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If only I had the theorems! Then I should find the proofs easily enough.
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RESUMO

Esta tese consiste de vários resultados sobre superfícies mínimas. Na primeira

parte estudamos superfícies mínimas com bordo livre na bola Euclideana Bn.

Nós provamos que se Σk é uma superfície minima com bordo livre e de di-

mensão k em Bn satisfazendo |x⊥|2|A|2 ≤ k
k−1 , então Σk é difeomorfica ao

disco Dk ou a S1×Dk−1. Alem disso, obtemos a rigidez no caso especial onde

Σ2 é uma superfície de dimensão 2 em Bn, precisamente, |x⊥|2|A(x)|2 ≡ 0

e Σ2 é um disco equatorial D2 ⊂ Bn ou |x⊥0 |2|A(x0)|2 = 2 em algum ponto

x0 ∈ Σ2 e Σ2 é isométrica a catenoide crítica. Também provamos existência

de um gap para a área of superfícies mínimas com bordo livre. Mais pre-

cisamente, existe ε(k, n) > 0 tal que se Σk é uma superfície mínima em Bn

satisfazendo Area(Σk) < Area(Dk) + ε(k, n), então Σk é um disco equatorial

Dk. Para provar este resultado gap nós comparamos o excesso de superfícies

mínimas com bordo livre com o excesso dos cones associados sobre o bordo

e vértice na origem. Como consequência, nós mostramos que a única uma

superfície mínima com bordo livre em Bn com bordo mínimo em ∂Bn é o

disco equatorial Dk. Na segunda parte provamos dois resultados sobre su-

perfícies mínimas fechadas em variedades tridimensionais. Mostramos que o

espaço das superfícies mínimas mergulhadas com área limitada superiormente

e raio de injetividade limitado inferiormente é compacto na topologia C∞.

Finalmente, provamos um resultado do tipo rigidez para variedades fechadas

tridimensionais de curvatura positiva admitindo superfícies mínimas estavéis.



ABSTRACT

This thesis consists of several results about minimal surfaces. In the first

part we study free boundary minimal surfaces in the Euclidean ball Bn.

We prove that if Σk is a k−dimensional free boundary minimal surface in

Bn satisfying |x⊥|2|A|2 ≤ k
k−1 , then Σk is diffeomorphic to either Dk or

to S1 × Dk−1. Further geometric information is given in the codimension

one case. Moreover, in case Σ2 is a 2-dimensional free boundary minimal

surface, then either |x⊥|2|A(x)|2 ≡ 0 and Σ2 is an equatorial disk D2 ⊂ Bn or

|x⊥0 |2|A(x0)|2 = 2 at a point x0 ∈ Σ2 and Σ2 is isometric to a critical catenoid.

We also prove the existence of a gap for the area of free boundary minimal

surfaces in the ball. Namely, there exists ε(k, n) > 0 so that whenever Σk

is a free boundary minimal surface in Bn satisfying Area(Σk) < Area(Dk) +

ε(k, n), then Σk is an equatorial diskDk. To prove this gap result we compare

the excess of free boundary minimal surfaces with the excess of the associated

cones over the boundaries. As a corollary, we show that Dk is the only free

boundary minimal surface in Bn whose boundary is minimal in ∂Bn. In

the second part we prove two results about closed minimal surfaces in 3-

manifolds. The main result is a compactness theorem for the space of minimal

surfaces with area bounded from above and injective radius bounded from

below. Finally, we prove a weak result for positively curved 3-manifolds with

symmetries containing stable minimal surfaces.
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INTRODUCTION

The main objects of study in this work are k-dimensional free boundary
minimal surfaces in the Euclidean unit ball Bn ⊂ Rn. These surfaces arise
as critical points to the area functional for surfaces in Bn with boundary in
∂Bn. It follows from the first variation formula that such surfaces intersect
∂Bn orthogonally. The simplest example is the equatorial disk Bk ⊂ Bn.
The subject has been studied by many authors where the main themes are
classification and existence results. Regarding the former we cite the classical
work of Nitsche [27] on the characterization of the flat diskD2 as the only free
boundary minimal disk in B3. For the existence problem we cite the works of
Struwe [19] and Jost and Grüter [16], [17] on the existence of free boundary
minimal disks in convex domains of R3. For the existence of minimal annuli
as well as other topological types see recent work in [13] and [28], respectively.
The interest of study free boundary minimal surfaces increased recently after
the work of Fraser and Schoen on the relationship between metrics that
maximize the first Steklov eigenvalues of surfaces with boundary and free
boundary minimal surfaces in B3, see [21], [22], and [23].

In this work we study geometric properties that in a way characterize the
equatorial disk as well as others interesting surfaces. In this direction, we
mention recent work of Ambrozio and Nunes [1] on a geometric characteri-
zation of the equatorial disk and the critical catenoid in terms of curvature
and support function:



Theorem (Ambrozio-Nunes). Let Σ2 be a compact free boundary minimal
surface in B3. Assume that for all points x ∈ Σ,

〈x,N(x)〉2|A(x)|2 ≤ 2

where N(x) denotes a unit normal vector at the point x ∈ Σ and A denotes
the second fundamental form of Σ. Then

1. 〈x,N(x)〉2|A(x)|2 ≡ 0 and Σ is a flat equatorial disk;

2. 〈x0, N(x0)〉2|A(x0)|2 = 2 at some point x0 ∈ Σ and Σ is a critical
catenoid.

The authors in [1] raise the question if the above theorem can be gener-
alized to higher ambient dimension and surface codimensions. The first part
of this thesis is centered on these two questions. In the codimension one case
we prove

Theorem. Let Σn be a free boundary minimal hypersurface in Bn+1
1 (0). As-

sume that for every x ∈ Σn

|A(x)|2 |x⊥|2 ≤ n

n− 1 . (0.1)

Then one of the following is true

1. Σ is diffeomorphic to a disk Dn.

2. Σ is diffeomorphic to S1 × Dn−1 and C(Σ) := {x ∈ Σ : |x| = d(0,Σ)}
is an equator in Sn(d(Σ, 0)).

Moreover, (0.1) becomes equality when x ∈ C(Σn) and A is constant along
C(Σ) with only two principal curvatures: −1

d(Σ,0) and 1
(n−1)d(Σ,0) .

The key insight behind the proof of above theorem is the observation that
inequality (0.1) implies that the Hessian of the square of the distance func-
tion to the origin is non-negative; from this many topological and geometric
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properties follow. In Chapter 2 we discuss some SO(2)×SO(n−1) invariant
minimal surfaces in Rn+1 which are candidates to satisfy inequality (0.1).

A natural question raised after previous theorem is if the equatorial free
boundary minimal disk Dn is characterized by 〈x,N〉2|A(x)|2 < n

n−1 . This is
a non-trivial question as even for the 2-dimensional case one needs to invoke
the aforementioned Nitsche’s theorem to prove uniqueness. On the other
hand, if one only asks for free boundary minimal surfaces with 〈x,N〉2|A(x)|2

sufficiently small, then we prove

Proposition. There exists ε(k) > 0 such that whenever Σk is a free boundary
minimal surface in Bn+1

1 (0) satisfying

|x⊥|2|A(x)|2 < ε(k),

where A(x) is the second fundamental form of Σk, then Σk is the free bound-
ary equatorial disk Dk.

Our next contribution addresses the case of 2-dimensional minimal sur-
faces in Bn satisfying an inequality of type (0.1). We remark that the
Nitsche’s uniqueness theorem mentioned earlier also holds in this setting,
this was proved recently by Fraser and Schoen, see [20]. Our result gives the
optimal characterization result:

Theorem. If Σ2 is a free boundary minimal surface in Bn+1
1 (0) satisfying

|x⊥|2|A(x)|2 ≤ 2,

for every x ∈ Σ2, then one of the following is true:

• |x⊥|2|A(x)|2 ≡ 0 and Σ2 is a flat equatorial disk.

• |x⊥0 |2|A(x0)|2 = 2 at some point x0 ∈ Σ2 and Σ2 is a critical catenoid
in a 3-dimensional linear subspace.
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The second part of this thesis seek for a similar gap phenomenon for
free boundary minimal surfaces in Bn in terms of the volume rather than
curvature. The main result regarding the volume of free boundary minimal
surfaces in Bn is due to S. Brendle who proved that the equatorial disk Dk

has least volume among k-dimensional free boundary minimal surfaces in Bn.
More precisely,

Theorem (S. Brendle). Let Σk be a k-dimensional free boundary minimal
surface in Bn. Then

|Σk| ≥ |Dk|

Moreover, the equality holds if, and only if, Σk is contained in k-dimensional
plane in Rn.

Are there non trivial free boundary minimal surfaces with volume suffi-
ciently close to the volume of Dk? This is a natural question in view of the
previous theorem and is closely related to the problem of how a sequence
of minimal surfaces can degenerate. We prove an Allard’s regularity result
for k-dimensional free boundary minimal surfaces in Bn whose volumes are
sufficiently close to the volume of the equatorial disk Dk. As a result, we
prove the existence of a gap for the volume of free boundary minimal surfaces
in the ball.

Theorem. There exists ε(k, n) > 0 so that whenever Σk is a k-dimensional
free boundary minimal surface in Bn with k ≥ 3, and satisfying

|Σk| < |Dk|+ ε(k, n),

then Σk is a free boundary equatorial disk Dk in Bn.

The 2-dimensional case is tis theorem was proved in [28]. Two important
ingredients used there are Nitsche’s uniqueness theorem and an excess in-
equality proved in [33]. The main difficulty when k ≥ 3 is that none of these
ingredients is available to use. We overcome these difficulty by considering a
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slightly more general quantity, originated in [32] and which also resembles an
excess type formula, and compare it with that of the free boundary cone over
the boundary to obtain curvature estimates for a sequence of free boundary
minimal surfaces with volume sufficiently close to the volume of the disk
of same dimension. Finally, we replace the use of Nitsche’s theorem by an
standard index of stability analysis.

The previous theorem is an application of the following general proposi-
tion that we prove in Chapter 2, Section 2.2 and which might be of indepen-
dent interest:

Proposition. Let Σk be a k-dimensional free boundary minimal surface in
Bn and C1∂Σ the cone with vertice at the origin and base ∂Σ. If y ∈ Σ−{0},
then∫

Σ

|(x− y)⊥|2
|x− y|k+2 =

∫
C1∂Σ

|(x− y)⊥|2
|x− y|k+2 + 1

k

∫
C1∂Σ
〈
−→
HC∂Σ,

x− y
|x− y|k

〉 − v(y)|Dk|,

where v(y) = 1 if y /∈ C1∂Σ and v(y) = 0 if y ∈ C1∂Σ.

As a consequence, we obtain the following unique continuation type result
for minimal surfaces in the ball.

Corollary. Let Σk be a smooth k-dimensional free boundary minimal surface
in Bn such that ∂Σk is a (k − 1)-minimal surface in ∂Bn. Then Σk is the
equatorial disk Dk.

We also discuss in Chapter 2 the case of free boundary surfaces with
constant mean curvature in B3. We extend previous gap result to this setting
by considering the Willmore energy of these surfaces instead of the volume,
this is done in Section 2.3.

In Chapter 3 we give two rather independent results on the classical
setting of closed minimal surfaces in 3-manifolds. The first one concerns a
compactness theorem for the space of closed minimal surfaces in 3-manifolds
with area bounded from above and injective radius bounded from below. The
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topic of compactness for minimal surfaces is a very attractive one in geometric
analysis; the classical result in the subject is the famous theorem of Choi and
Schoen [9] which asserts that the set of minimal sufaces with fixed genus in
a closed 3-manifold with positive Ricci curvature is strongly compact in the
C∞ topology. The subject flourished again recently after important work of
B. Sharp [31] who proved compactness for the space of minimal hypersurfaces
with bounded area and bounded index in higher dimension closed manifolds
with positive Ricci curvature. See also [2], [10], [11], and references therein
for other related results. Our result is

Theorem. Let M3 be a closed 3-manifold and let S be the space of closed
embedded minimal surfaces in M3. Then the class

C(A0, i0) := {Σ ∈ S : Area(Σ) ≤ A0, inj (Σ) ≥ i0}

is compact in the C∞ topology.

