
Path coalgebra as a right adjoint
functor

Samuel Amador dos Santos Quirino

Departamento de matemática
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Abstract

We define a certain variant of the category of quivers and construct the

path coalgebra as a functor, the main tool for this process being the uni-

versal property of cotensor coalgebras. Then we construct a functor from

the category of pointed coalgebras to this category of quivers, based on the

Gabriel quiver of pointed coalgebras. With a relation on the morphisms

of the category of pointed coalgebras we obtain an adjunction between

these two functors.
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Introduction

There is a well known and very useful correspondence between finite dimensional

algebras and quivers.

A quiver Q = (Q0, Q1) is an oriented graph with the set Q0 of vertices and the set

Q1 of arrows. A path b in the quiver Q is the formal composition of arrows. For each

vertex i ∈ Q0 we associate a stationary path ei of length 0. We denote by Ql the set

of all paths in Q of length l. For instance, the set of arrows Q1 are paths of length 1.

For a fixed field k, the path algebra kQ of the quiver Q, is a graded k-algebra

with direct sum decomposition

kQ =
⊕
l≥0

kQl,

and the obvious addition. The multiplication is given by concatenation of the paths

when it makes sense and 0 otherwise.

It is known that (see [ASS, II.1] for details)

• if Q0 is finite, then the stationary paths form a complete set of primitive or-

thogonal idempotents of kQ;

• kQ has identity element if and only if Q0 is finite. In this case
∑

i∈Q0
ei is the

identity element of kQ;

• kQ is finite dimensional if and only if Q is finite and acyclic.

In the other direction, given a finite dimensional basic algebra, A, one can define

a quiver (the Gabriel quiver of A). The vertices will be a complete set of primitive

orthogonal idempotents, Q0 = {e1, e2, · · · , en}. The arrows between two vertices

e, f ∈ Q0 are a basis of the vector space e J(A)
J2(A)

f , where J(A) is the Jacobson radical

of A. In this way, Q = (Q0, Q1) defines a quiver.

The path algebra over Q can be defined by a universal property similar to universal

properties of free objects (see [ASS, Theorem II.1.8]). That suggests there is a stronger

relationship between these two categories.
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The operator that takes finite quivers to their path algebra is already a functor,

but the Gabriel quiver construction is not, since one has many choices to make in the

process. The first problem is that arrows of the Gabriel quiver correspond to a choice

of basis and vertices correspond to a choice of a complete set of primitive orthogonal

idempotents.

On [IM], Iusenko and MacQuarrie worked out a solution for this problem by

considering a certain variant of the category of quivers, namely Vquivers, that instead

of a set of arrows between vertices, we have vector spaces. Moreover, as an alternative

for the choice of a complete set of primitive orthogonal idempotents we have a unique

set of orbits of these elements. These techniques make it possible to construct functors

between the category of finite dimensional pointed algebras and the category of finite

Vquivers. Furthermore, under a specific relation on the morphisms of the category of

algebras, the Path Algebra functor is a left adjoint of the Gabriel quiver functor.

In this dissertation, we dualize this theory for coalgebras. In a certain way we

obtain a generalization, since there is no need for the restriction to finite dimensional

coalgebras.

Chapter 0 contains well-known preliminary material: the basics of category theory,

the universal property of quotient vector spaces and the First Isomorphism Theorem.

Chapters 1 and 2 contain standard definitions and results regarding coalgebras

and related structures. Chapter 1 contains facts that are easily proved from the

definitions, while Chapter 2 contains more powerful results.

Chapter 3 consists of the main results of this research. In this chapter we construct

the path coalgebra and the Gabriel quiver as functors and under a quotient on the

category of pointed coalgebras we obtain an adjunction between these functors.
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Chapter 0

Some Category Theory

In this Chapter we will state standard definitions from Category Theory and well

known results from Linear Algebra.

0.1 Standard definitions

Definition 0.1.1. A category C consists of a class of objects and for each pair of

objects A,B a set HomC(A,B) of morphisms from A to B satisfying

(i) the composition law : if f ∈ HomC(A,B) and g ∈ HomC(B,C), then g ◦ f ∈
HomC(A,C);

(ii) for every object A of C there is an identity morphism of A, 1A : A→ A;

(iii) the associativity axiom: if f ∈ HomC(A,B), g ∈ HomC(B,C) and h ∈
HomC(C,D), then the following equality holds:

h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

(iv) the unity law : for every morphism f ∈ HomC(A,B) the following equality

holds:

f ◦ 1A = f = 1B ◦ f ;

where 1A : A→ A is the identity morphism of A and 1B : B → B is the identity

morphism of B.

Definition 0.1.2. A covariant functor F from a category C to a category D is an

assignment between objects and between morphisms such that

(i) F (f : A→ B) = F (f) : F (A)→ F (B);
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(ii) F (g ◦ f) = F (g) ◦ F (f);

(iii) F (1A) = 1F (A).

Definition 0.1.3. A functor F : A → B is an isomorphism if and only if there is a

functor G : B→ A for which both composites G ◦F and F ◦G are identity functors.

Definition 0.1.4. Given two functors F,G : C ⇒ D, a natural transformation

τ : F → G is a function which assigns to each object A ∈ C a morphism τA : F (A)→
G(A) of D in such a way that every morphism f : A→ B in C yields a commutative

diagram

A F (A) G(A)

B, F (B) G(B)

f

τA

F (f) G(f)

τB

In this case, we say that τA : F (A)→ G(A) is natural in A.

Definition 0.1.5. [Mac, iv.1] Let C and D be categories. An adjunction from C to

D is a triple 〈F,G, η〉 : C→ D, where F and G are functors

C D,
F

G

while η is a function which assigns to each pair of objects A ∈ C, B ∈ D a bijection

of sets

η = ηA,B : HomC(A,G(B))→ HomD(F (A), B)

which is natural in A and B. In this case, F is called a left adjoint of G and G is

called a right adjoint of F .

0.2 Linear algebra

Now we will state and prove (even thought it is trivial) two basic theorems for vector

spaces, which are the universal property of quotient spaces and the first isomorphism

theorem. For what comes, there will be equivalent results for coalgebras, comodules

and bicomodules.

Let k be a field, V a k-vector space and W ⊆ V a subspace of V . Denote by

v = v + W = {v + w|w ∈ W} the coset of W . Then, the quotient of V by W ,

V/W = {v|v ∈ V }, is a k-vector space with the operations: v1 + v2 = v1 + v2 and

λv = λv, for v, v1, v2 ∈ V and λ ∈ k. Define the projection π : V → V/W given by

π(v) = v.
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Lemma 0.2.1 (The universal property of the quotient space). Let k, V , W and π

be as above. Then, for any k-vector space Z and any k-linear map ψ : V → Z whose

kernel contains W , there exists a unique k-linear map φ : V/W → Z such that the

following diagram commutes

V V/W

Z

ψ

π

φ

Proof. Let Z be a k-vector space and ψ : V → Z a k-linear map with W ⊆ ker(ψ).

Define φ : V/W → Z to be the map v 7→ ψ(v). Note that φ is well defined since if v1

and v2 are two representatives of v, then there exists w ∈ W such that v1 = v2 + w.

Hence,

ψ(v1) = ψ(v2 + w) = ψ(v2) + ψ(w) = ψ(v2).

The linearity of φ is an immediate consequence of the linearity of ψ. Furthermore,

it is clear from the definition that ψ = φ ◦ π. It remains to show that φ is unique.

Suppose σ : V/W → Z is such that σ ◦ π = ψ = φ ◦ π. Then σ(v) = φ(v) for all

v ∈ V . Since π is surjective, σ = φ.

Let V and W be two k-vector spaces and f : V → W a linear map. We write

im(f) = {f(v)|v ∈ V } the image of f and ker(f) = {v ∈ V |f(v) = 0} the kernel

of f . It is clear that im(f) is a subspace of W and ker(f) is a subspace of V . Let

V/ker(f) be the quotient space and write v for the coset of ker(f). Define the map

f̄ : V/ker(f)→ im(f) given by v 7→ f(v). Observe that f̄ is well defined since for any

two representatives v1 and v2 of v, there exists a ω ∈ ker(f) such that v1 = v2 + ω,

and

f(v1) = f(v2 + ω) = f(v2) + f(ω) = f(v2).

Also f̄(V/ker(f)) = f(V ) = im(f). We claim that f̄ is a bijection. Surjectivity is

direct from the last observation and injectivity is due to the following

ker(f̄) = {v|f̄(v) = 0} = {v|f(v) = 0} = {v|v ∈ ker(f)} = 0.

This gives us

Proposition 0.2.2 (The Fundamental Isomorphism Theorem for vector spaces).

Given a linear map f : V → W of k-vector spaces, there exists a unique linear map

f̄ : V/ker(f)→ im(f) that makes the following diagram
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V W

V/ker(f) im(f)

π

f

f̄

ι

commutative, where π : V → V/ker(f) is the canonical projection and ι : im(f)→ W

is the inclusion.

Proof. It remains to prove the uniqueness of f̄ . Suppose g : V/ker(f) → im(f) is

a linear map such that ι ◦ g ◦ π = f . Then injectivity of ι gives g(v) = f̄(v), and

surjectivity of π shows g = f̄ .
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Chapter 1

On the structure of coalgebras:
part 1

1.1 Coalgebras

Fix an algebraically closed field k. For now on, tensor products ⊗ are over k.

We define a k-coalgebra by dualizing the definition of a k-algebra (associative with

identity) as follows:

Definition 1.1.1. A k-coalgebra C = (C,∆, ε) is a k-vector space C together with

two k-linear maps ∆ : C → C ⊗ C and ε : C → k satisfying the commutative

diagrams:

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆

id⊗∆

∆⊗id

C

k ⊗ C C ⊗ k

C ⊗ C

∆

∼ ∼

ε⊗id id⊗ε

where id : C → C is the identity map and the maps from C to k ⊗ C and from C to

C ⊗ k are the natural isomorphisms c 7→ 1⊗ c and c 7→ c⊗ 1, respectively. The left

diagram is known as the coassociativity of the comultiplication ∆ of C and the right

diagram is known as the counitary property of the counity ε of C.

A subspace S ⊆ C is a subcoalgebra of C if ∆(S) ⊆ S⊗S. In this case, (S,∆|S, ε|S)

is a k-coalgebra.

In order to simplify the notation, we will omit the k whenever there is no danger

of confusion. By abuse of notation we will write 1⊗ c = c and c⊗ 1 = c.
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Definition 1.1.2. Let C = (C,∆C , εC) and D = (D,∆D, εD) be two coalgebras.

A k-linear map f : C → D is a coalgebra homomorphism if the following diagrams

commute:

C D

C ⊗ C D ⊗D

f

∆C ∆D

f⊗f

C D

k

εC

f

εD

Sometimes we will use the Sweedler notation (or sigma notation) [Swe, Section

1.2] for computations, that is, if C is a coalgebra and c ∈ C, we write

∆(c) =
∑
(c)

c(1) ⊗ c(2) =
n∑
i=1

c1i ⊗ c2i

omitting the index i.

Lemma 1.1.3. Let C and D be coalgebras and f : C → D a coalgebra homomor-

phism. If S is any subcoalgebra of C, then f(S) is a subcoalgebra of D.

Proof. If s ∈ S, then ∆C(s) =
∑

(s) s(1) ⊗ s(2) ⊆ S ⊗ S, and

∆D(f(s)) =(f ⊗ f)∆C(s)

=(f ⊗ f)
∑
(s)

s(1) ⊗ s(2)

=
∑
(s)

f(s(1))⊗ f(s(2)) ⊆ f(S)⊗ f(S).

Lemma 1.1.4. Let A, B, and C be coalgebras and f : A → B and g : B → C be

coalgebra homomorphisms. Then g ◦ f : A→ C is a coalgebra morphism.

Proof. For any a ∈ A we have

∆C(g ◦ f)(a) = ∆C(g(f(a)))

= (g ⊗ g)(∆B(f(a))

= (g ⊗ g)(f ⊗ f)(∆A(a))

= (g ◦ f ⊗ g ◦ f)(∆A(a))
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and

εC(g ◦ f)(a) = εC(g(f(a))

= εB(f(a))

= εA(a).

Thus, the result follows.

Taking all k-coalgebras as objects and all coalgebra homomorphisms as morphisms

we have a category, called k-Cog.

Let us see some examples to illustrate this definition.

Examples 1.1.5. (i) Let S be a set and kS be the k-vector space with basis S.

Then kS is a coalgebra with comultiplication and counity defined by

∆(s) = s⊗ s

ε(s) = 1

extended linearly for all s ∈ S.

We must check that kS is indeed a coalgebra. Let c ∈ kS and write c =∑
s∈S λss, where each λs ∈ k. Then

(id⊗∆)∆(c) =(id⊗∆)∆

(∑
s∈S

λss

)

=(id⊗∆)

(∑
s∈S

∆(λss)

)

=(id⊗∆)

(∑
s∈S

λs∆(s)

)

=(id⊗∆)

(∑
s∈S

λss⊗ s

)
=
∑
s∈S

λss⊗∆(s)

=
∑
s∈S

λss⊗ s⊗ s

=
∑
s∈S

λs∆(s)⊗ s

=(∆⊗ id)

(∑
s∈S

λss⊗ s

)
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=(∆⊗ id)∆

(∑
s∈S

λss

)
= (∆⊗ id)∆(c),

and

(id⊗ ε)∆(c) =(id⊗ ε)∆

(∑
s∈S

λss

)

=(id⊗ ε)

(∑
s∈S

λss⊗ s

)
=
∑
s∈S

λss⊗ ε(s)

=
∑
s∈S

λss⊗ 1

=c⊗ 1

=c.

Similarly one can show that (ε⊗ id)∆(c) = c. Moreover, the only possible value

for ε(s) such that ε is a counity of kS is ε(s) = 1 for all s ∈ S.

We have picked an arbitrary element of kS to show the coassociativity of ∆

and the counitary property of ε, however by linearity of both maps it would be

sufficient to show that it works for an arbitrary element of the basis.

(ii) Let H be a vector space with basis {gi, di : i ∈ N}. The comultiplication and

counity given by:

∆(gi) = gi ⊗ gi
∆(di) = gi ⊗ di + di ⊗ gi+1

ε(gi) = 1

ε(di) = 0

extended linearly for all di, gi ∈ H defines a coalgebra H.

