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Abstract

We say that G < Sym({2) is transitive if G has just one orbit on 2, namely
{Q}. If G is transitive on © and the only partitions of Q preserved by G are
{Q} and {{a}: a € O}, then we say that G is primitive.

The O’Nan-Scott Theorem [25] classifies the finite primitive permutation
groups by dividing them into classes, according to the structure of their minimal
normal subgroups. An important result in this classification is that every permu-
tation group admits at most two distinct transitive minimal normal subgroups
[8, Lemma 5.1].

A permutation group is quasiprimitive if all its nontrivial normal subgroups
are transitive. For example, all primitive permutation groups are quasiprimitive.
Finite quasiprimitive groups were characterized by Cheryl Praeger [2§], who
showed that they can be classified similarly to the O’Nan-Scott classification of
finite primitive permutation groups.

The inclusion problem for a permutation group H asks to determine the
possible (primitive or quasiprimitive) subgroups of the symmetric group that
contain H. In other words, given a permutation group H < Sym({2), we are
asking about its overgroups. For instance, it is a common situation in algebraic
combinatorics that we know a part of the group of automorphisms of a com-
binatorial structure (for example, a Cayley graph) and we wish to determine a
larger automorphism group which may be primitive or quasiprimitive.

In this work we describe all inclusions H < G such that H is a transitive non-
abelian characteristically simple group and G is a finite primitive or quasiprim-
itive permutation group with nonabelian socle. The study of these inclusions is
possible since we have detailed information concerning factorizations of finite
nonabelian simple groups. For this reason, many of the results presented here

rely on the classification of finite simple groups, specially chapters [4] and [7]



Resumo

Seja 2 um conjunto finito nao vazio e considere G um grupo de permutagoes de
Q, isto é, G < Sym(f2). Dizemos que GG é transitivo em (2 se dado qualquer
par de pontos em (), existir uma permutacao em GG que associa estes pontos. Por
outro lado, dizemos que G é primitivo em () se GG for transitivo e nao preservar
uma particao nao trivial de €2 — por particao trivial queremos dizer a particao
formada por subconjuntos de um tnico ponto e a particao composta somente
por €. Por exemplo, o grupo simétrico e o grupo alternado de ) em suas agoes
naturais sao ambos primitivos.

O Teorema de O’Nan-Scott classifica os grupos de permutacoes primitivos
finitos dividindo-os em classes, de acordo com a estrutura de seus subgrupos
normais minimais [25]. Um importante resultado nesta classificacao é que todo
grupo de permutacoes admite no maximo dois subgrupos normais minimais tran-
sitivos distintos [8, Lemma 5.1].

Um grupo de permutagoes é dito quase-primitivo se todos os seus subgru-
pos normais nao triviais sao transitivos. Por exemplo, todo grupo de permu-
tacoes primitivo é quase-primitivo, mas visto que um grupo simples transitivo é
sempre quase-primitivo, mas nem sempre primitivo, a classe dos grupos quase-
primitivos é estritamente maior que a classe dos grupos primitivos.

Grupos de permutagdes quase-primitivos finitos foram caracterizados por
Praeger em [28]. Neste artigo Praeger mostrou que os grupos quase-primitivos
podem ser classificados similarmente a classificacao dos grupos primitivos.

O problema de inclusao para um grupo de permutacoes H almeja determinar
0s possiveis subgrupos (quase-primitivos ou primitivos) do grupo simétrico que
contenham H. Tal problema possui um nimero importante de aplicagoes em
teoria de grupos, combinatoria algébrica e teoria algébrica de grafos. Por exem-
plo, é uma situacao comum em combinatéria algébrica sabermos uma parte do
grupo de automorfismos de uma estrutura combinatoria, por exemplo um grafo

de Cayley, e queremos determinar um grupo de automorfismos maior que pode



ser quase-primitivo ou primitivo.

O estudo do problema de inclusao é possivel visto que héd informacoes de-
talhadas sobre as fatoracoes de grupos simples nao abelianos finitos. Alguns
resultados gerais sobre tais fatoragoes podem ser encontrados em [Il, 26].

Neste trabalho descrevemos todas as inclusoes H < G tais que H é um
grupo caracteristicamente simples, nao abeliano e transitivo, e G é um grupo
de permutacoes finito quase-primitivo com socle nao abeliano. A este tipo de
inclusao damos o nome de inclusao CharS-QP.

Tais inclusoes ocorrem naturalmente, por exemplo quando tomamos um
grupo quase-primitivo finito G que possui um subgrupo normal minimal nao
abeliano S. Se denotarmos por soc(G) o socle de G, tanto S < G quanto
soc(G) < G sao inclusoes CharS-QP.

Ao tratar esse problema, nosso primeiro passo foi imergir explicitamente, sob
algumas hipdteses, um grupo de permutacoes quase-primitivo em um produto

entrelagado com a acao produto, de forma que tal imersao fosse permutacional.

Teorema 1. (Teorema de Imersao) Sejam G um grupo de permutagoes quase-

primitivo em e a € . Assumamos as sequintes condigoes:
1. §=Q1 X --- xQ, € um subgrupo normal minimal de G, em que cada Q;
€ caracteristicamente simples e nao abeliano, e r > 2.

2. G age transitivamente em {Q1,...,Q,} por conjugagdo.

3. Consideremos as projecoes m;: S — (Q;, € assumamos que

Se = (Sam1) X -+ X (Sam,).

Se considerarmos T’ := [Q1: (Q1)a), entdo eziste uma imersio permutacional
Y: G — Sym([')wrS,, em que consideramos o produto entrelacado como um

grupo de permutacgoes agindo com a ac¢ao produto em I'".

O resultado acima é um dos pontos-chave para demonstrar nosso segundo

resultado.

Teorema 2. (Teorema principal) Seja H < G uma inclusao CharS-QP, tal que
soc(G) € ndo abeliano. Entdo H < soc(G).

Com o intuito de entender melhor as inclusoes do teorema principal, ata-
camos o problema analisando separadamente cada uma das classes de O’Nan-
Scott (Capitulo . Tais resultados dependem fortemente da fatoracao de grupos

simples, bem como do teorema de classificacao dos grupos simples finitos.



Contents

[Agradecimentos|

[Abstract]
[Resumol
Notation|

[1 Setting the scene

2 About quasiprimitive permutation groups|

[3.1 Subgroups of direct products|. . . . . . . .

[3.2  Minimal normal subgroups and stabilizers|

[3.3  Finite simple groups] . . . ... ... ...

[4  Factorizations of groups|

[4.1 Factorizations of a simple group| . . . . . .

[4.2  Factorizations and uniform automorphisms|

11
11
12
16
18

19
19
21
23
25
26

30
30
34
37
38



4.3 An algorithm| . . . . ... ... ... ... .. 000

[ Wreath products|
(5.1  Wreath products and product action| . . . .. ... ... ... ..

[5.2  Cartesian decompositions|. . . . . . . . . . . . . ... ... ...

[5.3  Characteristically simple groups in wreath products| . . . . . . . .
(5.4 The Embedding Theorem| . . . . ... ... ... ... ......

[5.5 Some consequences| . . . . . ...

[6 Characteristically simple subgroups|

[6.1 That story about characteristically simple groups| . . . . . . . ..

[7__Char5-QP Inclusions|
(7.1 G hastype As|. . . . . . . . ..
(7.2 Ghastype Tw| . ... ... ... ... ...
(7.3 GhastypeSp|. . . . . .. ...
(74 Ghastype HS . . .. ... .. ... ... ... . ...
(7.5 GhastypePal. . . . . ... o
(7.6 GhastypeCp|. . . . . . . . ...
[7.7 Ghastype HC| . . . . ... ...

[References|

[A Orders of some groups|

Tndex

50
20
ol
93
56
60

62
62
63

73
74
74
1)
7
78
81
85

87

91

92



Notation

Aut(G)
Aut(G)
Inn(G)
Out(G)
K xH
GwrH

Symmetric group on a set 2
Alternating group on a set 2
Symmetric group on {1,...,n}
Alternating group on {1,...,n}
Short notation for {1,...,n}

Image of a under g

Orbit of a under G

Stabilizer of o under G

Setwise stabilizer of A under G
Pointwise stabilizer of A under G
Permutation group induced by Ga on A
j-th component of G

Kernel of

Image of p

Number of elements of a set X
Centralizer of H in G

Normalizer of H in G

Set of the cosets of H in G

Number of cosets of H in G
Subgroup of G generated by S

n-th Cartesian power of (2

The direct product of n copies of a group GG
Automorphism group of the graph G
Automorphism group of a group G
Group of inner automorphisms of G
Group of outer automorphisms of G
Semidirect product of K and H
Wreath product of G and H



The semidirect product G x Aut(G)

Socle of G

Cartesian decomposition
Pointwise stabilizer of £ under G
1-th projection

General linear group

Projective special linear group
Affine general linear group
Symplectic group

Projective symplectic group
Mathieu groups

Orthogonal groups

Q-groups

Projective Q2-groups

Exceptional group of Lie type G,
Cyclic group with order n
Extension of Sp(d, q) by Cs
Extension of PSp(d, q) by Cs
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Chapter 1

Setting the scene

1.1 Conventions

Throughout this work, groups will be labeled with capital Roman letters and
group elements will be written in lower case Roman letters. The only exception
will be when working with permutations, which will be labeled with lower case
Greek letters.

Sets on which groups act will be written in capital Greek letters and their
elements will be written, exclusively, in lower case Greek letters «, 3, v, 0 and
w. Other lower case Greek letters will denote functions. The letter 7 will always
represent a projection.

The group of all permutations of a set €2 is the symmetric group, denoted
by Sym(Q2). A permutation group of 2 is a subgroup of Sym(2).

We will use exponent notation for group actions, that is, given a point o € €,

we denote by af the image of o under the action of a group element g. Further,
o :={a?: g€ G}

denotes the orbit and
Go={g€G: ! =a}

denotes the stabilizer of a point « under a group G.
Let G act on Q. If A C €, we define the setwise and the pointwise

stabilizer of A in G as

Ga:={g € G: A = A},

11



Chapter 1. Setting the scene 12

Gy ={ge€G: 6 =dforall § € A},

respectively. If Go = G, that is, A9 = A for all ¢ € G, then A is said to
be G-invariant. The quotient Ga/G(a) is denoted by G2, and is viewed as a
permutation group on A in the natural way. Further, if P is a partition of €2,
we say that P is G-invariant if I'Y € P for all I' € P. In this case we also say
that G preserves P. We say that P is uniform if all its parts have the same
size.

Given any function f and a point « in its domain, we will denote by af
the image of o under f. Given a natural number n, the set {1,...,n} will be
denoted by n.

Given an action of G on a set €2, we can obtain a corresponding representation
p: G — Sym(Q) via a9 := 9. On the other hand, given a representation
p: G — Sym(£2), we can define an action of G on  via ¢ := 9. Thus, we will
use freely expressions like “this action is faithful” meaning that the corresponding
representation is faithful.

We will use indiscriminately some basic results in Group Theory, such as
Isomorphisms Theorems, Correspondence Theorem, Jordan-Holder Theorem.
Excellent books about these topics are [35, 2I]. However, the last one is in
Portuguese.

In all this work we deal with finite quasiprimitive groups only, but some of
the results are true also for infinite permutation groups. If this is the case, we

will indicate that explicitly.

1.2 Introduction

Let G be a group acting on a set 2. We say that G is transitive on € if given
two points a, 3 € 2, there is an element ¢ € G such that o = (. This is
equivalent to saying that G has just one orbit on €, that is, o = Q for all
a € . As a simple example, you can consider the action of G on itself by
right multiplication, that is, ¢" := gh for all g, h € G. This action is clearly
transitive, since fixed ¢, h € G, we obtain that @@ ' = h. If G is not transitive,
then it is called intransitive.

For a set (2, we say that the partitions {2} and {{a}: o € Q} are the trivial
partitions of 2. If (G is a transitive permutation group on €2 that preserves a
nontrivial partition of {2, then we say that G is imprimitive. Otherwise, G

is primitive. For example, the symmetric and the alternating groups in their



Chapter 1. Setting the scene 13

natural actions are both primitive.

Let GG be a group and let H be a subgroup of G. Then H is said to be a
minimal normal subgroup of G if H is a normal subgroup of G and the only
normal subgroup of G properly contained in H is the identity subgroup.

The O’Nan-Scott Theorem classifies the finite primitive permutation groups
by dividing them into classes, according to the structure of their minimal normal
subgroups [25]. An important result in this classification is that every permuta-
tion group admits at most two distinct transitive minimal normal subgroups [8|
Lemma 5.1].

A permutation group is quasiprimitive if all its nontrivial normal subgroups
are transitive. For example, all primitive permutation groups are quasiprimitive
(Lemma , but, since a transitive simple group is quasiprimitive, but not
always primitive, the class of quasiprimitive permutation groups is strictly larger
than the class of primitive permutation groups.

The class of quasiprimitive groups is often more suitable for combinatorial
and graph theoretic applications than the class of primitive groups. For instance,
quasiprimitive groups play a central role in understanding the structure of finite
non-bipartite 2-arc-transitive graphs |28, 241, 30].

Finite quasiprimitive groups were characterized by Cheryl Praeger [28], who
showed that they can be classified similarly to the O’Nan-Scott classification of

finite primitive permutation groups. See Section to see this classification.

Primitive

Quasiprimitive
Innately transitive

Transitive
Figure 1.1: Subclasses of transitive groups.

Similarly to what was done for finite primitive and quasiprimitive permuta-
tion groups, Bamberg and Praeger [§] noticed that it was possible to describe,
using an O’Nan-Scott classification, a strictly larger class of transitive permuta-
tion groups, the so-called innately transitive groups. We say that a permutation

group is innately transitive if it has a transitive minimal normal subgroup,
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which is called a plinth of the group. It follows from the definition that any
finite quasiprimitive group is innately transitive. The authors gave in [§, Propo-
sition 5.3] necessary and sufficient conditions for an innately transitive group to
be quasiprimitive.

The inclusion problem for a permutation group H asks to determine the
possible (primitive or quasiprimitive) subgroups of the symmetric group that
contain H. In other words, given a permutation group H < Sym({2), we are
asking about its overgroups.

