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Resumo

Seja L um 4lgebra de Lie e 6 uma derivacdo de L. A derivacdo ¢ € dita ndo-singular se
for injetiva como transformacao linear. Por um resultado bem conhecido de N. Jacobson, uma
algebra de Lie de dimensao finita, sobre um corpo de caracteristica zero e com uma derivacao
ndo-singular € nilpotente. Embora saibamos que esse resultado nio € vélido em caracteristica
p > 0, pouco se sabe sobre dlgebras de Lie em caracteristica p > 0 com deriva¢des nao-
singulares. Neste texto, exploramos a estrutura das dlgebras de Lie soluveis, ndo-nilpotentes e
com derivagdo ndo-singular. Apresentamos um novo conceito para derivagdes, chamado Pares
Compativeis. Esse conceito € usado, por exemplo, para calcular as derivacdes de uma extensao
de dlgebra de Lie. Outra aplicacdo obtida é uma versao do teorema de Jacobson para as dlgebras
de Lie sobre corpos com caracteristica p > 0. Usando Pares Compativeis foi possivel obter uma
caracterizacdo para dlgebras de Lie ndo-nilpotentes, com um ideal abeliano de codimensdes 1
e derivacdo ndo-singular. Adicionalmente, construimos um exemplo de dlgebra de Lie nao-
nilpotente, com derivacdo ndo-singular e classe de nilpoténcia arbitraria. Por fim, provamos que
se H ¢é a dlgebra de Heisenberg sobre um corpo de caracteristica p e I um H-médulo, tais que
a soma semi-direta de H e I € uma élgebra de Lie ndo-nilpotente com derivagdo nao-singular,

entdo a dimensao de / €, no minimo, p + 3.

Palavras-chave: Algebras de Lie, Derivacoes Nao-Singulares, Pares Compativeis, Teo-

rema de Jacobson






Abstract

Let L be a Lie algebra and ¢ be a derivation of L. The derivation ¢ is non-singular if it
is injective as linear transformation. By a well-known result of N. Jacobson, a Lie algebra of
finite dimension over a field of characteristic zero having a non-singular derivation is nilpotent.
Although we know that this result is not valid in characteristic p > 0, little is known about Lie
algebras in p characteristic with non-singular derivations. In this text, we explore the structure
of solvable, non-nilpotent Lie algebras with non-singular derivations. We present a new concept
for derivations, called Compatible Pairs. This concept is used, for example, to calculate the
derivations of an extension of Lie algebras. Another application obtained was a version of
Jacobson’s Theorem for Lie algebras over fields characteristic p > 0. Using Compatible pairs
it was possible to obtain a characterization of non-nilpotent Lie algebras, with an abelian deal
of codimension 1 and non-singular derivations. Further, a new example of non-nilpotent Lie
algebras, with non-singular derivations and arbitrarily nilpotency class was constructed. Finally,
we prove that if H is the Heisenberg algebra over a field of characteristic p > 0, and [ is a
H-module such that the semi-direct sum of H and /, is a non-nilpotent Lie algebras with non-

singular derivation, then the dimension of / is, at least, p + 3.

Keywords: Lie algebras, Non-singular Derivation, Compatible Pairs, Jacobson’s Theo-

rem






10

CONTENTS
1 INTRODUCTION . . ..ottt ittt it ittt iee e e 12
2 BASICCONCEPTS . . .. i ittt ittt et ittt e et e 16
2.1 Primary Decomposition . . . . . . .. . ... ... o 16
2.2 Lie algebraextensions . . . . . . . . . . .. ... 21
2.3 Representation of Lie Algebras . . . . . ... ... ... ... ....... 22
2.4 Jacobson’s Theorem . . . . . . . . . .. ... oL 24
2.5 The orders of non-singular derivations . . . . . ... ... ... ...... 27
3 DERIVATIONS OF LIE ALGEBRA EXTENSIONS ........... 31
3.1 Compatible pairs and derivations of semidirect sums . . . . . . . .. .. .. 31
3.2 Anaction of gl(K) @ gl() on C* (K, 1) . . . . ... ... ... ... ... 34
3.3 Derivations of Ky . . . . . . . . . . e 40
4 APPLICATIONS OF COMPATIBLE PAIRS .. ............. 46
4.1 Compatible pairs and Jacobson’s Theorem . . . . . ... ... .. ..... 46
5 LIE ALGEBRAS WITH AN ABELIAN IDEAL OF CODIMENSION1 52
5.1 (x,p)-cyclicmodules . . . . .. ... ... 52
5.2 Decomposition of (x, p)-cyclicmodules . . . . . ... ... ... ...... 64
6 MORE EXAMPLES OF LIE ALGEBRA WITH NON-SINGULAR DE-
RIVATION . . .. it i i it ettt ettt i ee e 67
6.1 Examples with derived length3 . . . . . . ... .. ... ... ... .... 67
7 REFERENCES . . . . 0 i it ittt ittt ittt iiiee e 77






12

1 Introduction

Let L be a Lie algebra and let 6 be a derivation of L. The derivation ¢ is non-singular if
it is injective as a linear transformation. We are interested in studying what information we can
obtain about a Lie algebra if it has a non-singular derivation. Jacobson’s Theorem [1] states that
a finite-dimensional Lie algebra over a field of characteristic zero that admits a non-singular
derivation must be nilpotent. It is well-known that this theorem is not valid when the charac-
teristic is non-zero. Non-nilpotent and solvable examples were constructed by Shalev [2] and
Mattarei [3], whereas the finite-dimensional simple Lie algebras with non-singular derivations
were classified by Benkart and her collaborators in [4]. A significant application of Lie algebras
with non-singular derivation in characteristic p was presented by Shalev [5]. In his proof of the
coclass conjectures of Leedham-Green and Newman for pro-p groups, Shalev uses the fact that
finite-dimensional Lie algebras over a field of characteristic p > 0 with non-singular derivation

6 such that 6*~! = 1 must be nilpotent.

Despite the existing examples, little is known about non-nilpotent Lie algebras with
non-singular derivations. In this text we propose to explore the structure of solvable, non-
nilpotent Lie algebras with non-singular derivations. In order to study these algebras we develop
a theory of derivations of Lie algebra extensions. We adopt the concept of a compatible pair of

automorphisms utilized in [6] for derivations of Lie algebras.

In the rest of this introduction we state the main results presented in this thesis. Let us

start by briefly reviewing some concepts that are studied in more details in Chapter 3.

Let K and I be Lie algebras such that K acts on /. Denote by Der(K) the Lie alge-
bra of derivations of K. Then we can define the subalgebra Comp(K, ) of compatible pairs
of Der(K) @ Der([) as the set of derivations of Der(K) @ Der(I) that are derivations of the

semidirect sum K (B . Formally,
Comp(K,I) ={a+Begl(K)Dol(l) | a+pcDer(KBI)}.
The algebra Der(K) carries information about the multiplicative structure of K. Analogously,

the algebra Comp(K, I) carries information about the action of K on I.

We also adapt an algorithm presented by Bettina Eick [6] for calculating the auto-
morphism group of solvable Lie algebras. A key step in the algorithm is the following. Let

L be a Lie algebra and let I be an abelian ideal of L such that 7 is invariant under Aut(L).
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Then there exists a homomorphism ¢ : Aut(L) — Aut(L/I) x Aut(/) induced by the actions of
Aut(L) on L/I and I. The image of ¢ can be calculated using Aut(L/I), while Ker(¢) is equal to
Z'(K,I), the first cohomoly group of K on I. Then the group Aut(L) can be obtained applying

the first isomorphism theorem to ¢. For derivation, the process is as follows.

Let K be a Lie algebra and let 7 be a K-module. Let Z*(K,I) be the vector space of
cocycles, let B*(K, I) be the vector space of coboundaries and set H*(K, I) = Z*(K,I)/B*(K, I).
For (a,) € Comp(K, I) and ¢ € Z*(K, I), define an action of Comp(K, I) on Z*(K, I) by

(@) - 9(h,k) = BO(h,k)) — O(a(h), k) — O(h,a(k)), forall h ke K.

The elements of the annihilator of ¥} under this action will be called induced pairs and we denote
the set of induced pairs by Indu(K,I,%). Let Ky be the Lie algebra extension of K obtained
as the extension by cocycle 9. Suppose that /, as an ideal of Ky, is invariant under Der(Kj).
Hence, each d € Der(Ky) induces derivations @ and 8 of K and I, respectively, and we can
construct a Lie algebra homomorphism ¢ : Der(L) — Der(L/I) ® Der(I). Thus we obtain the

following theorem, whose full proof will be presented in Chapter 3.

Theorem 3.3.1 Let K be a Lie algebra and let I be a K-module. Let ¥ € HZ(K, I) and suppose
that I, as ideal of Ky, is invariant under derivations. Let ¢ : Der(Ky) — Der(K) @ Der(I) be
defined as above. Then:

1. Im(¢) = Indu(K,I,9)

2. Ker(¢) = Z'(K,I)

The details of this construction can be seen in Chapter 3. There is a significant diffe-
rence between the application of this approach to automorphisms and to derivations: calcula-
ting the automorphism groups of Lie algebras is usually a difficult task that may involve a large
orbit-stabilizer calculation, while calculating the algebra of derivations can be done by solving
a system of linear equations. Nevertheless, it is still interesting to see that derivations have

properties similar to automorphisms.

Let K be a finite-dimensional Lie a algebra and let ¢ : K — Der(I) be a Lie algebra
representation. If K is solvable and the base field has characteristic zero, we have a characte-
rization of the matrices of the image of the representation ¢ using Lie’s Theorem (see 2.3.4):

there is a basis such that these matrices are all upper triangular. As this result is not true for
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representations with base field of prime characteristic p > 0, in Chapter 4 we explore some
representations of solvable Lie algebra in prime characteristic. The existence of a compatible
pair formed by non-singular derivations, guarantees that the image of ¢ : K — Der(I) with K

solvable and dim K < p, must be formed by nilpotent matrices.

Theorem 4.1.6 Let K and I be finite-dimensional Lie algebras over an algebraically closed
field of characteristic p > 0. Suppose that K acts on I by the representation  : K — Der(I).
Let (a,8) € Comp(K, I) such that « is non-singular, and « has finite order. If K is solvable and

dim [ < p, then y(k) is nilpotent, for all k € K.

As a consequence, it is also possible to present a version of Jacobson’s Theorem for Lie
algebras over fields of characteristic p > 0. This version considers a solvable Lie algebra L and

sets conditions for L to be nilpotent.

Theorem 4.1.8 Let L be a solvable Lie algebra over a field F of characteristic p > 0. Let
L>LY > ... > LO > L&D — 0 pe the derived series of L. Suppose that L has a
non-singular derivation of finite order. If the dimension of L) /L) < p, for all i, then L is

nilpotent.

Further, we explore the structure of some finite-dimensional non-nilpotent Lie algebras
with a non-singular derivation. Due to Jacobson’s Theorem, these algebras can exist just over
fields of prime characteristic. Let K be a solvable Lie algebra over a field of prime characteristic
p > 0 and let I be a K-module. Define the semidirect sum L = K (B I and suppose that L is
solvable, non-nilpotent and with a non-singular derivation. We study some of these algebras in
Chapters 5 and 6. In Chapter 5, we assume that dim K = 1 and that the center of L is zero,
that is Z(L) = 0. With these hypotheses, it was possible to fully characterize such algebras, as
presented in the following theorem. The concept of (x,p)-cyclic modules is presented in Section

5.1.

Theorem 5.1.18 Let L be a Lie algebra of derived length 2 over an algebraically closed field
F of characteristic p > 0. Suppose that dim(L/L') = 1 and Z(L) = 0. Let x € L\L'. Then L
has a non-singular derivation of finite order if, and only if, L' can be written as a direct sum of

(x, p)-cyclic modules.

In Chapter 6, we present some new examples of non-nilpotent Lie algebras with non-
singular derivations. Proposition 6.1.3 presents Lie algebras with arbitrarily large nilpotency

class. Example 6.1.4 contains our first example of solvable and non-nilpotent Lie algebra, with a
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non-singular derivation and derived length 3. This example was obtained from a representation
Y : H — Der(I) such that H is the Heisenberg algebra. The thesis ends with a result on the
representations of the Heisenberg algebra H. Suppose that a representation  : H — Der(I) is
faithful and H(@®I admits a non-singular derivation. Then, we have a condition on the dimension

of I, as stated in the next theorem.

Theorem 6.1.5 Let F be an algebraically closed field of characteristic p = 3. Let H be the
Heisenberg Lie algebra over F. Let  : H — gl(I) be a faithful representation and suppose that
L = H ® I is non-nilpotent. Suppose that I, as ideal of L, is invariant under Der(L). If L has a

non-singular derivation of finite order, then dimI > p + 3.

In order facilitate the reading of the text and the references, we added Chapter 2 with
results on the primary decomposition of vector spaces in relation to subalgebras of linear ope-

rators and a brief description of the main results of the articles used.
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2 Basic Concepts

In this chapter we present some results on Lie algebra representations and non-singular
derivations. A major reference for a decomposition of a vector space V into K-modules such
that K is a subalgebra of gI(V) was the book ‘Lie algebra: Theory and Algorithms’ [7] of
W. A. de Graaf . We also present the main articles that motivated the initial study of non-
singular derivations. The purpose of this chapter is to speed up reading by including most of

the references in the text itself.

2.1 Primary Decomposition

Let K be a non-associative algebra over a field [F and let us assume that the product of
two elements x,y € K is denoted by [x,y]. Then K is said to be a Lie algebra if satisfies the

following properties:

1. [x,x] =0 forall x € K,

2. [x [y, z]] + [y, [z, x]] + [z [x,y]] = O forall x,y,z € K (Jacobi identity).

If V is a vector space then End(V) denotes the associative algebra of endormorphisms
of V with product given by composition. For f,g € End(V), set [f,g] = fg — gf. The bilinear
map (f,g) — [f,¢g] is called commutator, or Lie bracket. The space of linear maps from V — V

together with the commutator is a Lie algebra. We denote it by gl(V).

Let K; and K, be Lie algebras over the field F such that the product in K] is [, ];, and

on K, is [, |,. We can define a multiplication on the direct sum of vector spaces K; and K, by
[X1 + y1, %2 + y2] = [x1,y1]1 + [x2, y2]2, for x1,y; € K and x5, y, € K. (D)

The multiplication defined in (1) makes the direct sum of K; and K, into a Lie algebra. This
Lie algebra is called direct sum of Lie algebras K; and K5, and will be denoted by K; ® K,. The
symbol ‘@’ will be used to denote the direct sum of algebras, while the direct sum of vector
spaces will be denoted by ‘4. A linear transformation 6 : K| — K, is a homomorphism of Lie

algebras if
0([x,y]1) = [0(x),0(y)]s, forall x,y € K;.
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Let K be a Lie algebra. A derivation of K is an endomorphism ¢ : K — K such that

5([x,y]) = [6(x),y] + [x,6(y)], forall x,ye K.

The derivation ¢ is non-singular if it is bijective as linear transformation. The set of all deriva-
tions of K, denoted by Der(K), is a Lie subalgebra of gl(K). For example, let k € K and define

the map ad, : K — K by ad,(x) = [k, x], for all x € K. The endomorphism ad, is a derivation.

Let K and I be a Lie algebras. A representation of K on I is a given Lie algebra
homomorphism ¢ : K — Der(I). In this case, we say that K acts on I. Additionally, if I is
an abelian Lie algebra, then [ is called K-module. The Lie algebra representation ad : K —

Der(K) given by k — ad,, for all k € K, is called the adjoint representation.

Let K and I be a Lie algebras such that K acts on /, with action given by the represen-
tation ¢ : K — Der(I). To facilitate the reading of the text we will use different notations to
represent the image (k) (v) for k € K and v € I. Usually the element (k) (v) will be denoted
by [k, v]. If I is an ideal of K, then the image of k under this action will be denoted by ad; (v),
or simply by ad, (v) when the domain of the representation is clear from the context. To avoid

an excess of brackets, we use the convention:

koo [k (ko] = [k, ..ok ko] = [k, 0], forallke K andve 1. 2
ks ks [k o] ]] = | 0] = [kn, v], fora and v 2)

ntimes

Thus, for v € I and for k € K, (ad})"(v) = (ad,)"(v) = [k,,v] forall n > 1.

Example 2.1.1. Let L be a Lie algebra with an abelian ideal I and set K = L/I. Define the Lie
algebra representation ad’ : K — Der(I) by ad’,(v) = [x,v] for all x € L and v € I. This is
well defined, since [ is abelian. Then / is a K-module. In this case, we say that the action is

induced by the adjoint representation.

Let V be a finite-dimensional vector space over a field F and x € End(V). Let g € F[X]

be a univariate polynomial and define
Vo(g(x)) = {ve V| thereis an m > 0 such that g(x)"v = 0}. 3)

The set Vo(g(x)) is a vector subspace of V which is invariant under x. Now let A be the associ-
ative subalgebra of End(V) with 1 generated by x. Let ¢, be the minimal polynomial of x and
suppose that

4 =4y - qr
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is the factorization of g, into irreducible factors, such that g; has leading coeflicient 1 and ¢; # ¢,

for 1 <i < j<r. Then V decomposes as a direct sum of subspaces

V=Vo(qi(x)) + -+ Vo(g,(x)),

with each space V(g;(x)) being invariant under A. Furthermore, the minimal polynomial of the

restriction of x to Vy(gi(x)) is ¢;'. A proof of this result can be found in [7] Lemma A.2.2.

