2

2(α− θ)(1− sc) + sc ((α + 1− θ)2 − 1)

(2.100)

p̄ =
2N(α + 1− θ)2

(N − 2sc)(α + 1− θ)2 − 4(α− θ)(1− sc) + 2sc
. (2.101)

17Note that 1
ε satisfies assumption (1.3) with N = 2. Also recall that (l0, p0) is L2-

admissible and (k0, p0) is Ḣsc-admissible.
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Remark 2.24. We claim that the denominator of the numbers defined above

is positive. Indeed, first it is easy to see that the denominators of ā and q̄ are

positive numbers (since sc < 1 and α > θ). We now show the denominators

of r̄, k̄, l̄ and p̄ are also positive numbers for θ > 0 sufficiently small.

Note that the denominator of r̄ can be written as N(1 − θ) − 2b + 2scθ =

N − 2b− θ(N − 2sc) and this is positive since b < N
3

and θ is small enough.

Moreover, since α > 4−2b
N

, the denominator of k̄ is given by 2α− 2αsc− sc−

2θ(1−sc) = 2α−αN+4−2b−sc−2θ(1−sc) > α(2−N)+3−2b−2θ(1−sc),

(where we have used sc < 1) which is positive since N = 1, 2; b < N
3

and θ is

small enough.

It is clear that the denominator of l̄ is a positive number since sc < 1 and

α > θ.

Finally, the denominator of p̄ is positive. Indeed, p̄ can be written as p̄ =

2Nα(α+1−θ)2

(4−2b)(α+1−θ)2−2(α−θ)(4−2b−α(N−2))+Nα−(4−2b)
.

If N = 2 we have (4− 2b)(α + 1− θ)2 − 2(α− θ)(4− 2b) + 2α− (4− 2b) >

(4 − 2b) ((α + 1− θ)2 − 2(α− θ)) > 0, where we have used the assumption

α > 2− b and the fact that b < 2/3.

Similarly if N = 1, we use α > 4− 2b to obtain (4− 2b)(α+ 1− θ)2 − 2(α−

θ)(4−2b+α)+α−(4−2b) > (4−2b) ((α + 1− θ)2 − 2(α− θ))−2α(α−θ) =

(4−2b) ((α− θ)2 + 1)−2α(α−θ) = (α−θ) ((α− θ)(4− 2b)− 2α)+4−2b >

(α− θ) (2α(1− b)− θ(4− 2b)), which is positive since θ is small enough and

b < 1/3.

On the other hand, it is not difficult to check that (q̄, r̄) and (l̄, p̄) L2-

admissible and (ā, r̄), (k̄, p̄) Ḣsc-admissible.18

First, we estimate P1(t, A) with r = r̄. The fractional chain rule (Lemma

18We also have r̄, p̄ ≥ 2N
N−2sc = Nα

2−b . Indeed r̄ = 2N(α+1−θ)
N−2b−θ(N−2sc) ≥

Nα
2−b ⇔ α(4 − N) +

(1−θ)(4−2b) > −θα(N −2sc) which is true since N = 1, 2 and θ < 1. Moreover, p̄ ≥ Nα
2−b
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1.13) and Hölder’s inequality lead to

P1(t, A) ≤ ‖|x|−b‖Lγ(A)‖u‖θLθr1x
‖u‖α−θ

L
(α−θ)r2
x

‖Dsu‖Lp̄x
= ‖|x|−b‖Lγ(A)‖u‖θLθr1x

‖u‖α−θ
Lp̄x
‖Dsu‖Lp̄x , (2.102)

where
1

β
=

1

r1

+
1

r2

+
1

p̄
and p̄ = (α− θ)r2, (2.103)

and so combining (2.85), (2.103) (2.99) and (2.101) we obtain

N

γ
− b = N − b− N

r1

− N

r̄
− N(α + 1− θ)

p̄

= N − b− N

r1

−
(

(α + 1− θ)(N − 2sc) +N − 2(2− sc)
2

)
=

θ(2− b)
α

− N

r1

. (2.104)

In order to have that the first norm in the right hand side of (2.102) is finite,

we need to verify N
γ
− b > 0 if A = B and N

γ
− b < 0 if A = BC for suitable

choices of r1. To this end, we set r1 such that

θr1 >
Nα

(2− b)
(when A = B) and 2 < θr1 <

Nα

(2− b)
(when A = BC)

(2.105)

Hence, the Sobolev embedding (1.7) and (2.102) yield

P1(t, A) ≤ c‖u‖θHs
x
‖u‖α−θ

Lp̄x
‖Dsu‖Lp̄x . (2.106)

We now consider P2(t, A) with r = r̄. By the Hölder inequality and

(2.84) we deduce

P2(t, A) ≤ ‖|x|−b−s‖Ld(A)‖u‖θ+1

L
(θ+1)r1
x

‖u‖α−θ
L

(α−θ)r2
x

= ‖|x|−b−s‖Ld(A)‖u‖θ+1

L
(θ+1)r1
x

‖u‖α−θLr̄x
,

is equivalent to 2(α− θ)(4− 2b− α(N − 2)) ≥ Nα− (4− 2b) so

α (2(4− 2b)−N − 2α(N − 2)) + (4− 2b) ≥ 2θ(4− 2b− α(N − 2)),

this is true since θ small enough, N = 1, 2 and b < N
3 .
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where
1

e
=

1

r1

+
1

r2

and r̄ = (α− θ)r2. (2.107)

The relations (2.85) and (2.107) as well as r̄ defined in (2.99), yield (recall

s = N
2

)

N

d
− b− s = N − b− s− N

r1

− N(α + 1− θ)
r̄

=
N

2
+ (2− b)− N

r1

− N(α + 1− θ)
2

+ sc(α− θ)

=
θ(2− b)

α
− N

r1

. (2.108)

Note that the right hand side of (2.108) is equal to the right hand side of

(2.104), so choosing r1 as in (2.105) and again applying the Sobolev inequality

(1.7), we deduce

P2(t, A) ≤ c‖u‖θ+1
Hs
x
‖u‖α−θLr̄x

.

So the inequalities (2.83), (2.106) and the last inequality imply that

∥∥Ds
(
|x|−b|u|αu

)∥∥
Lr̄′x
≤ c‖u‖θHs

x
‖u‖α−θ

Lp̄x
‖Dsu‖Lp̄x + c‖u‖θ+1

Hs
x
‖u‖α−θLr̄x

.

Since
1

q̄′
=
α− θ
k̄

+
1

l̄

we can apply the Hölder inequality in the time variable to deduce

∥∥Ds
(
|x|−b|u|αu

)∥∥
Lq̄
′
t L

r̄′
x
≤ c‖u‖θL∞t Hs

x
‖u‖α−θ

Lk̄tL
p̄
x
‖Dsu‖Ll̄tLp̄x

+c ‖u‖θ+1
L∞t H

s
x
‖u‖α−θ

L
(α−θ)q̄′
t Lr̄x

≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

S(Ḣsc )
‖Dsu‖S(L2)

+c‖u‖θ+1
L∞t H

s
x
‖u‖α−θ

LātL
r̄
x
,

where in the last equality we have used the fact that ā = (α − θ)q̄′. This

completes the proof since (ā, r̄) Ḣsc-admissible.
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The next result follows directly from Lemmas 2.19, 2.21 and 2.23.

Corollary 2.25. Assume 4−2b
N

< α < αs and 0 < b < 2̃. If sc < s ≤

min{N
2
, 1} then the following statement holds:

‖DsF‖S′(L2) ≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

S(Ḣsc )

(
‖Dsu‖S(L2) + ‖u‖S(L2) + ‖u‖L∞t Hs

x

)
+ c‖u‖1−µ

L∞t H
s
x
‖u‖θ

S(Ḣsc )
‖Dsu‖α−θ+µS(L2) ,

where F (x, u) = |x|−b|u|αu.

Now, we have all the tools to prove Theorem 2.14. Similarly as in the

local theory, we use the contraction mapping principle.

Proof of Theorem 2.14. First, we define

B = {u : ‖u‖S(Ḣsc ) ≤ 2‖U(t)u0‖S(Ḣsc ) and ‖u‖S(L2)+‖Dsu‖S(L2) ≤ 2c‖u0‖Hs}.

We show that G = Gu0 defined in (9) is a contraction on B equipped with

the metric

d(u, v) = ‖u− v‖S(L2) + ‖u− v‖S(Ḣsc ).

Indeed, by the Strichartz inequalities (1.9), (1.10), (1.11) and (1.12), we

deduce

‖G(u)‖S(Ḣsc ) ≤ ‖U(t)u0‖S(Ḣsc ) + c‖F‖S′(Ḣ−sc ) (2.109)

‖G(u)‖S(L2) ≤ c‖u0‖L2 + c‖F‖S′(L2) (2.110)

and

‖DsG(u)‖S(L2) ≤ c‖Dsu0‖L2 + c‖DsF‖S′(L2), (2.111)

where F (x, u) = |x|−b|u|αu. On the other hand, it follows from Lemmas 2.17

and 2.18 together with Corollary 2.25 that

‖F‖S′(Ḣ−sc ) ≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

S(Ḣsc )
‖u‖S(Ḣsc )

‖F‖S′(L2) ≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

S(Ḣsc )
‖u‖S(L2)
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and

‖DsF‖S′(L2) ≤ c‖u‖θL∞t Hs
x
‖u‖α−θ

S(Ḣsc )

(
‖Dsu‖S(L2) + ‖u‖S(L2) + ‖u‖L∞t Hs

x

)
+ c‖u‖1−µ

L∞t H
s
x
‖u‖θ

S(Ḣsc )
‖Dsu‖α−θ+µS(L2) .

In addition, combining (2.109)-(2.111) and the last inequalities, we get for

u ∈ B

‖G(u)‖S(Ḣsc ) ≤‖U(t)u0‖S(Ḣsc ) + c‖u‖θL∞t Hs
x
‖u‖α−θ

S(Ḣsc )
‖u‖S(Ḣsc )

≤‖U(t)u0‖S(Ḣsc ) + 2α+1cθ+1‖u0‖θHs‖U(t)u0‖α−θ+1

S(Ḣsc )
.

Also, setting X = ‖Dsu‖S(L2) + ‖u‖S(L2) + ‖u‖L∞t Hs
x

we have

‖G(u)‖S(L2) + ‖DsG(u)‖S(L2) ≤ c‖u0‖Hs + c‖u‖θL∞t Hs
x
‖u‖α−θ

S(Ḣsc )
X

+ c‖u‖1−µ
L∞t H

s
x
‖u‖θ

S(Ḣsc )
‖Dsu‖α−θ+µS(L2)

≤ c‖u0‖Hs + 2α+2cθ+2‖u0‖θ+1
Hs ‖U(t)u0‖α−θS(Ḣsc )

+2α+1cα−θ+2‖u0‖α−θ+1
Hs ‖U(t)u0‖θS(Ḣsc )

,

where we have used the fact that X ≤ 22c‖u0‖Hs since u ∈ B.

Now if ‖U(t)u0‖S(Ḣsc ) < δ with

δ ≤ min

{
α−θ

√
1

2cθ+12α+1Aθ
,
α−θ

√
1

4cθ+12α+2Aθ
,
θ

√
1

4cα−θ+12α+1Aα−θ

}
,

(2.112)

where A > 0 is a number such that ‖u0‖Hs ≤ A, we get

‖G(u)‖S(Ḣsc ) ≤ 2‖U(t)u0‖S(Ḣsc )

and

‖G(u)‖S(L2) + ‖DsG(u)‖S(L2) ≤ 2c‖u0‖Hs ,

that is G(u) ∈ B.
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Now we show that G is a contraction on B. From (1.13) and repeating

the above computations, one has

‖G(u)−G(v)‖S(Ḣsc ) ≤c‖F (x, u)− F (x, v)‖S(Ḣ−sc )

≤c
∥∥|x|−b|u|α|u− v|∥∥

S(Ḣ−sc )
+
∥∥|x|−b|v|α|u− v|∥∥

S(Ḣ−sc )

≤c‖u‖θL∞t Hs
x
‖u‖α−θ

S(Ḣsc )
‖u− v‖S(Ḣsc )

+ c‖v‖θL∞t Hs
x
‖v‖α−θ

S(Ḣsc )
‖u− v‖S(Ḣsc )

which implies, taking u, v ∈ B

‖G(u)−G(v)‖S(Ḣsc ) ≤ 2c(2c)θ‖u0‖θHs2α−θ‖U(t)u0‖α−θS(Ḣsc )
‖u− v‖S(Ḣsc )

= 2α+1cθ+1‖u0‖θHs‖U(t)u0‖α−θS(Ḣsc )
‖u− v‖S(Ḣsc )

By similar arguments we also obtain

‖G(u)−G(v)‖S(L2) ≤ 2α+1cθ+1‖u0‖θHs‖U(t)u0‖α−θS(Ḣsc )
‖u− v‖S(L2).

Finally, from the last two inequalities and (2.112) we deduce

d(G(u), G(v)) ≤ 2α+1cθ+1‖u0‖θHs‖U(t)u0‖α−θS(Ḣsc )
d(u, v) ≤ 1

2
d(u, v),

i.e., G is a contraction.

Therefore, by the Banach Fixed Point Theorem, G has a unique fixed

point u ∈ B, which is a global solution of (7).



Chapter 3

Scattering for INLS equation

3.1 Introduction

In this chapter, we consider the Cauchy problem for the focusing inhomoge-

nous nonlinear Schrödinger equation, that is i∂tu+ ∆u+ |x|−b|u|αu = 0, t ∈ R, x ∈ RN ,

u(0, x) = u0(x),
(3.1)

Our principal aim here is to study scattering (recall Definition 0.2) for

INLS equation in RN , N ≥ 2, with radial data in H1(RN). We focus on the

L2-supercritical and H1-subcritical case, which as explained in the introduc-

tion, corresponds to the cases where 2− b < α <∞, N = 2,

4−2b
N

< α < 4−2b
N−2

, N ≥ 3.
(3.2)

In the particular case b = 0, i.e., the classical nonlinear Schrödinger equa-

tion (NLS), this problem was already studied for many authors. Let us recall

the best results available in the literature. The cubic NLS in 3D case with

radial initial data was considered by Holmer-Roudenko [23], then Duyckaerts-

Holmer-Roudenko [10] extended the same result for non radial initial data. It
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was later generalized, for arbitrary dimension N ≥ 1 and all L2-supercritical

and H1-subcritical NLS equations, by Fang-Xie-Cazenave [11] (see also Gue-

vara [22]). All these works used the concentration-compactness method and

rigidity technique introduced by Kenig-Merle [26] in their study of the en-

ergy critical NLS. Inspired in these works we show scattering for the INLS

equation (3.1) under the assumption (3.2).

In a recent work, Farah [12] showed global well-posedness for the L2-

supercritical and H1-subcritical INLS (3.1). More precisely, he obtained the

following result:

Theorem 3.1. Let N ≥ 1, 4−2b
N

< α < 2∗ and 0 < b < min{2, N}. Suppose

that u(t) is the solution of (3.1) with initial data u0 ∈ H1(RN) satisfying1

E[u0]scM [u0]1−sc < E[Q]scM [Q]1−sc (3.3)

and

‖∇u0‖scL2‖u0‖1−sc
L2 < ‖∇Q‖scL2‖Q‖1−sc

L2 . (3.4)

Then u(t) is a global solution in H1(RN). Furthermore, for any t ∈ R we

have

‖∇u(t)‖scL2
x
‖u(t)‖1−sc

L2
x

< ‖∇Q‖scL2‖Q‖1−sc
L2 , (3.5)

where Q is the unique smooth, radial and positive solution of the elliptic

equation

−Q+ ∆Q+ |x|−b|Q|αQ = 0. (3.6)

Remark 3.2. In [12, Teorema 1.6] was also showed that, if the condition

(3.3) holds, ‖∇u0‖scL2‖u0‖1−sc
L2 > ‖∇Q‖scL2‖Q‖1−sc

L2 and u0 has finite variance,

i.e., |x|u0 ∈ L2(RN). Then the solution u blows up in finite time. This is an

extension to the INLS model of the result proved by Holmer-Roudenko [23]

for the NLS equation.

1Recalling that sc = N
2 −

2−b
α .
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The goal here is to prove scattering for the INLS equation (3.1) under

the conditions (3.3)-(3.4). Before stating the main result we define

2∗ :=


4−2b
N−2

N ≥ 4,

3− 2b N = 3,

∞ N = 2.

(3.7)

Note that, for N 6= 3 we have 2∗ = 2∗ (recalling that 2∗ is given in (8)). For

dimension N = 3, we need the condition α < 3− 2b to have the exponent of

‖∇u‖S(L2) equal to 1, see Lemma 3.12 and also the footnote 3 below.

We now give the precise statement of our main result of this chapter.

Theorem 3.3. Let N ≥ 2, u0 ∈ H1(RN) be radial and 4−2b
N

< α < 2∗

with 0 < b < min{N
3
, 1}. Suppose that (3.3) and (3.4) are satisfied then the

solution u of (3.1) with initial data u0 is global and scatters in H1(RN), i.e.,

there exists φ± ∈ H1(RN) such that

lim
t→±∞

‖u(t)− U(t)φ±‖H1
x

= 0. (3.8)

Remark 3.4. Note that, for the scattering result we replace the condition

0 < b < 2̃ by 0 < b < min{N
3
, 1}. Recalling 2̃ = 2 for N ≥ 4 (see definition

(2.1)), in the previous chapter we consider b < 2 for N ≥ 4. However, in

this chapter we assume the condition b < 1 when N ≥ 4 (we need this

condition to show the existence of the critical solution, see Proposition 3.28

and footnote 15 below).

Remark 3.5. It is worth to mention that although the above theorem does

not hold for all L2-supercritical and H1-subcritical INLS equation (3.1), when

N = 3, we still have scattering for the cubic INLS equation in 3D. Therefore,

we were able to extend the result of Holmer-Roudenko [23] for INLS setting.

Also, since the solutions of the INLS equation do not enjoy conservation
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of momentum, we can not use the ideas introduced by Duyckaerts-Holmer-

Roudenko [10] to remove the radial assumption in Theorem 3.3.

