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Resumo

Seja L um álgebra de Lie e δ uma derivação de L. A derivação δ é dita não-singular se

for injetiva como transformação linear. Por um resultado bem conhecido de N. Jacobson, uma

álgebra de Lie de dimensão finita, sobre um corpo de característica zero e com uma derivação

não-singular é nilpotente. Embora saibamos que esse resultado não é válido em característica

p ¡ 0, pouco se sabe sobre álgebras de Lie em característica p ¡ 0 com derivações não-

singulares. Neste texto, exploramos a estrutura das álgebras de Lie solúveis, não-nilpotentes e

com derivação não-singular. Apresentamos um novo conceito para derivações, chamado Pares

Compatíveis. Esse conceito é usado, por exemplo, para calcular as derivações de uma extensão

de álgebra de Lie. Outra aplicação obtida é uma versão do teorema de Jacobson para as álgebras

de Lie sobre corpos com característica p ¡ 0. Usando Pares Compatíveis foi possível obter uma

caracterização para álgebras de Lie não-nilpotentes, com um ideal abeliano de codimensões 1

e derivação não-singular. Adicionalmente, construímos um exemplo de álgebra de Lie não-

nilpotente, com derivação não-singular e classe de nilpotência arbitraria. Por fim, provamos que

se H é a álgebra de Heisenberg sobre um corpo de característica p e I um H-módulo, tais que

a soma semi-direta de H e I é uma álgebra de Lie não-nilpotente com derivação não-singular,

então a dimensão de I é, no mínimo, p � 3.

Palavras-chave: Álgebras de Lie, Derivações Não-Singulares, Pares Compatíveis, Teo-

rema de Jacobson



 



Abstract

Let L be a Lie algebra and δ be a derivation of L. The derivation δ is non-singular if it

is injective as linear transformation. By a well-known result of N. Jacobson, a Lie algebra of

finite dimension over a field of characteristic zero having a non-singular derivation is nilpotent.

Although we know that this result is not valid in characteristic p ¡ 0, little is known about Lie

algebras in p characteristic with non-singular derivations. In this text, we explore the structure

of solvable, non-nilpotent Lie algebras with non-singular derivations. We present a new concept

for derivations, called Compatible Pairs. This concept is used, for example, to calculate the

derivations of an extension of Lie algebras. Another application obtained was a version of

Jacobson’s Theorem for Lie algebras over fields characteristic p ¡ 0. Using Compatible pairs

it was possible to obtain a characterization of non-nilpotent Lie algebras, with an abelian deal

of codimension 1 and non-singular derivations. Further, a new example of non-nilpotent Lie

algebras, with non-singular derivations and arbitrarily nilpotency class was constructed. Finally,

we prove that if H is the Heisenberg algebra over a field of characteristic p ¡ 0, and I is a

H-module such that the semi-direct sum of H and I, is a non-nilpotent Lie algebras with non-

singular derivation, then the dimension of I is, at least, p � 3.

Keywords: Lie algebras, Non-singular Derivation, Compatible Pairs, Jacobson’s Theo-

rem



 



10

CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 BASIC CONCEPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Primary Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Lie algebra extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Representation of Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Jacobson’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 The orders of non-singular derivations . . . . . . . . . . . . . . . . . . . . 27

3 DERIVATIONS OF LIE ALGEBRA EXTENSIONS . . . . . . . . . . . 31

3.1 Compatible pairs and derivations of semidirect sums . . . . . . . . . . . . . 31

3.2 An action of glpKq ` glpIq on C2pK, Iq . . . . . . . . . . . . . . . . . . . . 34

3.3 Derivations of Kϑ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 APPLICATIONS OF COMPATIBLE PAIRS . . . . . . . . . . . . . . . 46

4.1 Compatible pairs and Jacobson’s Theorem . . . . . . . . . . . . . . . . . . 46

5 LIE ALGEBRAS WITH AN ABELIAN IDEAL OF CODIMENSION 1 52

5.1 px, pq-cyclic modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Decomposition of px, pq-cyclic modules . . . . . . . . . . . . . . . . . . . 64

6 MORE EXAMPLES OF LIE ALGEBRA WITH NON-SINGULAR DE-

RIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 Examples with derived length 3 . . . . . . . . . . . . . . . . . . . . . . . . 67

7 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



 



12

1 Introduction

Let L be a Lie algebra and let δ be a derivation of L. The derivation δ is non-singular if

it is injective as a linear transformation. We are interested in studying what information we can

obtain about a Lie algebra if it has a non-singular derivation. Jacobson’s Theorem [1] states that

a finite-dimensional Lie algebra over a field of characteristic zero that admits a non-singular

derivation must be nilpotent. It is well-known that this theorem is not valid when the charac-

teristic is non-zero. Non-nilpotent and solvable examples were constructed by Shalev [2] and

Mattarei [3], whereas the finite-dimensional simple Lie algebras with non-singular derivations

were classified by Benkart and her collaborators in [4]. A significant application of Lie algebras

with non-singular derivation in characteristic p was presented by Shalev [5]. In his proof of the

coclass conjectures of Leedham-Green and Newman for pro-p groups, Shalev uses the fact that

finite-dimensional Lie algebras over a field of characteristic p ¡ 0 with non-singular derivation

δ such that δp�1 � 1 must be nilpotent.

Despite the existing examples, little is known about non-nilpotent Lie algebras with

non-singular derivations. In this text we propose to explore the structure of solvable, non-

nilpotent Lie algebras with non-singular derivations. In order to study these algebras we develop

a theory of derivations of Lie algebra extensions. We adopt the concept of a compatible pair of

automorphisms utilized in [6] for derivations of Lie algebras.

In the rest of this introduction we state the main results presented in this thesis. Let us

start by briefly reviewing some concepts that are studied in more details in Chapter 3.

Let K and I be Lie algebras such that K acts on I. Denote by DerpKq the Lie alge-

bra of derivations of K. Then we can define the subalgebra ComppK, Iq of compatible pairs

of DerpKq ` DerpIq as the set of derivations of DerpKq ` DerpIq that are derivations of the

semidirect sum K i I. Formally,

ComppK, Iq � tα� β P glpKq ` glpIq | α� β P DerpK i Iqu.

The algebra DerpKq carries information about the multiplicative structure of K. Analogously,

the algebra ComppK, Iq carries information about the action of K on I.

We also adapt an algorithm presented by Bettina Eick [6] for calculating the auto-

morphism group of solvable Lie algebras. A key step in the algorithm is the following. Let

L be a Lie algebra and let I be an abelian ideal of L such that I is invariant under AutpLq.
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Then there exists a homomorphism φ : AutpLq Ñ AutpL{Iq � AutpIq induced by the actions of

AutpLq on L{I and I. The image of φ can be calculated using AutpL{Iq, while Kerpφq is equal to

Z1pK, Iq, the first cohomoly group of K on I. Then the group AutpLq can be obtained applying

the first isomorphism theorem to φ. For derivation, the process is as follows.

Let K be a Lie algebra and let I be a K-module. Let Z2pK, Iq be the vector space of

cocycles, let B2pK, Iq be the vector space of coboundaries and set H2pK, Iq � Z2pK, Iq{B2pK, Iq.

For pα, βq P ComppK, Iq and ϑ P Z2pK, Iq, define an action of ComppK, Iq on Z2pK, Iq by

pα, βq � ϑph, kq � βpϑph, kqq � ϑpαphq, kq � ϑph, αpkqq, for all h, k P K.

The elements of the annihilator of ϑ under this action will be called induced pairs and we denote

the set of induced pairs by IndupK, I, ϑq. Let Kϑ be the Lie algebra extension of K obtained

as the extension by cocycle ϑ. Suppose that I, as an ideal of Kϑ, is invariant under DerpKϑq.

Hence, each d P DerpKϑq induces derivations α and β of K and I, respectively, and we can

construct a Lie algebra homomorphism φ : DerpLq Ñ DerpL{Iq ` DerpIq. Thus we obtain the

following theorem, whose full proof will be presented in Chapter 3.

Theorem 3.3.1 Let K be a Lie algebra and let I be a K-module. Let ϑ P H2pK, Iq and suppose

that I, as ideal of Kϑ, is invariant under derivations. Let φ : DerpKϑq Ñ DerpKq ` DerpIq be

defined as above. Then:

1. Impφq � IndupK, I, ϑq

2. Kerpφq � Z1pK, Iq

The details of this construction can be seen in Chapter 3. There is a significant diffe-

rence between the application of this approach to automorphisms and to derivations: calcula-

ting the automorphism groups of Lie algebras is usually a difficult task that may involve a large

orbit-stabilizer calculation, while calculating the algebra of derivations can be done by solving

a system of linear equations. Nevertheless, it is still interesting to see that derivations have

properties similar to automorphisms.

Let K be a finite-dimensional Lie a algebra and let ψ : K Ñ DerpIq be a Lie algebra

representation. If K is solvable and the base field has characteristic zero, we have a characte-

rization of the matrices of the image of the representation ψ using Lie’s Theorem (see 2.3.4):

there is a basis such that these matrices are all upper triangular. As this result is not true for
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representations with base field of prime characteristic p ¡ 0, in Chapter 4 we explore some

representations of solvable Lie algebra in prime characteristic. The existence of a compatible

pair formed by non-singular derivations, guarantees that the image of ψ : K Ñ DerpIq with K

solvable and dim K   p, must be formed by nilpotent matrices.

Theorem 4.1.6 Let K and I be finite-dimensional Lie algebras over an algebraically closed

field of characteristic p ¡ 0. Suppose that K acts on I by the representation ψ : K Ñ DerpIq.

Let pα, βq P ComppK, Iq such that α is non-singular, and α has finite order. If K is solvable and

dim I   p, then ψpkq is nilpotent, for all k P K.

As a consequence, it is also possible to present a version of Jacobson’s Theorem for Lie

algebras over fields of characteristic p ¡ 0. This version considers a solvable Lie algebra L and

sets conditions for L to be nilpotent.

Theorem 4.1.8 Let L be a solvable Lie algebra over a field F of characteristic p ¡ 0. Let

L ¡ Lp1q ¡ � � � ¡ Lpkq ¡ Lpk�1q � 0 be the derived series of L. Suppose that L has a

non-singular derivation of finite order. If the dimension of Lpiq{Lpi�1q   p, for all i, then L is

nilpotent.

Further, we explore the structure of some finite-dimensional non-nilpotent Lie algebras

with a non-singular derivation. Due to Jacobson’s Theorem, these algebras can exist just over

fields of prime characteristic. Let K be a solvable Lie algebra over a field of prime characteristic

p ¡ 0 and let I be a K-module. Define the semidirect sum L � K i I and suppose that L is

solvable, non-nilpotent and with a non-singular derivation. We study some of these algebras in

Chapters 5 and 6. In Chapter 5, we assume that dim K � 1 and that the center of L is zero,

that is ZpLq � 0. With these hypotheses, it was possible to fully characterize such algebras, as

presented in the following theorem. The concept of (x,p)-cyclic modules is presented in Section

5.1.

Theorem 5.1.18 Let L be a Lie algebra of derived length 2 over an algebraically closed field

F of characteristic p ¡ 0. Suppose that dimpL{L1q � 1 and ZpLq � 0. Let x P LzL1. Then L

has a non-singular derivation of finite order if, and only if, L1 can be written as a direct sum of

px, pq-cyclic modules.

In Chapter 6, we present some new examples of non-nilpotent Lie algebras with non-

singular derivations. Proposition 6.1.3 presents Lie algebras with arbitrarily large nilpotency

class. Example 6.1.4 contains our first example of solvable and non-nilpotent Lie algebra, with a
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non-singular derivation and derived length 3. This example was obtained from a representation

ψ : H Ñ DerpIq such that H is the Heisenberg algebra. The thesis ends with a result on the

representations of the Heisenberg algebra H. Suppose that a representation ψ : H Ñ DerpIq is

faithful and Hi I admits a non-singular derivation. Then, we have a condition on the dimension

of I, as stated in the next theorem.

Theorem 6.1.5 Let F be an algebraically closed field of characteristic p ¥ 3. Let H be the

Heisenberg Lie algebra over F. Let ψ : H Ñ glpIq be a faithful representation and suppose that

L � H i I is non-nilpotent. Suppose that I, as ideal of L, is invariant under DerpLq. If L has a

non-singular derivation of finite order, then dim I ¥ p � 3.

In order facilitate the reading of the text and the references, we added Chapter 2 with

results on the primary decomposition of vector spaces in relation to subalgebras of linear ope-

rators and a brief description of the main results of the articles used.
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2 Basic Concepts

In this chapter we present some results on Lie algebra representations and non-singular

derivations. A major reference for a decomposition of a vector space V into K-modules such

that K is a subalgebra of glpVq was the book ‘Lie algebra: Theory and Algorithms’ [7] of

W. A. de Graaf . We also present the main articles that motivated the initial study of non-

singular derivations. The purpose of this chapter is to speed up reading by including most of

the references in the text itself.

2.1 Primary Decomposition

Let K be a non-associative algebra over a field F and let us assume that the product of

two elements x, y P K is denoted by rx, ys. Then K is said to be a Lie algebra if satisfies the

following properties:

1. rx, xs � 0 for all x P K,

2. rx, ry, zss � ry, rz, xss � rz, rx, yss � 0 for all x, y, z P K (Jacobi identity).

If V is a vector space then EndpVq denotes the associative algebra of endormorphisms

of V with product given by composition. For f , g P EndpVq, set r f , gs � fg� g f . The bilinear

map p f , gq ÞÑ r f , gs is called commutator, or Lie bracket. The space of linear maps from V Ñ V

together with the commutator is a Lie algebra. We denote it by glpVq.

Let K1 and K2 be Lie algebras over the field F such that the product in K1 is r, s1, and

on K2 is r, s2. We can define a multiplication on the direct sum of vector spaces K1 and K2 by

rx1 � y1, x2 � y2s � rx1, y1s1 � rx2, y2s2, for x1, y1 P K1 and x2, y2 P K2. (1)

The multiplication defined in (1) makes the direct sum of K1 and K2 into a Lie algebra. This

Lie algebra is called direct sum of Lie algebras K1 and K2, and will be denoted by K1`K2. The

symbol ‘`’ will be used to denote the direct sum of algebras, while the direct sum of vector

spaces will be denoted by ‘�’. A linear transformation θ : K1 Ñ K2 is a homomorphism of Lie

algebras if

θprx, ys1q � rθpxq, θpyqs2, for all x, y P K1.
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Let K be a Lie algebra. A derivation of K is an endomorphism δ : K Ñ K such that

δprx, ysq � rδpxq, ys � rx, δpyqs, for all x, y P K.

The derivation δ is non-singular if it is bijective as linear transformation. The set of all deriva-

tions of K, denoted by DerpKq, is a Lie subalgebra of glpKq. For example, let k P K and define

the map adk : K Ñ K by adkpxq � rk, xs, for all x P K. The endomorphism adk is a derivation.

Let K and I be a Lie algebras. A representation of K on I is a given Lie algebra

homomorphism ψ : K Ñ DerpIq. In this case, we say that K acts on I. Additionally, if I is

an abelian Lie algebra, then I is called K-module. The Lie algebra representation ad : K Ñ

DerpKq given by k ÞÑ adk, for all k P K, is called the adjoint representation.

Let K and I be a Lie algebras such that K acts on I, with action given by the represen-

tation ψ : K Ñ DerpIq. To facilitate the reading of the text we will use different notations to

represent the image ψpkqpvq for k P K and v P I. Usually the element ψpkqpvq will be denoted

by rk, vs. If I is an ideal of K, then the image of k under this action will be denoted by adI
kpvq,

or simply by adkpvq when the domain of the representation is clear from the context. To avoid

an excess of brackets, we use the convention:

rk, . . . , rk, rk, vsss � rk, . . . , k, kloooomoooon
n times

, vs � rkn, vs, for all k P K and v P I. (2)

Thus, for v P I and for k P K, padI
kq

npvq � padkq
npvq � rkn, vs for all n ¥ 1.

Example 2.1.1. Let L be a Lie algebra with an abelian ideal I and set K � L{I. Define the Lie

algebra representation adI : K Ñ DerpIq by adI
x�Ipvq � rx, vs for all x P L and v P I. This is

well defined, since I is abelian. Then I is a K-module. In this case, we say that the action is

induced by the adjoint representation.

Let V be a finite-dimensional vector space over a field F and x P EndpVq. Let q P FrXs

be a univariate polynomial and define

V0pqpxqq � tv P V | there is an m ¡ 0 such that qpxqmv � 0u. (3)

The set V0pqpxqq is a vector subspace of V which is invariant under x. Now let A be the associ-

ative subalgebra of EndpVq with 1 generated by x. Let qx be the minimal polynomial of x and

suppose that

qx � qk1
1 � � � q

kr
r



Chapter 2. Basic Concepts 18

is the factorization of qx into irreducible factors, such that qi has leading coefficient 1 and qi � q j

for 1 ¤ i   j ¤ r. Then V decomposes as a direct sum of subspaces

V � V0pq1pxqq� � � �� V0pqrpxqq,

with each space V0pqipxqq being invariant under A. Furthermore, the minimal polynomial of the

restriction of x to V0pqipxqq is qki
i . A proof of this result can be found in [7] Lemma A.2.2.

We can generalize this decomposition to subalgebras of glpVq generated by more than

one element.

Definition 2.1.2. Let V be a finite-dimensional vector space over a field F and let K ¤ glpVq

be a subalgebra. A decomposition V � V1 � � � � � Vs of V into K-modules Vi is said to be

primary if the minimal polynomial of the restriction of x to Vi is a power of an irreducible

polynomial for all x P K and 1 ¤ i ¤ s. The subspaces Vi are called primary components. If

for any two components Vi and V j pi � jq, there is an x P K such that the minimal polynomials

of the restrictions of x to Vi and V j are powers of different irreducible polynomials, then the

decomposition is called collected.

In general, a K-module V will not have a primary (or collected primary) decomposition

into K-modules, but such a decomposition is guaranteed to exist if K, as subalgebra of glpVq, is

nilpotent. Below we present some of these results that will be used in the text.

Proposition 2.1.3 ( [7], Propposition 3.1.7). Let V be a finite-dimensional vector space over a

field F. Let x, y P glpVq and q P FrXs be a polynomial. Suppose that rxn, ys � 0, for some

n ¥ 1. Then V0pqpxqq is invariant under y.

Proposition 2.1.3 implies the following corollary.

Corollary 2.1.4. Let V be finite-dimensional vector space over a field F. Let K ¤ glpVq be a

nilpotent subalgebra and let q be a polynomial in FrXs. Then V0pqpxqq is a K-module for all

x P K.