The inclusion problem has a number of important applications in group the-
ory and in algebraic combinatorics For instance, it is a common situation in
algebraic combinatorics that we know a part of the group of automorphisms of
a combinatorial structure (for example, a Cayley graph) and we wish to deter-
mine a larger automorphism group which may be primitive or quasiprimitive.
For example in [13], Fang, Praeger and Wang described, for a finite nonabelian
simple group G and for G a connected undirected Cayley graph for G, all the
possible structures for the full automorphism group Aut(G). This result relies
on a detailed study of the inclusion problem for G in Sym(G) under its Cayley
representation. In turn, the study of this inclusion problem is possible since we
have detailed information concerning factorizations of finite nonabelian simple
groups.

If A and B are proper subgroups of a group G such that G = AB, then we
call this expression a factorization of G. Some general results on factorizations
of almost simple groups can be found in [26, [1].

Using the blow-up construction of a primitive group from smaller primitive
groups introduced by Kovécs, Praeger [27] solved the inclusion problem for finite
primitive permutation groups by analyzing the O’Nan-Scott classes. Her paper
contains a detailed description of all pairs (H, G) of finite primitive permutation
groups such that H < G. The main result of this paper, which is too complex
to reproduce here as a single theorem, states that each such inclusion is either
natural, exceptional, a blow-up of exceptional inclusions, or a composition of
such a blow-up and a natural inclusion.

The more general problem of describing inclusions H < G in the case when
either H is quasiprimitive or both H and G are quasiprimitive was addressed by
[2] and [29]. The philosophy of the results in [2, 29] is similar to the results in
[27], but the variety of possible inclusions is even richer than in the case when
both H and G are primitive.

Several papers [10 [16, 22, 23, 3] addressed the inclusion problem in the
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special case when the overgroup G is a member of a particular O’Nan-Scott
class (see Section for the definition of the O’Nan-Scott classes). In a series
of articles Baddeley, Praeger, and Schneider [3, 4, 32 5] described inclusions
H < G assuming that H is innately transitive and G is a wreath product acting
in product action (see Section for the definition). In this more specialized
case, the conclusions are often rather precise as in the following theorem, for
instance. See Section for the definition of socle.

Theorem 1.2.1. [3, Theorem 1.1] Let S be a finite almost simple group with
socle T' such that S is a subgroup of W := Sym(I") wr S, acting in product action
on T'Y, with |T|,1 > 2. Then one of the following must hold.

1. T is intransitive.

2. T is isomorphic to one of the groups Ag, Mys, PSp(4,2%) or PQJ(q).
Further, in this case, | =2 and T is in the base group (Sym(T))* of W.

In later papers Baddeley, Praeger and Schneider generalized Theorem [1.2.1
and described inclusions of other types of innately transitive and quasiprimitive
groups into wreath products in product action. The proof of the following result
can be found in [4 [6].

Theorem 1.2.2. Let S be a quasiprimitive, almost simple permutation group
acting on T, and for some l > 2 set W := Swr S; acting on I'" in product action.
Let U be the unique minimal normal subgroup of S and let N := Uy x- - -xU; = U
be the unique minimal normal subgroup of W. Moreover, assume that G is an
innately transitive subgroup of W with a nonabelian plinth M =Ty x --- X T},
where Ty, ..., Ty are finite, nonabelian simple groups all isomorphic to a group

T. If m: W — S is the natural projection map, then
1. soc(G) < soc(W) = (soc(S))".
2. Gm has at most two orbits on .

3. If G has two orbits on I, then T is isomorphic to one of the groups Ag,
My, PSp(4,2%) or PQ (q).

4. The O’Nan-Scott class of G is not Sp.
5. Assume that G is transitive. Then exactly one of the following holds.

(a) k =1: the T; and U; can be indexed so that Ty < Uy, ..., Ty < Ug.
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(b) 1 = 2k: T is isomorphic to one of the groups Ag, My2, PSp(4,2%) or
PQf (q). Moreover, the T; and U; can be indexed so that Ty < Uy X U,
To < Us X Uy, ..., T < U1 X Uy

(¢) None of the case (a)-(b) holds and U = Alt(T).

1.3 About this thesis

The purpose for this doctoral research is to extend Theorem for character-
istically simple groups. In particular we aim to describe all inclusions H < G
such that H is a transitive nonabelian characteristically simple group and G is

a finite primitive or quasiprimitive permutation group.

Definition 1.3.1. Let (H,G) be a pair of permutation groups on a set Q. We
say (H,G) is a CharS-QP inclusion if H < G, where H is a transitive nonabelian
characteristically simple group, and G is a finite quasiprimitive permutation

group. It is called a CharS-P inclusion if, in addition, G is primitive.
We observe that such inclusions occur rather naturally.

Example 1.3.2. If G is a quasiprimitive permutation group and S is a non-
abelian minimal normal subgroup of GG then S is a transitive nonabelian char-
acteristically simple subgroup of G. Thus the socle soc(G) of G is also a tran-
sitive nonabelian characteristically simple subgroup of G. Hence (S,G) and
(soc(@), G) are CharS-QP inclusions.

Example 1.3.3. Suppose that S is an almost simple group acting on I', and
let @ := soc(S). Assume that @ is transitive and hence S is quasiprimitive.
Suppose that T is a transitive nonabelian simple subgroup of Q. If [ > 2
then T' is a transitive characteristically simple subgroup of the quasiprimitive
group Q wr S; acting on I' in product action. Hence (T!, Q wr S;) is a CharS-QP

inclusion.

Example 1.3.4. Suppose that G is a quasiprimitive group of Sp type and let
S be the the socle of G. Then S = Q* where @ is a nonabelian simple group.
As noted in Example [[.3.2] (S, G) is a CharS-QP inclusion. However, in this
case, if Q; is a simple factor of S = Q*, then Cg5(Q;) = H#i Q; is also a
transitive nonabelian characteristically simple subgroup of G. Thus we obtain
that (Cs(Q;),G) is also a CharS-QP inclusion.
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Example 1.3.5. Suppose that 7" is one of the groups listed in part (ii) of
Theorem and consider T as a transitive subgroup of Wy := Sym(I") wr Sy. If
k > 1, then T* is a transitive characteristically simple subgroup of the primitive
group Wy wr Sy. Thus we obtain the CharS-P inclusion (7%, W wr Sy,).

Example 1.3.6. Let G be the affine transitive permutation group AGL3(2),
that is, G = F,* x GL3(2). According to [9], G contains a transitive subgroup 7
isomorphic to GL3(2) = PSL3(2). Therefore, if £ > 1, then the wreath product
G wr S contains T% as a transitive subgroup. Hence we obtain the CharS-P
inclusion (7%, Gwr Sy).

Our objective in the proposed research is two-fold:

1. To find new kinds of CharS-QP and CharS-P inclusions that cannot be

obtained from the previous examples.

2. To prove that all CharS-QP inclusions can be obtained by the constructions
presented in Examples [1.3.2 and the constructions uncovered in the

previous item.

Note that when (H,G) is a CharS-QP inclusion such that H is a minimal
normal subgroup in N := Ng(H), then N is an innately transitive subgroup
of G and hence the pair (N, G) is described by the earlier work of Baddeley,
Praeger, and Schneider. Our contribution to this project is to describe such
pairs without assuming that H is a minimal normal subgroup of N.

The first step in the description is the following theorem.

Theorem 1.3.7. (Main Theorem) Let (H, G) be a CharS-QP inclusion such that
soc(@G) is nonabelian. Then H < soc(G).

In order to prove this theorem and study its consequences, the text of this
thesis is divided into six chapters.

In Chapter [2] we recall some basic definitions and results on permutation
groups and group actions, and give some results related to coset actions. The
key result in this chapter is the O’Nan-Scott Theorem for finite quasiprimitive
permutation groups according to the properties of their minimal normal sub-
groups (Theorem [2.5.4)).

In Chapter |3| we have some properties about subgroups of direct products,
and we state the Scott’s Lemma (Lemma [3.1.4). Next we have results about

minimal normal subgroups and stabilizers and about simple groups. Lastly, we
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give number theoretic results that will be used to prove the Main Theorem and
to describe its consequences.

In Chapter [4] we present the concept of full and strong multiple factoriza-
tions, and we give some results regarding group factorizations. The last section
presents an algorithm that characterizes the factorizations of finite nonsimple
and nonabelian characteristically simple groups into subgroups whose factors
are the product of pairwise disjoint full strips.

In Chapter [5| we present the concept of a cartesian decomposition and we
state and demonstrate the Embedding Theorem (Theorem [5.4.2)). This result
says explicitly, under some hypotheses, how to embed a quasiprimitive permu-
tation group into a wreath product in product action.

In Chapter [6] we have the proof of the Main Theorem by analyzing each
O’Nan-Scott class.

Chapter [7] applies the Main Theorem to describe the CharS-QP inclusions
(H,G) where G has a nonabelian plinth.

1.4 To be continued...

We observe that the Main Theorem says nothing about the groups with abelian
socle. So the next natural step is to study these groups, trying to indicate the
exceptions that do not satisfy the theorem. In [9] Baumeister determines all the
maximal transitive subgroups of the primitive affine permutation groups. Since
quasiprimitive groups with an abelian socle are primitive (of type HA), we want
to use her description to analyze such groups.

In order to understand better the inclusions in the Main Theorem, another
step to do is to describe explicitly the regular groups H that occur in such
inclusions. In fact, we already obtained some results for the classes Tw, Sp and
HS (Chapter [7).

Finally, we plan to apply our results to graph theory, generalizing some
results in [I3]. The idea is to study quasiprimitive subgroups of Aut(G), where
G is a connected undirected Cayley graph of a nonabelian group G. However,
unlike the article, which treats the case when G is nonabelian and simple, we
will study the more general case in which G is nonabelian and characteristically

simple.
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About quasiprimitive

permutation groups

In this chapter we will present the O’Nan-Scott Theorem for quasiprimitive per-
mutation groups according to the structure of their minimal normal subgroups.
However, before stating the theorem, we need some preliminary definitions and

results, given in the next sections.

2.1 Transitive groups, stabilizers and blocks

This section contains basic results in the theory of permutation groups and group
actions. At the end, we present the close relation between blocks and stabilizers.

Let GG be a group acting on a set {2. We recall that G is transitive if for all
a € © we have that a® = Q. We say that G is regular on ) if G is transitive
and G, = 1 for each a € Q). It is easy to prove that for a transitive group the
stabilizers form a conjugacy class, so we can simply say that G is regular if G is
transitive and G, = 1 for some « € ). Further, a block (of imprimitivity) for a
transitive group G is a nonempty subset A of 2 such that for all g € G we have
either A9 =Aor A/9NA=a.

A basic result related to transitive groups is the Orbit-Stabilizer Theorem
[12, Theorem 1.4A], which says that given a transitive group G acting on a set
(2, then for each o € Q we have that |G: G,| = |€|. In particular, if  is finite,
then G is regular if, and only if, G is transitive and |G| = [Q].

We present below a useful result that relates stabilizers to transitive sub-

groups.

19
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Lemma 2.1.1. [12, Exercise 1.4.1] Let G be a transitive group on Q, Y a
subgroup of G and o € 2. Then Y 1s transitive on € if, and only if, G = G,Y .
In particular, the only transitive subgroup of G that contains G, is G itself.

Proof. First we suppose that Y is transitive. Given g € G, we will show that
there is y € Y such that gy € G,. Consider § := . Since Y is transitive, there
is x € Y such that g = o*. Then

Y (ozg)”l’_1 =5 =a.
So taking y := z71, it follows that gy € G,. Hence g = (gy)y~! € G,Y. Then
G=G,Y.
Suppose now that G = G,Y. To see that Y is transitive, we will show that
a¥ = Q. Solet B € Q. Since G is transitive, there is ¢ = sy € G, where s € G,
and y € Y, such that

b=a=a" =aY,

which means that 5 € o¥. Since 3 was arbitrary, we find that o¥ = Q. Therefore

Y is transitive, which concludes the proof. [

Similarly to the Galois Correspondence for field extensions, in a transitive
group there is a bijection between its blocks containing a fixed point « € €2 and

the overgroups of G, as shown in the following lemma.

B S
04
ac A = Ga
all H>G,
v l=0

Figure 2.1: Blocks and stabilizers

Lemma 2.1.2. [12, Theorem 1.5A] Let G be a transitive group on 2 and o € Q.
Consider B the set of all blocks A for G with a € A, and let S denote the set
of all subgroups H of G with G, < H. Then there is a bijection ¥ of B onto
S given by (A)V := Ga, whose inverse mapping ® is given by (H)® = ofl.
Furthermore, the mapping ¥ is order-preserving, that is, if A,I' € B, then
A CT if, and only if, (A)¥ < (I')W.
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2.2 Equivalent representations

Algebraic structures are often studied up to isomorphism. For many group
theoretic applications the concept of isomorphism between abstract groups is
sufficiently strong. However, this is not the case for permutation groups. For
example, we may consider the symmetric group Ss acting on {1, 2, 3} naturally,
but also on {1,2,3,4,5,6} via its Cayley representation. Since these actions are
very different, the resulting permutation groups must be considered as distinct.
In order to make this distinction between permutation groups, we need the

following definition.

Definition 2.2.1. Let GG be a permutation group on a set €2 and let H be a per-
mutation group on a set €)’. Then G and H are permutationally isomorphic
if there is an isomorphism 1 : G — H and a bijection A:  — €' such that, for
all g € G and a € Q, we have (a9)\ = (a\)%¥.

Q Q
A

[0 _— 0[/\
g g¥

A

o ———— (a9 = (a/\)(yv‘f)

Figure 2.2: Permutational isomorphism from G on 2 to H on .

Essentially this means that the groups are “the same” except for the labeling
of the points.

Analogously, given a group G acting on two sets 2 and §2', we can compare
the actions. That is, we say that these actions are equivalent if there is a
bijection A: © — Q' such that, for all ¢ € G and « € Q, we have ()X = (aM)d,
with the respective actions. On the other hand, given a bijection between two
sets, if a group acts on the first set, the following result says that the group acts

on the second one too, and the actions are equivalent.

Lemma 2.2.2. Let \: Q — ' be a bijection between two sets Q and €V, and
suppose that G is a group acting on Q2. Then G has an action on Q' given by

w9 = (WA, (2.1)

where w € ' and g € G. Furthermore, the actions of G on Q and Q' are

equivalent.



Chapter 2. About quasiprimitive permutation groups 22

Proof. Clearly w9 € €. In order to verify that the relation above defines an

action, we consider g, h € G and w € . Then
wh = (WA HA =w,

(@) = @A) A = (@A)AAA = (@A) = et

This shows that (2.1]) defines an action. Now, to see that the actions of G on
2 and €2 are equivalent, let a € 2 and g € G. We will show that (a9)\ = (a)’.
From ([2.1)) we have that

(@N)? = ((aXNA1)9A = (a9)A.

