Path coalgebra as a right adjoint functor

Samuel Amador dos Santos Quirino
Departamento de matemática
Universidade Federal de Minas Gerais

Orientador: John William MacQuarrie

Uma dissertação submetida para a obtenção do grau de Mestre em matemática

Belo Horizonte 2017

Abstract

We define a certain variant of the category of quivers and construct the path coalgebra as a functor, the main tool for this process being the universal property of cotensor coalgebras. Then we construct a functor from the category of pointed coalgebras to this category of quivers, based on the Gabriel quiver of pointed coalgebras. With a relation on the morphisms of the category of pointed coalgebras we obtain an adjunction between these two functors.

Contents

Introduction 4
0 Some Category Theory 6
0.1 Standard definitions 6
0.2 Linear algebra 7
1 On the structure of coalgebras: part 1 10
1.1 Coalgebras 10
1.2 Comodules 19
1.3 Bicomodules 27
1.4 Coideals 36
2 On the structure of coalgebras: part 2 40
2.1 The coradical filtration 40
2.2 Pointed coalgebras 43
2.3 Quivers and path coalgebras 46
3 The path coalgebra and the adjunction 50
3.1 Categories 50
3.2 The Path Coalgebra functor 52
3.3 The Gabriel Vquiver functor 55
3.4 Adjunction 57
Bibliography 65

Introduction

There is a well known and very useful correspondence between finite dimensional algebras and quivers.

A quiver $Q=\left(Q_{0}, Q_{1}\right)$ is an oriented graph with the set Q_{0} of vertices and the set Q_{1} of arrows. A path b in the quiver Q is the formal composition of arrows. For each vertex $i \in Q_{0}$ we associate a stationary path e_{i} of length 0 . We denote by Q_{l} the set of all paths in Q of length l. For instance, the set of arrows Q_{1} are paths of length 1 .

For a fixed field k, the path algebra $k Q$ of the quiver Q, is a graded k-algebra with direct sum decomposition

$$
k Q=\bigoplus_{l \geq 0} k Q_{l},
$$

and the obvious addition. The multiplication is given by concatenation of the paths when it makes sense and 0 otherwise.

It is known that (see [ASS, II.1] for details)

- if Q_{0} is finite, then the stationary paths form a complete set of primitive orthogonal idempotents of $k Q$;
- $k Q$ has identity element if and only if Q_{0} is finite. In this case $\sum_{i \in Q_{0}} e_{i}$ is the identity element of $k Q$;
- $k Q$ is finite dimensional if and only if Q is finite and acyclic.

In the other direction, given a finite dimensional basic algebra, A, one can define a quiver (the Gabriel quiver of A). The vertices will be a complete set of primitive orthogonal idempotents, $Q_{0}=\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$. The arrows between two vertices $e, f \in Q_{0}$ are a basis of the vector space $e \frac{J(A)}{J^{2}(A)} f$, where $J(A)$ is the Jacobson radical of A. In this way, $Q=\left(Q_{0}, Q_{1}\right)$ defines a quiver.

The path algebra over Q can be defined by a universal property similar to universal properties of free objects (see [ASS, Theorem II.1.8]). That suggests there is a stronger relationship between these two categories.

The operator that takes finite quivers to their path algebra is already a functor, but the Gabriel quiver construction is not, since one has many choices to make in the process. The first problem is that arrows of the Gabriel quiver correspond to a choice of basis and vertices correspond to a choice of a complete set of primitive orthogonal idempotents.

On [IM], Iusenko and MacQuarrie worked out a solution for this problem by considering a certain variant of the category of quivers, namely Vquivers, that instead of a set of arrows between vertices, we have vector spaces. Moreover, as an alternative for the choice of a complete set of primitive orthogonal idempotents we have a unique set of orbits of these elements. These techniques make it possible to construct functors between the category of finite dimensional pointed algebras and the category of finite Vquivers. Furthermore, under a specific relation on the morphisms of the category of algebras, the Path Algebra functor is a left adjoint of the Gabriel quiver functor.

In this dissertation, we dualize this theory for coalgebras. In a certain way we obtain a generalization, since there is no need for the restriction to finite dimensional coalgebras.

Chapter 0 contains well-known preliminary material: the basics of category theory, the universal property of quotient vector spaces and the First Isomorphism Theorem.

Chapters 1 and 2 contain standard definitions and results regarding coalgebras and related structures. Chapter 1 contains facts that are easily proved from the definitions, while Chapter 2 contains more powerful results.

Chapter 3 consists of the main results of this research. In this chapter we construct the path coalgebra and the Gabriel quiver as functors and under a quotient on the category of pointed coalgebras we obtain an adjunction between these functors.

Chapter 0

Some Category Theory

In this Chapter we will state standard definitions from Category Theory and well known results from Linear Algebra.

0.1 Standard definitions

Definition 0.1.1. A category \mathbf{C} consists of a class of objects and for each pair of objects A, B a set $\operatorname{Hom}_{C}(A, B)$ of morphisms from A to B satisfying
(i) the composition law: if $f \in \operatorname{Hom}_{C}(A, B)$ and $g \in \operatorname{Hom}_{C}(B, C)$, then $g \circ f \in$ $H o m_{C}(A, C)$;
(ii) for every object A of \mathbf{C} there is an identity morphism of $A, 1_{A}: A \rightarrow A$;
(iii) the associativity axiom: if $f \in \operatorname{Hom}_{C}(A, B), g \in \operatorname{Hom}_{C}(B, C)$ and $h \in$ $\operatorname{Hom}_{C}(C, D)$, then the following equality holds:

$$
h \circ(g \circ f)=(h \circ g) \circ f ;
$$

(iv) the unity law: for every morphism $f \in \operatorname{Hom}_{C}(A, B)$ the following equality holds:

$$
f \circ 1_{A}=f=1_{B} \circ f ;
$$

where $1_{A}: A \rightarrow A$ is the identity morphism of A and $1_{B}: B \rightarrow B$ is the identity morphism of B.

Definition 0.1.2. A covariant functor F from a category \mathbf{C} to a category \mathbf{D} is an assignment between objects and between morphisms such that
(i) $F(f: A \rightarrow B)=F(f): F(A) \rightarrow F(B)$;
(ii) $F(g \circ f)=F(g) \circ F(f)$;
(iii) $F\left(1_{A}\right)=1_{F(A)}$.

Definition 0.1.3. A functor $F: \mathbf{A} \rightarrow \mathbf{B}$ is an isomorphism if and only if there is a functor $G: \mathbf{B} \rightarrow \mathbf{A}$ for which both composites $G \circ F$ and $F \circ G$ are identity functors.

Definition 0.1.4. Given two functors $F, G: \mathbf{C} \rightrightarrows \mathbf{D}$, a natural transformation $\tau: F \rightarrow G$ is a function which assigns to each object $A \in \mathbf{C}$ a morphism $\tau_{A}: F(A) \rightarrow$ $G(A)$ of \mathbf{D} in such a way that every morphism $f: A \rightarrow B$ in \mathbf{C} yields a commutative diagram

In this case, we say that $\tau_{A}: F(A) \rightarrow G(A)$ is natural in A.
Definition 0.1.5. [Mac, iv.1] Let \mathbf{C} and \mathbf{D} be categories. An adjunction from \mathbf{C} to \mathbf{D} is a triple $\langle F, G, \eta\rangle: \mathbf{C} \rightarrow \mathbf{D}$, where F and G are functors

$$
\mathbf{C} \underset{G}{\stackrel{F}{\rightleftarrows}} \mathbf{D}
$$

while η is a function which assigns to each pair of objects $A \in \mathbf{C}, B \in \mathbf{D}$ a bijection of sets

$$
\eta=\eta_{A, B}: \operatorname{Hom}_{\mathbf{C}}(A, G(B)) \rightarrow \operatorname{Hom}_{\mathbf{D}}(F(A), B)
$$

which is natural in A and B. In this case, F is called a left adjoint of G and G is called a right adjoint of F.

0.2 Linear algebra

Now we will state and prove (even thought it is trivial) two basic theorems for vector spaces, which are the universal property of quotient spaces and the first isomorphism theorem. For what comes, there will be equivalent results for coalgebras, comodules and bicomodules.

Let k be a field, V a k-vector space and $W \subseteq V$ a subspace of V. Denote by $\bar{v}=v+W=\{v+w \mid w \in W\}$ the coset of W. Then, the quotient of V by W, $V / W=\{\bar{v} \mid v \in V\}$, is a k-vector space with the operations: $\overline{v_{1}}+\overline{v_{2}}=\overline{v_{1}+v_{2}}$ and $\lambda \bar{v}=\overline{\lambda v}$, for $v, v_{1}, v_{2} \in V$ and $\lambda \in k$. Define the projection $\pi: V \rightarrow V / W$ given by $\pi(v)=\bar{v}$.

Lemma 0.2.1 (The universal property of the quotient space). Let k, V, W and π be as above. Then, for any k-vector space Z and any k-linear map $\psi: V \rightarrow Z$ whose kernel contains W, there exists a unique k-linear map $\phi: V / W \rightarrow Z$ such that the following diagram commutes

Proof. Let Z be a k-vector space and $\psi: V \rightarrow Z$ a k-linear map with $W \subseteq \operatorname{ker}(\psi)$. Define $\phi: V / W \rightarrow Z$ to be the map $\bar{v} \mapsto \psi(v)$. Note that ϕ is well defined since if v_{1} and v_{2} are two representatives of \bar{v}, then there exists $w \in W$ such that $v_{1}=v_{2}+w$. Hence,

$$
\psi\left(v_{1}\right)=\psi\left(v_{2}+w\right)=\psi\left(v_{2}\right)+\psi(w)=\psi\left(v_{2}\right) .
$$

The linearity of ϕ is an immediate consequence of the linearity of ψ. Furthermore, it is clear from the definition that $\psi=\phi \circ \pi$. It remains to show that ϕ is unique. Suppose $\sigma: V / W \rightarrow Z$ is such that $\sigma \circ \pi=\psi=\phi \circ \pi$. Then $\sigma(\bar{v})=\phi(\bar{v})$ for all $v \in V$. Since π is surjective, $\sigma=\phi$.

Let V and W be two k-vector spaces and $f: V \rightarrow W$ a linear map. We write $\operatorname{im}(f)=\{f(v) \mid v \in V\}$ the image of f and $\operatorname{ker}(f)=\{v \in V \mid f(v)=0\}$ the kernel of f. It is clear that $\operatorname{im}(f)$ is a subspace of W and $\operatorname{ker}(f)$ is a subspace of V. Let $V / \operatorname{ker}(f)$ be the quotient space and write \bar{v} for the coset of $\operatorname{ker}(f)$. Define the map $\bar{f}: V / \operatorname{ker}(f) \rightarrow i m(f)$ given by $\bar{v} \mapsto f(v)$. Observe that \bar{f} is well defined since for any two representatives v_{1} and v_{2} of \bar{v}, there exists a $\omega \in \operatorname{ker}(f)$ such that $v_{1}=v_{2}+\omega$, and

$$
f\left(v_{1}\right)=f\left(v_{2}+\omega\right)=f\left(v_{2}\right)+f(\omega)=f\left(v_{2}\right) .
$$

Also $\bar{f}(V / \operatorname{ker}(f))=f(V)=\operatorname{im}(f)$. We claim that \bar{f} is a bijection. Surjectivity is direct from the last observation and injectivity is due to the following

$$
\operatorname{ker}(\bar{f})=\{\bar{v} \mid \bar{f}(\bar{v})=0\}=\{\bar{v} \mid f(v)=0\}=\{\bar{v} \mid v \in \operatorname{ker}(f)\}=\overline{0}
$$

This gives us
Proposition 0.2.2 (The Fundamental Isomorphism Theorem for vector spaces). Given a linear map $f: V \rightarrow W$ of k-vector spaces, there exists a unique linear map $\bar{f}: V / \operatorname{ker}(f) \rightarrow i m(f)$ that makes the following diagram

commutative, where $\pi: V \rightarrow V / \operatorname{ker}(f)$ is the canonical projection and $\iota: \operatorname{im}(f) \rightarrow W$ is the inclusion.

Proof. It remains to prove the uniqueness of \bar{f}. Suppose $g: V / \operatorname{ker}(f) \rightarrow i m(f)$ is a linear map such that $\iota \circ g \circ \pi=f$. Then injectivity of ι gives $g(\bar{v})=\bar{f}(\bar{v})$, and surjectivity of π shows $g=\bar{f}$.

Chapter 1

On the structure of coalgebras: part 1

1.1 Coalgebras

Fix an algebraically closed field k. For now on, tensor products \otimes are over k.
We define a k-coalgebra by dualizing the definition of a k-algebra (associative with identity) as follows:

Definition 1.1.1. A k-coalgebra $C=(C, \Delta, \varepsilon)$ is a k-vector space C together with two k-linear maps $\Delta: C \rightarrow C \otimes C$ and $\varepsilon: C \rightarrow k$ satisfying the commutative diagrams:

where $i d: C \rightarrow C$ is the identity map and the maps from C to $k \otimes C$ and from C to $C \otimes k$ are the natural isomorphisms $c \mapsto 1 \otimes c$ and $c \mapsto c \otimes 1$, respectively. The left diagram is known as the coassociativity of the comultiplication Δ of C and the right diagram is known as the counitary property of the counity ε of C.

A subspace $S \subseteq C$ is a subcoalgebra of C if $\Delta(S) \subseteq S \otimes S$. In this case, $\left(S,\left.\Delta\right|_{S},\left.\varepsilon\right|_{S}\right)$ is a k-coalgebra.

In order to simplify the notation, we will omit the k whenever there is no danger of confusion. By abuse of notation we will write $1 \otimes c=c$ and $c \otimes 1=c$.

Definition 1.1.2. Let $C=\left(C, \Delta_{C}, \varepsilon_{C}\right)$ and $D=\left(D, \Delta_{D}, \varepsilon_{D}\right)$ be two coalgebras. A k-linear map $f: C \rightarrow D$ is a coalgebra homomorphism if the following diagrams commute:

Sometimes we will use the Sweedler notation (or sigma notation) [Swe, Section 1.2] for computations, that is, if C is a coalgebra and $c \in C$, we write

$$
\Delta(c)=\sum_{(c)} c_{(1)} \otimes c_{(2)}=\sum_{i=1}^{n} c_{1 i} \otimes c_{2 i}
$$

omitting the index i.
Lemma 1.1.3. Let C and D be coalgebras and $f: C \rightarrow D$ a coalgebra homomorphism. If S is any subcoalgebra of C, then $f(S)$ is a subcoalgebra of D.

Proof. If $s \in S$, then $\Delta_{C}(s)=\sum_{(s)} s_{(1)} \otimes s_{(2)} \subseteq S \otimes S$, and

$$
\begin{aligned}
\Delta_{D}(f(s)) & =(f \otimes f) \Delta_{C}(s) \\
& =(f \otimes f) \sum_{(s)} s_{(1)} \otimes s_{(2)} \\
& =\sum_{(s)} f\left(s_{(1)}\right) \otimes f\left(s_{(2)}\right) \subseteq f(S) \otimes f(S) .
\end{aligned}
$$

Lemma 1.1.4. Let A, B, and C be coalgebras and $f: A \rightarrow B$ and $g: B \rightarrow C$ be coalgebra homomorphisms. Then $g \circ f: A \rightarrow C$ is a coalgebra morphism.

Proof. For any $a \in A$ we have

$$
\begin{aligned}
\Delta_{C}(g \circ f)(a) & =\Delta_{C}(g(f(a))) \\
& =(g \otimes g)\left(\Delta_{B}(f(a))\right. \\
& =(g \otimes g)(f \otimes f)\left(\Delta_{A}(a)\right) \\
& =(g \circ f \otimes g \circ f)\left(\Delta_{A}(a)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\varepsilon_{C}(g \circ f)(a) & =\varepsilon_{C}(g(f(a)) \\
& =\varepsilon_{B}(f(a)) \\
& =\varepsilon_{A}(a) .
\end{aligned}
$$

Thus, the result follows.
Taking all k-coalgebras as objects and all coalgebra homomorphisms as morphisms we have a category, called \mathbf{k}-Cog.

Let us see some examples to illustrate this definition.
Examples 1.1.5. (i) Let S be a set and $k S$ be the k-vector space with basis S. Then $k S$ is a coalgebra with comultiplication and counity defined by

$$
\begin{aligned}
\Delta(s) & =s \otimes s \\
\varepsilon(s) & =1
\end{aligned}
$$

extended linearly for all $s \in S$.
We must check that $k S$ is indeed a coalgebra. Let $c \in k S$ and write $c=$ $\sum_{s \in S} \lambda_{s} s$, where each $\lambda_{s} \in k$. Then

$$
\begin{aligned}
(i d \otimes \Delta) \Delta(c) & =(i d \otimes \Delta) \Delta\left(\sum_{s \in S} \lambda_{s} s\right) \\
& =(i d \otimes \Delta)\left(\sum_{s \in S} \Delta\left(\lambda_{s} s\right)\right) \\
& =(i d \otimes \Delta)\left(\sum_{s \in S} \lambda_{s} \Delta(s)\right) \\
& =(i d \otimes \Delta)\left(\sum_{s \in S} \lambda_{s} s \otimes s\right) \\
& =\sum_{s \in S} \lambda_{s} s \otimes \Delta(s) \\
& =\sum_{s \in S} \lambda_{s} s \otimes s \otimes s \\
& =\sum_{s \in S} \lambda_{s} \Delta(s) \otimes s \\
& =(\Delta \otimes i d)\left(\sum_{s \in S} \lambda_{s} s \otimes s\right)
\end{aligned}
$$

$$
=(\Delta \otimes i d) \Delta\left(\sum_{s \in S} \lambda_{s} s\right)=(\Delta \otimes i d) \Delta(c),
$$

and

$$
\begin{aligned}
(i d \otimes \varepsilon) \Delta(c) & =(i d \otimes \varepsilon) \Delta\left(\sum_{s \in S} \lambda_{s} s\right) \\
& =(i d \otimes \varepsilon)\left(\sum_{s \in S} \lambda_{s} s \otimes s\right) \\
& =\sum_{s \in S} \lambda_{s} s \otimes \varepsilon(s) \\
& =\sum_{s \in S} \lambda_{s} s \otimes 1 \\
& =c \otimes 1 \\
& =c .
\end{aligned}
$$

Similarly one can show that $(\varepsilon \otimes i d) \Delta(c)=c$. Moreover, the only possible value for $\varepsilon(s)$ such that ε is a counity of $k S$ is $\varepsilon(s)=1$ for all $s \in S$.