Proposition 2.1.5 ( [7], Theorem 3.1.10). Let V be finite-dimensional vector space. Let K ¤

glpVq be a nilpotent subalgebra. Then V has a unique collected primary decomposition relative

to K
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Let K ¤ glpVq be a nilpotent Lie algebra. By Proposition 2.1.5, V has a unique collected

primary decomposition V � V1�V2�� � ��Vr into K-modules. The next proposition shows that

for all x P K and all irreducible polynomials q P FrXs, that divide the minimal polynomial of

x, the subspace V0pqpxqq of V can be written as the sum of some of these primary components.

Proposition 2.1.6. Let K be a nilpotent Lie algebra and let V be a finite-dimensional K-module.

Let V � V1 � � � �� Vs be the collected primary decomposition of V into K-modules. Let x P K

and let q be an irreducible polynomial of FrXs, such that q divides the minimal polynomial of

x. Then V0pqpxqq � V j1 � � � �� V jt , for some some primary components V j1 ,V j2 , . . . ,V jt .

Proof. Let U � tV j1 ,V j2 , . . . ,V jlu be the set of all primary components such that the minimal

polynomial of the restriction of x to V ji is a power of q. We claim that

V0pqpxqq � V j1 � V j2 � � � � � V jt .

By definition, V ji ¤ V0pqpxqq for all i, and so V j1 � � � � � V jl � V0pqpxqq. Suppose now that

v P V0pqpxqq. Assume that Vk1 , . . . ,Vks are the collected primary components of V that are not

elements of U. Then v � v j1 � � � � � v jt � vk1 � � � � � vks with v ji P V ji and vki P Vki . As

v j1 � . . .� v jt P V0pqpxqq, we obtain that vk1 � � � � � vks P V0pqpxqq, and we may assume without

loss of generality that v � vk1 � ...� vks . Since v P V0pqpxqq, there is some m such that

0 � qpxqmpvq � qpxqmpvk1q � � � � � qpxqmpvksq

which implies that qpxqmpvkiq � 0 for all i. We claim that vki � 0 for all i. By the argument

above, qpxqmpvkiq � 0. On the other hand, vki P Vki and Vki R U, and hence there exists an

irreducible polynomial rpXq distinct from qpXq such that rpxqnpvkiq � 0. Since qpXqm and

rpXqn are coprime, there are polynomials upXq and vpXq such that upXqqpXqm � vpXqrpXqn � 1.

Therefore

vki � 1pxqpvkiq � upxqqpxqmpvkiq � vpxqrpxqnpvkiq � 0.

Hence vki � 0, as claimed. Therefore V0pqpxqq � V j1 � . . . � V jt , and also V0pqpxqq � V j1 �

. . .� V jt .

Let K be a nilpotent Lie algebra and let V be a K-module such that V has a collected

primary decomposition V � V1� � � ��Vs. For x P K and 1 ¤ i ¤ s define qx,i P FrXs to be the

irreducible polynomial such that the minimal polynomial of x restricted to Vi is a power of qx,i.

Then we obtain the equality

Vi � tv P V | for all x P K there is an m ¡ 0 such that qx,ipxqmv � 0u.
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See [ [7], page 62].

If the base field of V is algebraically closed, then all irreducible polynomials are of the

form qpXq � X � λ, for some λ P F, and hence qx,i � X � λipxq, with λipxq P F. Further, in this

case, primary components are of the form

Vi � tv P V | for all x P K there is an m ¡ 0 such that px � λipxqIqmv � 0u,

with λi P K�, where K� denotes the vector space of linear forms K Ñ F. It is natural to give a

name for this case.

Definition 2.1.7. Let V be a finite-dimensional vector space over a field F and K ¤ glpVq a

subalgebra. Let λ P K�. Then

Vλ � tv P V | for all x P K there is an m ¡ 0 such that px � λpxq.Iqmv � 0u.

If Vλ � 0 then Vλ is called a generalized eigenspace of V associated to the generalized eigen-

value λ P K�.

Corollary 2.1.8. Let L be a nilpotent Lie algebra over an algebraically closed field F and let V

be a finite-dimensional L-module. Then there exist generalized eigenvalues λ1, . . . , λk of L such

that V � Vλ1 ` � � � ` Vλk where the Vλi are the generalized eigenspaces as in Definition 2.1.7.

Another decomposition that can be derived from the primary decomposition is called

the Fitting decomposition. It can be used to identify if K acts nilpotent on some component of

V . Assume as above that K is a nilpotent F-Lie algebra and V is a finite-dimensional K-module

and that F is algebraically closed. By Proposition 2.1.5, V has a unique collected primary

decomposition V1 � � � � � Vr into K-modules. For every x P K and Vi, 1 ¤ i ¤ r, we can

describe if x is nilpotent or non-singular on Vi by looking at the minimal polynomial of the

restriction of x to Vi. Let X be an indeterminate and qx,i be the unique irreducible factor of

the minimal polynomial of x on Vi. If qx,ipXq � X then x acts nilpotently on Vi. Otherwise,

if qx,ipXq � X � a, a P F, a � 0. Then x acts non-singularly on Vi with xVi � Vi. As the

primary decomposition V1 � � � �� Vr is collected, there is at most one component Vi such that

every element x P K is nilpotent. If such a component exists it will be denoted by V0pKq. Let

V1pKq be the sum of the remaining components and write V � V0pKq � V1pKq. This can be

summarized in the following definition.
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Definition 2.1.9. Let V be a finite-dimensional vector space over an algebraically closed field

F and let K ¤ glpVq be a nilpotent subalgebra. Let V � V0pKq� V1pKq such that

V0 � tv P V | for all x P K there is an m ¡ 0 such that xmv � 0u,

and V1pKq is the subspace defined above. This decomposition is called the Fitting decompo-

sition, V0pKq and V1pKq are the Fitting-null and Fitting-one component of V with respect to

K.

2.2 Lie algebra extensions

An extension of a Lie algebra K by a Lie algebra I is an exact sequence

0 Ñ I i
Ñ L s

Ñ K Ñ 0 (4)

of Lie algebras. The Lie algebra L in the middle of the exact sequence contains an ideal

Kerpsq � Im i � I such that L{I � K. We will write informally that ‘L is an extension of

K by I’. The extension (4) splits if L has a subalgebra S such that L � S � Kerpsq. The exten-

sion (4) is trivial if there exists an ideal S of L such that L � S ` Kerpsq. The extension (4) is

central if Kerpsq lies in the center ZpLq of L.

Let K be a Lie algebra over a field F and let I be a K-module over F. Denote by C2pK, Iq

the vector space of alternating bilinear maps ϑ : K � K Ñ I. If ϑ P C2pK, Iq has the property

that

ϑpx, ry, zsq � ϑpy, rz, xsq � ϑpz, rx, ysq � rx, ϑpy, zqs � ry, ϑpz, xqs � rz, ϑpx, yqs � 0, (5)

for all x, y, z P K, then ϑ is said to be a cocycle. The vector space of cocycles is denoted by

Z2pK, Iq. Let T : K Ñ I be a linear transformation and define, ϑT : K � K Ñ I by

ϑT ph, kq � T prh, ksq � rk,T phqs � rh,T pkqs for all h, k P K. (6)

Then ϑT P Z2pK, Iq and such a cocycle ϑT is said to be a coboundary. The set of coboundaries

is denoted by B2pK, Iq. The set B2pK, Iq is a subspace of Z2pK, Iq, and we set H2pK, Iq �

Z2pK, Iq{B2pK, Iq to be the quotient space. The first cohomology group of K and I is defined as

Z1pK, Iq � tν P HompK, Iq | νprh, ksq � rh, νpkqs � rk, νphqs for all h, k P Ku.

The next result, whose proof can be found, for instance, in [8, Section 4.2], links Lie

algebra extensions to cohomology.
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Proposition 2.2.1. Let K be a Lie algebra and let I be a K-module. Let ϑ P Z2pK, Iq and define

the Lie algebra Kϑ � K � I with the product

rx � a, y� bs � rx, ys � ϑpx, yq � ra, ys � rb, xs for all x, y P K and a, b P I. (7)

The following hold for the Lie algebra Kϑ:

1. Kϑ is a Lie algebra extension of K by I;

2. if ν P B2pK, Iq, then Kϑ is isomorphic to Kϑ�ν;

3. if ϑ P B2pK, Iq, then Kϑ is a split extension of K by I.

Conversely, let L be a Lie algebra and let J be an abelian ideal of L. Then there exists ϑ P

Z2pL{J, Jq such that L � pL{Jqϑ.

The cocycle ϑ in last the statement of Proposition 2.2.1 can be constructed as follows.

Let π : L Ñ L{I denote the natural projection, and let σ : L{I Ñ L be a right inverse of π; that

is, πσ � idL{I . Then, for k � I, h � I P L{I, set

ϑph � I, k � Iq � σprh � I, k � Isq � rσph � Iq, σpk � Iqs.

Routine calculation shows that ϑ P Z2pL{I, Iq and that L � Lϑ.

2.3 Representation of Lie Algebras

This section presents some general results about Lie algebras that will be used in this

text. The following proposition will be used in the proof of Jacobson’s Theorem in Section 2.4.

Proposition 2.3.1 ( [9], Proposition 5 of Chapter III). Let L be a Lie algebra over an alge-

braically closed field. Let K be a subalgebra of DerpLq. If λ, µ : K Ñ F� are generalized

eigenvalues of K then rLλ, Lµs � Lλ�µ whenever λ � µ is also a generalized eigenvalue of K.

Otherwise rLµ, Lλs � 0.

Proposition 2.3.2. Let L be a Lie algebra and let I be an ideal of L such that L{I is nilpotent.

Let ad : L Ñ glpLq be the adjoint representation with adxpyq � rx, ys for all x, y P L. If adI
x is

a nilpotent endomorphism of I, for all x P L, then L is nilpotent.
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Proof. We claim that adx is a nilpotent endomorphism of L for all x in L. By Engel’s Theorem

(see [7], Theorem 2.1.5), this will imply that L is a nilpotent Lie algebra as asserted by the

proposition. Suppose that x P L. Since L{I is nilpotent, there exists n ¡ 0 such that padxq
npyq �

rxn, ys P I, for all y P L. Also, the restriction adI
x of adx to I is a nilpotent endomorphism of I,

and so there exists an m such that padI
xq

mpyq � 0 for all y P I. Now let y be an arbitrary element

of L. Then, padxq
npyq P I, and so padxq

m�npyq � padxq
mpadxq

npyq � padI
xq

mppadxq
npyqq � 0.

Thus padxq
m�n � 0, and hence adx is a nilpotent endomorphism of L, as claimed.

Theorem 2.3.3 ( [10], Theorem 4.1). Let V be a finite-dimensional vector space over an alge-

braically closed field F of characteristic 0 and let L be a solvable subalgebra of glpVq. If V � 0,

then V contains a common eigenvector for all the endomorphism in L.

Theorem 2.3.4 (Lie’s Theorem, see [10], Corollary A of Theorem 4.1). Let L be a finite-

dimensional solvable Lie algebra over an algebraically closed field F of characteristic 0. Let

ψ : L Ñ glpVq be a finite-dimensional representation of L. Then there is a basis of V relative to

which the matrix of ψpxq is upper triangular, for all x P L.

Theorems 2.3.3 and 2.3.4 are not true in prime characteristic, but as observed by G.

Selligman in Chapter V Section 1 of [11] "some of the proofs referred to are still applicable

when the degree of the matrices is less than the characteristic". J. E. Humphreys in [10] let

an exercise (Exercise 2 of Section 4) to prove that Lie’s Theorem can be adapted for prime

characteristic p if the dimension of the matrices is less than p. As I did not find the theorem

stated in positive characteristic, I prefer to present this result here with a brief explanation of

how to adapt the proof for this case.

Theorem 2.3.5. Let L be a finite-dimensional solvable Lie algebra over an algebraically closed

field F of characteristic p ¡ 0. Let V be a vector space of dimension n   p. Let ψ : L Ñ glpVq

be a representation of L. Then there is a basis of V relative to which the matrix of ψpxq is upper

triangular, for all x P L.

The proof of Theorem 2.3.3 in prime characteristic under the additional condition that

dim V   p goes through as in Humphreys’ book [10] except for the last sentence. In the book’s

version, we have nλprx, ysq � 0 and conclude that λprx, ysq � 0, because the characteristic of F

is 0. In this case, since p ¡ dim V � n, we can still make the same conclusion, since n will not

be a zero divisor. The proof of Theorem 2.3.4 goes through exactly as in the book.
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2.4 Jacobson’s Theorem

The main objective of this thesis is to study what information can be obtained about a Lie

algebra with a non-singular derivation. This study starts with a theorem of Nathan Jacobson,

in the article A note on automorphism and derivations of Lie algebras [1]. Jacobson used a

variation of Engel’s Theorem for weakly closed sets to get sufficient conditions for a Lie algebra

to be nilpotent. Next we present this theorem and some discussion about the subject. For more

detailed results we recommend the reading of Sections 1 and 2 of Chapter 2 of Jacobson’s

book [9].

Let A be an associative algebra with 1 over a field F. A subset S of A is called weakly

closed if for every ordered pair pa, bq P S � S , there is an element γpa, bq P F such that

ab � γpa, bqba P S . If S is a subset of a Lie or associative algebra X, then xS y denotes the Lie

or associative, respectively, subalgebra of X generated by S . This notation may cause confusion

when X is an associative and Lie algebra in the same time, and in such cases we will denote by

xS yA and xS yL the associative and the Lie algebra, respectively, generated by S . It is important

clarify that, in this text, associative algebras may not have an identity.

Proposition 2.4.1 ( [9], Theorem 1 of Chapter II). Let V be a finite-dimensional vector space

over a field F. Let S � EndpVq be a weakly closed subset such that every s P S is associative

nilpotent, that is, sk � 0, for some positive integer k. Then the associative subalgebra xS y ¤

EndpVq is nilpotent.

With this result we can prove Jacobson’s Theorem.

Theorem 2.4.2 ( [1], Theorem 3). Let L be a finite-dimensional Lie algebra over a field of

characteristic 0 and suppose that there exists a subalgebra D of the algebra of derivations of L

such that

1. D is nilpotent;

2. if there is x P L such that δpxq � 0 for all δ P D then x � 0.

Then L is nilpotent.

Proof. Let F be the algebraic closure of the base field F. We can extend all derivations of L to

L � LbF. If we prove that L is nilpotent then L is nilpotent. So we will assume without loss of
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generality that F is algebraically closed. Let L � Lγ1 � � � �� Lγt be the decomposition of L into

generalized eigenspaces of D, given by Corollary 2.1.8. We claim that γi � 0 for all i. Indeed, if,

for example, γ1 � 0, then Lγ1 is the Fitting-null component of L with respect to D (see Definition

2.1.9). In this case, every element x P D induces a nilpotent linear transformation on Lγ1 . Then

there is a non-zero vector v P Lγ1 such that xv � 0 for all x P D (see [Proposition 2.1.2, [7]]).

Therefore γi � 0 for all i, as claimed. By Proposition 2.3.1, we have rLγi , Lγ js � Lγi�γ j if γi�γ j

is a generalized eigenvalue of D and rLγi , Lγ js � 0 otherwise. For a subset Y � L, we let adY

denote the set of adjoint mappings induced by elements of Y . Then the inclusion just noted

shows that the set S �
�

adLγ j
is a weakly closed set of linear transformations of EndpVq. Let

y P Lγ j and z P Lγi . Then padyq
spzq P Lγi�sγ j , for all s ¥ 0.(*) The generalized eigenvalue γ j

is non-zero and F has characteristic 0. Thus, γi � sγ j, are pairwise distinct for all s ¡ 0. As L

has finite-dimension, for some r large enough γi � rγ j is not an eigenvalue and padyq
rpzq � 0.

It follows that ady is a nilpotent linear transformation. Hence, every element of S is nilpotent.

By Proposition 2.4.1, the associative subalgebra xS yA ¤ EndpVq is nilpotent. Observe that the

Lie subalgebra xS yL is a subset of xS yA, and so xS yL is nilpotent. However, xS yL � adL implies

that L is a nilpotent Lie algebra.

In the proof of Theorem 2.4.2 the hypothesis of zero characteristic is essential to prove

that every element in a homogeneous component is nilpotent. As the following examples show,

Theorem 2.4.2 fails to hold in characteristic p ¡ 0.

Example 2.4.3. ( [4], page 895) Let m ¥ 2 and let F be the field of 2m elements. Let L be the

vector space over F such that

L � xva | a P F, a � 0y

with a basis tva | a P F, a � 0u labeled by the nonzero elements of the field F under the

multiplication rva, vbs � pa � bqva�b. Then L is a simple Lie algebra and the map δ P EndpLq

given by δpvaq � ava is a non-singular derivation. This example and a classification of simple

Lie algebras with non-singular derivations can be found in [4] on pages 895 and 916.

Example 2.4.4. ( [3], Theorem 2.1) Let V be a vector space over a field F of characteristic

p ¡ 0. Let B � tv0, v2, � � � , vp�1u be a basis of V . Define the linear map x P glpVq by

xpviq � vi�1 for 0 ¤ i ¤ p � 2 and xpvp�1q � v0. Let K be the abelian Lie algebra generated

by tx, x2, � � � , xp�1u. Then V can be considered as K-module with the standard action of glpVq

on V . Let L be the semidirect sum L � K i V (see Section 3.1 for the definition). Then L is an
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solvable non-nilpotent Lie algebra of derived length 2. Let a, b P F both non-zero and a � sb,

for all s P Fp. The linear map δ : L Ñ L defined by

δ :

$&
% x j ÞÑ jax j, 1 ¤ j ¤ p � 1;

vi ÞÑ pb � pi � 1qaqvi, 0 ¤ i ¤ p � 1,

is a non-singular derivation of L.

Another question is whether the converse of Jacobson’s Theorem is true, that is: is it true

that all finite-dimensional nilpotent Lie algebras admit non-singular derivation? The answer

is no. By Dixmier and Lister [12], there are nilpotent Lie algebras admitting only nilpotent

derivations. Below we present the example of Dixmier and Lister of such an algebra.

Example 2.4.5. Let F be a field of characteristic 0 and L � xv1, v2, � � � , v8y be a Lie algebra

over F with dimension 8 and multiplication table

rv1, v2s � v5 rv1, v3s � v6 rv1, v4s � v7 rv1, v5s � �v8 rv2, v3s � v8 rv2, v4s � v6

rv2, v6s � �v7 rv3, v4s � �v5 rv3, v5s � �v7 rv4, v6s � �v8 rvi, v js � �rv j, vis.

Moreover, rvi, v js � 0 if it is not in the table above. Then L is nilpotent with L3 � 0,

L4 � 0 and every derivation of L is nilpotent.