Therefore the actions are equivalent, which concludes the proof. n

In other words, the result above says that if A\: Q — ' is a bijection and
p o G — Sym(€) is a representation of G on €2, we can extend A to obtain an
isomorphism \: Sym(Q) — Sym({), defined by o + A7!o), in a way that
pX': G — Sym(§2') is a representation of G on Q' equivalent to p. Therefore we

conclude that the following diagram is commutative.

,u
G — Sym(Q)

Sym ()

Figure 2.3: Equivalent actions of G

When a group G has two transitive actions, there is a simple method to

verify if the actions are equivalent, as shown in the result below.

Lemma 2.2.3. [I12, Lemma 1.6B]) Let G be a transitive group on two sets €
and ', and let P be a stabilizer of a point in the first action. Then the actions
of G on Q and ' are equivalent if, and only if, P is the stabilizer of some point

in the second action.
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2.3 Coset actions

Let G be a group and K < G. There is a transitive action on the right cosets
of K in G defined by (Kg1)%” := Kgigs, for all g;,90 € G. We call this the
right coset action of G on K. In this section we present a result that gives
us an action that extends the right coset action of a normal subgroup to the
whole group. This result is a slight adaptation of Lemma 4.8 in [8], of Bamberg
and Praeger. We will use it later to prove the Embedding Theorem (Theorem
, and despite the statement being technical, there is a particular case given
by Corollary which interests us immediately and that explains in part our
approach.

Lemma 2.3.1. Let G be a group and let K and Y be subgroups of G such that
K QG and G = KY. Further, suppose that P is a subgroup of K normalized by
Y such that KNY < P. Then G has an action on the coset space ' := [K: P]
given by

(Px)™ = P(y 'aky), (2.2)

where x, k € K andy € Y. Moreover, Gp = PY . Thus the action of G extends

the action of K on ' wia right multiplication.

Proof. First we will show that relation (2.2)) is independent of the coset repre-

sentatives. Consider elements xq, 9, k1, ko € K and y;,y; € Y such that

P$1 = PZL’Q, (23)
ki = kayso. (2'4)

We have to verify that P(y; @1kiy1) = P(yy @2koys), which is equivalent to
show that (y; 'z1ki1y1)(yy '2okays) ™t € P. But from (2.4) it follows that

(" wikryn) (v5 " wakaye) ™' = yy ' wy (kayo)ys s ' 25 e
= y; 'y e

= (1 '2) (2 (125 o). (2.5)

Observe that we divided the expression above into two factors: y; 'y, and

yy (125 M )yo. We work with the first factor. Since Y normalizes K N'Y and by
(2.4) y1y5, " € K, we have that

(i) P =yt s Dy € KNY < P,
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that is, y; 'y2 € P. We analyze now the second factor. Since Y normalizes P,
and z12,' € P by , we have that y, ' (2125 ')y, € P. Thus both factors of
are elements of P, and we conclude that is independent of the coset
representatives.

We show now that indeed defines an action. Clearly the identity fixes
all the elements of [K: P|. Let x, k1, ko € K and y;,y2 € Y. Then

(k1y1) (k2y2) = (kiyikayi ") (v1y2),

where the first factor is an element of K and the second belongs to Y. Therefore,

(Pl")(klyl)(kzyz) = P(yly2)71x<klylk2y;1)(ylyQ)'

Also we have

(P i = [P k)
= Plyy " (y1 " wkiy ) kayo)
= P(yry2) " w(kvyikayy ) (y1ye)-
Then
[(px)hm]k‘zm _ (px)(k1y1)(k2y2)’

which shows that defines an action.

In order to see that Gp = PY, consider g = ky € GG. We have that g = ky
and P9 = P(y~'ky). So g € Gp if, and only if, P(y 'ky) = P, that is, if
y~tky € P. Since Y normalizes P, it is equivalent to say that k € yPy~! = P.
Therefore, g = ky € Gp if and only if k¥ € P, which means that Gp = PY. By
Dedekind’s Modular Law [35, Proposition 1.3.14],

GprNK=PYNK=PYNK)=P.

Hence the stabilizer in K of this action is P. Thus the G-action so defined
extends the K-action on €. This completes the proof. n

Corollary 2.3.2. Let G be a group acting on 2. Consider a € £ and let S be
a transitive normal subgroup of G. Thus writing G = SG,, we have that G has

a transitive action on ' = [S: S,| given by

(S,x)™ == So(y 'asy), (2.6)
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where x,s € S and y € G,. That is, first S acts via right multiplication and
then G, acts via conjugation. Moreover, the G-actions on Q and on Q' are

equivalent.

Proof. Applying Lemma [2.1.1] the transitivity of S allows us to write G = SG,.
So to see that the relation above defines an action, it is sufficient to apply Lemma
2.3.1lconsidering K = S5, Y = G, and P = S, = SNG,. This action is transitive
because the action of S via right multiplication is transitive on €. Therefore,
G is transitive on €V,

Hence we have that both actions of GG are transitive. Thus, to show the
equivalence between them, our strategy will be to use Lemma [2.2.3] Consider
P € . We will show that, with the respective actions, G, = Gp. However,
from the previous lemma, we obtain that Gp = PY = S,G, = G4, which
completes the proof. O

2.4 Automorphism groups and the holomorph

Let S be a group. We denote by Aut(S) the group of all automorphisms of S, by
Inn(S) the group of inner automorphisms of S, while Out(S) denotes the group
Aut(S)/Inn(S) of outer automorphisms.

The holomorph of S is the semidirect product of S with Aut(S):

Hol(S) := S x Aut(S),

where the action of Aut(S) on S is the natural one. We call S the base group
of the holomorph.
The point we want to emphasize is that the holomorph can be viewed as a

permutation group on its base group. In fact, the following action
209 = (2s)¢,

where z, s € S and ¢ € Aut(S), is faithful. We call this the base group action
of the holomorph.
The next result gives us a relation between the holomorph and the group of

outer automorphisms.
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Lemma 2.4.1. Let S be a group. Then

Hol(S5)

S Tnn(S) = Out(9).

Proof. Consider the homomorphism below.

p: Hol(S) — Out(9)
(s,0) +— Inn(9)o,

where s € S and o € Aut(S). Clearly ¢ is surjective. Still, ker ¢ = S x Inn(.5).

Therefore, by the isomorphism theorem, we have that

Hol(S5)

S x Inn(S) Out(S),

which completes the proof. O]

2.5 The O’Nan-Scott Theorem

A minimal normal subgroup of a nontrivial group G is a nontrivial normal
subgroup of G which does not contain properly any other nontrivial normal
subgroup of GG. A group G is a characteristically simple group if it has
no proper and nontrivial characteristic subgroups; that is, its only subgroups
invariant under Aut(G) are {1} and G itself. In particular, when G is finite, this
is equivalent to saying that G is a direct product of isomorphic simple groups
[35, 3.3.15]. For example, any minimal normal subgroup S of a group G is
characteristically simple, since every characteristic subgroup of S is a normal
subgroup of G. The socle of a group G is the subgroup generated by the set
of all minimal normal subgroups of G, and it is denoted by soc(G). In case G
has no minimal normal subgroups, for instance G is an infinite cyclic group, by
convention soc(G) = 1.

Let G be a transitive permutation group on a set €2. Recall that blocks were
defined in Section 2.1 We say that G is primitive on €2 if its only blocks are €
and the singleton sets {a} for a € Q. It is well known that this is equivalent to
saying that all of the point-stabilizers are maximal subgroups of G [12), Corollary
1.5A]. In particular, by Lemma , a regular permutation group G < Sym(€2)
is primitive if, and only if, || is prime. We say that G is imprimitive if it is

not primitive.
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If A C Qis a block for G, then the set {A%: g € G} is a partition of
called a block system. A converse of this statement is also true. A partition
P of Q is G-invariant if, for every A € P and g € G, we have that A € P.
If a partition P is G-invariant, then any member of P is a block for G. So
an imprimitive action of a group can be thought of as an action which leaves
invariant a nontrivial partition of the set it is acting on.

A larger class of groups, which includes the primitive ones, is the class of

quasiprimitive groups.

Definition 2.5.1. Let G be a permutation group on 2. We say that G is
quasiprimitive if all its nontrivial normal subgroups are transitive. In the
particular case when € is finite, it is equivalent to saying that all the minimal
normal subgroups of GG are transitive. We say that GG is innately transitive if
it has a transitive minimal normal subgroup. Such a transitive minimal normal

subgroup is called a plinth of G.

We prove below that every primitive group is quasiprimitive. Furthermore, it
follows from the above definition that any finite quasiprimitive group is innately

transitive.
Lemma 2.5.2. Any primitive permutation group is quasiprimitive.

Proof. Let G be a primitive permutation group, and consider H a nontrivial
normal subgroup of GG. Since the orbits of H form a block system for G, it
follows from the primitivity that H is transitive or H lies in the kernel of the
action. Since the kernel is trivial, we obtain that H is transitive. Therefore, we
conclude that all nontrivial normal subgroups of GG are transitive, which means

that G is quasiprimitive. O

Example 2.5.3. 1. Consider G = As and let P be a 5-Sylow subgroup of G.
Then G acts on Q) := [G: P| by right coset action. Thus G is quasiprimitive
and soc(G) = G. Since P is the stabilizer Gp, and P is contained in
a dihedral subgroup of order 10, then P is not a maximal subgroup of
G, so G is imprimitive. Therefore, this is an example of an imprimitive

quasiprimitive permutation group.

2. Consider P = (5 < A5 and let G = A5 x P acting on () := Aj such that
2P .= s71gp for all s, € A5 and p € P. Then P is an intransitive nor-
mal subgroup of G but G contains a transitive minimal normal subgroup
isomorphic to As. Therefore, G is an example of an innately transitive

group which is not quasiprimitive.
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It is well known [8, Lemma 5.1] that a permutation group G has at most two
transitive minimal normal subgroups, and in case it has two, S and S, they are

isomorphic and centralize each other, then we can write
soc(G) =S x § =9 x Cg(9).

So as for the primitive groups (see [25] or [27]), there is an O’Nan-Scott The-
orem for finite quasiprimitive groups, dividing them into eight distinct classes
according to their socles: HA, HS, HC, As, Tw, Sp, Cp and Pa. The description
we give here is the same as the one presented in [2]. For explicit examples, please
consult [7, Section 3.3].

The first three types below are necessarily primitive, and they are permuta-
tionally isomorphic to primitive subgroups of the holomorphs of a plinth S of
G considered as a permutation group on S via the base group action, and they

contain the socle of the holomorph. These are:

HA: Certain subgroups of the holomorph of an abelian group; these have a
unique minimal normal subgroup S (namely the base group of the holomorph),
and S is both regular and abelian.

HS: Certain subgroups of the holomorph of a nonabelian simple group; these
have precisely two minimal normal subgroups S and S (namely the base group
of the holomorph and its centralizer), and both S and S are regular, nonabelian
and simple.

HC: Certain subgroups of the holomorph of a composite nonabelian charac-
teristically simple group; these have precisely two minimal normal subgroups S
and S (namely the base group of the holomorph and its centralizer), and both

S and S are regular, nonabelian but are not simple.

The five remaining types correspond to quasiprimitive permutation groups

that may be primitive or imprimitive. We have:

As: An almost simple group; such groups have a unique minimal normal
subgroup S that is nonabelian and simple. Here S can be regular or not, but if
it is then G must be imprimitive.

Tw: A twisted wreath product; such a group has a unique minimal normal

subgroup S that is nonabelian and regular, but not simple.

Quasiprimitive permutation groups of the three remaining classes have a



Chapter 2. About quasiprimitive permutation groups 29

unique minimal normal subgroup S that is nonabelian, nonregular and nonsim-
ple. These types are distinguished by the nature of a point stabilizer in S which
is necessarily nontrivial. For what follows, a subdirect subgroup is a subgroup

of a direct product that projects surjectively onto each factor.

Sp: A group of simple diagonal type; for such a group a point-stabilizer in
S is simple and a subdirect subgroup of S.

Cop: A group of compound diagonal type; for such a group a point-stabilizer
in S is nonsimple and a subdirect subgroup of S.

Pa: A group of product action type; for such a group a point-stabilizer in S

is not a subdirect subgroup of S and it is nontrivial.

Theorem 2.5.4. [28, Praeger, 1993] The types of quasiprimitive permutation
groups as defined above are disjoint and exhaustive; in other words, the type of

any quasiprimitive permutation group is defined above and is unique.

Figure shows that the classes in the theorem are in fact disjoint. In this
figure, each “up arrow” represents an affirmative answer, and each “down arrow”

represents a negative answer.

soc(@G) is abelian? / /

o ”
soc(G) is simple? Sa is sunple

NN

soc(G) is 1egula17 S, is subdirect?

soc(G) is minimal? @ @

S, S are simple?
Figure 2.4: O’Nan-Scott classes for quasiprimitive permutation groups
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Tool box

This chapter covers many topics related to permutation groups that will be
useful in the next chapters. In particular, we present Scott’s Lemma, which
characterizes subdirect subgroups of direct products of simple groups. We also
give some results about finite simple groups. Finally, the last section is devoted
to number theoretic results, such as Legendre’s Formula. These results will be
applied to embed characteristically simple subgroups in wreath products and to
show that the Main Theorem is valid for the O'Nan-Scott classes Sp and Cp.

3.1 Subgroups of direct products

Dealing with direct products, it will be useful to look at their projections on each
direct factor. The next definition treats subgroups for which the projections are

surjective or injective.

Definition 3.1.1. Let S = Q1 X- - - X @), be a group and consider the projections

T S — Qz
(qla"'a%“) = Qi

where ¢ € r. Given a subgroup P of S, we say that

(i) P is a strip of S if P # 1 and, for each i € r, either the restriction of 7;
to P is injective or Pm; = 1. If it is injective, Pm; =& P for some ¢ € r, and

we say that P covers ();. We define the support of P as

supp(P) := {Q;: P covers Q;}.

30
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(ii) A strip P of S is said to be non-trivial if | supp(P)| > 1.
(iii) A strip P of S is said to be a full strip if Pm; = Q; for all Q; € supp(P).
(iv) P is a subdirect subgroup of S if Pr; = @, for each i € r.

