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a elaboração dessa tese, seja com conversas úteis ou inúteis, ou idas ao cinema, ou
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às meninas Eliane Kelli e Eliane Andréa, que me aguentam na secretaria e fora

dela, aos Profs. Rafael Bezerra, John MacQuarrie, Rémy Sanchis e Michel Spira,
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Abstract

We say that G ≤ Sym(Ω) is transitive if G has just one orbit on Ω, namely

{Ω}. If G is transitive on Ω and the only partitions of Ω preserved by G are

{Ω} and {{α} : α ∈ Ω}, then we say that G is primitive.

The O’Nan-Scott Theorem [25] classifies the finite primitive permutation

groups by dividing them into classes, according to the structure of their minimal

normal subgroups. An important result in this classification is that every permu-

tation group admits at most two distinct transitive minimal normal subgroups

[8, Lemma 5.1].

A permutation group is quasiprimitive if all its nontrivial normal subgroups

are transitive. For example, all primitive permutation groups are quasiprimitive.

Finite quasiprimitive groups were characterized by Cheryl Praeger [28], who

showed that they can be classified similarly to the O’Nan-Scott classification of

finite primitive permutation groups.

The inclusion problem for a permutation group H asks to determine the

possible (primitive or quasiprimitive) subgroups of the symmetric group that

contain H. In other words, given a permutation group H < Sym(Ω), we are

asking about its overgroups. For instance, it is a common situation in algebraic

combinatorics that we know a part of the group of automorphisms of a com-

binatorial structure (for example, a Cayley graph) and we wish to determine a

larger automorphism group which may be primitive or quasiprimitive.

In this work we describe all inclusions H ≤ G such that H is a transitive non-

abelian characteristically simple group and G is a finite primitive or quasiprim-

itive permutation group with nonabelian socle. The study of these inclusions is

possible since we have detailed information concerning factorizations of finite

nonabelian simple groups. For this reason, many of the results presented here

rely on the classification of finite simple groups, specially chapters 4 and 7.
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Resumo

Seja Ω um conjunto finito não vazio e considere G um grupo de permutações de

Ω, isto é, G ≤ Sym(Ω). Dizemos que G é transitivo em Ω se dado qualquer

par de pontos em Ω, existir uma permutação em G que associa estes pontos. Por

outro lado, dizemos que G é primitivo em Ω se G for transitivo e não preservar

uma partição não trivial de Ω – por partição trivial queremos dizer a partição

formada por subconjuntos de um único ponto e a partição composta somente

por Ω. Por exemplo, o grupo simétrico e o grupo alternado de Ω em suas ações

naturais são ambos primitivos.

O Teorema de O’Nan-Scott classifica os grupos de permutações primitivos

finitos dividindo-os em classes, de acordo com a estrutura de seus subgrupos

normais minimais [25]. Um importante resultado nesta classificação é que todo

grupo de permutações admite no máximo dois subgrupos normais minimais tran-

sitivos distintos [8, Lemma 5.1].

Um grupo de permutações é dito quase-primitivo se todos os seus subgru-

pos normais não triviais são transitivos. Por exemplo, todo grupo de permu-

tações primitivo é quase-primitivo, mas visto que um grupo simples transitivo é

sempre quase-primitivo, mas nem sempre primitivo, a classe dos grupos quase-

primitivos é estritamente maior que a classe dos grupos primitivos.

Grupos de permutações quase-primitivos finitos foram caracterizados por

Praeger em [28]. Neste artigo Praeger mostrou que os grupos quase-primitivos

podem ser classificados similarmente à classificação dos grupos primitivos.

O problema de inclusão para um grupo de permutações H almeja determinar

os posśıveis subgrupos (quase-primitivos ou primitivos) do grupo simétrico que

contenham H. Tal problema possui um número importante de aplicações em

teoria de grupos, combinatória algébrica e teoria algébrica de grafos. Por exem-

plo, é uma situação comum em combinatória algébrica sabermos uma parte do

grupo de automorfismos de uma estrutura combinatória, por exemplo um grafo

de Cayley, e queremos determinar um grupo de automorfismos maior que pode
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6

ser quase-primitivo ou primitivo.

O estudo do problema de inclusão é posśıvel visto que há informações de-

talhadas sobre as fatorações de grupos simples não abelianos finitos. Alguns

resultados gerais sobre tais fatorações podem ser encontrados em [1, 26].

Neste trabalho descrevemos todas as inclusões H ≤ G tais que H é um

grupo caracteristicamente simples, não abeliano e transitivo, e G é um grupo

de permutações finito quase-primitivo com socle não abeliano. A este tipo de

inclusão damos o nome de inclusão CharS-QP.

Tais inclusões ocorrem naturalmente, por exemplo quando tomamos um

grupo quase-primitivo finito G que possui um subgrupo normal minimal não

abeliano S. Se denotarmos por soc(G) o socle de G, tanto S ≤ G quanto

soc(G) ≤ G são inclusões CharS-QP.

Ao tratar esse problema, nosso primeiro passo foi imergir explicitamente, sob

algumas hipóteses, um grupo de permutações quase-primitivo em um produto

entrelaçado com a ação produto, de forma que tal imersão fosse permutacional.

Teorema 1. (Teorema de Imersão) Sejam G um grupo de permutações quase-

primitivo em Ω e α ∈ Ω. Assumamos as seguintes condições:

1. S = Q1 × · · · ×Qr é um subgrupo normal minimal de G, em que cada Qi

é caracteristicamente simples e não abeliano, e r ≥ 2.

2. G age transitivamente em {Q1, . . . , Qr} por conjugação.

3. Consideremos as projeções πi : S → Qi, e assumamos que

Sα = (Sαπ1)× · · · × (Sαπr).

Se considerarmos Γ := [Q1 : (Q1)α], então existe uma imersão permutacional

ψ : G ↪→ Sym(Γ) wrSr, em que consideramos o produto entrelaçado como um

grupo de permutações agindo com a ação produto em Γr.

O resultado acima é um dos pontos-chave para demonstrar nosso segundo

resultado.

Teorema 2. (Teorema principal) Seja H ≤ G uma inclusão CharS-QP, tal que

soc(G) é não abeliano. Então H ≤ soc(G).

Com o intuito de entender melhor as inclusões do teorema principal, ata-

camos o problema analisando separadamente cada uma das classes de O’Nan-

Scott (Caṕıtulo 7). Tais resultados dependem fortemente da fatoração de grupos

simples, bem como do teorema de classificação dos grupos simples finitos.
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Notation

Sym(Ω) Symmetric group on a set Ω

Alt(Ω) Alternating group on a set Ω

Sn Symmetric group on {1, . . . , n}
An Alternating group on {1, . . . , n}
n Short notation for {1, . . . , n}
αg Image of α under g

αG Orbit of α under G

Gα Stabilizer of α under G

G∆ Setwise stabilizer of ∆ under G

G(∆) Pointwise stabilizer of ∆ under G

G∆ Permutation group induced by G∆ on ∆

G(j) j-th component of G

kerµ Kernel of µ

Imµ Image of µ

|X| Number of elements of a set X

CG(H) Centralizer of H in G

NG(H) Normalizer of H in G

[G : H] Set of the cosets of H in G

|G : H| Number of cosets of H in G

〈S〉 Subgroup of G generated by S

Ωn n-th Cartesian power of Ω

Gn The direct product of n copies of a group G

Aut(G) Automorphism group of the graph G
Aut(G) Automorphism group of a group G

Inn(G) Group of inner automorphisms of G

Out(G) Group of outer automorphisms of G

K oH Semidirect product of K and H

GwrH Wreath product of G and H
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Hol(G) The semidirect product Go Aut(G)

soc(G) Socle of G

E Cartesian decomposition

G(E) Pointwise stabilizer of E under G

πi i-th projection

GLd(q) General linear group

PSLd(q) Projective special linear group

AGLd(q) Affine general linear group

Sp(d, q) Symplectic group

PSp(d, q) Projective symplectic group

M11, M12 Mathieu groups

Od(q), O
+
d (q), O−d (q) Orthogonal groups

Ωd(q), Ω+
d (q), Ω−d (q) Ω-groups

PΩd(q), PΩ+
d (q), PΩ−d (q) Projective Ω-groups

G2(q) Exceptional group of Lie type G2

Cn Cyclic group with order n

Sp(d, q) · 2 Extension of Sp(d, q) by C2

PSp(d, q) · 2 Extension of PSp(d, q) by C2
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Chapter 1

Setting the scene

1.1 Conventions

Throughout this work, groups will be labeled with capital Roman letters and

group elements will be written in lower case Roman letters. The only exception

will be when working with permutations, which will be labeled with lower case

Greek letters.

Sets on which groups act will be written in capital Greek letters and their

elements will be written, exclusively, in lower case Greek letters α, β, γ, δ and

ω. Other lower case Greek letters will denote functions. The letter π will always

represent a projection.

The group of all permutations of a set Ω is the symmetric group, denoted

by Sym(Ω). A permutation group of Ω is a subgroup of Sym(Ω).

We will use exponent notation for group actions, that is, given a point α ∈ Ω,

we denote by αg the image of α under the action of a group element g. Further,

αG := {αg : g ∈ G}

denotes the orbit and

Gα := {g ∈ G : αg = α}

denotes the stabilizer of a point α under a group G.

Let G act on Ω. If ∆ ⊆ Ω, we define the setwise and the pointwise

stabilizer of ∆ in G as

G∆ := {g ∈ G : ∆g = ∆},

11



Chapter 1. Setting the scene 12

G(∆) := {g ∈ G : δg = δ for all δ ∈ ∆},

respectively. If G∆ = G, that is, ∆g = ∆ for all g ∈ G, then ∆ is said to

be G-invariant. The quotient G∆/G(∆) is denoted by G∆, and is viewed as a

permutation group on ∆ in the natural way. Further, if P is a partition of Ω,

we say that P is G-invariant if Γg ∈ P for all Γ ∈ P . In this case we also say

that G preserves P . We say that P is uniform if all its parts have the same

size.

Given any function f and a point α in its domain, we will denote by αf

the image of α under f . Given a natural number n, the set {1, . . . , n} will be

denoted by n.

Given an action of G on a set Ω, we can obtain a corresponding representation

µ : G → Sym(Ω) via αgµ := αg. On the other hand, given a representation

µ : G→ Sym(Ω), we can define an action of G on Ω via αg := αgµ. Thus, we will

use freely expressions like“this action is faithful”meaning that the corresponding

representation is faithful.

We will use indiscriminately some basic results in Group Theory, such as

Isomorphisms Theorems, Correspondence Theorem, Jordan-Hölder Theorem.

Excellent books about these topics are [35, 21]. However, the last one is in

Portuguese.

In all this work we deal with finite quasiprimitive groups only, but some of

the results are true also for infinite permutation groups. If this is the case, we

will indicate that explicitly.

1.2 Introduction

Let G be a group acting on a set Ω. We say that G is transitive on Ω if given

two points α, β ∈ Ω, there is an element g ∈ G such that αg = β. This is

equivalent to saying that G has just one orbit on Ω, that is, αG = Ω for all

α ∈ Ω. As a simple example, you can consider the action of G on itself by

right multiplication, that is, gh := gh for all g, h ∈ G. This action is clearly

transitive, since fixed g, h ∈ G, we obtain that g(g−1h) = h. If G is not transitive,

then it is called intransitive.

For a set Ω, we say that the partitions {Ω} and {{α} : α ∈ Ω} are the trivial

partitions of Ω. If G is a transitive permutation group on Ω that preserves a

nontrivial partition of Ω, then we say that G is imprimitive. Otherwise, G

is primitive. For example, the symmetric and the alternating groups in their
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natural actions are both primitive.

Let G be a group and let H be a subgroup of G. Then H is said to be a

minimal normal subgroup of G if H is a normal subgroup of G and the only

normal subgroup of G properly contained in H is the identity subgroup.

The O’Nan-Scott Theorem classifies the finite primitive permutation groups

by dividing them into classes, according to the structure of their minimal normal

subgroups [25]. An important result in this classification is that every permuta-

tion group admits at most two distinct transitive minimal normal subgroups [8,

Lemma 5.1].

A permutation group is quasiprimitive if all its nontrivial normal subgroups

are transitive. For example, all primitive permutation groups are quasiprimitive

(Lemma 2.5.2), but, since a transitive simple group is quasiprimitive, but not

always primitive, the class of quasiprimitive permutation groups is strictly larger

than the class of primitive permutation groups.

The class of quasiprimitive groups is often more suitable for combinatorial

and graph theoretic applications than the class of primitive groups. For instance,

quasiprimitive groups play a central role in understanding the structure of finite

non-bipartite 2-arc-transitive graphs [28, 24, 30].

Finite quasiprimitive groups were characterized by Cheryl Praeger [28], who

showed that they can be classified similarly to the O’Nan-Scott classification of

finite primitive permutation groups. See Section 2.5 to see this classification.

Figure 1.1: Subclasses of transitive groups.

Similarly to what was done for finite primitive and quasiprimitive permuta-

tion groups, Bamberg and Praeger [8] noticed that it was possible to describe,

using an O’Nan-Scott classification, a strictly larger class of transitive permuta-

tion groups, the so-called innately transitive groups. We say that a permutation

group is innately transitive if it has a transitive minimal normal subgroup,
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which is called a plinth of the group. It follows from the definition that any

finite quasiprimitive group is innately transitive. The authors gave in [8, Propo-

sition 5.3] necessary and sufficient conditions for an innately transitive group to

be quasiprimitive.

The inclusion problem for a permutation group H asks to determine the

possible (primitive or quasiprimitive) subgroups of the symmetric group that

contain H. In other words, given a permutation group H < Sym(Ω), we are

asking about its overgroups.

The inclusion problem has a number of important applications in group the-

ory and in algebraic combinatorics For instance, it is a common situation in

algebraic combinatorics that we know a part of the group of automorphisms of

a combinatorial structure (for example, a Cayley graph) and we wish to deter-

mine a larger automorphism group which may be primitive or quasiprimitive.

For example in [13], Fang, Praeger and Wang described, for a finite nonabelian

simple group G and for G a connected undirected Cayley graph for G, all the

possible structures for the full automorphism group Aut(G). This result relies

on a detailed study of the inclusion problem for G in Sym(G) under its Cayley

representation. In turn, the study of this inclusion problem is possible since we

have detailed information concerning factorizations of finite nonabelian simple

groups.

If A and B are proper subgroups of a group G such that G = AB, then we

call this expression a factorization of G. Some general results on factorizations

of almost simple groups can be found in [26, 1].

Using the blow-up construction of a primitive group from smaller primitive

groups introduced by Kovács, Praeger [27] solved the inclusion problem for finite

primitive permutation groups by analyzing the O’Nan-Scott classes. Her paper

contains a detailed description of all pairs (H,G) of finite primitive permutation

groups such that H ≤ G. The main result of this paper, which is too complex

to reproduce here as a single theorem, states that each such inclusion is either

natural, exceptional, a blow-up of exceptional inclusions, or a composition of

such a blow-up and a natural inclusion.

The more general problem of describing inclusions H ≤ G in the case when

either H is quasiprimitive or both H and G are quasiprimitive was addressed by

[2] and [29]. The philosophy of the results in [2, 29] is similar to the results in

[27], but the variety of possible inclusions is even richer than in the case when

both H and G are primitive.

Several papers [10, 16, 22, 23, 3] addressed the inclusion problem in the
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special case when the overgroup G is a member of a particular O’Nan-Scott

class (see Section 2.5 for the definition of the O’Nan-Scott classes). In a series

of articles Baddeley, Praeger, and Schneider [3, 4, 32, 5] described inclusions

H ≤ G assuming that H is innately transitive and G is a wreath product acting

in product action (see Section 5.1 for the definition). In this more specialized

case, the conclusions are often rather precise as in the following theorem, for

instance. See Section 2.5 for the definition of socle.

Theorem 1.2.1. [3, Theorem 1.1] Let S be a finite almost simple group with

socle T such that S is a subgroup of W := Sym(Γ) wrSl acting in product action

on Γl, with |Γ|, l ≥ 2. Then one of the following must hold.

1. T is intransitive.

2. T is isomorphic to one of the groups A6, M12, PSp(4, 2a) or PΩ+
8 (q).

Further, in this case, l = 2 and T is in the base group (Sym(Γ))2 of W .

In later papers Baddeley, Praeger and Schneider generalized Theorem 1.2.1

and described inclusions of other types of innately transitive and quasiprimitive

groups into wreath products in product action. The proof of the following result

can be found in [4, 6].

Theorem 1.2.2. Let S be a quasiprimitive, almost simple permutation group

acting on Γ, and for some l ≥ 2 set W := S wrSl acting on Γl in product action.

Let U be the unique minimal normal subgroup of S and let N := U1×· · ·×Ul ∼= U l

be the unique minimal normal subgroup of W . Moreover, assume that G is an

innately transitive subgroup of W with a nonabelian plinth M := T1 × · · · × Tk,

where T1, . . . , Tk are finite, nonabelian simple groups all isomorphic to a group

T . If π : W → Sl is the natural projection map, then

1. soc(G) ≤ soc(W ) ∼= (soc(S))l.

2. Gπ has at most two orbits on l.

3. If Gπ has two orbits on l, then T is isomorphic to one of the groups A6,

M12, PSp(4, 2a) or PΩ+
8 (q).

4. The O’Nan-Scott class of G is not SD.

5. Assume that Gπ is transitive. Then exactly one of the following holds.

(a) k = l: the Ti and Ui can be indexed so that T1 ≤ U1, . . . , Tk ≤ Uk.
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(b) l = 2k: T is isomorphic to one of the groups A6, M12, PSp(4, 2a) or

PΩ+
8 (q). Moreover, the Ti and Ui can be indexed so that T1 ≤ U1×U2,

T2 ≤ U3 × U4, . . . , Tk ≤ U2k−1 × U2k.

(c) None of the case (a)-(b) holds and U = Alt(Γ).

1.3 About this thesis

The purpose for this doctoral research is to extend Theorem 1.2.1 for character-

istically simple groups. In particular we aim to describe all inclusions H ≤ G

such that H is a transitive nonabelian characteristically simple group and G is

a finite primitive or quasiprimitive permutation group.

Definition 1.3.1. Let (H,G) be a pair of permutation groups on a set Ω. We

say (H,G) is a CharS-QP inclusion if H ≤ G, where H is a transitive nonabelian

characteristically simple group, and G is a finite quasiprimitive permutation

group. It is called a CharS-P inclusion if, in addition, G is primitive.

We observe that such inclusions occur rather naturally.

Example 1.3.2. If G is a quasiprimitive permutation group and S is a non-

abelian minimal normal subgroup of G then S is a transitive nonabelian char-

acteristically simple subgroup of G. Thus the socle soc(G) of G is also a tran-

sitive nonabelian characteristically simple subgroup of G. Hence (S,G) and

(soc(G), G) are CharS-QP inclusions.

Example 1.3.3. Suppose that S is an almost simple group acting on Γ, and

let Q := soc(S). Assume that Q is transitive and hence S is quasiprimitive.

Suppose that T is a transitive nonabelian simple subgroup of Q. If l ≥ 2,

then T l is a transitive characteristically simple subgroup of the quasiprimitive

group QwrSl acting on Γl in product action. Hence (T l, QwrSl) is a CharS-QP

inclusion.

Example 1.3.4. Suppose that G is a quasiprimitive group of SD type and let

S be the the socle of G. Then S = Qk where Q is a nonabelian simple group.

As noted in Example 1.3.2, (S,G) is a CharS-QP inclusion. However, in this

case, if Qi is a simple factor of S = Qk, then CS(Qi) =
∏

j 6=iQj is also a

transitive nonabelian characteristically simple subgroup of G. Thus we obtain

that (CS(Qi), G) is also a CharS-QP inclusion.
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Example 1.3.5. Suppose that T is one of the groups listed in part (ii) of

Theorem 1.2.1 and consider T as a transitive subgroup of W0 := Sym(Γ) wrS2. If

k ≥ 1, then T k is a transitive characteristically simple subgroup of the primitive

group W0 wrSk. Thus we obtain the CharS-P inclusion (T k,W0 wrSk).