The example of a sequence of blow down of the minimal catenoid or
the example of a sequence of blow down of the minimal helicoid shows that
the assumptions on the area and injective radius in the above theorem are
necessary to obtain compactness.

Finally, we mention the last result in this thesis in the context of manifolds
with positive scalar curvature and stable minimal surfaces

Theorem. Let (M3, g) be a closed 3-manifold with positive scalar curva-
ture Rg > 0 and admitting a Killing vector field V . If (M3, g) contains
an embedded stable minimal surface, then the universal cover of (M3, g) is
diffeomorphic to either S3 or S2 × R, and

g = dr2 + ds2 + ϕ(r, s) dθ2 and ϕ(r, s) = 1
2π

∫ 2π

0
|V (r, s, θ)| dθ.
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1. PRELIMINARIES

In this chapter, we present the definitions of the objects of interest and state
the basic facts which will be used throughout this work. In Section 1, we first
list the definitions of the geometric objects related to a Riemannian manifold
and its submanifolds. In Section 2, we recall the mean curvature equation
for graphs with codimension and state a standard result on the zero set of a
solution of a system of elliptic equations.

1.1 Geometry of submanifolds

Let (Mn, g) be a Riemannian manifold of dimension n. The Levi-Civita
connection associated to the metric g is denoted by ∇. The Riemannian
curvature tensor, denoted by R, is the tensor defined as:

R(X, Y, Z) = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

for every X, Y, Z ∈ X (M). Here X (M) denotes the space of smooth vector
fields on M . The sectional curvature of M at a point x ∈M in the direction
of a 2-dimensional plane σ ⊂ TxM is given by:

KM(σ, x) = g(R(e1, e2, e1), e2),

where {e1, e2} is an orthonormal basis for σ. The Ricci tensor, denoted by
Ric, is the symmetric two tensor defined by:

Ric(X, Y )(x) =
n∑
i=1

g(R(X, ei, Y ), ei)(x),



1.1 Geometry of submanifolds

where X, Y ∈ X (M) and x ∈M . Here, {e1, . . . , en} is an orthonormal basis
for TxM . Similarly, the scalar curvature of M , denoted by Rg, is the scalar
function defined by:

Rg(x) =
n∑
i=1

Ric(ei, ei)(x),

where {e1, . . . , en} is an orthonormal basis for TxM .
The Levi-Civita connection of a k-dimensional surface Σk ⊂ M with the

induced Riemannian metric of M is given by:

∇XY = (∇XY )>,

where X, Y ∈ X (Σ). The second fundamental form of Σ, denoted by B, is
then defined by:

B(X, Y ) = (∇XY )⊥,

where X, Y ∈ X (Σ). The second fundamental form plays an important role
in comparing the intrinsic curvatures ofMn and Σk as indicated in the Gauss
equation:

Proposition 1 (Gauss Equation). Given x ∈ Σk and σ a 2-dimensional
plane in TxΣ, then

KM(σ, x)−KΣ(σ, x) = 〈B(e1, e1), B(e2, e2)〉 − |B(e1, e2)|2,

where {e1, e2} is an orthonormal basis for σ.

The mean curvature vector of Σk, denoted by −→H , is the normal vector
defined as the trace of B, i.e.,

−→
H (x) = 1

k
B(ei, ei)(x),

where x ∈M and e1, . . . , ek is an orthonormal basis for TxΣ.
The geometric significance of the mean curvature vector comes from the

first variation formula for the area. In order to make this statement precise
we first recall what a smooth variation of a surface is. Let Σk be a surface
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1.2 Mean curvature equation

in a domain Ω ⊂Mn such that ∂Σ ⊂ ∂Ω. A smooth variation of Σ inside Ω
is just a smooth map ϕ : Σ× [0, ε) → Ω with the property that ϕ(x, 0) = x

and ϕ(x, t) ∈ ∂Ω for every x ∈ ∂Σ.

Proposition 2 (First Variation Formula).
d

dt

∣∣∣∣∣
t=0
|Σt| = −k

∫
Σ

〈
−→
H,

∂ϕ

∂t
(x, 0)

〉
dΣ +

∫
∂Σ

〈
ν,
∂ϕ

∂t
(x, 0)

〉
dσ,

where |Σt| denotes the area of Σt = ϕ(Σ, t) and ν is the exterior co-normal
vector of ∂Σ in Σ.

Proof. See Appendix.

Definition 1. A surface Σk ⊂ Ω ⊂ M with ∂Σ ⊂ ∂Ω is said to be a free
boundary minimal surface if −→H = 0 and if Σ intersects ∂Ω orthogonally.

Proposition 3 (Second Variation Formula). If Σk is a k-dimensional free
boundary minimal surface in Ω, then

d2

dt2

∣∣∣∣∣
t=0
|Σt| =

∫
Σ

(
|∇⊥∂ϕ

∂t
(x, 0)|2 −

k∑
i=1

g(R(∂ϕ
∂t

(x, 0), ei,
∂ϕ

∂t
(x, 0), ei))

−
k∑
i,j

g(B(ei, ej),
∂ϕ

∂t
(x, 0))2

)
dΣ +

∫
∂Σ
g(∇ ∂ϕ

∂t
(x,0)

∂ϕ

∂t
(x, 0), ν) dσ.

Proof. See Appendix.

1.2 Mean curvature equation

Although the next two lemmas are standard, for the benefit of the reader we
include their proofs.

Lemma 1. Let Σk be a minimal submanifold in Rn given by the graph of the
function u : U ⊂ Rk → Rn−k where u(x) = (u1(x), . . . , un−k(x)). Then for
every l = 1, . . . , n− k

aij(∇u1, . . . ,∇un−k)√
1 + |∇ul|2

Dijul = 0, (1.1)

for some smooth functions aij(∇u1, . . . ,∇un−k).

9



1.2 Mean curvature equation

Proof. Parametrize Σ as ϕ(x) = (x, u1(x), . . . , un−k(x)). The coordinate ba-
sis for Σ is given by

Dxiϕ = (0, . . . , 1, . . . , Dxiu1, . . . , Dxiun−k),

for i = 1, . . . , k. It follows that

gij = δij +
n−k∑
l=1

DxiulDxjul and gij = aij(∇u1, . . . ,∇un−k). (1.2)

Now we consider for each l = 1, . . . , n− k the unit normal vector

Nl = 1√
1 + |∇ul|2

(−Dx1ul, . . . ,−Dxkul, 0, . . . , 1, . . . , 0).

A simple computation gives

(Nl)xi =
(

1√
1 + |∇ul|2

)
xi

√
1 + |∇ul|2Nl +

1√
1 + |∇ul|2

(−D2
x1xl

ul, . . . ,−D2
xkxl

ul, 0 . . . , 0).

Consequently,

(ANl)ij = 〈−dNl(ϕxi), ϕxj〉 = 1√
1 + |∇ul|2

D2
xixj

ul.

As Σk is minimal we have 0 = gij(ANl)ij and by (1.2) we obtain

aij(∇u1, . . . ,∇un−k)√
1 + |∇ul|2

Dijul = 0.

Lemma 2. Let u, v : U ⊂ Rk → Rp be smooth maps which satisfy (1.1).
Then, the difference ϕ = u− v satisfies for each l = 1, . . . , p

aij(∇u)√
1 + |∇ul|2

Dij(ϕl) +
p∑

m=1
bmj (∇u,∇v)Dj(ϕm) = 0.

for some smooth functions aij(∇u) and bmj (∇u,∇v).

10



1.2 Mean curvature equation

Proof. As ul and vl satisfy equation (1.1), therefore

0 = aij(∇u)√
1 + |∇ul|2

Dijul −
aij(∇v)√
1 + |∇vl|2

Dijvl

= aij(∇u)√
1 + |∇ul|2

Dijul −
aij(∇u)√
1 + |∇ul|2

Dijvl

+ aij(∇u)√
1 + |∇ul|2

Dijvl −
aij(∇v)√
1 + |∇vl|2

Dijvl

= aij(∇ul)√
1 + |∇ul|2

Dij(ϕl) +
(

aij(∇u)√
1 + |∇ul|2

− aij(∇v)√
1 + |∇vl|2

)
Dijvl.

Now, let Fij : Rk × · · · × Rk → R be defined by

Fij(z1, . . . , zp) = aij(z1, . . . , zp)√
1 + |zl|2

.

By the Fundamental Theorem of Calculus we can write

Fij(∇u)− Fij(∇v) =
(∫ 1

0
dFij(∇u+ t(∇v −∇u))dt

)
∇(u− v).

The lemma follows by setting bmq to be

bmq =
(∫ 1

0
dFij(∇u+ t(∇v −∇u))dt

)
qm

DijvlDq(u− v)m.

The next lemma is a straightforward generalization of a result proved in
[36] about the nodal set of a solution of an elliptic differential equation to
the case of a system of elliptic equations.

Lemma 3. Let u : U ⊂ Rn → Rp be a smooth map which satisfies for each
k = 1, . . . , p an elliptic equation of the form:

aij(x)Dijuk +
p∑
l=1

blj(x)Djul +
p∑
l=1

cl(x)ul = 0, (1.3)

where aij, bj, and cl are smooth functions. Let’s assume that aij is positive
definite, and that |bj| ≤ C and |cl| ≤ C for some constant C > 0. If the order
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1.2 Mean curvature equation

of vanishing of ul at u−1
l (0) is finite for each l and if x0 ∈ u−1(0)∩|Du|−1(0),

then
u−1(0) ∩ |Du|−1(0) ∩Br(x0)

decomposes into a countable union of subsets of a pairwise disjoint collection
of n− 2-dimensional smooth submanifolds.

Proof. We first define for each integer q = 1, 2, . . . the set

Sq = {x : Dαul(x) = 0, ∀ |α| ≤ q, ∀l and Dq+1ul0(x) 6= 0 for some l0}. (1.4)

Moreover, if x ∈ u−1(0) ∩ |Du|−1(0) and r > 0 is small enough, then

u−1(0) ∩ |Du|−1(0) ∩Br(x) = ∪dq=1Sq ∩Br(x), (1.5)

where d − 1 is the order of vanishing of u at x. Now for each x ∈ Sq we
consider a multi-index β such that |β| = q − 1 and Hess(Dβul0)(x) 6= 0 for
some l0. Applying Dβ to both sides of (1.3) with k = l0 and recalling that
Dαul(x) = 0 for every multi-index α such that |α| ≤ q we obtain

aij(x)Dij(Dβul0)(x) = 0.

Using that aij is positive definite and that Hess(Dβul0)(x) 6= 0 we conclude
that rank(Hess(Dβul0)(x) ≥ 2. Thus there exist indexes i1 and i2 for which
grad(Di1D

βul0)(x) and grad(Di2D
βul0)(x) are linearly independent. This

implies that for small r > 0 that

Br(x) ∩ (Di1D
βul0)−1(0) ∩ (Di2D

βul0)−1(0)

is a n− 2-dimensional submanifold Σx,r,β which contains Br(x)∩Sq. In view
of (1.5) we conclude that for each x ∈ u−1(0) ∩ |Du|−1(0) there exist r > 0
and smooth n− 2-dimensional submanifolds Σx,r,q1 , . . . ,Σr,x,qs for which

Br(x) ∩ u−1(0) ∩ |Du|−1(0) ⊂ ∪sj=1Σx,r,qj . (1.6)

The Lemma follows from (1.6).

12



1.2 Mean curvature equation

Lemma 4. If Σ1 and Σ2 are 2-dimensional minimal surfaces in Rn having
a tangential intersection of infinite order at x0 ∈ Σ1 ∩ Σ2, then Σ1 = Σ2.