(v) P is a diagonal subgroup of S if the restriction of m; to P is injective

for each i € r.

(vi) P is a full diagonal subgroup of S if P is both a subdirect and diagonal
subgroup of S.

Example 3.1.2. Let G be a group, 1 # H < G and set S = G3. Suppose that
G1, G4, G3 are the internal direct factors of S, so S = G X Gy X G3, and consider

the subgroups

X ={(9.9.1): g € G},
Y ={(1,1,9): g € G},
Z = {(h,h,h): he H}.

We have that X, Y and Z are strips of S, where supp(X) = {G1, G2}, supp(Y) =
{G3} and supp(Z) = {G, G2, G5}, thus X and Z are non-trivial strips of S. In
fact, both X and Y are full strips of .S, and Z is a diagonal subgroup of S. We
have that XY is a full diagonal subgroup of S. Moreover, Z is a full diagonal
subgroup of H3 < S.

We observe that in terms of strips, a diagonal subgroup is a strip with full
support. The next result states that every strip is a diagonal subgroup in a

possibly smaller group. It also justifies the term diagonal.

Lemma 3.1.3. Let S = Q1 X -+ X Q, be a group and let w; be the projection
of S onto Q;. If P is a strip of S with supp(P) = {Q1,...,Q,}, then for each

1 € r there is an isomorphism ;: Pmy — Pm; such that
P ={(a,aps,...,ap,): a € Pm}.

Proof. Consider the restrictions of the projections 7;: P — Pm;. Since P is a
diagonal subgroup of S, then each 7; is an isomorphism. Take ¢; := 7, 'm; and
let X :={(a,aps,...,ap,): a € Pm}. Given p € P, let a := pm;. Then

p = (pm1,pma, ..., pm,) = (PT191, PT1P2, - -, PT1Pr) = (A, apa, . .., ap,),



Chapter 3. Tool box 32

which shows that p € X. Conversely, given = = (a,aps,...,ap,) € X, where
a € Py, let p € P such that a = pmy. Then for each i € r, pm; = pT1p; = ap;.
So x = (pmy,...,pm) = p, which shows that x € P. Therefore P = X, as
required. O]

The first part of the following lemma appears in Scott’s paper [30, Lemma
p. 328], and it is known as Scott’s Lemma. It describes the structure of the
subdirect subgroups of a direct product of nonabelian simple groups. The second
part is a result that can be found in [18, Proposition 5.2.5(i)], and it characterizes

the normal subgroups of a direct product of finite nonabelian simple groups.

Lemma 3.1.4. Consider S = Q1 X --- X Q,, where each Q; is a nonabelian

simple group, and let P be a nontrivial subgroup of S.

1. If P is a subdirect subgroup of S, then P is the direct product [[ P; of full

diagonal subgroups of subproducts [[,.; Qi, where I; C r and the I; form

iEIj
a partition of r.

2. If P is a normal subgroup of S, then P = HjeJ Qj, where J is a subset of

r.

In case we have a direct product of nonabelian simple groups, it is possible
to determine all its minimal normal subgroups, as well all its maximal normal

subgroups.

Corollary 3.1.5. [12, Ezxercise 4.5.6] Let S = Q1 X -+ - X Q,. be a direct product
of nonabelian simple groups. Then Qq,...,Q, are the only minimal normal
subgroups of S, and the centralizers Cs(Q;) = H#j Q; are the only mazimal

normal subgroups of S.

Proof. First we will prove that ()q,...,Q, are the only minimal normal sub-
groups of S. Since each @); is simple, it is clear that (); is a minimal normal
subgroup of S. To see that they are unique, let P be a minimal normal subgroup
of S. Considering that P is normal and applying Lemma m (item 2) for P,
we obtain that P =[] et Qj, where J is a nonempty subset of r. But since each
(); is a normal subgroup of S and P is minimal, it follows that P = @;, for some
Jo € J. This shows that Q)q,...,Q, are the only minimal normal subgroups of
S.

Now, to see the second part, first notice that since each S/Cs(@Q);) is simple,

then each Cg(Q);) is a maximal normal subgroup of S. To see that they are
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unique, let H be a maximal normal subgroup of S. Again, because H is normal,
then H =[] jeqr @, where J' is a nonempty subset of r. Since H is maximal,
we have that S/H is simple, and then it is isomorphic to some ();,. This means
that H = [[,; Qi = Cs(Qj,). Therefore, we conclude that the centralizers

Cs(Q;) are the only maximal normal subgroups of S. O

Using the lemma above, we obtain the following criterion to decide if a non-
abelian normal subgroup is minimal. An alternative proof can be found in [12]
Theorem 4.3A].

Corollary 3.1.6. Let G be a group and S = Q1 X - -+ X Q, be a normal subgroup
of G, where each Q); is a nonabelian simple group. Then S is a minimal normal
subgroup of G if, and only if, G acts transitively on ¥ = {Q1,...,Q,} by

conjugation.

Proof. First we note that G acts on ¥ := {Q1,...,Q,} by conjugation. In fact,
given g € G and @, since @); is simple, we have that @);? is a minimal normal
subgroup of §9 = S. Then, according to the previous corollary, we have that
Q;? € X, which means that G acts on .

Suppose that S is a minimal normal subgroup of G and let T' := @, be the
orbit of ()1 under G. We will prove that I' = ¥. Consider the product H of all
the elements ; in I'. As the action of G permutes the elements of I' among
themselves, we have that H < G. Thus, since H < S and S is minimal, we
conclude that H = S. This implies that [' = ¥, that is, G is transitive on X..

On the other hand, suppose that G is transitive on ¥. We will prove that
S is minimal. Given a nontrivial H < S such that H < G, we apply Lemma
3.1.4] (item 2) to obtain that H = [],.; @, where I is a subset of r. Let
I' = {Q;: i € I} be the set of the direct factors of H. The normality of H
implies that I" is an orbit to the action of G on . But since G is transitive on
Y., we must have I' = X, which means that H = S. Therefore, S is a minimal

normal subgroup of G. [

Given a direct product of two groups, the following lemma characterizes its

subgroups which are also themselves direct products.

Lemma 3.1.7. Let G = G x Gy be the direct product of the groups G1 and
Go, and consider the projections m;: G — G;. If H < G, then the following are

equivalent:

1. H= H7T1 X HT('Q.
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2. Hm < H.
3. Hmy < H.

Proof. Clearly (1) implies (2) and (3). We prove that (2) implies (1). Since
H < Hm x Hmg, we just have to show the inclusion Hm; x Hmy < H. So given
(a,b), (c,d) € H, we have to prove that

((a,b)m, (¢,d)m) = (a,d) € H.
Since Hm; < H, then a,c € H. Note that
(a,d) = (a,b)(c'a,1)(a™ 1,07 (e, d),

where the right side is in H, so (a,d) € H. Then Hm x Hmy < H. Therefore,
H = Hm x Hmy and we conclude that (2) implies (1). The case (3) implies (1)

is analogous. Thus the result is proved. O

Lemma 3.1.8. Let G = G x G5 acting on Q and o € Q. If G; and G5 are

transitive on €2, then G, is a subdirect subgroup of G.

Proof. Consider the projections m;: G — G;. First we prove that G,m = G;.
Given x € G, since (G5 is transitive, there is y € G such that o = a¥. Thus
ry~! € G, and since x was arbitrary, then G,m = G;. Analogously, we prove
that Gomy = Gy Then G, is a subdirect subgroup of G and the result is
proved. [

3.2 Minimal normal subgroups and stabilizers

The following result gives us a way to determine when a group action is faithful.
It will be useful when dealing with groups having just one minimal normal

subgroup.

Lemma 3.2.1. Let G be a group acting on 2. Consider a € Q and let S be
a mintmal normal subgroup of G such that S, < S. If K is the kernel of the
action of G, then K < Cg(S). In particular, if Co(S) = 1, we have that G is
faithful on €.

Proof. Since K < G, we have that KNS < Sand KNS I G. As Sis a
minimal normal subgroup of G, then K NS = S or KNS = 1. Since by
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hypothesis KNS < S, # 5, we conclude that KNS = 1. Then K < Cg(5). In
fact, given k € K and s € S, k~'17'kl € KNS =1, thus kl = lk. Since k and [
are arbitrary, then K < Cg(S). Therefore, in case Cg(S) = 1, the faithfulness

is immediate. [

Dealing with minimal normal subgroups and their stabilizers, it is important
to understand the relation between the projections of the stabilizer on the direct

factors of the minimal normal subgroup.

Lemma 3.2.2. Let G be a permutation group on 2, let S = Q1 X --- X Q, be a
transitive normal subgroup of G, where each Q; is a nonabelian characteristically
simple group, and assume that G acts transitively on ¥ := {Q1,...,Q,} by
congugation. Consider the projections m;: S — ;. For a fized o € € define
P = (Sqm1) X -+ X (Sa7). Then G, normalizes P. In particular, if P = S,
then Sam; = (Q;)a # Qi for everyi € r.

Proof. As S is transitive on 2, we have by Lemma[2.1.7]that G = G,S. Further,
since G is transitive on 3 := {Q1,...,Q,} and S acts trivially by conjugation
on this set, GG, is transitive on . Given g € G, and i € r, let j € r such that
Qi = Q. Then

(Sami)? = (So7)m; = Sa;. (3.1)

Therefore, G, normalizes P, and since G, is transitive on X, we obtain that
all the S,m;’s are isomorphic. Still, for all ¢ € r, we have S,m; = @; N P. In
particular, if P = S,, then S,m; = (Q;)a for every i € r. Thus, if we had
Sam; = Q; for some i, then we would get Q; = (Q;), for every i, and so S = S,,
which is not possible because S is transitive. Therefore, S,m; # @); for every
1ET. O

The next result, which will be useful in Chapter 5] gives us a special partition
for the direct factors of a minimal normal subgroup based on the form of its

stabilizer.

Lemma 3.2.3. Let G be a permutation group on ) and let S = Q1 X -+ X Q)
be a transitive minimal normal subgroup of G, where each @Q; is a nonabelian
simple group and r > 2. Suppose that for some o € ), S, is nonsimple and a
subdirect subgroup of S. Then there exists a set © = {S,..., Sy}, where k > 2,
and each S; is a nonabelian characteristically simple subgroup of S, such that

S =51 % ...x Sk, Gu acts transitively by conjugation on ¥ and, considering the
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projections m;: S — S;, we have that S,7; is a simple group isomorphic to )y
and that
S, =S, X -+ X S Tk. (3.2)

Proof. We have by Corollary that each @); is isomorphic to @);. Since S,
is a subdirect subgroup of 9, it follows from Scott’s Lemma (Lemma item
1) that

Se = D1 X -+ X Dy, (3.3)

where £ < r and each group D; is a full diagonal subgroup of a subproduct
S; = HQjePi Qj, where P := {Py,..., P;} is a partition of ¥ := {Q1,...,Q,}.
Hence P; consists of the @);’s that compose S;, and clearly S = 51 x --- x Sj.
Since each D; is a full diagonal subgroup, each D; = ()7, which means that
D; is a nonabelian simple group. Therefore, since S, is nonsimple, we must
have k > 2. Besides that, according to Corollary 3.1.5] Dy, ..., Dy are the only
minimal normal subgroups of S,,.

We know that S, 9 G,. So we assert that the set {Dy,..., Dy} is G-
invariant by conjugation. In fact, given ¢ € G, and D;, since D, is non-
abelian and simple, D;? is a minimal normal subgroup of S,. Therefore, D;7 €
{D:,...,Dy}. So we conclude that {Dy, ..., Dy} is G,-invariant.

For each i € k, since D; is a subdirect subgroup of .5;, we have that

1, otherwise.

b 'f 6 'Pi7
D :{ Qi, if @

Since S acts trivially by conjugation on ¥ and G = SG, by Lemma [2.1.1]
then G, acts transitively by conjugation on ¥. We assert that G, acts by
conjugation on X := {Sy,...,S;}. In fact, given g € G, and S;, consider j € k
such that D;Y = D;. We will prove that S;Y = S;. The idea is to show that these
groups have the same direct factors. In fact, given (); a direct factor of S;9, there
exists ), € P, such that )¢ = Q;. Since D;m = (D;m,)?, we conclude that
D;m = @, = @Q;. But this means that @Q); € P}, that is, @); is a direct factor of
S;j. The other inclusion is analogous. So we conclude that X is G-invariant. In
particular, this means that the partition P is G,-invariant, and so it is uniform.

Moreover, we observe that the action of G, on ¥ is transitive. In fact, given
S, S € 3, consider @, € P; and Q; € P;. Since G, is transitive on X, there
exists g € G, such that Q,Y = @, € P; N P,?. As the sets in P are disjoint, we

conclude that P, = P;, which means that S; = §;. Therefore, G, is transitive
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on X..

Now consider the projections 7;: S — S;. In order to prove the validity of
the relation (3.2), we will show that S,7; = D;. According to , Sai < D;.
On the other hand, if d € D;, then consider s := (1,...,1,d,1,...,1), where
d appears in position 7. So s € S, and s7m; = d, that is, d € S,7;. Therefore,

SaT; = D;. So using (3.3)), we can write
Sq = SaT1 X =+ X STk,

which concludes the proof. [

In terms of Section [2.5] the result above says that if G is a permutation group
of type Cb, then there exists a direct factorization of S such that a stabilizer in

G acts transitively on it and a stabilizer in S factorizes accordingly.

3.3 Finite simple groups

The next four results, which will be used in subsequent chapters, rely on the
Classification of the Finite Simple Groups. The first one is the well-known

Schreier’s Conjecture, which can be proved using the classification.

Lemma 3.3.1. [12, Schreier’s Congecture, p. 133] Let S be a finite simple group.
Then the group Out(S) of outer automorphisms of S is solvable.

Lemma 3.3.2. [17, Theorem 4.9.] Every finite simple group has a cyclic Sylow

subgroup.

Feit-Thompson Theorem states that every finite group of odd order is solv-
able. As a consequence, it is not difficult to prove that the order of a finite

nonabelian simple group is divisible by four.

Lemma 3.3.3. [1j, Theorem 25.2] If Q) is a finite nonabelian simple group,
then 4 | 1Q)|.

The last result is a property of the sporadic Mathieu group Mj;.

Lemma 3.3.4. [11], p. 18] The Mathieu group My; has only one conjugacy class

of subgroups whose orders are 660.
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3.4 Number theoretic results

This section presents some number theoretic results related to the factorial of

an integer. The first result is the well-known Legendre’s Formula.