We have picked an arbitrary element of $k S$ to show the coassociativity of Δ and the counitary property of ε, however by linearity of both maps it would be sufficient to show that it works for an arbitrary element of the basis.
(ii) Let H be a vector space with basis $\left\{g_{i}, d_{i}: i \in \mathbb{N}\right\}$. The comultiplication and counity given by:

$$
\begin{aligned}
\Delta\left(g_{i}\right) & =g_{i} \otimes g_{i} \\
\Delta\left(d_{i}\right) & =g_{i} \otimes d_{i}+d_{i} \otimes g_{i+1} \\
\varepsilon\left(g_{i}\right) & =1 \\
\varepsilon\left(d_{i}\right) & =0
\end{aligned}
$$

extended linearly for all $d_{i}, g_{i} \in H$ defines a coalgebra H.
By the example above it suffices to confirm the coassociativity of Δ and the
counitary property of ε for an element of the base d_{i}, with $i \in \mathbb{N}$.

$$
\begin{aligned}
(i d \otimes \Delta) \Delta\left(d_{i}\right) & =(i d \otimes \Delta)\left(g_{i} \otimes d_{i}+d_{i} \otimes g_{i+1}\right) \\
& =g_{i} \otimes \Delta\left(d_{i}\right)+d_{i} \otimes \Delta\left(g_{i+1}\right) \\
& =g_{i} \otimes g_{i} \otimes d_{i}+g_{i} \otimes d_{i} \otimes g_{i+1}+d_{i} \otimes g_{i+1} \otimes g_{i+1} \\
& =\Delta\left(g_{i}\right) \otimes d_{i}+\Delta\left(d_{i}\right) \otimes g_{i+1} \\
& =(\Delta \otimes i d)\left(g_{i} \otimes d_{i}+d_{i} \otimes g_{i+1}\right) \\
& =(\Delta \otimes i d) \Delta\left(d_{i}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
(i d \otimes \varepsilon) \Delta\left(d_{i}\right) & =(i d \otimes \varepsilon)\left(g_{i} \otimes d_{i}+d_{i} \otimes g_{i+1}\right) \\
& =g_{i} \otimes \varepsilon\left(d_{i}\right)+d_{i} \otimes \varepsilon\left(g_{i+1}\right) \\
& =0+d_{i} \otimes 1 \\
& =d_{i} .
\end{aligned}
$$

A similar computation shows that $(\varepsilon \otimes i d) \Delta\left(d_{i}\right)=d_{i}$. Thus H is a coalgebra.
(iii) Let n be a positive integer and $M^{C}(n, k)$ a k-vector space of dimension n^{2}. Let $\left(e_{i j}\right)_{1 \leq i, j \leq n}$ be a basis for $M^{C}(n, k)$. With comultiplication and counity defined by

$$
\begin{aligned}
\Delta\left(e_{i j}\right) & =\sum_{l=1}^{n} e_{i l} \otimes e_{l j} \\
\varepsilon\left(e_{i j}\right) & =\delta_{i j}
\end{aligned}
$$

$M^{C}(n, k)$ becomes a coalgebra, which is called the matrix coalgebra.
Lets confirm the coassociativity and counitary properties for an arbitrary ele-
ment of the basis, $e_{i j}$.

$$
\begin{aligned}
(i d \otimes \Delta) \Delta\left(e_{i j}\right) & =(i d \otimes \Delta)\left(\sum_{l=1}^{n} e_{i l} \otimes e_{l j}\right) \\
& =\sum_{l=1}^{n} e_{i l} \otimes \Delta\left(e_{l j}\right) \\
& =\sum_{l=1}^{n} e_{i l} \otimes\left(\sum_{p=1}^{n} e_{l p} \otimes e_{p j}\right) \\
& =\sum_{l, p=1}^{n} e_{i l} \otimes e_{l p} \otimes e_{p j} \\
& \left.=\sum_{p=1}^{n}\left(\sum_{l=1}^{n} e_{i l} \otimes e_{l p}\right) \otimes e_{p j}\right) \\
& =\sum_{p=1}^{n} \Delta\left(e_{i p}\right) \otimes e_{p j} \\
& =(\Delta \otimes i d)\left(\sum_{p=1}^{n} e_{i p} \otimes e_{p j}\right) \\
& =(\Delta \otimes i d) \Delta\left(e_{i j}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
(i d \otimes \varepsilon) \Delta\left(e_{i j}\right) & =(i d \otimes \varepsilon)\left(\sum_{l=1}^{n} e_{i l} \otimes e_{l j}\right) \\
& =\sum_{l=1}^{n} e_{i l} \otimes \varepsilon\left(e_{l j}\right) \\
& =e_{i j} \otimes 1 \\
& =e_{i j}
\end{aligned}
$$

Similarly $(i d \otimes \varepsilon) \Delta\left(e_{i j}\right)=e_{i j}$ and, hence, $M^{C}(n, k)$ is a coalgebra.
(iv) Let V and W be sets and $f: V \rightarrow W$ an injective function. Define the map

$$
\begin{aligned}
\bar{f}: k V & \rightarrow k W, \\
\sum_{v \in V} \lambda_{v} v & \mapsto \sum_{v \in V} \lambda_{v} f(v)
\end{aligned}
$$

where each $\lambda_{v} \in k$ and $k V$ and $k W$ are coalgebras defined as in Example 1.1.5 (i). The following computations show that \bar{f} satisfies the commutative diagrams
for coalgebra homomorphisms:

$$
\begin{aligned}
\Delta_{k W}\left(\bar{f}\left(\sum_{v \in V} \lambda_{v} v\right)\right) & =\Delta_{k W}\left(\sum_{v \in V} \lambda_{v} f(v)\right) \\
& =\sum_{v \in V} \lambda_{v} \Delta_{k W}(f(v)) \\
& =\sum_{v \in V} \lambda_{v} f(v) \otimes f(v) \\
& =(f \otimes f)\left(\sum_{v \in V} \lambda_{v} v \otimes v\right) \\
& =(f \otimes f)\left(\sum_{v \in V} \lambda_{v} \Delta_{k V}(v)\right) \\
& =(f \otimes f) \Delta_{k V}\left(\sum_{v \in V} \lambda_{v} v\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\varepsilon_{k W}\left(\bar{f}\left(\sum_{v \in V} \lambda_{v} v\right)\right) & =\sum_{v \in V} \lambda_{v} \varepsilon_{k W}(f(v)) \\
& =\sum_{v \in V} \lambda_{v} 1 \\
& =\sum_{v \in V} \lambda_{v} \varepsilon_{k V}(v) .
\end{aligned}
$$

Thus, \bar{f} is a coalgebra homomorphism.
Definition 1.1.6. Let C be a coalgebra.
(i) If $c \in C$ satisfies $\Delta(c)=c \otimes c$ and $\varepsilon(c)=1$, then we say that c is a grouplike element of C. We write $G(C):=\{g \in C \mid \Delta(g)=g \otimes g$ and $\varepsilon(g)=1\}$. The coalgebra $k S$ in Example 1.1.5 (i) is called the group-like coalgebra of S. A special case of group-like coalgebra is the group-like subcoalgebra $k G(C)$ of C;
(ii) if $g, h \in G(C)$ and $c \in C$ is such that $\Delta(c)=c \otimes g+h \otimes c$, then we say that c is g, h-primitive. The set of all g, h-primitives is denoted by $P_{g, h}(C)$.

Proposition 1.1.7. Let C be a coalgebra. Then the elements of $G(C)$ are linearly independent.

Proof. See [DNR, Proposition 1.4.14], [Swe, Proposition 3.2.1] or [Abe, Theorem 2.1.2].

Suppose that $G(C)$ is not a linearly independent family.
Let n be the smallest natural number for which there exist distinct elements $g, g_{1}, \cdots, g_{n} \in G(C)$ such that $g=\sum_{i=1}^{n} \lambda_{i} g_{i}$, with $\lambda_{i} \in k, \forall i$. If $n=1$, then $g=\lambda_{1} g_{1}$ and

$$
1=\varepsilon(g)=\varepsilon\left(\lambda_{1} g_{1}\right)=\lambda_{1} \varepsilon\left(g_{1}\right)=\lambda_{1} .
$$

Hence $g=g_{1}$. Thus $n \geq 2$. Applying Δ to $g=\sum_{i=1}^{n} \lambda_{i} g_{i}$ we obtain

$$
\begin{aligned}
\sum_{i=1}^{n} \lambda_{i} g_{i} \otimes g_{i}=\Delta & \left(\sum_{i=1}^{n} \lambda_{i} g_{i}\right)=\Delta(g)=g \otimes g= \\
& =\left(\sum_{i=1}^{n} \lambda_{i} g_{i}\right) \otimes\left(\sum_{j=1}^{n} \lambda_{j} g_{j}\right)=\sum_{i, j=1}^{n} \lambda_{i} \lambda_{j} g_{i} \otimes g_{j} .
\end{aligned}
$$

Consequently

$$
\begin{aligned}
0 & =\sum_{i=1}^{n} \lambda_{i} g_{i} \otimes g_{i}-\sum_{i, j=1}^{n} \lambda_{i} \lambda_{j} g_{i} \otimes g_{j} \\
& =\sum_{i=1}^{n}\left(\lambda_{i}-\lambda_{i} \lambda_{i}\right) g_{i} \otimes g_{i}-\sum_{i \neq j} \lambda_{i} \lambda_{j} g_{i} \otimes g_{j} .
\end{aligned}
$$

Since $\left\{g_{i}\right\}_{1 \leq i \leq n}$ is a linearly independent set in C, it follows that $\left\{g_{i} \otimes g_{j}\right\}_{1 \leq i, j \leq n}$ is a linearly independent set in $C \otimes C$. Hence, the equality above shows that $\lambda_{i} \lambda_{j}=0$ if $i \neq j$ and so $\lambda_{i}=0$ or $\lambda_{j}=0$, contradicting the minimality of n.

Lemma 1.1.8. Let C be a coalgebra. Then, for $g, h, g^{\prime}, h^{\prime} \in G(C)$, we have

$$
k G(C) \cap P_{g, h}(C)=k(h-g)
$$

and

$$
P_{g, h}(C) \cap P_{g^{\prime}, h^{\prime}}(C)= \begin{cases}P_{g, h}(C), & \text { if } g^{\prime}=g \text { and } h^{\prime}=h \\ k(h-g), & \text { if } g^{\prime}=h \text { and } h^{\prime}=g \\ 0, & \text { otherwise }\end{cases}
$$

Proof. Consider $c \in k G(C) \cap P_{g, h}(C)$ and write $c=\sum_{e \in G(C)} \lambda_{e} e$. Then

$$
\begin{aligned}
\left(\sum_{e \in G(C)} \lambda_{e} e\right) \otimes g+h \otimes\left(\sum_{e \in G(C)} \lambda_{e} e\right) & =\Delta\left(\sum_{e \in G(C)} \lambda_{e} e\right) \\
& =\sum_{e \in G(C)} \lambda_{e} e \otimes e
\end{aligned}
$$

implies that

$$
\begin{aligned}
0 & =\left(\sum_{e \in G(C)} \lambda_{e} e\right) \otimes g+h \otimes\left(\sum_{e \in G(C)} \lambda_{e} e\right)-\sum_{e \in G(C)} \lambda_{e} e \otimes e \\
& =\sum_{e \in G(C)} \lambda_{e} e \otimes g+\sum_{e \in G(C)} h \otimes \lambda_{e} e-\sum_{e \in G(C)} \lambda_{e} e \otimes e \\
& =\sum_{e \in G(C) \backslash\{g, h\}} \lambda_{e}(e \otimes g+h \otimes e-e \otimes e)+\left(\lambda_{h}+\lambda_{g}\right) h \otimes g .
\end{aligned}
$$

Since $\{e \otimes f\}_{e, f \in G(C)}$ is a linearly independent set in $C \otimes C$, by Proposition 1.1.7, we must have

$$
\begin{array}{rlrl}
\lambda_{e} e \otimes e & =0, & \forall e \in G(C) \backslash\{g, h\} \\
\lambda_{e} e \otimes g & =0, & & \forall e \in G(C) \backslash\{g, h\} \\
\lambda_{e} h \otimes e & =0, & & \forall e \in G(C) \backslash\{g, h\} \\
\left(\lambda_{h}+\lambda_{g}\right) h \otimes g & =0 . & &
\end{array}
$$

Hence, $\lambda_{e}=0 \forall e \in G(C) \backslash\{g, h\}$ and $\lambda_{h}=-\lambda_{g}$. Thus,

$$
k G(C) \cap P_{g, h}(C)=k(h-g) .
$$

Consequently, by the linear independence of the set $G(C)$ and the equality $(h-g)=$ $-(g-h)$, we have $P_{g, h}(C) \cap P_{h, g}(C) \cap k G(C)=k(h-g)$ and $P_{g, h}(C) \cap P_{g^{\prime}, h^{\prime}}(C) \cap$ $k G(C)=0$, for any $\left(g^{\prime}, h^{\prime}\right) \neq(g, h)$ or (h, g).

To conclude our claim, it is enough to show that if $c \in P_{g, h}(C) \backslash k G(C)$, then $c \notin P_{g^{\prime}, h^{\prime}}$ for any $g^{\prime}, h^{\prime} \in G(C)$ with $g^{\prime} \neq g$ or $h^{\prime} \neq h$.

Suppose that $c \in P_{g^{\prime}, h^{\prime}}$ and write $\Delta(c)=c^{\prime} \otimes g^{\prime}+h^{\prime} \otimes c^{\prime}$. Assume, without lost of generality that $g^{\prime} \neq g$. The counitary property of ε give us

$$
\begin{aligned}
1 \otimes c=(\varepsilon \otimes i d) \Delta(c) & =\varepsilon(c) \otimes g+1 \otimes c \\
& =\varepsilon\left(c^{\prime}\right) \otimes g^{\prime}+1 \otimes c^{\prime} .
\end{aligned}
$$

Thus, $\varepsilon(c)=0$ and $c^{\prime}=c-\varepsilon\left(c^{\prime}\right) g^{\prime}$. Applying ε we obtain

$$
\varepsilon\left(c^{\prime}\right)=\varepsilon(c)-\varepsilon\left(c^{\prime}\right) \varepsilon\left(g^{\prime}\right)=-\varepsilon\left(c^{\prime}\right)
$$

Hence, $\varepsilon\left(c^{\prime}\right)=0$ and $c^{\prime}=c$. Now

$$
\begin{aligned}
0=\Delta(c)-\Delta(c) & =c \otimes g+h \otimes c-c \otimes g^{\prime}-h^{\prime} \otimes c \\
& =c \otimes g+\left(h-h^{\prime}\right) \otimes c-c \otimes g^{\prime}
\end{aligned}
$$

But this is impossible, since $\left\{g, g^{\prime}, c\right\}$ are linearly independent. Thus $c \notin P_{g^{\prime}, h^{\prime}}(C)$.

Lemma 1.1.9. Let C and D be coalgebras and $f: C \rightarrow D$ a coalgebra homomorphism. Then
(i) $f(G(C)) \subseteq G(D)$;
(ii) $f\left(P_{g, h}(C)\right) \subseteq P_{f(g), f(h)}(D)$. Moreover, if f is injective and $c \in P_{g, h}(C) \backslash k(h-g)$, then $f(c) \in P_{f(g), f(h)}(D) \backslash k(f(h)-f(g))$.

Proof. Let $g \in G(C)$. Then,

$$
\begin{aligned}
\Delta_{D}(f(g)) & =(f \otimes f) \Delta_{C}(g) \\
& =(f \otimes f)(g \otimes g)=f(g) \otimes f(g)
\end{aligned}
$$

and

$$
\varepsilon_{D}(f(g))=\varepsilon_{C}(g)=1 .
$$

Thus $f(g) \in G(D)$ and (i) is done. Let $c \in P_{g, h}(C)$. Then,

$$
\begin{aligned}
\Delta_{D}(f(c)) & =(f \otimes f) \Delta_{C}(c) \\
& =(f \otimes f)(c \otimes g+h \otimes c)=f(c) \otimes f(g)+f(h) \otimes f(c) .
\end{aligned}
$$

Since $f(g), f(h) \in G(D)$ by (i), we get $f(c) \in P_{f(g), f(h)}(D)$.
Consider now f injective and $c \in P_{g, h}(C) \backslash k(h-g)$. If $f(c) \in k(f(h)-f(g))$ then $f(c)=\lambda(f(h)-f(g))$ for some $\lambda \in k$, but

$$
f(\lambda(h-g))=\lambda(f(h)-f(g))=f(c)
$$

for $c \neq \lambda(h-g)$ by hypothesis, which contradicts the injectivity of f. Thus, we conclude (ii).

1.2 Comodules

Definition 1.2.1. Let $C=(C, \Delta, \varepsilon)$ be a coalgebra. We call a right C-comodule a pair (M, ρ), where M is a k-vector space, $\rho: M \rightarrow M \otimes C$ a morphism of k-vector spaces such that the following diagrams commute:

We say that $\rho: M \rightarrow M \otimes C$ is the structure map of the right C-comodule M.
A subspace $N \subseteq M$ is a subcomodule of M if $\rho(N) \subseteq N \otimes C$. In this case (N, ρ_{N}) is a right C-comodule, where $\rho_{N}: N \rightarrow N \otimes C$ is the restriction and corestriction of ρ to N and $N \otimes C$, respectively.

A left C-comodule is defined in a similar fashion.
Definition 1.2.2. Let C be a coalgebra, (M, ρ) and (N, ϕ) be right C-comodules. The k-linear map $f: M \rightarrow N$ is a comodule homomorphism if the following diagram commutes:

Lemma 1.2.3. Let C be a coalgebra, $(M, \rho),(N, \phi)$ and (P, ψ) be right C-comodules and $f: M \rightarrow N, g: N \rightarrow P$ comodule homomorphisms. Then $g \circ f: M \rightarrow P$ is a comodule homomorphism.

Proof. For any $m \in M$ we have

$$
\begin{aligned}
\psi(g \circ f)(m) & =\psi(g(f(m))) \\
& =(g \otimes i d)(\phi(f(m)) \\
& =(g \otimes i d)(f \otimes i d)(\rho(m)) \\
& =(g \circ f \otimes i d)(\rho(m))
\end{aligned}
$$

Thus the result follows.
Let C be a coalgebra. Then, the category \mathbf{M}^{C} having all right C-comodules as objects and all comodule homomorphisms as morphisms is well defined. The morphisms of \mathbf{M}^{C} from M to N are usually denoted by $\operatorname{Com}_{-C}(M, N)$.

Similarly, ${ }^{C} \mathbf{M}$ denotes the category of all left C-comodules and comodule homomorphisms.

Proposition 1.2.4. Let C be a coalgebra. Then the categories ${ }^{C} \mathbf{M}$ and $\mathbf{M}^{C^{\text {cop }}}$ are isomorphic, where $C^{c o p}=\left(C, \Delta^{c o p}, \varepsilon\right)$ is the co-opposite coalgebra of C and $\Delta^{c o p}=$ $T \circ \Delta$, where $T: C \otimes C$ is the twist map given by $T(a \otimes b)=b \otimes a$.

Proof. [DNR, Proposition 2.1.10]
Let $M \in{ }^{C} \mathbf{M}$ with the structure map $\rho: M \rightarrow C \otimes M$, given by $\rho(m)=$ $\sum_{(m)} m_{(-1)} \otimes m_{(0)}$, with all $m_{(-1)} \in C$ and all $m_{(0)} \in M$. Then, M becomes a right $C^{c o p}$-comodule via the structure map $\rho^{\prime}: M \rightarrow M \otimes C^{c o p}$, given by $\rho^{\prime}(m)=$ $\sum_{(m)} m_{(0)} \otimes m_{(-1)}$.

$$
\begin{aligned}
(i d \otimes T \circ \Delta) \rho^{\prime}(m) & =(i d \otimes i d \circ \Delta) \sum_{(m)} m_{(0)} \otimes m_{(-1)} \\
& =\sum_{(m)} m_{(0)} \otimes(T \circ \Delta)\left(m_{(-1)}\right) \\
& =\sum_{(m)} m_{(0)} \otimes T\left(\Delta\left(m_{(-1)}\right)\right) \\
& =(i d \otimes T) \sum_{(m)} m_{(0)} \otimes \Delta\left(m_{(-1)}\right) \\
& =(i d \otimes T)(T \otimes i d(i d \otimes T)) \circ(i d \otimes T(T \otimes i d)) \sum_{(m)} m_{(0)} \otimes \Delta\left(m_{(-1)}\right) \\
& =(i d \otimes T)(T \otimes i d(i d \otimes T)) \sum_{(m)} \Delta\left(m_{(-1)}\right) \otimes m_{(0)} \\
& =(i d \otimes T)(T \otimes i d(i d \otimes T))(\Delta \otimes i d) \rho(m) \\
& =(i d \otimes T)(T \otimes i d(i d \otimes T))(i d \otimes \rho) \rho(m) \\
& =(i d \otimes T)(T \otimes i d(i d \otimes T))(i d \otimes \rho) \sum_{(m)} m_{(-1)} \otimes m_{(0)} \\
& =(i d \otimes T)(T \otimes i d(i d \otimes T)) \sum_{(m)} m_{(-1)} \otimes \rho\left(m_{(0)}\right) \\
& =(i d \otimes T)(T \otimes i d) \sum_{(m)} m_{(-1)} \otimes \rho^{\prime}\left(m_{(0)}\right) \\
& =\sum_{(m)} \rho^{\prime}\left(m_{(0)}\right) \otimes m_{(-1)}=\left(\rho^{\prime} \otimes i d\right) \rho^{\prime}(m) .
\end{aligned}
$$

Moreover, if M and N are two left C-comodules and $f \in \operatorname{Com}_{C_{-}}(M, N)$, then $f \in \operatorname{Com}_{-C^{c o p}}(M, N)$, since

$$
\begin{aligned}
\left(\phi^{\prime} \circ f\right)(m) & =((T \circ \phi) \circ f)(m) \\
& =(T \circ(\phi \circ f))(m) \\
& =(T \circ((i d \circ f) \circ \rho))(m) \\
& =T\left(\sum_{(m)} m_{(-1)} \otimes f\left(m_{(0)}\right)\right) \\
& =\sum_{(m)} f\left(m_{(0)}\right) \otimes m_{(-1)}=\left((f \otimes i d) \circ \rho^{\prime}\right)(m) .
\end{aligned}
$$

This defines a functor $F:{ }^{C} \mathbf{M} \rightarrow \mathbf{M}^{C^{c o p}}$.
Similarly, we can define a functor $G: \mathbf{M}^{C^{\text {cop }}} \rightarrow{ }^{C} \mathbf{M}$ by associating to a right $C^{c o p}$-comodule M with structure map $\mu: M \rightarrow M \otimes C^{c o p}, \mu(m)=\sum m_{(0)} \otimes m_{(1)}$, a structure map of left C-comodule defined by $\mu^{\prime}: M \rightarrow C \otimes M, \mu^{\prime}(m)=\sum_{(m)} m_{(1)} \otimes$ $m_{(0)}$. It is easy to see that $G \circ F$ is the identity functor, since for two left C-comodule (M, ρ) and (N, ϕ) and a comodule homomorphism $f: M \rightarrow N$ we have

$$
(G \circ F)(M, \rho)=G(F((M, \rho)))=G((M, T \circ \rho))=(M, T \circ T \circ \rho)=(M, \rho)
$$

and

$$
(G \circ F)(f)=G(F(f))=G(f)=f .
$$

A similar computation shows that $F \circ G$ is the identity functor in $\mathbf{M}^{C^{c o p}}$. Thus the functors F and G define an isomorphism of categories.