Proof. There exists a domain Ω ⊂ R2 containing the origin and minimal
maps vk : Ω → Rn, k = 1, 2, parameterizing neighborhoods of Σk and such
that vk(0) = x0. We can assume that the coordinates z = x + y i in Ω
are isothermal for both v1 and v2. As vk is minimal, each coordinate vik,
i = 1, . . . , n, is harmonic, which implies by the conformal invariance of the
Laplacian that ∂z∂zvik = 0. Hence, if we define v(z) = v1(z) − v2(z), then
each component of ∂zv is holomorphic, i.e., ∂z∂zvi = 0. Since z = 0 is an
infinite order zero of v, the analytic continuation property for holomorphic
functions implies that v ≡ 0. Therefore, Σ1 = Σ2.

13



2. GAP RESULTS FOR FREE BOUNDARY MINIMAL

HYPERSURFACES

In this Chapter we study k-dimensional minimal surfaces in the Euclidean
unit ball Bn that meet ∂Bn orthogonally. We prove some gap theorems in
terms of curvature in Section 2.1 and in terms of area in Section 2.2. Finally,
in Section 2.3 we discuss some energy gap for surfaces with constant mean
curvature in B3.

2.1 Curvature gap for free boundary minimal surfaces

Lemma 5. Let Σk be a free boundary minimal surface in Bn+1
1 (0) and f be

the function f : Σk → R by

f(x) = |x|
2

2 , x ∈ Σk.

Then ∇Σf = x> for every x ∈ Σ and

HessΣ f(x)(X, Y ) = 〈X, Y 〉+ 〈B(X, Y ),−→x 〉. (2.1)

Proof. Given X ∈ X (Σ), then

X(f) = 1
2X〈
−→x ,−→x 〉 = 〈X,−→x 〉 = 〈X, x>〉.

This proves that ∇Σf(x) = x>. In particular, ∇Σf(x) = x for every x ∈ ∂Σ
since Σ is a free boundary minimal surface. Given X and Y vector fields in



2.1 Curvature gap for free boundary minimal surfaces

X (Σ) the HessΣ f (X, Y ) is given by

HessΣ f (X, Y ) = 〈∇X∇f, Y 〉 = 〈∇X∇f, Y 〉 = 〈∇X(x− x⊥), Y 〉

= 〈X, Y 〉 − 〈∇Xx
⊥, Y 〉 = 〈X, Y 〉+ 〈x⊥,∇XY 〉

= 〈X, Y 〉+ 〈B(X, Y ),−→x 〉,

where X and Y are vector fields in X (Σ).

Definition 2. Given a k-dimensional free boundary minimal surface Σk in
Bn+1

1 (0) we define

C(Σ) = {x ∈ Σ : f(x) = m0 := min
Σ

f}. (2.2)

Lemma 6 (Chen [14]). Let a1, . . . , an and b be real numbers. If
n∑
i=1

a2
i ≤

(∑n
i=1 ai)2

n− 1 − b

n− 1 ,

then 2 ai aj > b
n−1 for every i, j ∈ {1, . . . , n}.

Proof. The proof is by induction on n. The assertion is clearly true when
n = 2. Let a1, . . . , an+1 be a sequence of numbers satisfying

n
n+1∑
i=1

a2
i + b ≤ (

n+1∑
i=1

ai)2.

It follows that

(n− 1)a2
n+1 − 2(

n∑
i=1

ai)an+1 + n
n∑
i=1

a2
i − (

n∑
i=1

ai)2 + b ≤ 0.

This is a quadratic inequality on an+1. Hence, its discriminant is non-
negative, i.e.:

4(
n∑
i=1

ai)2 − 4(n− 1)n
n∑
i=1

a2
i + 4(n− 1)(

n∑
i=1

ai)2 − 4(n− 1)b ≥ 0.

Above expression is equivalent to:

(n− 1)
n∑
i=1

a2
i + (n− 1)b

n
≤ (

n∑
i=1

ai)2.

By the induction argument we obtain that 2aiaj ≥ b
n
for every i, j ∈ {1, . . . , n}.

Since the choice of an+1 was arbitrary, the lemma is proved.

15



2.1 Curvature gap for free boundary minimal surfaces

Theorem 7. Let Σk be a k-dimensional free boundary minimal surface in
the unit ball Bn ⊂ Rn and assume that k ≥ 3. If

|x⊥|2 |B(x)|2 ≤ k

k − 1 (2.3)

for every x ∈ Σk, then one of the following is true:

1. Σk is diffeomorphic to a disk Dk.

2. Σk is diffeomorphic to S1 × Dk−1 and C(Σk) is a closed geodesic.

Proof. The first important observation is that (2.3) implies that HessΣ f is
non-negative. Indeed, let {e1, . . . , ek} be an orthonormal basis of eigenvectors
of HessΣ f at x ∈ Σ with respective eigenvalues λ1, . . . , λk. We want to show
that λi ≥ 0 for every i. By Lemma 5, λi = 1 + 〈B(ei, ei),−→x 〉 and this gives
the following

k∑
i=1

λ
2
i = k + 2

k∑
i=1
〈B(ei, ei),−→x 〉+

k∑
i=1
〈B(ei, ei),−→x 〉2 = k +

k∑
i=1
〈B(ei, ei),−→x 〉2

≤ k + |x⊥|2
k∑
i=1
|B(ei, ei)|2 ≤ k + |x⊥|2|B|2.

On the other hand, we have that
(∑k

i=1 λi

)2

= k2 since Σk is minimal.

Hence,

k + |x⊥|2|B|2 ≤ k2

k − 1 ⇒
k∑
i=1

λ
2
i ≤

(∑k
i=1 λi)2

k − 1 .

Therefore, (2.3) combined with Lemma 6, where λi = ai and b = 0, imply
that 2λiλj ≥ 0. Consequently, the eigenvalues λi, i = 1, . . . , k, have all the
same sign. Since ∑k

i=1 λi = k, we conclude that λi ≥ 0 for every i and the
claim is proved.

The convexity of HessΣf places strong restrictions on the set C(Σ) as
well as on the topology of Σ as we show below. We first prove that the set
of critical points of f : Σ → R coincides with C(Σk). Indeed, let γ(t) be a
geodesic in Σ joining critical points x0 and x1 of f with x0 in C(Σ); such

16



2.1 Curvature gap for free boundary minimal surfaces

a geodesic exists since the geodesic curvature of ∂Σ is positive by the free
boundary condition and ∂Bn is convex. It follows that (f ◦γ)′′(t) ≥ 0, which
implies that (f ◦γ)′ is non-decreasing. But since (f ◦γ)′(0) = (f ◦γ)′(1) = 0,
we conclude that f ◦γ = const, this implies that f(x1) = m0 and x1 ∈ C(Σk).
In particular, every geodesic segment with extremes at C(Σk) is contained
in C(Σk), i.e. C(Σk) is a totally convex set of Σk.

If C(Σk) = {x0} for some x0 ∈ Σk, then f has only one critical point,
namely, x0 ∈ Σk. By standard Morse theory we conclude that Σk is diffeo-
morphic to a disk Dk.

Let us now study the case where C(Σk) contains more than one point. We
begin by showing that dim(C(Σk)) = 1. Indeed, if x1 and x2 are two distinct
points in C(Σ), then C(Σ) contains the minimizing geodesic joining x0 and
x1 since C(Σ) is totally convex. Let γ be the maximal geodesic extending
this minimizing geodesic segment and still contained in C(Σ). If there exists
a point y ∈ C(Σ) − γ, then C(Σ) contains the cone obtained by the union
of all geodesic segments with extremities in y and in γ. It follows that
dim(Ker(HessΣ f)) ≥ 2 at every point in this cone. Let e1 and e2 be two null
eigenvectors of HessΣf , then 〈B(e1, e1),−→x 〉 = −1 and 〈B(e2, e2),−→x 〉 = −1,
Consequently,

k

k − 1 ≥ |B|
2|x⊥|2 ≥

(
|B(e1, e1)|2 + |B(e2, e2)|2

)
|x⊥|2 ≥ 2.

As this is a contradiction when k ≥ 3, we conclude that C(Σ) = γ and
dim(C(Σk)) = 1. If C(Σ) fails to be a closed geodesic, then Σ is diffeormor-
phic to Dk as one can retract Σ to the boundary of a tubular neighborhood of
C(Σ) via the gradient flow of the function f and then extend the retraction
to a single point as a tubular neighborhood of a line segment is contractible.
The remaining case is that of C(Σ) being a smooth closed geodesic. Standard
Morse theory again guarantees a diffeomorphic retraction of Σ onto C(Σ) and
this forces Σ to be diffeomorphic to S1 × Dk−1.

17



2.1 Curvature gap for free boundary minimal surfaces

Corollary 1. If Σn is a free boundary minimal hypersurface in Bn+1
1 (0) such

that

|B|2(x) |x⊥|2 ≤ n

n− 1 (2.4)

for every x ∈ Σn, then one of the following is true

1. Σ is diffeomorphic to a disk Dn.

2. Σ is diffeomorphic to S1 × Dn−1 and C(Σ) is an equator in Sn(2m0),
where m0 is defined as in (2.2). Moreover, (2.4) becomes equality when
x ∈ C(Σn) and B is constant with only two principal curvatures: −1

2m0

and 1
2(n−1)m0

.

Proof. As C(Σn) is a geodesic in Σn and since Σn is tangent to Sn(2m0)
along C(Σ) we conclude that

∇R3

γ′(t)γ
′(t) ∈ TΣ⊥ = TSn(2m0)⊥,

where γ(t) is a parametrization of C(Σn). This shows that C(Σn) is also a
geodesic in Sn(2m0), hence, an equator. Now, recall that the eigenvectors of
HessΣf are also eigenvectors of AN by formula (2.1). Using that λ1 = 0 over
C(Σn), we obtain∣∣∣∣∣HessΣ f |C(Σ)⊥

∣∣∣∣∣
2

=
n∑
i=2

λi = n+ |x⊥|2 |AN |2 ≤
n2

n− 1 =
(traceHessΣ f |C(Σ)⊥)2

n− 1 .

Since dimC(Σn)⊥ = n−1, we conclude that HessΣ f |C(Σ)⊥ = λ Id. Moreover,
since Σn is minimal, we have that traceHessΣ f = n, and this implies λ =
n
n−1 . Using that λi = 1 + 〈x,N〉λi, that λ1 = 0 and λi = n

n−1 for i > 1, item
2 follows.

Proposition 4. There exists ε(k) > 0 such that if Σk is a free boundary
minimal surface in Bn+1

1 (0) satisfying

|x⊥|2|B|2 < ε(k),

then Σk is the free boundary equatorial disk Bk.

18



2.1 Curvature gap for free boundary minimal surfaces

Proof. The proof is by a contradiction argument. Assume that Σk
i is a se-

quence of k-dimensional free boundary minimal surfaces such that

|x⊥|2|BΣi |2 ≤
1
i

for every x ∈ Σk
i . We first show that the curvature of Σi is uniformly bounded.

If this is not true, then choose a sequence of points {xi}i=1 with xi ∈ Σi and
with the property that |BΣi(xi)| = maxΣi |BΣi(x)|. Define λi = |BΣi(xi)| and
consider the new surface Σ̂i = λi(Σi − xi) which is a free boundary minimal
surface in λi(Bn+1

1 (0) − xi). Up to a subsequence, Σ̂i converge to either a
complete without boundary k-dimensional minimal surface Σ∞ in Rn+1 or it
is a free boundary minimal surface in a half space in Rn+1, the convergence
is smooth up to the boundary [5]. In any case, Σ∞ has the property that
|BΣ∞(0)| = 1. On the other hand, for every z ∈ Σ∞ we have

|z⊥|2 |BΣ∞(z)|2 = lim
i→∞
|z⊥i |2|BΣ̂i(zi)|

2 = lim
i→∞
|y⊥i − x⊥i |2 |BΣi(yi)|2

≤ lim
i→∞

(
|y⊥i |2 |BΣi(yi)|2 + |x⊥i |2 |BΣi(yi)|2

)

≤ lim
i→∞

(
|y⊥i |2 |BΣi(yi)|2 + |x⊥i |2 |BΣi(xi)|2

)

= 0.

