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Abstract

A celebrated result of Kontsevich–Zorich ensures that the moduli space 𝒢𝑔 of pointed
curves of genus 𝑔 whose marked point is subcanonical has three irreducible components. In
this work we present an explicit method to construct a compactification of the loci which
corresponds to a general point of an irreducible component of 𝒢𝑔, namely the loci of pointed
curves whose symmetric Weierstrass semigroup is odd. The construction is an extension of
Stoehr’s techniques using equivariant deformation of monomial curves given by Pinkham by
exploring syzygies. As an application we prove the rationality of the loci for genus six. By
fixing a family of semigroups of multiplicity 6, we also compute the dimension of the moduli
space of pointed curve whose Weierstrass semigroup at the marked point belogns to the fixed
family.

Key-words: Weierstrass point, Symmetric semigroup, Deformation, Syzygy, Moduli space.
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1 Introduction

It is very known that a billiard on a convex polygon with 2𝑛 sides induces on compact
Riemann surface of genus 𝑔 := [(𝑛 − 1)/2] an abelian differential with a zero of order 2𝑔 − 2 at a
point 𝑃 . One of the first to observe this was W. Veech in [Vee]. By the Riemann-Roch theorem
the Weierstrass semigroup of the compact Riemann surfaces at 𝑃 is symmetric, in terms of
algebraic geometry, the compact Riemann surfaces with such abelian differential corresponds to
a subcanonical algebraic curve. In a celebrated result, Kontsevich–Zorich [KZ] showed that the
locus 𝒢𝑔 of compact Riemann surfaces of genus 𝑔 with a fixed abelian differential with a zero of
order 2𝑔 −2 has exactly three irreducible components, the locus 𝒢hyp

𝑔 of hyperelliptic points, the
even 𝒢even

𝑔 and the odd 𝒢odd
𝑔 points. Ten years late E. Bullock [Bu] computed a general point of

each component of 𝒢𝑔.

Furthermore the sets ℳℋ
𝑔,1 which parametrizes pointed smooth genus 𝑔 curves with

Weierstrass semigroup ℋ at the marked point form a stratification of the moduli ℳ𝑔,1 of pointed
genus 𝑔 curves. They are also important to obtain some classes in the Chow ring of M𝑔,1, as can
be seen in the work of Gatto–Ponza [GP].

Besides the above two applications of Weierstrass points we do not know general results,
as we would like, about ℳℋ

𝑔,1. For example, when it is non empty? If no empty, what is this
dimension? When are they rationals? Of coarse that are some beautiful works answering the
above questions in suitable cases. We will talk about them in the Chapter one of this thesis, in
order to set our work in the known literature.

We have to cite two relevant works for this thesis, the works of Stoehr [S] and Contiero–
Stoehr [CS] on the construction of a compactification of ℳℋ

𝑔,1 when ℋ is symmetric. We note that
in both of these works there is a restriction on the symmetric semigroup, which is 3 < 𝑛1 < 𝑔. It is
clear that if 𝑛1 = 2 or 𝑛1 = 3 the symmetric semigroup can be generated by less than 5 elements.
Now, by the jacobian criterion and elimination theory, the moduli space Mℋ is an open subspace
of M ℋ

𝑔,1. If the symmetric semigroup ℋ is generated by 4 elements, say ℋ = <𝑚1, 𝑚2, 𝑚3, 𝑚4>,
then by using Pinkham’s equivariant deformation theory [P], complete intersection theory and
a quasi-homogeneous version of Buchsbaum-Eisenbud’s structure theorem for Gorenstein ideals
of codimension 3 (see [BE, p. 466]), one can deduce that the affine monomial curve Spec k[ℋ] =
Spec k[𝑡𝑚1 , 𝑡𝑚2 , 𝑡𝑚3 , 𝑡𝑚4 ] can be negatively smoothed without any obstructions (see [B], [W1]
[W2, Satz 7.1]), hence dim Mℋ = dimP(𝑇 1,−

k[ℋ]|k), and therefore

M ℋ
𝑔,1 = P(𝑇 1,−

k[ℋ]|k),

and so Mℋ is a dense open subvariety of M ℋ
𝑔,1.

So it remains to study the excluded case when the multiplicity of the symmetric semigroup
is 𝑔. Thus ℋ := ⟨𝑔, 𝑔+1, . . . , 2𝑔−2⟩ which corresponds to the odd general family of the Bullock’s
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theorem, see Theorem (2.4.7). Let 𝒞 be a trigonal curve, not necessarilly smooth, by taking a
non-ramification nonsingular Weierstrass point 𝑃 of 𝒞 we show that if ℋ symmetric, then the
Weierstrass semigroup at 𝑃 is ℋ𝑃 = {0, 𝑔, 𝑔 + 1, . . . 2𝑔 − 2, 2𝑔, 2𝑔 + 1 . . .}. This semigroups
are negatively graded, see theorem (2.4.3), hence dim ℳℋ

𝑔,1 = 2𝑔 + 1. Here we extend the
Stoehr and Contiero–Stoehr techniques to deal with trigonal curves. We proof that the ideal
of a gorenstein monomial curve which realizes a trigonal symmetric semigroup of genus 𝑔 is
generated by quadrics and cubic forms. By deform the ideal of the trigonal monomial curve and
by exploring syzygies we get a rather explicity construction (3.2.9) of the moduli space ℳℋ

𝑔,1
with ℋ := ⟨𝑔, 𝑔 + 1, . . . , 2𝑔 − 1⟩. We also note that our construct can be applied for nontrigonal
cases, just because it is a generalization of the Stoehr and Contiero–Stoehr results. With this
we conclude the Chapter one.

In the chapter two we apply the our construction and we get explicity the moduli spaces
ℳℋ

5,1 and ℳℋ
6,1 when ℋ is a symmetric trigonal semigroup. For genus 5, since the trigonal

symmetric semigroup ℋ = ⟨5, 6, 7, 8⟩ is negatively graded and genetared by less than 5 elements,
we know that ℳℋ

𝑔,1 = P9. Let us consider the trigonal symmetric semigroup ℋ := ⟨6, 7, 8, 9, 10⟩
of genus 6. Since it is negatively graded, dim ℳℋ

𝑔,1 = 11. Applying our construction we conclude
that ℳℋ

𝑔,1 is irreducible in ℳℋ
6,1, locally given by three equations and therefore, we show that the

variety ℳℋ
6,1 is rational, while in Bullock [BUL] theorem 1.1, he only shows ℳℋ

𝑔,1 is irreducible.

A theorem of Deligne [D] ensures that dim ℳℋ
𝑔,1 ≤ 2𝑔 + 𝜆 − 2, where 𝜆 ≥ 1 stands for

the number of gaps 𝑙 such that 𝑙 + 𝑚 is a nongap for each positive nongap 𝑚, whose proof
involves an interplay between three different moduli spaces that in symmetric semigrous is equal
to 2𝑔−1. Moreover, in [CS] is developed a method to calculate an upper bound of ℳℋ

𝑔,1, with ℋ a
symmetric semigroup, which consists in approximate the compactified moduli space ℳℋ

𝑔,1 by an
affine quadratic quasi-cone (see [CS], thm. 3.1). This upper bound improves the Deligne’s upper
bound in infinitely many exemples of symmetric semigroups. With this same approach and the
lower bound obtained by Nathan in the theorem (2.4.8), in the chapter three we calculate the
exact dimension of the moduli space ℳℋ

𝑔,1 for the family of symmetric semigroups

ℋ = ⟨6, 3 + 6𝜏, 4 + 6𝜏, 7 + 6𝜏, 8 + 6𝜏⟩,

of genus 3 + 6𝜏 . We found the upper bound 8𝜏 + 7 of ℳℋ
𝑔,1 which for each 𝜏 ≥ 1 it is better

than the Deligne’s upper bound 2𝑔 − 1 = 12𝜏 + 5. On the other hand, by the theorem (2.4.8)
the lower bound of ℳℋ

𝑔,1 is 8𝜏 + 7 which is equal to the upper bound.
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2 Preliminaries

2.1 The Dualizing Sheaf

Let k be an algebraically closed field. A curve 𝒞 is a reduzed complete integral scheme
of dimension one defined over k. We recall that a scheme 𝑋 with rational function field 𝐾

is complete if for each discrete valuation ring 𝑅 of 𝐾|k there is an unique 𝑥 ∈ 𝑋 such that
𝒪𝑥,𝑋 ⊆ 𝑅 ⊆ 𝐾. Alternatively, fixed an algebraic function field of one variable 𝐾|k a complete
reduced integral curve 𝒞 defined over k with field rational function 𝐾 is the set {𝒪𝑃 }𝑃 ∈𝒞 of
local k-algebras, properly contained in k(𝒞) satisfying the follows properties:

i. For almost all 𝑃 ∈ 𝒞, the local ring 𝒪𝑃,𝒞 is a discrete valuation ring.

ii. For each discrete valuation ring 𝐵 of k(𝒞)|k there is an unique 𝑃 ∈ 𝒞 such that 𝒪𝑃,𝒞 ⊆
𝐵 ⊆ 𝐾.

The first condition means that there is a finite number of singular points of 𝒞. By the second
condition we obtain a surjective map 𝜋 : 𝒞 −→ 𝒞, where 𝒞 is called normalization of 𝒞 defined to
be the set of all discrete valuation rings of k(𝒞)|k. For 𝑃 ∈ 𝒞, the elements of the fiber 𝜋−1(𝑃 )
are called branches of 𝒞 centered at 𝑃 . Since the branches over a point 𝑃 are zeros of rational
functions vanishing at 𝑃 , the branches are finite.

For a singular point 𝑃 of 𝒞, let 𝑄1, . . . , 𝑄𝑚 ∈ 𝒞 be the branches centered at 𝑃 . The
integral closure

�̃�𝑃 = 𝒪𝑄1 ∩ . . . ∩ 𝒪𝑄𝑚

of 𝒪𝑃 is a principal ideal domain. By a Rosenlicht theorem ([R], Theorem 1), the dimension

𝛿𝑃 := dimk �̃�𝑃 /𝒪𝑃

is finite, called the singularity degree of 𝑃 .

Let us recall the notion of dualizing sheaf of a curve 𝒞. For any curve 𝒞 with normalization
𝜈 : 𝒞 −→ 𝒞, the dualizing sheaf 𝜔𝒞 associates to each 𝑈 ⊂ 𝒞 the space of the rational one-forms
𝜆 on 𝜈−1(𝑈) ⊂ 𝒞 such that for each 𝑃 ∈ 𝑈 and 𝑓 ∈ 𝒪𝒞,𝑃 ,∑︁

𝑄∈𝜈−1(𝑃 )
Res

𝑄
(𝜈*𝑓 · 𝜆) = 0. (2.1)

Alternatively, to introduce the concept of dualizing sheaf on curves defined from a fixed algebraic
function field, we first recall the notion of fractional ideal sheafs. We say that a sheaf ℱ is a
fractional ideal sheaf over 𝒞 if it is coherent and for each point 𝑃 of 𝒞 , the stalk ℱ𝑃 is a fractional
𝒪𝑃 -ideal. Equivalently, ℱ is a fractional ideal sheaf if
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1. For every 𝑃 ∈ 𝒞

a) ℱ𝑃 ⊂ k(𝒞);

b) there is 𝑓𝑃 ∈ k(𝒞) such that 𝑓𝑃 ℱ𝑃 is an ideal of 𝒪𝑃 .

2. ℱ𝑃 = 𝒪𝑃 for almost every 𝑃 ∈ 𝒞.

The dualizing sheaf can also be introduced as in [S2] as follows: for each 𝜂 ∈ Ω1
k(𝒞)|k ,

let 𝜔𝜂 be the fractional ideal sheaf such that for all point 𝑃 ∈ 𝒞 the stalk 𝜔𝜂,𝑃 is the largest
fractional 𝒪𝑃 -ideal in k(𝒞) such that satisfies the condition (2.1). Since the vector space Ω1

k(𝒞)|k
of differentials is one-dimensional over the function field k(𝒞), we way assume that the dualizing
sheaf 𝜔𝒞 = 𝜔𝜂 · 𝜂 for every 𝜂 ∈ Ω1

k(𝒞)|k . We note that if 𝑃 ∈ 𝒞 is a smooth point then 𝜔𝜂,𝑃 =
𝑡
−𝑣𝑃 (𝜂)
𝑃 · 𝒪𝑃 .

Instead of canonical sheaf for smooth curves we use the dualizing sheaf to obtain the
Riemann-Roch theorem. For ℱ , 𝒢 fractional 𝒪𝑃 -ideal sheafs, let us consider the sheaf ℋom(ℱ , 𝒢)
such that on a point 𝑃 ∈ 𝒞 the stalk

ℋom(ℱ , 𝒢)𝑃 = hom(ℱ𝑃 , 𝒢𝑃 ) = (𝒢𝑃 : ℱ𝑃 ) = {𝑓 ∈ k(𝒞)|𝑓ℱ𝑃 ⊆ 𝒢𝑃 }.

Thus for 𝜂 ∈ Ωk(𝒞)/k and ℱ a fractional 𝒪𝑃 -ideal sheaf we can show that

ℎ0(ℱ) = deg(ℱ) + 1 − 𝑔 + ℎ0(ℋom(ℱ , 𝜔𝜂)),

and applying the Serre duality

𝐻0(ℋom(ℱ , 𝜔𝜂)) · 𝜂 = 𝐻0(ℋom(ℱ , 𝜔𝒞)) = hom(ℱ , 𝜔𝒞) ≃ 𝐻1(ℱ),

and therefore

Theorem 2.1.1. (Riemann-roch) For each fractional ideal sheaf ℱ over a curve 𝒞 the following
relation is true

ℎ0(ℱ) = deg(ℱ) + 1 − 𝑔 + ℎ1(ℱ).

Remark 2.1.2. By Riemann-Roch theorem we get the genus formula

𝑔 = 𝑔 +
∑︁
𝑃 ∈𝒞

𝛿𝑃 ,

where 𝑔 is the geometric genus of 𝒞 which is defined as the arithmetical genus of the normalization
𝐶.

Example 2.1.1. Let 𝒞 be the curve given by the projective closure of Spec(𝐴), where 𝐴 =
k[𝑡3, 𝑡4, 𝑡5]. The curve 𝒞 has only singular point 𝑃 which corresponds to 𝑡 = 0, where 𝒪𝑃 =
𝐴(𝑡3,𝑡4,𝑡5). Since 𝑡 ∈ k[𝑡] is integral over 𝐴 and 𝐴 ⊆ k[𝑡] ⊆ k(𝑡3, 𝑡4, 𝑡5), we conclude that k[𝑡] is
the integral closure of 𝐴 in its field fractions, hence the normalization of 𝒞 is 𝒞 = P1. We can
see that the fiber over the point 𝑃 is an unique point 𝑃 and we have 𝒪𝑃 = 𝒪𝑃 = k[𝑡](𝑡) and
therefore the genus of 𝒞 is 𝑔 = 𝑔 + dim(𝒪𝑃 /𝒪𝑃 ) = 0 + 2 = 2, where 𝑔 is the genus of 𝒞. As the
dualizing sheaf does not depend on the chosen form, we take the form 𝜂 = 𝑑𝑡

𝑡3 and by what was
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written above 𝜔𝒞 ≃ 𝜔𝜂. In the singular point 𝑃 we wish to show that 𝜔𝒞 ≃ 𝜔𝜂,𝑃 = 𝒪𝑃 + 𝑡𝒪𝑃 .
On the one hand, 𝑡2 /∈ 𝜔𝜂,𝑃 because Res𝑃 (𝑡2𝜂) = 1 and the same is true for every 𝑡−𝑛, 𝑛 ≥ −1
since that 𝜔𝜂,𝑃 is a 𝒪𝑃 -module and 𝑡𝑛 ∈ 𝒪𝑃 for 𝑛 ≥ 3, hence 𝜔𝜂,𝑃 ⊆ 𝒪𝑃 + 𝑡𝒪𝑃 . The other
inclusion it is immediate because Res𝑃 (𝑓𝜂) = 0 for 𝑓 ∈ 𝒪𝑃 + 𝑡𝒪𝑃 . Now if 𝑄 is a nonsingular
point of 𝒞 given parametrically by 𝑡 = 𝑎, then 1

𝑡3 is an unity in 𝒪𝑃 and so 𝜔𝜂,𝑃 = 𝒪𝑃 . Finally,
in the infinite point 𝑃∞ the local parameter is 𝑡−1 and can write 𝜂 = 𝑡−1𝑑(𝑡−1) and we obtain
𝜔𝜂,𝑃∞ = 𝑡𝒪𝑃∞ . This means that 𝐻0(𝒞, 𝜔𝐶) = ⟨1, 𝑡⟩.

A point 𝑃 ∈ 𝒞 is said to be a Gorenstein point if the stalk of the dualizing sheaf 𝜔𝒞,𝑃

is a free 𝒪𝑃 -module. The curve 𝒞 is Gorenstein if all of its points so, or equivalently, if 𝜔 is an
invertible sheaf.

Let f = (𝒪 : �̃�) be the conductor of 𝒞 such that for any 𝑃 ∈ 𝒞 its stalk is

(𝒪 : �̃�)𝑃 = (𝒪𝑃 : �̃�𝑃 ) = {ℎ ∈ k(𝒞)|ℎ�̃�𝑃 ⊆ 𝒪𝑃 },

which is the largest fractional �̃�𝑃 -ideal smaller than or equal to 𝒪𝑃 . Now, let 𝑥0, . . . , 𝑥𝑛 be
𝑘-linear independent elements of k(𝒞), so that for 𝑛 ≥ 1 we have the morphism

(𝑥0, . . . , 𝑥𝑛) : 𝒞 −→ P𝑛,

whose image by the extension theorem of valuation theory is a projective algebraic curve (see
[S3]). Thus we obtain a morphism 𝒞 −→ P𝑛 such that the diagram

𝒞 //

𝜋
��@

@@
@@

@@
@ P𝑛

𝒞

OO (2.2)

commutes if and only if the 𝒪𝑃 -ideal
𝑛∑︁

𝑖=0
𝒪𝑃 𝑥𝑖 is principal. Let 𝜂 be a non-zero differential

one form such that 𝜔𝒞 = 𝜔𝜂 · 𝜂. By choosing a basis 𝜂0, . . . , 𝜂𝑔−1 for the space of the regular
differentials on 𝒞, we can write

𝜂𝑖 = 𝑥𝑖𝜂 (𝑖 = 0, . . . , 𝑔 − 1),

where 𝑥0, . . . , 𝑥𝑔−1 is a basis of 𝐻0(𝒞, 𝜔𝒞). In this way, we have

(𝜂0, . . . , 𝜂𝑔−1) = (𝑥0, . . . , 𝑥𝑔−1).

The following theorem is well known in the literature and we will reproduce its proof which can
be found in [S2].

Theorem 2.1.3. Let 𝒞 be a curve of genus 𝑔 ≥ 1. For each 𝑃 ∈ 𝒞, we have

𝜔𝒞,𝑃 = 𝒪𝑃 𝑥0 + . . . + 𝒪𝑃 𝑥𝑔−1.

The morphism (𝜂0, . . . , 𝜂𝑔−1) : 𝒞 −→ P𝑔−1 induces a morphism 𝒞 −→ P𝑔−1 if only if the curve 𝒞
is Gorenstein.
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Demonstração. We know that a curve 𝒞 is Gorenstein if and only if the dualizing sheaf 𝜔𝒞 is
locally principal which is equivalent to diagram (2.2) being commutative, and so we have a
morphism 𝒞 −→ P𝑔−1. In this manner, we will proof that the ideal 𝜔𝒞,𝑃 = 𝒪𝑃 𝑥0 + . . .+𝒪𝑃 𝑥𝑔−1.

If 𝑃 ∈ 𝒞 is a singular point, then the conductor sheaf f𝑃 ⊆ m𝑃 and by Nakayama lemma
it is enough to observe that 𝜔𝒞,𝑃 ⊆

∑︀
𝒪𝑃 𝑥𝑖 + f𝑃 · 𝜔𝒞,𝑃 . On the other hand, if 𝑃 is a nonsingular

point of 𝒞, then 𝒪𝑃 is a discrete valuation ring and 𝜔𝒞,𝑃 is a principal ideal. The idea is to
consider the sheaf ℱ on 𝒞 such that

ℱ𝑃 = m𝑃 · 𝜔𝒞,𝑃 and ℱ𝑄 = 𝜔𝒞,𝑄 for 𝑄 ∈ 𝒞 ∖ {𝑃}.

We need to prove that if there is a function 𝑠 ∈ 𝐻0(𝒞, 𝜔𝒞)∖𝐻0(𝒞, ℱ), then 𝜔𝒞,𝑃 = 𝒪𝑃 ·𝑠. For this it
is enouth to show that ℎ0(𝒞, ℱ) < ℎ0(𝒞, 𝜔𝒞). By Riemann Roch theorem ℎ0(𝒞, ℱ) = ℎ0(𝒞, 𝜔𝒞)−1
that implies ℎ0(𝜔𝒞 : ℱ) ≤ 1 and still

(𝜔𝒞 : ℱ) = m−1
𝑃

∏︁
𝑄 ̸=𝑃

𝒪𝑃 ≥ 𝒪,

hence 𝐻0 (𝒞, (𝜔𝒞 : ℱ)) ⊇ k = 𝐻0(𝒞, 𝒪). We suppose, by contradiction, that there is a non-
constant function 𝑧 ∈ 𝐻0 (𝒞, (𝜔𝒞 : ℱ)). Note that function 𝑧 has only a simple pole in 𝑃 and
does not other pole in �̃� ∖{𝑃}. Thus 𝐾 = k(𝑧), and therefore the geometric genus 𝑔 of the curve
𝒞 is zero. Now, for a point 𝑄 ∈ 𝒞 − {𝑃} let’s consider 𝑐 the value of the function 𝑧 at this point
𝑄. Since 𝑧−𝑐 is zero at 𝑄 and 𝑃 is the only simple pole of 𝑧−𝑐 follows that dimk 𝒪𝑄/(𝑧−𝑐) = 1,
hence 𝒪𝑄 is not discret valuation ring, so the point 𝑄 is nonsingular. This means that 𝑋 = �̃�

has genus 𝑔 = 0 that it is not possible.

We will not prove the next result which can be found in [R].

Theorem 2.1.4. Let 𝒞 be a Gorenstein curve. The morphism 𝒞 −→ P𝑔−1 is an isomorphism
onto the image curve if only if 𝒞 is non-hyperelliptic.

2.2 Weierstrass Points

A numerical semigroup is a submonoide ℋ of N (that is, a subset of N such that contains
0 and it is closed with respect to addition) such that 𝐿 = N ∖ ℋ is finite.

The genus 𝑔 = 𝑔(ℋ) of ℋ is

𝑔 = 𝑔(ℋ) := |N − ℋ|.

The elements 1 = 𝑙1 < . . . < 𝑙𝑔 of 𝐿 and the elements 0 = 𝑛0 < 𝑛1 < . . . of ℋ are called of gaps
and nongaps of ℋ, respectively. If 𝑛1 = 2 the semigroup is called hyperelliptic. For 𝑛1, . . . , 𝑛𝑟

relatively prime positive integers, we denote ⟨𝑛1, . . . , 𝑛𝑟⟩ := {𝑎1𝑛1 + . . . + 𝑎𝑟𝑛𝑟|𝑎𝑖 ∈ N} the
numerical semigroup generated by 𝑛1, . . . , 𝑛𝑟, and conversely all numerical semigroup can be
generated by a finite number of elements. For example, the hyperelliptic semigroup is given by
ℋ = ⟨2, 2𝑔 + 1⟩.
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Let ℋ be a numerical semigroup. The least positive integer 𝑐 = 𝑐(ℋ) such that 𝑐+N ⊂ ℋ
is called the conductor of ℋ. We say that ℋ is symmetric if there is an integer 𝑑 such that
𝑛 ∈ ℋ if, and only if, 𝑑 − 1 − 𝑛 /∈ ℋ, equivalently if 𝑐(ℋ) = 2𝑔(ℋ). Alternatively, if we denote
End(ℋ) = {𝑛 ∈ N|𝑛 + ℋ+ ⊂ ℋ} which is the set of the translations of ℋ, then ℋ is symmetric
when 𝜆 = [End(ℋ) : ℋ] = 1. It’s important to observe that End(ℋ) is also a numerical semigroup
which contains ℋ and the largest gap 𝑙𝑔. We also note that 𝑙𝑔 = 𝑐 − 1. To see this, given any
non-negative interger 𝑥 such that 𝑙𝑔 + (1 + 𝑥) > 𝑙𝑔 follows 𝑙𝑔 + 1 + 𝑥 ∈ ℋ, and by minimality of
𝑐, 𝑐 ≤ 𝑙𝑔 + 1. If 𝑐 − 1 < 𝑙𝑔 then there is an integer 𝑞 ≥ 1 such that 𝑙𝑔 = 𝑐 + (𝑞 − 1) ∈ ℋ that is a
contradiction. This means that 𝑙𝑔 = 𝑐 − 1.