We can generalize this decomposition to subalgebras of gI(V) generated by more than

one element.

Definition 2.1.2. Let V be a finite-dimensional vector space over a field IF and let K < gI(V)
be a subalgebra. A decomposition V = V, 4 --- + V; of V into K-modules V; is said to be
primary if the minimal polynomial of the restriction of x to V; is a power of an irreducible
polynomial for all x € K and 1 < i < s. The subspaces V; are called primary components. 1f
for any two components V; and V; (i # j), there is an x € K such that the minimal polynomials
of the restrictions of x to V; and V; are powers of different irreducible polynomials, then the

decomposition is called collected.

In general, a K-module V will not have a primary (or collected primary) decomposition
into K-modules, but such a decomposition is guaranteed to exist if K, as subalgebra of gl(V), is

nilpotent. Below we present some of these results that will be used in the text.

Proposition 2.1.3 ( [7], Propposition 3.1.7). Let V be a finite-dimensional vector space over a
field F. Let x,y € gl(V) and q € F|[X] be a polynomial. Suppose that |x,,y| = 0, for some

n = 1. Then Vy(q(x)) is invariant under y.

Proposition 2.1.3 implies the following corollary.

Corollary 2.1.4. Let V be finite-dimensional vector space over a field F. Let K < gl(V) be a

nilpotent subalgebra and let q be a polynomial in F[X]. Then Vy(q(x)) is a K-module for all
xe K.

Proposition 2.1.5 ( [7], Theorem 3.1.10). Let V be finite-dimensional vector space. Let K <

ol(V) be a nilpotent subalgebra. Then V has a unique collected primary decomposition relative

to K
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Let K < gl(V) be anilpotent Lie algebra. By Proposition 2.1.5, V has a unique collected
primary decomposition V = V; +V, +- - -4V, into K-modules. The next proposition shows that
for all x € K and all irreducible polynomials g € F[X], that divide the minimal polynomial of

x, the subspace V(g(x)) of V can be written as the sum of some of these primary components.

Proposition 2.1.6. Let K be a nilpotent Lie algebra and let V be a finite-dimensional K-module.
Let V =V, + --- 4+ V be the collected primary decomposition of V into K-modules. Let x € K
and let q be an irreducible polynomial of F|X|, such that q divides the minimal polynomial of

x. Then Vo(q(x)) = V;, + --- + V,, for some some primary components V;,,V,,,..., V.

Proof. Let U = {V;,V},,...,V,} be the set of all primary components such that the minimal

polynomial of the restriction of x to V;, is a power of g. We claim that

VO(CI(X)) = le + ij +oee Tt Vj

By definition, V;, < Vi(g(x)) for all i, and so V;, + --- + V;, < Vj(g(x)). Suppose now that
v e Vo(gq(x)). Assume that V;,,. ..,V are the collected primary components of V that are not
elements of U. Thenv = v, + -+ +vj, + v, + -+ + 1, wWithv; € V; and vy, € V.. As
vj, +...+vj, € Vo(q(x)), we obtain that vy, + - - - + vx, € Vo(g(x)), and we may assume without

loss of generality that v = vy, + ... + v, Since v € Vy(g(x)), there is some m such that

0 =¢(x)"() = g(x)"(0e) + -+ + g(x)" (vx,)

which implies that g(x)"(v,) = 0 for all i. We claim that v,, = O for all i. By the argument
above, g(x)"(vr,) = 0. On the other hand, v, € V, and V}, ¢ U, and hence there exists an
irreducible polynomial r(X) distinct from ¢(X) such that r(x)"(v,) = 0. Since g(X)" and
r(X)" are coprime, there are polynomials (X ) and v(X) such that u(X)g(X)" + v(X)r(X)" = 1.
Therefore
o, = 1(x)(v) = u(x)g(x)" (0g;) + v(x)r(x)"(v;) = 0.

Hence vy, = 0, as claimed. Therefore Vi(g(x)) < V;, + ...+ V,, and also Vy(g(x)) = V;, +
LV

Let K be a nilpotent Lie algebra and let V be a K-module such that V has a collected
primary decomposition V = V; +---+ V. Forx € K and 1 < i < s define g,; € F[X] to be the
irreducible polynomial such that the minimal polynomial of x restricted to V; is a power of g, ;.

Then we obtain the equality

Vi ={ve V| forall x € K there is an m > 0 such that ¢, ;(x)"v = 0}.
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See [ [7], page 62].

If the base field of V is algebraically closed, then all irreducible polynomials are of the
form ¢(X) = X — A, for some A € F, and hence ¢,; = X — 4;(x), with A;(x) € F. Further, in this

case, primary components are of the form
V; ={ve V| forall x € K there is an m > 0 such that (x — A;(x)I)"v = 0},

with A; € K*, where K* denotes the vector space of linear forms K — F. It is natural to give a

name for this case.

Definition 2.1.7. Let V be a finite-dimensional vector space over a field F and K < gl(V) a
subalgebra. Let 4 € K*. Then

V,={ve V| forall x € K there is an m > 0 such that (x — A(x).I)"v = 0}.

If V, # 0 then V), is called a generalized eigenspace of V associated to the generalized eigen-

value A € K*.

Corollary 2.1.8. Let L be a nilpotent Lie algebra over an algebraically closed field F and let V
be a finite-dimensional L-module. Then there exist generalized eigenvalues A, . .., A; of L such

that V.=V, @ --- @V, where the V,, are the generalized eigenspaces as in Definition 2.1.7.

Another decomposition that can be derived from the primary decomposition is called
the Fitting decomposition. It can be used to identify if K acts nilpotent on some component of
V. Assume as above that K is a nilpotent FF-Lie algebra and V is a finite-dimensional K-module
and that [ is algebraically closed. By Proposition 2.1.5, V has a unique collected primary
decomposition V; + --- 4+ V, into K-modules. For every x € K and V;, 1 < i < r, we can
describe if x is nilpotent or non-singular on V; by looking at the minimal polynomial of the
restriction of x to V;. Let X be an indeterminate and ¢,; be the unique irreducible factor of
the minimal polynomial of x on V;. If ¢,;(X) = X then x acts nilpotently on V;. Otherwise,
if g./(X) = X —a,a € F, a # 0. Then x acts non-singularly on V; with xV; = V,. As the
primary decomposition V| + - -+ + V, is collected, there is at most one component V; such that
every element x € K is nilpotent. If such a component exists it will be denoted by V,(K). Let
Vi (K) be the sum of the remaining components and write V = Vy(K) + V;(K). This can be

summarized in the following definition.
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Definition 2.1.9. Let V be a finite-dimensional vector space over an algebraically closed field

F and let K < gI(V) be a nilpotent subalgebra. Let V = V,(K) + V;(K) such that
Vo ={ve V| forall x € K there is an m > 0 such that x"'v = 0},

and V;(K) is the subspace defined above. This decomposition is called the Fitting decompo-
sition, Vo(K) and V,(K) are the Firting-null and Fitting-one component of V with respect to
K.

2.2 Lie algebra extensions

An extension of a Lie algebra K by a Lie algebra / is an exact sequence
0-15L5K—0 (4)

of Lie algebras. The Lie algebra L in the middle of the exact sequence contains an ideal
Ker(s) = Imi = [ such that L/I =~ K. We will write informally that ‘L is an extension of
K by I’. The extension (4) splits if L has a subalgebra S such that L = S + Ker(s). The exten-
sion (4) is trivial if there exists an ideal S of L such that L = § @ Ker(s). The extension (4) is

central if Ker(s) lies in the center Z(L) of L.

Let K be a Lie algebra over a field IF and let / be a K-module over FF. Denote by C*(K, I)
the vector space of alternating bilinear maps ¥ : K x K — [. If ¢ € CZ(K, I) has the property
that

3x [y 2]) + 9y, [z x]) + 3z, [x.y]) + [x. 9y, )] + [5,9(z )] + [2. 9 (6 y)] = 0, (5)

for all x, y, z € K, then ¢ is said to be a cocycle. The vector space of cocycles is denoted by

Z*(K,I). Let T : K — I be a linear transformation and define, 7 : K x K — I by
9r(h k) = T([hK]) + [k, T(h)] — [, T(K)] forall h, ke K. (6)

Then 99 € Z*(K, I) and such a cocycle 97 is said to be a coboundary. The set of coboundaries
is denoted by B*(K,I). The set B*(K,I) is a subspace of Z*(K,I), and we set H*(K,I) =
Z*(K,I)/B*(K,I) to be the quotient space. The first cohomology group of K and [ is defined as

Z\(K. 1) = {v e Hom(K. I) | v([h, k]) = [l v(k)] — [k, v(R)] for all h, k € K.

The next result, whose proof can be found, for instance, in [8, Section 4.2], links Lie

algebra extensions to cohomology.
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Proposition 2.2.1. Let K be a Lie algebra and let I be a K-module. Let ¢ € Z*(K, 1) and define
the Lie algebra Ky = K + I with the product

[x +a,y+ D] =[xy] +xy) + [a,y] — [b,x] forall x, y€ K and a, b € I. (7)

The following hold for the Lie algebra Ky:

1. Ky is a Lie algebra extension of K by I;
2. ifve BX(K,I), then Ky is isomorphic to Kg.,;

3. if 9 € BX(K,I), then Ky is a split extension of K by I.

Conversely, let L be a Lie algebra and let J be an abelian ideal of L. Then there exists 9 €
ZX(L/J, J) such that L = (L/J)g.

The cocycle # in last the statement of Proposition 2.2.1 can be constructed as follows.
Let 7 : L — L/I denote the natural projection, and let o : L/I — L be a right inverse of r; that

is, 7o = id ;. Then, fork + 1, h+ 1€ L/I, set
Hh+Lk+1)=o0(lh+ Lk+1])—[oc(h+1),0(k+1)].

Routine calculation shows that ¢ € Z*(L/I,I) and that L = L.

2.3 Representation of Lie Algebras

This section presents some general results about Lie algebras that will be used in this

text. The following proposition will be used in the proof of Jacobson’s Theorem in Section 2.4.

Proposition 2.3.1 ( [9], Proposition 5 of Chapter IIl). Let L be a Lie algebra over an alge-
braically closed field. Let K be a subalgebra of Der(L). If A,u : K — F* are generalized
eigenvalues of K then [Ly,L,| < L,., whenever A + u is also a generalized eigenvalue of K.

Otherwise [L,, L] = 0.

Proposition 2.3.2. Let L be a Lie algebra and let I be an ideal of L such that L/I is nilpotent.
Let ad : L — gl(L) be the adjoint representation with ad (y) = [x,y] for all x,y € L. If ad' is

a nilpotent endomorphism of I, for all x € L, then L is nilpotent.
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Proof. We claim that ad, is a nilpotent endomorphism of L for all x in L. By Engel’s Theorem
(see [7], Theorem 2.1.5), this will imply that L is a nilpotent Lie algebra as asserted by the
proposition. Suppose that x € L. Since L/I is nilpotent, there exists n > 0 such that (ad,)"(y) =
[x,,y] € I, for all y € L. Also, the restriction ad’ of ad, to  is a nilpotent endomorphism of 1,
and so there exists an m such that (ad’)”(y) = 0 for all y € I. Now let y be an arbitrary element
of L. Then, (ad,)"(y) € I, and so (ad,)"*"(y) = (ad,)"(ad,)"(y) = (ad,)"((ad,)"(y)) = 0.

Thus (ad,)”*" = 0, and hence ad, is a nilpotent endomorphism of L, as claimed.

Theorem 2.3.3 ( [10], Theorem 4.1). Let V be a finite-dimensional vector space over an alge-
braically closed field F of characteristic 0 and let L be a solvable subalgebra of gl(V). If V # 0,

then V contains a common eigenvector for all the endomorphism in L.

Theorem 2.3.4 (Lie’s Theorem, see [10], Corollary A of Theorem 4.1). Let L be a finite-
dimensional solvable Lie algebra over an algebraically closed field F of characteristic 0. Let
Y : L — gl(V) be a finite-dimensional representation of L. Then there is a basis of V relative to

which the matrix of y(x) is upper triangular, for all x € L.

Theorems 2.3.3 and 2.3.4 are not true in prime characteristic, but as observed by G.
Selligman in Chapter V Section 1 of [11] "some of the proofs referred to are still applicable
when the degree of the matrices is less than the characteristic”. J. E. Humphreys in [10] let
an exercise (Exercise 2 of Section 4) to prove that Lie’s Theorem can be adapted for prime
characteristic p if the dimension of the matrices is less than p. As I did not find the theorem
stated in positive characteristic, I prefer to present this result here with a brief explanation of

how to adapt the proof for this case.

Theorem 2.3.5. Let L be a finite-dimensional solvable Lie algebra over an algebraically closed
field F of characteristic p > 0. Let V be a vector space of dimension n < p. Let y : L — gI(V)
be a representation of L. Then there is a basis of V relative to which the matrix of y(x) is upper

triangular, for all x € L.

The proof of Theorem 2.3.3 in prime characteristic under the additional condition that
dim V < p goes through as in Humphreys’ book [10] except for the last sentence. In the book’s
version, we have nA([x, y]) = 0 and conclude that A([x, y]) = 0, because the characteristic of F
is 0. In this case, since p > dim V = n, we can still make the same conclusion, since n will not

be a zero divisor. The proof of Theorem 2.3.4 goes through exactly as in the book.
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2.4 Jacobson’s Theorem

The main objective of this thesis is to study what information can be obtained about a Lie
algebra with a non-singular derivation. This study starts with a theorem of Nathan Jacobson,
in the article A note on automorphism and derivations of Lie algebras [1]. Jacobson used a
variation of Engel’s Theorem for weakly closed sets to get sufficient conditions for a Lie algebra
to be nilpotent. Next we present this theorem and some discussion about the subject. For more
detailed results we recommend the reading of Sections 1 and 2 of Chapter 2 of Jacobson’s

book [9].

Let A be an associative algebra with 1 over a field F. A subset S of A is called weakly
closed if for every ordered pair (a,b) € S x S, there is an element y(a,b) € F such that
ab + y(a,b)ba € S. If S is a subset of a Lie or associative algebra X, then (S ) denotes the Lie
or associative, respectively, subalgebra of X generated by §S. This notation may cause confusion
when X is an associative and Lie algebra in the same time, and in such cases we will denote by
(S )4 and (S ), the associative and the Lie algebra, respectively, generated by S. It is important

clarify that, in this text, associative algebras may not have an identity.

Proposition 2.4.1 ( [9], Theorem 1 of Chapter II). Let V be a finite-dimensional vector space
over a field F. Let S < End(V) be a weakly closed subset such that every s € S is associative
nilpotent, that is, s = 0, for some positive integer k. Then the associative subalgebra {S) <

End(V) is nilpotent.

With this result we can prove Jacobson’s Theorem.

Theorem 2.4.2 ( [1], Theorem 3). Let L be a finite-dimensional Lie algebra over a field of
characteristic 0 and suppose that there exists a subalgebra D of the algebra of derivations of L

such that

1. D is nilpotent;

2. ifthere is x € L such that §(x) = 0 for all § € D then x = 0.
Then L is nilpotent.

Proof. Let T be the algebraic closure of the base field F. We can extend all derivations of L to

L = L®F. If we prove that L is nilpotent then L is nilpotent. So we will assume without loss of
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generality that F is algebraically closed. Let L = L,, + - - - 4+ L,, be the decomposition of L into
generalized eigenspaces of D, given by Corollary 2.1.8. We claim thaty; # 0 for all i. Indeed, if,
for example, y; = 0, then L,, is the Fitting-null component of L with respect to D (see Definition
2.1.9). In this case, every element x € D induces a nilpotent linear transformation on L,,. Then
there is a non-zero vector v € L,, such that xv = 0 for all x € D (see [Proposition 2.1.2, [7]]).
Therefore y; # 0 for all i, as claimed. By Proposition 2.3.1, we have [L,, L, | S L, if yi+7;
is a generalized eigenvalue of D and [L,,, L, | = 0 otherwise. For a subset Y < L, we let ad,
denote the set of adjoint mappings induced by elements of Y. Then the inclusion just noted
shows that the set S = | J ad L, is a weakly closed set of linear transformations of End(V). Let
y € Ly, and z € L,,. Then (ad,)’(z) € Ly,1y,;, for all s > 0.(*) The generalized eigenvalue vy,
is non-zero and [F has characteristic 0. Thus, y; + sy;, are pairwise distinct for all s > 0. As L
has finite-dimension, for some r large enough y; + ry; is not an eigenvalue and (ad,)"(z) = 0.
It follows that ad, is a nilpotent linear transformation. Hence, every element of S is nilpotent.
By Proposition 2.4.1, the associative subalgebra (S ), < End(V) is nilpotent. Observe that the
Lie subalgebra (S ), is a subset of (S >4, and so {S ), is nilpotent. However, (S ), = ad, implies

that L is a nilpotent Lie algebra.

In the proof of Theorem 2.4.2 the hypothesis of zero characteristic is essential to prove
that every element in a homogeneous component is nilpotent. As the following examples show,

Theorem 2.4.2 fails to hold in characteristic p > 0.

Example 2.4.3. ( [4], page 895) Let m > 2 and let [F be the field of 2" elements. Let L be the
vector space over [F such that

L={v,|aeF,a+#0)

with a basis {v, | a € F,a # 0} labeled by the nonzero elements of the field F under the
multiplication [v,, vs] = (a + b)v,+p. Then L is a simple Lie algebra and the map 6 € End(L)
given by 6(v,) = av, is a non-singular derivation. This example and a classification of simple

Lie algebras with non-singular derivations can be found in [4] on pages 895 and 916.