As the examples above show, Jacobson’s Theorem is in general not true in characteristic

p ¡ 0. However, we have the follow weaker result.

Theorem 2.4.6. Let L be a Lie algebra over a field of characteristic p ¡ 0 and suppose that

there exists a subalgebra D ¤ DerpLq such that

1. D is nilpotent;

2. if there is x P L such that δpxq � 0 for all δ P D then x � 0.

If D has at most p � 1 generalized eigenvalues then L is nilpotent.

Proof. The proof of this theorem is identical to proof of Theorem 2.4.2 up to the point marked

by (*). The generalized eigenvalue γ j � 0 and the set tγi, γi � γ j, � � � , γi � pp � 1qγ ju has p

distinct elements. As D has at most p � 1 generalized eigenvalues, for some r, 0   r ¤ p � 1,

pγi � rγ jq is not an eigenvalue. It follows that ady is a nilpotent linear transformation, for every

a P Lγi . Thus every element of S is a nilpotent. By Proposition 2.4.1, the associative subalgebra

xS yA ¤ EndpVq is nilpotent and hence adL is nilpotent. Therefore L is a nilpotent Lie algebra.
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2.5 The orders of non-singular derivations

An interesting approach by Shalev in article [2] is to study the possible orders of non-

singular derivations, establishing conditions for a Lie algebra over a field of characteristic p ¡ 0

with non-singular derivations to be nilpotent. Later, Mattarei in [3] showed that this set of orders

of non-singular derivations corresponds to the set of solutions of some polynomial equation over

a field of characteristic p ¡ 0. Below we present some results of these articles.

Lemma 2.5.1. Let L be a Lie algebra over a field F of characteristic p ¡ 0. If δ P DerpLq then

δpm
P DerpLq, for all m ¥ 1.

Proof. Let δ P DerpLq and x, y P L. For a natural number n, we have that

δnprx, ysq �
ņ

k�0

�
n
k



rδkpxq, δn�kpyqs, for all n ¡ 0. (8)

Equation (8) is known as Leibniz’s Formula; see equation (1.11) on page 23 of [7]. As the field

F has characteristic p ¡ 0, setting n � pm Leibniz’s formula is reduced to

δpm
prx, ysq � rδpm

pxq, ys � rx, δpm
pyqs.

Therefore δpm
P DerpLq as claimed.

An endomorphism α of a finite-dimensional vector space V is said to be diagonalizable

if V admits a basis in which the matrix of α is diagonal. For a non-singular linear transformation

α of finite order, let |α| denote the order of α.

Lemma 2.5.2. Suppose that L is a finite-dimensional Lie algebra over a field F of characteristic

p ¥ 0 and let δ be a non-singular derivation of L with finite order. Then there exists an extension

field F0 such that one of the following is valid.

• p � 0 and δ is diagonalizable over F0;

• p is a prime, |δ| � npt with p - n, and δpt
is a non-singular derivation that is diagonali-

zable over F0.

Proof. First we proof this lemma for p ¡ 0, then we explain how the proof can be adapted for

p � 0. Suppose that δ is a non-singular derivation of L with finite order. Suppose that δm � Id,

p ¡ 0 and write m � npt with t ¥ 0 and gcdpn, pq � 1. By Lemma 2.5.1, we have that δpt
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is a derivation whose order is n. Let α � δpt
and let F0 be the splitting field of the minimal

polynomial of α. Note that F0 is an extension field of F and set L0 � L b F0. Now the matrix

of α, considered as a non-singular derivation of L0, is in upper triangular Jordan normal form

in a suitable basis of L0. Let us identify the endomorphism α with this matrix in Jordan normal

form. Hence, we may write α � αS � αN , where αS is a diagonal matrix and αN is a nilpotent

matrix such that αS and αN commute. As αn � Id,

Id � αn � pαS �αNq
n � αn

S �

�
n
1



αn�1

S αN �

�
n
2



αn�2

S α2
N �� � ��

�
n

n � 1



αSα

n�1
N �αn

N . (9)

The identity matrix on the left-hand side of the last equation is diagonal, while the summands,

with the exception of the first summand, on the right-hand side are nilpotent. Further, if αN � 0,

then the second summand nαn�1
S αN in non-zero, since p - n, and it is the only summand that

contains a non-zero entry in a positions pi, i� 1q with i ¡ 0. However, this implies that αn must

contain a non-zero entry in a position pi, i � 1q, which is a contradiction, as αn � Id. Hence

αN � 0 and α is diagonalizable. Therefore, α is a non-singular diagonalizable derivation of L0.

In case p � 0, suppose that |δ| � n and set α � δ. Let F0 be the splitting field of

α and set L0 � L b F0. Following the same steps as the previous case, we can consider a

suitable bases for L0 such that the matrix of α is in upper triangular Jordan normal form. Write

α � αS �αN and suppose that αN � 0. By equation 9, nαn�1
S αN is non-zero, since n � 0, which

is a contradiction. Hence αN � 0 and α is a non-singular diagonalizable derivation of L0.

Remark 2.5.3. If the field F in Lemma 2.5.2 is finite, then every non-singular endomorphism of

L has finite order, and hence Lemma 2.5.2 is valid in this case without the additional assumption

that δ has finite order. It is also clear considering the proof of Lemma 2.5.2 that if δ is a non-

singular derivation of L with finite order such that the degree is coprime to p, then δ itself is

diagonalizable over a suitable finite order extension field F0. In particular, if δ is a non-singular

derivation of L with order coprime to p, then δ is diagonalizable over the algebraic closure F

of F.

For a field F, let F denote the algebraic closure of F.

Proposition 2.5.4 ( [2], Lemma 2.2). Let L be a finite-dimensional Lie algebra in characteristic

p ¡ 0 which admits a non-singular derivation δ whose finite order n is coprime to p. Suppose

that L is not nilpotent. Then there exists a P F such that pa � bqn � 1 for all b P Fp.
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Proof. Let F be an algebraic closure of F and consider δ as a derivation of L � LbF. By Lemma

2.5.2, δ is diagonalizable (see also Remark 2.5.3). Let L � La1� � � ��Lar be the decomposition

of L into eigenspaces of δ. The set S �
�

adLa j
is weakly closed with γpadx, adyq � �1 for

all x P Lai , y P La j . If each adx is nilpotent then the associative subalgebra xS y ¤ EndpLq is

nilpotent by Proposition 2.4.1. Hence ad
L

is a nilpotent Lie algebra and L is nilpotent. As L

is non-nilpotent by hypothesis, there are x P La j and y P Lai such that padxq
npyq � 0, for all

1 ¤ n ¤ p. However this implies ai � ba j are eigenvalues of δ for 1 ¤ b ¤ p. Since |δ| � n the

order of each eigenvalue of δ divides n. Thus pai � ba jq
n � 1, for all b P Fp and an

j � 1. Hence,

a�n
j � 1. Thus 1 � pai � ba jq

na�n
j � paia�1

j � bqn. Set a � aia�1
j . Then pa � bqn � 1 for all

b P Fp.

Corollary 2.5.5 ( [2], Corollary 2.3). Let L be a finite-dimensional non-nilpotent Lie algebra in

characteristic p ¡ 0 which admits a non-singular derivation δ whose order n is coprime to p.

Then there is an element c P F such that Xp�X�c divides Xn�1 as elements of the polynomial

ring FrXs.

Proof. Let a P F as in Proposition 2.5.4. Let R � tx P F | xn � 1u be the set of the n-th roots

of unity in F. Write the polynomial

Xn � 1 �
¹
xPR

pX � xq P FrXs.

For all b P Fp, a � b P R, and so
±

bPFp
pX � a � bq divides Xn � 1. But

¹
bPFp

pX � a � bq � pX � aqp � pX � aq � Xp � X � c,

where c � ap � a. The first equation of the last display can be seen by observing that the

elements a � b with b P Fp are exacty the p roots of the polynomial pX � aqp � pX � aq. Let

gpXq � Xp � X � c. Then gpXq divides Xn � 1.

Lemma 2.5.6 ( [2], Lemma 2.4). Let L be a finite-dimensional non-nilpotent Lie algebra in

characteristic p ¡ 0 which admits a non-singular derivation δ whose order n is coprime to p.

Then n ¥ p2 � 1.

Proof. Suppose n   p2 � 1 and write n � a � bp where 0 ¤ a ¤ p � 1. Observe that b can be

at most p � 1 and when b � p � 1, then a   p � 1. It follows, a � b ¤ 2p � 3. Let c P F as

in Corollary 2.5.5 and let gpXq � Xp � X � c. Then, by Corollary 2.5.5, Xn is congruent to 1
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modulo g. Working modulo g, we have

Xn � XapXpqb � XapX � cqb.

Then

Xn � Xa�b � bcXa�b�1 � � � � �

�
b
i



ciXa�b�i � � � � � cbXa.

If a� b   p then the above polynomial is not congruent to 1 modulo g. Thus a� b ¥ p. Write

a � b � p � e where 0 ¤ e ¤ p � 3. It follows that

Xn � Xp�e � bcXp�e�1 � � � � �

�
b
i



ciXp�e�i � � � � � cbXa

� Xp

�
Xe � bcXe�1 � � � � �

�
b
e



ce



loooooooooooooooooomoooooooooooooooooon

A

�

�
b

e � 1



ce�1Xp�1 � � � � � cbXaloooooooooooooooooomoooooooooooooooooon

B

.

Thus Xn � XpA � B � pX � cqA � B. Note that the polynomial pX � cqA has degree at most

p� 2. On the other hand,
� b

e�1

�
ce�1 � 0 since c � 0 and e� 1 ¤ b   p, so B has degree p� 1.

Therefore the polynomial pX � cqA � B has degree p � 1, and is the residue of Xn modulo g.

We see that Xn � 1 modulo g, a contradiction.

Now we can prove the following theorem.

Theorem 2.5.7 ( [2], Theorem 1.1). Let L be a finite-dimensional Lie algebra in characteristic

p ¡ 0 which admits a non-singular derivation δ of order n. Write n � psm where m is coprime

to p. Suppose m   p2 � 1. Then L is nilpotent.

Proof. The derivation δps
has order m. Suppose that L is not nilpotent. Then by Lemma 2.5.6

we have m ¥ p2 � 1.

Mattarei completed this result in [3].

Proposition 2.5.8. Let p be a prime number and let n be a positive integer, prime to p. The

following statements are equivalent:

1. there exists a finite-dimensional non-nilpotent Lie algebra of characteristic p with a non-

singular derivation of order n;

2. there exists an element a P Fp such that pa � bqn � 1 for all b P Fp

3. there exists an element c P F
�

p such that Xp � X � c divides Xn � 1 as elements of the

polynomial ring FprXs.



31

3 Derivations of Lie algebra extensions

In [6] Eick utilized compatible pairs to compute automorphisms of solvable groups and

solvable Lie algebras. This is related to the method for groups proposed by Robinson [13] and

Smith [14]. We adapt the concept for derivations of Lie algebras. That is, below we present a

process to lift a derivation from a Lie algebra K to an extension Kϑ where ϑ is a cocycle.

3.1 Compatible pairs and derivations of semidirect sums

Let K and I be Lie algebras such that K acts on I via the homomorphism ψ : K Ñ

DerpIq. We define the semidirect sum K iψ I as the vector space K � I with the product

operation given as

rpk1, v1q, pk2, v2qs � prk1, k2s, rk1, v2s � rk2, v1s � rv1, v2sq.

When the K-action on I is clear from the context, then we usually suppress the homomorphism

‘ψ’ from the notation and write simply K i I. If L is a Lie algebra, such that L has an ideal I,

and a subalgebra K in such a way that L � K � I, then L � K iψ I where ψ is the restriction of

adI to K. In a semidirect sum K i I, an element pk, vq P K � I will usually be written as k � v.

Suppose that K and I are as in the previous paragraph. Let DerpKq`DerpIq be the direct

sum of DerpKq and DerpIq. An element pα, βq P DerpKq ` DerpIq is said to be a compatible

pair if

βprk, vsq � rαpkq, vs � rk, βpvqs for all k P K, v P I. (10)

We let ComppK, Iq denote the set of compatible pairs in DerpKq ` DerpIq. Using the represen-

tation ψ : K Ñ DerpIq associated to the K-action on I, we can write equation (10) in another

form as follows. Writing rk, vs as ψpkqpvq, we have that pα, βq P ComppK, Iq if, and only if, the

equation

βψpkq � ψpαpkqq � ψpkqβ

holds in DerpIq for all k P K. Using commutator, this is equivalent to

rβ, ψpkqs � ψpαpkqq, for all k P K. (11)

Letting ad : DerpIq Ñ DerpIq denote the adjoint representation of I, equation (11) can be

rewritten as

adβψpkq � ψpαpkqq, for all k P K. (12)
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Therefore, pα, βq P ComppK, Iq if, and only if, the following diagram commutes:

K

α

��

ψ //

÷

DerpIq

adβ
��

K
ψ // DerpIq.

A compatible pair pα, βq P DerpKq `DerpIq will usually be written as α� β. If α� β P

DerpKq ` DerpIq as above, then α � β can be considered as an element of glpK ` Iq by letting

pα� βqpk � vq � αpkq � βpvq for all a P I and k P K.

Proposition 3.1.1. Using the notation above, we have that

ComppK, Iq � tα� β P glpKq ` glpIq | α� β P DerpK i Iqu.

In particular ComppK, Iq is a Lie subalgebra of DerpK i Iq.

Proof. Suppose that α � β P ComppK, Iq is a compatible pair and let k � v, k1 � v1 P K i I.

Then

pα� βqrk � v, k1 � v1s � pα� βqprk, k1s � prk, v1s � rk1, vs � rv, v1sqq

� αprk, k1sq � βprk, v1s � rk1, vs � rv, v1sq

� rαpkq, k1s � rk, αpk1qs � rαpkq, v1s � rαpk1q, vs

� rβpvq, v1s � rk, βpv1qs � rk1, βpvqs � rv, βpv1qs.

On the other hand,

rpα� βqpk � vq, k1 � v1s � rk � v, pα� βqpk1 � v1qs �

rαpkq, k1s � rαpkq, v1s � rβpvq, k1s � rβpvq, v1s

� rk, αpk1qs � rk, βpv1qs � rv, αpk1qs � rv, βpv1qs.

Thus, α� β P DerpK i Iq. Conversely, let α� β P glpKq ` glpIq such that α� β is a derivation

of K i I. Then pα � βq|K � α and pα � βq|I � β, and so α P DerpKq and β P DerpIq. Further,

if k P K and v P I, then rk, vs P I, and so

βprk, vsq � pα� βqrk, vs � rpα� βqpkq, vs � rk, pα� βqpvqs � rαpkq, vs � rk, βpvqs.

Thus, α � β P ComppK, Iq, as required. The fact that ComppK, Iq is a Lie subalgebra of

DerpKiIq follows from the fact that ComppK, Iq is the intersection of two Lie algebras; namely,

ComppK, Iq � pglpKq ` glpIqq X DerpK i Iq.
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Lemma 3.1.2. Let K and I be Lie algebras over a field F of characteristic p ¡ 0. Suppose that

K acts on I. If pα, βq P ComppK, Iq, then pα, βqpt
� pαpt

, βpt
q P ComppK, Iq for all t ¥ 1.

Proof. Let L � K i I be the semidirect sum of K and I. By Proposition 3.1.1, pα, βq P DerpLq.

Let δ � pα, βq. By Lemma (2.5.1), pα, βqpt
P DerpLq for all t ¥ 1. Thus, by Proposition 3.1.1,

pα, βqpt
� pαpt

, βpt
q P ComppK, Iq, for all t ¥ 1.

Let K and I be vector spaces. Consider the Lie algebra glpKq ` glpIq and the vector

space HompK, glpIqq. Let ad : glpIq Ñ glpIq be the adjoint representation of glpIq such that

adβpβ
1q � rβ, β1s for every β, β1 P glpIq. Then define the action of glpKq`glpIq on HompK, glpIqq

by setting

pα, βq � T � adβT � Tα, (13)

for all pα, βq P glpKq ` glpIq and for all T P HompK, glpIqq. Let us show that this in fact defines

a Lie algebra action. Notice that pα, βq � T P HompK, glpIqq, since it is linear combination of

compositions of linear maps. Let us check that the action is compatible with Lie brackets. Let

pα, βq, pα1, β1q P glpKq ` glpIq. By definition pα1, β1q � T � adβ1T � Tα1. Thus,

pα, βq � ppα1, β1q � T q � adβadβ1T � adβ1Tα� adβTα
1 � Tα1α.

In the same way,

pα1, β1q � ppα, βq � T q � adβ1adβT � adβTα
1 � adβ1Tα� Tαα1.

Hence,

pα, βq � ppα1, β1q � T q � pα1, β1q � ppα, βq � T q � adβadβ1T � adβ1adβT � Tαα1 � Tα1α

� radβ, adβ1sT � T rα, α1s.

Therefore,

rpα, βq, pα1, β1qs � T � prα, α1s, rβ, β1sq � T.

Now, if K and I are Lie algebras such that K acts on I, then there is a corresponding

homomorphism ψ P HompK,DerpIqq. Suppose that α � β P glpKq ` glpIq such that α � β P

DerpKq ` DerpIq. Then, for k P K, we have adβT pkq � Tαpkq is a derivation of I, since

adβT pkq, Tαpkq P DerpIq.

If X is a subalgebra of DerpKq ` DerpIq, then the annihilator AnnXpψq of ψ in X is

defined as

AnnXpψq � tpα, βq P X | pα, βq � ψ � 0u.
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Computing the annihilator of ψ in DerpKq ` DerpIq explicitly, we obtain

AnnDerpKq`DerpIqpψq � tpα, βq P DerpKq ` DerpIq | pα, βq � ψ � 0u

� tpα, βq P DerpKq ` DerpIq | adβψ� ψα � 0u � ComppK, Iq.

The last equality follows from (12). Hence, we have proved the following proposition.

Proposition 3.1.3. Let K and I be Lie algebras such that K acts in I via the representation ψ P

HompK,DerpIqq. Then ComppK, Iq � AnnDerpKq`DerpIqpψq, where the action of DerpKq`DerpIq

on HompK,DerpIqq is given by (13).

3.2 An action of glpKq ` glpIq on C2pK, Iq

This is a technical section where we define, for two vector spaces K and I, an action of

glpKq ` glpIq on the vector space of alternating bilinear maps C2pK, Iq and we show that this is

a well defined. We also present the necessary lemmas for the main result of this chapter.