Remark 1.2.5. Proposition 1.2.4 shows that any result for right C-comodules has an analogous result for left C-comodules.

Examples 1.2.6. (i) A coalgebra C is a left and a right C-comodule with the structure map being in both cases the comultiplication of C;
(ii) Let C be a coalgebra, (M, ρ) be a right C-comodule and X a k-vector space. Then $X \otimes M$ becomes a right C-comodule with the structure map $i d \otimes \rho$: $X \otimes M \rightarrow X \otimes M \otimes C$, since, for any $x \otimes m \in X \otimes M$, we have

$$
\begin{aligned}
(i d \otimes i d \otimes \Delta)(i d \otimes \rho)(x \otimes m) & =(i d \otimes i d \otimes \Delta)(x \otimes \rho(m)) \\
& =x \otimes(i d \otimes \Delta) \rho(m) \\
& =x \otimes(\rho \otimes i d) \rho(m) \\
& =(i d \otimes \rho \otimes i d)(x \otimes \rho(m)) \\
& =(i d \otimes \rho \otimes i d)(i d \otimes \rho)(x \otimes m)
\end{aligned}
$$

and

$$
\begin{aligned}
(i d \otimes i d \otimes \varepsilon)(i d \otimes \rho)(x \otimes m) & =(i d \otimes i d \otimes \varepsilon)(x \otimes \rho(m)) \\
& =x \otimes(\mathrm{id} \otimes \varepsilon) \rho(m) \\
& =x \otimes m \otimes 1
\end{aligned}
$$

(iii) Let S be a non-empty set and $k S$ the group-like coalgebra of S. Let $\left(M_{s}\right)_{s \in S}$ be a family of k-vector spaces and $M=\bigoplus_{s \in S} M_{s}$. Then M is a right $k S$-comodule with the structure map $\rho: M \rightarrow M \otimes k S$ defined by $\rho\left(m_{s}\right)=m_{s} \otimes s$ extended linearly for any $s \in S$ and $m_{s} \in M_{s}$. In order to check this, we need only analyze for any element of the basis:

$$
\begin{aligned}
(i d \otimes \Delta) \rho\left(m_{s}\right) & =(i d \otimes \Delta) m_{s} \otimes s \\
& =m_{s} \otimes \Delta(s) \\
& =m_{s} \otimes s \otimes s \\
& =\rho\left(m_{s}\right) \otimes s \\
& =(\rho \otimes i d)\left(m_{s} \otimes s\right) \\
& =(\rho \otimes i d) \rho\left(m_{s}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
(i d \otimes \varepsilon) \rho\left(m_{s}\right) & =(i d \otimes \varepsilon) m_{s} \otimes s \\
& =m_{s} \otimes \varepsilon(s) \\
& =m_{s} \otimes 1 \\
& =m_{s}
\end{aligned}
$$

Examples 1.2.7. (i) Let C be a coalgebra, (M, ρ) a right C comodule and N a subcomodule of M. Then the inclusion map $\iota: N \rightarrow M, \iota(n)=n$ for any $n \in N$ is a comodule homomorphism. Let us check this. We know that $\left(N,\left.\rho\right|_{N}\right)$ is a right C-comodule. Then, for any $n \in N$, we have

$$
\begin{aligned}
\rho(\iota(n)) & =\rho(n) \\
& =\left.\rho\right|_{N}(n) \\
& =\left.(\iota \otimes i d) \rho\right|_{N}(n),
\end{aligned}
$$

where the last equality comes from the fact that $\rho(N) \subseteq N \otimes C$ and the corestriction of ι to N is the identity;
(ii) If C and D are coalgebras and $f: C \rightarrow D$ is a coalgebra homomorphism, then $\left(C,(i d \otimes f) \Delta_{C}\right)$ is a right D-comodule and $f: C \rightarrow D$ is a comodule homomorphism of D-comodules. First we must confirm that C is a right D comodule. Consider any element $c \in C$. Thus,

$$
\begin{align*}
\left(i d \otimes \Delta_{D}\right) \circ\left((i d \otimes f) \Delta_{C}\right)(c) & =\left(i d \otimes \Delta_{D} \circ f\right) \Delta_{C}(c) \\
& =\left(i d \otimes(f \otimes f) \Delta_{C}\right) \Delta_{C}(c) \tag{1}\\
& =(i d \otimes f \otimes f)\left(i d \otimes \Delta_{C}\right) \Delta_{C}(c) \\
& =(i d \otimes f \otimes f)\left(\Delta_{C} \otimes i d\right) \Delta_{C}(c) \tag{2}\\
& =\left((i d \otimes f) \Delta_{C} \otimes i d\right)(i d \otimes f) \Delta_{C}(c)
\end{align*}
$$

and

$$
\begin{align*}
\left(i d \otimes \varepsilon_{D}\right) \circ(i d \otimes f) \Delta_{C}(c) & =\left(i d \otimes \varepsilon_{D} \circ f\right) \Delta_{C}(c) \\
& =\left(i d \otimes \varepsilon_{C}\right) \Delta_{C}(c) \tag{3}\\
& =c, \tag{4}
\end{align*}
$$

where the steps (1) and (3) are due to f be a coalgebra homomorphism, (2) is because of the coassociativity of Δ_{C}, and (4) follows from the counitary property of ε_{C}. Hence $\left(C,(i d \otimes f) \Delta_{C}\right)$ is a right D-comodule.

Now, for any $c \in C$ we have

$$
\begin{align*}
\Delta_{D}(f(c)) & =(f \otimes f) \Delta_{C}(c) \tag{5}\\
& =(f \otimes i d)(i d \otimes f) \Delta_{C}
\end{align*}
$$

where (5) is due to f being a coalgebra homomorphism. This completes the proof.

Lemma 1.2.8. Let V and W be two k-vector spaces and $X \subseteq V, Y \subseteq W$ subspaces. Then $(V \otimes Y) \cap(X \otimes W)=X \otimes Y$.

Proof. [DNR, Lemma 1.4.5].
Corollary 1.2.9. Let C be a coalgebra. If $M \subseteq C$ is a subcomodule of C which is a left and right C-comodule with the structure map Δ, then M is a subcoalgebra of C.

Proof. If $c \in \Delta(M)$, then $c \in(C \otimes M) \cap(M \otimes C)$ and the result follows immediate from Lemma 1.2.8.

Lemma 1.2.10. Let V_{1}, V_{2}, W_{1} and W_{2} be k-vector spaces and $f: V_{1} \rightarrow V_{2}$ and $g: W_{1} \rightarrow W_{2}$ be linear maps. Then $\operatorname{ker}(f \otimes g)=\operatorname{ker}(f) \otimes W_{1}+V_{1} \otimes \operatorname{ker}(g)$.

Proof. [DNR, Lemma 1.4.8].
Proposition 1.2.11. Let (M, ρ) and (N, ϕ) be two right C-comodules and $f: M \rightarrow N$ a comodule homomorphism. Then $\operatorname{Im}(f)$ is a C-subcomodule of N and $\operatorname{Ker}(f)$ is a C-subcomodule of M.

Proof. [DNR, Proposition 2.1.16].
Since f is a comodule homomorphism we have $(f \otimes i d) \rho=\phi \circ f$. Then

$$
(f \otimes i d) \rho(\operatorname{Ker}(f))=(\phi \circ f)(\operatorname{Ker}(f))=0,
$$

which shows that $\rho(\operatorname{Ker}(f)) \subseteq \operatorname{Ker}(f \otimes i d)=\operatorname{Ker}(f) \otimes C$, by Lemma 1.2.10, and hence $\operatorname{Ker}(f)$ is a C-subcomodule of M.

Now

$$
\phi(\operatorname{Im}(f))=(f \otimes i d) \rho(M) \subseteq \operatorname{Im}(f) \otimes C
$$

which shows that $\operatorname{Im}(f)$ is a C-subcomodule of N.
Now we are going to show that the isomorphism theorem works for comodules. First we need to define the quotient of comodules.

For what follows, consider C a coalgebra, (M, ρ) a right C-comodule and N a subcomodule of M. Let M / N be the quotient space, and $\pi: M \rightarrow M / N$ the canonical projection, $\pi(m)=\bar{m}$, where \bar{m} is the coset of N.

Proposition 1.2.12. There exists a unique structure of right C-comodule on M / N for which $\pi: M \rightarrow M / N$ is a comodule homomorphism.

Proof. [DNR, Proposition 2.1.14] The composition $(\pi \otimes i d) \rho: M \rightarrow M / N \otimes C$ is a linear map such that $N \subseteq \operatorname{ker}((\pi \otimes i d) \rho)$, since

$$
(\pi \otimes i d) \rho(N) \subseteq(\pi \otimes i d)(N \otimes C) \subseteq \pi(N) \otimes C=0
$$

By the universal property of the quotient space, Lemma 0.2.1, it follows that there exists a unique linear map $\bar{\rho}: M / N \rightarrow M / N \otimes C$ for which the diagram

is commutative. This map is defined by $\bar{\rho}(\bar{m})=(\pi \otimes i d) \rho(m)$ for any $m \in M$. Then ($M / N, \bar{\rho}$) is a right C-comodule, since

$$
\begin{aligned}
(i d \otimes \Delta) \bar{\rho}(\bar{m}) & =(i d \otimes \Delta)(\pi \otimes i d)(\rho(m)) \\
& =(\pi \otimes \Delta)(\rho(m)) \\
& =(\pi \otimes i d \otimes i d)(i d \otimes \Delta)(\rho(m)) \\
& =(\pi \otimes i d \otimes i d)(\rho \otimes i d)(\rho(m)) \\
& =((\pi \otimes i d) \rho \otimes i d)(\rho(m)) \\
& =(\bar{\rho} \circ \pi \otimes i d)(\rho(m)) \\
& =(\bar{\rho} \otimes i d)(\pi \otimes i d)(\rho(m)) \\
& =(\bar{\rho} \otimes i d)(\bar{\rho})(\bar{m}),
\end{aligned}
$$

and

$$
\begin{aligned}
(i d \otimes \varepsilon) \bar{\rho}(\bar{m}) & =(i d \otimes \varepsilon)(\pi \otimes i d) \rho(m) \\
& =(\pi \otimes i d) * i d \otimes \varepsilon) \rho(m) \\
& =(\pi \otimes i d)(m \otimes 1) \\
& =\bar{m} \otimes 1 .
\end{aligned}
$$

If we would have a comodule structure on M / N given by $\omega: M / N \rightarrow M / N \otimes C$ such that π is a comodule homomorphism, then the diagram obtained by replacing $\bar{\rho}$ by ω in the above diagram should be also commutative. Then it would follow that $\omega=\bar{\rho}$ from the universal property of the quotient space.

Remark 1.2.13. The comodule M / N, with the structure given as in the above proposition is called the quotient comodule of M and N.

Theorem 1.2.14 (The fundamental isomorphism theorem for comodules). Let f : $M \rightarrow N$ be a comodule homomorphism, $\pi: M \rightarrow M / \operatorname{Ker}(f)$ the canonical projection, and $\iota: \operatorname{Im}(f) \rightarrow N$ the inclusion. Then, there exists a unique comodule isomorphism $\bar{f}: M / \operatorname{Ker}(f) \rightarrow \operatorname{Im}(f)$ for which the diagram

is commutative.

Proof. [DNR, Theorem 2.1.17].
The existence of a unique linear map $\bar{f}: M / \operatorname{Ker}(f) \rightarrow \operatorname{Im}(f)$ making the diagram commutative follows from the fundamental isomorphism theorem for k-vector spaces, Proposition 0.2.2. We know that \bar{f} is defined by $\bar{f}(\bar{m})=f(m)$ for any $\bar{m} \in M / \operatorname{Ker}(f)$. It remains to show that \bar{f} is a comodule homomorphism. Denoting by $\omega=(\pi \otimes i d) \rho: M / \operatorname{Ker}(f) \rightarrow M / \operatorname{Ker}(f) \otimes C$ and $\theta=\left.\phi\right|_{i m(f)}: \operatorname{Im}(f) \rightarrow \operatorname{Im}(f) \otimes C$ the maps giving the comodule structures, we have

$$
\begin{aligned}
(\bar{f} \otimes i d) \omega(\bar{m}) & =(\bar{f} \otimes i d) \omega(\pi(m)) \\
& =(\bar{f} \otimes i d)(\pi \otimes i d) \rho(m) \\
& =(f \otimes i d) \rho(m) \\
& =\phi(f(m)) \\
& =\theta(f(m)) \\
& =\theta(\bar{f}(\bar{m}))
\end{aligned}
$$

which shows that \bar{f} is a comodule homomorphism.

1.3 Bicomodules

Definition 1.3.1. Let C and D be two coalgebras. A k-vector space M is called a D-C-bicomodule if M has a left D-comodule structure $\mu: M \rightarrow D \otimes M$ and a right C-comodule structure $\rho: M \rightarrow M \otimes C$ such that $(\mu \otimes i d) \rho=(i d \otimes \rho) \mu$.

We call $N \subseteq M$ a subbicomodule of M if N is a subcomodule of (M, μ) and a subcomodule of (M, ρ).

If M and N are two D - C-bicomodules, then a bicomodule homomorphism from M to N is a linear map $f: M \rightarrow N$ which is a comodule homomorphism of left D-comodules and right C-comodules.

In this way we can define a category of D - C-bicomodules that we will denote by ${ }^{D} \mathbf{M}^{C}$.

Examples 1.3.2. (i) Any coalgebra C is a C - C-bicomodule with the left and right comodule structures given by the comultiplication.
(ii) If C and D are coalgebras and $f: C \rightarrow D$ a coalgebra homomorphism, then $\left(C,(f \otimes i d) \Delta_{C},(i d \otimes f) \Delta_{C}\right)$ is a D - D-bicomodule and $f: C \rightarrow D$ is a bicomodule homomorphism of D - D-bicomodules. Write $\mu=(f \otimes i d) \Delta_{C}$ and $\rho=(i d \otimes f) \Delta_{C}$. In Example 1.2.7 (ii) we have that (C, ρ) is a right D-comodule and $f: C \rightarrow D$
is a comodule homomorphism of right D-comodules. One can show that (C, μ) is a left D-comodule and $f: C \rightarrow D$ is a comodule homomorphism of left D comodules in a very similar way done for its right version and we will not do it here. We must confirm that $(\mu \otimes i d) \rho=(i d \otimes \rho) \mu$. Let c be any element of C. Then

$$
\begin{align*}
(\mu \otimes i d) \rho(c) & =\left(\left((f \otimes i d) \Delta_{C}\right) \otimes i d\right)\left((i d \otimes f) \Delta_{C}\right)(c) \\
& =\left(\left((f \otimes i d) \Delta_{C}\right) \otimes f\right) \Delta_{C}(c) \\
& =(f \otimes i d \otimes f)\left(\Delta_{C} \otimes i d\right) \Delta_{C}(c) \\
& =(f \otimes i d \otimes f)\left(i d \otimes \Delta_{C}\right) \Delta_{C}(c) \tag{1}\\
& =\left(i d \otimes\left((i d \otimes f) \Delta_{C}\right)\right)\left((f \otimes i d) \Delta_{C}\right)(c) \\
& =(i d \otimes \rho) \mu(c),
\end{align*}
$$

where (1) is due to the coassociativity of Δ_{C}.
Lemma 1.3.3. Let C be a coalgebra and for each pair $g, h \in G(C)$ let $P_{g, h}^{\prime}(C)$ be a subspace of $P_{g, h}(C)$ such that

$$
P_{g, h}(C)=k(h-g) \oplus P_{g, h}^{\prime}(C) .
$$

Define the linear maps

$$
\begin{aligned}
\mu^{\prime}: P_{g, h}^{\prime}(C) & \rightarrow k G(C) \otimes P_{g, h}^{\prime}(C) \\
c & \mapsto h \otimes c
\end{aligned}
$$

and

$$
\begin{aligned}
\rho^{\prime}: P_{g, h}^{\prime}(C) & \rightarrow P_{g, h}^{\prime}(C) \otimes k G(C) . \\
c & \mapsto c \otimes g
\end{aligned}
$$

Then, the vector space $V=k G(C) \oplus\left(\bigoplus_{g, h \in G(C)} P_{g, h}^{\prime}(C)\right)$ is a $\quad k G(C)-k G(C)$ bicomodule with the structure maps given by

$$
\begin{aligned}
\mu: V & \rightarrow k G(C) \otimes V \\
v & \mapsto \sum_{g, h \in G(C)} \mu^{\prime}\left(c_{g, h}\right)+\Delta(\omega)
\end{aligned}
$$

and

$$
\begin{aligned}
\rho: V & \rightarrow V \otimes k G(C) \\
v & \mapsto \sum_{g, h \in G(C)} \rho^{\prime}\left(c_{g, h}\right)+\Delta(\omega)
\end{aligned}
$$

where $v=\sum_{g, h \in G(C)} c_{g, h}+\omega$, with $c_{g, h} \in P_{g, h}^{\prime}(C)$, for each $g, h \in G(C)$, and $\omega \in$ $k G(C)$.

Proof. By Lemma 1.1.8, V is well defined. Since the maps μ and ρ are variations of the structure map of the right $k S$-comodule M from Example 1.2.6 (iii), we just need to show that $(i d \otimes \rho) \mu=(\mu \otimes i d) \rho$. Let $v=\sum_{g, h \in G(C)} c_{g, h}+\omega$ and $\omega=\sum_{e \in G(C)} \lambda_{e} e$.

$$
\begin{aligned}
&(i d \otimes \rho) \mu(v)=(i d \otimes \rho) \mu\left(\sum_{g, h \in G(C)} c_{g, h}+\omega\right) \\
&=(i d \otimes \rho)\left(\sum_{g, h \in G(C)} \mu^{\prime}\left(c_{g, h}\right)+\Delta(\omega)\right) \\
&=(i d \otimes \rho)\left(\sum_{g, h \in G(C)} h \otimes c_{g, h}+\sum_{e \in G(C)} \lambda_{e} e \otimes e\right) \\
&=\sum_{g, h \in G(C)} h \otimes \rho^{\prime}\left(c_{g, h}\right)+\sum_{e \in G(C)} \lambda_{e} e \otimes \Delta(e) \\
&=\sum_{g, h \in G(C)} h \otimes c_{g, h} \otimes g+\sum_{e \in G(C)} \lambda_{e} e \otimes e \otimes e \\
&=\sum_{g, h \in G(C)} \mu^{\prime}\left(c_{g, h}\right) \otimes g+\sum_{e \in G(C)} \lambda_{e} \Delta(e) \otimes e \\
&=(\mu \otimes i d)\left(\sum_{g, h \in G(C)} c_{g, h} \otimes g+\sum_{e \in G(C)} \lambda_{e} e \otimes e\right) \\
&=(\mu \otimes i d)\left(\sum_{g, h \in G(C)} \rho^{\prime}\left(c_{g, h}\right)+\Delta(\omega)\right) \\
&=(\mu \otimes i d) \rho(v) .
\end{aligned}
$$

Thus, (V, μ, ρ) is a $k G(C)-k G(C)$-bicomodule.
Lemma 1.3.4. Let C be a coalgebra, (M, μ, ρ) a C - C-bicomodule and $N \subseteq M a$ subbicomodule of M. Then there exists a unique bicomodule structure on the quotient M / N for which the canonical projection $\pi: M \rightarrow M / N$ is a bicomodule homomorphism.