Example 2.4.4. ( [3], Theorem 2.1) Let V be a vector space over a field [ of characteristic
p > 0. Let B = {vg,02,--- ,0,—1} be a basis of V. Define the linear map x € gl(V) by
x(v;) = viyy for 0 < i < p — 2 and x(v,—;) = vo. Let K be the abelian Lie algebra generated
by {x,x?, -+ ,x"~'}. Then V can be considered as K-module with the standard action of gI(V)

on V. Let L be the semidirect sum L = K (B V (see Section 3.1 for the definition). Then L is an
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solvable non-nilpotent Lie algebra of derived length 2. Let a, b € F both non-zero and a # sb,

for all s € IF,,. The linear map ¢ : L — L defined by

x/ — jax’, 1

N
N

jsp—1
v~ b+ (i—1ay, 0<i<p-—1,

is a non-singular derivation of L.

Another question is whether the converse of Jacobson’s Theorem is true, that is: is it true
that all finite-dimensional nilpotent Lie algebras admit non-singular derivation? The answer
is no. By Dixmier and Lister [12], there are nilpotent Lie algebras admitting only nilpotent

derivations. Below we present the example of Dixmier and Lister of such an algebra.

Example 2.4.5. Let F be a field of characteristic 0 and L = {(v;, v, -+ ,vg) be a Lie algebra

over [F with dimension 8 and multiplication table
[01,02] = U5 [01,03] = Vg [Ul, 04] = U7 [01,05] = —Ug [UQ, 03] = Ug [02,04] = Us
[02’06] = U [03,04] = —Us [03,05] = U [04,06] = —Ug [Ui,l)j] = _[Uj’ Ui]-

Moreover, [v;,v j] = 0 if it 1s not in the table above. Then L is nilpotent with L} # 0,

L* = 0 and every derivation of L is nilpotent.

As the examples above show, Jacobson’s Theorem is in general not true in characteristic

p > 0. However, we have the follow weaker result.

Theorem 2.4.6. Let L be a Lie algebra over a field of characteristic p > 0 and suppose that

there exists a subalgebra D < Der(L) such that

1. D is nilpotent;

2. ifthere is x € L such that §(x) = 0 for all § € D then x = 0.
If D has at most p — 1 generalized eigenvalues then L is nilpotent.

Proof. The proof of this theorem is identical to proof of Theorem 2.4.2 up to the point marked
by (*). The generalized eigenvalue y; # 0 and the set {y;,y; + v;,---,¥ + (p — 1)y,} has p
distinct elements. As D has at most p — 1 generalized eigenvalues, for some r, 0 < r < p — 1,
(i + ry;) is not an eigenvalue. It follows that ad, is a nilpotent linear transformation, for every
a € L,,. Thus every element of S is a nilpotent. By Proposition 2.4.1, the associative subalgebra

{84 < End(V) is nilpotent and hence ad, is nilpotent. Therefore L is a nilpotent Lie algebra.
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2.5 The orders of non-singular derivations

An interesting approach by Shalev in article [2] is to study the possible orders of non-
singular derivations, establishing conditions for a Lie algebra over a field of characteristic p > 0
with non-singular derivations to be nilpotent. Later, Mattarei in [3] showed that this set of orders
of non-singular derivations corresponds to the set of solutions of some polynomial equation over

a field of characteristic p > 0. Below we present some results of these articles.

Lemma 2.5.1. Let L be a Lie algebra over a field F of characteristic p > 0. If § € Der(L) then
6" € Der(L), forallm > 1.

Proof. Let 6 € Der(L) and x,y € L. For a natural number n, we have that
HENEDY (Z) [6%(x),8" *(y)], forall n > 0. (8)
k=0
Equation (8) is known as Leibniz’s Formula; see equation (1.11) on page 23 of [7]. As the field

[F has characteristic p > 0, setting n = p™ Leibniz’s formula is reduced to

8" ([ y]) = [6” (), y] + [x,6”" ()]-
Therefore 6" € Der(L) as claimed.

An endomorphism « of a finite-dimensional vector space V is said to be diagonalizable
if V admits a basis in which the matrix of « is diagonal. For a non-singular linear transformation

« of finite order, let |@| denote the order of a.

Lemma 2.5.2. Suppose that L is a finite-dimensional Lie algebra over a field F of characteristic
p = 0and let 6 be a non-singular derivation of L with finite order. Then there exists an extension

field ¥y such that one of the following is valid.

e p = 0and ¢ is diagonalizable over F;

e pisaprime, |6| = np' with p { n, and 87" is a non-singular derivation that is diagonali-

zable over TF,,

Proof. First we proof this lemma for p > 0, then we explain how the proof can be adapted for
p = 0. Suppose that ¢ is a non-singular derivation of L with finite order. Suppose that 6" = Id,

p > 0 and write m = np' with t > 0 and gcd(n, p) = 1. By Lemma 2.5.1, we have that 6*'
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is a derivation whose order is n. Let @ = 6” and let I, be the splitting field of the minimal
polynomial of @. Note that [F, is an extension field of F and set Ly = L ® [Fy. Now the matrix
of @, considered as a non-singular derivation of L, is in upper triangular Jordan normal form
in a suitable basis of L. Let us identify the endomorphism @ with this matrix in Jordan normal
form. Hence, we may write @ = ag + @y, where ay is a diagonal matrix and ay is a nilpotent

matrix such that @y and oy commute. As o = Id,

Id =a" = (a5 +ay)" = as + (’11) o lay + (Z) ay Cag e+ (ni I)Q’S“X/l +ay. 9)

The identity matrix on the left-hand side of the last equation is diagonal, while the summands,
with the exception of the first summand, on the right-hand side are nilpotent. Further, if ay # 0,
then the second summand nag_laN in non-zero, since p {1 n, and it is the only summand that
contains a non-zero entry in a positions (i, 7 + 1) with i > 0. However, this implies that " must

contain a non-zero entry in a position (i,i + 1), which is a contradiction, as " = Id. Hence

ay = 0 and « is diagonalizable. Therefore, @ is a non-singular diagonalizable derivation of L.

In case p = 0, suppose that |§| = n and set @ = 6. Let F, be the splitting field of
a and set Ly = L ® Fy. Following the same steps as the previous case, we can consider a
suitable bases for L such that the matrix of « is in upper triangular Jordan normal form. Write
a = ag + ay and suppose that ay # 0. By equation 9, nag_laN 1s non-zero, since n # 0, which

is a contradiction. Hence @y = 0 and « is a non-singular diagonalizable derivation of L.

Remark 2.5.3. If the field F in Lemma 2.5.2 is finite, then every non-singular endomorphism of
L has finite order, and hence Lemma 2.5.2 is valid in this case without the additional assumption
that 6 has finite order. It is also clear considering the proof of Lemma 2.5.2 that if § is a non-
singular derivation of L with finite order such that the degree is coprime to p, then ¢ itself is
diagonalizable over a suitable finite order extension field . In particular, if 6 is a non-singular

derivation of L with order coprime to p, then § is diagonalizable over the algebraic closure F

of I.

For a field F, let F denote the algebraic closure of F.

Proposition 2.5.4 ([2], Lemma 2.2). Let L be a finite-dimensional Lie algebra in characteristic
p > 0 which admits a non-singular derivation 6 whose finite order n is coprime to p. Suppose

that L is not nilpotent. Then there exists a € F such that (a + b)* = 1 for all b € F.
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Proof. Let F be an algebraic closure of F and consider 6 as a derivation of L = L®F. By Lemma
2.5.2, ¢ is diagonalizable (see also Remark 2.5.3). Let L = L, + - - - + L, be the decomposition
of L into eigenspaces of 5. The set § = | Jad L, is weakly closed with y(ad,,ad,) = —1 for
all x € L,y € L,,. If each ad, is nilpotent then the associative subalgebra (S) < End(L) is
nilpotent by Proposition 2.4.1. Hence ad- is a nilpotent Lie algebra and L is nilpotent. As L
is non-nilpotent by hypothesis, there are x € L,, and y € L, such that (ad,)"(y) # 0, for all
1 < n < p. However this implies a; + ba; are eigenvalues of § for 1 < b < p. Since |§| = n the
order of each eigenvalue of ¢ divides n. Thus (a; + ba;)" = 1, forall b € F, and aj = 1. Hence,
a;" = 1. Thus 1 = (a; + ba;)"a;" = (aia;1 +b)". Seta = aiaj’l. Then (a + b)" = 1 for all

J
bel,.

Corollary 2.5.5 ( [2], Corollary 2.3). Let L be a finite-dimensional non-nilpotent Lie algebra in
characteristic p > 0 which admits a non-singular derivation 6 whose order n is coprime to p.

Then there is an element ¢ € F such that XP — X — ¢ divides X" — 1 as elements of the polynomial

ring F[X].

Proof. Let a € T as in Proposition 2.5.4. Let R = {x € F | x* = 1} be the set of the n-th roots
of unity in F. Write the polynomial

X" —1=]](X-x) eF[X].

X€ER

ForallbeF,, a+beR, and so [[,ep (X —a — b) divides X" — 1. But

[[x-a-b)=(X-a) —(X—a)=X"-X—c,

where ¢ = a” — a. The first equation of the last display can be seen by observing that the
elements a + b with b € F, are exacty the p roots of the polynomial (X — a)? — (X — a). Let
g(X) = X? — X — c. Then g(X) divides X" — 1.

Lemma 2.5.6 ( [2], Lemma 2.4). Let L be a finite-dimensional non-nilpotent Lie algebra in
characteristic p > 0 which admits a non-singular derivation 6 whose order n is coprime to p.

Thenn > p* — 1.

Proof. Suppose n < p*> — 1 and write n = a + bp where 0 < a < p — 1. Observe that b can be
atmost p— 1 and when b = p — 1, thena < p — 1. It follows, a + b < 2p — 3. Letc € F as
in Corollary 2.5.5 and let g(X) = X? — X — c. Then, by Corollary 2.5.5, X" is congruent to 1
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modulo g. Working modulo g, we have
X" = X“(XP)" = X“(X + ¢)°.

Then

b
X" = X 4 peX et 44 (
1

) X g b,

30

If a + b < p then the above polynomial is not congruent to 1 modulo g. Thus a + b > p. Write

a+b=p+ewhere () <e < p— 3. It follows that

l

b b
— X? (X"’ercX‘f1 +ot ( >ce) +( )ce“XP1 X
e e+1

.
N ng

A B

b\ . ‘
X" = XPTE 4 beXPTeT 44 ( )clxl’*e‘l + o+ X

Thus X" = X?A + B = (X + ¢)A + B. Note that the polynomial (X + ¢)A has degree at most

p — 2. On the other hand, (efl)c”l # Osincec # 0and e+ 1 < b < p, so B has degree p — 1.

Therefore the polynomial (X + ¢)A + B has degree p — 1, and is the residue of X" modulo g.

We see that X” # 1 modulo g, a contradiction.

Now we can prove the following theorem.

Theorem 2.5.7 ( [2], Theorem 1.1). Let L be a finite-dimensional Lie algebra in characteristic

p > 0 which admits a non-singular derivation 6 of order n. Write n = p*m where m is coprime

to p. Suppose m < p* — 1. Then L is nilpotent.

Proof. The derivation 67" has order m. Suppose that L is not nilpotent. Then by Lemma 2.5.6

we have m > p* — 1.

Mattarei completed this result in [3].

Proposition 2.5.8. Let p be a prime number and let n be a positive integer, prime to p. The

following statements are equivalent:

1. there exists a finite-dimensional non-nilpotent Lie algebra of characteristic p with a non-

singular derivation of order n;

2. there exists an element a € ¥, such that (a + b)" = 1 forallbe T,

—x%
3. there exists an element ¢ € I, such that X? — X — ¢ divides X" — 1 as elements of the

polynomial ring T ,[X].
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3 Derivations of Lie algebra extensions

In [6] Eick utilized compatible pairs to compute automorphisms of solvable groups and
solvable Lie algebras. This is related to the method for groups proposed by Robinson [13] and
Smith [14]. We adapt the concept for derivations of Lie algebras. That is, below we present a

process to lift a derivation from a Lie algebra K to an extension Ky where ¥ is a cocycle.

3.1 Compatible pairs and derivations of semidirect sums

Let K and I be Lie algebras such that K acts on [ via the homomorphism ¢ : K —
Der(I). We define the semidirect sum K ®, I as the vector space K + I with the product

operation given as

[(ki,v1), (K2, 02)] = ([k1, ko], [k, v2] = [k, 01] + [v1,02]).

When the K-action on [ is clear from the context, then we usually suppress the homomorphism
‘Y’ from the notation and write simply K (B 1. If L is a Lie algebra, such that L has an ideal 7,
and a subalgebra K in such a way that L = K 4 I, then L = K ®, I where ¢ is the restriction of

ad, to K. In a semidirect sum K ® I, an element (k,v) € K + I will usually be written as k + v.

Suppose that K and I are as in the previous paragraph. Let Der(K)@®Der(I) be the direct
sum of Der(K) and Der(/). An element (a,8) € Der(K) @ Der(I) is said to be a compatible
pair if

B([k,v]) = [a(k),v] + [k,B(v)] forall ke K, vel. (10)
We let Comp(K, I) denote the set of compatible pairs in Der(K) @ Der(I). Using the represen-
tation ¢ : K — Der(I) associated to the K-action on I, we can write equation (10) in another
form as follows. Writing [k, v] as ¥(k)(v), we have that (a,8) € Comp(K, I) if, and only if, the
equation

By (k) = yla(k)) +y(k)B

holds in Der(I) for all k € K. Using commutator, this is equivalent to

B, w(k)] = ¥(a(k)), forall ke K. (11)

Letting ad : Der(I) — Der(I) denote the adjoint representation of I, equation (11) can be

rewritten as

adgy (k) = y(a(k)), forall ke K. (12)
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Therefore, (@, 8) € Comp(K, I) if, and only if, the following diagram commutes:

K—% Der(1)

[a S

K—% Der(1).

A compatible pair (a,) € Der(K) @ Der(7) will usually be written as @ + 8. If a + B €
Der(K) @ Der(I) as above, then @ + 8 can be considered as an element of gl(K & I) by letting
(@ +B)(k+v) =alk)+p(v)forallae [ and k € K.

Proposition 3.1.1. Using the notation above, we have that
Comp(K,I) ={a+Begl(K)®gl(l) |« + B Der(K ®I)}.
In particular Comp(K, I) is a Lie subalgebra of Der(K ® I).
Proof. Suppose that « + 8 € Comp(K, I) is a compatible pair and let k + v, k' + v € K ® I.
Then
(@+B)k+ v,k + V] = (e +B)([kK] + ([k ] — [K,v] + [v,0]))
= a([k.K']) + B([k. o] = [K',0] + [0.0])
= [a(k), K] + [k, a(K')] + [a(k), v'] — [a(K'), 0]
+ [B(v), '] + [k, B(")] = [K, B(0)] + [0, B(W)].

On the other hand,

[(a+B)(k+v),K +V]+ [k+v,(a+B)(K +1)] =
[(k), K] + [a(k). o] + [B(v). K] + [B(v). V']
+ [k, a(K)] + [k, B()] + [v, (k)] + [v. B()].
Thus, @ + 8 € Der(K ® I). Conversely, let @ + B € gl(K) @ gl(I) such that a + B is a derivation
of K® 1. Then (a + B8)|x = @ and (o + B)|; = B, and so a € Der(K) and 8 € Der(I). Further,
if ke Kand v € I, then [k, v] € 1, and so
B(lk,v]) = (@ + B)[k,v] = [(@ +B)(k),v] + [k, (@ + B)(v)] = [a(k),v] + [k, B(v)].

Thus, @ + B € Comp(K,I), as required. The fact that Comp(K, ) is a Lie subalgebra of

Der(K®I) follows from the fact that Comp(K, I) is the intersection of two Lie algebras; namely,

Comp(K,I) = (gi(K) ®gl(I)) n Der(K ® ).
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Lemma 3.1.2. Let K and I be Lie algebras over a field F of characteristic p > 0. Suppose that
K acts on I. If (a,8) € Comp(K, I), then (a,B)" = (a”,B") € Comp(K,I) forall t > 1.

Proof. Let L = K (B I be the semidirect sum of K and /. By Proposition 3.1.1, (a,) € Der(L).
Let 6 = (@,f). By Lemma (2.5.1), (a, )" € Der(L) for all ¢ > 1. Thus, by Proposition 3.1.1,
(a,B)" = (a”,p") € Comp(K, 1), forall ¢ > 1.

Let K and I be vector spaces. Consider the Lie algebra gl(K) @ gl(/) and the vector
space Hom(K, gl()). Let ad : gl(I) — gl(I) be the adjoint representation of gl(I) such that
ad,(8') = [B,B'] forevery 8,8 € gl(I). Then define the action of gI(K)@®gl(/) on Hom(K, gl(I))
by setting

(@.B) - T = ad,T — Ta, (13)
for all (@, B) € gl(K) @ gl(/) and for all T € Hom(K, gI(I)). Let us show that this in fact defines
a Lie algebra action. Notice that («,8) - T € Hom(K, gl(I)), since it is linear combination of
compositions of linear maps. Let us check that the action is compatible with Lie brackets. Let

(@.B), (@, B') € gl(K) @ gl(I). By definition (¢, ') - T = ad, T — Ta'. Thus,
(@,B8) - ((¢.8)-T) = adgad, T —ad, Ta — ad;Ta' + Td'a.
In the same way,
(.p) - (a,B)-T) = adgad,T — adﬁTa' —adyTa + Tad .
Hence,
(@.B) - ((&.8)-T)— (@.B) - ((a.8)-T) = adsad,T —adyad,T — Tad' +Td'a
= [ad, ady|T — T[a, a'].
Therefore,

[(@.8), (.8)] - T = ([a, ], [8.8]) - T.