Hence, Σ∞ is totally geodesic. As this is a contradiction, we conclude that
{Σi} has uniformly bounded curvature. Therefore, Σi converges graphically
with multiplicity one to an equatorial disk. As shown in the proof of Theorem
?? in Section 2.2, this is impossible unless Σi is an equatorial disk.

2.1.1 Equivariant minimal surfaces

We now look at minimal surfaces in Rm+2 that are SO(2)×SO(m) invariant.
They are natural candidates to satisfy Item 2 in Corollary 1. These surfaces

19



2.1 Curvature gap for free boundary minimal surfaces

were studied in [3] and [4]. Their constructions were later extended to the
free boundary case in [15]. Following [3] and [15] we begin by recalling how
these surfaces are constructed.

If Σ is a minimal hypersurface in Rm+2 and invariant by SO(2)×SO(m),
then Σ can be parametrized as

X : I × S1 × Sm−1 → Rm+2 ; X(t, x, y) = (a(t)x, b(t)y).

The curve γ(t) = (a(t), b(t)) satisfies the following ODE:

Lemma 8.
b′′a′ − a′′b′

a′2 + b′2
+ b′

a
− (m− 1)a

′

b
= 0.

Proof. A simple computation gives that Xt = (a′x, b′y), Xx = (a(t)∂x, 0),
and Xy = (0, b(t)∂y). Hence, gtt = a′2 + b′2, gxx = a2, gyy = b2, and gtx =
gty = gxy = 0. Moreover, an unit normal vector N is given by

N = 1√
a′2 + b′2

(
b′(t)x,−a′(t)y

)
.

It follows that 〈Nt, Xt〉 = b′′a′−a′′b′
√
a′2+b′2 , 〈Nx, Xx〉 = 1√

a′2+b′2ab
′, and 〈Ny, Xy〉 =

− 1√
a′2+b′2a

′b. A standard computation gives

0 = (m+ 1)H = 1√
a′2 + b′2

(
b′′a′ − a′′b′

a′2 + b′2
+ b′a

a2 − (m− 1)a
′b

b2

)
.

From this the lemma follows.

Let γ(s) be the curve γ(s) = (a(s), b(s)) in R2 with respect to a arc-length
parametrization and ϕ(s) and θ(s) be the functions defined by

1. γ(s) =
√
a2 + b2(cos(ϕ(s)), sin(ϕ(s))).

2. γ′(s) = (cos(θ(s)), sin(θ(s))).

Using that ϕ(s) = arctan(b(s)/a(s), we obtain

ϕ′ = sin(θ − ϕ)√
a2 + b2

.
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2.1 Curvature gap for free boundary minimal surfaces

To compute θ′ we use Lemma 8

θ′ = 2√
a2 + b2

(
(m− 1) cos(θ) cos(ϕ)− sin(ϕ) sin(θ)

sin(2ϕ)

)
.

The behavior of the surface Σ is understood in terms of the qualitative in-
formation given by the integral curves of the vector field (ϕ′, θ′) in the plane.
This is obtained by studying the integral curves of the following vector field:

V (ϕ, θ) =
(

sin(2ϕ) sin(θ − ϕ) , 2((m− 1) cos(θ) cos(ϕ)− sin(θ) sin(ϕ))
)
.

A careful analysis of the zeros of V in the region (0, π2 )× (−π, π) is given in
[3] and in [15]. When m ≤ 5 there exists an integral curve {(ϕ(t), θ(t) : t ∈
R} starting at the saddle point (0, π2 ) and spiraling toward the focal point
(v0, v0)) where v0 = arctan(

√
m− 1), see Figure 2.1 below. This integral

curve generates, by Lemma 8, a properly embedded minimal hypersurface
Σ ⊂ Rm+2, m = 2, 3, 4, or 5, diffeomorphic to S1×Rm and asymptotic to the
minimal cone

{t (x,
√
my) : t ≥ 0, x ∈ S1, y ∈ Sm−1}.

The curve (ϕ(t), θ(t)), t ∈ (−∞,∞), starting at (0, π2 ) intersects the line
ϕ = θ infinitely often. Take t0 to be the first t for which ϕ(t) = θ(t), i.e., the
curve γ(s(t)) intersects the circle centered at the origin orthogonally when
s0 = s(t0). It is proved in [15] that γ(s), s ∈ [0, s0], is contained inside the ball
of radius |γ(s0)|. Hence, the minimal surface obtained from γ : [0, s0] → R2

is a free boundary minimal surface in B(0, |γ(s0)|).
It is pointed out in [15] that when m ≥ 6 the integral curves of V (ϕ, θ)

no longer intersect the diagonal {ϕ = θ}. Therefore, there exist no free
boundary minimal surfaces in Bm+2 which are SO(2) × SO(m) invariant
when m ≥ 6.

Example 1. Let’s compute the quantity |z⊥|2 |B(z)|2 for the minimal sur-
faces Σm ⊂ Rm+2 constructed above.

|z⊥|2 = 〈z,N〉2 = (−b′a+ a′b)2 = (a2 + b2)(− sin(θ) cos(ϕ) + cos(θ) sin(ϕ))2

= (a2 + b2) sin2(θ − ϕ).
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2.1 Curvature gap for free boundary minimal surfaces

Fig. 2.1: An integral curve of V (ϕ, θ) and the curve γ.

Recall that |B|2 = |dN |2 and

|dN |2 = 〈dN(Xs), Xs〉2

gss
+ 〈dN(Xx), Xx〉2

gxx
+

m−1∑
i=1

〈dN(Xyi), Xyi〉2

gyiyi
.

Using the expressions for 〈dN(Xs), Xs〉, 〈dN(Xx), Xx〉, and 〈dN(Xyi), Xyi〉
we obtain

|B|2 = (b′′a′ − a′′b′)2 + (b
′

a
)2 + (m− 1)(−a

′

b
)2

=
(

(m− 1)a
′

b
− b′

a

)2

+ (b
′

a
)2 + (m− 1)(a

′

b
)2

= (m2 −m)(a
′

b
)2 + 2(b

′

a
)2 − 2(m− 1)a

′b′

ab

= 1
a2 + b2

(
(m2 −m) cos2(θ)

sin2(ϕ) + 2 sin2(θ)
cos2(ϕ) − 2(m− 1) cos(θ) sin(θ)

cos(ϕ) sin(ϕ)

)

= 1
a2 + b2

(
(m2 −m) cos2(θ) cos2(ϕ) + 2 sin2(θ) sin2(ϕ)

cos2(ϕ) sin2(ϕ)

− 2(m− 1)cos(θ) sin(θ) cos(ϕ) sin(ϕ)
cos2(ϕ) sin2(ϕ)

)
.

Therefore,

|z⊥|2|B(z)|2 = sin2(θ − ϕ)
(

(m2 −m) cos2(θ) cos2(ϕ) + 2 sin2(θ) sin2(ϕ)
cos2(ϕ) sin2(ϕ)

− 2(m− 1)cos(θ) sin(θ) cos(ϕ) sin(ϕ)
cos2(ϕ) sin2(ϕ)

)
.
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2.1 Curvature gap for free boundary minimal surfaces

If we restrict to the case m = 2, which corresponds to a 3-dimensional mini-
mal surface Σ3 ⊂ R4, then we get

|z⊥|2|B(z)|2 = 2 sin2(θ − ϕ)
(

cos2(θ) cos2(ϕ) + sin2(θ) sin2(ϕ)
cos2(ϕ) sin2(ϕ)

− cos(θ) sin(θ) cos(ϕ) sin(ϕ)
cos2(ϕ) sin2(ϕ)

)

|z⊥|2|B(z)|2 = 2 sin2(θ − ϕ)
(

4 cos2(θ + ϕ)
sin2(2ϕ) + sin(2θ) sin(2ϕ)

sin2(2ϕ)

)

= 24 sin2(θ − ϕ) cos2(θ + ϕ)
sin2(2ϕ) + 2 sin2(θ − ϕ)

(
sin(2θ)
sin(2ϕ)

)

= 2
((

sin(2θ)
sin(2ϕ) − 1

)2

+ sin2(θ − ϕ) sin(2θ)
sin(2ϕ)

)
. (2.5)

Let us show that |z⊥|2|B(z)|2 = 3
2 for every point z ∈ C(Σ3). First, note that

(a(0)x, b(0)y) = limt→−∞(a(s(t)x, b(s(t)y) ∈ C(Σ3). Let λ1 be a eigenvalue
of dN associated to the principal direction C(Σ3) and z0 ∈ C(Σ). It follows
that 〈z0, N〉λ1 = 1 by (2.1). Using that γ′(0) = |γ(0)|(1, 0), γ′(0) = (0, 1)
and applying the L’Hôpital’s rule we obtain that the other two eigenvalues
of dN are equal to −a′′(0) at C(Σ3). Since Σ3 is minimal, we obtain that
2 a′′(0) = λ1. Therefore,

|z⊥0 |2|B(z0)|2 = 〈z,N〉2(λ2
1 + 2 (a′′)2) = 1 + 1

2 = 3
2 . (2.6)

In particular, if one can show that the right hand side of (2.5) is a monotone
decreasing function on [0, s0], then Σ3 will satisfy |z⊥|2|B(z)|2 ≤ 3

2 . Let’s
show that this is true for every s ∈ [0, δ) where δ is very small. By (2.6)
and L’hôpital’s rule we have that lims→0(ϕ′(s), θ′(s)) = 1√

a2+b2 (1,−1
2). Simi-

larly, using the formulas for θ′(s) and ϕ′(s) computed earlier we obtain that
lims→0(ϕ′′(s), θ′′(s)) = (0, 0). Let h be the function h(s) = sin(2θ(s))

sin(2ϕ(s)) , then

h′(s) = 2 cos(2θ)
sin(2ϕ) θ

′(s) + sin(2θ)
(

1
sin(2ϕ)

)′
ϕ′(s).
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2.1 Curvature gap for free boundary minimal surfaces

L’hôpital’s rule once more gives that h′(0) = 0. The second derivative is

h′′(s) =
(
− 4 sin(2θ)

sin(2ϕ) θ
′ + 2 cos(2θ)

(
1

sin(2ϕ)

)′
ϕ′
)
θ′ + 2 cos(2θ)

sin(2ϕ) θ
′′ +

(
2 cos(2θ)

(
1

sin(2ϕ)

)′
θ′ + sin(2θ)

(
1

sin(2ϕ)

)′′
ϕ′
)
ϕ′ + sin(2θ)

(
1

sin(2ϕ)

)′
ϕ′′.

All quantities above have a limit as s → 0 by L’hôpital’s rule. Since
(ϕ′(0), θ′(0)) = 1√

a2+b2 (1,−1
2) and (ϕ′′(0), θ′′(0)) = (0, 0) we obtain

h′′(0) =
(sin(2(π2 −

1
2

t√
a2+b2 ))

sin(2 t√
a2+b2 )

)′′
(0) = 1

2(a2 + b2) .

As (|z⊥|2|B(z)|2)′(s) = 4(h− 1)h′+ 2 sin(2θ− 2ϕ)(θ−ϕ)′h+ 2 sin2(θ−ϕ)h′,
we first obtain that (|z⊥|2|B(z)|2)′(0) = 0. Similarly,

(|z⊥|2|B(z)|2)′′(s) = 4h′2 + 4(h− 1)h′′ +

4 cos(2θ − 2ϕ)(θ − ϕ)′2h+ 2 sin(2θ − 2ϕ)(θ − ϕ)′′h+ sin(2θ − 2ϕ)(θ − ϕ)′h′

+ 2 sin(2θ − 2ϕ)(θ − ϕ)′h+ 2 sin2(θ − ϕ)h′′.