Similarly as in the NLS model, the criteria to establish scattering is given

by the following proposition (we will show it after the Proposition 3.14):

Proposition 3.6. (H1 scattering) Let u(t) be a global solution of (3.1)

with initial data u0 ∈ H1(RN). If ‖u‖S(Ḣsc ) < +∞ and sup
t∈R
‖u(t)‖H1

x
≤ B.

Then u(t) scatters in H1(RN) as t→ ±∞ in the sense defined in (3.8).

The plan of this chapter is as follows: in Section 3.2, we give the idea of

the proof of the main result (Theorem 3.3), assuming all the technical points.

In section 3.3, we collect many preliminary results for the Cauchy problem

(3.1). Next in Section 3.4, we recall some properties of the ground state

and show the existence of the wave operator. In Section 3.5, we construct

a critical solution denoted by uc and show some of its properties (the key

ingredient in this step is a profile decomposition result related to the linear

flow). Finally, Section 3.6 is devoted to the rigidity theorem.

3.2 Sketch of the proof of the main result

Let u(t) be the corresponding H1 solution for the Cauchy problem (3.1) with

radial data u0 ∈ H1(RN) satisfying (3.3) and (3.4). We already know by

Theorem 3.1 that the solution is globally defined and sup
t∈R
‖u(t)‖H1 <∞. So,

in view of Proposition 3.6, our goal is to show that

‖u‖S(Ḣsc ) < +∞. (3.9)

The technique employed here to achieve the scattering property (3.9) com-

bines the concentration-compactness with rigidity ideas introduced by Kenig-

Merle [26]. It is also based on the works of Holmer-Roudenko [23], Fang-Xie-
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Cazenave [11] and Guevara [22]. We describe it in the sequel, but first we

need some preliminary definitions.

Definition 3.7. We shall say that SC(u0) holds if the solution u(t) with

initial data u0 ∈ H1(RN) is global and (3.9) holds.

Definition 3.8. For each δ > 0 define the set Aδ to be the collection of all

initial data in H1(RN) satisfying

Aδ = {u0 ∈ H1 : E[u0]scM [u0]1−sc < δ and ‖∇u0‖scL2‖u0‖1−sc
L2 < ‖∇Q‖scL2‖Q‖1−sc

L2 }

and define

δc = sup{ δ > 0 : u0 ∈ Aδ =⇒ SC(u0) holds} = sup
δ>0

Bδ. (3.10)

First note that Bδ 6= ∅. In fact, applying the Strichartz estimate (1.10),

interpolation and Lemma 3.21 (i) below, we obtain

‖U(t)u0‖S(Ḣsc ) ≤ c‖u0‖Ḣsc ≤ c‖∇u0‖scL2‖u0‖1−sc
L2

≤ c

(
Nα + 2b

αsc

) sc
2

E[u0]
sc
2 M [u0]

1−sc
2 .

So if u0 ∈ Aδ we have

E[u0]scM [u0]1−sc <

(
αsc

Nα + 2b

)sc
δ′2,

which implies

‖U(t)u0‖S(Ḣsc ) ≤ cδ′.

Then, by the small data theory (Proposition 3.14 below) we have that SC(u0)

holds for δ′ > 0 small enough.

Next, we sketch the proof of Theorem 3.3. If δc ≥ E[Q]scM [Q]1−sc then

we are done. Assume now, by contradiction, that δc < E[Q]scM [Q]1−sc .
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Therefore, there exists a sequence of radial solutions un to (3.1) with H1

initial data un,0 (rescale all of them to have ‖un,0‖L2 = 1 for all n) such that2

‖∇un,0‖scL2 < ‖∇Q‖scL2‖Q‖1−sc
L2 (3.11)

and

E[un]sc ↘ δc as n→ +∞,

for which SC(un,0) does not hold for any n ∈ N. However, we already

know by Theorem 3.1 that un is globally defined. Hence, we must have

‖un‖S(Ḣsc ) = +∞. Then using a profile decomposition result (see Proposi-

tion 3.25 below) on the sequence {un,0}n∈N we can construct a critical solution

of (1), denoted by uc, that lies exactly at the threshold δc, satisfies (3.11)

(therefore uc is globally defined again by Theorem 3.1) and ‖uc‖S(Ḣsc ) = +∞

(see Proposition 3.28 below). On the other hand, we prove that the critical

solution uc has the property that K = {uc(t) : t ∈ [0,+∞)} is precompact

in H1(RN) (see Proposition 3.29 below). Finally, the rigidity theorem (The-

orem 3.32 below) will imply that such a critical solution is identically zero,

which contradicts the fact that ‖uc‖S(Ḣsc ) = +∞.

3.3 Cauchy Problem

In this section we show a miscellaneous of results for the Cauchy problem

(3.1). These results will be useful in the next sections. We start by stating

the following two lemmas.

2We can rescale un,0 such that ‖un,0‖L2 = 1. Indeed, if uλn,0(x) = λ
2−b
α un,0(λx)

then by (6) we have E[uλn,0]scM [uλn,0]1−sc < E[Q]scM [Q]1−sc and ‖∇uλn,0‖
sc
L2‖uλn,0‖

1−sc
L2 <

‖∇Q‖scL2‖Q‖1−scL2 . Moreover, since ‖uλn,0‖L2 = λ−sc‖un,0‖L2 by (5), setting λsc = ‖un,0‖L2

we have ‖uλn,0‖L2 = 1.
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Lemma 3.9. Let N ≥ 2, 4−2b
N

< α < 2∗ and 0 < b < min{N
3
, 1}. Then there

exist c > 0 and θ ∈ (0, α) sufficiently small such that∥∥|x|−b|u|αv∥∥
S′(Ḣ−sc )

≤ c‖u‖θL∞t H1
x
‖u‖α−θ

S(Ḣsc )
‖v‖S(Ḣsc ).

Proof. See Lemma 2.17, with s = 1.

Lemma 3.10. Let N ≥ 2, 4−2b
N

< α < 2∗ and 0 < b < min{N
3
, 1}. Then

there exist c > 0 and θ ∈ (0, α) sufficiently small such that∥∥|x|−b|u|αv∥∥
S′(L2)

≤ c‖u‖θL∞t H1
x
‖u‖α−θ

S(Ḣsc )
‖v‖S(L2).

Proof. See Lemma 2.18, with s = 1.

Remark 3.11. In the perturbation theory we use the following estimate for

α > 1 ∥∥|x|−b|u|α−1vw
∥∥
S′(L2)

≤ c‖u‖θL∞t H1
x
‖u‖α−1−θ

S(Ḣsc )
‖v‖S(Ḣsc )‖w‖S(L2),

where θ ∈ (0, α− 1) is a sufficiently small number.

Its proof follows from the ideas of Lemma 3.10, that is, we can repeat

all the computations replacing |u|αv by |u|α−1vw or, to be more precise,

replacing |u|αv = |u|θ|u|α−θv by |u|α−1vw = |u|θ|u|α−1−θvw.

Similarly as in the proof of Theorem 2.14, to show the small data the-

ory in H1 (see Theorem 3.14 below), we need to estimate the nonlinearity

|x|−b|u|αu. We already have the estimates in the spaces S ′(Ḣsc) and S ′(L2)

by the previous lemmas. To estimate ‖∇(|x|−b|u|αu)‖S′(L2), when N 6= 3,

the proof is the same as the one in Section 2.2, see Lemmas 2.19 and 2.23

with s = 1. In the next lemma we consider the case N = 3 separately. As it

was mentioned before, we will need the exponent in the norm ‖∇u‖S(L2) that

appears in the right hand side of (2.73) to be equal to 1, however in Lemma

2.21 we got the exponent α− θ + µ 6= 1.
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Lemma 3.12. Let N ≥ 2, 4−2b
N

< α < 2∗ and 0 < b < min{N
3
, 1}. There

exist c > 0 and θ ∈ (0, α) sufficiently small such that

∥∥∇(|x|−b|u|αu)
∥∥
S′(L2)

≤ c‖u‖θL∞t H1
x
‖u‖α−θ

S(Ḣsc )
‖∇u‖S(L2) + c‖u‖1+θ

L∞t H
1
x
‖u‖α−θ

S(Ḣsc )
.

Proof. For N 6= 3, the above inequality was already proved in Lemmas 2.19

and 2.23, with s = 1. Now, we only consider the case N = 3. We claim that

∥∥∇(|x|−b|u|αu)
∥∥
S′(L2)

≤ c‖u‖θL∞t H1
x
‖u‖α−θ

S(Ḣsc )
‖∇u‖S(L2).

Indeed, the proof follows from similar ideas as the ones in Lemma 2.21.

Since (2, 6) is L2-admissible in 3D we deduce

∥∥∇ (|x|−b|u|αu)∥∥
S′(L2)

≤
∥∥∇ (|x|−b|u|αu)∥∥

L2′
t L

6′
x (B)

+
∥∥∇ (|x|−b|u|αu)∥∥

L2′
t L

6′
x (BC)

.

Let A ⊂ RN . Applying the product rule for derivatives and Hölder’s inequal-

ity we have

∥∥∇ (|x|−b|u|αu)∥∥
L6′
x (A)

≤
∥∥∇ (|x|−b) |u|αu∥∥

L6′
x (A)

+
∥∥|x|−b∇ (|u|αu)

∥∥
L6′
x (A)

≤ M1(t, A) +M2(t, A),

where

M1(t, A) =
∥∥|x|−b∥∥

Lγ(A)
‖∇(|u|αu)‖Lβx M2(t, A) =

∥∥∇(|x|−b)
∥∥
Ld(A)

‖|u|αu‖Lex

and
1

6′
=

1

γ
+

1

β
=

1

d
+

1

e
. (3.12)

From the proof of Lemma 2.21 with s = 1 we already have

‖M1(t, A)‖L2′
t
≤ c‖u‖θL∞t H1

x
‖u‖α−θ

S(Ḣsc )
‖∇u‖S(L2). (3.13)
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To estimateM2(t, A) we use the pairs (ā, r̄) =
(

4(α− 2θ), 6α(α−2θ)
α(3−2b)−2θ(4−2b)

)
Ḣsc-admissible and (q, r) =

(
4(α−2θ)
α−3θ

, 6(α−2θ)
2α−3θ

)
L2-admissible.3

From the Hölder inequality, the Sobolev embedding (1.6) and (2.10) we ob-

tain

M2(t, A) ≤ ‖|x|−b−1‖Ld(A)‖u‖θLθr1x
‖u‖α−θ

L
(α−θ)r2
x

‖u‖Lr3x
≤ ‖|x|−b−1‖Ld(A)‖u‖θLθr1x

‖u‖α−θLr̄x
‖∇u‖Lrx (3.14)

if 
1
e

= 1
r1

+ 1
r2

+ 1
r3

1 = 3
r
− 3

r3

r̄ = (α− θ)r2.

Note that the second equation is valid since r < 3. On the other hand, in

order to show that ‖|x|−b−1‖Ld(A) is bounded, we need 3
d
− b − 1 > 0 when

A is the ball B and 3
d
− b − 1 < 0 when A = BC , by Remark 1.17. In fact,

it follows from (3.12), the previous system and the values of q, r, q̄ and r̄

defined above that

3

d
− b− 1 =

5

2
− b− 3

r1

− 3(α− θ)
r̄

− 3

r

=
5

2
− b− 3

r1

− (α− θ)
(

2− b
α
− 2

ā

)
− 3

2
+

2

q

= −1− 3

r1

+
θ(2− b)

α
+

2(α− θ)
ā

+
2

q

=
θ(2− b)

α
− 3

r1

. (3.15)

3Note that 3α
2−b = 6

3−2sc < r̄ < 6 (condition (1.3) with N = 3), indeed r̄ > 3α
2−b

is equivalent to 2(α − 2θ)(2 − b) > α(3 − 2b) − 2θ(4 − 2b) ⇔ α > 0. Also, r̄ < 6 ⇔

2θ(4− 2b− α) < α(3− 2b− α), which is true by the assumption α < 3− 2b and θ > 0 is

a small number. Moreover it is easy to see that 2 < r < 6, i.e., r satisfies the condition of

admissible pair (1.1) with N = 3.
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Now choosing r1 such that

θr1 >
3α

2− b
when A = B and θr1 <

3α

2− b
when A = BC

we get 3
d
− b − 1 > 0 when A = B and 3

d
− b − 1 < 0 when A = BC , so

|x|−b−1 ∈ Ld(A). In addition, we have by the Sobolev embedding (1.8) (since

2 < 3α
2−b < 6) and (3.14)

M2(t, A) ≤ c‖u‖θH1
x
‖u‖α−θLr̄x

‖∇u‖Lrx .

Therefore, using now Hölder’s inequality in the time variable and the fact

that
1

2′
=
α− θ
ā

+
1

q

we conclude

‖M2(t, A)‖L2′
t
≤ c‖u‖θL∞t H1

x
‖u‖α−θ

LātL
r̄
x
‖∇u‖LqtLrx . (3.16)

The proof is completed combining (3.13) and (3.16).

Remark 3.13. A consequence of the previous lemma is the following esti-

mate ∥∥|x|−b−1|u|αv
∥∥
S′(L2)

. ‖u‖θL∞t H1
x
‖u‖α−θ

S(Ḣsc )

(
‖∇v‖S(L2) + ‖v‖L∞t H1

x

)
.

Our first result in this section concerning the Cauchy problem (3.1) is

the following

Proposition 3.14. (Small data global theory in H1) Let N ≥ 2, 4−2b
N

<

α < 2∗ with 0 < b < min{N
3
, 1} and u0 ∈ H1(RN). Assume ‖u0‖H1 ≤ A.

There there exists δ = δ(A) > 0 such that if ‖U(t)u0‖S(Ḣsc ) < δ, then there

exists a unique global solution u of the integral equation (7) such that

‖u‖S(Ḣsc ) ≤ 2‖U(t)u0‖S(Ḣsc )

and

‖u‖S(L2) + ‖∇u‖S(L2) ≤ 2c‖u0‖H1 .
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Proof. The proof follows directly from Theorem 2.14 with4 s = 1.

Remark 3.15. It is worth mentioning that the previous results were proved

in Chapter 2 under the condition 0 < b < 2̃ (see definition (2.1)). Conse-

quently, it is easy to see that they also hold for 0 < b < min{N
3
, 1}.

We now show Proposition 3.6 (this result gives us the criterion to estab-

lish scattering).

Proof of Proposition 3.6. First, we claim that

‖u‖S(L2) + ‖∇u‖S(L2) < +∞. (3.17)

Indeed, since ‖u‖S(Ḣsc ) < +∞, given δ > 0 we can decompose [0,∞)

into n intervals Ij = [tj, tj+1) such that ‖u‖S(Ḣsc ;Ij)
< δ for all j = 1, ..., n.

On the time interval Ij we consider the integral equation

u(t) = U(t− tj)u(tj) + i

∫ tj+1

tj

U(t− s)(|x|−b|u|αu)(s)ds.

It follows from the Strichartz estimates (1.9) and (1.11) that

‖u‖S(L2;Ij) ≤ c‖u(tj)‖L2
x

+ c
∥∥|x|−b|u|αu∥∥

S′(L2;Ij)
(3.18)

and

‖∇u‖S(L2;Ij) ≤ c‖∇u(tj)‖L2
x

+ c
∥∥∇(|x|−b|u|αu)

∥∥
S′(L2;Ij)

. (3.19)

From Lemmas 3.10 and 3.12 we have

∥∥|x|−b|u|αu∥∥
S′(L2;Ij)

≤ c‖u‖θL∞IjH1
x
‖u‖α−θ

S(Ḣsc ;Ij)
‖u‖S(L2;Ij),

‖∇(|x|−b|u|αu)‖S′(L2;Ij) ≤ c‖u‖θL∞IjH1
x
‖u‖α−θ

S(Ḣsc ;Ij)

(
‖∇u‖S(L2;Ij) + ‖u‖L∞IjH1

x

)
.

4In Theorem 2.14 we have the condition s ≤ min{N2 , 1} and since s = 1 in this case,

we deduce N ≥ 2. For this reason, we study scattering in H1(RN ) with N ≥ 2.
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Thus, using (3.18), (3.19) and the two last estimates, we get

‖u‖S(L2;Ij) ≤ cB + cBθδα−θ‖u‖S(L2;Ij)

and

‖∇u‖S(L2;Ij) ≤ cB + cBθ+1δα−θ + cBθδα−θ‖∇u‖S(L2;Ij), (3.20)

where we have used the assumption sup
t∈R
‖u(t)‖H1 ≤ B.

Taking δ > 0 such that cBθδα−θ < 1
2

we obtain5

‖u‖S(L2;Ij) + ‖∇u‖S(L2;Ij) ≤ cB,

and by summing over the n intervals, we conclude the proof of (3.17).

Returning to the proof of the proposition, let

φ+ = u0 + i

+∞∫
0

U(−s)|x|−b(|u|αu)(s)ds.

Note that, φ+ ∈ H1(RN). Indeed, by the same arguments as before, we

deduce that

‖φ+‖L2 ≤ c‖u0‖L2 + c‖u‖θL∞t H1
x
‖u‖α−θ

S(Ḣsc )
‖u‖S(L2)

and

‖∇φ+‖L2 ≤ c‖∇u0‖L2 + c‖u‖θL∞t H1
x
‖u‖α−θ

S(Ḣsc )

(
‖∇u‖S(L2) + ‖u‖L∞t H1

x

)
.

Therefore, (3.17) yields ‖φ‖H1 < +∞.

On the other hand, since u is a solution of (3.1) we get

u(t)− U(t)φ+ = −i
+∞∫
t

U(t− s)|x|−b(|u|αu)(s)ds.

5Here, in order to prove that ‖∇u‖S(L2;Ij) is bounded we need the exponent on this

norm to be equal to 1 since otherwise we can not absorb this term on the right-hand side

of (3.20).
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Similarly as before, we have

‖u(t)− U(t)φ‖L2
x
≤ c‖u‖θL∞t H1

x
‖u‖α−θ

S(Ḣsc ;[t,∞))
‖u‖S(L2)

and

‖∇(u(t)− U(t)φ)‖L2
x
≤ c‖u‖θL∞t H1

x
‖u‖α−θ

S(Ḣsc ;[t,∞))

(
‖∇u‖S(L2) + ‖u‖L∞t H1

x

)
The proof is completed after using (3.17) and the fact that ‖u‖S(Ḣsc ;[t,∞)) → 0

as t→ +∞.