Proof. By Proposition 1.2.12, we already have unique left and right comodule structure maps on M / N for which π is a left and right comodule homomorphism. It remains
to check that M / N is a C - C-bicomodule. Let $\bar{\mu}$ and $\bar{\rho}$ be the structure maps of M / N. Then for any $m \in M$ we have $\bar{\mu} \circ \pi(m)=(i d \otimes \pi) \mu(m)$ and $\bar{\rho} \circ \pi(m)=(\pi \otimes i d) \rho(m)$. Thus, for $\bar{m} \in M / N$ and any representative $m \in M$ we have

$$
\begin{align*}
(i d \otimes \bar{\rho}) \bar{\mu}(\bar{m}) & =(i d \otimes \bar{\rho}) \bar{\mu}(\pi(m)) \\
& =(i d \otimes \bar{\rho})(i d \otimes \pi) \mu(m) \tag{1}\\
& =(i d \otimes \bar{\rho} \circ \pi) \mu(m) \\
& =(i d \otimes(\pi \otimes i d) \rho) \mu(m) \tag{2}\\
& =(i d \otimes \pi \otimes i d)(i d \otimes \rho) \mu(m) \\
& =(i d \otimes \pi \otimes i d)(\mu \otimes i d) \rho(m) \tag{3}\\
& =(i d \otimes \pi) \mu \otimes i d) \rho(m) \\
& =(\bar{\mu} \circ \pi \otimes i d) \rho(m) \tag{4}\\
& =(\bar{\mu} \otimes i d)(\pi \otimes i d) \rho(m) \\
& =(\bar{\mu} \otimes i d) \bar{\rho} \circ \pi(m) \tag{5}\\
& =(\bar{\mu} \otimes i d) \bar{\rho}(\bar{m}),
\end{align*}
$$

where steps (1) and (4) are due to the definition of $\bar{\mu}$, steps (2) and (5) are due to the definition of $\bar{\rho}$, and step (3) is because (M, μ, ρ) is a C - C-bicomodule. Hence $(M / N, \bar{\mu}, \bar{\rho})$ is a C - C-bicomodule.

Definition 1.3.5. Let C be a coalgebra, M a right C-comodule with comodule structure $\rho_{M}: M \rightarrow M \otimes C$, and N a left C-comodule with comodule structure $\rho_{N}: N \rightarrow C \otimes N$. We denote by $M \square_{C} N$ the kernel of the morphism

$$
\rho_{M} \otimes i d-i d \otimes \rho_{N}: M \otimes N \rightarrow M \otimes C \otimes N .
$$

Then $M \square_{C} N$ is a k-subspace of $M \otimes N$ which is called the cotensor product of the comodules M and N.

Note that, if $\left(M, \rho_{l}, \rho_{r}\right)$ is a D - C-bicomodule and $\left(N, \mu_{l}, \mu_{r}\right)$ is a C - E-bicomodule, then $M \square_{C} N$ becomes a D - E-bicomodule with the structure maps $\rho_{l} \otimes i d: M \square_{C} N \rightarrow$ $D \otimes M \square_{C} N$ and $i d \otimes \mu_{r}: M \square_{C} N \rightarrow M \square_{C} N \otimes E$.

We will just check that $\left(\rho_{l} \otimes i d \otimes i d\right)\left(i d \otimes \mu_{r}\right)=\left(i d \otimes i d \otimes \mu_{r}\right)\left(\rho_{l} \otimes i d\right)$, since from Example 1.2.6 (ii) we have that $\left(M \square_{C} N, i d \otimes \mu_{r}\right)$ is a right E-comodule and similarly $\left(M \square_{C} N, \rho_{l} \otimes \mathrm{id}\right)$ is a left D-comodule. Consider any $m \otimes n \in M \square_{C} N$. Then

$$
\begin{aligned}
\left(\rho_{l} \otimes i d \otimes i d\right)\left(i d \otimes \mu_{r}\right)(m \otimes n) & =\left(\rho_{l} \otimes \mu_{r}\right)(m \otimes n) \\
& =\left(i d \otimes i d \otimes \mu_{r}\right)\left(\rho_{l} \otimes i d\right)(m \otimes n) .
\end{aligned}
$$

Thus $M \square_{C} N \in{ }^{D} \mathbf{M}^{E}$ whenever $M \in{ }^{D} \mathbf{M}^{C}$ and $N \in{ }^{C} \mathbf{M}^{E}$.
What follows are extracts from [DNR, Chapter 2.3] that show some properties of the cotensor product.

Proposition 1.3.6. (i) If $M \in \mathbf{M}^{C}$ and $N \in{ }^{C} \mathbf{M}$, then $M \square_{C} C \cong M$ as right C-comodules and $C \square_{C} N \cong N$ as left C-comodules;
(ii) If $M \in \mathbf{M}^{C}$ and $N \in{ }^{C} \mathbf{M}$, then $M \square_{C} N \cong N \square_{C \text { cop }} M$ as linear spaces;
(iii) If C and D are two coalgebras and $M \in{ }^{C} \mathbf{M}^{D}, L \in \mathbf{M}^{C}$ and $N \in{ }^{D} \mathbf{M}$, then we have a natural isomorphism $\left(L \square_{C} M\right) \square_{D} N \cong L \square_{C}\left(M \square_{D} N\right)$.

Proof. [DNR, Proposition 2.3.6].
Let C and D be coalgebras and $\phi: C \rightarrow D$ a coalgebra homomorphism. If $(M, \rho) \in \mathbf{M}^{C}$, then the map $(i d \otimes \phi) \rho: M \rightarrow M \otimes D$ gives M a structure of right D comodule (see Example 1.2.7 (ii) and treat Δ_{C} as a right C-comodule structure map). We denote by M_{ϕ} the space M regarded with this structure of right D-comodule. In this way we construct a left exact functor (since the tensor functor of vector spaces is exact and the cotensor is a kernel)

$$
\begin{aligned}
(-)_{\phi}: \mathrm{M}^{C} & \rightarrow \mathrm{M}^{D} \\
M & \mapsto M_{\phi}
\end{aligned}
$$

If $N \in \mathbf{M}^{D}$, we can define the right C-comodule $N^{\phi}=N \square_{D} C$, and in this way we have a left exact functor

$$
\begin{aligned}
(-)^{\phi}: \mathrm{M}^{D} & \rightarrow \mathrm{M}^{C} \\
N & \mapsto N^{\phi}
\end{aligned}
$$

Proposition 1.3.7. Let $\phi: C \rightarrow D$ be a coalgebra homomorphism. Then, the functor $(-)_{\phi}: \mathbf{M}^{C} \rightarrow \mathbf{M}^{D}$ is a left adjoint to the functor $(-)^{\phi}: \mathbf{M}^{D} \rightarrow \mathbf{M}^{C}$.

Proof. See [DNR, Proposition 2.3.8] or [Woo, Proposition 1.10].
With the bicomodule and the cotensor product concepts, we can construct a coalgebra in a similar way that is done for the tensor algebra (see [CHZ, 1.4] or [Woo, 4.1]).

Definition 1.3.8. Let $\left(C, \Delta_{C}, \varepsilon_{C}\right)$ be a coalgebra and (M, ρ_{l}, ρ_{r}) a C - C-bicomodule. Write $\rho_{l}(m)=\sum_{(m)} m_{(-1)} \otimes m_{(0)}$ and $\rho_{r}(m)=\sum m_{(0)} \otimes m_{(1)}$ for every $m \in M$, where each $m_{(0)}$ belongs to M and each $m_{(-1)}$ and $m_{(1)}$ belongs to C. Define $M^{\square_{0}}=C$, $M^{\square_{1}}=M$ and $M^{\square_{n}}=\left(M^{\square_{n-1}}\right) \square_{C} M$, for any $n \geq 2$. If $m^{1} \otimes \cdots \otimes m^{n} \in M^{\square_{n}}$, we write it as $m^{1} \square \cdots \square m^{n}$.

We define the cotensor coalgebra $\operatorname{Cot}_{C}(M)$ as the vector space

$$
\operatorname{Cot}_{C}(M)=\bigoplus_{i=0}^{\infty} M^{\square_{i}}
$$

with counit ε given by

$$
\varepsilon(\omega)= \begin{cases}\varepsilon_{C}(\omega), & \omega \in C, \\ 0, & \text { otherwise }\end{cases}
$$

and comultiplication Δ given as follows:

- for any $c \in C$, we have

$$
\Delta(c)=\Delta_{C}(c) ;
$$

- and for any $m^{1} \square \cdots \square m^{n} \in M^{\square_{n}}$, with $(n \geq 1)$, we have

$$
\begin{aligned}
\Delta\left(m^{1} \square \cdots \square m^{n}\right)= & \sum_{\left(m^{1}\right)}\left(\left(m^{1}\right)_{(-1)}\right) \otimes\left(\left(m^{1}\right)_{(0)} \square m^{2} \square \cdots \square m^{n}\right) \\
& +\sum_{i=1}^{n-1}\left(m^{1} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1} \square \cdots \square m^{n}\right) \\
& +\sum_{\left(m^{n}\right)}\left(m^{1} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes\left(\left(m^{n}\right)_{(1)}\right) .
\end{aligned}
$$

where, if $n=1$, we have

$$
\Delta(m)=\sum_{(m)} m_{(-1)} \otimes m_{(0)}+\sum_{(m)} m_{(0)} \otimes m_{(1)}=\rho_{l}(m)+\rho_{r}(m)
$$

In what follows, we will do the standard verification of a coalgebra for $\operatorname{Cot}_{C}(M)$. Unfortunately, the computations are quite big. However, the reader could feel free to skip this calculation in regard of [CHZ, 1.4] and [Woo, 4.1] assert that $\operatorname{Cot}_{C}(M)$ is indeed a coalgebra. As usual, we just need to check the coassociativity and the counitary property for the elements of a basis. For $c \in C, \Delta(c)=\Delta_{C}(c)$ and
$\varepsilon(c)=\varepsilon_{C}(c)$, so it is done. For $m^{1} \square \cdots m^{n} \in M^{\square_{n}}$, with $n \geq 1$, we have

$$
\begin{aligned}
(i d \otimes \Delta) \Delta\left(m^{1} \square \cdots \square m^{n}\right)= & (i d \otimes \Delta) \sum_{\left(m^{1}\right)}\left(m^{1}\right)_{(-1)} \otimes\left(\left(m^{1}\right)_{(0)} \square m^{2} \square \cdots \square m^{n}\right) \\
& +(i d \otimes \Delta) \sum_{i=1}^{n-1}\left(m^{1} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1} \square \cdots \square m^{n}\right) \\
& +(i d \otimes \Delta) \sum_{\left(m^{n}\right)}\left(m^{1} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes\left(m^{n}\right)_{(1)}
\end{aligned}
$$

$$
=\sum_{\left(m^{1}\right)}\left(m^{1}\right)_{(-1)} \otimes \Delta\left(\left(m^{1}\right)_{(0)} \square m^{2} \square \cdots \square m^{n}\right)
$$

$$
+\sum_{i=1}^{n-1}\left(m^{1} \square \cdots \square m^{i}\right) \otimes \Delta\left(m^{i+1} \square \cdots \square m^{n}\right)
$$

$$
+\sum_{\left(m^{n}\right)}\left(m^{1} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes \Delta\left(\left(m^{n}\right)_{(1)}\right.
$$

$$
=\sum_{\left(m^{1}\right)_{\left(\left(m^{1}\right)_{(0)}\right)}}\left(m^{1}\right)_{(-1)} \otimes\left(\left(m^{1}\right)_{(0)}\right)_{(-1)} \otimes\left(\left(\left(m^{1}\right)_{(0)}\right)_{(0)} \square m^{2} \square \cdots \square m^{n}\right)
$$

$$
+\sum_{\left(m^{1}\right)} \sum_{i=1}^{n}\left(m^{1}\right)_{(-1)} \otimes\left(\left(m^{1}\right)_{(0)} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1} \square \cdots \square m^{n}\right)
$$

$$
+\sum_{\left(m^{1}\right)} \sum_{\left(m^{n}\right)}\left(m^{1}\right)_{(-1)} \otimes\left(\left(m^{1}\right)_{(0)} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes\left(m^{n}\right)_{(1)}
$$

$$
+\sum_{i=1}^{n-1} \sum_{\left(m^{i+1}\right)}\left(m^{1} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1}\right)_{(-1)} \otimes\left(\left(m^{i+1}\right)_{(0)} \square \cdots \square m^{n}\right)
$$

$$
+\sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1}\left(m^{1} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1} \square \cdots \square m^{j}\right) \otimes\left(m^{j+1} \square \cdots \square m^{n}\right)
$$

$$
+\sum_{i=1}^{n-1} \sum_{\left(m^{n}\right)}\left(m^{1} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes\left(m^{n}\right)_{(1)}
$$

$$
+\sum_{\left(m^{n}\right)}\left(m^{1} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes \Delta_{C}\left(\left(m^{n}\right)_{(1)}\right)
$$

$$
\begin{align*}
= & \sum_{\left(m^{1}\right)} \Delta_{C}\left(\left(m^{1}\right)_{(-1)}\right) \otimes\left(\left(m^{1}\right)_{(0)} \square m^{2} \square \cdots \square m^{n}\right) \tag{1}\\
& +\sum_{\left(m^{1}\right)} \sum_{i=1}^{n}\left(m^{1}\right)_{(-1)} \otimes\left(\left(m^{1}\right)_{(0)} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1} \square \cdots \square m^{n}\right) \\
& +\sum_{\left(m^{1}\right)} \sum_{\left(m^{n}\right)}\left(m^{1}\right)_{(-1)} \otimes\left(\left(m^{1}\right)_{(0)} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes\left(m^{n}\right)_{(1)} \\
& +\sum_{i=1}^{n-1} \sum_{\left(m^{i+1}\right)}\left(m^{1} \square \cdots \square m^{i}\right) \otimes\left(\left(m^{i+1}\right)_{(-1)}\right) \otimes\left(\left(m^{i+1}\right)_{(0)} \square \cdots \square m^{n}\right) \\
& +\sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1}\left(m^{1} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1} \square \cdots \square m^{j}\right) \otimes\left(m^{j+1} \square \cdots \square m^{n}\right) \\
& +\sum_{i=1}^{n-1} \sum_{\left(m^{n}\right)}\left(m^{1} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes\left(m^{n}\right)_{(1)} \\
& +\sum_{\left(m^{n}\right)} \sum_{\left(\left(m^{n}\right)(0)\right)}\left(m^{1} \square \cdots \square m^{n-1} \square\left(\left(m^{n}\right)_{(0)}\right)_{(0)}\right) \otimes\left(\left(m^{n}\right)_{(0)}\right)_{(1)} \otimes\left(m^{n}\right)_{(1)}, \tag{2}
\end{align*}
$$

where on step (1) we use the identity $\left(i d \otimes \rho_{l}\right) \rho_{l}=\left(\Delta_{C} \otimes i d\right) \rho_{l}$ and on step (2) we use the identity $\left(i d \otimes \rho_{r}\right) \rho_{r}=\left(\rho_{r} \otimes i d\right) \rho_{r}$,

$$
\begin{aligned}
= & \sum_{\left(m^{1}\right)} \Delta_{C}\left(\left(m^{1}\right)_{(-1)}\right) \otimes\left(\left(m^{1}\right)_{(0)} \square m^{2} \square \cdots \square m^{n}\right) \\
& +\sum_{\left(m^{1}\right)} \sum_{i=1}^{n}\left(m^{1}\right)_{(-1)} \otimes\left(\left(m^{1}\right)_{(0)} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1} \square \cdots \square m^{n}\right) \\
& +\sum_{i=2}^{n-1} \sum_{j=1}^{i-1}\left(m^{1} \square \cdots \square m^{j}\right) \otimes\left(m^{j+1} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1} \square \cdots \square m^{n}\right) \\
& +\sum_{i=1}^{n-1} \sum_{\left(m^{i+1}\right)}\left(m^{1} \square \cdots \square m^{i}\right) \otimes\left(\left(m^{i+1}\right)_{(-1)}\right) \otimes\left(\left(m^{i+1}\right)_{(0)} \square \cdots \square m^{n}\right) \\
& +\sum_{\left(m^{n}\right)} \sum_{\left(m^{1}\right)}\left(m^{1}\right)_{(-1)} \otimes\left(\left(m^{1}\right)_{(0)} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes\left(m^{n}\right)_{(1)} \\
& +\sum_{\left(m^{n}\right)} \sum_{i=1}^{n-1}\left(m^{1} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes\left(m^{n}\right)_{(1)} \\
& +\sum_{\left(m^{n}\right)}\left(m^{1} \square \cdots \square m^{n-1} \square\left(\left(m^{n}\right)_{(0)}\right)_{(0)}\right) \otimes\left(\left(m^{n}\right)_{(0)}\right)_{(1)} \otimes\left(m^{n}\right)_{(1)}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\left(m^{1}\right)} \Delta\left(\left(m^{1}\right)_{(-1)}\right) \otimes\left(\left(m^{1}\right)_{(0)} \square m^{2} \square \cdots \square m^{n}\right) \\
& \\
& \quad+\sum_{i=1}^{n-1} \Delta\left(m^{1} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1} \square \cdots \square m^{n}\right) \\
& \\
& \quad+\sum_{\left(m^{n}\right)} \Delta\left(m^{1} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes\left(m^{n}\right)_{(1)} \\
& =(\Delta \otimes i d) \sum_{\left(m^{1}\right)}\left(m^{1}\right)_{(-1)} \otimes\left(\left(m^{1}\right)_{(0)} \square m^{2} \square \cdots \square m^{n}\right) \\
& \\
& +(\Delta \otimes i d) \sum_{i=1}^{n-1}\left(m^{1} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1} \square \cdots \square m^{n}\right) \\
& \\
& +(\Delta \otimes i d) \sum_{\left(m^{n}\right)}\left(m^{1} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes\left(m^{n}\right)_{(1)} \\
& =(\Delta \otimes i d) \Delta\left(m^{1} \square \cdots \square m^{n}\right) .
\end{aligned}
$$

Therefore, the coassociativity is satisfied. Now we will check one side of the counitary property.

$$
\begin{aligned}
(\varepsilon \otimes i d) \Delta\left(m^{1} \square \cdots \square m^{n}\right)= & (\varepsilon \otimes i d) \sum_{\left(m^{1}\right)}\left(m^{1}\right)_{(-1)} \otimes\left(\left(m^{1}\right)_{(0)} \square m^{2} \square \cdots \square m^{n}\right) \\
& +(\varepsilon \otimes i d) \sum_{i=1}^{n-1}\left(m^{1} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1} \square \cdots \square m^{n}\right) \\
& +(\varepsilon \otimes i d) \sum_{\left(m^{n}\right)}\left(m^{1} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes\left(m^{n}\right)_{(1)} \\
= & \sum_{\left(m^{1}\right)} \varepsilon\left(\left(m^{1}\right)_{(-1)}\right) \otimes\left(\left(m^{1}\right)_{(0)} \square m^{2} \square \cdots \square m^{n}\right) \\
& +\sum_{i=1}^{n-1} \varepsilon\left(m^{1} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1} \square \cdots \square m^{n}\right) \\
& +\sum_{\left(m^{n}\right)} \varepsilon\left(m^{1} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes\left(m^{n}\right)_{(1)} \\
= & \left(m^{1}\right) \square m^{2} \square \cdots \square m^{n},
\end{aligned}
$$

where the last step is because of the identity $(\varepsilon \otimes i d) \rho_{l}\left(m^{1}\right)=m^{1}$. The other way round goes in a similar fashion.

Hence, $\left(\operatorname{Cot}_{C}(M), \Delta, \varepsilon\right)$ is indeed a coalgebra.

Lemma 1.3.9 (The universal property of the cotensor coalgebra). Let C and D be coalgebras and M a C-C-bicomodule. Given a coalgebra map $f_{0}: D \rightarrow C$, and a C-C-bicomodule map $f_{1}: D \rightarrow M$ with the property that f_{1} vanishes on the coradical D_{0} of D, where the C-C-bicomodule structure D is given via f_{0}. Then there exists a unique coalgebra map

$$
F: D \rightarrow \operatorname{Cot}_{C}(M)
$$

with $\pi_{i} \circ F=f_{i}$ for $i \in\{0,1\}$, where each $\pi_{i}: \operatorname{Cot}_{C}(M) \rightarrow M^{\square_{i}}$ is the canonical projection.

Proof. [CHZ, Lemma 3.2].

1.4 Coideals

Definition 1.4.1. [DNR, Definition 1.4.3 (ii)] Let C be a coalgebra and $I \subset C$ a subspace of C. We say I is a coideal of C if $\Delta(I) \subseteq I \otimes C+C \otimes I$ and $\varepsilon(I)=0$.

Definition 1.4.2. Let C be a coalgebra.
(i) The right C-comodule M is simple if there is no non-zero proper subcomodule of M;
(ii) C is simple if there is no non-zero proper subcoalgebra of C.

Proposition 1.4.3. Let C and D be coalgebras and $f: C \rightarrow D$ a coalgebra homomorphism. Then $\operatorname{im}(f)$ is a subcoalgebra of D and $\operatorname{ker}(f)$ is a coideal of C.