Example 1.3.6. Let G be the affine transitive permutation group AGL3(2),

that is, G = F2
3oGL3(2). According to [9], G contains a transitive subgroup T

isomorphic to GL3(2) ∼= PSL3(2). Therefore, if k ≥ 1, then the wreath product

GwrSk contains T k as a transitive subgroup. Hence we obtain the CharS-P

inclusion (T k, GwrSk).

Our objective in the proposed research is two-fold:

1. To find new kinds of CharS-QP and CharS-P inclusions that cannot be

obtained from the previous examples.

2. To prove that all CharS-QP inclusions can be obtained by the constructions

presented in Examples 1.3.2–1.3.6 and the constructions uncovered in the

previous item.

Note that when (H,G) is a CharS-QP inclusion such that H is a minimal

normal subgroup in N := NG(H), then N is an innately transitive subgroup

of G and hence the pair (N,G) is described by the earlier work of Baddeley,

Praeger, and Schneider. Our contribution to this project is to describe such

pairs without assuming that H is a minimal normal subgroup of N .

The first step in the description is the following theorem.

Theorem 1.3.7. (Main Theorem) Let (H,G) be a CharS-QP inclusion such that

soc(G) is nonabelian. Then H ≤ soc(G).

In order to prove this theorem and study its consequences, the text of this

thesis is divided into six chapters.

In Chapter 2 we recall some basic definitions and results on permutation

groups and group actions, and give some results related to coset actions. The

key result in this chapter is the O’Nan-Scott Theorem for finite quasiprimitive

permutation groups according to the properties of their minimal normal sub-

groups (Theorem 2.5.4).

In Chapter 3 we have some properties about subgroups of direct products,

and we state the Scott’s Lemma (Lemma 3.1.4). Next we have results about

minimal normal subgroups and stabilizers and about simple groups. Lastly, we
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give number theoretic results that will be used to prove the Main Theorem and

to describe its consequences.

In Chapter 4 we present the concept of full and strong multiple factoriza-

tions, and we give some results regarding group factorizations. The last section

presents an algorithm that characterizes the factorizations of finite nonsimple

and nonabelian characteristically simple groups into subgroups whose factors

are the product of pairwise disjoint full strips.

In Chapter 5 we present the concept of a cartesian decomposition and we

state and demonstrate the Embedding Theorem (Theorem 5.4.2). This result

says explicitly, under some hypotheses, how to embed a quasiprimitive permu-

tation group into a wreath product in product action.

In Chapter 6 we have the proof of the Main Theorem by analyzing each

O’Nan-Scott class.

Chapter 7 applies the Main Theorem to describe the CharS-QP inclusions

(H,G) where G has a nonabelian plinth.

1.4 To be continued...

We observe that the Main Theorem says nothing about the groups with abelian

socle. So the next natural step is to study these groups, trying to indicate the

exceptions that do not satisfy the theorem. In [9] Baumeister determines all the

maximal transitive subgroups of the primitive affine permutation groups. Since

quasiprimitive groups with an abelian socle are primitive (of type HA), we want

to use her description to analyze such groups.

In order to understand better the inclusions in the Main Theorem, another

step to do is to describe explicitly the regular groups H that occur in such

inclusions. In fact, we already obtained some results for the classes TW, SD and

HS (Chapter 7).

Finally, we plan to apply our results to graph theory, generalizing some

results in [13]. The idea is to study quasiprimitive subgroups of Aut(G), where

G is a connected undirected Cayley graph of a nonabelian group G. However,

unlike the article, which treats the case when G is nonabelian and simple, we

will study the more general case in which G is nonabelian and characteristically

simple.



Chapter 2

About quasiprimitive

permutation groups

In this chapter we will present the O’Nan-Scott Theorem for quasiprimitive per-

mutation groups according to the structure of their minimal normal subgroups.

However, before stating the theorem, we need some preliminary definitions and

results, given in the next sections.

2.1 Transitive groups, stabilizers and blocks

This section contains basic results in the theory of permutation groups and group

actions. At the end, we present the close relation between blocks and stabilizers.

Let G be a group acting on a set Ω. We recall that G is transitive if for all

α ∈ Ω we have that αG = Ω. We say that G is regular on Ω if G is transitive

and Gα = 1 for each α ∈ Ω. It is easy to prove that for a transitive group the

stabilizers form a conjugacy class, so we can simply say that G is regular if G is

transitive and Gα = 1 for some α ∈ Ω. Further, a block (of imprimitivity) for a

transitive group G is a nonempty subset ∆ of Ω such that for all g ∈ G we have

either ∆g = ∆ or ∆g ∩∆ = ∅.

A basic result related to transitive groups is the Orbit-Stabilizer Theorem

[12, Theorem 1.4A], which says that given a transitive group G acting on a set

Ω, then for each α ∈ Ω we have that |G : Gα| = |Ω|. In particular, if Ω is finite,

then G is regular if, and only if, G is transitive and |G| = |Ω|.
We present below a useful result that relates stabilizers to transitive sub-

groups.

19
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Lemma 2.1.1. [12, Exercise 1.4.1] Let G be a transitive group on Ω, Y a

subgroup of G and α ∈ Ω. Then Y is transitive on Ω if, and only if, G = GαY .

In particular, the only transitive subgroup of G that contains Gα is G itself.

Proof. First we suppose that Y is transitive. Given g ∈ G, we will show that

there is y ∈ Y such that gy ∈ Gα. Consider β := αg. Since Y is transitive, there

is x ∈ Y such that β = αx. Then

αgx
−1

= (αg)x
−1

= βx
−1

= α.

So taking y := x−1, it follows that gy ∈ Gα. Hence g = (gy)y−1 ∈ GαY . Then

G = GαY .

Suppose now that G = GαY . To see that Y is transitive, we will show that

αY = Ω. So let β ∈ Ω. Since G is transitive, there is g = sy ∈ G, where s ∈ Gα

and y ∈ Y , such that

β = αg = αsy = αy,

which means that β ∈ αY . Since β was arbitrary, we find that αY = Ω. Therefore

Y is transitive, which concludes the proof.

Similarly to the Galois Correspondence for field extensions, in a transitive

group there is a bijection between its blocks containing a fixed point α ∈ Ω and

the overgroups of Gα, as shown in the following lemma.

Figure 2.1: Blocks and stabilizers

Lemma 2.1.2. [12, Theorem 1.5A] Let G be a transitive group on Ω and α ∈ Ω.

Consider B the set of all blocks ∆ for G with α ∈ ∆, and let S denote the set

of all subgroups H of G with Gα ≤ H. Then there is a bijection Ψ of B onto

S given by (∆)Ψ := G∆, whose inverse mapping Φ is given by (H)Φ := αH .

Furthermore, the mapping Ψ is order-preserving, that is, if ∆,Γ ∈ B, then

∆ ⊆ Γ if, and only if, (∆)Ψ ≤ (Γ)Ψ.
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2.2 Equivalent representations

Algebraic structures are often studied up to isomorphism. For many group

theoretic applications the concept of isomorphism between abstract groups is

sufficiently strong. However, this is not the case for permutation groups. For

example, we may consider the symmetric group S3 acting on {1, 2, 3} naturally,

but also on {1, 2, 3, 4, 5, 6} via its Cayley representation. Since these actions are

very different, the resulting permutation groups must be considered as distinct.

In order to make this distinction between permutation groups, we need the

following definition.

Definition 2.2.1. Let G be a permutation group on a set Ω and let H be a per-

mutation group on a set Ω′. Then G and H are permutationally isomorphic

if there is an isomorphism ψ : G→ H and a bijection λ : Ω→ Ω′ such that, for

all g ∈ G and α ∈ Ω, we have (αg)λ = (αλ)gψ.

Figure 2.2: Permutational isomorphism from G on Ω to H on Ω′.

Essentially this means that the groups are “the same” except for the labeling

of the points.

Analogously, given a group G acting on two sets Ω and Ω′, we can compare

the actions. That is, we say that these actions are equivalent if there is a

bijection λ : Ω→ Ω′ such that, for all g ∈ G and α ∈ Ω, we have (αg)λ = (αλ)g,

with the respective actions. On the other hand, given a bijection between two

sets, if a group acts on the first set, the following result says that the group acts

on the second one too, and the actions are equivalent.

Lemma 2.2.2. Let λ : Ω → Ω′ be a bijection between two sets Ω and Ω′, and

suppose that G is a group acting on Ω. Then G has an action on Ω′ given by

ωg := (ωλ−1)gλ, (2.1)

where ω ∈ Ω′ and g ∈ G. Furthermore, the actions of G on Ω and Ω′ are

equivalent.
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Proof. Clearly ωg ∈ Ω′. In order to verify that the relation above defines an

action, we consider g, h ∈ G and ω ∈ Ω′. Then

ω1 = (ωλ−1)λ = ω,

(ωg)h = (ωgλ−1)hλ = (((ωλ−1)gλ)λ−1)hλ = (ωλ−1)ghλ = ωgh.

This shows that (2.1) defines an action. Now, to see that the actions of G on

Ω and Ω′ are equivalent, let α ∈ Ω and g ∈ G. We will show that (αg)λ = (αλ)g.

From (2.1) we have that

(αλ)g = ((αλ)λ−1)gλ = (αg)λ.

Therefore the actions are equivalent, which concludes the proof.

In other words, the result above says that if λ : Ω → Ω′ is a bijection and

µ : G → Sym(Ω) is a representation of G on Ω, we can extend λ to obtain an

isomorphism λ′ : Sym(Ω) → Sym(Ω′), defined by σ 7→ λ−1σλ, in a way that

µλ′ : G→ Sym(Ω′) is a representation of G on Ω′ equivalent to µ. Therefore we

conclude that the following diagram is commutative.

Figure 2.3: Equivalent actions of G

When a group G has two transitive actions, there is a simple method to

verify if the actions are equivalent, as shown in the result below.

Lemma 2.2.3. [12, Lemma 1.6B]) Let G be a transitive group on two sets Ω

and Ω′, and let P be a stabilizer of a point in the first action. Then the actions

of G on Ω and Ω′ are equivalent if, and only if, P is the stabilizer of some point

in the second action.
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2.3 Coset actions

Let G be a group and K ≤ G. There is a transitive action on the right cosets

of K in G defined by (Kg1)g2 := Kg1g2, for all g1, g2 ∈ G. We call this the

right coset action of G on K. In this section we present a result that gives

us an action that extends the right coset action of a normal subgroup to the

whole group. This result is a slight adaptation of Lemma 4.8 in [8], of Bamberg

and Praeger. We will use it later to prove the Embedding Theorem (Theorem

5.4.2), and despite the statement being technical, there is a particular case given

by Corollary 2.3.2 which interests us immediately and that explains in part our

approach.

Lemma 2.3.1. Let G be a group and let K and Y be subgroups of G such that

K E G and G = KY . Further, suppose that P is a subgroup of K normalized by

Y such that K ∩ Y ≤ P . Then G has an action on the coset space Ω′ := [K : P ]

given by

(Px)ky := P (y−1xky), (2.2)

where x, k ∈ K and y ∈ Y . Moreover, GP = PY . Thus the action of G extends

the action of K on Ω′ via right multiplication.

Proof. First we will show that relation (2.2) is independent of the coset repre-

sentatives. Consider elements x1, x2, k1, k2 ∈ K and y1, y1 ∈ Y such that

Px1 = Px2, (2.3)

k1y1 = k2y2. (2.4)

We have to verify that P (y−1
1 x1k1y1) = P (y−1

2 x2k2y2), which is equivalent to

show that (y−1
1 x1k1y1)(y−1

2 x2k2y2)−1 ∈ P . But from (2.4) it follows that

(y−1
1 x1k1y1)(y−1

2 x2k2y2)−1 = y−1
1 x1(k2y2)y−1

2 k−1
2 x−1

2 y2

= y−1
1 x1x

−1
2 y2

= (y−1
1 y2)(y−1

2 (x1x
−1
2 )y2). (2.5)

Observe that we divided the expression above into two factors: y−1
1 y2 and

y−1
2 (x1x

−1
2 )y2. We work with the first factor. Since Y normalizes K ∩ Y and by

(2.4) y1y
−1
2 ∈ K, we have that

(y−1
1 y2)−1 = y−1

1 (y1y
−1
2 )y1 ∈ K ∩ Y ≤ P,
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that is, y−1
1 y2 ∈ P . We analyze now the second factor. Since Y normalizes P ,

and x1x
−1
2 ∈ P by (2.3), we have that y−1

2 (x1x
−1
2 )y2 ∈ P . Thus both factors of

(2.5) are elements of P , and we conclude that (2.2) is independent of the coset

representatives.

We show now that (2.2) indeed defines an action. Clearly the identity fixes

all the elements of [K : P ]. Let x, k1, k2 ∈ K and y1, y2 ∈ Y . Then

(k1y1)(k2y2) = (k1y1k2y
−1
1 )(y1y2),

where the first factor is an element of K and the second belongs to Y . Therefore,

(Px)(k1y1)(k2y2) = P (y1y2)−1x(k1y1k2y
−1
1 )(y1y2).

Also we have

[(Px)k1y1 ]k2y2 = [P (y−1
1 xk1y1)]k2y2

= P [y−1
2 (y−1

1 xk1y1)k2y2]

= P (y1y2)−1x(k1y1k2y
−1
1 )(y1y2).

Then

[(Px)k1y1 ]k2y2 = (Px)(k1y1)(k2y2),

which shows that (2.2) defines an action.

In order to see that GP = PY , consider g = ky ∈ G. We have that g = ky

and P g = P (y−1ky). So g ∈ GP if, and only if, P (y−1ky) = P , that is, if

y−1ky ∈ P . Since Y normalizes P , it is equivalent to say that k ∈ yPy−1 = P .

Therefore, g = ky ∈ GP if and only if k ∈ P , which means that GP = PY . By

Dedekind’s Modular Law [35, Proposition 1.3.14],

GP ∩K = PY ∩K = P (Y ∩K) = P.

Hence the stabilizer in K of this action is P . Thus the G-action so defined

extends the K-action on Ω′. This completes the proof.

Corollary 2.3.2. Let G be a group acting on Ω. Consider α ∈ Ω and let S be

a transitive normal subgroup of G. Thus writing G = SGα, we have that G has

a transitive action on Ω′ := [S : Sα] given by

(Sαx)sy := Sα(y−1xsy), (2.6)
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where x, s ∈ S and y ∈ Gα. That is, first S acts via right multiplication and

then Gα acts via conjugation. Moreover, the G-actions on Ω and on Ω′ are

equivalent.

Proof. Applying Lemma 2.1.1, the transitivity of S allows us to write G = SGα.

So to see that the relation above defines an action, it is sufficient to apply Lemma

2.3.1 considering K = S, Y = Gα and P = Sα = S∩Gα. This action is transitive

because the action of S via right multiplication is transitive on Ω′. Therefore,

G is transitive on Ω′.

Hence we have that both actions of G are transitive. Thus, to show the

equivalence between them, our strategy will be to use Lemma 2.2.3. Consider

P ∈ Ω′. We will show that, with the respective actions, Gα = GP . However,

from the previous lemma, we obtain that GP = PY = SαGα = Gα, which

completes the proof.

2.4 Automorphism groups and the holomorph

Let S be a group. We denote by Aut(S) the group of all automorphisms of S, by

Inn(S) the group of inner automorphisms of S, while Out(S) denotes the group

Aut(S)/ Inn(S) of outer automorphisms.

The holomorph of S is the semidirect product of S with Aut(S):

Hol(S) := S o Aut(S),

where the action of Aut(S) on S is the natural one. We call S the base group

of the holomorph.

The point we want to emphasize is that the holomorph can be viewed as a

permutation group on its base group. In fact, the following action

x(s,ϕ) := (xs)ϕ,

where x, s ∈ S and ϕ ∈ Aut(S), is faithful. We call this the base group action

of the holomorph.

The next result gives us a relation between the holomorph and the group of

outer automorphisms.
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Lemma 2.4.1. Let S be a group. Then

Hol(S)

S o Inn(S)
∼= Out(S).

Proof. Consider the homomorphism below.

ϕ : Hol(S) → Out(S)

(s, σ) 7→ Inn(S)σ,

where s ∈ S and σ ∈ Aut(S). Clearly ϕ is surjective. Still, kerϕ = S o Inn(S).

Therefore, by the isomorphism theorem, we have that

Hol(S)

S o Inn(S)
∼= Out(S),

which completes the proof.

2.5 The O’Nan-Scott Theorem

A minimal normal subgroup of a nontrivial group G is a nontrivial normal

subgroup of G which does not contain properly any other nontrivial normal

subgroup of G. A group G is a characteristically simple group if it has

no proper and nontrivial characteristic subgroups; that is, its only subgroups

invariant under Aut(G) are {1} and G itself. In particular, when G is finite, this

is equivalent to saying that G is a direct product of isomorphic simple groups

[35, 3.3.15]. For example, any minimal normal subgroup S of a group G is

characteristically simple, since every characteristic subgroup of S is a normal

subgroup of G. The socle of a group G is the subgroup generated by the set

of all minimal normal subgroups of G, and it is denoted by soc(G). In case G

has no minimal normal subgroups, for instance G is an infinite cyclic group, by

convention soc(G) = 1.

Let G be a transitive permutation group on a set Ω. Recall that blocks were

defined in Section 2.1. We say that G is primitive on Ω if its only blocks are Ω

and the singleton sets {α} for α ∈ Ω. It is well known that this is equivalent to

saying that all of the point-stabilizers are maximal subgroups of G [12, Corollary

1.5A]. In particular, by Lemma 2.1.2, a regular permutation group G ≤ Sym(Ω)

is primitive if, and only if, |Ω| is prime. We say that G is imprimitive if it is

not primitive.
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If ∆ ⊆ Ω is a block for G, then the set {∆g : g ∈ G} is a partition of Ω

called a block system. A converse of this statement is also true. A partition

P of Ω is G-invariant if, for every ∆ ∈ P and g ∈ G, we have that ∆g ∈ P .

If a partition P is G-invariant, then any member of P is a block for G. So

an imprimitive action of a group can be thought of as an action which leaves

invariant a nontrivial partition of the set it is acting on.

A larger class of groups, which includes the primitive ones, is the class of

quasiprimitive groups.

Definition 2.5.1. Let G be a permutation group on Ω. We say that G is

quasiprimitive if all its nontrivial normal subgroups are transitive. In the

particular case when Ω is finite, it is equivalent to saying that all the minimal

normal subgroups of G are transitive. We say that G is innately transitive if

it has a transitive minimal normal subgroup. Such a transitive minimal normal

subgroup is called a plinth of G.

We prove below that every primitive group is quasiprimitive. Furthermore, it

follows from the above definition that any finite quasiprimitive group is innately

transitive.

Lemma 2.5.2. Any primitive permutation group is quasiprimitive.

Proof. Let G be a primitive permutation group, and consider H a nontrivial

normal subgroup of G. Since the orbits of H form a block system for G, it

follows from the primitivity that H is transitive or H lies in the kernel of the

action. Since the kernel is trivial, we obtain that H is transitive. Therefore, we

conclude that all nontrivial normal subgroups of G are transitive, which means

that G is quasiprimitive.

Example 2.5.3. 1. Consider G = A5 and let P be a 5-Sylow subgroup of G.

Then G acts on Ω := [G : P ] by right coset action. Thus G is quasiprimitive

and soc(G) = G. Since P is the stabilizer GP , and P is contained in

a dihedral subgroup of order 10, then P is not a maximal subgroup of

G, so G is imprimitive. Therefore, this is an example of an imprimitive

quasiprimitive permutation group.

2. Consider P ∼= C5 ≤ A5 and let G = A5 × P acting on Ω := A5 such that

x(s,p) := s−1xp for all s, x ∈ A5 and p ∈ P . Then P is an intransitive nor-

mal subgroup of G but G contains a transitive minimal normal subgroup

isomorphic to A5. Therefore, G is an example of an innately transitive

group which is not quasiprimitive.
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It is well known [8, Lemma 5.1] that a permutation group G has at most two

transitive minimal normal subgroups, and in case it has two, S and S, they are

isomorphic and centralize each other, then we can write

soc(G) = S × S = S × CG(S).