Let K and I be vector spaces. Let pα, βq be an element of the Lie algebra glpKq ` glpIq

and let ϑ P C2pK, Iq. Define an action of glpKq ` glpIq on C2pK, Iq by setting, for ϑ P C2pK, Iq,

pα, βq � ϑph, kq � βpϑph, kqq � ϑpαphq, kq � ϑph, αpkqq, for all h, k P K. (14)

Let pα1, β1q P glpKq ` glpIq. Then

pα, βq � ppα1, β1q � ϑph, kqq � pα, βq � pβ1pϑph, kqq � ϑpα1phq, kq � ϑph, α1pkqqq. (15)

Applying the action in each summand of the right-hand of equation (15), we have

pα, βq � β1pϑph, kq � ββ1ϑph, kqq � β1ϑpαphq, kq � β1ϑph, αpkqq,

pα, βq � ϑpα1phq, kq � βϑpα1phq, kqq � ϑpα1αphq, kq � ϑpα1phq, αpkqq,

pα, βq � ϑph, α1pkqq � βϑph, α1pkqq � ϑpαphq, α1pkqq � ϑph, α1αpkqq.

Thus,

pα, βq � ppα1, β1q � ϑph, kqq � ββ1ϑph, kqq � β1ϑpαphq, kq � β1ϑph, αpkqq

� βϑpα1phq, kqq � ϑpα1αphq, kq � ϑpα1phq, αpkqq

� βϑph, α1pkqq � ϑpαphq, α1pkqq � ϑph, α1αpkqq.
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We obtain similarly that

pα1, β1q � ppα, βq � ϑph, kqq � β1βϑph, kqq � βϑpα1phq, kq � βϑph, α1pkqq

� β1ϑpαphq, kqq � ϑpαα1phq, kq � ϑpαphq, α1pkqq

� β1ϑph, αpkqq � ϑpα1phq, αpkqq � ϑph, αα1pkqq.

Thus,

rpα, βq, pα1, β1qs � ϑph, kq � rβ, β1sϑph, kq � ϑprα, α1sphq, kq � ϑph, rα, α1spkqq

� prα, α1s, rβ, β1sq � ϑph, kq.

Therefore, the action presented in (14) is well defined.

Our goal now is to study the action of compatible pairs ComppK, Iq on the subspaces

Z2pK, Iq and B2pK, Iq of C2pK, Iq. For this, assume that K is a Lie algebra and I is a K-module.

Then for all h, k, l P K, pα, βq P ComppK, Iq and ϑ P Z2pK, Iq, we have

pα, βq � ϑpk, rh, lsq � βpϑpk, rh, lsqq � ϑpαpkq, rh, lsq � ϑpk, αprh, lsqq

� βpϑpk, rh, lsqq � ϑpαpkq, rh, lsq � ϑpk, rαphq, lsq � ϑpk, rh, αplqsq.

If

X � pα, βq � ϑpk, rh, lsq � pα, βq � ϑph, rl, ksq � pα, βq � ϑpl, rk, hsq,

then

X � βpϑpk, rh, lsqq � βpϑph, rl, ksqq � βpϑpl, rk, hsqq

� ϑpαpkq, rh, lsq � ϑpαphq, rl, ksq � ϑpαplq, rk, hsq

� ϑpk, rαphq, lsq � ϑph, rαplq, ksq � ϑpl, rαpkq, hsq

� ϑpk, rh, αplqsq � ϑph, rl, αpkqsq � ϑpl, rk, αphqsq.

Using that β is linear and the definition of cocycles in (5), we have

X � �βprk, ϑph, lqsq � βprh, ϑpl, kqsq � βprl, ϑpk, hqsq

� rαpkq, ϑph, lqs � rαphq, ϑpl, kqs � rαplq, ϑpk, hqs

� rk, ϑpαphq, lqs � rh, ϑpαplq, kqs � rl, ϑpαpkq, hqs

� rk, ϑph, αplqqs � rh, ϑpl, αpkqqs � rl, ϑpk, αphqqs.
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Since pα, βq is a compatible pair, we have by (10)

βprk, ϑph, lqsq � rαpkq, ϑph, lqs � rk, βpϑph, lqqs;

βprh, ϑpl, kqsq � rαphq, ϑpl, kqs � rh, βpϑpl, kqqs;

βprl, ϑpk, hqsq � rαplq, ϑpk, hqs � rl, βpϑpk, hqqs.

Hence, we obtain combining the last two displayed systems of equations

X � �rk, βpϑph, lqqs � rh, βpϑpl, kqqs � rl, βpϑpk, hqqs

� rk, ϑpαphq, lqs � rh, ϑpαplq, kqs � rl, ϑpαpkq, hqs

� rk, ϑph, αplqqs � rh, ϑpl, αpkqqs � rl, ϑpk, αphqqs.

Again, by the definition of the action in (14)

X � �rk, pα, βq � ϑph, lqs � rh, pα, βq � ϑpl, kqs � rl, pα, βq � ϑpk, hqs.

So pα, βq � ϑ P Z2pK, Iq.

Now suppose that ϑ P B2pK, Iq. By definition (6), there is a linear map T : K Ñ I such

that ϑ � ϑT . Hence,

ϑT ph, kq � T prh, ksq � rk,T phqs � rh,T pkqs. (16)

Let Y � pα, βq � ϑT ph, kq. By (16), we have

Y � βpϑT ph, kqq � ϑT pαphq, kq � ϑT ph, αpkqq. (17)

Using the definition of ϑT , we have

βpϑT ph, kqq � βT prh, ksq � βrk,T phqs � βrh,T pkqs, (18)

ϑT pαphq, kq � T prαphq, ksq � rk,Tαphqs � rαphq,T pkqs,

ϑT ph, αpkqq � T prh, αpkqsq � rαpkq,T phqs � rh,Tαpkqs.

We can use that pα, βq is a compatible pair in equation (18) to write

βpϑT ph, kqq � βT prh, ksq � rαpkq,T phqs � rk, βT phqs � rαphq,T pkqs � rh, βT pkqs.
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Then

Y � βT prh, ksq � rαpkq,T phqs � rk, βT phqs � rαphq,T pkqs � rh, βT pkqs

� T prαphq, ksq � rk,Tαphqs � rαphq,T pkqs

� T prh, αpkqsq � rαpkq,T phqs � rh,Tαpkqs.

Making the cancellations, Y can be written as

Y � βT prh, ksq � T prαphq, ksq � T prh, αpkqsq

� rk, βT phqs � rk,Tαphqs � rh,Tαpkqs � rh, βT pkqs.

Now we use that T and the action are linear to obtain

Y � βT prh, ksq � T prαphq, ks � rh, αpkqsq � rk, βT phq � Tαphqs � rh, βT pkq � Tαpkqs.

Hence,

Y � pβT � Tαqprh, ksq � rk, pβT � Tαqphqs � rh, pβT � Tαqpkqs.

If U � βT � Tα : K Ñ I, then

pα, βq � ϑT ph, kq � Uprh, ksq � rk,Uphqs � rh,Upkqs.

Therefore, pα, βq � ϑT P B2pK, Iq. We just proved

Proposition 3.2.1. Let K be a Lie algebra and let I be a K-module. Consider the action of

ComppK, Iq on C2pK, Iq defined in (14). Then the vector spaces Z2pK, Iq and B2pK, Iq are

invariants under this action.

This result allows us to define an action of ComppK, Iq on H2pK, Iq: let ϑ P Z2pK, Iq

and pα, βq P ComppK, Iq. Define the action

pα, βq � pϑ� B2pK, Iqq � ppα, βq � ϑq � B2pK, Iq. (19)

This is well defined by Proposition 3.2.1.

Definition 3.2.2. Let K be a Lie algebra and let I be a K-module. Let ϑ P Z2pK, Iq and con-

sider the action of ComppK, Iq on H2pK, Iq defined in (19). Define the set of induced pairs of

ComppK, Iq by

IndupK, I, ϑq � AnnComppK,Iqpϑ� B2pK, Iqq.
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Now we have the tools needed to describe the Lie algebra DerpKϑq from the Lie algebra

DerpKq. We will define a homomorphism φ : DerpKϑq Ñ DerpKq, whose kernel is known

and the image coincides with the set of induced pairs defined above. So, using the First Iso-

morphism Theorem for Lie algebras we have DerpKϑq is isomorphic to Kerpφq� Impφq. These

subspaces correspond to the structures: Kerpφq � Z1pK, Iq and Impφq � IndupK, I, ϑq. There-

fore, this method will allow us to study some properties of derivations of Lie algebra extensions

by cocycles. First we define φ.

Let K be a Lie algebra and let I be a K-module. Let ϑ P H2pK, Iq and δ P DerpKϑq.

Suppose that I, as an ideal of Kϑ, is invariant under δ. Recall that Kϑ � K i I and let πK :

Kϑ Ñ K and πI : Kϑ Ñ I be the natural vector space projections of Kϑ onto K and Kϑ onto I

respectively. Then define the maps

• α : K Ñ K by αpkq � πKδpkq, for all k P K;

• β : I Ñ I by βpvq � δpvq, for all v P I;

• η : K Ñ I by ηpkq � πIδpkq, for all k P K.

For each k � v P Kϑ, we have

δpk � vq � αpkq � ηpkq � βpvq for all k P K and v P I. (20)

We can see that β is a derivation of I because it is the restriction of δ to I. To see that

α P DerpKq, let x, y P K. To make our calculation more clear, we will denote by r�, �sK the

product in K, and by r�, �sϑ the product in Kϑ. Then by product definition on Kϑ

δprh, ksϑq � δprh, ksK � ϑph, kqq.

By the decomposition showed in (20),

δprh, ksϑq � αprh, ksKq � ηprh, ksKq � βpϑph, kqq. (21)

We can calculate

rδphq, ksϑ � rh, δpkqsϑ � rαphq � ηphq, ksϑ � rh, αpkq � ηpkqsϑ, (22)

and use the definition of the product in equation (22) to get

rδphq, ksϑ � rh, δpkqsϑ � rαphq, ksK � ϑpαphq, kq � rk, ηphqsϑ

� rh, αpkqsK � ϑph, αpkqq � rh, ηpkqsϑ. (23)
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Comparing the components of K in (21) and (23) we have

αprh, ksKq � rαphq, ksK � rh, αpkqsK ,

and α P DerpKq.

Now it is possible define our homomorphism φ. Let K be a Lie algebra and let I be a

K-module. Let ϑ P H2pK, Iq and suppose that I, as an ideal of Kϑ, is invariant under derivations.

For all k � v P Kϑ and δ P DerpKϑq write δpk � vq � αpkq � ηpkq � βpvq with α P DerpKq and

β P DerpIq. Define φ : DerpKϑq Ñ DerpKq ` DerpIq by

φpδq � pα, βq. (24)

The following calculation will check that φ is a Lie algebra homomorphism. Let δ, δ1 P

DerpKϑq such that

δpk � vq � αpkq � ηpkq � βpvq

δ1pk � vq � α1pkq � η1pkq � β1pvq.

Then,
δδ1pkq � δpα1pkq � η1pkq � β1pvqq

� αα1pkq � ηpα1pkqq � βpη1pkq � β1pvqq.

Hence, πKδδ
1pkq � αα1pkq. Analogously, πKδ

1δpkq � α1αpkq. So πKrδ, δ
1s � rα, α1s. As β and β1

are defined by restriction of δ and δ1 to I, respectively, πIrδ, δ
1s � rβ, β1s. Therefore,

φprδ, δ1sq � prα, α1s, rβ, β1sq � rpα, βq, pα1, β1qs � rφpδq, φpδ1qs,

and φ is indeed a Lie algebra homomorphism.

The next result presents the first connection between compatible pairs and the homo-

morphism φ.

Lemma 3.2.3. Let K be a Lie algebra and let I be a K-module. Let ϑ P H2pK, Iq and suppose

that I, as an ideal of Kϑ, is invariant under derivations. Let φ : DerpKϑq Ñ DerpKq ` DerpIq

given by φpδq � pα, βq, defined in (24). Then Impφq ¤ ComppK, Iq.

Proof. Let pα, βq P Impφq. Then, there is δ P DerpKϑq such that φpδq � pα, βq. If h P K and
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a P I, then

βprh, asϑq � δprh, asϑq psince rh, as P Iq

� rδphq, asϑ � rh, δpaqsϑ pδ P DerpKϑqq

� rαphq � ηphq, asϑ � rh, βpaqsϑ

� rαphq, asϑ � rh, βpaqsϑ psince I is abelianq.

We set for further reference

φ : DerpKϑq Ñ ComppK, Iq

δ ÞÑ pα, βq.
(25)

3.3 Derivations of Kϑ

Now we present the main theorem of this chapter. We describe the derivations of an

extension Kϑ presented in Proposition 2.2.1 from the derivations of the Lie algebra K. As we

will see, this theorem sets conditions which guarantee that a derivation of K can be lifted to

a derivation of Kϑ. Recall that for a Lie algebra K, for a K-module I, and for ϑ P Z2pK, Iq,

IndupK, I, ϑq was defined in Definition 3.2.2.

Theorem 3.3.1. Let K be a Lie algebra and let I be a K-module. Let ϑ P H2pK, Iq and suppose

that I, as ideal of Kϑ, is invariant under derivations. Let φ : DerpKϑq Ñ DerpKq ` DerpIq be

defined as above. Then:

1. Impφq � IndupK, I, ϑq

2. Kerpφq � Z1pK, Iq

Proof. In this proof we will denote the product in Kϑ of h P K and a P I just by the action rh, as

of K on I, since rh, asϑ � rh, as.

1) Let pα, βq P IndupK, I, ϑq. By definition,

pα, βq � ϑ P B2pK, Iq.
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Then there is a linear map T : K Ñ I, such that, for all h, k P K,

βpϑph, kqq � ϑpαphq, kq � ϑph, αpkqq � T prh, ksKq � rk,T phqs � rh,T pkqs. (26)

Let h P K, a P I and define the linear map pα, βq� : Kϑ Ñ Kϑ by

pα, βq�ph � aq � αphq � T phq � βpaq. (27)

Let us check that pα, βq� is a derivation of Kϑ. Let k � b P Kϑ. If

X � pα, βq�prh � a, k � bsϑq,

then
X � pα, βq�prh, ksK � ϑph, kq � rh, bs � rk, asq

� αprh, ksKq � T prh, ksKq � βpϑph, kqq � βprh, bsq � βprk, asq.

Now, let

Y � rpα� βq�ph � aq, k � bsϑ � rh � a, pα� βq�pk � bqsϑ.

By equation (27),

rpα� βq�ph � aq, k � bsϑ � rαphq � T phq � βpaq, k � bsϑ.

Hence, by the definition of the product in (7),

rαphq � T phq � βpaq, k � bsϑ � rαphq, ksK � ϑpαphq, kq � rαphq, bs � rk,�T phq � βpaqs

and

rpα� βq�ph � aq, k � bsϑ � rαphq, ksK � ϑpαphq, kq � rαphq, bs � rk,�T phq � βpaqs.

Analogously,

rh � a, pα� βq�pk � bqsϑ � rh, αpkqsK � ϑph, αpkqq � rh,�T pkq � βpbqs � rαpkq, as.

It follows that,

Y � rαphq, ksK � rh, αpkqsK � ϑpαphq, kq � ϑph, αpkqq

� rαphq, bs � rh, βpbqs � rk, βpaqs � rαpkq, as � rh,T pkqs � rk,T phqs.
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We can use that pα, βq P ComppK, Iq to write Y as

Y � αprh, ksKq � ϑpαphq, kq � ϑph, αpkqq � βprh, bsq � βprk, asq

� rh,T pkqs � rk,T phqs.

By equation (26),

ϑpαphq, kq � ϑph, αpkqq � βpϑph, kqq � T prh, ksq � rk,T phqs � rh,T pkqs.

Then

Y � αprh, ksKq � βpϑph, kqq � T prh, ksKq � rk,T phqs � rh,T pkqs

� βprh, bsq � βprk, asq � rh,T pkqs � rk,T phqs.

As X � Y , pα, βq� is a derivation.

Also observe that πKpα, βq
� � α and πIpα, βq

� � β. Hence, φppα � βq�q � pα, βq and

IndupK, I, ϑq � Impφq.

Suppose now that pα, βq P Impφq. Then, there is δ P DerpKϑq, such that

φpδq � pα, βq.

By Theorem 3.2.3, Impφq � ComppK, Iq. Then, it is enough to show that there is a linear map

T : K Ñ I, such that equation (26) is satisfied.

For each h � a P Kϑ, we can use the decomposition defined in (20) to write

δph � aq � αphq � ηphq � βpaq.

Thus,

rδph � aq, k � bsϑ � rαphq � ηphq � βpaq, k � bsϑ.

By the definition of the product in (7), we get

rαphq � ηphq � βpaq, k � bsϑ � rαphq, ksK � ϑpαphq, kq � rαphq, bs � rk, ηphq � βpaqs.

Hence,

rδph � aq, k � bsϑ � rαphq, ksK � ϑpαphq, kq � rαphq, bs � rk, ηphq � βpaqs.

Analogously,

rh � a, δpk � bqsϑ � rh, αpkqsK � ϑph, αpkqq � rh, ηpkq � βpbqs � rαpkq, as.
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Therefore,

rδph � aq, k � bsϑ � rh � a, δpk � bqsϑ � rαphq, ksK � rh, αpkqsK � ϑpαphq, kq � ϑph, αpkqq

� rαphq, bs � rh, βpbqs � rαpkq, as � rk, βpaqs � rk, ηphqs � rh, ηpkqs. (28)

We can use that pα, βq P ComppK, Iq in the last displayed equation to write

rδph � aq, k � bsϑ � rh � a, δpk � bqsϑ � αprh, ksKq � ϑpαphq, kq � ϑph, αpkqq

� βprh, bsq � βprk, asq � rk, ηphqs � rh, ηpkqs.

Now we will calculate δprk � a, h � bsϑq. By the definition of the product,

δprh � a, k � bsϑq � δprh, ksK � ϑph, kq � rh, bs � rk, asq.

Hence,

δprh, ksK �ϑph, kq�rh, bs� rk, asq � αprh, ksKq�ηprh, ksKq�βpϑph, kqq�βprh, bsq�βprk, asq.

As δ is a derivation, we have the equality

δprh � a, k � bsϑq � rδph � aq, k � bsϑ � rh � a, δpk � bqsϑ.

It follows that,

ϑpαphq, kq � ϑph, αpkqq � rk, ηphqs � rh, ηpkqs � ηprh, ksKq � βpϑph, kqq.

We can rearrange the last displayed equation to get

p�ηqprh, ksKq � rk, p�ηqphqs � rh, p�ηqpkqsq � βpϑph, kqq � ϑpαphq, kq � ϑph, αpkqq.