Remark 3.16. In the same way we define

φ− = u0 + i

∫ −∞
0

U(−s)|x|−b(|u|αu)(s)ds,

so that we have φ− ∈ H1 and

u(t)− U(t)φ− = i

t∫
−∞

U(t− s)|x|−b(|u|αu)(s)ds,

which also satisfies (using the same argument as before)

‖u(t)− U(t)φ−‖H1
x
→ 0 as t→ −∞.

Next, we study the perturbation theory for the IVP (3.1) following the

exposition in Killip-Kwon-Shao-Visan [29, Theorem 3.1]. We first obtain a

short-time perturbation which can be iterated to obtain a long-time pertur-

bation result.

Proposition 3.17. (Short-time perturbation theory for the INLS)

Let I ⊆ R be a time interval containing zero and let ũ defined on I × RN be

a solution (in the sense of the appropriated integral equation) to

i∂tũ+ ∆ũ+ |x|−b|ũ|αũ = e,
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with initial data ũ0 ∈ H1(RN), satisfying

sup
t∈I
‖ũ(t)‖H1

x
≤M and ‖ũ‖S(Ḣsc ;I) ≤ ε, (3.21)

for some positive constant M and some small ε > 0.

Let u0 ∈ H1(RN) such that

‖u0 − ũ0‖H1 ≤M ′ and ‖U(t)(u0 − ũ0)‖S(Ḣsc ;I) ≤ ε, for M ′ > 0. (3.22)

In addition, assume the following conditions

‖e‖S′(L2;I) + ‖∇e‖S′(L2;I) + ‖e‖S′(Ḣ−sc ;I) ≤ ε. (3.23)

There exists ε0(M,M ′) > 0 such that if ε < ε0, then there is a unique

solution u to (3.1) on I×RN with initial data u0, at the time t = 0, satisfying

‖u‖S(Ḣsc ;I) . ε (3.24)

and

‖u‖S(L2;I) + ‖∇u‖S(L2;I) . c(M,M ′). (3.25)

Proof. We use the following claim (we will show it later): there exists ε0 > 0

sufficiently small such that, if ‖ũ‖S(Ḣsc ;I) ≤ ε0 then

‖ũ‖S(L2;I) .M and ‖∇ũ‖S(L2;I) .M. (3.26)

We may assume, without loss of generality, that 0 = inf I. Let us first

prove the existence of a solution w for the following initial value problem

 i∂tw + ∆w +H(x, ũ, w) + e = 0,

w(0, x) = u0(x)− ũ0(x),
(3.27)

where H(x, ũ, w) = |x|−b (|ũ+ w|α(ũ+ w)− |ũ|αũ).
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To this end, let

G(w)(t) := U(t)w0 + i

∫ t

0

U(t− s)(H(x, ũ, w) + e)(s)ds (3.28)

and define

Bρ,K = {w ∈ C(I;H1(RN)) : ‖w‖S(Ḣsc ;I) ≤ ρ and ‖w‖S(L2;I)+‖∇w‖S(L2;I) ≤ K}.

For a suitable choice of the parameters ρ > 0 and K > 0, we need to show

that G in (3.28) defines a contraction on Bρ,K . Indeed, applying Strichartz

inequalities (1.9), (1.10), (1.11) and (1.12), we have

‖G(w)‖S(Ḣsc ;I) . ‖U(t)w0‖S(Ḣsc ;I) + ‖H(·, ũ, w)‖S′(Ḣ−sc ;I) + ‖e‖S′(Ḣ−sc ;I)

(3.29)

‖G(w)‖S(L2;I) . ‖w0‖L2 + ‖H(·, ũ, w)‖S′(L2;I) + ‖e‖S′(L2;I) (3.30)

and

‖∇G(w)‖S(L2;I) . ‖∇w0‖L2 + ‖∇H(·, ũ, w)‖S′(L2;I) + ‖∇e‖S′(L2;I). (3.31)

On the other hand, since

||ũ+ w|α(ũ+ w)− |ũ|αũ| . |ũ|α|w|+ |w|α+1 (3.32)

by (1.13), we get

‖H(·, ũ, w)‖S′(Ḣ−sc ;I) ≤ ‖|x|
−b|ũ|αw‖S′(Ḣ−sc ;I) + ‖|x|−b|w|αw‖S′(Ḣ−sc ;I),

which implies using Lemma 3.9 that

‖H(·, ũ, w)‖S′(Ḣ−sc ;I) .
(
‖ũ‖θL∞t H1

x
‖ũ‖α−θ

S(Ḣsc ;I)
+ ‖w‖θL∞t H1

x
‖w‖α−θ

S(Ḣsc ;I)

)
‖w‖S(Ḣsc ;I).

(3.33)

The same argument and Lemma 3.10 also yield

‖H(·, ũ, w)‖S′(L2;I) .
(
‖ũ‖θL∞t H1

x
‖ũ‖α−θ

S(Ḣsc ;I)
+ ‖w‖θL∞t H1

x
‖w‖α−θ

S(Ḣsc ;I)

)
‖w‖S(L2;I).

(3.34)
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Now, we estimate ‖∇H(·, ũ, w)‖S′(L2;I). It follows from (1.16) and (3.32) that

|∇H(x, ũ, w)| . |x|−b−1(|ũ|α + |w|α)|w|+ |x|−b(|ũ|α + |w|α)|∇w|+ E,

where

E .


|x|−b (|ũ|α−1 + |w|α−1) |w||∇ũ| if α > 1

|x|−b|∇ũ||w|α if α ≤ 1.

Thus, Lemma 3.10 and Remark 3.13 lead to

‖∇H(·, ũ, w)‖S′(L2;I) .
(
‖ũ‖θL∞t H1

x
‖ũ‖α−θ

S(Ḣsc ;I)
+ ‖w‖θL∞t H1

x
‖w‖α−θ

S(Ḣsc ;I)

)
‖∇w‖S(L2;I)

+
(
‖ũ‖θL∞t H1

x
‖ũ‖α−θ

S(Ḣsc ;I)
+ ‖w‖θL∞t H1

x
‖w‖α−θ

S(Ḣsc ;I)

)
‖w‖L∞t H1

x

+
(
‖ũ‖θL∞t H1

x
‖ũ‖α−θ

S(Ḣsc ;I)
+ ‖w‖θL∞t H1

x
‖w‖α−θ

S(Ḣsc ;I)

)
‖∇w‖S(L2;I)+E1

.
(
‖ũ‖θL∞t H1

x
‖ũ‖α−θ

S(Ḣsc ;I)
+ ‖w‖θL∞t H1

x
‖w‖α−θ

S(Ḣsc ;I)

)
‖∇w‖S(L2;I)

+
(
‖ũ‖θL∞t H1

x
‖ũ‖α−θ

S(Ḣsc ;I)
+ ‖w‖θL∞t H1

x
‖w‖α−θ

S(Ḣsc ;I)

)
‖w‖L∞t H1

x
+E1.

(3.35)

Moreover, using Remark 3.11,

E1 .


(
‖ũ‖θL∞t H1

x
‖ũ‖α−1−θ

S(Ḣsc ;I)
+ ‖w‖θL∞t H1

x
‖w‖α−1−θ

S(Ḣsc ;I)

)
‖w‖S(Ḣsc ;I)‖∇ũ‖S(L2;I), α > 1

‖w‖θL∞t H1
x
‖w‖α−θ

S(Ḣsc ;I)
‖∇ũ‖S(L2;I) , α ≤ 1,

where θ ∈ (0, α− 1) if α > 1 or θ ∈ (0, α) if α ≤ 1.

Hence, combining (3.33), (3.34) and if u ∈ B(ρ,K), we have

‖H(·, ũ, w)‖S′(Ḣ−sc ;I) .
(
M θεα−θ +Kθρα−θ

)
ρ (3.36)

and

‖H(·, ũ, w)‖S′(L2;I) .
(
M θεα−θ +Kθρα−θ

)
K. (3.37)
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Furthermore, (3.35) and (3.26) imply

‖∇H(·, ũ, w)‖S′(L2;I) .
(
M θεα−θ +Kθρα−θ

)
K + E1 (3.38)

where

E1 .


(
M θεα−1−θ +Kθρα−1−θ) ρM if α > 1,

Kθρα−θM if α ≤ 1.

Therefore, we deduce by (3.29)-(3.30) together with (3.36)- (3.37) that

‖G(w)‖S(Ḣsc ;I) ≤ cε+ cAρ

and

‖G(w)‖S(L2;I) ≤ cM ′ + cε+ cAK,

where we also used the hypothesis (3.22)-(3.23) and A = M θεα−θ +Kθρα−θ.

We also have, using (3.31), (3.38), that if α > 1

‖∇G(w)‖S(L2;I) ≤ cM ′ + cε+ cAK + cBρM,

where B = M θεα−1−θ +Kθρα−1−θ, and if α ≤ 1

‖∇G(w)‖S(L2;I) ≤ cM ′ + cε+ cAK +Kθρα−θM.

Choosing ρ = 2cε, K = 3cM ′ and ε0 sufficiently small such that

cA <
1

3
and c(ε+BρM +Kθρα−θM) <

K

3
,

we obtain

‖G(w)‖S(Ḣsc ;I) ≤ ρ and ‖G(w)‖S(L2;I) + ‖∇G(w)‖S(L2;I) ≤ K.

The above calculations establish that G is well defined on B(ρ,K). The

contraction property can be obtained by similar arguments. Hence, by the



3.3 Cauchy Problem 75

Banach Fixed Point Theorem we obtain a unique solution w on I ×RN such

that

‖w‖S(Ḣsc ;I) . ε and ‖w‖S(L2;I) + ‖w‖S(L2;I) .M ′.

Finally, it is easy to see that u = ũ+w is a solution to (3.1) satisfying (3.24)

and (3.25).

To complete the proof we now show (3.26). Indeed, we first show that

‖∇ũ‖S(L2;I) .M. (3.39)

Using the same arguments as before, we have

‖∇ũ‖S(L2;I) . ‖∇ũ0‖L2 +
∥∥∇(|x|−b|ũ|αũ)

∥∥
S′(L2;I)

+ ‖∇e‖S′(L2;I).

Now, Lemma 3.12 leads to

‖∇ũ‖S(L2;I) . M + ‖ũ‖θL∞t H1
x
‖ũ‖α−θ

S(Ḣsc ;I)

(
‖∇ũ‖S(L2;I) + ‖ũ‖L∞t H1

x

)
+ ε

. M + ε+M θ+1εα−θ0 +M θεα−θ0 ‖∇ũ‖S(L2;I).

Therefore, choosing ε0 sufficiently small the linear term M θεα−θ0 ‖∇ũ‖S(L2;I)

may be absorbed by the left-hand term and we conclude the proof of (3.39).

Similar estimates also imply ‖ũ‖S(L2;I) .M .

Remark 3.18. From Proposition 3.17, we also have the following estimates:

‖H(·, ũ, w)‖S′(Ḣ−sc ;I) ≤ C(M,M ′)ε (3.40)

and

‖H(·, ũ, w)‖S′(L2;I) + ‖∇H(·, ũ, w)‖S′(L2;I) ≤ C(M,M ′)εα−θ, (3.41)

with θ ∈ (0, α).

Indeed, from (3.36), (3.37) and (3.38) we deduce

‖H(·, ũ, w)‖S′(Ḣ−sc ;I) .
(
M θεα−θ +Kθρα−θ

)
ρ,
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‖H(·, ũ, w)‖S′(L2;I) .
(
M θεα−θ +Kθρα−θ

)
K

and

‖∇H(·, ũ, w)‖S′(L2;I) . E1 +
(
M θεα−θ +Kθρα−θ

)
K,

where

E1 .


(
M θεα−1−θ +Kθρα−1−θ) ρM if α > 1,

Kθρα−θM if α ≤ 1.

Therefore, the choice ρ = 2cε and K = 3cM ′ in Proposition 3.17 yield (3.40)

and (3.41).

The long-time perturbation result for the mass-supercritical and energy-

subcritical INLS will be obtained iteratively from the previous result.

Proposition 3.19. (Long-time perturbation theory for the INLS)

Let I ⊆ R be a time interval containing zero and let ũ defined on I × RN be

a solution (in the sense of the appropriated integral equation) to

i∂tũ+ ∆ũ+ |x|−b|ũ|αũ = e,

with initial data ũ0 ∈ H1(RN), satisfying

sup
t∈I
‖ũ‖H1

x
≤M and ‖ũ‖S(Ḣsc ;I) ≤ L, (3.42)

for some positive constants M,L.

Let u0 ∈ H1(RN) such that

‖u0 − ũ0‖H1 ≤M ′ and ‖U(t)(u0 − ũ0)‖S(Ḣsc ;I) ≤ ε, (3.43)

for some positive constant M ′ and some 0 < ε < ε1 = ε1(M,M ′, L). More-

over, assume also the following conditions

‖e‖S′(L2;I) + ‖∇e‖S′(L2;I) + ‖e‖S′(Ḣ−sc ;I) ≤ ε.
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Then, there exists a unique solution u to (3.1) on I×RN with initial data

u0 at the time t = 0 satisfying

‖u− ũ‖S(Ḣsc ;I) ≤ C(M,M ′, L)ε and (3.44)

‖u‖S(Ḣsc ;I) + ‖u‖S(L2;I) + ‖∇u‖S(L2;I) ≤ C(M,M ′, L). (3.45)

Proof. First observe that since ‖ũ‖S(Ḣsc ;I) ≤ L, given6 ε < ε0(M, 2M ′) we

can partition I into n = n(L, ε) intervals Ij = [tj, tj+1) such that for each j,

the quantity ‖ũ‖S(Ḣsc ;Ij)
≤ ε. Note that M ′ is being replaced by 2M ′, as the

H1-norm of the difference of two different initial data may increase in each

iteration.

Again, we may assume, without loss of generality, that 0 = inf I. Let w

be defined by u = ũ+w, then w solves IVP (3.27) with initial time tj. Thus,

the integral equation in the interval Ij = [tj, tj+1) reads as follows

w(t) = U(t− tj)w(tj) + i

∫ t

tj

U(t− s)(H(x, ũ, w) + e)(s)ds,

where H(x, ũ, w) = |x|−b (|ũ+ w|α(ũ+ w)− |ũ|αũ).

Thus, choosing ε1 sufficiently small (depending on n, M , and M ′), we

may apply Proposition 3.17 (Short-time Perturbation Theory) to obtain for

each 0 ≤ j < n and all ε < ε1,

‖u− ũ‖S(Ḣsc ;Ij)
≤ C(M,M ′, j)ε (3.46)

and

‖w‖S(Ḣsc ;Ij)
+ ‖w‖S′(L2;Ij) + ‖∇w‖S′(L2;Ij) ≤ C(M,M ′, j) (3.47)

provided we can show

‖U(t− tj)(u(tj)− ũ(tj))‖S(Ḣsc ;Ij)
≤ C(M,M ′, j)ε ≤ ε0 (3.48)

6ε0 is given by the previous result and ε to be determined later.
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and

‖u(tj)− ũ(tj)‖H1
x
≤ 2M ′, (3.49)

For each 0 ≤ j < n.

Indeed, by the Strichartz estimates (1.10) and (1.12), we have

‖U(t− tj)w(tj)‖S(Ḣsc ;Ij)
. ‖U(t)w0‖S(Ḣsc ;I) + ‖H(·, ũ, w)‖S′(Ḣ−sc ;[0,tj ])

+‖e‖S′(Ḣ−sc ;I),

which implies by (3.40) that

‖U(t− tj)(u(tj)− ũ(tj))‖S(Ḣsc ;Ij)
. ε+

j−1∑
k=0

C(k,M,M ′)ε.

Similarly, it follows from Strichartz estimates (1.9), (1.11) and (3.41)

that

‖u(tj)− ũ(tj)‖H1
x

. ‖u0 − ũ0‖H1 + ‖e‖S′(L2;I) + ‖∇e‖S′(L2;I)

+‖H(·, ũ, w)‖S′(L2;[0,tj ]) + ‖∇H(·, ũ, w)‖S′(L2;[0,tj ])

. M ′ + ε+

j−1∑
k=0

C(k,M,M ′)εα−θ.

Taking ε1 = ε(n,M,M ′) sufficiently small, we see that (3.48) and (3.49) hold

and so, it implies (3.46) and (3.47).

Finally, summing this over all subintervals Ij, we obtain

‖u− ũ‖S(Ḣsc ;I) ≤ C(M,M ′, L)ε

and

‖w‖S(Ḣsc ;I) + ‖w‖S′(L2;I) + ‖∇w‖S′(L2;I) ≤ C(M,M ′, L).