By the example above it suffices to confirm the coassociativity of ∆ and the
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counitary property of ε for an element of the base di, with i ∈ N.

(id⊗∆)∆(di) = (id⊗∆)(gi ⊗ di + di ⊗ gi+1)

= gi ⊗∆(di) + di ⊗∆(gi+1)

= gi ⊗ gi ⊗ di + gi ⊗ di ⊗ gi+1 + di ⊗ gi+1 ⊗ gi+1

= ∆(gi)⊗ di +∆(di)⊗ gi+1

= (∆⊗ id)(gi ⊗ di + di ⊗ gi+1)

= (∆⊗ id)∆(di)

and

(id⊗ ε)∆(di) = (id⊗ ε)(gi ⊗ di + di ⊗ gi+1)

= gi ⊗ ε(di) + di ⊗ ε(gi+1)

= 0 + di ⊗ 1

= di.

A similar computation shows that (ε⊗ id)∆(di) = di. Thus H is a coalgebra.

(iii) Let n be a positive integer and MC(n, k) a k-vector space of dimension n2. Let

(eij)1≤i,j≤n be a basis for MC(n, k). With comultiplication and counity defined

by

∆(eij) =
n∑
l=1

eil ⊗ elj

ε(eij) = δij

MC(n, k) becomes a coalgebra, which is called the matrix coalgebra.

Lets confirm the coassociativity and counitary properties for an arbitrary ele-
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ment of the basis, eij.

(id⊗∆)∆(eij) = (id⊗∆)(
n∑
l=1

eil ⊗ elj)

=
n∑
l=1

eil ⊗∆(elj)

=
n∑
l=1

eil ⊗ (
n∑
p=1

elp ⊗ epj)

=
n∑

l,p=1

eil ⊗ elp ⊗ epj

=
n∑
p=1

(
n∑
l=1

eil ⊗ elp)⊗ epj)

=
n∑
p=1

∆(eip)⊗ epj

= (∆⊗ id)(
n∑
p=1

eip ⊗ epj)

= (∆⊗ id)∆(eij)

and

(id⊗ ε)∆(eij) = (id⊗ ε)(
n∑
l=1

eil ⊗ elj)

=
n∑
l=1

eil ⊗ ε(elj)

= eij ⊗ 1

= eij

Similarly (id⊗ ε)∆(eij) = eij and, hence, MC(n, k) is a coalgebra.

(iv) Let V and W be sets and f : V → W an injective function. Define the map

f̄ : kV → kW,∑
v∈V

λvv 7→
∑
v∈V

λvf(v)

where each λv ∈ k and kV and kW are coalgebras defined as in Example 1.1.5

(i). The following computations show that f̄ satisfies the commutative diagrams

15



for coalgebra homomorphisms:

∆kW

(
f̄

(∑
v∈V

λvv

))
=∆kW

(∑
v∈V

λvf(v)

)
=
∑
v∈V

λv∆kW (f(v))

=
∑
v∈V

λvf(v)⊗ f(v)

=(f ⊗ f)

(∑
v∈V

λvv ⊗ v

)

=(f ⊗ f)

(∑
v∈V

λv∆kV (v)

)

=(f ⊗ f)∆kV

(∑
v∈V

λvv

)
,

and

εkW

(
f̄

(∑
v∈V

λvv

))
=
∑
v∈V

λvεkW (f(v))

=
∑
v∈V

λv1

=
∑
v∈V

λvεkV (v).

Thus, f̄ is a coalgebra homomorphism.

Definition 1.1.6. Let C be a coalgebra.

(i) If c ∈ C satisfies ∆(c) = c ⊗ c and ε(c) = 1, then we say that c is a group-

like element of C. We write G(C) := {g ∈ C|∆(g) = g ⊗ g and ε(g) = 1}. The

coalgebra kS in Example 1.1.5 (i) is called the group-like coalgebra of S. A

special case of group-like coalgebra is the group-like subcoalgebra kG(C) of C;

(ii) if g, h ∈ G(C) and c ∈ C is such that ∆(c) = c⊗ g + h⊗ c, then we say that c

is g, h-primitive. The set of all g, h-primitives is denoted by Pg,h(C).

Proposition 1.1.7. Let C be a coalgebra. Then the elements of G(C) are linearly

independent.

Proof. See [DNR, Proposition 1.4.14], [Swe, Proposition 3.2.1] or [Abe, Theorem

2.1.2].
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Suppose that G(C) is not a linearly independent family.

Let n be the smallest natural number for which there exist distinct elements

g, g1, · · · , gn ∈ G(C) such that g =
∑n

i=1 λigi, with λi ∈ k,∀i. If n = 1, then g = λ1g1

and

1 = ε(g) = ε(λ1g1) = λ1ε(g1) = λ1.

Hence g = g1. Thus n ≥ 2. Applying ∆ to g =
∑n

i=1 λigi we obtain

n∑
i=1

λigi ⊗ gi = ∆

(
n∑
i=1

λigi

)
=∆(g) = g ⊗ g =

=

(
n∑
i=1

λigi

)
⊗

(
n∑
j=1

λjgj

)
=

n∑
i,j=1

λiλjgi ⊗ gj.

Consequently

0 =
n∑
i=1

λigi ⊗ gi −
n∑

i,j=1

λiλjgi ⊗ gj

=
n∑
i=1

(λi − λiλi)gi ⊗ gi −
∑
i 6=j

λiλjgi ⊗ gj.

Since {gi}1≤i≤n is a linearly independent set in C, it follows that {gi ⊗ gj}1≤i,j≤n is a

linearly independent set in C ⊗ C. Hence, the equality above shows that λiλj = 0 if

i 6= j and so λi = 0 or λj = 0, contradicting the minimality of n.

Lemma 1.1.8. Let C be a coalgebra. Then, for g, h, g′, h′ ∈ G(C), we have

kG(C) ∩ Pg,h(C) = k(h− g)

and

Pg,h(C) ∩ Pg′,h′(C) =


Pg,h(C), if g′ = g and h′ = h
k(h− g), if g′ = h and h′ = g
0, otherwise

Proof. Consider c ∈ kG(C) ∩ Pg,h(C) and write c =
∑

e∈G(C) λee. Then ∑
e∈G(C)

λee

⊗ g + h⊗

 ∑
e∈G(C)

λee

 =∆

 ∑
e∈G(C)

λee


=
∑

e∈G(C)

λee⊗ e,
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implies that

0 =

 ∑
e∈G(C)

λee

⊗ g + h⊗

 ∑
e∈G(C)

λee

− ∑
e∈G(C)

λee⊗ e

=
∑

e∈G(C)

λee⊗ g +
∑

e∈G(C)

h⊗ λee−
∑

e∈G(C)

λee⊗ e

=
∑

e∈G(C)\{g,h}

λe(e⊗ g + h⊗ e− e⊗ e) + (λh + λg)h⊗ g.

Since {e⊗ f}e,f∈G(C) is a linearly independent set in C ⊗C, by Proposition 1.1.7, we

must have

λee⊗ e =0, ∀e ∈ G(C) \ {g, h}

λee⊗ g =0, ∀e ∈ G(C) \ {g, h}

λeh⊗ e =0, ∀e ∈ G(C) \ {g, h}

(λh + λg)h⊗ g =0.

Hence, λe = 0 ∀e ∈ G(C) \ {g, h} and λh = −λg. Thus,

kG(C) ∩ Pg,h(C) = k(h− g).

Consequently, by the linear independence of the set G(C) and the equality (h− g) =

−(g − h), we have Pg,h(C) ∩ Ph,g(C) ∩ kG(C) = k(h − g) and Pg,h(C) ∩ Pg′,h′(C) ∩
kG(C) = 0, for any (g′, h′) 6= (g, h) or (h, g).

To conclude our claim, it is enough to show that if c ∈ Pg,h(C) \ kG(C), then

c /∈ Pg′,h′ for any g′, h′ ∈ G(C) with g′ 6= g or h′ 6= h.

Suppose that c ∈ Pg′,h′ and write ∆(c) = c′⊗ g′+ h′⊗ c′. Assume, without lost of

generality that g′ 6= g. The counitary property of ε give us

1⊗ c = (ε⊗ id)∆(c) = ε(c)⊗ g + 1⊗ c

= ε(c′)⊗ g′ + 1⊗ c′.

Thus, ε(c) = 0 and c′ = c− ε(c′)g′. Applying ε we obtain

ε(c′) = ε(c)− ε(c′)ε(g′) = −ε(c′).

Hence, ε(c′) = 0 and c′ = c. Now

0 = ∆(c)−∆(c) =c⊗ g + h⊗ c− c⊗ g′ − h′ ⊗ c

=c⊗ g + (h− h′)⊗ c− c⊗ g′.

But this is impossible, since {g, g′, c} are linearly independent. Thus c /∈ Pg′,h′(C).
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Lemma 1.1.9. Let C and D be coalgebras and f : C → D a coalgebra homomor-

phism. Then

(i) f(G(C)) ⊆ G(D);

(ii) f(Pg,h(C)) ⊆ Pf(g),f(h)(D). Moreover, if f is injective and c ∈ Pg,h(C)\k(h−g),

then f(c) ∈ Pf(g),f(h)(D) \ k(f(h)− f(g)).

Proof. Let g ∈ G(C). Then,

∆D(f(g)) =(f ⊗ f)∆C(g)

=(f ⊗ f)(g ⊗ g) = f(g)⊗ f(g)

and

εD(f(g)) = εC(g) = 1.

Thus f(g) ∈ G(D) and (i) is done. Let c ∈ Pg,h(C). Then,

∆D(f(c)) =(f ⊗ f)∆C(c)

=(f ⊗ f)(c⊗ g + h⊗ c) = f(c)⊗ f(g) + f(h)⊗ f(c).

Since f(g), f(h) ∈ G(D) by (i), we get f(c) ∈ Pf(g),f(h)(D).

Consider now f injective and c ∈ Pg,h(C)\k(h− g). If f(c) ∈ k(f(h)− f(g)) then

f(c) = λ(f(h)− f(g)) for some λ ∈ k, but

f(λ(h− g)) = λ(f(h)− f(g)) = f(c)

for c 6= λ(h − g) by hypothesis, which contradicts the injectivity of f . Thus, we

conclude (ii).

1.2 Comodules

Definition 1.2.1. Let C = (C,∆, ε) be a coalgebra. We call a right C-comodule a

pair (M,ρ), where M is a k-vector space, ρ : M → M ⊗ C a morphism of k-vector

spaces such that the following diagrams commute:

M M ⊗ C

M ⊗ C M ⊗ C ⊗ C

ρ

ρ id⊗∆

ρ⊗id

M

M ⊗ k

M ⊗ C

ρ

∼

id⊗ε
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We say that ρ : M →M ⊗ C is the structure map of the right C-comodule M .

A subspace N ⊆M is a subcomodule of M if ρ(N) ⊆ N ⊗C. In this case (N, ρN)

is a right C-comodule, where ρN : N → N ⊗ C is the restriction and corestriction of

ρ to N and N ⊗ C, respectively.

A left C-comodule is defined in a similar fashion.

Definition 1.2.2. Let C be a coalgebra, (M,ρ) and (N, φ) be right C-comodules.

The k-linear map f : M → N is a comodule homomorphism if the following diagram

commutes:

M N

M ⊗ C N ⊗ C

f

ρ φ

f⊗id

Lemma 1.2.3. Let C be a coalgebra, (M,ρ), (N, φ) and (P, ψ) be right C-comodules

and f : M → N , g : N → P comodule homomorphisms. Then g ◦ f : M → P is a

comodule homomorphism.

Proof. For any m ∈M we have

ψ(g ◦ f)(m) = ψ(g(f(m)))

= (g ⊗ id)(φ(f(m))

= (g ⊗ id)(f ⊗ id)(ρ(m))

= (g ◦ f ⊗ id)(ρ(m))

Thus the result follows.

Let C be a coalgebra. Then, the category MC having all right C-comodules

as objects and all comodule homomorphisms as morphisms is well defined. The

morphisms of MC from M to N are usually denoted by Com−C(M,N).

Similarly, CM denotes the category of all left C-comodules and comodule homo-

morphisms.

Proposition 1.2.4. Let C be a coalgebra. Then the categories CM and MCcop
are

isomorphic, where Ccop = (C,∆cop, ε) is the co-opposite coalgebra of C and ∆cop =

T ◦∆, where T : C ⊗ C is the twist map given by T (a⊗ b) = b⊗ a.
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Proof. [DNR, Proposition 2.1.10]

Let M ∈ CM with the structure map ρ : M → C ⊗ M , given by ρ(m) =∑
(m) m(−1) ⊗ m(0), with all m(−1) ∈ C and all m(0) ∈ M . Then, M becomes a

right Ccop-comodule via the structure map ρ′ : M → M ⊗ Ccop, given by ρ′(m) =∑
(m) m(0) ⊗m(−1).

(id⊗ T ◦∆)ρ′(m) =(id⊗ id ◦∆)
∑
(m)

m(0) ⊗m(−1)

=
∑
(m)

m(0) ⊗ (T ◦∆)(m(−1))

=
∑
(m)

m(0) ⊗ T (∆(m(−1)))

=(id⊗ T )
∑
(m)

m(0) ⊗∆(m(−1))

=(id⊗ T )(T ⊗ id(id⊗ T )) ◦ (id⊗ T (T ⊗ id))
∑
(m)

m(0) ⊗∆(m(−1))

=(id⊗ T )(T ⊗ id(id⊗ T ))
∑
(m)

∆(m(−1))⊗m(0)

=(id⊗ T )(T ⊗ id(id⊗ T ))(∆⊗ id)ρ(m)

=(id⊗ T )(T ⊗ id(id⊗ T ))(id⊗ ρ)ρ(m)

=(id⊗ T )(T ⊗ id(id⊗ T ))(id⊗ ρ)
∑
(m)

m(−1) ⊗m(0)

=(id⊗ T )(T ⊗ id(id⊗ T ))
∑
(m)

m(−1) ⊗ ρ(m(0))

=(id⊗ T )(T ⊗ id)
∑
(m)

m(−1) ⊗ ρ′(m(0))

=
∑
(m)

ρ′(m(0))⊗m(−1) = (ρ′ ⊗ id)ρ′(m).