So as for the primitive groups (see [25] or [27]), there is an O’Nan-Scott The-

orem for finite quasiprimitive groups, dividing them into eight distinct classes

according to their socles: HA, HS, HC, AS, TW, SD, CD and PA. The description

we give here is the same as the one presented in [2]. For explicit examples, please

consult [7, Section 3.3].

The first three types below are necessarily primitive, and they are permuta-

tionally isomorphic to primitive subgroups of the holomorphs of a plinth S of

G considered as a permutation group on S via the base group action, and they

contain the socle of the holomorph. These are:

HA: Certain subgroups of the holomorph of an abelian group; these have a

unique minimal normal subgroup S (namely the base group of the holomorph),

and S is both regular and abelian.

HS: Certain subgroups of the holomorph of a nonabelian simple group; these

have precisely two minimal normal subgroups S and S̄ (namely the base group

of the holomorph and its centralizer), and both S and S̄ are regular, nonabelian

and simple.

HC: Certain subgroups of the holomorph of a composite nonabelian charac-

teristically simple group; these have precisely two minimal normal subgroups S

and S̄ (namely the base group of the holomorph and its centralizer), and both

S and S̄ are regular, nonabelian but are not simple.

The five remaining types correspond to quasiprimitive permutation groups

that may be primitive or imprimitive. We have:

AS: An almost simple group; such groups have a unique minimal normal

subgroup S that is nonabelian and simple. Here S can be regular or not, but if

it is then G must be imprimitive.

TW: A twisted wreath product; such a group has a unique minimal normal

subgroup S that is nonabelian and regular, but not simple.

Quasiprimitive permutation groups of the three remaining classes have a
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unique minimal normal subgroup S that is nonabelian, nonregular and nonsim-

ple. These types are distinguished by the nature of a point stabilizer in S which

is necessarily nontrivial. For what follows, a subdirect subgroup is a subgroup

of a direct product that projects surjectively onto each factor.

SD: A group of simple diagonal type; for such a group a point-stabilizer in

S is simple and a subdirect subgroup of S.

CD: A group of compound diagonal type; for such a group a point-stabilizer

in S is nonsimple and a subdirect subgroup of S.

PA: A group of product action type; for such a group a point-stabilizer in S

is not a subdirect subgroup of S and it is nontrivial.

Theorem 2.5.4. [28, Praeger, 1993] The types of quasiprimitive permutation

groups as defined above are disjoint and exhaustive; in other words, the type of

any quasiprimitive permutation group is defined above and is unique.

Figure 2.4 shows that the classes in the theorem are in fact disjoint. In this

figure, each “up arrow” represents an affirmative answer, and each “down arrow”

represents a negative answer.

Figure 2.4: O’Nan-Scott classes for quasiprimitive permutation groups
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Tool box

This chapter covers many topics related to permutation groups that will be

useful in the next chapters. In particular, we present Scott’s Lemma, which

characterizes subdirect subgroups of direct products of simple groups. We also

give some results about finite simple groups. Finally, the last section is devoted

to number theoretic results, such as Legendre’s Formula. These results will be

applied to embed characteristically simple subgroups in wreath products and to

show that the Main Theorem is valid for the O’Nan-Scott classes SD and CD.

3.1 Subgroups of direct products

Dealing with direct products, it will be useful to look at their projections on each

direct factor. The next definition treats subgroups for which the projections are

surjective or injective.

Definition 3.1.1. Let S = Q1×· · ·×Qr be a group and consider the projections

πi : S → Qi

(q1, . . . , qr) 7→ qi,

where i ∈ r. Given a subgroup P of S, we say that

(i) P is a strip of S if P 6= 1 and, for each i ∈ r, either the restriction of πi

to P is injective or Pπi = 1. If it is injective, Pπi ∼= P for some i ∈ r, and

we say that P covers Qi. We define the support of P as

supp(P ) := {Qi : P covers Qi}.

30
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(ii) A strip P of S is said to be non-trivial if | supp(P )| > 1.

(iii) A strip P of S is said to be a full strip if Pπi = Qi for all Qi ∈ supp(P ).

(iv) P is a subdirect subgroup of S if Pπi = Qi for each i ∈ r.

(v) P is a diagonal subgroup of S if the restriction of πi to P is injective

for each i ∈ r.

(vi) P is a full diagonal subgroup of S if P is both a subdirect and diagonal

subgroup of S.

Example 3.1.2. Let G be a group, 1 6= H < G and set S = G3. Suppose that

G1, G2, G3 are the internal direct factors of S, so S = G1×G2×G3, and consider

the subgroups

X = {(g, g, 1) : g ∈ G},

Y = {(1, 1, g) : g ∈ G},

Z = {(h, h, h) : h ∈ H}.

We have that X, Y and Z are strips of S, where supp(X) = {G1, G2}, supp(Y ) =

{G3} and supp(Z) = {G1, G2, G3}, thus X and Z are non-trivial strips of S. In

fact, both X and Y are full strips of S, and Z is a diagonal subgroup of S. We

have that XY is a full diagonal subgroup of S. Moreover, Z is a full diagonal

subgroup of H3 < S.

We observe that in terms of strips, a diagonal subgroup is a strip with full

support. The next result states that every strip is a diagonal subgroup in a

possibly smaller group. It also justifies the term diagonal.

Lemma 3.1.3. Let S = Q1 × · · · × Qr be a group and let πi be the projection

of S onto Qi. If P is a strip of S with supp(P ) = {Q1, . . . , Qr}, then for each

i ∈ r there is an isomorphism ϕi : Pπ1 → Pπi such that

P = {(a, aϕ2, . . . , aϕr) : a ∈ Pπ1}.

Proof. Consider the restrictions of the projections πi : P → Pπi. Since P is a

diagonal subgroup of S, then each πi is an isomorphism. Take ϕi := π−1
1 πi and

let X := {(a, aϕ2, . . . , aϕr) : a ∈ Pπ1}. Given p ∈ P , let a := pπ1. Then

p = (pπ1, pπ2, . . . , pπr) = (pπ1ϕ1, pπ1ϕ2, . . . , pπ1ϕr) = (a, aϕ2, . . . , aϕr),
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which shows that p ∈ X. Conversely, given x = (a, aϕ2, . . . , aϕr) ∈ X, where

a ∈ Pπ1, let p ∈ P such that a = pπ1. Then for each i ∈ r, pπi = pπ1ϕi = aϕi.

So x = (pπ1, . . . , pπr) = p, which shows that x ∈ P . Therefore P = X, as

required.

The first part of the following lemma appears in Scott’s paper [36, Lemma

p. 328], and it is known as Scott’s Lemma. It describes the structure of the

subdirect subgroups of a direct product of nonabelian simple groups. The second

part is a result that can be found in [18, Proposition 5.2.5(i)], and it characterizes

the normal subgroups of a direct product of finite nonabelian simple groups.

Lemma 3.1.4. Consider S = Q1 × · · · × Qr, where each Qi is a nonabelian

simple group, and let P be a nontrivial subgroup of S.

1. If P is a subdirect subgroup of S, then P is the direct product
∏
Pj of full

diagonal subgroups of subproducts
∏

i∈Ij Qi, where Ij ⊆ r and the Ij form

a partition of r.

2. If P is a normal subgroup of S, then P =
∏

j∈J Qj, where J is a subset of

r.

In case we have a direct product of nonabelian simple groups, it is possible

to determine all its minimal normal subgroups, as well all its maximal normal

subgroups.

Corollary 3.1.5. [12, Exercise 4.3.6] Let S = Q1× · · ·×Qr be a direct product

of nonabelian simple groups. Then Q1, . . . , Qr are the only minimal normal

subgroups of S, and the centralizers CS(Qj) =
∏

i 6=j Qi are the only maximal

normal subgroups of S.

Proof. First we will prove that Q1, . . . , Qr are the only minimal normal sub-

groups of S. Since each Qi is simple, it is clear that Qi is a minimal normal

subgroup of S. To see that they are unique, let P be a minimal normal subgroup

of S. Considering that P is normal and applying Lemma 3.1.4 (item 2) for P ,

we obtain that P =
∏

j∈J Qj, where J is a nonempty subset of r. But since each

Qj is a normal subgroup of S and P is minimal, it follows that P = Qj0 for some

j0 ∈ J . This shows that Q1, . . . , Qr are the only minimal normal subgroups of

S.

Now, to see the second part, first notice that since each S/CS(Qj) is simple,

then each CS(Qj) is a maximal normal subgroup of S. To see that they are
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unique, let H be a maximal normal subgroup of S. Again, because H is normal,

then H =
∏

j∈J ′ Qj, where J ′ is a nonempty subset of r. Since H is maximal,

we have that S/H is simple, and then it is isomorphic to some Qj1 . This means

that H =
∏

i 6=j1 Qi = CS(Qj1). Therefore, we conclude that the centralizers

CS(Qj) are the only maximal normal subgroups of S.

Using the lemma above, we obtain the following criterion to decide if a non-

abelian normal subgroup is minimal. An alternative proof can be found in [12,

Theorem 4.3A].

Corollary 3.1.6. Let G be a group and S = Q1×· · ·×Qr be a normal subgroup

of G, where each Qi is a nonabelian simple group. Then S is a minimal normal

subgroup of G if, and only if, G acts transitively on Σ := {Q1, . . . , Qr} by

conjugation.

Proof. First we note that G acts on Σ := {Q1, . . . , Qr} by conjugation. In fact,

given g ∈ G and Qi, since Qi is simple, we have that Qi
g is a minimal normal

subgroup of Sg = S. Then, according to the previous corollary, we have that

Qi
g ∈ Σ, which means that G acts on Σ.

Suppose that S is a minimal normal subgroup of G and let Γ := Q1
G be the

orbit of Q1 under G. We will prove that Γ = Σ. Consider the product H of all

the elements Qi in Γ. As the action of G permutes the elements of Γ among

themselves, we have that H E G. Thus, since H ≤ S and S is minimal, we

conclude that H = S. This implies that Γ = Σ, that is, G is transitive on Σ.

On the other hand, suppose that G is transitive on Σ. We will prove that

S is minimal. Given a nontrivial H ≤ S such that H E G, we apply Lemma

3.1.4 (item 2) to obtain that H =
∏

i∈I Qi, where I is a subset of r. Let

Γ = {Qi : i ∈ I} be the set of the direct factors of H. The normality of H

implies that Γ is an orbit to the action of G on Σ. But since G is transitive on

Σ, we must have Γ = Σ, which means that H = S. Therefore, S is a minimal

normal subgroup of G.

Given a direct product of two groups, the following lemma characterizes its

subgroups which are also themselves direct products.

Lemma 3.1.7. Let G = G1 × G2 be the direct product of the groups G1 and

G2, and consider the projections πi : G→ Gi. If H ≤ G, then the following are

equivalent:

1. H = Hπ1 ×Hπ2.
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2. Hπ1 ≤ H.

3. Hπ2 ≤ H.

Proof. Clearly (1) implies (2) and (3). We prove that (2) implies (1). Since

H ≤ Hπ1 ×Hπ2, we just have to show the inclusion Hπ1 ×Hπ2 ≤ H. So given

(a, b), (c, d) ∈ H, we have to prove that

((a, b)π1, (c, d)π2) = (a, d) ∈ H.

Since Hπ1 ≤ H, then a, c ∈ H. Note that

(a, d) = (a, b)(c−1a, 1)(a−1, b−1)(c, d),

where the right side is in H, so (a, d) ∈ H. Then Hπ1 ×Hπ2 ≤ H. Therefore,

H = Hπ1 ×Hπ2 and we conclude that (2) implies (1). The case (3) implies (1)

is analogous. Thus the result is proved.

Lemma 3.1.8. Let G = G1 × G2 acting on Ω and α ∈ Ω. If G1 and G2 are

transitive on Ω, then Gα is a subdirect subgroup of G.

Proof. Consider the projections πi : G → Gi. First we prove that Gαπ1 = G1.

Given x ∈ G1, since G2 is transitive, there is y ∈ G2 such that αx = αy. Thus

xy−1 ∈ Gα and since x was arbitrary, then Gαπ1 = G1. Analogously, we prove

that Gαπ2 = G2. Then Gα is a subdirect subgroup of G and the result is

proved.

3.2 Minimal normal subgroups and stabilizers

The following result gives us a way to determine when a group action is faithful.

It will be useful when dealing with groups having just one minimal normal

subgroup.

Lemma 3.2.1. Let G be a group acting on Ω. Consider α ∈ Ω and let S be

a minimal normal subgroup of G such that Sα < S. If K is the kernel of the

action of G, then K ≤ CG(S). In particular, if CG(S) = 1, we have that G is

faithful on Ω.

Proof. Since K E G, we have that K ∩ S ≤ S and K ∩ S E G. As S is a

minimal normal subgroup of G, then K ∩ S = S or K ∩ S = 1. Since by
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hypothesis K ∩S ≤ Sα 6= S, we conclude that K ∩S = 1. Then K ≤ CG(S). In

fact, given k ∈ K and s ∈ S, k−1l−1kl ∈ K ∩ S = 1, thus kl = lk. Since k and l

are arbitrary, then K ≤ CG(S). Therefore, in case CG(S) = 1, the faithfulness

is immediate.

Dealing with minimal normal subgroups and their stabilizers, it is important

to understand the relation between the projections of the stabilizer on the direct

factors of the minimal normal subgroup.

Lemma 3.2.2. Let G be a permutation group on Ω, let S = Q1 × · · · ×Qr be a

transitive normal subgroup of G, where each Qi is a nonabelian characteristically

simple group, and assume that G acts transitively on Σ := {Q1, . . . , Qr} by

conjugation. Consider the projections πi : S → Qi. For a fixed α ∈ Ω define

P := (Sαπ1) × · · · × (Sαπr). Then Gα normalizes P . In particular, if P = Sα,

then Sαπi = (Qi)α 6= Qi for every i ∈ r.

Proof. As S is transitive on Ω, we have by Lemma 2.1.1 that G = GαS. Further,

since G is transitive on Σ := {Q1, . . . , Qr} and S acts trivially by conjugation

on this set, Gα is transitive on Σ. Given g ∈ Gα and i ∈ r, let j ∈ r such that

Qi
g = Qj. Then

(Sαπi)
g = (Sα

g)πj = Sαπj. (3.1)

Therefore, Gα normalizes P , and since Gα is transitive on Σ, we obtain that

all the Sαπi’s are isomorphic. Still, for all i ∈ r, we have Sαπi = Qi ∩ P . In

particular, if P = Sα, then Sαπi = (Qi)α for every i ∈ r. Thus, if we had

Sαπi = Qi for some i, then we would get Qi = (Qi)α for every i, and so S = Sα,

which is not possible because S is transitive. Therefore, Sαπi 6= Qi for every

i ∈ r.

The next result, which will be useful in Chapter 5, gives us a special partition

for the direct factors of a minimal normal subgroup based on the form of its

stabilizer.

Lemma 3.2.3. Let G be a permutation group on Ω and let S = Q1 × · · · ×Qr

be a transitive minimal normal subgroup of G, where each Qi is a nonabelian

simple group and r ≥ 2. Suppose that for some α ∈ Ω, Sα is nonsimple and a

subdirect subgroup of S. Then there exists a set Σ = {S1, . . . , Sk}, where k ≥ 2,

and each Sj is a nonabelian characteristically simple subgroup of S, such that

S = S1× . . .×Sk, Gα acts transitively by conjugation on Σ and, considering the
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projections πi : S → Si, we have that Sαπi is a simple group isomorphic to Q1

and that

Sα = Sαπ1 × · · · × Sαπk. (3.2)

Proof. We have by Corollary 3.1.6 that each Qi is isomorphic to Q1. Since Sα

is a subdirect subgroup of S, it follows from Scott’s Lemma (Lemma 3.1.4, item

1) that

Sα = D1 × · · · ×Dk, (3.3)

where k ≤ r and each group Di is a full diagonal subgroup of a subproduct

Si :=
∏

Qj∈Pi
Qj, where P := {P1, . . . , Pk} is a partition of Σ := {Q1, . . . , Qr}.

Hence Pi consists of the Qj’s that compose Si, and clearly S = S1 × · · · × Sk.
Since each Di is a full diagonal subgroup, each Di

∼= Q1, which means that

Di is a nonabelian simple group. Therefore, since Sα is nonsimple, we must

have k ≥ 2. Besides that, according to Corollary 3.1.5, D1, . . . , Dk are the only

minimal normal subgroups of Sα.

We know that Sα E Gα. So we assert that the set {D1, . . . , Dk} is Gα-

invariant by conjugation. In fact, given g ∈ Gα and Di, since Di is non-

abelian and simple, Di
g is a minimal normal subgroup of Sα. Therefore, Di

g ∈
{D1, . . . , Dk}. So we conclude that {D1, . . . , Dk} is Gα-invariant.

For each i ∈ k, since Di is a subdirect subgroup of Si, we have that

Diπl =

{
Ql, if Ql ∈ Pi,
1, otherwise.

Since S acts trivially by conjugation on Σ and G = SGα by Lemma 2.1.1,

then Gα acts transitively by conjugation on Σ. We assert that Gα acts by

conjugation on Σ := {S1, . . . , Sk}. In fact, given g ∈ Gα and Si, consider j ∈ k
such that Di

g = Dj. We will prove that Si
g = Sj. The idea is to show that these

groups have the same direct factors. In fact, given Ql a direct factor of Si
g, there

exists Qp ∈ Pi such that Qp
g = Ql. Since Di

gπl = (Diπp)
g, we conclude that

Djπl = Qp
g = Ql. But this means that Ql ∈ Pj, that is, Ql is a direct factor of

Sj. The other inclusion is analogous. So we conclude that Σ is Gα-invariant. In

particular, this means that the partition P is Gα-invariant, and so it is uniform.

Moreover, we observe that the action of Gα on Σ is transitive. In fact, given

Si, Sj ∈ Σ, consider Qp ∈ Pi and Ql ∈ Pj. Since Gα is transitive on Σ, there

exists g ∈ Gα such that Qp
g = Ql ∈ Pj ∩ Pig. As the sets in P are disjoint, we

conclude that Pi
g = Pj, which means that Si

g = Sj. Therefore, Gα is transitive
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on Σ.

Now consider the projections πi : S → Si. In order to prove the validity of

the relation (3.2), we will show that Sαπi = Di. According to (3.3), Sαπi ≤ Di.

On the other hand, if d ∈ Di, then consider s := (1, . . . , 1, d, 1, . . . , 1), where

d appears in position i. So s ∈ Sα and sπi = d, that is, d ∈ Sαπi. Therefore,

Sαπi = Di. So using (3.3), we can write

Sα = Sαπ1 × · · · × Sαπk,

which concludes the proof.

In terms of Section 2.5, the result above says that if G is a permutation group

of type CD, then there exists a direct factorization of S such that a stabilizer in

G acts transitively on it and a stabilizer in S factorizes accordingly.

3.3 Finite simple groups

The next four results, which will be used in subsequent chapters, rely on the

Classification of the Finite Simple Groups. The first one is the well-known

Schreier’s Conjecture, which can be proved using the classification.

Lemma 3.3.1. [12, Schreier’s Conjecture, p. 133] Let S be a finite simple group.

Then the group Out(S) of outer automorphisms of S is solvable.

Lemma 3.3.2. [17, Theorem 4.9.] Every finite simple group has a cyclic Sylow

subgroup.

Feit-Thompson Theorem states that every finite group of odd order is solv-

able. As a consequence, it is not difficult to prove that the order of a finite

nonabelian simple group is divisible by four.

Lemma 3.3.3. [14, Theorem 25.2] If Q is a finite nonabelian simple group,

then 4 | |Q|.

The last result is a property of the sporadic Mathieu group M11.

Lemma 3.3.4. [11, p. 18] The Mathieu group M11 has only one conjugacy class

of subgroups whose orders are 660.
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3.4 Number theoretic results

This section presents some number theoretic results related to the factorial of

an integer. The first result is the well-known Legendre’s Formula.

Lemma 3.4.1. [20, Legendre’s Formula, pp.8-10] Let p be a prime and let

n = amp
m+am−1p

m−1 + · · ·+a0 be the p-adic expansion of n. Consider the sum

sp(n) := am + am−1 + · · · + a0 of the digits of n. Then the largest p-power that

divides n! is pl where

l =
n− sp(n)

p− 1
.