(
|z⊥|2|B(z)|2

)′′
(0) = − 1

a2 + b2 −
9

2(a2 + b2) + 1
a2 + b2 = − 9

2(a2 + b2) < 0.

Hence, (|z⊥|2|B(z)|2)(s) is a decreasing function on [0, δ) for some δ > 0 very
small. This proves that Σ3 satisfies the geometric inequality |z⊥|2|B(z)|2 ≤ 3

2

near C(Σ).

Remark 1. The function |z⊥|2|B(z)|2(s) is not a decreasing function on the
whole interval [0,∞) since |z⊥|2(s) vanishes infinitely often. Regardless of
that, we still expect Σ3 to satisfy |z⊥|2|B(z)|2 ≤ 3

2 .

Example 2. The n-dimensional catenoid, denoted by Σc, is the minimal
surface SO(n)-invariant in Rn+1. By Lemma 8, Σc can be parametrized by
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2.1 Curvature gap for free boundary minimal surfaces

{(r, b(r)y) : r ∈ I, y ∈ Sn−1} where b(s) satisfies
1

1 + b′2
b′′ − n− 1

b
= 0, b(0) > 0, b′(0) = 0.

Note that γ(r) = (r, b(r)) satisfies 〈γ, γ′′〉 ≥ 0. A simple computation will
give the following:

HessΣc f (∂s, ∂s) = 1 + a a′′ + b b′′,

where f(x) = 1
2 |x|

2 and γ(s) = (a(s), b(s) is a arc length parametrization of
γ(r) = (r, b(r)). Since 〈γ, γ′′〉 ≥ 0, we conclude that HessΣcf ≥ 0.

Lemma 9. If Σn is a free boundary minimal hypersurface in Bn+1 satisfying
HessΣ f ≥ 0, then

|x⊥|2 |B(x)|2 ≤ n(n− 1).

Proof. Since HessΣ f is symmetric and non-negative definite, we conclude
that

|HessΣ f |2 ≤ (trace(HessΣ f))2.

Using that HessΣ f(X, Y ) = 〈X, Y 〉+〈B(X, Y ),−→x 〉 by Lemma 5 we have that
|HessΣ f |2 = n+ |x⊥|2|B|2. On the other hand, since trace(HessΣ f) = n, we
obtain that |x⊥|2 |B|2 ≤ n2 − n = n(n− 1).

Proposition 5. Let Σn be a minimal hypersurface in Rn+1 which satisfies
HessΣ f ≥ 0. If dim C(Σ) = n−1, then Σn is isometric to the n-dimensional
catenoid.

Proof. Since HessΣf ≥ 0 and dim(C(Σ)) = n−1, we have that C(Σ) ⊂ Sn−1.
Without loss of generality, let us assume that C(Σ) = Sn−1. Let Jθ : Sn−1 →
Sn−1 be an one parameter family of isometries of Sn−1, i.e., Jθ is a curve
on SO(n). Noting that Jθ is also a curve on SO(n + 1) also. Consider the
function φ defined on Σ given by φ(x) = 〈dJθ

dθ
(x), N(x)〉. Since Σ is a minimal

hypersurface, we have
∆φ+ |B|2 φ = 0.
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2.1 Curvature gap for free boundary minimal surfaces

Note also that φ ≡ 0 on C(Σ). Let us now look at the gradient of φ on C(Σ).
If v ∈ C(Σ) = Sn−1, then v(φ) = 0 since Jθ ∈ SO(n). Assuming now that
v ∈ TxΣ and is orthogonal to C(Σ), then

v(φ) = 〈∇v
dJθ
dθ

,N〉+ 〈dJθ
dθ

, dN(v)〉 = 0 + 0 = 0,

since v is a principal direction of Σ by Lemma 2.1. By the results of Aronsajn
[6], the function φ can only vanish to finite order on C(Σ). On the other
hand, since φ = ∇φ = 0 on C(Σ), we conclude by Lemma 1.5 that {φ =
0} ∩ {∇φ = 0} has Hausdorff dimension at most n − 2. As this contradicts
that dim(C(Σ)) = n− 1, we have that φ ≡ 0. Hence, Σ is SO(n) invariant,
i.e. Σ is isometric to a n-dimensional catenoid.

2.1.2 2-dimensional minimal surfaces in Bn

Let c : [a, b] → N be a curve in a Riemannian manifold N . The set ∆(s) ⊂
Tc(s)N is called a distribution along c if for each s ∈ [a, b] we have that ∆(s) is
a j-dimensional subspace of Tc(s)N . Let P : Tc(a)N → Tc(s)N be the parallel
transport map along c. We say that ∆(s) is parallel if P (∆(a)) = ∆(s)
∀s ∈ [a, b].

Lemma 10. If DV
dt

(t) ∈ ∆(s) whenever V is a vector field in ∆(s), then
∆(s) is parallel along c.

Proof. Choose (V1, . . . , Vj) linearly independent vector fields along c and in
∆(s). Hence,

DVi
ds

=
j∑
l=1

ailVl.

We claim there exist functions bik(s) for which

D

ds

j∑
k=1

bik(s)Vk(s) = 0, i = 1, . . . , j.
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2.1 Curvature gap for free boundary minimal surfaces

This equation is equivalent to

0 =
j∑

k=1
b′ik(s)Vk(s) +

j∑
k=1

bik(s)
DVk
ds

=
j∑
l=1

b′li(s)Vl(s) +
j∑

l,k=1
bik(s)alk(s)Vl(s).

Hence,

b′li(s) = −
j∑

k=1
bik(s)alk(s), i = 1, . . . , j.

This is a linear differential equation and so we can solve it in the whole
interval [a, b]. Choosing bik(0) = δik as initial conditions and defining

Wi(s) =
j∑

k=1
bik(s)Vk(s),

we obtain parallel vector fields which are linearly independent along c and
that span ∆(s). This proves that ∆(s) is parallel along c.

Theorem 11. If Σ2 is a free boundary minimal surface in Bn+1
1 (0) satisfying

|x⊥|2|B(x)|2 ≤ 2, (2.7)

for every x ∈ Σ2, then one of the following is true:

• |x⊥|2|B(x)|2 ≡ 0 and Σ2 is a flat equatorial disk.

• |x⊥0 |2|B(x0)|2 = 2 at some point x0 and Σ2 is a critical catenoid.

Proof. As in the proof of Theorem 7, inequality (2.7) implies that HessΣ f ≥
0. Let us show that Σ is diffeomorphic to either a disk or an annulus. If Σ
is simply connected, then Σ is topologically a disk. Hence, we can assume
that π1(Σ, x) 6= {0} for some x ∈ C(Σ). It follows that if we minimize
the length in a nontrivial homotopy class [α] ∈ π1(Σ, x) among closed loops
passing through a fixed point x ∈ C(Σ), then we obtain a geodesic loop
γ : [0, 1] → Σ, where γ(0) = γ(1) = x; this is true since ∂Σ is convex on
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2.1 Curvature gap for free boundary minimal surfaces

Σ by the free boundary condition. We claim that γ′(0) = γ′(1), i.e., γ is
smooth. If this is not true we can use the total convexity of C(Σ) to find a
disk spanning the curve γ, which is a contradiction since [α] 6= 0. Using this
information we prove that π1(Σ) is cyclic. If not, then we can find another
smooth simple closed geodesic β in C(Σ) such that x = γ(0) = β(0). Hence,
[γ] and [β] are trivial in homotopy since we can produce a geodesic spanning
these curves by the total convexity property of C(Σ) once again. Now is a
standard fact that π1(Σ) being cyclic implies that Σ is an annulus.

If Σ2 is a minimal disk, then it is proved by A. Fraser and R. Schoen in
[20] that Σ2 is an equatorial disk, in which case |x⊥|2 |B(x)|2 ≡ 0. If Σ2 is
an annulus, then C(Σ) is a smooth simple closed geodesic and λ = 0 is an
eigenvalue of HessΣ f for every x0 ∈ C(Σ). Hence, we have that (λ2

1 + λ
2
2) =

(λ1 + λ2)2. On the other hand,
∑
i=1

λ
2
i = 2 + 〈B(ei, ei),−→x 〉2 ≤ 2 + |x⊥|2 |B|2 ≤ 4 = (

∑
i=1

λi)2.

In particular, 〈∑2
i=1B(ei, ei),−→x 〉2 = |B|2|x⊥|2 = 2 for every x ∈ C(Σ).

Hence, by the Cauchy-Schwarz inequality we obtain

B(ei, ei) = 〈B(ei, ei),
−→x
|x|
〉
−→x
|x|
. (2.8)

Consequently, if e1 is tangent to C(Σ), then

∇e1e1 = 〈B(ei, ei),
−→x
|x|
〉
−→x
|x|
,

since C(Σ) is a geodesic on Σ. Thus, C(Σ) is also a geodesic in ∂Bn+1
2m0(0),

i.e., a round circle. Now we consider the normal distribution E along C(Σ)
defined by

E = {ξ : ξ ∈ X⊥(Σ)|C(Σ) and 〈ξ,−→x 〉 = 0}.

By (2.8) we conclude that E has the property that for every ξ ∈ E the
following is true

∇γ′(t)ξ ∈ E.
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2.2 Area gap for minimal surfaces in the unit ball

Lemma 10 implies that the distribution E is parallel along C(Σ). Hence, E
is a constant (n− 2)-dimensional plane throught the origin. Therefore, there
exists a critical catenoid Σc which is tangent to Σ along C(Σ). Near x0 ∈
C(Σ) we write Σ and Σc locally as a graph over Tx0Σ. Hence, Σc = graph(fc)
and

div
(

∇fc√
1 + |∇fc|2

)
= 0.

Similarly, Σ = graph(u), where u : R2 = Tx0Σ→ Rn−1, and by Lemma 1
aij(∇u1, . . . ,∇un−1)√

1 + |∇ui|2
Dijui = 0.

for every i ∈ 1, . . . , n− 1. Lemma 2 implies that the difference v = u − fc
satisfies a linear PDE of the following form:

aij(∇u)√
1 + |∇uk|2

Dijvk +
n−1∑
l=1

blj(∇u,∇fc)Djvl = 0,

for each k = 1, . . . , n− 1. Note that since v vanishes on x0, it follows that v
vanishes to finite order at x0 by Lemma 2. Therefore,H1(v−1(0)∩|∇v|−1(0) =
0 by Lemma 3. As this contradicts the fact that Σ and Σc are tangent along
C(Σ) and dimC(Σ) = 1, we conclude that v ≡ 0. The corollary now follows
from standard analytic continuation property for minimal surfaces.

2.2 Area gap for minimal surfaces in the unit ball

2.2.1 Introduction

In these notes, we study the area of k-dimensional minimal surfaces in the
Euclidean ball Bn that meet ∂Bn orthogonally. These surfaces are critical
points of the area functional in the space of k-dimensional surfaces with
boundary in ∂Bn. They are commonly known as free boundary minimal
surfaces. The equatorial diskDk is the simplest example. Brendle [32] proved
that Dk is the least area free boundary minimal surface in Bn (see also [21]
for the case of 2-dimensional free boundary surfaces). More precisely,
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2.2 Area gap for minimal surfaces in the unit ball

Theorem 12 (Brendle). Let Σk be a k-dimensional free boundary minimal
surface in Bn. Then

|Σk| ≥ |Dk|

Moreover, the equality holds if, and only if, Σk is contained in a k-dimensional
plane in Rn.

This result is the free boundary analogue of a classical result about closed
minimal surfaces in the round sphere Sn. Namely,

Theorem 13. There exists ε(k, n) > 0 so that whenever Σk is a k-dimensional
minimal surface in Sn which is not totally geodesic, then

|Σk| ≥ |Sk|+ ε(k, n).