Therefore, T � �η satisfies the equation (26) e Impφq � IndupK, I, ϑq. This concludes

the proof of assertion 1.

2) Let δ P Kerpφq. The decomposition showed in (20) provides us

δphq � ηphq, for all h P K.

Let h, k P K. By the definition of a derivation,

δprh, ksϑq � rδphq, ksϑ � rh, δpkqsϑ. (29)
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We can use the definition of the product in Kϑ to write

δprh, ksϑq � δprh, ksK � ϑph, kqq.

Since δ P Kerpφq,

δprh, ksϑq � ηprh, ksKq.

On other hand,

rδphq, ksϑ � rh, δpkqsϑ � rηphq, ksϑ � rh, ηpkqsϑ.

Then, (29) can be written as

ηprk, hsKq � rk, ηphqs � rh, ηpkqs,

and η P Z1pK, Iq. Observe that η is the restriction of δ to K. Denote the restriction of δ to K by

δ|K . Therefore, if δ P Kerpφq, then δ|K P Z1pK, Iq.

Let δ P Kerpφq and define σ : Kerpφq Ñ pZ1pK, Iq,�q by σpδq � δ|K . The argument

above shows that σ is well defined, in the sense that σpδq P Z1pK, Iq. The map σ is clearly

linear. Further, σ is injective, since if δ P Kerpσq, then δ � 0. Now, to prove that σ is onto, let

η P Z1pK, Iq and define a linear map δ : Kϑ Ñ Kϑ by

δph � aq � ηphq, h P K, a P I.

We will show that δ is a derivation. Observe that, for all h � a, k � b P Kϑ, we have

δprh � a, k � bsϑq � δprh, ksK � ϑph, kq � rh, bs � rk, asq � ηprh, ksKq.

On the other hand,

rδph � aq, k � bsϑ � rh � a, δpk � bqsϑ � rηphq, k � bsϑ � rh � a, ηpkqsϑ

� �rk, ηphqs � rh, ηpkqs.

Since η P Z1pK, Iq, δprh�a, k�bsϑq � rδph�aq, k�bsϑ�rh�a, δpk�bqsϑ, hence δ P DerpKϑq. It

is immediate that φpδq � 0. So δ P Kerpφq. As, by definition, σpδq � η, σ is onto and, therefore,

it is an isomorphism.

Example 3.3.2. Let L be a Lie algebra and let I be an abelian ideal of L. Suppose that I is

invariant under derivations. Set K � L{I. By Proposition 2.2.1, there is a ϑ P Z2pK, Iq such that
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L � Kϑ. Then, we can apply the map φ : DerpLq Ñ DerpL{Iq ` DerpIq defined in Theorem

3.3.1. Further, if δ P DerpLq, then φpδq � pα, βq P ComppL{I, Iq. Hence, each derivation of L

gives rise to a pair of derivations α P DerpL{Iq and β P I. In particular, if δ is non-singular, then

α and β are non-singulars.
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4 Applications of Compatible pairs

4.1 Compatible pairs and Jacobson’s Theorem

In this chapter we present some examples of the use of compatible pairs in the study of

non-singular derivations.

Example 4.1.1. Let K and I be finite-dimensional Lie algebras over an algebraically closed

field F. Suppose that K acts on I via the representation ψ : K Ñ DerpIq. Let D ¤ ComppK, Iq

be a subalgebra. Define L � K i I. By Proposition 3.1.1, D ¤ DerpLq. Suppose that D is

nilpotent. By Corollary 2.1.8, L has a decomposition into generalized eigenspaces of D. This

decomposition induces decompositions on K and on I, since K and I are invariant under D.

Hence, L � Kλ1 ` � � � ` Kλr ` Iµ1 � � � ` Iµs . In particular, rKλi , Iµ js � Iλi�µ j if λi � µ j is an

eigenvalue of D in I. Otherwise rKλi , Iµ js � 0.

From this example we can state the following result:

Proposition 4.1.2. Let K and I be finite-dimensional Lie algebras over an algebraically closed

field F. Suppose that K acts on I by representation ψ : K Ñ DerpIq. Let D ¤ ComppK, Iq be

a nilpotent subalgebra. Suppose that 0 is not a generalized eigenvalue of D. Then if either the

characteristic of F is zero or the characteristic of F is p and D has at most p � 1 generalized

eigenvalues, then the Lie subalgebra ψpKq ¤ glpIq is nilpotent.

Proof. Let L � Kλ1 � � � � � Kλr � Iµ1 � � � � Iµs be the generalized eigenspace decomposition

presented in Example 4.1.1. Suppose that 0 is not a generalized eigenvalue of D. Let EK �

tλ1, � � � , λru and EI � tµ1, � � � , µsu be the generalized eigenvalues of D in K and I, respectively.

Let k P Kλ j , a P Iµi then

$&
% ψnpkqpaq P Iµi�nλ j i f µi � nλ j P EI

ψnpkqpaq � 0 i f µi � nλ j R EI .

• If the characteristic of F is 0, then the linear functions µi � λ j, µi � 2λ j, . . . , µi � nλ j . . .

are all distinct since λ j � 0. Since dim I is finite, µi � nλ j R EI for some n ¡ 0. Hence,

ψpkqn � 0.
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• If the characteristic of F is p ¡ 0 and s   p, then the linear forms tµi � λ j, µi �

2λ j, � � � , µi�pp�1qλ j, µiu cannot be all non-trivial, and µi�nλ j � 0 for some 1 ¤ n ¤ p.

Thus, ψnpkq � 0, for some n with 1 ¤ n ¤ p.

In both cases, ψpkq is nilpotent for all k P Kλ j , 1 ¤ j ¤ r. Let S �
�
ψpKλ jq. Since S is a

weakly closed set such that each element is nilpotent, the associative subalgebra xS yA ¤ EndpIq

is nilpotent, by Proposition 2.4.1. Therefore, the Lie algebra xS yL � ψpKq ¤ glpIq is nilpotent.

For our next example we need a result about traces of matrices. Let n ¡ 0 be a integer

number and let F be a field, and denote by Mpn,Fq the set of n � n matrices over F. The

statement of the following proposition is well-known in characteristic 0, see for instance [ [15],

Theorem 24.2.1, pg 110].

Proposition 4.1.3. Let F be a field of characteristic p ¥ 0 and suppose that A P Mpn,Fq.

Assume that either n   p or p � 0. Then A is nilpotent if, and only if, the trace of the matrices

Ar is zero, for all 1 ¤ r ¤ n.

Proof. Suppose without loss of generality that F is algebraically closed. Then a square matrix

A over F is nilpotent if and only if 0 is the only eigenvalue of A. Assume, without loss of gene-

rality, that A is in Jordan normal form. Hence, A is a block-diagonal matrix where each block is

formed by grouping the Jordan blocks associated to the same eigenvalue. Let λ1, � � � , λk be the

non-zero eigenvalues of A. Denote by At the diagonal block in A associated with eigenvalue λt,

and assume that At is an nt � nt-matrix. Then

trpArq � n1λ
r
1 � � � � � nkλ

r
k. (30)

Suppose that A is nilpotent. Then zero is the only eigenvalue of A, and also of Ar for all r ¥ 1,

and by equation (30) we have trpArq � 0 for 1 ¤ r ¤ n. Conversely, suppose that trpArq � 0

for 1 ¤ r ¤ n. Since k ¤ n, from equation (30) we can extract the system

n1λ
r
1 � � � � � nkλ

r
k � 0, 1 ¤ r ¤ k, (31)

of linear equations in the variables n1, � � � , nk over F, considering each n j as the element n j � 1

in F, whose matrix of coefficients is

C �

�
�������

λ1 λ2 � � � λk

λ2
1 λ2

2 � � � λ2
k

...
...

. . .
...

λk
1 λk

2 � � � λk
k

�
�������
.
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Denote by mipλq the operation that multiplies row i of a matrix by λ, and At the transposed

matrix of A. So, we can write

Ct � m1pλ1q.m2pλ2q � � �mkpλkq.V,

where

V �

�
�������

1 λ1 λ2
1 � � � λk�1

1

1 λ2 λ2
2 � � � λk�1

2
...

...
...

...

1 λk λ2
k � � � λk�1

k

�
�������

is the Vandermonde matrix in the variables λ1, λ2, � � � , λk, whose determinant is

det V �
¹

1¤i  j¤n

pλ j � λiq;

see, [16] Fact 5.16.3, pag. 354. As the λi are pairwise distinct, det V is non-zero. Thus, the

determinant of C is λ1.λ2 � � � λk. det V . As we assume that λi � 0, 1 ¤ i ¤ k, C is non-singular.

It follows that the system (31) has only the trivial solution. Therefore, considered as an element

of F, each n j is zero. If p � 0, then zero is the only eigenvalue of A. If p ¡ 0, then, since we

assume that n   p, we also have that n j   p for all j. Hence, the fact that n j � 0 in F, implies

that n j � 0 as a natural number. We conclude that zero is the only eigenvalue of A, and so A is

nilpotent as explained in the beginning of the proof.

Proposition 4.1.4 ( [16], Fact 3.17.13). Let F be a field of characteristic p ¥ 0. Let A, B,C P

Mpn,Fq and assume that either p � 0 or n   p. If rA, Bs � C � λB, for some λ P F and

rB,Cs � 0, then rA, Brs � rBr�1C � λrBr for all r ¥ 1. In particular, if λ � 0 and C is

nilpotent, then B is nilpotent.

Proof. We prove the first statement of this result by induction on r. The case r � 1 follows from

the conditions. Suppose that result is valid for pr � 1q. Then,

rA, Br�1s � pr � 1qBr�2C � λpr � 1qBr�1.

We can rewrite this equation as

λpr � 1qBr�1 � ABr�1 � Br�1A � pr � 1qBr�2C.
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Multiplying the last equation on the right by B, we have

λpr � 1qBr � ABr � Br�1pABq � pr � 1qBr�2pCBq.

By the conditions, we can write AB � BA � C � λB and CB � BC. Replacing these terms

above we obtain

λpr � 1qBr � ABr � BrA � Br�1C � λBr � pr � 1qBr�1C.

Therefore,

ABr � BrA � λrBr � rBr�1C.

This proves the first assertion. For the second statement, suppose λ � 0 and C is nilpotent with

nilpotency index m. Using the first assertion, we have

Br � p1{λrqrA, Brs � p1{λqBr�1C, for all r ¥ 1.

Since, B and C commute, pBr�1Cqm � pBr�1qmpCqm � 0, Hence, for all r ¥ 1 Br�1C is

nilpotent and, by Proposition 4.1.3, has trace zero. As the trace of commutators is always zero,

trprA, Brsq � 0 for all r ¥ 1. It follows that trpBrq � 0 for all r ¥ 1 and again, by Proposition

4.1.3, we conclude that B is nilpotent.

Lemma 4.1.5. Let K and I be finite-dimensional Lie algebras over an algebraically closed field

F of characteristic p ¡ 0 such that K acts on I.

1. Let pα, βq P ComppK, Iq be a compatible pair of non-singular derivations such that both

α and β have finite order and suppose that |α| � nαptα and |β| � nβptβ such that nα and nβ

are coprime to p. Let t � maxttα, tβu. Then pαpt
, βpt

q is a compatible pair of non-singular

diagonalizable derivations such that the orders of α1 � αpt
and β1 � βpt

are coprimes to

p.

2. If L � K i I and δ is a non-singular derivation of L with finite order such that δpIq � I,

then there exists a non-singular derivation δ1 of L with finite order such that δ1pIq � I,

δ1pKq � K, and the restrictions of δ1 to I and to K are diagonalizable and have orders

that are coprime to p.

Proof.

(1) Let pα, βq P ComppK, Iq be a a compatible pair of non-singular derivations as in

the lemma. Let α1 � αpt
and β1 � βpt

. By Lemma 3.1.2, pα1, β1q is a compatible pair, and
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by Lemma 2.5.2, α1 and β1 are non-singular derivations, such that the orders of α1 and β1 are

coprimes to p. Further, as F is an algebraically closed field, α1 and β1 are diagonalizable non-

singular derivations of L.

(2) Suppose that δ is as in the lemma, and let φ : DerpLq Ñ DerpKq ` DerpIq defined

in 24. By Lemma 3.2.3, φpδq � pα, βq P ComppK, Iq. Let |α| � nαptα and |β| � nβptβ , and set

t � maxttα, tβu. Then pα1, β1q � pαpt
, βpt

q is a compatible pair of non-singular derivations such

that nα and nβ are coprime to p. By Proposition 3.1.1, the compatible pair pα, βq determines a

derivation δ1 P DerpLq defined by δ1pk � aq � αpkq � βpaq, and δ1 is as claimed.

Now we can present a result similar to the Proposition 4.1.2, but with a new proof using

compatible pairs.

Theorem 4.1.6. Let K and I be finite-dimensional Lie algebras over an algebraically closed

field of characteristic p ¡ 0. Suppose that K acts on I by the representation ψ : K Ñ DerpIq.

Let pα, βq P ComppK, Iq such that α is non-singular, and α has finite order. If K is solvable and

dim I   p, then ψpkq is nilpotent, for all k P K.

Proof. Let |α| � nαptα be the order of α, with p - nα. By Lemma 2.5.2, αptα is non-singular and

diagonalizable. By Lemma 3.1.2, pαptα
, βptα

q is a compatible pair. Then we may assume without

loss of generality that pα, βq is a compatible pair with α non-singular and diagonalizable. Let

x1, . . . , xs be a basis of K such that αpxiq � λixi. Let B be a basis for I and denote by ~a� the

matrix of the endomorphism a, for all a P glpIq, in B. Then, by equation (11),

r~β�, ~ψpxiq�s � ~ψpαpxiqq�.

It follows that

r~β�, ~ψpxiq�s � λi~ψpxiq�.

We can apply Proposition 4.1.4 to this last equation with A � ~β�, B � ~ψpxiq�, C � 0 and

λ � λi � 0 to conclude that ~ψpxiq� is nilpotent, for 1 ¤ i ¤ s. Now, we observe that K

is a solvable Lie algebra and dim I   p, and so, by Theorem 2.3.5, there is a basis of I such

that the image of ψ lies in the subalgebra of glpIq formed by upper triangular matrices. So let

us work in this basis. Since ~ψpxiq� is nilpotent and upper triangular, it must be strictly upper

triangular (that is, it contains zeros in the diagonal), for all i. Then, all ~ψpkq�, for all k P K, are

also strictly upper triangular matrices, since they are linear combinations of the ~ψpxiq�. Hence

every ψpkq is nilpotent.
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Remark 4.1.7. The proof presented for Theorem 4.1.6 is still valid if the characteristic of the

field F is zero. Suppose that we have the same conditions as in Theorem 4.1.6, except we do not

assume that charpFq ¡ 0 and that dim I   p. Using the same notation as in the proof, we can

again apply Proposition 4.1.4 in zero characteristic to guarantee that ~ψpxiq� is nilpotent, for

1 ¤ i ¤ s. Since K is solvable, by Theorem 2.3.4, there is a basis of I such that the image of ψ

lies in the subalgebra of glpIq formed by upper triangular matrices. Then we proceed as in the

proof of Theorem 4.1.6 to conclude that ψpkq, for all k P K, is nilpotent.

As a consequence of Theorem 4.1.6, we can present a version of Jacobson’s Theorem,

in prime characteristic, for solvable Lie algebras.

Theorem 4.1.8. Let L be a solvable Lie algebra over a field F of characteristic p ¡ 0. Let

L ¡ Lp1q ¡ � � � ¡ Lpkq ¡ Lpk�1q � 0 be the derived series of L. Suppose that L has a

non-singular derivation of finite order. If the dimension of Lpiq{Lpi�1q   p, for all i, then L is

nilpotent.

Proof. Since the solvability of L and the dimensions of the quotients Lpiq{Lpi�1q do not change

over extension fields, we may assume that F is algebraically closed. Suppose that L ¡ Lp1q ¡

� � � ¡ Lpkq ¡ Lpk�1q � 0 is the derived series of L. We prove this result by induction on k. When

k � 0, then L is clearly nilpotent, as it is actually abelian. Suppose that the result holds for

Lie algebras of derived length k and assume that L has derived length k � 1. Then I � Lpkq is

an abelian ideal of L. Setting K � L{I, we have that K acts on I by the adjoint representation

ad : K Ñ DerpIq such that for all k P K and a P I we have adkpaq � rk, as. Further, since the

terms of the derived series are invariant under derivations, a non-singular derivation δ P DerpLq

gives rise to a compatible pair pα, βq P ComppK, Iq as in the definition of φ in (25). Since δ is

non-singular, so are α P DerpKq and β P DerpIq. Note that K is solvable of solvable length k

and Kpiq{Kpi�1q � Lpiq{Lpi�1q for all i ¤ k � 1. Hence the induction hypothesis is valid for K

and we obtain that K is nilpotent. Besides that, since dim I   p we can set ad � ψ in Theorem

4.1.6 to conclude that adk is nilpotent for all k P K. Therefore, L{I is nilpotent and adx : I Ñ I

is nilpotent for all x P L. It follows from Proposition 2.3.2 that L is nilpotent.

In Example 2.4.4 we saw a solvable Lie algebra L of derived length 2, defined over

a field of positive characteristic which admits a non-singular derivation. The algebra L it

is not nilpotent, and indeed dim Lp1q{Lp2q � p. This example shows that the condition that

dim Lpiq{Lpi�1q   p for all i cannot be weakened in Theorem 4.1.8.
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5 Lie algebras with an abelian ideal of codimension 1

A Lie algebra L is said to be metabelian if it is a solvable Lie algebra of derived length

2, that is, the derived series is L ¡ L1 ¡ 0. Then L can be regarded as an extension by cocycles

of the Lie algebra K � L{L1 by the abelian Lie algebra L1. In this chapter we study non-singular

derivations of such Lie algebras. When dim K � 1, the vector space Z2pK, Iq has only the trivial

cocycle, and the extension L is the semidirect sum L � K i I. So using the concept of cyclic

modules, we can characterize the Lie algebras with dim K � 1, whose center is trivial and admit

a non-singular derivation. The decomposition presented in this chapter can be applied to any

Lie algebra defined as a semidirect-sum xxy i I, but if L has a non-singular derivation, then the

cyclic modules on which x acts non-singularly have dimension divisible by p. This will give

us information about the degree of the minimal polynomial of x and about the isomorphism

classes of the Lie algebras of the form xxy i I with non-singular derivation.

5.1 px, pq-cyclic modules

Let K be a Lie algebra and let I be a faithful K-module. Hence, K is a subalgebra

of glpIq, and we can define the semidirect sum L � K i I. Thus, every element x P K may

simultaneosly be considered as an endomorphism in glpIq and as an element of L. Let v P I.

