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Resumo

Esta tese ¢ dedicada ao estudo de distribui¢coes holomorfas de dimensao e codimensao
um em variedades Fano tridimensionais que sao intersegoes completas com pesos e com
nimero de Picard igual a um. Também estudamos o conjunto singular de distribui¢oes
holomorfas singulares nestas variedades. O objetivo deste trabalho é caracterizar estas
distribuicoes cujos feixes tangentes e conormais sao aritmeticamente Cohen-Macaulay

(aCM), i.e. ndo tém cohomologia intermediaria.

Palavras-chave: Distribui¢coes holomorfas, variedades Fano, Feixes aCM.
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Abstract

This thesis is devoted to the study of holomorphic distributions of dimension and codi-
mension one on smooth weighted projective complete intersection Fano three dimensional
manifolds, with Picard number equal to one. We also studied the singular set of singular
holomorphic distributions in this manifolds. The goal of this work is to characterize this
distributions whose tangent sheaf and conormal sheaf are arithmetically Cohen Macaulay

(aCM), i.e. has no intermediate cohomology.

Palavras-chave: Holomorphic distributions, Fano manifolds, aCM sheaves.
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Introduction

In the study of holomorphic distributions and foliations in complex projective manifolds,
algebro-geometric techniques have been used. We are interested in analyzing when the
tangent and conormal sheaves split, together with the properties of singular schemes of
distributions.

In this thesis, we study holomorphic distributions on a smooth weighted projective
complete intersection Fano threefold X with Picard number equal to one. The goal of
this work is to characterize these distributions whose tangent sheaf and conormal sheaf
are arithmetically Cohen Macaulay (aCM), i.e. has no intermediate cohomology. In
addition, we study the properties of their singular schemes and we construct examples of
codimension one distributions on X based on a result of O. Calvo-Andrade, M. Corréa
and M. Jardim [5].

Fano threefolds with rank one Picard group have been classified by Iskovskih |17, 18]
and Mukai [23]. The indexr of X is the largest integer ¢x such that the canonical line
bundle Ky is divisible by tx in Pic(X). In [20], Kobayashi and Ochiai showed that the
index ¢y is at most dim(X) + 1 and tx = dim(X) + 1, if and only if X ~ P". Moreover,
tx = dim(X), if and only if X ~ Q" C P*"™! where Q" is a smooth quadric. By using this
result, when X is a Fano threefold, it can have index 1y = 4 (X ~P3), 1x = 3 (X ~ Q?),
1x =2 (X ~ X3 C P* is either a cubic hypersurface, or X ~ Xy, C P® is an intersection
of two quadric hypersurface, or X ~ X, C P(1,1,1,1,2) is a hypersurface of degree 4 in
the weighted projective space, or X ~ X5 C P(1,1,1,2,3) is a hypersurface of degree 6
in the weighted projective space) and 1y =1 (X ~ X535 C P? is either an intersection of
a quadric and a cubic, or X ~ X549 C IPS is an intersection of three quadrics, or X is an

intersection of a quadratic cone and a hypersurface of degree 4 in P(1,1,1,1, 1,2)).

L. Giraldo and A. J. Pan-Collantes showed in [I3] that the tangent sheaf of a foliation
of dimension 2 on P? splits if and only if its singular scheme Z is aCM. More recently
M. Corréa, M. Jardim and R. Vidal Martins extended this result in [7], showing that the
tangent sheaf of a codimension one locally free distribution on P™ splits as a sum of line

bundles if and only if its singular scheme is aCM. We will extend this result for the others
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Fano threefolds, see section [3.1] These theorems were the motivation for the main results
of this thesis, which we divided into three chapters.

In Chapter 1, we recall some definitions and preliminary results. We begin with rel-
evant concepts about vector bundles and sheaves. We also recall some concepts about
arithmetically Cohen-Macaulay and arithmetically Buchsbaum schemes, some concepts
about holomorphic distributions and finally we remember the definition of Weighted Pro-
jective Spaces. The main references used are [9], [10], [15], [16], [24], [25], and [26].

In Chapter 2, we present the classification of Fano threefold given by Iskovskih |17,
18] and Mukai [23]. We describe the most important facts, already known, about the
cohomology of cotangent sheaf to these varieties. Moreover, we calculate the cohomology
groups H? (X, Qg((t)), p,q € {1,2} and p # ¢, where X is a smooth weighted projective

complete intersection Fano threefold with Picard number equal to one.

In Chapter 3, we study the tangent and conormal sheaves of holomorphic distribu-
tions of codimension one and dimension one, respectively, and some algebro-geometric

properties of its singular schemes.

If tx = 3, we characterize when the tangent sheaf of a distribution of dimension 2 on

@Q? is split or spinor. More precisely, we prove the following result.

Theorem A: Let F be a distribution on Q® of codimension one such that the tangent
sheaf Tz 1s locally free. If Tz either splits as a sum of line bundles or is a spinor bundle,
then Z is arithmetically Buchsbaum, with h'(Q3, I7(r — 2)) = 1 being the only nonzero
intermediate cohomology for H'(Iz). Conversely, if Z is arithmetically Buchsbaum with
RY(Q3, Iz(r — 2)) = 1 being the only nonzero intermediate cohomology for H'(Iz) and
WA(T7(—2)) = h*(T#(—1—c1(T#))) = 0, then Tx either split or is a spinor bundle.

If tx = 2, we characterize when the tangent sheaf of a distribution of dimension 2 on
a smooth weighted projective complete intersection del Pezzo Fano threefold X, has no

intermediate cohomology. More precisely, we prove the following result.

Theorem B: Let . be a distribution of codimension one on a smooth weighted pro-
jective complete intersection del Pezzo Fano threefold X, such that the tangent sheaf T#
is locally free. If Tz has no intermediate cohomology, then HY (X, Iz(r +t)) = 0 for
t < —6 and t > 8. Conversely, if H'(X,Iz(r +t)) = 0 fort < —6 and t > 8, and
H*(X,T#(t)) =0 for t <8 and H'(X,T#(s)) = 0 for s # —t —1x — &1(T#), then Tz

has no intermediate cohomology.

If t.x = 1, we characterize when the tangent sheaf of a distribution of dimension 2
on a smooth weighted projective complete intersection prime Fano threefold X, has no

intermediate cohomology. More precisely, we prove the following result.

2



Theorem C: Let .F be a distribution of codimension one on a smooth weighted projec-
tive complete intersection prime Fano threefold X, such that the tangent sheaf T'z is locally
free. If Tz has no intermediate cohomology, then H (X, Iz(r +t)) = 0 for t < —4 and
t > 4. Conversely, if H'(X,Iz(r +1)) =0 fort < —4 and t > 4, and H*(X,T#(t)) = 0
fort <4 and H' (X, T#(s)) =0 for s # —t — 1x — c1(T'%), then T has no intermediate

cohomology.

M. Corréa, M. Jardim and R. Vidal Martins showed in [7] that the conormal sheaf
N7 of a foliation of dimension one on P" splits if and only if its singular scheme Z is
arithmetically Buchsbaum with h'(Zz(d — 1)) = 1 being the only nonzero intermediate
cohomology. We extend this result for the others Fano threefolds. More precisely, we have

the following results.

Theorem D: Let .# be a distribution of dimension one on a smooth weighted projective
complete intersection Fano threefold X, with index 1x € {1,2,3,4}. If N% is arithmetically
Cohen Macaulay, then Z is arithmetically Buchsbaum, with h'(X,Iz(r)) = 1 being the

only nonzero intermediate cohomology for H'(Iz).

Theorem E: Let .# be a distribution of dimension one on a smooth weighted pro-
jective complete intersection threefold X, with index vx € {1,2,3}. If Z is arithmetically
Buchsbaum with h'(X,I7(r)) = 1 being the only nonzero intermediate cohomology for
Hi(Iz), and h*(N%) = h*(N%(—ci(N%) — 1x)) = 0, then N% is arithmetically Cohen
Macaulay.



Chapter 1
Preliminaries

In this chapter, we recall some definitions and preliminary results. We begin with relevant
concepts about vector bundles and sheaves, followed by the Spinor bundle construction
on quadrics.

We also recall some concepts about arithmetically Cohen-Macaulay and arithmetically
Buchsbaum schemes, some concepts about holomorphic distributions and finally, we re-
member the definition of Weighted Projective Spaces. The main references used are [9],
[10], [15], [16], [24], [25], and [26].

1.1 Vector Bundles and Sheaves

Let X be a complex manifold of dimension n with Pic(X) ~ Z, and denote by Ox(1) the
ample generator of Pic(X).

We denote E(t) = E ®o, Ox(t) for t € Z when F is a vector bundle on X, and we
denote by E* the dual vector bundle of E. We denote by T'X the tangent bundle of X.
Thus, we have TX ~ (Q})*.

If F is a sheaf on X, we denote by h‘(X, F') the dimension of the complex vector space
H(X,F).

Remark 1.1. For any holomorpic vector bundle E of rank r,
r—k

k
/\E: /\E*@detE.

In particular, if F/ is a rank 2 reflexive sheaf, then

E*=FE® (det E)* and (det E)* = Opa(—c1(F)),

where ¢;(F) denotes the first Chern class of E.

4



Definition 1.2. A vector bundle F on X is called globally generated, if there exist global
holomorphic sections oy, ...,0n8 € HY(X, E) such that for all z € X, oy(x),...,on(z)

span F,. In other words, the sections o4, ..., oy induce a surjection OE’?N — F.

Proposition 1.3. [19] A compact manifold X is homogeneous if and only if its tangent
bundle is globally generated.

Remark 1.4. Since a quadric hypersurface Q* C P* is a homogeneous variety, T'Q? is

globally generated.

Remark 1.5. Any quotient of a globally generated sheaf has the same property. Any
tensor product of globally generated sheaves has the same property. The restriction of a

globally generated sheaf to a subscheme has the same property.

Definition 1.6. Let {aj,as,...,ax} be a basis of the vector space H(X, L) of global
sections of a line bundle L. A line bundle L is very ample if it satisfies the following two

conditions:
1. L has no base points, that is, ay, as, ..., ay have no common zeroes,

2. the morphism
o, X — pN-1

p = (a(p):aap) ... an(p))

is an embedding.
A line bundle L is ample if its suitable power L&™ m > 0, is very ample.
We have the following useful properties about sheaves.

Proposition 1.7. [75, Proposition 1.1] A coherent sheaf E on X is reflexive if and only
if it can be included into a locally free sheaf F with F/E torsion-free.

The dual of any coherent sheaf is reflexive [15], Corollary 1.2]

Proposition 1.8. [15, Proposition 2.6] The third Chern class cs(E) of a rank 2 reflezive
sheaf E on a smooth projective threefold satisfies c3(E) > 0, and it vanishes if and only if
E is locally free.

Definition 1.9. A bundle E is arithmetically Cohen Macaulay (aCM) if E has no inter-

mediate cohomology, i.e.

Hi(X,E(t)) =0 forall t€Z and 0< i< dim(X).



Theorem 1.10. |77/ [Griffiths Vanishing Theorem/ If E is ample, then
H(X,Kx ® S"E®det E) =0, for alli > 0,m >0,

where X 1s smooth irreducible complex projective variety, E is a vector bundle on X and

S™FE is the m — th symmetric power of E.

1.1.1 Spinor bundles on quadrics

We recall the definition and some properties of spinor bundles on Q™. For more details
see [25], 26].

Let Sy be the spinor variety which parametrizes the family of (k—1)-planes in Q*~! or
one of the two disjoint families of k-planes in Q?*. We have that dim(S;) = (k(k +1))/2,
Pic(Sy) = Z and hO(Sy, O(1)) = 2*.

When n = 2k — 1 is odd, consider for all x € Q*~! the variety

(P e Gr(k —1,2k) /2 € PF1 c Q* '}

This variety is isomorphic to Si_; and we denote it by (Sk_1),. Then we have a natural
embedding
(Sk-1)z ~= Sk.

Considering the linear spaces spanned by these varieties, we have a natural inclusion
H((Sk_1)z, O(1))* — HO(Sy, O(1))* for all x € @Q*~! and then an embedding

s: Q% 5 Gr(2t — 1,28 — 1),

in the Grassmannian of (28! — 1)-subspaces of P21,
It is well known that S} ~ P!, Sy ~ P3. The embedding s : Q* — Gr(1,3) corresponds

to a hyperplane section.

Definition 1.11. Let U be the universal bundle of the Grassmannian Gr(2¥1—1,2F—1).
We call s*U = S the spinor bundle on Q?*~!. Its rank is 2F~1.

The spinor bundle S on Q3 is just the restriction of the universal sub-bundle on the

4-dimensional quadric.

Remark 1.12. The spinor bundle on Q? is a globally generated vector bundle of rank 2,

by construction.

Theorem 1.13. [25, Theorem 2.1] The spinor bundle on Q* is stable.



We note that S is the unique indecomposable bundle of rank 2 on Q3 with ¢;(S) = —1
and c(S) =1, (see [3]).

Theorem 1.14. [25, Theorem 2.3] Let S a spinor bundle on Q3. Then:
1. HY(Q3, S(t)) =0 for i such that 0 < i < 3 for allt € Z;
2. HY(Q3 S(t) =0 fort <0, h%(Q3 S(1)) =4.
Theorem 1.15. Let S be the spinor bundle on Q®. We have a natural exact sequence:
0—=8—= 05— S(1) =0
and an isomorphism S* ~ S(1).

Proof: See [25], Theorem 2.8. 0

1.2 aCM and aB schemes

In this section we recall some concepts about arithmetically Cohen-Macaulay and arith-
metically Buchsbaum schemes.
A class of rings that is closed under the operations of localization, completion, adjoin-

ing polynomial and power series variables is the class of Cohen-Macaulay rings.

Definition 1.16. Let (A, m, k) be a Noetherian local ring and M a finite A-module.
M is called Cohen-Macaulay (CM) if M # 0 and depth M = dimM. If A is itself a

Cohen-Macaulay module, we say that A is a Cohen-Macaulay ring.

Definition 1.17. A Noetherian ring A is said to be a CM ring if A, is a CM local ring

for every maximal ideal m of A.

Definition 1.18. A closed subscheme Y C X is arithmetically Cohen-Macaulay (aCM)

if its homogeneous coordinate ring S(Y) = k[xzo, ..., x,]/I(Y) is a Cohen-Macaulay ring.

Equivalently, Y is aCM if HP(Oy) =0 for 1 < p < dim(Y) — 1 and H}(Zy) = 0 (cf.
[6]). For any coherent sheaf F we denote by H:(F) the sum &7 H'(F(t)). From the long

exact sequence of cohomology associated to the short exact sequence
0—=>Zy - Ox = Oy — 0,

one also deduces that Y is aCM if and only if HP(Zy) =0 for 1 < p < dim(Y).

The concept of a Buchsbaum ring is a continuation of the concept of a Cohen-Macaulay
ring. Let A be a local ring and let a C A be an ideal of A. Denote by U(a) the intersection
of the primary ideals q belonging to a with dim(q) = dim(a).
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Definition 1.19. Let A be a local ring of dimension d > 1 with maximal ideal m. The

following two conditions are equivalent:

(i) A is a Buchsbaum ring;

(ii) For each part ay,...,a; of a system of parameters of A we have

m-U((ay,...,a)) C (a,...,a;), forevery k=0,...,d—1.