Moreover, if M and N are two left C-comodules and f ∈ ComC−(M,N), then

f ∈ Com−Ccop(M,N), since
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(φ′ ◦ f)(m) =((T ◦ φ) ◦ f)(m)

=(T ◦ (φ ◦ f))(m)

=(T ◦ ((id ◦ f) ◦ ρ))(m)

=T

∑
(m)

m(−1) ⊗ f(m(0))


=
∑
(m)

f(m(0))⊗m(−1) = ((f ⊗ id) ◦ ρ′)(m).

This defines a functor F : CM→MCcop
.

Similarly, we can define a functor G : MCcop → CM by associating to a right

Ccop-comodule M with structure map µ : M → M ⊗ Ccop, µ(m) =
∑
m(0) ⊗m(1), a

structure map of left C-comodule defined by µ′ : M → C ⊗M , µ′(m) =
∑

(m) m(1) ⊗
m(0). It is easy to see that G◦F is the identity functor, since for two left C-comodule

(M,ρ) and (N, φ) and a comodule homomorphism f : M → N we have

(G ◦ F )(M,ρ) = G(F ((M,ρ))) = G((M,T ◦ ρ)) = (M,T ◦ T ◦ ρ) = (M,ρ)

and

(G ◦ F )(f) = G(F (f)) = G(f) = f.

A similar computation shows that F ◦ G is the identity functor in MCcop
. Thus the

functors F and G define an isomorphism of categories.

Remark 1.2.5. Proposition 1.2.4 shows that any result for right C-comodules has

an analogous result for left C-comodules.

Examples 1.2.6. (i) A coalgebra C is a left and a right C-comodule with the

structure map being in both cases the comultiplication of C;

(ii) Let C be a coalgebra, (M,ρ) be a right C-comodule and X a k-vector space.

Then X ⊗ M becomes a right C-comodule with the structure map id ⊗ ρ :

X ⊗M → X ⊗M ⊗ C, since, for any x⊗m ∈ X ⊗M , we have

(id⊗ id⊗∆)(id⊗ ρ)(x⊗m) =(id⊗ id⊗∆)(x⊗ ρ(m))

=x⊗ (id⊗∆)ρ(m)

=x⊗ (ρ⊗ id)ρ(m)

=(id⊗ ρ⊗ id)(x⊗ ρ(m))

=(id⊗ ρ⊗ id)(id⊗ ρ)(x⊗m)
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and

(id⊗ id⊗ ε)(id⊗ ρ)(x⊗m) =(id⊗ id⊗ ε)(x⊗ ρ(m))

=x⊗ (id⊗ ε)ρ(m)

=x⊗m⊗ 1

(iii) Let S be a non-empty set and kS the group-like coalgebra of S. Let (Ms)s∈S be

a family of k-vector spaces and M =
⊕

s∈SMs. Then M is a right kS-comodule

with the structure map ρ : M → M ⊗ kS defined by ρ(ms) = ms ⊗ s extended

linearly for any s ∈ S and ms ∈Ms. In order to check this, we need only analyze

for any element of the basis:

(id⊗∆)ρ(ms) = (id⊗∆)ms ⊗ s

= ms ⊗∆(s)

= ms ⊗ s⊗ s

= ρ(ms)⊗ s

= (ρ⊗ id)(ms ⊗ s)

= (ρ⊗ id)ρ(ms)

and

(id⊗ ε)ρ(ms) = (id⊗ ε)ms ⊗ s

= ms ⊗ ε(s)

= ms ⊗ 1

= ms.

Examples 1.2.7. (i) Let C be a coalgebra, (M,ρ) a right C comodule and N a

subcomodule of M . Then the inclusion map ι : N →M , ι(n) = n for any n ∈ N
is a comodule homomorphism. Let us check this. We know that (N, ρ|N) is a

right C-comodule. Then, for any n ∈ N , we have

ρ(ι(n)) =ρ(n)

=ρ|N(n)

=(ι⊗ id)ρ|N(n),

where the last equality comes from the fact that ρ(N) ⊆ N ⊗ C and the core-

striction of ι to N is the identity;

23



(ii) If C and D are coalgebras and f : C → D is a coalgebra homomorphism,

then (C, (id ⊗ f)∆C) is a right D-comodule and f : C → D is a comodule

homomorphism of D-comodules. First we must confirm that C is a right D-

comodule. Consider any element c ∈ C. Thus,

(id⊗∆D) ◦ ((id⊗ f)∆C)(c) =(id⊗∆D ◦ f)∆C(c)

=(id⊗ (f ⊗ f)∆C)∆C(c) (1)

=(id⊗ f ⊗ f)(id⊗∆C)∆C(c)

=(id⊗ f ⊗ f)(∆C ⊗ id)∆C(c) (2)

=((id⊗ f)∆C ⊗ id)(id⊗ f)∆C(c)

and

(id⊗ εD) ◦ (id⊗ f)∆C(c) =(id⊗ εD ◦ f)∆C(c)

=(id⊗ εC)∆C(c) (3)

=c, (4)

where the steps (1) and (3) are due to f be a coalgebra homomorphism, (2) is

because of the coassociativity of ∆C , and (4) follows from the counitary property

of εC . Hence (C, (id⊗ f)∆C) is a right D-comodule.

Now, for any c ∈ C we have

∆D(f(c)) =(f ⊗ f)∆C(c) (5)

=(f ⊗ id)(id⊗ f)∆C ,

where (5) is due to f being a coalgebra homomorphism. This completes the

proof.

Lemma 1.2.8. Let V and W be two k-vector spaces and X ⊆ V , Y ⊆ W subspaces.

Then (V ⊗ Y ) ∩ (X ⊗W ) = X ⊗ Y .

Proof. [DNR, Lemma 1.4.5].

Corollary 1.2.9. Let C be a coalgebra. If M ⊆ C is a subcomodule of C which is a

left and right C-comodule with the structure map ∆, then M is a subcoalgebra of C.

Proof. If c ∈ ∆(M), then c ∈ (C ⊗M) ∩ (M ⊗ C) and the result follows immediate

from Lemma 1.2.8.
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Lemma 1.2.10. Let V1, V2,W1 and W2 be k-vector spaces and f : V1 → V2 and

g : W1 → W2 be linear maps. Then ker(f ⊗ g) = ker(f)⊗W1 + V1 ⊗ ker(g).

Proof. [DNR, Lemma 1.4.8].

Proposition 1.2.11. Let (M,ρ) and (N, φ) be two right C-comodules and f : M → N

a comodule homomorphism. Then Im(f) is a C-subcomodule of N and Ker(f) is a

C-subcomodule of M .

Proof. [DNR, Proposition 2.1.16].

Since f is a comodule homomorphism we have (f ⊗ id)ρ = φ ◦ f . Then

(f ⊗ id)ρ(Ker(f)) = (φ ◦ f)(Ker(f)) = 0,

which shows that ρ(Ker(f)) ⊆ Ker(f ⊗ id) = Ker(f) ⊗ C, by Lemma 1.2.10, and

hence Ker(f) is a C-subcomodule of M .

Now

φ(Im(f)) = (f ⊗ id)ρ(M) ⊆ Im(f)⊗ C,

which shows that Im(f) is a C-subcomodule of N .

Now we are going to show that the isomorphism theorem works for comodules.

First we need to define the quotient of comodules.

For what follows, consider C a coalgebra, (M,ρ) a right C-comodule and N a

subcomodule of M . Let M/N be the quotient space, and π : M → M/N the

canonical projection, π(m) = m, where m is the coset of N .

Proposition 1.2.12. There exists a unique structure of right C-comodule on M/N

for which π : M →M/N is a comodule homomorphism.

Proof. [DNR, Proposition 2.1.14] The composition (π ⊗ id)ρ : M → M/N ⊗ C is a

linear map such that N ⊆ ker((π ⊗ id)ρ), since

(π ⊗ id)ρ(N) ⊆ (π ⊗ id)(N ⊗ C) ⊆ π(N)⊗ C = 0.

By the universal property of the quotient space, Lemma 0.2.1, it follows that there

exists a unique linear map ρ̄ : M/N →M/N ⊗ C for which the diagram

M M/N

M ⊗ C M/N ⊗ C

π

ρ ρ̄

π⊗id
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is commutative. This map is defined by ρ̄(m) = (π ⊗ id)ρ(m) for any m ∈M . Then

(M/N, ρ̄) is a right C-comodule, since

(id⊗∆)ρ̄(m) =(id⊗∆)(π ⊗ id)(ρ(m))

=(π ⊗∆)(ρ(m))

=(π ⊗ id⊗ id)(id⊗∆)(ρ(m))

=(π ⊗ id⊗ id)(ρ⊗ id)(ρ(m))

=((π ⊗ id)ρ⊗ id)(ρ(m))

=(ρ̄ ◦ π ⊗ id)(ρ(m))

=(ρ̄⊗ id)(π ⊗ id)(ρ(m))

=(ρ̄⊗ id)(ρ̄)(m),

and

(id⊗ ε)ρ̄(m) =(id⊗ ε)(π ⊗ id)ρ(m)

=(π ⊗ id) ∗ id⊗ ε)ρ(m)

=(π ⊗ id)(m⊗ 1)

=m⊗ 1.

If we would have a comodule structure on M/N given by ω : M/N →M/N ⊗C such

that π is a comodule homomorphism, then the diagram obtained by replacing ρ̄ by ω

in the above diagram should be also commutative. Then it would follow that ω = ρ̄

from the universal property of the quotient space.

Remark 1.2.13. The comodule M/N , with the structure given as in the above propo-

sition is called the quotient comodule of M and N .

Theorem 1.2.14 (The fundamental isomorphism theorem for comodules). Let f :

M → N be a comodule homomorphism, π : M →M/Ker(f) the canonical projection,

and ι : Im(f)→ N the inclusion. Then, there exists a unique comodule isomorphism

f̄ : M/Ker(f)→ Im(f) for which the diagram

M N

M/Ker(f) Im(f)

f

π

f̄

ι

is commutative.
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Proof. [DNR, Theorem 2.1.17].

The existence of a unique linear map f̄ : M/Ker(f) → Im(f) making the dia-

gram commutative follows from the fundamental isomorphism theorem for k-vector

spaces, Proposition 0.2.2. We know that f̄ is defined by f̄(m) = f(m) for any

m ∈M/Ker(f). It remains to show that f̄ is a comodule homomorphism. Denoting

by ω = (π⊗id)ρ : M/Ker(f)→M/Ker(f)⊗C and θ = φ|im(f) : Im(f)→ Im(f)⊗C
the maps giving the comodule structures, we have

(f̄ ⊗ id)ω(m) =(f̄ ⊗ id)ω(π(m))

=(f̄ ⊗ id)(π ⊗ id)ρ(m)

=(f ⊗ id)ρ(m)

=φ(f(m))

=θ(f(m))

=θ(f̄(m))

which shows that f̄ is a comodule homomorphism.

1.3 Bicomodules

Definition 1.3.1. Let C and D be two coalgebras. A k-vector space M is called a

D-C-bicomodule if M has a left D-comodule structure µ : M → D ⊗M and a right

C-comodule structure ρ : M →M ⊗ C such that (µ⊗ id)ρ = (id⊗ ρ)µ.

We call N ⊆ M a subbicomodule of M if N is a subcomodule of (M,µ) and a

subcomodule of (M,ρ).

If M and N are two D-C-bicomodules, then a bicomodule homomorphism from

M to N is a linear map f : M → N which is a comodule homomorphism of left

D-comodules and right C-comodules.

In this way we can define a category of D-C-bicomodules that we will denote by
DMC .

Examples 1.3.2. (i) Any coalgebra C is a C-C-bicomodule with the left and right

comodule structures given by the comultiplication.

(ii) If C and D are coalgebras and f : C → D a coalgebra homomorphism, then

(C, (f⊗id)∆C , (id⊗f)∆C) is a D-D-bicomodule and f : C → D is a bicomodule

homomorphism of D-D-bicomodules. Write µ = (f⊗id)∆C and ρ = (id⊗f)∆C .

In Example 1.2.7 (ii) we have that (C, ρ) is a right D-comodule and f : C → D
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is a comodule homomorphism of right D-comodules . One can show that (C, µ)

is a left D-comodule and f : C → D is a comodule homomorphism of left D-

comodules in a very similar way done for its right version and we will not do it

here. We must confirm that (µ⊗ id)ρ = (id⊗ ρ)µ. Let c be any element of C.

Then

(µ⊗ id)ρ(c) =(((f ⊗ id)∆C)⊗ id)((id⊗ f)∆C)(c)

=(((f ⊗ id)∆C)⊗ f)∆C(c)

=(f ⊗ id⊗ f)(∆C ⊗ id)∆C(c)

=(f ⊗ id⊗ f)(id⊗∆C)∆C(c) (1)

=(id⊗ ((id⊗ f)∆C))((f ⊗ id)∆C)(c)

=(id⊗ ρ)µ(c),

where (1) is due to the coassociativity of ∆C .

Lemma 1.3.3. Let C be a coalgebra and for each pair g, h ∈ G(C) let P ′g,h(C) be a

subspace of Pg,h(C) such that

Pg,h(C) = k(h− g)⊕ P ′g,h(C).

Define the linear maps

µ′ : P ′g,h(C)→ kG(C)⊗ P ′g,h(C)

c 7→ h⊗ c

and

ρ′ : P ′g,h(C)→ P ′g,h(C)⊗ kG(C).

c 7→ c⊗ g

Then, the vector space V = kG(C) ⊕
(⊕

g,h∈G(C) P
′
g,h(C)

)
is a kG(C)-kG(C)-

bicomodule with the structure maps given by

µ : V → kG(C)⊗ V

v 7→
∑

g,h∈G(C)

µ′(cg,h) +∆(ω)

and

ρ : V → V ⊗ kG(C)

v 7→
∑

g,h∈G(C)

ρ′(cg,h) +∆(ω)

28



where v =
∑

g,h∈G(C) cg,h + ω, with cg,h ∈ P ′g,h(C), for each g, h ∈ G(C), and ω ∈
kG(C).