Lemma 3.4.1. [20, Legendre’s Formula, pp.8-10] Let p be a prime and let
N = AmP™ + App_1p™ * +- - +ag be the p-adic expansion of n. Consider the sum
Sp(n) := @ + am-1 + -+ - + ao of the digits of n. Then the largest p-power that
divides n! is p' where
] — n-— Sp(n)‘
p—1
The following useful lemma is a corollary of Legendre’s Formula, and it gives

some properties about the divisibility of the factorial.

Lemma 3.4.2. Given a prime number p and a natural number n > 2, we have
that

1. p"tnl.
2. If p"~ 1| n!, then p=2 and n is a power of 2.
3. 471§ nl.

Proof. Consider the p-adic expansion of n and let [ be the exponent of the largest
p-power p' that divides n!. Since n > 2, we have by Legendre’s Formula that
| < n —1, which proves item (1). If { = n — 1, then s,(n) = 1 and p = 2, thus
n is a power of 2, which proves item (2). In order to see the last assertion, let
p=2andl=n—1. Sincen —1 < 2n — 2 for n > 2, the definition of [ gives
that 22772 = 4"~ 4 n!_ which proves item (3). O



Chapter 4
Factorizations of groups

In Chapter [1| we emphasized the importance of group factorizations in dealing
with the inclusion problem. The first section of this chapter presents some results
about factorizations of finite simple groups, and defines full factorizations and
strong multiple factorizations. The former type of factorizations depends on
the primes that divide the order of the finite simple group. The results in this
chapter will be applied in the last chapter, to analyzing the consequences of the

Main Theorem in each O’Nan-Scott class.

4.1 Factorizations of a simple group

Factorizations of groups appear naturally in studying permutation groups. For
example, if G < Sym(Q2) has a transitive subgroup Y and let a € Q, then G
factorizes through the stabilizer G,, that is, G = G,Y (Lemma [2.1.1)). How-
ever, for our purpose, we need more than the usual notion of factorizations, as

described in the definition below.

Definition 4.1.1. Let G be a group and p(G) be the set of primes that divide
|G|. If A and B are proper subgroups of G such that G = AB, then we call this
expression and the set {A, B} a factorization of G. A factorization Q = AB of
a finite simple group (@ is said to be a full factorization if p(Q)) = p(A) = p(B).
A set A := {A;,..., A} of proper subgroups of @ is said to be a multiple
factorization if () = A;A; whenever ¢ # j. Moreover, A is said to be a strong
multiple factorization if, in addition [ > 3 and @ = A;(A4; N A;) whenever

Hiaj’ k}| =3.
Baddeley and Praeger [1] characterized all the full and strong multiple fac-

torizations, as described in the following lemma. We use the notation G - 2 to

39
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the extension of G' by the cyclic group Cj.
Lemma 4.1.2. ([1, Theorems 1.1. and 1.2.])

1. Suppose that Q) is a finite simple group and QQ = AB is a full factorization
of Q. Then Q, A and B are as in one of the rows of Table[f.1. Conversely,
each row of Table 1s a full factorization of a simple group.

Q A B
Aﬁ A5 A5
M12 Mll M117 PSLQ(ll)
PO () (¢ > 2) Q7 (q) Q7(q)
+ Sp(67 2) A77 A87 S77 587 Sp<67 2)7 ZQO X A77 Z26 Dol A8
PQyg (2) 6 §
Ay As, Ss, Sp(6,2), Zy® x Aq, Zy” X Ag
Sp(4,q) (¢ >4 even) | Sp(2,¢°) - 2 Sp(2,¢%) - 2, Sp(2,¢%)

Table 4.1: Full factorizations ) = AB

2. If A={Ay,..., A} is a strong multiple factorization of a simple group @,
then | = 3. Further, if { A1, Aa, A3} is a strong multiple factorization of Q,
then Q, Ay, As, and As are as in one of the rows of Table[{.3. Conversely,
each row of Table is a strong multiple factorization of a simple group.

Q Ay A, As
Sp(4a,2) (a > 2) | Sp(2a,4) - 2 04(2) 01.(2)
PQJ (3) Q4(3) Zs° x PSL4(3) | PQJ(2)
Ga(2) O (2) Og (2)
Gy(2) O (2) Og (2)
Sp(6.2) & (2) 0,2 | 0;(2)
Go(2) Os (2) Oq (2)

Table 4.2: Strong multiple factorizations Q = A;(As N A3)

The following corollary characterizes the factorizations () = AB of finite
simple groups (), in which both A and B are direct powers of the same finite

simple group. The options for such @), A and B are very restricted.

Corollary 4.1.3. Let ) be a finite simple group, and suppose that () = AB s
a factorization of () where A = T*' and B = T*%* for some finite nonabelian

simple group T and integers si,So. Then s = so = 1 and Q and T are as in

Table [4.5
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Proof. We assert that ) = AB is a full factorization. In fact, given a prime
number p, since |Q| = %
|Q|, we have that p divides |T|, so p divides |A| and |B|. Thus @ = AB is a full
factorization, and such factorizations are completely characterized in Lemma
M.1.2] Looking in Appendix [A] at the orders of the groups in Table .1 and
using that Sp(6,2) = Q-(2) [37, 3.8.2], we observe that the only options where

|A| and |B| are powers of the same finite simple group occur when A= B = T.

and |A| and |B| are powers of |T'|, then if p divides

The options for Q and T are in Table O
0 A=T =B
Ag As
Mo My,
PQOI(q) (>2) | (g

Table 4.3: Factorizations of Q) = AB, where |A| = |T|** and |B| = |T|*

The next result characterizes the factorizations S = H D of finite nonabelian
and nonsimple characteristically simple groups .S, in which H is also a nonabelian
characteristically simple subgroup and D is a full diagonal subgroup of S. We

will see that the options for such S and H are also very restricted.

Corollary 4.1.4. Let S = Q1 X --- X Q,, where r > 2 and each Q); is isomorphic
to a finite nonabelian simple group Q, and let H = T* be a nonabelian charac-
teristically simple subgroup of S. Consider the projections m;: S — Q;, where
i € r, and suppose that 1 < Hm; < Q; for all i € r. If there is a full diagonal
subgroup D of S such that S = HD, thenr =k =2, T=2 A2 B, H=AXB
and Q = AB, where A= A, B> B, and Q, A and B are described in Table
l4.3

Proof. First we assume that r = 2, that is, S = @)1 X ()2. By Lemma there
exist isomorphisms ;: () — ); such that

D ={(qp1,q92): ¢ € Q} = Q.

Denote A := Hmy, B := Hmy, and consider H := A x B > H. Since A and B
are homomorphic images of H, there are integers s; and sy such that A = T
and B=T%. As S = HD = HD, then given ¢ € Q, there exist a,b, h € Q such
that

(g1, 1) = (a1, bps) (hpr, hipa).
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This means that ¢ = ah and h =b"', s0 ¢ = ab™" € (Ap; 1) (Bps™!). Denoting
A= Ap;7" =2 A and B := By, ! = B, we conclude that Q = AB. From
Lemma [.1.3] the possibilities for ), A and B are described in Table[d.3] In this
case we see that A =T = B.

Assume now that » > 3. We will see that this option is not possible.

Let H := Ay x --- x A, > H, where A; := Hn;, and write S = HD. Analo-
gously to the previous case, there exist integers s; and isomorphisms ¢;: @ — @Q;
such that A; = T and

D ={(gp1,q¢2,...,q¢:): ¢ € Q} = Q.

So given g € (), there exist aq,...,a,,h € () such that

(qulv 17 ) 1) - (algplv s 7GT¢T)<h¢17 .- 'JhQOT)'

This means that ¢ = a;h and h = a;~* for each i > 2. So ¢ = a1a;~! for each
i > 2. Denoting A; := A;pp; ' < @, then ¢ € Aj(Ay;N...NA,). Since ¢ was

arbitrary, we obtain

for all © # j, where 7, j > 2. But note that there is nothing special about working

with the first coordinate. Then we conclude that

for all distinct 4, 4,0 € r. This means that {A;,..., 4.} is a strong multiple-
factorization of (), and such factorizations are completely characterized in Lemma
412l Looking at the characterization and Appendix [A] we observe that it is
not possible to obtain » > 3 with all A; being a direct power of the same finite
simple group. Therefore, the only possible case is r = 2.

Thus we have H = A x B = T2, Since H is a subdirect subgroup of H, we
have two options, either H is a diagonal group isomorphic to A =T or H = H.
The first option is not possible, because otherwise, since S = HD and A < (1,

we would have

_IDIIH| _ |QIIA]
|IDNH| |DnNH|

QI =19 < QP

which is a contradiction. Therefore, H = H = Ax B and the result is proved. [
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4.2 Factorizations and uniform automorphisms

The existence of factorizations of direct products with strips as factors is related

to the existence of uniform automorphisms.

Definition 4.2.1. Let G be a group and 7 be an automorphism of G. We say

that 7 is uniform if the map 7: g — g~ '(g7) is surjective.

Since we are dealing with finite groups, we have that a map G — G is
surjective if, and only if, it is injective. So 7 € Aut(G) is not uniform if, and
only if, g — ¢g~'(g7) is not injective, that is, g7'(g7) = h~'(h7) for some distinct
g,h € G. The last equation says that hg~! is a non-identity fixed point of 7.
Then 7 € Aut(G) is not uniform if, and only if, 7 admits a non-identity fixed
point. It is a consequence of the Finite Simple Group Classification that every
automorphism of a finite nonabelian simple group () has non-identity fixed points
[15, Theorem 1.48], which means that @ does not have uniform automorphisms.

In fact, the following strong result holds.

Lemma 4.2.2. ([19, 9.5.3]) A finite nonsolvable group has no uniform (that is,

fized-point-free) automorphisms.

The relation between uniform automorphisms and factorizations is given by

the result below.

Lemma 4.2.3. (31, Lemma 2.2]) The following assertions are equivalent for a

group G.
1. There exist nontrivial full strips X andY in GXG such that GXxG = XY
2. G admits a uniform automorphism.

The next lemma generalizes the previous result for the case where G does

not admit a uniform automorphism and we want to factorize at least two copies

of GG.

Lemma 4.2.4. ([31, Theorem 1.2]) Let G be a group that does not admit a
uniform automorphism and let X and Y be direct products of pairwise disjoint
nontrivial full strips in G" with r > 2. Then XY # G".

Lemma below will be used in the last chapter, but can be viewed as an
example in which the subgroup Y is the product of (nonfull) strips isomorphic

to the Mathieu group M;; and XY # G" anyway. First we need a lemma.
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Lemma 4.2.5. Let X and Y be proper subgroups of a group S, such that X and
Y are in the same conjugacy class. Then S # XY .

Proof. Assume that S = XY and let s = ab € S such that Y = X* a € X and
beY. Then Y = X° and

S=8"=XY"=YY =Y,

which is an absurd, since by hypothesis Y is proper in S. Therefore, S # XY,

as asserted. O

Lemma 4.2.6. Let S = Q* and A, ..., Ay < Q such that Q = M5 and each

Ai = M11~ Let X = {(p7p7Q>q): D,q € Q} and Y = {(@1,@27G2¢7G4)1 a; € Al}
be subgroups of S, where 1¥: Ay — Az is an isomorphism. Then S # XY .

Proof. We have that X = D; x Dy = (Q? is the direct product of two full strips
of S and Y = M;,? is the direct product of three strips of S, where the second
strip is a diagonal subgroup of Q2.

Assume that Q* = XY and consider the projections m2: S — Q2 and
7340 S — Q2, where the first one projects onto the first two coordinates and the

second one projects onto the last two coordinates. By applying these projections
in Q* = XY, we obtain that

Q% =Dy (A; x Ay), (4.1)
Q* =Dy(As x Ay). (4.2)

We claim that Q = A1 A; = A3A4. In fact, given ¢ € (), we have by that
there exist p € Q and a; € A; such that (¢, 1) = (p,p)(a1, az). Then p = a,* and
q=pa; = ay'a; € AyA,. As q is arbitrary, Q = A;A;. Analogously, by ,
Q = A3A,. Thus by Appendix [A] [4; N Ay| = |43 N A4] = 660. On the other
hand, denote C} := A; N Ay and Cy := (A3 N Ay)v~1. Note that

XNY ={(¢c,c,cp,cp): c€ CiNCy} = CLNCh.

Since Q* = XY,
I X|IY]  [Muf
XNY| = = = 5b.
| | Q* | Mo |?
AsXﬂY%ClﬂCQSAQ and
C1l1C 6602
1C1Cs| = (Gl _ = 7920 = | As|,

IXNY| 55
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then Ay = C1C5. By Lemma M1 has just one conjugacy class of subgroups
whose orders are 660, and so C; and C5 are conjugate. However, this an absurd

by Lemma [4.2.5] Then Q* # XY and the result is proved. O

4.3 An algorithm

Let S = Q1 x---x (@, be a direct product of nontrivial groups, and let 7; be the
projection of S onto @;. If P is a full strip of S with supp(P) = {Q;,,..., Q.. },
where i; € r for all j € m, then P is a full diagonal subgroup of the direct product
of the elements on its support. In this case we will write P = D(Q;,,...,Q@;,.)-
We emphasize that this notation just gives the shape of P, and the precise
definition of P depends on the isomorphisms given by Lemma [3.1.3]

According to Example [£.3.T] in case either X or Y contains a trivial full strip
of S, then we may have XY = S. However, as we can see in Example [£.3.2] this
condition does not guarantee that XY = S.

Example 4.3.1. Let Q be a finite group, S = Q'2, and consider

X Z{(QJ,:I:',SE,y,y,y,z,z,z,w,w,w): T,Y, 2, W E Q} = Q4,

Y :{(a17a27a37al;a57a67a‘77a57a97a107a117a’9): a; € Q} = an

that are direct products of full strips of S. We want to prove that XY = §.
Notice that

XNY ={(z,z,z,x,x,z,x,x,x,z,2,2): x € Q} = Q.

Since AT
XY Q)
X NY] Q)

XY= = QI"* =13],

we conclude that XY = S.

Example 4.3.2. Let S = Q1 X Q2 X Q3 X (Q4, where each @); is isomorphic to

a finite group ), and consider

X = D(Q17Q2) X D(Q37Q4) = Q2

and

Y = D(Q1,Q2) x Q3 = Q2

be direct products of full strips of S. We will prove that XY # S.
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Since D(Q1,Q2) < X NY, we have that |Q] < |X NY]|. Then

XY 1QPIQP

XY | =
XY= 1xnv < 0]

= QI> < s],

and we conclude that XY # S.