Example 2.2.1. The semigroups ℋ = ⟨2, 5⟩ and ℋ′ = ⟨3, 4, 5⟩ are the only semigroups of genus
2 and both are symmetrical. There are four semigroups of genus 3: ℋ1 = ⟨2, 7⟩, ℋ2 = ⟨3, 5, 7⟩,
ℋ3 = ⟨3, 4⟩, ℋ4 = ⟨4, 5⟩, of which ℋ1 and ℋ3 are symmetrical since 𝑙3 = 5.

Proposition 2.2.1. Let 𝒞 be a monomial curve of genus 𝑔, see (2.4), 𝑃 be a Weierstrass point of
𝒞 having semigroup ℋ = ⟨𝑛0, . . . , 𝑛𝑔−1⟩ and 𝑐 be the conductor of ℋ. The curve 𝒞 is Gorenstein
if and only if the semigroup ℋ is symmetric.

Demonstração. Initially we will show

f = {ℎ ∈ �̃�𝑃 | OrdP(ℎ) ≥ 𝑙𝑔 + 1}, (2.3)

where f is the conductor of 𝒞. Since 𝑐 is the conductor of ℋ, we have 𝑐 = 𝑙𝑔 + 1. By definition
of the conductor of 𝒞, f must be contained in the set of the right side of the equality (2.3).
Conversely, given ℎ ∈ �̃�𝑃 with OrdP(ℎ) ≥ 𝑐 means that OrdP(ℎ) = OrdP(𝑔) for some 𝑔 ∈ 𝒪𝑃 .
Thus there is an unity 𝑒 ∈ 𝒪𝑃 such that OrdP(ℎ − 𝑒𝑔) > OrdP(ℎ). By applying induction there
is also an element 𝑔′ in 𝒪𝑃 satisfying OrdP(ℎ − 𝑔′) ≥ 𝑐′ where 𝑐′ is the last value of an element
of f. Each element ℎ′ ∈ �̃�𝑃 with OrdP(ℎ′) ≥ 𝑐′ are in 𝒪𝑃 , so ℎ ∈ 𝒪𝑃 . In particular, ℎ ∈ f .

We will suppose that ℋ is a symmetric semigroup and ℎ ∈ m−1, ℎ /∈ 𝒪𝑃 , where m is the
maximal ideal of 𝒪𝑃 . We must to show that the length of the 𝒪𝑃 -module m−1/𝒪𝑃 is 1 (see [EK]
to the equivalences of Gorenstein rings). If OrdP(ℎ) ∈ ℋ then we can find an element 𝑔 ∈ 𝒪𝑃

such that OrdP(ℎ − 𝑔) /∈ ℋ and still ℎ − 𝑔 ∈ m−1, and so we may assume that OrdP(ℎ) /∈ ℋ.
If OrdP(ℎ) < 𝑙𝑔, then since ℋ is symmetric 𝑙𝑔 − OrdP(ℎ) ∈ ℋ. Take an element 𝑔′ ∈ 𝒪𝑃 with
OrdP(𝑔′) = 𝑙𝑔 − OrdP(ℎ), so that OrdP(𝑔′ℎ) = 𝑙𝑔 and hence 𝑔′ℎ /∈ 𝒪𝑃 , contradicting ℎ ∈ m−1.
Thus OrdP(ℎ) = 𝑙𝑔 that means m−1 contains besides 𝒪𝑃 only elements of order 𝑙𝑔. This implies
that m−1/𝒪𝑃 is a 𝒪𝑃 -module of length 1 and hence 𝒪𝑃 is Gorenstein.

Conversely, we assume that the local ring 𝒪𝑃 is Gorenstein. Define 𝐼𝑗 as the set of all
elements ℎ ∈ 𝒪𝑃 with OrdP(ℎ) ≥ 𝑛𝑗 , 𝑗 = 0, . . . 𝑔 − 1. We obtain the strictly decreasing sequence
of ideals of 𝒪𝑃

𝒪𝑃 = 𝐼0 ⊃ 𝐼1 ⊃ . . . ⊃ 𝐼𝑔−1 ⊃ f .

Moreover, this sequence is maximal because if we adjoin to 𝐼𝑗 an element 𝑔 ∈ 𝒪𝑃 of order 𝑛𝑗−1,
then we get all of 𝐼𝑗−1. Therefore

2𝑔 = length(�̃�𝑃 /f),
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hence 𝑐 = ℓ𝑔 + 1 = 2𝑔 and therefore ℋ is a symmetric semigroup.

Let 𝒞 be a curve and 𝑃 a smooth point of 𝒞. We have an ascending chain of k-vector
spaces

k = 𝐻0(𝒞, 𝒪𝒞(0 · 𝑃 )) ⊆ 𝐻0(𝒞, 𝒪𝒞(1 · 𝑃 )) ⊆ . . . ⊆ 𝐻0(𝒞, 𝒪𝒞(𝑛 · 𝑃 )) ⊆ . . . ,

where
𝐻0(𝒞, 𝒪𝒞(𝑛 · 𝑃 )) = {𝑓 ∈ k(𝒞)| div(𝑓) + 𝑛𝑃 ≥ 0}.

By Riemann-Roch theorem (2.1.1) we obtain

dimk 𝐻0(𝒞, 𝒪𝒞((2𝑔 − 1)𝑃 )) = 𝑔

and
ℎ0(𝒞, 𝒪𝒞((𝑛 + 1)𝑃 )) − ℎ0(𝒞, 𝒪𝒞(𝑛𝑃 )) ≤ 1,

therefore there are precisely 𝑔 integers 𝑙1 < . . . < 𝑙𝑔 between 0 and 2𝑔 − 1 for which there exist
no rational function on k(𝒞) with pole of order precisely 𝑙𝑖 at 𝑃 . These integers 𝑙1, . . . , 𝑙𝑔 are
called gap sequence of 𝒞 at 𝑃 . We define the ℋ𝑃 to be the set of the pole orders of meromorphic
functions of 𝒞 which are regular away from 𝑃 . Then

𝑛 ∈ ℋ𝑃 ⇐⇒ 𝐻0(𝒞, 𝒪𝒞((𝑛 − 1) · 𝑃 )) ( 𝐻0(𝒞, 𝒪𝒞 (𝑛 · 𝑃 )) .

Let 𝒞 be a curve and 𝑃 a smooth point of 𝒞. We say that 𝑃 is an ordinary point of
𝒞 if 𝐻0(𝒞, 𝒪𝒞(𝑔 · 𝑃 )) = 0, that is, if ℋ𝑃 = ℋ𝑔 = {0, 𝑔 + 1, 𝑔 + 2, . . .}. Otherwise 𝑃 is called
Weierstrass point of the curve 𝒞. A semigroup ℋ is called hyperordinary if ℋ = 𝑚N+ ℋ𝑔 where
ℋ𝑔 is ordinary and 0 < 𝑚 < 𝑔.

For any Weierstrass point 𝑃 ∈ 𝒞, let 0 = 𝑛0 < 𝑛1 < . . . be the nongaps of 𝒞 at 𝑃 . So for
each 𝑛𝑖 we can take a function 𝑥𝑛𝑖 ∈ 𝐻0(𝒞, 𝒪𝒞(𝑛𝑖 · 𝑃 )) ∖ 𝐻0(𝒞, 𝒪𝒞((𝑛𝑖 − 1) · 𝑃 )) which the pole
order at 𝑃 is 𝑛𝑖, hence

𝐻0(𝒞, 𝒪𝒞(𝑛𝑖 · 𝑃 )) = k𝑥𝑛0 ⊕ k𝑥𝑛1 ⊕ . . . ⊕ k𝑥𝑛𝑖 .

In particular, ℎ0(𝒞, 𝒪𝒞(𝑛𝑖𝑃 )) = 𝑛𝑖 + 1.

Theorem 2.2.2. Let 𝒞 be a Gorenstein curve and 𝑃 ∈ 𝒞 a nonhyperelliptic Weierstrass point.
If ℋ is the Weierstrass semigroup of the pointed curve (𝒞, 𝑃 ) and it is symmetric, then 𝒞 can be
viewed as a canonical curve (in P𝑔−1 of degree 2𝑔 − 2 and genus 𝑔) and the integers 𝑙𝑖 − 1(𝑖 =
1, . . . , 𝑔) are the contact orders of 𝒞 with the hyperplanes at 𝑃 = (0 : . . . : 0 : 1). Conversely,
every nonhyperelliptic symmetric semigroup ℋ is a Weierstrass semigroup of some curve.

Proof. Since ℋ is a symmetric semigroup, 𝑛𝑔−1 = 2𝑔 − 2 and therefore the vector space
𝐻0(𝒞, 𝒪𝒞((2𝑔 − 2) · 𝑃 )) is generated by the 𝑔 functions 𝑥𝑛0 , 𝑥𝑛1 , . . . , 𝑥𝑛𝑔−1 where the sheaf
𝒪𝒞((2𝑔 − 2) · 𝑃 ) has degree 2𝑔 − 2. Thus the sheaf 𝒪𝒞((2𝑔 − 2) · 𝑃 ) is isomorphic to the dualizing
sheaf 𝜔𝐶 . By applying the theorem (2.1.4), follows that 𝒞 can be embedded

(𝑥𝑛0 , 𝑥𝑛1 , . . . , 𝑥𝑛𝑔−1) : 𝒞 →˓ P𝑔−1,
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so 𝒞 is a curve of degree 2𝑔 − 2. Moreover, if we consider the hyperplane corresponding to
𝑋𝑔−𝑖(𝑖 = 1, . . . , 𝑔) its order contact with the curve at 𝑃 is

OrdP(𝑋𝑔−𝑖) = 𝑣𝑃

(︂
𝑥𝑛𝑔−𝑖

𝑥𝑛𝑔−1

)︂
= 𝑣𝑃 (𝑥𝑛𝑔−𝑖) − 𝑣𝑃 (𝑥𝑛𝑔−1) = −𝑛𝑔−𝑖 − (−𝑛𝑔−1)

= 2𝑔 − 1 − 𝑙𝑔−(𝑔−1) − (2𝑔 − 1 − 𝑙𝑔−(𝑔−𝑖)) = 𝑙𝑖 − 𝑙1 = 𝑙𝑖 − 1.

Conversely, if ℋ = ⟨𝑛1, . . . 𝑛𝑔−1⟩ is a nonhyperelliptic symmetric semigroup then we take the
rational curve

𝒞(0) :=
{︁

(𝑎𝑛0𝑏𝑙𝑔−1 : 𝑎𝑛1𝑏𝑙𝑔−1−1 : . . . : 𝑎𝑛𝑔−1𝑏𝑙1−1)|(𝑎 : 𝑏) ∈ P1
}︁

⊂ P𝑔−1. (2.4)

The symmetric semigroup ℋ is realized as the Weierstrass semigroup of 𝒞(0) at the smooth point
𝑃 = (0 : . . . : 0 : 1).

The curve 𝒞(0) in (2.4) is called canonical monomial curve. The monomial curve 𝒞(0) has
an unique singular point, namely the unibranched point 𝑄 = (1 : 0 : . . . : 0) of multiplicity 𝑛1

(see [S], pp 190). The point 𝑄 is the image of the only point 𝑄 = (0 : 1) under the normalization
map 𝜋. This class of curves will be very important as a tool to construct the moduli space of
the classes of the pairs (𝒞, 𝑃 ) where 𝒞 is a projective Gorenstein curve of arithmetical genus 𝑔

and 𝑃 is a smooth point of 𝒞 whose Weierstrass semigroup is fixed.

2.3 A Moduli Problem

A moduli problem consists of two things: the first, a class of algebraic-geometric objects
with a notion of what it means to have a family of these objects over a scheme 𝐵; the second,
is to determine an equivalence relation ∼ on the set of all these families over each scheme 𝐵.

Example 2.3.1. The first exemple of moduli space is all of the lines subspaces of R2, which is
the projective space P1

R. So the projective space P𝑛
𝑘 over the field 𝑘 is a moduli space.

Example 2.3.2. The Grassmanian 𝐺𝑟(𝑉 ), the collection of 𝑟-dimensional linear subspaces of
𝑉 .

More precisely, if we consider a class ℳ of algebraic varieties over a field k then a family
will be a flat morphism 𝜋 : 𝒳 −→ 𝑆 whose fibers 𝒳 (𝑠) = 𝜋−1(𝑠), 𝑠 ∈ 𝑆, are elements of ℳ. The
spaces 𝒳 and 𝑆 are called the total space and the parameter space of the family 𝜋, respectively.
When the space 𝑆 is connected, we call 𝜋 a family of deformations of 𝒳 (𝑠0) for 𝑠0 be a closed
point in 𝑆. Now, for each scheme 𝑆 over a field k we take two differents families over 𝑆:

𝒳
↓𝜋

𝑆

and
𝒳 ′

↓𝜋′

𝑆

,

we say that 𝜋 and 𝜋′ are isomorphics if there is an isomorphism 𝜙 : 𝒳 −→ 𝒳 ′ such that the
diagram
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𝒳
𝜙 //

𝜋
  A

AA
AA

AA
A 𝒳 ′

𝜋′

��
𝑆

commutes, i.e, 𝜋 = 𝜙∘𝜋′. Thus we can define a contravariant functor 𝐹 : (Schemes /k) −→ (Sets)
as follows:

𝐹 (𝑆) = {isomorphism classes of families over 𝑆 of objects of ℳ}.

Moreover if 𝑓 : 𝑇 −→ 𝑆 is a morphism, then we have a morphism

𝐹 (𝑓) : 𝐹 (𝑆) −→ 𝐹 (𝑇 ),

induced by the pullback

𝐹 (𝑓)([𝒳 → 𝑆]) = [𝑇 ×𝑆 𝒳 → 𝑇 ].

We can ask whether the functor 𝐹 is representable by a scheme 𝑀 , that is, if there is an
isomorphism of functors Ψ : Hom(−, 𝑀) −→ 𝐹 , such isomorphism will be induced by an uniquely
family 𝜐 : 𝒴 −→ 𝑀 , called universal family. When this happens, 𝑀 will be a moduli space or a
fine moduli space in the strongest sense. The problem (or no for the us researchers) is that such
moduli space very seldom exists, but in the most of the time ℳ will have a weaker structure
which corresponds to the structure of the morphism 𝐹 .

It is interesting that we can study the structure of ℳ even 𝐹 not being representa-
ble. For this the idea is to consider an element [𝑋] of ℳ and realize an infinitesimal study by
constructing a family over [𝑋] parameterized by the spectrum of a local ring, getting informations
in a neighborhood of this element [𝑋]. Then we separate the global moduli problem from the
local moduli problem. The moduli problem is studied through deformation theory.

According to Edoardo Sernesi,

"Deformation theory is the study of infinitesimal deformations as a tool to understand
the local structure of the moduli space".

Definition 2.3.1. Let ℳ𝑔 be the moduli space of the smooth curves of arithmetical genus 𝑔.
We also define the moduli space ℳ𝑔,𝑛 of the smooth curves with 𝑛 marked points.

Proposition 2.3.1. The moduli space ℳ𝑔 has dimension 3𝑔 − 3.

2.4 Known results

Let ℳℋ
𝑔,1 be the moduli space of the smooth complete integral pointed algebraic curves

with a Weierstrass point of semigroup ℋ of genus 𝑔. There are many important questions about
these spaces, namely: when ℳℋ

𝑔,1 is not empty? What is your dimension? What are their irre-
ducible componets? When are they rationals or stably rational: In this thesis we will approach
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the questions about the dimension and global structure of ℳℋ
𝑔,1 when the semigroup ℋ is sym-

metric.

Let 𝒪 be a local ring of a projective curve defined over k and 𝐸 be a component of the
formal moduli of deformations of Spec(𝒪). Assuming that the fiber over the generic point of 𝒪
is smooth, P. Deligne [D] stablished, by analyzing three different moduli spaces, the following
formula:

Theorem 2.4.1 ([D] Deligne, thm. 2.27 ).

dim 𝐸 = 3𝛿 − 𝑚1,

where

𝑚1 = [𝜏 : 𝜏 ] := dimk(𝜏/𝜏 ∩ 𝜏) − dimk(𝜏/𝜏 ∩ 𝜏),

and 𝜏 is the module of the differentials of the local ring 𝒪 while 𝜏 is the module of the differentials
of the ring 𝒪.

By considering monomial curves and following the Pinkham’s work [P] on equivariant
deformation, Deligne’s formula becomes

Theorem 2.4.2 (Deligne–Pinkham bound).

dim ℳℋ
𝑔,1 ≤ 2𝑔 + 𝜆 − 2,

where 𝜆 = [End(ℋ) : ℋ].

It is important to mention that Pinkham knew that this upper bound was attained for
some exemples, eg. the hyperelliptic semigroup generated by 2 and 2𝑔 + 1. Pinkham constructs
the moduli spaces ℳℋ

𝑔,1 by considering equivariant deformations, his basic idea is that the group
action of the multiplicative group of the ground field extends to a group action on the space of
deformations.

A numerical semigroup ℋ is called negatively graded if the positively graded part of the
first cohomology module of the cotangent complex of the semigroup ring 𝐵ℋ over k is zero. Rim
and Vitulli in [RV] classified the negatively graded semigroups, as follows.

Theorem 2.4.3 ([RV], Theorem 4.7). Let ℋ be a numerical semigroup of genus 𝑔 and 𝜆 = 𝜆(ℋ).
Then ℋ is negatively graded if and only if ℋ is of one of the following types:

i. ℋ is ordinary;

ii. ℋ is hyperordinary;

iii Excluding the ordinary and hyperordinary cases, given 𝑔 and 𝜆 with 2 ≤ 𝜆 ≤ 𝑔 − 2 there
exists an unique negatively graded semigroup (denoted by ℋ𝑔,𝜆) of given 𝑔 and 𝜆. Namely,

ℋ𝑔,𝜆 = {0, 𝑔, . . . , 2𝑔 − 𝜆 − 1, 2̂𝑔 − 𝜆, 2𝑔 − 𝜆 + 1, 2𝑔 − 𝜆 + 2, . . .}.
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If 𝜆 = 1 we have two possibilities:

ℋ𝑔,1 = {0, 𝑔, 𝑔 + 1, . . . , 2𝑔 − 2, 2̂𝑔 − 1, 2𝑔, 2𝑔 + 1, . . .}

or

ℋ𝑔,1 = {0, 𝑔 − 1, ̂︀𝑔, 𝑔 + 1, . . . , 2𝑔 − 2, 2̂𝑔 − 1, 2𝑔, 2𝑔 + 1, . . .}.

In the same work Rim and Vitulli [RV] showed that the upper bound dim ℳℋ
𝑔,1 ≤ 2𝑔+𝜆−2

is optimal whenever ℋ is a negatively graded semigroup. In the case of symmetric semigroups
it follows that 𝜆 = 1, because End(ℋ) = ℋ ∪ {𝑙𝑔}.

In the late of 80’s, using theory of limit linear series on algebraic curves, Eisenbud–Harris
in [EH] computed an upper bound for the codimension of ℳℋ

𝑔,1 in ℳ𝑔,1.

Theorem 2.4.4 (Eisenbud–Harris bound). Let 𝑋 be an irreducible component of ℳℋ
𝑔,1. Then

codim 𝑋 ≥ 3𝑔 − 2 − wt(ℋ)

where wt(ℋ) :=
∑︀

ℓ𝑖 − 𝑖 is the weight of the semigroup ℋ.

This lower bound is attained for primitive Weierstrass semigroups whose weight is not
bigger than 𝑔−1, see [EH]. However, if the weight is large, as in the case of symmetric semigroups,
then their bound may be far from being sharp, and it may even be negative.

By considering symmetric semigroups Stoehr [S] constructs an explicit compactification
of the moduli space ℳℋ

𝑔,1 by allowing Gorenstein singularities. His construction is done by
deformations of a suitable monomial curve. Since his construction is in our particular interest
we will described it breafly.

Let ℋ be a symmetric semigroup of genus 𝑔 with canonical system of generators 𝑛0 =
0 < 𝑛1 < . . . < 𝑛𝑔−1 and the gap sequence 1 = 𝑙1 < 2 = 𝑙2 < 𝑙3 . . . 𝑙𝑔 = 2𝑔 − 1. Let us consider
a complete irreducible Gorenstein curve 𝒞 over k and 𝑃 be a nonsigular point of 𝒞 such that
the Weierstrass semigroup of 𝒞 at 𝑃 is ℋ. By definition of the Weierstrass point 𝑃 , there are
functions 𝑥𝑛0 , . . . , 𝑥𝑛𝑔−1 in k(𝒞) whose pole orders at 𝑃 is equal to 𝑛𝑖, 𝑖 = 0, . . . , 𝑔−1. Since 𝑙2 = 2
the curve 𝒞 is nonhyperelliptic and by theorem (2.1.4) the Gorenstein curve 𝒞 can be embedded
in P𝑔−1. As in Petri’s analysis, the Stoehr’s idea is to construct a basis for the space of global
sections 𝐻0(𝒞, 𝑟(2𝑔 − 2)𝑃 ), for 𝑟 ≥ 1 and calculating the ideal of 𝒞. Conversely, making some
considerations on the symmetric semigroup ℋ, Stöhr introduces homogeneous quadratic forms
and asks for the conditions on their coefficients in order that the intersection that quadratic
hypersurfaces in P𝑔−1 is a complete irreducible Gorenstein curve whose Weierstrass semigroup
at 𝑃 is ℋ. We will now describe this procedure.

Let 𝐼(𝒞) be the canonical ideal of the Gorenstein curve 𝒞 ⊂ P𝑔−1. Thus 𝐼(𝒞) =
⨁︀∞

𝑛=2 𝐼𝑟(𝒞),
where 𝐼𝑟(𝒞) is the vector space of 𝑛-forms vanishing identically at 𝒞. Since the divisor (2𝑔−2)𝑃 is
canonical and the functions 𝑥𝑛0 , . . . , 𝑥𝑛𝑔−1 in k(𝒞) are linearly independent, this functions form
a basis for the space 𝐻0(𝒞, (2𝑔 −2)𝑃 ). For a nongap 𝑠 ≤ 4𝑔 −4 we write all the partitions of 𝑠 as
sum of two generators of the symmetric semigroup ℋ, 𝑠 = 𝑎𝑠 + 𝑏𝑠 with 𝑎𝑠 ≤ 𝑏𝑠 ≤ 2𝑔 − 2 so that
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the 3𝑔−3 products 𝑥𝑎𝑠𝑥𝑏𝑠 form a 𝑃 -hermitian basis of the space global sections 𝐻0(𝒞, (4𝑔−4)𝑃 )
which allows to construct a 𝑃 -hermitian basis of 𝐻0(𝒞, 𝑟(2𝑔 − 2)𝑃 ), 𝑟 ≥ 3. So for each partition
as sum of two nongaps 𝑠 = 𝑎𝑠𝑖 + 𝑏𝑠𝑖 we have 𝑥𝑎𝑠𝑖𝑥𝑏𝑠𝑖

∈ 𝐻0(𝒞, 𝑠𝑃 ), hence

𝑥𝑎𝑠𝑖𝑥𝑏𝑠𝑖
=

𝑠∑︁
𝑟=0

𝑐𝑠𝑖𝑟𝑥𝑎𝑟𝑖𝑥𝑏𝑟𝑖
,

where the summation only varies through nongaps. Multiplying the 𝑥𝑛𝑖 by suitable constants
we normalize 𝑐𝑠𝑖𝑟 = 1 and so we obtain the (𝑔−2)(𝑔−3)

2 quadratic forms

𝐹𝑠𝑖 = 𝑋𝑎𝑠𝑖𝑋𝑏𝑠𝑖
− 𝑋𝑎𝑠𝑋𝑏𝑠 −

𝑠−1∑︁
𝑟=0

𝑐𝑠𝑖𝑟𝑋𝑎𝑟𝑖𝑋𝑏𝑟𝑖
, (2.5)

that vanish identically on the canonical curve 𝒞. Thus they form a basis of the quadratic relations
𝐼2(𝒞). To show that the quadratic forms 𝐹𝑠𝑖 generate the ideal 𝐼(𝒞) stöhr [S], Contiero and Stöhr
[CS], made the following assumptions on the semigroup ℋ:

3 < 𝑛1 < 𝑔 and N ̸= ⟨4, 5⟩.

Conversely, Stöhr makes the same considerations on the symmetric semigroup ℋ, assumes that
are given quadratic forms 𝐹𝑠𝑖 as (2.5) and answers what are the conditions on their coefficients
𝑐𝑠𝑖𝑟 in order that the intersection of the quadratic hypersurfaces in P𝑔−1 is a complete irreducible
Gorenstein curve with gap sequence 𝑙1, . . . , 𝑙𝑔 at 𝑃 . The key to answer this question is the lemma
2.3 in [S], whose proof involves Petry’s analysis, and it is improved, by using only combinatorial
facts in [CS]

Lemma 2.4.5. (Syzygy Lemma 2.3, [CS])For each quadratic form 𝐹
(0)
𝑠𝑖 = 𝑋𝑎𝑠𝑖𝑋𝑏𝑠𝑖

− 𝑋𝑎𝑠𝑋𝑏𝑠

different from 𝐹
(0)
𝑛𝑖+2𝑔−2,1(𝑖 = 0, . . . , 𝑔 − 3) there is a linear isobaric syzygy of the form

𝑋2𝑔−2𝐹
(0)
𝑠′𝑖′ +

∑︁
𝑟𝑠𝑖

𝜖
(𝑠′𝑖′)
𝑟𝑠𝑖 𝑋𝑟𝐹

(0)
𝑠𝑖 = 0, (2.6)

where the coefficients 𝜖
(𝑠′𝑖′)
𝑛𝑠𝑖 are integers equal to 1, −1 or 0, and where the sum is take over the

nongaps 𝑟 < 2𝑔 − 2.