Similarly, a closed subscheme in X is arithmetically Buchsbaum (aB) if its homoge-

neous coordinate ring is a Buchsbaum ring (see [31]).

1.3 Holomorphic Distributions

In this section we recall some concepts about holomorphic distributions.
Definition 1.20. Let X be a smooth complex manifold.

(1) A codimension k distribution .# on X is an exact sequence
F:0—Tr -5 TX T Ny —0, (1.1)

where Tz is a coherent sheaf of rank r4 := dim(X) — k, and Ng := TX/p(T7) is

a torsion free sheaf.

(ii) The sheaves Tz and Nz are called by the tangent and the normal sheaves of .7,

respectively.

(iii) Sing(#) = {zx € X|(N#), is not a free Ox, — module} is the singular set of the
distribution ..

A distribution .# is said to be locally free if Tz is a locally free sheaf.

By definition, Sing(.%#) is the singular set of the sheaf Ng. It is a closed analytic
subvariety of X of codimension at least one.

To simplify the notation, let us write Z := Sing(.#) and we suppose that
codim Sing(.%#) > 2.

Definition 1.21. A foliation is an integrable distribution, that is a distribution
F:0—Ty -5 TX "5 Ny — 0

whose tangent sheaf is closed under the Lie bracket of vector fields, i.e.
[0(T7),0(T7)] C ¢(T#). Clearly, every distribution of codimension dim(X) — 1 is inte-
grable.



When k£ = 1, the normal sheaf, being a torsion free sheaf of rank 1, must be a twisted
ideal sheaf I/ x ® det(TX) ® det(T'#)* of a closed subscheme Z C X of codimension at

least 2, which is precisely the singular scheme of .%.

1.3.1 Codimension one distributions and differential forms

We will consider codimension one distributions on a smooth weighted projective complete
intersection Fano threefold X with Pic(X) = Z. Thus, the sequence (1.1]) simplifies to

F 0 — Ty -2 TX 5 Iyx(r) — 0, (1.2)

where T'z is a rank 2 reflexive sheaf and r is integer such that r = ¢, (TX) — ¢1(T2).
Observe that Ny = I/x(r) where Z is the singular scheme of ..

A codimension one distribution on X can also be represented by a section
w € HY(Qx(r)),

given by the dual of the morphism 7 : X — Ngz. On the other hand, such section yields

a sheaf map w : Ox — QX (r). Taking duals, we get a cosection
w* (A (r)) =TX(—r) = Ox

whose image is the ideal sheaf I, x of the singular scheme. The kernel of w* is the tangent
sheaf .7 of the distribution twisted by O(—r).

Remark 1.22. From this point of view, the integrability condition is equivalent to
wAdw=0.

Definition 1.23. Let .# C T X be a codimension one distribution on a complex projective
manifold X, and consider the associated twisted 1—form wz € H°(X, Q% ® L), where
Lz = det(Ng). For every integer i > 0, there is a well defined twisted (2i + 1)-form

wg A (dwg)' € H (X, Q5 ® Lg(iﬂ))‘
The class of Z is the unique non negative integer k = k(%) € {0,..., LnT_lJ} such that
A (dw)* #0 and w A (dw)* = 0.

By Frobenius theorem, a codimension one distribution is a foliation if and only if
kE(F) = 0.



1.4 Weighted Projective Spaces

In this section we recall the definition of weighted projective spaces. We are considering

that Proj(S(ag, ...,a,)) has only closed points.

Let ag,...,a, be positive integers, and assume that ged(ao,...,a;,...a,) = 1 for
every i € {0,...,n}. Denote by S(ao,...,a,) the polynomial ring C[z, ..., z,] graded by
degz; = a;, and set P = P(aq, ...,a,) = Proj(S(ag,...,a,))-weighted projective space.
For each t € Z, let Op(t) be the Op-module associated to the graded S-module S(t).

In others words, consider the action in C™™ \ {0} :

C* x (C"*'\{0}) — C\ {0}
(N (20,--520)) > (A%2,...,A%2,)

We will denote a = (aq, ...,a,); |a] =ag+ ...+ ay,.

Definition 1.24. We defined the weighted projective space in weights ay, ..., a, by
B Cn+1 \ {0}

~Y

P =P =P(ag,...,a,)
Note that:
o Ifay=...=a, =1, then P =P¢;
e Sing (P)={(1:0:...:0),...,(0:...:0:1),}.

From the Euler sequence for weighted projective spaces ([10]), it follows that a nonzero

twisted 1-form w € H%(P, Q5(r)) can be written as:
N
w = ZFidzi, (1.3)
=0

with F; weighted homogeneous of degree (r — a;), and such that Zi\io a;z; F; = 0.
In [1], C. Araujo, M. Corréa, A. Massarenti showed the following result.

Theorem 1.25. [1, Theorem 1.4] Let X C P"™ be a smooth complete intersection. Then
1. HY(X,Q%(1)) =0

2. Let
Dy C P(HO(P", Q. (2)))

be the subvariety parametrizing distributions of class < k on P™, and let
Dy C P(H"(X,9Q%(2)))
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be the subset parametrizing distributions of class < k on X. Then there is a natural
restriction isomorphism H°(P", Q1.(2)) = HY(X,Q%(2)) that maps Dy, isomorphi-
cally onto Dy, for any k < {%J .
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Chapter 2

Fano threefolds with rank one Picard

group

Throughout this chapter, unless otherwise noted, X denotes a smooth weighted projective
complete intersection Fano threefold. We assume that the Picard Group of X is Z. As
usual, we denote the Picard number of X by p(X) = rank Pic(X).

2.1 Fano manifolds

In this section we recall some facts about Fano manifolds.

Definition 2.1. A compact complex manifold X is Fano if its anticanonical line bundle
Ox(—Kx) ~ \"TX is ample.

Smooth weighted projective complete intersection Fano threefold of Picard number
one group have been classified by Iskovskikh [17] 18] and Mukai [23]. They are:

(a) the projective space P?;

(b) a quadric hypersurface Q* = X, C P4;

(c) a cubic hypersurface X3 C P*;

(d) an intersection Xy of two quadric hypersurfaces in P%;

(e) a hypersurface of degree 4 in the weighted projective space X, C P(1,1,1,1,2);
(f) a hypersurface of degree 6 in the weighted projective space Xg C P(1,1,1,2,3);
(g) an intersection X, 3 of a quadric and a cubic in P?;

12



(h) an intersection Xy of three quadrics in PY;

(i) an intersection of a quadratic cone and a hypersurface of degree 4 in P(1,1,1,1,1,2).

A basic invariant of a Fano manifold is its index.

Definition 2.2. The indez of X is the maximal integer 1y > 0 dividing —Kx in Pic(X),
ie. —Kx =1x - H, with H ample.

Definition 2.3. We say that X C P(ay, ...,ay) is a smooth n-dimensional weighted com-
plete intersection in a weighted projective space, when X is the scheme-theoretic zero

locus of ¢ = N — n weighted homogeneous polynomials fi, ..., f. of degrees dy, ..., d..

By [10, Theorem 3.3.4],

KXgOX (zc:d]—zal> (21)

j=1 i=0

In particular, when X is Fano, its index is

N
Lx = ZCLZ‘ — dj. (22)

Let S; be the t-th graded part of S/(fi, ..., f.). By [8, Lemma 7.1],

H'(X,0x(t) =< 0 if 1<i<n-—1, (2.3)

S—H—LX if 7=n.

Theorem 2.4. [20)] Let X be Fano, dim(X) = n. Then the index tx is at most n + 1;
moreover, if tx =n+ 1, then X ~ P" and if L.x = n, then X is a quadric hypersurface
Qn C prtl

By Theorem above, a Fano threefold X can have tx € {1,2,3,4}. Then, tx = 4 implies
X = P3 while tx = 3, implies that X is a smooth quadric hypersurface Q3 in P*. In case,
tx = 2 the variety X is called a del Pezzo threefold, while 1x = 1, the variety X is called

a prime Fano threefold.

Remark 2.5. From of classification given by Iskovskikh and Mukai and using the formula
, we have that the varieties with tx = 2 are (c), (d), (e) and (f), while the varieties
with tx =1 are (g), (h) e (4).
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2.2 Cohomology of cotangent sheaf

The vanishing theorem for the cohomology of Q9(t) for projective spaces (Bott Theorem)
can be found in [4]. For quadric hypersurfaces X = Q" in P""! we use [29]. In [10],
Dolgachev generalized the Bott theorem on the cohomology of twisted sheaves of differ-
entials to the case of weighted projective spaces (Qp(t)). Finally, for a weighted complete
intersection we use a result due to Flenner [11].

Let p, q and t be integers, with p and ¢ non-negative. The values of h? (]P”, Qf. (t)) are
given by the Bott formula:

H”*q) (tgl) forp=0,0<¢g<nandt>q,
fort=0and 0 <p=¢q<mn,

(
(0 (1) = 4
(_t+q)<_t__1) forp=n,0<q¢g<nandt<q—n,
0

otherwise.

Throughout the work, we refer to this formula as classical Bott’s formula.
In [29], Snow showed a vanishing theorem for the cohomology of 9(t) for quadric hy-
persurfaces X = Q™ in P"*! and for a Grassmann manifold X = Gr(s, m) of s-dimensional

subspaces of C™.

Theorem 2.6. [20] [Bott’s formula for Quadric] Let X be a nonsingular quadric hyper-

surface of dimension n.
1. If n4+q<k<qgand k#0 and k # —n + 2q, then H?(X,Q4(k)) =0 for all p;
2. HP(X,Q%) # 0 if and only if p = q;

3. HP(X,Q%(—n+2q)) # 0 if and only if p=n — g;

B

. Af k> q, then HP(X,Q%(k)) # 0 if and only if p = 0;

O

Af k< —n+q, then HP(X,Q9(k)) # 0 if and only if p = n.

Let Y be an n-dimensional Fano manifold with p(Y) = 1, and denote by &y (1) the
ample generator of Pic(Y'). Let X € ’ﬁy(d)’ be a smooth divisor. We have the following

exact sequences:
0 = QLt—d) — QL) — QL()|x — 0, (2.4)

and
0= QC't—d) — QL@)|x — Q%) — 0. (2.5)

Let P = P(ay,...,ay) = Proj (S(ag,...,an)) be as in Section |1.4]
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Theorem 2.7. [10, Section 1.4] Let A = {ao,...,a,} be a finite set of positive integers
and |Al =ag+ ...+ a,. For allt € Z, follows that

(i) a;: S; — HOP, Op(t)) is bijective;
(11) H?(P, Op(t)) = 0 for p # 0,n;
(iii} Hn(]P), ﬁp(t)) ~ S,t,m‘.

In [10], Dolgachev generalized the Bott’s theorem for the cohomology of twisted sheaves
of differentials to the case of weighted projective spaces (Qp(t)) as follows:

Consider the sheaves of Op-modules Qp(t) defined in [I0, Section 2.1.5| for ¢,t € Z,
q > 0. If U C P denotes the smooth locus of P, and &y (t) is the line bundle obtained by
restricting Op(t) to U, then ﬁ%(t)w = Qf, ® Oy (t). The cohomology groups H? (P,ﬁ%(t))

are described in theorem below:

Theorem 2.8. [10, Section 2.3.2] Let h? (P,ﬁ%(t)) = dimH? (P, ﬁ%(t)). Then:

hO(P,ﬁﬁi(t)) =37, <(_1)i+q Z#J:idim@(St_aJ)>, where J C {0,...,N} and

ay = ey i}
- WO(BQL0) = 0 if t < min{Ycp 0, | # = q);
- W (B, () =0 if p ¢ {0,¢, N},
- hP(P,Qp(t)) =0 if t # 0 and p ¢ {0, N}.
In particular, if ¢ > 1, then
RO(P,Q4(t)) =0 for any t <q. (2.6)

When P(ay, . ..,ay) = PV is a projective space we have the classical Bott’s formulas.
Now assume that P has only isolated singularities, let d > 0 be such that Op(d) is a line
bundle generated by global sections, and X € |ﬁ’p(d)| a smooth hypersurface. We will use
the cohomology groups H? (IP’, ﬁﬁqp(t)) to compute some cohomology groups H? (X Q% (t))
Note that X is contained in the smooth locus of P, so we have an exact sequence as in

(2.5):
0— QL' t—d) — Qt)|x — QL) —0. (2.7)

Tensoring the sequence

0= Op(—d) —» Op — Ox —0.
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with the sheaf Qp(t), and noting that Qp(t) ® Op(—d) = Qp(t — d), we get an exact

sequence as in ([2.4]):
0— Qp(t—d) — Qp(t) — Qp(t)|x — 0. (2.8)

Now, let X be as in Definition 2.3] The next Theorem in terms of cohomology of X,

is due to Flenner:
Theorem 2.9. [1]], Satz 8.11] We have the following formulas for the cohomology of X :
-h(X, Q%) =1for0<qg<n,q#%.
- WP (X, Q%(t)) = 0 in the following cases
-0<p<n,p+q#n and either p# q ort #0;

-p+qg>nandt>q—p;
-p+qg<nandt<qg-—p.

2.2.1 Calculations of H?(X, QL)

In this subsection we present a machinery necessary for the proofs of results of the chapter
three.

By using the cohomology formulas above, we compute the cohomology groups
HP(X, Qg((t)), with p,q € {1,2} and p # ¢,

where X is each one of the varieties described in Section 2.1
For P? and @3, the classical Bott’s formula and the Bott’s formula for quadric, respec-
tively, are enough.

Thus, we begin the calculations considering X a cubic hypersurface.

(C) X3 C P4,
By using the sequences (2.4) and (2.5)), we have the exact sequences:

0 — Qp(t—3) — Q) = Qu(t)|x, — 0, (2.9)

0 = Ox,(t—3) = Qu(t)|lx, = Q,(t) — 0. (2.10)

Taking cohomology of the above exact sequences we get:

= HA(PY, Q1) — H2(PY,Qpa(t)|x,) — HP(PY,Qpu(t—3)) —---, (2.11)
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C = HAPY O ()|x) — HA (X3, Qpa()|x,) — H?(X3,0x,(t—3)) — . (2.12)

By classical Bott’s formula we have H?(P* QL,(t)) = H3(P*, QL.(t — 3)) = 0, for all
t. Thus, by sequence (2.11]) we obtain H?(P*, Q. (t)|x,) = 0. Now, taking cohomology of
the sequence

0 — Op4(t—6) — O]p4(t—3) — OX3(t—3) — 0,
we get the following exact sequence
c = H(PYOpa(t—3)) — H*(X3,0x,(t—3)) — H' (P, Ops(t —6)) — ---

Again by classical Bott’s formula we have that H3(P*, Ops(t — 3)) = 0, for all ¢ and
HYP*, Ops(t — 6)) = 0 if t > 1. Thus, follow that H3(X3,Ox,(t —3)) = 0if t > 1, and
therefore we conclude that, H?(Xs5, QY (t)) = 0 for ¢ > 1.