Despite the proofs of Theorem 1.1 and Theorem 1.2 both explore a mono-
tonicity principle for minimal surfaces, they are quite different. Theorem 1.2,
for instance, is only an application of the Monotonicity Formula for minimal
surfaces together with the smooth version of Allard’s Regularity Theorem:

Theorem 14 (Allard). There exist ε(k, n) > 0, C > 0 and r0 > 0 so that
whenever Σ is a k−dimensional minimal surface in Rn+1 satisfying

θ(x, r) ≤ 1 + ε(k, n)

for every x ∈ Σ and every r < r0, then

sup
Σ
|AΣ| ≤ C.

Indeed, let Σi be a sequence of k−dimensional minimal surfaces in Sn+1 such
that limi→∞ |Σi| = A(k, n), where A(k, n) is the infimum for the areas of free
boundary minimal surfaces in Sn. If CΣi denotes the minimal cone over Σi

with vertice at 0 and if yi ∈ Σi, then

|Σi|
|Sk|

= lim
r→∞

|CΣi ∩Br(yi)|
|Bk+1|rk+1 ≥ |CΣi ∩Br(yi)|

|Bk+1|rk+1 = θ(CΣi, yi, r) ≥ 1,
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2.2 Area gap for minimal surfaces in the unit ball

with equality if, and only if, Σi is an equatorial sphere Sk. The inequal-
ity follows from the monotonicity formula for minimal surfaces. Hence,
A(k, n) = |Sk| and from Theorem 1.3 we conclude that |AΣi | ≤ C. Stan-
dard compactness shows that Σi → Sk graphically and with multiplicity one.
As the round metric is analytic, we obtain that |Σi| = |Sk|; thus, Σi is an
equatorial sphere for i large enough.

In view of Theorem 1.1 and Theorem 1.2, it is natural to expect similar
gap phenomena for the area of free boundary minimal surfaces in Bn as well.
In contrast with Theorem 1.2, the smooth free boundary version of Allard’s
regularity theorem does not readily apply to this end. It can be proved,
however, that it follows from the strong Allard’s regularity theorem, proved
by Grüter and Jost [16], together with the analysis developed in [32], which
we also use here. Our main result is a direct and simpler proof of this fact:

Theorem 15. There exists ε(k, n) > 0 such that whenever Σk is a k-
dimensional free boundary minimal surface in Bn satisfying

|Σk| < |Dk|+ ε(k, n),

then Σk is, up to ambient isometries, the equatorial disk Dk.

The 2-dimensional case in Theorem 15 was proved by Ketover [28]. The
key ingredients in the proof there are an excess inequality for 2-dimensional
free boundary surfaces in Bn, proved by Vokmann in [33], and the classical
Nitsche’s Uniqueness Theorem for free boundary minimal disks in B3 (see
also [20], for the generalization of this result to high codimension). The
excess inequality is particularly important in proving curvature estimates for
a sequence of free boundary minimal surfaces with area sufficiently close to
the area of the equatorial disk. The main difficulty in implementing the
arguments of [28] to k-dimensional surfaces in Bn is that neither the excess
inequality in the form used in [28] nor Nitsche’s Theorem is available when
k ≥ 3. To get around these difficulties, we consider a slightly more general

31



2.2 Area gap for minimal surfaces in the unit ball

quantity, originated in [32] and which also resemble an excess type formula,
and compare it with that of the free boundary cones over the boundaries
to obtain the necessary curvature estimates. Finally, we replace the use of
Nitsche’s theorem by an standard index of stability analysis. These ideas
leads us to the result below for which Theorem 15 follows in view of the
arguments in [28]. More precisely,

Proposition 6. Let Σk be a k-dimensional free boundary minimal surface in
Bn and C1∂Σ the cone with vertice at the origin and base ∂Σ. If y ∈ Σ−{0},
then∫

Σ

|(x− y)⊥|2
|x− y|k+2 =

∫
C1∂Σ

|(x− y)⊥|2
|x− y|k+2 + 1

k

∫
C1∂Σ
〈
−→
HC∂Σ,

x− y
|x− y|k

〉 − v(y)|Dk|,

(2.9)
where v(y) = 1 if y /∈ C1∂Σ and v(y) = 0 if y ∈ C1∂Σ.

As a consequence, we obtain the following unique continuation type result
for minimal surfaces in the ball.

Corollary 2. If Σk is a k-dimensional free boundary minimal surface in Bn

such that ∂Σ is a (k − 1)-minimal surface in Sn−1, then Σk is an equatorial
disk.

2.2.2 Higher dimension free boundary minimal surfaces

We start by recalling an excess inequality for free boundary minimal sur-
faces in the ball proved in [32]. More precisely, if Σ is a k-dimensional free
boundary minimal surface in Bn and if y ∈ ∂Σ, then∫

Σk

|(x− y)⊥|2
|x− y|k+2 dΣ ≤ |Σk| − |Dk|. (2.10)

This inequality, which implies Theorem 12, follows from a monotonicity ar-
gument obtained by an application of the Divergence Theorem to the vector
field Wt0,y(x) defined on Bn − {y} and given by

Wt0,y(x) = x

2 −
x− y
|x− y|k

− k − 2
2

∫ |y|2
t0

tx− y
|tx− y|

dt.
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2.2 Area gap for minimal surfaces in the unit ball

We will need a formula similar to (2.10) for when y is not necessarily at the
boundary. For this, we need to recall the techniques in [32] behind the proof
of (2.10).

Lemma 16. Let Σk a free boundary surface in Bn and y ∈ Σ. For r suffi-
ciently small, we have

2
∫

Σ\Br(y)

|(x− y)⊥|2
|x− y|k+2 dΣ + (k − 2)

∫
Σ\Br(y)

∫ |y|2
t0

t |(tx− y)⊥|2
|tx− y|k+2 dt dΣ

= |Σ\Br(y)| − 2
k

∫
Σ∩∂Br(y)

〈Wt0,y(x), ν(x)〉 dσ

−2
k

∫
∂Σ
〈Wt0,y, x〉dσ + 2

k

∫
Σ−Br(y)

〈
−→
H,Wt0,y〉dΣ.(2.11)

Proof. See Section 2 in [32].

The next lemma deals with the second term in the right hand side of
(2.11):

Lemma 17. Let Σk be a free boundary minimal surface in Bn and let ϕ(y) =
1 if y ∈ ∂Σ and ϕ(y) = 2 if y ∈ Σ\∂Σ. Then

lim
r→0

2
k

∫
Σ∩∂Br(y)

〈Wt0,y(x), ν(x)〉 = ϕ(y) |Dk|.

Proof. See Section 2 in [32].

Lemma 18. If y ∈ ∂Σ, then 〈W0,y(x), x〉 = 0 for every x ∈ ∂Σ.

Proof. See Section 2 in [32].

Applying Lemmas 16, 17, and 18, we obtain the inequality (2.10).

Proof of Proposition 6. For this proposition we choose t0 = |y|2. Hence, th
vector field Wt0,y becomes

Wy = x

2 −
x− y
|x− y|k

.
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Applying Lemma 16 and Lemma 17 we obtain

2
∫

Σ

|(x− y)⊥|2
|x− y|k+2 dΣ = |Σ| − 2|Dk| − 2

k

∫
∂Σ
〈Wy(x), x〉dσ. (2.12)

Now we look at the last term in (2.12). Let C1∂Σ be the free boundary cone
over ∂Σ and vertice at 0. By assumption y /∈ C1∂Σ. Applying Lemma 16 to
C1∂Σ and observing that C1∂Σi is not a minimal surface, we obtain:

2
∫
C1∂Σ\Br(0)

|(x− yi)⊥|2
|x− yi|k+2 = |C1∂Σ \Br(0)| − 2

k

∫
C1∂Σ∩∂Br(0)

〈Wy, ν〉 dσ

−2
k

∫
∂Σ
〈Wy(x), x〉dσ +

∫
C1∂Σ\Br(0)

〈
−→
HC1∂Σ,Wy〉 dC1∂Σ.

Taking the limit as r → 0 in above expression, we obtain

2
∫
C1∂Σ

|(x− y)⊥|2
|x− y|k+2 dCΣ = |C1∂Σ| − 2

k

∫
∂Σ
〈Wy(x), x〉dσ

+
∫
C1∂Σ
〈
−→
HC1∂Σ,Wy〉 dC1∂Σ. (2.13)

Plugging (2.13) into (2.12), we obtain

2
∫

Σ

|(x− yi)⊥|2
|x− yi|k−2 dΣ = |Σ| − |C1∂Σ|+ 2

∫
C1∂Σ

|(x− xi)⊥|2
|x− xi|k+2

− 2
k

∫
C1∂Σ
〈
−→
HC1∂Σ,Wy〉 dC1∂Σ − 2|Dk|. (2.14)

The free boundary condition of Σ combined with the Divergence Theorem
applied to the position vector X = −→x give

k|C1∂Σ| = |∂Σ| −
∫
C1∂Σ
〈
−→
HC1∂Σ, x〉dΣ = |∂Σ| = k|Σ|.

This completes the proof of the proposition.

2.2.3 Proof of Theorem 1.4

Lemma 19. If Σk is a free boundary minimal surface in Bn which is not
totally geodesic, then Index (Σk) ≥ (k + 2)(n− k).
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2.2 Area gap for minimal surfaces in the unit ball

Proof. Following [35] we have for X ∈ X (Rn+1) the following expression for
the second variation of area Σ in the direction of X

δ2Σ(X,X) =
∫

Σ

(
|D⊥X|2 − |〈B,X〉|2

)
dΣ +

∫
∂Σ
〈DXX, ν〉dσ.

Given v ∈ Rn we consider, for each i = 1, . . . , n − k, the vector field Xi =
〈x, v〉Ni. As Σk is minimal, we have that ∆Σ(〈v, x〉+t) = 0, for every (v, t) ∈
Rn+2. Moreover, the free boundary condition implies that d

dν
〈v, x〉 = 〈v, x〉.

Putting these facts together we obtain

δ2Σ(Xi, Xi) = −
∫

Σ
|B|2|Xi|2 dΣ < 0.

Similarly, if we consider for each j = 1, . . . , n − k the vector field Yj = Nj,
then

δ2Σ(Yj, Yj) = −
∫

Σ
|B|2 −

∫
∂Σ
dσ < 0.

Using that d
dν

(〈v, x〉+ t) = 〈v, x〉 and also
∫
∂Σ

d
dν
〈v, x〉 dσ = 0, one can check

that δ2Σ < 0 in the space generated by {Xi, Yj}. Therefore, index of Σk is
at least (k + 2)(n− k).

Proof of Theorem 15. The proof is by contradiction, we assume that {Σi} is
a sequence of k-dimensional free boundary minimal surfaces in Bn satisfying

|Σi| → |Dk| (2.15)

Following the strategy in [28], we first show that (2.15) implies curvature
estimates for Σi.

Lemma 20. Let AΣi be the second fundamental form of Σi. Then, there
exists C > 0 such that

sup
x∈Σi
|AΣi(x)| ≤ C. (2.16)

Let us show that Lemma 20 together with the index estimate of Lemma
19 imply the theorem:
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By Lemma 20 the second fundamental form of {Σi} is uniformly bounded.
Hence, Theorem 6.1 in [34] (see also [5]) implies that Σi converges smoothly
up to the boundary to a free boundary surface Σ∞ and |Σ∞| = |Dk|. By The-
orem 12, Σ∞ is an equatorial disk and consequently Σi is, for i large enough,
diffeomorphic to a k-dimensional disk. On the other hand, by Lemma 19,
Index(Σk

i ) ≥ (k + 2)(n − k) since Σi is assumed to be not totally geodesic.
Thus, exist (k + 2)(n − k) mutually orthonormal eigenvectors of the Jacobi
operator defined on X⊥(Σi) each satisfying

∆⊥X +
∑
jl

〈B(ej, el), X〉B(ej, el) + λX X = 0, (2.17)

(DνX −DXν)T∂Bn = 0, and λX < 0.