As a corollary of Lemma [4.2.4] we characterize, under certain conditions,
the factorizations of finite nonsimple and nonabelian characteristically simple
groups. In case the group can be factorized, we give some restrictions to the
factorization. Although the proof relies on Lemmal4.2.4] note that its application

is purely combinatorial.

Corollary 4.3.3. Let S = Q1 X ---xQ,, where r > 2 and each ); is isomorphic
to a finite nonabelian simple group @), and consider the projections m;: S — Q);.
Let X and Y be nontrivial subgroups of S such that Xm;,Ym; € {1,Q;} for all
1€r. Then

1L X=X x--xX, andY =Y| x - x Yy, where the sets {X;: i € p} and
{Y;: j € q} consist of pairwise disjoint full strips of S.

2. Algorithm [4.1] decides if XY = S.
3. If XY =S, denote supp(Y') := U; supp(Y;). Then

(a) |supp(X;) Nsupp(Y;)| <1 for alli € p and j € q.
(b) |supp(X;) Nsupp(Y)| > |supp(X;)| — 1 for all i € p.

Proof. 1. Let Jx == {i € r: Xm; = Q;} and Jy := {j € r: Ym; = Q,}.
Then X is subdirect subgroup of [],. 7 @i and Y is a subdirect subgroup
of [[;cs, Qj- Then according to Scott’s Lemma (Lemma [3.1.4} item 1)
we have that X = X; x--- x X, and Y =Y x --- xY,, where the sets
{Xi:i € p}and {Y;: j € ¢} consist of pairwise disjoint full strips of S.

2. To see that Algorithm [4.1 works, we have to verify that in each step, given
A, B and C, then AB = C'if, and only if (AB)r; = Crm;. Since 7y is a
homomorphism, one direction is clear. Then suppose that (AB)r; = Cry,
and let Gy := [[,.; Qs and Gy := Hjej Q;. Thus C = G x G5 and, by
hypothesis, (AB)m; = G3. Consider the projection w7: S — Gj. Then
(AB)m; = G1 < AB. So according to Lemma [3.1.7, we have that

AB = (AB)?TT X (AB)T('J = G1 X G2 =C.
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Therefore, AB = C if, and only if (AB)r; = Cm;. As a consequence,
AB = C'if, and only if XY = S.

We also have to verify that if neither A nor B contains a direct factor @);,
j € J, then XY # S. In fact, if that is the case, A and B are direct

products of pairwise disjoint nontrivial full strips in S. Then by Lemma

4.2.4] we have that AB # C'. However, from the previous considerations,
this implies that XY # S. Therefore, the algorithm is correct.

3. Assume that XY = §S.

(a)

By contradiction, suppose that there exist ig € p and jo € ¢ such that
| supp(X,) N supp(Yj,)| = 2.

Reindexing, if necessary, assume that @1, Q2 < supp(X;,)Nsupp(Y;,),
and consider the projection 7: S — ()1 X Q2. As XY =S5, then

Q1 X Q2 = 5T = (XﬁxYﬁ) = (Xioﬁ)(y}oﬁ)’

where X; 7 and Y 7 are nontrivial full strips in 1 x 2. However,
from Lemmas 4.2.2f and |4.2.3] this is not possible. Then

| supp(X;) Nsupp(Y;)| <1

for all « € p and j € ¢, and the item is proved.

Given X, i € p, let P := HQjGSupp(XiO) (); and consider the projec-
tion 7: S — P. Since XY = 9, then

Qlswrr(Xi)l = p = 57 = (X7)(YF) = (X, ) (Y7).

As X;, = @, the relation above implies that Y7 = Q% for some

Jo > |supp(Xy, )| — 1. Since iy € p is arbitrary, then
| supp(X;) Nsupp(Y)| > |supp(X;)| — 1

for all 7 € p-
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INPUT: S, X and Y.
OUTPUT: Decides if XY = S or not.
BEGIN: J:=r, A:=X,B:=Y and C := 5.
IF Xm; UYm ={Q;} for all i € r THEN
IF neither A nor B contains a direct factor ();, where j € J, THEN RETURN FALSE.
ELSE [ := {i € J: @); is a direct factor of either A or B}.
IF / = J THEN RETURN TRUE .
ELSE [ ;= [ and J :=J —I.
7y := the projection map 7: S — HJ.EJ Q.
A:=Ar;, B:= Bryand C := Cwj.
GOTO first IF statement.
ELSE RETURN FALSE.

Algorithm 4.1

To see the algorithm working, consider the following example.

Example 4.3.4. Let S, X and Y as in Examplel4.3.1} Suppose that @1, ..., Q12

are the internal direct factors of S. Then we can write

X :D(Q17Q27Q3) X D(Q4>Q57Q6) X D(Q77Q87Q9) X D(QlOanlanQ)a
Y =D(Q1,Q4) X D(Qs5,Qs) X D(Qg, Q12) x Q2 x Q3 X Qs X Q7 X Q10 X Q11.

Each of the following paragraphs follows the steps of the algorithm.

Let J:=12, A:= X, B:=Y and C := 5. Since X7m; = @, for all i € 12,
then I := {2,3,6,7,10,11}. As I # J, we have that I := {2,3,6,7,10,11}.
Hence after the first recursive step, we have J := {1,4,5,8,9,12},

A :=Q1 x D(Q4,Q5) x D(Qs,Qg) X Q12,
B :=D(Q1,Q4) x D(Q5,Qg) x D(Qg, Q12),
C:=0Q1 X Q4 X Q5 X Qg X Qg X Q2.

Now I := {1,12}. Since I # J, then I := {1,12}. Thus after the second

recursive step, we have J := {4,5,8,9},

A :=D(Q4,Qs5) x D(Qs,Qy),
B :=Q4 x D(Qs5,Qs) X Qo,
C:=Q4 X Q5 X Qg X Q.
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Now [ := {4,9}, and since I # J, then I := {4,9}. In the last recursive step
J :={5,8},

A =05 X Qs,
B :=D(Qs,Qs),
C:=Qs5 x Qs.

Finally, I := {5,8} and since I = J, then XY = S, which is according to
Example [£.3.1]



Chapter 5
Wreath products

In this chapter we define wreath products and the product action, and next we
give the definition of cartesian decompositions.

We prove that given a nonabelian transitive characteristically simple sub-
group of a wreath product in product action, then such subgroup has to be in
the base group of the wreath product.

We also state and demonstrate the Embedding Theorem (Theorem [5.4.2).
This result says explicitly how to embed a finite quasiprimitive permutation

group in a wreath product in product action.

5.1 Wreath products and product action

Let G be a group and let H be a subgroup of S,. Then considering the direct
product G™ of n copies of GG, we define the wreath product G wr H of G and
H to be the semidirect product G™ x H, in which the conjugation action of H
on G" is given by

(917 CRCaS 7gn>h = (glh_1> s Jgnh_l)J

for all g; € G and h € H. We say that G" is the base group of the wreath
product. Suppose now that G acts on a finite set {2. Then there is an important

action of G wr H on (2", the product action, defined by
(0617 Cee Oén)(glw.’gn)h_l = ((alh)glha SR (anh)gnh)a

forall a; € ), g; € G and h € H.
The wreath product G wr H acts primitively in product action on 2" if, and

only if, H is transitive on n and G is primitive and not regular on €2 [12, Lemma

20
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2.7A]. Moreover, this result also holds if we replace primitive with innately
transitive [7, Theorem 2.7.4].

5.2 Cartesian decompositions

In this section we introduce the concept of cartesian decompositions and we

present its relation to minimal normal subgroups.

Definition 5.2.1. A cartesian decomposition of a set ) is a finite set of
partitions of Q, & = {I'y,..., T}, such that |I';| > 2 for all i and

lyiN---Ny|=1forall vy, €Ty,...,7 €T,

A cartesian decomposition is said to be trivial if it contains only one partition,
namely the partition into singletons. A cartesian decomposition is said to be
homogeneous if all the I'; have the same cardinality. For G < Sym(f), we say
that £ is G-invariant if ;Y € £ for all I'; € £ and g € G. Analogously to sets
and partitions, we denote by G¢) the pointwise stabilizer of £ in G, that is,
the set of elements g € GG such that I';7 =1T; for all T'; € £.

Example 5.2.2. Let €2 be the set of the vertices of the square, as in Figure [5.1]

Then we consider the following partitions of €.

I :{{<07 O>’ (17 0)}7 {(07 1)7 (17 1)}}7
I'y :{{<O’ O)? (07 1)}7 {(17 0)’ (1’ 1)}}

We observe that if y; € T'y and 42 € Ty, then |y; Np| =1. So & = {T"}, T} is a

cartesian decomposition of 2.

If &€ ={I'y,...,I,} is a cartesian decomposition for a set 2, given a € €,
for each ¢ € r let +; be the unique block of I'; such that o € ;. This defines
a bijection A: 2 — I'y x ... x I, Thus €2 can be naturally identified with the
cartesian product I'y x ... x I',.. Moreover, if G is a group acting on €2, then by
Lemma [2.2.2] G also has an action on I'; X ... x ', in such a way that these

actions are equivalent.

Definition 5.2.3. Suppose that S is a transitive permutation group on €2, and

that & = {I'y,...,I.} is an S-invariant cartesian decomposition of € such that
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.

(0, 1) (1,1)

(0,0 (1,0]

Figure 5.1: Square
Sy =208 Forier,let (); denote the kernel of the S-action on I';, and set

Qi=()Q; (5.1)
J#i

The cartesian decomposition € is said to be S-normal if S = []'_, Q.
Example 5.2.4. [34 p. 89, Example 4.22] Suppose that G is a permutation
group on {2 with a transitive normal subgroup S such that S is the direct product

S = T];_, Si, where the S; form a G-conjugacy class. Suppose that a € Q such
that

Se = (SaNS1) XX (SeNS,). (5.2)
For each i € r, let S; = H#i S;, and let I'; denote the set of S;-orbits in .
Then we assert that & = {I'y,...,I'.} is an S-normal cartesian decomposition
of Q.

In fact, S; and S; are normal subgroups of S such that S = S; x S;. For
each i € r, let I'; as above. Since S is transitive and S; is normal in S, then I;
is a S-invariant partition of . Since S is transitive on I'; and S; acts trivially
on I';, we find that S; is transitive on I';. Moreover, G' permutes transitively
by conjugation the subgroups S; and S;. Therefore, G’ permutes transitively
the partitions I'; in such a way that the G-actions on the S; and on the I'; are
permutationally isomorphic.

First we want to prove that £ is a cartesian decomposition of €2. Choose,
for all © € r, the block 7; € I'; such that a € ~;. Then ~; is an S:-orbit
stabilized by (S;)a % S;. Hence =, is also an ((S;), x S;)-orbit. As by relation
Sa < (Si)a X S;, the correspondence between the overgroups of S, and the S-
blocks containing a given in Lemma implies that S,, = (S;)a x S;. In
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particular,
Sy M- NS, = (S1)a X -+ X (Sp)a = . (5.3)

Let v =7~ N---N~, and note that a € ~. Suppose that w € . Then there
is s € S such that o = w, and so s € S, N---NS,,, so s € Sy, which gives that
w = «® = a. Thus |y| = 1. Suppose now that v/ € T'; for all : € r. We have
that S; is transitive on I'; while acts trivially on I'; for j # 7. Then for all i € 7,

there exists s; € S; such that (7])% = v; and (v})* = v} if j # i. Hence

(M N-na)er) =y 0Ny =

Thus |y; N ---N AL = |y| = 1, which gives that £ is a cartesian decomposition
of Q. As already shown above, £ is G-invariant.

It remains to show that £ is S-normal. Let K; be the kernel of the S-action
onT;. Clearly S; < K;. If S; < K, then there exists a nontrivial ¢ € S; such that
q acts trivially on I';. On the other hand, ¢ acts trivially on each I'; for j # ¢. So
given w € Q, consider for each i € r, v; € I'; such that {w} =~y N---N~,. Then
{wi}=(MmnN--Ny)?=vN---N~., hence ¢ must act trivially on Q. As G is
a permutation group, this is impossible, which gives that S; = K;. According to
Definition [5.2.3] we conclude that £ is S-normal. In particular, the argument of
this paragraph also shows that S'i = S;.

5.3 Characteristically simple groups in wreath

products

Recall the definition of wreath product and product action given in Section [5.1]
The following theorem, due to Csaba Schneider, is a key tool to describe
CharS-QP inclusions, and it says that a transitive nonabelian characteristically

simple subgroup of a wreath product W in product action is in the base group

of W.

Theorem 5.3.1. Let T' be a finite set such that |T'| > 2, let r > 2, and let
W = Sym(I") wr S, be considered as a permutation group on Q@ =T in product
action. If H is a transitive nonabelian characteristically simple subgroup of W,
then H is a subgroup of the base group, that is, H < (Sym(I"))".

Before proving the theorem, we need the definition of a component of a

subgroup of W. We also need a result about how transitivity passes from the
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group to its components.
Let W be as above and suppose that X is a subgroup of W. For 5 € r,
we define the j-th component X of X as follows. Suppose that W; is the

stabilizer in W of j under the permutation representation 7: W — S,.. Then
W; = Sym(I') x (Sym(I') wr S,_1), (5.4)

where the first factor of the direct product acts on the j-th coordinate, while

4

the second factor acts on the other coordinates. In particular, ‘S,_;’ is taken to
be the stabilizer of j in S,. We define X as the projection of X;=XNW;

onto the first factor of W;. We view X as a subgroup of Sym(T').
Theorem 5.3.2 (Theorem 1.2, [33]). If X is a transitive subgroup of W, then

each component of X 1is transitive on I'. Moreover, if X acts transitively on r,

then each component of the intersection X N (Sym(I"))" is transitive on I.

We turn to the proof of Theorem [5.3.1]

Proof of Theorem[5.3.1. Suppose that H = Ty x --- x T}, = T* for some non-
abelian finite simple group T'. Suppose, as above, that 7 : W — S, is the natural
projection. Let B be the base group (Sym(I'))" of W. Then B = ker 7. Assume
for contradiction that H £ B; that is Hmw # 1.