Proof. By Lemma 1.1.8, V is well defined. Since the maps µ and ρ are variations of

the structure map of the right kS-comodule M from Example 1.2.6 (iii), we just need

to show that (id⊗ ρ)µ = (µ⊗ id)ρ. Let v =
∑

g,h∈G(C) cg,h + ω and ω =
∑

e∈G(C) λee.

(id⊗ ρ)µ(v) =(id⊗ ρ)µ

 ∑
g,h∈G(C)

cg,h + ω


=(id⊗ ρ)

 ∑
g,h∈G(C)

µ′(cg,h) +∆(ω)


=(id⊗ ρ)

 ∑
g,h∈G(C)

h⊗ cg,h +
∑

e∈G(C)

λee⊗ e



=
∑

g,h∈G(C)

h⊗ ρ′(cg,h) +
∑

e∈G(C)

λee⊗∆(e)

=
∑

g,h∈G(C)

h⊗ cg,h ⊗ g +
∑

e∈G(C)

λee⊗ e⊗ e

=
∑

g,h∈G(C)

µ′(cg,h)⊗ g +
∑

e∈G(C)

λe∆(e)⊗ e

=(µ⊗ id)

 ∑
g,h∈G(C)

cg,h ⊗ g +
∑

e∈G(C)

λee⊗ e


=(µ⊗ id)

 ∑
g,h∈G(C)

ρ′(cg,h) +∆(ω)


=(µ⊗ id)ρ(v).

Thus, (V, µ, ρ) is a kG(C)-kG(C)-bicomodule.

Lemma 1.3.4. Let C be a coalgebra, (M,µ, ρ) a C-C-bicomodule and N ⊆ M a

subbicomodule of M . Then there exists a unique bicomodule structure on the quotient

M/N for which the canonical projection π : M → M/N is a bicomodule homomor-

phism.

Proof. By Proposition 1.2.12, we already have unique left and right comodule struc-

ture maps onM/N for which π is a left and right comodule homomorphism. It remains
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to check that M/N is a C-C-bicomodule. Let µ̄ and ρ̄ be the structure maps of M/N .

Then for any m ∈M we have µ̄◦π(m) = (id⊗π)µ(m) and ρ̄◦π(m) = (π⊗ id)ρ(m).

Thus, for m ∈M/N and any representative m ∈M we have

(id⊗ ρ̄)µ̄(m) =(id⊗ ρ̄)µ̄(π(m))

=(id⊗ ρ̄)(id⊗ π)µ(m) (1)

=(id⊗ ρ̄ ◦ π)µ(m)

=(id⊗ (π ⊗ id)ρ)µ(m) (2)

=(id⊗ π ⊗ id)(id⊗ ρ)µ(m)

=(id⊗ π ⊗ id)(µ⊗ id)ρ(m) (3)

=(id⊗ π)µ⊗ id)ρ(m)

=(µ̄ ◦ π ⊗ id)ρ(m) (4)

=(µ̄⊗ id)(π ⊗ id)ρ(m)

=(µ̄⊗ id)ρ̄ ◦ π(m) (5)

=(µ̄⊗ id)ρ̄(m),

where steps (1) and (4) are due to the definition of µ̄, steps (2) and (5) are due to

the definition of ρ̄, and step (3) is because (M,µ, ρ) is a C-C-bicomodule. Hence

(M/N, µ̄, ρ̄) is a C-C-bicomodule.

Definition 1.3.5. Let C be a coalgebra, M a right C-comodule with comodule

structure ρM : M → M ⊗ C, and N a left C-comodule with comodule structure

ρN : N → C ⊗N . We denote by M2CN the kernel of the morphism

ρM ⊗ id− id⊗ ρN : M ⊗N →M ⊗ C ⊗N.

Then M2CN is a k-subspace of M ⊗ N which is called the cotensor product of the

comodules M and N .

Note that, if (M,ρl, ρr) is a D-C-bicomodule and (N,µl, µr) is a C-E-bicomodule,

then M2CN becomes a D-E-bicomodule with the structure maps ρl⊗ id : M2CN →
D ⊗M2CN and id⊗ µr : M2CN →M2CN ⊗ E.

We will just check that (ρl⊗ id⊗ id)(id⊗µr) = (id⊗ id⊗µr)(ρl⊗ id), since from

Example 1.2.6 (ii) we have that (M2CN, id⊗µr) is a right E-comodule and similarly

(M2CN, ρl ⊗ id) is a left D-comodule. Consider any m⊗ n ∈M2CN . Then

(ρl ⊗ id⊗ id)(id⊗ µr)(m⊗ n) =(ρl ⊗ µr)(m⊗ n)

=(id⊗ id⊗ µr)(ρl ⊗ id)(m⊗ n).
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Thus M2CN ∈ DME whenever M ∈ DMC and N ∈ CME.

What follows are extracts from [DNR, Chapter 2.3] that show some properties of

the cotensor product.

Proposition 1.3.6. (i) If M ∈ MC and N ∈ CM, then M2CC ∼= M as right

C-comodules and C2CN ∼= N as left C-comodules;

(ii) If M ∈MC and N ∈ CM, then M2CN ∼= N2CcopM as linear spaces;

(iii) If C and D are two coalgebras and M ∈ CMD, L ∈MC and N ∈ DM, then we

have a natural isomorphism (L2CM)2DN ∼= L2C(M2DN).

Proof. [DNR, Proposition 2.3.6].

Let C and D be coalgebras and φ : C → D a coalgebra homomorphism. If

(M,ρ) ∈MC , then the map (id⊗ φ)ρ : M →M ⊗D gives M a structure of right D-

comodule (see Example 1.2.7 (ii) and treat ∆C as a right C-comodule structure map).

We denote by Mφ the space M regarded with this structure of right D-comodule. In

this way we construct a left exact functor (since the tensor functor of vector spaces

is exact and the cotensor is a kernel)

(−)φ : MC →MD

M 7→Mφ

If N ∈ MD, we can define the right C-comodule Nφ = N2DC, and in this way we

have a left exact functor

(−)φ : MD →MC

N 7→ Nφ

Proposition 1.3.7. Let φ : C → D be a coalgebra homomorphism. Then, the functor

(−)φ : MC →MD is a left adjoint to the functor (−)φ : MD →MC.

Proof. See [DNR, Proposition 2.3.8] or [Woo, Proposition 1.10].

With the bicomodule and the cotensor product concepts, we can construct a coal-

gebra in a similar way that is done for the tensor algebra (see [CHZ, 1.4] or [Woo,

4.1]).
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Definition 1.3.8. Let (C,∆C , εC) be a coalgebra and (M,ρl, ρr) a C-C-bicomodule.

Write ρl(m) =
∑

(m) m(−1)⊗m(0) and ρr(m) =
∑
m(0)⊗m(1) for every m ∈M , where

each m(0) belongs to M and each m(−1) and m(1) belongs to C. Define M20 = C,

M21 = M and M2n = (M2n−1)2CM , for any n ≥ 2. If m1 ⊗ · · · ⊗mn ∈ M2n , we

write it as m12 · · ·2mn.

We define the cotensor coalgebra CotC(M) as the vector space

CotC(M) =
∞⊕
i=0

M2i ,

with counit ε given by

ε(ω) =

{
εC(ω), ω ∈ C,
0, otherwise

and comultiplication ∆ given as follows:

• for any c ∈ C, we have

∆(c) = ∆C(c);

• and for any m12 · · ·2mn ∈M2n , with (n ≥ 1), we have

∆(m12 · · ·2mn) =
∑
(m1)

((m1)(−1))⊗ ((m1)(0)2m
22 · · ·2mn)

+
n−1∑
i=1

(m12 · · ·2mi)⊗ (mi+12 · · ·2mn)

+
∑
(mn)

(m12 · · ·2mn−12(mn)(0))⊗ ((mn)(1)).

where, if n = 1, we have

∆(m) =
∑
(m)

m(−1) ⊗m(0) +
∑
(m)

m(0) ⊗m(1) = ρl(m) + ρr(m);

In what follows, we will do the standard verification of a coalgebra for CotC(M).

Unfortunately, the computations are quite big. However, the reader could feel free to

skip this calculation in regard of [CHZ, 1.4] and [Woo, 4.1] assert that CotC(M) is

indeed a coalgebra. As usual, we just need to check the coassociativity and the

counitary property for the elements of a basis. For c ∈ C, ∆(c) = ∆C(c) and
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ε(c) = εC(c), so it is done. For m12 · · ·mn ∈M2n , with n ≥ 1, we have

(id⊗∆)∆(m12 · · ·2mn) =(id⊗∆)
∑
(m1)

(m1)(−1) ⊗ ((m1)(0)2m
22 · · ·2mn)

+ (id⊗∆)
n−1∑
i=1

(m12 · · ·2mi)⊗ (mi+12 · · ·2mn)

+ (id⊗∆)
∑
(mn)

(m12 · · ·2mn−12(mn)(0))⊗ (mn)(1)

=
∑
(m1)

(m1)(−1) ⊗∆((m1)(0)2m
22 · · ·2mn)

+
n−1∑
i=1

(m12 · · ·2mi)⊗∆(mi+12 · · ·2mn)

+
∑
(mn)

(m12 · · ·2mn−12(mn)(0))⊗∆((mn)(1)

=
∑
(m1)

∑
((m1)(0))

(m1)(−1) ⊗ ((m1)(0))(−1) ⊗ (((m1)(0))(0)2m
22 · · ·2mn)

+
∑
(m1)

n∑
i=1

(m1)(−1) ⊗ ((m1)(0)2 · · ·2mi)⊗ (mi+12 · · ·2mn)

+
∑
(m1)

∑
(mn)

(m1)(−1) ⊗ ((m1)(0)2 · · ·2mn−12(mn)(0))⊗ (mn)(1)

+
n−1∑
i=1

∑
(mi+1)

(m12 · · ·2mi)⊗ (mi+1)(−1) ⊗ ((mi+1)(0)2 · · ·2mn)

+
n−2∑
i=1

n−1∑
j=i+1

(m12 · · ·2mi)⊗ (mi+12 · · ·2mj)⊗ (mj+12 · · ·2mn)

+
n−1∑
i=1

∑
(mn)

(m12 · · ·2mi)⊗ (mi+12 · · ·2mn−12(mn)(0))⊗ (mn)(1)

+
∑
(mn)

(m12 · · ·2mn−12(mn)(0))⊗∆C((mn)(1))
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=
∑
(m1)

∆C((m1)(−1))⊗ ((m1)(0)2m
22 · · ·2mn) (1)

+
∑
(m1)

n∑
i=1

(m1)(−1) ⊗ ((m1)(0)2 · · ·2mi)⊗ (mi+12 · · ·2mn)

+
∑
(m1)

∑
(mn)

(m1)(−1) ⊗ ((m1)(0)2 · · ·2mn−12(mn)(0))⊗ (mn)(1)

+
n−1∑
i=1

∑
(mi+1)

(m12 · · ·2mi)⊗ ((mi+1)(−1))⊗ ((mi+1)(0)2 · · ·2mn)

+
n−2∑
i=1

n−1∑
j=i+1

(m12 · · ·2mi)⊗ (mi+12 · · ·2mj)⊗ (mj+12 · · ·2mn)

+
n−1∑
i=1

∑
(mn)

(m12 · · ·2mi)⊗ (mi+12 · · ·2mn−12(mn)(0))⊗ (mn)(1)

+
∑
(mn)

∑
((mn)(0))

(m12 · · ·2mn−12((mn)(0))(0))⊗ ((mn)(0))(1) ⊗ (mn)(1), (2)

where on step (1) we use the identity (id ⊗ ρl)ρl = (∆C ⊗ id)ρl and on step (2) we

use the identity (id⊗ ρr)ρr = (ρr ⊗ id)ρr,

=
∑
(m1)

∆C((m1)(−1))⊗ ((m1)(0)2m
22 · · ·2mn)

+
∑
(m1)

n∑
i=1

(m1)(−1) ⊗ ((m1)(0)2 · · ·2mi)⊗ (mi+12 · · ·2mn)

+
n−1∑
i=2

i−1∑
j=1

(m12 · · ·2mj)⊗ (mj+12 · · ·2mi)⊗ (mi+12 · · ·2mn)

+
n−1∑
i=1

∑
(mi+1)

(m12 · · ·2mi)⊗ ((mi+1)(−1))⊗ ((mi+1)(0)2 · · ·2mn)

+
∑
(mn)

∑
(m1)

(m1)(−1) ⊗ ((m1)(0)2 · · ·2mn−12(mn)(0))⊗ (mn)(1)

+
∑
(mn)

n−1∑
i=1

(m12 · · ·2mi)⊗ (mi+12 · · ·2mn−12(mn)(0))⊗ (mn)(1)

+
∑
(mn)

(m12 · · ·2mn−12((mn)(0))(0))⊗ ((mn)(0))(1) ⊗ (mn)(1)
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=
∑
(m1)

∆((m1)(−1))⊗ ((m1)(0)2m
22 · · ·2mn)

+
n−1∑
i=1

∆(m12 · · ·2mi)⊗ (mi+12 · · ·2mn)

+
∑
(mn)

∆(m12 · · ·2mn−12(mn)(0))⊗ (mn)(1)

=(∆⊗ id)
∑
(m1)

(m1)(−1) ⊗ ((m1)(0)2m
22 · · ·2mn)

+ (∆⊗ id)
n−1∑
i=1

(m12 · · ·2mi)⊗ (mi+12 · · ·2mn)

+ (∆⊗ id)
∑
(mn)

(m12 · · ·2mn−12(mn)(0))⊗ (mn)(1)

=(∆⊗ id)∆(m12 · · ·2mn).

Therefore, the coassociativity is satisfied. Now we will check one side of the counitary

property.

(ε⊗ id)∆(m12 · · ·2mn) =(ε⊗ id)
∑
(m1)

(m1)(−1) ⊗ ((m1)(0)2m
22 · · ·2mn)

+ (ε⊗ id)
n−1∑
i=1

(m12 · · ·2mi)⊗ (mi+12 · · ·2mn)

+ (ε⊗ id)
∑
(mn)

(m12 · · ·2mn−12(mn)(0))⊗ (mn)(1)

=
∑
(m1)

ε((m1)(−1))⊗ ((m1)(0)2m
22 · · ·2mn)

+
n−1∑
i=1

ε(m12 · · ·2mi)⊗ (mi+12 · · ·2mn)

+
∑
(mn)

ε(m12 · · ·2mn−12(mn)(0))⊗ (mn)(1)

=(m1)2m22 · · ·2mn,

where the last step is because of the identity (ε ⊗ id)ρl(m
1) = m1. The other way

round goes in a similar fashion.