The following useful lemma is a corollary of Legendre’s Formula, and it gives

some properties about the divisibility of the factorial.

Lemma 3.4.2. Given a prime number p and a natural number n ≥ 2, we have

that

1. pn - n!.

2. If pn−1 | n!, then p = 2 and n is a power of 2.

3. 4n−1 - n!.

Proof. Consider the p-adic expansion of n and let l be the exponent of the largest

p-power pl that divides n!. Since n ≥ 2, we have by Legendre’s Formula that

l ≤ n − 1, which proves item (1). If l = n − 1, then sp(n) = 1 and p = 2, thus

n is a power of 2, which proves item (2). In order to see the last assertion, let

p = 2 and l = n − 1. Since n − 1 < 2n − 2 for n ≥ 2, the definition of l gives

that 22n−2 = 4n−1 - n!, which proves item (3).
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Factorizations of groups

In Chapter 1 we emphasized the importance of group factorizations in dealing

with the inclusion problem. The first section of this chapter presents some results

about factorizations of finite simple groups, and defines full factorizations and

strong multiple factorizations. The former type of factorizations depends on

the primes that divide the order of the finite simple group. The results in this

chapter will be applied in the last chapter, to analyzing the consequences of the

Main Theorem in each O’Nan-Scott class.

4.1 Factorizations of a simple group

Factorizations of groups appear naturally in studying permutation groups. For

example, if G ≤ Sym(Ω) has a transitive subgroup Y and let α ∈ Ω, then G

factorizes through the stabilizer Gα, that is, G = GαY (Lemma 2.1.1). How-

ever, for our purpose, we need more than the usual notion of factorizations, as

described in the definition below.

Definition 4.1.1. Let G be a group and p(G) be the set of primes that divide

|G|. If A and B are proper subgroups of G such that G = AB, then we call this

expression and the set {A,B} a factorization of G. A factorization Q = AB of

a finite simple group Q is said to be a full factorization if p(Q) = p(A) = p(B).

A set A := {A1, . . . , Al} of proper subgroups of Q is said to be a multiple

factorization if Q = AiAj whenever i 6= j. Moreover, A is said to be a strong

multiple factorization if, in addition l ≥ 3 and Q = Ai(Aj ∩ Ak) whenever

|{i, j, k}| = 3.

Baddeley and Praeger [1] characterized all the full and strong multiple fac-

torizations, as described in the following lemma. We use the notation G · 2 to

39
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the extension of G by the cyclic group C2.

Lemma 4.1.2. ([1, Theorems 1.1. and 1.2.])

1. Suppose that Q is a finite simple group and Q = AB is a full factorization

of Q. Then Q, A and B are as in one of the rows of Table 4.1. Conversely,

each row of Table 4.1 is a full factorization of a simple group.

Q A B
A6 A5 A5

M12 M11 M11, PSL2(11)
PΩ+

8 (q) (q > 2) Ω7(q) Ω7(q)

PΩ+
8 (2)

Sp(6, 2) A7, A8, S7, S8, Sp(6, 2), Z2
6 o A7, Z2

6 o A8

A9 A8, S8, Sp(6, 2), Z2
6 o A7, Z2

6 o A8

Sp(4, q) (q ≥ 4 even) Sp(2, q2) · 2 Sp(2, q2) · 2, Sp(2, q2)

Table 4.1: Full factorizations Q = AB

2. If A = {A1, . . . , Al} is a strong multiple factorization of a simple group Q,

then l = 3. Further, if {A1, A2, A3} is a strong multiple factorization of Q,

then Q, A1, A2, and A3 are as in one of the rows of Table 4.2. Conversely,

each row of Table 4.2 is a strong multiple factorization of a simple group.

Q A1 A2 A3

Sp(4a, 2) (a ≥ 2) Sp(2a, 4) · 2 O−4a(2) O+
4a(2)

PΩ+
8 (3) Ω7(3) Z3

6 o PSL4(3) PΩ+
8 (2)

Sp(6, 2)

G2(2) O−6 (2) O+
6 (2)

G2(2)′ O−6 (2) O+
6 (2)

G2(2) O−6 (2)′ O+
6 (2)

G2(2) O−6 (2) O+
6 (2)′

Table 4.2: Strong multiple factorizations Q = A1(A2 ∩ A3)

The following corollary characterizes the factorizations Q = AB of finite

simple groups Q, in which both A and B are direct powers of the same finite

simple group. The options for such Q, A and B are very restricted.

Corollary 4.1.3. Let Q be a finite simple group, and suppose that Q = AB is

a factorization of Q where A ∼= T s1 and B ∼= T s2 for some finite nonabelian

simple group T and integers s1, s2. Then s1 = s2 = 1 and Q and T are as in

Table 4.3.
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Proof. We assert that Q = AB is a full factorization. In fact, given a prime

number p, since |Q| = |A||B|
|A∩B| and |A| and |B| are powers of |T |, then if p divides

|Q|, we have that p divides |T |, so p divides |A| and |B|. Thus Q = AB is a full

factorization, and such factorizations are completely characterized in Lemma

4.1.2. Looking in Appendix A at the orders of the groups in Table 4.1, and

using that Sp(6, 2) ∼= Ω7(2) [37, 3.8.2], we observe that the only options where

|A| and |B| are powers of the same finite simple group occur when A ∼= B ∼= T .

The options for Q and T are in Table 4.3.

Q A ∼= T ∼= B
A6 A5

M12 M11

PΩ+
8 (q) (q ≥ 2) Ω7(q)

Table 4.3: Factorizations of Q = AB, where |A| = |T |s1 and |B| = |T |s2

The next result characterizes the factorizations S = HD of finite nonabelian

and nonsimple characteristically simple groups S, in whichH is also a nonabelian

characteristically simple subgroup and D is a full diagonal subgroup of S. We

will see that the options for such S and H are also very restricted.

Corollary 4.1.4. Let S = Q1×· · ·×Qr, where r ≥ 2 and each Qi is isomorphic

to a finite nonabelian simple group Q, and let H ∼= T k be a nonabelian charac-

teristically simple subgroup of S. Consider the projections πi : S → Qi, where

i ∈ r, and suppose that 1 < Hπi < Qi for all i ∈ r. If there is a full diagonal

subgroup D of S such that S = HD, then r = k = 2, T ∼= A ∼= B, H = A× B
and Q = AB, where A ∼= A, B ∼= B, and Q, A and B are described in Table

4.3.

Proof. First we assume that r = 2, that is, S = Q1×Q2. By Lemma 3.1.3 there

exist isomorphisms ϕi : Q→ Qi such that

D = {(qϕ1, qϕ2) : q ∈ Q} ∼= Q.

Denote A := Hπ1, B := Hπ2, and consider H := A × B ≥ H. Since A and B

are homomorphic images of H, there are integers s1 and s2 such that A ∼= T s1

and B ∼= T s2 . As S = HD = HD, then given q ∈ Q, there exist a, b, h ∈ Q such

that

(qϕ1, 1) = (aϕ1, bϕ2)(hϕ1, hϕ2).
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This means that q = ah and h = b−1, so q = ab−1 ∈ (Aϕ1
−1)(Bϕ2

−1). Denoting

A := Aϕ1
−1 ∼= A and B := Bϕ2

−1 ∼= B, we conclude that Q = AB. From

Lemma 4.1.3, the possibilities for Q, A and B are described in Table 4.3. In this

case we see that A ∼= T ∼= B.

Assume now that r ≥ 3. We will see that this option is not possible.

Let H := A1 × · · · × Ar ≥ H, where Ai := Hπi, and write S = HD. Analo-

gously to the previous case, there exist integers si and isomorphisms ϕi : Q→ Qi

such that Ai ∼= T si and

D = {(qϕ1, qϕ2, . . . , qϕr) : q ∈ Q} ∼= Q.

So given q ∈ Q, there exist a1, . . . , ar, h ∈ Q such that

(qϕ1, 1, . . . , 1) = (a1ϕ1, . . . , arϕr)(hϕ1, . . . , hϕr).

This means that q = a1h and h = ai
−1 for each i ≥ 2. So q = a1ai

−1 for each

i ≥ 2. Denoting Ai := Aiϕi
−1 ≤ Q, then q ∈ A1(A2 ∩ . . . ∩ Ar). Since q was

arbitrary, we obtain

Q = A1(A2 ∩ . . . ∩ Ar) = A1(Ai ∩ Aj)

for all i 6= j, where i, j ≥ 2. But note that there is nothing special about working

with the first coordinate. Then we conclude that

Q = Ai(Aj ∩ Al)

for all distinct i, j, l ∈ r. This means that {A1, . . . , Ar} is a strong multiple-

factorization ofQ, and such factorizations are completely characterized in Lemma

4.1.2. Looking at the characterization and Appendix A, we observe that it is

not possible to obtain r ≥ 3 with all Ai being a direct power of the same finite

simple group. Therefore, the only possible case is r = 2.

Thus we have H = A × B ∼= T 2. Since H is a subdirect subgroup of H, we

have two options, either H is a diagonal group isomorphic to A ∼= T or H = H.

The first option is not possible, because otherwise, since S = HD and A < Q1,

we would have

|Q|2 = |S| = |D||H|
|D ∩H|

=
|Q||A|
|D ∩H|

< |Q|2,

which is a contradiction. Therefore, H = H = A×B and the result is proved.
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4.2 Factorizations and uniform automorphisms

The existence of factorizations of direct products with strips as factors is related

to the existence of uniform automorphisms.

Definition 4.2.1. Let G be a group and τ be an automorphism of G. We say

that τ is uniform if the map τ : g 7→ g−1(gτ) is surjective.

Since we are dealing with finite groups, we have that a map G → G is

surjective if, and only if, it is injective. So τ ∈ Aut(G) is not uniform if, and

only if, g 7→ g−1(gτ) is not injective, that is, g−1(gτ) = h−1(hτ) for some distinct

g, h ∈ G. The last equation says that hg−1 is a non-identity fixed point of τ .

Then τ ∈ Aut(G) is not uniform if, and only if, τ admits a non-identity fixed

point. It is a consequence of the Finite Simple Group Classification that every

automorphism of a finite nonabelian simple groupQ has non-identity fixed points

[15, Theorem 1.48], which means that Q does not have uniform automorphisms.

In fact, the following strong result holds.

Lemma 4.2.2. ([19, 9.5.3]) A finite nonsolvable group has no uniform (that is,

fixed-point-free) automorphisms.

The relation between uniform automorphisms and factorizations is given by

the result below.

Lemma 4.2.3. ([31, Lemma 2.2]) The following assertions are equivalent for a

group G.

1. There exist nontrivial full strips X and Y in G×G such that G×G = XY .

2. G admits a uniform automorphism.

The next lemma generalizes the previous result for the case where G does

not admit a uniform automorphism and we want to factorize at least two copies

of G.

Lemma 4.2.4. ([31, Theorem 1.2]) Let G be a group that does not admit a

uniform automorphism and let X and Y be direct products of pairwise disjoint

nontrivial full strips in Gr with r ≥ 2. Then XY 6= Gr.

Lemma 4.2.6 below will be used in the last chapter, but can be viewed as an

example in which the subgroup Y is the product of (nonfull) strips isomorphic

to the Mathieu group M11 and XY 6= Gr anyway. First we need a lemma.
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Lemma 4.2.5. Let X and Y be proper subgroups of a group S, such that X and

Y are in the same conjugacy class. Then S 6= XY .

Proof. Assume that S = XY and let s = ab ∈ S such that Y = Xs, a ∈ X and

b ∈ Y . Then Y = Xb and

S = Sb = XbY b = Y Y = Y,

which is an absurd, since by hypothesis Y is proper in S. Therefore, S 6= XY ,

as asserted.

Lemma 4.2.6. Let S = Q4 and A1, . . . , A4 ≤ Q such that Q = M12 and each

Ai ∼= M11. Let X = {(p, p, q, q) : p, q ∈ Q} and Y = {(a1, a2, a2ψ, a4) : ai ∈ Ai}
be subgroups of S, where ψ : A2 → A3 is an isomorphism. Then S 6= XY .

Proof. We have that X = D1 ×D2
∼= Q2 is the direct product of two full strips

of S and Y ∼= M11
3 is the direct product of three strips of S, where the second

strip is a diagonal subgroup of Q2.

Assume that Q4 = XY and consider the projections π12 : S → Q2 and

π34 : S → Q2, where the first one projects onto the first two coordinates and the

second one projects onto the last two coordinates. By applying these projections

in Q4 = XY , we obtain that

Q2 =D1(A1 × A2), (4.1)

Q2 =D2(A3 × A4). (4.2)

We claim that Q = A1A2 = A3A4. In fact, given q ∈ Q, we have by (4.1) that

there exist p ∈ Q and ai ∈ Ai such that (q, 1) = (p, p)(a1, a2). Then p = a−1
2 and

q = pa1 = a−1
2 a1 ∈ A2A1. As q is arbitrary, Q = A1A2. Analogously, by (4.2),

Q = A3A4. Thus by Appendix A, |A1 ∩ A2| = |A3 ∩ A4| = 660. On the other

hand, denote C1 := A1 ∩ A2 and C2 := (A3 ∩ A4)ψ−1. Note that

X ∩ Y = {(c, c, cψ, cψ) : c ∈ C1 ∩ C2} ∼= C1 ∩ C2.

Since Q4 = XY ,

|X ∩ Y | = |X||Y |
|Q|4

=
|M11|3

|M12|2
= 55.

As X ∩ Y ∼= C1 ∩ C2 ≤ A2 and

|C1C2| =
|C1||C2|
|X ∩ Y |

=
6602

55
= 7920 = |A2|,
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then A2 = C1C2. By Lemma 3.3.4, M11 has just one conjugacy class of subgroups

whose orders are 660, and so C1 and C2 are conjugate. However, this an absurd

by Lemma 4.2.5. Then Q4 6= XY and the result is proved.

4.3 An algorithm

Let S = Q1×· · ·×Qr be a direct product of nontrivial groups, and let πi be the

projection of S onto Qi. If P is a full strip of S with supp(P ) = {Qi1 , . . . , Qim},
where ij ∈ r for all j ∈ m, then P is a full diagonal subgroup of the direct product

of the elements on its support. In this case we will write P = D(Qi1 , . . . , Qim).

We emphasize that this notation just gives the shape of P , and the precise

definition of P depends on the isomorphisms given by Lemma 3.1.3.

According to Example 4.3.1, in case either X or Y contains a trivial full strip

of S, then we may have XY = S. However, as we can see in Example 4.3.2, this

condition does not guarantee that XY = S.

Example 4.3.1. Let Q be a finite group, S = Q12, and consider

X ={(x, x, x, y, y, y, z, z, z, w, w,w) : x, y, z, w ∈ Q} ∼= Q4,

Y ={(a1, a2, a3, a1, a5, a6, a7, a5, a9, a10, a11, a9) : ai ∈ Q} ∼= Q9,

that are direct products of full strips of S. We want to prove that XY = S.

Notice that

X ∩ Y = {(x, x, x, x, x, x, x, x, x, x, x, x) : x ∈ Q} ∼= Q.

Since

|XY | = |X||Y |
|X ∩ Y |

=
|Q|4|Q|9

|Q|
= |Q|12 = |S|,

we conclude that XY = S.

Example 4.3.2. Let S = Q1 × Q2 × Q3 × Q4, where each Qi is isomorphic to

a finite group Q, and consider

X = D(Q1, Q2)×D(Q3, Q4) ∼= Q2

and

Y = D(Q1, Q2)×Q3
∼= Q2

be direct products of full strips of S. We will prove that XY 6= S.
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Since D(Q1, Q2) ≤ X ∩ Y , we have that |Q| ≤ |X ∩ Y |. Then

|XY | = |X||Y |
|X ∩ Y |

≤ |Q|
2|Q|2

|Q|
= |Q|3 < |S|,

and we conclude that XY 6= S.

As a corollary of Lemma 4.2.4, we characterize, under certain conditions,

the factorizations of finite nonsimple and nonabelian characteristically simple

groups. In case the group can be factorized, we give some restrictions to the

factorization. Although the proof relies on Lemma 4.2.4, note that its application

is purely combinatorial.

Corollary 4.3.3. Let S = Q1×· · ·×Qr, where r ≥ 2 and each Qi is isomorphic

to a finite nonabelian simple group Q, and consider the projections πi : S → Qi.

Let X and Y be nontrivial subgroups of S such that Xπi, Y πi ∈ {1, Qi} for all

i ∈ r. Then

1. X = X1× · · · ×Xp and Y = Y1× · · · × Yq, where the sets {Xi : i ∈ p} and

{Yj : j ∈ q} consist of pairwise disjoint full strips of S.

2. Algorithm 4.1 decides if XY = S.

3. If XY = S, denote supp(Y ) := ∪i supp(Yi). Then

(a) | supp(Xi) ∩ supp(Yj)| ≤ 1 for all i ∈ p and j ∈ q.

(b) | supp(Xi) ∩ supp(Y )| ≥ | supp(Xi)| − 1 for all i ∈ p.

Proof. 1. Let JX := {i ∈ r : Xπi = Qi} and JY := {j ∈ r : Y πj = Qj}.
Then X is subdirect subgroup of

∏
i∈JX Qi and Y is a subdirect subgroup

of
∏

j∈JY Qj. Then according to Scott’s Lemma (Lemma 3.1.4, item 1)

we have that X = X1 × · · · × Xp and Y = Y1 × · · · × Yq, where the sets

{Xi : i ∈ p} and {Yj : j ∈ q} consist of pairwise disjoint full strips of S.

2. To see that Algorithm 4.1 works, we have to verify that in each step, given

A, B and C, then AB = C if, and only if (AB)πJ = CπJ . Since πJ is a

homomorphism, one direction is clear. Then suppose that (AB)πJ = CπJ ,

and let G1 :=
∏

i∈I Qi and G2 :=
∏

j∈J Qj. Thus C = G1 × G2 and, by

hypothesis, (AB)πJ = G2. Consider the projection πI : S → G1. Then

(AB)πI = G1 ≤ AB. So according to Lemma 3.1.7, we have that

AB = (AB)πI × (AB)πJ = G1 ×G2 = C.
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Therefore, AB = C if, and only if (AB)πJ = CπJ . As a consequence,

AB = C if, and only if XY = S.

We also have to verify that if neither A nor B contains a direct factor Qj,

j ∈ J , then XY 6= S. In fact, if that is the case, A and B are direct

products of pairwise disjoint nontrivial full strips in S. Then by Lemma

4.2.4, we have that AB 6= C. However, from the previous considerations,

this implies that XY 6= S. Therefore, the algorithm is correct.

3. Assume that XY = S.

(a) By contradiction, suppose that there exist i0 ∈ p and j0 ∈ q such that

| supp(Xi0) ∩ supp(Yj0)| ≥ 2.

Reindexing, if necessary, assume that Q1, Q2 ≤ supp(Xi0)∩supp(Yj0),

and consider the projection π : S → Q1 ×Q2. As XY = S, then

Q1 ×Q2 = Sπ = (Xπ)(Y π) = (Xi0π)(Yj0π),

where Xi0π and Yj0π are nontrivial full strips in Q1 × Q2. However,

from Lemmas 4.2.2 and 4.2.3, this is not possible. Then

| supp(Xi) ∩ supp(Yj)| ≤ 1

for all i ∈ p and j ∈ q, and the item is proved.

(b) Given Xi0 , i0 ∈ p, let P :=
∏

Qj∈supp(Xi0
)Qj and consider the projec-

tion π : S → P . Since XY = S, then

Q| supp(Xi0
)| ∼= P = Sπ = (Xπ)(Y π) = (Xi0)(Y π).

As Xi0
∼= Q, the relation above implies that Y π ∼= Qj0 for some

j0 ≥ | supp(Xi0)| − 1. Since i0 ∈ p is arbitrary, then

| supp(Xi) ∩ supp(Y )| ≥ | supp(Xi)| − 1

for all i ∈ p.
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INPUT: S, X and Y .

OUTPUT: Decides if XY = S or not.

BEGIN: J := r, A := X, B := Y and C := S.