Now, if K and [ are Lie algebras such that K acts on /, then there is a corresponding
homomorphism ¢ € Hom(K, Der(1)). Suppose that @ + B € gl(K) @ gl(I) such that @ + 8 €
Der(K) @ Der(I). Then, for k € K, we have ad,T (k) + Ta(k) is a derivation of I, since
ad,T (k), Ta(k) € Der(I).

If X is a subalgebra of Der(K) & Der(I), then the annihilator Anny(y) of ¥ in X is
defined as

Annx(¢) = {(@.B) € X | (@.B) - ¢ = 0}.



Chapter 3. Derivations of Lie algebra extensions 34
Computing the annihilator of ¢ in Der(K) @ Der(I) explicitly, we obtain

AnNper(kyaer(n)(¥) = {(a.B) € Der(K) @ Der(1) | (a.8) - ¢ = 0}
= {(a,B) € Der(K) ® Der(I) | adgy — ya = 0} = Comp(K, I).
The last equality follows from (12). Hence, we have proved the following proposition.

Proposition 3.1.3. Let K and I be Lie algebras such that K acts in I via the representation Y €
Hom(K, Der(I)). Then Comp(K,I) = AnNperk)aperr)(¥), where the action of Der(K)® Der(I)
on Hom(K, Der(1)) is given by (13).

3.2 Anaction of gI(K) @ gl(I) on C*(K,I)

This is a technical section where we define, for two vector spaces K and I, an action of
gl(K) @ gl(I) on the vector space of alternating bilinear maps C*(K, I) and we show that this is

a well defined. We also present the necessary lemmas for the main result of this chapter.

Let K and I be vector spaces. Let (@, ) be an element of the Lie algebra gl(K) @ gl(/)
and let ¢ € C*(K, I). Define an action of gl(K) @ gl(I) on C*(K, I) by setting, for ¢ € C*(K, I),

(@,8) - 9(h k) = B3 (h,k)) — Halh), k) — O(h,a(k)), forall ke K. (14)
Let (@/,8') € gl(K) @ gl(I). Then
(@p) - ((@".f) - ¥(hk)) = (a.p) - (B(BhKk) — Ha'(h).k) — H(h,a’(k))). (15)

Applying the action in each summand of the right-hand of equation (15), we have

(@.B) - B'(9(h,k) = BB'D(h, k)) — B (a(h),k) — B'D(h, a(k)),
(@.B) - e/ (h), k) = B/ (h), k)) — D/ a(h), k) — Do/ (), a(K)),
(@.B) - 9(h,a'(k)) = Bi(h, o (k)) — Ha(h), & (k) — D (h, a'a(k)).

Thus,
(@.B) - ((@.B) - 9(h,k)) = pB'I(h, k) — B a(h), k) — BI(h, a(k))

— B (h),k)) + Hda(h), k) + ' (h), a(k))
— B3(h, ' (k) + Ha(h),d (k) + Fh, ' a(k)).
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We obtain similarly that

(@.B) - (. B) - 9(h, k) = BBI(h, k) — pi(a' (h), k) — B (h, (k)
— B a(h),k)) + Had (h), k) + Ha(h),d (k))
— BI(h, a(k)) + K (h), a(k)) + Fh, ad (k)).

Thus,
[(@.p). (@.B)] - O(h.k) = [B.B10(h.k) —9([e,&](h),k) — F(h, [, '] (K))
= ([a,d].[8.8]) - O(h, k).
Therefore, the action presented in (14) is well defined.

Our goal now is to study the action of compatible pairs Comp(K, ) on the subspaces
Z*(K,I) and B*(K, I) of C*(K, I). For this, assume that K is a Lie algebra and I is a K-module.
Then for all ,k,1 € K, (a,8) € Comp(K, I) and ¢ € Z*(K, I), we have

(@.B) - 9(k, [h,1]) = BBk [h1])) = Ha(k), [h1]) =k a([h 1))
= Bk 1)) = Ha(k), [h,1]) — Ik [a(h), 1]) = Ik, [h, a(D)]).
If

X = (@.p) - 9k [ 1]) + (@.B) - H(h, [Lk]) + (@.B) - I, [k, h]),

Using that g is linear and the definition of cocycles in (5), we have

X = —B([k (. D)]) = B([h, 9(L k)]) = B(L Ik, h)])
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Since (a, ) is a compatible pair, we have by (10)

Bk, 9(h, D]) = [a(k), 9(h, )] + [k, B(O (R, 1))];
B([h, (1, K)]) = [a(h), (L k)] + [h, B(I(L k))];
B([L Dk, )]) = [a(D), (k. h)] + [LB(I (k. h))].

Hence, we obtain combining the last two displayed systems of equations

X = —[kB@h.D))] = [h.BWOLK)] = [LBD (K h))]
+ [k 9(a(h), D] + [h, H(a(D), k)] + [1H(a(k), h)]
+ [k, 9(h, a(D)] + [h, 9(L (k)] + [1, 9k, a(h))].

Again, by the definition of the action in (14)

X = [k, (a.B) - 9(h,D)] = [, (@.B) - (L, k)] — [L, (. B) - F(k, h)].

So (a.B) -9 € Z*(K, I).

Now suppose that € B*(K, I). By definition (6), there is a linear map 7 : K — I such
that ¢ = J7. Hence,

Or(h.k) = T([h.k]) + [k, T (h)] — [1. T (K)]. (16)
Let Y = (., 8) - 97(h. k). By (16), we have

Y = B(dr(h, k) — r(a(h), k) — 7 (h, a(k)). (17)
Using the definition of 97, we have

BWr(h.k)) = BT([h.K]) + Blk, T ()] — Blh, T (K)], (18)
dr(a(h), k) = T([a(h).k]) + [k, Ta(h)] —[a(h), T (k)],
dr(hak) = T([ha®)]) + |ak), T(h)] - [h Ta(k)].

We can use that (a, ) is a compatible pair in equation (18) to write

B(dr(h, k) = BT ([h, k]) + [a(k), T(h)] + [k, BT (h)] — |a(h), T (k)] — [ BT (k)].
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Then

Y =BT ([h.k]) + [a(k), T(h)] + [k, BT (h)] — [a(h), T (k)] — [, BT (k)]
— T([a(h), k]) — [k, Ta(h)] + [a(h), T (k)]
= T([ha(k)]) — [a(k), T(R)] + [h, Ta(k)].

Making the cancellations, Y can be written as

Y = pT([h.k]) — T([a(h),k]) — T([h, a(k)])

+ [k BT (h)] — [k, Ta(h)] + [h, Ta(k)] — [h,BT (k)].

Now we use that 7" and the action are linear to obtain

Y = BT([h,k]) — T([a(h),k] + [h,a(k)]) + [k,BT(h) — Ta(h)] — [h,BT (k) — Ta(k)].
Hence,

Y = (BT — Ta)(|h,k]) + [k, (BT — Ta)(h)] — |h, (BT — Ta)(k)].
IfU=BT —Ta: K — I, then
(@.B) - r(h,k) = U([h.k]) + [k, U(h)] — [h, U(K)].

Therefore, (a, ) - 9 € B*(K, I). We just proved

Proposition 3.2.1. Let K be a Lie algebra and let I be a K-module. Consider the action of
Comp(K,I) on C*(K,I) defined in (14). Then the vector spaces Z*(K,I) and B*(K,I) are

invariants under this action.

This result allows us to define an action of Comp(K,I) on H*(K,I): let & € Z*(K,I)
and (@, 8) € Comp(K, I). Define the action

(@.B) - (@ +B*(K, 1)) = ((a.B) - 9) + B*(K, ). (19)
This is well defined by Proposition 3.2.1.

Definition 3.2.2. Let K be a Lie algebra and let I be a K-module. Let ¢ € Z*(K,I) and con-
sider the action of Comp(K, I) on H*(K, I) defined in (19). Define the set of induced pairs of
Comp(K,I) by

Indu(K, 1,9) = Anncompk.ry (9 + B*(K, I)).
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Now we have the tools needed to describe the Lie algebra Der(Ky) from the Lie algebra
Der(K). We will define a homomorphism ¢ : Der(Ky) — Der(K), whose kernel is known
and the image coincides with the set of induced pairs defined above. So, using the First Iso-
morphism Theorem for Lie algebras we have Der(Ky) is isomorphic to Ker(¢) + Im(¢). These
subspaces correspond to the structures: Ker(¢) = Z'(K,I) and Im(¢) = Indu(K,1,%). There-
fore, this method will allow us to study some properties of derivations of Lie algebra extensions

by cocycles. First we define ¢.

Let K be a Lie algebra and let / be a K-module. Let 9 € H*(K,I) and § € Der(Ky).
Suppose that 7, as an ideal of Ky, is invariant under ¢. Recall that Ky = K ® I and let ng :
Ky — K and 7; : Ky — I be the natural vector space projections of Ky onto K and Ky onto /
respectively. Then define the maps

e a: K — Kbya(k) =ngé(k), forall k € K;

e B:1— IbypB(v) =6(),forallve I,

e 1: K — Ibyn(k) =m6(k), forall k € K.

For each k + v € Ky, we have
6(k +v) = a(k) + n(k) +B(v) forallke Kandv e I. (20)
We can see that § is a derivation of I because it is the restriction of ¢ to I. To see that

« € Der(K), let x,y € K. To make our calculation more clear, we will denote by [-,-|x the

product in K, and by [, -] the product in K. Then by product definition on Ky
5([h, k)y) = 6([h, k]|x + F(h, k)).
By the decomposition showed in (20),
o([h. kls) = a([h. k]x) + n([h.k]k) + B(I(h, k). 21
We can calculate
[6(h). kly + [h.6(k)]s = [a(h) + n(h), k]s + [h, a(k) + n(k)]s, (22)
and use the definition of the product in equation (22) to get

[6(h), kg + [, 6(K)] = [a(h), k]x + Ha(h), k) — [k, n(h)]s
+ [h, (k)] + F(h, a(k)) + [, (k)]s (23)
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Comparing the components of K in (21) and (23) we have

a([h,k]x) = [a(h), k] + [h, a(k)]k,

and « € Der(K).

Now it is possible define our homomorphism ¢. Let K be a Lie algebra and let I be a
K-module. Letd € HZ(K, I) and suppose that /, as an ideal of Ky, is invariant under derivations.
For all k + v € Ky and 6 € Der(Kj) write 6(k + v) = a(k) + n(k) + B(v) with @ € Der(K) and
B € Der(I). Define ¢ : Der(Ky) — Der(K) & Der(I) by

$(6) = (a.p). (24)

The following calculation will check that ¢ is a Lie algebra homomorphism. Let 6, ' €

Der(Ky) such that

S(k+v) = alk)+n(k) +5(v)
§k+v) = dk)+1'(k)+pB ).
Then,
66'(k) = 6(d/ (k) +17'(k) +B'(v))
= ad/(k) +n(a'(k)) + B (k) + B'(v)).
Hence, nx66' (k) = ad’ (k). Analogously, nxd'6(k) = o'a(k). So ng|6,68'] = |@,a']. AsBand B

are defined by restriction of ¢ and & to I, respectively, ;[8, 6'] = [B,5']. Therefore,

¢([6,0) = ([a, @], [B,8]) = [(@.B), (', B)] = [¢(6), $(6")],

and ¢ is indeed a Lie algebra homomorphism.
The next result presents the first connection between compatible pairs and the homo-

morphism ¢.

Lemma 3.2.3. Let K be a Lie algebra and let I be a K-module. Let 9 € H*(K, I) and suppose
that I, as an ideal of Ky, is invariant under derivations. Let ¢ : Der(Ky) — Der(K) @ Der(I)
given by ¢(8) = (a,p), defined in (24). Then Im(¢) < Comp(K,I).

Proof. Let (a,B) € Im(¢). Then, there is § € Der(Ky) such that ¢(6) = («,8). If h € K and
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a € I, then

B(|h,aly) = 6(|h,als) (since [h,al € I)

= [6(h),als + [h,6(a)]s (6 € Der(Ky))

= la(n) +n(h).als + [h.B(a)]s

= |a(h),als + [h.B(a)]s (since [ is abelian).

We set for further reference

¢ : Der(Ky) — Comp(K,I)
6  — (@p).

(25)

3.3 Derivations of Ky

Now we present the main theorem of this chapter. We describe the derivations of an
extension Ky presented in Proposition 2.2.1 from the derivations of the Lie algebra K. As we
will see, this theorem sets conditions which guarantee that a derivation of K can be lifted to
a derivation of Ky. Recall that for a Lie algebra K, for a K-module I, and for ¢ € ZZ(K, 1),

Indu(K, I,) was defined in Definition 3.2.2.

Theorem 3.3.1. Let K be a Lie algebra and let I be a K-module. Let 9 € H* (K, I) and suppose
that 1, as ideal of Ky, is invariant under derivations. Let ¢ : Der(Ky) — Der(K) @ Der(I) be
defined as above. Then:

1. Im(¢) = Indu(K,1,)

2. Ker(¢) = Z'(K,I)

Proof. In this proof we will denote the product in Ky of h € K and a € [ just by the action [A, a]
of K on I, since |h,aly = |h, a].

1) Let (a,B) € Indu(K,I,9). By definition,

(a,B) - 9 € BX(K, ).



Chapter 3. Derivations of Lie algebra extensions

Then there is a linear map 7 : K — I, such that, for all 4,k € K,

B(8(h, k) — Ha(h), k) — H(h,a(k)) = T([h.k]) + [k T(h)] = [A, T (K)].

Let h € K, a € I and define the linear map (o, 8)* : Ky — Ky by
(@.B)*(h + a) = a(h) = T(h) + B(a).
Let us check that (@, 8)* is a derivation of Ky. Let k + b € Ky. If

X = (o, B)"(|h + a,k + b)y),

then
X = (a.B)"([h k] +O(h. k) + [h,b] — [k, a])
= a([h.k]x) = T([h.k]x) + B(3(h. k)) + B([h, b]) — B([K, a]).
Now, let
Y=[(e@+B)"(h+a),k+blys+ [h+a,(a+pB) (k+ D).
By equation (27),

[(@ +B)*(h+a),k+bly = |a(h) — T(h) + Bla),k + by.

Hence, by the definition of the product in (7),
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(26)

(27)

[a(h) = T(h) + Bla), k + bls = [a(h), K]k + F(a(h), k) + [a(h),b] — [k, =T (k) + B(a)]

and

[(@ +B)*(h+ a),k+ bly = [a(h),k]x + I a(h),k) + [a(h),b] — [k, =T (h) + B(a)].

Analogously,

[h+a,(a+B)*(k+b)|s = [h,a(k)]x + I(h, alk)) + [h, =T (k) + B(b)] — [a(k),a].

It follows that,

Y = [a(h), K + [ha(K)]x + O(a(h), k) + 9(h, a(k))

+a(h), b] + [, B(b)] — [k, B(a)] — [a(k),a] — [A, T(K)] + [k T (h)].
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We can use that (a,8) € Comp(K, I) to write Y as
Y = a([h. k]x) + 9(a(h), k) + O(h, a(k)) + B([h, b]) — B([k. a])
— [h, T (k)] + [k, T (h)].
By equation (26),
PHa(h),k) + 9(h, a(k)) = B(I(h,k)) = T([h.k]) = [k, T ()] + [1. T (K)].
Then
Y = a([h. k]x) + B(3(h. k) = T([h.k]x) — [k. T (h)] + [. T (k)]
+ B([h. b]) — B(lk.a]) — [A. T (k)] + [k. T (h)].
As X =Y, (a,B)* is a derivation.

Also observe that 7x(a,8)* = @ and m;(a,8)* = B. Hence, ¢((a@ + B)*) = (a,B) and
Indu(K, 1,9) < Im(&).

Suppose now that (a, ) € Im(¢). Then, there is § € Der(Ky), such that
$(6) = (@.B).

By Theorem 3.2.3, Im(¢) < Comp(K, I). Then, it is enough to show that there is a linear map

T : K — I, such that equation (26) is satisfied.
For each h + a € Ky, we can use the decomposition defined in (20) to write
6(h+ a) = a(h) + n(h) + B(a).

Thus,
[6(h + a),k + by = [a(h) + n(h) + B(a),k + D]s.

By the definition of the product in (7), we get
[a(h) + n(h) + B(a). k + bly = [a(h), K]k + Ha(h), k) + [a(h),b] — [k n(h) + B(a)].
Hence,
[6(h + a).k + bly = [a(h). K]k + H(a(h). k) + [a(h),b] — [k.n(h) + B(a)].
Analogously,

[h+a,6(k+b)]|s = |halk)|k +33h ak)) + [h,nk) +B(b)] — alk),a].
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Therefore,

[6(h+ a),k+ by + [h+ a,6(k + b)]s = [a(h),k|x + [h, a(k)]x + Ha(h), k) + F(h, a(k))

+ [a(h),b] + [h.B(b)] — [a(k), a] — [k, B(a)] = [k, n(h)] + [ n(K)]. (28)

We can use that (@, 8) € Comp(K, I) in the last displayed equation to write

[6(h+ a),k+ by + [h+ a,6(k + b)|s = a(|h, k|g) + Ha(h), k) + I(h, a(k))
+B([h, b]) — B([k. a]) — [k, n(h)] + [h, n(K)].