This completes the proof.
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3.4 Properties of the ground state, energy

bounds and wave operator

In this section, we recall some properties that are related to our problem. In

[12] Farah proved the following Gagliardo-Nirenberg inequality

∥∥|x|−b|u|α+2
∥∥
L1
x
≤ CGN‖∇u‖

Nα+2b
2

L2
x
‖u‖

4−2b−α(N−2)
2

L2
x

, (3.50)

with the sharp constant

CGN =
2(α + 2)

Nα + 2b

(
4− 2b− α(N − 2)

Nα + 2b

)αsc/2 1

‖Q‖αL2

(3.51)

where Q is the ground state solution of (3.6). Moreover, Q satisfies the

following relations

‖∇Q‖2
L2 =

Nα + 2b

4− 2b− α(N − 2)
‖Q‖2

L2 (3.52)

and ∥∥|x|−b|Q|α+2
∥∥
L1 =

2(α + 2)

Nα + 2b
‖∇Q‖2

L2 . (3.53)

Note that, combining (3.51), (3.52) and (3.53) we obtain

CGN =
2(α + 2)

(Nα + 2b)‖∇Q‖αscL2 ‖Q‖α(1−sc)
L2

, (3.54)

where sc = N
2
− 2−b

α
is the critical Sobolev index. On the other hand, we also

have

E[Q] =
1

2
‖∇Q‖2

L2 −
1

α + 2

∥∥|x|−b|Q|α+2
∥∥
L1 =

αsc
Nα + 2b

‖∇Q‖2
L2 . (3.55)

We now show the radial Sobolev Gagliardo-Nirenberg inequality in N

dimension. The proof follows the ideas introduced by Strauss [39].
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Lemma 3.20. Let N ≥ 2, R > 0 and f ∈ H1(RN) a radial function. Then

the following inequality holds

sup
|x|≥R

|f(x)| ≤ 1

R
N−1

2

‖f‖
1
2

L2‖∇f‖
1
2

L2 . (3.56)

Proof. Since f is radial we deduce

sup
|x|≥R

|f(x)|2 = sup
|x|≥R

1

2

∫ +∞

|x|
∂r(f

2)dr

≤
∫ +∞

R

f∂rfdr

≤
(∫ +∞

R

|f |2dr
) 1

2
(∫ +∞

R

|∂rf |2dr
) 1

2

,

where we have used that f has to vanish at infinite and the Cauchy-Schwarz

inequality. On the other hand, the fact that |x| ≥ R (or r ≥ R) implies

1 ≤ r
R

so

sup
|x|≥R

|f(x)|2 ≤
(∫ +∞

R

|f |2
( r
R

)N−1
) 1

2
(∫ +∞

R

|∂rf |2
( r
R

)N−1

dr

) 1
2

≤ 1

R
N−1

2

(∫ +∞

R

|f |2r2(N−1)

) 1
2 1

R
N−1

2

(∫ +∞

R

|∂rf |2r2(N−1)dr

) 1
2

=
1

RN−1

(∫ +∞

R

|f |2dx
) 1

2
(∫ +∞

R

|∇f |2dx
) 1

2

≤ 1

RN−1
‖f‖L2‖∇f‖L2 ,

where in the third line we have used the fact that |∂rf | = |∇f | for radial

functions. We finish the proof taking the square root on both sides.

The next lemma provides some estimates that will be needed for the

compactness and rigidity results.

Lemma 3.21. Let v ∈ H1(RN) such that

‖∇v‖scL2‖v‖1−sc
L2 ≤ ‖∇Q‖scL2‖Q‖1−sc

L2 . (3.57)

Then, the following statements hold
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(i) αsc
Nα+2b

‖∇v‖2
L2 ≤ E(v) ≤ 1

2
‖∇v‖2

L2,

(ii) ‖∇v‖scL2‖v‖1−sc
L2 ≤ w

1
2‖∇Q‖scL2‖Q‖1−sc

L2 ,

(iii) 16AE[v] ≤ 8A‖∇v‖2
L2 ≤ 8‖∇v‖2

L2 − 4(Nα+2b)
α+2

∥∥|x|−b|v|α+2
∥∥
L1,

where w = E[v]scM [v]1−sc

E[Q]scM [Q]1−sc
and A = (1− w α

2 ).

Proof. (i) The second inequality is immediate from the definition of Energy

(4). The first one is obtained by observing that

E[v] ≥ 1

2
‖∇v‖2

L2 −
CGN
α + 2

‖∇v‖
Nα+2b

2

L2 ‖v‖
4−2b−α(N−2)

2

L2

=
1

2
‖∇v‖2

L2

(
1− 2CGN

α + 2
‖∇v‖αscL2 ‖v‖α(1−sc)

L2

)
≥ 1

2
‖∇v‖2

L2

(
1− 2CGN

α + 2
‖∇Q‖αscL2 ‖Q‖α(1−sc)

L2

)
=

Nα− (4− 2b)

2(Nα + 2b)
‖∇v‖2

L2

=
αsc

Nα + 2b
‖∇v‖2

L2 ,

where we have used (3.50), (3.54) and (3.57).

(ii) The first inequality in (i) yields ‖∇v‖2
L2 ≤ Nα+2b

αsc
E(v), multiplying it

by M [v]σ = ‖v‖2σ
L2 , where σ = 1−sc

sc
, we have

‖∇v‖2
L2‖v‖2σ

L2 ≤
Nα + 2b

αsc
E[v]M [v]σ

=
Nα + 2b

αsc

E[v]M [v]σ

E[Q]M [Q]σ
E[Q]M [Q]σ

= w‖∇Q‖2‖Q‖2σ
L2 ,

where we have used (3.55).

(iii) The first inequality obviously holds. Next, let B = 8‖∇v‖2
L2 −

4(Nα+2b)
α+2

∥∥|x|−b|v|α+2
∥∥
L1 . Applying the Gagliardo-Niremberg inequality (3.50)
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and item (ii) we obtain

B ≥ 8‖∇v‖2
L2 −

4(Nα + 2b)CGN
α + 2

‖∇v‖
Nα+2b

2

L2 ‖v‖
4−2b−α(N−2)

2

L2

≥ ‖∇v‖2
L2

(
8− 4(Nα + 2b)

α + 2
CGNw

α
2 ‖∇Q‖αscL2 ‖Q‖α(1−sc)

L2

)
= ‖∇v‖2

L28(1− w
α
2 ),

where in the last equality, we have used (3.54).

Now, using the ideas introduced by Côte [8] for the KdV equation (see

also Guevara [22] Proposition 2.18), we show the existence of the Wave Op-

erator. Before stating our result, we define

p∗ =
2N

N − 2
if N ≥ 3 and p∗ =∞ if N = 2. (3.58)

Moreover, we prove the following lemma.

Lemma 3.22. Let 4−2b
α

< α < 2∗ and 0 < b < 2̃. If f and g ∈ H1(RN) then

(i)
∥∥|x|−b|f |α+1g

∥∥
L1 ≤ c‖f‖α+1

Lα+2‖g‖Lα+2 + c‖f‖α+1
Lr ‖g‖Lr

(ii)
∥∥|x|−b|f |α+1g

∥∥
L1 ≤ c‖f‖α+1

H1 ‖g‖H1

(iii) lim
|t|→+∞

∥∥|x|−b|U(t)f |α+1g
∥∥
L1
x

= 0.

where7 2 < N(α+2)
N−b < r < p∗.

Proof. (i) We divide the estimate in BC and B. Applying the Hölder in-

equality, since 1 = α+1
α+2

+ 1
α+2

, we obtain

∥∥|x|−b|f |α+1g
∥∥
L1 ≤

∥∥|x|−b|f |α+1g
∥∥
L1(BC)

+
∥∥|x|−b|f |α+1g

∥∥
L1(B)

≤ ‖f‖α+1
Lα+2‖g‖Lα+2 + ‖x|−b|‖Lγ(B)‖f‖α+1

L(α+1)β‖g‖Lr

= ‖f‖α+1
Lα+2‖g‖Lα+2 + ‖x|−b|‖Lγ(B)‖f‖α+1

Lr ‖g‖Lr , (3.59)

7Note that, the hypothesis 0 < α < 2∗ (recall (3.7)) implies N(α+2)
N−b < p∗.
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where

1 =
1

γ
+

1

β
+

1

r
and r = (α + 1)β. (3.60)

To complete the proof we need to check that ‖|x|−b‖Lγ(B) is bounded, i.e.,

N
γ
> b (see Remark 1.17). In fact, we deduce from (3.60)

N

γ
= N − N(α + 2)

r
,

and thus, since r > N(α+2)
N−b we obtain the desired result (N

γ
− b > 0).

(ii) By the Sobolev inequality (1.7) (for N = 2 and s = 1) and (1.8) (for

N ≥ 3 and s = 1), it is easy to see that H1 ↪→ Lα+2 and H1 ↪→ Lr (where

2 < N(α+2)
N−b < r < p∗), then using (3.59) we get (ii).

(iii) Similarly as (i) and (ii), we obtain∥∥|x|−b|U(t)f |α+1g
∥∥
L1
x
≤ c‖U(t)f‖α+1

Lα+2‖g‖H1 + c‖U(t)f‖α+1
Lr ‖g‖H1 , (3.61)

for 2 < N(α+2)
N−b < r < p∗.

We now show that ‖U(t)f‖Lrx and ‖U(t)f‖Lα+2
x
→ 0 as |t| → +∞. Indeed,

since r and α + 2 belong to (2, p∗) then it suffices to show

lim
|t|→+∞

‖U(t)f‖Lpx = 0, (3.62)

where 2 < p < p∗. Let f̃ ∈ H1 ∩ Lp′ , the Sobolev embedding (1.7) if N = 2

or (1.8) if N ≥ 3 and Lemma 1.9 yield

‖U(t)f‖Lpx ≤ c‖f − f̃‖H1 + c|t|−
N(p−2)

2p ‖f̃‖Lp′ .

Since p > 2 then the exponent of |t| is negative and so approximating f by

f̃ ∈ C∞0 in H1, we deduce (3.62).

Proposition 3.23. (Existence of Wave Operator) Suppose φ ∈ H1(RN)

and, for some8 0 < λ ≤ ( 2αsc
Nα+2b

)
sc
2 ,

‖∇φ‖2sc
L2 ‖φ‖2(1−sc)

L2 < λ2

(
Nα + 2b

αsc

)sc
E[Q]scM [Q]1−sc . (3.63)

8Note that ( 2αsc
Nα+2b )

sc
2 < 1.
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Then, there exists u+
0 ∈ H1(RN) such that u solving (3.1) with initial data

u+
0 is global in H1(RN) with

(i) M [u] = M [φ],

(ii) E[u] = 1
2
‖∇φ‖2

L2,

(iii) lim
t→+∞

‖u(t)− U(t)φ‖H1 = 0,

(iv) ‖∇u(t)‖scL2‖u(t)‖1−sc
L2 ≤ λ‖∇Q‖scL2‖Q‖1−sc

L2 .

Proof. We will divide the proof in two parts. First, we construct the wave

operator for large time. Indeed, let IT = [T,+∞) for T � 1 and define

G(w)(t) = −i
∫ +∞

t

U(t− s)(|x|−b|w + U(t)φ|α(w + U(t)φ)(s)ds, t ∈ IT

and

B(T, ρ) = {w ∈ C
(
IT ;H1(RN)

)
: ‖w‖T ≤ ρ},

where

‖w‖T = ‖w‖S(Ḣsc ;IT ) + ‖w‖S(L2;IT ) + ‖∇w‖S(L2;IT ).

Our goal is to find a fixed point for G on B(T, ρ).

Applying the Strichartz estimates (1.11) (1.12) and Lemmas 3.9-3.10-

3.12, we deduce

‖G(w)‖S(Ḣsc ;IT ) .‖w + U(t)φ‖θL∞T H1
x
‖w + U(t)φ‖α−θ

S(Ḣsc ;IT )
‖w + U(t)φ‖S(Ḣsc ;IT )

(3.64)

‖G(w)‖S(L2;IT ) .‖w + U(t)φ‖θL∞T H1
x
‖w + U(t)φ‖α−θ

S(Ḣsc ;IT )
‖w + U(t)φ‖S(L2;IT )

(3.65)
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and

‖∇G(w)‖S(L2;IT ) .‖w + U(t)φ‖θL∞T H1
x
‖w + U(t)φ‖α−θ

S(Ḣsc ;IT )
‖∇(w + U(t)φ)‖S(L2;IT )

+ ‖w + U(t)φ‖1+θ
L∞T H

1
x
‖w + U(t)φ‖α−θ

S(Ḣsc ;IT )
. (3.66)

Thus,

‖G(w)‖T . ‖w + U(t)φ‖θL∞T H1
x
‖w + U(t)φ‖α−θ

S(Ḣsc ;IT )
‖w + U(t)φ‖T

+‖w + U(t)φ‖α−θ
S(Ḣsc ;IT )

‖w + U(t)φ‖θ+1
T .

Since9

‖U(t)φ‖S(Ḣsc ;IT ) → 0 (3.67)

as T → +∞, we can find T0 > 0 large enough and ρ > 0 small enough such

that G is well defined on B(T0, ρ). The same computations show that G is

a contraction on B(T0, ρ). Therefore, G has a unique fixed point, which we

denote by w.

On the other hand, from (3.64) and since

‖w + U(t)φ‖L∞T H1
x
≤ ‖w‖H1 + ‖φ‖H1 < +∞,

one has (recalling G(w) = w)

‖w‖S(Ḣsc ;IT ) . ‖w + U(t)φ‖α−θ
S(Ḣsc ;IT )

‖w + U(t)φ‖S(Ḣsc ;IT )

. A‖w‖S(Ḣsc ;IT ) + A‖U(t)φ‖S(Ḣsc ;IT )

where A = ‖w + U(t)φ‖α−θ
S(Ḣsc ;IT )

. In addition, if ρ has been chosen small

enough and since ‖U(t)φ‖S(Ḣsc ;IT ) is also sufficiently small for T large, we

deduce

A ≤ c‖w‖α−θ
S(Ḣsc ;IT )

+ c‖U(t)φ‖α−θ
S(Ḣsc ;IT )

<
1

2
,

9Note that (3.67) is possible not true using the norm L∞ITL
2N

N−2sc
x and for this reason

we remove the pair
(
∞, 2N

N−2sc

)
in the Definition 1.7.
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and so (using the last two inequalities)

1

2
‖w‖S(Ḣsc ;IT ) . A‖U(t)φ‖S(Ḣsc ;IT ),

which implies,

‖w‖S(Ḣsc ;IT ) → 0 as T → +∞. (3.68)

Hence, (3.65), (3.66) and (3.68) also yield that10

‖w‖S(L2;IT ) , ‖∇w‖S(L2;IT ) → 0 as T → +∞,

and finally

‖w‖T → 0 as T → +∞. (3.69)

Next, we claim that u(t) = U(t)φ+w(t) satisfies (3.1) in the time interval

[T0,∞). To do this, we need to show that

u(t) = U(t− T0)u(T0) + i

∫ t

T0

U(t− s)(|x|−b|u|αu)sds, (3.70)

for all t ∈ [T0,∞). Indeed, since

w(t) = −i
∫ ∞
t

U(t− s)|x|−b|w + U(t)φ|α(w + U(t)φ)(s)ds,

then

U(T0 − t)w(t) = −i
∫ ∞
t

U(T0 − s)|x|−b|w + U(t)φ|α(w + U(t)φ)(s)ds

= i

∫ t

T0

U(T0 − s)|x|−b|w + U(t)φ|α(w + U(t)φ)(s)ds+ w(T0),

and so applying U(t− T0) on both sides, we get

w(t) = U(t− T0)w(T0) + i

∫ t

T0

U(t− s)|x|−b|w + U(t)φ|α(w + U(t)φ)(s)ds.

10Observe that ‖w+U(t)φ‖S(Ḣsc ;IT ) ≤ ‖w‖S(Ḣsc ;IT )+‖U(t)φ‖S(Ḣsc ;IT ) → 0 as T → +∞

by (3.68) and ‖w + U(t)φ‖θL∞T H1
x
, ‖w + U(t)φ‖S(L2;IT ), ‖∇(w + U(t)φ)‖S(L2;IT ) <∞ since

w ∈ B(T, ρ) and φ ∈ H1(RN ).
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Finally, adding U(t)φ in both sides of the last equation, we deduce (3.70).

Now we show relations (i)-(iv). Since u(t) = U(t)φ+ w then

‖u(t)− U(t)φ‖L∞T H1
x

= ‖w‖L∞T H1
x
≤ c‖w‖S(L2;IT ) + c‖∇w‖S(L2;IT ) ≤ c‖w‖T

(3.71)

and so from (3.65) we obtain (iii). Furthermore, using (3.71) it is clear that

lim
t→∞
‖u(t)‖L2

x
= ‖φ‖L2 . (3.72)

and

lim
t→∞
‖∇u(t)‖L2

x
= ‖∇φ‖L2 . (3.73)

By the mass conservation (3) we have ‖u(t)‖L2 = ‖u(T0)‖L2 for all t, so from

(3.72) we deduce ‖u(T0)‖L2 = ‖φ‖L2 , i.e., item (i) holds. On the other hand,

it follows from Lemma 3.22 (ii)

∥∥|x|−b|u(t)|α+2
∥∥
L1
x
≤ c

∥∥|x|−b|u(t)− U(t)φ|α+2
∥∥
L1
x

+ c
∥∥|x|−b|U(t)φ|α+2

∥∥
L1
x

≤ c ‖u(t)− U(t)φ|‖α+2
H1
x

+ c
∥∥|x|−b|U(t)φ|α+2

∥∥
L1
x
,

which goes to zero as t→ +∞, by item (iii) and Lemma 3.22 (iii), i.e.

lim
t→∞

∥∥|x|−b|u(t)|α+2
∥∥
L1
x

= 0. (3.74)

Combining (3.73) and (3.74), it is easy to deduce (ii).

Next, in view of (3.63), (i) and (ii) we have

E[u]scM [u]1−sc =
1

2sc
‖∇φ‖2sc

L2 ‖φ‖2(1−sc)
L2 < λ2

(
Nα + 2b

2αsc

)sc
E[Q]scM [Q]1−sc

and by our choice of λ we conclude

E[u]scM [u]1−sc < E[Q]scM [Q]1−sc .
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Moreover, from (3.72), (3.73) and (3.63)

lim
t→∞
‖∇u(t)‖2sc

L2
x
‖u(t)‖2(1−sc)

L2
x

= ‖∇φ‖2sc
L2 ‖φ‖2(1−sc)

L2

< λ2

(
Nα + 2b

αsc

)sc
E[Q]scM [Q]1−sc

= λ2‖∇Q‖2sc
L2 ‖Q‖2(1−sc)

L2

where we have used (3.55). Thus, one can take T1 > 0 sufficiently large such

that

‖∇u(T1)‖scL2
x
‖u(T1)‖1−sc

L2
x

< λ‖∇Q‖scL2‖Q‖1−sc
L2 .

Therefore, since λ < 1, we deduce that relations (3.3) and (3.4) hold with

u0 = u(T1) and so, by Theorem 3.1, we have in fact that u(t) constructed

above is a global solution of (3.1).

Remark 3.24. A similar Wave Operator construction also holds when the

time limit is taken as t→ −∞ (backward in time).

3.5 Existence and compactness of a critical

solution

The goal of this section is to construct a critical solution (denoted by uc)

of (3.1). We divide the study in two parts. First, we establish a profile

decomposition result and also an Energy Pythagorean expansion for such a

decomposition. In the sequel, using the results of the first part we construct

uc and discuss some of its properties.