First we assume that Hr is transitive on r. The case when H is intransitive
will be treated afterwards. Set Hg = H N B. Then Hpg is a normal subgroup
of H and by Lemma (item 2) it is of the form T with some s. Further,
H = Hpx H p where similarly Hz = T*~°, and we have that H g acts transitively
and faithfully by won r. For j € r, consider the component H g) as a permutation

group on I'. By Theorem , Hg) is transitive on I" for all j.

Claim. Hg) = Hp for all j.

Proof of Claim. Suppose, for j € r, that o; denotes the projection of W; onto
the first factor of the direct product decomposition in (5.4). Then we have
that Hg) = Hp/(kero; N Hp). Let m be an element of keroy; N Hp. Thus
m = (1,maq,...,m,) with m; € Hg). Let j € r. Since Hp is transitive on 7,

there is some element g = (g1,...,gr)h of Hp such that 1(gr) = 1h = j. Then
m? = (1,mq,...,m,)? = (1,m§2, ..., m&)",

and so the j-th coordinate of m? is 1. Hence mY € kero; N Hp, and then

(keroy N Hp)? < kero; N Hp. Similarly, the same argument above shows that
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kero; N Hg < (keroy N Hp)?, and so kero; N Hp = (keroy N Hg)?. On the
other hand, keroy N Hp is a subgroup of Hg and Hp centralizes Hp, and so
keroy N Hp = kero; N Hp for all j. Thus ker oy N Hp acts trivially on 2, and
so ker oy N Hp = 1, which gives kero; N Hp = 1 for all j. Therefore, HY ~ Hpg
for all 7. O

Thus the restrictions to Hp of the projection maps o; are monomorphisms.
Then 8; = oy laj : H](BI) — Hg) is an isomorphism for all j. As a consequence,
every element m € Hp can be expressed uniquely as m = (y,y5s,...,y0,), for

some y € Hg).

Claim. For all j € r, there is some element z; € Sym(I") such that y3; = y* for
(1)
all y € Hy'.

Proof of Claim. Suppose that y € Hg). Then m = (y,yBs,...,yB-) € Hp. Let
j € r and, using the transitivity of Hp in r, suppose that ¢ = (g1,...,9,)h € Hp
is such that 1(gm) = 1h = j. Then g centralizes m and hence

(. yB2s - yBe) = m? = (¥, (yB2)”, ..., (yB) )"

Comparing the j-th coordinates in the two sides of the last equation, we find

that y3; = y9*. Taking x; := g1, thus we have y3; = y*/. m
Claim. If ¥ is a Hp-orbit in Q, then |X| = |T|.

Proof of Claim. Since H is transitive on 2 and Hg < H, all the Hg-orbits have
the same size. Hence it suffices to show the claim for just one Hpg-orbit. Choose
the elements 1,xs,...,2, as in the previous claim, let v € I' and consider
the element w = (vy,vxs,...,7vx,). Suppose that m € Hp. By the previ-
ous claim, m has the form m = (y,y*,...,y" ) for some y € Hg). Hence
w™ = (vy,Yyxa, . .., vyx,). Thus m stabilizes w if, and only if, y € Sym(I") sta-
bilizes 7. Thus (Hg), = (H](Bl))v. So by applying the Orbit-Stabilizer Theorem

twice, and using that |Hg| = |H1(31)’ and that Hg) is transitive on I', we have
H H(l)
|wHB| _ | Bl _ ’ B | _ ‘F’,

(Hp)ol (1)),
as desired. O

Claim. The case when Hm is transitive is impossible.
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Proof of Claim. Hp is a normal subgroup of H and every Hp-orbit has size
IT'|. Hence the number of Hp-orbits is |['|"~!. Since H is transitive on €, Hp
is transitive on the set of Hp-orbits and hence |I'|"~ | [Hp|. Since Hp has a
faithful action on r, this leads to |[|"~' | r!. Now, since I is an orbit for the
characteristically simple group Hg), we find that |I'| > 5. Hence |I'| is divisible
by p, where p is either an odd prime or p = 4, which is a contradiction by Lemma
.42 [

This completes the proof for the case when Hr is a transitive subgroup of S,.
Let us now turn to the case when H is intransitive. Recall that B is the base
group of W. Assuming that H £ B, gives that there exists a Hm-orbit A in r
with size at least 2. Set A =17\ A and 7, = |A|. Then, by [33, Proposition 1.4],
H can be embedded into the direct product

Wi x Wy = Sym(I') wr S,,, x Sym(I") wr S, _,,

such that the projection H; of H into W, acts transitively on r;. Now, since H is
transitive on I'", H; is also transitive on I'"'. Further, as H is characteristically
simple, so is H;. Hence using the theorem in the case when Hr is transitive

gives a contradiction. Therefore, H < B. O

5.4 The Embedding Theorem

We present below the hypotheses under which we will work in this section, as

well as the notation to be used.

Hypothesis 5.4.1. (Embedding Hypothesis) G is a finite quasiprimitive permu-

tation group on Q and o € Q. We assume the following conditions:

1. § = Q1 X -+ x Q, is a minimal normal subgroup of G, where QQ; is a

nonabelian and characteristically simple group and r > 2.

2. G acts transitively on ¥ := {Q1,...,Q,} by conjugation. We denote this
representation by p: G — Sym(X).

3. Consider the projections m;: S — @Q;, where i € r. We have that

Se = (Samy) X -+ X (Samy). (5.5)
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In particular, we observe that item 2 above tells us that all the @); are iso-
morphic. Then we can consider S = ", where () is a nonabelian and charac-
teristically simple group. Moreover, since the transitivity of S on €2 allows us to
write G = 9SG, and that S acts trivially by conjugation on ¥, item 2 says that
G, is transitive on X.

We have some work to do, but the purpose of this section is to prove the

following Embedding Theorem.

Theorem 5.4.2. (Embedding Theorem) Assume Hypothesis as valid. If we
consider I' := [Q1: (Q1)a], then there exists a permutational embedding ¢: G —
Sym(I") wr S,., where we consider the wreath product as a permutation group in

product action on I'".

By permutational embedding we mean that G and its image are not just
isomorphic as abstract groups, but that in their respective actions, G and G
are permutationally isomorphic. This is the reason why we can usually identify
Q2 with I'", G with G, and consider G < Sym(I') wr S,

Although we have required that the group G is finite, the reader will notice
that the Embedding Theorem is still true for all innately transitive groups.

According to Theorem [1.2.2] if G has type Sp, then G cannot be embedded
in a wreath product in product action.

We want to prove the Embedding Theorem. Using the transitivity of S, we
have that G = SG,. So consider the set ' := [S: S,]. By Corollary [2.3.2] we

obtain a transitive action of G on ' given by

(Sa1)™ == Sa(y 'asy), (5.6)

where z,s € S and y € G,. Moreover, the actions of G on € and on ' are
equivalent. Now, since G < Sym(£2), the action of G on (2 is faithful. Therefore,

as these actions are equivalent, both are faithful, so we have the next result.
Lemma 5.4.3. The actions of G on Q) and on Q' are equivalent and faithful.

We denote U := (Q1)a = Sam. By Lemma we have Q1 # U. So
consider I' := [Q;: U]. Our goal is to show that the permutation group induced
by G on ' is permutationally isomorphic to a subgroup of Sym(I")wrS,. In
order to do that, we use the transitivity of G, on X to fix, for each i € r, an
element t; € GG, such that

Q" = Q1. (5.7)
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In particular, we note that (Q;)." = U. Using (5.7), we define a bijection
between " and I'" given by

A Q — rr
Sa(q17"'7q7“) = (UQila"'qurr)v
where, for each 7 € r, ¢; € Q;.
Lemma 5.4.4. The map A given above defines a bijection between ' and I'".

Proof. To see that \ is well-defined and injective, we consider two elements

Salqiy- -, q) and Sy(p1,...,p.) in . Then Sy(qi,...,q) = Salp1,...,pr) if,
and only if, for all i € 7, we have ¢;p; ' € S,m; = (Qi)a. But this is equivalent
to saying that, for all i € r, (gip; )% = ¢ (pl')~" € (Qs)o"" = U, which means
that (Ug',...,Uql") = (UpY,...,Uplr). So

S(X(ql?"‘?q?") = Sa(pl?" '7pT) <:> (qu:l’"'?Uqf‘T) = (Upil7"'7Upf‘T>‘

This shows that A is well-defined and injective. Since (5.7)) allows us to write ev-

ery element of I'" in the form (Uql, ..., Ugl"), it is also clear that ) is surjective.
So we conclude that A is a bijection. O
We can write the elements of G = SG,, in the form (sy,..., s, )y, where each

s; € Q; and y € G,. Thus, by Lemma [2.2.2] it follows that G has an action on
' given by

(Uzy, ..., Uz,) G5 = [(Uzy, ..., Uz, )X "G00y )y (5.8)
where z; € (1, s; € Q; and y € G,. Moreover, by the same result, the actions of
G on € and on I'" are equivalent. We denote this action by ¢: G — Sym(I'").

Lemma 5.4.5. The actions of G on Q, Q' and on I'" are equivalent and faithful.

Proof. Since by Lemma the actions of G on €2 and on € are equivalent
and faithful, and that this last one is equivalent to the action of G on I'", then

the actions of G on €2, €2’ and on I'" are all equivalent and faithful. m

Consider the representation p: G — Sym(X) given in Hypothesis [5.4.1] (item
2). Thus we define p: G — S, to be the induced homomorphism by p, that is,

each permutation gu is given by

ilom) =j<= Q) = Qj. (59)
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In order to simplify the notation, we just write i¢ instead of i9*). The relation

above tells us that the actions of G on r and on X are equivalent.

Lemma 5.4.6. The representations u: G — S, and p: G — Sym(X) are equiv-

alent.

Proof. To see this equivalence, notice that ¢: r — X, defined by ¢ — @), is a
bijection such that, given g € G that satisfies Q);Y = ();, so by relation (5.9) it
follows that

(ip)? = Q% = Q; = jo = ().
Therefore, ;1 and p are equivalent representations. ]

We want to understand better how the action of G on I'" works. Having in
mind relation (5.7)) and given (Uzy,...,Uz,) € I'", we consider elements ¢; € Q;

such that z; = ¢/*. If (s1,...,8,)y € G = SG,, we have from (5.6) and (5.8)
that

Sa(q1317 cee ’qTST)]y)\
Sa<<q1y—1 Sly_1 )y, ey (qry—l Sry—l )y)])\
= (U(qy-18;-1)""" .. U(qy-18,,-1)"7). (5.10)

Uan,. oo, U)o = [, )00
=1
=1

At this point we have that G is a subgroup of Sym(I'"). We want, through
the relation above, to see exactly which are the elements of G). More specifically,
we want to conclude that G < Sym(I') wrS,. To do that, using the same
notation as above, we define a permutation o; € Sym(I") for each ¢ € r, in a way
that ((s1,...,8)y)¥ = (01,...,0.)(gn) € Sym(I") wr S,, where this last element

acts by product action on I'". Fix ¢ € r and consider

o;: r — I
Ugi — Ulgisi)¥',

where each ¢; € );. We observe that in the definition above i, t;, s; and y are

fixed. We will prove that o; is a permutation.
Lemma 5.4.7. The map o; given above defines a permutation of I'.

Proof. To see that o; is well-defined and injective, let U pﬁ and U qf bein I'. We
have that U pfi =U qf" if, and only if, (¢;p; Y% € U, that is, according to equation
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1) we have that ¢;p; ' € Ut = (Qi)a- Acting now with y, we obtain that

this last relation is equivalent to
(qisisglp;l)ytiy _ <qisi)ytiy[<pisi)ytiy]*1 c (Qi)i’fiy =U,

that is,
U(qisi)ytiy — U(pisi)ytz‘y )

Therefore,
Ug;' = Upy <= U(gis:)""™ = U(p;si)*"™.

1

This means that o; is well-defined and injective. To verify the surjectivity, given
Up;” € I', we want to find Ugq;* € I' such that

(Uq)o; = Ulgisi)¥ = Upj.

't.flyfl _ . . . .
"iw? =1 Then o; is surjective. So we obtain

(2

It is enough to consider ¢; = pz

that o; is in fact a permutation of I'. n
Finally, taking g = (s1,...,s,)y € G, we note that

(qul7 o qulzr)(a'lrnzf’?‘)gﬂ — (U(q181)yt1y7 ool U(qrsr)yt"y)g“
= (U(qyy-18,,-1)"" .. U(qy-15,,-1)""),  (5.11)

which is exactly the expression obtained in (5.10)). Therefore,

((s1,. .-y 8)yY)Y = (01, ...,0.)(gu).

So we conclude that GGy permutes the elements of I'" via product action, that is,
GY < Sym(I') wr S,.. Since Lemma guarantees that 1 is a permutational
embedding, the Embedding Theorem (Theorem [5.4.2)) is proved.

5.5 Some consequences

Let ¢: G — Sym(I") wr S, be the injective homomorphism obtained in the Em-
bedding Theorem.

Great, but why, after all, are we so interested in the Embedding Theorem?
Well, for two main reasons. It permits us to see that the projection morphism

of the wreath product onto S, composed with 1 is equivalent to the action of
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G on the set ¥ = {Q1,...,Q,} (corollary below). Besides that, if (H,G) is a
CharS-QP inclusion, then using Theorem [5.3.1], we obtain that Hv is a subgroup
of the base group (Sym(I"))". This, and some more work, allow us to conclude
in next chapter that H < soc(G). Almost there!

Denote W := Sym(I') wr S, and 7: W — S, the projection of W onto S,.
So ¢ = p. By Lemma [5.4.6] p is equivalent to p, then we obtain that ¢ is

equivalent to p.

Corollary 5.5.1. We have that ym: G — S, and p: G — Sym(X) are equivalent

representations of G.

Let (H,G) be a CharS-QP inclusion. We apply Theorem to G and
H1 to obtain that Hiym = 1. Therefore, using Corollary [5.5.1}, it follows that H

normalizes each element of ¥. Then the next result is proved.

Corollary 5.5.2. Assume Hypothesis as valid and (H,G) be a CharS-QP

inclusion. Then H normalizes each element of ¥ :={Q1,...,Q,}.

Since the O’Nan-Scott class Cp satisfies Hypothesis by Lemma |3.2.3]
groups of this type satisfy the previous corollary. However, we observe that
Corollary does not apply to class Sp because, as we already said (Theorem
1.2.2| item 4), this class does not satisfy Hypothesis .



Chapter 6

Characteristically simple
subgroups of quasiprimitive

permutation groups

Using the classification of quasiprimitive groups developed by Praeger (Section
2.5) and the results of the previous chapter, we prove the main result of this

work.