We denote by xpvq the action of x viewed as an endomorphism of glpIq on v, and by rx, vs the

product of x and v as elements of L. Then rx, vs � xpvq.

We start with an example that will serve as a model.

Example 5.1.1. ( [3], Theorem 2.1) Let F be a field of prime characteristic p ¡ 0, such that

there is a, b P F with ab�1 R t0, 1, . . . , p � 1u. Let I be a p-dimensional vector space over F

with basis v0, . . . , vp�1. Define x P glpIq by xpviq � vi�1 for i � 0, � � � , p � 2 and xpvp�1q � v0.

Then the semidirect sum L � xxy i I is a non-nilpotent, solvable Lie algebra of derived length

2. Let δ : L Ñ L be defined by δpviq � pa � ibqvi and δpxq � bx. This linear transformation is

a non-singular derivation, such that the basis vectors x, v0, . . . , xp�1 are eigenvectors of δ with

eigenvalues b, a, a � b, a � 2b, . . . , a � pp � 1qb respectively.

Let I be a vector space and x P glpIq. Next we will present some results on the de-

composition of I as subspaces invariant under x. This decomposition is similar to the primary
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decomposition, but it is specialized to one-dimensional algebras. We start with the definition of

cyclic modules.

Definition 5.1.2. Let I be a finite-dimensional vector space over a field F and x P glpIq. A

vector subspace U of I is x-cyclic if there is v P U such that tv, xpvq, x2pvq, x3pvq, . . .u is a basis

for U.

Let I be a vector space and let x P glpIq. Set K � xxy ¤ glpIq and consider I as K-

module with the natural action. Let v P I and denote by xvyK � tqpxqv | q P FrXsu. We say that

xvyK is the K-submodule of I generated by v. It is easy to see that xvyK is generated, as vector

space, by tv, xpvq, x2pvq, x3pvq, . . .u. Hence, by Definition 5.1.2, xvyK is x-cyclic. The vector

space I can be decomposed as a direct sum of K-modules, such that each module is x-cyclic.

A complete theorem regarding this subject can be found in Theorem 7.6 of [17]. Below we

present the item concerning cyclic decompositions.

Theorem 5.1.3. Let I be a finite-dimensional vector space and x P glpIq. Then I can be decom-

posed into a direct sum of x-cyclic subspaces

I � I1 � I2 � � � �� Ir.

If the vector space I is x-cyclic, then it is possible obtain more results about the matrix

of the operator x P glpIq and its minimal polynomial. Next we define companion matrices and

characterize the matrix of x on an x-cyclic space I.

Definition 5.1.4. Let q be the monic polynomial qpXq � Xn�cn�1Xn�1�� � ��c2X2�c1X�c0 P

FrXs, with n ¥ 1. Then the matrix �
����������

0 0 . . . 0 c0

1 0 . . . 0 c1

0 1 . . . 0 c2
...

...
. . .

...
...

0 0 . . . 1 cn�1

�
����������

is called the companion matrix of q. We denote this matrix by CompMatrixpc0, c1, � � � , cn�1q.

Lemma 5.1.5. Let I be a vector space and let x P glpIq. The following are equivalent:

1. I is x-cyclic;
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2. dim KerpcId � xq ¤ 1, for all c P F;

3. the matrix of the operator x P glpIq is similar to the companion matrix of the minimal

polynomial of x;

4. the minimal polynomial of x coincides with the characteristic polynomial of x;

5. for each eigenvalue of x, the Jordan normal form of x has only one block associated to

this eigenvalue.

A proof of this lemma can be found in [18, Theorem 1.5.8 and Corollary 1.5.14].

We will use the equivalence presented in Lemma 5.1.5 to introduce a new concept rela-

ted to cyclic modules. This concept will be the main tool for the characterization presented in

this section.

Definition 5.1.6. Let I be a vector space over a field F of characteristic p ¡ 0 and let x P glpIq.

The vector space I is px, pq-cyclic if the following hold:

1. I is x-cyclic;

2. p divides the dimension of I;

3. if CompMatrixpc0, c1, � � � , cn�1q is the companion matrix of the minimal polynomial of

x, then c0 � 0 and ci � 0 for all i ¡ 0 such that p - i.

The following Proposition follows from Definition 5.1.6 and Lemma 5.1.5.

Proposition 5.1.7. Let I be a vector space and x P glpIq. The vector space I is px, pq-cyclic if,

and only if, I is x-cyclic and the minimal polynomial of x is of the form

qxpXq � Xpn � cppn�1qXppn�1q � � � � � c2pX2p � cpXp � c0 P FrXs (32)

where c0 � 0 and n ¥ 1.

If Xp � S in equation (32), then qxpS q is a polynomial of degree n in FrS s. This

means that the polynomial qx can be obtained from a polynomial with non-zero constant term.

In general, this is a method for generating px, pq-cyclic vector spaces. Let q P FrXs be a

polynomial in FrXs with non-zero constant term of degree n ¥ 1. Let M be the companion

matrix of rpXq � qpXpq. Let I be a vector space of dimension pn and let x be the endomorphism
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determined by M on I. Hence, I is an px, pq-cyclic vector space as we can see it in the next

example.

Example 5.1.8. Let p be a prime and let F be a field of characteristic p of order greater

than or equal to p2. Let a P Fzt0u. Define qpXq � Xpn
� apn

, for n ¥ 1. Let I be a

vector space of dimension pn. Then the companion matrix of q defines an endomorphism

x P glpIq. Let B � tv0, . . . , vpn�1u be a basis of I such that the action of x on I is given by

CompMatrixpapn
, 0, . . . , 0q. By Definition 5.1.6, I is an px, pq-cyclic module. Let L be the Lie

algebra defined by L � xxy i I. Then L is solvable of derived length 2, non-nilpotent and has

trivial center. Suppose that b P Fzt0, 1, . . . , p � 1u. Then the endomorphism δ : L Ñ L given

by δpxq � x and δpviq � pi � bqvi, 0 ¤ i ¤ pn � 1 is a non-singular derivation.

Note that, if q P FrXs is the polynomial qpXq � Xp � 1 in Example 5.1.8, then the

Lie algebra constructed is the same as in Example 5.1.1. In both examples we took non-zero

constant term because we restrict our study to Lie algebras with trivial center.

A Lie algebra L defined by L � xxy i I, where I is a vector space considered as a Lie

algebra under the null multiplication, is completely determined by the action of x on I. Further,

if I is x-cyclic, then the x-action on I is determined by the minimal polynomial of x. Our next

results will link these Lie algebras, defined from the semidirect sum of px, pq-cyclic modules,

to the existence of non-singular derivations. First, we need a lemma that gives us information

concerning the action of x on the eigenvectors of a non-singular derivation.

Lemma 5.1.9. Let I be a vector space and x P glpIq. Let K � xxy be a Lie algebra and set

L � xxy i I. Assume that ZpLq � 0. If δ P DerpLq is a derivation and v P I is an eigenvector of

δ, then rx, vs is an eigenvector of δ.

Proof. Let K � xxy be a Lie algebra of dimension 1 that acts on I. The center of L is the kernel

of x viewed as an endomorphism of I. Since we assume that ZpLq � 0, we obtain that x is an

invertible endomorphism. This also implies that L1 � I, and so I is invariant under DerpLq, and

we can consider φ : DerpLq Ñ DerpKq ` DerpIq defined in 25. Suppose that φpδq � pα, βq.

Then αpxxyq � xxy and βpuq � δpuq, for all u P I. It follows that, x and v are eigenvectors of

α and β, respectively. Suppose that x, v are associated to eigenvalues a, b P F, respectively. By

the definition of compatible pairs

δprx, vsq � βprx, vsq � rαpxq, vs � rx, βpvqs � pa � bqrx, vs.
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Since, ZpLq � 0, the endomorphism of I induced by x is non-singular, and so rx, vs � 0.

Therefore rx, vs is an eigenvector of δ associated to eigenvalue pa � bq.

Lemma 5.1.10. Let I be a vector space over a field of characteristic p ¡ 0 and x P glpIq. Let

K � xxy be a Lie algebra and set L � K i I. Also assume that ZpLq � 0. Let δ P DerpLq be a

derivation such that δpxq � x and let Ea be the δ-eigenspace associated to eigenvalue a. Then

the vector space E � Ea � Ea�1 � � � �� Ea�p�1 is x-invariant.

Proof. Let v P Ea�i with 0 ¤ i ¤ p � 1. Then

δprx, vsq � rδpxq, vs � rx, δpvqs � pa � i � 1qrx, vs.

Hence, xpEa�iq � E. As Eai generates E, E is x-invariant.

Before stating the next lemma, recall from Section 2.1 that for a polynomial q P FrXs

and x in EndpIq, I0pqpxqq is defined as

I0pqpxqq � tv P V | there is an m ¡ 0 such that qpxqmv � 0u.

Proposition 5.1.11. Let K be a nilpotent Lie algebra over a field F of characteristic p ¡ 0 and

let I be a finite-dimensional K-module. Let L � K i I, x P K and qpXq � X � a, with a P F.

Suppose that I, as an ideal of L, is invariant under DerpLq. Let δ P DerpLq such that δpxq � bx.

Then I0pqpxqq is δ-invariant.

Proof. Let δ P DerpLq, x P K given by the hypothesis and let w P I0pqpxqq. Hence, there is

m ¡ 0 such that px � a � Idqpm
� w � 0. As charpFq � p, we have

px � a � Idqpm
� w � pxpm

� apm
� Idq � w � xpm

� w� apm
w � 0. (33)

As δ P DerpLq, using the right-normed convention introduced in equation (2.1),

δpxpm
� wq � δprxpm , wsq

� rδpxq, . . . , x, ws � rx, δpxq, . . . , x, ws � rx, . . . , δpxq, ws � rx, . . . , x, δpwqs

� rax, . . . , x, ws � rx, ax, . . . , x, ws � rx, . . . , ax, ws � rx, . . . , x, δpwqs

� pm � a � rxpm , ws � rxpm , δpwqs

� xpm
� δpwq. (34)

Combining (34) and (33) we obtain

0 � δp0q � δpxpm
� w� apm

wq � δpxpm
� wq � apm

δpwq � xpm
� δpwq � apm

δpwq.
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Hence,

px � aIqpm
� δpwq � xpm

� δpwq � apm
δpwq � 0

and δpwq P I0pqpxqq.

Lemma 5.1.12. Let K � xxy be a Lie algebra over an algebraically closed field F of cha-

racteristic p ¡ 0. Let I be a finite-dimensional K-module such that x induces an invertible

endomorphism of I and set L � K i I. Assume that δ is a non-singular derivation of L such

that δpxq � x and δ|I is diagonalizable. Suppose that v P I is an eigenvector of δ. Then the

K-submodule xvyK is px, pq-cyclic.

Proof. We will verify that the vector space xvyK satisfies the conditions of Proposition 5.1.7.

Define the sequence: v0 � v and vi�1 � rx, vis, i ¥ 0. Then the set tv0, v1, . . . , u generates xvyK

and xvyK is x-cyclic. As I has finite dimension, there is a k ¡ 0 such that tv0, v1, . . . , vk�1u is

linearly independent and tv0, v1, . . . , vku is linearly dependent. By Lemma 5.1.9, each vi is an

eigenvector of δ. In this case, vi is associated to the eigenvalue a � i, where a is the eigenva-

lue associated with v. Note that a, a � 1, . . . , a � pp � 1q are distinct eigenvalues and the set

tv0, v1, . . . , vp�1u is linearly independent. Hence, k ¥ p. If the eigenvectors vi and v j are associ-

ated with eigenvalues a � i and a � j, then vi and v j are associated with the same eigenvalue if,

and only if, i � j pmod pq. Suppose that k � rp� t, 0 ¤ t ¤ p� 1. Since a set of eigenvectors

associated to pairwise distinct eigenvalues is linearly independent, the eigenvector vk must be

a linear combination of the eigenvectors vi, for i ¤ k � 1, that have the same eigenvalue as vk,

which is a � t. Hence,

vk � c0vt � c1vp�t � c2v2p�t � � � � � cr�1vpr�1qp�t. (35)

If t � 0, then we can replace every vi by rx, vi�1s in equation (35) and obtain that:

rx, vk�1s � c0rx, vt�1s � c1rx, vp�t�1s � c2rx, v2p�t�1s � � � � � cr�1rx, vpr�1qp�t�1s. (36)

If L � xxy i I with some non-trivial endomorphism x, then ZpLq � Kerpxq and L1 � Impxq.

Since ZpLq � 0, we have that x induces an injective endomorphism on I. Thus,

vk�1 � c0vt�1 � c1vp�t�1 � c2v2p�t�1 � � � � � cr�1vpr�1qp�t�1.

This contradicts to the assumption that tv0, v1, . . . , vk�1u is linearly independent. Thus, t � 0

and k � rp. Equation (35) implies also that vk � c0v0 � c1vp � � � � � cr�1vpr�1qp and so, the
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characteristic polynomial of x is

qxpXq � Xrp � cpr�1qXppr�1q � � � � � c2X2p � c1Xp � c0.

If c0 � 0, then replacing vi with rx, vi�1s as above implies that tv0, v1, . . . , vk�1u is linearly

dependent. Therefore c0 � 0. As xvyK is x-cyclic, by Lemma 5.1.5, the minimal polynomial of

x restricted to xvyK is qx and, by Proposition 5.1.7, xvyK is px, pq-cyclic.

Recall that for an endomorphism x of a vector space I, qx denotes the minimal polyno-

mial of x. When we want to emphasize the domain of x, we use the notation qx,I . If v P I, then

qx,v denotes the minimal polynomial of x with respect to v. That is, qx,v is the smallest degree,

non-zero, monic polynomial such that qx,vpxqpvq � 0. It is well-known that qx,v | qx,I for all

v P I. The proof of the following theorem was inspired by the proof of Theorem 6.6 in [19].

Lemma 5.1.13. Let K � xxy be a Lie algebra of dimension 1 over an algebraically closed

field F of characteristic p ¡ 0. Let I be a finite-dimensional K-module such that x induces an

invertible endomorphism of I and set L � K i I. Assume that δ is a non-singular derivation

of L such that δpxq � x and δ|I is diagonalizable. Assume, further, that mx,IpXq � pX � λqm

with some λ P F and m ¥ 1 and that the δ-eigenvalues on I are a, a � 1, . . . , a � p � 1 with

some a P F. Then I is the direct sum of px, pq-cyclic subspaces, each of which is generated by

a δ-eigenvector.

Proof. We prove this lemma by induction on dim I. By Lemma 5.1.12, dim I ¥ p, and so the

base case of the induction is when dim I � p. In this case, if v P I is a δ-eigenvector, then 〈v〉K

is px, pq-cyclic of dimension greater than or equal to p, and hence I � 〈v〉K . Thus the lemma is

valid when dim I � p.

Suppose now that dim I ¥ p � 1 and that the lemma is valid for spaces of dimension

less than dim I. By our conditions, I � Ea � � � � � Ea�p�1 where Eb denotes the b-eigenspace

of δ in I. Since
�

b Eb generates I as a vector space, there is some eigenvector v0 P I such that

qx,v0pXq � qx,IpXq � pX � λqm. Let I0 be the K-module generated by v0, I0 � 〈v0〉K , and let

J � I{I0. Since v0 is a δ-eigenvector, I0 is px, pq-cyclic by Lemma 5.1.12, and hence p | m. In

particular, qx,v0pXq � pX � λqm � pX � λqm0 p, where m0 ¥ 1. Note that I0 is an ideal of L that is

invariant under δ. Considering J as a K-module, we can consider the Lie algebra K i J � L{I0

that satisfies the conditions of the lemma. Since dim J   dim I, the induction hypothesis applies

to J, and we may write J � J1� � � �� Jk where the Ji are px, pq-cyclic subspaces of J and each
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Ji is generated by a δ-eigenvector, wi� I0, say. Since I0 has a basis consisting of δ-eigenvectors,

the δ-eigenvalues in J � I{I0 are a, a � 1, . . . , a � p � 1. We claim that wi can be chosen such

that wi is a δ-eigenvector in I. We may assume that wi � I0 is associated to the eigenvalue a.

As δpwiq � I0 � awi � I0, δpwiq � awi � u P I0. Since δ is diagonalizable on I, we may write

wi � za � za�1 � � � � � za�p�1, with zb P Eb. Further, since I0 is spanned by δ-eigenvectors, we

have that I0 � pI0 X Eaq � � � � � pI0 X Ea�p�1q. Thus we have u � ua � ua�1 � � � � � ua�p�1,

with ub P Eb X I0. Hence,

δpwiq � awi � aza � pa � 1qza�1 � � � � � pa � p � 1qza�p�1 � apza � za�1 � � � � � za�p�1q

� ua � ua�1 � � � � � ua�p�1.

Since eigenvectors with different eigenvalues are linearly independent, ua� j � j � za� j for all

j ¥ 0. This implies that za� j � j�1ua� j P I0 holds for all j ¥ 1. Therefore wi � za � ua�1 �

2�1ua�2 � � � � pp � 1q�1ua�p�1 P za � I0. Therefore we may replace wi by za and so, we may

assume without loss of generality that wi is a δ-eigenvector in I. In fact we assume that wi P Ea.

Since Ji is px, pq-cyclic, qx,JipXq � pX� λqmi p with some mi ¥ 1. We claim, for all i � 1, . . . , k,

that there is some vi P Ea X pwi � I0q such that

qx,vipXq � qx,JipXq � pX � λqmi p.

We prove this claim for i � 1. Since qx,J1pXq � pX � λqm1 p, we have px � λqm1 ppw1 � I0q � 0,

and so px � λqm1 ppw1q P I0. Thus, there is some polynomial h P FrXs with deg h   m and

px � λqm1 ppw1q � hpxqpv0q. On the other hand, w1 P Ea, and hence

px � λqm1 ppw1q � rpx � λqpsm�1pw1q � rpxp � λpqsm�1pw1q P Ea,

which gives hpxqpv0q P Ea, since xp fixes each eigenspace Eb. Write hpXq � h0pXq � h1pXq �

� � � � hp�1pXq such that

h jpXq � a j � ap� jXp� j � a2p� jX2p� j � . . . ,

for all 0 ¤ j ¤ p � 1. Suppose that h j � 0 for some j ¡ 0. Observe that h jpxqpv0q P Ea� j. As

hpxqpv0q P Ea and eigenvectors associated to different eigenvalues are linearly independent, we

have h jpxqpv0q � 0. Thus, qx,v0 | h j. On the other hand, deg hi   m � deg qx,v0 , which implies

that h j � 0, for all j ¡ 0. Hence, we can assume that h � h
p

with some h P FrXs. Now observe

that

0 � px � λqmpw1q � px � λqm�m1 ppx � λqm1 ppw1q � px � λqm�m1 phpxqpv0q.
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Since qx,v0pXq � pX�λqm, we have that pX�λqm | pX�λqm�m1 phpXq, and so pX�λqm1 p | hpXq.