Hence, (CotC(M), ∆, ε) is indeed a coalgebra.
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Lemma 1.3.9 (The universal property of the cotensor coalgebra). Let C and D be

coalgebras and M a C-C-bicomodule. Given a coalgebra map f0 : D → C, and a

C-C-bicomodule map f1 : D →M with the property that f1 vanishes on the coradical

D0 of D, where the C-C-bicomodule structure D is given via f0. Then there exists a

unique coalgebra map

F : D → CotC(M)

with πi ◦ F = fi for i ∈ {0, 1}, where each πi : CotC(M) → M2i is the canonical

projection.

Proof. [CHZ, Lemma 3.2].

1.4 Coideals

Definition 1.4.1. [DNR, Definition 1.4.3 (ii)] Let C be a coalgebra and I ⊂ C a

subspace of C. We say I is a coideal of C if ∆(I) ⊆ I ⊗ C + C ⊗ I and ε(I) = 0.

Definition 1.4.2. Let C be a coalgebra.

(i) The right C-comodule M is simple if there is no non-zero proper subcomodule

of M ;

(ii) C is simple if there is no non-zero proper subcoalgebra of C.

Proposition 1.4.3. Let C and D be coalgebras and f : C → D a coalgebra homo-

morphism. Then im(f) is a subcoalgebra of D and ker(f) is a coideal of C.

Proof. [DNR, Proposition 1.4.9].

Since C is a subcoalgebra of C, then f(C) is a subcoalgebra of D by Lemma 1.1.3.

Note that ∆D(f(ker(f)) = 0 implies (f ⊗ f)∆C(ker(f)) = 0. Thus

∆C(ker(f)) ⊆ ker(f ⊗ f) = ker(f)⊗ C + C ⊗ ker(f)

by Lemma 1.2.10. Since f is a coalgebra homomorphism, we have

εC(ker(f)) = εD(f(ker(f))) = 0.

Hence ker(f) is a coideal of C.
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Theorem 1.4.4 (The quotient coalgebra). Let C be a coalgebra, I a coideal of C and

π : C → C/I the canonical projection. Then there exists a unique coalgebra structure

on C/I such that π is a coalgebra homomorphism. Moreover, if D is a coalgebra and

f : C → D is a coalgebra homomorphism with I ⊆ ker(f), then there exists a unique

coalgebra homomorphism f̄ : C/I → D for which f̄ ◦ π = f .

Proof. [DNR, Theorem 1.4.10].

Corollary 1.4.5 (The fundamental isomorphism theorem for coalgebras). Let C and

D be coalgebras and f : C → D be a coalgebra homomorphism. Then there exists a

canonical isomorphism of coalgebras between C/ker(f) and im(f).

Proof. We have the following diagram

C C/ker(f)

im(f),

π

f ′
f̄

where f ′ is the corestriction of f to its image, π is the canonical projection and f̄ is

the unique coalgebra homomorphism for which π is a coalgebra homomorphism and

the diagram commutes, by Theorem 1.4.4. We will show that f̄ is a bijection.

Surjectivity is immediate since any element in im(f) is of the form f(c) for some

c ∈ C and surjectivity of π give us f̄ ◦ π(c) = f ′(c) = f(c).

Consider now two elements c, d ∈ C. If f(c) = f(d), then f(c−d) = 0 and, hence,

c and d belong to the same coset. Thus f̄ is an isomorphism of coalgebras.

The next two theorems show a property of coalgebras which is not shared with

algebras that is any finitely generated coalgebra is finite dimensional.

Theorem 1.4.6. [The Fundamental Theorem of comodules] Let V be a right C-

comodule. Any element v ∈ V belongs to a finite dimensional subcomodule of V .

Proof. [DNR, Theorem 2.1.7].

Let {ci}i∈I be a basis for C. Denote by ρ : V → V ⊗ C the structure map of V

and write

ρ(v) =
∑
i∈I

vi ⊗ ci,
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where almost all of the vi’s are zero. Then the subspace W generated by the vi’s is

finite dimensional. For each i ∈ I, write

∆(ci) =
∑
j,l∈I

λijlcj ⊗ cl.

Thus, the commutative diagram

M M ⊗ C

M ⊗ C M ⊗ C ⊗ C

ρ

ρ id⊗∆

ρ⊗id

gives ∑
i∈I

ρ(vi)⊗ ci =(ρ⊗ id)ρ(v)

=(id⊗∆)ρ(v)

=
∑
i∈I

vi ⊗
∑
j,l∈I

λijlcj ⊗ cl

=
∑
i,j,l∈I

vi ⊗ λijlcj ⊗ cl.

Since the ci’s are linearly independent, we must have∑
i,j∈I

(ρ(vl)− vi ⊗ λijlcj)⊗ cl = 0,

for each l ∈ I. Consequently, ρ(vl) =
∑

i,j∈I vi ⊗ λijlcj ⊆ W ⊗C and so W is a finite

dimensional subcomodule of V. Moreover, v = (id ⊗ ε)ρ(v) ∈ W and the theorem is

proved.

Theorem 1.4.7 (The Fundamental Theorem of coalgebras). Let C be a coalgebra.

Given any finite subset {ci} ⊂ C there exists a finite dimensional subcoalgebra D of

C such that ci ∈ D, ∀i.

Proof. [Mon, Theorem 5.1.1.2].

Since C is a C-C-bicomodule, by Theorem 1.4.6 the given {ci} are contained in

a finite dimensional subspace V with ∆(V ) ⊆ V ⊗ C. Let {vj} be a basis of V

with ∆(vj) =
∑

i∈I vi ⊗ cij, for I a finite index set. Then the coassociativity of the
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comultiplication gives∑
i∈I

vi ⊗∆(cij) =(id⊗∆)∆(vj)

=(∆⊗ id)∆(vj)

=
∑
i∈I

∆(vi)⊗ cij

=
∑
i∈I

(∑
l∈I

vl ⊗ cli

)
⊗ cij

=
∑
i,l∈I

vl ⊗ cli ⊗ cij.

Since the vi’s are linearly independent, we must have∑
t,∈I

vi ⊗ (∆(cij)− cit ⊗ ctj) = 0.

Consequently, for each i, j ∈ I we have ∆(cij) =
∑

t∈I cit ⊗ ctj. Thus the span D of

{vj} and {cij} is finite dimensional and satisfies ∆(D) ⊆ D ⊗ D. Since V ⊆ D by

construction, the theorem is proved.

Corollary 1.4.8. Let C be a coalgebra. Then

(i) every simple subcoalgebra of C is finite dimensional;

(ii) every simple C-comodule is finite dimensional.

Proof. Immediately from Theorem 1.4.6 and Theorem 1.4.7.
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Chapter 2

On the structure of coalgebras:
part 2

2.1 The coradical filtration

The theorems 2.1.2 and 2.1.7 and the Lemma 2.1.5 of this Section, and Theorem 2.2.3

of the next Section, will not be proved, since the proof involves explicitly the duality

between algebras and coalgebras that we have decided not treat it here (see [DNR,

Chapter 1.3] for more details).

Definition 2.1.1. Let C be a coalgebra.

(i) C is cosemisimple if it is a direct sum of simple coalgebras;

(ii) The coradical C0 of C is the sum of all simple subcoalgebra of C.

The following definitions were taken from [Abe, Chapter 2.4.1]

Let I = {0, 1, 2, · · · } be the set of all non-negative integers. Given a coalgebra C,

if a family {Ai}i∈I of k-linear subspaces of C satisfies the conditions

Ai ⊂ Ai+1 (i ∈ I), C =
⋃
i∈I

Ai

∆(An) ⊂
n∑
i=0

Ai ⊗ An−i (n ∈ I)

then C is called a filtered coalgebra, and {Ai} is said to be a filtration on C. By

definition, Ai (i ∈ I) are subcoalgebras of C.
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If there exists a family of subspaces {A(i)}i∈I of C such that

C =
⊕
i∈I

A(i), ε(A(n)) = 0 (n 6= 0),

∆(A(n)) ⊂
n∑
i=0

A(i) ⊗ A(n−i) (n ∈ I)

then C is called a graded coalgebra.

If C =
⊕

i∈I A(i) is a graded coalgebra and we set An =
⊕

i≤nA(i), then {An}n∈I
becomes a filtration on C and, hence, C is a filtered coalgebra.

On the other hand, if C is a filtered coalgebra with filtration {Ai}i∈I then, setting

A(i) = Ai/Ai−1 for i ≥ 1 and A(0) = A0, we obtain a graded coalgebra grC =⊕
i∈I A(i), called the associated graded coalgebra of the filtered coalgebra C.

Now, let C be a coalgebra and C0 its coradical. Define inductively

Cn = ∆−1(C ⊗ Cn−1 + C0 ⊗ C). (2.1)

Then

Theorem 2.1.2. {Cn}n∈I is a filtration on C.

Proof. [Mon, Theorem 5.2.2].

We call {Cn}n∈I , as defined in (2.1), the coradical filtration of C.

Let C =
⊕

i∈I C(i) be a graded coalgebra with coradical filtration {Cj}j∈I . If

C0 = C(0) and C1 = C(0) ⊕ C(1), then we say that C is coradically graded.

Lemma 2.1.3. If C is coradically graded, then

Cj =
⊕
i≤j

C(i).

Proof. See [CM, Lemma 2.2].

Lemma 2.1.4. The cotensor coalgebra CotC(M), as in Definition 1.3.8, is a graded

coalgebra with grading {M2i}i∈I . Moreover, if C is cosemisimple, then CotC(M) is

coradically graded.

Proof. [Woo, Lemma 4.4].

Lemma 2.1.5. If D is a subcoalgebra of C, then Dn = D ∩ Cn, for all n ≥ 0.

Proof. [Mon, Lemma 5.2.12] and [Mon, Lemma 5.1.9].
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The proof of the next theorem is too long and we will not prove it here.

Theorem 2.1.6 (Heyneman-Radford). Let C and D be coalgebras and f : C → D

a coalgebra homomorphism. Then f is injective if and only if f |C1 : C1 → D is

injective, where C1 is the subcoalgebra of the coradical filtration of C as defined in

(2.1).

Proof. [Mon, Theorem 5.3.1].

The next theorem is the dual version of the Principal Theorem of Wedderburn

[Abe, Theorem 1.4.9]. It was originally stated for coalgebras with separable coradical

(see [Mon, Theorem 5.4.2]). However, since every k-coalgebra with k algebraically

closed has separable coradical, we will omit this term.

Theorem 2.1.7 (Dual Wedderburn-Malcev theorem). Let C be a coalgebra. Then,

there exists a coideal I such that C = C0 ⊕ I (as vector spaces).

Proof. See [Mon, Theorem 5.4.2] or [Abe, Theorem 2.3.11].

Remark 2.1.8. As a consequence of the above theorem, we have a projection πI :

C → C/I that is a coalgebra homomorphism (see Theorem 1.4.4), where I is a coideal

of the coalgebra C = C0 ⊕ I. However, the coideal I is not uniquely determined.

Note that if c ∈ C, we can write c = c0 + cI , where c0 ∈ C0 and cI ∈ I. Then

πI(c) = c = c+ I = (c0 + cI) + I = c0 + I = c0.

Thus, there exists a bijection between the cosets of I in C and the elements of C0

σI : C/I → C0

c0 7→ c0

It is easy to see that σI is a coalgebra homomorphism. The composition σI ◦ πI
restricted to C0 is the identity map of C0, for any decomposition C = C0 ⊕ I. We

will call π0 : C → C0 the canonical projection of coalgebras, where, for any fixed

decomposition C = C0 ⊕ I, π0 = σI ◦ πI .
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2.2 Pointed coalgebras

Definition 2.2.1. C is pointed if every simple subcoalgebra of C is one dimensional.

Remark 2.2.2. Necessarily a one-dimensional subcoalgebra is of the form kg, for

g ∈ G(C), since if {c} is any basis for C then

∆(c) = λ1c⊗ λ2c

for some λ1, λ2 ∈ k. The counitary property gives

c⊗ 1 = (id⊗ ε)∆(c) = λ1c⊗ ε(λ2c) = c⊗ ε(λ1λ2c).

Thus, c⊗ (ε(λ1λ2c)− 1) = 0 implies ε(λ1λ2c) = 1. Moreover,

∆(λ1λ2c) = λ1λ2∆(c) = λ1λ2λ1c⊗ λ2c = λ1λ2c⊗ λ1λ2c.

Hence λ1λ2c ∈ G(C) and C = k(λ1λ2c).

Thus C is pointed iff C0 = kG(C). Furthermore, since G(C) is a linearly inde-

pendent set by Proposition 1.1.7, a sum of simple subcoalgebra is in fact a direct sum.

Thus a pointed coalgebra C is cosemisimple iff C = C0.

Theorem 2.2.3. Let C be a pointed coalgebra. Then

(i) C1 = kG(C)⊕
(⊕

g,h∈G(C) P
′
g,h(C)

)
;

(ii) for any n ≥ 1 and c ∈ Cn,

c =
∑

g,h∈G(C)

cg,h, where ∆(cg,h) = cg,h ⊗ g + h⊗ cg,h + ω

for some ω ∈ Cn−1 ⊗ Cn−1.

Proof. [Mon, Theorem 5.4.1].

Corollary 2.2.4. Let C and D be pointed coalgebras and f : C → D be a coalgebra

homomorphism. Then f(C1) ⊆ D1 and f(C0) ⊆ D0.

Proof. It is immediate from the description of C0 and C1 for pointed coalgebras and

Lemma 1.1.9.

Lemma 2.2.5. Let C be a pointed coalgebra. Then there exists a unique C0-C0-

bicomodule structure map on the quotient P̄g,h(C) = Pg,h(C)/k(h − g) such that the

canonical projection π : Pg,h(C)→ Pg,h(C)/k(h− g) is a bicomodule homomorphism.
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Proof. By Lemma 1.3.3, C1 is a C0-C0-bicomodule. It is clear that Pg,h(C) is a

subbicomodule of C1 and k(h − g) is a subbicomodule of Pg,h(C). Thus, the result

follows from Lemma 1.3.4.