Proof. [DNR, Proposition 1.4.9].
Since C is a subcoalgebra of C, then $f(C)$ is a subcoalgebra of D by Lemma 1.1.3. Note that $\Delta_{D}\left(f(\operatorname{ker}(f))=0\right.$ implies $(f \otimes f) \Delta_{C}(\operatorname{ker}(f))=0$. Thus

$$
\Delta_{C}(\operatorname{ker}(f)) \subseteq \operatorname{ker}(f \otimes f)=\operatorname{ker}(f) \otimes C+C \otimes \operatorname{ker}(f)
$$

by Lemma 1.2.10. Since f is a coalgebra homomorphism, we have

$$
\varepsilon_{C}(\operatorname{ker}(f))=\varepsilon_{D}(f(\operatorname{ker}(f)))=0
$$

Hence $\operatorname{ker}(f)$ is a coideal of C.

Theorem 1.4.4 (The quotient coalgebra). Let C be a coalgebra, I a coideal of C and $\pi: C \rightarrow C / I$ the canonical projection. Then there exists a unique coalgebra structure on C / I such that π is a coalgebra homomorphism. Moreover, if D is a coalgebra and $f: C \rightarrow D$ is a coalgebra homomorphism with $I \subseteq \operatorname{ker}(f)$, then there exists a unique coalgebra homomorphism $\bar{f}: C / I \rightarrow D$ for which $\bar{f} \circ \pi=f$.

Proof. [DNR, Theorem 1.4.10].
Corollary 1.4.5 (The fundamental isomorphism theorem for coalgebras). Let C and D be coalgebras and $f: C \rightarrow D$ be a coalgebra homomorphism. Then there exists a canonical isomorphism of coalgebras between $C / \operatorname{ker}(f)$ and $\operatorname{im}(f)$.

Proof. We have the following diagram

where f^{\prime} is the corestriction of f to its image, π is the canonical projection and \bar{f} is the unique coalgebra homomorphism for which π is a coalgebra homomorphism and the diagram commutes, by Theorem 1.4.4. We will show that \bar{f} is a bijection.

Surjectivity is immediate since any element in $\operatorname{im}(f)$ is of the form $f(c)$ for some $c \in C$ and surjectivity of π give us $\bar{f} \circ \pi(c)=f^{\prime}(c)=f(c)$.

Consider now two elements $c, d \in C$. If $f(c)=f(d)$, then $f(c-d)=0$ and, hence, c and d belong to the same coset. Thus \bar{f} is an isomorphism of coalgebras.

The next two theorems show a property of coalgebras which is not shared with algebras that is any finitely generated coalgebra is finite dimensional.

Theorem 1.4.6. [The Fundamental Theorem of comodules] Let V be a right C comodule. Any element $v \in V$ belongs to a finite dimensional subcomodule of V.

Proof. [DNR, Theorem 2.1.7].
Let $\left\{c_{i}\right\}_{i \in I}$ be a basis for C. Denote by $\rho: V \rightarrow V \otimes C$ the structure map of V and write

$$
\rho(v)=\sum_{i \in I} v_{i} \otimes c_{i},
$$

where almost all of the v_{i} 's are zero. Then the subspace W generated by the v_{i} 's is finite dimensional. For each $i \in I$, write

$$
\Delta\left(c_{i}\right)=\sum_{j, l \in I} \lambda_{i j l} c_{j} \otimes c_{l} .
$$

Thus, the commutative diagram

gives

$$
\begin{aligned}
\sum_{i \in I} \rho\left(v_{i}\right) \otimes c_{i} & =(\rho \otimes i d) \rho(v) \\
& =(i d \otimes \Delta) \rho(v) \\
& =\sum_{i \in I} v_{i} \otimes \sum_{j, l \in I} \lambda_{i j l} c_{j} \otimes c_{l} \\
& =\sum_{i, j, l \in I} v_{i} \otimes \lambda_{i j l} c_{j} \otimes c_{l} .
\end{aligned}
$$

Since the c_{i} 's are linearly independent, we must have

$$
\sum_{i, j \in I}\left(\rho\left(v_{l}\right)-v_{i} \otimes \lambda_{i j l} c_{j}\right) \otimes c_{l}=0,
$$

for each $l \in I$. Consequently, $\rho\left(v_{l}\right)=\sum_{i, j \in I} v_{i} \otimes \lambda_{i j l} c_{j} \subseteq W \otimes C$ and so W is a finite dimensional subcomodule of V. Moreover, $v=(i d \otimes \varepsilon) \rho(v) \in W$ and the theorem is proved.

Theorem 1.4.7 (The Fundamental Theorem of coalgebras). Let C be a coalgebra. Given any finite subset $\left\{c_{i}\right\} \subset C$ there exists a finite dimensional subcoalgebra D of C such that $c_{i} \in D, \forall i$.

Proof. [Mon, Theorem 5.1.1.2].
Since C is a C - C-bicomodule, by Theorem 1.4.6 the given $\left\{c_{i}\right\}$ are contained in a finite dimensional subspace V with $\Delta(V) \subseteq V \otimes C$. Let $\left\{v_{j}\right\}$ be a basis of V with $\Delta\left(v_{j}\right)=\sum_{i \in I} v_{i} \otimes c_{i j}$, for I a finite index set. Then the coassociativity of the
comultiplication gives

$$
\begin{aligned}
\sum_{i \in I} v_{i} \otimes \Delta\left(c_{i j}\right) & =(i d \otimes \Delta) \Delta\left(v_{j}\right) \\
& =(\Delta \otimes i d) \Delta\left(v_{j}\right) \\
& =\sum_{i \in I} \Delta\left(v_{i}\right) \otimes c_{i j} \\
& =\sum_{i \in I}\left(\sum_{l \in I} v_{l} \otimes c_{l i}\right) \otimes c_{i j} \\
& =\sum_{i, l \in I} v_{l} \otimes c_{l i} \otimes c_{i j} .
\end{aligned}
$$

Since the v_{i} 's are linearly independent, we must have

$$
\sum_{t, \in I} v_{i} \otimes\left(\Delta\left(c_{i j}\right)-c_{i t} \otimes c_{t j}\right)=0
$$

Consequently, for each $i, j \in I$ we have $\Delta\left(c_{i j}\right)=\sum_{t \in I} c_{i t} \otimes c_{t j}$. Thus the span D of $\left\{v_{j}\right\}$ and $\left\{c_{i j}\right\}$ is finite dimensional and satisfies $\Delta(D) \subseteq D \otimes D$. Since $V \subseteq D$ by construction, the theorem is proved.

Corollary 1.4.8. Let C be a coalgebra. Then
(i) every simple subcoalgebra of C is finite dimensional;
(ii) every simple C-comodule is finite dimensional.

Proof. Immediately from Theorem 1.4.6 and Theorem 1.4.7.

Chapter 2

On the structure of coalgebras: part 2

2.1 The coradical filtration

The theorems 2.1.2 and 2.1.7 and the Lemma 2.1.5 of this Section, and Theorem 2.2.3 of the next Section, will not be proved, since the proof involves explicitly the duality between algebras and coalgebras that we have decided not treat it here (see [DNR, Chapter 1.3] for more details).

Definition 2.1.1. Let C be a coalgebra.
(i) C is cosemisimple if it is a direct sum of simple coalgebras;
(ii) The coradical C_{0} of C is the sum of all simple subcoalgebra of C.

The following definitions were taken from [Abe, Chapter 2.4.1]
Let $I=\{0,1,2, \cdots\}$ be the set of all non-negative integers. Given a coalgebra C, if a family $\left\{A_{i}\right\}_{i \in I}$ of k-linear subspaces of C satisfies the conditions

$$
\begin{aligned}
A_{i} \subset A_{i+1} \quad(i \in I), \quad C=\bigcup_{i \in I} A_{i} \\
\Delta\left(A_{n}\right) \subset \sum_{i=0}^{n} A_{i} \otimes A_{n-i} \quad(n \in I)
\end{aligned}
$$

then C is called a filtered coalgebra, and $\left\{A_{i}\right\}$ is said to be a filtration on C. By definition, $A_{i}(i \in I)$ are subcoalgebras of C.

If there exists a family of subspaces $\left\{A_{(i)}\right\}_{i \in I}$ of C such that

$$
\begin{aligned}
& C=\bigoplus_{i \in I} A_{(i)}, \quad \varepsilon\left(A_{(n)}\right)=0 \quad(n \neq 0), \\
& \Delta\left(A_{(n)}\right) \subset \sum_{i=0}^{n} A_{(i)} \otimes A_{(n-i)} \quad(n \in I)
\end{aligned}
$$

then C is called a graded coalgebra.
If $C=\bigoplus_{i \in I} A_{(i)}$ is a graded coalgebra and we set $A_{n}=\bigoplus_{i \leq n} A_{(i)}$, then $\left\{A_{n}\right\}_{n \in I}$ becomes a filtration on C and, hence, C is a filtered coalgebra.

On the other hand, if C is a filtered coalgebra with filtration $\left\{A_{i}\right\}_{i \in I}$ then, setting $A_{(i)}=A_{i} / A_{i-1}$ for $i \geq 1$ and $A_{(0)}=A_{0}$, we obtain a graded coalgebra $\operatorname{grC}=$ $\bigoplus_{i \in I} A_{(i)}$, called the associated graded coalgebra of the filtered coalgebra C.

Now, let C be a coalgebra and C_{0} its coradical. Define inductively

$$
\begin{equation*}
C_{n}=\Delta^{-1}\left(C \otimes C_{n-1}+C_{0} \otimes C\right) . \tag{2.1}
\end{equation*}
$$

Then
Theorem 2.1.2. $\left\{C_{n}\right\}_{n \in I}$ is a filtration on C.
Proof. [Mon, Theorem 5.2.2].
We call $\left\{C_{n}\right\}_{n \in I}$, as defined in (2.1), the coradical filtration of C.
Let $C=\bigoplus_{i \in I} C_{(i)}$ be a graded coalgebra with coradical filtration $\left\{C_{j}\right\}_{j \in I}$. If $C_{0}=C_{(0)}$ and $C_{1}=C_{(0)} \oplus C_{(1)}$, then we say that C is coradically graded.

Lemma 2.1.3. If C is coradically graded, then

$$
C_{j}=\bigoplus_{i \leq j} C_{(i)} .
$$

Proof. See [CM, Lemma 2.2].
Lemma 2.1.4. The cotensor coalgebra $\operatorname{Cot}_{C}(M)$, as in Definition 1.3.8, is a graded coalgebra with grading $\left\{M^{\square_{i}}\right\}_{i \in I}$. Moreover, if C is cosemisimple, then $\operatorname{Cot}_{C}(M)$ is coradically graded.

Proof. [Woo, Lemma 4.4].
Lemma 2.1.5. If D is a subcoalgebra of C, then $D_{n}=D \cap C_{n}$, for all $n \geq 0$.
Proof. [Mon, Lemma 5.2.12] and [Mon, Lemma 5.1.9].

The proof of the next theorem is too long and we will not prove it here.
Theorem 2.1.6 (Heyneman-Radford). Let C and D be coalgebras and $f: C \rightarrow D$ a coalgebra homomorphism. Then f is injective if and only if $\left.f\right|_{C_{1}}: C_{1} \rightarrow D$ is injective, where C_{1} is the subcoalgebra of the coradical filtration of C as defined in (2.1).

Proof. [Mon, Theorem 5.3.1].
The next theorem is the dual version of the Principal Theorem of Wedderburn [Abe, Theorem 1.4.9]. It was originally stated for coalgebras with separable coradical (see [Mon, Theorem 5.4.2]). However, since every k-coalgebra with k algebraically closed has separable coradical, we will omit this term.

Theorem 2.1.7 (Dual Wedderburn-Malcev theorem). Let C be a coalgebra. Then, there exists a coideal I such that $C=C_{0} \oplus I$ (as vector spaces).

Proof. See [Mon, Theorem 5.4.2] or [Abe, Theorem 2.3.11].
Remark 2.1.8. As a consequence of the above theorem, we have a projection π_{I} : $C \rightarrow C / I$ that is a coalgebra homomorphism (see Theorem 1.4.4), where I is a coideal of the coalgebra $C=C_{0} \oplus I$. However, the coideal I is not uniquely determined.

Note that if $c \in C$, we can write $c=c_{0}+c_{I}$, where $c_{0} \in C_{0}$ and $c_{I} \in I$. Then

$$
\pi_{I}(c)=\bar{c}=c+I=\left(c_{0}+c_{I}\right)+I=c_{0}+I=\overline{c_{0}} .
$$

Thus, there exists a bijection between the cosets of I in C and the elements of C_{0}

$$
\begin{aligned}
\sigma_{I}: C / I & \rightarrow C_{0} \\
\overline{c_{0}} & \mapsto c_{0}
\end{aligned}
$$

It is easy to see that σ_{I} is a coalgebra homomorphism. The composition $\sigma_{I} \circ \pi_{I}$ restricted to C_{0} is the identity map of C_{0}, for any decomposition $C=C_{0} \oplus I$. We will call $\pi_{0}: C \rightarrow C_{0}$ the canonical projection of coalgebras, where, for any fixed decomposition $C=C_{0} \oplus I, \pi_{0}=\sigma_{I} \circ \pi_{I}$.

2.2 Pointed coalgebras

Definition 2.2.1. C is pointed if every simple subcoalgebra of C is one dimensional.
Remark 2.2.2. Necessarily a one-dimensional subcoalgebra is of the form kg , for $g \in G(C)$, since if $\{c\}$ is any basis for C then

$$
\Delta(c)=\lambda_{1} c \otimes \lambda_{2} c
$$

for some $\lambda_{1}, \lambda_{2} \in k$. The counitary property gives

$$
c \otimes 1=(i d \otimes \varepsilon) \Delta(c)=\lambda_{1} c \otimes \varepsilon\left(\lambda_{2} c\right)=c \otimes \varepsilon\left(\lambda_{1} \lambda_{2} c\right) .
$$

Thus, $c \otimes\left(\varepsilon\left(\lambda_{1} \lambda_{2} c\right)-1\right)=0$ implies $\varepsilon\left(\lambda_{1} \lambda_{2} c\right)=1$. Moreover,

$$
\Delta\left(\lambda_{1} \lambda_{2} c\right)=\lambda_{1} \lambda_{2} \Delta(c)=\lambda_{1} \lambda_{2} \lambda_{1} c \otimes \lambda_{2} c=\lambda_{1} \lambda_{2} c \otimes \lambda_{1} \lambda_{2} c .
$$

Hence $\lambda_{1} \lambda_{2} c \in G(C)$ and $C=k\left(\lambda_{1} \lambda_{2} c\right)$.
Thus C is pointed iff $C_{0}=k G(C)$. Furthermore, since $G(C)$ is a linearly independent set by Proposition 1.1.7, a sum of simple subcoalgebra is in fact a direct sum. Thus a pointed coalgebra C is cosemisimple iff $C=C_{0}$.

Theorem 2.2.3. Let C be a pointed coalgebra. Then
(i) $C_{1}=k G(C) \oplus\left(\bigoplus_{g, h \in G(C)} P_{g, h}^{\prime}(C)\right)$;
(ii) for any $n \geq 1$ and $c \in C_{n}$,

$$
c=\sum_{g, h \in G(C)} c_{g, h}, \text { where } \Delta\left(c_{g, h}\right)=c_{g, h} \otimes g+h \otimes c_{g, h}+\omega
$$

for some $\omega \in C_{n-1} \otimes C_{n-1}$.
Proof. [Mon, Theorem 5.4.1].
Corollary 2.2.4. Let C and D be pointed coalgebras and $f: C \rightarrow D$ be a coalgebra homomorphism. Then $f\left(C_{1}\right) \subseteq D_{1}$ and $f\left(C_{0}\right) \subseteq D_{0}$.

Proof. It is immediate from the description of C_{0} and C_{1} for pointed coalgebras and Lemma 1.1.9.

Lemma 2.2.5. Let C be a pointed coalgebra. Then there exists a unique $C_{0}-C_{0}$ bicomodule structure map on the quotient $\bar{P}_{g, h}(C)=P_{g, h}(C) / k(h-g)$ such that the canonical projection $\pi: P_{g, h}(C) \rightarrow P_{g, h}(C) / k(h-g)$ is a bicomodule homomorphism.

Proof. By Lemma 1.3.3, C_{1} is a $C_{0}-C_{0}$-bicomodule. It is clear that $P_{g, h}(C)$ is a subbicomodule of C_{1} and $k(h-g)$ is a subbicomodule of $P_{g, h}(C)$. Thus, the result follows from Lemma 1.3.4.

Proposition 2.2.6. Let C be a pointed coalgebra. Then C_{1} / C_{0} is a C_{0} - C_{0}-bicomodule and $C_{1} / C_{0} \cong \bigoplus_{g, h \in G(C)} \bar{P}_{g, h}(C)$.

Proof. By Lemma 1.3.3, C_{1} is a C_{0} - C_{0}-bicomodule. Since C_{0} is a subbicomodule of C_{1}, we have that C_{1} / C_{0} is a $C_{0}-C_{0}$-bicomodule by Lemma 1.3.4. It remains to prove the second claim.

Since $P_{g, h}(C)$ is a subbicomodule of C_{1} and $P_{g, h}(C) \cap C_{0}=k(h-g)$ (Lemma 1.1.8), we have that $\bar{P}_{g, h}(C)$ is a subbicomodule of C_{1} / C_{0}. By Theorem 2.2.3, $C_{1}=$ $C_{0} \oplus\left(\bigoplus_{g, h \in G(C)} P_{g, h}^{\prime}(C)\right)$. Then, if $\pi: C_{1} \rightarrow C_{1} / C_{0}$ is the canonical projection, we have

$$
\begin{equation*}
\pi\left(C_{0}+\sum_{g, h \in G(C)} P_{g, h}(C)\right)=\sum_{g, h \in G(C)} \bar{P}_{g, h}(C)=C_{1} / C_{0} . \tag{2.2}
\end{equation*}
$$

By Lemma 1.1.8, $P_{g, h}(C) \cap P_{g^{\prime}, h^{\prime}}(C) \subseteq k(h-g)$ whenever $g^{\prime} \neq g$ or $h^{\prime} \neq h$. Thus, the sum in 2.2 is actually a direct sum.

Remark 2.2.7. C_{1} / C_{0} does not depend on the choice of $P_{g, h}^{\prime}(C)$, since for any other decomposition of $P_{g, h}(C)$, say $P_{g, h}(C)=k(h-g) \oplus P_{g, h}^{\prime \prime}(C)$, write

$$
c=\sum_{g, h \in G(C)} c_{g, h}+\omega=\sum_{g, h \in G(C)} c_{g, h}^{\prime}+\omega^{\prime},
$$

where $c_{g, h} \in P_{g, h}^{\prime}(C)$ and $c_{g, h}^{\prime} \in P_{g, h}^{\prime \prime}(C)$, for each $g, h \in G(C)$, and $\omega, \omega^{\prime} \in C_{0}$. Write $\omega=\sum_{e \in G(C)} \lambda_{e} e$ and $\omega^{\prime}=\sum_{e \in G(C)} \lambda_{e}^{\prime} e$. Then

$$
\begin{aligned}
\sum_{g, h \in G(C)} h \otimes \overline{c_{g, h}} \otimes g & =(\bar{\mu} \otimes i d) \bar{\rho}(\pi(c)) \\
& =(\bar{\mu} \otimes i d)(\pi \otimes i d) \rho(c) \\
& =(\bar{\mu} \circ \pi \otimes i d) \rho(c) \\
& =((i d \otimes \pi) \mu \otimes i d)\left(\sum_{g, h \in G(C)} c_{g, h}^{\prime} \otimes g+\sum_{e \in G(C)} \lambda_{e}^{\prime} e \otimes e\right) \\
& =\sum_{g, h \in G(C)} h \otimes \pi\left(c_{g, h}^{\prime}\right) \otimes g+\sum_{e \in G(C)} \lambda_{e}^{\prime} e \otimes \pi(e) \otimes e \\
& =\sum_{g, h \in G(C)} h \otimes \overline{c_{g, h}^{\prime}} \otimes g .
\end{aligned}
$$

Since the set $G(C)$ is linearly independent (Proposition 1.1.7), we have that, for each $g \in G(C)$,

$$
\sum_{h \in G(C)} h \otimes \overline{c_{g, h}}=\sum_{h \in G(C)} h \otimes \overline{c_{g, h}^{\prime}},
$$

and so, for each $h \in G(C)$,

$$
\overline{c_{g, h}}=\overline{c_{g, h}^{\prime}}
$$

Thus, the right C_{0}-comodule C_{1} / C_{0} is independent of the decomposition of C_{1}. The same is true if we view C_{1} / C_{0} as a left C_{0}-comodule. Thus the C_{1} / C_{0} bicomodule does not depend on the decomposition of C_{1}.