Replacing the quadratic forms 𝐹
(0)
𝑠′𝑖′ and 𝐹

(0)
𝑠𝑖 in (2.6) with the forms 𝐹𝑠′𝑖′ and 𝐹𝑠𝑖 and

applying the division algorithm on the monomials that are not in the basis of 𝐻0(𝒞, 3(2𝑔 −2)𝑃 ),
Stöhr gets equations between the forms 𝐹𝑠′𝑖′ and 𝐹𝑠𝑖 which he imposes that are syzygies. By
replacing 𝑋𝑛𝑖 ↦→ 𝑡𝑛𝑖 in this syzygies we have the relations 𝜚𝑠′𝑖′𝑟′ = 0 between the coefficients 𝑐𝑠𝑖𝑟.
After normalizing 1

2𝑔(𝑔 − 1) of the coefficients 𝑐𝑠𝑖𝑟 (see proposition 3.1 in [S]), the only freedon
left to us is to transform 𝑥𝑛𝑖 ↦→ 𝑐𝑛𝑖𝑥𝑛𝑖 for some 𝑐 ∈ G𝑚(k) = k*. Finally we present the theorem
that explains the construction of a compactification of the moduli space ℳℋ

𝑔,1.

Theorem 2.4.6 (Stöhr’s Construction). The isomorphism classes of the projective irreducible
pointed Gorenstein curves of arithmetical genus 𝑔 and Weierstrass gap sequence 𝑙1, . . . , 𝑙𝑔 cor-
respond bijectively to the orbits of the invariant G𝑚(k)-action (𝑧, 𝑐𝑠𝑖𝑟) ↦→ 𝑧𝑟−𝑠𝑐𝑠𝑖𝑟 on the quasi-
homogeneous affine algebraic set of the systems of constants 𝑐𝑠𝑖𝑟 normalized and satisfying the
isobaric polynomial equations 𝜚𝑠′𝑖′𝑟′ = 0.
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As we mentioned in the Introduction, E. Bullock, in a beautiful work due his PhD thesis,
computed the general family of each component of the Kontsevich–Zorich space 𝒢𝑔, namely

Theorem 2.4.7 (E. Bullock). If 𝑔 ≥ 4, then

(a) a general point of 𝒢hyp
𝑔 has Weierstrass gaps {1, 3, 5, . . . , 2𝑔 − 5, 2𝑔 − 3, 2𝑔 − 1},

(b) a general point of 𝒢odd
𝑔 has Weierstrass gaps {1, 2, 3, . . . , 𝑔 − 2, 𝑔 − 1, 2𝑔 − 1}, and

(c) a general point of 𝒢even
𝑔 has Weierstrass gaps {1, 2, 3, . . . , 𝑔 − 2, 𝑔, 2𝑔 − 1}.

Thereafter Bullock [BUL] also made investigations on the structure of the moduli space
ℳℋ

𝑔,1 for small genus. He showed that for genus 𝑔 ≤ 6, the moduli variety ℳℋ
𝑔,1 is irreducible and

stably rational with the possible exceptions of the semigroups ⟨5, 7, 8, 9, 11⟩ and ⟨6, 7, 8, 9, 10⟩.
Moreover, he shows that the existence of an irreducible component of the expected dimension
for each semigroup. As an exemple of our tools we show the rationality of the moduli variety
ℳℋ

𝑔,1 having Weierstrass semigroup ⟨6, 7, 8, 9, 10⟩.

As noted above Contiero–Stoehr made a purely combinatorial proof of the syzygy lemma
[CS, lemma 2.3] which provides an implementable algorithm to construct the space ℳℋ

𝑔,1 when
ℋ is symmetric. Furthermore, they created a method which allows to deal with families of
symmetric semigroups, getting upper bounds for the dimension of ℳℋ

𝑔,1 which provides better
bounds them Deligne–Pinkham’s one. In the chapter 4 of this thesis we will apply this method
to compute the dimension of some spaces.

In the last year N. Pflueger [PF1] improved the Eisenbud–Harrris bound. He introduced
the effective weight of a numerical semigroup ℋ

ewt(ℋ) :=
∑︁

gaps 𝑙𝑖

(# generators 𝑛𝑗 < 𝑙𝑖).

Alternatively, ewt(ℋ) is the number of pair (𝑛𝑖, 𝑙𝑘) where 𝑛𝑖 ∈ ℋ and 𝑙𝑘 /∈ ℋ, so wt(ℋ)−ewt(ℋ)
is equal to the number of pairs (𝑛𝑖, 𝑙𝑘) where 𝑛𝑖 < 𝑙𝑘, 𝑛𝑖 is composite, and 𝑙𝑘 is a gap. Therefore,
wt(ℋ) = ewt(ℋ) if and only if ℋ is primitive.

Theorem 2.4.8. (Theorem 1.2, [PF1]) If ℳℋ
𝑔,1 in nonempty, and 𝑋 is any irreducible compo-

nent of it, then

dim 𝑋 ≥ dim ℳ𝑔,1 − ewt(ℋ).

Remark 2.4.9. We observe that for the semigroup ℋ = ⟨6, 7, 8⟩ of genus 9 we have ewt(ℋ) = 12
while codim(ℳℋ

𝑔,1) = 11 (see [PF1], 2.6), and so codim(ℳℋ
𝑔,1) < ewt(ℋ). This bound is sharp

(see [PF1], thm 1.3) whenever ewt(ℋ) ≤ 𝑔 − 2.

Pflueger in [PF2] also studied a class of semigroups called Castelnuevo semigroups where
his lower bound can not be attained, he produced the first examples where the moduli spaces
ℳℋ

𝑔,1 is reducible and computed these components, see [PF2, thm 1.1].
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3 Moduli space of curves with symmetric
Weierstrass semigroup

3.1 Gorenstein subcanonical curves and Weierstrass points

Let 𝒞 be a complete integral Gorenstein curve of arithmetical genus 𝑔 > 1 defined over
an algebraically closed field k. Following the terminology introduced by Bullock [Bu], we assume
that 𝒞 is subcanonical, ie. there is a rational function on 𝒞 with pole divisor (2𝑔 − 2)𝑃 , where
𝑃 is a nonsingular point of 𝒞. By the Riemann–Roch theorem for singular curves, the dualizing
sheaf 𝜔 is 𝒪𝒞((2𝑔 − 2)𝑃 ). Hence, the vector space of its global sections is

𝐻0(𝒞, 𝜔) = k · 𝑥𝑛0 ⊕ k · 𝑥𝑛1 ⊕ · · · ⊕ k · 𝑥𝑛𝑔−1 ,

where 𝑥𝑛𝑖 is a rational function on 𝒞 whose pole divisor is 𝑛𝑖𝑃 , for 𝑖 ≥ 1, with 𝑛0 := 0 and
𝑛𝑔−1 = 2𝑔 − 2. Equivalently, the base point 𝑃 ∈ 𝒞 is a Weierstrass point with gap sequence
1 = ℓ1 < ℓ2 < · · · < ℓ𝑔 = 2𝑔 − 1, whose symmetric Weierstrass semigroup ℋ of genus 𝑔 is
canonically generated by ⟨𝑛0, 𝑛1, . . . , 𝑛𝑔−1⟩ = ℋ. We recall that a semigroup ℋ of genus 𝑔 is
symmetric if its Frobenius number ℓ𝑔 is the largest possible, namely ℓ𝑔 = 2𝑔 − 1. Equivalently,
ℋ is symmetric if and only if ℓ𝑖 = ℓ𝑔 − 𝑛𝑔−𝑖, for all 𝑖 = 1, . . . , 𝑔.

Let us assume that 𝒞 is also non-hypereliptic, thus its dualizing sheaf 𝜔 is very ample
and induces an embedding in the (𝑔 − 1)-dimensional projective space P𝑔−1

(𝑥𝑛𝑜 : . . . : 𝑥𝑛𝑔−1) : 𝒞 𝜔−˓−−→ P𝑔−1 = P(𝐻0(𝒞, 𝜔))

defined over k, a rather general and beautiful approach on canonical models can be found in
[KM], in particular theorem 4.3. Therefore, 𝒞 can be identified with its image under the canonical
embedding. Hence, 𝒞 ⊂ P𝑔−1 is a projective curve of genus 𝑔 and degree 2𝑔 − 2.

Conversely, every symmetric numerical semigroup ℋ of genus 𝑔 > 1 can be realized as a
Weierstrass semigroup of a canonical Gorenstein curve. We just have to consider the canonical
generators 0 = 𝑛0 < 𝑛1, . . . , < 𝑛𝑔−1 = 2𝑔 − 2 of ℋ and take the induced monomial curve

𝒞ℋ := {(𝑠𝑛0𝑡ℓ𝑔−1 : 𝑠𝑛1𝑡ℓ𝑔−1−1 : . . . : 𝑠𝑛𝑔−2𝑡ℓ2−1 : 𝑠𝑛𝑔−1𝑡ℓ1−1) | (𝑠 : 𝑡) ∈ P1} ⊂ P𝑔−1 .

It can be checked that it has an unique singular point, namely (1 : 0 : . . . : 0), which is unibranch
and has singularity degree 𝑔. Since the semigroup ℋ is symmetric, 𝐶ℋ is a Gorenstein curve.
The contact orders with hyperplanes at its unique point 𝑃 = (0 : . . . 0 : 1) at the infinity are
exactly ℓ𝑖 − 1, 𝑖 = 1, . . . , 𝑔. Thus 𝒞ℋ has degree 2𝑔 − 2 and its Weierstrass semigroup at 𝑃 is ℋ.
For a more detailed exposition on monomial curves we refer to [B].

We want to study the canonical ideal of 𝒞. According to Enriques–Babbage’s theorem
[ACGH] for the smooth curves and the generalization to Petri’s singular curves obtained by
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Schreyer [FS] on homogeneous ideal of a smooth canonically-embedded curve, if we assume 𝒞
not isomorphic to a plane quintic, then its ideal can be generated by quadratic forms, when it is
non-trigonal, and by quadratic and cubic forms when it is trigonal, in the case of Petri’s curves
we also assume that it has a simple (𝑔 − 2)-secant.

An extended version of Max Noether’s theorem for complete integral non-hypereliptic
curves, which is proven for uni and bi-branched points, see [Ma] and [ACM], states there is a
surjective homomorphism

Sym𝑟(𝐻0(𝒞, 𝜔)) −→ 𝐻0(𝒞, 𝜔𝑟)

for all 𝑟 ≥ 1. In the following, we review a suitable proof of Max-Noether’s theorem for sub-
canonical curves given by Stöhr in [S] , which is fundamental for this work.

Let ℋ be a numerical symmetric semigroup of genus 𝑔 > 1. Since 𝒞 is non-hyperelliptic,
we must to assume that the symmetric semigroup ℋ is not hyperelliptic, ie. 2 /∈ ℋ, equivalently
ℋ ≠ ⟨2, 2𝑔 + 1⟩. For each nongap 𝑠 ≤ 4𝑔 − 4, we consider the partitions of 𝑠 as sums of two
nongaps as following

𝑠 = 𝑎𝑠 + 𝑏𝑠, 𝑎𝑠 ≤ 𝑏𝑠 ≤ 2𝑔 − 2,

with 𝑎𝑠 the smallest possible nongap. It follows from Oliveira’s work [O, theorem 1.3] that the
3𝑔 −3 rational functions 𝑥𝑎𝑠𝑥𝑏𝑠 of 𝒞 form a 𝑃 -hermitian basis for the space of the global sections
of the bicanonical divisor 𝜔2 ∼= 𝒪𝒞((4𝑔 − 4)𝑃 ). Now, for each integer 𝑟 ≥ 3 a 𝑃 -hermitian basis
for the space 𝐻0(𝒞, 𝜔𝑟) is given by the 𝑟-monomials expressions

𝑥𝑟−1
𝑛0 𝑥𝑛𝑖 (𝑖 = 0, . . . , 𝑔 − 1),

𝑥𝑟−2−𝑖
𝑛0 𝑥𝑎𝑠𝑥𝑏𝑠𝑥𝑖

𝑛𝑔−1 (𝑖 = 0, . . . , 𝑟 − 2, 𝑠 = 2𝑔, . . . , 4𝑔 − 4),

𝑥𝑟−3−𝑖
𝑛0 𝑥𝑛1𝑥2𝑔−𝑛1𝑥𝑛𝑔−2𝑥𝑖

𝑛𝑔−1 (𝑖 = 0, . . . , 𝑟 − 3).

Let 𝐼(𝒞) = ⊕∞
𝑟=2𝐼𝑟(𝒞) be the homogeneous canonical ideal of 𝒞 ⊂ P𝑔−1. As an immediate

consequence of the existence of a above 𝑃 -hermitian basis of 𝑟-monomials for the k-vector space
𝐻0(𝒞, 𝜔𝑟), the homomorphism

k[𝑋𝑛0 , . . . , 𝑋𝑛𝑔−1 ]
𝑟

−→ 𝐻0(𝒞, 𝜔𝑟)

induced by the substitutions 𝑋𝑛𝑖 ↦−→ 𝑥𝑛𝑖 is surjective for each 𝑟 ≥ 1. Thus we get a proof of
Max-Noether’s theorem for subcanonical Gorenstein curves.

It is clear from Riemann’s theorem that the codimension of 𝐼𝑟(𝒞) in the
(︀𝑟+𝑔−1

𝑟

)︀
-dimensional

vector space k[𝑋𝑛0 , . . . , 𝑋𝑛𝑔−1 ]
𝑟

of homogeneuos 𝑟-forms is equal to (2𝑟 − 1)(𝑔 − 1), for each
𝑟 ≥ 2. An immediate consequence is that the vector space of quadratic and cubic relations have
dimensions

dim 𝐼2(𝒞) = (𝑔 − 2)(𝑔 − 3)
2 and dim 𝐼3(𝒞) =

(︃
𝑔 + 2

3

)︃
− (5𝑔 − 5),

respectively.

For each 𝑟 ≥ 2, we define the vector subspace Λ𝑟 of k[𝑋𝑛0 , . . . , 𝑋𝑛𝑔−1 ]
𝑟

spanned by the
lifting of the above 𝑃 -hermitian 𝑟-monomial basis of 𝐻0(𝒞, 𝜔𝑟). It is spanned by the 𝑟-monomials
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in 𝑋𝑛0 , . . . , 𝑋𝑛𝑔−1 whose weights are pairwise different between all the nongaps 𝑛 ≤ 𝑟(2𝑔 − 2).
Since Λ𝑟 ∩ 𝐼𝑟(𝒞) = 0 and

dim Λ𝑟 = dim 𝐻0(𝒞, 𝜔𝑟) = codim 𝐼𝑟(𝒞),

we obtain
k[𝑋𝑛0 , . . . , 𝑋𝑛𝑔−1 ]

𝑟
= 𝐼𝑟(𝒞) ⊕ Λ𝑟, for each 𝑟 ≥ 2.

Let 𝑟ℋ be the set of all sums of 𝑟 nongaps not bigger than 2𝑔 − 2. Oliveira showed, cf. [O,
theorem 1.5], that each nongap smaller than or equal to 𝑟(2𝑔 −2) belongs to 𝑟ℋ. Moreover, each
sum of 𝑟 nongaps ≤ 2𝑔 − 2 is a nongap ≤ 𝑟(2𝑔 − 2). Consequently, #𝑟ℋ = (2𝑟 − 1)(𝑔 − 1) and
therefore

#𝑟ℋ = dim 𝐻0(𝒞, 𝜔𝑟) .

In particular, for each nongap 𝑠 ≤ 4𝑔 − 4 we list all the partitions 𝑠 = 𝑎𝑠𝑖 + 𝑏𝑠𝑖 ∈ 2ℋ, where

𝑎𝑠𝑖 ≤ 𝑏𝑠𝑖 ≤ 2𝑔 − 2 (𝑖 = 0, . . . , 𝜈𝑠) and 𝑎𝑠 := 𝑎𝑠0 < 𝑎𝑠1 < 𝑎𝑠2 < . . . < 𝑎𝑠𝜈𝑠 .

Since 𝑥𝑎𝑠𝑖𝑥𝑏𝑠𝑖
∈ 𝐻0(𝒞, 𝑠𝑃 ) and {𝑥𝑎𝑠𝑥𝑏𝑠} is the above fixed basis, we can write

𝑥𝑎𝑠𝑖𝑥𝑏𝑠𝑖
=

𝑠∑︁
𝑛=0

𝑐𝑠𝑖𝑛𝑥𝑎𝑛𝑥𝑏𝑛 ,

for each 𝑖 = 0, . . . , 𝜈𝑠, where the coefficients 𝑐𝑠𝑖𝑟 are uniquely determined constants and the
summation index only varies through nongaps. In the same way, for each nongap 𝜎 ≤ 6𝑔 − 6 we
consider the partitions 𝜎 = 𝑎𝜎𝑗 + 𝑏𝜎𝑗 + 𝑐𝜎𝑗 ∈ 3ℋ where 𝑎𝜎𝑗 ≤ 𝑏𝜎𝑗 ≤ 𝑐𝜎𝑗 ≤ 2𝑔 − 2 (𝑗 = 0, . . . , 𝜈𝜎)
with 𝑎𝜎 := 𝑎𝜎0 < 𝑎𝜎1 < . . . < 𝑎𝜎𝜈𝜎 and 𝑏𝜎 := 𝑏𝜎0 > 𝑏𝜎1 > . . . > 𝑏𝜎𝜈𝜎 . Analogously, we may write

𝑥𝑎𝜎𝑗 𝑥𝑏𝜎𝑗
𝑥𝑐𝜎𝑗 =

𝜎∑︁
𝑛=0

𝑑𝜎𝑗𝑛𝑥𝑎𝑛𝑥𝑏𝑛𝑥𝑐𝑛
,

for each integer 𝑗 = 0, . . . , 𝜈𝜎, where the coefficients 𝑑𝜎𝑗𝑛 are uniquely determined constants and
the summation index only varies through nongaps.

Multiplying the functions 𝑥𝑛0 , . . . , 𝑥𝑛𝑔−1 by constants we do not change the 𝑃 -hemitian
property of the above basis, thus we can normalize the coefficients 𝑐𝑠𝑖𝑠 = 1 and 𝑑𝜎𝑗𝜎 = 1.
Therefore, by construction the

(︀𝑔+1
2
)︀

− (3𝑔 − 3) = 1
2(𝑔 − 3)(𝑔 − 2) quadratic forms

𝐹𝑠𝑖 = 𝑋𝑎𝑠𝑖𝑋𝑏𝑠𝑖
− 𝑋𝑎𝑠𝑋𝑏𝑠 −

𝑠−1∑︁
𝑛=0

𝑑𝑠𝑖𝑛𝑋𝑎𝑛𝑋𝑏𝑛 (3.1)

and the
(︀𝑔+2

3
)︀

− (5𝑔 − 5) cubic forms

𝐺𝜎𝑗 = 𝑋𝑎𝜎𝑗 𝑋𝑏𝜎𝑗
𝑋𝑐𝜎𝑗 − 𝑋𝑎𝜎 𝑋𝑏𝜎 𝑋𝑐𝜎 −

𝜎−1∑︁
𝑛=0

𝑑𝜎𝑗𝑛𝑋𝑎𝑛𝑋𝑏𝑛𝑋𝑐𝑛 , (3.2)

that vanish identically on the canonical curve 𝒞. We attach to the variable 𝑋𝑛 the weight 𝑛, to
the coefficient 𝑐𝑠𝑖𝑛 the weight 𝑠 − 𝑛 and to 𝑑𝜎𝑗𝑛 the weight 𝜎 − 𝑛. Thus the above quadric and
cubic forms seen as polynomial expressions in the variables 𝑋𝑛 and the coefficients 𝑐𝑠𝑖𝑛, 𝑑𝜎𝑗𝑛 are
also isobaric forms.
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In the view of Henriques–Babbage’s theorem for smooth canonical curves, cf. [ACGH], we
want to assure that the canonical ideal of 𝒞 is generated by the quadratic and cubic forms. This
fact reflects on conditions on the symmetric semigroup. We assume that the non-hyperelliptic
symmetric semigroup ℋ is a non-trivial semigroup of genus 𝑔 > 1, which is equivalent to assume
that the multiplicity 𝑛1 of ℋ satisfies 2 < 𝑛1 ≤ 𝑔.

By a theorem of Oliveira [O, theorem 1.7], if we consider 3 < 𝑛1 < 𝑔, then follows that
there is at least one quadratic form, ie. 𝜈𝑠 ≥ 1, whenever 𝑠 = 𝑛𝑖+2𝑔−2 for 𝑖 = 0, . . . , 𝑔−3. In this
case Contiero–Stoehr [CS] gave an algorithmic proof that the canonical ideal of a Gorenstein
curve 𝒞 ⊂ P𝑔−1 with Weierstrass semigroup ℋ at the base point is generated by quadratic
relations. If we assume that 3 ∈ ℋ then its genus has residue 1 or 0 module 3, hence ℋ :=
⟨3, 𝑔 + 1⟩. In this case we already know that M ℋ

𝑔,1 = P(𝑇 1,−
k[ℋ]|k), as mentioned in the section

Introduction of the present work. If ℋ = ⟨4, 5⟩ then 𝒞 is isomorphic to a plane quintic where
the quadric hypersurfaces contaning 𝒞 is the Veronese surface.

In the excluded case ℋ = N∖{1, 2, . . . , 𝑔 − 1, 2𝑔 − 1}, the curve 𝒞 is possibly trigonal,
so its canonical ideal can be not generated by only quadratic relations. In the next section
we investigate the Weierstrass semigroup of trigonal complete curves and then, we will give
an algorithmic proof that the canonical ideal of a complete Gorenstein curve with symmetric
Weierstrass semigroup

ℋ := N∖{1, 2, . . . , 𝑔 − 1, 2𝑔 − 1} = ⟨0, 𝑔, 𝑔 + 1, . . . , 2𝑔 − 2⟩

at a smooth non-ramified point is generated by quadratic and cubics forms.

3.2 Trigonal subcanonical curves

Let 𝒞 be a complete integral curve of arithmetic genus 𝑔 defined over an algebraically
closed field k. A linear system of dimension 𝑟 on 𝒞 is a set of the form

L = L (F , 𝑉 ) := {𝑥−1F | 𝑥 ∈ 𝑉 ∖ 0}

where F is a coherent fractional ideal sheaf on 𝐶 and 𝑉 is a vector subspace of 𝐻0(𝒞, F ) of
dimension 𝑟 + 1.

The notion of linear systems on curves presented here is characterized by interchanging
bundles by torsion free sheaves of rank 1. This is a meaningful approach since they may possess
non-removable base points, see Coppens [Cp].

The degree of the linear system L is the integer deg F := 𝜒(F )−𝜒(𝒪𝒞), where 𝜒 denotes
the Euler characteristic. Note, in particular, that if 𝒪𝒞 ⊂ F then

deg F =
∑︁
𝑃 ∈𝐶

dim(F𝑃 /𝒪𝒞,𝑃 ).

The notation 𝑔𝑟
𝑑 stands for a linear system of degree 𝑑 and dimension 𝑟. The linear system is

said to be complete if 𝑉 = 𝐻0(𝒞, F ), in this case one simply writes L = |F |. According to E.
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Ballico’s [Ba, p. 363, Dfn. 2.1 (3)], the gonality of 𝒞 is the smallest 𝑑 for which there exists a 𝑔1
𝑑

on 𝒞, or equivalently, a torsion free sheaf F of rank 1 on 𝒞 with degree 𝑑 and ℎ0(𝒞, F ) ≥ 2.

The following lemma is a straightforward generalization of a Kim’s result [KIM, theorem
2.6] characterizing the Weierstrass semigroup associated to a non-ramification point of a trigonal
curve.

Lemma 3.2.1. Let 𝒞 be a complete integral trigonal curve of arithmetical genus 𝑔 ≥ 5 and
𝑃 ∈ 𝒞 be a Weierstrass non-ramification point. The Weierstrass semigroup ℋ of 𝒞 at 𝑃 is of the
form

{0, 𝑚, 𝑚 + 1, 𝑚 + 2, . . . , 𝑚 + (𝑠 − 𝑔), 𝑠 + 2, 𝑠 + 3, 𝑠 + 4, . . .},

for some 𝑠 and 𝑚 such that 𝑔 ≥ 𝑚 ≥
⌊︁

𝑠+1
2

⌋︁
+ 1. In particular, in the symmetric case we get

ℋ = {0, 𝑔, 𝑔 + 1, . . . , 2𝑔 − 2, 2𝑔, 2𝑔 + 1, 2𝑔 + 2, . . .}.

Proof. Let ℓ𝑔 be the Frobenius number of the Weierstrass semigroup ℋ associated to 𝑃 ∈ 𝒞.
Equivalently, the integer 𝑠 := ℓ𝑔 −1 is the largest such that the divisor 𝐷0 = 𝑠𝑃 is special. Since
𝑃 is a Weierstrass point, it is immediate that 𝑔 ≤ ℓ𝑔 − 1 ≤ 2𝑔 − 2. By the maximality of 𝑠

dim |𝒪(𝐷0)| = 𝑠 − 𝑔 + 1.