Proposition 2.2.6. Let C be a pointed coalgebra. Then C1/C0 is a C0-C0-bicomodule

and C1/C0
∼=
⊕

g,h∈G(C) P̄g,h(C).

Proof. By Lemma 1.3.3, C1 is a C0-C0-bicomodule. Since C0 is a subbicomodule of

C1, we have that C1/C0 is a C0-C0-bicomodule by Lemma 1.3.4. It remains to prove

the second claim.

Since Pg,h(C) is a subbicomodule of C1 and Pg,h(C) ∩ C0 = k(h − g) (Lemma

1.1.8), we have that P̄g,h(C) is a subbicomodule of C1/C0. By Theorem 2.2.3, C1 =

C0 ⊕
(⊕

g,h∈G(C) P
′
g,h(C)

)
. Then, if π : C1 → C1/C0 is the canonical projection, we

have

π

C0 +
∑

g,h∈G(C)

Pg,h(C)

 =
∑

g,h∈G(C)

P̄g,h(C) = C1/C0. (2.2)

By Lemma 1.1.8, Pg,h(C)∩Pg′,h′(C) ⊆ k(h− g) whenever g′ 6= g or h′ 6= h. Thus, the

sum in 2.2 is actually a direct sum.

Remark 2.2.7. C1/C0 does not depend on the choice of P ′g,h(C), since for any other

decomposition of Pg,h(C), say Pg,h(C) = k(h− g)⊕ P ′′g,h(C), write

c =
∑

g,h∈G(C)

cg,h + ω =
∑

g,h∈G(C)

c′g,h + ω′,

where cg,h ∈ P ′g,h(C) and c′g,h ∈ P ′′g,h(C), for each g, h ∈ G(C), and ω, ω′ ∈ C0. Write

ω =
∑

e∈G(C) λee and ω′ =
∑

e∈G(C) λ
′
ee.Then

∑
g,h∈G(C)

h⊗ cg,h ⊗ g =(µ̄⊗ id)ρ̄(π(c))

=(µ̄⊗ id)(π ⊗ id)ρ(c)

=(µ̄ ◦ π ⊗ id)ρ(c)

=((id⊗ π)µ⊗ id)

 ∑
g,h∈G(C)

c′g,h ⊗ g +
∑

e∈G(C)

λ′ee⊗ e


=

∑
g,h∈G(C)

h⊗ π(c′g,h)⊗ g +
∑

e∈G(C)

λ′ee⊗ π(e)⊗ e

=
∑

g,h∈G(C)

h⊗ c′g,h ⊗ g.
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Since the set G(C) is linearly independent (Proposition 1.1.7), we have that, for each

g ∈ G(C), ∑
h∈G(C)

h⊗ cg,h =
∑

h∈G(C)

h⊗ c′g,h,

and so, for each h ∈ G(C),

cg,h = c′g,h

Thus, the right C0-comodule C1/C0 is independent of the decomposition of C1. The

same is true if we view C1/C0 as a left C0-comodule. Thus the C1/C0 bicomodule

does not depend on the decomposition of C1.

Examples 2.2.8. Let C be a pointed coalgebra. By the Proposition above we have

that C1/C0 is a C0-C0-bicomodule. Define the cotensor coalgebra CotC0(C1/C0)

as in Definition 1.3.8. By lemma 2.1.4, CotC0(C1/C0) is coradically graded. Thus

CotC0(C1/C0)0 = C0 and so CotC0(C1/C0) is a pointed coalgebra. Moreover,

CotC0(C1/C0)1 = C0 ⊕ C1/C0.

Theorem 2.2.9. Let C be a coalgebra (with separable coradical C0). Then there

exists a coalgebra embedding

ι : C ↪→ CotC0(C1/C0)

with ι(C1) = C0 ⊕ C1/C0.

Proof. We will rewrite the proof of this theorem given on [CHZ, Theorem 3.1] because

we need some conclusions within this proof.

By the dual Wedderburn-Malcev theorem, Theorem 2.1.7, there exists a coideal I

of C such that C = C0 ⊕ I. Thus, we have a canonical projection f0 : C → C0 such

that f0|C0 = id. Note that C becomes a C0-C0-bicomodule via f0, Example 1.3.2 (ii),

and I is a C0-C0-subbicomodule of C. Set C(1) = C1 ∩ I. Then C1 = C0⊕C(1). Note

that C(1) is a C0-C0-subbicomodule of I and the canonical vector space isomorphism

θ : C(1)
∼= C1/C0 is a C0-C0-bicomodule map.

View I as a C0 ⊗Ccop
0 -comodule and C(1) its subcomodule. Since C0 is separable,

it follows there exists a C0 ⊗ Ccop
0 -comodule decomposition I = C(1) ⊕ J . Thus we

have a C0-C0-bicomodule projection p : I → C(1) such that p|C(1)
= id. Define a map

f1 = θ ◦ p ◦ f ′0 from C to C1/C0, where f ′0 : C → I is the canonical projetion. Clearly

f1 : C → C1/C0 is a C0-C0-bicomodule map vanishing on C0. Thus, by Lemma 1.3.9

we obtain a unique coalgebra map ι : C → CotC0(C1/C0) such that π0 ◦ ι = f0 and

π1 ◦ ι = f1. Clearly ι(C1) = C0 ⊕ C1/C0. By Theorem 2.1.6, ι is injective. This

completes the proof.
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Corollary 2.2.10. Let C be a pointed coalgebra and ι : C ↪→ CotC0(C1/C0) be the

coalgebra homomorphism as in the theorem above. Then, π0 ◦ ι|C0 : C0 → C0 is the

identity of C0 and, for any decomposition C = C0 ⊕ I, there exists an isomorphism

θI : C1 ∩ I → C1/C0 such that

θ−1
I ◦ π1 ◦ ι|C1∩I : C1 ∩ I → C1 ∩ I

is the identity map.

Proof. Within the proof of the Theorem 2.2.9.

2.3 Quivers and path coalgebras

Recall that a quiver Q = (Q0, Q1) is an oriented graph with a set of vertices Q0 and

a set of arrows Q1. For each arrow α ∈ Q1 we associate a pair of vertices i, j ∈ Q0

that we call the source of α and the target of α, respectively. In this case, we write

α as α : i → j and say that α is an arrow from i to j. A path b in Q is the formal

composition of arrows in Q1 such that the target of an arrow coincides with the

source of the next arrow. We say that a path b has length the number of arrows in

the sequence that determine b. For instance, if b = αnαn−1 · · ·α1 is a path in Q, with

each αl ∈ Q1, then b has length n and for each pair αl, αl + 1 we must have that the

target of αl is equal to the source of αl + 1. For each i ∈ Q0 we associate a stationary

path ei of length 0 and source and target i. We can compose paths in a similar way

as done for arrows. We say that a quiver Q is connected if its underlying graph is

connected.

Definition 2.3.1. [Sim, Description 4.12] For a given pointed coalgebra C we define

the left Gabriel quiver CQ = (CQ0,C Q1) by identifying the set of vertices CQ0 with the

set G(C) of group-like elements of C and, given two vertices g, h ∈ G(C), we identify

the arrows from g to h with a k-basis of the quotient space P̄g,h(C) = Pg,h(C)/k(h−g).

Definition 2.3.2. [Woo, Definition 4.10] For a given quiver Q, we define the path

coalgebra k�Q of Q as the vector space with basis all paths in Q and, for each path

b ∈ Q, the comultiplication and counity given by

∆(b) =
∑
b=b2b1

b2 ⊗ b1,

ε(b) =δ|b| 0,
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where the pairs b1, b2 are all possible paths in Q whose composition gives the path b.

|b| denotes the length of b and

δ|b| 0 =

{
1, if |b| = 0,
0, otherwise

.

Write

(k2Q)m =
⊕
l≤m

kQl

where kQl are all paths of Q of length l.

Proposition 2.3.3. Let Q be a connected quiver and k�Q its path coalgebra. Then

(i) k�Q is pointed, G(k�Q) = {ei|i ∈ Q0}, (k�Q)0 = kQ0, and k�Q is coradically

graded with coradical filtration {(k�Q)m}m∈N;

(ii) Q is isomorphic to the left Gabriel quiver of k�Q.

Proof. See [Sim, Proposition 7.7]. It also follows from the canonical isomorphism

k�Q ∼= CotkQ0(span{Q1}) stated in [Woo] right after Definition 4.10.

Examples 2.3.4. (i) Consider the quiver Q1 given by

◦1 ◦2
α

The path coalgebra k2Q1 is the vector space with basis {e1, e2, α}, together with

the comultiplication ∆1 given by

∆1(ei) = ei ⊗ ei, for i ∈ {1, 2}; ∆1(α) = α⊗ e1 + e2 ⊗ α,

and the counity ε1 given by

ε1(ei) = 1, for i ∈ {1, 2}; ε1(α) = 0.

(ii) Consider the quiver Q2 given by

◦1

α
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The path coalgebra k2Q2 is the vector space with basis {e1 = α0, α, α2, · · · },
together with the comultiplication ∆2 given by

∆2(αn) =
n∑
i=0

αi ⊗ αn−i, for n ≥ 0,

and the counity ε2 given by

ε2(αn) =

{
1, if n = 0,
0, if n ≥ 1

.

This coalgebra is sometimes known as the divided power coalgebra (see [DNR,

1.1.4,2])

(iii) Consider the quiver Q3 given by

◦1 ◦3

◦2

α

β γ

The path coalgebra k2Q3 is the vector space with basis {e1, e2, α, β, γ, γβ},
together with the comultiplication ∆3 given by

∆3(b) =


ei ⊗ ei, if b = ei, for i ∈ {1, 2, 3}
α⊗ e1 + e3 ⊗ α, if b = α
β ⊗ e1 + e2 ⊗ β, if b = β
γ ⊗ e2 + e3 ⊗ γ, if b = γ
γβ ⊗ e1 + γ ⊗ β + e3 ⊗ γβ, if b = γβ

and the counity ε3 given by

ε3(b) =

{
1, if b = ei, for i ∈ {1, 2, 3}
0, otherwise

.

(iv) Let n be a positive integer and LC(n, k) be the lower triangular matrix coalgebra,

which is the matrix coalgebra MC(n, k) with all entries eij = 0, for i > j (see

Example 1.1.5 (iii)). Then, the set of group-like elements of LC(n, k) is

G(LC(n, k)) = {eii|i ∈ {1, 2, · · · , n}} (2.3)

and the set of eii, ejj-primitive elements are given by

Peii,ejj(L
C(n, k)) =

{
{λeij + κ(ejj − eii) |λ, κ ∈ k}, if j = i+ 1,
0, otherwise

(2.4)

Hence, the Gabriel quiver of LC(n, k) is the quiver LC(n,k)Q given by
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e11 e22 · · · enn
α1 α2 αn−1

where αi is an element of a basis of the quotient space P̄eii,ei+1i+1
(LC(n, k)).

For instance, if n = 3 and k = C, then a basis for LC(3,C) is
1 0 0

0 0 0
0 0 0

 ,
0 0 0

0 1 0
0 0 0

 ,
0 0 0

0 0 0
0 0 1

 ,
0 0 0

1 0 0
0 0 0

 ,
0 0 0

0 0 0
0 1 0

 ,
0 0 0

0 0 0
1 0 0

 ,

the comultiplication is given by

∆

([
a 0 0
d b 0
f e c

])
=a

[
1 0 0
0 0 0
0 0 0

]
⊗

[
1 0 0
0 0 0
0 0 0

]

+ b

[
0 0 0
0 1 0
0 0 0

]
⊗

[
0 0 0
0 1 0
0 0 0

]
+ c

[
0 0 0
0 0 0
0 0 1

]
⊗

[
0 0 0
0 0 0
0 0 1

]

+ d

[
0 0 0
1 0 0
0 0 0

]
⊗

[
1 0 0
0 0 0
0 0 0

]
+ d

[
0 0 0
0 1 0
0 0 0

]
⊗

[
0 0 0
1 0 0
0 0 0

]

+ e

[
0 0 0
0 0 0
0 1 0

]
⊗

[
0 0 0
0 1 0
0 0 0

]
+ e

[
0 0 0
0 0 0
0 0 1

]
⊗

[
0 0 0
0 0 0
0 1 0

]

+ f

[
0 0 0
0 0 0
1 0 0

]
⊗

[
1 0 0
0 0 0
0 0 0

]
+ f

[
0 0 0
0 0 0
0 0 1

]
⊗

[
0 0 0
0 0 0
1 0 0

]

+ f

[
0 0 0
0 0 0
0 1 0

]
⊗

[
0 0 0
1 0 0
0 0 0

]

and the counit is given by

ε

([
a 0 0
d b 0
f e c

])
= a+ b+ c.

Write eij for the matrix with entry 1 at the row i and column j and zero for all other

entries. Then, G(LC(3,C)) and Peii,ejj(L
C(3,C)) are given as in (2.3) and (2.4),

respectively. Moreover, P̄e11,e22(L
C(3,C)) =< e21 > and P̄e22,e33(L

C(3,C)) =< e32 >,

where eij = {eij + λ(ejj − eii) |λ ∈ C}. Write α1 = e21 and α2 = e32. Then, the left

Gabriel quiver of LC(3,C) is given by

e11 e22 e33
α1 α2
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Chapter 3

The path coalgebra and the
adjunction

3.1 Categories

Definition 3.1.1. (i) A Vquiver, V Q = (V Q0, V Q1) is a set of vertices V Q0 =

{e1, e2, ...}, together with a direct sum of vector spaces V Q1 =
⊕

e,f∈V Q0
V Qe,f .

We call V Q0 the vertex set of V Q and V Q1 the arrow set of V Q. A Vquiver

V S = (V S0, V S1) is said to be a subVquiver of V Q if V S0 ⊆ V Q0 and for each

pair e, f ∈ V S0, V Se,f ⊆ V Qe,f .

(ii) A map of Vquivers ϕ : V Q→ V R consists of an injective map ϕ0 : V Q0 → V R0,

called the vertex map, and a linear map ϕe,f : V Qe,f → V Rϕ0(e),ϕ0(f) for each

pair e, f ∈ V Q0, called arrow maps. We say that ϕ is injective if each ϕe,f is

injective.