IF Xπi ∪ Y πi = {Qi} for all i ∈ r THEN

IF neither A nor B contains a direct factor Qj, where j ∈ J , THEN RETURN FALSE.

ELSE I := {i ∈ J : Qi is a direct factor of either A or B}.
IF I = J THEN RETURN TRUE .

ELSE I := I and J := J − I.

πJ := the projection map π : S →
∏

j∈J Qj.

A := AπJ , B := BπJ and C := CπJ .

GOTO first IF statement.

ELSE RETURN FALSE.

Algorithm 4.1

To see the algorithm working, consider the following example.

Example 4.3.4. Let S, X and Y as in Example 4.3.1. Suppose that Q1, . . . , Q12

are the internal direct factors of S. Then we can write

X =D(Q1, Q2, Q3)×D(Q4, Q5, Q6)×D(Q7, Q8, Q9)×D(Q10, Q11, Q12),

Y =D(Q1, Q4)×D(Q5, Q8)×D(Q9, Q12)×Q2 ×Q3 ×Q6 ×Q7 ×Q10 ×Q11.

Each of the following paragraphs follows the steps of the algorithm.

Let J := 12, A := X, B := Y and C := S. Since Xπi = Qi for all i ∈ 12,

then I := {2, 3, 6, 7, 10, 11}. As I 6= J , we have that I := {2, 3, 6, 7, 10, 11}.
Hence after the first recursive step, we have J := {1, 4, 5, 8, 9, 12},

A :=Q1 ×D(Q4, Q5)×D(Q8, Q9)×Q12,

B :=D(Q1, Q4)×D(Q5, Q8)×D(Q9, Q12),

C :=Q1 ×Q4 ×Q5 ×Q8 ×Q9 ×Q12.

Now I := {1, 12}. Since I 6= J , then I := {1, 12}. Thus after the second

recursive step, we have J := {4, 5, 8, 9},

A :=D(Q4, Q5)×D(Q8, Q9),

B :=Q4 ×D(Q5, Q8)×Q9,

C :=Q4 ×Q5 ×Q8 ×Q9.
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Now I := {4, 9}, and since I 6= J , then I := {4, 9}. In the last recursive step

J := {5, 8},

A :=Q5 ×Q8,

B :=D(Q5, Q8),

C :=Q5 ×Q8.

Finally, I := {5, 8} and since I = J , then XY = S, which is according to

Example 4.3.1.
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Wreath products

In this chapter we define wreath products and the product action, and next we

give the definition of cartesian decompositions.

We prove that given a nonabelian transitive characteristically simple sub-

group of a wreath product in product action, then such subgroup has to be in

the base group of the wreath product.

We also state and demonstrate the Embedding Theorem (Theorem 5.4.2).

This result says explicitly how to embed a finite quasiprimitive permutation

group in a wreath product in product action.

5.1 Wreath products and product action

Let G be a group and let H be a subgroup of Sn. Then considering the direct

product Gn of n copies of G, we define the wreath product GwrH of G and

H to be the semidirect product Gn oH, in which the conjugation action of H

on Gn is given by

(g1, . . . , gn)h := (g1h−1 , . . . , gnh−1 ),

for all gi ∈ G and h ∈ H. We say that Gn is the base group of the wreath

product. Suppose now that G acts on a finite set Ω. Then there is an important

action of GwrH on Ωn, the product action, defined by

(α1, . . . , αn)(g1,...,gn)h−1

:= ((α1h)g1h , . . . , (αnh)gnh ),

for all αi ∈ Ω, gi ∈ G and h ∈ H.

The wreath product GwrH acts primitively in product action on Ωn if, and

only if, H is transitive on n and G is primitive and not regular on Ω [12, Lemma

50
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2.7A]. Moreover, this result also holds if we replace primitive with innately

transitive [7, Theorem 2.7.4].

5.2 Cartesian decompositions

In this section we introduce the concept of cartesian decompositions and we

present its relation to minimal normal subgroups.

Definition 5.2.1. A cartesian decomposition of a set Ω is a finite set of

partitions of Ω, E = {Γ1, . . . ,Γr}, such that |Γi| ≥ 2 for all i and

|γ1 ∩ · · · ∩ γr| = 1 for all γ1 ∈ Γ1, . . . , γr ∈ Γr.

A cartesian decomposition is said to be trivial if it contains only one partition,

namely the partition into singletons. A cartesian decomposition is said to be

homogeneous if all the Γi have the same cardinality. For G ≤ Sym(Ω), we say

that E is G-invariant if Γi
g ∈ E for all Γi ∈ E and g ∈ G. Analogously to sets

and partitions, we denote by G(E) the pointwise stabilizer of E in G, that is,

the set of elements g ∈ G such that Γi
g = Γi for all Γi ∈ E .

Example 5.2.2. Let Ω be the set of the vertices of the square, as in Figure 5.1.

Then we consider the following partitions of Ω.

Γ1 ={{(0, 0), (1, 0)}, {(0, 1), (1, 1)}},

Γ2 ={{(0, 0), (0, 1)}, {(1, 0), (1, 1)}}.

We observe that if γ1 ∈ Γ1 and γ2 ∈ Γ2, then |γ1 ∩ γ2| = 1. So E = {Γ1,Γ2} is a

cartesian decomposition of Ω.

If E = {Γ1, . . . ,Γr} is a cartesian decomposition for a set Ω, given α ∈ Ω,

for each i ∈ r let γi be the unique block of Γi such that α ∈ γi. This defines

a bijection λ : Ω → Γ1 × . . . × Γr. Thus Ω can be naturally identified with the

cartesian product Γ1 × . . .× Γr. Moreover, if G is a group acting on Ω, then by

Lemma 2.2.2, G also has an action on Γ1 × . . . × Γr in such a way that these

actions are equivalent.

Definition 5.2.3. Suppose that S is a transitive permutation group on Ω, and

that E = {Γ1, . . . ,Γr} is an S-invariant cartesian decomposition of Ω such that
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Figure 5.1: Square

S(E) = S. For i ∈ r, let Qi denote the kernel of the S-action on Γi, and set

Qi =
⋂
j 6=i

Qj. (5.1)

The cartesian decomposition E is said to be S-normal if S =
∏r

i=1Qi.

Example 5.2.4. [34, p. 89, Example 4.22] Suppose that G is a permutation

group on Ω with a transitive normal subgroup S such that S is the direct product

S =
∏r

i=1 Si, where the Si form a G-conjugacy class. Suppose that α ∈ Ω such

that

Sα = (Sα ∩ S1)× · · · × (Sα ∩ Sr). (5.2)

For each i ∈ r, let Si =
∏

j 6=i Sj, and let Γi denote the set of Si-orbits in Ω.

Then we assert that E = {Γ1, . . . ,Γr} is an S-normal cartesian decomposition

of Ω.

In fact, Si and Si are normal subgroups of S such that S = Si × Si. For

each i ∈ r, let Γi as above. Since S is transitive and Si is normal in S, then Γi

is a S-invariant partition of Ω. Since S is transitive on Γi and Si acts trivially

on Γi, we find that Si is transitive on Γi. Moreover, G permutes transitively

by conjugation the subgroups Si and Si. Therefore, G permutes transitively

the partitions Γi in such a way that the G-actions on the Si and on the Γi are

permutationally isomorphic.

First we want to prove that E is a cartesian decomposition of Ω. Choose,

for all i ∈ r, the block γi ∈ Γi such that α ∈ γi. Then γi is an Si-orbit

stabilized by (Si)α×Si. Hence γi is also an ((Si)α×Si)-orbit. As by relation 5.2

Sα ≤ (Si)α × Si, the correspondence between the overgroups of Sα and the S-

blocks containing α given in Lemma 2.1.2 implies that Sγi = (Si)α × Si. In
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particular,

Sγ1 ∩ · · · ∩ Sγr = (S1)α × · · · × (Sr)α = Sα. (5.3)

Let γ = γ1 ∩ · · · ∩ γr and note that α ∈ γ. Suppose that ω ∈ γ. Then there

is s ∈ S such that αs = ω, and so s ∈ Sγ1 ∩ · · · ∩Sγr , so s ∈ Sα, which gives that

ω = αs = α. Thus |γ| = 1. Suppose now that γ′i ∈ Γi for all i ∈ r. We have

that Si is transitive on Γi while acts trivially on Γj for j 6= i. Then for all i ∈ r,
there exists si ∈ Si such that (γ′i)

si = γi and (γ′j)
si = γ′j if j 6= i. Hence

(γ′1 ∩ · · · ∩ γ′r)(s1···sr) = γ1 ∩ · · · ∩ γr = γ.

Thus |γ′1 ∩ · · · ∩ γ′r| = |γ| = 1, which gives that E is a cartesian decomposition

of Ω. As already shown above, E is G-invariant.

It remains to show that E is S-normal. Let Ki be the kernel of the S-action

on Γi. Clearly Si ≤ Ki. If Si < Ki, then there exists a nontrivial q ∈ Si such that

q acts trivially on Γi. On the other hand, q acts trivially on each Γj for j 6= i. So

given ω ∈ Ω, consider for each i ∈ r, γi ∈ Γi such that {ω} = γ1∩ · · · ∩ γr. Then

{ωq} = (γ1 ∩ · · · ∩ γr)q = γ1 ∩ · · · ∩ γr, hence q must act trivially on Ω. As G is

a permutation group, this is impossible, which gives that Si = Ki. According to

Definition 5.2.3, we conclude that E is S-normal. In particular, the argument of

this paragraph also shows that SΓi = Si.

5.3 Characteristically simple groups in wreath

products

Recall the definition of wreath product and product action given in Section 5.1.

The following theorem, due to Csaba Schneider, is a key tool to describe

CharS-QP inclusions, and it says that a transitive nonabelian characteristically

simple subgroup of a wreath product W in product action is in the base group

of W .

Theorem 5.3.1. Let Γ be a finite set such that |Γ| ≥ 2, let r ≥ 2, and let

W = Sym(Γ) wrSr be considered as a permutation group on Ω = Γr in product

action. If H is a transitive nonabelian characteristically simple subgroup of W ,

then H is a subgroup of the base group, that is, H ≤ (Sym(Γ))r.

Before proving the theorem, we need the definition of a component of a

subgroup of W . We also need a result about how transitivity passes from the
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group to its components.

Let W be as above and suppose that X is a subgroup of W . For j ∈ r,

we define the j-th component X(j) of X as follows. Suppose that Wj is the

stabilizer in W of j under the permutation representation π : W → Sr. Then

Wj = Sym(Γ)× (Sym(Γ) wrSr−1), (5.4)

where the first factor of the direct product acts on the j-th coordinate, while

the second factor acts on the other coordinates. In particular, ‘Sr−1’ is taken to

be the stabilizer of j in Sr. We define X(j) as the projection of Xj = X ∩Wj

onto the first factor of Wj. We view X(j) as a subgroup of Sym(Γ).

Theorem 5.3.2 (Theorem 1.2, [33]). If X is a transitive subgroup of W , then

each component of X is transitive on Γ. Moreover, if X acts transitively on r,

then each component of the intersection X ∩ (Sym(Γ))r is transitive on Γ.

We turn to the proof of Theorem 5.3.1.

Proof of Theorem 5.3.1. Suppose that H = T1 × · · · × Tk = T k for some non-

abelian finite simple group T . Suppose, as above, that π : W → Sr is the natural

projection. Let B be the base group (Sym(Γ))r of W . Then B = ker π. Assume

for contradiction that H 6≤ B; that is Hπ 6= 1.

First we assume that Hπ is transitive on r. The case when Hπ is intransitive

will be treated afterwards. Set HB = H ∩ B. Then HB is a normal subgroup

of H and by Lemma 3.1.4 (item 2) it is of the form T s, with some s. Further,

H = HB×HB where similarlyHB = T k−s, and we have thatHB acts transitively

and faithfully by π on r. For j ∈ r, consider the componentH
(j)
B as a permutation

group on Γ. By Theorem 5.3.2, H
(j)
B is transitive on Γ for all j.

Claim. H
(j)
B
∼= HB for all j.

Proof of Claim. Suppose, for j ∈ r, that σj denotes the projection of Wj onto

the first factor of the direct product decomposition in (5.4). Then we have

that H
(j)
B
∼= HB/(kerσj ∩ HB). Let m be an element of kerσ1 ∩ HB. Thus

m = (1,m2, . . . ,mr) with mj ∈ H(j)
B . Let j ∈ r. Since HB is transitive on r,

there is some element g = (g1, . . . , gr)h of HB such that 1(gπ) = 1h = j. Then

mg = (1,m2, . . . ,mr)
g = (1,mg2

2 , . . . ,m
gr
r )h,

and so the j-th coordinate of mg is 1. Hence mg ∈ kerσj ∩ HB, and then

(kerσ1 ∩ HB)g ≤ kerσj ∩ HB. Similarly, the same argument above shows that
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kerσj ∩ HB ≤ (kerσ1 ∩ HB)g, and so kerσj ∩ HB = (kerσ1 ∩ HB)g. On the

other hand, kerσ1 ∩ HB is a subgroup of HB and HB centralizes HB, and so

kerσ1 ∩ HB = ker σj ∩ HB for all j. Thus kerσ1 ∩ HB acts trivially on Ω, and

so kerσ1 ∩HB = 1, which gives ker σj ∩HB = 1 for all j. Therefore, H
(j)
B
∼= HB

for all j.

Thus the restrictions to HB of the projection maps σj are monomorphisms.

Then βj = σ−1
1 σj : H

(1)
B → H

(j)
B is an isomorphism for all j. As a consequence,

every element m ∈ HB can be expressed uniquely as m = (y, yβ2, . . . , yβr), for

some y ∈ H(1)
B .

Claim. For all j ∈ r, there is some element xj ∈ Sym(Γ) such that yβj = yxj for

all y ∈ H(1)
B .

Proof of Claim. Suppose that y ∈ H(1)
B . Then m = (y, yβ2, . . . , yβr) ∈ HB. Let

j ∈ r and, using the transitivity of HB in r, suppose that g = (g1, . . . , gr)h ∈ HB

is such that 1(gπ) = 1h = j. Then g centralizes m and hence

(y, yβ2, . . . , yβr) = mg = (yg1 , (yβ2)g2 , . . . , (yβr)
gr)h.

Comparing the j-th coordinates in the two sides of the last equation, we find

that yβj = yg1 . Taking xj := g1, thus we have yβj = yxj .

Claim. If Σ is a HB-orbit in Ω, then |Σ| = |Γ|.

Proof of Claim. Since H is transitive on Ω and HB EH, all the HB-orbits have

the same size. Hence it suffices to show the claim for just one HB-orbit. Choose

the elements 1, x2, . . . , xr as in the previous claim, let γ ∈ Γ and consider

the element ω = (γ, γx2, . . . , γxr). Suppose that m ∈ HB. By the previ-

ous claim, m has the form m = (y, yx2 , . . . , yxr) for some y ∈ H
(1)
B . Hence

ωm = (γy, γyx2, . . . , γyxr). Thus m stabilizes ω if, and only if, y ∈ Sym(Γ) sta-

bilizes γ. Thus (HB)ω = (H
(1)
B )γ. So by applying the Orbit-Stabilizer Theorem

twice, and using that |HB| = |H(1)
B | and that H

(1)
B is transitive on Γ, we have

|ωHB | = |HB|
|(HB)ω|

=
|H(1)

B |
|(H(1)

B )γ|
= |Γ|,

as desired.

Claim. The case when Hπ is transitive is impossible.
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Proof of Claim. HB is a normal subgroup of H and every HB-orbit has size

|Γ|. Hence the number of HB-orbits is |Γ|r−1. Since H is transitive on Ω, HB

is transitive on the set of HB-orbits and hence |Γ|r−1 | |HB|. Since HB has a

faithful action on r, this leads to |Γ|r−1 | r!. Now, since Γ is an orbit for the

characteristically simple group H
(1)
B , we find that |Γ| ≥ 5. Hence |Γ| is divisible

by p, where p is either an odd prime or p = 4, which is a contradiction by Lemma

3.4.2.

This completes the proof for the case when Hπ is a transitive subgroup of Sr.

Let us now turn to the case when Hπ is intransitive. Recall that B is the base

group of W . Assuming that H 6≤ B, gives that there exists a Hπ-orbit ∆ in r

with size at least 2. Set ∆ = r \∆ and r1 = |∆|. Then, by [33, Proposition 1.4],

H can be embedded into the direct product

W1 ×W2 = Sym(Γ) wrSr1 × Sym(Γ) wrSr−r1

such that the projection H1 of H into W1 acts transitively on r1. Now, since H is

transitive on Γr, H1 is also transitive on Γr1 . Further, as H is characteristically

simple, so is H1. Hence using the theorem in the case when Hπ is transitive

gives a contradiction. Therefore, H ≤ B.

5.4 The Embedding Theorem

We present below the hypotheses under which we will work in this section, as

well as the notation to be used.

Hypothesis 5.4.1. (Embedding Hypothesis) G is a finite quasiprimitive permu-

tation group on Ω and α ∈ Ω. We assume the following conditions:

1. S = Q1 × · · · × Qr is a minimal normal subgroup of G, where Qi is a

nonabelian and characteristically simple group and r ≥ 2.

2. G acts transitively on Σ := {Q1, . . . , Qr} by conjugation. We denote this

representation by ρ : G→ Sym(Σ).

3. Consider the projections πi : S → Qi, where i ∈ r. We have that

Sα = (Sαπ1)× · · · × (Sαπr). (5.5)
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In particular, we observe that item 2 above tells us that all the Qi are iso-

morphic. Then we can consider S = Qr, where Q is a nonabelian and charac-

teristically simple group. Moreover, since the transitivity of S on Ω allows us to

write G = SGα, and that S acts trivially by conjugation on Σ, item 2 says that

Gα is transitive on Σ.

We have some work to do, but the purpose of this section is to prove the

following Embedding Theorem.

Theorem 5.4.2. (Embedding Theorem) Assume Hypothesis 5.4.1 as valid. If we

consider Γ := [Q1 : (Q1)α], then there exists a permutational embedding ψ : G ↪→
Sym(Γ) wrSr, where we consider the wreath product as a permutation group in

product action on Γr.

By permutational embedding we mean that G and its image are not just

isomorphic as abstract groups, but that in their respective actions, G and Gψ

are permutationally isomorphic. This is the reason why we can usually identify

Ω with Γr, G with Gψ, and consider G ≤ Sym(Γ) wrSr.

Although we have required that the group G is finite, the reader will notice

that the Embedding Theorem is still true for all innately transitive groups.

According to Theorem 1.2.2, if G has type SD, then G cannot be embedded

in a wreath product in product action.

We want to prove the Embedding Theorem. Using the transitivity of S, we

have that G = SGα. So consider the set Ω′ := [S : Sα]. By Corollary 2.3.2, we

obtain a transitive action of G on Ω′ given by

(Sαx)sy := Sα(y−1xsy), (5.6)

where x, s ∈ S and y ∈ Gα. Moreover, the actions of G on Ω and on Ω′ are

equivalent. Now, since G ≤ Sym(Ω), the action of G on Ω is faithful. Therefore,

as these actions are equivalent, both are faithful, so we have the next result.

Lemma 5.4.3. The actions of G on Ω and on Ω′ are equivalent and faithful.

We denote U := (Q1)α = Sαπ1. By Lemma 3.2.2 we have Q1 6= U . So

consider Γ := [Q1 : U ]. Our goal is to show that the permutation group induced

by G on Ω′ is permutationally isomorphic to a subgroup of Sym(Γ) wrSr. In

order to do that, we use the transitivity of Gα on Σ to fix, for each i ∈ r, an

element ti ∈ Gα such that

Qi
ti = Q1. (5.7)
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In particular, we note that (Qi)α
ti = U . Using (5.7), we define a bijection

between Ω′ and Γr given by

λ : Ω′ → Γr

Sα(q1, . . . , qr) 7→ (Uqt11 , . . . , Uq
tr
r ),

where, for each i ∈ r, qi ∈ Qi.

Lemma 5.4.4. The map λ given above defines a bijection between Ω′ and Γr.