We start this section recalling some elementary inequalities (see Gérard

[17] inequality (1.10) and Guevara [22] page 217). Let (zj) ⊂ CM with
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M ≥ 2. For all q > 1 there exists Cq,M > 0 such that∣∣∣∣∣
∣∣∣∣∣
M∑
j=1

zj

∣∣∣∣∣
q

−
M∑
j=1

|zj|q
∣∣∣∣∣ ≤ Cq,M

M∑
j 6=k

|zj||zk|q−1, (3.75)

and for β > 0 there exists a constant Cβ,M > 0 such that∣∣∣∣∣∣
∣∣∣∣∣
M∑
j=1

zj

∣∣∣∣∣
β M∑
j=1

zj −
M∑
j=1

|zj|βzj

∣∣∣∣∣∣ ≤ Cβ,M

M∑
j=1

∑
1≤j 6=k≤M

|zj|β|zk|. (3.76)

3.5.1 Profile decomposition

This subsection contains the profile decomposition and energy Pythagorean

expansion results. We use similar arguments as the ones in Holmer-Roudenko

[23, Lemma 5.2] (see also Fang-Xie-Cazenave [11, Theorem 5.1] and Guevara

[22, Proposition 3.4]) and, for the sake of completeness, we provide the details

here.

Proposition 3.25. (Profile decomposition)Let φn(x) be a radial uni-

formly bounded sequence in H1(RN). Then for each M ∈ N there exists a

subsequence of φn (also denoted by φn), such that, for each 1 ≤ j ≤M , there

exist a profile ψj in H1(RN), a sequence tjn of time shifts and a sequence WM
n

of remainders in H1(RN), such that

φn(x) =
M∑
j=1

U(−tjn)ψj(x) +WM
n (x) (3.77)

with the properties:

• Pairwise divergence for the time sequences. For 1 ≤ k 6= j ≤M ,

lim
n→+∞

|tjn − tkn| = +∞. (3.78)

• Asymptotic smallness for the remainder sequence
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lim
M→+∞

(
lim

n→+∞
‖U(t)WM

n ‖S(Ḣsc )

)
= 0. (3.79)

• Asymptotic Pythagoream expansion. For fixed M ∈ N and any s ∈

[0, 1], we have

‖φn‖2
Ḣs =

M∑
j=1

‖ψj‖2
Ḣs + ‖WM

n ‖2
Ḣs + on(1) (3.80)

where on(1)→ 0 as n→ +∞.

Proof. Let C1 > 0 such that ‖φn‖H1 ≤ C1. For every (a, r) Ḣsc-admissible

we can define r1 = 2r and a1 = 4r
r(N−2sc)−N . Note that (a1, r1) is also Ḣsc-

admissible, then combining the interpolation inequality with η = N
r(N−2sc)−N ∈

(0, 1) and the Strichartz estimate (1.10), we have

‖U(t)WM
n ‖LatLrx ≤ ‖U(t)WM

n ‖
1−η
L
a1
t L

r1
x
‖U(t)WM

n ‖
η

L∞t L
2N

N−2sc
x

≤ ‖WM
n ‖

1−η
Ḣsc
‖U(t)WM

n ‖
η

L∞t L
2N

N−2sc
x

. (3.81)

Since we will have ‖WM
n ‖Ḣsc ≤ C1, then we need to show that the second

norm in the right hand side of (3.81) goes to zero as n and M go to infinity,

that is

lim
M→+∞

(
lim sup
n→+∞

‖U(t)WM
n ‖

L∞t L
2N

N−2sc
x

)
= 0. (3.82)

First we construct ψ1
n, t1n and W 1

n . Let

A1 = lim sup
n→+∞

‖U(t)φn‖
L∞t L

2N
N−2sc
x

.

If A1 = 0, the proof is complete with ψj = 0 for all j = 1, . . . ,M . As-

sume that A1 > 0. Passing to a subsequence, we may consider A1 =

lim
n→+∞

‖U(t)φn‖
L∞t L

2N
N−2sc
x

. We claim that there exist a time sequence t1n and

ψ1 such that U(t1n)φn ⇀ ψ1 and

βC
N−2sc

2sc(1−sc)
1 ‖ψ1‖Ḣsc ≥ A

N−2s2c
2sc(1−sc)
1 , (3.83)
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where β > 0 is independent of C1, A1 and φn. Indeed, let ζ ∈ C∞0 (RN) a

real-valued and radially symmetric function such that 0 ≤ ζ ≤ 1, ζ(ξ) = 1

for |ξ| ≤ 1 and ζ(ξ) = 0 for |ξ| ≥ 2. Given r > 0, define χr by χ̂r(ξ) = ζ( ξ
r
).

From the Sobolev embedding (1.6) and since the operator U(t) is an isometry

in Hsc , we deduce (recalling 0 < sc < 1)

‖U(t)φn − χr ∗ U(t)φn‖2

L∞t L
2N

N−2sc
x

≤ c‖U(t)φn − χr ∗ U(t)φn‖2
L∞t H

sc
x

≤ c

∫
|ξ|2sc|(1− χ̂r)2|φ̂n(ξ)|2dξ

≤ c

∫
|ξ|>r
|ξ|−2(1−sc)|ξ|2|φ̂n(ξ)|2dξ

≤ cr−2(1−sc)‖φ‖2
Ḣ1 ≤ cr−2(1−sc)C2

1 .

Choosing

r =

(
4
√
cC1

A1

) 1
1−sc

(3.84)

and for n large enough we have

‖χr ∗ U(t)φn‖
L∞t L

2N
N−2sc
x

≥ A1

2
. (3.85)

Note that, from the standard interpolation in Lebesgue spaces

‖χr ∗ U(t)φn‖N
L∞t L

2N
N−2sc
x

≤ ‖χr ∗ U(t)φn‖N−2sc
L∞t L

2
x
‖χr ∗ U(t)φn‖2sc

L∞t L
∞
x

≤ CN−2sc
1 ‖χr ∗ U(t)φn‖2sc

L∞t L
∞
x
, (3.86)

thus inequalities (3.85) and (3.86) lead to

‖χr ∗ U(t)φn‖L∞t L∞x ≥

(
A1

2C
N−2sc
N

1

) N
2sc

.

It follows from the radial Sobolev Gagliardo-Nirenberg inequality (3.56) (since



3.5 Existence and compactness of a critical solution 92

all φn are radial functions and so are χr ∗ U(t)φn) that11

‖χr ∗ U(t)φn‖L∞t L∞x (|x|≥R) ≤
1

R
N−1

2

‖χr ∗ U(t)φn‖
1
2

L2
x
‖∇(χr ∗ U(t)φn)‖

1
2

L2
x

≤ C1

R
N−1

2

,

which implies for R > 0 sufficiently large

‖χr ∗ U(t)φn‖L∞t L∞x (|x|≤R) ≥
1

2

(
A1

2C
N−2sc
N

1

) N
2sc

,

where we have used the two last inequalities. Now, let t1n and x1
n, with

|x1
n| ≤ R, be sequences such that for each n ∈ N

∣∣χr ∗ U(t1n)φn(x1
n)
∣∣ ≥ 1

4

(
A1

2C
N−2sc
N

1

) N
2sc

or

1

4

(
A1

2C
N−2sc
N

1

) N
2sc

≤
∣∣∣∣∫ χr(x

1
n − y)U(t1n)φn(y)dy

∣∣∣∣ . (3.87)

On the other hand, since ‖U(t1n)φn‖H1 = ‖φn‖H1 ≤ C1 then U(t1n)φn con-

verges weakly in H1 (since U(t1n)φn is a bounded sequence a Hilbert space),

i.e., there exists ψ1 a radial function such that (up to a subsequence) U(t1n)φn ⇀

ψ1 in H1 and ‖ψ1‖H1 ≤ lim sup
n→+∞

‖φn‖H1 ≤ C1. In addition, x1
n → x1 (also

up to a subsequence) since x1
n is bounded. Hence the inequality (3.87), the

Plancherel formula and the Cauchy-Schwarz inequality yield

1

8

(
A1

2C
N−2sc
N

1

) N
2sc

≤
∣∣∣∣∫ χr(x

1 − y)ψ1(y)dy

∣∣∣∣ ≤ ‖χr‖Ḣ−sc‖ψ1‖Ḣsc ,

which implies

1

8

(
A1

2C
N−2sc
N

1

) N
2sc

≤ cr
N−2sc

2 ‖ψ1‖Ḣsc ,

11Note the radial Gagliardo-Nirenberg inequality only holds for dimensions N ≥ 2. As

pointed out in Holmer-Roudenko [23] page 466 this is probably an obstruction to extend

the scattering result stated in Theorem 3.3 for 1D.



3.5 Existence and compactness of a critical solution 93

where we have used

‖χr‖Ḣ−sc =

(∫
0<|ξ|<2r

|ξ|−2sc|χ̂r(ξ)|2dξ
) 1

2

≤ c

(∫ 2r

0

ρ−2scρN−1dρ

) 1
2

≤ cr
N−2sc

2 .

Therefore in view of our choice of r (see (3.84)) we obtain (3.83), concluding

the claim.

Next, define W 1
n = φn − U(−t1n)ψ1. It is easy to see that, for any

0 ≤ s ≤ 1,

• U(t1n)W 1
n ⇀ 0 in H1 (since U(t1n)φn ⇀ ψ1),

• 〈φn, U(−t1n)ψ1〉Ḣs = 〈U(t1n)φn, ψ
1〉Ḣs → ‖ψ1‖2

Ḣs ,

• ‖W 1
n‖2

Ḣs = ‖φn‖2
Ḣs − ‖ψ1‖2

Ḣs + on(1).

The last item, with s = 0 and s = 1, implies ‖W 1
n‖H1 ≤ C1.

Next, let A2 = lim sup
n→+∞

‖U(t)W 1
n‖

L∞t L
2N
N−2s
x

. If A2 = 0 the result follows

taking ψj = 0 for all j = 2, . . . ,M .. Let A2 > 0, repeating the above

argument with φn replaced by W 1
n we obtain a sequence t2n and a function

ψ2 such that U(t2n)W 1
n ⇀ ψ2 in H1 and

βC
N−2sc

2sc(1−sc)
1 ‖ψ2‖Ḣsc ≥ A

N−2s2c
2sc(1−sc)
2 .

We now prove that |t2n − t1n| → +∞. In fact, if we suppose (up to a subse-

quence) t2n − t1n → t∗ finite, then

U(t2n − t1n)
(
U(t1n)φn − ψ1

)
= U(t2n)

(
φn − U(−t1n)ψ1

)
= U(t2n)W 1

n ⇀ ψ2.

On the other hand, since U(t1n)φn ⇀ ψ1, the left side of the above expression

converges weakly to 0, and thus ψ2 = 0, a contradiction. Define W 2
n =
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W 1
n − U(−t2n)ψ2. For any 0 ≤ s ≤ 1, since |t1n − t2n| → +∞, we deduce

〈φn, U(−t2n)ψ2〉Ḣs = 〈U(t2n)φn, ψ
2〉Ḣs

= 〈U(t2n)
(
W 1
n + U(−t1n)ψ1

)
, ψ2〉Ḣs

= 〈U(t2n)W 1
n , ψ

2〉Ḣs + 〈U(t2n − t1n)ψ1, ψ2〉Ḣs

→ ‖ψ2‖2
Ḣs .

In addition, the definition of W 2
n implies that

‖W 2
n‖2

Ḣs = ‖W 1
n‖2

Ḣsc
− ‖ψ2‖2

Ḣs + on(1)

and ‖W 2
n‖H1 ≤ C1.

By induction we can construct ψM , tMn andWM
n such that U(tMn )WM−1

n ⇀

ψM in H1 and

βC
N−2sc

2sc(1−sc)
1 ‖ψM‖Ḣsc ≥ A

N−2s2c
2sc(1−sc)
M , (3.88)

where AM = lim
n→+∞

‖U(t)WM−1
n ‖

L∞t L
2N

N−2sc
x

.

Next, we show (3.78). Suppose 1 ≤ j < M , we prove that |tMn −tjn| → +∞

by induction assuming |tMn − tkn| → +∞ for k = j+ 1, . . . ,M − 1. Indeed, let

tMn − tjn → t0 finite (up to a subsequence) then it is easy to see

U(tMn − tjn)
(
U(tjn)W j−1

n − ψj
)
−U(tMn − tj+1

n )ψj+1− ...−U(tMn − tM−1
n )ψM−1

= U(tMn )WM−1
n ⇀ ψM .

Since the left side converges weakly to 0, we have ψM = 0, a contradiction.

We now consider

WM
n = φn − U(−t1n)ψ1 − U(−t2n)ψ2 − ...− U(−tMn )ψM .

Similarly as before, by (3.78) we get for any 0 ≤ s ≤ 1

〈φn, U(−tMn )ψM〉Ḣs = 〈U(tMn )WM−1
n , ψM〉Ḣs + on(1),
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and so 〈φn, U(−tMn )ψM〉Ḣs → ‖ψM‖2
Ḣs . Thus expanding ‖WM

n ‖2
Ḣs we deduce

that (3.80) also holds.

Finally, the inequality (3.88) together with the relation (3.80) yield

∑
M≥1

 A
N−2s2c
sc(1−sc)
M

β2C
N−2sc
sc(1−sc)
1

 ≤ lim
n→+∞

‖φn‖2
Ḣsc

< +∞,

which implies that AM → 0 as M → +∞ i.e., (3.82) holds12. Therefore,

from (3.81) we get (3.79). This completes the proof.

Remark 3.26. It follows from the proof of Proposition 3.25 that

lim
M,n→∞

‖WM
n ‖Lp = 0, (3.89)

where 2 < p < p∗ (recalling p∗ is defined in (3.58)). Indeed, first we show

lim
M→+∞

(
lim

n→+∞
‖U(t)WM

n ‖L∞t Lpx

)
= 0. (3.90)

Note that, Ḣs ↪→ Lp where s = N
2
−N

p
(see inequality (1.6)). Since 2 < p < p∗

then 0 < s < 1, thus repeating the argument used for showing (3.82) with

2N
N−2sc

replaced by p and sc by s, we obtain (3.90). On the other hand, (3.89)

follows directly from (3.90) and the inequality

‖WM
n ‖Lpx ≤ ‖U(t)WM

n ‖L∞t Lpx ,

since WM
n = U(0)WM

n .

Proposition 3.27. (Energy Pythagoream Expansion) Under the hy-

pothesis of Proposition 3.25 we obtain

E[φn] =
M∑
j=1

E[U(−tjn)ψj] + E[WM
n ] + on(1). (3.91)

12Note that N − 2s2c > 0 since sc < min{1, N/2}.
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Proof. By definition of E[u] and (3.80) with s = 1, we have

E[φn]−
M∑
j=1

E[U(−tjn)ψj]− E[WM
n ] = − An

α + 2
+ on(1),

where

An =
∥∥|x|−b|φn|α+2

∥∥
L1 −

M∑
j=1

∥∥|x|−b|U(−tjn)ψj|α+2
∥∥
L1
x
−
∥∥|x|−b|WM

n |α+2
∥∥
L1 .

For a fixed M ∈ N, if An → 0 as n → +∞ then (3.91) holds. To prove

this fact, pick M1 ≥M and rewrite the last expression as

An =

∫ (
|x|−b|φn|α+2 −

M∑
j=1

|x|−b|U(−tjn)ψj|α+2 − |x|−b|WM
n |α+2

)
dx

= I1
n + I2

n + I3
n,

where

I1
n =

∫
|x|−b

[
|φn|α+2 − |φn −WM1

n |α+2
]
dx

I2
n =

∫
|x|−b

[
|WM1

n −WM
n |α+2 − |WM

n |α+2
]
dx

and

I3
n =

∫
|x|−b

[
|φn −WM1

n |α+2 −
M∑
j=1

|U(−tjn)ψj|α+2 − |WM1
n −WM

n |α+2

]
dx.

We first estimate I1
n. Combining (3.75) and Lemma 3.22 (i)-(ii) we have

|I1
n| .

∫
|x|−b

(
|φn|α+1|WM1

n |+ |φn||WM1
n |α+1 + |WM1

n |α+2
)
dx

.
(
‖φn‖α+1

Lr ‖W
M1
n ‖Lr + ‖φn‖Lr‖WM1

n ‖α+1
Lr + ‖WM1

n ‖α+2
Lr

)
+(

‖φn‖α+1
Lα+2‖WM1

n ‖Lα+2 + ‖φn‖Lα+2‖WM1
n ‖α+1

Lα+2 + ‖WM1
n ‖α+2

Lα+2

)
. ‖φn‖α+1

H1 ‖WM1
n ‖Lr + ‖φn‖H1‖WM1

n ‖α+1
Lr + ‖WM1

n ‖α+2
Lr +

‖φn‖α+1
H1 ‖WM1

n ‖Lα+2 + ‖φn‖H1‖WM1
n ‖α+1

Lα+2 + ‖WM1
n ‖α+2

Lα+2 ,
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where N(α+2)
N−b < r < p∗ (recall that p∗ is defined in (3.58)). In view of

inequality (3.89) and since {φn} is uniformly bounded in H1, we conclude

that13

I1
n → +∞ as n,M1 → +∞.

Also, by similar arguments (replacing φn by WM
n ) we have

I2
n → +∞ as n,M1 → +∞,

where we have used that WM
n is uniformly bounded by (3.80).

Finaly we consider the term I3
n. Since,

φn −WM1
n =

M1∑
j=1

U(−tjn)ψj

and

WM
n −WM1

n =

M1∑
j=M+1

U(−tjn)ψj,

we can rewrite I3
n as

I3
n =

∫
|x|−b

∣∣∣∣∣
M1∑
j=1

U(−tjn)ψj

∣∣∣∣∣
α+2

−
M1∑
j=1

|U(−tjn)ψj|α+2

 dx

−
∫
|x|−b

∣∣∣∣∣
M1∑

j=M+1

U(−tjn)ψj

∣∣∣∣∣
α+2

−
M1∑

j=M+1

|U(−tjn)ψj|α+2

 dx.

To complete the prove we make use of the following claim.

Claim. For a fixed M1 ∈ N and for some j0 ∈ N (j0 < M1), we get

Dn =

∥∥∥∥∥∥|x|−b
∣∣∣∣∣
M1∑
j=j0

U(−tjn)ψ

∣∣∣∣∣
α+2
∥∥∥∥∥∥
L1
x

−
M1∑
j=j0

∥∥|x|−b|U(−tjn)ψj|α+2
∥∥
L1
x
→ 0,

as n→ +∞.