As i → ∞, these eigenvectors converge to eigenvectors of Bk ⊂ Bn. Hence,
(2.17) reduces to an scalar equation of form

∆φ+ λφ φ = 0, λφ ≤ 0, and ∂φ

∂ν
= φ,

since Σ∞ is totally geodesic. The respective eigenvectors are of form X =
φel, where {ek+1, . . . , en} being the parallel orthonormal base for Σ⊥∞. Since
Index(Σ∞) = n − k, we we obtain k + 1 orthonormal eigenfunctions for the
Steklov eigenvalue problem:

∆u = 0 and ∂u

∂ν
= u

on Σ∞. This is a contradiction since the multiplicity for the first Steklov
eigenvalue of the k-dimensional equatorial disk is k.

Proof of Lemma 20. Arguing by contradiction, we assume that

Area(Σi)→ |Dk| and λi = sup
x∈Σi
|Ai|2(x)→∞.

For each i choose xi ∈ Σi with the property that supΣi |Ai|
2 = |Ai|2(xi).

Note that limi→∞ |xi| = 1. Indeed, the excess inequality (2.10) implies that
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Σi converges with multiplicity one to Dk as a varifold. Hence, in Bn(R),
0 < R < 1, the surface Σi satisfy θ(Σi, x, r) ≤ 1 + ε for every i large enough
and r small enough. If limi→∞ |xi| < 1, then we would get a contradiction
with Allard’s regularity theorem. Now we consider the surface

Σ̂i = λi(Σi − xi).

One can check that Σ̂i satisfies

sup
ˆx∈Σi
|A|(x) ≤ 1 and |AΣ̂i |(0) = 1 (2.18)

and it is a free boundary minimal surface in λi(Bn+1
1 (0) − xi). It follows

from Theorem 6.1 in [34](see also [5]) that, after passing to a subsequence,
Σ̂i converges smoothly and locally uniformly to Σ∞. Σ∞ is either complete
without boundary minimal surface or it is a free boundary minimal surface
in a half space. Moreover, (2.18) implies that

|AΣ∞|(0) = 1. (2.19)

On the other hand, by the scale invariance of the excess, we have that∫
Σ∞

|z⊥|2

|z|k+2 dΣ∞ ≤ lim inf
i→∞

∫
Σi

|z⊥|2

|z|k+2 dΣi = lim inf
i→∞

∫
Σi

|(x− xi)⊥|2
|x− xi|k+2 dΣi

We want to prove that the last term above goes to zero as i → ∞. If a
subsequence xi lies in ∂Σ, then, by (2.10),∫

Σ∞

|z⊥|2

|z|k+2 dΣ∞ ≤ lim inf
i→∞

(|Σi| − |Bk|) = 0.

Hence, Σ∞ is a half plane which is in contradiction with (2.19). Therefore,
yi ∈ Σi − ∂Σi and, without loss of generality, we can also assume that yi /∈
C1∂Σi. Applying Proposition 6,∫

Σ∞

|z⊥|2

|z|k+2 dΣ∞ | ≤

∫
C1∂Σi

|(x− yi)⊥|2
|x− y|k+2 dC∂Σi + 1

k

∫
C∂Σi
〈
−→
HC1∂Σi ,

x− yi
|x− yi|k

〉 dC1∂Σi − |Dk|.
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2.2 Area gap for minimal surfaces in the unit ball

On the other hand, we showed that AΣi(y) is uniformly bounded at the
boundary, i.e.,

|AΣi |(y) ≤ C

for every y ∈ ∂Σi. In particular, the second fundamental form of ∂Σi in Rn+1

is uniformly bounded. Thus, up to subsequence, ∂Σi converges in the C1,α

topology to ∂Dk ⊂ Sn−1. Equivalently, C1∂Σi converges in the C1,α topology
to Dk.

Lemma 21.

lim
i→∞

(∫
C1∂Σi

|(x− yi)⊥|2
|x− y|k+2 + 1

k

∫
C∂Σi
〈
−→
HC1∂Σi ,

x− yi
|x− yi|k

〉
)
≤ |Dk|.

Proof. First note that

lim
i→∞

∫
C1∂Σi−Bs(y)

|(x− yi)⊥|2
|x− y|k+2 + 1

k

∫
C∂Σi−Bs(y)

〈
−→
HC1∂Σi ,

x− yi
|x− yi|k

〉 = 0

since C1∂Σi → Dk in the C1,α topology. Hence, it is enough to focus on
Σi ∩Bs(y). Let us assume that yi → y ∈ ∂Σ. The convergence C1∂Σi → Dk

also implies that we can choose s < 1 very small so that TxC1∂Σi is uniformly
close to TyDk for every x ∈ C1∂Σi∩Bs(y). Let zi ∈ TxC1∂Σi be a point which
realizes the distance ri = d(TxC1∂Σi, yi) and let ti = d(TyDk, yi).Hence,
|(x− yi)⊥|2 = r2

i and |x− xi|2 = |x− zi|2 + r2
i for every x ∈ C1∂Σi ∩Bs(yi) .

Therefore,

lim
i→∞

∫
C1∂Σi∩Bs(y)

|(x− yi)⊥|2
|x− yi|k+2 = lim

i→∞

∫
C1∂Σi∩Bs(y)

r2
i√

|x− zi|2 + r2
i

k+2 =

lim
i→∞

∫
C1∂Σi∩Bs(y)−zi

r2
i t
−k−2
i√

| x
ti
|2 + r2

i

t2i

k+2 = lim
i→∞

∫
1
ti

(C1∂Σi∩Bs(y)−zi)

r2
i

t2i√
|y|2 + r2

i

t2i

k+2

=
∫
P1

1
(|y|2 + 1) k+2

2
≤
∫
Rk

1
(|y|2 + 1) k+2

2
=
∫ ∞

0

∫
∂Dk

sk−1

(s2 + 1) k+2
2
ds

= |∂Dk|
∫ ∞

0

sk−1

(s2 + 1) k+2
2
ds = |∂D

k|
k

= |Dk|,
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2.2 Area gap for minimal surfaces in the unit ball

where P1 is either Rk or a half space Rk
a = {x ∈ Rk : 〈x, ek〉 ≤ a}. Similarly,

lim
i→∞

∫
C1∂Σi∩Bs(y)

〈
−→
HC1∂Σi ,

(x− yi)
|x− yi|k

dC1∂Σi ≤

lim
i→∞

sup
C1∂Σi∩Bs(y)

∣∣∣∣∣
〈
−→
HC1∂Σi ,

(x− yi)
|x− yi|

〉∣∣∣∣∣
∫
C1∂Σi∩Bs(y)

1
|x− yi|k−1dC1∂Σi

= lim
i→∞

o(s)
∫
C1∂Σi∩Bs(y)

1√
|x− zi|2 + r2

i

k−1 + o(s)

= lim
i→∞

o(s)
∫
C1∂Σi∩Bs(y)−zi

t1−ki√
| x
ti
|2 + r2

i

t2i

k−1 + o(s)

= lim
i→∞

o(s)
∫

1
ti

(C∂Σi∩Bs(y)−zi)

ti√
|y|2 + r2

i

t2i

k−1 + o(s)

≤ lim
i→∞

o(s)
∫

1
ti

(C1∂Σi∩Bs(y)−zi)

ti
|y|k−1 + o(s)

= lim
i→∞

o(s)
∫ s

ti

0
ti
sk−1

sk−1ds+ o(s) = o(s).

Making s→ 0, we conclude the proof of the claim.

Using the Claim above, we obtain that
∫

Σ∞

|z⊥|2

|z|k+2 dΣ∞ ≤ |Dk| − |Dk| = 0.

Since this contradicts (2.19), the lemma is proved.

Proof of Corollary 2. Since ∂Σ is a (k − 1)-dimensional minimal surface in
∂Bn, C∂Σ is a k-dimensional minimal surface in Rn. Arguing by contradic-
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2.2 Area gap for minimal surfaces in the unit ball

tion, let {yi} be a sequence of points in C1∂Σ− Σ such that limi→∞ yi = 0.

|Σ| − |Dk| = |C1∂Σ| − |Dk| = lim
R→∞

|C∂Σ ∩BR+1|
(R + 1)k

(R + 1)k
Rk

− |Dk|

≥ lim
R→∞

|C∂Σ ∩BR(yi)|
Rk

− |Dk| = lim
i→∞

∫
C∂Σ

|(x− yi)⊥|2
|x− yi|k+2

(2.20)

= lim
i→∞

∫
C1∂Σ

|(x− yi)⊥|2
|x− yi|k+2 = lim

i→∞

∫
Σ

|(x− yi)⊥|2
|x− yi|k+2 + |Dk|

= |Σ|+ |Dk|.

The third equality in (2.20) follows from the Monotonicity Formula for min-
imal submanifolds in Rn, see [12, Proposition 1.12]. In the last equality
we used similar analysis as in the proof of Lemma 21 and the Monotonic-
ity Formula again. Since (2.20) is contradictory, Σ = C1∂Σ and the result
follows.

2.2.4 ε regularity for free boundary cmc surfaces

Finally, we observe that the 2-dimensional case in Theorem 15 proved in
[28] extends naturally to surfaces with constant mean curvature in B3. The
quantity to consider in this case is the Willmore energy instead of area.

Definition 3. If Σ2 is a surface with boundary in R3, the Willmore energy
W(Σ) is defined as

W(Σ) =
∫

Σ
H2 dΣ +

∫
∂Σ
kg dσ.

Theorem 22. There exists ε > 0 such that whenever Σ is a free boundary
surface with constant mean curvature in B3 and satisfying

W(Σ) < 2π + ε,

then Σ is either an equatorial disk or a spherical cap. The constant ε is
independent of the value of the mean curvature.
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2.2 Area gap for minimal surfaces in the unit ball

The key in proving Theorem 22 is the following excess inequality proved
by Vokmann [33]:

W(Σ)− 2π ≥
∫

Σ

∣∣∣∣∣−→H − (x− x0)⊥
|x− x0|2

∣∣∣∣∣
2

dΣ. (2.21)

The equality W(Σ) = 2π if, and only if, Σ is a spherical cap or a flat disk.

Proof of Theorem 22. Assume for every i that Σi is a free boundary surface
with constant mean curvature Hi and

W(Σi)→ 2π. (2.22)

We start showing that (2.22) implies that |Σi| ≤ C0 for some C0 > 0. Indeed,
the free boundary condition and the 1a Minkowski formula gives that

2|Σi| = |∂Σi| −
∫

Σi
〈Hi, x〉dΣi ≤ |∂Σi|+

(∫
Σi
H2
i dΣi

) 1
2

|Σi|
1
2 . (2.23)

Following [28], we show that (2.22) and (2.21) imply curvature estimates for
Σi.

Lemma 23. Either Σi is totally umbilical or there is C > 0 such that

sup
Σi
|AΣi | ≤ C. (2.24)

Assuming Lemma 23, one can finish the proof of the theorem. Indeed, by
Lemma 23, the sequence Σi converges to a weakly embedded free boundary
surface Σ∞ in B3 with constant mean curvature and satisfying W(Σ∞) =
2π. By Theorem 4.1 in [33], Σ∞ is either a spherical cap or a flat disk.
Therefore, Σi is topologically a disk for i large enough and the result follows
from Nitsche’s Theorem.

Proof of Lemma 23. Define λi = supx∈Σn |Ai|2(x) and assume that limi→∞ λi =
∞. For each i choose xi ∈ Σi with the property that supΣi |Ai|

2 = |Ai|2(xi)
and consider the new surface Σ̂i = λi(Σi − xi) which satisfies

sup
ˆx∈Σi
|A|(x) ≤ 1 and |AΣ̂i |(0) = 1. (2.25)

41



2.2 Area gap for minimal surfaces in the unit ball

The surface Σ̂i is a free boundary surface with constant mean curvature Ĥi

in the region λi(B3
1(0)− xi).