(d) X272 c Po.

Recall that X, is an intersection of two quadric hypersurfaces X, ~ Q% in P5. Thus,
Xo9 C Xy C P°. For X, C P° we use the Bott’s formula for quadric (Theorem [2.6)).
By using the sequences ([2.4) and (2.5 for X35 C X5, we have the exact sequences:

0 — Q-2 = Q1) = Q,O)x. — O, (2.13)

0 = Ox,,(t=2) = Qx,(t)]x,, = Qx,,(t) — 0. (2.14)

Taking cohomology of the above exact sequences we get:

C o H(X0,Q%, (1) = H*(Xo,Qk,(0)]x,.) — H* (X2, Q4 (t—2)) = -+, (2.15)

- = HA(X22,Qk,()|x,,) — H*(Xa2,Q%,,(t) — H*(Xap, Ox,,(t—2)) = ---.
(2.16)
By Theorem [2.6| we have H?(X,, Q% (t)) = 0, for all t and H?(X,, QY, (t —2)) = 0 for
t # 0. Thus, by sequence (€2.15)), we obtain H?(X, %, (t)|x,,) = 0 for t # 0. Now, taking

cohomology of the sequence
0 = Ox,(t—4) = Ox,(t—=2) = Ox,,(t—2) = 0,
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we get
- — HS(X27OX2(1:_2>> — Hg(XQ,Q,OXZQ(t—Z)) — H4(X2,OX2(t—4)) — e
Again by Theorem [2.6) we have that

H*(X5,Ox,(t —2)) =0 for all t, and H*(Xy, Ox,(t —4)) = 0if t > 0.

Then, H*(X55, Ox,,(t —2)) =0 for ¢ > 0, and therefore we conclude that
H2(X272, Qﬁ(zz(t)) =0 fort > 0.

(e) X4 C P(1,1,1,1,2) = P.

Recall that X is a hypersurface of degree 4 in the weighted projective space P(1,1,1,1, 2).
By using the sequences (2.8) and (2.7]), we have the exact sequences:

0= Qp(t—4) = Q) — Qp(t)|x, — 0. (2.17)

0 = Ox,(t—4) — Q(t)x, — 9%, (1) — 0. (2.18)

Taking cohomology of the above exact sequences we get:

C o AP, () — HAP,Op(t)|x,) — HAP,Qp(t—4)) — -, (2.19)

N HZ(X4,§IIP(t)|X4) — H*(X4,Q%,(t) = H)(Xy, Ox,(t—4)) = . (2.20)

By Theorem 2.8 we have H2(P,Qp(t)) = H3(P,Qp(t — 4)) = 0, for all ¢. Thus, by
sequence 1} we obtain H 2(]P’,ﬁ$(t)| x,) = 0. Now, taking cohomology of the sequence

0 = Op(t—8) — Op(t—4) — Ox,(t—4) — 0,

we get -+ — H3(P, Op(t —4)) — H3(Xy, Ox,(t —4)) — HYP,0p(t —8)) — ---
By Theorem [2.7 we have that H3(P, Op(t —4)) = 0 for all ¢, and H*(P, Op(t —8)) = 0
for t > 2. Then, H3(X,, Ox,(t —4)) = 0 for t > 2, and therefore we conclude that
H?(X4,Q%,(t)) =0 for ¢t > 2.
(f) X5 C P(1,1,1,2,3) = P.

Recall that X is a hypersurface of degree 6 in the weighted projective space P(1, 1,1, 2, 3).
By using the sequences (2.8) and (2.7]), we have the exact sequences:

0= Qp(t—6) = Qp(t) — Qp(t)x, — 0. (2.21)
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0 = Ox,(t—6) — Qp(t)lxy — 2, (1) — 0. (2.22)

Taking cohomology of the above exact sequences we get:

C o HAP,Op(t)) — H2(P,Qp(t)|x,) — HA(P,Qu(t—6)) — -, (2.23)

N Hz(X6,§IL(t)\X6) — H*(Xg, Q% (1) = H*(Xs, Ox,(t—6)) — ---. (2.24)

By Theorem we get H%]P’,ﬁ;b(t)) = H%P,ﬁé(t —6)) = 0, for all t. Thus, by
sequence we obtain that HQ(IP’,Q];(M xs) = 0. Now, taking cohomology of the
sequence

0 = Op(t—12) — Op(t—6) — Ox,(t—6) — 0,

we have - -+ — H3(P, Op(t —6)) — H3(Xs, Ox,(t—6)) — HYP, Op(t —12)) — ---
By Theorem 2.7 we have that H3(P, Op(t —4)) = 0 for all t, and H*(P, Op(t—12)) =0
for t > 4. Thus, follow that H3(Xg, Ox,(t —6)) = 0 for t > 4, and therefore we conclude
that H*(Xe, U, (t)) =0 for t > 4.
(8) X235 C P

Recall that X, 3 is an intersection of a quadric X, and a cubic X3 in P°.
We have Xp3 ~ Xo N X3 C Xy C PP and Xp3 ~ Xo N X3 C X3 C P5. Let’s consider
the two cases:
(0) Xo3 C Xy CP°, (o) Xy3 C X3 CP°.

(o) For X, C P° we use the Bott’s formula for quadric (Theorem [2.6). By using the
sequences (2.4]) and (2.5)) for Xy 5 C X5, we have the exact sequences:

0 — Q% (t-3) = Q1) = Q% O)|x, — O, (2.25)

0 = Ox,,(t—3) = Qx,()|x,; = O, () = 0. (2.26)

Taking cohomology of the above exact sequences we get:

C = H(X0,Q%, (1) = H?(Xa,QX,(0)]x,s) — H* (X2, Q4 (t=3)) — -+, (2.27)

- = HA(Xos, 0%, () x,5) = H* (X3, Q,, (1) = H’(Xa3,0x,,(t=3)) = ---.
(2.28)

19



By Theorem [2.6| we have H?(X,, Q% (t)) = 0 for all t and H*(X,, Q% (t —3)) = 0 for
t # 1. Thus, by sequence (2.27) we obtain that H?(X, Q% (t)|x,,) = 0 for ¢t # 1. Now,
taking cohomology of the sequence

0 = Ox,(t—6) = Ox,(t—=3) = Ox,,(t—3) = 0,

we have
- — HS(X27OX2(1:_3)> — Hg(X27370X2’3(t_3)) — H4(X2,OX2(t—6)) —
Again by Theorem [2.6] we get that

H?*(X,5,Ox,(t —3)) =0 for all t, and H*(X,, Ox,(t —6)) = 0 for t > 2.

Then we get H*(X,3,0x,,(t —3)) = 0 for t > 2, and therefore we conclude that
H2(X2,3,Q§(23(t)) =0 for t > 2.

(ee) Since we don’t have a Bott’s formula for a cubic hypersurface, we first calculate
the cohomology considering X3 C P° and after this, we will calculate the cohomology
considering Xy 3 C X3.

By using the sequences and for X3 C P°, we have the exact sequences:

0 — st —3) — Qs(t) — Qs(t)|x, — 0, (2.29)

0 = Ox,(t—3) = Qs(t)|lx, — Qx,(t) — 0. (2.30)

Taking cohomology of the above exact sequences we get:

C = HA(PP, Qs (1)) — H*(P°,Qps(t)|x,) — HP(P®,Qps(t—3)) — -, (2.31)

C = HP (X, Qs (8)|x,) = H?(X5,Q%,(0) — H*(X3,0x,(t—3)) — . (2.32)

By classical Bott’s formula we have H?(P°, Qb (t)) = H*(P°, Qfs(t — 3)) = 0, for
all t. Thus, by sequence (2.31)) we obtain H?(P°, Qs (t)|x,) = 0, for all . Now, taking
cohomology of the sequence

0 = Ops(t—6) — Ops(t—3) = Ox,(t—3) — 0,

we have -+ — H*(P5, QL (t—3)) — H3(X3,0x,(t—3)) — H*P% Ops(t—6)) — ---.

Again by classical Bott’s formula we get H3(IP°, Ops (t — 3)) = H*(P%, Ops(t — 6)) = 0,
for all ¢. Then, H3(X3,Ox,(t — 3)) = 0, for all ¢ and by sequence we obtain
H?(X3,9Q%,(t)) =0, for all ¢.
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Now, by using the sequences (2.4 and (2.5)) for X, 3 C X3, we have the exact sequences:

0 = Q% (t—2) = Q%) = Q% O)]x,s — 0, (2.33)

0 = Ox,5(t=2) = Qx,(t)]x,; = Qx,,(t) — 0. (2.34)
Consider the following piece of the long exact cohomology sequence obtained of (2.33)):

C o HY(X5,Q%,(1) = H*(X3,QX,(0)]x,,) — H (X3 Q% (t—2) = ---. (2.35)

By development of the first part, we conclude that H*(X3, QX (t)) = 0, for all . We
will calculate H?(Xj3, QY, (t — 2)). Consider the exact sequences:

0 — Qbs(t—5) = Qbs(t—2) = Qbs(t—2)|x, — 0, (2.36)

0 = Ox,(t—5) = st —2)|x, = Qx,(t—2) — 0. (2.37)

Taking cohomology of the above exact sequences we get:

C = HA(P? Qs (t—2)) — HP(P°, Qs (t—2)|x,) — HYP°, Qps(t—5)) — -+, (2.38)

C = HA(XG, Qs (t — 2)|x,) = HP(X5,Q%,(t—2)) = HY(X3,0x,(t—5)) — .
(2.39)
By classical Bott’s formula we have H3(P°, Q;(t — 2)) = H*(P°, Qps(t — 5)) = 0, for

all t.
Thus, by sequence we obtain that H3(P% QL (¢t — 2)|x,) = 0, for all ¢. Now,

taking cohomology of the sequence
0 — O[[D5(t — 8) — Op&')(t — 5) — OX3(t — 5) — 0,

we have - -+ — HY(P5 Ops(t—5)) — H*(X3,0x,(t—5)) — H>(P5 Ops(t—8)) — ---.

By classical Bott’s formula we have
H*(IP°, Ops (t — 5)) = 0, for all t and H(P®, Ops(t — 8)) = 0, for t > 2.

Then, H*(X3,0Ox,(t —5)) = 0 for ¢ > 2. Returning in the sequence (2.39) we get
H?(X3,Q%,(t —2)) = 0 for t > 2. Returning in the sequence (2.35) we have

H?(X3,Q%,(t)|x,,) = 0 for ¢t > 2.
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And finally, consider the following piece of the long exact cohomology sequence obtained

of [EZ3):

o (X O, (D) = HA(Xos O, (1) = HY(Xa5, Oxy(t—2)) — -+
(2.40)
By formula (2.3) we have H?*(X, 3, Ox,,(t —2)) = 0 for ¢t > 3. Therefore we conclude
that H%(Xa3, Qx;,(t) = 0 for ¢ > 3.
(h) X27272 C PS.

Recall that X4 is an intersection of three quadrics in PS. Thus,
X27272 C X272 C Xy C IPS.

For X, C PY we use the Bott’s formula for quadric (Theorem . We first calculate
the cohomology considering X,o C X, and after this, we will calculate the cohomology
considering X599 C Xy 9.

By using the sequences and for Xy C Xy, we have the exact sequences:

0 — Q. (t—2) = Q1) = A, O)|x. — O, (2.41)

0 = Ox,,(t—2) = Qx,(0)]x,, = Qx,,(t) — 0. (2.42)

Taking cohomology of the above exact sequences we get:

- = HZ(XQ,Qﬁ(Q(t)) — H2(X2,QA1X2(t>’X2’2) — H3(X2,Q§(2(t—2)) — -, (2.43)

© = HA( X2, Q%,()|x,,) — H*(Xa2,90%,,(1) — H*(Xaz,Ox,,(t—2)) = ---.
(2.44)

By Theoremwe have that H?(X,, QX (t)) = H*(Xs, Qk,(t—2)) = 0, for all t. Thus,
by sequence we obtain H?(X,, Q. (t)|x,,) = 0, for all t. Now, taking cohomology
of the sequence

0 = Ox,(t—4) = Ox,(t—=2) = Ox,,(t—2) = 0,

we have
- = H3(X5,0x,(t—2)) — H3(Xs2,0x,,(t—2)) = H*(X,,Ox,(t—4)) — - .
Again by Theorem 2.6 we have that H3(X,, Ox,(t —2)) = H*(Xy, Ox,(t—4)) = 0, for
all t. Thus, we get H?(X55, Ox,,(t —2)) = 0, for all ¢, and by sequence , we have
that H?*(Xy9,QY,,(t)) =0, for all .
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Now, using the sequences (2.4) and ([2.5)) for X559 C X5, we have the exact sequences:

0 = Q,,(t—2) = Q,, () = QX,,[)]x,,, — 0, (2.45)

0 = Oxyon(t—2) = O, ,(Dx,0, = Qx,,, 1) = 0. (2.46)

Consider the following piece of the long exact cohomology sequence obtained of (2.45)):

= H(X,Q%,, (1) = H*(Xa2,Qk,,(0)x,0,) = H*(X22,0%,,(t—=2)) = ---.
(2.47)

By development above, we conclude that H?(Xy, QY, ,(t)) = 0, for all t. We compute
H*(Xa,Q, ,(t —2)). Consider the exact sequences:

0 — Qg t—4) — Q-2 = Q(t—2)|x, — 0, (2.48)

0 = Ox,,(t—4) = Qx,(t—2)|x,, = Q,,(t—-2) = 0. (2.49)

Taking cohomology of the above exact sequences we get:

C o HY(Xy, Q% (1—2)) = H3 (X, Q4 (t—2)|x,) — HY Xy, Q4 (t—4)) = -,
(2.50)

- = H(Xa, U, (t-2)|x,,) = H*(Xap,Q,,(—2)) = H'(Xp2,0x,,(t—4)) — -
(2.51)
By Bott’s formula for quadric (Theorem [2.6) we have H?(X,, QY (t —2)) = 0 for all

t, and H*(X,, Q,(t —4)) = 0 for ¢ # 1. Thus, by sequence we have

H?(X5,Q%,(t — 2)|x,,) =0 for t # 1.
Now, taking cohomology of the sequence
0 = Ox,(t—6) = Ox,(t—4) = Ox,,(t—4) — 0,

we have
- — H4(X2,OX2(t—4)> — H4(X2,2,0X272(t—4)) — H5(X2,OX2(t—6)) — e

By Bott’s formula for quadric we have
H*(X,,O0x,(t —4)) =0 for all t, and H"(Xy, Ox,(t —6)) =0 for t > 1.
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Thus, we obtain that H*(Xs2, Ox,,(t —4)) = 0 for ¢ > 1. Returning in the sequence
(2.51) we get H?(Xa., ka(t —2)) = 0 for t > 1. Returning in the sequence we
get H*(Xy9,QY,,(t)]x,,,) = 0 for ¢ > 1. And finally, consider the following piece of the
long exact cohomology sequence obtained of :

e HZ(X2,2,2>Q.lXQ,g(t)’Xz,z,z) - HQ(X2,2,2,Q§<2,2,2(15>> - HS(X2,2,2>OX2,2,2<t_2)) —

(2.52)
By formula (2.3) we have that H*(X55, Ox,,,(t —2)) = 0 for ¢t > 3. Therefore, we
conclude that H?(Xy, 0, , . (t)) =0 for t > 3.