Since 𝐷0 is a special divisor, let be

𝜔𝒞 ≃ 𝒪𝒞(𝐷0 + 𝑃1 + 𝑃2 + . . . + 𝑃2𝑔−2−𝑠)

the dualizing sheaf of 𝒞 where 𝑃𝑖 ∈ 𝒞, 𝑃𝑖 ̸= 𝑃 , with 𝑖 = 1, . . . , 2𝑔 − 2 − 𝑠. As 𝑃 is not a
ramification point, the first nongap 𝑚 is greater than 3, and so |𝑚𝑃 | is not compounded of 𝑔1

3.
By considering the divisor

𝐷 := (𝑠 − 𝑚)𝑃 + 𝑃1 + 𝑃2 + . . . + 𝑃2𝑔−2−𝑠

the residual series to |𝐷| is compounded of 𝑔1
3 because 𝜔𝒞 = 𝒪𝒞(𝑚𝑃 ) ⊗ 𝒪𝒞(𝐷).

Applying the Riemann-Roch theorem, dim |𝐷| = 𝑔 − 𝑚, hence we can write |𝐷| =
(𝑔−𝑚)𝑔1

3+𝐵, where 𝐵 is the base locus of |𝐷|. For 𝑅 be an element of 𝑔1
3 we have 𝑅 = 𝑃 +𝑄1+𝑄2,

with 𝑃 ̸= 𝑄1 and 𝑃 ̸= 𝑄2 because 𝑃 is not a ramification point of 𝒞, thus

𝐷 = (𝑔 − 𝑚)(𝑃 + 𝑄1 + 𝑄2) + 𝐵 = (𝑠 − 𝑚)𝑃 + 𝑃1 + 𝑃2 + . . . + 𝑃2𝑔−2−𝑠,

and by the maximality of 𝑠

𝑃1 + 𝑃2 + . . . + 𝑃2𝑔−2−𝑠 ⪰ (𝑔 − 𝑚)𝑄1 + (𝑔 − 𝑚)𝑄2,

implying 2(𝑔 − 𝑚) ≤ 2𝑔 − 2 − 𝑠. Therefore, 𝑚 ≥
⌊︁

𝑠+1
2

⌋︁
+ 1.

On the other hand,
𝐵 ⪰ (𝑠 − 𝑔)𝑃,

that means (𝑠 − 𝑔)𝑃 is contained in the base locus of |𝐷|. Consequently, (𝑚 + 1)𝑃, . . . (𝑚 + (𝑠 −
𝑔))𝑃 are not in the base locus of the residual series |𝑚𝑃 | and by Riemann-Roch theorem

dim |(𝑚 + 𝑖)𝑃 | = 𝑖 + 1, (𝑖 = 1, . . . , 𝑠 − 𝑔).
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Thus 𝑚, 𝑚 + 1, . . . , 𝑚 + 𝑠 − 𝑔 are nongaps of ℋ. Now by definition of 𝑠 and by Riemann-Roch
theorem, dim |(𝑠 + 1)𝑃 | = dim |𝑠𝑃 |, which implies that 𝑠 + 1 is a gap of ℋ. As for each integer
𝑟 ≥ 𝑠 + 2, the divisor (𝑟 − 1)𝑃 is nonspecial follows that

dim |𝑟𝑃 | = 𝑟 − 𝑔 = dim |(𝑟 − 1)𝑃 | + 1,

so each 𝑟 ≥ 𝑠 + 2 is a nongap. In this way the set

𝑆 = {0, 𝑚, 𝑚 + 1, . . . , 𝑚 + (𝑠 − 𝑔), 𝑠 + 2, . . .}

is contained in ℋ and the cardinality of N − 𝑆 is 𝑔 and follows the proof.

Let us consider the trigonal numerical semigroup ℋ := ⟨0, 𝑔, 𝑔 + 1, . . . , 2𝑔 − 2⟩ of genus
𝑔 ≥ 5. We now fix 1

2(𝑔 − 3)(𝑔 − 2) initial quadratic forms like in (3.1)

𝐹
(0)
𝑠𝑖 := 𝑋𝑎𝑠𝑖𝑋𝑏𝑠𝑖

− 𝑋𝑎𝑠𝑋𝑏𝑠

and the
(︀𝑔+2

3
)︀

− (5𝑔 − 5) initial cubic forms

𝐺
(0)
𝜎𝑗 := 𝑋𝑎𝜎𝑗 𝑋𝑏𝜎𝑗

𝑋𝑐𝜎𝑗 − 𝑋𝑎𝜎 𝑋𝑏𝜎 𝑋𝑐𝜎 .

It is clear that a considerable amount of cubic forms are just multiplies of quadratic ones.
In the next result we explicitly find them.

Proposition 3.2.2. Let ℋ := ⟨0, 𝑔, 𝑔 +1, . . . , 2𝑔 −2⟩. There are exactly ℘ =
(︀𝑔+2

3
)︀
−(5𝑔 −5)−𝜂,

with

𝜂 = (𝑔 − 3)(𝑔 − 2) + (𝑔 − 2)
⌊︂

𝑔 − 2
2

⌋︂
+
⌊︂

𝑔 − 3
2

⌋︂
+

𝑔−4∑︁
𝑗=1

⌊︂
𝑔 − 2 − 𝑗

2

⌋︂
initial cubic forms that are not multiples of the quadratic ones.

Proof. Since the fixed basis for Λ2 is {𝑋2
0 , 𝑋0𝑋𝑔+𝑖, 𝑋𝑔𝑋𝑔+𝑖, 𝑋𝑔+𝑗𝑋2𝑔−2} with 𝑖 = 0, . . . , 𝑔 − 2

and 𝑗 = 1, . . . , 𝑔 − 2, the initial quadratic forms are

𝐹
(0)
𝑠𝑙 = 𝑋𝑎𝑠𝑙

𝑋𝑏𝑠𝑙
− 𝑋𝑔𝑋𝑔+𝑖 and 𝐹

(0)
𝑠𝑙 = 𝑋𝑎𝑠𝑙

𝑋𝑏𝑠𝑙
− 𝑋𝑔+𝑗𝑋2𝑔−2,

where the 2-monomials nonbasis elements of Λ2 are the products 𝑋𝑔+𝑖𝑋𝑔+𝑗 where 1 ≤ 𝑖 ≤ 𝑗 =
1, . . . , 𝑔 − 3. While the fixed basis for Λ3 is

{𝑋2
0 𝑋𝑖, 𝑋0𝑋𝑎𝑠𝑋𝑏𝑠, 𝑋𝑎𝑠𝑋𝑏𝑠𝑋2𝑔−2, 𝑋2

𝑔 𝑋2𝑔−3} ,

with 𝑖 = 0, 𝑔, 𝑔 + 1, . . . , 2𝑔 − 2 and {𝑋𝑎𝑠𝑋𝑏𝑠} the above fixed basis for Λ2. Set 𝐹 := 𝐹
(0)
𝑠𝑙 for a

initial quadratic form. It is clear that the (𝑔−3)(𝑔−2) products 𝑋0𝐹 and 𝑋2𝑔−2𝐹 are cubic forms
for every 𝐹 . Since the monomials 𝑋𝑔+𝑘𝑋𝑔+𝑖𝑋𝑔+𝑗 /∈ Λ3 for 𝑘 = 0, . . . , 𝑔−3 and 𝑖, 𝑗 = 1, . . . , 𝑔−3,
the product 𝑋𝑔+𝑘𝐹 defines a cubic form when 𝑋𝑔+𝑘𝑋𝑔𝑋𝑔+𝑖 or 𝑋𝑔+𝑘𝑋𝑔+𝑗𝑋2𝑔−2 are in Λ3. In
the first case, 𝑋𝑔+𝑘𝑋𝑔𝑋𝑔+𝑖 ∈ Λ3 just for 𝑖 = 𝑔 − 2, 𝑘 = 0, . . . , 𝑔 − 3 and for 𝑖 = 𝑔 − 3, 𝑘 = 0.
Hence we get the following (𝑔 − 2)

⌊︁
𝑔−2

2

⌋︁
+
⌊︁

𝑔−3
2

⌋︁
cubic forms

𝑋𝑔+𝑘 (𝑋𝑎𝑠𝑙
𝑋𝑏𝑠𝑙

− 𝑋𝑔𝑋2𝑔−2) , with 𝑘 = 0, . . . , 𝑔 − 3



3.2. Trigonal subcanonical curves 29

and
𝑋𝑔 (𝑋𝑎𝑠𝑙

𝑋𝑏𝑠𝑙
− 𝑋𝑔𝑋2𝑔−3) .

In the remaing case, 𝑋𝑔+𝑘𝑋𝑔+𝑗𝑋2𝑔−2 ∈ Λ3 just for 𝑘 = 0, 𝑗 = 1, . . . , 𝑔 − 2. So we get the
following initial cubic forms

𝑋𝑔 (𝑋𝑎𝑠𝑙
𝑋𝑏𝑠𝑙

− 𝑋𝑔+𝑗𝑋2𝑔−2) , 𝑗 = 1, . . . , 𝑔 − 4,

whose amount is
∑︀𝑔−4

𝑗=1

⌊︁
𝑔−2−𝑗

2

⌋︁
.

It is straightforward that the quadratic 𝐹
(0)
𝑠𝑖 and cubic forms 𝐺

(0)
𝜎𝑗 vanish identically on

the monomial curve 𝒞(0). The next lemma show that they generate the ideal of 𝒞(0).

Lemma 3.2.3. The canonical ideal 𝐼(𝒞(0)) is generated by the 1
2(𝑔 − 2)(𝑔 − 3) quadratic forms

𝐹
(0)
𝑠𝑖 and by the ℘ cubic forms 𝐺

(0)
𝜎𝑗 .

Proof. We first note that for smooth canonical curves, this is just Petri’s theorem. Since the
𝐼(𝒞(0)) is generated by homogeneous and isobaric forms, all we have to do is to show that
for a homogeneous and isobaric form belongs to 𝐼(𝒞(0)) if and only if belongs to the ideal 𝒥
generated by the binomials 𝐹

(0)
𝑠𝑖 and 𝐺

(0)
𝜎𝑗 . It is just obvious that 𝒥 ⊆ 𝐼(𝒞(0)). For the opposite

inclusion we order the monomials
∏︀𝑔−1

𝑘=0 𝑋𝑖𝑘
𝑛𝑘

according to the lexicographic ordering of the vectors
(
∑︀

𝑖𝑘,
∑︀

𝑛𝑘 𝑖𝑘, −𝑖0, −𝑖𝑔−1, . . . , −𝑖1). In this way the binomials 𝐹
(0)
𝑠𝑖 and 𝐺

(0)
𝜎𝑗 form a Groebner

basis for 𝒥 . Now, for each homogenous form 𝐹 of degree 𝑟 which is also isobaric of weight 𝜔 we
divide it by the Groebner basis getting a decomposition

𝐹 =
∑︁

𝐻𝑠𝑖𝐹
(0)
𝑠𝑖 + 𝑇𝜎𝑗𝐺

(0)
𝜎𝑗 + 𝑅

where 𝑅 ∈ Λ𝑟 and 𝐻𝑠𝑖 and 𝑇𝜎𝑗 are homogenous of degree 𝑟 − 2 and 𝑟 − 3 respectively, and
weight 𝜔 − 𝑠 and 𝜔 − 𝜎, respectively. The remainder 𝑅 is the only monomial in Λ𝑟 of weight 𝜔

whose coefficients is equal to the sum of the coefficients of 𝐹 . Since 𝐹 ∈ 𝐼(𝒞(0)) the sum of its
coefficients is equal to zero, then 𝑅 = 0.

A different proof of the above theorem can be found in [GSS, thm 1.1] by noting that
the symmetric semigroup ℋ = ⟨0, 𝑔, 𝑔 + 1, . . . , 2𝑔 − 2⟩ is generated by a generalized arithmetic
sequence. So the ideal 𝐼(𝒞(0)) of the monomial curve 𝒞(0) is also generated by the 2 × 2 minors
of suitable two matrices. We it can be seen immediately that the ideal given by this 2×2 minors
is equal to the ideal generated by the binomials 𝐹

(0)
𝑠𝑖 and 𝐺

(0)
𝜎𝑗 .

The following lemma is a generalization of result in [CS, Lemma 2.3], where due to the
assumptions the authors just deal with the first syzygies of quadratic forms. Here we also deal
with syzygies of cubic forms, getting non linear syzygies.

Syzygy Lemma 3.2.4. For each of the 1
2(𝑔 − 3)(𝑔 − 4) quadratic forms 𝐹

(0)
𝑠′𝑖′ different from

𝐹
(0)
𝑛𝑖+2𝑔−2,1(𝑖 = 1, . . . , 𝑔 − 3) there is a syzygy of the form

𝑋2𝑔−2𝐹
(0)
𝑠′𝑖′ +

∑︁
𝑛𝑠𝑖

𝜖
(𝑠′𝑖′)
𝑛𝑠𝑖 𝑋𝑛𝐹

(0)
𝑠𝑖 = 0 (3.3)
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and for each cubic forms 𝐺
(0)
𝜎′𝑗′ different from 𝐺

(0)
4𝑔−4,1, there is a syzygy of the form

𝑋2𝑔−2𝐺
(0)
𝜎′𝑗′ +

∑︁
𝑞𝜎𝑗

𝜌
(𝜎′𝑗′)
𝑞𝜎𝑗 𝑋𝑞𝐺

(0)
𝜎𝑗 = 0, (3.4)

where the coefficients 𝜖
(𝑠′𝑖′)
𝑛𝑠𝑖 , 𝜌

(𝜎′𝑗′)
𝑞𝜎𝑗 are integers equal to 1, −1 or 0, and where the sum is take

over the nongaps 𝑛, 𝑞 < 2𝑔 − 2, the double indices 𝑠𝑖 with 𝑠 + 𝑛 = 2𝑔 − 2 + 𝑠′ and 𝜎𝑗 with
𝑞 + 𝜎 = 2𝑔 − 2 + 𝜎′.

Proof. Given a quadratic form 𝐹 = 𝐹
(0)
𝑠′𝑖′ or 𝐹 = −𝐹

(0)
𝑠′𝑖′ , we can write

𝐹 = 𝑋𝑚𝑋𝑛 − 𝑋𝑞𝑋𝑟,

where 𝑚, 𝑛, 𝑞, 𝑟 are nongaps satisfying 𝑚 + 𝑛 = 𝑞 + 𝑟 and 𝑞 < 𝑚 ≤ 𝑛 < 𝑟 < 2𝑔 − 2. Now, we
have to consider the follows cases: if 𝑟 + 1 is a gap then, by symmetry, 𝑘 := 2𝑔 − 2 − 𝑟 + 𝑛 is a
nongap and we find the syzygy

𝑋2𝑔−2(𝑋𝑚𝑋𝑛 − 𝑋𝑞𝑋𝑟) + 𝑋𝑟(𝑋𝑞𝑋2𝑔−2 − 𝑋𝑚𝑋𝑘) − 𝑋𝑚(𝑋𝑛𝑋2𝑔−2 − 𝑋𝑟𝑋𝑘) = 0,

The binomials in the brackets can be written as 𝐹
(0)
𝑠𝑖 −𝐹

(0)
𝑠𝑗 , 𝐹

(0)
𝑠𝑖 or −𝐹

(0)
𝑠𝑗 . Analogously if 𝑚+1

is a gap then we take the nongap 𝑘 := 2𝑔 − 2 − 𝑚 + 𝑟 and we obtain a syzygy as above. Now we
can assume that 𝑟 + 1 and 𝑚 + 1 are nongaps, hence we have the syzygy

𝑋2𝑔−2(𝑋𝑚𝑋𝑛 − 𝑋𝑞𝑋𝑟) + 𝑋𝑞(𝑋2𝑔−2𝑋𝑟 − 𝑋2𝑔−3𝑋𝑟+1) =
𝑋2𝑔−3(𝑋𝑚+1𝑋𝑛 − 𝑋𝑞𝑋𝑟+1) + 𝑋𝑛(𝑋𝑚𝑋2𝑔−2 − 𝑋2𝑔−3𝑋𝑚+1).

For a cubic form, if we put 𝐺 = 𝐺
(0)
𝜎𝑗 or 𝐺 = −𝐺

(0)
𝜎𝑗 then we can write

𝐺 = 𝑋𝑚𝑋𝑛𝑋𝑝 − 𝑋𝑞𝑋𝑟𝑋𝑡,

where 𝑚, 𝑛, 𝑝, 𝑞, 𝑟, 𝑠 are nongaps with 𝑚+𝑛+𝑝 = 𝑞 +𝑟 + 𝑡 and 𝑞 < 𝑚 ≤ 𝑛 ≤ 𝑟 ≤ 𝑝 < 𝑡 ≤ 2𝑔 −2.
If 𝑝 + 1 is a gap then, by symmetry the integer 𝑘 := 2𝑔 − 2 − 𝑝 + 𝑞 is a nongap smaller than
2𝑔 − 2, hence we have the syzygy

𝑋2𝑔−2(𝑋𝑚𝑋𝑛𝑋𝑝 − 𝑋𝑞𝑋𝑟𝑋𝑡) + 𝑋𝑟(𝑋2𝑔−2𝑋𝑡𝑋𝑞 − 𝑋𝑡𝑋𝑝𝑋𝑘) =
𝑋𝑝(𝑋2𝑔−2𝑋𝑚𝑋𝑛 − 𝑋𝑟𝑋𝑡𝑋𝑘),

where the binomials in the brackets can be written as 𝐺
(0)
𝜎𝑗 − 𝐺

(0)
𝜎𝑖 , 𝐺

(0)
𝜎𝑗 or −𝐺

(0)
𝜎𝑖 . Analogously,

if 𝑟 + 1 is a gap then 𝑘 := 2𝑔 − 2 − 𝑟 + 𝑝 is a nongap, and therefore we obtain the syzygy

𝑋2𝑔−2(𝑋𝑚𝑋𝑛𝑋𝑝 − 𝑋𝑞𝑋𝑟𝑋𝑡) + 𝑋𝑚(𝑋𝑘𝑋𝑟𝑋𝑛 − 𝑋2𝑔−2𝑋𝑝𝑋𝑛) =
𝑋𝑟(𝑋𝑘𝑋𝑚𝑋𝑛 − 𝑋2𝑔−2𝑋𝑡𝑋𝑞).

Now we can assume that 𝑝 + 1 and 𝑟 + 1 are the nongaps. We have the syzygy

𝑋2𝑔−2(𝑋𝑚𝑋𝑛𝑋𝑝 − 𝑋𝑞𝑋𝑟𝑋𝑡) + 𝑋2𝑔−3(𝑋𝑟+1𝑋𝑞𝑋𝑡 − 𝑋𝑝+1𝑋𝑛𝑋𝑚) =
𝑋𝑚(𝑋𝑝𝑋2𝑔−2𝑋𝑛 − 𝑋𝑝+1𝑋2𝑔−3𝑋𝑛) + 𝑋𝑞(𝑋2𝑔−3𝑋𝑟+1𝑋𝑡 − 𝑋2𝑔−2𝑋𝑟𝑋𝑡).
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Remark 3.2.5. The 𝜂 syzygies corresponding to the cubic forms multiples of the quadratics
are trivial, therefore we just to consider syzygies for the ℘ − 1 cubic forms, however, these ℘ − 1
syzygies are not necessarily linear.

Lemma 3.2.6. Let 𝐼 be the ideal generated by the 1
2(𝑔 − 2)(𝑔 − 3) quadratic forms 𝐹𝑠𝑖 and by

the ℘ cubic forms 𝐺𝜎𝑗. Then,

k[𝑋𝑛0 , . . . , 𝑋𝑛𝑔−1 ]
𝑟

= 𝐼𝑟 + Λ𝑟, for each 𝑟 ≥ 2.

Proof. Let 𝐹 be a homogeneous polynomial of degree 𝑟 and weight 𝑤. Let 𝑆 be its quasi-
homogeneous component of weight 𝑤 and 𝑅 the unique monomial in Λ𝑟 of weight 𝑤 whose
coefficient is the sum of the coefficients of 𝑆. Thus, 𝑆 − 𝑅 ∈ 𝐼(𝒞(0)) and by the lemma 3.2.4 we
can write the expression

𝑆 − 𝑅 =
∑︁
𝑠𝑖

𝑆𝑠𝑖𝐹
(0)
𝑠𝑖 +

∑︁
𝜎𝑗

𝐻𝜎𝑗𝐺
(0)
𝜎𝑗 . (3.5)

Replacing each polynomial 𝑆𝑠𝑖 and 𝐻𝜎𝑗 with its homogeneuos component of degree 𝑟 − 2 and
𝑟 − 3, respectively, we can take 𝑆𝑠𝑖 and 𝐻𝜎𝑗 homogeneous of degree 𝑟 − 2 and 𝑟 − 3, respectively.
Likewise, we can assume that 𝑆𝑠𝑖 and 𝐻𝜎𝑗 are quasi-homogeneous of weight 𝑤 − 𝑠 and 𝑤 − 𝜎,
respectively. Then the polynomial

𝐹 − 𝑅 −
∑︁
𝑠𝑖

𝑆𝑠𝑖𝐹
(0)
𝑠𝑖 −

∑︁
𝜎𝑗

𝐻𝜎𝑗𝐺
(0)
𝜎𝑗

is homogeneous of degree 𝑟 and weight smaller than 𝑤. Now, the proof follows by induction on
𝑤.

Remark 3.2.7. We see that if the curve 𝒞 is not trigonal, then the last summand in 3.5 does
not appear because the ideal 𝐼(𝒞(0)) is generated only by the 1

2(𝑔 − 2)(𝑔 − 3) quadratic forms
𝐹

(0)
𝑠𝑖 .

Let us now invert the situation on the previous section. Instead of take a pointed canonical
gorenstein curve whose Weierstrass semigroup is ℋ = N∖{1, . . . , 𝑔 − 1, 2𝑔 − 1}, we take ℋ and
the associated monomial curve 𝒞(0) and deform it in order to get another gorenstein curve with a
marked point whose Weierstrass semigroup is also ℋ. By lemma 3.2.3 the ideal of the monomial
curve 𝒞(0) is generated by the 1

2(𝑔 − 2)(𝑔 − 3) quadratic forms 𝐹
(0)
𝑠𝑖 and by the ℘ cubic forms

𝐺
(0)
𝜎𝑗 . Let us consider a forced deformation of the ideal of 𝒞(0) which is

𝐹𝑠𝑖 = 𝑋𝑎𝑠𝑖𝑋𝑏𝑠𝑖
− 𝑋𝑎𝑠𝑋𝑏𝑠 −

𝑠−1∑︁
𝑛=0

𝑐𝑠𝑖𝑛𝑋𝑎𝑛𝑋𝑏𝑛

and

𝐺𝜎𝑗 = 𝑋𝑎𝜎𝑗 𝑋𝑏𝜎𝑗
𝑋𝑐𝜎𝑗 − 𝑋𝑎𝜎 𝑋𝑏𝜎 𝑋𝑐𝜎 −

𝜎−1∑︁
𝑛=0

𝑑𝜎𝑗𝑛𝑋𝑎𝑛𝑋𝑏𝑛𝑋𝑐𝑛 ,

where the coefficients 𝑐𝑠𝑖𝑛 and 𝑑𝜎𝑗𝑛 belongs to the ground field k. It is clear that we are looking
for conditions on this coefficients such that this forced deformation is a honest deformation: a
curve of degree 2𝑔 − 2 and genus 𝑔 with a marked point whose Weierstrass semigroup is ℋ. The
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idea is to take the Syzygy Lemma and erase the superscript zeros of the quadratic and cubic
forms and get conditions on the coefficients.

Replacing the left-hand side of the equation (3.3) of the Syzygy lemma the binomials
𝐹

(0)
𝑠′𝑖′ and 𝐹

(0)
𝑠𝑖 with the quadratic forms 𝐹𝑠′𝑖′ and 𝐹𝑠𝑖 we obtain for each of the 1

2(𝑔 − 3)(𝑔 − 4)
duble indices 𝑠′𝑖′ a linear combination of cubic monomials of weight less than 𝑠′ + 2𝑔 − 2, which
by lemma 3.2.6 admits the decomposition

𝑋2𝑔−2𝐹𝑠′𝑖′ +
∑︁
𝑛𝑠𝑖

𝜖
(𝑠′𝑖′)
𝑛𝑠𝑖 𝑋𝑛𝐹𝑠𝑖 =

∑︁
𝑛𝑠𝑖

𝜂
(𝑠′𝑖′)
𝑛𝑠𝑖 𝑋𝑛𝐹𝑠𝑖 + 𝑅𝑠′𝑖′ ,

where the sum on the right-hand side is taken over all the nongaps 𝑛 ≤ 2𝑔 − 2, the duble indices
𝑠𝑖 with 𝑛 + 𝑠 < 𝑠′ + 2𝑔 − 2, the coefficients 𝜖

(𝑠′𝑖′)
𝑛𝑠𝑖 , 𝜂

(𝑠′𝑖′)
𝑛𝑠𝑖 are constants and where 𝑅𝑠′𝑖′ is a linear

combination of cubic monomialis of pairwise different weights less than 𝑠′ + 2𝑔 − 2.