Examples 2.2.8. Let C be a pointed coalgebra. By the Proposition above we have that C_{1} / C_{0} is a $C_{0}-C_{0}$-bicomodule. Define the cotensor coalgebra $\operatorname{Cot}_{C_{0}}\left(C_{1} / C_{0}\right)$ as in Definition 1.3.8. By lemma 2.1.4, $\operatorname{Cot}_{C_{0}}\left(C_{1} / C_{0}\right)$ is coradically graded. Thus $\operatorname{Cot}_{C_{0}}\left(C_{1} / C_{0}\right)_{0}=C_{0}$ and so $\operatorname{Cot}_{C_{0}}\left(C_{1} / C_{0}\right)$ is a pointed coalgebra. Moreover, $\operatorname{Cot}_{C_{0}}\left(C_{1} / C_{0}\right)_{1}=C_{0} \oplus C_{1} / C_{0}$.

Theorem 2.2.9. Let C be a coalgebra (with separable coradical C_{0}). Then there exists a coalgebra embedding

$$
\iota: C \hookrightarrow \operatorname{Cot}_{C_{0}}\left(C_{1} / C_{0}\right)
$$

with $\iota\left(C_{1}\right)=C_{0} \oplus C_{1} / C_{0}$.
Proof. We will rewrite the proof of this theorem given on [CHZ, Theorem 3.1] because we need some conclusions within this proof.

By the dual Wedderburn-Malcev theorem, Theorem 2.1.7, there exists a coideal I of C such that $C=C_{0} \oplus I$. Thus, we have a canonical projection $f_{0}: C \rightarrow C_{0}$ such that $\left.f_{0}\right|_{C_{0}}=i d$. Note that C becomes a $C_{0}-C_{0}$-bicomodule via f_{0}, Example 1.3.2 (ii), and I is a $C_{0}-C_{0}$-subbicomodule of C. Set $C_{(1)}=C_{1} \cap I$. Then $C_{1}=C_{0} \oplus C_{(1)}$. Note that $C_{(1)}$ is a $C_{0}-C_{0}$-subbicomodule of I and the canonical vector space isomorphism $\theta: C_{(1)} \cong C_{1} / C_{0}$ is a $C_{0}-C_{0}$-bicomodule map.

View I as a $C_{0} \otimes C_{0}^{c o p}$-comodule and $C_{(1)}$ its subcomodule. Since C_{0} is separable, it follows there exists a $C_{0} \otimes C_{0}^{\text {cop }}$-comodule decomposition $I=C_{(1)} \oplus J$. Thus we have a C_{0} - C_{0}-bicomodule projection $p: I \rightarrow C_{(1)}$ such that $\left.p\right|_{C_{(1)}}=i d$. Define a map $f_{1}=\theta \circ p \circ f_{0}^{\prime}$ from C to C_{1} / C_{0}, where $f_{0}^{\prime}: C \rightarrow I$ is the canonical projetion. Clearly $f_{1}: C \rightarrow C_{1} / C_{0}$ is a $C_{0}-C_{0}$-bicomodule map vanishing on C_{0}. Thus, by Lemma 1.3.9 we obtain a unique coalgebra map $\iota: C \rightarrow \operatorname{Cot}_{C_{0}}\left(C_{1} / C_{0}\right)$ such that $\pi_{0} \circ \iota=f_{0}$ and $\pi_{1} \circ \iota=f_{1}$. Clearly $\iota\left(C_{1}\right)=C_{0} \oplus C_{1} / C_{0}$. By Theorem 2.1.6, ι is injective. This completes the proof.

Corollary 2.2.10. Let C be a pointed coalgebra and $\iota: C \hookrightarrow \operatorname{Cot}_{C_{0}}\left(C_{1} / C_{0}\right)$ be the coalgebra homomorphism as in the theorem above. Then, $\left.\pi_{0} \circ \iota\right|_{C_{0}}: C_{0} \rightarrow C_{0}$ is the identity of C_{0} and, for any decomposition $C=C_{0} \oplus I$, there exists an isomorphism $\theta_{I}: C_{1} \cap I \rightarrow C_{1} / C_{0}$ such that

$$
\left.\theta_{I}^{-1} \circ \pi_{1} \circ \iota\right|_{C_{1} \cap I}: C_{1} \cap I \rightarrow C_{1} \cap I
$$

is the identity map.
Proof. Within the proof of the Theorem 2.2.9.

2.3 Quivers and path coalgebras

Recall that a quiver $Q=\left(Q_{0}, Q_{1}\right)$ is an oriented graph with a set of vertices Q_{0} and a set of arrows Q_{1}. For each arrow $\alpha \in Q_{1}$ we associate a pair of vertices $i, j \in Q_{0}$ that we call the source of α and the target of α, respectively. In this case, we write α as $\alpha: i \rightarrow j$ and say that α is an arrow from i to j. A path b in Q is the formal composition of arrows in Q_{1} such that the target of an arrow coincides with the source of the next arrow. We say that a path b has length the number of arrows in the sequence that determine b. For instance, if $b=\alpha_{n} \alpha_{n-1} \cdots \alpha_{1}$ is a path in Q, with each $\alpha_{l} \in Q_{1}$, then b has length n and for each pair $\alpha_{l}, \alpha_{l}+1$ we must have that the target of α_{l} is equal to the source of $\alpha_{l}+1$. For each $i \in Q_{0}$ we associate a stationary path e_{i} of length 0 and source and target i. We can compose paths in a similar way as done for arrows. We say that a quiver Q is connected if its underlying graph is connected.

Definition 2.3.1. [Sim, Description 4.12] For a given pointed coalgebra C we define the left Gabriel quiver ${ }_{C} Q=\left({ }_{C} Q_{0, C} Q_{1}\right)$ by identifying the set of vertices ${ }_{C} Q_{0}$ with the set $G(C)$ of group-like elements of C and, given two vertices $g, h \in G(C)$, we identify the arrows from g to h with a k-basis of the quotient space $\bar{P}_{g, h}(C)=P_{g, h}(C) / k(h-g)$.

Definition 2.3.2. [Woo, Definition 4.10] For a given quiver Q, we define the path coalgebra $k^{\square} Q$ of Q as the vector space with basis all paths in Q and, for each path $b \in Q$, the comultiplication and counity given by

$$
\begin{aligned}
\Delta(b) & =\sum_{b=b_{2} b_{1}} b_{2} \otimes b_{1}, \\
\varepsilon(b) & =\delta_{|b| 0},
\end{aligned}
$$

where the pairs b_{1}, b_{2} are all possible paths in Q whose composition gives the path b. $|b|$ denotes the length of b and

$$
\delta_{|b| 0}=\left\{\begin{array}{ll}
1, & \text { if }|b|=0, \\
0, & \text { otherwise }
\end{array} .\right.
$$

Write

$$
\left(k^{\square} Q\right)_{m}=\bigoplus_{l \leq m} k Q_{l}
$$

where $k Q_{l}$ are all paths of Q of length l.
Proposition 2.3.3. Let Q be a connected quiver and $k^{\square} Q$ its path coalgebra. Then
(i) $k^{\square} Q$ is pointed, $G\left(k^{\square} Q\right)=\left\{e_{i} \mid i \in Q_{0}\right\},\left(k^{\square} Q\right)_{0}=k Q_{0}$, and $k^{\square} Q$ is coradically graded with coradical filtration $\left\{\left(k^{\square} Q\right)_{m}\right\}_{m \in \mathbb{N}}$;
(ii) Q is isomorphic to the left Gabriel quiver of $k^{\square} Q$.

Proof. See [Sim, Proposition 7.7]. It also follows from the canonical isomorphism $k^{\square} Q \cong \operatorname{Cot}_{k Q_{0}}\left(\operatorname{span}\left\{Q_{1}\right\}\right)$ stated in [Woo] right after Definition 4.10.

Examples 2.3.4. (i) Consider the quiver Q^{1} given by

$$
\mathrm{O}_{1} \xrightarrow{\alpha} \mathrm{O}_{2}
$$

The path coalgebra $k^{\square} Q^{1}$ is the vector space with basis $\left\{e_{1}, e_{2}, \alpha\right\}$, together with the comultiplication Δ_{1} given by

$$
\Delta_{1}\left(e_{i}\right)=e_{i} \otimes e_{i}, \text { for } i \in\{1,2\} ; \quad \Delta_{1}(\alpha)=\alpha \otimes e_{1}+e_{2} \otimes \alpha
$$

and the counity ε_{1} given by

$$
\varepsilon_{1}\left(e_{i}\right)=1, \text { for } i \in\{1,2\} ; \quad \varepsilon_{1}(\alpha)=0
$$

(ii) Consider the quiver Q^{2} given by

The path coalgebra $k^{\square} Q^{2}$ is the vector space with basis $\left\{e_{1}=\alpha^{0}, \alpha, \alpha^{2}, \cdots\right\}$, together with the comultiplication Δ_{2} given by

$$
\Delta_{2}\left(\alpha^{n}\right)=\sum_{i=0}^{n} \alpha^{i} \otimes \alpha^{n-i}, \text { for } n \geq 0
$$

and the counity ε_{2} given by

$$
\varepsilon_{2}\left(\alpha^{n}\right)=\left\{\begin{array}{ll}
1, & \text { if } n=0, \\
0, & \text { if } n \geq 1
\end{array} .\right.
$$

This coalgebra is sometimes known as the divided power coalgebra (see [DNR, 1.1.4,2])
(iii) Consider the quiver Q^{3} given by

The path coalgebra $k^{\square} Q^{3}$ is the vector space with basis $\left\{e_{1}, e_{2}, \alpha, \beta, \gamma, \gamma \beta\right\}$, together with the comultiplication Δ_{3} given by

$$
\Delta_{3}(b)= \begin{cases}e_{i} \otimes e_{i}, & \text { if } b=e_{i}, \text { for } i \in\{1,2,3\} \\ \alpha \otimes e_{1}+e_{3} \otimes \alpha, & \text { if } b=\alpha \\ \beta \otimes e_{1}+e_{2} \otimes \beta, & \text { if } b=\beta \\ \gamma \otimes e_{2}+e_{3} \otimes \gamma, & \text { if } b=\gamma \\ \gamma \beta \otimes e_{1}+\gamma \otimes \beta+e_{3} \otimes \gamma \beta, & \text { if } b=\gamma \beta\end{cases}
$$

and the counity ε_{3} given by

$$
\varepsilon_{3}(b)= \begin{cases}1, & \text { if } b=e_{i}, \text { for } i \in\{1,2,3\} \\ 0, & \text { otherwise }\end{cases}
$$

(iv) Let n be a positive integer and $L^{C}(n, k)$ be the lower triangular matrix coalgebra, which is the matrix coalgebra $M^{C}(n, k)$ with all entries $e_{i j}=0$, for $i>j$ (see Example 1.1.5 (iii)). Then, the set of group-like elements of $L^{C}(n, k)$ is

$$
\begin{equation*}
G\left(L^{C}(n, k)\right)=\left\{e_{i i} \mid i \in\{1,2, \cdots, n\}\right\} \tag{2.3}
\end{equation*}
$$

and the set of $e_{i i}, e_{j j}$-primitive elements are given by

$$
P_{e_{i i}, e_{j j}}\left(L^{C}(n, k)\right)= \begin{cases}\left\{\lambda e_{i j}+\kappa\left(e_{j j}-e_{i i}\right) \mid \lambda, \kappa \in k\right\}, & \text { if } j=i+1, \tag{2.4}\\ 0, & \text { otherwise }\end{cases}
$$

Hence, the Gabriel quiver of $L^{C}(n, k)$ is the quiver ${ }_{L^{C}(n, k)} Q$ given by

$$
e_{11} \xrightarrow{\alpha_{1}} e_{22} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{n-1}} e_{n n}
$$

where α_{i} is an element of a basis of the quotient space $\bar{P}_{e_{i i}, e_{i+1 i+1}}\left(L^{C}(n, k)\right)$.
For instance, if $n=3$ and $k=\mathbb{C}$, then a basis for $L^{C}(3, \mathbb{C})$ is

$$
\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]\right\}
$$

the comultiplication is given by

$$
\begin{aligned}
\Delta\left(\left[\begin{array}{lll}
a & 0 & 0 \\
d & b & 0 \\
f & e & c
\end{array}\right]\right)= & a\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \otimes\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& +b\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \otimes\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+c\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \otimes\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& +d\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \otimes\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+d\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \otimes\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& +e\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \otimes\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+e\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \otimes\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \\
& +f\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] \otimes\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+f\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \otimes\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] \\
& +f\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \otimes\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

and the counit is given by

$$
\varepsilon\left(\left[\begin{array}{lll}
a & 0 & 0 \\
d & b & 0 \\
f & e & c
\end{array}\right]\right)=a+b+c .
$$

Write $e_{i j}$ for the matrix with entry 1 at the row i and column j and zero for all other entries. Then, $G\left(L^{C}(3, \mathbb{C})\right)$ and $P_{e_{i i}, e_{j j}}\left(L^{C}(3, \mathbb{C})\right)$ are given as in (2.3) and (2.4), respectively. Moreover, $\bar{P}_{e_{11}, e_{22}}\left(L^{C}(3, \mathbb{C})\right)=<\overline{e_{21}}>$ and $\bar{P}_{e_{22}, e_{33}}\left(L^{C}(3, \mathbb{C})\right)=<\overline{e_{32}}>$, where $\overline{e_{i j}}=\left\{e_{i j}+\lambda\left(e_{j j}-e_{i i}\right) \mid \lambda \in \mathbb{C}\right\}$. Write $\alpha_{1}=\overline{e_{21}}$ and $\alpha_{2}=\overline{e_{32}}$. Then, the left Gabriel quiver of $L^{C}(3, \mathbb{C})$ is given by

$$
e_{11} \xrightarrow{\alpha_{1}} e_{22} \xrightarrow{\alpha_{2}} e_{33}
$$

Chapter 3

The path coalgebra and the adjunction

3.1 Categories

Definition 3.1.1. (i) A Vquiver, $V Q=\left(V Q_{0}, V Q_{1}\right)$ is a set of vertices $V Q_{0}=$ $\left\{e_{1}, e_{2}, \ldots\right\}$, together with a direct sum of vector spaces $V Q_{1}=\bigoplus_{e, f \in V Q_{0}} V Q_{e, f}$. We call $V Q_{0}$ the vertex set of $V Q$ and $V Q_{1}$ the arrow set of $V Q$. A Vquiver $V S=\left(V S_{0}, V S_{1}\right)$ is said to be a subVquiver of $V Q$ if $V S_{0} \subseteq V Q_{0}$ and for each pair $e, f \in V S_{0}, V S_{e, f} \subseteq V Q_{e, f}$.
(ii) A map of Vquivers $\varphi: V Q \rightarrow V R$ consists of an injective map $\varphi_{0}: V Q_{0} \rightarrow V R_{0}$, called the vertex map, and a linear map $\varphi_{e, f}: V Q_{e, f} \rightarrow V R_{\varphi_{0}(e), \varphi_{0}(f)}$ for each pair $e, f \in V Q_{0}$, called arrow maps. We say that φ is injective if each $\varphi_{e, f}$ is injective.

If $\varphi: V Q \rightarrow V R$ is an injective map of Vquivers, then $\varphi(V Q)$ is a subVquiver of $V R$. Moreover, if $\sigma: V R \rightarrow V S$ is an injective map of Vquivers, then $\sigma \circ \varphi: V Q \rightarrow$ $V S$ is an injective map of Vquivers. Hence, taking all Vquivers as objects and all injective maps of Vquivers as morphisms, we obtain a category that we will denote by IVquiv.

We have a correspondence between quivers and Vquivers that is actually functorial from the first to the second, but not the other way round. The following diagram illustrates this correspondence

Denote by IPCog the category of pointed coalgebras and injective coalgebra homomorphisms.

Define the following congruence relations on the morphisms of $\operatorname{Hom}_{\mathbf{I P C o g}}(C, D)$. For $\rho, \gamma \in \operatorname{Hom}_{\text {IPCog }}(C, D)$ we write $\rho \sim \gamma$ if

$$
\left\{\begin{array}{l}
(\rho-\gamma)\left(C_{0}\right)=0 \\
(\rho-\gamma)\left(C_{1}\right) \subseteq D_{0}
\end{array}\right.
$$

Lemma 3.1.2. \sim is indeed a congruence relation.
Proof. It is obvious that \sim is reflexive and symmetric. Let us check that \sim is transitive and that it preserves composition. Let $\rho, \gamma, \sigma \in \operatorname{Hom}_{\text {IPCog }}(C, D)$ be such that $\rho \sim \gamma$ and $\gamma \sim \sigma$. Then

$$
\begin{aligned}
(\rho-\sigma)\left(C_{0}\right) & =(\rho-\gamma+\gamma-\sigma)\left(C_{0}\right) \\
& =(\rho-\gamma)\left(C_{0}\right)+(\gamma-\sigma)\left(C_{0}\right)=0
\end{aligned}
$$

and

$$
\begin{aligned}
(\rho-\sigma)\left(C_{1}\right)= & (\rho-\gamma+\gamma-\sigma)\left(C_{1}\right) \\
= & (\rho-\gamma)\left(C_{1}\right)+(\gamma-\sigma)\left(C_{1}\right) \\
& \subseteq D_{0}+D_{0}=D_{0}
\end{aligned}
$$

Now consider $\rho_{1}, \rho_{2} \in \operatorname{Hom}_{\mathbf{I P C o g}}(A, B)$ and $\gamma_{1}, \gamma_{2} \in \operatorname{Hom}_{\mathbf{I P C o g}}(B, C)$ such that $\rho_{1} \sim \rho_{2}$ and $\gamma_{1} \sim \gamma_{2}$. The following computation shows that $\gamma_{1} \circ \rho_{1} \sim \gamma_{2} \circ \rho_{2}$:

$$
\begin{aligned}
\left(\gamma_{1} \circ \rho_{1}-\gamma_{2} \circ \rho_{2}\right)\left(A_{1}\right)= & \left(\gamma_{1} \circ \rho_{1}-\gamma_{1} \circ \rho_{2}+\gamma_{1} \circ \rho_{2}-\gamma_{2} \circ \rho_{2}\right)\left(A_{1}\right) \\
= & \left(\gamma_{1} \circ \rho_{1}-\gamma_{1} \circ \rho_{2}\right)\left(A_{1}\right)+\left(\gamma_{1} \circ \rho_{2}-\gamma_{2} \circ \rho_{2}\right)\left(A_{1}\right) \\
= & \gamma_{1}\left(\rho_{1}-\rho_{2}\right)\left(A_{1}\right)+\left(\gamma_{1}-\gamma_{2}\right)\left(\rho_{2}\left(A_{1}\right)\right) \\
& \subseteq \gamma_{1}\left(B_{0}\right)+\left(\gamma_{1}-\gamma_{2}\right)\left(B_{1}\right) \\
& \subseteq C_{0}+C_{0}=C_{0}
\end{aligned}
$$

where the two last steps are due to the congruence \sim and Corollary 2.2.4. and

$$
\begin{aligned}
\left(\gamma_{1} \circ \rho_{1}-\gamma_{2} \circ \rho_{2}\right)\left(A_{0}\right)= & \left(\gamma_{1} \circ \rho_{1}-\gamma_{1} \circ \rho_{2}+\gamma_{1} \circ \rho_{2}-\gamma_{2} \circ \rho_{2}\right)\left(A_{0}\right) \\
= & \left(\gamma_{1} \circ \rho_{1}-\gamma_{1} \circ \rho_{2}\right)\left(A_{0}\right)+\left(\gamma_{1} \circ \rho_{2}-\gamma_{2} \circ \rho_{2}\right)\left(A_{0}\right) \\
= & \gamma_{1}\left(\rho_{1}-\rho_{2}\right)\left(A_{0}\right)+\left(\gamma_{1}-\gamma_{2}\right)\left(\rho_{2}\left(A_{0}\right)\right) \\
& \subseteq\left(\gamma_{1}-\gamma_{2}\right)\left(B_{0}\right)=0
\end{aligned}
$$

where the two last steps in both equations are due to the congruence \sim and Corollary 2.2.4.