()Y =ConX,CP(1,1,1,1,1,2) = P.

Recall that Y is an intersection of a quadratic cone and a hypersurface of degree 4 in
the weighted projective space P(1,1,1,1,1,2). Thus, we have that Y = Con X, C Cy C P
and Y = Cy N Xy C Xy C P. We first calculate the cohomology considering Cy C P and
after this, we will calculate the cohomology considering Y C (5. Similarly, we calculate
the cohomology considering X; C P and after this, we will calculate the cohomology

considering Y C Xj.
By using the sequences (2.8]) and (2.7)) for Co C P, we have the exact sequences:

0— Qp(t—2) = Qlt) = ()|, — 0. (2.53)

0 = O0,(t—2) = Wt)|e, = Q) — 0. (2.54)

Taking cohomology of the above exact sequences we get:

C o AP, 0() — HAP,Q(t)|e,) — H3(P,Qu(t—2)) — -, (2.55)

- = HQ(Cg,ﬁ];(t)]CQ) — H*(Cy,Q, () — H*(Co, Oc,(t—2)) — ---. (2.56)

By Theorem [2.8/ we have that HQ(P,Q;D(t)) = HS(]P’,Q;(t —2)) =0, for all ¢. Thus, by
sequence 1) we obtain H Q(P,ﬁ];(t)\cz) = 0, for all . Now, taking cohomology of the

sequence
0 = Op(t—4) — Op(t—2) — Oc,(t—2) — 0,
we have - -+ — H3(P, Op(t —2)) — H3(Cy, Oc,(t —2)) — HYP,0p(t —4)) — ---.
By Theorem [2.7| we get that H*(P, Op(t — 2)) = H*(P, Op(t — 4)) = 0, for all ¢. Thus,
we have H3(Cy, Oc,(t — 2)) = 0 for all ¢, and therefore, H3(Cy, Oc,(t —2)) = 0 for all .
Returning in the sequence we get H?(Cy,Qg, (t)) = 0 for all ¢.
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Now, by using the sequences ([2.4)) and (2.5)) for Y C C5, we have the exact sequences:

0 = Qo (t—4) = Q4 = Q) — 0, (2.57)

0 = Oy(t—4) = QrO)]y — Qp(t) — 0. (2.58)
Consider the following piece of the long exact cohomology sequence obtained of (2.57)):

C = HY(Co, 00, (1) = H*(Co,Q0,(t)ly) = H*(Co,Qp,(t—4)) — -+, (2.59)

By development of the first part, we conclude that H?(Cy, Q¢ (t)) = 0, for all . We
will calculate H?(Cy, Q¢ (t —4)). Consider the exact sequences:

0 = Opt—6) = Qplt—4) = Ot —4)|e, — 0, (2.60)

0 = Og(t—6) — Ut —4)|e, — Qb (t—4) = 0. (2.61)

Taking cohomology of the above exact sequences we get:

C o P, —4) = HAP,Qu(t —4)|e,) — HYP,Qp(t—6)) — -+, (2.62)

= H3(Cy, Qp(t—4)|c,) — H*(Co, Qb (1—4)) — HY(Cy, Oc, (t—6)) — -+ . (2.63)

By Theorem [2.8 we have that H3(]P’,ﬁ];(t —4)) = H4(P,§$(t —6)) = 0, for all ¢. Thus,
by sequence (2.62)) we get H3(P, ﬁé(t —4)|¢,) = 0, for all t. Now, taking cohomology of

the sequence
0 — Op(t—8) — Op(t—6) = Oc,(t—6) — 0,
we have --- — H*(P,Op(t —6)) — H*(Cs, Oc,(t —6)) — H>(P,Op(t — 8)).

By Theorem [2.7| we have H*(P, Op(t — 6)) = 0, for all t and H?(P, Op(t — 8)) = 0
for t > 1. Thus we get H*(Cy, Oc,(t — 6)) = 0 for ¢ > 1. Returning in the sequence
(2.63) we get H*(Cs,Q, (t —4)) = 0 for ¢ > 1. Returning in the sequence we get
H?(C4,Q¢,(t)]y) = 0 for t > 1. And finally, consider the following piece of the long exact
cohomology sequence obtained of :

o BPYV.QL () - HAY,QU0) —» HY,0p(t—4) — . (264)

By formula (2.3) we have that H*(Y, Oy (t —4)) = 0 for t > 5. Then, H*(Y,Q4.(t)) =0
for t > 5.
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By using the sequences (2.8)) and (2.7)) for X, C P, we have the exact sequences:

0 — Qp(t—4) = Qu(t) = l)x, — 0, (2.65)

0 = Ox,(t—4) = Q(t)x, — 2, (1) — 0. (2.66)

Taking cohomology of the above exact sequences we get:

C o HAP,Op(t)) — H2(P,Qp(t)|x,) — HA(P,Qu(t—4)) — - (2.67)

- = HZ(X4,§$(25)]X4) — H2(X4,Q}(4(t)) — H3(Xy4,Ox,(t—4)) — . (2.68)

By Theorem [2.8/ we have that HQ(P,ﬁﬂlm(t)) = H?’(IP’,Q;(t —4)) =0, for all ¢. Thus, by
sequence (2.67) we get H?( Xy, ﬁ];(t)bg) = 0, Vt. Now, taking cohomology of the sequence

0 — Op(t—S) — Op(t—4) — 0X4(t—4) — 0,

we have -+ — H3(P,Op(t —4)) — H3*(X4,Ox,(t—4)) — HYP,Op(t—18)) — --- .
By Theorem 2.7 we have H3(P, Op(t — 4)) = H4(P, Op(t — 8)) = 0, for all ¢. Thus, we
have H?(Xy4, Ox,(t —4)) = 0 for all ¢, and therefore, H*(Xy, Q%,(t)) = 0, for all ¢.

Now, using the sequences (2.4)) and (2.5 for Y C X, we have the exact sequences:

0 — Q% (t—2) — Q%) — Q@) — 0, (2.69)

0 — Oy(t—2) = Q% ()ly — Qp(t) — 0. (2.70)
Consider the following piece of the long exact cohomology sequence obtained of (2.69):

C = HA(Xy, Q1) — H* (X4, Q%,()y) = H?(X4,Q%,(t—2) — . (2.71)

By development of the first part, we conclude that H?*(X,,Q%,(t)) = 0. We will
calculate H? (X4, Q% (t —2)). Consider the exact sequences:

0 = Q(t—6) — Qpt—2) = Qp(t—2)|x, — 0, (2.72)

1

0 — Ox,(t—6) = Q(t—2)|x, = Q,(t—2) — 0. (2.73)
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Taking cohomology of the above exact sequences we get:

C o P, —2)) — HYP, 0t —2)|x,) — HYP,Qp(t—6)) — -, (2.74)

C o HAX, Dt —2)|x,) = HY(Xy, Ok, (t—2)) = HYX4,Ox,(t—6)) — ---.
(2.75)
By Theorem %Efe have that H3(]P’,ﬁ];(t —2)) = H4(P,§$(t —6)) = 0, for all ¢. Thus,
by sequence (2.74)), H3(]P’,ﬁﬂlm(t —2)|x,)) = 0, for all £. Now, taking cohomology of the

sequence

0 — Op(t—10) — Op(t—6) — Ox,(t—6) — 0,
we have - -+ — HYP,Op(t—6)) — H*(X,,0x,(t—6)) — H°(P,Op(t—10)) — ---
By Theorem [2.7] we have H*(P, Op(t — 6)) = 0, for all ¢ and H?(P, Op(t — 10)) = 0
for ¢ > 3. Thus, we get H*(X4, Ox,(t —6)) = 0 for ¢ > 3. Returning in the sequence
(2.75) we get H?(X4,QX,(t —2)) = 0 for t > 3. Returning in the sequence we get
H?*(X4, Q% (t)]y) = 0 for ¢ > 3. And finally, consider the following piece of the long exact
cohomology sequence obtained of :

- = HQ(Y,Q§(4(t)\y) — H*(Y,O5(t)) — H(Y,Op(t—2) — ---. (2.76)

By formula (2.3)) we have that H3(Y, Oy (t —2)) = 0 for ¢t > 3. Therefore, we conclude
that H%(Y,3-(t)) = 0 for t > 3.

Proposition 2.10. The above computations are summarized in the following table:

X x| HA(X, Q4 () t

X3 2 0 t>1

Xo9 2 0 t>0

Xy 2 0 t>2

X 2 0 t>4

Xosz | 1 0 t>2if Xo3 C Xy and t > 3if Xo3 C X3
Xooo | 1 0 t>3

Y 1 0 t>5ifYCCyandt>3ifY C Xy

Table 2.1: Values of ¢ for which H?*(X, Q% (¢)) = 0.
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2.2.2 Calculations of H'(X, %)

As in the previous subsection, we will calculate the groups of cohomology H'(X, Q%) for
each one of the varieties described in Section except for P? and Q3.

Then, we start the calculations considering X a cubic hypersurface.
(C) X3 C P4.

By using the sequences (2.4)) and (2.5)), we have the exact sequences:

0 — Q2.(t—3) — Q2(t) — Bu(t)|x, — 0, (2.77)

0 = Q,(t—3) = Qut)x, = O, () — 0. (2.78)

Taking cohomology of the above exact sequences we get:

= HY P, QL () — H'(PYQ%(t)|x,) — H*(P,Q2.(t—3)) —---, (2.79)

c = HY(X5, Q0 (t)|x,) = H?(X5,0%,(0) — H*(X3,Q%,(t—3) — . (2.80)
By classical Bott’s formula we have that
HY(P* Q2.(t)) = 0 for all t, and H*(P* Q2,(t —3)) = 0 for ¢ # 3.

Thus, by sequence (2.79) we obtain H'(P* Q2,(t)|x,) = 0 for ¢ # 3. By subsection

we have that H?*(X3, QY, (t)) = 0 for t > 1.
Thus, we get H*(X3,Q%,(t — 3)) = 0 for t > 4. Returning in the sequence (2.80]), we
have that H'(X3,Q%,(t)) = 0 for ¢t > 4.

(d) Xp0 C PP
By using the sequences (2.4) and (2.5)), we have the exact sequences:

0 — Qf:(t—2) = Qs(t) = Ws(t)|x,, — 0, (2.81)

0 = Q,,(t-2) = s(t)lx,, = OF,, () = 0. (2.82)

Taking cohomology of the above exact sequences we get:

c = H' (P, 05 (1) — H'(P®,s(t)]xs0) — H(P°,Bs(t—2)) —---, (2.83)
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- — H1<X272,Q]%>5(t)|x2’2) — HQ(XQ’Q,QE(QQ(t)) — H2(X2,2,QA1X—2’2(t—2)) — e
(2.84)

By classical Bott’s formula we have that
H'(P° Q25(t)) = 0 for all t, and H*(P°, Qs (t — 2)) = 0 for t # 2.

Thus, by sequence (2.83) we get H'(P®, Q2;(t)|x,,) = 0 for t # 2. By subsection m
we have that H?(Xy,QY, ,(t)) = 0 for t > 0. Then, we get H*(Xa», Q, ,(t —2)) = 0 for
t > 2. Returning in the sequence (2.84), we obtain H'(Xa2, %, ,(t)) = 0 for ¢ > 2.

(e) X4 CP(1,1,1,1,2) = P.

By using the sequences (2.8) and (2.7]), we have the exact sequences:

0= Qo(t—4) = o) — Do(t)|x, — 0. (2.85)

0 = Oy (t—4) = Q(t)x, = 9%, (1) — 0. (2.86)

Taking cohomology of the above exact sequences we get:

C o HYP,O2(t) — HY(P,Q5(t)|x,) — HAP, ot —4)) — -, (2.87)

- = Hl(X4,§;(t)|X4) — Hl(X4,Q_2X4(t)) — HQ(X4,Q§(4(t—4)) — -+ . (2.88)

By Theorem 2.8 we have that H'(P, Q2(t)) = 0 for all ¢, and H2(P, Qp(t — 4)) = 0 for
t # 4. Thus, by sequence we obtain Hl(IP’,ﬁ;(t)|X4) = 0, for ¢t # 4. By subsection
we have that H?(Xy, QY (t)) = 0 for t > 2. Thus, we get H*(X,, Q% (t —4)) =0
for t > 6. Returning in the sequence (2.8)), we obtain that H'(Xy, Q% (t)) = 0 for t > 6.

(f) X¢ CP(1,1,1,2,3) =P.
By using the sequences (2.8)) and , we have the exact sequences:

0= ot —6) — Qa(t) = Qa(t)|x, — 0. (2.89)

0 =0y, (t—6) = D(t)x, = % (1) — 0. (2.90)
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Taking cohomology of the above exact sequences we get:

C o HYP,O2() — HY(P,05(t)|x,) — HXP,Q(t—6)) — -, (2.91)

N Hl(XG,Q;(tﬂXG) — H'(Xg, 0%, (1) = H*(Xe, Qk,(t—6)) — ---. (2.92)

By Theorem [2.8 we have that Hl(P,ﬁ;(t)) = 0 for all £, and H2(P,Q(t — 6)) = 0
for t # 6. Thus, by sequence , we get Hl(]P’,ﬁ;(t)\XG) = 0, for ¢ # 6. By subsection
we have that H?(Xs, QY (t)) = 0 for t > 4. Then, we get H*(Xg, Q, (t—6)) = 0 for
t > 10. Returning in the sequence , we obtain that H'(Xg, Q%,(t)) = 0 for ¢ > 10.

(g) Xo3 C P°.

As in the previous subsection, we will consider two cases.

(.) X273 C Xy C IP5.
For X, C P5 we use the Bott’s formula for quadric (Theorem . by using the
sequences (2.4]) and (2.5)) for X5 3 C X5, we have the exact sequences:

0—Q%,(t—3) = Q%) — Q% #)|x, — 0. (2.93)

0 = Q%,,(t=3) = Q%,O)|x; — 9%,,0) — 0 (2.94)

Taking cohomology of the above exact sequences we get:

© = HY(X5,0%,(1) = H' (X2, 0%, (0)]x,s) — H* (X2, Q%,(t—3)) — -+, (2.95)

C = HY (X3, 9%, (D)x,,) = H' (Xa3,9%,,(0) = H*(Xa3,Qk,,(t—=3)) — -
(2.96)
By Theorem [2.6| we get H'(X,,Q%,(t)) = 0 for all ¢, and H*(X,,Q%,(t — 3)) = 0 for
t # 3. Thus, by sequence we obtain H'(X,, Q%, (t)]x,,) = 0, for t # 3. By subsection
we have that H%(X, 3, ka (t)) = 0 for ¢t > 2. Thus, we get H*(X23, ka (t—3)) =0
for t > 5. Returning in the sequence , we obtain that H'(Xy3, 0%, ,(t)) = 0for t > 5.
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(e0) Xo3 C X3 C P

Since we don’t have a Bott’s formula for a cubic hypersurface, we first calculate the
cohomology considering X3 C P? and after this, we will calculate the cohomology consid-
ering Xo3 C Xj.