Therefore there is some q P FrXs such that qpXqpX � λqm1 p � hpXq � hpXqp. This also implies

that q � qp with some q. Now set v1 � w1�qpxqpv0q. Since qpxqpv0q P I0, we have v1 P w1� I0.

Further, qpxqpv0q � qpxqppv0q P Ea, and hence v1 P Ea. This implies also that qx,J1 | qx,v1 . On

the other hand,

px � λqm1 ppv1q � px � λqm1 ppw1 � qpxqpv0qq � px � λqm1 ppw1q � px � λqm1 pqpxqpv0q � 0.

Thus qx,v1pXq � pX � λqm1 p � qx,J1pXq, as claimed. For i � 1, . . . , k, let Ii � 〈vi〉K . We claim

that I � I0 � � � �� Ik. First,

Ji � 〈wi � I0〉K � 〈vi � I0〉K � pIi � I0q{I0

and so

I{I0 � pI1 � I0q{I0 � � � �� pIk � I0q{I0.

This implies that I � I0 � I1 � � � � � Ik. Further, the direct decomposition of I{I0 also implies

that dim I0 �
°

i dimpIi � I0q{I0 � dim I. On the other hand, since qx,vi � qx,Ji , we also obtain

that dim Ii � dim Ji � dimpIi � I0q{I0. Therefore

dim I0 � dim I1 � � � � � dim Ik � dim I.

Hence the decomposition I � I0 � I1 � � � �� Ik is valid.

Theorem 5.1.14. Let K � xxy be a Lie algebra over an algebraically closed field F of characte-

ristic p ¡ 0. Let I be a finite-dimensional K-module and set L � KiI. Assume that ZpLq � 0. If

L has a non-singular derivation of finite order, then I is the direct sum of px, pq-cyclic modules.

Proof. Let δ P DerpLq be a non-singular derivation and let φ be the transformation defined

in (25). It follows that, φpδq � pα, βq P ComppK, Iq is a compatible pair of non-singular

derivations. By Proposition 3.1.1, pα, βq P DerpLq. Hence, by Lemma 4.1.5, L has a non-

singular derivation δ such that δpxxyq � xxy, δpIq � I and that the restriction of δ to I is

diagonalizable. By multiplying δ with a scalar, we may assume without loss of generality that

δpxq � x. Let qx,IpXq � pX�λ1q
m1 � � � pX�λkq

mk be the minimal polynomial of x as an element

of glpIq. As K is one-dimensional, the collected primary decomposition of I into K-modules is

I � I0ppx�λ1q
m1q�� � ��I0ppx�λkq

mkq, and Proposition 5.1.11 implies that the I0px�λiq
mi are δ-

invariant. Hence we may assume without loss of generality that k � 1 and mx,IpXq � pX � λqm.
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Further, I can be decomposed as I � Ea1 � � � � � Eas where, for ai P F, Eai is the sum of the

eigenspaces of δ that correspond to the eigenvalues ai, ai � 1, . . . , ai � p � 1. By a Lemma

5.1.10, the Eai are x-invariant. Therefore we may assume that I � Ea with some a P F. Now

the theorem follows from Lemma 5.1.13.

It is interesting to note that cyclic modules appear in an arbitrary non-nilpotent Lie

algebra with a non-singular derivation. In the paper [2] by Shalev, the proof of Lemma 2.2 uses

the existence of a subalgebra isomorphic to L � xxy i I, with I being a px, pq-cyclic module.

This subalgebra is generated by the eigenvectors of a non-singular derivation, and it is used to

show that the eigenvalues are roots of the polynomial qpXq � Xn � 1.

As consequence of Theorem 5.1.14, we can get some information of the matrix and the

minimal polynomial of x P EndpLq in the Lie algebra L � xxy i I.

Corollary 5.1.15. Let L be a finite-dimensional Lie algebra with derived length 2 over an alge-

braically closed field F of characteristic p ¡ 0. Suppose that L has a non-singular derivation

of finite order. Let K � L{rL, Ls and I � rL, Ls. If dimpKq � 1 with K � xxy and ZpLq � 0,

then there is a basis B of I such that the matrix of x in this basis is

rxs �

�
�������

rx1s 0 . . . 0

0 rx2s . . . 0
...

...
. . . 0

0 0 . . . rxns

�
�������

such that each rxis is in the form CompMatrixpci
0, c

i
1, � � � , c

i
n�1q with ci

0 � 0 and ci
j � 0 for each

j such that p - j. In particular, there is d1, . . . , dr P F, pairwise distinct, and positive integers

e1, . . . , er such that the minimal polynomial of x is in the form

qxpXq � pX � d1q
e1 ppX � d2q

e2 p � � � pX � drq
er p.

Corollary 5.1.16. Let L be a finite-dimensional Lie algebra over an algebraically closed field

F of characteristic p ¡ 0, with derived length 2 with dimpL{rL, Lsq � 1 and ZpLq � 0. Let δ P

DerpLq be a non-singular derivation of finite order and suppose that x P LzrL, Ls. If a and b are

eigenvalues of δ associated to v P I and x, respectively, then ta, a�b, a�2b, � � � , a�pp�1qbu

are eigenvalues of δ. In particular, the number of eigenvalues of δ is congruent 1 modulo p.

In Proposition 5.1.14, we showed that if a metabelian Lie algebra L � 〈x〉 i I has a

non-singular derivation, then I is the direct sum of px, pq-cyclic subspaces. Now we show the

converse.
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Proposition 5.1.17. Let K be a one-dimensional Lie algebra over an algebraically closed field

F of characteristic p ¡ 0 with K � xxy and I1, I2, . . . , Is px, pq-cyclic K-modules. Then the Lie

algebra L given by the semidirect sum,

L � K i pI1 � I2 � � � �� Isq,

has a non-singular derivation with sp � 1 distinct eigenvalues.

Proof. Recall that F is algebraically closed and so we can choose b, a1, . . . , as P F such that

a jb�1 R Fp, for all 1 ¤ j ¤ s and

|ta j � ib | 1 ¤ j ¤ s and 0 ¤ i ¤ p � 1u| � ps.

By assumption, I j is px, pq-cyclic, for 1 ¤ j ¤ s, and so there is a basis B j � tv j
0, v

j
1, . . . , v

j
r j p�1u

of I j such that the matrix of x in B j is CompMatrixpc j
0, c

j
1, . . . , c

j
r j p�1q with c j

i � 0 whenever

p - i. By our definition, this implies that for 1 ¤ j ¤ s

rx, v j
i s � v

j
i�1, for 0 ¤ i   r j p � 1,

rx, v j
r j p�1s �

°r j�1
i�0 c j

ipv
j
ip.

Define the endomorphism δ P glpLq by δpxq � bx and δpv j
i q � pa j � ibqv j

i . Then δ is non-

singular with eigenvalues a j � ib for 1 ¤ j ¤ s and 0 ¤ i ¤ p � 1. Let us check that δ is a

derivation of L. We are required to show that δprx, v j
i sq � rδpxq, v j

i s � rx, δpv j
i qs. Suppose that

i � r j p � 1. On the one hand,

δprx, v j
i sq � δpv j

i�1q � pa j � pi � 1qbqv j
i�1 � pa j � pi � 1qbqrx, v j

i s.

On the other hand,

rδpxq, v j
i s � rx, δpv j

i qs � rbx, v j
i s � rx, pa j � ibqv j

i s � pa j � pi � 1qbqrx, v j
i s.

Therefore,

δprx, v j
i sq � rδpxq, v j

i s � rx, δpv j
i qs.

For i � r j p � 1 we have,

δprx, v j
r j p�1sq � δ

�
r j�1̧

i�0

c j
ipv

j
ip

�
�

r j�1̧

i�0

c j
ipδpv

j
ipq �

�
r j�1̧

i�0

pa j � ipbqc j
ipv

j
ip

�

� a j

�
r j�1̧

i�0

c j
ipv

j
ip

�
� a jrx, v

j
r j p�1s,
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and

rδpxq, vr j p�1s � rx, δpvr j p�1qs � brx, vr j p�1s � rx, pa j � prp � 1qbqv j
r j p�1s � a jrx, v

j
r j�1s.

Therefore,

δprx, v j
r j�1sq � rδpxq, v j

r j�1s � rx, δpv j
r j�1qs.

Thus, δ is a non-singular derivation, as claimed.

We can combine Proposition 5.1.17 and Corollary 5.1.14 in one result and state the main

theorem of this chapter:

Theorem 5.1.18. Let L be a Lie algebra of derived length 2 over an algebraically closed field

F of characteristic p ¡ 0. Suppose that dimpL{L1q � 1 and ZpLq � 0. Let x P LzL1. Then L

has a non-singular derivation of finite order if, and only if, L1 can be written as a direct sum of

px, pq-cyclic modules.

Using Theorem 5.1.18 we can construct more examples of Lie algebras with non-

singular derivations from polynomials.

Example 5.1.19. Let p be a prime number and let F be a field of characteristic p. Let qpXq �

pX� a1q
ppX� a2q

p � � � pX� anq
p be a polynomial in FrXs with a1, . . . , an P F. Let I j, 1 ¤ j ¤ n

be a vector space over F of dimension p. Fix a basis B j � tv j
0, v

j
1, � � � , v

j
p�1u of I j. Let x j be the

endomorphism of I j given by CompMatrixpap
j , 0, . . . , 0q in basis B j. By construction, each I j is

px j, pq-cyclic. Now let I � I1 � I2 � � � �� In and

rxs �

�
�������

rx1s 0 . . . 0

0 rx2s . . . 0
...

...
. . . 0

0 0 . . . rxns.

�
�������

Then L � xxy i I is a Lie algebra with non- singular derivation.

In Example 5.1.19 we can also see that the correspondence between polynomials and

Lie algebras is not one-to-one. Let a P F, a � 0 and define q1pXq � pX � a1q
ppX � a2q

p, with

a1 � a2 � a. Then, define L1 � xx1y i pI1 � I2q using polynomial q1 as in Example 5.1.18. It

follows that, the minimal polynomial of x1 is qx1pXq � pX�aqp. If we define L2 � 〈x2〉iI using

the polynomial q2pXq � pX�aqp, then the minimal polynomial of x2 is also qx2pXq � pX�aqp.

But L1 and L2 have different dimensions.
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5.2 Decomposition of px, pq-cyclic modules

Next we will identify minimal px, pq-cyclic modules, that is, we will present conditions

for an px, pq-cyclic module I that imply that I cannot be decomposed as a sum of smaller px, pq-

cyclic modules. First we note that given an x-cyclic module I, the decomposition induced by the

minimal polynomial, which is the primary decomposition for the one-dimensional Lie algebra

xxy, also decomposes px, pq-cyclic modules into the sum of px, pq-cyclic modules. We present

an example to introduce this result.

Example 5.2.1. Let I be a vector space over the algebraic closure F of F3 of dimension 6 and

let B � tv1, v2, v3, v4, v5, v6u be a basis of I. Let x P glpIq be given by the companion matrix

CompMatrixp1, 0, 0, 0, 0, 0q. Define L � xxy i I. Then I is px, 3q-cyclic and, by Proposition

5.1.17, L has a non-singular derivation with 4 eigenvalues. Let B1 the basis given by

u1 � v1 � v4, u2 � v2 � v5, u3 � v3 � v6,

u4 � v1 � v4, u5 � v2 � v5, u6 � v3 � v6.

Then I1 � xu1, u2, u3y and I2 � xu4, u5, u6y are px, 3q-cyclic modules and, L can be written as

〈x〉 i pI1 � I2q. Hence, again by Proposition 5.1.17, L has a non-singular derivation with 7

eigenvalues. Therefore, the px, 3q-cyclic vector space I could be decomposed into the direct

sum of two smaller px, 3q-cyclic modules.

Lemma 5.2.2. Let I be a finite-dimensional vector space over an algebraically closed field F of

characteristic p ¡ 0, and let x P glpIq be such that I is x-cyclic. Assume that I � I1�I2�� � ��Ir

is the collected primary decomposition of I into x-modules. Then

1. Ii is x-cyclic;

2. Let v P I such that tv, xpvq, x2pvq, � � � , xnpvqu is a basis of I and v � v1 � v2 � � � � � vr with

vi P Ii. Then tvi, xpviq, x2pviq, � � � , xnipviqu is a basis of Ii, for some ni ¤ n.

3. If I is px, pq-cyclic, then Ii is px, pq-cyclic, for 1 ¤ i ¤ r.

Proof. Itens 1 and 2 follow from Theorem 6.4 of [17]. To prove item 3 we will verify the

conditions in Proposition 5.1.7. By item 1 of this proposition, Ii is x-cyclic. Let xi be the

restriction of x to Ii and let qxi be the minimal polynomial of xi. By the definition of collected
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primary decomposition, there is e1, . . . , er P F, pairwise distinct, such that

qxipXq � pX � eiq
ti , for some ti ¥ 1.

Suppose that the minimal polynomial of x is in the form

qxpXq � Xpm � cppm�1qXppm�1q � � � � � c2pX2p � cpXp � c0, c0 � 0.

Define S � Xp. Then we can write

qxpS q � S m � cppm�1qS m�1 � � � � � c2pS 2 � cpS � c0.

As F is algebraically closed, there are d1, � � � , dr P F (non-zero because c0 � 0) and mi ¥ 1,

1 ¤ i ¤ r, such that

qxpS q � pS � d1q
m1 � � � pS � drq

mr .

Replacing S by the variable X we have

qxpXq � pXp � d1q
m1 � � � pXp � drq

mr .

By assumption, F has prime characteristic, and so

qxpXq � pX � e1q
pm1 � � � pX � emq

pmr ,

where ei is such that ep
i � di, for all i. Thus, we can assume that the minimal polynomial of the

restriction of x to Ii is

qxipXq � pX � eiq
pmi , with ei � 0.

By Proposition 5.1.7, Ii is px, pq-cyclic, 1 ¤ i ¤ r.

Now we can characterize a type of irreducibility for px, pq-cyclic modules. The Lie

algebra using these modules, over an algebraically closed field, have non-singular derivations

with exactly p � 1 eigenvalues.

Proposition 5.2.3. Let K be a Lie algebra of dimension 1 over an algebraically closed field F

of characteristic p ¡ 0, and let I be a K-module of dimension n. Let x P Kzt0u and L � xxyi I

such that ZpLq � 0. Suppose that L has a non-singular derivation of finite order. Then I can be

written as direct sum of px, pq-cyclic modules I � I1 � � � � � Ir, with r ¡ 1, if, and only if, the

minimal polynomial of x, viewed as an element of glpIq, is either qxpXq � pX � aqm, with a P F

and m   n, or qxpXq � pX � a1q
m1 . . . pX � asq

ms , where a1, . . . , as P F are distinct and s ¡ 1.
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Proof. Suppose that I can be write as I � I1 � � � � � Ir, for r ¡ 1, such that Ii is px, pq-cyclic

module, 1 ¤ i ¤ r. Let xi be the restriction of x to Ii and let qxi be the minimal polynomial of

xi. If qxipXq � pX � aqmi , 1 ¤ i ¤ r, for some a P F and mi ¥ 1, then qxpXq � pX � aqm,

such that m � maxtm1, . . . ,mru. As r ¡ 1, dim Ii   n and mi   n, for all i. Thus, m   n.

If there is distinct ai, a j P F such that qxipXq � pX � aiq
mi and qx jpXq � pX � a jq

m j , then

pX � aiq
mipX � a jq

m j | qxpXq. Let us prove the other direction,

• Suppose that qxpXq � pX � a1q
m1 . . . pX � asq

ms , where a1, . . . , as P F are distinct and

s ¡ 1. As L has a non-singular derivation of finite order, by Theorem 5.1.13, I can be

written as a direct sum of px, pq-cyclic modules, I � I1 � � � � � Ir. If r ¡ 1, then the

result is verified. If r � 1, then I is px, pq-cyclic. Let I � J1 � � � � � Js be the collected

primary decomposition of I into x-modules. Thus, by item 3 of Proposition 5.2.2, Ji is

px, pq-cyclic and the result is verified.

• If qxpXq � pX � aqm, with a P F and m   n, let I � I1 � � � � � Ir be the decomposition

into px, pq-cyclic modules presented by Theorem 5.1.13. If r � 1, then I is px, pq-cyclic

and, by item 4 of Lemma 5.1.5, m � n, which is a contradiction. Then r ¡ 1 and the

result is verified.
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6 More examples of Lie algebra with non-singular derivation

This chapter is dedicated to present new examples of Lie algebras with non-singular

derivations. The examples explored in the previous chapters were defined by the semidirect sum

K i I, with K � xxy. In this section we will mostly consider the case when K is a nilpotent Lie

algebra of higher dimension. In Proposition 6.1.3, we present an example of a non-nilpotent Lie

algebra L � H i I, such that H has arbitrarily large nilpotency class and L has a non-singular

derivation. Then we suppose that H is the Heisenberg algebra. In this case, we present an

example of a representation ψ : H Ñ glpIq such that L � H i I is solvable, non-nilpotent with

non-singular derivation and set some conditions for this type of representations.

6.1 Examples with derived length 3

Recall the notation of adjoint representation presented in Section 2.1. Let ad : L Ñ

DerpLq be the adjoint representation of L given by x ÞÑ adx, for all x P L, such that, adxpyq �

rx, ys, for all y P L.

Lemma 6.1.1. ( [20] Corollary 5.2.7) Let L be a finite-dimensional Lie algebra graded by some

abelian group. Suppose L satisfies the Engel condition padxq
npyq � 0 for some n ¥ 1 and all

homogeneous elements x, y P L. Then L is nilpotent.

Lemma 6.1.2. ( [21] Proposition 1.3) Let I be a vector space over a field F. If x, y P EndpIq,

then

padxq
npyq �

ņ

i�0

p�1qi

�
n
i



xn�iyxi, for all n ¥ 1.

In the next proposition we use an action of a Lie algebra H on a vector space I to define

a Lie algebra L � H i I. As we want to emphasize that the action of H on I corresponds to the

product in L, we will replace the notation used in the Lemma 6.1.2 by Lie brackets. Hence, if

x, v P L, then

padxq
npvq � rxn, vs for all n ¥ 1.