Lemma 3.1.3. $\operatorname{IPCog}_{\sim}=\mathbf{I P C o g} / \sim$ is a category.
Proof. See [Mac, Chapter 8] or [Awo, Chapter 3.4]
Examples 3.1.4. Consider the path coalgebra $C=k^{\square} Q$ of the quiver

as in Example 2.3.4 (iii). Routine computations show that the maps $f, f^{\prime}: C \rightarrow C$ defined on an element b of the basis $\left\{e_{1}, e_{2}, e_{3}, \alpha, \beta, \gamma, \gamma \beta\right\}$ of C by

$$
f(b)= \begin{cases}b, & \text { if } b \neq \gamma \beta \\ \gamma \beta+\alpha, & \text { if } b=\gamma \beta\end{cases}
$$

and

$$
f^{\prime}(b)= \begin{cases}b, & \text { if } b \neq \alpha \\ \alpha+e_{3}-e_{1}, & \text { if } b=\alpha\end{cases}
$$

are injective coalgebra homomorphisms.
Let $i d: C \rightarrow C$ be the identity map of C. Then, $(f-i d)\left(C_{1}\right)=0$ implies that $f \sim i d$. Furthermore, since

$$
\left(f^{\prime}-i d\right)(\alpha)=f^{\prime}(\alpha)-\alpha=\alpha+e_{3}-e_{1}-\alpha=e_{3}-e_{1} \in C_{0}
$$

We have that $\left(f^{\prime}-i d\right)\left(C_{1}\right) \subseteq C_{0}$ and $\left(f^{\prime}-i d\right)\left(C_{0}\right)=0$. Thus $f^{\prime} \sim i d$.
Note that not all coalgebra automorphism is congruent to the identity, since the coalgebra homomorphism that fix all paths but send α to $\lambda \alpha$, with $\lambda \notin\{0,1\}$, is an example of such coalgebra automorphism.

3.2 The Path Coalgebra functor

Denote by $\left(k V Q_{0}, \Delta_{0}, \varepsilon_{0}\right)$ the group-like coalgebra of $V Q_{0}$ (as in Example 1.1.5 (i)), and by $\left(V Q_{1}, \rho_{l}, \rho_{r}\right)$ the direct sum $V Q_{1}=\bigoplus_{e, f \in V Q_{0}} V Q_{e, f}$ treated as a $k V Q_{0^{-}} k V Q_{0^{-}}$ bicomodule with structure maps:

$$
\rho_{l}\left(\sum_{e, f \in V Q_{0}} m_{e, f}\right)=\sum_{e, f \in V Q_{0}} f \otimes m_{e, f}
$$

and

$$
\rho_{r}\left(\sum_{e, f \in V Q_{0}} m_{e, f}\right)=\sum_{e, f \in V Q_{0}} m_{e, f} \otimes e,
$$

$\forall m_{e, f} \in V Q_{e, f}$ (see Example 1.2.6 (iii) and Lemma 1.3.3).
Define the path coalgebra $k^{\square}[V Q]$ as the cotensor coalgebra $\operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)$, as in Definition 1.3.8.

For a given $\gamma \in \operatorname{Hom}_{\mathbf{I V q u i v}}(V Q, V R)$, we will construct a coalgebra homomorphism $f \in \operatorname{Hom}_{\text {IPCog }}\left(k^{\square}[V Q], k^{\square}[V R]\right)$.

Let $\pi_{0}^{\prime}: \operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right) \rightarrow k V Q_{0}$ be the canonical projection of coalgebras (see Remark 2.1.8 and lemma 2.1.4).

Define the map $\bar{\gamma}_{0}: k V Q_{0} \rightarrow k V R_{0}$ as the linear extension of the vertex map $\gamma_{0}: V Q_{0} \rightarrow V R_{0}$ of γ. Then $\bar{\gamma}_{0}$ is a coalgebra homomorphism (see Example 1.1.5 (iv)).

Define

$$
\begin{aligned}
f_{0}: \operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right) & \rightarrow k V R_{0} \\
c & \mapsto\left(\bar{\gamma}_{0} \circ \pi_{0}^{\prime}\right)(c)
\end{aligned}
$$

f_{0} is a coalgebra homomorphism since it is the composition of coalgebra homomorphisms.

Then $\operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)$ becomes a $k V R_{0^{-}} k V R_{0}$-bicomodule via f_{0} and a $k V Q_{0^{-}}$ $k V Q_{0}$-bicomodule via π_{0}^{\prime} (see Example 1.3.2 (ii)).

Now consider $\pi_{1}^{\prime}: \operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right) \rightarrow V Q_{1}$ the canonical projection. We must check that π_{1}^{\prime} is a bicomodule homomorphism.

We will show that π_{1}^{\prime} is a comodule homomorphism of right $k V Q_{0}$-comodules. Consider $\rho: V Q_{1} \rightarrow V Q_{1} \otimes k V Q_{0}$ the structure map of the right $k V Q_{0}$-comodule $V Q_{1}$. For any $m \in V Q_{1}$, write $\rho(m)=\sum_{(m)} m_{(0)} \otimes m_{(1)}$, where each $m_{(0)} \in V Q_{1}$ and $m_{(1)} \in k V Q_{0}$.

Then, for any element of the basis $m^{1} \square \cdots \square m^{n} \in V Q_{1}^{\square_{n}}(n \geq 1)$ we have

$$
\begin{aligned}
\left(\pi_{1}^{\prime} \otimes i d\right)\left(i d \otimes \pi_{0}^{\prime}\right) \Delta\left(m^{1} \square\right. & \left.\cdots \square m^{n}\right)= \\
& =\left(\pi_{1}^{\prime} \otimes \pi_{0}^{\prime}\right) \sum_{\left(m^{1}\right)}\left(\left(m^{1}\right)_{(-1)}\right) \otimes\left(\left(m^{1}\right)_{(0)} \square m^{2} \square \cdots \square m^{n}\right) \\
& +\left(\pi_{1}^{\prime} \otimes \pi_{0}^{\prime}\right) \sum_{i=1}^{n-1}\left(m^{1} \square \cdots \square m^{i}\right) \otimes\left(m^{i+1} \square \cdots \square m^{n}\right) \\
& +\left(\pi_{1}^{\prime} \otimes \pi_{0}^{\prime}\right) \sum_{\left(m^{n}\right)}\left(m^{1} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes\left(\left(m^{n}\right)_{(1)}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{\left(m^{1}\right)} \pi_{1}^{\prime}\left(\left(m^{1}\right)_{(-1)}\right) \otimes \pi_{0}^{\prime}\left(\left(m^{1}\right)_{(0)} \square m^{2} \square \cdots \square m^{n}\right) \\
& +\sum_{i=1}^{n-1} \pi_{1}^{\prime}\left(m^{1} \square \cdots \square m^{i}\right) \otimes \pi_{0}^{\prime}\left(m^{i+1} \square \cdots \square m^{n}\right) \\
& +\sum_{\left(m^{n}\right)} \pi_{1}^{\prime}\left(m^{1} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes \pi_{0}^{\prime}\left(\left(m^{n}\right)_{(1)}\right) \\
= & \sum_{\left(m^{n}\right)} \pi_{1}^{\prime}\left(m^{1} \square \cdots \square m^{n-1} \square\left(m^{n}\right)_{(0)}\right) \otimes\left(\left(m^{n}\right)_{(1)}\right) \\
= & \rho\left(\pi_{1}^{\prime}\left(m^{1} \square \cdots \square m^{n}\right)\right),
\end{aligned}
$$

where the last equality comes from the fact that $\pi_{1}^{\prime}\left(m^{1} \square \cdots \square m^{n}\right) \neq 0$ only if $n=1$. In the case of $m^{0} \in k V Q_{0}$, then

$$
\begin{aligned}
\left(\pi_{1}^{\prime} \otimes i d\right)\left(i d \otimes \pi_{0}^{\prime}\right) \Delta\left(m^{0}\right) & =\pi_{1}^{\prime}\left(m^{0}\right) \otimes \pi_{0}^{\prime}\left(m^{0}\right) \\
& =0=\rho\left(\pi_{1}^{\prime}\left(m^{0}\right)\right)
\end{aligned}
$$

A similar computation shows that π_{1}^{\prime} is a comodule homomorphism of left $k V Q_{0^{-}}$ comodules. Thus π_{1}^{\prime} is a bicomodule homomorphism of $k V Q_{0}-k V Q_{0}$-bicomodules.

Now, for any $c \in \operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)$, write $\pi_{1}^{\prime}(c)=\sum_{e, f \in V Q_{0}} \bar{c}_{e, f}$, where each $\bar{c}_{e, f} \in$ $V Q_{e, f}$. Then, define the map

$$
\begin{aligned}
f_{1}: \operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right) & \rightarrow V R_{1} \\
c & \mapsto \sum_{e, f \in V Q_{0}} \gamma_{e, f}\left(\bar{c}_{e, f}\right)
\end{aligned}
$$

where $\gamma_{e, f}$ are the arrow maps of γ. Hence, f_{1} is a bicomodule homomorphism of $k V R_{0}-k V R_{0}$-bicomodules with $f_{1}\left(k V Q_{0}\right)=0$.

The universal property of cotensor, Lemma 1.3.9, gives a unique coalgebra homomorphism $f: \operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right) \rightarrow \operatorname{Cot}_{k V R_{0}}\left(V R_{1}\right)$ such that $\pi_{i} \circ f=f_{i}$ for $i \in\{0,1\}$.

Lemma 3.2.1. The coalgebra homomorphism $f: \operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right) \rightarrow \operatorname{Cot}_{k V R_{0}}\left(V R_{1}\right)$ as constructed above is injective.

Proof. By the Heyneman-Radford Theorem, Lemma 2.1.6 (and Example 2.2.8), it suffices to show that $\left.f\right|_{k V Q_{0} \oplus V Q_{1}}$ is injective. Since $\operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)$ and $\operatorname{Cot}_{k V R_{0}}\left(V R_{1}\right)$ are pointed coalgebras, by Corollary 2.2.4, we have that $f\left(k V Q_{0} \oplus V Q_{1}\right) \subseteq k V R_{0} \oplus$ $V R_{1}$. Thus, for any $c \in k V Q_{0} \oplus V Q_{1}$, we have

$$
f(c)=\pi_{0} \circ f(c)+\pi_{1} \circ f(c)=f_{0}(c)+f_{1}(c)
$$

Write $c=c_{0}+c_{1}$, with $c_{0}=\sum_{e \in V Q_{0}} \lambda_{e} e \in k V Q_{0}$ and $c_{1}=\sum_{e, f \in V Q_{0}} c_{e, f}$ where each $c_{e, f} \in V Q_{e, f}$. Then

$$
\begin{aligned}
f(c)=f_{0}(c)+f_{1}(c)= & f_{0}\left(c_{0}\right)+f_{0}\left(c_{1}\right)+f_{1}\left(c_{0}\right)+f_{1}\left(c_{1}\right) \\
= & \left(\bar{\gamma}_{0} \circ \pi_{0}^{\prime}\right)\left(c_{0}\right)+\left(\bar{\gamma}_{0} \circ \pi_{0}^{\prime}\right)\left(c_{1}\right) \\
& +\left(\sum_{e, f \in V Q_{0}} \gamma_{e, f} \circ \pi_{1}^{\prime}\right)\left(c_{0}\right)+\left(\sum_{e, f \in V Q_{0}} \gamma_{e, f} \circ \pi_{1}^{\prime}\right)\left(c_{1}\right) \\
= & \bar{\gamma}_{0}\left(c_{0}\right)+\left(\sum_{e, f \in V Q_{0}} \gamma_{e, f}\right)\left(c_{1}\right) \\
= & \sum_{e \in V Q_{0}} \lambda_{e} \gamma_{0}(e)+\sum_{e, f \in V Q_{0}} \gamma_{e, f}\left(c_{e, f}\right) .
\end{aligned}
$$

Since $\bar{\gamma}_{0}: k V Q_{0} \rightarrow k V R_{0}$ is injective and $\gamma_{e, f}: V Q_{e, f} \rightarrow V R_{\gamma_{0}(e), \gamma_{0}(f)}$ is injective in each $V Q_{e, f}$, the result follows.

Define $k^{\square}[\gamma]=f$.
Proposition 3.2.2. The above construction defines the covariant functors:

$$
\begin{aligned}
k^{\square}[-]: \text { IVquiv } & \rightarrow \mathbf{I P C o g} \\
\mathscr{K}^{\square}[-]=\Pi_{\sim} \circ k^{\square}[-]: \text { IVquiv } & \rightarrow \text { IPCog }_{\sim},
\end{aligned}
$$

where $\Pi_{\sim}: \mathbf{I P C o g} \rightarrow \mathbf{I P C o g}{ }_{\sim}$ is the quotient functor.

3.3 The Gabriel Vquiver functor

Let $C \in \operatorname{IPCog}$ be a coalgebra. Define the Vquiver $G Q(C)$ of $C, G Q(C)=$ $\left(G Q(C)_{0}, G Q(C)_{1}\right)$, as follows:

$$
\begin{gathered}
G Q(C)_{0}=G(C) \\
G Q(C)_{1}=C_{1} / C_{0}=\bigoplus_{g, h \in G(C)} \bar{P}_{g, h}(C),
\end{gathered}
$$

(see Proposition 2.2.6), where, for each $g, h \in G Q(C)_{0}$, we have $G Q(C)_{g, h}=\bar{P}_{g, h}(C)$.
If $\rho \in H_{\text {IPCog }}(C, D)$, then define the maps

$$
\begin{aligned}
\varphi_{0}: G(C) & \rightarrow G(D) \\
g & \mapsto \rho(g)
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi_{g, h}: \bar{P}_{g, h}(C) & \rightarrow \bar{P}_{\varphi_{0}(g), \varphi_{0}(h)}(D), \\
\bar{c} & \mapsto \overline{\rho(c)}
\end{aligned}
$$

where $c \in P_{g, h}(C)$ is any representative of $\bar{c}=c+k(h-g)$. Both maps are well defined injective maps (see Lemma 1.1.9). Hence, the map $\varphi: G Q(C) \rightarrow G Q(D)$ whose vertex map is $\varphi_{0}: G(C) \rightarrow G(D)$ and arrow maps $\varphi_{g, h}: \bar{P}_{g, h}(C) \rightarrow \bar{P}_{\varphi_{0}(g), \varphi_{0}(h)}(D)$ for each pair of vertices $g, h \in G(C)$ defines a map of Vquivers.

Define $G Q(\rho)=\varphi$.
Proposition 3.3.1. The above construction defines the covariant functor:

$$
G Q(-): \text { IPCog } \rightarrow \text { IVquiv }
$$

Proof. We need to check that if $\gamma \in \operatorname{Hom}_{\text {IPCog }}(B, C)$ and $\rho \in \operatorname{Hom}_{\text {IPCog }}(C, D)$, then $G Q(\rho \circ \gamma)=G Q(\rho) \circ G Q(\gamma)$. We have as follows

$$
\begin{aligned}
(G Q(\rho) \circ G Q(\gamma))_{0}: G(B) & \rightarrow G(D) \\
g & \mapsto \rho(\gamma(g))=(\rho \circ \gamma)(g)
\end{aligned}
$$

and

$$
\begin{aligned}
(G Q(\rho) \circ G Q(\gamma))_{g, h}: \bar{P}_{g, h}(B) & \rightarrow \bar{P}_{\rho(\gamma(g)), \rho(\gamma(h))}(D) . \\
\bar{c} & \mapsto \overline{\rho(\gamma(c))}=\overline{(\rho \circ \gamma)(c)}
\end{aligned}
$$

Thus $G Q(\rho) \circ G Q(\gamma)=G Q(\rho \circ \gamma)$
Now suppose $\rho, \gamma \in \operatorname{Hom}_{\text {IPCog }}(C, D)$ are such that $\rho \sim \gamma$, as in Lemma 3.1.2. We will show that $G Q(\rho)=G Q(\gamma)$. Since $(\rho-\gamma)\left(C_{0}\right)=0$ and $C_{0}=k G(C)$, the vertex maps of $G Q(\rho)$ and $G Q(\gamma)$ have to coincide. Write this map as $\varphi_{0}: G(C) \rightarrow G(D)$. Moreover, the relation $(\rho-\gamma)\left(C_{1}\right) \subseteq D_{0}$ implies that for any $c \in P_{g, h}(C)$ we have $(\rho-\gamma)(c) \in k\left(\varphi_{0}(h)-\varphi_{0}(g)\right)$. Thus, for each pair $g, h \in G(C)$ the arrow maps from $\bar{P}_{g, h}(C)$ to $\bar{P}_{\varphi_{0}(g), \varphi_{0}(h)}(D)$ of $G Q(\rho)$ and $G Q(\gamma)$ are identical. Hence $G Q(\rho)=G Q(\gamma)$.

Thus, the assignment $\mathscr{G} \mathscr{Q}(C)=G Q(C)$ and $\mathscr{G} \mathscr{Q}(\rho])=G Q(\rho)$ for any coalgebra $C \in \operatorname{IPCog}$ and any morphism $[\rho] \in \operatorname{Hom}_{\mathbf{I P C o g}_{\sim}}(C, D)$, where $\rho \in H^{\operatorname{Hom}}{ }_{\mathbf{I P C o g}}(C, D)$ is any representative of $[\rho]$, define a covariant functor

$$
\mathscr{G} \mathscr{Q}(-): \mathrm{IPCog}_{\sim} \rightarrow \text { IVquiv }
$$

such that the following diagram commutes

3.4 Adjunction

In this Section, we will prove that $\mathscr{G} \mathscr{Q}(-)$ is left adjoint to $\mathscr{K}^{\square}[-]$.
Consider the function

$$
\begin{aligned}
& \eta_{C, V Q}: \operatorname{Hom}_{\mathbf{I P C o g}_{\sim}}\left(C, \mathscr{K}^{\square}[V Q]\right) \rightarrow \operatorname{Hom}_{\text {IVquiv }}(\mathscr{G} \mathscr{Q}(C), V Q) \\
& {[\rho] \mapsto \varphi }
\end{aligned}
$$

where φ is given by:

$$
\begin{aligned}
\varphi_{0}: G(C) & \rightarrow V Q_{0} \\
g & \mapsto \rho(g)
\end{aligned}
$$

and for each pair $g, h \in G(C)$,

$$
\begin{aligned}
\varphi_{g, h}: \bar{P}_{g, h}(C) & \rightarrow V Q_{\varphi_{0}(g), \varphi_{0}(h)}, \\
\bar{c} & \mapsto\left(\pi_{1} \circ \rho\right)(c)
\end{aligned}
$$

where $\bar{c}=c+k(h-g)$ is the coset of $k(h-g)$ in $P_{g, h}(C), \pi_{1}: \operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right) \rightarrow V Q_{1}$ is the canonical projection and ρ is any representative of $[\rho]$.

Lemma 3.4.1. $\eta_{C, V Q}$ is well defined.
Proof. Since $\operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)$ is a pointed coalgebra (see Example 2.2.8) and

$$
\left(\operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)\right)_{0}=\left(k V Q_{0}\right)_{0}=k V Q_{0}=k G\left(\operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)\right),
$$

we have that $G\left(\operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)\right)=V Q_{0}$. Thus, by Lemma 1.1.9, for each $g \in G(C)$ we have $\rho(g) \in V Q_{0}$.

Moreover,

$$
\left(\operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)\right)_{1}=k V Q_{0} \oplus V Q_{1}=k V Q_{0} \oplus\left(\bigoplus_{e, f \in V Q_{0}} V Q_{e, f}\right)
$$

and for any element $m \in V Q_{e, f}$ the comultiplication Δ of $\operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)$ gives

$$
\Delta(m)=m \otimes e+f \otimes m .
$$

Hence, $P_{e, f}\left(\operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)\right) \cap V Q_{1}=V Q_{e, f}$ and, therefore,

$$
P_{e, f}\left(\operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)\right)=k(f-e) \oplus V Q_{e, f} .
$$

Thus, there is an isomorphism between $\bar{P}_{e, f}\left(\operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)\right)$ and $V Q_{e, f}$ given by

$$
\begin{aligned}
\bar{P}_{e, f}\left(\operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)\right) & \rightarrow V Q_{e, f} . \\
\bar{b} & \mapsto \pi_{1}(b)
\end{aligned}
$$

Since, by Lemma 1.1.9,

$$
\rho\left(P_{g, h}(C)\right) \subseteq P_{\rho(g), \rho(h)}\left(\operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)\right),
$$

we have that $\varphi_{g, h}$ is well defined and so $\eta_{C, V Q}$ is well defined.
Lemma 3.4.2. $\eta_{C, V Q}$ is a bijection.
Proof. Injectivity.
Suppose $[\rho],[\sigma] \in \operatorname{Hom}_{\text {IPCog }} / \sim\left(C, k^{\square}[V Q]\right)$, are such that $\eta_{C, V Q}([\rho])=\varphi=$ $\eta_{C, V Q}([\sigma])$.