Repeating the above procedure for the equation (3.4) on the Syzygy Lemma, we obtain
a decomposition

𝑋2𝑔−2𝐺𝜎′𝑗′ +
∑︁
𝑞𝜎𝑗

𝜌
(𝜎′𝑗′)
𝑞𝜎𝑗 𝑋𝑞𝐺𝜎𝑗 =

∑︁
𝑚𝑞𝜎𝑗

𝜇
(𝜎′𝑗′)
𝑚𝑞𝜎𝑗 𝑋𝑚𝑋𝑞𝐹𝜎𝑗 +

∑︁
𝑞𝜎𝑗

𝜈
(𝜎′𝑗′)
𝑞𝜎𝑗 𝑋𝑞𝐺𝜎𝑗 + 𝑅𝜎′𝑗′ ,

where the sum on the right-hand side is taken over the nongaps 𝑚, 𝑞 ≤ 2𝑔 − 2, the indices 𝑚𝑞𝜎

and 𝑞𝜎 with 𝑚 + 𝑞 + 𝜎 < 2𝑔 − 2 + 𝜎′ and 𝑞 + 𝜎 < 2𝑔 − 2 + 𝜎′, the coefficients 𝜇
(𝜎′𝑗′)
𝑚𝑞𝜎𝑗 , 𝜈

(𝜎′𝑗′)
𝑞𝜎𝑗

are constants and where 𝑅𝜎′𝑗′ is a linear combination of quartic monomials of pairwise different
weights less than 2𝑔 − 2 + 𝜎′.

For each nongap 𝑚 < 𝑠′ + 2𝑔 + 2 (resp. 𝑟 < 𝜎′ + 2𝑔 + 2) let 𝜚𝑠′𝑖′𝑚 (resp. 𝜗𝜎′𝑗′𝑟 ) be the
unique coefficient of 𝑅𝑠′𝑖′ (resp. 𝑅𝜎′𝑗′) of weight 𝑚 (resp. 𝑟). We do not lost information about
the coefficients of 𝑅𝑠′𝑖′ and 𝑅𝜎′𝑗′ replacing the variables 𝑋𝑛 by powers 𝑡𝑛 of an indeterminate 𝑡.
Hence it is convenient to consider the polynomials

𝑅𝑠′𝑖′(𝑡𝑛0 , . . . , 𝑡𝑛𝑔−1) =
𝑠′+2𝑔−2∑︁

𝑚=0
𝜚𝑠′𝑖′𝑚𝑡𝑚

and

𝑅𝜎′𝑗′(𝑡𝑛0 , . . . , 𝑡𝑛𝑔−1) =
𝜎′+2𝑔−2∑︁

𝑟=0
𝜗𝜎′𝑗′𝑟𝑡𝑟.

We can asssume that the coefficients 𝜚𝑠′𝑖′𝑚 are quasi-homogeneous polynomial expressions of
weight 𝑠′ + 2𝑔 − 2 − 𝑚 in the constants 𝑐𝑠𝑖𝑛 while the coefficients 𝜗𝜎′𝑗′𝑟 are quasi-homogeneous
polynomial expressions of weight 𝜎′ + 2𝑔 − 2 − 𝑟 in the constants 𝑑𝜎𝑗𝑛.

Theorem 3.2.8. Let ℋ be a numerical symmetric semigroup of genus 𝑔 satisfying 3 < 𝑛1 ≤ 𝑔.

Then the 1
2(𝑔 − 2)(𝑔 − 3) quadratic forms 𝐹𝑠𝑖 = 𝐹

(0)
𝑠𝑖 −

𝑠−1∑︁
𝑛=0

𝑐𝑠𝑖𝑛𝑋𝑎𝑠𝑖𝑛𝑋𝑏𝑠𝑖𝑛
and the ℘ cubic forms

𝐺𝜎𝑗 = 𝐺
(0)
𝜎𝑗 −

𝜎∑︁
𝑛=0

𝑑𝜎𝑗𝑛𝑋𝑎𝑛𝑋𝑏𝑛𝑋𝑐𝑛 cut out a canonical integral Gorenstein curve on P𝑔−1 if

and only if the coefficients 𝑐𝑠𝑖𝑛, 𝑑𝜎𝑗𝑛 satisfy the quasi-homogeneous equations 𝜚𝑠′𝑖′𝑚 = 0 and
𝜗𝜎′𝑗′𝑟 = 0. In this case, the point 𝑃 = (0 : . . . : 0 : 1) is a smooth point of the cononical curve
with Weierstrass semigroup ℋ.
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Proof. In the particular case ℋ = ⟨4, 5⟩, we have that the intersection of the six quadric hyper-
surfaces 𝑉 (𝐹𝑠𝑖) is the Veronese surface in P5. We first assume that the 1

2(𝑔 − 2)(𝑔 − 3) quadratic
forms 𝐹𝑠𝑖 and the ℘ cubic forms 𝐺𝜎𝑗 cut out a canonical curve 𝒞 ⊂ P𝑔−1. Since each 𝑅𝑠′𝑖′ and
𝑅𝜎′𝑗′ belongs to the ideal 𝐼, follows that 𝑅𝑠′𝑖′(𝑥𝑛0 , . . . , 𝑥𝑛𝑔−1) = 𝑅𝜎′𝑗′(𝑥𝑛0 , . . . , 𝑥𝑛𝑔−1) = 0 for
each pair of index 𝑠′𝑖′, 𝜎′𝑗′. On the other hand,

𝑅𝑠′𝑖′(𝑥𝑛0 , . . . , 𝑥𝑛𝑔−1) =
𝑠′+2𝑔−2∑︁

𝑚=0
𝜚𝑠′𝑖′𝑚𝑧𝑠′𝑖′𝑚

and

𝑅𝜎′𝑗′(𝑥𝑛0 , . . . , 𝑥𝑛𝑔−1) =
𝜎′+2𝑔−2∑︁

𝑟=0
𝜗𝜎′𝑗′𝑟𝑧𝜎′𝑗′𝑟,

where the 𝑧𝑠′𝑖′𝑚, 𝑧𝜎′𝑗′𝑟 are monomial expressions of weights 𝑚 and 𝑟 respectively in the projective
coordinates functions 𝑥𝑛0 , . . . , 𝑥𝑛𝑔−1 , and hence 𝑧𝑠′𝑖′𝑚 has pole divisor 𝑚𝑃 while 𝑧𝜎′𝑗′𝑟 has pole
divisor 𝑟𝑃 . Then we conclude that 𝜚𝑠′𝑖′𝑚 = 𝜗𝜎′𝑖′𝑟 = 0.

Now, we suppose that the coefficients 𝑐𝑠𝑖𝑛, 𝑑𝜎𝑗𝑛 satisfy the equations 𝜚𝑠′𝑖′𝑚 = 0, and
𝜗𝜎′𝑖′𝑟 = 0. Since the 𝑔 − 3 quadric hypersurfaces 𝑉 (𝐹𝑛𝑖+2𝑔−2,1) ⊂ P𝑔−1(𝑖 = 1, . . . , 𝑔 − 3) and the
cubic hypersurface 𝑉 (𝐺4𝑔−4,1) intersect transversaly at 𝑃 , follows that in an open neighborhood
of 𝑃 , their intersection has an unique irreducible component that passes throuth 𝑃 , and so this
component is a projective integral algebraic curve, say 𝒞, which is smooth at 𝑃 and whose the
tangent line at 𝑃 is the intersection of their tangent hyperplanes 𝑉 (𝑋𝑛𝑖)(𝑖 = 0, . . . , 𝑔 − 3).

Let 𝑦𝑛0 , . . . , 𝑦𝑛𝑔−1 be the projective coordinate functions of 𝒞 and we look for the affine
open 𝑦𝑛𝑔−1 = 1. Since the local coordinate ring of 𝐶 at 𝑃 is a discrete valuation ring and
𝑛𝑔−1 − 𝑛𝑔−2 = 𝑙2 − 𝑙1 = 1, we have that 𝑡 := 𝑦𝑛𝑔−2 is a local parameter of 𝒞 at 𝑃 , and
𝑦𝑛0 , . . . , 𝑦𝑛𝑔−3 are the power series in 𝑡 of order greater than 1. More precisely, comparing
coefficients in the 𝑔 − 3 equations 𝐹𝑛𝑖+2𝑔−2(𝑦𝑛0 , . . . , 𝑦𝑛𝑔−2 , 𝑦𝑛𝑔−1)(𝑖 = 1, . . . , 𝑔 − 3) = 0 and
𝐺4𝑔−4, 1(𝑦𝑛0 , . . . , 𝑦𝑛𝑔−2 , 𝑦𝑛𝑔−1) = 0 one sees that

𝑦𝑛𝑖 = 𝑡𝑛𝑔−1−𝑛𝑖 + sum of higher orders terms = 𝑡𝑙𝑔−𝑖−1 + sum of higher orders terms,

for each integer 𝑖 = 0, . . . , 𝑔 − 1. This means that the 𝑔 integers 𝑙𝑖 − 1 (𝑖 = 1, . . . , 𝑔) are the
contact orders of the curve 𝒞 ⊂ P𝑔−1 with the hyperplanes at 𝑃 . In particular, the curve 𝒞 is
not contained in any hyperplane.

Since by assumption the quasi-homogeneous equations 𝜚𝑠′𝑖′𝑚 = 0 and 𝜗𝜎′𝑗′𝑟 = 0 for each
pair of duble indices 𝑠′𝑖′ and 𝜎′𝑗′ , respectively, we obtain the syzygies

𝑋2𝑔−2𝐹𝑠′𝑖′ +
∑︁
𝑛𝑠𝑖

𝜖
(𝑠′𝑖′)
𝑛𝑠𝑖 𝑋𝑛𝐹𝑠𝑖 −

∑︁
𝑛𝑠𝑖

𝜂
(𝑠′𝑖′)
𝑛𝑠𝑖 𝑋𝑛𝐹𝑠𝑖 = 0

and
𝑋2𝑔−2𝐺𝜎′𝑗′ +

∑︁
𝑞𝜎𝑗

𝜌
(𝜎′𝑗′)
𝑞𝜎𝑗 𝑋𝑞𝐺𝜎𝑗 −

∑︁
𝑚𝑞𝜎𝑗

𝜇
(𝜎′𝑗′)
𝑚𝑞𝜎𝑗 𝑋𝑚𝑋𝑞𝐹𝜎𝑗 −

∑︁
𝑞𝜎𝑗

𝜈
(𝜎′𝑗′)
𝑞𝜎𝑗 𝑋𝑞𝐺𝜎𝑗 = 0.

Replacing the variables 𝑋𝑛0 , . . . , 𝑋𝑛𝑔−1 by the projective coordinates functions 𝑦𝑛0 , . . . , 𝑦𝑛𝑔−1 we
get two systems: a system with 1

2(𝑔−3)(𝑔−4) linear homogeneous equations in the 1
2(𝑔−3)(𝑔−4)

functions 𝐹𝑠′𝑖′(𝑦𝑛0 , . . . , 𝑦𝑛𝑔−1) with the coefficients in the domain k[[𝑡]] of formal power series;
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the second system is composed by ℘ − 1 linear homogeneous equations in the ℘ − 1 functions
𝐺𝜎′𝑗′(𝑦𝑛0 , . . . , 𝑦𝑛𝑔−1) with the coefficients in the domain k[[𝑡]] of formal power series. Since the
triple indices 𝑛𝑠𝑖 of the coefficients 𝜖

(𝑠′𝑖′)
𝑛𝑠𝑖 , respectively, 𝜂

(𝑠′𝑖′)
𝑛𝑠𝑖 , satisfy the inequalities 𝑛 < 2𝑔 − 2

and 𝑛 + 𝑠 = 2𝑔 − 2 + 𝑠′, respectively, 𝑛 ≤ 2𝑔 − 2 and 𝑛 + 𝑠 < 2𝑔 − 2 + 𝑠′, the diagonal entries
of the matrix of the system have constant terms 1, while the remaning entries have positive
orders. Therefore, the matrix is invertible, and so the equation 𝐹𝑠𝑖(𝑦𝑛0 , . . . , 𝑦𝑛𝑔−1) = 0 holds for
each duble index 𝑠𝑖. In the system second, the indices 𝑞𝜎𝑗, 𝑚𝑞𝜎𝑗 and 𝑛𝜎𝑗 of the coefficients
𝜌

(𝜎′𝑗′)
𝑞𝜎𝑗 , 𝜇

(𝜎′𝑗′)
𝑚𝑞𝜎𝑗 and 𝜈

(𝜎′𝑗′)
𝑛𝜎𝑗 , respectively, are such that satisfy the inequalities 𝑞 < 2𝑔 − 2 and

𝑞+𝜎 = 2𝑔−2+𝜎′, respectively, 𝑚, 𝑞 ≤ 2𝑔−2 and 𝑚+𝑞+𝜎 < 2𝑔−2+𝜎′. So the diagonal entries
of the matrix of the system have constant terms 1, while the remaining entries have positive
orders, hence the matrix is invertible. This means that the equation 𝐺𝜎𝑗(𝑦𝑛0 , . . . , 𝑦𝑛𝑔−1) = 0
holds for each duble index 𝜎𝑗. Therefore, we shown that 𝐼 ⊂ 𝐼(𝒞), where 𝐼 is the ideal generated
by the 1

2(𝑔 − 2)(𝑔 − 3) quadratic forms 𝐹𝑠𝑖 and by the ℘ cubic forms 𝐺𝜎𝑗 .

By the lemma 3.2.6, codim 𝐼𝑟 ≤ dim Λ𝑟 for each 𝑟 ≥ 2. On the other hand, since 𝐼𝑟(𝒞) ∩
Λ𝑟 = 0 we deduce dim Λ𝑟 ≤ codim 𝐼𝑟(𝒞). Since 𝐼 ⊆ 𝐼(𝒞), we obtain

codim 𝐼𝑟(𝒞) = codim 𝐼𝑟 = dim Λ𝑟 = (2𝑔 − 2)𝑟 + 1 − 𝑔.

Thus 𝐼(𝒞) = 𝐼 and the curve 𝒞 ⊂ P𝑔−1 has Hilbert polynomial (2𝑔 − 2)𝑟 + 1 − 𝑔. Hence, 𝒞 has
degree 2𝑔 − 2 and arithmetic genus equal to 𝑔.

Intersecting the curve 𝒞 with the hyperplane 𝑉 (𝑋2𝑔−2) we obtain the divisor 𝐷 :=
(2𝑔 − 2)𝑃 of degree 2𝑔 − 2, whose complete linear sistem |𝐷| has dimension at least 𝑔 − 1, and
so by Riemann-Roch theorem for complete integral (not necessarily smooth) curves the Cartier
divisor 𝐷 is canonical, and 𝒞 is a canonical Gorenstein curve.

Note that the 𝑃 -hermitian basis 𝑥𝑛0 , 𝑥𝑛1 , . . . , 𝑥𝑛𝑔−1 of 𝐻0(𝒞, (2𝑔 − 2)𝑃 ) is uniquely de-

termined up to a linear transformation 𝑥𝑛𝑖 ↦→
𝑔−1∑︁
𝑗=𝑖

𝑐𝑖𝑗𝑥𝑛𝑗 , with (𝑐𝑖𝑗) ∈ GL𝑔(k) a upper triangular

matrix whose diagonal entries are of the form 𝑐𝑖𝑖 = 𝑐𝑛𝑖 , 𝑖 = 0, . . . , 𝑔 − 1, for some non-zero
constant 𝑐, because the normalizations 𝑐𝑠𝑖𝑠 = 1. We assume that the characteristic of the field
of constants k is zero or a prime not dividing any of the differences 𝑚 − 𝑛 with 𝑛, 𝑚 nongaps
such that 𝑚 < 𝑛 ≤ 2𝑔 − 2. By Changing

𝑋𝑛 ↦→ 𝑋𝑛 +
𝑛−1∑︁
𝑚=0

𝑑𝑛𝑚𝑋𝑚,

where the coefficients 𝑑𝑛𝑚 are constants, we can normalize 1
2𝑔(𝑔 − 1) of the coefficients 𝑐𝑠𝑖𝑛 to

zero.

Due the normalizations and the normalization of the coefficients of weight zero, the only
freedon left to us is to transform 𝑥𝑛𝑖 ↦→ 𝑐𝑛𝑖𝑥𝑛𝑖 , 𝑖 = 0, . . . , 𝑔 −1 for some non-zero constant 𝑐 ∈ k.
Therefore, we have showed the

Theorem 3.2.9. Let ℋ be a symmetric semigroup of genus 𝑔 satisfying 3 < 𝑛1 ≤ 𝑔. The iso-
morphism classes of the pointed complete integral Gorenstein curves with Weierstrass semigroup
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ℋ correspond bijectively to the orbits of the G𝑚(k)-action

(𝑐, . . . , 𝑐𝑠𝑖𝑛, . . .) ↦−→ (. . . , 𝑐𝑠−𝑛𝑐𝑠𝑖𝑛, . . .)

on the affine quasi-cone of the vectors whose coordinates are the coefficients 𝑐𝑠𝑖𝑛, 𝑑𝜎𝑗𝑛 of the
normalized quadratic and cubic forms 𝐹𝑠𝑖 and 𝐺𝜎𝑗 satisfying the quasi-homogeneous equations
𝜚𝑠′𝑖′𝑚 = 𝜗𝜎′𝑖′𝑟 = 0.

3.3 Explicit construction and rationality

3.3.1 The trigonal genus 5 case

Let 𝒞(0) be the canonical monomial gorenstein curve of genus 5 associated to the trigonal
symmetric semigroup of genus also 5. Up to change of coordinates can we write:

𝒞(0) := {(𝑎8 : 𝑎3𝑏5 : 𝑎2𝑏6 : 𝑎1𝑏7 : 𝑏8) | (𝑎 : 𝑏) ∈ P1} ⊆ P4 .

The symmetric Weierstrass semigroup of the smooth point 𝑃 = (0 : 0 : 0 : 0 : 1) is ℋ :=
⟨5, 6, 7, 8⟩. Following lemma 3.2.3 the ideal of 𝒞(0) can be generated by the following forms

𝐹
(0)
12 = 𝑋2

6 − 𝑋5𝑋7 𝐹
(0)
13 = 𝑋6𝑋7 − 𝑋5𝑋8,

𝐹
(0)
14 = 𝑋2

7 − 𝑋6𝑋8 𝐺
(0)
15 = 𝑋3

5 − 𝑋0𝑋7𝑋8,

𝐺
(0)
16 = 𝑋2

5 𝑋6 − 𝑋0𝑋2
8 𝐺

(0)
18 = 𝑋3

6 − 𝑋2
5 𝑋8,

𝐺
(0)
21 = 𝑋3

7 − 𝑋5𝑋2
8 .

Indeed, we have 15 cubic forms 𝐺𝜎𝑗 but the other eleven cubic forms are multiples of the
quadratic ones.

For each nongap 𝑛 ∈ ℋ we have a rational function 𝑥𝑛 and then we consider the monomial
𝑋𝑛 of weight 𝑛. Writing each one of the rational functions 𝑥2

6, 𝑥6𝑥7, 𝑥2
7, 𝑥3

5, 𝑥2
5𝑥6, 𝑥3

6 and 𝑥3
7 as

linear combination of the basis elements of the vector spaces 𝐻0(𝒞, 2(2𝑔−2)) and 𝐻0(𝒞, 3(2𝑔−2)),
respectively, we obtain in the variables 𝑋0, 𝑋5, 𝑋6, 𝑋7, 𝑋8, the polynomials

𝐹𝑖 = 𝐹
(0)
𝑖 −

𝑖∑︁
𝑗=1

𝑐𝑖𝑗𝑍𝑖−𝑗 , (𝑖 = 12, 13, 14),

and

𝐺𝑖 = 𝐺
(0)
𝑖 −

𝑖∑︁
𝑗=1

𝑑𝑖𝑗𝑍𝑖−𝑗 , (𝑖 = 15, 16, 18, 21),

where the summation index 𝑗 varies only through the integers such that 𝑖 − 𝑗 ∈ ℋ.

We can normalize the following ten coefficients

𝑐13,1 = 𝑐13,2 = 𝑐13,3 = 𝑐13,8 = 𝑐12,1 = 𝑐12,2 = 𝑐12,7 = 𝑑16,1 = 𝑑6,6 = 𝑑21,5 = 0 .
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By applying the Syzygy Lemma 3.2.4 we obtain the following four syzygies of the canon-
ical monomial curve 𝒞(0)

𝑋8𝐹
(0)
12 − 𝑋7𝐹

(0)
13 + 𝑋6𝐹

(0)
14 = 0,

𝑋8𝐺
(0)
15 − 𝑋5𝑋6𝐹

(0)
12 + 𝑋5𝐺

(0)
18 − 𝑋7𝐺

(0)
16 = 0,

𝑋8𝐺
(0)
18 − 𝑋5𝐺

(0)
21 + 𝑋5𝑋7𝐹

(0)
14 − 𝑋6𝑋8𝐹

(0)
12 = 0,

𝑋8𝐺
(0)
21 − 𝑋7𝑋8𝐹

(0)
14 + 𝑋2

8 𝐹
(0)
13 = 0.

Replacing each left-hand side of the above syzygies the binomials 𝐹
(0)
𝑠,𝑖 , 𝐹

(0)
𝑠′,𝑖′ , 𝐺

(0)
𝜎,𝑗 , 𝐺

(0)
𝜎′,𝑗′ by the

quadratic and cubic forms 𝐹𝑠,𝑖, 𝐹𝑠′,𝑖′ , 𝐺𝜎,𝑗 , 𝐺𝜎′,𝑗′ , respectively, and applying the division algo-
rithm recursively until all monomials of this equations belongs to basis of Λ3 or Λ4, we get the
four polynomial equations

𝐹12𝑋8 − 𝐹13𝑋7 + 𝐹14𝑋6 = 𝐹12 (−𝑐14,3𝑋5 − 𝑐14,8𝑋0) + 𝐹14𝑐13,6𝑋0 − 𝐺16𝑐14,4

+𝐹13 (𝑐13,7𝑋0 − 𝑐14,2𝑋5 − 𝑐14,7𝑋0)

𝑋8𝐺15 − 𝑋6𝐺17 + 𝑋5𝐺18 − 𝑋7𝐺16 = −𝑑18,1𝑋0𝑋8 + 𝑐12,6𝑋0𝑋5𝐹12

+(−𝑐14,3𝑑16,4 − 𝑐14,3𝑑15,3𝑑18,1 − 𝑑18,7)𝑋0𝐺16 + (𝑑16,5𝑋5 + 𝑐12,5𝑋5)𝑋0𝐹13

+(𝑑16,9𝑋0 − 𝑑18,1𝑋8 + 𝑑15,8𝑑18,1𝑋0 + 𝑑15,3𝑑18,1𝑋5 + 𝑑16,4𝑋5)𝑋0𝐹14

+(𝑑16,10𝑋0 + 𝑑15,9𝑑18,1𝑋0 + 𝑑15,1𝑑18,1𝑋8 + 𝑑15,4𝑑18,1𝑋5 + 𝑑16,2𝑋8)𝑋0𝐹13

+(−𝑐14,4𝑑16,4𝑋0 − 𝑐14,4𝑑15,3𝑑18,1𝑋0 − 𝑑18,1𝑋7 − 𝑑18,8𝑋0)𝐺15

−𝐺21,1𝑋8 + 𝐺21,2𝑋8 − 𝐺22𝑋7 = 𝑋8(𝑐14,3𝑋5 + 𝑐14,8𝑋0)𝐹13

+𝑋8 [(𝑐14,2𝑋5 + 𝑐14,7𝑋0)𝐹14 − 𝑐14,2𝑐14,4𝐺15 − 𝑐14,2𝑐14,3𝐺16] ,

+𝑋8𝐺18 − 𝑋5𝐺21 − 𝑋6𝑋8𝐹12 + 𝑋7𝑋5𝐹14

(−𝑐2
14,3𝑑16,4 − 𝑐14,2𝑐14,3𝑑15,5 − 𝑐14,3𝑐14,4𝑑15,3 + 𝑐14,3𝑐14,7)𝐺16𝑋0

+𝑐14,3𝑑15,3𝑑14,4 + 𝑐14,2𝑐14,8 − 𝑐14,2𝑐14,4𝑑15,4 + 𝑐2
14,2𝑐14,3𝑑15,3)𝑋0𝐺16

(+𝑐14,4𝑑15,9𝑋0 − 𝑑15,1𝑐2
14,2𝑋8 − 𝑑15,4𝑑14,4𝑋5 − 𝑐14,8𝑋5 + 𝑐12,5𝑋8

+𝑐14,2𝑐14,3𝑋8 + 𝑐14,3𝑑16,2𝑋8 − 𝑑15,4𝑐2
14,2𝑋5 − 𝑐14,2𝑐14,3𝑑15,8𝑋0

+𝑐14,4𝑑15,1𝑋8 − 𝑑15,1𝑑14,4𝑋8 − 𝑑15,9𝑑14,4𝑋0 + 𝑐14,3𝑑16,10𝑋0 + 𝑐14,3𝑑16,5𝑋5

+𝑐14,4𝑑15,4𝑋5 − 𝑑15,9𝑐2
14,2𝑋0 − 𝑐14,2𝑐14,3𝑑15,3𝑋5)𝑋0𝐹13

(+𝑑14,11𝑋0 + 𝑑14,4𝑋7 + 𝑑14,3𝑋8 − 𝑐14,4𝑋7 + 𝑐2
14,2𝑋7 − 𝑐14,4𝑐14,3𝑑16,4𝑋0

+𝑐14,1𝑐14,2𝑋8 + 𝑑15,3𝑐2
14,2𝑐14,4𝑋0 − 𝑐2

14,4𝑑15,3𝑋0 + 𝑐14,4𝑑15,3𝑑14,4𝑋0

−𝑐14,2𝑐14,4𝑑15,5𝑋0 + 𝑐14,2𝑐14,9𝑋0 + 𝑐14,4𝑐14,7𝑋0 + 𝑐14,2𝑐14,4𝑋5 + 𝑐14,2𝑐14,3𝑋6)𝐺15

(𝑐2
14,2𝑋0𝑋8 − 𝑐14,4𝑋0𝑋8 + 𝑑14,4𝑋0𝑋8 − 𝑐14,7𝑋0𝑋5 − 𝑐14,2𝑋2

5 + 𝑐14,3𝑑16,9𝑋2
0

+𝑐14,4𝑑15,3𝑋0𝑋5 − 𝑑15,3𝑑14,4𝑋0𝑋5 + 𝑐14,3𝑑16,4𝑋0𝑋5 − 𝑑15,8𝑑14,4𝑋2
0

+𝑐14,4𝑑15,8𝑋2
0 − 𝑐2

14,2𝑑15,3𝑋0𝑋5 − 𝑐2
14,2𝑑15,8𝑋2

0 )𝐹14 + (𝑑14,2𝑋8 − 𝑐14,3𝑋7)𝐺16

(+𝑐12,6𝑋8 − 𝑐14,2𝑐14,3𝑑15,9𝑋0 − 𝑐14,2𝑐14,3𝑑15,4𝑋5 − 𝑐14,2𝑐14,3𝑑15,1𝑋8)𝑋0𝐹12.