Proof. To see that λ is well-defined and injective, we consider two elements

Sα(q1, . . . , qr) and Sα(p1, . . . , pr) in Ω′. Then Sα(q1, . . . , qr) = Sα(p1, . . . , pr) if,

and only if, for all i ∈ r, we have qip
−1
i ∈ Sαπi = (Qi)α. But this is equivalent

to saying that, for all i ∈ r, (qip
−1
i )ti = qtii (ptii )−1 ∈ (Qi)α

ti = U , which means

that (Uqt11 , . . . , Uq
tr
r ) = (Upt11 , . . . , Up

tr
r ). So

Sα(q1, . . . , qr) = Sα(p1, . . . , pr)⇐⇒ (Uqt11 , . . . , Uq
tr
r ) = (Upt11 , . . . , Up

tr
r ).

This shows that λ is well-defined and injective. Since (5.7) allows us to write ev-

ery element of Γr in the form (Uqt11 , . . . , Uq
tr
r ), it is also clear that λ is surjective.

So we conclude that λ is a bijection.

We can write the elements of G = SGα in the form (s1, . . . , sr)y, where each

si ∈ Qi and y ∈ Gα. Thus, by Lemma 2.2.2, it follows that G has an action on

Γr given by

(Ux1, . . . , Uxr)
(s1,...,sr)y := [(Ux1, . . . , Uxr)λ

−1](s1,...,sr)yλ, (5.8)

where xi ∈ Q1, si ∈ Qi and y ∈ Gα. Moreover, by the same result, the actions of

G on Ω′ and on Γr are equivalent. We denote this action by ψ : G→ Sym(Γr).

Lemma 5.4.5. The actions of G on Ω, Ω′ and on Γr are equivalent and faithful.

Proof. Since by Lemma 5.4.3 the actions of G on Ω and on Ω′ are equivalent

and faithful, and that this last one is equivalent to the action of G on Γr, then

the actions of G on Ω, Ω′ and on Γr are all equivalent and faithful.

Consider the representation ρ : G→ Sym(Σ) given in Hypothesis 5.4.1 (item

2). Thus we define µ : G → Sr to be the induced homomorphism by ρ, that is,

each permutation gµ is given by

i(gµ) = j ⇐⇒ Qi
g = Qj. (5.9)
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In order to simplify the notation, we just write ig instead of i(gµ). The relation

above tells us that the actions of G on r and on Σ are equivalent.

Lemma 5.4.6. The representations µ : G→ Sr and ρ : G→ Sym(Σ) are equiv-

alent.

Proof. To see this equivalence, notice that ϕ : r → Σ, defined by i 7→ Qi, is a

bijection such that, given g ∈ G that satisfies Qi
g = Qj, so by relation (5.9) it

follows that

(iϕ)gρ = Qi
gρ = Qj = jϕ = (igµ)ϕ.

Therefore, µ and ρ are equivalent representations.

We want to understand better how the action of G on Γr works. Having in

mind relation (5.7) and given (Ux1, . . . , Uxr) ∈ Γr, we consider elements qi ∈ Qi

such that xi = qtii . If (s1, . . . , sr)y ∈ G = SGα, we have from (5.6) and (5.8)

that

(Ux1, . . . , Uxr)
(s1,...,sr)y = [Sα(q1, . . . , qr)]

(s1,...,sr)yλ

= [Sα(q1s1, . . . , qrsr)]
yλ

= [Sα((q1y−1s1y−1 )y, . . . , (qry−1sry−1 )y)]λ

= (U(q1y−1s1y−1 )yt1 , . . . , U(qry−1sry−1 )ytr). (5.10)

At this point we have that Gψ is a subgroup of Sym(Γr). We want, through

the relation above, to see exactly which are the elements ofGψ. More specifically,

we want to conclude that Gψ ≤ Sym(Γ) wrSr. To do that, using the same

notation as above, we define a permutation σi ∈ Sym(Γ) for each i ∈ r, in a way

that ((s1, . . . , sr)y)ψ = (σ1, . . . , σr)(gµ) ∈ Sym(Γ) wrSr, where this last element

acts by product action on Γr. Fix i ∈ r and consider

σi : Γ → Γ

Uqtii 7→ U(qisi)
ytiy ,

where each qi ∈ Qi. We observe that in the definition above i, ti, si and y are

fixed. We will prove that σi is a permutation.

Lemma 5.4.7. The map σi given above defines a permutation of Γ.

Proof. To see that σi is well-defined and injective, let Uptii and Uqtii be in Γ. We

have that Uptii = Uqtii if, and only if, (qip
−1
i )ti ∈ U , that is, according to equation
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(5.7), we have that qip
−1
i ∈ U t−1

i = (Qi)α. Acting now with y, we obtain that

this last relation is equivalent to

(qisis
−1
i p−1

i )ytiy = (qisi)
ytiy [(pisi)

ytiy ]−1 ∈ (Qi)
ytiy
α = U,

that is,

U(qisi)
ytiy = U(pisi)

ytiy .

Therefore,

Uqtii = Uptii ⇐⇒ U(qisi)
ytiy = U(pisi)

ytiy .

This means that σi is well-defined and injective. To verify the surjectivity, given

Uptii ∈ Γ, we want to find Uqtii ∈ Γ such that

(Uqtii )σi = U(qisi)
ytiy = Uptii .

It is enough to consider qi = p
tit
−1
iy
y−1

i s−1
i . Then σi is surjective. So we obtain

that σi is in fact a permutation of Γ.

Finally, taking g = (s1, . . . , sr)y ∈ G, we note that

(Uqt11 , . . . , Uq
tr
r )(σ1,...,σr)gµ = (U(q1s1)yt1y , . . . , U(qrsr)

ytry)gµ

= (U(q1y−1s1y−1 )yt1 , . . . , U(qry−1sry−1 )ytr), (5.11)

which is exactly the expression obtained in (5.10). Therefore,

((s1, . . . , sr)y)ψ = (σ1, . . . , σr)(gµ).

So we conclude that Gψ permutes the elements of Γr via product action, that is,

Gψ ≤ Sym(Γ) wrSr. Since Lemma 5.4.5 guarantees that ψ is a permutational

embedding, the Embedding Theorem (Theorem 5.4.2) is proved.

5.5 Some consequences

Let ψ : G→ Sym(Γ) wrSr be the injective homomorphism obtained in the Em-

bedding Theorem.

Great, but why, after all, are we so interested in the Embedding Theorem?

Well, for two main reasons. It permits us to see that the projection morphism

of the wreath product onto Sr composed with ψ is equivalent to the action of
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G on the set Σ = {Q1, . . . , Qr} (corollary below). Besides that, if (H,G) is a

CharS-QP inclusion, then using Theorem 5.3.1, we obtain that Hψ is a subgroup

of the base group (Sym(Γ))r. This, and some more work, allow us to conclude

in next chapter that H ≤ soc(G). Almost there!

Denote W := Sym(Γ) wrSr and π : W → Sr the projection of W onto Sr.

So ψπ = µ. By Lemma 5.4.6, µ is equivalent to ρ, then we obtain that ψπ is

equivalent to ρ.

Corollary 5.5.1. We have that ψπ : G→ Sr and ρ : G→ Sym(Σ) are equivalent

representations of G.

Let (H,G) be a CharS-QP inclusion. We apply Theorem 5.3.1 to Gψ and

Hψ to obtain that Hψπ = 1. Therefore, using Corollary 5.5.1, it follows that H

normalizes each element of Σ. Then the next result is proved.

Corollary 5.5.2. Assume Hypothesis 5.4.1 as valid and (H,G) be a CharS-QP

inclusion. Then H normalizes each element of Σ := {Q1, . . . , Qr}.

Since the O’Nan-Scott class CD satisfies Hypothesis 5.4.1 by Lemma 3.2.3,

groups of this type satisfy the previous corollary. However, we observe that

Corollary 5.5.2 does not apply to class SD because, as we already said (Theorem

1.2.2, item 4), this class does not satisfy Hypothesis 5.4.1.



Chapter 6

Characteristically simple

subgroups of quasiprimitive

permutation groups

Using the classification of quasiprimitive groups developed by Praeger (Section

2.5) and the results of the previous chapter, we prove the main result of this

work.

Theorem 6.0.1. (Main Theorem) Let (H,G) be a CharS-QP inclusion such that

soc(G) is nonabelian. Then H ≤ soc(G).

The first section states the consequences of the Embedding Theorem to char-

acteristically simple groups, while the last section is devoted to the proof of the

Main Theorem.

6.1 That story about characteristically simple

groups

Assume Hypothesis 5.4.1 as valid and suppose that each Qi is isomorphic to a

nonabelian simple group Q. Let (H,G) be a CharS-QP inclusion.

Consider the homomorphism ς : G → Aut(S) where, given g ∈ G, gς is the

conjugation by g. We have that ker ς = CG(S). By Corollary 5.5.2,

Hς ≤ Aut(Q1)× · · · × Aut(Qr).

Moreover, we have that Sς = Inn(Q1)×· · ·×Inn(Qr). Then, by the Isomorphism

62
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Theorem, it follows that

Hς

Hς ∩ Sς
∼=

(Hς)(Sς)

Sς
≤ Aut(Q1)× · · · × Aut(Qr)

Inn(Q1)× · · · × Inn(Qr)
∼= (Out(Q))r. (6.1)

Since Q is simple, we obtain from Schreier’s Conjecture (Lemma 3.3.1) that

Out(Q) is soluble. Therefore, as H is nonabelian and characteristically simple,

then Hς is nonabelian and characteristically simple, thus nonsoluble, and we

must have Hς ∩ Sς = Hς, that is, Hς ≤ Sς. So we conclude that Hς ≤ Sς.

Then
H ker ς

ker ς
∼= Hς ≤ Sς ∼=

S ker ς

ker ς
.

Thus, by the Correspondence Theorem, we obtain that H ker ς ≤ S ker ς. Then

H ≤ S ker ς = S × CG(S) = soc(G). This proves the following result.

Lemma 6.1.1. Assume Hypothesis 5.4.1 as valid with Q being a simple group,

and let (H,G) be a CharS-QP inclusion. Then H ≤ soc(G).

6.2 Main theorem

We prove in this section the main theorem of this chapter, Theorem 6.0.1. Our

strategy is to verify, using the O’Nan-Scott Theorem given in Chapter 2, the

assertion for each O’Nan-Scott class. For those groups whose type is HS or AS,

the result follows from Schreier’s Conjecture. Now, for groups of type HC, TW

or PA, we use the Embedding Theorem. For groups of type SD, we use Lemma

3.3.2. For groups of type CD, we use the concept of cartesian decompositions

and the case SD.

Let G be a finite quasiprimitive permutation group on Ω of type HS, HC,

AS, TW, PA, SD or CD, and let (H,G) be a CharS-QP inclusion. Assume that S

is a nonabelian plinth for G so that soc(G) = S × CG(S). In some cases CG(S)

can be trivial. Moreover, we consider πi : S → Qi the projections of S on its

direct factors, and ς : G → Aut(S) the representation by conjugation on S, so

ker ς = CG(S).

G has type AS: In this case CG(S) = 1, S is a simple group and we have

Inn(S) ≤ G ≤ Aut(S). Then ς is injective and Sς = Inn(S). We observe that

Hς

Hς ∩ Sς
∼=

(Hς)(Sς)

Sς
≤ Aut(S)

Inn(S)
= Out(S),
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where the isomorphism comes from the Isomorphism Theorem. As S is simple,

it follows from the Schreier’s Conjecture (Lemma 3.3.1) that Out(S) is soluble.

Since Hς is nonabelian and characteristically simple, thus not soluble, we have

that Hς ∩ Sς = Hς. Therefore Hς ≤ Sς and, as ς is injective, we conclude that

H ≤ S = soc(G), as desired.

G has type HS: In this case S is a simple group that satisfies

soc(G) = S o Inn(S) ≤ G ≤ S o Aut(S) = Hol(S).

We assert that G/ soc(G) is embedded in Out(S). In fact, it follows from

Lemma 2.4.1 that
Hol(S)

soc(G)
∼= Out(S).

Since G ≤ Hol(S), then
G

soc(G)
↪→ Out(S).

This proves our assertion. But observe that

H

H ∩ soc(G)
∼=
H soc(G)

soc(G)
≤ G

soc(G)
↪→ Out(S),

where the isomorphism comes from the Isomorphism Theorem and the embed-

ding comes from our last assertion. Therefore, arguing as we did for the type AS,

it follows from Schreier’s Conjecture that H ∩ soc(G) = H. Then we conclude

that H ≤ soc(G), as desired.

For the next four O’Nan-Scott types, HC, TW, PA and SD, we will denote

S = Q1 × · · · ×Qr, where each Qi is a nonabelian simple subgroup, and r ≥ 2,

because S is nonsimple. Therefore, using Corollary 3.1.6, we obtain that G acts

transitively, by conjugation, on Σ = {Q1, . . . , Qr}. So G satisfies the items 1

and 2 of the Embedding Hypothesis (Hypothesis 5.4.1).

G has type HC or TW: In this case S is regular, so trivially G satisfies

item 3 of the Embedding Hypothesis. Thus, by Lemma 6.1.1, we obtain that

H ≤ soc(G).

G has type PA: In this case CG(S) = 1 and, for a fixed α ∈ Ω, Sα is not a

subdirect subgroup of S and S is not regular.

In general, the groups of this class do not satisfy item 3 of the Embedding
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Hypothesis. In order to fix that, we will define a set Ω on which G acts and, for

some ω ∈ Ω, the following property is satisfied

Sω = (Sωπ1)× · · · × (Sωπr). (6.2)

First we observe that, for a fixed α ∈ Ω, we have that

Sα ≤ Q1 × · · · ×Qr.

Therefore,

Sα ≤ (Sα)π1 × · · · × (Sα)πr. (6.3)

Hence we denote P := (Sαπ1)× · · · × (Sαπr) ≤ S and Ω := [S : P ]. Then S

acts transitively by right multiplication on Ω. From the transitivity of S on Ω,

we have that G = SGα and, by Lemma 3.2.2, we obtain that Gα normalizes P .

Moreover, according to the relation (6.3), Sα = S ∩Gα ≤ P . Thus we can apply

Lemma 2.3.1 to obtain that G has a transitive action on Ω given by

(Px)sy := P (y−1xsy), (6.4)

where x, s ∈ S and y ∈ Gα.

Recall that Sα < S and that CG(S) = 1. Thus we can apply Lemma 3.2.1

to G and Ω, to conclude that the action above is faithful. We denote this action

by η : G→ Sym(Ω). This tells us that G ∼= Gη is embedded in Sym(Ω).

Since the items 1 and 2 of the Embedding Hypothesis are properties of G

viewed as an abstract group, clearly Gη satisfies them too. We assert that Gη

satisfies item 3 as well.

Let ω := P ∈ Ω. Since the action of S on Ω is right multiplication, then

Sω = P . So

Sω = (Sαπ1)× · · · × (Sαπr). (6.5)

We observe that the relation above says that, for each i ∈ r, we have

Sαπi = Qi ∩ Sω = (Qi)ω.

Therefore, Sαπi = (Qi)ω, and we can write

Sω = (Q1)ω × · · · × (Qr)ω.
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But this is equivalent to saying that

Sω = (Sωπ1)× · · · × (Sωπr).

This shows that Gη satisfies item 3 of Embedding Hypothesis, as we wanted.

To show that H ≤ soc(G), first we prove that H is transitive on Ω, and after

we apply Lemma 6.1.1.

By Lemma 2.3.1 we have that Gω = SωGα. So Gα ≤ Gω. Then by Lemma

2.1.2 follows that ∆ := αGω is a block for G. This tells us that the set

Ω′ := {∆g : g ∈ G}

is a block system for G, where clearly G acts transitively.

Since Gα ≤ Gω, we have Gα ≤ G∆. We assert that Gω = G∆. In fact,

applying Lemma 2.1.2, we have that αG∆ = ∆ = αGω . Applying the same

lemma again, we obtain that Gω = G∆. Thus by Lemma 2.2.3 we conclude that

the actions of G on Ω and Ω′ are equivalent.

Since H is transitive on Ω, we have that H is transitive on Ω′. As the actions

of H on Ω′ and Ω are equivalent, we conclude that H is transitive on Ω.

Applying Corollary 5.5.2 to Hη, we get that Hη normalizes each element of

Ση = {Q1η, . . . , Qrη}. Therefore, by applying Lemma 6.1.1 to Gη, it follows

that Hη ≤ soc(Gη) = Sη. However, since η is injective, H ≤ S = soc(G).

G has type SD: In this case CG(S) = 1 and, for a fixed α ∈ Ω, Sα is a

subdirect subgroup of S and is simple. Since S is transitive on Ω and Sα ∼= Q,

then |Ω| = |Q|r−1. For a fixed j ∈ r, denote

Qj := Q1 × · · · ×Qj−1 ×Qj+1 × · · · ×Qr.

The idea is to decompose H = H0×H1 into two direct factors, where H0 ≤ S,

and to prove that H1 has to be trivial.

In this case each Qi
∼= Q, for some nonabelian simple group Q, and G can be

considered [28, Section 2, case III(a)] as a subgroup of G := (S · Out(Q))o Sr,

where Sr permutes the factors of S naturally and Out(Q) acts on S ∼= Qr

diagonally.

Consider the extension Q := S · Out(Q). We have that G permutes the

elements in Σ = {Q1, . . . , Qr} and the kernel of this action is precisely Q. If

we denote by H0 the kernel of H acting on Σ, we obtain that H0 = H ∩ Q.
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Since H is characteristically simple, we have by Lemma 3.1.4 (item 2) that

H0
∼= T k0 for some integer k0, and there exists a normal subgroup H1 of H such

that H = H0 × H1. It follows from the Isomorphism Theorem and from the

definition of Q that

H0

H0 ∩ S
∼=
H0S

S
≤ Q

S
∼= Out(Q),

and since Out(Q) is soluble by Schreier’s Conjecture (Lemma 3.3.1), and H0 is

nonabelian and characteristically simple, we conclude that H0 = H0 ∩ S, which

means that H0 ≤ S.

Observe that if H1 = 1, since H0 ≤ S, then H ≤ S. Our task is precisely to

prove that H1 = 1. Then suppose that H1 is not trivial. Note that

H1 ∩Q ≤ H ∩Q = H0,

so H1 ∩ Q = 1. This means that H1 permutes the elements in Σ faithfully, so

|H1| | r!. In particular, since the size of the smallest nonabelian simple group is

60, we have r ≥ 5.

We have that H0 6= 1. In fact, if that is not the case, we have H = H1,

so H1 is transitive on Ω. Then applying the Orbit-Stabilizer Theorem and the

transitivity of S, we obtain

|H1|
|(H1)α|

= |Ω| = |Q|r−1,

so |Q|r−1 | |H1|. Since |H1| | r!, we get that |Q|r−1 | r!. Since 4 | |Q| by Lemma

3.3.3, we have that 4r−1 | r!, which is not possible by Lemma 3.4.2. Therefore,

H0 6= 1.

Let’s analyze the action of H0 on Ω. Since H0 E H and H is transitive, the

orbits of H0 form a block system for H. This means that H0 is half transitive,

that is, the orbits of H0 have the same size. The Orbit-Stabilizer Theorem gives

that

|αH0| = |H0|
|(H0)α|

,

which means that |(H0)α| is independent of α. This enables us to calculate the

number of H0-orbits. In fact, the number of H0-orbits is equal to

|Q|r−1

|αH0|
=
|Q|r−1

|T |k0
|(H0)α|.
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Since H = H0 × H1 and H is transitive on Ω, we have that H1 is transitive

on the H0-orbits. Then the Orbit-Stabilizer Theorem gives that the number of

H0-orbits divides |H1|. Therefore, the number of H0-orbits divides r!.

From the Isomorphism Theorem we have that

Qi ≥ H0πi ∼=
H0

kerπi ∩H0

∼= T si , (6.6)

where si ≥ 0 for all i ∈ r. Thus we consider two cases:

Case 1: There exists i ∈ r such that si ≥ 2.

We want to use Lemma 3.4.2 to show that this case is not possible. Since

si ≥ 2 for some i ∈ r, there is a copy of T 2 in Q. Applying Theorem 3.3.2, let p

be a prime such that the Sylow p-subgroups of Q are cyclic. If p divides |T |, let

P be a Sylow p-subgroup of T and consider P 2, that is a Sylow p-subgroup of T 2.