Proposition 6.1.3. Let I be a vector space over a field F of characteristic p ¡ 0. Suppose that

I has dimension 2p and let B � tv1, � � � , v2pu be a basis of I. Define the elements x, y P glpIq

with the following rules

x : vkp�1 ÞÑ vkp�2, vkp�2 ÞÑ vkp�3, . . . vkp�p�1 ÞÑ vkp�p, vkp�p ÞÑ vkp�1, for k � 0, 1
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and

y : vp�1 ÞÑ v1 and vi ÞÑ 0 if i � p � 1

Then

1. rxp�1, ys � 0.

2. rxp, ys � 0.

3. The Lie algebra H, generated by x and y in glpIq, is nilpotent, with nilpotent class p and

dimension p � 1.

4. The Lie algebra L � H i I is not nilpotent and if |F| ¥ p2, then L has a non-singular

derivation.

Proof.

1. By Lemma (6.1.2),

rxp�1, ysvp�1 �

p�1̧

i�0

p�1qi

�
p � 1

i



xp�1�iyxivp�1

�

p�1̧

i�0

p�1qi

�
p � 1

i



xp�1�iyvp�1�i

� xp�1yvp�1 p since yvi � 0, for i � p � 1q

� xp�1v1

� vp.

Therefore, rxp�1, ys � 0 as claimed.

2. By definition, xp fixes the basis B � tv1, . . . , vp, vp�1, . . . , v2pu elementwise. Hence, xp

acts as identity on I. Further, by Lemma (6.1.2), rxp, ys � xpy� yxp � 0.

3. First we claim that the only non-zero right-normed brackets in H are of the form rxn, ys,

for 1 ¤ n ¤ p� 1. Let I1 be the vector space generated by tv1, � � � , vpu. By the definition

of x P EndpIq,

xpIq � I, xpI1q � I1, ypIq � I1 and ypI1q � 0. (37)

Let rw1, w2, . . . , wrs be a right-normed bracket such that w j P tx, yu for 1 ¤ j ¤ r. Thus,

rw1, w2, . . . , wrs �
ş

i�0

ciw j1w j2 . . . w jti
(38)
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for some s ¡ 0, ti ¡ 0 and ci P F. If y appears twice in the list tw1, w2, . . . , wru, then each

summand of the right side of equation (38) is of the form cixlyx jyxk for some l, j, k ¥ 0.

Thus, by equations in (37),

xlyxiyxkpIq � xlyxiypIq � xlyxipI1q � xlypI1q � 0.

Hence, rw1, w2, . . . , wrs � 0. Suppose now that y appears exactly once in tw1, w2, . . . , wru.

If w j � y for 1 ¤ j ¤ r � 2, then, rw1, w2, . . . , wrs � rx, x, . . . , y, . . . , x, xs � 0. If

y � wr�1, then rx, x, . . . , y, xs � �rx, x, . . . , x, ys, and we can say that all non-zero right-

normed brackets are of the form rxn, ys for n ¥ 1. Observe that, by item 1 of this propo-

sition, rxn, ys � 0 for 1 ¤ n   p and rxp, ys � 0. Thus, the only non-zero right-normed

brackets in H are of the form rxn, ys, for 1 ¤ n ¤ p � 1, as we claimed. Let zi � rxi, ys

for 1 ¤ i ¤ p � 1. By the calculations in the last paragraph, the Lie algebra H generated

by x, y P glpIq can be presented by the presentation

H � xx, y, z1, � � � , zp�1 | rx, ys � z1, rx, zis � zi�1, rx, zp�1s � ry, zls � rzl, z js � 0

for 1 ¤ i ¤ p � 2 and 1 ¤ j, l ¤ p � 1y.

Thus H is nilpotent with nilpotency class p.

4. Let a, b P FzFp such that ab�1 R Fp, and define δ : L Ñ L by$''''''&
''''''%

δpxq � x,

δpyq � ay,

δpz jq � pa � jqz j,

δpvkp�iq � pb � ka � i � 1qvkp�i, 0 ¤ k ¤ 1, 1 ¤ i ¤ p.

By definition, δ is a non-singular endomorphism of L. We will check that δ satisfies the

definition of derivations in each non-zero product: rx, ys, rx, vkp�is, ry, vp�1s, rx, z js and

rz j, vp�is, for k P t0, 1u, 1 ¤ i ¤ p and 1 ¤ j   p. First we compute

rδpxq, ys � rx, δpyqs � rx, ys � rx, ays

� p1 � aqrx, ys

� p1 � aqz1

� δpz1q

� δprx, ysq.
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Suppose that i P t1, 2, . . . , p � 1u, then

rδpxq, vkp�is � rx, δpvkp�iqs � rx, vkp�is � pb � ka � i � 1qrx, vkp�is

� pb � ka � iqvkp�i�1

� δpvkp�i�1q

� δprx, vkp�isq.

For i � p,

rδpxq, vkp�ps � rx, δpvkp�pqs � rx, vkp�ps � pb � ka � p � 1qrx, vkp�ps

� pb � kaqvkp�1

� δpvkp�1q

� δprx, vkp�psq.

Furthermore,

rδpyq, vp�1s � ry, δpvp�1qs � ary, vp�1s � pb � aqry, vp�1s

� bry, vp�1s

� bv1

� δpv1q

� δpry, vp�1sq;

and
rδpxq, z js � rx, δpz jqs � rx, z js � pa � jqrx, z js

� pa � j � 1qrx, z js

� δpz j�1q

� δprx, z jsq.

Before we verify the identity of derivations for rz j, vp�is, we need to perform some calcu-

lations. Observe that, z j � rx j, ys � padxq
jpyq. Hence, rz j, vis � padxq

jpyqpviq. We will

use the notation padxq
jpyq to calculate the Lie bracket rz j, vp�is, for 0 ¤ j ¤ p � 1 and

1 ¤ i ¤ p.

By Lemma 6.1.2,

padxq
jpyqvp�i �

j̧

s�0

p�1qs

�
j
s



x j�syxspvp�iq. (39)

The summand x j�syxspvp�iq is non-zero only for xspvp�iq � vp�1. Observe that x acts

as cyclic permutation modulo p on the sets tv1, . . . , vpu and tvp�1, . . . , v2pu. Hence,

xspvp�iq � vp�1 for s � i � 1 modulo p. The solutions for this equation are s � 0

for i � 1 and s � p � i � 1 for i ¡ 1.
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• If i ¡ 1 and j   p � i � 1, then xspvp�iq � v1 and x j�syxspvp�iq � 0.

• If i ¡ 1 and j ¥ p � i � 1, then

padxq
jpyqvp�i �

j̧

s�0

p�1qs

�
j
s



x j�syxspvp�iq

� p�1qp�i�1

�
j

p � i � 1



x j�pp�i�1qypvp�1q � p�1qp�i�1

�
j

p � i � 1



v j�pp�iq

� c j,iv j�pp�iq, for c j,i � p�1qp�i�1

�
j

p � i � 1



.

• If i � 1, then xspvp�1q � vp�1 only for s � 0. Hence,

padxq
jpyqvp�1 �

j̧

s�0

p�1qs

�
j
s



x j�syxspvp�1q � v j�1.

It follows that,

rz j, vp�is �

$'''&
'''%

v j�1 if i � 1

c j,iv j�pp�iq if i ¡ 1 and j ¥ p � i � 1.

0 if i ¡ 1 and j   p � i � 1

Thus,

rδpz jq, vp�1s � rz j, δpvp�1qs � pa � jqrz j, vp�1s � pb � aqrz j, vp�1s

� pb � jqv1� j

� δpv1� jq

� δprz j, vp�1sq.

For i ¡ 1 and j ¥ p � i � 1,

rδpz jq, vp�is � rz j, δpvp�iqs � pa � jqrz j, vp�is � pb � a � i � 1qrz j, vp�is

� pb � j � i � 1qc j,iv j�pp�iq

� δpc j,iv j�pp�iqq

� δprz j, vp�1sq.

Therefore, δ P DerpLq. The derived series of L � H i I is

L ¡ L1 � xz1, . . . , zp, v1, . . . , v2py ¡ Lp2q � xv1, . . . , v2py ¡ Lp3q � 0

and L is solvable of derived length 3. Let ad : L Ñ DerpLq be the adjoint representation

of L. For all n ¥ 1, padxq
npv1q � v1�n � 0. By Engel’s Theorem, L is not nilpotent.
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Next we explore conditions on the existence of non-singular derivations. We study

Lie algebras of the form H i I ,where H is the Heisenberg Lie algebra over a field of prime

characteristic, and I is an H-module. First we present an example of such Lie algebras.

Example 6.1.4. Let H � xx, y, z | rx, ys � z, rx, zs � ry, zs � 0y be the Heisenberg Lie algebra

over a field F of characteristic p ¡ 0. Suppose that |F| ¥ p2. Let I be a vector space of

dimension 2p and let B � tv0, v1, . . . , v2p�1u be a basis of I. Denote by mp the unique positive

integer between 0 and p � 1 that is congruent to m modulo p. Also, we can write a number

a P t0, . . . , 2p � 1u uniquely in the form a1 p � a2 where 0 ¤ a1 ¤ 1 and 0 ¤ a2 ¤ p � 1.

Define the following representation ψ : H Ñ glpIq, for 0 ¤ k ¤ 1 and 0 ¤ i ¤ p � 1,$'''&
'''%

ψpxqpvkp�iq � vkp�pi�1qp

ψpyqpvp�iq � ivi

ψpzqpvp�iq � �vpi�1qp

,

and ψpyqpviq � ψpzqpviq � 0. Observe that pψpxqψpyq � ψpyqψpxqqpviq � 0 and

pψpxqψpyq � ψpyqψpxqqpvp�iq � ψpxqpiviq � ψpyqpvp�pi�1qpq � ivpi�1qp � pi � 1qpvpi�1qp

� �vpi�1qp � ψpzqpvp�iq.

Hence, ψ is a representation of H. As |F| ¥ p2, there are a, b P pFzFpq such that b�ka� i�1 �

0, for all 0 ¤ k ¤ 1 and 0 ¤ i ¤ p � 1. Define δ : L Ñ L by$''''''&
''''''%

δpxq � x,

δpyq � ay,

δpzq � pa � 1qz,

δpvkp�iq � pb � ka � i � 1qvkp�i, 0 ¤ k ¤ 1, 0 ¤ i ¤ p � 1.

By definition δ is non-singular. We will check that δ is a derivation. Indeed,

rδpxq, ys � rx, δpyqs � rx, ys � rx, ays � p1 � aqrx, ys � p1 � aqz � δpzq � δprx, ysq,

rδpxq, vkp�is � rx, δpvkp�iqs � rx, vkp�is � pb � ka � i � 1qrx, vkp�is

� pb � ka � iqvkp�pi�1qp � δpvkp�pi�1qpq � δprx, vkp�isq

rδpyq, vp�is � ry, δpvp�iqs � ary, vp�is � pb � a � i � 1qry, vp�is

� pb � i � 1qry, vp�is � pb � i � 1qivi � δpiviq � δpry, vp�isq
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rδpzq, vp�is � rz, δpvp�iqs � pa � 1qrz, vp�is � pb � a � i � 1qrz, vp�is

� pb � iqrz, vp�is � �pb � iqvpi�1qp � �δpvpi�1qpq � δprz, vp�isq.

Therefore, L � H i I is a solvable, non-nilpotent Lie algebra with non-singular derivation and

derived length 3.

Theorem 6.1.5. Let F be an algebraically closed field of characteristic p ¥ 3. Let H be the

Heisenberg Lie algebra over F. Let ψ : H Ñ glpIq be a faithful representation and suppose that

L � H i I is non-nilpotent. Suppose that I, as ideal of L, is invariant under DerpLq. If L has a

non-singular derivation of finite order, then dim I ¥ p � 3.

Proof. Let δ P DerpLq be a non-singular derivation of finite order. By Proposition 4.1.5, we can

suppose that δ is diagonalizable, δpIq � I and δpHq � H. For a P F let La be the δ-eigenspace

associated to eigenvalue a. By our conditions, there is a1, . . . , ar P Fzt0u such that

L � La1 � La2 � � � �� Lar .

If a P F is not an eigenvalue of δ, then define La � 0. Hence,

L � �aPFLa, with rLai , La js ¤ Lai�a j .

This turns L into a Lie algebra graded by the additive group of F. As L is non-nilpotent, by

Lemma 6.1.1, there are homogeneous eigenvectors k, v P L such that rkm, vs � 0 for all m ¡ 0.

Write k � kH � kI and v � vH � vI , such that kH, vH P H and kI , vI P I. Observe that, kH, vH, kI

and vI are δ-eigenvectors. In fact, if δpkq � bk, for some b P F, then

δpkHq � δpkIq � δpkH � kIq � bpkH � kIq.

Hence, as H and I are invariants under δ and L � H i I, δpkHq � bkH and δpkIq � bkI .

Analogously, if δpvq � cv, for some c P F, then δpvHq � cvH and δpvIq � cvI . We claim that

there is h P H and a P I such that rhm, as � 0 for all m ¥ 1. We have that,

rkm, vH � vIs � 0,

for all m ¥ 1, and so, rkm, vHs � 0 or rkm, vIs � 0, for all m ¥ 1.

• If rkm, vHs � 0, for all m ¥ 1, then

rk2, vHs � rkH � kI , rkH � kI , vHss

� rkH � kI , rkH, vHs � rkI , vHss

� rkH, rkH, vHss � rkH, rkI , vHss � rkI , rkH, vHss � rkI , rkI , vHss

� rkH, rkI , kHss � rkI , rkH, vHss, since rkH, vHs P ZpHq and I is abelian.
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Let a � rk2, vHs and let h � kH. This means that rk2, vHs P I. Therefore, as I is abelian,

rk3, vHs � rk, rk2, vHss � rkH � kI , rk2, vHss � rkH, rk2, vHss

and easy induction shows that

rpkHqm, rk2, vhss � rkm�2, vHs � 0

holds for all m ¥ 1. Hence the choice of h � kH and a � rk2, vHs is as claimed.

• If rkm, vIs � 0, for all m ¥ 1, then let a � vI and let h � kH. Hence, an argument similar

to the one on the previous case shows that rhm, as � 0, for all m ¥ 1.

In both cases, there is h P H and a P I, δ-eigenvectors, such that rhm, as � 0, for all m ¥ 1, as

we claimed. Let q be the minimal polynomial of ψphq as element of EndpIq and suppose that

q � qs1
1 . . . q

sr
r is the factorization of q into irreducible factors. Then, by Lemma A.2.2 of [7],

I can be written as the direct sum I � I0pq1phqq � . . . � I0pqrphqq. By Proposition 2.1.3, each

I0pqiphqq is an H-module. Let I1 be the sum of I0pqiphqq such that qipXq � X, and set I0 � I0phq.

Thus,

L � H i pI0 � I1q .

Also, I1 � 0, since a P I1. By Proposition 5.1.11, I0 and I1 are H-modules and δ-invariant. It

follows that, the Lie algebras L0 � H i I0 and L1 � H i I1 have a non-singular derivation.

Observe that, by the construction of L1, h acts non-singularly in I1. Hence, L1 is non-nilpotent.

Let δ1 be the restriction of δ to L1. The derivation δ1 P DerpL1q is non-singular and has finite

order. As h is an eigenvector of δ1 and I is δ-invariant, the Lie algebra xhy i I is δ-invariant,

and so the restriction of δ to xhy i I is a non-singular derivation of finite order. As the action

of h is non-singular on I1, by Theorem 5.1.18, I1 can be written as a direct sum of ph, pq-cyclic

modules, and so

dim I1 � np, n ¥ 1.

The action of H must be faithful either on I1 or on I0. For, if H were not faithful on I0 and on

I1, then ZpHq would act trivially on both I1 and I0, hence ZpHq would act trivially on I. This

contradicts the assumption that I is a faithful H-module. As δpHq � H, δpZpHqq � ZpHq.

Hence, if z P ZpHqzt0u, then δpzq � dz, since dimpZpHqq � 1. If I1 is a faithful representation,

then there is u P I1 an δ-eigenvector associated to the eigenvalue e P F, such that rz, us � 0. It

follows that, δprz, usq � pd � eqrz, us. Then, since d � 0, u and rz, us are linearity independent.
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If dim I1 � p, then by Corollary 2.4 of [22] the representation is irreducible and there exists

f P F such that rz, ws � fw for all w P I. Which contradicts the fact that u and rz, us are linearity

independent, and so dim I1 ¥ 2p. As p ¥ 3, dim I1 ¥ p� 3. If I1 is not faithful, then I0 is, and,

by Theorem 3.1 of [22], dim I0 ¥ 3. In both cases,

dim I � dim I0 � dim I1 ¥ p � 3.

Proposition 6.1.6. Let K be a finite-dimensional Lie algebra over an algebraically closed field

F of characteristic p ¡ 0. Let I be a K-module such that I, as an ideal of the Lie algebra

L � K i I, is invariant under DerpLq. Suppose that L has a non-singular derivation δ of finite

order. Suppose that there is x, y P K eigenvectors of δ associated to eigenvalues a, b P F,

respectively, such that a � kb, for k P Fp. If the matrices of the action of x, y are non-singular

then dim I ¥ p2.

Proof. By Proposition 4.1.5, we can suppose that δ is diagonalizable. Let v P I be an eigenvector

of δ such that δpvq � cv. Since δ is a derivation,

δprx, vsq � pa � cqrx, vs

and rx, vs is an eigenvector of δ. Define v0 � v and vi�1 � rx, vis for 1 ¤ i ¤ p� 1. As x is non-

singular, B � tv0, � � � , vp�1u is a set of p non-zero δ-eigenvectors associated to the eigenvalues

A � tc, c � a, c � 2a, � � � , c � pp � 1qau. As δ is non-singular, c � ka � 0, for 0 ¤ k ¤ p � 1,

and all elements of A are pairwise distinct. For each vi P B we have that

δpry, visq � pc � ia � bqry, vis.

Define v0
i � vi and v j�1

i � ry, v j
i s, for 0 ¤ j ¤ p � 1. Let us check that elements of the set

tc � ia � jb | 0 ¤ i, j ¤ p � 1u

are pairwise distinct. Suppose by contradiction that there is i1, i2, j1, j2, with i1 � i2 or j1 � j2,

such that

c � i1a � j1b � c � i2a � j2b.

Hence,

pi1 � i2qa � p j2 � j1qb.

If i1 � i2 � 0, then b � 0 and δ is singular. Same conclusion for j1 � j2 � 0. Thus a � kb, for

1 ¤ k ¤ p� 1, which contradicts the hypothesis. Then v j
i for 0 ¤ i ¤ p� 1 and 0 ¤ j ¤ p� 1
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are p2 eigenvectors of δ in I associated to the distinct eigenvalues pc � pi � 1qa � p j � 1qbq.

Therefore, dim I ¥ p2.
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