Now we will calculate 5([k + a, h + b]y). By the definition of the product,
O(|h + a,k + blg) = 6(|h, k| + I(h, k) + |h,b] — |k, a]).
Hence,
S([h, k| +0(h, k) + [, b] — [k, a]) = ([, k]) +n([h, k|x) +B(O (R, k) +B([h, b]) = B([k, a]).
As ¢ is a derivation, we have the equality
5([h+ a,k + bly) = [6(h+a),k +blyg+ [h+a,6k+Db)s.
It follows that,
da(h),k) + 3 (h, a(k)) = [k,n(h)] + [h.n(k)] = n([h, k]k) + BB (A, k)).
We can rearrange the last displayed equation to get

(=m)([h, klk) + [k, (=m) ()] = [, (=m)(K)]) = B(I(h, k)) — F(a(h), k) = I (R, a(k)).

Therefore, T = —n satisfies the equation (26) e Im(¢) < Indu(K, I,9). This concludes

the proof of assertion 1.

2) Let 6 € Ker(¢). The decomposition showed in (20) provides us
6(h) =n(h), forallhe K.
Let h,k € K. By the definition of a derivation,

5([h, k)y) = |6(h), k|s + [h,6(k)]s- (29)
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We can use the definition of the product in Ky to write
5(|h, k)y) = 6(|h, k]|x + F(h, k)).

Since 6 € Ker(¢),
6([h, k]y) = n([h, k]k)-
On other hand,
[6(h), Klg + [h, 6(K)]9 = [n(R), kls + [, n(k)]s.

Then, (29) can be written as

n([k. hlx) = [k.n(h)] — [h. n(k)],

and n € Z'(K, I). Observe that 7 is the restriction of § to K. Denote the restriction of ¢ to K by
S|x. Therefore, if § € Ker(¢), then d|x € Z' (K, I).

Let § € Ker(¢) and define o : Ker(¢) — (Z'(K,I),+) by 0(6) = 6|¢. The argument
above shows that o is well defined, in the sense that o-(§) € Z'(K,I). The map o is clearly
linear. Further, o is injective, since if § € Ker(o), then § = 0. Now, to prove that o is onto, let

n e Z'(K,I) and define a linear map ¢ : Ky — Ky by
6(h+a)=n(h),he K,acl.
We will show that ¢ is a derivation. Observe that, for all & + a, k + b € K, we have
5([h + a,k + bly) = 6(|h, k]|x + F(h, k) + [h,b] — [k,a]) = n([h, k]k).
On the other hand,

[6(h+ a),k+ by + [h+ a,6(k + b)|s = [n(h),k + bly + [h + a,n(k)]s

= —[k,p(h)] + [h.n(k)].

Sincen € Z'(K, I), 6([h+a, k+b]g) = [6(h+a), k+b]g+[h+a,5(k+b)]s, hence § € Der(Ky). It
is immediate that ¢(5) = 0. So ¢ € Ker(¢). As, by definition, 0-(§) = n, o~ is onto and, therefore,

it is an isomorphism.

Example 3.3.2. Let L be a Lie algebra and let / be an abelian ideal of L. Suppose that [ is

invariant under derivations. Set K = L/I. By Proposition 2.2.1, there is a ¢ € ZZ(K, I) such that
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L =~ Ky. Then, we can apply the map ¢ : Der(L) — Der(L/I) ® Der(I) defined in Theorem
3.3.1. Further, if 6 € Der(L), then ¢(6) = (a,B) € Comp(L/I,I). Hence, each derivation of L
gives rise to a pair of derivations a € Der(L/I) and 8 € I. In particular, if § is non-singular, then

a and S are non-singulars.
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4 Applications of Compatible pairs

4.1 Compatible pairs and Jacobson’s Theorem

In this chapter we present some examples of the use of compatible pairs in the study of

non-singular derivations.

Example 4.1.1. Let K and [ be finite-dimensional Lie algebras over an algebraically closed
field F. Suppose that K acts on I via the representation ¢ : K — Der(I). Let D < Comp(K, I)
be a subalgebra. Define L = K (® I. By Proposition 3.1.1, D < Der(L). Suppose that D is
nilpotent. By Corollary 2.1.8, L has a decomposition into generalized eigenspaces of D. This
decomposition induces decompositions on K and on /, since K and [/ are invariant under D.
Hence, L = Ky, @ --- ® Ky, @ I, - - - @ I,,. In particular, [K), 1] S Lyyp, if 4 + p;is an

eigenvalue of D in I. Otherwise [K},, 1| = 0.

From this example we can state the following result:

Proposition 4.1.2. Let K and I be finite-dimensional Lie algebras over an algebraically closed
field F. Suppose that K acts on I by representation  : K — Der(I). Let D < Comp(K, I) be
a nilpotent subalgebra. Suppose that 0 is not a generalized eigenvalue of D. Then if either the
characteristic of IF is zero or the characteristic of F is p and D has at most p — 1 generalized

eigenvalues, then the Lie subalgebra (K) < gl(I) is nilpotent.

Proof. Let L = Ky, + --- + K, + 1, --- + I, be the generalized eigenspace decomposition
presented in Example 4.1.1. Suppose that O is not a generalized eigenvalue of D. Let Ex =
{4, , 4.} and E; = {uy, - - , iy} be the generalized eigenvalues of D in K and I, respectively.
Letk € K,;,a € I, then

Y (k)(a) € Lyvnyy, if pi+ndjeE;
y"(k)(a) =0 if pi+nd;¢E.

e If the characteristic of IF is 0, then the linear functions y; + A, u; + 24;,...,4; + nd; ...

are all distinct since 4; # 0. Since dim/ is finite, u; + nd; ¢ E; for some n > 0. Hence,

k)" = 0.
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o If the characteristic of F is p > 0 and s < p, then the linear forms {u; + A;,u; +
24, , i+ (p—1)A;, u;} cannot be all non-trivial, and y; +nd; = 0 for some 1 < n < p.

Thus, ¢"(k) = 0, for some n with 1 < n < p.

In both cases, (k) is nilpotent for all k € K;,, 1 < j < r. LetS = [Jy(Ky,). Since S is a
weakly closed set such that each element is nilpotent, the associative subalgebra (S )4 < End([)

is nilpotent, by Proposition 2.4.1. Therefore, the Lie algebra (S ); = ¥(K) < gl([) is nilpotent.

For our next example we need a result about traces of matrices. Let n > 0 be a integer
number and let F be a field, and denote by M(n,F) the set of n x n matrices over F. The
statement of the following proposition is well-known in characteristic 0, see for instance [ [15],

Theorem 24.2.1, pg 110].

Proposition 4.1.3. Let F be a field of characteristic p = 0 and suppose that A € M(n,T).
Assume that either n < p or p = 0. Then A is nilpotent if, and only if, the trace of the matrices

A" is zero, forall 1 < r < n.

Proof. Suppose without loss of generality that [F is algebraically closed. Then a square matrix
A over F is nilpotent if and only if O is the only eigenvalue of A. Assume, without loss of gene-
rality, that A is in Jordan normal form. Hence, A is a block-diagonal matrix where each block is
formed by grouping the Jordan blocks associated to the same eigenvalue. Let 4, - - - , A4; be the
non-zero eigenvalues of A. Denote by A, the diagonal block in A associated with eigenvalue A4,,

and assume that A, is an n;, x n,-matrix. Then
tr(A") = mA] + - + mAy. (30)

Suppose that A is nilpotent. Then zero is the only eigenvalue of A, and also of A" forall r > 1,
and by equation (30) we have tr(A”) = 0 for | < r < n. Conversely, suppose that rr(A”) = 0

for 1 < r < n. Since k < n, from equation (30) we can extract the system
mAy + -+ md, =0, 1 <r<k, (31

of linear equations in the variables n, - - - ,n; over IF, considering each n; as the element n; - 1

in IF, whose matrix of coefficients is

4 A o A
pL ,1% R &

/ylc /15 /112
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Denote by m;(1) the operation that multiplies row i of a matrix by A, and A’ the transposed

matrix of A. So, we can write

Ct = nm (/ll)mZ(/lz) e mk(/lk)V,

where
_ o
1 A /l% e A
k—1
v 1 A /l% A5
1 A 2 2!
1s the Vandermonde matrix in the variables A;, A5, - - - , A;, whose determinant is

detV =[] (4—):

I<i<j<n
see, [16] Fact 5.16.3, pag. 354. As the A; are pairwise distinct, det V is non-zero. Thus, the
determinant of C is Ay.4; - - - 4. det V. As we assume that 4; # 0, 1 < i < k, C is non-singular.
It follows that the system (31) has only the trivial solution. Therefore, considered as an element
of I, each n; is zero. If p = 0, then zero is the only eigenvalue of A. If p > 0, then, since we
assume that n < p, we also have that n; < p for all j. Hence, the fact that n; = 0 in IF, implies
that n; = 0 as a natural number. We conclude that zero is the only eigenvalue of A, and so A is

nilpotent as explained in the beginning of the proof.

Proposition 4.1.4 ( [16], Fact 3.17.13). Let I be a field of characteristic p = 0. Let A,B,C €
M(n,TF) and assume that either p = 0 or n < p. If [A,B] = C + AB, for some A € F and
[B,C] = 0, then |[A,B"| = rB™™'C + ArB" for all r > 1. In particular, if 2 # 0 and C is

nilpotent, then B is nilpotent.

Proof. We prove the first statement of this result by induction on r. The case r = 1 follows from

the conditions. Suppose that result is valid for (r — 1). Then,
[A,B~"]=(r—1)B™*C+A(r—1)B"".
We can rewrite this equation as

Ar— 1B '=AB' - B'"A— (r—1)BC.



Chapter 4. Applications of Compatible pairs 49

Multiplying the last equation on the right by B, we have
A(r—1)B" = AB" — B '(AB) — (r — 1)B"*(CB).

By the conditions, we can write AB = BA + C + AB and CB = BC. Replacing these terms

above we obtain
Ar—1)B"=AB"—BA—-B~'C—-AB" - (r—1)B"'C.

Therefore,

AB" — B'A= ArB" + rB'C.

This proves the first assertion. For the second statement, suppose A # 0 and C is nilpotent with

nilpotency index m. Using the first assertion, we have
B = (1/ar)[A,B"] — (1/0)B~'C, forall r > 1.

Since, B and C commute, (B"~'C)" = (B~')"(C)" = 0, Hence, for all r > 1 B~'C is
nilpotent and, by Proposition 4.1.3, has trace zero. As the trace of commutators is always zero,
tr([A, B"]) = 0 for all r > 1. It follows that tr(B") = 0 for all » > 1 and again, by Proposition

4.1.3, we conclude that B is nilpotent.

Lemma 4.1.5. Let K and I be finite-dimensional Lie algebras over an algebraically closed field

IF of characteristic p > 0 such that K acts on I.

1. Let (a, ) € Comp(K, I) be a compatible pair of non-singular derivations such that both
@ and B have finite order and suppose that |@| = n,p' and |B| = ngp® such that n, and ng
are coprime to p. Let t = max{t,,tg}. Then (a”,"") is a compatible pair of non-singular
diagonalizable derivations such that the orders of o = o and 8’ = B are coprimes to

22

2. If L = K® I and § is a non-singular derivation of L with finite order such that 5(I) = 1,
then there exists a non-singular derivation §' of L with finite order such that §'(I) = I,
§'(K) = K, and the restrictions of &' to I and to K are diagonalizable and have orders

that are coprime to p.

Proof.

(1) Let (a,B) € Comp(K,I) be a a compatible pair of non-singular derivations as in

the lemma. Let o/ = o” and #/ = B”. By Lemma 3.1.2, (¢/,f') is a compatible pair, and
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by Lemma 2.5.2, o’ and ' are non-singular derivations, such that the orders of o/ and ' are
coprimes to p. Further, as IF is an algebraically closed field, o’ and 8’ are diagonalizable non-

singular derivations of L.

(2) Suppose that ¢ is as in the lemma, and let ¢ : Der(L) — Der(K) @ Der(I) defined
in 24. By Lemma 3.2.3, ¢(6) = (a,8) € Comp(K, ). Let |a| = n,p' and |B| = ngp”, and set
t = max{t,,t5}. Then (/, ') = (a”,B”) is a compatible pair of non-singular derivations such
that n, and ng are coprime to p. By Proposition 3.1.1, the compatible pair (e, ) determines a

derivation &' € Der(L) defined by &'(k + a) = a(k) + B(a), and &' is as claimed.

Now we can present a result similar to the Proposition 4.1.2, but with a new proof using

compatible pairs.

Theorem 4.1.6. Let K and I be finite-dimensional Lie algebras over an algebraically closed
field of characteristic p > 0. Suppose that K acts on I by the representation  : K — Der(I).
Let (a,8) € Comp(K, I) such that « is non-singular, and « has finite order. If K is solvable and

dim [ < p, then y(k) is nilpotent, for all k € K.

Proof. Let |a| = n,p' be the order of a, with p { n,. By Lemma 2.5.2, @”" is non-singular and
diagonalizable. By Lemma 3.1.2, (a”",8”") is a compatible pair. Then we may assume without
loss of generality that (@, ) is a compatible pair with @ non-singular and diagonalizable. Let
Xi,...,Xs be a basis of K such that a(x;) = A;x;. Let B be a basis for I and denote by [[a] the

matrix of the endomorphism a, for all a € gI(I), in B. Then, by equation (11),

(81, [ (x)1] = [ (a(x)1.

It follows that
[[ﬁ]], [W(xi)]]] = /lilll//(xi)]]-

We can apply Proposition 4.1.4 to this last equation with A = [B], B = [y(x;)], C = 0 and
A = A; # 0 to conclude that [¢(x;)] is nilpotent, for 1 < i < s. Now, we observe that K
is a solvable Lie algebra and dim/ < p, and so, by Theorem 2.3.5, there is a basis of I such
that the image of ¢ lies in the subalgebra of gl(/) formed by upper triangular matrices. So let
us work in this basis. Since [¥(x;)] is nilpotent and upper triangular, it must be strictly upper
triangular (that is, it contains zeros in the diagonal), for all i. Then, all [y(k)], for all k € K, are
also strictly upper triangular matrices, since they are linear combinations of the [¥(x;)]. Hence

every (k) is nilpotent.
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Remark 4.1.7. The proof presented for Theorem 4.1.6 is still valid if the characteristic of the
field F is zero. Suppose that we have the same conditions as in Theorem 4.1.6, except we do not
assume that char(IF) > 0 and that dim I < p. Using the same notation as in the proof, we can
again apply Proposition 4.1.4 in zero characteristic to guarantee that [W(x;)] is nilpotent, for
1 < i< s. Since K is solvable, by Theorem 2.3.4, there is a basis of I such that the image of
lies in the subalgebra of gl(I) formed by upper triangular matrices. Then we proceed as in the

proof of Theorem 4.1.6 to conclude that y(k), for all k € K, is nilpotent.

As a consequence of Theorem 4.1.6, we can present a version of Jacobson’s Theorem,

in prime characteristic, for solvable Lie algebras.

Theorem 4.1.8. Let L be a solvable Lie algebra over a field F of characteristic p > 0. Let
L>LY > ... > L0 > L&D = 0 pe the derived series of L. Suppose that L has a
non-singular derivation of finite order. If the dimension of L") /JLU*Y) < p, for all i, then L is

nilpotent.

Proof. Since the solvability of L and the dimensions of the quotients L") /Li*!) do not change
over extension fields, we may assume that F is algebraically closed. Suppose that L > L() >
o> LW > [+ — 0 s the derived series of L. We prove this result by induction on k. When
k = 0, then L is clearly nilpotent, as it is actually abelian. Suppose that the result holds for
Lie algebras of derived length k and assume that L has derived length k + 1. Then I = L% is
an abelian ideal of L. Setting K = L/I, we have that K acts on / by the adjoint representation
ad : K — Der(I) such that for all k € K and a € I we have ad,(a) = [k, a]. Further, since the
terms of the derived series are invariant under derivations, a non-singular derivation ¢ € Der(L)
gives rise to a compatible pair (@,8) € Comp(K, I) as in the definition of ¢ in (25). Since ¢ is
non-singular, so are @ € Der(K) and 8 € Der(I). Note that K is solvable of solvable length k
and KO /K1) ~ [0 /10+1) for all i < k — 1. Hence the induction hypothesis is valid for K
and we obtain that K is nilpotent. Besides that, since dim/ < p we can set ad = ¢ in Theorem
4.1.6 to conclude that ad, is nilpotent for all k € K. Therefore, L/I is nilpotent and ad : I — [

is nilpotent for all x € L. It follows from Proposition 2.3.2 that L is nilpotent.