Since P is a p-subgroup of Q, there exists a Sylow p-subgroup of Q containing

P , and the same is true for P 2. So P and P 2 are cyclic. However, this is not

true, since P cyclic implies that P 2 is not cyclic. Then p does not divide |T |.
Since the order of a finite nonabelian simple group is even by Lemma 3.4.2, we

can assume that p is odd. Recall that the number of H0-orbits is

|Q|r−1

|T |k0
|(H0)α|. (6.7)

Then pr−1 divides the number of H0-orbits, and so it divides r!. However,

this contradicts Lemma 3.4.2. Therefore, Case 1 is not possible.

Case 2: si ≤ 1 for all i ∈ r.

Since H0 6= 1, si ≥ 1 for some i ∈ r, thus relation 6.6 gives that there is a

copy of T in Q. We want to write H0 as a direct product of diagonal groups and

to prove that H1 can be embedded in the direct product of symmetric groups

smaller than Sr.

First we observe that since each Ti ≤ H0 is simple, then each Ti ≤ H0 is a

strip of S. We assert that if i 6= j, then supp(Ti)∩supp(Tj) = ∅. In fact, if there

is k ∈ r such that Tiπk ∼= T and Tjπk ∼= T , then (Ti × Tj)πk ∼= T 2. However,

this is impossible, since hypothesis sk ≤ 1 implies that H0πk ∼= T . Then the

supports of the direct factors of H0 are disjoint. Then Lemma 3.1.3 permits to

write each Ti as a diagonal subgroup of the direct products of the elements on
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its support. Therefore,

H0 = T1 × · · · × Tk0 , (6.8)

where each Ti ∼= T is a diagonal subgroup of∏
Qj ∈ supp(Ti)

Qj,

in such a way that these subproducts do not have factors in common. As a

consequence, we obtain that k0 ≤ r. We will treat the case k0 = r separately.

Assume first that k0 < r. Since |T | | |Q|, we have by 6.7 that |Q|r−k0−1 divides

the number of H0-orbits.

Let di be the cardinality of supp(Ti). Moreover, let m1 be the number of

Ti’s for which di ≥ 5, and let m2 be the number of Ti’s whose di < 5. So

m1 +m2 = k0. Relabeling if necessary, we can write

H0 = T1 × · · · × Tm1 × Tm1+1 × · · · × Tm1+m2 ,

where the first m1 factors have length di ≥ 5. Still, denote m3 := r −
∑k0

i=1 di,

that is the number of factors Qi that do not involve any of the Ti.

Since H1 centralizes H0, we have that H1 centralizes each Ti. As given

h1 ∈ H1 and i ∈ r we have

(supp(Ti))
h1 = supp(Ti

h1) = supp(Ti),

we conclude that each supp(Ti) is H1-invariant.

Observe that if a group has a nonabelian simple group as a direct factor,

since the smallest nonabelian simple group is A5, then its size has to be at least

60. This means that if such a kind of group acts faithfully on a set with less

than five elements, then the action is necessarily trivial. Therefore, as the action

of H1 on Σ is faithful, if di < 5, we obtain that H1 acts trivially on supp(Ti).

According to the observation above, we have that H1 acts trivially on

supp(Tm1+1)∪̇ · · · ∪̇ supp(Tk0).

Since the action of H1 on Σ is faithful, we obtain that

|H1| | (d1!) . . . (dm1 !)(m3!). (6.9)
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As we assumed H1 6= 1, we have from the relation above that either m1 = 0 and

m3 ≥ 5, or m1 6= 0. In both cases we conclude that

d1 + · · ·+ dm1 +m3 −m1 − 1 > 0. (6.10)

Recall that |Q|r−k0−1 divides |H1|. So relation 6.9 says that

|Q|r−k0−1 | (d1!) . . . (dm1 !)(m3!). (6.11)

On the other hand, we have that r ≥ d1 + d2 + · · ·+ dm1 +m2 +m3. So

|Q|d1+d2+···+dm1+m2+m3 | |Q|r.

Since 6.10 is valid and k0 = m1 +m2, then

|Q|d1+d2+···+dm1+m2+m3−m1−m2−1 = |Q|(d1−1)+···+(dm1−1)+m3−1 | |Q|r−k0−1.

Therefore, using equation 6.11, we obtain that

|Q|(d1−1)+···+(dm1−1)+m3−1 | (d1!) . . . (dm1 !)(m3!).

Since by Lemma 3.3.3 we have that 4 | |Q|, then the previous line gives that

2d1 · · · 2dm1 2m3 | (d1!) . . . (dm1 !)(m3!),

which is a contradiction by Lemma 3.4.2. This implies that H1 = 1, which

means that if k0 < r, then H ≤ S.

Now consider the case where k0 = r. Then relation 6.8 implies that di = 1

for all i ∈ r. Since each supp(Ti) is H1-invariant, we have that H1 acts faithfully

and trivially on Σ, thus H1 = 1. Then if k0 = r, we obtain H = H0 ≤ S.

Therefore, if (H,G) is a CharS-QP inclusion, where G has type SD, then

H ≤ S.

For the last O’Nan-Scott type CD, we will denote S = Q1 × · · · ×Qr, where

each Qi is a nonabelian simple subgroup and r ≥ 2, because S is nonsimple.

G has type CD: In this case CG(S) = 1 and for a fixed α ∈ Ω, Sα is

a subdirect subgroup of S, but it is not simple. So Lemma 3.2.3 guarantees

that there exist two sets Σ = {S1, . . . , Sk} and {D1, . . . , Dk}, where k ≥ 2,
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each Di is a full diagonal subgroup of Si and Si =
∏

Qj∈suppDi
Qj, such that

S = S1 × · · · × Sk, Gα acts transitively by conjugation on Σ and, considering

the projections πi : S → Si, we have that

Sα = Sαπ1 × · · · × Sαπk, (6.12)

where each Sαπi = Di. Moreover, the actions of Gα on Σ and on {D1, . . . , Dk}
are equivalent.

It means that G satisfies all the items of the Embedding Hypothesis. For

each i ∈ k, let Si :=
∏

j 6=i Sj. Thus G also satisfies the conditions of Example

5.2.4, and we conclude that E = {Γ1, . . . ,Γk}, where each Γi is the set of Si-

orbits, is an S-normal cartesian decomposition of Ω preserved by G. Moreover,

SΓi = Si and the G-actions on Σ and on E are equivalent. That means that the

actions of Gα on E and on {D1, . . . , Dk} are equivalent.

Let GΓi
be the stabilizer in G of Γi. Now GΓi

induces a permutation group

GΓi on Γi for each i ∈ k. Since S E G, SΓi E GΓi . We want to prove that SΓi is

a minimal normal subgroup of GΓi . In order to do that, we want to use Corollary

3.1.6. Let Qm, Qn ≤ Si. As Gα is transitive on Σ, there exists g ∈ Gα such that

Qm
g = Qn. Since the supports supp(Di) are disjoint and Qm

g = Qn ≤ Si
g ∩ Si,

we have that Si
g = Si. Thus Γi

g = Γi, then g ∈ GΓi
. Therefore, GΓi

permutes

transitively the nonabelian simple factors of Si = SΓi . So according to Corollary

3.1.6, SΓi is a minimal normal subgroup of GΓi .

We want to show now that GΓi is a permutation group of type SD. For each

i ∈ k, let γi be the part in Γi that contains α. Since Di ≤ Sα, then by equation

5.3 we have Di ≤ (Si)γi . Conversely, if s ∈ (Si)γi , then s stabilizes γj for all

j ∈ k, and so s stabilizes the intersection
⋂
j γj = {α}. Thus s ∈ Si ∩ Sα = Di.

Therefore, (Si)γi = Di, and so each GΓi has type SD. In particular, we have

soc(GΓi) = SΓi .

Since SΓi = Si, we conclude that

soc(G) =
∏
i

Si =
∏
i

soc(GΓi). (6.13)

As G satisfies Embedding Hypothesis, then by Corollary 5.5.2 we have that H

normalizes each element of Σ. Since the G-actions on Σ and on E are equivalent,

thus H acts trivially on E , that is,

H ≤ G(E) ≤ GΓ1 × · · · ×GΓk .
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Since H is transitive on Ω, then H is transitive on each Γi. If we consider

the projection map σi : G
Γ1 × · · · × GΓk → GΓi , then each Hσi is transitive

on Γi. Since GΓi has type SD, we can apply the previous case to obtain that

Hσi ≤ soc(GΓi) for all i ∈ k. Thus by equation (6.13), we have that

H ≤
∏
i

soc(GΓi) = soc(G) = S.

Therefore, if (H,G) is a CharS-QP inclusion, where G has type CD, then H ≤ S.

This concludes the proof of the main theorem.
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CharS-QP Inclusions

In this chapter we will see how to apply the Main Theorem to describe CharS-QP

inclusions by analyzing each O’Nan-Scott class with nonabelian plinth.

Throughout this chapter, let G be a finite quasiprimitive permutation group

on Ω of type HS, HC, AS, TW, PA, SD or CD, and let (H,G) be a CharS-QP

inclusion. Assume that S = Q1 × · · · × Qr is a nonabelian plinth for G, where

each Qi
∼= Q for a nonabelian simple group Q, so that soc(G) = S × CG(S).

In case CG(S) is nontrivial, then it is isomorphic to S. Moreover, we consider

the projections πi : soc(G)→ Qi of soc(G) onto its direct factors. According to

Theorem 6.0.1, H ≤ soc(G).

If CG(S) = 1, in order to get some information about H, we will analyze the

image of H under the projections πi : S → Qi. In the next lemma we see that

this approach restricts the possible O’Nan Scott class of G.

Lemma 7.0.1. Let (H,G) be a CharS-QP inclusion and let S be a nonabelian

plinth of G such that CG(S) = 1. Suppose that for some i0 ∈ r we have that

Hπi0 = 1. Then G has type SD or CD.

Proof. We have that S = soc(G) and by Theorem 6.0.1, H ≤ S. Since H is

transitive, we can write S = HSα. Therefore, using that πi0 is surjective and

that Hπi0 = 1, we have

Qi0 = Sπi0 = (HSα)πi0 = (Hπi0)(Sαπi0) = Sαπi0 .

Fixing an arbitrary j ∈ r, it follows from the transitivity of Gα on the factors

Qi that there exists g ∈ Gα such that Qi0
g = Qj. Then

Qj = Qi0
g = (Sαπi0)g = Sαπj.

73
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Since j was arbitrary, we conclude that Qj = Sαπj for all j ∈ r. This means

that Sα is a subdirect subgroup of S, so it follows from Theorem 2.5.4 that G

has type SD or CD, which completes the proof.

So by applying Scott’s Lemma (Lemma 3.1.4), we obtain that if Hπi0 = 1

for some i0 ∈ r, then

Sα = D1 × · · · ×Dl,

where each Di is a nonabelian diagonal simple group isomorphic to Q and l

divides r.

7.1 G has type AS

In this case S is simple and CG(S) = 1, thus S = soc(G).

Lemma 7.1.1. Let (H,G) be a CharS-QP inclusion where G has type AS, H

is nonsimple and S = soc(G). Then S ∼= An and Gα ∩ S ∼= An−1, where

n = |G : Gα| = |S : Gα ∩ S| ≥ 10.

Proof. We have that H ∼= T k, where k ≥ 2. Using that H is transitive, it follows

from Lemma 2.1.1 that G = GαH, in which H � Gα � G. Then we are in the

conditions of [2, Theorem 1.4], so

S ∼= An and Gα ∩ S ∼= An−1,

where n = |G : Gα| = |S : Gα ∩ S| ≥ 10.

In fact, this lemma says that either H is a transitive simple subgroup of

S, that is also a simple group, or H is a nonsimple transitive characteristically

simple subgroup of S ∼= An, in the natural action of An on the set n for n ≥ 10.

7.2 G has type TW

In this case S is regular and CG(S) = 1, thus S = soc(G).

Lemma 7.2.1. Let (H,G) be a CharS-QP inclusion where G has type TW and

S = soc(G). Then H = S.
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Proof. According to Main Theorem 6.0.1, we have that H ≤ S. Since S is

regular, H is also regular, and we have from the Orbit-Stabilizer Theorem that

|S| = |Ω| = |H|.

Then we conclude that H = S.

In particular, the result above says that if (H,G) is a CharS-QP inclusion

where G has type TW, then H is regular.

7.3 G has type SD

In this case CG(S) = 1 and, for a fixed α ∈ Ω, Sα is a subdirect subgroup of S

and is simple.

From Lemma 3.1.3 we have that

Sα = D1 = {(qϕ1, qϕ2, . . . , qϕr) : q ∈ Q} ∼= Q,

where ϕi : Q → Qi is an isomorphism for each i ∈ r. From now on we will use

these isomorphisms to write arbitrary elements of S in the form

(q1ϕ1, q2ϕ2, . . . , qrϕr).

Since S is transitive on Ω and Sα ∼= Q, then |Ω| = |Q|r−1. For a fixed j ∈ r,
denote

Qj := Q1 × · · · ×Qj−1 ×Qj+1 × · · · ×Qr.

Lemma 7.0.1 suggests that to obtain some information about H and G, it

is helpful to analize the projections of H on the direct factors of S. So given

i0 ∈ r, we have three options: Hπi0 = 1, Hπi0 = Qi0 or 1 < Hπi0 < Qi0 . We

obtain the following characterization.

Theorem 7.3.1. Let G be a finite quasiprimitive permutation group on Ω of

type SD and let S = Q1 × · · · × Qr be a plinth of G. Consider the projections

πi : S → Qi, where i ∈ r, and let (H,G) be a CharS-QP inclusion in which

H ∼= T k. Then

1. If Hπi0 = 1 for some i0 ∈ r, then H = Qi0 (in this case H is regular).

2. If Hπi0 = Qi0 for some i0 ∈ r, then H = S (in this case H is not regular)

or H = Qj for some j ∈ r (in this case H is regular).
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3. If 1 < Hπj < Qj for all j ∈ r, then r = k = 2, T ∼= A ∼= B, H = A × B
and Q = AB, where A ∼= A, B ∼= B, and Q, A and B are described in

Table 4.3 (in this case H is not regular).

Proof. Case 1: Suppose that Hπi0 = 1 for some i0 ∈ r.

Without loss of generality, assume that i0 = 1 and let

Q1 = {(1, q2ϕ2, . . . , qrϕr) : qi ∈ Q}.

Notice that S = Q1Sα. In fact, we have, for all q1, . . . , qr ∈ Q, that

(q1ϕ1, q2ϕ2, . . . , qrϕr) = (1, (q2q1
−1)ϕ2, . . . , (qrq1

−1)ϕr)(q1ϕ1, q1ϕ2, . . . , q1ϕr).

Since the first element belongs to Q1 and the second one to Sα, we have that

S = Q1Sα, which implies that Q1 is transitive. Moreover, as Sα ∩ Q1 = 1,

then Q1 is a regular group. Since H ≤ Q1 and H is transitive, we obtain that

Q1 = H. This proves item 1.

Case 2: Consider now the case in which Hπi0 = Qi0 for some i0 ∈ r.

In this case Qi0 is a composition factor of H, which means by the Jordan-

Hölder Theorem [21, Theorem VII.1.8] that Q ∼= T , and so k ≤ r. Since S is

transitive on Ω,

|Ω| = |S : Sα| = |Q|r−1 = |T |r−1.

As H is transitive on Ω,

|T |r−1 = |Ω| = |H|
|Hα|

=
|T |k

|Hα|
.

Since k ≤ r, then k = r − 1 or k = r. If k = r, then H = S. Otherwise,

assume now that k = r − 1.

Given j ∈ r, since Hπj is a homomorphic image of H, by the Isomorphism

Theorem

Hπj ∼= T sj ∼= Qsj .

Since Hπj ≤ Qj, thus sj ∈ {0, 1}. If sj = 0 for some j ∈ r, then we are in the

previous case (H = Qj). So assume that sj = 1 for all j ∈ r. We will see that

this option is not possible. If it is true, thus H is a subdirect subgroup of S and,
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by Scott’s Lemma, H is a direct product

H = R1 × · · · ×Rm,

of full diagonal subgroups of subproducts
∏

l∈Ij Ql, in which {Ij} is a partition for

r. Since each Rj
∼= Q and H ∼= Qr−1, we have that m = r− 1 and, without loss

of generality, we can assume R1 ≤ Q1×Q2 and Rj ≤ Qj+1 for all 2 ≤ j ≤ r − 1.

Let π : S → Q1 × Q2 be a projection. Since π is surjective and S = HSα,

then

Q2 ∼= Q1 ×Q2 = Sπ = (Hπ)(Sαπ).

Notice that Hπ and Sαπ are non-trivial full strips of Q1×Q2. However, from

Lemmas 4.2.2 and 4.2.3, this is not possible. Thus sj = 0 must hold for some

j ∈ r. Therefore, either H = S or H = Qj for some j ∈ r, and item 2 is proved.

Case 3: Consider now the case in which 1 < Hπj < Qj for all j ∈ r.

We have that Sα is a full diagonal subgroup of S. Since H is transitive, then

S = HSα by Lemma 2.1.1. So we are under the hypotheses of Corollary 4.1.4.

Then r = 2, T ∼= A ∼= B, H = A × B and Q ∼= AB, where Q, A and B are

described in Table 4.3. Therefore, item 3 is proved.

Corollary 7.3.2. Let G be a finite quasiprimitive permutation group on Ω of

type SD and let S ∼= Qr be a plinth of G, where Q is a nonabelian simple group.

If (H,G) is a CharS-QP inclusion and H is regular, then H ∼= Qr−1. Otherwise,

if H is not regular, then either H = S or H = A × B and Q = AB, where

A ∼= A, B ∼= B, and Q, A and B are described in Table 4.3.

7.4 G has type HS

In this case G is primitive, and soc(G) = S × CG(S), where both S and CG(S)

are simple and regular.

Theorem 7.4.1. Let G be a finite quasiprimitive permutation group on Ω of

type HS and let S be a plinth of G. If (H,G) is a CharS-QP inclusion, then one

of the following holds.

1. Either H = S or H = CG(S) (in this case H is regular).

2. H = soc(G) (in this case H is not regular).
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3. H = A × B and S ∼= AB, where S, A and B are described in Table 4.3

(in this case H is not regular).

Proof. According to [8, Lemma 5.1], there is an involution i ∈ NSym(Ω)(G) that

interchanges S and CG(S). In particular this says that S ∼= CG(S). Consider

G := 〈G, i〉 ≤ Sym(Ω). Since G ≤ G and G is primitive, thus G is also primitive.

If P := soc(G), then P E G and P is normalized by i, then we have that P E G,

and by Lemma 3.1.4 (item 2) P is a minimal normal subgroup of G. By Lemma

3.1.8 Pα is a subdirect subgroup of P . Since P ∼= S2, we have by Lemma 3.1.4

(item 1) that Pα is a simple diagonal subgroup of P . Hence by O’Nan-Scott

Theorem (Theorem 2.5.4) P = soc(G) and G has type SD. Since H ≤ G ≤ G,

then (H,G) is a CharS-QP inclusion. By Theorem 6.0.1, H ≤ P . Therefore,

applying Theorem 7.3.1 and analyzing the possibilities, the result is proved.

Corollary 7.4.2. Let G be a finite quasiprimitive permutation group on Ω of

type HS and let S be a plinth of G. If (H,G) is a CharS-QP inclusion and H is

regular, then either H = S or H = CG(S). Otherwise, if H is nonregular, then

either H = soc(G) or H = A×B and S ∼= AB, where S, A and B are described

in Table 4.3.

7.5 G has type PA

In this case CG(S) = 1, hence soc(G) = S and, for a fixed α ∈ Ω, Sα is not a

subdirect subgroup of S and S is not regular.

Theorem 7.5.1. Let G be a finite quasiprimitive permutation group on Ω of

type PA and let S = Q1 × · · · × Qr be a plinth of G. Consider the projections

πi : S → Qi, where i ∈ r, and let (H,G) be a CharS-QP inclusion in which

H ∼= T k. Then one of the following holds.