By using the sequences and for X3 C P°, we have the exact sequences:

0 = Qfs(t—3) = Q%:(t) — Qs(t)|x, — 0, (2.97)

0 — Q=3 = Wsl(t)x, > O, (1) — 0. (2.98)

Taking cohomology of the above exact sequences we get:

= HY(P, Q1) — HY(P°, Q8 t)|x,) — H*(P°,Q%(t—3) — ---, (2.99)

C = HY (X3, 03 (1)|x,) — Hl(X3,Q§(3(t)) — H2(X3,Q§(3(t —3)) — ---. (2.100)
By classical Bott’s formula we have that
HY(P°, Q25(t)) = 0 for all t, and H*(P®, Q25 (t — 3)) = 0 for t # 3.

Thus, by sequence (2.99) we obtain H*(P%, Q2;(¢)|x,) = 0 for ¢ # 3. We will calculate
H?(X3,Q%,(t — 3)). Consider the exact sequences:

0 = QUs(t—6) = QL(t—3) = Qb(t—3)|x, — 0, (2.101)

0 = Ox,(t—6) = Qs(t—3)|x, — Q,(t—3) — 0. (2.102)
Taking cohomology of the above exact sequences we get:

C = HA(PP, Qs (t —3)) — H*(P°, Qps(t —3)|x,) — HA(P°,Qps(t —6)) — -,
(2.103)

C = HPA( X5, Qs (t = 3)|x,) = H?(X5,Q%,(t—3)) = H*(X3,0x,(t—6)) — .
(2.104)
By classical Bott’s formula we get H*(P°, Qg (t — 3)) = H?*(P°, Qs (¢t — 6)) = 0, for all
t. Thus, by sequence we get H?(P?, Qs (t — 3)|x,) = 0, for all ¢.
Now, taking cohomology of the sequence

0 = Ops(t—9) — Ops(t—6) — Ox,(t—6) — 0,
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we have - -+ — H3(P® Ops(t—6)) — H3*(X3,0x,(t—6)) — H*(P5 Ops(t—9)) — ---

By classical Bott’s formula we have H?(P®, Ops (t — 6)) = H*(P°, Ops(t — 9)) = 0, for
all t. Thus, we get H?(X3,Ox,(t — 6)) = 0, for all {. Returning in the sequence ,
we get H?(X3,QY,(t —3)) =0, for all ¢ and returning in the sequence , we obtain
H'(X3,9%,(t)) =0 for t # 3.

Now, by using the sequences (2.4 and (2.5)) for X, 3 C X3, we have the exact sequences:

0 — Q% (t—2) = Q% (1) = %, (D]xs — O, (2.105)

0 — QA1X2,3 (t o 2) - Q%(B (t) |X2,3 — Q%{QVS (t) — O (2106)
Consider the following piece of the long exact cohomology sequence obtained of ([2.105)):

C = HY(X3,0%,(1) = H'(X3,Q%,()]x..) = H(X3,0%,(6—2)) — -+ . (2.107)

By development of the first part, we conclude that H'(X3, Q% (t)) = 0 for ¢ # 3. We

will calculate H?(Xj3, Q%, (t — 2)). Consider the exact sequences:

0 = Q%(t—5) = Q%(t—2) = Q%(t—2)|x, — 0, (2.108)

0 = Q\,(t—5) = Qs(t—2)x, & O, (t—2) — 0. (2.109)

Taking cohomology of the above exact sequences we get:

C = HA(PP,Q2:(t—5)) — H*(P°,Q3s(t —2)|x,) — H*(P°,Q2:(t—5)) — -,
(2.110)

C o HA(X5, Qs (t = 2)|x,) = H?(X5,0%,(—2)) — H*(X3,Q%,(t—-5) = ---.
(2.111)

By classical Bott’s formula we have
H*(P° Q25 (t — 5)) for t # 5, and H*(P°, Q25(t — 5)) = 0 for all ¢.

Thus, by sequence (2.110) we obtain that H*(P® Q2;(t — 2)|x,) = 0 for ¢ # 5.
We will calculate H?(X3, QY (t — 5)). Consider the exact sequences:

0 — Qbs(t—8) = Qbs(t—5) = Qbs(t—5)|x, — 0, (2.112)
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0 = Ox,(t—8) = Us(t—5)|x, — Qk,(t—5) — 0. (2.113)

Taking cohomology of the above exact sequences we get:

= HA(PP,Qps(t —5)) — H*(P°, Qbs(t —5)|x,) — HY(P°,Qps(t —8)) — -+,
(2.114)

C = HA(XG, Qs (t = 5)|x,) — HP(X5,Q%,(t—5)) — HY(X3,0x,(t—8)) — .
(2.115)
By classical Bott’s formula we get H?(P°, Qg (t —5)) = H*(P°, Qs (t — 8)) = 0, for all
t. Thus, by sequence we get H*(P?, Qs (t — 5)|x,) = 0, for all ¢.
Now, taking cohomology of the sequence

0 — O]p5(t—11) — O[p5(t—8) — OXS(t—8) — 0,

we have
R H4(]P)5,O]p5(t—8)) — H4(X3,(9X3(t—8)) — H5(]P)5,OPS(t—].1)) — .

By classical Bott’s formula we have
H*(P°, Ops (t — 8)) = 0 for all ¢, and H?(IP®, Ops(t — 11)) = 0 for ¢t > 5.

Then, we obtain H*(X3,Ox,(t —8)) = 0 for ¢ > 5. Returning in the sequence
(2.115), we get H3(X3, Q% (t —5)) = 0 for ¢ > 5. Returning in the sequence (2.111)),
we get H?(X3,0%,(t —2)) = 0 for t > 5. Returning in the sequence (2.107), we have
H'(X3,0%,(t)|x,,) = 0 for t > 5. And finally, consider the following piece of the long
exact cohomology sequence obtained of :

C = HY (X3, 9%, (D)x,,) = H'(Xa3,9%,,(0) = H*(Xa3,Qk,,(t—2)) — .

(2.116)

By subsection , we have that HQ(XQ,g,Q}Qﬁ(t)) = 0 for ¢ > 3. Thus, we get

HQ(X273,9§2,3(t —2)) =0 for t > 5. Therefore, we conclude that Hl(ng,Q%(z’3 (t)) =0
for t > 5.

(h)X2,272 C PS.
For X, C PY we use the Bott’s formula for quadric (Theorem . We first calculate

the cohomology considering X55 C X, and after this, we will calculate the cohomology

considering X599 C Xyo.
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By using the sequences ([2.4) and (2.5) for X549 C X5, we have the exact sequences:

0 = Q%,(t-2) = Q1) = B,O)lx. — O, (2.117)

0 — Q,,(t-2) = B, 0)x. — UB,,0t) — 0. (2.118)

Taking cohomology of the above exact sequences we get:

o H'(Xa D (8) = H (Ko D, (Olxa) = HX(Xa, B, (t-2)) = -+, (2.119)

- — HI(X2727Q§(2(t)|X272) — HI(X272,Q§<2’2(t)) — HQ(XZQ,Q%(ZQ(Z&—Q)) — e
(2.120
By Theoremwe have that H' (X5, %, (¢)) =0, for all t and H*(X», Q% (t—2)) =0

for t # 2. Thus, by sequence (2.119), we obtain H'(X,, 0%, (t)|x,,) = 0 for ¢ # 2.
We will calculate H?(Xy9, Y, ,(t — 2)). Consider the exact sequences:

0 = Q,(t—4) = Q(t-2) = O, —2)x, — 0, (2.121)

0 = Ox,,(t—4) = Qx,(t—2)|x,, = Q,,(t—2) = 0. (2.122)

Taking cohomology of the above exact sequences we get:

C = H (X0, Q%,(E—2)) = H*(Xo, QX,(t—2)|x,,) — H (X0, Q,(t—4) — -+,
(2.123)

= H*(Xag, U, (t-2)|x,,) — H*(Xa2,Qx,,(=2)) = H*(Xp2,0x,,(t—4)) — ---.
(2.124)
By Bott’s formula for quadric, we get H*(X,, Q. (t —2)) = H?*(X,, Q% (t —4)) =0,
for all ¢. Thus, by sequence we have H?(X,, QY (t — 2)|x,,) = 0, for all .

Now, taking cohomology of the sequence
0 — OXz(t—6) — OXz(t—4) — OXQ,Q('[Z—ZL) — O,

we have
- = H3(X5,0x,(t—4)) — H3(Xs2,0x,,(t—4)) = H*(X5,Ox,(t—6)) — ---.
Again by Theorem 2.6, we get H?(Xy, Ox,(t — 4)) = H*(Xs, Ox,(t — 6)) = 0, for
all t. Thus, H?(Xs2,Ox,,(t —4)) = 0 for all ¢, and by sequence , we have that
H?(Xg,Q,,(t —2)) =0, for all t.
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Returning in the sequence (2.120)), we get H'(Xs2,9%,,(t)) =0, for ¢ # 2.
Now, by using the sequences (2.4) and (2.5) for Xy25 C Xz, we have the exact

sequences:

0 = 0%,,(t—2) = O%,,(t) & O%,,(")|x.. — 0, (2.125)

0 = Q,,,(t—=2) = O%,,(0)]xsn, = D,,,(1) — 0. (2.126)
Consider the following piece of the long exact cohomology sequence obtained of ([2.125):

- = H'Y(X22,0%,,(t) = H'(Xa2,9%,,(0)xs0,) = H(X22,0%,,(t—-2)) = ---.

(2.127)

By development of the first part, we conclude that H' (X2, 0%, ,(t)) = 0, for t # 2.
We will calculate H?(Xyp, 0%, ,(t — 2)). Consider the exact sequences:

0 = Q,t—4) = R (t-2) = B, —2)x,, = 0, (2.128)

0 = Q,,t—4) = Q% —2)|x,, = 9%,,(t—2) — 0. (2.129)
Taking cohomology of the above exact sequences we get:

C = H (X0, 0%, (6 —2)) = H*(Xo, 0%, (E—2)|x,,) — H (X0, Q,(t—4) — -+,
(2.130)

- = HY(Xy9,0%,(1-2)|x,,) = H*(Xa2,0%,,(t-2)) = H*(Xy2,0%,,(t—4)) — ---.
(2.131)
By Bott’s formula for quadric (Theorem [2.6), we get H*(X5, Q% (t — 2)) = 0, for
t # 2 and H*(X,,0%,(t —4)) = 0 for t # 3. Thus, by sequence (2.130)), we obtain that
H(X, Q2 (t — 2)|x,,) = 0 for t # {2,3).
We will calculate H*(Xy9, Y, ,(t —4)). Consider the exact sequences:

0 = Q,(t—6) = Q(t—4) = O, —4)|x, — 0, (2.132)

0 = OXap(t—6) = Qx,(t—4)|x,, = Qx,,(t—4) = 0. (2.133)

Taking cohomology of the above exact sequences we get:

C = HY(Xo, QX (t—4) = H(Xo, QX (t—4)|x,,) — HY (X2, Q4 (t—6)) — -+,
(2.134)
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s HS(X2727Q.].5<2(t_4)’X2,2) — Hg(X2,27Q_1X2,2(t_4)) — H4(X2,2?OX2,2(t_6)) —
(2.135)
By Bott’s formula for quadric (Theorem [2.6)), we get

H?(X5,Q%,(t —4)) = 0 for all t, and H*(X,,Q}, (t —6)) =0 for t # 3.

Thus, by sequence (2.134)), we have H?( X, Q% (t —4)|x,,) = 0 for t # 3.
Now, taking cohomology of the sequence

0 — Oxz(t—8) — OXz(t—G) — OXQ,Q(t_G) — O,

we have
- — H4(X27OX2(t—6)) — H4(X272,OX2’2(t—6)) — H5(X2,0X2(t—8)) — e

By Bott’s formula for quadric we have
H*(X3,Ox,(t —6)) =0 for all t, and H?(Xy, Ox,(t —8)) =0 for t > 3.

Thus, H*(Xs2,0x,,(t —6)) = 0 for t > 3. Returning in the sequence ,
we get H*(Xy9,Q),,(t —4)) = 0 for ¢ > 3. Returning in the sequence (2.131), we
get HZ(X2727Q§(272(1: —2)) = 0 for t > 3. Returning in the sequence M , we get
H' (X, Q}Q,Q(tﬂxmz) = 0 for t > 3. And finally, consider the following piece of the long
exact cohomology sequence obtained of :

= Hl(X272,27Q%{ng(t)|x2,2,2) — Hl(X2,2,27QA2)(2272<t)) — HQ(X272,27Q}(272’2(t_2)) —

(2.136)
By subsection [2.2.1} we have that H?(Xa29,QY,,,(t)) = 0 for ¢ > 3. Thus, we have
H2(X272’27 Qﬁ(zzz(t — 2)) =0 for t > 5.
Therefore, we conclude that H'(X522,9%,.,(t)) =0 for t > 5.

()Y =CynX, CP(1,1,1,1,1,2) = P.

We first calculate the cohomology considering Cy C P and after this, we will calculate
the cohomology considering Y C (5. Similarly, we calculate the cohomology considering
X4 C P and after this, we will calculate the cohomology considering Y C Xj.

By using the sequences and for 'y, C P, we have the exact sequences:

0= L(t—2) — @) — B)|e, — 0. (2.137)

0 — Qut—2) = B(t)e, — Q) — 0. (2.138)
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Taking cohomology of the above exact sequences we get:

C o HY(P, 1) — H(P, %)) — HA2P,Qp(t—2)) — -+,  (2.139)
C = HY Gy, a()|e,) — HY(Co, 07, (1)) — H*(Co,Qp,(t—2)) — ---. (2.140)

By Theorem we have HY(P,05(t)) = 0 for all ¢, and H2(P, (¢t — 2)) = 0 for
t # 2. Thus, by sequence (2.139), we get Hl(]P’,ﬁfP(tHCQ) =0, for t # 2.
We will calculate H?(Cs, Q¢ (t — 2)). Consider the exact sequences:

0 = Oplt—4) = Qt—2) = 0t —2)|e, — 0, (2.141)

0 = Ot —4) = Dt —2)|e, — Q5,(t—2) — 0. (2.142)

Taking cohomology of the above exact sequences we get:

C o HAP,Op(t—2) — HAP,Qp(t—2)|c,) — H3(P,Qp(t —4)) — -, (2.143)

o HA(Co, Qp(t —2)|e,) — HA(Co, QL (t—2)) — H*(Co,Ocy(t —4)) — -+
(2.144)
2(m O 3P O

By Theorem , we get H*(P,Qp(t —2)) = H*(P,Qp(t —4)) = 0, for all ¢. Thus, by
sequence (2.150), we get H2(P, Qp(t — 2))|c, = 0, for all £.

Now, taking cohomology of the sequence
0 = Op(t—6) — Op(t—4) — Oc,(t—4) — 0,

we have - -+ — H*(P,Op(t —4)) — H?*(Cy, Oc,(t —4)) — HYP,0p(t —6)) — ---.