13We can apply Remark 3.26 since r and α+ 2 ∈ (2, p∗).
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Indeed, it is clear that the last limit implies that I3
n → 0 as n → +∞

completing the proof of relation (3.91).

To prove the claim note that (3.75) implies

Dn ≤
M1∑
j 6=k

∫
|x|−b|U(−tjn)ψj||U(−tkn)ψk|α+1dx.

Thus, from Lemma 3.22 (i) one has

Ej,k
n ≤ c‖U(−tkn)ψk‖α+1

Lα+2
x
‖U(−tjn)ψj‖Lα+2

x
+ c‖U(−tkn)ψk‖α+1

Lrx
‖U(−tjn)ψj‖Lrx ,

where 2 < N(α+2)
N−b < r < p∗ and Ej,k

n =
∫
|x|−b|U(−tjn)ψj||U(−tkn)ψk|α+1dx.

In view of (3.78) we can consider that tkn, tjn or both go to infinite as n goes

to infinite. If tjn → +∞ as n→ +∞, so it follow from the last inequality and

since H1 ↪→ Lα+2 and H1 ↪→ Lr that

Ej,k
n ≤ c‖ψk‖α+1

H1 ‖U(−tjn)ψj‖Lα+2
x

+ c‖ψk‖α+1
H1 ‖U(−tjn)ψj‖Lrx

≤ c‖U(−tjn)ψj‖Lα+2
x

+ c‖U(−tjn)ψj‖Lrx ,

where in the last inequality we have used that (ψk)k∈N is a uniformly bounded

sequence in H1. Hence, if n→ +∞ we have tjn → +∞ and using (3.62) with

t = tjn and f = ψj we conclude that Ej,k
n → 0 as n→ +∞. Similarly for the

case tkn → +∞ as n→ +∞, we have

Ej,k
n ≤ c‖U(−tkn)ψk‖α+1

Lα+2
x
‖ψj‖H1 + c‖U(−tkn)ψk‖α+1

Lrx
‖ψj‖H1

≤ c‖U(−tkn)ψk‖α+1

Lα+2
x

+ c‖U(−tkn)ψk‖α+1
Lrx

,

which implies that Ej,k
n → 0 as n→ +∞ by (3.62) with t = tkn and f = ψk.

Finally, since Dn is a finite sum of terms in the form of Ej,k we deduce

Dn → 0 as n→ +∞.



3.5 Existence and compactness of a critical solution 99

3.5.2 Critical solution

In this subsection we study a critical solution of (3.1). First, assuming that

δc < E[u]scM [u]1−sc (see (3.10)), we construct a global solution called uc of

(3.1) with infinite Strichartz norm ‖ · ‖S(Ḣsc ) satisfying

E[uc]
scM [uc]

1−sc = δc.

After that, we show that the flow associated to this critical solution is pre-

compact in H1(RN).

Proposition 3.28. (Existence of a critical solution) Let 0 < b <

min{N
3
, 1}. If

δc < E[Q]scM [Q]1−sc ,

then there exists a radial function uc,0 ∈ H1(RN) such that the corresponding

solution uc of the IVP (3.1) is global in H1(RN). Moreover the following

properties hold

(i) M [uc] = 1,

(ii) E[uc]
sc = δc,

(iii) ‖∇uc,0‖scL2‖uc,0‖1−sc
L2 < ‖∇Q‖scL2‖Q‖1−sc

L2 ,

(iv) ‖uc‖S(Ḣsc ) = +∞.

Proof. Recall from Subsection 3.2 that there exists a sequence of solutions

un to (3.1) with H1 initial data un,0, with ‖un‖L2 = 1 for all n ∈ N, such

that

‖∇un,0‖scL2 < ‖∇Q‖scL2‖Q‖1−sc
L2 (3.92)

and

E[un]↘ δ
1
sc
c as n→ +∞.
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Moreover

‖un‖S(Ḣsc ) = +∞ (3.93)

for every n ∈ N. Note that, in view of the assumption δc < E[Q]scM [Q]1−sc ,

there exists a ∈ (0, 1) such that

E[un] ≤ aE[Q]M [Q]σ, (3.94)

where σ = 1−sc
sc

. Furthermore, (3.92) implies by Lemma 3.21 (ii) that

‖∇un,0‖2
L2 ≤ w

1
sc ‖∇Q‖2

L2‖Q‖2σ
L2 ,

where w = E[un]scM [un]1−sc

E[Q]scM [Q]1−sc
, thus we deduce from (3.94) and ‖un‖L2 = 1 that

w
1
sc ≤ a which implies

‖∇un,0‖2
L2 ≤ a‖∇Q‖2

L2‖Q‖2σ
L2 . (3.95)

On the other hand, the linear profile decomposition (Proposition 3.25)

applied to un,0, which is a uniformly bounded sequence in H1(RN) by (3.95),

yields

un,0(x) =
M∑
j=1

U(−tjn)ψj(x) +WM
n (x), (3.96)

where M will be taken large later. It follows from the Pythagorean expansion

(3.80), with s = 0, that for all M ∈ N
M∑
j=1

‖ψj‖2
L2 + lim

n→+∞
‖WM

n ‖2
L2 ≤ lim

n→+∞
‖un,0‖2

L2 = 1, (3.97)

this implies that
M∑
j=1

‖ψj‖2
L2 ≤ 1. (3.98)

In addition, another application of (3.80), with s = 1, and (3.95) lead to

M∑
j=1

‖∇ψj‖2
L2 + lim

n→+∞
‖∇WM

n ‖2
L2 ≤ lim

n→+∞
‖∇un,0‖2

L2 ≤ a‖∇Q‖2
L2‖Q‖2σ

L2 ,

(3.99)



3.5 Existence and compactness of a critical solution 101

and so

‖∇ψj‖scL2 ≤ a
sc
2 ‖∇Q‖scL2‖Q‖1−sc

L2 , j = 1, . . . ,M. (3.100)

Let {tjn}n∈N be the sequence given by Proposition 3.25. From (3.98),

(3.100) and the fact that U(t) is an isometry in L2(RN) and Ḣ1(RN) we

deduce

‖U(−tjn)ψj‖1−sc
L2
x
‖∇U(−tjn)ψj‖scL2

x
≤ a

sc
2 ‖∇Q‖scL2‖Q‖1−sc

L2 .

Now, Lemma 3.21 (i) yields

E[U(−tjn)ψj] ≥ c(N, b, α)‖∇ψj‖L2 ≥ 0 (3.101)

A complete similar analysis also gives, for all M ∈ N,

lim
n→+∞

‖WM
n ‖2

L2 ≤ 1,

lim
n→+∞

‖∇WM
n ‖scL2 ≤ a

sc
2 ‖∇Q‖scL2‖Q‖1−sc

L2 ,

and for n large enough (depending on M)

E[WM
n ] ≥ 0. (3.102)

The energy Pythagorean expansion (Proposition 3.27) allows us to de-

duce

M∑
j=1

lim
n→+∞

E[U(−tjn)ψj] + lim
n→+∞

E[WM
n ] = lim

n→+∞
E[un,0] = δ

1
sc
c ,

which implies, by (3.101) and (3.102), that

lim
n→∞

E[U(−tjn)ψj] ≤ δ
1
sc
c , for all j = 1, ...,M. (3.103)

Now, if more than one ψj 6= 0, we show a contradiction and thus the

profile expansion given by (3.96) is reduced to the case that only one profile
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is nonzero. In fact, if more than one ψj 6= 0, then by (3.97) we must have

M [ψj] < 1 for each j. Passing to a subsequence, if necessary, we have two

cases to consider:

Case 1. If for a given j, tjn → t∗ finite (at most only one such j exists

by (3.78)), then the continuity of the linear flow in H1(RN) yields

U(−tjn)ψj → U(−t∗)ψj strongly in H1. (3.104)

Let us denote the solution of (3.1) with initial data ψ by INLS(t)ψ. Set

ψ̃j = INLS(t∗)(U(−t∗)ψj) so that INLS(−t∗)ψ̃j = U(−t∗)ψj. Since the set

K :=
{
u0 ∈ H1(RN) : relations (3.3) and (3.4) hold

}
is closed in H1(RN) then ψ̃j ∈ K and therefore INLS(t)ψ̃j is a global solution

by Theorem 3.1. Moreover from (3.28), (3.103) and the fact that M [ψj] < 1

we have

‖ψ̃j‖1−sc
L2
x
‖∇ψ̃j‖scL2

x
≤ ‖∇Q‖scL2‖Q‖1−sc

L2

and

E[ψ̃j]scM [ψ̃j]1−sc < δc.

So, the definition of δc (see (3.10)) implies

‖INLS(t)ψ̃j‖S(Ḣsc ) < +∞. (3.105)

Finally, from (3.104) it is easy to see

lim
n→+∞

‖INLS(−tjn)ψ̃j − U(−tjn)ψj‖H1
x

= 0. (3.106)

Case 2. If |tjn| → +∞ then by Lemma 3.22 (iii)

∥∥|x|−b|U(−tjn)ψj|α+2
∥∥
L1
x
→ 0,
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and thus, by the definition of Energy (4) and the fact that U(t) is an isometry

in Ḣ1(RN), we deduce(
1

2
‖∇ψj‖2

L2

)sc
= lim

n→∞
E[U(−tjn)ψj]sc ≤ δc < E[Q]scM [Q]1−sc , (3.107)

where we have used (3.103). Therefore, by the existence of wave operator,

Proposition 3.23 with λ = ( 2αsc
Nα+2b

)
sc
2 < 1 (see also Remark 3.24), there exists

ψ̃j ∈ H1(RN) such that

M [ψ̃j] = M [ψj] and E[ψ̃j] =
1

2
‖∇ψj‖2

L2 , (3.108)

‖∇INLS(t)ψ̃j‖scL2
x
‖ψ̃j‖1−sc

L2 < ‖∇Q‖scL2‖Q‖1−sc
L2 (3.109)

and (3.106) also holds in this case.

Since M [ψj] < 1 and using (3.107)-(3.108), we get E[ψ̃j]scM [ψ̃j]1−sc < δc.

Hence, the definition of δc together with (3.109) also lead to (3.105).

To sum up, in either case, we obtain a new profile ψ̃j for the given ψj

such that (3.106) (3.105) hold.

Next, we define

un(t) = INLS(t)un,0,

vj(t) = INLS(t)ψ̃j,

ũn(t) =
M∑
j=1

vj(t− tjn),

and

W̃M
n =

M∑
j=1

[
U(−tjn)ψj − INLS(−tjn)ψ̃j

]
+WM

n . (3.110)

Then ũn(t) solves the following equation

i∂tũn + ∆ũn + |x|−b|ũn|αũn = eMn , (3.111)

where

eMn = |x|−b
(
|ũn|αũn −

M∑
j=1

|vj(t− tjn)|αvj(t− tjn)

)
. (3.112)
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Also note that by definition of W̃M
n in (3.110) and (3.96)we can write

un,0 =
M∑
j=1

INLS(−tjn)ψ̃j + W̃M
n ,

so it is easy to see un,0 − ũn(0) = W̃M
n , then combining (3.110) and the

Strichartz inequality (1.10), we estimate

‖U(t)W̃M
n ‖S(Ḣsc ) ≤ c

M∑
j=1

‖INLS(−tjn)ψ̃j − U(−tjn)ψj‖H1 + ‖U(t)WM
n ‖S(Ḣsc ),

which implies

lim
M→+∞

[
lim

n→+∞
‖U(t)(un,0 − ũn,0)‖S(Ḣsc )

]
= 0, (3.113)

where we used (3.79) and (3.106).

The idea now is to approximate un by ũn. Therefore, from the long time

perturbation theory (Proposition 3.19) and (3.105) we conclude

‖un‖S(Ḣsc ) < +∞,

for n large enough, which is a contradiction with (3.93). Indeed, we assume

the following two claims to conclude the proof.

Claim 1. For each M and ε > 0, there exists n0 = n0(M, ε) such that

n > n0 ⇒ ‖eMn ‖S′(Ḣ−sc ) + ‖eMn ‖S′(L2) + ‖∇eMn ‖S′(L2) ≤ ε. (3.114)

Claim 2. There exist L > 0 and S > 0 independent of M such that for any

M , there exists n1 = n1(M) such that

n > n1 ⇒ ‖ũn‖S(Ḣsc ) ≤ L and ‖ũn‖L∞t H1
x
≤ S. (3.115)

Note that by (3.113), there existsM1 = M1(ε) such that for eachM > M1

there exists n2 = n2(M) such that

n > n2 ⇒ ‖U(t)(un,0 − ũn,0)‖S(Ḣsc ) ≤ ε,
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with ε < ε1 as in Proposition 3.19. Thus, if the two claims hold true, by

Proposition 3.19, for M large enough and n > max{n0, n1, n2}, we obtain

‖un‖S(Ḣsc ) < +∞, reaching the desired contradiction .

Up to now, we have reduced the profile expansion to the case where

ψ1 6= 0 and ψj = 0 for all j ≥ 2. We now begin to show the existence of a

critical solution. From the same arguments as the ones in the previous case

(the case when more than one ψj 6= 0), we can find ψ̃1 such that

un,0 = INLS(−t1n)ψ̃1 + W̃M
n ,

with

M [ψ̃1] = M [ψ1] ≤ 1 (3.116)

E[ψ̃1]sc =

(
1

2
‖∇ψ1‖2

L2

)sc
≤ δc (3.117)

‖∇INLS(t)ψ̃1‖scL2
x
‖ψ̃1‖1−sc

L2 < ‖∇Q‖scL2‖Q‖1−sc
L2 (3.118)

and

lim
n→+∞

‖U(t)(un,0 − ũn,0)‖S(Ḣsc ) = lim
n→+∞

‖U(t)W̃M
n ‖S(Ḣsc ) = 0. (3.119)

Let ψ̃1 = uc,0 and uc be the global solution to (3.1) (in view of Theorem

3.1 and inequalities (3.116)-(3.118)) with initial data ψ̃1, that is, uc(t) =

INLS(t)ψ̃1. We claim that

‖uc‖S(Ḣsc ) = +∞. (3.120)

Indeed, suppose, by contradiction, that ‖uc‖S(Ḣsc ) < +∞. Let,

ũn(t) = INLS(t− tjn)ψ̃1,

then

‖ũn(t)‖S(Ḣsc ) = ‖INLS(t−tjn)ψ̃1‖S(Ḣsc ) = ‖INLS(t)ψ̃1‖S(Ḣsc ) = ‖uc‖S(Ḣsc ) < +∞.
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Furthermore, it follows from (3.116)-(3.119) that

sup
t∈R
‖ũn‖H1

x
= sup

t∈R
‖uc‖H1

x
< +∞.

and

‖U(t)(un,0 − ũn,0)‖S(Ḣsc ) ≤ ε,

for n large enough. Hence, by the long time perturbation theory (Proposition

3.19) with e = 0, we obtain ‖un‖S(Ḣsc ) < +∞, which is a contradiction with

(3.93).

On the other hand, the relation (3.120) implies E[uc]
scM [uc]

1−sc = δc

(see (3.10)). Thus, we conclude from (3.116) and (3.117)

M [uc] = 1 and E[uc]
sc = δc.

Also note that (3.118) implies (iii) in the statement of the Proposition 3.28.

To complete the proof it remains to establish Claims 1 and 2 (see (3.115)

and (3.114)). To show these claims we use the same admissible pairs already

used in Subsection 2.2.2.

q̂ =
4α(α + 2− θ)

α(Nα + 2b)− θ(Nα− 4 + 2b)
, r̂ =

Nα(α + 2− θ)
α(N − b)− θ(2− b)

,

and

ã =
2α(α + 2− θ)

α[N(α + 1− θ)− 2 + 2b]− (4− 2b)(1− θ)
, â =

2α(α + 2− θ)
4− 2b− (N − 2)α

.

Recall that (q̂, r̂) is L2-admissible, (â, r̂) is Ḣsc-admissible and (ã, r̂) is

Ḣ−sc-admissible.

Proof of Claim 1. First, we show that for each M and ε > 0, there

exists n0 = n0(M, ε) such that ‖eMn ‖S′(Ḣ−sc ) <
ε
3
. From (3.112) and (3.76)

we deduce

‖eMn ‖S′(Ḣ−sc ) ≤ Cα,M

M∑
j=1

∑
1≤j 6=k≤M

∥∥|x|−b|vk|α|vj|∥∥
Lã
′
t L

r̂′
x
. (3.121)
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We claim that the norm in the right hand side of (3.121) goes to 0 as n →

+∞. Indeed, using (2.55) with s = 1 we have∥∥|x|−b|vk|α|vj|∥∥
Lã
′
t L

r̂′
x
≤c‖vk‖θL∞t H1

x

∥∥∥‖vk(t− tkn)‖α−θ
Lr̂x
‖vj(t− tjn)‖Lr̂x

∥∥∥
Lã
′
t

.

(3.122)

Fix 1 ≤ j 6= k ≤ M . Note that, ‖vk‖H1
x
< +∞ (see (3.108) - (3.109)) and

by (3.105) vj, vk ∈ S(Ḣsc) and , so we can approximate vj by functions of

C∞0 (RN+1). Hence, defining

gn(t) = ‖vk(t)‖α−θ
Lr̂x
‖vj(t− (tjn − tkn))‖Lr̂x ,

we deduce

(i) gn ∈ Lã
′
t . Indeed, applying the Hölder inequality since 1

ã′
= α−θ

â
+ 1

â
we

get

‖gn‖Lã′t ≤ ‖v
k‖α−θ

LâtL
r̂
x
‖vj‖LâtLr̂x ≤ ‖v

k‖α−θ
S(Ḣsc )

‖vj‖S(Ḣsc ) < +∞.

Furthermore, (3.78) implies that gn(t)→ 0 as n→ +∞.

(ii) |gn(t)| ≤ KIsupp(vj)‖vk(t)‖α−θLr̂x
≡ g(t) for all n, whereK > 0 and Isupp(vj)

is the characteristic function of supp(vj). Similarly as (i), we obtain

‖g‖Lã′t ≤ ‖v
k‖α−θ

LâtL
r̂
x
‖Isupp(vj)‖LâtLr̂x < +∞.