If ϕ : V Q→ V R is an injective map of Vquivers, then ϕ(V Q) is a subVquiver of

V R. Moreover, if σ : V R→ V S is an injective map of Vquivers, then σ ◦ ϕ : V Q→
V S is an injective map of Vquivers. Hence, taking all Vquivers as objects and all

injective maps of Vquivers as morphisms, we obtain a category that we will denote

by IVquiv.

We have a correspondence between quivers and Vquivers that is actually functorial

from the first to the second, but not the other way round. The following diagram

illustrates this correspondence

◦1 ◦3 ◦1 ◦3

◦2 ◦2

α

δ

β

<α,δ>

<β>γ <γ>
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Denote by IPCog the category of pointed coalgebras and injective coalgebra ho-

momorphisms.

Define the following congruence relations on the morphisms of HomIPCog(C,D).

For ρ, γ ∈ HomIPCog(C,D) we write ρ ∼ γ if{
(ρ− γ)(C0) = 0

(ρ− γ)(C1) ⊆ D0

Lemma 3.1.2. ∼ is indeed a congruence relation.

Proof. It is obvious that∼ is reflexive and symmetric. Let us check that∼ is transitive

and that it preserves composition. Let ρ, γ, σ ∈ HomIPCog(C,D) be such that ρ ∼ γ

and γ ∼ σ. Then

(ρ− σ)(C0) =(ρ− γ + γ − σ)(C0)

=(ρ− γ)(C0) + (γ − σ)(C0) = 0

and

(ρ− σ)(C1) =(ρ− γ + γ − σ)(C1)

=(ρ− γ)(C1) + (γ − σ)(C1)

⊆ D0 +D0 = D0

Now consider ρ1, ρ2 ∈ HomIPCog(A,B) and γ1, γ2 ∈ HomIPCog(B,C) such that

ρ1 ∼ ρ2 and γ1 ∼ γ2. The following computation shows that γ1 ◦ ρ1 ∼ γ2 ◦ ρ2:

(γ1 ◦ ρ1 − γ2 ◦ ρ2)(A1) =(γ1 ◦ ρ1 − γ1 ◦ ρ2 + γ1 ◦ ρ2 − γ2 ◦ ρ2)(A1)

=(γ1 ◦ ρ1 − γ1 ◦ ρ2)(A1) + (γ1 ◦ ρ2 − γ2 ◦ ρ2)(A1)

=γ1(ρ1 − ρ2)(A1) + (γ1 − γ2)(ρ2(A1))

⊆ γ1(B0) + (γ1 − γ2)(B1)

⊆ C0 + C0 = C0

where the two last steps are due to the congruence ∼ and Corollary 2.2.4. and

(γ1 ◦ ρ1 − γ2 ◦ ρ2)(A0) =(γ1 ◦ ρ1 − γ1 ◦ ρ2 + γ1 ◦ ρ2 − γ2 ◦ ρ2)(A0)

=(γ1 ◦ ρ1 − γ1 ◦ ρ2)(A0) + (γ1 ◦ ρ2 − γ2 ◦ ρ2)(A0)

=γ1(ρ1 − ρ2)(A0) + (γ1 − γ2)(ρ2(A0))

⊆ (γ1 − γ2)(B0) = 0

where the two last steps in both equations are due to the congruence ∼ and Corollary

2.2.4.
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Lemma 3.1.3. IPCog∼=IPCog/∼ is a category.

Proof. See [Mac, Chapter 8] or [Awo, Chapter 3.4]

Examples 3.1.4. Consider the path coalgebra C = k2Q of the quiver

◦1 ◦3

◦2

α

β γ

as in Example 2.3.4 (iii). Routine computations show that the maps f, f ′ : C → C

defined on an element b of the basis {e1, e2, e3, α, β, γ, γβ} of C by

f(b) =

{
b, if b 6= γβ
γβ + α, if b = γβ

and

f ′(b) =

{
b, if b 6= α
α + e3 − e1, if b = α

are injective coalgebra homomorphisms.

Let id : C → C be the identity map of C. Then, (f − id)(C1) = 0 implies that

f ∼ id. Furthermore, since

(f ′ − id)(α) = f ′(α)− α = α + e3 − e1 − α = e3 − e1 ∈ C0

We have that (f ′ − id)(C1) ⊆ C0 and (f ′ − id)(C0) = 0. Thus f ′ ∼ id.

Note that not all coalgebra automorphism is congruent to the identity, since the

coalgebra homomorphism that fix all paths but send α to λα, with λ /∈ {0, 1}, is an

example of such coalgebra automorphism.

3.2 The Path Coalgebra functor

Denote by (kV Q0, ∆0, ε0) the group-like coalgebra of V Q0 (as in Example 1.1.5 (i)),

and by (V Q1, ρl, ρr) the direct sum V Q1 =
⊕

e,f∈V Q0
V Qe,f treated as a kV Q0-kV Q0-

bicomodule with structure maps:

ρl

( ∑
e,f∈V Q0

me,f

)
=

∑
e,f∈V Q0

f ⊗me,f

and

ρr

( ∑
e,f∈V Q0

me,f

)
=

∑
e,f∈V Q0

me,f ⊗ e,
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∀me,f ∈ V Qe,f (see Example 1.2.6 (iii) and Lemma 1.3.3).

Define the path coalgebra k�[V Q] as the cotensor coalgebra CotkV Q0(V Q1), as in

Definition 1.3.8.

For a given γ ∈ HomIVquiv(V Q, V R), we will construct a coalgebra homomor-

phism f ∈ HomIPCog(k�[V Q], k�[V R]).

Let π′0 : CotkV Q0(V Q1) → kV Q0 be the canonical projection of coalgebras (see

Remark 2.1.8 and lemma 2.1.4).

Define the map γ̄0 : kV Q0 → kV R0 as the linear extension of the vertex map

γ0 : V Q0 → V R0 of γ. Then γ̄0 is a coalgebra homomorphism (see Example 1.1.5

(iv)).

Define

f0 : CotkV Q0(V Q1)→ kV R0

c 7→ (γ̄0 ◦ π′0)(c)

f0 is a coalgebra homomorphism since it is the composition of coalgebra homomor-

phisms.

Then CotkV Q0(V Q1) becomes a kV R0-kV R0-bicomodule via f0 and a kV Q0-

kV Q0-bicomodule via π′0 (see Example 1.3.2 (ii)).

Now consider π′1 : CotkV Q0(V Q1) → V Q1 the canonical projection. We must

check that π′1 is a bicomodule homomorphism.

We will show that π′1 is a comodule homomorphism of right kV Q0-comodules.

Consider ρ : V Q1 → V Q1 ⊗ kV Q0 the structure map of the right kV Q0-comodule

V Q1. For any m ∈ V Q1, write ρ(m) =
∑

(m) m(0)⊗m(1), where each m(0) ∈ V Q1 and

m(1) ∈ kV Q0.

Then, for any element of the basis m12 · · ·2mn ∈ V Q2n
1 (n ≥ 1) we have

(π′1 ⊗ id)(id⊗ π′0)∆(m12 · · ·2mn) =

= (π′1 ⊗ π′0)
∑
(m1)

((m1)(−1))⊗ ((m1)(0)2m
22 · · ·2mn)

+(π′1 ⊗ π′0)
n−1∑
i=1

(m12 · · ·2mi)⊗ (mi+12 · · ·2mn)

+(π′1 ⊗ π′0)
∑
(mn)

(m12 · · ·2mn−12(mn)(0))⊗ ((mn)(1))
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=
∑
(m1)

π′1((m1)(−1))⊗ π′0((m1)(0)2m
22 · · ·2mn)

+
n−1∑
i=1

π′1(m12 · · ·2mi)⊗ π′0(mi+12 · · ·2mn)

+
∑
(mn)

π′1(m12 · · ·2mn−12(mn)(0))⊗ π′0((mn)(1))

=
∑
(mn)

π′1(m12 · · ·2mn−12(mn)(0))⊗ ((mn)(1))

=ρ(π′1(m12 · · ·2mn)),

where the last equality comes from the fact that π′1(m12 · · ·2mn) 6= 0 only if n = 1.

In the case of m0 ∈ kV Q0, then

(π′1 ⊗ id)(id⊗ π′0)∆(m0) =π′1(m0)⊗ π′0(m0)

=0 = ρ(π′1(m0)).

A similar computation shows that π′1 is a comodule homomorphism of left kV Q0-

comodules. Thus π′1 is a bicomodule homomorphism of kV Q0-kV Q0-bicomodules.

Now, for any c ∈ CotkV Q0(V Q1), write π′1(c) =
∑

e,f∈V Q0
ce,f , where each ce,f ∈

V Qe,f . Then, define the map

f1 : CotkV Q0(V Q1)→ V R1

c 7→
∑

e,f∈V Q0

γe,f (ce,f )

where γe,f are the arrow maps of γ. Hence, f1 is a bicomodule homomorphism of

kV R0-kV R0-bicomodules with f1(kV Q0) = 0.

The universal property of cotensor, Lemma 1.3.9, gives a unique coalgebra homo-

morphism f : CotkV Q0(V Q1)→ CotkV R0(V R1) such that πi ◦ f = fi for i ∈ {0, 1}.

Lemma 3.2.1. The coalgebra homomorphism f : CotkV Q0(V Q1) → CotkV R0(V R1)

as constructed above is injective.

Proof. By the Heyneman-Radford Theorem, Lemma 2.1.6 (and Example 2.2.8), it

suffices to show that f |kV Q0⊕V Q1 is injective. Since CotkV Q0(V Q1) and CotkV R0(V R1)

are pointed coalgebras, by Corollary 2.2.4, we have that f(kV Q0 ⊕ V Q1) ⊆ kV R0 ⊕
V R1. Thus, for any c ∈ kV Q0 ⊕ V Q1, we have

f(c) = π0 ◦ f(c) + π1 ◦ f(c) = f0(c) + f1(c).
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Write c = c0 + c1, with c0 =
∑

e∈V Q0
λee ∈ kV Q0 and c1 =

∑
e,f∈V Q0

ce,f where each

ce,f ∈ V Qe,f . Then

f(c) = f0(c) + f1(c) =f0(c0) + f0(c1) + f1(c0) + f1(c1)

=(γ̄0 ◦ π′0)(c0) + (γ̄0 ◦ π′0)(c1)

+

( ∑
e,f∈V Q0

γe,f ◦ π′1

)
(c0) +

( ∑
e,f∈V Q0

γe,f ◦ π′1

)
(c1)

=γ̄0(c0) +

( ∑
e,f∈V Q0

γe,f

)
(c1)

=
∑
e∈V Q0

λeγ0(e) +
∑

e,f∈V Q0

γe,f (ce,f ).

Since γ̄0 : kV Q0 → kV R0 is injective and γe,f : V Qe,f → V Rγ0(e),γ0(f) is injective in

each V Qe,f , the result follows.

Define k2[γ] = f .

Proposition 3.2.2. The above construction defines the covariant functors:

k2[−] :IVquiv→ IPCog

K 2[−] = Π∼ ◦ k2[−] :IVquiv→ IPCog∼,

where Π∼ : IPCog→ IPCog∼ is the quotient functor.

3.3 The Gabriel Vquiver functor

Let C ∈ IPCog be a coalgebra. Define the Vquiver GQ(C) of C, GQ(C) =

(GQ(C)0, GQ(C)1), as follows:

GQ(C)0 =G(C)

GQ(C)1 = C1/C0 =
⊕

g,h∈G(C)

P̄g,h(C),

(see Proposition 2.2.6), where, for each g, h ∈ GQ(C)0, we have GQ(C)g,h = P̄g,h(C).

If ρ ∈ HomIPCog(C,D), then define the maps

ϕ0 : G(C)→ G(D)

g 7→ ρ(g)
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and

ϕg,h : P̄g,h(C)→ P̄ϕ0(g),ϕ0(h)(D),

c 7→ ρ(c)

where c ∈ Pg,h(C) is any representative of c = c+k(h−g). Both maps are well defined

injective maps (see Lemma 1.1.9). Hence, the map ϕ : GQ(C) → GQ(D) whose

vertex map is ϕ0 : G(C)→ G(D) and arrow maps ϕg,h : P̄g,h(C)→ P̄ϕ0(g),ϕ0(h)(D) for

each pair of vertices g, h ∈ G(C) defines a map of Vquivers.

Define GQ(ρ) = ϕ.

Proposition 3.3.1. The above construction defines the covariant functor:

GQ(−) : IPCog→ IVquiv

Proof. We need to check that if γ ∈ HomIPCog(B,C) and ρ ∈ HomIPCog(C,D), then

GQ(ρ ◦ γ) = GQ(ρ) ◦GQ(γ). We have as follows

(GQ(ρ) ◦GQ(γ))0 : G(B)→ G(D)

g 7→ ρ(γ(g)) = (ρ ◦ γ)(g)

and

(GQ(ρ) ◦GQ(γ))g,h : P̄g,h(B)→ P̄ρ(γ(g)),ρ(γ(h))(D).

c 7→ ρ(γ(c)) = (ρ ◦ γ)(c)

Thus GQ(ρ) ◦GQ(γ) = GQ(ρ ◦ γ)

Now suppose ρ, γ ∈ HomIPCog(C,D) are such that ρ ∼ γ, as in Lemma 3.1.2. We

will show that GQ(ρ) = GQ(γ). Since (ρ− γ)(C0) = 0 and C0 = kG(C), the vertex

maps of GQ(ρ) and GQ(γ) have to coincide. Write this map as ϕ0 : G(C)→ G(D).

Moreover, the relation (ρ − γ)(C1) ⊆ D0 implies that for any c ∈ Pg,h(C) we have

(ρ− γ)(c) ∈ k(ϕ0(h)− ϕ0(g)). Thus, for each pair g, h ∈ G(C) the arrow maps from

P̄g,h(C) to P̄ϕ0(g),ϕ0(h)(D) of GQ(ρ) and GQ(γ) are identical. Hence GQ(ρ) = GQ(γ).