By Theorem 2.7, we get H3(P, Op(t — 4)) = H*(P, Op(t — 6)) = 0, for all ¢. Then, we
have H*(Cs, Oc,(t —4)) = 0 for all ¢, and therefore, we get H*(Cy, Q¢ (t —2)) = 0 for all
t. Returning in the sequence , we obtain H*(Cy, Q, (t)) = 0, for ¢t # 2.

Now, by using the sequences ([2.4)) and (2.5)) for Y C C5, we have the exact sequences:

0 = Q,(t—4) = Q1) = QO = 0, (2.145)

0 — Qp(t—4) = Q. (Oy = Q@) — 0. (2.146)

37



Consider the following piece of the long exact cohomology sequence obtained of (2.157)):

- = HY(Cy, O, (1) = HYCy, Q8 (t)ly) — H*(Co,Qg,(t—4)) — -+ . (2.147)

By development of the first part, we conclude that H'(Cy, Q2 (t)) =0, for t # 2. We
will calculate H?(Cy, QZ, (t —4)). Consider the exact sequences:

0 = Ma(t—6) = alt—4) = Qat—4)|e, — 0, (2.148)

0 = QL(t—6) = Dt —4)|c, - QZ,(t—4) — 0. (2.149)

Taking cohomology of the above exact sequences we get:

C o HAP,Oo(t—4) = HXP,0u(t—4)|e,) — H3(P,On(t—6)) — -, (2.150)

C o HA(Cy, it — d)|y) — H?(Cy, QF, (t —4)) — H*(Cy,Qp,(t—6)) — ---.
(2.151)
By Theorem [2.8] we have H2(P, Qa(t —4)) = 0 for t # 4 and H*(P, Q(t — 6)) = 0, for all

t. Thus, by sequence (2.150), we get H2(]P’,§§D(t —4)|¢,) =0, for t # 4.
We will calculate H?(Cs, Q¢ (t — 6)). Consider the exact sequences:

0 = ot —8) — Qp(t—6) — Qp(t—6)lc, — 0, (2.152)

0 — OL(t—8) — Qu(t—6)[c, — QL (t—6) — 0. (2.153)

Taking cohomology of the above exact sequences we get:

C o HAP,Op(t—6)) — H3(P,Qp(t—6)|c,) — HYP,Op(t—8)) — -, (2.154)

. HYCy, plt — 6)|cy) — H*(Co,Q¢,(t —6)) — HY(Cy, OL,(t—18)) — ---.
(2.155)
By Theorem 2.8 we get H3(P, Qp(t — 6)) = HY(P,Qp(t — 8)) = 0, for all ¢. Thus, by
sequence [2.154) we obtain H3(P, Qp(t — 6)|¢,) = 0, for all ¢.

Now, taking cohomology of the sequence

0 — Op(t—10) — Op(t—8) — Oc,(t—8) — 0,
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we have -+ — HY(P,Op(t —8)) — H*(Cy, Oc,(t—8)) — H°(P,Op(t—10)) — ---
By Theorem 2.7} we get H*(P, Op(t — 8)) = 0, for all t and H*(P, Op(t — 10)) = 0
for ¢ > 3. Thus, we obtain H*(Cy, Oc,(t —8)) = 0 for t > 3. Returning in the sequence

(2.155), we get H?(Ch,Qf,(t — 6)) = 0 for t > 3. Returning in the sequence (2.151),
we get H?(Cy, QZ,(t —4)) = 0 for ¢t > 4. Returning in the sequence (2.139), we have

H'(C5,Q%,(t)]y) = 0 for t > 4. And finally, consider the following piece of the long exact
cohomology sequence obtained of ([2.138)):

- = HY(Y,Q0,®)y) — H(Y, Q1) — H(Y,Qp(t—4)) — . (2.156)

By subsection [2.2.1] we have that H?(Y,Q1.(t)) = 0 for ¢ > 5. Then, we get
H2(Y, 05 (t —4)) = 0 for t > 9. Therefore, we get H*(Y,Q%(t)) =0 for t > 9.

By using the sequences (2.8)) and (2.7)) for X, C P, we have the exact sequences:

0 = Qa(t—4) — Qa(t) — Qo(t)|x, — O, (2.157)
0 — Q% (t—4) = D(t)|x, — 9%, () — 0. (2.158)
Taking cohomology of the above exact sequences we get:
C o HY(P, 1) — HY(P,Qo(b)|x,) — HXP,Oa(t—4)) — -+,  (2.159)
C o HY(X, Oo)x,) — H'(X4,0%,(t) = H*(Xy, Qx,(t—4)) — . (2.160)

By Theorem 2.8 we get H(P,0(t)) = 0, for all + and H2(P, 0 (t — 4)) = 0 for t # 4.

Thus, by sequence (2.159), we get H'(P, Q3 (t)|x,) = 0, for t # 4.
We will calculate H?( Xy, Q, (t —4)). Consider the exact sequences:

0 = Op(t—8) = Op(t—4) — Ot —4)|x, — 0, (2.161)

0 — O%(t—8) — Ut —4)|x, — Qk (t—4) — 0. (2.162)

Taking cohomology of the above exact sequences we get:

C o HAP,Qp(t—4)) — H2P,0p(t—4)|x,) — H3(P,Qp(t—8)) — -, (2.163)

C o HA(Xy, Ot —4)|x,) — HX(X4, QK (t—4)) — H3(Xy, Ox,(t—8)) — - .
(2.164)
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sequence (2.163), we obtain H2(P, Qn(t — 4)|x,) = 0, for all t.

Now, taking cohomology of the sequence

By Theorem 2.8 we get H*(P, ﬁé(t —4)) = H3(]P’,§;D(t —8)) = 0, for all . Thus, by

0 — Op(t—12) — Op(t—S) — OX4(t—8) — 0,

we have -+ — H3(P,Op(t—8)) — H*(X4,Ox,(t—8)) — HYP,0p(t—12)) — --- .

By Theorem 2.7, we get H*(P, Op(t — 8)) = H4(P, Op(t — 12)) = 0, for all ¢. Thus, we
have H3(Xy, Ox,(t — 8)) = 0 for all ¢, and therefore, H*(Xy, Q% (t —4)) = 0, for all ¢.
Returning in the sequence (2.160), we get H'(Xy, 0%, (t)) = 0 for t # 4.

Now, by using the sequences (2.4) and (2.5)) for Y C X, we have the exact sequences:

0 = Q%,(t—2) = Q%,(t) = Q,(Hy — 0, (2.165)

0 — Qp(t—2) = Q% )y — QF() — 0. (2.166)
Consider the following piece of the long exact cohomology sequence obtained of (2.165)):

C = HY(Xy, Q%) — H' (X4, Q%,(0)ly) = H (X4, Q%,(t—2)) = ---. (2.167)

By development of the first part, we conclude that H'(X,, Q% (t)) =0, for t # 4. We
will calculate H?(Xy, Q%,(t — 2)). Consider the exact sequences:

0 = Oa(t—6) - Qa(t—2) — a(t—2)|x, — 0, (2.168)

0 = Q4 (t—6) = Op(t—2)x, — 9%, (t—2) = 0. (2.169)

Taking cohomology of the above exact sequences we get:

C o HAP,OM(t—2)) = H2P,Ou(t—2)|x,) — H3P,Q(t—6)) — -, (2.170)

C o HA(X, (- 2)|x,) = HY(X4, Q% (t—2)) = HY(Xy,Qk,(t—6)) — -

(2.171)
2 o2 3 =2

By Theorem , we get H*(P,Qp(t —2)) =0 for t # 2 and H*(P,Qp(t — 6)) = 0, for all

t. Thus, by sequence (2.170) we have HQ(IP’,QH%,(t —2)|x,) =0, for t # 2.
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We will calculate H?(Xy4, QX (t — 6)). Consider the exact sequences:

0 = Op(t—10) — Ot —6) — Qp(t—6)x, — 0, (2.172)

0 — O%(t—6) — Dt —6)|x, = Q-6 — 0. (2.173)

Taking cohomology of the above exact sequences we get:

C = H3(P,Qp(t—6)) — H3(P,Qp(t—06)|x,) — HY(P,Qa(t—10)) — -+, (2.174)

o H(X (- 6)|x,) — HP(Xy, Q4,(t—6)) = HY(Xy, Ok (t—6) — -
(2.175)
By Theorem ’% have that H?(P, gllp(t —6)) = H4(P,ﬁ$(t —10)) =0, for all t. Thus,
by sequence (2.174)), we get H3(P, Qp(t — 6)|x,) = 0, for all t.

Now, taking cohomology of the sequence

0 — Op(t—10) — Op(t—6) — Ox,(t—6) — 0,

we have - -+ — HYP,Op(t —6)) — H*(X,,0x,(t—6)) — H(P,Op(t—10)) — ---.

By Theorem 2.7, we have H*(P, Op(t — 6)) = 0 for all ¢, and H>(P, Op(t — 10)) = 0
for t > 3. Thus, we obtain H*(Xy4,Ox,(t — 6)) = 0 for ¢t > 3. Returning in the se-
quence , we get H?(X4,Qk, (t —6)) = 0 for ¢ > 3. Returning in the sequence
, we get H?(Xy, Q%,(t —2)) =0 for ¢ > 3. Returning the sequence , we get
H'(X4,9%,(t)]y) = 0 for t > 4. And finally, consider the following piece of the long exact

cohomology sequence obtained of ([2.166)):
- = HY(Y,Q%,(0)]y) = H'(Y,Q3(t) — H*(Y,Qp(t—2)) — ---.  (2.176)

By subsection [2.2.1] we have that H?(Y,3-(¢)) = 0 for ¢ > 3.
Thus, we get H*(Y, - (t —2)) =0 for ¢ > 5.
Therefore, we conclude that H'(Y,Q2.(t)) = 0 for ¢t > 5.
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Proposition 2.11. The above computations are summarized in the following table:

X x| HY(X,Q%(1)) t

X3 2 0 t>4

Xogo | 2 0 t>2

Xy 2 0 t>6

X 2 0 t> 10

Xos | 1 0 t>5if Xp3 C Xyand t > 5 if Xo3 C X3
Xooo | 1 0 t>5

Y 1 0 t>9ifY CCyandt>5HifY C X,

Table 2.2: Values of ¢ for which H*(X,Q%(¢)) = 0.
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Chapter 3

Split distributions on Fano threefolds

In this Chapter we characterize the holomorphic distributions whose tangent sheaf and
conormal sheaf are arithmetically Cohen Macaulay. Furthermore, we construct examples
of codimension one distributions on a smooth weighted projective complete intersection

Fano threedimensional.

3.1 Tangent sheaf vs. singular scheme

In this section we characterize when the tangent sheaf is split (i.e. direct sum of line
bundles), in terms of the geometry of the singular scheme of the distribution. In addition

we prove the Theorems A, B and C.
If .x =4, L. Giraldo and A. J. Pan-Collantes showed in [I3] that the tangent sheaf of

a foliation of dimension 2 on IP? splits if and only if its singular scheme Z is aCM:

Theorem 3.1. [15, Theorem 3.3] The tangent sheaf F splits if and only if Z is an

arithmetically Cohen-Macaulay curve.

Definition 3.2. We say that E is a split bundle if it is (isomorphic to) the direct sum of
two line bundles, i.e. E = Ox(a) ® Ox(b) for suitable integers a and b.

Remark 3.3. Let E a bundle on Q3. It is well known that if E splits on 3, then:
HY (Q*,E(t)) =0 for 0<i<3, forall tecZ.

Lemma 3.4. [1, Lemma 5.17] Let X C P be a weighted complete intersection of dimension
n > 3, defined by weighted homogeneous polynomials fi, ..., f. of degrees dy,...,d., with
2<d; <dy<..<d. Then,

HO(X, 047 (1) = 0

forany2<qg<nandt<qg-—1.
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Proposition 3.5. Let .# be a codimension one distribution on Q3, with split tangent
sheaf, such that Ty = Ogs(a) ® Ogs(b). Then a,b < 1.

Proof: Indeed, we get

Tz —TQ* € Hm(T7,TQ?) ~ T;xTQ?
~ (Ogs(—a) @ TQ*) & (Ogs(—b) @ TQ?).

Thus, we have
HO((Ogs(~a) 9 TQ) & (O () ©TQY) = H(Ogs (—a) ©TQY) & H(Ogs (~b) 9 TQP),

and by Bott’s formula for quadric, its has section when a,b < 1.
J

If 1x = 3, we characterize when the tangent sheaf of a distribution of dimension 2 on

(3, is split or spinor. More precisely, we prove the following result:

Theorem 3.6. Let F be a distribution on Q* of codimension one, such that the tangent
sheaf Tz is locally free. If T'w either splits as a sum of line bundles or is a spinor bundle,
then Z is arithmetically Buchsbaum, with h'(Q3, Iz(r — 2)) = 1 being the only nonzero
intermediate cohomology for H'(Iz). Conversely, if Z is arithmetically Buchsbaum with
RYQ3, I7(r — 2)) = 1 being the only nonzero intermediate cohomology for H'(Iz) and
h2(T#(=2)) = h*(T# (=1 —c1(T%))) = 0, then T either split or is a spinor bundle.

Proof: Suppose that Tz either split or is a spinor bundle. Consider, for each ¢ € Z, the

exact sequence
0— Tz(t) = TQ*(t) = Iy(r+1t) — 0, (3.1)

where r is an integer such that r = ¢;(TQ%) — ¢;(T'#). Taking the long exact sequence of

cohomology we get:

0— H°(Q Tz(t)) — HY(Q*, TQ*(t)) — H(Q* Iz(r +1)) —
— HY(Q* Tz (t)) = H'(Q*, TQ*(t)) = HY(Q*, Iz(r +1)) — (3.2)
— H* Q3 T#(t)) = H*(Q*, TQt)) — H*(Q* Iz(r +1)) — ...

Since Tz has no intermediate cohomology, we have that
HYQ? T#(t)) = H*(Q* T#(t)) =0 for all t € Z.
Thus, we get H'(Q?, TQ3(t)) ~ HY(Q3,Iz(r +1)).
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By Bott’s formula for quadric (Theorem [2.6]), we have that H'(Q3, TQ?(t)) = 0 for all
t # =2, ie. H(Q? TQ*(—2)) # 0. Therefore, we conclude that H*(Q3 Zz(r — 2)) # 0
and Z is arithmetically Buchsbaum.

Conversely, suppose that h*(T'z(—2)) = h*(T#(=1 — ¢1(T#))) = 0 and that Z is
arithmetically Buchsbaum, with h'(Q3, Iz(r—2)) = 1 being the only nonzero intermediate
cohomology.

Consider the long exact cohomology sequence for all ¢t ## —2. By Theorem
we obtain that H'(Q? TQ3(t)) = 0, for all ¢t # —2. Applying Serre duality and Bott’s
formula, respectively, we get H*(Q?*, Zz(r +1t)) = H*(Ogs(—t —r —3)) = 0, for all r # 2.
Thus, we have H'(Q?, Tz (t)) = 0.

By Serre duality, we conclude that

0=HYQ* Tz (t)) = H*Q* Tz(s)), for all s # —1 — c1(T%),

where s = —t —3 — ¢1(T'#). As by hypothesis h*(T'#(—1—c¢1(T#))) = 0, we conclude that
H?*(Q?,T#(s)) =0 for all s.