That is, g ∈ Lã′t .

Then, the dominated convergence theorem yields ‖gn‖Lã′t → 0 as n → +∞,

and so combining this result with (3.122) we conclude the proof of the first

estimate.

Next, we prove ‖eMn ‖S′(L2) <
ε
3
. Using again the elementary inequality

(3.76) we estimate

‖eMn ‖S′(L2) ≤ Cα,M

M∑
j=1

∑
1≤j 6=k≤M

∥∥|x|−b|vk|α|vj|∥∥
Lq̂
′
t L

r̂′
x
.
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On the other hand, we have (see proof of Lemma 2.18 with s = 1)∥∥|x|−b|vk|α|vj∥∥
Lq̂
′
t L

r̂′
x
≤ c‖vk‖θL∞t H1

x

∥∥∥‖vk(t− tkn)‖α−θ
Lr̂x
‖vj(t− tjn)‖Lr̂x

∥∥∥
Lq̂
′
t

≤ c‖vk‖θL∞t H1
x
‖vk‖α−θ

LâtL
r̂
x
‖vj‖

Lq̂tL
r̂
x

≤ c‖vk‖θL∞t H1
x
‖vk‖α−θ

S(Ḣsc )
‖vj‖S(L2).

Since vj ∈ S(Ḣsc) then by (3.17) the norms ‖vj‖S(L2) and ‖∇vj‖S(L2) are

bounded quantities. This implies that the right hand side of the last inequal-

ity is finite. Therefore, using the same argument as in the previous case we

get ∥∥∥‖vk(t− tkn)‖α−θ
Lr̂x
‖vj(t− tjn)‖Lr̂x

∥∥∥
Lq̂
′
t

→ 0,

as n→ +∞, which lead to
∥∥|x|−b|vk|α|vj∥∥

Lq̂
′
t L

r̂′
x
→ 0.

Finally, we prove ‖∇eMn ‖S′(L2) <
ε
3
. Note that

∇eMn = ∇(|x|−b)

(
f(ũn)−

M∑
j=1

f(vj)

)
+ |x|−b∇

(
f(ũn)−

M∑
j=1

f(vj)

)
≡ R1

n +R2
n, (3.123)

where f(v) = |v|αv. First, we consider R1
n. The estimate (3.76) yields

‖R1
n‖S′(L2) ≤ c Cα,M

M∑
j=1

∑
1≤j 6=k≤M

∥∥|x|−b−1|vk|α|vj|
∥∥
Lq̂
′
t L

r̂′
x

and by Remark 3.13 we deduce that
∥∥|x|−b−1|vk|α|vj|

∥∥
Lq̂
′
t L

r̂′
x

is finite, then by

the same argument as before we have∥∥|x|−b−1|vk(t− tkn)|α|vj(t− tjn)|
∥∥
Lq̂
′
t L

r̂′
x
→ 0 as n→ +∞.

Therefore, the last two relations yield ‖R1
n‖S′(L2) → 0 as n→ +∞.

On the other hand, observe that

∇(f(ũn)−
M∑
j=1

f(vj)) = f ′(ũn)∇ũn −
M∑
j=1

f ′(vj)∇vj

=
M∑
j=1

(f ′(ũn)− f ′(vj))∇vj. (3.124)
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Since (by Remark 1.15)

|f ′(ũn)− f ′(vj)| ≤ Cα,M
∑

1≤k 6=j≤M

|vk|(|vj|α−1 + |vk|α−1) if α > 1

and

|f ′(ũn)− f ′(vj)| ≤ Cα,M
∑

1≤k 6=j≤M

|vk|α if α ≤ 1,

we deduce using the last two relations together with (3.123) and (3.124)

‖R2
n‖S′(L2) .

M∑
j=1

∑
1≤k 6=j≤M

∥∥|x|−b|vk|(|vj|α−1 + |vk|α−1)|∇vj|
∥∥
S′(L2)

if α > 1,

and

‖R2
n‖S′(L2) .

M∑
j=1

∑
1≤k 6=j≤M

∥∥|x|−b|vk|α|∇vj|∥∥
S′(L2)

if α ≤ 1.

Therefore, from Lemma 3.10 (see also Remark 3.11) we have that the right

hand side of the last two inequalities are finite quantities and, by an analogous

argument as before, we conclude that

‖R2
n‖S′(L2) → 0 as n→ +∞.

This completes the proof of Claim 1.

Proof of Claim 2. First, we show that ‖ũn‖L∞t H1
x

and ‖ũn‖Lγt Lγx are

bounded quantities where γ = 2(N+2)
N

. Indeed, we already know (see (3.98)

and (3.99)) that there exists C0 such that

∞∑
j=1

‖ψj‖2
H1
x
≤ C0,

then we can choose M0 ∈ N large enough such that

∞∑
j=M0

‖ψj‖2
H1
x
≤ δ

2
, (3.125)
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where δ > 0 is a sufficiently small.

Fix M ≥M0. From (3.106), there exists n1(M) ∈ N where for all n > n1(M),

we obtain
M∑

j=M0

‖INLS(−tjn)ψ̃j‖2
H1
x
≤ δ,

where we have used (3.125). This is equivalent to

M∑
j=M0

‖vj(−tjn)‖2
H1
x
≤ δ. (3.126)

Therefore, by the Small Data Theory (Proposition 3.14)14

M∑
j=M0

‖vj(t− tjn)‖2
L∞t H

1
x
≤ cδ for n ≥ n1(M).

Note that,∥∥∥∥∥
M∑

j=M0

vj(t− tjn)

∥∥∥∥∥
2

H1
x

=
M∑

j=M0

‖vj(t−tjn)‖2
H1
x
+2

∑
M0≤l 6=k≤M

〈vl(t−tln), vk(t−tkn)〉H1
x
,

so, for l 6= k we deduce from (3.78) that (see [11, Corollary 4.4] for more

details)

sup
t∈R
|〈vl(t− tln), vk(t− tkn)〉H1

x
| → 0 as n→ +∞.

Hence, since ‖vj‖L∞t H1
x

is bounded (see (3.108) - (3.109)), by definition of ũn

there exists S > 0 (independent of M) such that

sup
t∈R
‖ũn‖2

H1
x
≤ S for n > n1(M). (3.127)

We now show ‖ũn‖Lγt Lγx ≤ L1. Using again (3.126) with δ small enough

and the Small Data Theory (noting that (γ, γ) is L2-admissible and γ > 2),

we have
M∑

j=M0

‖vj(t− tjn)‖γ
Lγt L

γ
x
≤ c

M∑
j=M0

‖vj(−tjn)‖γH1
x
≤ c

M∑
j=M0

‖vj(−tjn)‖2
H1
x
≤ cδ,

(3.128)

14Recall that the pair (∞, 2) is L2-admissible (see (1.1)).
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for n ≥ n1(M).

On the other hand, in view of (3.75)∥∥∥∥∥
M∑

j=M0

vj(t− tjn)

∥∥∥∥∥
γ

Lγt L
γ
x

≤
M∑

j=M0

‖vj‖γ
Lγt L

γ
x

+ CM
∑

M0≤j 6=k≤M

∫
RN+1

|vj||vk||vk|γ−2

for all M > M0. Observe that, given j such that M0 ≤ j 6= k ≤ M , the

Hölder inequality yields∫
RN+1

|vj||vk||vk|γ−2 ≤ ‖vk(t− tkn)‖Lγt Lγx

(∫
RN+1

|vj|
γ
2 |vk|

γ
2

) 2
γ

≤ c‖vj(−tjn)‖H1
x

(∫
RN+1

|vj|
γ
2 |vk|

γ
2

) 2
γ

. (3.129)

Since vj and vk ∈ LγtLγx we have that the right hand side of (3.129) is bounded

and so by similar arguments as in the previous claim, we deduce from (3.78)

that the integral in the right hand side of the previous inequality goes to 0

as n → +∞ (another proof of this fact can be found in [11, Lemma 4.5]).

This implies that there exists L1 (independent of M) such that

‖ũn‖Lγt Lγx ≤
M0∑
j=1

‖vj‖Lγt Lγx +

∥∥∥∥∥
M∑

j=M0

vj

∥∥∥∥∥
Lγt L

γ
x

≤ L1 for n ≥ n1(M), (3.130)

where we have used (3.128).

To complete the proof of the Claim 2 we show the following inequalities

∥∥|x|−b|ũn|αũn∥∥Lā′t Lr̄′x ≤ c‖ũn‖θL∞t H1
x
‖ũn‖α−θ+1

LatL
r
x

(3.131)

and

‖ũn‖LatLrx ≤ ‖ũn‖
1− γ

a

L∞t H
1
x
‖ũn‖

γ
a

Lγt L
γ
x
, (3.132)

where θ ∈ (0, α) is a small enough number and the pairs (ā, r̄) and (a, r) are

Ḣ−sc-admissible and Ḣsc-admissible, respectively.
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Assuming the last two inequalities for a moment let us conclude the

proof of the Claim 2. Indeed combining (3.127) and (3.130) we deduce from

(3.132) that

‖ũn‖LatLrx ≤ S1− γ
aL

γ
a
1 = L2, for n ≥ n1(M).

Then, since ũn satisfies the perturbed equation (3.111) we can apply the

Strichartz estimates (Lemma 1.14) and (3.131) to the integral formulation

and conclude (using also Claim 1)

‖ũn‖S(Ḣsc ) ≤ c‖ũn,0‖H1
x

+ c
∥∥|x|−b|ũn|αũn∥∥Lā′t Lr̄′x + ‖eMn ‖S′(Ḣ−sc )

≤ cS + cL2 + ε = L,

for n ≥ n1(M), which completes the proof of the Claim 2.

To prove the inequalities (3.131) and (3.132) we divide in two cases:

N ≥ 3 and N = 2, since we will make use of the Sobolev embeddings in

Lemma 1.10.

Case N ≥ 3: We begin defining

a =
4α(N + 2)

ND
r =

2αN(N + 2)

(4− 2b)(N + 2)−ND

ā =
4α(N + 2)

4α(N + 2)− (α + 1− θ)ND
and

r̄ =
2αN(N + 2)

2(N + 2) (α(N − 2)− (2− b)) +ND(α + 1− θ)
where D = 4− 2b− α(N − 2) and θ ∈ (0, α) to be chosen below.

Note that r̄ satisfies the condition (1.5), that is 2N
N−2sc

< r̄ < 2N
N−2

. Indeed

r̄ < 2N
N−2

is equivalent to

α(N + 2)(N − 2) < 2(N + 2) (α(N − 2)− (2− b)) +ND(α + 1− θ)⇔
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(N + 2)D < ND(α + 1− θ)⇔

N(α + 1− θ) > N + 2 ⇔ αN − 2− θN > 0.

Since α > (4−2b)/N we have αN−2−θN > 4−2b−2−θN = 2(1−b)−θN

and this is positive choosing θ < 2(1−b)
N

(here we use the condition 0 <

b < min{N
3
, 1} to guarantee that θ can be chosen to be a positive number).

Therefore, since αN − 2 − θN > 0 one gets r̄ < 2N
N−2

. On the other hand,

r̄ > 2N
N−2sc

= Nα
2−b is equivalent to

(N + 2)(4− 2b) > 2(N + 2) (α(N − 2)− (2− b)) +ND(α + 1− θ)⇔

2(N + 2)D > ND(α + 1− θ) ⇔ α <
N + 4 + θN

N
.

Since α < 2∗ (defined in (3.7)) we need to verify that 4−2b
N−2

≤ N+4+θN
N

for

N ≥ 4 and 3 − 2b ≤ 7+3θ
3

for N = 3. The first inequality is equivalent to

N(4− 2b) ≤ (N + 4 + θN)(N − 2) and this is always true since N ≥ 4. The

second case is also true choosing15 θ > max
{

0, 2(1−3b)
3

}
.

Moreover, it is not difficult to see that (a, r) is Ḣsc-admissible16 and (ā, r̄)

is Ḣ−sc-admissible.

We first show the inequality (3.132). Indeed, by interpolation we have

‖ũn‖LatLrx ≤ ‖ũn‖
1− γ

a

L∞t L
p
x
‖ũn‖

γ
a

Lγt L
γ
x
,

where
1

r
=
(

1− γ

a

)(1

p

)
+

1

a
,

15In the particular case when N = 3, we need to choose θ > 0 such that

max
{

0, 2(1−3b)3

}
< θ < 2(1−b)

3 , since also need θ < 2(1−b)
N to obtain r̄ < 2N

N−2 .
16We notice that r satisfies (1.3), that is 2N

N−2sc < r < 2N
N−2 . Indeed r < 2N

N−2 is

equivalent to α(N2−4) < 2(4−2b)+αN(N−2)⇔ α < 4−2b
N−2 . Moreover, r > 2N

N−2sc = Nα
2−b

is equivalent to (N + 2)(4− 2b) > 2(4− 2b) + αN(N − 2)⇔ α < 4−2b
N−2 .
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which is equivalent to (recall that γ = 2(N+2)
N

)(
1− γ

a

)(1

p

)
=

1

r
− 1

a

2α−D
p

=
2(4− 2b)−ND

2N

p =
2N

N − 2
.

Hence, since H1 ↪→ L
2N
N−2 (see inequality (1.8) with s = 1) we obtain the

desired result. On the other hand, the proof of inequality (3.131) follows

from similar ideas as the ones used in the previous chapter. We divide the

estimate in B and BC . Let A ⊂ RN that can be the ball B or BC . From the

Hölder inequality we deduce

∥∥|x|−b|ũn|αũn∥∥Lā′t Lr̄′x (A)
≤

∥∥∥‖|x|−b‖Ld(A)‖ũn‖θLθr1x
‖ũn‖α+1−θ

L
(α+1−θ)r2
x

∥∥∥
Lā
′
t

≤ ‖|x|−b‖Ld(A)‖ũn‖θLθr1x
‖ũn‖α+1−θ

L
(α+1−θ)ā′
t L

(α+1−θ)r2
x

= ‖|x|−b‖Ld(A)‖ũn‖θLθr1x
‖ũn‖α−θ+1

LatL
r
x
,

where

1

r̄′
=

1

d
+

1

r1

+
1

r2

r = (α + 1− θ)r2 a = (α + 1− θ)ā′.

Using the values of a and ā above defined, it is easy to check a = (α+1−θ)ā′.

Moreover, to show that ‖|x|−b‖Ld(A) is a bounded quantity we need N
d
−b > 0

for A = B and N
d
− b < 0 for A = BC , see Remark 1.17. Indeed, the last
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relation implies

N

d
− b = N − b− N

r1

− N

r̄
− N(α + 1− θ)

r

= N − b− N

r1

−
(
N − 2− b

α
− 2

ā

)
− (α + 1− θ)

(
2− b
α
− 2

a

)
= −b− N

r1

+
2− b
α

+
2

ā
− (α + 1− θ)2− b

α
+

2(α + 1− θ)
a

= −2− N

r1

+
θ(2− b)

α
+

2

ā
+

2

ā′

=
θ(2− b)

α
− N

r1

.

Choosing θr1 = 2 we have N
d
− b = −θsc < 0, so |x|−b ∈ Ld(BC) and if

θr1 = 2N
N−2

then N
d
− b = θ(1 − sc) > 0, i.e., |x|−b ∈ Ld(B). Therefore, since

in both cases θr1 ∈
[
2, 2N

N−2

]
by the Sobolev embedding (1.8) we complete

the proof of the inequality (3.131).

Case N = 2. In this case we use the following numbers

a =
2α(α + 1− θ)

2− b+ ε
r =

2α(α + 1− θ)
(2− b)(α− θ)− ε

and

ā =
2α

2α− (2− b)− ε
r̄ =

2α

ε
,

where θ ∈ (0, α) and ε > 0 are sufficiently small numbers. A simple compu-

tation shows that (a, r) is Ḣsc-admissible and (ā, r̄) is Ḣ−sc admissible.17

The interpolation inequality implies (in this case γ = 4)

‖ũn‖LatLrx ≤ ‖ũn‖
1− γ

a

L∞t L
p
x
‖ũn‖

γ
a

Lγt L
γ
x
,

17Note that r̄ satisfies assumption (1.5) with N = 2, that is 2
1−2s = 2α

2−b < r̄ ≤(
( 2
1+sc

)+
)′

. The first inequality is equivalent to 2α
ε > 2α

2−b and this holds since

2 − b − ε > 0. On the other hand by the definition of
(

( 2
1+sc

)+
)′

(see (1.4)) we con-

clude r̄ = 2α
ε ≤

(
( 2
1+sc

)+
)′

.
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where
1

r
=
(

1− γ

a

)(1

p

)
+

1

a
.

This is equivalent to(
1− 4

a

)(
2

p

)
=

2

r
− 2

a

=
2− b
α
− 4

a

=
(2− b)(α− θ + 1)− 2(2− b− ε)

α(α− θ + 1)
.

So we obtain

p = 2
α(α− θ + 1)− 2[(2− b)− ε]

(2− b)(α + 1− θ)− 2[(2− b)− ε]
.

Since we are assuming α > 2 − b we have p > 2, thus by the Sobolev

embedding H1 ↪→ Lp (see (1.7) with N = 2) the inequality (3.132) holds. To

show the inequality (3.131) we use the same argument as the previous case,

that is

∥∥|x|−b|ũn|αũn∥∥Lā′t Lr̄′x (A)
≤ ‖|x|−b‖Ld(A)‖ũn‖θLθr1x

‖ũn‖α+1−θ
L

(α+1−θ)ā′
t L

(α+1−θ)r2
x

= ‖|x|−b‖Ld(A)‖ũn‖θLθr1x
‖ũn‖α−θ+1

LatL
r
x
,

where A = B or BC and

1

r̄′
=

1

d
+

1

r1

+
1

r2

r = (α + 1− θ)r2 a = (α + 1− θ)ā′.

Moreover, we obtain

2

d
− b = 2− b− 2

r1

− 2

r̄
− 2(α + 1− θ)

r

=
θ(2− b)

α
− 2

r1

.