For $c \in C_{0}$, write $c=\sum_{g \in G(C)} \lambda_{g} g$, with $\lambda_{g} \in k$ for each $g \in G(C)$. We have

$$
\begin{aligned}
\rho(c)=\rho\left(\sum_{g \in G(C)} \lambda_{g} g\right) & =\sum_{g \in G(C)} \lambda_{g} \rho(g) \\
& =\sum_{g \in G(C)} \lambda_{g} \varphi_{0}(g) \\
& =\sum_{g \in G(C)} \lambda_{g} \sigma(g) \\
& =\sigma\left(\sum_{g \in G(C)} \lambda_{g} g\right)=\sigma(c) .
\end{aligned}
$$

Thus $(\rho-\sigma)\left(C_{0}\right)=0$.
If $c \in C_{1}$, write $c=\sum_{g, h \in G(C)} c_{g, h}+\omega$, where for each $g, h \in G(C)$ we have
$c_{g, h} \in P_{g, h}(C)$ and $\omega \in C_{0}$, then

$$
\begin{aligned}
\left(\pi_{1} \circ \rho\right)(c) & =\left(\pi_{1} \circ \rho\right)\left(\sum_{g, h \in G(C)} c_{g, h}+\omega\right) \\
& =\sum_{g, h \in G(C)}\left(\pi_{1} \circ \rho\right)\left(c_{g, h}\right)+\left(\pi_{1} \circ \rho\right)(\omega) \\
& =\sum_{g, h \in G(C)} \varphi_{g, h}\left(c_{g, h}\right)+0 \\
& =\sum_{g, h \in G(C)}\left(\pi_{1} \circ \sigma\right)\left(c_{g, h}\right)+\left(\pi_{1} \circ \sigma\right)(\omega) \\
& =\left(\pi_{1} \circ \sigma\right)\left(\sum_{g, h \in G(C)} c_{g, h}+\omega\right) \\
& =\left(\pi_{1} \circ \sigma\right)(c)
\end{aligned}
$$

and hence $\left(\pi_{1} \circ(\rho-\sigma)\right)\left(C_{1}\right)=0$. Since $\rho\left(C_{1}\right) \subseteq\left(k^{\square}[V Q]\right)_{1}=k V Q_{0} \oplus V Q_{1}$ and $\pi_{1}: k^{\square}[V Q] \rightarrow V Q_{1}$ is the canonical projection, we have that $(\rho-\sigma)\left(C_{1}\right) \subseteq k V Q_{0}=$ $\left(k^{\square}[V Q]\right)_{0}$. Therefore, $\rho \sim \sigma$ and so $[\rho]=[\sigma]$.

Surjectivity.

Suppose $\varphi \in \operatorname{Hom}_{\text {IVquiv }}(\mathscr{G} \mathscr{Q}(C), V Q)$ with the vertex map

$$
\varphi_{0}: G(C) \rightarrow V Q_{0}
$$

and the arrow maps

$$
\varphi_{g, h}: \bar{P}_{g, h}(C) \rightarrow V Q_{\varphi_{0}(g), \varphi_{0}(h)},
$$

for each $g, h \in G(C)$.
Let $\pi_{0}^{\prime}: C \rightarrow C_{0}$ be the canonical projection of coalgebras (see Proposition 2.1.8) and $\bar{\varphi}_{0}: C_{0} \rightarrow k V Q_{0}$ the linear extension of φ_{0}.

The map

$$
\begin{aligned}
f_{0}: C & \rightarrow k V Q_{0} \\
c & \mapsto\left(\bar{\varphi}_{0} \circ \pi_{0}^{\prime}\right)(c)
\end{aligned}
$$

is a coalgebra homomorphism (see the considerations before Lemma 3.2.1).
Let $\iota: C \rightarrow \operatorname{Cot}_{C_{0}}\left(C_{1} / C_{0}\right)$ be the embedding as in Theorem 2.2.9. Thus $\iota\left(C_{1}\right)=$ $C_{0} \oplus C_{1} / C_{0}$ and the composition

$$
\pi_{1}^{\prime} \circ \iota: C \rightarrow C_{1} / C_{0},
$$

is surjective, where $\pi_{1}^{\prime}: \operatorname{Cot}_{C_{0}}\left(C_{1} / C_{0}\right) \rightarrow C_{1} / C_{0}$ is the canonical projection.
For any $b \in \operatorname{Cot}_{C_{0}}\left(C_{1} / C_{0}\right)$ write $\pi_{1}^{\prime}(b)=\sum_{g, h \in G(C)} \bar{b}_{g, h}$, where each $\bar{b}_{g, h} \in \bar{P}_{g, h}(C)$. Define the map

$$
\left.\begin{array}{rl}
f_{1}: C & \rightarrow V Q_{1} \\
c & \mapsto \sum_{g, h \in G(C)} \varphi_{g, h}(\overline{\iota(c)} \\
g, h
\end{array}\right)
$$

Then f_{1} is a bicomodule homomorphism of $k V Q_{0}-k V Q_{0}$-bicomodules and $f_{1}\left(C_{0}\right)=$ 0 . Thus, by the universal property of the cotensor coalgebra, Lemma 1.3.9, there exists a unique morphism of coalgebras $f: C \rightarrow \operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)$ such that $\pi_{i} \circ f=f_{i}$ for $i \in\{0,1\}$, where $\pi_{i}: \operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right) \rightarrow V Q_{1}^{\square_{i}}$ is the canonical projection. Injectivity of f follows in a similar way done in Lemma 3.2.1.

Now, if $[f]$ is the congruence class of f in $\operatorname{Hom}_{\mathbf{I P C o g} / \sim}\left(C, \operatorname{Cot}_{k V Q_{0}}\left(V Q_{1}\right)\right)$, then $\eta_{C, V Q}([f])=\phi$ is given by the maps

$$
\begin{aligned}
\phi_{0}: G(C) & \rightarrow V Q_{0} \\
g & \mapsto f(g) \\
\phi_{g, h}: \bar{P}_{g, h}(C) & \rightarrow V Q_{\phi(g), \phi(h)} \\
\bar{c} & \mapsto\left(\pi_{1} \circ f\right)(c)
\end{aligned}
$$

However, since $f\left(C_{0}\right) \subseteq k V Q_{0}$, for any $g \in G(C)$ we have

$$
\begin{aligned}
f(g)=\left(\pi_{0} \circ f\right)(g) & =f_{0}(g) \\
& =\left(\bar{\varphi}_{0} \circ \pi_{0}^{\prime}\right)(g) \\
& =\bar{\varphi}_{0}\left(\pi_{0}^{\prime}(g)\right) \\
& =\bar{\varphi}_{0}(g)=\varphi_{0}(g)
\end{aligned}
$$

and for any $\bar{c} \in \bar{P}_{g, h}(C)$ we have

$$
\iota(c) \in P_{\iota(g), \iota(h)}\left(\operatorname{Cot}_{C_{0}}\left(C_{1} / C_{0}\right)\right)=P_{g, h}\left(\operatorname{Cot}_{C_{0}}\left(C_{1} / C_{0}\right)\right) \subseteq C_{0} \oplus \bar{P}_{g, h}(C)
$$

Thus

$$
\begin{aligned}
\left(\pi_{1} \circ f\right)(c)=f_{1}(c) & =\sum_{g^{\prime}, h^{\prime} \in G(C)} \varphi_{g^{\prime}, h^{\prime}}\left(\overline{\iota(c)}_{g^{\prime}, h^{\prime}}\right) \\
& =\varphi_{g, h}(\overline{\iota(c)})+\sum_{g^{\prime}, h^{\prime} \in G(C)} \varphi_{g^{\prime}, h^{\prime}}(\overline{0}) \\
& =\varphi_{g, h}(\bar{c})
\end{aligned}
$$

Therefore, $\eta_{C, V Q}([f])=\varphi$

Now the following two lemmas show naturality of η.
Lemma 3.4.3. Fix a coalgebra C. The map

$$
\eta_{C, V Q}: \operatorname{Hom}_{\mathbf{I P C o g}_{\sim}}\left(C, \mathscr{K}^{\square}[V Q]\right) \rightarrow \operatorname{Hom}_{\mathbf{I V q u i v}}(\mathscr{G} \mathscr{Q}(C), V Q)
$$

is the component at $V Q$ of a natural transformation

$$
\eta_{C}: \operatorname{Hom}_{\mathbf{I P C o g}_{\sim}}\left(C, \mathscr{K}^{\square}[-]\right) \rightarrow \operatorname{Hom}_{\mathbf{I V q u i v}}(\mathscr{G} \mathscr{Q}(C),-)
$$

Proof. Let $\gamma \in \operatorname{Hom}_{\text {IVquiv }}(V Q, V R)$. We need to confirm that the diagram

commutes. Consider $[f] \in H_{\text {IPCog }} / \sim\left(C, \mathscr{K}^{\square}[V Q]\right)$ and f any representative.
We will show that the vertex map and the arrow maps of the two Vquiver maps $\eta_{C, V R}\left(\mathscr{K}^{\square}[\gamma] \circ[f]\right)$ and $\gamma \circ \eta_{C, V Q}([f])$ are equal.

On one hand we have

$$
\begin{aligned}
\eta_{C, V R}\left(\mathscr{K}^{\square}[\gamma] \circ[f]\right)_{0}: G(C) & \rightarrow V R_{0} \\
g & \mapsto\left(k^{\square}[\gamma] \circ f\right)(g)
\end{aligned}
$$

where, for $g \in G(C)$,

$$
\begin{aligned}
\left(k^{\square}[\gamma] \circ f\right)(g) & =\left(\bar{\gamma}_{0} \circ \pi_{0}^{\prime}\right)(f(g)) \\
& =\bar{\gamma}_{0}\left(\pi_{0}^{\prime}(f(g))\right) \\
& =\bar{\gamma}_{0}(f(g)) \\
& =\gamma_{0}(f(g)) \\
& =\left(\gamma_{0} \circ f\right)(g) .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\left(\gamma \circ \eta_{C, V Q}([f])\right)_{0}: G(C) & \rightarrow V R_{0} \\
g & \mapsto\left(\gamma_{0} \circ f\right)(g)
\end{aligned}
$$

Thus the vertex maps coincide.

Now consider

$$
\begin{aligned}
\eta_{C, V Q}\left(\mathscr{K}^{\square}[\gamma] \circ[f]\right)_{g, h}: \bar{P}_{g, h}(C) & \rightarrow V R_{\gamma_{0}(f(g)), \gamma_{0}(f(h))} \\
\bar{c} & \mapsto \pi_{1} \circ\left(k^{\square}[\gamma] \circ f\right)(c)
\end{aligned}
$$

where, for $\bar{c} \in \bar{P}_{g, h}(C)$, we have $f(c) \in k V Q_{0} \oplus V Q_{f(g), f(h)}$ and so

$$
\begin{aligned}
\pi_{1} \circ\left(k^{\square}[\gamma] \circ f\right)(c) & =\left(\pi_{1} \circ k^{\square}[\gamma]\right)(f(c)) \\
& =\sum_{g^{\prime}, h^{\prime} \in V R_{0}} \gamma_{g^{\prime}, h^{\prime}}(\overline{f(c)}) \\
& =\gamma_{f(g), f(h)}(\overline{f(c)}) \\
& =\gamma_{f(g), f(h)} \circ\left(\pi_{1} \circ f\right)(c) .
\end{aligned}
$$

However,

$$
\begin{aligned}
\left(\gamma \circ \eta_{C, V Q}([f])\right)_{g, h}: \bar{P}_{g, h}(C) & \rightarrow V R_{\gamma_{0}(f(g)), \gamma_{0}(f(h))} . \\
\bar{c} & \mapsto \gamma_{f(g), f(h)} \circ\left(\pi_{1} \circ f\right)(c)
\end{aligned}
$$

Thus $\eta_{C, V Q}\left(\mathscr{K}^{\square}[\gamma] \circ[f]\right)=\gamma \circ \eta_{C, V R}([f])$.
Lemma 3.4.4. Fix a Vquiver VQ. The map

$$
\eta_{C, V Q}: \operatorname{Hom}_{\mathbf{I P C o g}_{\sim}}\left(C, \mathscr{K}^{\square}[V Q]\right) \rightarrow \operatorname{Hom}_{\mathbf{I V q u i v}}(\mathscr{G} \mathscr{Q}(C), V Q)
$$

is the component at C of a natural transformation

$$
\eta_{V Q}: \operatorname{Hom}_{\mathbf{I P C o g}_{\sim}}\left(-, \mathscr{K}^{\square}[V Q]\right) \rightarrow \operatorname{Hom}_{\mathbf{I V q u i v}}(\mathscr{G} \mathscr{Q}(-), V Q)
$$

Proof. Let $[\rho] \in \operatorname{Hom}_{\text {IPCog }_{\sim}}(D, C)$ and ρ any representative. We need to confirm that the diagram

commutes. Consider $[f] \in \operatorname{Hom}_{\mathrm{IPCog} / \sim}\left(C, \mathscr{K}^{\square}[V Q]\right)$ and f any representative.
We must check if $\left(\eta_{D, V Q}([f] \circ[\rho])\right)_{0}=\left(\eta_{C, V Q}([f]) \circ \mathscr{G} \mathscr{Q}(\rho)\right)_{0}$ and for any $g, h \in$ $G(C),\left(\eta_{D, V Q}([f] \circ[\rho])\right)_{g, h}=\left(\eta_{C, V Q}([f]) \circ \mathscr{G} \mathscr{Q}(\rho)\right)_{g, h}$.

We have as follows

$$
\begin{aligned}
\left(\eta_{C, V Q}([f]) \circ \mathscr{G} \mathscr{Q}(\rho)\right)_{0}: G(C) & \rightarrow V Q_{0} \\
g & \mapsto f(\rho(g))
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\eta_{D, V Q}([f] \circ[\rho])\right)_{0}: G(C) & \rightarrow V Q_{0} \\
g & \mapsto(f \circ \rho)(g)
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
\left(\eta_{C, V Q}([f]) \circ \mathscr{G} \mathscr{Q}(\rho)\right)_{g, h}: \bar{P}_{g, h}(C) & \rightarrow V Q_{f(\rho(g)), f(\rho(h))} \\
\bar{c} & \mapsto\left(\pi_{1} \circ f\right)(\rho(c))
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\eta_{D, V Q}([f] \circ[\rho])\right)_{g, h}: \bar{P}_{g, h}(C) & \rightarrow V Q_{f(\rho(g)), f(\rho(h))} \\
\bar{c} & \mapsto\left(\pi_{1} \circ(f \circ \rho)\right)(c)
\end{aligned}
$$

Thus $\eta_{C, V Q}([f]) \circ \mathscr{G} \mathscr{Q}(\rho)=\eta_{D, V Q}([f] \circ[\rho])$.
This gives the following
Theorem 3.4.5. The triple $\left\langle\mathscr{G} \mathscr{Q}, \mathscr{K}^{\square}, \eta\right\rangle$ is an adjunction between $\mathbf{I P C o g}_{\sim}$ and IVquiv.

Examples 3.4.6. Consider the path coalgebra $C=k^{\square} Q$ of the quiver

$$
a \xrightarrow{\delta} b
$$

(see Example 2.3.4 (i)) and the Vquiver $V Q$ given by $V Q_{0}=\left\{e_{1}, e_{2}, e_{3}\right\}$ and $V Q_{1}=$ $V Q_{e_{1}, e_{2}} \oplus V Q_{e_{2}, e_{3}} \oplus V Q_{e_{1}, e_{3}}$, with $V Q_{e_{i}, e_{j}}=k$, for $j>i$. Write $V Q_{e_{1}, e_{2}}=<\beta>$, $V Q_{e_{2}, e_{3}}=<\gamma>$ and $V Q_{e_{1}, e_{3}}=<\alpha>$.

The Gabriel Vquiver of $C, \mathscr{G} \mathscr{Q}(C)$ is given by $\mathscr{G} \mathscr{Q}(C)_{0}=\{a, b\}$ and $\mathscr{G} \mathscr{Q}(C)_{1}=$ $\mathscr{G} \mathscr{Q}(C)_{a, b}=<\bar{\delta}>$.

If $\varphi \in \operatorname{Hom}_{\text {IVquiv }}(\mathscr{G} \mathscr{Q}(C), V Q)$ then the image of $\bar{\delta}$ by $\varphi_{a, b}$ must be one of the following

$$
\varphi_{a, b}(\bar{\delta})=\left\{\begin{array}{l}
\lambda \alpha \\
\lambda \beta \\
\lambda \gamma
\end{array}\right.
$$

Note that φ_{0} is completely determined by $\varphi_{a, b}: \bar{P}_{a, b}(\mathscr{G} \mathscr{Q}(C)) \rightarrow V Q_{\varphi_{0}(a), \varphi_{0}(b)}$.
Now, the Path Coalgebra of $V Q, \mathscr{K}^{\square}[V Q]$, is a pointed coalgebra with the set of group-like elements $G\left(\mathscr{K}^{\square}[V Q]\right)=\left\{e_{1}, e_{2}, e_{3}\right\}$ and the sets of primitive elements $P_{e_{1}, e_{2}}\left(\mathscr{K}^{\square}[V Q]\right)=<\beta, e_{2}-e_{1}>, P_{e_{2}, e_{3}}\left(\mathscr{K}^{\square}[V Q]\right)=<\gamma, e_{3}-e_{2}>$, and $P_{e_{1}, e_{3}}\left(\mathscr{K}^{\square}[V Q]\right)=<\alpha, e_{3}-e_{1}>$. There are no other primitive elements. Since injective coalgebra homomorphisms take non trivial primitive elements to non trivial primitive elements (see Lemma 1.1.9), for a given coalgebra homomorphism ρ such that $[\rho] \in \operatorname{Hom}_{\mathbf{I P C o g}_{\sim}}\left(C, \mathscr{K}^{\square}[V Q]\right)$ we have that the image of δ by ρ must be one of the following

$$
\rho(\delta)=\left\{\begin{array}{l}
\lambda \alpha+\mu\left(e_{3}-e_{1}\right) \\
\lambda \beta+\mu\left(e_{2}-e_{1}\right) \\
\lambda \gamma+\mu\left(e_{3}-e_{2}\right)
\end{array}\right.
$$

By Example 3.1.4, for any such ρ given by $\rho(\delta)=\lambda \theta+\mu\left(e_{j}-e_{i}\right)$, we have $\rho \sim \rho^{\prime}$, where ρ^{\prime} is given by $\rho^{\prime}(\delta)=\lambda \theta$. Now the isomorphism $\operatorname{Hom}_{\mathbf{I V q u i v}}(\mathscr{G} \mathscr{Q}(C), V Q) \cong$ $H o m_{\mathbf{I P C o g}_{\sim}}\left(C, \mathscr{K}^{\square}[V Q]\right)$ follows easily.

Remark 3.4.7. An immediately conclusion one can take from Theorem 3.4.5 is that any pointed coalgebra C is isomorphic to a subcoalgebra of $\mathscr{K}^{\square}[\mathscr{G} \mathscr{Q}(C)]$.

Bibliography

[Abe] Abe E., Hopf algebras, Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka. Cambridge Tracts in Mathematics, 74. Cambridge University Press, Cambridge-New York, 1980. xii+284 pp. ISBN: 0-521-22240-0
[ASS] Assem I., and Simson D., Skowronski A., Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory, London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge (2006).
[Awo] Awodey S., Category theory, Oxford Logic Guides, 49. The Clarendon Press, Oxford University Press, New York, 2006. xii+256 pp. ISBN: 0-19-856861-4; 978-0-19-856861-2
[CHZ] Chen X., Huang H., Zhang P., Dual Gabriel theorem with applications, Sci. China Ser. A 49 (2006), NO. 1, 9-26.
[CM] Chin W., Musson, I. M., The coradical filtration for quantized enveloping algebras [J. London Math. Soc. 53 (1996), no. 1, 50-62; MR1362686]. J. London Math. Soc. (2) 61 (2000), no. 1, 319-320.
[DNR] Dascalescu S., Nastasescu C., Raianu S., Hopf algebras. An introduction, Monographs and Textbooks in Pure and Applied Mathematics, 235. Marcel Dekker, Inc., New York, 2001. x+401 pp. ISBN: 0-8247-0481-9
[IM] Iusenko, K., MacQuarrie, J. W., Path algebra as a left adjoint functor. Manuscript in preparation.
[Mon] Montgomery S., Hopf Algebras and their Action on Rings, AMS, CBMS NO. 82 (1993).
[Mac] Mac Lane S., Categories for the working mathematician, second edition. Graduate Texts in Mathematics, 5. Springer-Verlag, New York, 1998. xii+314 pp. ISBN: 0-387-98403-8
[Sim] Simson D., Coalgebras of tame comodule type, comodule categories, and a tamewild dichotomy problem, Representations of algebras and related topics, 561-660, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011.
[Swe] Sweedler M. E., Hopf algebras, Mathematics Lecture Note Series W. A. Benjamin, Inc., New York 1969 vii+336 pp.
[Woo] Woodcock D., Some categorical remarks on the representation theory of coalgebras, Comm. Algebra 25 (1997), no. 9, 2775-2794