Now, consider the long exact cohomology sequence , with ¢ = —2. By Bott’s
formula, we have that H°(Q?, TQ3*(—2)) = 0 and H?(Q?,TQ*(—2)) = 0. By hypothesis,
we get h*(Tz(—2)) = 0 and h*(Q?, Iz(r — 2)) = 1. Moreover, applying Serre duality and
Bott’s formula, respectively, we get H°(Q* Z(r — 2)) = H*(Ogs(—1 —r)) = 0, for all

r # 2. So, from the exact sequence,
0= HYQ® Tr(~2)) = H'(Q?, TQ3(—2)) ~ C 5 H'(Q® Is(r —2)) ~C — 0,

we conclude that H'(Q?, T'»(—2)) = 0, since (3 is injective and ker(8) = H(Q?, T#(—2)).
Therefore, T'# either split or is a spinor bundle, for all ¢ € Z.

Remark 3.7. By Theorem (|1.25) we have the isomorphism
PH (P, Qp(2)) — PH(Q% Qp(2))
w o — w :L~U|Q3.
If the class, k(W) = 0, then w is the restriction of a degree zero distribution on P*. We

get Sing(w) = H ~ P? C P*. Then, Sing(w) = Sing(@)gs) = P> N Q* = Q*. Therefore, if
r =2, Sing(w) is ACM.

If 1x = 2, we characterize when the tangent sheaf of a distribution of dimension 2 on
a smooth weighted projective complete intersection del Pezzo Fano threefold X, has no

intermediate cohomology. More precisely, we prove the following results:
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Lemma 3.8. Let X be a smooth weighted projective complete intersection del Pezzo Fano

threefold. Then, H*(X, Q% (t)) =0 fort > 4, and H'(X,Q%(t)) = 0 for t > 10.

Proof: By hypothesis, X is a smooth weighted projective complete intersection del Pezzo
Fano threefold. Comparing the values of ¢ for which H?(X, Q% (¢)) = 0, with tx = 2, in the
table [2.10] we can see that the common vanishing of cohomology group for these varieties,
occurs when ¢ > 4. Similarly, comparing the values of ¢ for which H'(X, Q% (¢)) = 0, with
tx = 2, in the table 2.11] we can see that the common vanishing of cohomology group for

these varieties, occurs when ¢ > 10. 0

Theorem 3.9. Let .F be a distribution of codimension one on a smooth weighted pro-
jective complete intersection del Pezzo Fano threefold X, such that the tangent sheaf T'#
is locally free. If Tz has no intermediate cohomology, then H (X, Iz(r +t)) = 0 for
t < —6 and t > 8. Conversely, if HY(X,Iz(r +1t)) = 0 fort < —6 and t > 8, and
H*(X,T#(t)) =0 fort <8 and H'(X,T#(s)) = 0 for s # —t —1x — ¢1(T%), then Tz

has no intermediate cohomology.

Proof: Suppose that T'z has no intermediate cohomology. Consider, for each ¢t € Z, the

exact sequence
0—=Tz(t) > TX(t) = Zz(r+1t)—0, (3.3)

where r is a integer such that r = ¢;(T'X) — ¢;(T'#). Taking the long exact sequence of

cohomology we get:
0— HY(X,T#(t)) » H (X, TX(t)) = H'(X,Zz(r + 1)

)
— HYX,T#(t)) = H (X, TX(t)) = H (X,Zz(r +1))
— H* (X, Tz(t)) = H* (X, TX(t)) = H*(X,Zz(r +1)) — ...

_>
— (3.4)

Since T'z has no intermediate cohomology, we have that
HY(X,T#(t)) = H*(X,T#(t)) = 0 for all t € Z.

Thus, we get H' (X, TX (t)) ~ H(X,Zz(r +t)).

By Remark we have that H'(X,TX(t)) ~ HY(X,0%(t + 2)) and by Lemma
we get H'(X,TX(t)) = 0, for t > 8. Moreover, by using Serre duality, we obtain
HY X, TX(t)) ~ H*(X,Q%(—t —2)) and thus, by Lemma [3.8] we get H'(X,TX(t)) =0,
for t < —6.

Therefore, H'(X,Zz(r +t)) =0 for t < —6 and ¢ > 8.
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Conversely, suppose that h?(T#(t)) = 0 for ¢ < 8. Consider the long exact coho-
mology sequence . Applying Serre duality and Theorem , respectively, we get
H?*(X,TX(t)) =0 for t > —2. Since by hypothesis, h' (X, I;(r +t)) = 0 for t < —6 and
t > 8, we get H*(X,T#(t)) =0 for t > 8. Thus, H*(X,T#(t)) =0 for all t € Z.

By Serre Duality and by Remark [I.T], we conclude that

0=H*X,Tz(t)) = H(X,T(s)),

where s = —t — 1x — ¢;(T'#). As by hipothesis h'(T#(s)) = 0 for s # —t —1x — c1(T7),
we conclude that H'(X,T#(¢)) = 0 for all ¢ € Z. Therefore, T'# has no intermediate

cohomology.

O

If tx = 1, we characterize when the tangent sheaf of a distribution of dimension 2 on a
smooth weighted projective complete intersection prime Fano threefold X, has no inter-

mediate cohomology. More precisely, we prove the following results:

Lemma 3.10. Let X be a smooth weighted projective complete intersection prime Fano
threefold. Then, H (X, Q% (t)) = 0 for t > 5, and H*(X,Q%(t)) = 0 fort > 3.

Proof: By hyphotesis, X is a smooth weighted projective complete intersection prime
Fano threefold. Comparing the values of ¢ for which H?(X, Q% (¢)) = 0, with tx = 1, in the
table[2.10] we can see that these values coincide. Thus, we get H2(X, Q% (¢)) = 0, for t > 3.
Similarly, comparing the values of ¢ for which H*(X, Q% (t)) = 0, with .x = 1, in the table
2.11] we can see that these values also coincide. Thus, we have that H'(X,Q%(t)) = 0,
for ¢ > 5. 0

Theorem 3.11. Let .F be a distribution of codimension one on a smooth weighted projec-
tive complete intersection prime Fano threefold X, such that the tangent sheaf T'z is locally
free. If Tz has no intermediate cohomology, then HY(X,Iz(r +1t)) = 0 for t < —4 and
t > 4. Conversely, if H'(X,Iz(r +1t)) =0 fort < —4 and t > 4, and H*(X,T#(t)) =0
fort <4 and H' (X, T#(s)) =0 for s # —t —1x — c1(T#), then Tz has no intermediate

cohomology.

Proof: Suppose that T'z has no intermediate cohomology. Consider, for each t € Z, the
exact sequence ([3.3)) and the long exact sequence of cohomology (3.4). Since T'z has no

intermediate cohomology;,
HYX,T7(t)) = H*(X,T#(t)) = 0 for all t € Z.
Thus, we have H' (X, TX (t)) ~ H'(X,Zz(r +t)).
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By remark we get that HY(X,TX(t)) ~ H'(X,Q3%(t + 1)) and by Lemma
we get H'(X,TX(t)) = 0, for t > 4. Moreover, using Serre duality, we obtain that
HY (X, TX(t)) ~ H*(X,0Q%(—t—1)) and thus, by Lemma[3.10} we get H'(X,TX(t)) = 0,
for t < —4. Therefore, H'(X,Z(r +t)) =0 for t < —4 and t > 4.

Conversely, suppose that h?(T#(t)) = 0 for ¢ < 4. Consider the long exact coho-
mology sequence . Applying Serre duality and Theorem , respectively, we get
H?(X,TX(t)) =0 for t > —1. Since by hypothesis, h*(X, Iz(r +t)) = 0 for t < —4 and
t >4, we get H*(X,T#(t)) =0 for t > 4. Thus, we have H*(X,T#(t)) =0Vt € Z.

By Serre Duality and by Remark [I.T| we obtain that

0=H*X,Tz(t) = H'(X, Tz (s)),

where s = —t — 1x — ¢1(T'#). As by hipothesis ' (Tz)(s) = 0 for s # —t —ux — c1(T%),
we conclude that H'(X,T#(t)) = 0 for all ¢ € Z. Therefore, T'» has no intermediate
cohomology.

3.2 Foliations as subsheaves of the cotangent sheaf

In this section we prove the Theorems D and E.
Alternatively, we can define a foliation through a coherent subsheaf N of Q) such
that

1. N% is integrable (dN% C N5 A Q%) and
2. the quocient Q% /N% is torsion free.

The codimension of .# is the generic rank of N7.

M. Corréa, M. Jardim and R. Vidal Martins, showed in [7] that the conormal sheaf of
a foliation of dimension one on P splits if and only if its singular scheme is arithmetically

Buchsbaum with h'(Zz(d — 1)) = 1 being the only nonzero intermediate cohomology:

Theorem 3.12. [, Theorem 5.2 Let % be an one-dimensional distribution on P", of
degree d, such that cod(Sing(.#)) = 2. Suppose that N is locally free. Then N splits if
and only if Sing(F) = Z is arithmetically Buchsbaum with h*(Zz(d — 1)) = 1 being the

only nonzero intermediate cohomology for H(Zz) in the range 1 < i <mn — 2.

For all tx € {1,2,3,4} we prove the following result:
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Theorem 3.13. Let .F be an one-dimensional distribution on a smooth weighted projec-
tive complete intersection Fano threefold X, with vx € {1,2,3,4}. If N% is aCM, then Z
is arithmetically Buchsbaum, with h'(X,Iz(r)) = 1 being the only nonzero intermediate

cohomology for H'(Iy).

Proof: Suppose that N% is aCM and tx € {1,2,3,4}. For the case tx = 4, i.e. X ~P3
the result follows from Theorem [3.12

Consider, for each t € Z, the exact sequence
0— Ni(t) = Q%) = Zz(r +1t) — 0, (3.5)

where 7 is a integer such that r = ¢;(QY) — ¢1(N%). Taking the long exact sequence of

cohomology we get:
0— H°(X,N5(t)) = H* (X, Q%) —» H' (X, Zz(r +1)) —
— H' (X, N5(t)) — H' (X, Q%) — H' (X, Zz(r +1)) —
— H*(X,N5(t)) = H* (X, Q%) — H* (X, Zz(r +1)) — ...
Since N7 has no intermediate cohomology, we have that
HY(X,N%(t)) = H*(X,N5(t)) =0, for all t € Z.

Thus, we get H'(X, Q4 (t)) ~ H(X,Zz(r +t)). By Theorem 2.9, H'(X,Q%(¢)) = 0 for
all t # 0, and h'(X,Q%) = 1. Then, we have H'(X,Zz(r)) # 0 and Z is arithmetically
Buchsbaum. 0O

If X is a Fano threefold, meaning that Ky' = /\3 TX is ample, then the Kodaira
vanishing Theorem shows that HY(X,Ox) = 0 and HY(X,O(Ky")) = 0 for ¢ > 0, see
28]

If tx € {1,2,3}, we prove the following result:

Theorem 3.14. Let .% be an one-dimensional distribution on a smooth weighted projec-
tive complete intersection Fano threefold X, with index vx € {1,2,3}. If Z is arithmeti-

cally Buchsbaum with h*(X, Iz(r)) = 1 being the only nonzero intermediate cohomology
for H'(Iz), and h*(N%) = h*(N%(—c1(N%) — tx)) = 0, then N% is aCM.

Proof: Suppose that h?(N%) = (N5 (—c1(N%) —tx)) = 0 and that Z is arithmetically

Buchsbaum with 2'(Q?, Iz(r)) = 1 being the only nonzero intermediate cohomology.
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Consider the long exact cohomology sequence ({3.6)), for all ¢ # 0. By Theorem , we have
that H'(X, Q% (¢)) = 0, for all ¢ # 0. Applying Serre duality and the Kodaira vanishing

Theorem, respectively, we get
HY(X,Z(r+1t)) = H*(Ox(—r —t —1x)) =0 for r # —1x.

Thus, we get H'(X, N%(t)) =0 for t # 0.
By Serre duality and by Remark [I.1| we conclude that

0= H'(X,N3(t) = H (X, (N3)" (=t — 1x)) = H*(X, N (—t — 1x — a1(N3)))-
Let s = —¢1(N%) —t — tx and ¢ # 0. Thus, we get
H*(X,N3(s)) = 0 for s # —1x — a1(N7).

Since by hypothesis h?(N%(s)) = 0 for s = —ux — ¢1(N%), we conclude that
H?*(X,N%(t)) = 0. Then, for all ¢ # 0, N% is aCM.

Now, consider the following piece of the long exact cohomology sequence , for
t=0:

= HY(X,N%) = HY(X,QY) ~C 5 HY(X,Z4(r) ~ C = 0.

The map £ is surjective and injective. Thus, ker(8) = H'(X, N%) is trivial, i.e.
H'(X,N%) = 0. As by hypothesis, h*(N%) = 0, we conclude that for t = 0, N% is aCM.
Therefore, N7 is aCM for all t € Z.

3.3 Indecomposable aCM bundles

If X ~ P" it is know that an aCM bundle must be a direct sum of line bundles (Horrock’s
Theorem). For X ~ Q™ C P""! an aCM bundle is a direct sum of a line bundles and
twisted spinor bundles [30].

The problem of classifying aCM bundles has been taken up only in some special cases.
The case of smooth Fano threefolds X with Picard group Z has also been studied. When
tx € {2, 1} this classification is highly nontrivial since there are several deformation classes
of these varieties [17]; [18].

3.3.1 Rank-two vector bundles

Let E be a rank 2 vector bundle on a smooth weighted projective complete intersection
Fano threefold X with Picard number p(X) = 1.
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Definition 3.15. The bundle F is called normalized if it has first Chern ¢; € {0, —1}.
We define the first relevant level of E as the integer

a = a(E) :=min{t € Z/h°(X, E(t)) # 0}.

Definition 3.16. Let £ be a rank 2 vector bundle on X with first Chern class ¢; and
first relevant level a. We say that E is stable if 2a+ ¢; > 0, or equivalently, if & > 0 when
E is normalized. We say that E is semistable if 2o + ¢; > 0, or equivalently, if o > —¢;
when F is normalized. We say that F is non-stable if 2a + ¢; < 0, or equivalently, if

o < 0 when E is normalized.

Remark 3.17. Obviously every stable bundle is semistable. Conversely, the only semistable

bundles which are not stable are those with ¢; = a = 0.

Definition 3.18. An (odd) k-instanton E on @® is a rank-2 stable vector F with
ci(E) = —1,c(E) = k and H(Q3, E(—1)) = 0.

Remark 3.19. The spinor bundle S on @ is a 1—instanton bundle. Indeed, ¢;(S) = —1
and H'(Q3,S(—1)) = 0 by Theorem [1.14]

Theorem 3.20. 21, Theorem 2] Let X C P* be a non singular hypersurface, of degree
r; E be a rank 2 vector bundle on X with first Chern class ¢; and first relevant level av. If
E is aCM, then E splits, unless —r +2 < 2a+c¢y <.

Corollary 3.21. The only indecomposable, arithmetically Cohen-Macaulay, normalized,
rank 2 vector bundles on a smooth quadric threefold Q3 are stable with ¢, = —1,¢c5 = 1

and o = 1, i.e. they are the spinor bundles.