In Example 2.4.4 we saw a solvable Lie algebra L of derived length 2, defined over
a field of positive characteristic which admits a non-singular derivation. The algebra L it
is not nilpotent, and indeed dim L) /L®) = p. This example shows that the condition that

dim L&) /LY < p for all i cannot be weakened in Theorem 4.1.8.
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5 Lie algebras with an abelian ideal of codimension 1

A Lie algebra L is said to be metabelian if it is a solvable Lie algebra of derived length
2, that is, the derived series is L > L' > 0. Then L can be regarded as an extension by cocycles
of the Lie algebra K = L/L' by the abelian Lie algebra L'. In this chapter we study non-singular
derivations of such Lie algebras. When dim K = 1, the vector space Z*(K, I) has only the trivial
cocycle, and the extension L is the semidirect sum L = K (B I. So using the concept of cyclic
modules, we can characterize the Lie algebras with dim K = 1, whose center is trivial and admit
a non-singular derivation. The decomposition presented in this chapter can be applied to any
Lie algebra defined as a semidirect-sum {x) (B 1, but if L has a non-singular derivation, then the
cyclic modules on which x acts non-singularly have dimension divisible by p. This will give
us information about the degree of the minimal polynomial of x and about the isomorphism

classes of the Lie algebras of the form (x) ® I with non-singular derivation.

51 (x, p)-cyclic modules

Let K be a Lie algebra and let I be a faithful K-module. Hence, K is a subalgebra
of gI(7), and we can define the semidirect sum L = K ( I. Thus, every element x € K may
simultaneosly be considered as an endomorphism in gI(/) and as an element of L. Let v € I.
We denote by x(v) the action of x viewed as an endomorphism of gl(/) on v, and by [x, v] the

product of x and v as elements of L. Then [x,v] = x(v).

We start with an example that will serve as a model.

Example 5.1.1. ( [3], Theorem 2.1) Let [F be a field of prime characteristic p > 0, such that
there is a,b € F with ab™! ¢ {0,1,...,p — 1}. Let I be a p-dimensional vector space over [F
with basis vy, ..., v,—1. Define x € gI(I) by x(v;) = v fori =0,---,p —2 and x(v,—1) = vo.
Then the semidirect sum L = {x) (® I is a non-nilpotent, solvable Lie algebra of derived length
2. Let 6 : L — L be defined by §(v;) = (a + ib)v; and §(x) = bx. This linear transformation is
a non-singular derivation, such that the basis vectors x, vy, ..., x,_; are eigenvectors of ¢ with

eigenvalues b,a,a + b,a + 2b,...,a + (p — 1)b respectively.

Let I be a vector space and x € gl(/). Next we will present some results on the de-

composition of I as subspaces invariant under x. This decomposition is similar to the primary
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decomposition, but it is specialized to one-dimensional algebras. We start with the definition of

cyclic modules.

Definition 5.1.2. Let / be a finite-dimensional vector space over a field F and x € gl(I). A
vector subspace U of I is x-cyclic if there is v € U such that {v, x(v), x*(v), x*(v), ...} is a basis

for U.

Let I be a vector space and let x € gl(/). Set K = (x) < gl(I) and consider [ as K-
module with the natural action. Let v € I and denote by (v)x = {g(x)v | ¢ € F[X]}. We say that
(v)g is the K-submodule of I generated by v. It is easy to see that (v)x is generated, as vector
space, by {v, x(v), x*(v), x*(v),...}. Hence, by Definition 5.1.2, {v) is x-cyclic. The vector
space I can be decomposed as a direct sum of K-modules, such that each module is x-cyclic.
A complete theorem regarding this subject can be found in Theorem 7.6 of [17]. Below we

present the item concerning cyclic decompositions.

Theorem 5.1.3. Let I be a finite-dimensional vector space and x € §l(I). Then I can be decom-

posed into a direct sum of x-cyclic subspaces

I=hLiLi--11,

If the vector space [ is x-cyclic, then it is possible obtain more results about the matrix
of the operator x € gl(/) and its minimal polynomial. Next we define companion matrices and

characterize the matrix of x on an x-cyclic space I.

Definition 5.1.4. Let g be the monic polynomial ¢(X) = X"—c, | X" ' = —X*—c1X—cy €

F[X], with n > 1. Then the matrix

00 ... 0 ¢
1 0 0 C1
0 1 0 o
0 0 ... 1 Cn—1
is called the companion matrix of g. We denote this matrix by CompMatrix(co, ¢y, -+, ¢, 1)-

Lemma 5.1.5. Let I be a vector space and let x € gl(I). The following are equivalent:

1. Iis x-cyclic;
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2. dimKer(cld — x) < 1, forall c € F;

3. the matrix of the operator x € gl(I) is similar to the companion matrix of the minimal

polynomial of x;
4. the minimal polynomial of x coincides with the characteristic polynomial of x;

5. for each eigenvalue of x, the Jordan normal form of x has only one block associated to

this eigenvalue.

A proof of this lemma can be found in [18, Theorem 1.5.8 and Corollary 1.5.14].

We will use the equivalence presented in Lemma 5.1.5 to introduce a new concept rela-
ted to cyclic modules. This concept will be the main tool for the characterization presented in

this section.

Definition 5.1.6. Let / be a vector space over a field IF of characteristic p > 0 and let x € gI(/).

The vector space I is (x, p)-cyclic if the following hold:

1. I1is x-cyclic;
2. p divides the dimension of I;

3. if CompMatrix(cg, c1, -+ ,¢,—1) is the companion matrix of the minimal polynomial of

x, then ¢y # 0 and ¢; = O for all i > 0 such that p 1 i.

The following Proposition follows from Definition 5.1.6 and Lemma 5.1.5.

Proposition 5.1.7. Let I be a vector space and x € gl(I). The vector space I is (x, p)-cyclic if,

and only if, I is x-cyclic and the minimal polynomial of x is of the form
Go(X) = X" — )y XD — =) X — ¢, XP — ¢y € F[X] (32)

where ¢y # 0andn = 1.

If X? = § in equation (32), then ¢,(S) is a polynomial of degree n in F[S]. This
means that the polynomial g, can be obtained from a polynomial with non-zero constant term.
In general, this is a method for generating (x, p)-cyclic vector spaces. Let ¢ € F[X] be a
polynomial in F[X] with non-zero constant term of degree n > 1. Let M be the companion

matrix of r(X) = g(X?). Let I be a vector space of dimension pn and let x be the endomorphism
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determined by M on I. Hence, [ is an (x, p)-cyclic vector space as we can see it in the next

example.

Example 5.1.8. Let p be a prime and let I be a field of characteristic p of order greater
than or equal to p*>. Let a € F\{0}. Define g(X) = X?" —a”, forn > 1. Let I be a
vector space of dimension p”. Then the companion matrix of g defines an endomorphism
x € gl(I). Let B = {vp,...,vn_1} be a basis of I such that the action of x on [ is given by
CompMatrix(a”', 0, ...,0). By Definition 5.1.6, I is an (x, p)-cyclic module. Let L be the Lie
algebra defined by L = (x) ® I. Then L is solvable of derived length 2, non-nilpotent and has
trivial center. Suppose that b € F\{0, 1,..., p — 1}. Then the endomorphism § : L — L given

by 6(x) = xand 6(v;) = (i + b)v;, 0 < i < p" — 1 is a non-singular derivation.

Note that, if ¢ € F[X] is the polynomial ¢(X) = X” — 1 in Example 5.1.8, then the
Lie algebra constructed is the same as in Example 5.1.1. In both examples we took non-zero

constant term because we restrict our study to Lie algebras with trivial center.

A Lie algebra L defined by L = {x) (® I, where I is a vector space considered as a Lie
algebra under the null multiplication, is completely determined by the action of x on /. Further,
if I is x-cyclic, then the x-action on / is determined by the minimal polynomial of x. Our next
results will link these Lie algebras, defined from the semidirect sum of (x, p)-cyclic modules,
to the existence of non-singular derivations. First, we need a lemma that gives us information

concerning the action of x on the eigenvectors of a non-singular derivation.

Lemma 5.1.9. Let I be a vector space and x € gl(I). Let K = {x) be a Lie algebra and set
L ={xy®1. Assume that Z(L) = 0. If § € Der(L) is a derivation and v € I is an eigenvector of

8, then [x,v] is an eigenvector of 6.

Proof. Let K = {x) be a Lie algebra of dimension 1 that acts on /. The center of L is the kernel
of x viewed as an endomorphism of . Since we assume that Z(L) = 0, we obtain that x is an
invertible endomorphism. This also implies that L' = I, and so [ is invariant under Der(L), and
we can consider ¢ : Der(L) — Der(K) @ Der(I) defined in 25. Suppose that ¢(5) = (a,B).
Then a({x)) = (x) and B(u) = 6(u), for all u € I. It follows that, x and v are eigenvectors of
« and B, respectively. Suppose that x, v are associated to eigenvalues a, b € [, respectively. By

the definition of compatible pairs

6(lx.0]) = B(lx.v]) = [@(x), v] + [x.B(v)] = (a + b)[x,0].
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Since, Z(L) = 0, the endomorphism of 7 induced by x is non-singular, and so [x,v] # O.

Therefore [x, v] is an eigenvector of & associated to eigenvalue (a + b).

Lemma 5.1.10. Let I be a vector space over a field of characteristic p > 0 and x € gl(I). Let
K = {x) be a Lie algebra and set L = K ® I. Also assume that Z(L) = 0. Let § € Der(L) be a
derivation such that §(x) = x and let E, be the §-eigenspace associated to eigenvalue a. Then

the vector space E = E, + E, + -+ + Eq4,—1 is x-invariant.

Proof. Letve E,.; with0 <i < p— 1. Then
5([x,0]) = [6(x), 0] + [x,6(v)] = (@a+ i+ 1)[x,0].
Hence, x(E,;) € E. As E,, generates E, E is x-invariant.
Before stating the next lemma, recall from Section 2.1 that for a polynomial ¢ € F[X]|
and x in End(7), Iy(g(x)) is defined as

Iy(q(x)) = {ve V| thereis an m > 0 such that g(x)"v = 0}.

Proposition 5.1.11. Let K be a nilpotent Lie algebra over a field F of characteristic p > 0 and
let I be a finite-dimensional K-module. Let L = K ® I, x € K and g(X) = X — a, witha € F.
Suppose that I, as an ideal of L, is invariant under Der(L). Let 6 € Der(L) such that 6(x) = bx.

Then Iy(q(x)) is 6-invariant.

Proof. Let § € Der(L), x € K given by the hypothesis and let w € I(g(x)). Hence, there is
m > 0 such that (x — a - Id)?" - w = 0. As char(F) = p, we have

n n

(x—a-Id)"" - w= (" —a”" - Id)-w=x" -w—a"w=0. (33)
As 6 € Der(L), using the right-normed convention introduced in equation (2.1),
S -w) = §([xm w])
= [6(x),...,x,w] + [x,6(x),...,x,w] + [x,...,6(x),w] + [x,...,x,6(w)]
= |ax,...,x,w] + [xax,...,x,w] + [x,...,ax,w] + [x,...,x,6(w)]
e a [ ] + [ 0(w)]
= X - S(w). (34)

Combining (34) and (33) we obtain

m m m

0=06(0)=6x" w—a"w)=6x" w)—a" dw)=x"-6w)—a"sw).
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Hence,

and 6(w) € In(g(x)).

Lemma 5.1.12. Let K = {(x) be a Lie algebra over an algebraically closed field F of cha-
racteristic p > 0. Let I be a finite-dimensional K-module such that x induces an invertible
endomorphism of I and set L = K ® 1. Assume that § is a non-singular derivation of L such
that §(x) = x and &|; is diagonalizable. Suppose that v € I is an eigenvector of 6. Then the

K-submodule {v)k is (x, p)-cyclic.

Proof. We will verify that the vector space {v)x satisfies the conditions of Proposition 5.1.7.
Define the sequence: vy = v and v;y; = [x,v;], i = 0. Then the set {vo, vy, ..., } generates (v)g
and (vyg is x-cyclic. As I has finite dimension, there is a k > 0 such that {vg, vy, ..., 01} is
linearly independent and {vg, vy, ..., v} is linearly dependent. By Lemma 5.1.9, each v; is an
eigenvector of ¢. In this case, v; is associated to the eigenvalue a + i, where a is the eigenva-
lue associated with v. Note that a,a + 1,...,a + (p — 1) are distinct eigenvalues and the set
{vo,v1,...,v,_1} is linearly independent. Hence, k > p. If the eigenvectors v; and v; are associ-
ated with eigenvalues a + i and a + j, then v; and v; are associated with the same eigenvalue if,
and only if, i = j (mod p). Suppose thatk = rp+1,0 <t < p— 1. Since a set of eigenvectors
associated to pairwise distinct eigenvalues is linearly independent, the eigenvector v, must be
a linear combination of the eigenvectors v;, for i < k — 1, that have the same eigenvalue as vy,

which is a + ¢. Hence,
U = CoUr + C1Upis + CoV2pir + -+ -+ Cro 10— 1) ptse (35)
If ¢ # 0, then we can replace every v; by [x, v;_;] in equation (35) and obtain that:
[x, 1] = co[x,v—1] + e[ X, vpsimi] + 2% V2primi] + - -+ ot [ X V= 1)ppi—1]- (36)

If L = {(x)® I with some non-trivial endomorphism x, then Z(L) = Ker(x) and L' = Im(x).

Since Z(L) = 0, we have that x induces an injective endomorphism on /. Thus,
Vk—1 = CoUs—1 + C1Upti—1 + CoV2piy—1 + -+ - + Cr 1V —1)p+1—1-

This contradicts to the assumption that {vg,v;,...,0 1} is linearly independent. Thus, ¢t = 0

and k = rp. Equation (35) implies also that v; = covg + c1v, + -+ + ¢,_10(—1), and so, the



Chapter 5. Lie algebras with an abelian ideal of codimension 1 58

characteristic polynomial of x is
(X)) = X7 — ¢ XU — o~ X — 1 XP — ¢y

If ¢ = 0, then replacing v; with [x,v; 1] as above implies that {vy,vy,...,v, 1} is linearly
dependent. Therefore ¢y # 0. As (v)k is x-cyclic, by Lemma 5.1.5, the minimal polynomial of

x restricted to (v)x is g, and, by Proposition 5.1.7, {v)x is (x, p)-cyclic.

Recall that for an endomorphism x of a vector space I, g, denotes the minimal polyno-
mial of x. When we want to emphasize the domain of x, we use the notation ¢, ;. If v € I, then
g, denotes the minimal polynomial of x with respect to v. That is, g, is the smallest degree,
non-zero, monic polynomial such that ¢,,(x)(v) = 0. It is well-known that ¢, | g, for all

v € I. The proof of the following theorem was inspired by the proof of Theorem 6.6 in [19].

Lemma 5.1.13. Let K = {x) be a Lie algebra of dimension 1 over an algebraically closed
field ' of characteristic p > 0. Let I be a finite-dimensional K-module such that x induces an
invertible endomorphism of I and set L = K (B I. Assume that ¢ is a non-singular derivation
of L such that §(x) = x and 6|, is diagonalizable. Assume, further, that m,;(X) = (X — )"
with some A € F and m > 1 and that the 6-eigenvalues on I are a,a + 1,...,a + p — 1 with
some a € F. Then I is the direct sum of (x, p)-cyclic subspaces, each of which is generated by

a o-eigenvector.

Proof. We prove this lemma by induction on dim /. By Lemma 5.1.12, dim/ > p, and so the
base case of the induction is when dim / = p. In this case, if v € I is a d-eigenvector, then (v)g
is (x, p)-cyclic of dimension greater than or equal to p, and hence I = (v)g. Thus the lemma is

valid when dim / = p.

Suppose now that dim/ > p + 1 and that the lemma is valid for spaces of dimension
less than dim /. By our conditions, I = E, + --- + E,;,_; where E, denotes the b-eigenspace
of § in 1. Since | J, E), generates [ as a vector space, there is some eigenvector vy € I such that
Grno(X) = q1(X) = (X — A)™. Let I be the K-module generated by vy, Iy = (vo)x, and let
J = I/I,. Since v is a §-eigenvector, I, is (x, p)-cyclic by Lemma 5.1.12, and hence p | m. In
particular, g,,,(X) = (X — )" = (X — 2)™”, where m, > 1. Note that I, is an ideal of L that is
invariant under 6. Considering J as a K-module, we can consider the Lie algebra K ®J = L/I
that satisfies the conditions of the lemma. Since dim J < dim /, the induction hypothesis applies

to J, and we may write J = J; + - - - + J; where the J; are (x, p)-cyclic subspaces of J and each
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Ji is generated by a o-eigenvector, w; + I, say. Since [ has a basis consisting of d-eigenvectors,
the 6-eigenvalues in J = I/l are a,a + 1,...,a + p — 1. We claim that w; can be chosen such
that w; is a d-eigenvector in /. We may assume that w; + Iy is associated to the eigenvalue a.
As §(w;) + Iy = aw; + Iy, 6(w;) — aw; = u € Iy. Since § is diagonalizable on I, we may write
W = Zg + Za41 + **+ + Zagp—1, With 7, € Ej,. Further, since I, is spanned by 6-eigenvectors, we
have that Iy = (I " E,) + -+ 4+ (Io N E44p—1). Thus we have u = u, + gy + - + gy p1,

with u, € E, n I,. Hence,

= U, + Uy + -+ uaer,l.