If we choose θr1 ∈
(
2, 2α

2−b

)
then 2

d
− b < 0 (so |x|−b ∈ Ld(BC)) and if θr1 ∈(

2α
2−b ,+∞

)
we have 2

d
− b < 0 (so |x|−b ∈ Ld(B)). Therefore |x|−b ∈ Ld(A)
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and so by the Sobolev inequality (1.7) with s = 1, we complete the proof of

the inequality (3.131).

In the next proposition, we prove the precompactness of the flow asso-

ciated to the critical solution uc. The argument is very similar to Holmer-

Roudenko [23, Proposition 5.5].

Proposition 3.29. (Precompactness of the flow of the critical solu-

tion) Let uc be as in Proposition 3.28 and define

K = {uc(t) : t ∈ [0,+∞)} ⊂ H1.

Then K is precompact in H1(RN).

Proof. Let {tn} ⊆ [0,+∞) a sequence of times and φn = uc(tn) be a uni-

formly bounded sequence in H1(RN). We need to show that uc(tn) has

a subsequence converging in H1(RN). If {tn} is bounded, we can assume

tn → t∗ finite, so by the continuity of the solution in H1(RN) the result is

clear. Next, assume that tn → +∞.

The linear profile expansion (Proposition 3.25) implies the existence of

profiles ψj and a remainder WM
n such that

uc(tn) =
M∑
j=1

U(−tjn)ψj +WM
n ,

with |tjn − tkn| → +∞ as n → +∞ for any j 6= k. Then, by the energy

Pythagorean expansion (Proposition 3.27), we get

M∑
j=1

lim
n→+∞

E[U(−tjn)ψj] + lim
n→+∞

E[WM
n ] = E[uc] = δc, (3.133)

where we have used Proposition 3.28 (ii). This implies that

lim
n→+∞

E[U(−tjn)ψj] ≤ δc ∀ j,
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since each energy in (3.133) is nonnegative by Lemma (3.21) (i).

Moreover, by (3.80) with s = 0 we obtain

M∑
j=1

M [ψj] + lim
n→+∞

M [WM
n ] = M [uc] = 1, (3.134)

by Proposition 3.28 (i).

If more than one ψj 6= 0, similar to the proof in Proposition 3.28, we

have a contradiction with the fact that ‖uc‖S(Ḣsc ) = +∞. Thus, we address

the case that only ψj = 0 for all j ≥ 2, and so

uc(tn) = U(−t1n)ψ1 +WM
n . (3.135)

Also as in the proof of Proposition 3.28, we obtain that

M [ψ1] = M [uc] = 1 and lim
n→+∞

E[U(−t1n)ψ1] = δc, (3.136)

and using (3.133), (3.134) together with (3.136), we deduce that

lim
n→+∞

M [WM
n ] = 0 and lim

n→+∞
E[WM

n ] = 0. (3.137)

Thus, Lemma 3.21 (i) yields

lim
n→+∞

‖WM
n ‖H1 = 0. (3.138)

We claim now that t1n converges to some finite t∗ (up to a subsequence).

In this case, since U(−t1n)ψ1 → U(−t∗)ψ1 in H1(RN) and (3.138) holds,

the relation (3.135) implies that uc(tn) converges in H1(RN), concluding the

proof.

Assume by contradiction that |t1n| → +∞, then we have two cases to

consider. If t1n → −∞, by (3.135)

‖U(t)uc(tn)‖S(Ḣsc ;[0,+∞)) ≤ ‖U(t−t1n)ψ1‖S(Ḣsc ;[0,+∞))+‖U(t)WM
n ‖S(Ḣsc ;[0,+∞)).
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Next, note that since t1n → −∞ we obtain

‖U(t− t1n)ψ1‖S(Ḣsc ;[0,+∞)) ≤ ‖U(t)ψ1‖S(Ḣsc ;[−tjn,+∞)) ≤
1

2
δ,

and also

‖U(t)WM
n ‖S(Ḣsc ) ≤

1

2
δ,

given δ > 0 for n,M sufficiently large, where in the last inequality we have

used (1.10) and (3.138). Hence,

‖U(t)uc(tn)‖S(Ḣsc ;[0,+∞)) ≤ δ.

Therefore, choosing δ > 0 sufficiently small, by the small data theory (Propo-

sition 3.14) we get that

‖uc‖S(Ḣsc ) ≤ 2δ,

which is a contradiction with Proposition 3.28 (iv).

On the other hand, if t1n → +∞, the same arguments also give that for

n large,

‖U(t)uc(tn)‖S(Ḣsc ;(−∞,0]) ≤ δ,

and again the small data theory (Proposition 3.14) implies

‖uc‖S(Ḣsc ;(−∞,tn]) ≤ 2δ.

Since tn → +∞ as n→ +∞, from the last inequality we get ‖uc‖S(Ḣsc ) ≤ 2δ,

which is also a contradiction. Thus, t1n must converge to some finite t∗,

completing the proof of Proposition 3.29.

3.6 Rigidity theorem

The main result of this section is a rigidity theorem, which implies that the

critical solution uc constructed in Section 3.5.2 must be identically zero and
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so reaching a contradiction in view of Proposition 3.28 (iv). Before proving

this result, we begin showing some preliminary results that will help us in

the proof.

Proposition 3.30. (Precompactness of the flow implies uniform lo-

calization) Let u be a solution of (3.1) such that

K = {u(t) : t ∈ [0,+∞)}

is precompact in H1(RN). Then for each ε > 0, there exists R > 0 so that∫
|x|>R

|∇u(t, x)|2dx ≤ ε, for all 0 ≤ t < +∞. (3.139)

Proof. The proof is similar to that in Holmer-Roudenko [23, Lemma 5.6]. If

(3.139) does not hold, then there exists ε > 0 and a sequence tn → +∞ such

that, for each n ∈ N, ∫
|x|>n
|∇u(tn, x)|2dx ≥ 2ε. (3.140)

The fact that K is precompact yields that there exists some φ ∈ H1 such

that, up to a subsequence of tn, u(tn)→ φ in H1, which implies∫
|∇(u(tn)− φ)|2dx < 1

4
ε. (3.141)

On the other hand, since φ ∈ H1, taking n sufficiently large we can get∫
|x|>n
|∇φ|2dx ≤ 1

4
ε. (3.142)

Thus, (3.141) and (3.142) lead to∫
|x|>n
|∇u(t, x)|2dx ≤ 2

∫
|∇(u(tn)− φ)|2dx+ 2

∫
|x|>n
|∇φ|2dx < ε,

which is a contradiction with (3.140).

We will also need the following local virial identity.
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Proposition 3.31. (Virial identity) Let φ ∈ C∞0 (RN), φ ≥ 0 and T > 0.

For R > 0 and t ∈ [0, T ] define

zR(t) =

∫
RN
R2φ

( x
R

)
|u(t, x)|2dx,

where u is a solution of (3.1). Then we have

z′R(t) = 2RIm

∫
RN
∇φ
( x
R

)
· ∇uūdx (3.143)

and

z′′R(t) = 4
∑
j,k

Re

∫
∂u

∂xk

∂ū

∂xj

∂2φ

∂xk∂xj

( x
R

)
dx− 1

R2

∫
|u|2∆2φ

( x
R

)
dx

− 2α

α + 2

∫
|x|−b|u|α+2∆φ

( x
R

)
dx+

4R

α + 2

∫
∇(|x|−b) · ∇φ

( x
R

)
|u|α+2dx.

(3.144)

Proof. We first compute z′R. Note that

∂t|u|2 = 2Re(utū) = 2Im(iutū).

Since u satisfies (3.1) and using integration by parts, we have

z′R(t) = 2Im

∫
R2φ

( x
R

)
iutūdx

= −2Im

∫
R2φ

( x
R

) (
∆uū+ |x|−b|u|α+2

)
dx

= −2Im

∫
R2φ

( x
R

)
∇ · (∇uū)dx

= 2RIm

∫
∇φ
( x
R

)
· ∇uūdx.

On the other hand, using again integration by parts and the fact that z− z̄ =

2iImz, we obtain



3.6 Rigidity theorem 122

z′′R(t) = 2RIm

∫
∇φ
( x
R

)
· (ūt∇u+ ū∇ut) dx

= 2RIm

{∑
j

∫
ūt∂xju∂xjφ

( x
R

)
dx− ut∂xj

(
ū∂xjφ

( x
R

))
dx

}

= 2RIm

{∑
j

2iIm

∫
ūt∂xju∂xjφ

( x
R

)
dx−

∫
1

R
utū∂

2
xj
φ
( x
R

)
dx

}
= 4RI1 + 2I2,

where

I1 = Im
∑
j

∫
ūt∂xju∂xjφ

( x
R

)
and I2 = −Im

∑
j

∫
utū∂

2
xj
φ
( x
R

)
dx.

We start considering I2. Since u is a solution of (3.1) we get

I2 = −Im

{∑
j,k

∫
i∂2
xk
uū∂2

xj
φ
( x
R

)
dx

}
−
∑
j

∫
|x|−b|u|α+2∂2

xj
φ
( x
R

)
dx

= Im

{∑
j,k

∫
i

(
|∂xku|2∂2

xj
φ
( x
R

)
+

1

R
∂xkuū

∂3φ

∂xk∂x2
j

( x
R

))
dx

}

−
∫
|x|−b|u|α+2∆φ

( x
R

)
dx

=

∫ (
|∇u|2 − |x|−b|u|α+2

)
∆φ
( x
R

)
dx+

1

R

∑
j,k

Re

∫
∂xkuū

∂3φ

∂xk∂x2
j

( x
R

)
dx,

where we have used integration by parts and the fact that Im(iz) = Re(z).

Furthermore, since ∂xk |u|2 = 2Re (∂xkuū) another integration by parts yields

I2 =

∫ (
|∇u|2 − |x|−b|u|α+2

)
∆φ
( x
R

)
dx− 1

2R2

∑
j,k

∫
|u|2 ∂4φ

∂x2
k∂x

2
j

( x
R

)
dx

=

∫ (
|∇u|2 − |x|−b|u|α+2

)
∆φ
( x
R

)
dx− 1

2R2

∫
|u|2∆2φ

( x
R

)
dx.(3.145)

Next, we deduce using the equation (3.1) and Im(z) = −Im(z̄) that
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I1 = −Im
∑
j

ut∂xj ū∂xjφ
( x
R

)
dx

= −Imi
∑
j

{∫ (
∆u+ |x|−b|u|αu

)
∂xj ū∂xjφ

( x
R

)
dx

}
= −Re

∑
j,k

∫
∂2
xk
u∂xj ū∂xjφ

( x
R

)
dx−

∑
j

∫
|x|−b∂xjφ

( x
R

)
|u|αRe(∂xj ūu)dx

= −Re
∑
j,k

∫
∂2
xk
u∂xj ū∂xjφ

( x
R

)
dx− 1

α + 2

∑
j

∫
|x|−b∂xjφ

( x
R

)
∂xj(|u|α+2)dx

≡ A+B,

where we have used Im(iz) = Re(z) and ∂xj(|u|α+2) = (α+2)|u|αRe(∂xj ūu).

Moreover, since ∂xj |∂xku|2 = 2Re
(
∂xku

∂2ū
∂xk∂xj

)
and using integration by parts

twice, we get

A = Re
∑
j,k

{∫ (
∂xjφ

( x
R

)
∂xku

∂2ū

∂xk∂xj
+

1

R
∂xku∂xj ū

∂2φ

∂xj∂xk

( x
R

))
dx

}
= −

∑
j,k

1

2R

∫
|∂xku|2∂2

xj
φ
( x
R

)
dx+

1

R

∑
i,j

Re

∫
∂xku∂xj ū

∂2φ

∂xj∂xk

( x
R

)
dx

= − 1

2R

∫
|∇u|2∆φ

( x
R

)
dx+

1

R

∑
i,j

Re

∫
∂xku∂xj ū

∂2φ

∂xj∂xk

( x
R

)
dx.

Similarly, integrating by parts

B =
1

α + 2

∑
j

(∫
∂xjφ

( x
R

)
∂xj(|x|−b)|u|α+2dx+

1

R

∫
∂2
xj
φ
( x
R

)
|x|−b|u|α+2dx

)
=

1

α + 2

∫
∇φ
( x
R

)
· ∇(|x|−b)|u|α+2dx+

1

R(α + 2)

∫
∆φ
( x
R

)
|x|−b|u|α+2dx.
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Therefore,

I1 = − 1

2R

∫
|∇u|2∆φ

( x
R

)
dx+

1

R

∑
i,j

Re

∫
∂xku∂xj ū

∂2φ

∂xj∂xk

( x
R

)
dx

+
1

α + 2

∫
∇φ
( x
R

)
· ∇(|x|−b)|u|α+2dx+

1

R(α + 2)

∫
∆φ
( x
R

)
|x|−b|u|α+2dx.

(3.146)

Finally it is easy to check that combining (3.145) and (3.146), we obatin

(3.144), which completes the proof.

Finally, we apply the previous results to prove the rigidity theorem.

Theorem 3.32. (Rigidity) Let u0 ∈ H1(RN) satisfying

E[u0]scM [u0]1−sc < E[Q]scM [Q]1−sc

and

‖∇u0‖scL2‖u0‖1−sc
L2 < ‖∇Q‖scL2‖Q‖1−sc

L2 .

If the global H1(RN)-solution u with initial data u0 satisfies

K = {u(t) : t ∈ [0,+∞)} is precompact in H1(RN)

then u0 must vanish, i.e., u0 = 0.

Proof. By Theorem 3.1 we have that u is global in H1(RN) and

‖∇u(t)‖scL2
x
‖u(t)‖1−sc

L2
x

< ‖∇Q‖scL2‖Q‖1−sc
L2 . (3.147)

On the other hand, let φ ∈ C∞0 be radial, with

φ(x) =

 |x|2 for |x| ≤ 1

0 for |x| ≥ 2.
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Then, using (3.143), the Hölder inequality and (3.147) we obtain

|z′R(t)| ≤ cR

∫
|x|<2R

|∇u(t)||u(t)|dx ≤ cR‖∇u(t)‖L2‖u(t)‖L2 . cR.

Hence,

|z′R(t)− z′R(0)| ≤ |z′R(t)|+ |z′R(0)| ≤ 2cR, for all t > 0. (3.148)

The idea now is to obtain a lower bound for z′′R(t) strictly greater than

zero and reach a contradiction. Indeed, from the local virial identity (3.144)

z′′R(t) = 4
∑
j,k

Re

∫
∂xku∂xj ū

∂2φ

∂xk∂xj

( x
R

)
dx− 1

R2

∫
|u|2∆2φ

( x
R

)
dx

− 2α

α + 2

∫
|x|−b|u|α+2∆φ

( x
R

)
dx+

4R

α + 2

∫
∇(|x|−b) · ∇φ

( x
R

)
|u|α+2dx

= 8‖∇u‖2
L2
x
− 4(Nα + 2b)

α + 2

∥∥|x|−b|u|α+2
∥∥
L1
x

+R(u(t)), (3.149)

where

R(u(t)) = 4
∑
j

Re

∫ (
∂2
xj
φ
( x
R

)
− 2
)
|∂xju|2 + 4

∑
j 6=k

Re

∫
∂2φ

∂xk∂xj

( x
R

)
∂xku∂xj ū

− 1

R2

∫
|u|2∆2φ

( x
R

)
+

4R

α + 2

∫
∇(|x|−b) · ∇φ

( x
R

)
|u|α+2

+

∫ (−2α(∆φ
(
x
R

)
− 2N) + 8b

α + 2

)
|x|−b|u|α+2.

Since φ(x) is radial and φ(x) = |x|2 if |x| ≤ 1, the sum of all terms in the

definition of R(u(t)) integrating over |x| ≤ R is zero. Indeed, for the first

three terms this is clear by the definition of φ(x). In the fourth term we have

8

α + 2

∫
|x|≤R

∇(|x|−b) · x|u|α+2dx =
8

α + 2

∫
|x|≤R

−b|x|−b|u|α+2dx,

and adding the last term (also integrating over |x| ≤ R) we get zero since

∆φ = 2N , if |x| ≤ R. Therefore, for the integration on the region |x| > R,

we have the following bound

|R(u(t))| ≤ c

∫
|x|>R

(
|∇u(t)|2 +

1

R2
|u(t)|2 + |x|−b|u(t)|α+2

)
dx
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≤ c

∫
|x|>R

(
|∇u(t)|2 +

1

R2
|u(t)|2 +

1

Rb
|u(t)|α+2

)
dx, (3.150)

where we have used that all derivatives of φ are bounded and |R∂xj(|x|−b)| ≤

c|x|−b if |x| > R.

Next we use that K is precompact in H1(RN). By Proposition 3.30,

given ε > 0 there exists R1 > 0 such that
∫
|x|>R1

|∇u(t)|2 ≤ ε. Furthermore,

by mass conservation (3), there exists R2 > 0 such that 1
R2

2

∫
|x|>R2

|u(t)|2 ≤ ε.

Finally, by the Sobolev embedding H1 ↪→ Lα+2, there exists R3 such that

1
Rb3

∫
|x|>R3

|u(t)|α+2 ≤ cε (recall that ‖u(t)‖H1
x

is uniformly bounded for all

t > 0 by (3.147) and Mass conservation (3)). Taking R = max{R1, R2, R3}

the inequality (3.150) implies

|R(u(t))| ≤ c

∫
|x|>R

(
|∇u(t)|2 +

1

R2
|u(t)|2 +

1

Rb
|u(t)|α+2

)
dx ≤ cε. (3.151)

On the other hand, Lemma 3.21 (iii), (3.149) and (3.151) yield

z′′R(t) ≥ 16AE[u]− |R(u(t))| ≥ 16AE[u]− cε,

where A = 1− w α
2 and w = E[v]scM [v]1−sc

E[Q]scM [Q]1−sc
.

Now, choosing ε = 8A
c
E[u], with c as in (3.151) we have

z′′R(t) ≥ 8AE[u].

Thus, integrating the last inequality from 0 to t we deduce that

z′R(t)− z′R(0) ≥ 8AE[u]t. (3.152)

Now sending t → ∞ the left hand of (3.152) also goes to +∞, however

from (3.148) it must be bounded. Therefore, we have a contradiction unless

E[u] = 0 which implies u ≡ 0 by Lemma 3.21 (i).
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