The vanishing of the coefficients of the four combinations provides us with quasi-homogeneous
equations between the coefficients 𝑐𝑖𝑗 and 𝑑𝑖𝑗 obtaining an explicit description of the compactified
moduli M ℋ

5,1 according to the theorem (3.2.9).

We first determine the weighted vector space 𝑇 1,−
k[ℋ]|k, which is (up to an isomorphism)

the locus of the linearizations of the 4 equations, all we have to do is substituting by zero the
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right hand side of each equation. These four equations give rise to other 20 equations obtained
by replacing 𝑋𝑛𝑖 ↦→ 𝑡𝑛𝑖 . We can solve this linear system as follows:

𝑑16,10 = 𝑑15,10, 𝑑16,9 = 𝑑15,9, 𝑑16,8 = 𝑑15,8, 𝑐14,7 = 𝑐13,7, 𝑑18,7 = 𝑐13,7, 𝑑15,7 = −𝑐13,7,

𝑑21,7 = 2𝑐13,7, 𝑐14,6 = −𝑐12,6, 𝑑21,6 = −𝑐12,6, 𝑑18,6 = 𝑐12,6, 𝑑16,5 = 𝑑15,5,

𝑐14,4 = −𝑐12,4, 𝑑16,4 = 𝑑15,4, 𝑑21,4 = −𝑐12,4, 𝑑18,4 = 𝑐12,4, 𝑑16,3 = 𝑑15,3, 𝑑16,2 = 𝑑15,2.

We can verify that the weighted vector space 𝑇 1,−
k[ℋ]|k depends only on the ten coefficients

𝑑15,10, 𝑑15,9, 𝑑15,8, 𝑐13,7, 𝑐12,6, 𝑑15,5, 𝑐12,4, 𝑑15,2, 𝑑15,3, 𝑑15,4 , which implies

dim 𝑇 1,−
k[ℋ]|k = 10.

More precisely, counting the coefficients of weight 𝑠, we obtain the dimension of the graded
component of 𝑇 1,−

k[ℋ]|k of negative weight −𝑠:

dim 𝑇 1,−
𝑠 = 1, (𝑠 = −10, −9, −8, −7, −6, −5, −3, −2) and dim 𝑇 1,−

−4 = 2.

For the remainder integers, the dimension of dim 𝑇 1,−
𝑠 is zero. In particular, the compactified

moduli space M ℋ
5,1 has been realized as closed subspace of the 9-dimensional weighted projective

space P
(︁
𝑇 1,−

k[ℋ]|k

)︁
.

We can now solve the four polynomial equations to obtain the equations of the moduli
variety M ℋ

5,1 by replacing 𝑋𝑛𝑖 ↦→ 𝑡𝑛𝑖 and solving the polynomial equations. The compactified
moduli space M ℋ

5,1 is cut out by 70 equations which depends on 64 variables and we can solve
in the following way:

𝑐12,5 = 0, 𝑐13,5 = 0, 𝑐13,6 = 0, 𝑐14,1 = 0, 𝑐14,2 = 0, 𝑐14,3 = 0, 𝑑15,1 = 0, 𝑑16,11 = 0,

𝑑18,1 = 0, 𝑑18,2 = 0, 𝑑18,3 = 0, 𝑑18,5 = 0, 𝑑18,8 = 0, 𝑑18,11 = 0, 𝑑21,1 = 0, 𝑑21,2 = 0,

𝑐12,12 = −𝑐12,4𝑑15,8, 𝑐13,13 = 𝑐12,4𝑑15,9, 𝑐14,4 = −𝑐12,4, 𝑐14,6 = −𝑐12,4𝑑15,2 − 𝑐12,6,

𝑐14,7 = −𝑐12,4𝑑15,3 + 𝑐13,7, 𝑐14,8 = −𝑐12,4𝑑15,4, 𝑐14,9 = −𝑐12,4𝑑15,5,

𝑐14,14 = −𝑐12,4𝑑15,10, 𝑑15,7 = −𝑐13,7, 𝑑15,15 = 𝑐12,6𝑑15,9 + 𝑐13,7𝑑15,8, 𝑑16,2 = 𝑑15,2,

𝑑16,4 = 𝑑15,4, 𝑑16,5 = 𝑑15,5, 𝑑16,9 = 𝑑15,9, 𝑑16,8 = −𝑐12,4𝑑15,4 + 𝑑15,8,

𝑑16,10 = −𝑐12,6𝑑15,4 − 𝑐13,7𝑑15,3 + 𝑑15,10, 𝑑16,16 = −𝑐12,4𝑑15,3𝑑15,9 + 𝑐12,4𝑑15,4𝑑15,8,

𝑑18,4 = 𝑐12,4, 𝑑18,6 = 𝑐12,6, 𝑑18,7 = 𝑐13,7, 𝑑18,12 = −𝑐12,4𝑑15,8 − 𝑐2
12,6,



38 Capítulo 3. Moduli space of curves with symmetric Weierstrass semigroup

𝑑18,18 = 𝑐12,4𝑐12,6𝑑15,8, 𝑑21,4 = −𝑐12,4, 𝑑21,6 = −𝑐12,4𝑑15,2 − 𝑐12,6, 𝑑18,13 = 𝑐12,4𝑑15,9,

𝑑21,7 = −𝑐12,4𝑑15,3 + 2 𝑐13,7, 𝑑21,8 = −𝑐12,4𝑑15,4, 𝑑21,9 = −𝑐12,4𝑑15,5,

𝑑21,13 = −𝑐2
12,4𝑑15,2𝑑15,3 − 𝑐12,4𝑐12,6𝑑15,3 + 𝑐12,4𝑐13,7𝑑15,2 + 𝑐12,4𝑑15,9 + 𝑐12,6𝑐13,7,

𝑑21,14 = −𝑐2
12,4𝑑2

15,3 + 2 𝑐12,4𝑐13,7𝑑15,3 − 𝑐12,4𝑑15,10 − 𝑐2
13,7, 𝑑21,10 = 0,

𝑑21,15 = −𝑐2
12,4𝑑15,3𝑑15,4 + 2 𝑐12,4𝑐13,7𝑑15,4, 𝑑21,11 = −𝑐12,4

2𝑑15,3 + 𝑐12,4𝑐13,7,

𝑑21,16 = −𝑐2
12,4𝑑15,3𝑑15,5 + 𝑐12,4𝑐13,7𝑑15,5, 𝑑18,10 = −𝑐12,4𝑐12,6, 𝑑21,3 = 0,

𝑑21,21 = −𝑐2
12,4𝑑15,3𝑑15,10 + 𝑐2

12,4𝑑15,4𝑑15,9 + 𝑐12,4𝑐13,7𝑑15,10.

We note that there are no new conditions in the remaining constants which the vector space
𝑇 1,−

k[ℋ]|k depends which means

M ℋ
5,1 = P(𝑇 1,−

k[ℋ]|k).

Therefore M ℋ
5,1 is a weight projective space of dimension 9.

3.3.2 The trigonal genus 6 case

Let 𝒞(0) be a trigonal canonical monomial gorenstein curve of genus six. Take 𝑃 = (0 : 0 :
0 : 0 : 0 : 1) in 𝒞(0) a smooth point and by lemma (3.2.1) the symmetric Weierstrass semigroup
of 𝒞(0) at 𝑃 is ℋ = ⟨6, 7, 8, 9, 10⟩. Applying the lemma (3.2.3) we obtain that the generators of
the ideal of 𝒞(0) are the quadratic and cubic forms

𝐹
(0)
14 = 𝑋2

7 − 𝑋6𝑋8 𝐹
(0)
15 = 𝑋7𝑋8 − 𝑋6𝑋9 𝐹

(0)
16 = 𝑋2

8 − 𝑋6𝑋10,

𝐹
(0)
16,1 = 𝑋7𝑋9 − 𝑋6𝑋10 𝐹

(0)
17 = 𝑋8𝑋9 − 𝑋7𝑋10 𝐹

(0)
18 = 𝑋2

9 − 𝑋8𝑋10,

𝐺
(0)
18 = 𝑋3

6 − 𝑋0𝑋8𝑋10 𝐺
(0)
19 = 𝑋2

6 𝑋7 − 𝑋0𝑋9𝑋10 𝐺
(0)
20 = 𝑋2

6 𝑋8 − 𝑋0𝑋2
10,

𝐺
(0)
20,1 = 𝑋6𝑋2

7 − 𝑋0𝑋2
10 𝐺

(0)
21 = 𝑋3

7 − 𝑋2
6 𝑋9 𝐺

(0)
22 = 𝑋2

7 𝑋8 − 𝑋2
6 𝑋10,

𝐺
(0)
26 = 𝑋8𝑋2

9 − 𝑋6𝑋2
10 𝐺

(0)
27 = 𝑋3

9 − 𝑋7𝑋2
10.

As in the case of genus five writing each rational function, which corrreponds to the initial
monomial of each quadratic and cubic form above, as combination of the elements of the basis
of the vector spaces 𝐻0(𝒞, 2(2𝑔−2)) and 𝐻0(𝒞, 3(2𝑔−2)), respectively, we obtain in the variables
𝑋0, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10 the polynomials that vanish identically on the curve 𝒞 ∩ A5

𝐹𝑖 = 𝐹
(0)
𝑖 −

𝑖∑︁
𝑗=1

𝑐𝑖𝑗𝑍𝑖−𝑗 , (𝑖 = 14, . . . , 18),

and

𝐺𝑖 = 𝐺
(0)
𝑖 −

𝑖∑︁
𝑗=1

𝑑𝑖𝑗𝑍𝑖−𝑗 , (𝑖 = 18, . . . , 22, 26, 27),
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and the polynomials 𝐹16,1, 𝐺20,1, where 𝑍𝑖−𝑗 is a polynomial of weight 𝑖 − 𝑗, whenever 𝑖 − 𝑗 is
a nongap of ℋ. The freedom to change of coordinates on the variables 𝑋0, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10

allows us to normalize (in increasing weights) 15 coefficients as follows

𝑐14,1 = 𝑐15,1 = 𝑐16,1,1 = 𝑑18,1 = 𝑑18,2 = 𝑐15,2 = 𝑐16,1,2 = 𝑐15,3 = 0,

𝑐16,1,3 = 𝑐16,1,4 = 𝑐15,6 = 𝑐14,7 = 𝑐14,8 = 𝑐15,9 = 𝑐16,1,10 = 0.

The ten syzygies on the monomial curve 𝒞(0) induced by the Syzygy Lemma (3.2.4) are

𝑋10𝐹
(0)
14 − 𝑋8𝐹

(0)
16,1 + 𝑋7𝐹

(0)
17 = 0,

𝑋10𝐹
(0)
15 − 𝑋9𝐹

(0)
16,1 + 𝑋7𝐹

(0)
18 = 0,

𝑋10𝐹
(0)
16 − 𝑋10𝐹

(0)
16,1 − 𝑋9𝐹

(0)
17 + 𝑋8𝐹

(0)
18 = 0,

𝑋10𝐺
(0)
18 − 𝑋8𝐺

(0)
20 + 𝑋2

6 𝐹
(0)
16 = 0,

𝑋10𝐺
(0)
19 − 𝑋9𝐺

(0)
20,1 + 𝑋6𝑋7𝐹

(0)
16,1 = 0,

𝑋10𝐺
(0)
20 − 𝑋10𝐺

(0)
20,1 + 𝑋6𝑋10𝐹

(0)
14 = 0,

𝑋10𝐺
(0)
21 − 𝑋7𝑋10𝐹

(0)
14 − 𝑋6𝑋10𝐹

(0)
15 = 0,

𝑋10𝐺
(0)
22 − 𝑋6𝑋10𝐹

(0)
16 − 𝑋8𝑋10𝐹

(0)
14 = 0,

𝑋10𝐺
(0)
26 − 𝑋2

10𝐹
(0)
16,1 − 𝑋9𝑋10𝐹

(0)
17 = 0,

𝑋10𝐺
(0)
27 − 𝑋2

10𝐹
(0)
17 − 𝑋9𝑋10𝐹

(0)
18 = 0.

The 10 above syzygies of the monomial curve give rise to 10 polynomial equations. Again, we
compute the locus of the linearizations of this ten equations, which is the weighted vector space
𝑇 1,−

k[ℋ]|k. We have to solve a linear system with 60 equations obtained by change of variables
𝑋𝑛𝑖 → 𝑡𝑛𝑖 . By solving the system it depends only of the 15 coefficients 𝑑18,12, 𝑑18,11, 𝑐15,8, 𝑐16,1,9,
𝑐16,1,8, 𝑐15,7, 𝑐14,6, 𝑑18,6, 𝑑18,10, 𝑐14,5, 𝑑18,5, 𝑐14,4, 𝑑18,4, 𝑑18,3, 𝑐14,2 and so

dim 𝑇 1,−
k[ℋ]|k = 15.

Thus we conclude that the compactified moduli space M ℋ
6,1 has been realized as a closed subset

of the 14-dimensional weighted projective space P(𝑇 1,−
k[ℋ]|k). We already know that this semigroup

ℋ is negatively graded and thus the compactified moduli space M ℋ
6,1 has codimension three in

M6,1.

By changing the variables 𝑑18,𝑖 := 𝑏𝑖 (𝑖 = 3, 4, 5, 6, 10, 11, 12), 𝑐14,𝑗 := 𝑎𝑗 (𝑗 = 2, 4, 5, 6),
and 𝑐16,1,8 := 𝑏8, 𝑐15,7 := 𝑎7, 𝑐15,8 := 𝑎8, 𝑐16,1,9 := 𝑎9 and making the substitutions 𝑋𝑛𝑖 → 𝑡𝑛𝑖 on
the syzygies induced by the pre-syzygies of the monomial curve 𝒞(0) we obtain 188 equations,
and with a help of the Maple Software we can solve this system. The solution depends only on
the 5 polynomial equations, namely

𝑎2
2𝑎5

3 + 𝑎2
2𝑎5

2𝑏5 + 𝑎2𝑎4𝑎5
2𝑏3 + 𝑎2𝑎4𝑎5𝑏3𝑏5 − 4 𝑎2𝑎5

2𝑎7 − 3 𝑎2𝑎5𝑎7𝑏5 + 𝑏8𝑏11

+𝑎2𝑎5𝑎8𝑏4 + 𝑎2𝑎5𝑎9𝑏3 + 𝑎4
2𝑎5𝑎6 + 𝑎4

2𝑎5𝑏6 + 𝑎4
2𝑎6𝑏5 + 𝑎4

2𝑏5𝑏6 + 𝑎4𝑎5
3 − 𝑎9𝑏10

+2 𝑎4𝑎5
2𝑏5 − 2 𝑎4𝑎5𝑎7𝑏3 + 𝑎4𝑎5𝑏5

2 − 𝑎4𝑎7𝑏3𝑏5 + 𝑎4𝑎8𝑏3𝑏4 + 𝑎4𝑎9𝑏3
2 − 𝑎2𝑎5𝑏12

−𝑎2𝑎6𝑏11 + 𝑎4𝑎5𝑏10 − 𝑎4𝑎6𝑎9 − 𝑎4𝑎9𝑏6 − 𝑎4𝑏3𝑏12 − 𝑎4𝑏4𝑏11 + 𝑎4𝑏5𝑏10 − 𝑎5
2𝑎9

+4 𝑎5𝑎7
2 − 𝑎5𝑎9𝑏5 − 𝑎5𝑏3𝑏11 + 2 𝑎7

2𝑏5 − 2 𝑎7𝑎8𝑏4 − 2 𝑎7𝑎9𝑏3 + 2 𝑎7𝑏12 − 𝑎8𝑏11 = 0,

𝑎4𝑎5𝑎6 − 𝑎2𝑎5𝑏8 + 𝑎4𝑎5𝑏6 − 𝑎4𝑏3𝑏8 + 𝑎5
3 + 𝑎5

2𝑏5 + 𝑎4𝑏11 + 𝑎5𝑏10 + 2 𝑎7𝑏8 = 0,
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−𝑎2𝑎5
3 − 𝑎2𝑎5

2𝑏5 − 𝑎4𝑎5𝑏8 − 𝑎4𝑏5𝑏8 + 2 𝑎5
2𝑎7 + 𝑎5𝑎7𝑏5 − 𝑎5𝑎8𝑏4 − 𝑎5𝑎9𝑏3+

𝑎5𝑏12 − 𝑎6𝑏11 + 𝑎9𝑏8 = 0,

2 𝑎2𝑎5𝑎6 + 𝑎4
2𝑎5 + 𝑎4

2𝑏5 + 𝑎4𝑎5𝑏4 + 𝑎4𝑎6𝑏3 + 𝑎5
2𝑏3 − 𝑎4𝑎9 + 𝑎5𝑎8 − 𝑎5𝑏8−

2 𝑎6𝑎7 = 0,

𝑎2𝑎4𝑎5
2 + 𝑎2𝑎4𝑎5𝑏5 − 𝑎2𝑎6𝑏8 − 2 𝑎4𝑎5𝑎7 − 𝑎4𝑎6

2 − 𝑎4𝑎6𝑏6 − 𝑎4𝑎7𝑏5 + 𝑏8
2

+𝑎4𝑎8𝑏4 + 𝑎4𝑎9𝑏3 − 𝑎4𝑏4𝑏8 − 𝑎5
2𝑎6 − 𝑎5𝑎6𝑏5 − 𝑎5𝑏3𝑏8 − 𝑎4𝑏12 − 𝑎6𝑏10 − 𝑎8𝑏8 = 0.

Thus the moduli space M ℋ
6,1 is a projective variety in P14 give by the zero locus of the

above 5 polynomials. Let us see this algebraic set on open affine chart 𝑎5 = 1 of P15. Entering
with 𝑎5 = 1 into the 5 equations we get the only three simple equations

𝑏10 = 𝑎4𝑏3𝑏8 + 𝑎2𝑏8 − 𝑎4𝑎6 − 𝑎4𝑏6 − 𝑎4𝑏11 − 2 𝑎7𝑏8 − 𝑏5 − 1
𝑏12 = 𝑎4𝑏5𝑏8 + 𝑎2𝑏5 + 𝑎4𝑏8 + 𝑎6𝑏11 − 𝑎7𝑏5 + 𝑎8𝑏4 + 𝑎9𝑏3 − 𝑎9𝑏8 + 𝑎2 − 2 𝑎7

𝑏8 = 𝑎4
2𝑏5 + 𝑎4𝑎6𝑏3 + 2 𝑎2𝑎6 + 𝑎4

2 − 𝑎4𝑎9 + 𝑎4𝑏4 − 2 𝑎6𝑎7 + 𝑎8 + 𝑏3.

which gives a local parametrization of M ℋ
6,1. Since M ℋ

6,1 is irreducible [Bu, thm 1.1], the moduli
variety M ℋ

6,1 is rational of dimension 11.
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4 The dimension of moduli spaces of curves
with symmetric Weierstrass semigroup

4.1 A family of multiplicity six

In a view what we mentioned in the introduction about the moduli variety induced by
symmetric semigroups generated by 4 elements, let us consider a family of symmetric semigroups
of multiplicity six generated minimaly by five elements. We also to recall that a symmetric
semigroup of multiplicity 𝑚 can be generated by 𝑚 − 1 elements, to see this we just have to
consider the Apery sequence. So, for each non negative integer 𝜏 set

ℋ = ⟨6, 3 + 6𝜏, 4 + 6𝜏, 7 + 6𝜏, 8 + 6𝜏⟩

= 6N ⊔
⨆︁

𝑗∈{3,4,7,8}
(𝑗 + 6𝜏 + 6N) ⊔ (11 + 12𝜏 + 6N).

We will apply the method developed in [CS], pg. 587-590, to obtain an upper bound for the
dimension of the moduli space ℳℋ

𝑔,1. It consists in looking for the quadratic quasi-cone given
by quadratic expressions of the equations of ℳℋ

𝑔,1, that contain this moduli space. Is much less
expensive to obtain the equations and the dimension of the quadratic quasi-cone than the ones
of the moduli variety ℳℋ

𝑔,1.

Couting the number of gaps of ℋ and picking up the largest nongap, we see that

𝑔 = 3 + 6𝜏 and 𝑙𝑔 = 12𝜏 + 5 = 2𝑔 − 1,

and so ℋ is a symmetric semigroup. Let 𝒞 be a complete integral Gorenstein curve and 𝑃 be a
smooth point of 𝒞 whose Weierstrass semigroup at 𝑃 is ℋ. For each 𝑛 ∈ ℋ, let 𝑥𝑛 be a rational
function on 𝒞 with pole divisor 𝑛𝑃 . We abbreviate

𝑥 := 𝑥6 and 𝑦𝑗 := 𝑥𝑗+6𝜏 (𝑗 = 3, 4, 7, 8)

and normalize

𝑥6𝑖 = 𝑥𝑖, 𝑥𝑗+6𝜏+6𝑖 = 𝑥𝑖𝑦𝑗 ,

for 𝑖 ≥ 1. The 𝑃 -hermitian basis {𝑥𝑛0 , 𝑥𝑛1 , . . . , 𝑥𝑛𝑔−1} for the vector space 𝐻0(𝒞, (2𝑔 − 2)𝑃 ) of
the canonical divisor (2𝑔 − 2)𝑃 = (12𝜏 + 4)𝑃 consists of the functions

𝑥0, . . . , 𝑥2𝜏 ,

𝑥0𝑦𝑗 , . . . , 𝑥𝜏 𝑦𝑗 (𝑗 = 3, 4),

𝑥0𝑦𝑗 , . . . , 𝑥𝜏−1𝑦𝑗 (𝑗 = 7, 8).



42 Capítulo 4. The dimension of moduli spaces of curves with symmetric Weierstrass semigroup

Since 𝑙2 = 2, the complete integral Gorenstein curve 𝒞 is nonhyperelliptic and by the theorem
(2.1.4) it can be identified with its image under the canonical embedding

𝑗 := (𝑥𝑛0 : 𝑥𝑛1 : . . . : 𝑥𝑛𝑔−1) : 𝒞 →˓ P𝑔−1.

By consider the normalizations, the projection map

(1 : 𝑥 : 𝑦3 : 𝑦4 : 𝑦7 : 𝑦8) : 𝒞 →˓ P5

defines an isomorphim of the canonical curve 𝒞 onto a curve 𝒟 ⊂ P5 of degree 6𝜏 + 5. Now we
will study the quadratic relation of the canonical curve 𝒟. For this, we consider a 𝑃 -hermitian
basis of the vector space 𝐻0(𝒞, 2(2𝑔 − 2)𝑃 ) of the bicanonical divisor 24𝜏 + 8 which consist of
the 3𝑔 − 3 functions

𝑥𝑖 (𝑖 = 0, 1, . . . , 4𝜏 + 1),

𝑥𝑖𝑦𝑗 (𝑖 = 0, 1, . . . , 3𝜏, 𝑗 = 3, 4, 7, 8),

𝑥𝑖𝑦3𝑦8 (𝑖 = 0, 1, . . . , 2𝜏 − 1).

For each 𝑛 ∈ ℋ, having in mind the normalizations of the functions 𝑥𝑛, we define a monomial
𝑍𝑛 as follows

𝑍6𝑖 = 𝑋𝑖, 𝑍𝑗+6𝜏+6𝑖 = 𝑌𝑗𝑋𝑖 and 𝑍11+12𝜏+6𝑖 = 𝑌3𝑌8𝑋𝑖.