Since eigenvectors with different eigenvalues are linearly independent, u,,; = j - z,4; for all
J = 0. This implies that z,, ; = jiluaﬂ» € Iy holds for all j > 1. Therefore w; = z, + uyy1 +
27 a0+ - (p— 1)Uy p1 € 2o + Ip. Therefore we may replace w; by z, and so, we may
assume without loss of generality that w; is a §-eigenvector in /. In fact we assume that w; € E,,.
Since J; is (x, p)-cyclic, g, ;,(X) = (X — 4)™ with some m; > 1. We claim, foralli = 1,...,k,

that there is some v; € E, N (w; + Ip) such that
G (X) = g (X) = (X — )™

We prove this claim for i = 1. Since g,;,(X) = (X — 21)™?, we have (x — 1)™?(w; + Iy) = 0,
and so (x — A)"?(w;) € Iy. Thus, there is some polynomial 2 € F[X]| with degh < m and
(x = A)™P(w;) = h(x)(vo). On the other hand, w, € E,, and hence

(x =)™ (w) = [(x = )" (w) = [(x" = A7)]" "} (wy) € E.,

which gives h(x)(vy) € E,, since x” fixes each eigenspace E,. Write h(X) = ho(X) + h(X) +
-+++ h,_1(X) such that

h](X) =da; + ap+jX”+j + a2p+jX2p+j + ...,

forall 0 < j < p — 1. Suppose that i; # 0 for some j > 0. Observe that 4;(x)(vo) € Ey ;. As
h(x)(vo) € E, and eigenvectors associated to different eigenvalues are linearly independent, we
have i;(x)(vg) = 0. Thus, g,,, | ;. On the other hand, degh; < m = deggq.,,, which implies
that h; = 0, for all j > 0. Hence, we can assume that 7 = 1" with some & € F[X]. Now observe
that

0=(x=4)"(w) = (x= )" "7 (x = )" (w1) = (x = )" " h(x)(vo)-
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Since g, (X) = (X — )™, we have that (X —2)" | (X —A)"~"™Ph(X), and so (X —A)"™? | h(X).
Therefore there is some ¢ € F[X] such that ¢(X)(X — 2)™” = h(X) = h(X)?. This also implies
that g = ¢” with some g. Now set v; = w; — ¢(x)(vo). Since g(x)(vo) € Iy, we have v; € w; + Io.
Further, g(x)(vo) = q(x)?(vo) € E,, and hence v; € E,. This implies also that g, j, | ¢.,,- On

the other hand,
(x = )" (v1) = (x = )" (wr — q(x)(vo)) = (x — )7 (w1) — (x — )™7q(x)(vo) = 0.

Thus ¢,,, (X) = (X — )™? = q,,,(X), as claimed. Fori = 1,...,k, let I; = (v;)x. We claim
that I = Iy + - - - + I,. First,

Ji = (wi + L)g = i + Loy = (I + 1o) /1o

and so

Iy = (I + 1) /I + - - F (I + 1)/ .

This implies that I = Iy + I + - - - + I;. Further, the direct decomposition of 1/, also implies
that dim Iy + >, dim(; + Iy)/Iy = dim /. On the other hand, since g.,, = ¢, we also obtain
that dim ; = dim J; = dim(Z; + Iy)/Iy. Therefore

dim/y +dim/; + ---+dim/[; = dim/.
Hence the decomposition I = I + I} + - - - + I is valid.

Theorem 5.1.14. Let K = {(x) be a Lie algebra over an algebraically closed field F of characte-
ristic p > 0. Let I be a finite-dimensional K-module and set L = K®I. Assume that Z(L) = 0. If

L has a non-singular derivation of finite order, then I is the direct sum of (x, p)-cyclic modules.

Proof. Let 6 € Der(L) be a non-singular derivation and let ¢ be the transformation defined
in (25). It follows that, ¢(6) = (@,8) € Comp(K,I) is a compatible pair of non-singular
derivations. By Proposition 3.1.1, (@,8) € Der(L). Hence, by Lemma 4.1.5, L has a non-
singular derivation & such that 6((x)) = (x), 6(I) = I and that the restriction of § to I is
diagonalizable. By multiplying ¢ with a scalar, we may assume without loss of generality that
6(x) = x. Let g, /(X)) = (X—A4;)™ -+ - (X — A)™ be the minimal polynomial of x as an element
of gl(7). As K is one-dimensional, the collected primary decomposition of I into K-modules is
I =1Ip((x—2A)™)+- - -+ L((x—A)™), and Proposition 5.1.11 implies that the Io(x—2A;)"™ are &-

invariant. Hence we may assume without loss of generality that k = 1 and m,;(X) = (X — )™.
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Further, I can be decomposed as I = Eal +.- 4 EZS where, for g; € T, E,,. is the sum of the
eigenspaces of ¢ that correspond to the eigenvalues a;,a; + 1,...,a; + p — 1. By a Lemma
5.1.10, the Ea,- are x-invariant. Therefore we may assume that [ = E, with some a € F. Now

the theorem follows from Lemma 5.1.13.

It is interesting to note that cyclic modules appear in an arbitrary non-nilpotent Lie
algebra with a non-singular derivation. In the paper [2] by Shalev, the proof of Lemma 2.2 uses
the existence of a subalgebra isomorphic to L = (x) ® I, with I being a (x, p)-cyclic module.
This subalgebra is generated by the eigenvectors of a non-singular derivation, and it is used to

show that the eigenvalues are roots of the polynomial ¢(X) = X" — 1.

As consequence of Theorem 5.1.14, we can get some information of the matrix and the

minimal polynomial of x € End(L) in the Lie algebra L = (x) ® I.

Corollary 5.1.15. Let L be a finite-dimensional Lie algebra with derived length 2 over an alge-
braically closed field ' of characteristic p > 0. Suppose that L has a non-singular derivation
of finite order. Let K = L/|L,L| and I = [L,L]. If dim(K) = 1 with K = {x) and Z(L) = 0,

then there is a basis B of I such that the matrix of x in this basis is

(] 0 ... 0|
] 0 [x] ... O
0
0 0 ... [x]
such that each [x;] is in the form CompMatrix(cq, c{, - - ,c,_,) with c;y # 0 and ', = 0 for each
J such that p { j. In particular, there is di, ... ,d, € F, pairwise distinct, and positive integers
ei, . ..,e, such that the minimal polynomial of x is in the form

g:(X) = (X —d\)"" (X — dy)**" - - - (X — d,)*".

Corollary 5.1.16. Let L be a finite-dimensional Lie algebra over an algebraically closed field
F of characteristic p > 0, with derived length 2 with dim(L/[L,L]) = 1 and Z(L) = 0. Let § €
Der(L) be a non-singular derivation of finite order and suppose that x € L\[L, L|. If a and b are
eigenvalues of § associated to v € I and x, respectively, then {a,a+b,a+2b,--- ,a+ (p —1)b}

are eigenvalues of 6. In particular, the number of eigenvalues of 6 is congruent 1 modulo p.

In Proposition 5.1.14, we showed that if a metabelian Lie algebra L = (x) (B [ has a
non-singular derivation, then [ is the direct sum of (x, p)-cyclic subspaces. Now we show the

converse.
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Proposition 5.1.17. Let K be a one-dimensional Lie algebra over an algebraically closed field
F of characteristic p > 0 with K = {(xy and I, I, . .., I; (x, p)-cyclic K-modules. Then the Lie

algebra L given by the semidirect sum,
L=K®L+L+ +1),

has a non-singular derivation with sp + 1 distinct eigenvalues.

Proof. Recall that [F is algebraically closed and so we can choose b,ay,...,a; € [ such that

ab~'¢TF, forall 1 < j< sand
Ha;+ib|1<j<sand0<i<p—1} =ps.

By assumption, /; is (x, p)-cyclic, for 1 < j < s, and so there is a basis B; = {vé, v{, e vfjp_l}

of I; such that the matrix of x in B; is CompMatrix(cé,c{, e, Ci-p—l) with c{ = 0 whenever
J

p 1 i. By our definition, this implies that for | < j <'s

J

i+1°

. 1
[X,Uijpfl] = erj:O C.i]pvt{p'

Define the endomorphism & € gl(L) by §(x) = bx and 6(v/) = (a; + ib)v]. Then & is non-

Xl)j = D
>V

singular with eigenvalues a; + ibfor 1 < j < sand 0 < i < p — 1. Let us check that 6 is a

derivation of L. We are required to show that §([x,v/]) = [6(x),v/] + [x,8(v])]. Suppose that

1

i # rjp — 1. On the one hand,

§([x,v!]) = 6!, ,) = (a; + (i + 1)b)v]

I = (a;+ (i + Db)[x,0]].

On the other hand,
[6(x), 0] + [x,6(v])] = [bx,0]] + [x, (a; + ib)v]] = (a; + (i + 1)b)[x, v]].

Therefore,

Fori = rjp — 1 we have,

r‘,-—l rj—l rj—l
5([x, vfjpfl]) =6 (Z c{pv{p) = Z ¢;,0(v;,) = (Z (a; + ipb)cfpv{p)

i=0
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and

[5(2). 0] + [ 6(0r,p-1)] = blx.0nmi] + [ @y + (rp — DB)0],_ ] = aj[.0], ]

Therefore,
5(['x’ Uij—]:l) = [6('x)’ Uij—]] + ['x’ 6(01/—] )] °
Thus, ¢ is a non-singular derivation, as claimed.

We can combine Proposition 5.1.17 and Corollary 5.1.14 in one result and state the main

theorem of this chapter:

Theorem 5.1.18. Let L be a Lie algebra of derived length 2 over an algebraically closed field
F of characteristic p > 0. Suppose that dim(L/L’) = 1 and Z(L) = 0. Let x € L\L'. Then L
has a non-singular derivation of finite order if, and only if, L' can be written as a direct sum of

(x, p)-cyclic modules.

Using Theorem 5.1.18 we can construct more examples of Lie algebras with non-

singular derivations from polynomials.

Example 5.1.19. Let p be a prime number and let F be a field of characteristic p. Let ¢(X) =
(X —a))"(X —ay)?--- (X —a,)” be a polynomial in F[X]| with ay,...,a, € F. Let;, 1 < j<n
be a vector space over IF of dimension p. Fix a basis B; = {vé, v{, e, Uf;q} of /;. Let x; be the
endomorphism of /; given by CompMatrix(af ,0,...,0) in basis B;. By construction, each /; is

(xj, p)-cyclic. Now letI = I, + I, +--- 4+ I, and

(x] 0 ... 0
[x] _ 0 [)Cz] Cen 0
0

| 0 0 ... [x,,]._

Then L = {x) ® I is a Lie algebra with non- singular derivation.

In Example 5.1.19 we can also see that the correspondence between polynomials and
Lie algebras is not one-to-one. Let a € F,a # 0 and define ¢;(X) = (X — a)"(X — a,)?, with
a; = ay = a. Then, define L; = (x;) ® (I; + L) using polynomial ¢; as in Example 5.1.18. It
follows that, the minimal polynomial of x; is g, (X) = (X—a)?. If we define L, = (x,)(®I using
the polynomial ¢,(X) = (X —a)”, then the minimal polynomial of x; is also g,,(X) = (X —a)”.

But L; and L, have different dimensions.
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5.2 Decomposition of (x, p)-cyclic modules

Next we will identify minimal (x, p)-cyclic modules, that is, we will present conditions
for an (x, p)-cyclic module 7 that imply that I cannot be decomposed as a sum of smaller (x, p)-
cyclic modules. First we note that given an x-cyclic module /, the decomposition induced by the
minimal polynomial, which is the primary decomposition for the one-dimensional Lie algebra
{x), also decomposes (x, p)-cyclic modules into the sum of (x, p)-cyclic modules. We present

an example to introduce this result.

Example 5.2.1. Let I be a vector space over the algebraic closure [F of 5 of dimension 6 and
let B = {vy, 05, 03,04,05,06} be a basis of I. Let x € gl(/) be given by the companion matrix
CompMatrix(1,0,0,0,0,0). Define L = (xy ® I. Then I is (x, 3)-cyclic and, by Proposition

5.1.17, L has a non-singular derivation with 4 eigenvalues. Let B’ the basis given by
Uy = U1 + g, Uy = vy + Vs, Uz = vz + vg,

Ug = V1 — Uy, U5 =1V — Vs, Ug= U3 Ug.

Then I} = {uy,up,uzy and I, = {uy, us, ug) are (x,3)-cyclic modules and, L can be written as
(x) ® (I} + I,). Hence, again by Proposition 5.1.17, L has a non-singular derivation with 7
eigenvalues. Therefore, the (x, 3)-cyclic vector space I could be decomposed into the direct

sum of two smaller (x, 3)-cyclic modules.

Lemma 5.2.2. Let I be a finite-dimensional vector space over an algebraically closed field F of
characteristic p > 0, and let x € gl(I) be such that I is x-cyclic. Assume that [ = [, +L+---+1,

is the collected primary decomposition of I into x-modules. Then

1. I;is x-cyclic;

2. Letv € I such that {v, x(v), x*(v), - - , x"(v)} is a basis of I and v = v\ + vy + - - - + v, with

v; € I.. Then {v;, x(v;), X*(v;), - - - , x"(v;)} is a basis of I, for some n; < n.
3. If Lis (x, p)-cyclic, then I; is (x, p)-cyclic, for 1 <i<r.
Proof. Itens 1 and 2 follow from Theorem 6.4 of [17]. To prove item 3 we will verify the

conditions in Proposition 5.1.7. By item 1 of this proposition, I; is x-cyclic. Let x; be the

restriction of x to /; and let g,, be the minimal polynomial of x;. By the definition of collected
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primary decomposition, there is ey, ..., e, € [F, pairwise distinct, such that
q.(X) = (X —¢)", forsomet; > 1.
Suppose that the minimal polynomial of x is in the form
Ge(X) = X" — Cpn nyXPD — ) X — ¢, XP — ¢y, co # 0.
Define S = X”. Then we can write
q:(8) = S" — cpou_1yS" " — - — 2,87 — ¢, — co.

As [ is algebraically closed, there are dy, - - - ,d, € I (non-zero because ¢y # 0) and m; > 1,
1 < i < r, such that

Qx(S) = (S —dl)ml .. (S _dr)mr-

Replacing S by the variable X we have
g:(X) = (X —d)™ - - (X" —d,)™.
By assumption, [F has prime characteristic, and so
G(X) = (X — €)™ -+ (X — e,)"™,

where e; is such that e/ = d;, for all i. Thus, we can assume that the minimal polynomial of the
restriction of x to [; is

g.(X) = (X — e;)"™, with e; # 0.
By Proposition 5.1.7, [; is (x, p)-cyclic, | <i <.

Now we can characterize a type of irreducibility for (x, p)-cyclic modules. The Lie
algebra using these modules, over an algebraically closed field, have non-singular derivations

with exactly p + 1 eigenvalues.

Proposition 5.2.3. Let K be a Lie algebra of dimension 1 over an algebraically closed field F
of characteristic p > 0, and let I be a K-module of dimension n. Let x € K\{O} and L = {x)®1
such that Z(L) = 0. Suppose that L has a non-singular derivation of finite order. Then I can be
written as direct sum of (x, p)-cyclic modules I = I} + - -- + I, with r > 1, if, and only if, the
minimal polynomial of x, viewed as an element of gI(I), is either q,(X) = (X —a)", witha € F

andm < n, or q(X) = (X —a))™ ... (X — a;)™, where ay, . ..,a, € F are distinct and s > 1.
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Proof. Suppose that I can be write as [ = I} + --- + I, for r > 1, such that [; is (x, p)-cyclic
module, 1 < i < r. Let x; be the restriction of x to /; and let g,, be the minimal polynomial of
xi. fq,(X) = (X—a)", 1 <i<r forsomeaceFandm > 1, then ¢,(X) = (X — a)",
such that m = max{m,,...,m,}. Asr > 1, dim/l; < n and m; < n, for all i. Thus, m < n.
If there is distinct a;,a; € F such that ¢ (X) = (X — a;)"™ and ¢,,(X) = (X — a;)", then

(X —a;)"™(X —a;)™ | q«(X). Let us prove the other direction,

e Suppose that ¢,(X) = (X — a;)™ ...(X — a,)™, where ay,...,a; € F are distinct and
s > 1. As L has a non-singular derivation of finite order, by Theorem 5.1.13, I can be
written as a direct sum of (x, p)-cyclic modules, I = I, + --- + I,. If r > 1, then the
result is verified. If r = 1, then [ is (x, p)-cyclic. Let I = J; + --- + J; be the collected
primary decomposition of / into x-modules. Thus, by item 3 of Proposition 5.2.2, J; is

(x, p)-cyclic and the result is verified.

o Ifq(X)=(X—a)",withaeFandm < n,let] =1, + --- + I, be the decomposition
into (x, p)-cyclic modules presented by Theorem 5.1.13. If r = 1, then [ is (x, p)-cyclic
and, by item 4 of Lemma 5.1.5, m = n, which is a contradiction. Then r > 1 and the

result is verified.
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6 More examples of Lie algebra with non-singular derivation

This chapter is dedicated to present new examples of Lie algebras with non-singular
derivations. The examples explored in the previous chapters were defined by the semidirect sum
K ® 1, with K = {x). In this section we will mostly consider the case when K is a nilpotent Lie
algebra of higher dimension. In Proposition 6.1.3, we present an example of a non-nilpotent Lie
algebra L = H (B I, such that H has arbitrarily large nilpotency class and L has a non-singular
derivation. Then we suppose that H is the Heisenberg algebra. In this case, we present an
example of a representation ¢ : H — gl(I) such that L = H (B I is solvable, non-nilpotent with

non-singular derivation and set some conditions for this type of representations.

6.1 Examples with derived length 3

Recall the notation of adjoint representation presented in Section 2.1. Letad : L —
Der(L) be the adjoint representation of L given by x — ad,, for all x € L, such that, ad (y) =

[x,y], forall y € L.

Lemma 6.1.1. ( [20] Corollary 5.2.7) Let L be a finite-dimensional Lie algebra graded by some
abelian group. Suppose L satisfies the Engel condition (ad,)"(y) = 0 for some n > 1 and all

homogeneous elements x,y € L. Then L is nilpotent.