1. S ∼= (An)r, Sα ∼= (An−1)r and |Ω| = nr, where n ≥ 10.

2. T is isomorphic to one of the groups A6, M12, PSp(4, 2a) or PΩ+
8 (q).

3. k = r and Ti ≤ Qi for all i ∈ r.

Proof. Let P := Sαπ1×· · ·×Sαπr. According to Lemma 3.2.2, we have that Gα

acts transitively on the direct factors of P . As a consequence, since Sα is not a

subdirect subgroup of S, then 1 < Sαπi < Qi for all i ∈ r.
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Since H ∼= T k, by Isomorphism Theorem and Lemma 3.1.4 (item 2) we have

that Hπi ∼= T si for each i ∈ r, where si ≥ 0. However, as S = SαH (Lemma

2.1.1),

Qi = Sπi = (Sαπi)(Hπi). (7.1)

Since Sαπi is proper in Qi, then Hπi 6= 1. Therefore, si ≥ 1 for all i ∈ r.

Case 1: Suppose that si0 ≥ 2 for some i0 ∈ r.

We have that Hπi 6= Qi for all i ∈ r. Otherwise, Q would be a composition

factor of H and so T ∼= Q. Since si0 ≥ 2, this is not possible. Therefore,

1 < Hπi < Qi for all i ∈ r.
Consider the factorization in 7.1. By [2, Theorem 1.4], we have that Q ∼= An

and Sαπi ∼= An−1 for all i ∈ r, where n ≥ 10. In particular, P ∼= (An−1)r.

Claim. Sα = P .

Proof of Claim. Assume that Sα 6= P . Since Sα is a subdirect subgroup of P ,

by Scott’s Lemma (Lemma 3.1.4), Sα is the direct product of diagonal groups

Sα = D1 × · · · ×Dl

for some l ≤ r. Renumbering if necessary and using that Sα 6= P , we can

assume that D1 ≤ Q1 × · · · × Qm, where 2 ≤ m ≤ r. Consider the projection

π : S → Q1 ×Q2. Since S = SαH, then

Q1 ×Q2 = Sπ = (Sαπ)(Hπ),

where Sαπ = {(qϕ1, qϕ2) : q ∈ An−1} and ϕi : An−1 → Sαπi are isomorphisms

for i = 1, 2. Since n ≥ 10, and in this case the automorphisms of An are

conjugations by elements in Sn [37, 2.4.1], we can extend the isomorphisms ϕi

to An, that is, for i = 1, 2 there exist isomorphisms ϕi : An → Qi such that the

restriction of ϕi to An−1 is equal to ϕi, and so

Q1 ×Q2 = D(Hπ) = D(Hπ1 ×Hπ2),

where D = {(qϕ1, qϕ2) : q ∈ An}. By Corollary 4.1.4 we have that the possibil-

ities for Q and H are in Table 4.3. Since we already know that Q ∼= An with

n ≥ 10, we obtain a contradiction. Therefore Sα = P , as desired.
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Applying the Orbit-Stabilizer Theorem, we see that

|Ω| = |S|
|Sα|

= nr.

So if si ≥ 2 for some i ∈ r, then S ∼= (An)r, Sα ∼= (An−1)r and |Ω| = nr, where

n ≥ 10.

Case 2: Suppose that si = 1 for all i ∈ r.

Since Ti is simple, we have that Ti is a strip of S for all i ∈ r. Moreover,

the supports of each Ti are pairwise disjoint. In fact, if for some l we have

Tiπl ∼= T ∼= Tjπl for distinct i, j ∈ r, then

T 2 ∼= (Ti × Tj)πl ≤ Hπl ∼= T,

that is an absurd. Then the supports are pairwise disjoint and we can write

T1 ≤ Q1 × · · · ×Ql1 ,

T2 ≤ Ql1+1 × · · · ×Ql1+l2 ,
...

...
...

Tk ≤ Ql1+l2+···+lk−1+1 × · · · ×Ql1+l2+···+lk .

First suppose that li ≥ 2 for some i ∈ r. Renumbering, if necessary, assume

that l1 ≥ 2.

Write l := l1 and consider the projection map π : S → Q1 × · · · × Ql. As

S = HSα, then

(Hπ)(Sαπ) = Q1 × · · · ×Ql.

Write L := Sαπ1 × · · · × Sαπl. Since Hπ = T1 and Sαπ ≤ L, thus

T1L = Q1 × · · · ×Ql.

Therefore, T1 acts transitively, by right multiplication, on the coset

[Q1 × · · · ×Ql : L].

Since T1 is simple, this action is faithful. Consider U := Sαπ1 and fix, for each
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i ∈ l, ti ∈ Gα such that Qi
ti = Q1. So we define the map

λ : [Q1 × · · · ×Ql : L] → [Q1 : U ]l

L(q1, . . . , ql) 7→ (Uq1
t1 , . . . , Uql

tl).

Analogously to the proof of Lemma 5.4.4, we obtain that λ is a bijection. So by

Lemma 2.2.2, we obtain that the actions of T1 on [Q1×· · ·×Ql : L] and [Q1 : U ]l

are equivalent. If we write Γ := [Q1 : U ], thus T1 can be considered a transitive

subgroup of Sym(Γl). We want to prove that T1 ≤ (Sym(Γ))l. To see this, let

t = (x1, . . . , xl) ∈ T . Fix i ∈ l and consider

σi : Γ → Γ

Uqi
ti 7→ U(qixi)

ti ,

where each qi ∈ Qi. We observe that in the definition above i, ti and xi are fixed.

Analogously to the proof of Lemma 5.4.7, we obtain that σi is a permutation of

Γ.

Finally, note that

(Uqt11 , . . . , Uq
tl
l )t = (U(q1x1)t1 , . . . , U(qlxl)

tl)

= ((Uqt11 )σ1, . . . , (Uq
tl
l )σl)

= (Uqt11 , . . . , Uq
tl
l )(σ1,...,σl).

Therefore, t = (σ1, . . . , σl) ∈ (Sym(Γ))l, and since t was arbitrary, we conclude

that T1 ≤ (Sym(Γ))l. According to Theorem 1.2.1, we have that T is isomorphic

to one of the groups A6, M12, PSp(4, 2a) or PΩ+
8 (q). Further, in this case, l = 2.

Now suppose that li = 1 for all i ∈ r. Then k = r and Ti ≤ Qi for all i ∈ r.
Therefore, the result is proved.

7.6 G has type CD

In this case CG(S) = 1 and for a fixed α ∈ Ω, Sα is a subdirect subgroup of S,

but it is not simple.

Theorem 7.6.1. Let G be a finite quasiprimitive permutation group on Ω of

type CD and let S = Q1×· · ·×Qr be a plinth of G, where each Qi is isomorphic

to a nonabelian simple group Q. Consider the projections πi : S → Qi, where

i ∈ r, and let (H,G) be a CharS-QP inclusion in which H = T1 × · · · × Tk and
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each Ti ∼= T for a nonabelian simple group T . Then

1. If 1 < Hπj < Qj for all j ∈ r, then k = r, H ∼= Ar and Q = AB, where

A ∼= A, B ∼= B, and Q, A and B are described in Table 4.3.

2. If Hπi0 ∈ {1, Qi0} for some i0 ∈ r, then Sα = D1×· · ·×Dl, where l divides

r, and T ∼= Q, where each Di and each Ti are full strips of S such that

| supp(Ti)∩ supp(Dj)| ≤ 1 and | supp(Dj)∩ supp(H)| = r/l or r/l−1, for

all i ∈ k and j ∈ l. Among the options for H satisfying these properties,

Algorithm 4.1 decides those that satisfy S = SαH.

Proof. Lemma 3.2.3 guarantees that there exist two sets Σ := {S1, . . . , Sl} and

D := {D1, . . . , Dl}, where l ≥ 2, each Di is a full diagonal subgroup of Si and

Si =
∏

Qj∈suppDi
Qj, such that S = S1 × · · · × Sk and

Sα = D1 × · · · ×Dl
∼= Ql. (7.2)

As we saw in the proof of the Main Theorem (Section 6.2, case G has type CD),

there is an S-normal cartesian decomposition E = {Γ1, . . . ,Γl} preserved by G

such that GΓi ≤ Sym(Γi) has type SD with socle Si, for all i ∈ l. Moreover, if we

consider the projections πi : S → Si, then (Hπi, G
Γi) is a CharS-QP inclusion.

Case 1: Suppose that 1 < Hπj < Qj for all j ∈ r.

Applying Theorem 7.3.1 (item 3) to the inclusion (Hπi, G
Γi), we obtain that

| supp(Di)| = 2 for all i ∈ l, that is, r is even and Si ∼= Q2, Hπi ∼= A for all

i ∈ r and T ∼= A, which implies that H ∼= Ak where k ≤ r, and Q = AB, where

A ∼= A, B ∼= B, and Q, A and B are described in Table 4.3.

Renumbering, if necessary, consider

S = Q1 ×Q2︸ ︷︷ ︸
S1

×Q3 ×Q4︸ ︷︷ ︸
S2

× · · · ×Qr−1 ×Qr︸ ︷︷ ︸
Sr/2

.

Claim. H = Hπ1 × · · · ×Hπr.

Proof of Claim. It is equivalent to prove that Hπi ≤ H for all i ∈ r. So assume

the opposite, that is, Hπi1 6≤ H for some i1 ∈ r. Then H has a nontrivial strip

X ∼= A such that supp(X) = {Qi1 , . . . , Qim}, where m ≥ 2.

Notice that the two factors Qj in each Si never appear together in supp(X),

that is, supp(Di) * supp(X) for each i ∈ l. In fact, if we assume that Q1, Q2 ∈
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supp(X) and consider the projection π1 : S → S1, since S = SαH, thus

S1 = Sπ1 = (Sαπ1)(Hπ1) = (D1)(Xπ1).

However, analyzing the orders,

|Q|2 =
|Q||A|

|D1 ∩Xπ1|
< |Q|2,

an absurd. Notice that there is nothing special about Q1, Q2. Therefore,

supp(Di) * supp(X) for all i ∈ l. Again, renumbering if necessary, we may

assume that Q2, Q3 ∈ supp(X). Considering the projection π : S → S1 × S2, we

have

S1 × S2 = Sπ = (Sαπ)(Hπ) = (D1 ×D2)(Hπ), (7.3)

where Hπ is contained in a subgroup H of S1×S2 that is isomorphic to A3. Let

P := (D1 ×D2) ∩ (H). Then |Q|4 = |Q|2|A|3
|P | , thus

|P | = |A|
3

|Q|2
. (7.4)

For what follows, consult Appendix A if necessary.

Suppose that Q ∼= A6 and A ∼= A5. Then by (7.4) |P | = 5/3, which is an

absurd. Therefore, if Q ∼= A6, then H does not have strips.

Assume that Q ∼= PΩ+
8 (q) and A ∼= Ω7(q). Then by (7.4)

|P | = d.q3.
(q6 − 1)

(q2 + 1)
.

We will prove that there exists an odd prime that divides q2 + 1 but does not

divide d.q3.(q6−1). If q is even, then q2+1 is odd, then there exists an odd prime

p that divides q2 + 1. On the other hand, if q is odd, then q2 + 1 ≡ 2 (mod 4).

Thus q2 + 1 is even but it is not a 2-power, so there exists an odd prime p that

divides q2 + 1. Therefore, in any of the cases, there exists an odd prime p that

divides q2 + 1. We want to prove that p does not divide d.q3.(q6− 1). Since p is

odd, then p does not divide q2− 1. As q6− 1 = (q2− 1).(q4 + q2 + 1), and p does

not divide q2 − 1 but divides q2 + 1, thus p does not divide q6 − 1. Then p is

the prime which we are looking for. This means that also |P | is not an integer,

which is an absurd. Thus if Q ∼= PΩ+
8 (q), H does not have strips.

Finally, suppose that Q ∼= M12 and A ∼= M11. Then by (7.4), |P | = 55.
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Denote Ai := Hπi. By Lemma 3.1.3, there exist isomorphisms ϕ2 : Q1 → Q2,

ϕ4 : Q3 → Q4 and ψ : A2 → A3 such that

D1 ×D2 ={(p, pϕ2, q, qϕ4) : p ∈ Q1, q ∈ Q3},

H ={(a1, a2, a2ψ, a4) : ai ∈ Ai}.

Consider isomorphisms ηi : Q→ Qi. Then we define the isomorphism

φ : S1 × S2 → Q4,

where φ = (η−1
1 , ϕ−1

2 η−1
1 , η−1

3 , ϕ−1
4 η−1

3 ). Let A1 := A1η
−1
1 , A2 := A2ϕ

−1
2 η−1

1 ,

A3 := A3η
−1
3 and A4 := A4ϕ

−1
4 η−1

3 . Thus Ai ∼= A and applying φ in (7.3), we

obtain Q4 = (D1 ×D2)φ(Hφ), where ψ : A2 → A3 is an isomorphism and

(D1 ×D2)φ ={(p, p, q, q) : p, q ∈ Q},

Hφ ={(a1, a2, a2ψ, a4) : ai ∈ Ai}.

However, this an absurd by Lemma 4.2.6. Then if Q ∼= M12, H does not have

strips.

Therefore, H = Hπ1 × · · · ×Hπr as asserted.

It means that if 1 < Hπi < Qi for all i ∈ r, then k = r and so H ∼= Ar.

Case 2: Suppose that Hπi0 = Qi0 for some i0 ∈ r.

In this case Qi0 is a composition factor of H, which means by the Jordan-

Hölder Theorem [21, Theorem VII.1.8] that Q ∼= T , and so k ≤ r. So each Ti is

a full strip of S.

Since S = SαH by Lemma 2.1.1, we have by Corollary 4.3.3 (item 3) that

| supp(Ti) ∩ supp(Dj)| ≤ 1 and | supp(Dj) ∩ supp(H)| = r/l or r/l − 1 for all

i ∈ k and j ∈ l. Among the options for H satisfying these properties, Algorithm

4.1 decides those that satisfy S = SαH.

Case 3: Suppose that Hπi0 = 1 for some i0 ∈ r.

Let j0 ∈ l such that Qi0 ≤ Sj0 = Qi0 × · · ·Qir/l−1
. Since (Hπj0 , G

Γj0 ) is a

CharS-QP inclusion where GΓj0 has type SD, by applying Theorem 7.3.1 (item

1) we obtain that Hπj0 = Qi1 × · · ·Qir/l−1
∼= Qr/l−1. Then Hπi1 = Qi1 . So this

case is a particular case of Case 2.
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7.7 G has type HC

In this case G is primitive, and soc(G) = S × CG(S), where both S and CG(S)

are regular and nonsimple. Since S is isomorphic to CG(S), if S ∼= Qr then

soc(G) ∼= Qm, where m = 2r.

Theorem 7.7.1. Let G be a finite quasiprimitive permutation group on Ω of

type HC and let P := soc(G) = Q1×· · ·×Qm, where each Qi is isomorphic to a

nonabelian simple group Q. Consider the projections πi : P → Qi, where i ∈ m,

and let (H,G) be a CharS-QP inclusion in which H = T1 × · · · × Tk and each

Ti ∼= T for a nonabelian simple group T . Let S ∼= Qr be a plinth for G and take

α ∈ Ω. Then

1. If 1 < Hπj < Qj for all j ∈ m, then k = m, H ∼= Am and Q = AB, where

A ∼= A, B ∼= B, and Q, A and B are described in Table 4.3.

2. If Hπi0 ∈ {1, Qi0} for some i0 ∈ m, then Pα = D1 × · · · × Dr, and

T ∼= Q, where each Di and each Ti are full strips of P in such a way that

| supp(Ti) ∩ supp(Dj)| ≤ 1 and | supp(Dj) ∩ supp(H)| = 2 or 1, for all

i ∈ k and j ∈ r. Among the options for H satisfying these properties,

Algorithm 4.1 decides those that satisfy P = PαH.

Proof. According to [8, Lemma 5.1], there is an involution i ∈ NSym(Ω)(G) that

interchanges S and CG(S). In particular this says that S ∼= CG(S). Consider

G := 〈G, i〉 ≤ Sym(Ω). Since G ≤ G and G is primitive, thus G is also primitive.

If P := soc(G), we have that P E G, and by Lemma 3.1.4 (item 2) that P must

be a direct product of some of the direct factors of S and CG(S). Since G is

transitive on these direct factors, we have by Lemma 3.1.4 (item 2) that P is

a minimal normal subgroup of G. Consider the projections π1 : P → S and

π2 : P → CS(G). By Lemma 3.1.8, Pαπ1 = S and Pαπ2 = CG(S). Then Pα

is a subdirect subgroup of P . Moreover, Pα ∩ S is a subdirect subgroup of

S and Pα ∩ CG(S) is a subdirect subgroup of CG(S). Then Pα is nonsimple.

Hence by O’Nan-Scott Theorem (Theorem 2.5.4) P = soc(G) and G has type

CD. Since H ≤ G ≤ G, then (H,G) is a CharS-QP inclusion. By Theorem

6.0.1, H ≤ P . Therefore, applying Theorem 7.6.1 we obtain that T ∼= Q and

Pα = D1 × · · · × Dl, where each Di and each Ti are full strips of P such that

| supp(Ti) ∩ supp(Dj)| ≤ 1 and | supp(Dj) ∩ supp(H)| = m/l or m/l − 1, for all
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i ∈ k and j ∈ l. However, since S is regular, |Ω| = |Q|r, and so

|Q|2r

|Q|l
=
|P |
|Pα|

= |Ω| = |Q|r.

Then l = r = m/2, which means that | supp(Di)| = 2 for all i ∈ r. Therefore,

the result is proved.
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Appendix A

Orders of some groups

G |G|
A5 22.3.5

A6 23.32.5

A7 23.32.5.7

A8 26.32.5.7

A9 26.34.5.7

S7 24.32.5.7

S8 27.32.5.7

M11 24.32.5.11

M12 26.33.5.11

PSL2(11) 22.3.5.11

Sp(6, 2) 29.34.5.7

Z2
6 o A7 29.32.5.7

Z2
6 o A8 212.32.5.7

Z3
6 o PSL4(3) 27.312.5.13

Ω7(3) 29.39.5.7.13

G2(2) 26.33.7

G2(2)′ 25.33.7

O−6 (2) 27.32.5.7

O+
6 (2) 27.34.5

O−4a(2) 24a2−2a+1.(22a + 1).
∏2a−1

i=1 (22i − 1)

Ω7(q) 1
d
.q9.(q2 − 1).(q4 − 1).(q6 − 1), where d = mdc(2, q − 1)

PΩ+
8 (q) 1

d2 .q
12.(q2 − 1).(q4 − 1)2.(q6 − 1), where d = mdc(2, q − 1)
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G-invariant

cartesian decomposition, 51

partition, 27

set, 12

j-th component, 54

action, 12

base group, 25

coset, 23

equivalent, 21

faithful, 12

product, of wreath product, 50

right coset, 23

right multiplication, 12

automorphism

fixed-point-free, 43

uniform, 43

base group

of the holomorph, 25

of the wreath product, 50

block, 19

system, 27

cartesian decomposition, 51

S-normal, 52

homogeneous, 51

trivial, 51

Embedding Theorem, 57

factorization, 14, 39

full, 39

multiple, 39

strong multiple, 39

Feit-Thompson Theorem, 37

group

characteristically simple, 26

imprimitive, 12

intransitive, 12

outer automorphism, 37

primitive, 12

regular, 19

symmetric, 11

transitive, 12, 19

holomorph, 25

inclusion

CharS-P, 16

CharS-QP, 16

problem, 14

Legendre’s Formula, 38

O’Nan-Scott Theorem, 29

orbit, 11

Orbit-Stabilizer Theorem, 19

permutation group, 11

imprimitive, 26

innately transitive, 13, 27

primitive, 26
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quasiprimitive, 13, 27

permutational isomorphism, 21

plinth, 27

Schreier’s Conjecture, 37

Scott’s Lemma, 32

socle, 26

stabilizer, 11

pointwise, 11

pointwise, of a cartesian decompo-

sition, 51

setwise, 11

strip, 30

full, 31

non-trivial, 31

subgroup

diagonal, 31

full diagonal, 31

minimal normal, 26

subdirect, 31

trivial partitions, 12

wreath product, 50
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