Let 𝑋, 𝑌3, 𝑌4, 𝑌7, 𝑌8 be the indeterminates whose weight we attached 6, 3+6𝜏, 4+6𝜏, 7+6𝜏, 8+6𝜏 ,
respectively. By writing the nine products 𝑦𝑖𝑦𝑗 , (𝑖, 𝑗) ̸= (3, 8) as linear combination of the basis
elements we obtain polynomials in the indeterminates 𝑋, 𝑌3, 𝑌4, 𝑌7, 𝑌8 that vanish identically on
the affine curve 𝒟 ∩ A5, say

𝐹𝑖 = 𝐹
(0)
𝑖 +

12𝜏+𝑖∑︁
𝑗=0

𝑓𝑖𝑗𝑍12𝜏+𝑖−𝑗 (𝑖 = 6, 7, 11, 12, 14, 15)

𝐺𝑖 = 𝐺
(0)
𝑖 +

12𝜏+𝑖∑︁
𝑗=0

𝑔𝑖𝑗𝑍12𝜏+𝑖−𝑗 (𝑖 = 8, 10, 16),

where
𝐹

(0)
6 = 𝑌 2

3 − 𝑋2𝜏+1 𝐹
(0)
7 = 𝑌3𝑌4 − 𝑋𝜏 𝑌7 𝐺

(0)
8 = 𝑌 2

4 − 𝑋𝜏 𝑌8,

𝐺
(0)
10 = 𝑌3𝑌7 − 𝑋𝜏+1𝑌4 𝐹

(0)
11 = 𝑌4𝑌7 − 𝑌3𝑌8 𝐹

(0)
12 = 𝑌4𝑌8 − 𝑋2𝜏+2,

𝐹
(0)
14 = 𝑌 2

7 − 𝑋𝜏+1𝑌8 𝐹
(0)
15 = 𝑌7𝑌8 − 𝑋𝜏+2𝑌3 𝐺

(0)
16 = 𝑌 2

8 − 𝑋𝜏+2𝑌4,

and where the index 𝑗 only varies through integers with 12𝜏 + 𝑖 − 𝑗 ∈ ℋ.

Lemma 4.1.1. If we denote ℐ be the ideal generated by the quadratic forms 𝐹𝑖 (𝑖 = 6, 7, 11, 12, 14, 15)
and 𝐺𝑖 (𝑖 = 8, 10, 16) then the ideal of the affine curve 𝒟 ∩ A5 is equal to ℐ.

Proof. Given a polynomial 𝑓 in the variables 𝑋, 𝑌3, 𝑌4, 𝑌7, 𝑌8 we apply induction on degree in
𝑌3, 𝑌4, 𝑌7, 𝑌8 and we show that, module the ideal generated by the nine quadratic forms 𝐹𝑖, 𝐺𝑖,
the monomials of this polynomial 𝑓 are not divisible by the nine products 𝑌𝑖𝑌𝑗 , (𝑖, 𝑗) ̸= (3, 8) and
so the class of 𝑓 is a sum

∑︀
𝑐𝑛𝑍𝑛 of monomials 𝑍𝑛 of pairwise different weight with 𝑛 ∈ ℋ and

𝑐𝑛 ∈ k. Thus the polynomial 𝑓 belongs to the ideal of the curve 𝒟 ∩ A5 if and only if the linear
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combination
∑︀

𝑐𝑛𝑍𝑛 vanishes identically on the curve 𝒟 ∩ A5 and by taking the corresponding
linear combination

∑︀
𝑐𝑛𝑥𝑛 of rational functions on k(𝒞) we have 𝑐𝑛 = 0 for each 𝑛 ∈ ℋ, hence

𝑓 belongs to ℐ.

We can introduce a more appropriate notation for the constants 𝑓𝑖𝑗 , 𝑔𝑖𝑗 with the wish to
help in the moment of normalize this coefficients as follows

𝐹6 = 𝑌 2
3 − 𝑋2𝜏+1− 𝐹7 = 𝑌3𝑌4 − 𝑋𝜏 𝑌7− 𝐺8 = 𝑌 2

4 − 𝑋𝜏 𝑌8−

−
𝜏∑︁

𝑖=0
𝑓6,2+6𝑖𝑋

𝜏−𝑖𝑌4− −
2𝜏+1∑︁
𝑖=0

𝑓7,1+6𝑖𝑋
2𝜏+1−𝑖− −

𝜏∑︁
𝑖=0

𝑔8,1+6𝑖𝑋
𝜏−𝑖𝑌7−

−
𝜏∑︁

𝑖=0
𝑓6,3+6𝑖𝑋

𝜏−𝑖𝑌3− −
𝜏∑︁

𝑖=0
𝑓7,3+6𝑖𝑋

𝜏−𝑖𝑌4− −
2𝜏+1∑︁
𝑖=0

𝑔8,2+6𝑖𝑋
2𝜏+1−𝑖−

−
𝜏−1∑︁
𝑖=0

𝑓6,4+6𝑖𝑋
𝜏−1−𝑖𝑌8− −

𝜏∑︁
𝑖=0

𝑓7,4+6𝑖𝑋
𝜏−𝑖𝑌3− −

𝜏∑︁
𝑖=0

𝑔8,4+6𝑖𝑋
𝜏−𝑖𝑌4−

−
𝜏−1∑︁
𝑖=0

𝑓6,5+6𝑖𝑋
𝜏−1−𝑖𝑌7− −

𝜏−1∑︁
𝑖=0

𝑓7,5+6𝑖𝑋
𝜏−1−𝑖𝑌8− −

𝜏∑︁
𝑖=0

𝑔8,5+6𝑖𝑋
𝜏−𝑖𝑌3−

−
2𝜏∑︁

𝑖=0
𝑓6,6+6𝑖𝑋

2𝜏−𝑖 −
𝜏−1∑︁
𝑖=0

𝑓7,6+6𝑖𝑋
𝜏−1−𝑖𝑌7 −

𝜏−1∑︁
𝑖=0

𝑔8,6+6𝑖𝑋
𝜏−1−𝑖𝑌8

𝐺10 = 𝑌3𝑌7 − 𝑋𝜏+1𝑌4− 𝐹11 = 𝑌4𝑌7 − 𝑌3𝑌8− 𝐹12 = 𝑌4𝑌8 − 𝑋2𝜏+2 − 𝑓12,1𝑌3𝑌8−

−
𝜏+1∑︁
𝑖=0

𝑔10,1+6𝑖𝑋
𝜏+1−𝑖𝑌3− −

𝜏+1∑︁
𝑖=0

𝑓11,1+6𝑖𝑋
𝜏+1−𝑖𝑌4− −

𝜏+1∑︁
𝑖=0

𝑓12,2+6𝑖𝑋
𝜏+1−𝑖𝑌4−

−
𝜏∑︁

𝑖=0
𝑔10,2+6𝑖𝑋

𝜏−𝑖𝑌8− −
𝜏+1∑︁
𝑖=0

𝑓11,2+6𝑖𝑋
𝜏+1−𝑖𝑌3− −

𝜏+1∑︁
𝑖=0

𝑓12,3+6𝑖𝑋
𝜏+1−𝑖𝑌3−

−
𝜏∑︁

𝑖=0
𝑔10,3+6𝑖𝑋

𝜏−𝑖𝑌7 −
𝜏∑︁

𝑖=0
𝑓11,3+6𝑖𝑋

𝜏−𝑖𝑌8− −
𝜏∑︁

𝑖=0
𝑓12,4+6𝑖𝑋

𝜏−𝑖𝑌8−

−
2𝜏+1∑︁
𝑖=0

𝑔10,4+6𝑖𝑋
2𝜏+1−𝑖− −

𝜏∑︁
𝑖=0

𝑓11,4+6𝑖𝑋
𝜏−𝑖𝑌7− −

𝜏∑︁
𝑖=0

𝑓12,5+6𝑖𝑋
𝜏−𝑖𝑌7−

−
𝜏∑︁

𝑖=0
𝑔10,6+6𝑖𝑋

𝜏−𝑖𝑌4 −
2𝜏+1∑︁
𝑖=0

𝑓11,5+6𝑖𝑋
2𝜏+1−𝑖 −

2𝜏+1∑︁
𝑖=0

𝑓12,6+6𝑖𝑋
2𝜏+1−𝑖

𝐹14 = 𝑌 2
7 − 𝑋𝜏+1𝑌8 𝐹15 = 𝑌7𝑌8 − 𝑋𝜏+2𝑌3 𝐺16 = 𝑌 2

8 − 𝑋𝜏+2𝑌4

−
𝜏+1∑︁
𝑖=0

𝑓14,1+6𝑖𝑋
𝜏+1−𝑖𝑌7− −

𝜏+1∑︁
𝑖=0

𝑓15,1+6𝑖𝑋
𝜏+1−𝑖𝑌8− −

𝜏+2∑︁
𝑖=0

𝑔16,1+6𝑖𝑋
𝜏+2−𝑖𝑌3−

−
2𝜏+2∑︁
𝑖=0

𝑓14,2+6𝑖𝑋
2𝜏+2−𝑖− −

𝜏+1∑︁
𝑖=0

𝑓15,2+6𝑖𝑋
𝜏+1−𝑖𝑌7− −

𝜏+1∑︁
𝑖=0

𝑔16,2+6𝑖𝑋
𝜏+1−𝑖𝑌8−

−
𝜏+1∑︁
𝑖=0

𝑓14,4+6𝑖𝑋
𝜏+1−𝑖𝑌4− −

2𝜏+2∑︁
𝑖=0

𝑓15,3+6𝑖𝑋
2𝜏+2−𝑖− −

𝜏+1∑︁
𝑖=0

𝑔16,3+6𝑖𝑋
𝜏+1−𝑖𝑌7−

−
𝜏+1∑︁
𝑖=0

𝑓14,5+6𝑖𝑋
𝜏+1−𝑖𝑌3− −

𝜏+1∑︁
𝑖=0

𝑓15,5+6𝑖𝑋
𝜏+1−𝑖𝑌4− −

2𝜏+2∑︁
𝑖=0

𝑔16,4+6𝑖𝑋
2𝜏+2−𝑖−

−
𝜏∑︁

𝑖=0
𝑓14,6+6𝑖𝑋

𝜏−𝑖𝑌8 −
𝜏+1∑︁
𝑖=0

𝑓15,6+6𝑖𝑋
𝜏+1−𝑖𝑌3 −

𝜏+1∑︁
𝑖=0

𝑔16,6+6𝑖𝑋
𝜏+1−𝑖𝑌4

−𝑓14,3𝑌3𝑌8 −𝑓15,4𝑌3𝑌8 −𝑔16,5𝑌3𝑌8.
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For normalize some constants of the 𝑓𝑖𝑗 , 𝑔𝑖𝑗 , we assume that the characteristic of the field of
contants is zero. We observe that the rational functions 𝑥𝑛, 𝑛 ≤ 2𝑔 − 2 nongap, are not uniquely
determined by their pole divisor 𝑛𝑃 , instead we have just the follows freedon to transform

𝑥 ↦→ 𝑥 + 𝑐6

𝑦3 ↦→ 𝑦3 +
𝜏∑︁

𝑖=0
𝑐3+6𝜏 𝑥𝜏−𝑖

𝑦4 ↦→ 𝑦4 + 𝑐1𝑦3 +
𝜏∑︁

𝑖=0
𝑐4+6𝜏 𝑥𝜏−𝑖

𝑦7 ↦→ 𝑦7 + 𝑐3𝑦4 + 𝑐4𝑦3 +
𝜏+1∑︁
𝑖=0

𝑐1+6𝜏 𝑥𝜏+1−𝑖

𝑦8 ↦→ 𝑦8 + 𝑐′
1𝑦7 + 𝑐′

4𝑦4 + 𝑐5𝑦3 +
𝜏+1∑︁
𝑖=0

𝑐2+6𝜏 𝑥𝜏+1−𝑖,

where 𝑐1, 𝑐′
1, 𝑐3, 𝑐4, 𝑐′

4, 𝑐5 and 𝑐6 are constants with weight 1, 3, 4, 5 and 6, respectively. By making
this change, we normalize the only coefficients with 𝑖 − 𝑗 ≡ 5 mod 6

𝑓12,1 = 0, 𝑓14,3 = 0, 𝑓15,4 = 0, 𝑔16,5 = 0,

and besides these

𝑓7,3+6𝑖 = 𝑓11,4+6𝑖 = 0 (𝑖 = 0, . . . , 𝜏),

𝑔10,1+6𝑖 = 𝑓11,2+6𝑖 = 0 (𝑖 = 0, . . . , 𝜏 + 1).

and

𝑔8,1 = 0, 𝑔8,4 = 0, 𝑔16,6 = 0.

Due the normalizations of these constants and the ones such that 𝑐𝑠𝑖𝑟 = 1, the only freedon left
us is to transform 𝑥𝑛𝑖 ↦→ 𝑐𝑛𝑖𝑥𝑛𝑖(𝑖 = 1, . . . , 𝑔 − 1), where 𝑐 ∈ k* = G𝑚(k). By theorem (3.2.9)
the isomorphism classes of pointed Gorenstein curves (𝒞, 𝑃 ) determine uniquely the coefficients
up to G𝑚(k)-action

𝑔𝑖𝑗 ↦→ 𝑐𝑗𝑔𝑖𝑗 e 𝑓𝑖𝑗 ↦→ 𝑐𝑗𝑓𝑖𝑗 ,

where 𝑐 ∈ k*. We attach to constants 𝑓𝑖𝑗 , 𝑔𝑖𝑗 the weight 𝑗, and applying the syzygy lemma we
get the six syzygies of the monomial curve 𝒟(0) ∩ A5

𝑌4𝐹
(0)
6 − 𝑌3𝐹

(0)
7 + 𝑋𝜏 𝐺

(0)
10 = 0

𝑋𝑌4𝐹
(0)
7 − 𝑌7𝐺

(0)
10 + 𝑌3𝐹

(0)
14 − 𝑋𝑌3𝐺

(0)
8 = 0

𝑌4𝐹
(0)
11 − 𝑌7𝐺

(0)
8 + 𝑌8𝐹

(0)
7 = 0

𝑌4𝐹
(0)
12 − 𝑌8𝐺

(0)
8 − 𝑋𝜏 𝐺

(0)
16 = 0

𝑌4𝐹
(0)
14 − 𝑌8𝐺

(0)
10 − 𝑌7𝐹

(0)
11 = 0

𝑌4𝐹
(0)
15 − 𝑌8𝐹

(0)
11 − 𝑌3𝐺

(0)
16 = 0.
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The six syzygies of the affine monomial curve 𝒟(0) ∩ A5 give rise to six syzygies of the curve
𝒟 ∩ A5:

𝑌4𝐹6 − 𝑌3𝐹7 + 𝑋𝜏 𝐺10 = −
𝜏−1∑︁
𝑖=0

𝑋𝜏−1−𝑖 (𝑓6,4+6𝑖𝐹12 + 𝑓6,5+6𝑖𝐹11 − 𝑓7,6+6𝑖𝐺10)

−
𝜏∑︁

𝑖=0
𝑋𝜏−𝑖 (𝑓6,2+6𝑖𝐺8 + (𝑓6,3+6𝑖 − 𝑓7,3+6𝑖)𝐹7 − 𝑓7,4+6𝑖𝐹6) ,

𝑋𝑌4𝐹7 − 𝑌7𝐺10 + 𝑌3𝐹14 − 𝑋𝑌3𝐺8 = −
𝜏−1∑︁
𝑖=0

𝑋𝜏−𝑖 (𝑓7,5+6𝑖𝐹12 + 𝑓7,6+6𝑖𝐹11)

−
𝜏+1∑︁
𝑖=0

𝑋𝜏+1−𝑖 (𝑓14,1+6𝑖𝐺10 + 𝑓14,4+6𝑖𝐹7 + 𝑓14,5+6𝑖𝐹6)

+
𝜏∑︁

𝑖=0
𝑋𝜏−𝑖(𝑔8,1+6𝑖𝑋𝐺10 + 𝑔10,2+6𝑖𝐹15 + 𝑔10,3+6𝑖𝐹14)

+
𝜏∑︁

𝑖=0
𝑋𝜏−𝑖(𝑔8,5+6𝑖𝑋𝐹6 + (𝑔8,4+6𝑖 − 𝑓7,4+6𝑖)𝑋𝐹7 + 𝑔10,6+6𝑖𝐹11),

𝑌4𝐹11 − 𝑌7𝐺8 + 𝑌8𝐹7 = −
𝜏+1∑︁
𝑖=0

𝑋𝜏+1−𝑖(𝑓11,1+6𝑖𝐺8 + 𝑓11,2+6𝑖𝐹7)

−
𝜏−1∑︁
𝑖=0

𝑋𝜏−1−𝑖(𝑓7,5+6𝑖𝐺16 + (𝑓7,6+6𝑖 − 𝑔8,6+6𝑖)𝐹15)

−
𝜏∑︁

𝑖=0
𝑋𝜏−𝑖(−𝑔8,1+6𝑖𝐹14 + (𝑓11,3+6𝑖 + 𝑓7,3+6𝑖)𝐹12 + (𝑓11,4+6𝑖 − 𝑔8,4+6𝑖)𝐹11 − 𝑔8,5+6𝑖𝐺10),

𝑌4𝐹12 − 𝑌8𝐺8 − 𝑋𝜏 𝐺16 =

−
𝜏∑︁

𝑖=0
𝑋𝜏−𝑖 (−𝑔8,1+6𝑖𝐹15 + (𝑓12,4+6𝑖 − 𝑔8,4+6𝑖)𝐹12 + 𝑓12,5+6𝑖𝐹11)

+
𝜏−1∑︁
𝑖=0

𝑔8,6+6𝑖𝑋
𝜏−1−𝑖𝐺10 −

𝜏+1∑︁
𝑖=0

𝑋𝜏+1−𝑖 (𝑓12,2+6𝑖𝐺8 + 𝑓12,3+6𝑖𝐹7) ,

𝑌4𝐹14 − 𝑌8𝐺10 − 𝑌7𝐹11 =
𝜏∑︁

𝑖=0
𝑋𝜏−𝑖(𝑔10,6+6𝑖 − 𝑓14,6+6𝑖)𝐹12)

𝜏∑︁
𝑖=0

𝑋𝜏−𝑖 (𝑔10,2+6𝑖𝐺16 + (𝑔10,3+6𝑖 + 𝑓11,3+6𝑖)𝐹15 + 𝑓11,4+6𝑖𝐹14)

−
𝜏+1∑︁
𝑖=0

𝑋𝜏+1−𝑖 (𝑓14,1+6𝑖 − 𝑓11,1+6𝑖)𝐹11 − 𝑓11,2+6𝑖𝐺10 + 𝑓14,4+6𝑖𝐺8 + 𝑓14,5+6𝑖𝐹7) ,

𝑌4𝐹15 − 𝑌8𝐹11 − 𝑌3𝐺16 =
𝜏∑︁

𝑖=0
𝑋𝜏−𝑖 (𝑓11,3+6𝑖𝐺16 + 𝑓11,4+4𝑖𝐹15)

−
𝜏+1∑︁
𝑖=0

𝑋𝜏+1−𝑖 ((𝑓15,1+6𝑖 − 𝑓11,1+6𝑖)𝐹12 + (𝑓15,6+6𝑖 − 𝑔16,6+6𝑖) 𝐹7)

−
𝜏+1∑︁
𝑖=0

𝑋𝜏+1−𝑖(𝑓15,5+6𝑖𝐺8 − 𝑔16,3+6𝑖𝐺10 + 𝑓15,2+6𝑖𝐹11)

+
𝜏+2∑︁
𝑖=0

𝑔16,1+6𝑖𝑋
𝜏+2−𝑖𝐹6.

We observe that each right-hand side differs from the corresponding left-hand side by a
linear combination of elements of the vector space Λ3, which are lifting of the elements of the
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𝑃 -basis of 𝐻0(𝒞, 3(2𝑔 − 2)𝑃 ) that vanish identically on the curve 𝒟 ∩ A5, hence is identically
zero. The vanishing of the coefficients of the six linear combinations gives the homogeneous
equations between the coefficients 𝑓𝑖𝑗 and 𝑔𝑖𝑗 . For express these equations in a concise manner
we introduce the polynomials in only one variable

𝑓𝑖 :=
12𝜏+𝑖∑︁
𝑟=1

𝐹𝑖(𝑡−6, 𝑡−6−3𝜏 , 𝑡−6−4𝜏 , 𝑡−6−7𝜏 , 𝑡−8−3𝜏 )𝑡𝑖+12𝜏 (𝑖 = 6, 7, 11, 12, 14, 15),

and we write each one as the sum of its partial polynomials

𝑓
(𝑗)
𝑖 =

∑︁
𝑟≡𝑗 mod 6

𝑓𝑖𝑟𝑡𝑟, (𝑗 = 1, . . . , 6),

where are defined by collecting every terms whose exponents are in the same residue class
module 6. Analogously we define the polynomials 𝑔𝑗 and the partial polynomials 𝑔

(𝑗)
𝑖 . Due the

normalizations in the constants 𝑓𝑖𝑗 , 𝑔𝑖𝑗 , we may express each 𝑔𝑗 and 𝑓𝑗 in terms of 41 partial
polynomials as follows

𝑓6 = 𝑓
(2)
6 + 𝑓

(3)
6 + 𝑓

(4)
6 + 𝑓

(5)
6 + 𝑓

(6)
6 , 𝑓7 = 𝑓

(1)
7 + 𝑓

(4)
7 + 𝑓

(5)
7 + 𝑓

(6)
7 ,

𝑔8 = 𝑔
(1)
8 + 𝑔

(2)
8 + 𝑔

(4)
8 + 𝑔

(5)
8 + 𝑔

(6)
8 , 𝑔10 = 𝑔

(2)
10 + 𝑔

(3)
10 + 𝑔

(4)
10 + 𝑔

(6)
10 ,

𝑓15 = 𝑓
(1)
15 + 𝑓

(2)
15 + 𝑓

(3)
15 + 𝑓

(5)
15 + 𝑓

(6)
15 , 𝑓11 = 𝑓

(1)
11 + 𝑓

(3)
11 + 𝑓

(5)
11 ,

𝑓12 = 𝑓
(2)
12 + 𝑓

(3)
12 + 𝑓

(4)
12 + 𝑓

(5)
12 + 𝑓

(6)
12 𝑓14 = 𝑓

(1)
14 + 𝑓

(2)
14 + 𝑓

(4)
14 + 𝑓

(5)
14 + 𝑓

(6)
14 ,

𝑔16 = 𝑔
(1)
16 + 𝑔

(2)
16 + 𝑔

(3)
16 + 𝑔

(4)
16 + 𝑔

(6)
16 .

We see that the formal degree of the partial polynomials with 𝑖 = 𝑗 and 𝑖−𝑗 = 6 that is 𝑓
(6)
6 , and

𝑓
(1)
7 , 𝑔

(2)
8 , 𝑔

(4)
10 , 𝑓

(5)
11 , 𝑓

(6)
12 and 𝑓

(4)
12 , 𝑓

(3)
15 , 𝑔

(4)
16 is 𝑖+12𝜏 . The partial polynomials 𝑓

(4)
6 , 𝑓

(5)
6 , 𝑓

(5)
7 , 𝑓

(6)
7 , 𝑔

(1)
8

and 𝑔
(1)
16 have formal degree 𝑗 +6(𝜏 −1), and 13+6𝜏 , respectively. Of the remaining 26 polynomi-

als, 13 these partial polynomials have formal degree 𝑗 + 6𝜏 and the other 13 partial palynomials
have formal degree 𝑗 + 6(𝜏 + 1). Therefore, the number of the coefficients that are still involved
is equal to

(2𝜏 + 1) + 5(2𝜏 + 2) + 3(2𝜏 + 3) + 6𝜏 + 3 + 13(𝜏 + 1) + 13(𝜏 + 2) − 3 = 50𝜏 + 59,

where the subtraction by three corresponds to the normalizations 𝑔8,1 = 𝑔8,4 = 𝑔16,6 = 0. By
applying the theorem (3.2.9) we find an explicit construction of the compactified moduli space
M ℋ

𝑔,1.