Lemma 6.1.2. ( [2]] Proposition 1.3) Let I be a vector space over a field F. If x,y € End(I),

then

(@) () = Y1 () # foratin > 1.

i=0

In the next proposition we use an action of a Lie algebra H on a vector space [ to define
a Lie algebra L = H (1. As we want to emphasize that the action of H on / corresponds to the
product in L, we will replace the notation used in the Lemma 6.1.2 by Lie brackets. Hence, if
x,v € L, then

(ad)"(v) = [xy,v] forall n > 1.

Proposition 6.1.3. Let I be a vector space over a field F of characteristic p > 0. Suppose that
I has dimension 2p and let B = {vy,- - ,v2,} be a basis of 1. Define the elements x,y € gl(I)

with the following rules

XD Ukpt1 7 Ukpi2s Vkpt2 7> Ukpi3s -+ Ukpip—1 = Ukpips Vkpip = Ukprt, for k=0, 1
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and
Y:Upp1 —vrandv— 0ifi#p+1
Then
1. [x,,_l,y] # 0.
2. [xp,y] =0.

3. The Lie algebra H, generated by x and y in gl(I), is nilpotent, with nilpotent class p and

dimension p + 1.

4. The Lie algebra L = H ® I is not nilpotent and if |F| > p? then L has a non-singular

derivation.

Proof.

1. By Lemma (6.1.2),

p—1

(P =1\ i
[xp—1:ylops1 = Z(_l)( i )xp] YXUpt1

i=0

p—1
ifp—1 —1—i
= Z(_1)< ; )xp ! YUpt1+i

i=0

= Xy, (since yv; = 0, fori # p + 1)
= xP~ly,
= v,

Therefore, [x,_1,y] # 0 as claimed.

2. By definition, x? fixes the basis B = {v,...,0,,0y41,...,02,} elementwise. Hence, x”
p» Yp+ P

acts as identity on /. Further, by Lemma (6.1.2), [x,, y] = x’y — yx” = 0.

3. First we claim that the only non-zero right-normed brackets in H are of the form [x,, y|,
for 1 <n < p— 1. Let I, be the vector space generated by {v;, - - ,v,}. By the definition
of x € End(1),

X(I) = I, X(Il) = Il, y([) C 11 and y([l) = 0. (37)

Let [wy, ws, ..., w,] be a right-normed bracket such that w; € {x, y} for I < j < r. Thus,

N

[wi, wa, ..., w,] =Zciwjle2...wjti (38)
i=0
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for some s > 0, #; > 0 and ¢; € F. If y appears twice in the list {wy, ws, ..., w,}, then each
summand of the right side of equation (38) is of the form c;x'yx/yx* for some I, j,k > 0.

Thus, by equations in (37),

*yx'yx* (1) = Xyx'y(I) = ¥yx' (1)) = ¥'y(1;) = 0.

Hence, [wy, ws, ..., w,] = 0. Suppose now that y appears exactly once in {wy, ws, ..., w,}.
Ifw, =yforl < j<r—2, then, [w,wy,....,w,] = [x,x,...,0,...,x,x] = 0. If
y = w, 1, then [x,x,...,y,x] = —[x,x,...,x,y]|, and we can say that all non-zero right-

normed brackets are of the form [x,, y| for n > 1. Observe that, by item 1 of this propo-
sition, [x,,y] # 0 for 1 < n < p and [x,,y| = 0. Thus, the only non-zero right-normed
brackets in H are of the form [x,,y], for | < n < p — 1, as we claimed. Let z; = [x;, y]
for 1 <i < p — 1. By the calculations in the last paragraph, the Lie algebra H generated

by x,y € gl(I) can be presented by the presentation

H = <x,y,zl,--- »Zp—1 | [X’ y] = 21, [X,Zi] = Zi+1> [X,prl] = [y,Zz] = [Zl’Zj] =0

forl<i<p—-2and1 < ji<p-—1).
Thus H is nilpotent with nilpotency class p.

4. Leta,b € F\F, such thatab ' ¢ F,, and define 6 : L — L by

6(x) = «x,
< 5(y) = ay,
8(zj) = (a+))z
S(vpri) = (b—ka+i— Doy, 0<k<1, 1<i<p.

By definition, ¢ is a non-singular endomorphism of L. We will check that ¢ satisfies the
definition of derivations in each non-zero product: [x,y], [x, vkp+i] [¥sVp+1], [X,2;] and

[zj,vp4i], forke {0,1},1 < i< pand1 < j < p. First we compute

[6(x),y] + [x,6(y)] =
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Suppose thati € {1,2,...,p — 1}, then

[6(x), vpti] + [x, 6 (vkpsi)] X, Ukpii| + (b —ka +i— 1)[x, vepi]

l
(b - ka + i)Ukp+i+1
= (Vep+iz1)

= o([x vpyil)-

Fori = p,
[806). 0ipi ] + 158 (0pi)] = [%ovkpep] + (b —ka+ p— Dlx.vgpi)
= (b— )Ukp+1
= 0(vep+1)
= O([x vpep])-
Furthermore,
[6(0), vpi] + [y, 6(vps)] = aly,vp1] + (b = @)y, vp4]
= b[y,v,,+1]
= by
= 6(v1)
= 6([y, vp11]);
and

x,zj] + (a + j)[x 2]
a+j+1)[xz]

[6(x), 2] + [x.6(z)] [
(
= 6(zj41)
= 6([x.z]).
Before we verify the identity of derivations for [z;,v,;], we need to perform some calcu-
lations. Observe that, z; = [x;,y| = (ad,)/(y). Hence, [z;,v;] = (ad,)’(y)(v;). We will
use the notation (ad,)/(y) to calculate the Lie bracket [z;,v,+:], for 0 < j < p — 1 and

1 <i<p.

By Lemma 6.1.2,

(@) 0oy = L0 ()0 (9)

The summand x/~*yx*(v,;) is non-zero only for x*(v,,;) = v,.1. Observe that x acts
as cyclic permutation modulo p on the sets {v,...,v,} and {v,;1,...,02,}. Hence,
x*(Vpti) = vp41 for s +i = 1 modulo p. The solutions for this equation are s = 0

fori=1lands=p—i+1fori> 1.
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e Ifi>1andj<p—i+1,thenx*(v,.;) # vy and X' ~Syx*(v,;) = 0.

e Ifi>1landj>p—i+1,then

(8 o = (1) () e

s=0

= (T e = o (T Yo

i J
= C‘j,il)j,(p,i), for CJ",' = (—l)p 1 <p _ix 1)

o If i = 1, then x*(v,41) = v,4 only for s = 0. Hence,

(ad,)’ (y)vp+1 = Zj:(—l)s<j) X yx (par) = vjr-

It follows that,

Vit if i=1
[2j, vp4i] = CjiVj(p—iy if i>1landj=p—i+1.
0 if i>landj<p—i+1
Thus,
[6(z)), vpi1] + [z 0(0pi1)] = (a+ flzjsvpi1] + (b= a)zj, vp11]
= (b+ )Ul+j
= 0(v14))

(
= 5([21, UPH])

Fori>land j=p—i—+1,

DMNzpvpri] + (b —a+i—1)[zj,0,4]
b+]+l_1)cjlvj (p—i)

[6(z)), vpai] + [2)6(vpi)] = (a+
(
= 0(c;ivj—(p-)
= ([zjvp1])-

Therefore, 6 € Der(L). The derived series of L = H (B [ is
L>L ={z1,...,2p, V1, .., 02p) > L® = U1y U2p) > L® =0

and L is solvable of derived length 3. Let ad : L — Der(L) be the adjoint representation

of L. Foralln > 1, (ad,)"(v;) = vj4, # 0. By Engel’s Theorem, L is not nilpotent.
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Next we explore conditions on the existence of non-singular derivations. We study
Lie algebras of the form H (B I ,where H is the Heisenberg Lie algebra over a field of prime

characteristic, and / is an H-module. First we present an example of such Lie algebras.

Example 6.1.4. Let H = {x,y,z | [x,y] = z,[x,z] = [y,z] = 0) be the Heisenberg Lie algebra
over a field F of characteristic p > 0. Suppose that [F| > p?. Let I be a vector space of
dimension 2p and let B = {vp,vy,...,v2,_1} be a basis of /. Denote by m,, the unique positive
integer between 0 and p — 1 that is congruent to m modulo p. Also, we can write a number
a € {0,...,2p — 1} uniquely in the form a;p + a, where 0 < a; < land0 < a, < p — 1.

Define the following representation ¢ : H — gl(/),for0 <k < land0<i<p-—1,

l//(x)(vkari) = Ukp+(i+1),
() (vpri) = ivi ;
U(@)(0pri) = —Ug+y,

and ¢(y)(vi) = ¥(2)(v;) = 0. Observe that (¥ ()¢ (y) — ¥(y)¢(x))(v;) = 0 and
W) (y) — () (0p1i) = () (i) = ¥ (y) Wpi1),) = i), = (4 1)p06c,
= —V(i+1), = ¥(2) (Vpri)-

Hence, y is a representation of H. As |F| > p?, there are a, b € (F\F,) such thatb—ka+i—1 #
O,foral0<k<landO<i< p—1.Defined: L — Lby

( 5(x) = =x,
] W) =
5(z) = (a+1)z
S(oepri) = (b—ka+i— Dy, 0<k<I1, 0<i<p-—1L

By definition ¢ is non-singular. We will check that ¢ is a derivation. Indeed,

[6(x), 4] + [x.6W)] = [xy] + [xay] = (1 + @)[xy] = (1 +a)z = 6(z) = 6([xy]),

[8(0),vips1] + [ (0] = [eovipi] + (b — ka + i — D]

= (b — ka + i)Ukp+(i+1),, = 5(Ukp+(i+1)p) = 5([% Ukp+i])

[6(y), vp1i] + [y, 6(vp1i)] = aly, vp1i] + (b —a+i—1)[y,v,.]

= (b+i=Dlyvpu] = (b +i—=Viv; = 6(ivi) = 6([y, vp1i])
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[6(2), vpi] + [2,0(vp11)] = (@ + D[z, 0p4i] + (b —a+i—1)[z,0,1]
= (b+ )z 0p1i] = =(b+ ioirn), = =6(vii1),) = 6([2, vp1i])-
Therefore, L = H (B I is a solvable, non-nilpotent Lie algebra with non-singular derivation and

derived length 3.

Theorem 6.1.5. Let ' be an algebraically closed field of characteristic p = 3. Let H be the
Heisenberg Lie algebra over . Let  : H — gl(I) be a faithful representation and suppose that
L = H ® I is non-nilpotent. Suppose that 1, as ideal of L, is invariant under Der(L). If L has a

non-singular derivation of finite order, then dimI > p + 3.

Proof. Let § € Der(L) be a non-singular derivation of finite order. By Proposition 4.1.5, we can
suppose that ¢ is diagonalizable, 6(1) = I and §(H) = H. For a € F let L, be the §-eigenspace
associated to eigenvalue a. By our conditions, there is gy, . .., a, € F\{0} such that
L=L,+L,+ - +L,.
If a € [F is not an eigenvalue of ¢, then define L, = 0. Hence,
L = +uerLy, with [Ly, Ly,] < Ly,

This turns L into a Lie algebra graded by the additive group of FF. As L is non-nilpotent, by
Lemma 6.1.1, there are homogeneous eigenvectors k,v € L such that [k,,, v] # O for all m > 0.
Write k = kg + k; and v = vy + vy, such that kg, vy € H and k;, vy € 1. Observe that, kg, vg, k;

and vy are d-eigenvectors. In fact, if §(k) = bk, for some b € F, then

S(ky) + 6(k;) = 6(ky + ki) = b(ky + k;).
Hence, as H and [ are invariants under § and L = H ® I, §(ky) = bky and 6(k;) = Dbk;.
Analogously, if §(v) = cv, for some ¢ € F, then §(vy) = cvy and 6(v;) = cv;. We claim that
there is h € H and a € I such that |h,,, a] # 0 for all m > 1. We have that,

[km, vy + U]] #* O,

for all m > 1, and so, [k, vy] # O or |k, v7] # O, for allm > 1.

o If [k, vn] # 0, for all m > 1, then
[k, vu| = |ku + ki, [ku + ki, vn]]
= [ky + ki, [ky, vu] + [k1, vn]]
[k, ke, va )] + [kus [k, ve]] + [k, [kas va]] + [k, [kr, vE]]
lku, [krs ki )] + [ki, [ky, vu]], since |[ky,vy| € Z(H) and [ is abelian.
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Let a = [k, vy and let h = ky. This means that |k, vy| € I. Therefore, as I is abelian,

[k3, vu] = [k, [ka, vu]] = [k + ki, [k, vu]] = [ku, [Ka, vm]]

and easy induction shows that

[(ktp)ms [K2s 0] = kg2, v6] # O
holds for all m > 1. Hence the choice of h = ky and a = [k,, vy] is as claimed.

o If [k,,v;] # 0, for all m > 1, then let a = v; and let i = ky. Hence, an argument similar

to the one on the previous case shows that |A,,, a| # 0, for all m > 1.

In both cases, there is & € H and a € 1, §-eigenvectors, such that |A,,a| # 0, forall m > 1, as
we claimed. Let g be the minimal polynomial of (k) as element of End(/) and suppose that
g = q|'...q, is the factorization of ¢ into irreducible factors. Then, by Lemma A.2.2 of [7],
I can be written as the direct sum I = Iy(q,(h)) + ... + Io(g,(h)). By Proposition 2.1.3, each
Iy(gi(h)) is an H-module. Let I; be the sum of Iy(g;(h)) such that ¢;(X) # X, and set Iy = Io(h).
Thus,

L=H®{y+1).

Also, I} # 0, since a € I;. By Proposition 5.1.11, [ and I; are H-modules and d-invariant. It
follows that, the Lie algebras Ly = H ® Iy and L; = H P I, have a non-singular derivation.
Observe that, by the construction of L,, & acts non-singularly in /;. Hence, L, is non-nilpotent.
Let 6, be the restriction of § to L;. The derivation 6; € Der(L;) is non-singular and has finite
order. As h is an eigenvector of §; and [ is -invariant, the Lie algebra (h) (B I is S-invariant,
and so the restriction of § to (h) ® I is a non-singular derivation of finite order. As the action
of & is non-singular on I}, by Theorem 5.1.18, I; can be written as a direct sum of (&, p)-cyclic
modules, and so

dim/; =np, n=>1.

The action of H must be faithful either on I; or on /. For, if H were not faithful on /, and on
I, then Z(H) would act trivially on both /; and Iy, hence Z(H) would act trivially on /. This
contradicts the assumption that 7 is a faithful H-module. As 6(H) = H, 6(Z(H)) = Z(H).
Hence, if z € Z(H)\{0}, then 6(z) = dz, since dim(Z(H)) = 1. If I; is a faithful representation,
then there is u € I; an §-eigenvector associated to the eigenvalue e € F, such that [z, u] # 0. It

follows that, 5(|z, u]) = (d + e)|z, u]. Then, since d # 0, u and |z, u| are linearity independent.
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If dimI; = p, then by Corollary 2.4 of [22] the representation is irreducible and there exists
f € Fsuchthat [z,w] = fwforall w € 1. Which contradicts the fact that u and [z, u] are linearity
independent, and so dim/; > 2p. As p = 3,dim [, > p + 3. If I; is not faithful, then [ is, and,
by Theorem 3.1 of [22], dim I, > 3. In both cases,

dim/ = dim/ly +dim/, = p + 3.

Proposition 6.1.6. Let K be a finite-dimensional Lie algebra over an algebraically closed field
IF of characteristic p > 0. Let I be a K-module such that I, as an ideal of the Lie algebra
L = K ® 1, is invariant under Der(L). Suppose that L has a non-singular derivation & of finite
order. Suppose that there is x,y € K eigenvectors of 6 associated to eigenvalues a,b € T,
respectively, such that a # kb, for k € F,. If the matrices of the action of x, y are non-singular

then dim I > p*.

Proof. By Proposition 4.1.5, we can suppose that ¢ is diagonalizable. Let v € I be an eigenvector

of 6 such that §(v) = cv. Since 6 is a derivation,
5([x,v]) = (a + c)[x,v]

and [x, v] is an eigenvector of §. Define vp = v and v, = [x,v;] for | <i < p—1. As xis non-
singular, B = {vg,--- ,v,—1} is a set of p non-zero §-eigenvectors associated to the eigenvalues
A={c,c+a,c+2a,---,c+ (p—1)a}. Aséisnon-singular, c + ka # 0,for0 <k < p—1,

and all elements of A are pairwise distinct. For each v; € B we have that
5[y, vi]) = (c + ia + D) |y, vi]-

Define v? = v; and v{ =y, v{ ], for 0 < j < p — 1. Let us check that elements of the set
{c+ia+jb|0<ij<p-1}

are pairwise distinct. Suppose by contradiction that there is iy, i, ji, jo, With iy # i, or j; # jo,
such that
c+iia+ j1b=c+ia+ jb.
Hence,
(i1 — ih)a = (j» — j1)b.
If iy —i, =0, then b = 0 and ¢ is singular. Same conclusion for j; — j, = 0. Thus a = kb, for

1 < k < p — 1, which contradicts the hypothesis. Then v{ forO0<i<p—land0<j<p—1
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are p? eigenvectors of ¢ in I associated to the distinct eigenvalues (¢ + (i — 1)a + (j — 1)b).

Therefore, dim I > p°.
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