Property (2.25) implies that Σ̂i → Σ∞ graphically in the interior. Σ∞
is either weakly embedded without boundary or it is weakly embedded in a
half space and with boundary contained in a plane. By regularity results for
free boundary surfaces, see [5], we also have smooth convergence up to the
boundary. It follows from (2.25) that

|AΣ∞|(0) = 1 and lim
i→∞

Ĥi = H∞.

By the excess formula (2.21), we conclude that

∫
Σ∞

∣∣∣∣∣−→H∞ − x⊥

|x|2

∣∣∣∣∣
2

dΣ∞ ≤

lim inf
i→∞

∫
Σ̂i

∣∣∣∣∣−→Ĥ i −
x⊥

|x|2

∣∣∣∣∣
2

dΣ∞ = lim inf
i→∞

∫
Σi

∣∣∣∣∣−→H i −
(x− xi)⊥
|x− xi|2

∣∣∣∣∣
2

≤

lim inf
i→∞

W(Σi)− 2π = 0.

Hence, −→H∞ = x⊥

|x|2 . If Σ∞ is non-compact, then −→H∞ = 0 and this implies
that Σ∞ is a plane, a contradiction since AΣ∞(0) = 1. Hence, Σ∞ is compact
and −→H∞ = x⊥

|x|2 . Applying Proposition 4.1 in [33], we conclude that Σ∞ is a
spherical cap or an equatorial disk. The strong convergence implies that Σi is
a topologically a disk and, hence, a spherical cap by Nitsche’s Theorem.
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3. COMPACTNESS FOR MINIMAL SURFACES

In this chapter we prove two results about closed minimal surfaces in three
manifolds. The first result is a compactness theorem for minimal surfaces.
The second result is a rigidity type theorem for positively curved three man-
ifolds with symmetries admitting stable minimal surfaces.

3.1 Compactness

Example 3 (Catenoid). Let Σi be the minimal surface obtained from the
catenoid Σc via a scaling by λi = 1

i
, i.e., Σi = 1

i
Σc. For every point x ∈ Σi

the following is true
|x⊥|2 |AΣi(x)|2 ≤ 2.

In particular, C(Σi) is pinching off at the origin and limi→∞ |AΣi(x)| = ∞
for every x ∈ C(Σi). In fact, Σi converge weakly, as varifolds, to the plane
with multiplicity two.

Example 4 (Helicoid). The Helicoid is a complete simply connected minimal
surface Σh in R3 defined by

ϕ(u, v) = (u cos(v), u sin(v), v), (u, v) ∈ R2.

Let’s consider the sequence of minimal surfaces Σi defined by Σi = 1
i
Σh. Note

that, whereas Σh is invariant by vertical translations by 2πm, the surfaces
Σi is invariant by vertical translations by 2πm

i
. It can be proved that Σi

converge smoothly away from the vertical axis to a foliation by planes. The
curvature of the sequence blows up at points in the vertical axis.



3.1 Compactness

The sequence of minimal surfaces considered in the examples above do not
admit subsequence which having graphical convergence. In the first example
the compactness fails due to a pinch off of the catenoid neck. In the second
example the compactness fails due to lack of local area bounds. Our next
result shows that those are the only obstructions to obtain compactness for
minimal surfaces in three manifolds.

Theorem 24. Let M3 be a closed 3-manifold and let S be the space of closed
embedded minimal surfaces in M3. Then the class

C(A0, i0) := {Σ ∈ S : Area(Σ) ≤ A0, inj (Σ) ≥ i0}

is compact in the C∞ topology.

Proof. Let Σ2
n be a sequence of closed minimal surfaces with

Area(Σ2
n) ≤ A0 and inj(Σ2

n) ≥ i0.

We want to prove the existence of a constant C > 0 such that supΣi |AΣi | ≤
C. Arguing by contradiction, let λn be given by λn = supΣ2

n
|An| and

assume that lim supn→∞ λn = ∞. Pick base points pn ∈ Σ2
n for which

supΣ2
n
|An| = |An|(pn) and consider the sequence of minimal surfaces Σ′n =

λnΣn in (B i0
2

(pn), λ2
ng). One can check that the sequence {Σ′n} satisfies

|AΣ′
n
| ≤ 1 and AΣ′

n
(yn) = 1. If the sequence satisfies local area bounds, i.e.,

|Σ′n∩BR(xn)| ≤ C1, then it follows that Σ′n converges to a properly embedded
minimal surface Σ0 ⊂ R3 and such that

sup
Σ
|AΣ0| = |AΣ0|(0) = 1. (3.1)

Otherwise, Σ′n converges to minimal lamination Σ ⊂ R3 containing a minimal
leaf Σ0 which also satisfies (3.1). In either case, Σ0 is topologically a disk as
inj0(Σ) = limn→ λninjyp(Σn) = ∞. Moreover, Σ0 is also properly embedded
by a result of H. Rosemberg, see remark in the end of [30]. Let us prove that
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3.1 Compactness

Σ0 has bounded total curvature. First, note that the geodesic ball BΣn
i0
2

(pn)
is topologically a disk. Hence, following Chapter 2 in [12], we have

d

dt

∫
∂BΣn

t

=
∫
∂BΣn

t

kg = 2π −
∫
BΣn
t

KΣn .

Integrating above formula from 0 to ρ implies that

|∂BΣN
ρ | − 2π ρ = −

∫ ρ

0

∫
BΣn
t

KΣn . (3.2)

Integrating (3.2) from 0 to i0 and applying the Coarea Formula we obtain

|BΣn
i0 (pn)| − π i20 = −

∫ i0

0

∫ ρ

0

∫
BΣn
t

KΣn .

Since Σn is minimal, the Gauss equation, Proposition 1, gives that

KM(TΣn) = KΣn + 1
2 |An|

2.

This implies that

|BΣn
i0 (pn)| − π i20 = −

∫ i0

0

∫ ρ

0

∫
BΣn
t

KM(TΣn) + 1
2

∫ i0

0

∫ ρ

0

∫
BΣn
t

|An|2

≥ −
∫ i0

0

∫ ρ

0

∫
BΣn
t

KM(TΣn) + i20
8

∫
BΣn
i0
2

(pn)
|An|2.

Since M3 is compact, there exists K0 > 0 for which |KM | ≤ K0. Moreover,
since Area(Σn) ≤ A0, we obtain

i20
8

∫
BΣn
i0
2

(pn)
|An|2 ≤ A0 − π i20 +K0

i20
2 A0.

Hence, there exists C1 = C1(i0, A0, K0) for which∫
BΣn
i0
2

(pn)
|An|2 ≤ C1. (3.3)

The left hand side in (3.3) is scale invariant and consequently we conclude
that ∫

Σ0
|AΣ|2 <∞.
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3.2 Stable minimal surfaces and symmetries

By a theorem of F. López and A. Ros [25], the only properly embedded
minimal surface in R3 of genus 0 and with bounded total curvature is the
totally geodesic plane. Hence, Σ0 is totally geodesic and this contradicts
(3.1). Therefore, supΣi |AΣi | ≤ C for some constant C > 0 and this proves
the compactness of C(A0, i0).

The proof of Theorem 24 explore crucially that the surfaces have dimen-
sion two as the arguments relies heavily on the Gauss-Bonnet Theorem as
well as in the classification result of López and Ros [25]. A natural question
worth investigating is weather Theorem 24 holds true in higher dimensions.

3.2 Stable minimal surfaces and symmetries

Theorem 25. Let (M3, g) be a closed 3-manifold with positive scalar curva-
ture Rg > 0 and let V be a Killing vector field in X (M3). If (M3, g) contains
an embedded stable minimal surface, then the universal cover of (M3, g) is
diffeomorphic to either S3 or S2 × R, and

g = dr2 + ds2 + ϕ(r, s) dθ2 and ϕ(r, s) = 1
2π

∫ 2π

0
|V (r, s, θ)| dθ.

Proof. Let Σ2 be a embedded stable minimal surface in (M3, g). Since RM >

0 we have that Σ is either a sphere or projective plane. Let Σ̂ be the lift of Σ in
the universal cover (M̂3, g). Hence, each component of Σ̂ is a stable minimal
sphere. Let us work with a connected component of Σ̂ in M̂ which we also
denote by Σ. Let φt : M →M be the one parameter family of diffeomorphism

generated by the vector field V , i.e., d
dt

∣∣∣∣∣
t=0
φ(x, t) = V (x). Since V is Killing,

φt is an isometry for every t. In particular, Area(φt(Σ)) = Area(Σ) for every
t. Hence,

0 = d2

dt2

∣∣∣∣∣
t=0

Area(φt(Σ)) = −
∫

Σ
f L f,

where f = 〈V,N〉 and N is the unit normal to Σ. The function f is a Jacobi
function, i.e., Lf = ∆ f + (RicM(N,N) + |A|2) f = 0, and λ = 0 is the first
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3.2 Stable minimal surfaces and symmetries

eigenvalue of L since Σ is assumed to be stable. It follows that f is a first
eigenfunction of L and, hence, positive or identically zero. If Ω is a tubular
neighborhood of Σ in M̂ , then by the Divergence theorem we have

0 =
∫

Ω
divM V =

∫
∂Ω
〈V,N〉.

If f > 0, then V is transversal to Σ which contradicts above formula if Ω is
very small. Hence, f ≡ 0 and V is tangent to Σ. Moreover, V is Killing in
Σ:

g(∇Σ
XV, Y ) + g(X,∇Σ

Y V ) = g(∇XV −B(X, V ), Y ) + g(X,∇Y V −B(Y, V ))

= g(∇XV, Y ) + g(X,∇Y V ) = 0,

where X, Y ∈ X (Σ) and B is the second fundamental form of Σ. Let x0 ∈ Σ
such that V (x0) = 0, the existence of x0 is guaranteed by the Poincare-Hopf
Index Theorem and since g(Σ) = 0. Following an argument in [7] we conclude
that (φt)∗ : Tx0(Σ)→ Tx0Σ induces a homomorphism φ∗ : R→ SO(2) = S1.
In particular, there exists t0 ∈ R for which φ∗(0) = ϕ∗(t0). It follows that
(φt)∗ : Tx0M → Tx0M shares similar properties, i.e. φ∗ : R→ SO(3) satisfies
φ∗(0) = ϕ∗(t0) and (φt)∗(N) = N . Using that φt is determined by (φt)∗ we
conclude that φt+t0 = φt. Hence, M is S1 invariant and Σ is rotationally
symmetric, i.e., gΣ = ds2 + ϕ(s) dθ2, ϕ(0) = ϕ(1) = 0, and

ϕ(s) = 1
2π

∫ 2π

0
|V (s, θ)| dθ.

Let F : Σ×(0, ε)→M the exponential map F (x, t) = expx(rN(x)). Since V
is a Killing vector field we have that V ∈ X (F (Σ)). Indeed, if γ(r) = F (x, r),
then

d

dr
〈γ′(r), V 〉 = 〈∇M

γ′(r)γ
′(r), V 〉+ 〈γ′(r),∇M

γ′(r)V 〉 = 0 + 0 = 0.

Since, 〈V, γ′(0)〉 = 0 we conclude that 〈γ′(r), V 〉 = 0. Hence, Σr = F (Σ, r)
is also rotationally symmetric. Therefore, there exists a maximal coordinate
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3.2 Stable minimal surfaces and symmetries

system X : (r0, r1)× [0, 1]× S1 →M3 where

g = dr2 + ds2 + ϕ(r, s) dθ2 and ϕ(r, s) = 1
2π

∫ 2π

0
|V (r, s, θ)| dθ.

If ϕ(r0, s) = ϕ(r1, s) = 0 for every s ∈ [0, 1], then M3 is diffeomorphic to S3.
Otherwise, r0 = −∞ and r1 =∞ and M3 is diffeomorphic to S2 × R.
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