Proof: See [3], Corollary 2.13. O

Corollary 3.22. The only indecomposable, arithmetically Cohen-Macaulay, normalized,
rank 2 vector bundles on a smooth cubic threefold X3 are either stable with ¢; = {—1,0}

and o = 1, or semistable with ¢; = 0 and a = 0.

Proof: By Theorem [3.20] if E is an indecomposable, aCM, normalized, rank 2 vector
bundle on X3, then we must have 2a + ¢; = {0,1,2}. Thus, if 2a 4+ ¢; = 0, then E is
semistable with ¢; = a = 0; if 2a+ ¢; = 1, then F is stable with ¢; = —1 and o = 1, and
if 2a 4+ ¢; = 2, then F is stable with ¢y =0 and o = 1. 0O

Arrondo and Costa in [2] also proved the Corollary by using a completely different
argument. In addition, they also proved this corollary for the case where X is a smooth

intersection of the Grassmannian G(1,4) C P? with three hyperplanes.
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Theorem 3.23. [2, Theorem 3.4] An indecomposable rank-two vector bundle F on X4
with d = 3,4,5 has not intermediate cohomology if and only if it is a twist of one of the
following:

1. a semistable vector bundle Sy fitting in an exact sequence
0—Ox, = S, —Z,—0, (3.7)
where L C X4 1s a line contained in Xg;

2. a stable vector bundle S¢ fitting in an exact sequence
0— Ox,(—1) = Se = Z¢ — 0, (3.8)
where C' C X4 1s a conic contained in Xyg;

3. a stable vector bundle Sg fitting in an ezxact sequence
0— Ox,(—1) = Sg = Zgr(l) — 0, (3.9)
where 2 C Xy is an elliptic curve of degree d + 2.

The next Theorem is the well-known regularity criterion of Castelnuovo-Mumford, and

we will use it in the examples below.

Theorem 3.24 (Castelnuovo-Mumford criterion). Let O(1) be an ample invertible sheaf
on a variety X which is generated by global sections. Let F' be a vector bundle on X such
that

H'Y(X,F(—i)) =0 fori > 0.

Then,
(i) F is generated by global sections;
(ii) H{(X,F(—i+j)) =0 fori>0, j >0.

Example 3.25. The rank-two vector bundle S;, has Chern classes (¢1, ¢2) = (0, 1).

It holds that S;, has only one section, whereas S7 (1) is generated by global sections. The
latter comes from the exact sequence (3.7)), the fact that Ox, (1) and I.(1) are generated
by its sections and the vanishing of H*(Ox,(1)).
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Example 3.26. The rank-two vector bundle S¢ is generated by its global sections. In-
deed, by considering the short exact sequence after tensoring with Ox,(—1), and

taking the long exact sequence of cohomology we get:
- — Hl(Xd,OXd(—Z)) — Hl(Xd,Sc<—1)) — H1<Xd,ZC(—1)) — e

By the formula (2.3), H'(X4, Ox,(—2)) = 0, Vt. Using Serre’s duality and the formula
we have H'(Xy,Zc(—1)) ~ H*(X4,Ox,(—1)) = 0, Vt. Hence, since Sc has not
intermediate cohomology, using Castelnuovo-Mumford criterion, we obtain that S¢o is
globally generated.

It has Chern classes (¢1,¢2) = (—1,2).

Example 3.27. The rank-two vector bundle Sg(1) is generated by its global sections.
Indeed, by considering the short exact sequence [3.9| after taking the long exact sequence

of cohomology we get:

- = H'(X4,0x,(-1)) —» H'Y(X4,Sc) = H' (X4, Zp(l)) — -
By the formula 2.3] H'(X4, Ox,(—1)) = 0, V¢. Using Serre’s duality and the formula
we have H' (X4, Zp(1)) ~ H*(X4, Ox,(—3)) = 0, Vt. Hence, since Sg has not intermedi-
ate cohomology, using Castelnuovo-Mumford criterion, we obtain that Sg(1) is globally

generated.

Sg is a vector bundle with Chern classes (c1, ¢c2) = (0, 2).

Definition 3.28. The degree d = (—Kx)? of a prime Fano threefold X is always even,
The integer 3(—Kx)? + 1 is called the genus of a Fano 3—fold X.

For tx = 1, a result due to Madonna [22] implies that if a rank-2 aCM bundle £ is
defined on X, it is characterized by:

Theorem 3.29. [22, Main Theorem| Let € be a normalized aCM bundle on a prime Fano
threefolds Xog—o := X of genus g. Then £ is a twist of one of the bundles in the list below:

1. ¢y =—1, co =1 and & is associated to a line in X;
2. ¢4 =0, co =2 and &€ is associated to a conic in X,

3. c1 =1, either co = g+ 2 and & is associated to a non-degenerate elliptic curve Cgl+2

of degree g + 2 contained in X or ca =d < g+ 2 and C} is degenerate;

4. ¢4 =2, co =24 2¢g and & is associated to a curve Cg;fz of genus g + 2 and degree

29 + 2 contained in X

5. ¢1 =3, ca =bg—1 and € is associated to a smooth 2-canonical curve C’;’g_

m X.

| contained
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3.3.2 Distributions and Globally Generated Sheaves

In this subsection we will construct examples of codimension one distributions on X,
based on the following result due to O. Calvo-Andrade, M. Corréa and M. Jardim [5],

which is a generalization of Ottaviani’s Bertini type Theorem [27, Teorema 2.8|.

Theorem 3.30. [5, Theorem 11.8] Let G be a globally generated reflexive sheaf on a
projective variety X such that rk(G) < dim(X) —1> 2. If TX ® L is globally generated,
for some line bundle L, then G*® L* is the tangent sheaf of a codimension one distribution
on X.

Corollary 3.31. Let S be the spinor bundle on Q3. Then S(1—t) is the tangent sheaf of

a codimension one distribution %, for all t.

Proof: Since the spinor bundle S is globally generated, S(t) is globally generated, for all
t > 0 (see remark [L.5). Moreover, its rank 2 reflexive sheaf on %, and S(t) ® TQ? is also
globally generated, since T'Q? is globally generated (see remarks and . Now, apply
the Theorem with L = Ogs to obtain the desired codimension one distribution

0— S*(—t)~S(1—t) = TQ* — Iz(r)— 0.

Therefore, S(1 — t) is the tangent sheaf of a codimension one distribution .%.
UJ

Consider € ~ Sp(1); Sc; Sg(1). By the examples in the subsection [3.3.1) we have to
£ is globally generated.

Corollary 3.32. Let € be a globally generated rank 2 reflexive sheaf on X4. Then E*(—t)

is the tangent sheaf of a codimension one distribution %, for all t.

Proof: Since £ is globally generated, £(t) is globally generated, for all ¢ > 0 (see remark
. Moreover, its rank 2 reflexive sheaf on X, and £(t) @ T X, is also globally generated,
since T'X, is globally generated. Now, apply the Theorem with L = Ox, to obtain

the desired codimension one distribution
0— & (—t) > TXqg— Zz(r)—0.

Therefore, £*(—t) is the tangent sheaf of a codimension one distribution .#. O
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3.4 Properties of the singular locus of distributions

In this section we analyze the properties of their singular schemes of codimension one

holomorphic distributions on X.

3.4.1 Numerical Invariants

Let . be a codimension one distribution on threefold X given as in the exact sequence
(1.2]), with tangent sheaf Tz and singular scheme Z.
Let @ be the maximal subsheaf of Oz, x of codimension > 2, so that one has an exact

sequence of the form
0—=Q—=0zx —0Oc/x =0 (3.10)

where C' C X is a (possibly empty) subscheme of pure codimension 2.
The quotient sheaf is the structure sheaf of a subscheme C' C Z C X of pure dimension
1.

Definition 3.33. If Z is a 1-dimensional subscheme, then Z has a maximal pure dimen-

sion 1 subscheme C' defining a sequence
02y —>Zc - Q—0, (3.11)
where O is the maximal 0-dimensional subsheaf of Q.

Kahler manifolds form an important class of complex manifolds.

Definition 3.34. A Kdahler metric is an hermitian structure g for which the fundamen-
tal form w is closed, i.e. dw = 0. In this case, the fundamental w form is called the
Kahler form. The complex manifold endowed with the Kahler structure is called a Kahler

manifold.

If X is a Kahler manifold of dimension n, and Z C X is an analytic subset of codi-

mension k, then
cn(Zz) = (=) (k- 1)Z]. (3.12)
See [12].

Theorem 3.35. Let F be a codimension one distribution on a threefold X, with p(X) = 1,
given as in the exact sequence , with tangent sheaf Ty and singular scheme Z. Then,

c2(Tz) =co(TX) —1r- K)_(1 +7r? — [0,
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and
c3(Tz) = c3(TX) — e3(Izyx) +7-[C] — K [Cl=r-co(TX)+ 7 Kt — 1,

Proof: Considering the exact sequence (|1.2), we use that ¢(TX) = c¢(T#) - ¢(Iz/x(r)) to
obtain

Cl(TX) = Cl(Tg) —I— Cl(]Z/X(T))y
a(TX) = a(Ty) caallzx(r)) + c(Tz) + c2(Iz/x(r)),
e3(TX) = e3(Tz) + es(Uzyx (1)) + e1(T7) - callzyx (1)) + co(T7) - ex(z)x(r)).

(3.13)
The first equation gives ¢;(T#) = ¢1(TX) —r. From the exact sequence it follows
that co(Iz/x(r)) = c2a(Igyx(r)) = [C], thus substitution into the second equation yields

o(Tz) =co(Tx) — 1 - K)}l + 72— [C)].

Moreover, the substituting the expressions for the first and second Chern classes into

the third equation we obtain
e3(TX) = c3(Tz) + c3(Iz/x(r) + Kx' - [C] = 2r[C] + 71 co(TX) —r* - K" + 1. (3.14)

Note that
Cg(lz/X(T)) :C3(IZ/X)+7"CQ(12/X)+T’3, (315)

while

C2<[Z/X) = [C] — 7"2. (316)
Substituting |3.16| into the equation [3.15, we obtain
c3s(Lz/x(r)) = es(Lz/x) +r-[C], (3.17)
and thus

c3(Ty) = c3(TX) — c3(Izyx) + 1 [C] — Ki' - [Cl =7 eo(TX) +r* - K" — 1%, (3.18)

O

3.4.2 Connectedness of the Singular locus

In [5], O. Calvo-Andrade, M. Corréa and M. Jardim obtained the following generalization
of [13, Theorem 3.2|.

Lemma 3.36. [3, Lemma 2.1] The tangent sheaf of a codimension one distribution is

locally free if and only if its singular locus has pure codimension 2.
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Lemma 3.37. Let X be a smooth weighted projective complete intersection Fano threefold
with Picard number p(X) = 1. Then, HY(TX(—r)) =0 forr > 6 and H*(TX(-7)) =0
forr £ 1x.

Proof: By hypothesis, X is a smooth weighted projective complete intersection Fano
threefold.

If ix = 4, i.e. X ~P3 by classical Bott’s formula we have that H'(TX(—r)) = 0 for
all 7 and H*(TX(—r)) =0 for r # 2.

If ix = 3, 1ie. X ~ @3 by Bott’s formula for quadric, we have that H (T X (—r)) =0
for r # 2 and H*(TX(—r)) = 0 for r # 3.

If tx = 2, by using Serre duality we get that HY(TX(—r)) = H*(Q%(r — 2)). By
Proposition [2.10, comparing the values of ¢ for which H?(Q%(t)) = 0 with ¢x = 2, we
can see that the common vanishing of cohomology group for these varieties, occurs when
t > 4. Then, H*(Q%(r —2)) =0 for r > 6. And H*(TX(—r)) = 0 for r # 2 by Theorem
2.9

If ux = 1, by using Serre duality we get H (T X (—r)) = H*(Q%(r—1)). By Proposition
2.11] comparing the values of ¢ for which H?(Q%(t)) = 0 with tx = 1, we can see that
the common vanishing of cohomology group for these varieties, occurs when ¢ > 3. Then,
H*(Q%(r — 1)) =0 for r > 4. And H*(TX(—r)) = 0 for r # 1 by Theorem [2.9]

Now, comparing the values of r for which H(TX(—r)) = 0, we can see that the
common vanishing of cohomology group considering all indices of X, occurs when r > 6.
And H*(TX(—r)) =0 for r # vx.

UJ

Theorem 3.38. Let .F be a codimension one distribution with singular scheme Z and
let X be a smooth weighted projective complete intersection Fano threefold with Picard
number p(X) = 1. If B*(Tz(—r)) = 0 and C C X, C # 0, then Z is connected and
of pure dimension 1, so that Tz is locally free. Conversely, for r # 1x, if Z = C is
connected, then Tz is locally free and h*(T#z(—r)) = 0.

Proof: Twisting the exact sequence (1.2) by Ox(—r) and passing to cohomology we
obtain,
HYTX(—r)) = H'(Iz/x) = H*(T#(—r)) = H*(TX(-1)).

By Lemma above, we get that H' (T X (—r)) = 0 for r > 6.
If h*(T#(—r)) =0, then h'(Iz/x) = 0, for r > 6. It follows from the sequence

O_>[Z/X_>OX_>OZ/X_>O
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that
HO(O)() — HO(Oz/X) — 0,

hence h°(Oy/x) = 1. From the sequence (3.10), we get
0— H°(Q) — H*(Oz/x) — H*(Oc/x) — 0

Thus either h°(O¢/x) = 1, and @ = 0 and C' is connected, or length(Q) = 1 and C'is
empty. This second possibility is not valid because by hipothesis C' # (). It follows that
Z = C must be connect and of pure dimension 1, and thus, by Lemma [3.36], T'# is locally
free.

Conversely, assume that Z = C'is connected. Thus Z must be of pure dimension 1, and
Lemma implies that Tz is locally free. It also follows that h'(Iz/x) = 0, using Serre
duality and 2.3} Since h*(TX(—r)) = 0 for r # x, we conclude that h*(T'z(—r)) = 0, as
desired. 0O

Corollary 3.39. If .% is a codimension one distribution on X whose tangent sheaf splits

as a sum of line bundles, then its singular scheme is connected.

Proof: Assuming that T# = Ox(r1) ® Ox(ra), then clearly h?(T'#(—r)) = 0, where
7 =11 + r2. The result follows from Theorem [3.38 0

Corollary 3.40. Let .F be a codimension one distribution on X with locally free tangent

sheaf. If T% is ample, then its singular scheme is connected.

Proof: We have, by Serre duality,
H*(T7(-r)) =~ H(T5(r) ® Kx) = H'(T5(r — a1(TX)) ® Ox(c1(TX)) ® Kx).

Observe that 7% (r —c1(TX)) @ Ox (c1(TX)) @ Kx = T% ®det(T5) @ Ox (c1(TX)) ® Kx;
since T% and Ox(c1(TX)) are ample, then, by Theorem [1.10}, we get

BT (~r) = BT ® det(T3) ® Ox ((TX)) ® Kx) = 0.

The result follows from Theorem [3.38 0
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