Thus, the assignment G Q(C) = GQ(C) and G Q([ρ]) = GQ(ρ) for any coalgebra

C ∈ IPCog and any morphism [ρ] ∈ HomIPCog∼(C,D), where ρ ∈ HomIPCog(C,D)

is any representative of [ρ], define a covariant functor

G Q(−) : IPCog∼ → IVquiv,

such that the following diagram commutes
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IPCog IVquiv

IPCog∼

Π∼

GQ(−)

G Q(−)

3.4 Adjunction

In this Section, we will prove that G Q(−) is left adjoint to K 2[−].

Consider the function

ηC,V Q : HomIPCog∼(C,K 2[V Q])→ HomIVquiv(G Q(C), V Q)

[ρ] 7→ ϕ

where ϕ is given by:

ϕ0 : G(C)→ V Q0

g 7→ ρ(g)

and for each pair g, h ∈ G(C),

ϕg,h : P̄g,h(C)→ V Qϕ0(g),ϕ0(h),

c 7→ (π1 ◦ ρ)(c)

where c = c+ k(h− g) is the coset of k(h− g) in Pg,h(C), π1 : CotkV Q0(V Q1)→ V Q1

is the canonical projection and ρ is any representative of [ρ].

Lemma 3.4.1. ηC,V Q is well defined.

Proof. Since CotkV Q0(V Q1) is a pointed coalgebra (see Example 2.2.8) and

(CotkV Q0(V Q1))0 = (kV Q0)0 = kV Q0 = kG(CotkV Q0(V Q1)),

we have that G(CotkV Q0(V Q1)) = V Q0. Thus, by Lemma 1.1.9, for each g ∈ G(C)

we have ρ(g) ∈ V Q0.

Moreover,

(CotkV Q0(V Q1))1 = kV Q0 ⊕ V Q1 = kV Q0 ⊕

( ⊕
e,f∈V Q0

V Qe,f

)

and for any element m ∈ V Qe,f the comultiplication ∆ of CotkV Q0(V Q1) gives

∆(m) = m⊗ e+ f ⊗m.
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Hence, Pe,f (CotkV Q0(V Q1)) ∩ V Q1 = V Qe,f and, therefore,

Pe,f (CotkV Q0(V Q1)) = k(f − e)⊕ V Qe,f .

Thus, there is an isomorphism between P̄e,f (CotkV Q0(V Q1)) and V Qe,f given by

P̄e,f (CotkV Q0(V Q1))→ V Qe,f .

b 7→ π1(b)

Since, by Lemma 1.1.9,

ρ(Pg,h(C)) ⊆ Pρ(g),ρ(h)(CotkV Q0(V Q1)),

we have that ϕg,h is well defined and so ηC,V Q is well defined.

Lemma 3.4.2. ηC,V Q is a bijection.

Proof. Injectivity.

Suppose [ρ], [σ] ∈ HomIPCog/∼(C, k2[V Q]), are such that ηC,V Q([ρ]) = ϕ =

ηC,V Q([σ]).

For c ∈ C0, write c =
∑

g∈G(C) λgg, with λg ∈ k for each g ∈ G(C). We have

ρ(c) = ρ

 ∑
g∈G(C)

λgg

 =
∑

g∈G(C)

λgρ(g)

=
∑

g∈G(C)

λgϕ0(g)

=
∑

g∈G(C)

λgσ(g)

=σ

 ∑
g∈G(C)

λgg

 = σ(c).

Thus (ρ− σ)(C0) = 0.

If c ∈ C1, write c =
∑

g,h∈G(C) cg,h + ω, where for each g, h ∈ G(C) we have
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cg,h ∈ Pg,h(C) and ω ∈ C0, then

(π1 ◦ ρ)(c) =(π1 ◦ ρ)

 ∑
g,h∈G(C)

cg,h + ω


=

∑
g,h∈G(C)

(π1 ◦ ρ)(cg,h) + (π1 ◦ ρ)(ω)

=
∑

g,h∈G(C)

ϕg,h(cg,h) + 0

=
∑

g,h∈G(C)

(π1 ◦ σ)(cg,h) + (π1 ◦ σ)(ω)

=(π1 ◦ σ)

 ∑
g,h∈G(C)

cg,h + ω


=(π1 ◦ σ)(c)

and hence (π1 ◦ (ρ − σ))(C1) = 0. Since ρ(C1) ⊆ (k2[V Q])1 = kV Q0 ⊕ V Q1 and

π1 : k2[V Q]→ V Q1 is the canonical projection, we have that (ρ− σ)(C1) ⊆ kV Q0 =

(k2[V Q])0. Therefore, ρ ∼ σ and so [ρ] = [σ].

Surjectivity.

Suppose ϕ ∈ HomIVquiv(G Q(C), V Q) with the vertex map

ϕ0 : G(C)→ V Q0

and the arrow maps

ϕg,h : P̄g,h(C)→ V Qϕ0(g),ϕ0(h),

for each g, h ∈ G(C).

Let π′0 : C → C0 be the canonical projection of coalgebras (see Proposition 2.1.8)

and ϕ̄0 : C0 → kV Q0 the linear extension of ϕ0.

The map

f0 : C → kV Q0

c 7→ (ϕ̄0 ◦ π′0)(c)

is a coalgebra homomorphism (see the considerations before Lemma 3.2.1).

Let ι : C → CotC0(C1/C0) be the embedding as in Theorem 2.2.9. Thus ι(C1) =

C0 ⊕ C1/C0 and the composition

π′1 ◦ ι : C → C1/C0,
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is surjective, where π′1 : CotC0(C1/C0)→ C1/C0 is the canonical projection.

For any b ∈ CotC0(C1/C0) write π′1(b) =
∑

g,h∈G(C) bg,h, where each bg,h ∈ P̄g,h(C).

Define the map

f1 : C → V Q1

c 7→
∑

g,h∈G(C)

ϕg,h(ι(c)g,h)

Then f1 is a bicomodule homomorphism of kV Q0-kV Q0-bicomodules and f1(C0) =

0. Thus, by the universal property of the cotensor coalgebra, Lemma 1.3.9, there ex-

ists a unique morphism of coalgebras f : C → CotkV Q0(V Q1) such that πi ◦f = fi for

i ∈ {0, 1}, where πi : CotkV Q0(V Q1)→ V Q2i
1 is the canonical projection. Injectivity

of f follows in a similar way done in Lemma 3.2.1.

Now, if [f ] is the congruence class of f in HomIPCog/∼(C,CotkV Q0(V Q1)), then

ηC,V Q([f ]) = φ is given by the maps

φ0 : G(C)→ V Q0

g 7→ f(g)

φg,h : P̄g,h(C)→ V Qφ(g),φ(h)

c 7→ (π1 ◦ f)(c)

However, since f(C0) ⊆ kV Q0, for any g ∈ G(C) we have

f(g) = (π0 ◦ f)(g) =f0(g)

=(ϕ̄0 ◦ π′0)(g)

=ϕ̄0(π′0(g))

=ϕ̄0(g) = ϕ0(g)

and for any c ∈ P̄g,h(C) we have

ι(c) ∈ Pι(g),ι(h)(CotC0(C1/C0)) = Pg,h(CotC0(C1/C0)) ⊆ C0 ⊕ P̄g,h(C).

Thus

(π1 ◦ f)(c) = f1(c) =
∑

g′,h′∈G(C)

ϕg′,h′(ι(c)g′,h′)

=ϕg,h(ι(c)) +
∑

g′,h′∈G(C)

ϕg′,h′(0)

=ϕg,h(c)

Therefore, ηC,V Q([f ]) = ϕ
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Now the following two lemmas show naturality of η.

Lemma 3.4.3. Fix a coalgebra C. The map

ηC,V Q : HomIPCog∼(C,K 2[V Q])→ HomIVquiv(G Q(C), V Q)

is the component at V Q of a natural transformation

ηC : HomIPCog∼(C,K 2[−])→ HomIVquiv(G Q(C),−)

Proof. Let γ ∈ HomIVquiv(V Q, V R). We need to confirm that the diagram

HomIPCog∼(C,K 2[V Q]) HomIVquiv(G Q(C), V Q)

HomIPCog∼(C,K 2(V R)) HomIVquiv(G Q(C), V R)

K 2[γ]◦−

ηC,V Q

γ◦−

ηC,V R

commutes. Consider [f ] ∈ HomIPCog/∼(C,K 2[V Q]) and f any representative.

We will show that the vertex map and the arrow maps of the two Vquiver maps

ηC,V R(K 2[γ] ◦ [f ]) and γ ◦ ηC,V Q([f ]) are equal.

On one hand we have

ηC,V R(K 2[γ] ◦ [f ])0 : G(C)→ V R0

g 7→ (k2[γ] ◦ f)(g)

where, for g ∈ G(C),

(k2[γ] ◦ f)(g) =(γ̄0 ◦ π′0)(f(g))

=γ̄0(π′0(f(g)))

=γ̄0(f(g))

=γ0(f(g))

=(γ0 ◦ f)(g).

On the other hand

(γ ◦ ηC,V Q([f ]))0 : G(C)→ V R0

g 7→ (γ0 ◦ f)(g)

Thus the vertex maps coincide.
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Now consider

ηC,V Q(K 2[γ] ◦ [f ])g,h : P̄g,h(C)→ V Rγ0(f(g)),γ0(f(h))

c 7→ π1 ◦ (k2[γ] ◦ f)(c)

where, for c ∈ P̄g,h(C), we have f(c) ∈ kV Q0 ⊕ V Qf(g),f(h) and so

π1 ◦ (k2[γ] ◦ f)(c) =(π1 ◦ k2[γ])(f(c))

=
∑

g′,h′∈V R0

γg′,h′(f(c))

=γf(g),f(h)(f(c))

=γf(g),f(h) ◦ (π1 ◦ f)(c).

However,

(γ ◦ ηC,V Q([f ]))g,h : P̄g,h(C)→ V Rγ0(f(g)),γ0(f(h)).

c 7→ γf(g),f(h) ◦ (π1 ◦ f)(c)

Thus ηC,V Q(K 2[γ] ◦ [f ]) = γ ◦ ηC,V R([f ]).

Lemma 3.4.4. Fix a Vquiver V Q. The map

ηC,V Q : HomIPCog∼(C,K 2[V Q])→ HomIVquiv(G Q(C), V Q)

is the component at C of a natural transformation

ηV Q : HomIPCog∼(−,K 2[V Q])→ HomIVquiv(G Q(−), V Q)

Proof. Let [ρ] ∈ HomIPCog∼(D,C) and ρ any representative. We need to confirm

that the diagram

HomIPCog∼(C,K 2[V Q]) HomIVquiv(G Q(C), V Q)

HomIPCog∼(D,K 2(V Q)) HomIVquiv(G Q(D), V Q)

ηC,V Q

−◦ρ −◦G Q(ρ)

ηD,V Q

commutes. Consider [f ] ∈ HomIPCog/∼(C,K 2[V Q]) and f any representative.

We must check if (ηD,V Q([f ] ◦ [ρ]))0 = (ηC,V Q([f ]) ◦ G Q(ρ))0 and for any g, h ∈
G(C), (ηD,V Q([f ] ◦ [ρ]))g,h = (ηC,V Q([f ]) ◦ G Q(ρ))g,h.
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We have as follows

(ηC,V Q([f ]) ◦ G Q(ρ))0 : G(C)→ V Q0

g 7→ f(ρ(g))

and

(ηD,V Q([f ] ◦ [ρ]))0 : G(C)→ V Q0

g 7→ (f ◦ ρ)(g)

Furthermore,

(ηC,V Q([f ]) ◦ G Q(ρ))g,h : P̄g,h(C)→ V Qf(ρ(g)),f(ρ(h))

c 7→ (π1 ◦ f)(ρ(c))

and

(ηD,V Q([f ] ◦ [ρ]))g,h : P̄g,h(C)→ V Qf(ρ(g)),f(ρ(h))

c 7→ (π1 ◦ (f ◦ ρ))(c)

Thus ηC,V Q([f ]) ◦ G Q(ρ) = ηD,V Q([f ] ◦ [ρ]).

This gives the following

Theorem 3.4.5. The triple 〈G Q,K 2, η〉 is an adjunction between IPCog∼ and

IVquiv.

Examples 3.4.6. Consider the path coalgebra C = k2Q of the quiver

a bδ

(see Example 2.3.4 (i)) and the Vquiver V Q given by V Q0 = {e1, e2, e3} and V Q1 =

V Qe1,e2 ⊕ V Qe2,e3 ⊕ V Qe1,e3 , with V Qei,ej = k, for j > i. Write V Qe1,e2 =< β >,

V Qe2,e3 =< γ > and V Qe1,e3 =< α >.

The Gabriel Vquiver of C, G Q(C) is given by G Q(C)0 = {a, b} and G Q(C)1 =

G Q(C)a,b =< δ >.

If ϕ ∈ HomIVquiv(G Q(C), V Q) then the image of δ by ϕa,b must be one of the

following

ϕa,b(δ) =


λα
λβ
λγ
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Note that ϕ0 is completely determined by ϕa,b : P̄a,b(G Q(C))→ V Qϕ0(a),ϕ0(b).

Now, the Path Coalgebra of V Q, K 2[V Q], is a pointed coalgebra with the

set of group-like elements G(K 2[V Q]) = {e1, e2, e3} and the sets of primitive el-

ements Pe1,e2(K
2[V Q]) =< β, e2 − e1 >, Pe2,e3(K

2[V Q]) =< γ, e3 − e2 >, and

Pe1,e3(K
2[V Q]) =< α, e3 − e1 >. There are no other primitive elements. Since in-

jective coalgebra homomorphisms take non trivial primitive elements to non trivial

primitive elements (see Lemma 1.1.9), for a given coalgebra homomorphism ρ such

that [ρ] ∈ HomIPCog∼(C,K 2[V Q]) we have that the image of δ by ρ must be one of

the following

ρ(δ) =


λα + µ(e3 − e1)
λβ + µ(e2 − e1)
λγ + µ(e3 − e2)

By Example 3.1.4, for any such ρ given by ρ(δ) = λθ + µ(ej − ei), we have ρ ∼ ρ′,

where ρ′ is given by ρ′(δ) = λθ. Now the isomorphism HomIVquiv(G Q(C), V Q) ∼=
HomIPCog∼(C,K 2[V Q]) follows easily.

Remark 3.4.7. An immediately conclusion one can take from Theorem 3.4.5 is that

any pointed coalgebra C is isomorphic to a subcoalgebra of K 2[G Q(C)].
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