Theorem 4.1.2. Let ℋ be the semigroup generated by 6, 3 + 6𝜏, 4 + 6𝜏, 7 + 6𝜏 and 8 + 6𝜏 where
𝜏 is a positive integer. The isomorphism classes of the pointed complete integral Gorenstein
curves with Weierstrass semigroup ℋ correspond bijectively to the orbtis of the G𝑚-action on
the quasi-cone of the vectors of length 50𝜏 + 59 whose coordinates are the coefficients 𝑔𝑖𝑗 , 𝑓𝑖𝑗 of
the 41 partial polynomials that satisfy the six equations:
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𝑓6 − 𝑓7 + 𝑔10 = −𝑓
(2)
6 𝑔8 − (𝑓 (3)

6 − 𝑓
(3)
7 )𝑓7 + 𝑓

(4)
7 𝑓6 − 𝑓

(4)
6 𝑓12

−𝑓
(5)
6 𝑓11 + 𝑓

(6)
7 𝑔10,

𝑓7 − 𝑔10 + 𝑓14 − 𝑔8 = (𝑔(1)
8 − 𝑓

(1)
14 )𝑔10 + 𝑔

(2)
10 𝑓15 + 𝑔

(3)
10 𝑓14 + (𝑔(6)

10 − 𝑓
(6)
7 )𝑓11

+(𝑔(4)
8 − 𝑓

(4)
7 − 𝑓

(4)
14 )𝑓7 + (𝑔(5)

8 − 𝑓
(5)
14 )𝑓6 − 𝑓

(5)
7 𝑓12,

𝑓11 − 𝑔8 + 𝑓7 = 𝑔
(5)
8 𝑔10 − 𝑓

(1)
11 𝑔8 − 𝑓

(2)
11 𝑓7 − 𝑓

(5)
7 𝑔16 + (𝑔(6)

8 − 𝑓
(6)
7 )𝑓15

+𝑔
(1)
8 𝑓14 − (𝑓 (3)

11 + 𝑓
(3)
7 )𝑓12 − (𝑓 (4)

11 − 𝑔
(4)
8 )𝑓11,

𝑓12 − 𝑔8 − 𝑔16 = 𝑔
(1)
8 𝑓15 − (𝑓 (4)

12 − 𝑔
(4)
8 )𝑓12 − 𝑓

(5)
12 𝑓11 + 𝑔

(6)
8 𝑔10

−𝑓
(2)
12 𝑔8 − 𝑓

(3)
12 𝑓7,

𝑓14 − 𝑔10 − 𝑓11 = (𝑓 (1)
11 − 𝑓

(1)
14 )𝑓11 + 𝑓

(2)
11 𝑔10 − 𝑓

(4)
14 𝑔8 − 𝑓

(5)
14 𝑓7 + 𝑔

(2)
10 𝑔16

+(𝑔(3)
10 + 𝑓

(3)
11 )𝑓15 + 𝑓

(4)
11 𝑓14 − (𝑓 (6)

14 − 𝑔
(6)
10 )𝑓12,

𝑓15 − 𝑓11 − 𝑔16 = (𝑓 (1)
11 − 𝑓

(1)
15 )𝑓12 − (𝑓 (6)

15 − 𝑔
(6)
16 )𝑓7 + 𝑔

(3)
16 𝑔10 − 𝑓

(5)
15 𝑔8

−𝑓
(2)
15 𝑓11 + 𝑔

(1)
16 𝑓6 + 𝑓

(3)
11 𝑔16 + 𝑓

(4)
11 𝑓15.

This means that the compactified moduli space M ℋ
𝑔,1 can be embedded into a weighted

projective space of dimensional 50𝜏 + 58. Now the key is diminish the dimension of the ambient
space by projecting this space onto space of lower dimension. Initially, we take the six equations of
the moduli space given by theorem (4.1.2) and rewritten this equations in terms of 36 polynomial
equations between 41 partial polynomials. Among this equations, there are six linear equations
between the partial polynomials

𝑓
(5)
7 = 𝑓

(5)
6 , 𝑓

(5)
14 = 𝑔

(5)
8 − 𝑓

(5)
6 , 𝑔

(4)
8 = 𝑓

(4)
7 , 𝑓

(5)
12 = 𝑔

(5)
8 , 𝑓

(1)
14 = 𝑓

(1)
11 , 𝑔

(1)
16 = 𝑓

(1)
15 − 𝑓

(1)
11 .

With this normalizations we diminish the dimension of the ambient space to 44𝜏 +50. By analiz-
ing the formal degree in the remaining 30 equations we can eliminate more partial polynomials,
until the remaining quasi-homogeneuos equations do not admit linear terms. However, this pro-
cedure is very long. As seen in the method developed by A. Contiero and Sthör in [CS], we will
calculate in an explicity way the equations of the quadratic quasi-cone Qℋ and its dimension.

First we determine the vector space 𝑇 1,−
k[ℋ]k which is, up to an isomorphism, the locus of

the linearizations of the 36 equations between the partial polynomials. Solving this system we
obtain

𝑓
(1)
7 = 𝑓

(1)
15 = 0, 𝑓

(1)
11 = 𝑔

(1)
8 , 𝑓

(1)
14 = 𝑔

(1)
8 , 𝑔

(1)
16 = −𝑔

(1)
8 ;

𝑔
(2)
8 = 0, 𝑔

(2)
10 = 𝑓

(2)
6 , 𝑓

(2)
14 = 𝑓

(2)
6 , 𝑓

(2)
15 = 𝑓

(2)
12 , 𝑔

(2)
16 = 𝑓

(2)
12 ;

𝑓
(3)
6 = 𝑓

(3)
11 = 𝑔

(3)
10 = 0, 𝑓

(3)
15 = 𝑓

(3)
12 , 𝑔

(3)
16 = 𝑓

(3)
12 ;

𝑔
(4)
16 = 0, 𝑓

(4)
7 = 𝑔

(4)
8 , 𝑔

(4)
10 = 𝑓

(4)
6 − 𝑔

(4)
8 , 𝑓

(4)
12 = 𝑔

(4)
8 , 𝑓

(4)
14 = 𝑓

(4)
6 − 𝑔

(4)
8 ;

𝑓
(5)
7 = 𝑓

(5)
6 , 𝑓

(5)
14 = 𝑓

(5)
11 = −𝑓

(5)
6 + 𝑔

(5)
8 , 𝑓

(5)
12 = 𝑔

(5)
8 , 𝑓

(5)
15 = −𝑓

(5)
6 + 𝑔

(5)
8 ;

𝑓
(6)
6 = 𝑓

(6)
7 + 𝑔

(6)
10 , 𝑔

(6)
8 = 𝑓

(6)
7 , 𝑓

(6)
12 = 𝑓

(6)
7 + 𝑔

(6)
16 , 𝑓

(6)
14 = 𝑔

(6)
10 , 𝑓

(6)
15 = 𝑔

(6)
16 .

Thus we conclude that the vector space 𝑇 1,−
k[ℋ]k can be identified with the space which entries

are the coefficients of the remaining partial polynomials

𝑔
(1)
8 , 𝑓

(2)
6 , 𝑓

(2)
12 , 𝑓

(3)
12 , 𝑔

(4)
8 , 𝑓

(4)
6 , 𝑓

(5)
6 , 𝑔

(5)
8 , 𝑓

(6)
7 , 𝑔

(6)
10 , 𝑔

(6)
16 .
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By couting the coefficients of this partial polynomials we have 11𝜏 + 11 coefficients, and dis-
counting the conditions corresponding to the three normalizations

𝑔8,1 = 𝑔8,4 = 𝑔16,6 = 0,

we obtain

dim 𝑇 1,−
k[ℋ]k = 11𝜏 + 8.

We conclude that the compactified moduli space M ℋ
𝑔,1 has been realized as a closed subspace of

the 11𝜏 + 8-dimensional weighted projective space P(𝑇 1,−
k[ℋ]k).

To determine the quadratic quasi-cone Qℋ is sufficient to enter with the solutions of
the system of 36 linear equations in the quadratic terms of the 36 original equations of degree
at most 2 and eliminate the same partial polynomials that the linear case. Thus the equations
of the quadratic quasi-cone Qℋ are the ones whose left hand-side degree is less than the right
hand-side degree. So we obtain the five equations

𝑓
(1)
14 = −𝑓

(4)
6 𝑓

(3)
12 − 𝑓

(5)
6 𝑓

(2)
12 + (𝑔(6)

10 − 𝑓
(6)
7 )𝑔(1)

8 + 𝑔
(1)
8

𝑔
(1)
16 = 𝑔

(1)
8 (𝑓 (6)

7 − 𝑔
(6)
16 ) + 𝑓

(2)
12 𝑔

(5)
8 + 𝑓

(3)
12 𝑔

(4)
8 − 𝑔

(1)
8

𝑓
(3)
11 = 𝑓

(2)
6 𝑔

(1)
8 + 𝑓

(4)
6 𝑔

(5)
8 − 𝑓

(5)
6 𝑔

(4)
8

𝑓
(4)
14 = 𝑓

(2)
6 𝑓

(2)
12 − 𝑓

(4)
6 (𝑓 (6)

7 − 𝑔
(6)
16 ) − 𝑔

(4)
8 (𝑔(6)

10 − 𝑓
(6)
7 ) + 𝑓

(4)
6 − 𝑔

(4)
8

𝑓
(5)
14 = 𝑓

(2)
6 𝑓

(3)
12 + 𝑓

(5)
6 (𝑓 (6)

7 − 𝑔
(6)
16 ) + 𝑔

(5)
8 (𝑔(6)

10 − 𝑓
(6)
7 ) − 𝑓

(5)
6 + 𝑔

(5)
8 .

This means that the quadratic quasi-cone Qℋ is a subvariety of 𝑇 1,−
k[ℋ]|k whose equations are

𝜋7+6𝜏 (−𝑓
(4)
6 𝑓

(3)
12 − 𝑓

(5)
6 𝑓

(2)
12 + 𝑔

(6)
10 𝑔

(1)
8 ) = 0

𝜋13+6𝜏 (−𝑔
(1)
8 𝑔

(6)
16 + 𝑓

(2)
12 𝑔

(5)
8 + 𝑓

(3)
12 𝑔

(4)
8 ) = 0

𝜋3+6𝜏 (𝑓 (2)
6 𝑔

(1)
8 + 𝑓

(4)
6 𝑔

(5)
8 − 𝑓

(5)
6 𝑔

(4)
8 ) = 0

𝜋10+6𝜏 (𝑓 (2)
6 𝑓

(2)
12 + 𝑓

(4)
6 𝑔

(6)
16 − 𝑔

(4)
8 𝑔

(6)
10 ) = 0

𝜋11+6𝜏 (𝑓 (2)
6 𝑓

(3)
12 − 𝑓

(5)
6 𝑔

(6)
16 + 𝑔

(5)
8 𝑔

(6)
10 ) = 0,

where 𝑔
(6)
10 = 𝑔

(6)
10 − 𝑓

(6)
7 , 𝑔

(6)
16 = 𝑔

(6)
16 − 𝑓

(6)
7 and 𝜋𝑖 denotes the projection operator in 𝑡 that

annihilates the terms of degree not large than 𝑖. We note that the congruences above does not
depend of the coefficients

𝑓6,2, 𝑓12,2, 𝑓12,3, 𝑔8,5, 𝑔10,6, 𝑔16,6, 𝑓12,8, 𝑓12,9, 𝑔16,12 and 𝑓7,6𝑖, 𝑖 = 1, . . . , 𝜏 − 1.

These congruences depend only 10𝜏 coefficients. They can be expressed in five equations between
ten elements of the 𝜏 -dimensional artinian algebra

𝐴 := 𝑘[𝜖] =
𝜏−1⨁︁
𝑗=0

𝑘𝜖𝑗 , where 𝜖𝜏 = 0.

Theorem 4.1.3. The quadratic quasi-cone Qℋ is isomorphic to the direct product

Qℋ = 𝑀 × 𝑁,
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where 𝑀 is the (𝜏 + 8)-dimensional weighted space of weights 2, 2, 3, 5, 6, 6, 8, 9, 12 and 6𝑖, 𝑖 =
1, . . . , 𝜏 − 1, and 𝑁 is the quadratic quasi-cone consisting of vectors

(𝜔1, . . . , 𝜔10) =

⎛⎝𝜏−1∑︁
𝑗=0

𝜔1𝑗𝜖𝑗 , . . . ,
𝜏−1∑︁
𝑗=0

𝜔10,𝑗𝜖𝑗

⎞⎠ ,

such that satisfying the five equations

𝜔4𝜔9 − 𝜔3𝜔7 − 𝜔2𝜔8 = 0,

𝜔4𝜔10 + 𝜔6𝜔7 + 𝜔5𝜔8 = 0,

𝜔1𝜔4 + 𝜔2𝜔6 − 𝜔3𝜔5 = 0,

𝜔1𝜔7 − 𝜔2𝜔10 − 𝜔5𝜔9 = 0,

𝜔3𝜔10 + 𝜔6𝜔9 + 𝜔1𝜔8 = 0,

in the artinian algebra 𝐴.

Proof. We define

𝜔1𝑗 = 𝑓6,6𝜏+2−6𝑖, 𝜔2𝑗 = 𝑓6,6𝜏−2−6𝑖, 𝜔3𝑗 = 𝑓6,6𝜏−1−6𝑖, 𝜔4𝑗 = 𝑓7,6𝜏+6−6𝑖, 𝜔5𝑗 = 𝑔8,6𝜏+1−6𝑖,

𝜔6𝑗 = 𝑔8,6𝜏+5−6𝑖, 𝜔7𝑗 = 𝑓12,6𝜏+8−6𝑖, 𝜔8𝑗 = 𝑓12,6𝜏+9−6𝑖, 𝜔9𝑗 = 𝑔10,6𝜏+6−6𝑖, 𝜔10,𝑗 = 𝑔16,6𝜏+6−6𝑖,

and note that the conditions on the 10𝜏 coefficients are equivalents to the five quadratic equations
in the antinian algebra 𝐴.

Corollary 4.1.4. We have

dimQℋ = 8𝜏 + 8.

Proof. Since dim 𝑀 = 𝜏 + 8, we just have to show that dim 𝑁 = 7𝜏 . If 𝑊𝑖 is the open subset
of 𝑁 defined by 𝜔𝑖0 ̸= 0, then 𝜔𝑖 is an unit in the local artinian algebra 𝐴. For exemple, if
(𝜔1, . . . , 𝜔10) is a vector belong to the open 𝑊1 then we can eliminate 𝜔4, 𝜔7 and 𝜔8 from the
third, forth and fifth quadratic equations and the remaining two equations become trivial. This
means that 𝑊1 has codimension 3𝜏 in 𝐴10, thus 𝑊1 has dimension 7𝜏 . In a similar way, we see
that

dim 𝑊𝑖 = 7𝜏(𝑖 = 1, . . . , 10).

If 𝜏 = 1, then 𝑁 = 𝑊1 ∪ 𝑊2 ∪ . . . ∪ 𝑊10 and therefore dim 𝑁 = 7. We suppose that 𝜏 > 1. If a
vector (𝜔1, . . . , 𝜔10) ∈ 𝑁 does not belong to the union 𝑊1 ∪ 𝑊2 ∪ . . . ∪ 𝑊10 means that 𝜔𝑖𝑗 = 0
whenever 𝑗 = 0, and then the ten coefficients 𝜔𝑖𝑗 with 𝑗 = 0 do not enter into the five quadratic
equations, and by induction we obtain

dim(𝑁∖(𝑊1 ∪ . . . ∪ 𝑊10)) = 7(𝜏 − 2) + 10 < 7𝜏,

and therefore we have dim 𝑁 = 7𝜏 .
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Now apllying the theorem (3.2.9), we obtain an upper bound for the dimension of the
moduli variety

dim M̄ℋ < 8𝜏 + 8,

which for every 𝜏 ≥ 1 is batter than Deligne’s bound 2𝑔 − 1 = 5 + 12𝜏 .

By applying theory of limit linear series Eisenbud and Harris in [EH] found a lower bound
for the moduli space ℳℋ

𝑔,1. More precisely, a lower bound for the dimension of any irreducible
component of ℳℋ

𝑔,1 is

dim ℳℋ
𝑔,1 ≥ 3𝑔 − 2 − wt(ℋ),

where wt(ℋ) =
𝑔∑︁

𝑖=1
(𝑙𝑖 − 𝑖) is the weight of the semigroup. This lower bound is attained whenever

wt(ℋ) ≤ 𝑔 − 2 and the Weierstrass semigroup ℋ is primitive that is, the last gap is smaller
than twice the first nongap. However for semigroups of weight large as symmetric semigroups
the lower bound 3𝑔 − 2 − wt(ℋ) becomes far from sharp, may even be negative.

Nathan in [PF1] improves this lower bound by introduce the effective weight of a numer-
ical semigroup ℋ

ewt(ℋ) :=
∑︁

gaps 𝑙𝑖

(# generators 𝑛𝑗 < 𝑙𝑖).

Alternatively, ewt(ℋ) is the number of pairs (𝑛𝑖, 𝑙𝑘) where 𝑛𝑖 is a generator of ℋ and
𝑙𝑘 /∈ ℋ with 𝑛𝑖 < 𝑙𝑘, and so wt(ℋ) − ewt(ℋ) is equal to the number of pairs (𝑛𝑖, 𝑙𝑘) where
𝑛𝑖 < 𝑙𝑘, 𝑛𝑖 is composite, and 𝑙𝑘 is a gap. Therefore,

wt(ℋ) = ewt(ℋ) ⇐⇒ ℋ is primitive.

Theorem 4.1.5. (Theorem 1.2, [PF1]) If ℳℋ
𝑔,1 in nonempty, and 𝑋 is any irreducible compo-

nent of it, then

dim 𝑋 ≥ dim ℳ𝑔,1 − ewt(ℋ).

Moreover, this bound is sharp (see [PF1], thm 1.3) whenever ewt(ℋ) ≤ 𝑔 −2. As exemple
where the dimension of ℳℋ

𝑔,1 is strictly greater than 3𝑔 − 2 − ewt(ℋ) consider the symmetric
semigroup ℋ = ⟨6, 7, 8⟩ of genus 9. Its effective weight ewt(ℋ) = 12 and by embbeding a curve
𝒞 in P3 (see [PF1], pg. 12) follows that dim ℳℋ

𝑔,1 = 11.

We will calculate the dimension of ℳℋ
𝑔,1 when ℋ is the symmetric semigroup family

ℋ = ⟨6, 3 + 6𝜏, 4 + 6𝜏, 7 + 6𝜏, 8 + 6𝜏⟩. By corollary (4.1.4) we have dim ℳℋ
𝑔,1 < 8𝜏 + 8. On the

other hand, the gaps of ℋ are

𝑗 + 6𝑖, 𝑖 = 0, . . . , 𝜏 and 𝑗 = 1, 2
𝑗 + 6𝑖, 𝑖 = 0, . . . , 𝜏 − 1 and 𝑗 = 3, 4
5 + 6𝑖, 𝑖 = 0, . . . , 2𝜏.
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Thus, ewt(ℋ) = 10𝜏 and by theorem (4.1.5) we obtain

dim ℳℋ
𝑔,1 ≥ dim ℳ𝑔,1 − ewt(ℋ)

= 3𝑔 − 2 − 10𝜏

= 8𝜏 + 7.

Corollary 4.1.6. If we take the symmetric semigroup family ℋ = ⟨6, 3+6𝜏, 4+6𝜏, 7+6𝜏, 8+6𝜏⟩,
then

dim ℳℋ
𝑔,1 = 8𝜏 + 7.

We also consider the symmetric semigroup family worked by A. Contiero and Stöhr in
[CS]

ℋ = ⟨6, 2 + 6𝜏, 3 + 6𝜏, 4 + 6𝜏, 5 + 6𝜏⟩,

where 𝜏 ≥ 1 and the genus of ℋ is 𝑔 = 1 + 6𝜏 . Calculating the gaps of this semigroup

𝑗 + 6𝑖, 𝑖 = 0, . . . , 𝜏 − 1 and 𝑗 = 2, 3, 4, 5
1 + 6𝑖, 𝑖 = 0, . . . , 2𝜏.

Now observe that ewt(ℋ) = 10𝜏 −4. Therefore applying the theorem (4.1.5) we obtain the lower
bound

dim ℳℋ
𝑔,1 ≥ 3(1 + 6𝜏) − 2 − (10𝜏 − 4) = 8𝜏 + 5.

On the other hand, follows the corollary 4.5 in [CS] an upper bound of the moduli space ℳℋ
𝑔,1

dim ℳℋ
𝑔,1 ≤ 8𝜏 + 5.

Corollary 4.1.7. If ℋ = ⟨6, 2 + 6𝜏, 3 + 6𝜏, 4 + 6𝜏, 5 + 6𝜏⟩, then

dim ℳℋ
𝑔,1 = 8𝜏 + 5.

4.2 Future Works

Through this thesis we can formulate a number of questions that we will try to solve in
the next years.

The fisrt question was proposed my advisor A. Contiero which try to get a finer upper
bound for the dimension of ℳℋ

𝑔,1.

Question 4.2.1 (A. Contiero). Is it true that

dim ℳℋ
𝑔,1 ≤ 2𝑔 − 2 + 𝜆 − dim 𝑇 1,+(k[ℋ])?

We can answer positively the truth of these questions for all semigroups of genus not
bigger than 6 organizing in the following table following the notation: NP denotes the lower
bound 1; 𝐷𝑒𝑙 is the upper bound of Deline 2𝑔 − 1 − 𝜆(ℋ).

1The lower bounds in blue are better that the lower bound of Eisenbud and Harris in [EH].
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gaps NP dim ℳℋ
𝑔,1 𝜆(ℋ) 𝐷𝑒𝑙 dim 𝑇 1,+

1, 3 3 3 1 3 0
1, 2 4 4 2 4 0

1, 3, 5 5 5 1 5 0
1, 2, 4 6 6 2 6 0
1, 2, 5 5 5 1 5 0
1, 2, 3 7 7 3 7 0

1, 3, 5, 7 7 7 1 7 0
1, 2, 4, 5 8 8 2 8 0
1, 2, 4, 7 7 7 1 7 0
1, 2, 3, 5 9 9 3 9 0
1, 2, 3, 6 8 8 2 8 0
1, 2, 3, 7 7 7 1 7 0
1, 2, 3, 4 10 10 4 10 0

1, 3, 5, 7, 9 9 9 1 9 0
1, 2, 4, 5, 7 10 10 2 10 0
1, 2, 4, 5, 8 9 9 2 10 1
1, 2, 3, 5, 6 11 11 3 11 0
1, 2, 3, 5, 7 10 10 3 11 1
1, 2, 3, 5, 9 9 9 1 9 0
1, 2, 3, 6, 7 9 9 2 10 1
1, 2, 3, 4, 6 12 12 4 12 0
1, 2, 3, 4, 7 11 11 3 11 0
1, 2, 3, 4, 8 10 10 2 10 0
1, 2, 3, 4, 9 9 9 1 9 0
1, 2, 3, 4, 5 13 13 5 13 0

1, 3, 5, 7, 9, 11 11 11 1 11 0
1, 2, 4, 5, 7, 8 12 12 2 12 0
1, 2, 4, 5, 7, 10 11 11 2 12 1
1, 2, 4, 5, 8, 11 10 10 1 11 1
1, 2, 3, 5, 6, 7 13 13 3 13 0
1, 2, 3, 5, 6, 9 12 12 3 13 1
1, 2, 3, 5, 6, 10 11 11 2 12 1
1, 2, 3, 5, 7, 9 11 11 3 13 2
1, 2, 3, 5, 7, 11 10 10 1 11 1
1, 2, 3, 6, 7, 9 10 10 1 11 1
1, 2, 3, 4, 6, 7 14 14 4 14 0
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gaps NP dim ℳℋ
𝑔,1 𝜆(ℋ) 𝐷𝑒𝑙 dim 𝑇 1,+

1, 2, 3, 4, 6, 8 13 ? 4 14 1
1, 2, 3, 4, 6, 9 12 12 3 13 1
1, 2, 3, 4, 6, 11 11 11 1 11 0
1, 2, 3, 4, 7, 8 12 12 3 13 1
1, 2, 3, 4, 7, 9 11 11 2 12 1
1, 2, 3, 4, 8, 9 10 10 2 12 2
1, 2, 3, 4, 5, 7 15 15 5 15 0
1, 2, 3, 4, 5, 8 14 14 4 14 0
1, 2, 3, 4, 5, 9 13 13 3 13 0
1, 2, 3, 4, 5, 10 12 12 2 12 0
1, 2, 3, 4, 5, 11 11 11 1 11 0
1, 2, 3, 4, 5, 6 16 16 6 16 0

From the work [CS] we can try to fix the multicplicity of a (symmetric) semigroup ℋ
(for example equal to 6), and try to use some of the Pflueger ideas to get an upper bound for
dim ℳℋ

𝑔,1.

As can be noted from this thesis, it can be really hard, or even impossible, try to study
the structure of the spaces ℳℋ

𝑔,1 in an explicit way. So we can try to study some of Hilbert
spaces, following again the Pflueger approach [PF2]. Here we can try also work with symmetric
semigroups using facts on Hilbert schemes of canonical curves. In this way we can try to work
on Buchsweitz’s question [B].

Conjecture 4.2.1. If 𝑇 2(k[ℋ]) is equal to zero than ℳℋ
𝑔,1 is rational.

An other question is about the minimal amount of cubic forms that generate the ideal
of a trigonal Gorenstein curve. We have for a canonical curve the Petri’s theorem in [ACGH]
which prove that a certain amount of forms generate the ideal of the curve. Also in this thesis,
we calculate the ideal of a trigonal curve of genus 6, in the subsection 3.3.2. In both cases the
amount of cubic forms is not minimal.

We also want to answer what semigroups can be realized as Weierstrass semigroup of a
Gorenstein or Kunz curve. Nivaldo in [M] answered this question for a class of semigroups called
(𝑑1, . . . , 𝑑𝑚)-symmetric semigroups. He proved that each semigroup of this class is realized as a
Weierstrass semigroup of a Gorenstein curve which is an union of a monomial curve with curves
of genus zero. We will try to work with necessary and sufficient conditions of a Gorenstein and
Kunz local ring proved in [BAF].
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