Theorem 6.0.1. (Main Theorem) Let (H, G) be a CharS-QP inclusion such that
soc(G) is nonabelian. Then H < soc(QG).

The first section states the consequences of the Embedding Theorem to char-
acteristically simple groups, while the last section is devoted to the proof of the

Main Theorem.

6.1 That story about characteristically simple
groups

Assume Hypothesis [5.4.1| as valid and suppose that each @); is isomorphic to a
nonabelian simple group Q. Let (H,G) be a CharS-QP inclusion.

Consider the homomorphism ¢: G — Aut(S) where, given g € G, gs is the
conjugation by g. We have that ker ¢ = C¢(S). By Corollary [5.5.2

H¢ < Aut(Qq) x -+ x Aut(Q,).
Moreover, we have that S¢ = Inn(Q;) X - - - xInn(Q,.). Then, by the Isomorphism

62
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Theorem, it follows that

Hg (H¢)(Ss) < Aut(Qq) x -+ x Aut(Q,) ~
Hs¢n Sg S¢ 7 Inn(Qy) x -+ x Inn(Q,)

1%

(Out(Q))".  (6.1)

Since () is simple, we obtain from Schreier’s Conjecture (Lemma that
Out(Q) is soluble. Therefore, as H is nonabelian and characteristically simple,
then Hg is nonabelian and characteristically simple, thus nonsoluble, and we
must have H¢ N S¢ = Hg, that is, H¢ < S¢. So we conclude that H¢ < S&.
Then

kerg
Thus, by the Correspondence Theorem, we obtain that H ker¢ < Sker¢. Then
H < Skerg =5 x Cg(S) = soc(G). This proves the following result.

Lemma 6.1.1. Assume Hypothesis as valid with Q) being a simple group,
and let (H,G) be a CharS-QP inclusion. Then H < soc(G).

6.2 Main theorem

We prove in this section the main theorem of this chapter, Theorem Our
strategy is to verify, using the O’Nan-Scott Theorem given in Chapter [ the
assertion for each O’Nan-Scott class. For those groups whose type is HS or As,
the result follows from Schreier’s Conjecture. Now, for groups of type HC, Tw
or Pa, we use the Embedding Theorem. For groups of type Sp, we use Lemma
@. For groups of type Cp, we use the concept of cartesian decompositions
and the case Sp.

Let G be a finite quasiprimitive permutation group on €2 of type HS, HC,
As, Tw, Pa, Sp or Cp, and let (H,G) be a CharS-QP inclusion. Assume that S
is a nonabelian plinth for G so that soc(G) = S x Cg(S). In some cases Cg(S)
can be trivial. Moreover, we consider m;: S — (@); the projections of S on its

direct factors, and ¢: G — Aut(S) the representation by conjugation on S, so
ker¢ = Cg(9).

G has type As: In this case Cg(S) = 1, S is a simple group and we have
Inn(S) < G < Aut(S). Then ¢ is injective and S¢ = Inn(S). We observe that

Hs _ (Hs)(Ss) < Aut(S)
HsnSs  S¢  — Inn(9)
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where the isomorphism comes from the Isomorphism Theorem. As S is simple,
it follows from the Schreier’s Conjecture (Lemma that Out(S) is soluble.
Since H¢ is nonabelian and characteristically simple, thus not soluble, we have
that H¢ NS¢ = Hg. Therefore H¢ < S¢ and, as ¢ is injective, we conclude that
H < S =soc(G), as desired.

G has type HS: In this case S is a simple group that satisfies
soc(G) = S xInn(S) < G < S x Aut(S) = Hol(95).

We assert that G/soc(G) is embedded in Out(S). In fact, it follows from

Lemma 2.4.7] that
Hol(5S)

soc(@G)

= Qut(S).

Since G < Hol(.5), then

e — Out(9).

This proves our assertion. But observe that

H ~, Hsoc(G) <
HnNsoc(G)  soc(G) ~ soc(G)

— Out(9),

where the isomorphism comes from the Isomorphism Theorem and the embed-
ding comes from our last assertion. Therefore, arguing as we did for the type As,
it follows from Schreier’s Conjecture that H Nsoc(G) = H. Then we conclude
that H < soc(G), as desired.

For the next four O’Nan-Scott types, HC, Tw, Pa and Sp, we will denote
S =@ X xQ,, where each @); is a nonabelian simple subgroup, and r > 2,
because S is nonsimple. Therefore, using Corollary [3.1.6, we obtain that G acts
transitively, by conjugation, on ¥ = {Q1,...,Q,}. So G satisfies the items 1
and 2 of the Embedding Hypothesis (Hypothesis [5.4.1)).

G has type HC or Tw: In this case S is regular, so trivially GG satisfies
item 3 of the Embedding Hypothesis. Thus, by Lemma [6.1.1) we obtain that
H <soc(G).

G has type Pa: In this case Cg(S) = 1 and, for a fixed a € 2, S, is not a
subdirect subgroup of S and S is not regular.

In general, the groups of this class do not satisfy item 3 of the Embedding
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Hypothesis. In order to fix that, we will define a set © on which G’ acts and, for
some w € Q, the following property is satisfied

Sy = (Sum) X -+ X (S,m). (6.2)
First we observe that, for a fixed o € €2, we have that

Sa < Q1 X+ X Q.

Therefore,
Sa < (Sa)m X - X (Sa) 7y (6.3)

Hence we denote P := (S,m1) X - -+ X (Sam,) < S and Q := [S: P]. Then S
acts transitively by right multiplication on €. From the transitivity of S on €,
we have that G = SG,, and, by Lemma [3.2.2] we obtain that G, normalizes P.
Moreover, according to the relation , S, =95NG, < P. Thus we can apply
Lemma to obtain that G has a transitive action on € given by

(Px)* .= P(y ‘wsy), (6.4)

where z,s € S and y € G,.

Recall that S, < S and that C(S) = 1. Thus we can apply Lemma [3.2.1]
to G and 2, to conclude that the action above is faithful. We denote this action
by 1: G — Sym(Q). This tells us that G’ = G is embedded in Sym(Q).

Since the items 1 and 2 of the Embedding Hypothesis are properties of G
viewed as an abstract group, clearly Gn satisfies them too. We assert that Gn
satisfies item 3 as well.

Let w := P € . Since the action of S on § is right multiplication, then
S, = P. So

Sw = (Sam1) X -+ X (Sam,). (6.5)

We observe that the relation above says that, for each ¢ € r, we have

Saﬂ-i = Qz N Sw = (Qz)w

Therefore, S,m; = (Qi)w, and we can write

S = (Q1)w X -+ X (Qr)e-
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But this is equivalent to saying that
S, = (Sym1) X -+ X (S,m).

This shows that Gn satisfies item 3 of Embedding Hypothesis, as we wanted.
To show that H < soc(G), first we prove that H is transitive on 2, and after
we apply Lemma [6.1.1]
By Lemma [2.3.1] we have that G, = S,G,. So G, < G,,. Then by Lemma
2.1.2] follows that A := % is a block for G. This tells us that the set

Q:={A%: g€ G}

is a block system for GG, where clearly G acts transitively.

Since G, < G, we have G, < Ga. We assert that G, = Ga. In fact,
applying Lemma , we have that a®> = A = a%. Applying the same
lemma again, we obtain that G, = Ga. Thus by Lemma [2.2.3| we conclude that
the actions of G on © and €' are equivalent.

Since H is transitive on €2, we have that H is transitive on €. As the actions
of H on € and Q are equivalent, we conclude that H is transitive on Q.

Applying Corollary to Hn, we get that Hn normalizes each element of

Xn = {Qn,...,Qmn}. Therefore, by applying Lemma to G, it follows
that Hn < soc(Gn) = Sn. However, since 7 is injective, H < .S = soc(G).

G has type Sp: In this case Cg(S) = 1 and, for a fixed a € , S, is a
subdirect subgroup of S and is simple. Since S is transitive on 2 and S, = @,
then || = |Q|"~!. For a fixed j € r, denote

Qj ::QlX"'Xijle]#lx"'er-

The idea is to decompose H = Hyx H; into two direct factors, where Hy < S,
and to prove that H; has to be trivial.

In this case each Q; = @, for some nonabelian simple group (), and G can be
considered [28, Section 2, case III(a)] as a subgroup of G := (S - Out(Q)) x S,,
where S, permutes the factors of S naturally and Out(Q) acts on S = Q"
diagonally.

Consider the extension @ := S - Out(Q). We have that G permutes the
elements in ¥ = {Qy,...,Q,} and the kernel of this action is precisely Q. If
we denote by H, the kernel of H acting on X, we obtain that Hy, = H N Q.



Chapter 6. Characteristically simple subgroups 67

Since H is characteristically simple, we have by Lemma m (item 2) that
Hy = T* for some integer kg, and there exists a normal subgroup H; of H such
that H = Hy x Hy. It follows from the Isomorphism Theorem and from the
definition of () that

H H

Y

0
HonS S

I

Out(Q),

S<Q
)

and since Out(Q) is soluble by Schreier’s Conjecture (Lemma [3.3.1)), and H is
nonabelian and characteristically simple, we conclude that Hy = Hy NS, which
means that Hy < S.

Observe that if Hy =1, since Hy < S, then H < S. Our task is precisely to
prove that H; = 1. Then suppose that H; is not trivial. Note that

HlmGSHm@:H()v

so H; N Q = 1. This means that H, permutes the elements in ¥ faithfully, so
|H,| | r!l. In particular, since the size of the smallest nonabelian simple group is
60, we have r > 5.

We have that Hy # 1. In fact, if that is not the case, we have H = Hy,
so Hy is transitive on 2. Then applying the Orbit-Stabilizer Theorem and the

transitivity of S, we obtain

|Hi
|(H1)a|

=] =1QI"",

so |Q|""' | |Hy|. Since |Hy| | r!, we get that |Q|"~' | r!. Since 4 | |Q| by Lemma
, we have that 41 | r!, which is not possible by Lemma m Therefore,
Hy # 1.

Let’s analyze the action of Hy on €). Since Hy I H and H is transitive, the
orbits of Hy form a block system for H. This means that H is half transitive,
that is, the orbits of Hy have the same size. The Orbit-Stabilizer Theorem gives

that
| Ho|

|(H0)a|7

which means that |(Hp),| is independent of . This enables us to calculate the

o] =

number of Hy-orbits. In fact, the number of Hy-orbits is equal to

QI _ eI

o] |T'[ko

|(Ho)al-
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Since H = Hy x Hy and H is transitive on {2, we have that H; is transitive
on the Hy-orbits. Then the Orbit-Stabilizer Theorem gives that the number of
Hy-orbits divides |H;|. Therefore, the number of Hy-orbits divides r!.
From the Isomorphism Theorem we have that
H,

;> Hom & —————— = T 6.6
@i = Hom ker m; N Hy (6:6)

where s; > 0 for all 7 € r. Thus we consider two cases:
Case 1: There exists ¢ € r such that s; > 2.

We want to use Lemma [3.4.2) to show that this case is not possible. Since
s; > 2 for some i € r, there is a copy of T2 in . Applying Theorem , let p
be a prime such that the Sylow p-subgroups of @) are cyclic. If p divides |T'|, let
P be a Sylow p-subgroup of T" and consider P?, that is a Sylow p-subgroup of T2.
Since P is a p-subgroup of @), there exists a Sylow p-subgroup of ) containing
P, and the same is true for P?. So P and P? are cyclic. However, this is not
true, since P cyclic implies that P? is not cyclic. Then p does not divide |T|.
Since the order of a finite nonabelian simple group is even by Lemma [3.4.2] we
can assume that p is odd. Recall that the number of Hy-orbits is

e (o)l (6.7)

Then p"~! divides the number of Hy-orbits, and so it divides r!. However,
this contradicts Lemma [3.4.2] Therefore, Case 1 is not possible.

Case 2: s; < 1forallier.

Since Hy # 1, s; > 1 for some i € r, thus relation gives that there is a
copy of T"in (). We want to write Hy as a direct product of diagonal groups and
to prove that H; can be embedded in the direct product of symmetric groups
smaller than S,.

First we observe that since each T; < Hj is simple, then each T; < Hj is a
strip of S. We assert that if ¢ # j, then supp(7;) Nsupp(7;) = @. In fact, if there
is k € r such that Tym, = T and Tjm, = T, then (T} x T;)m, = T?. However,
this is impossible, since hypothesis s, < 1 implies that Hym, = T. Then the
supports of the direct factors of Hy are disjoint. Then Lemma [3.1.3| permits to

write each T; as a diagonal subgroup of the direct products of the elements on
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its support. Therefore,
H():TlX"'XTkO, (68)

where each T; = T is a diagonal subgroup of

H Q]7

Q; €supp(T3)

in such a way that these subproducts do not have factors in common. As a
consequence, we obtain that ky < r. We will treat the case ky = r separately.
Assume first that kg < 7. Since |T'| | |Q|, we have by [6.7 that |Q|"*~1 divides
the number of Hy-orbits.

Let d; be the cardinality of supp(7;). Moreover, let m; be the number of
T;’s for which d; > 5, and let my be the number of T;’s whose d; < 5. So

my + ms = ko. Relabeling if necessary, we can write
Hy=T) x - X T X Thnyg1 X - X Ty tmas

where the first m; factors have length d; > 5. Still, denote ms3 :=r — Zfil d;,
that is the number of factors ); that do not involve any of the T;.
Since H; centralizes Hy, we have that H; centralizes each T;. As given

hi € Hy and 7 € r we have

(supp(T3))™ = supp(T;™) = supp(T;),

we conclude that each supp(7;) is Hi-invariant.

Observe that if a group has a nonabelian simple group as a direct factor,
since the smallest nonabelian simple group is As, then its size has to be at least
60. This means that if such a kind of group acts faithfully on a set with less
than five elements, then the action is necessarily trivial. Therefore, as the action
of Hy on ¥ is faithful, if d; < 5, we obtain that H; acts trivially on supp(7;).

According to the observation above, we have that H; acts trivially on
Supp<77m1+1)tJ U Supp(Tko)'
Since the action of H; on ¥ is faithful, we obtain that

L] | (1) (doo, ) (mat). (6.9)
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As we assumed H; # 1, we have from the relation above that either m; = 0 and

ms > 5, or my # 0. In both cases we conclude that
Recall that |Q|"*~1 divides |H;|. So relation [6.9|says that

QI () - . (dimy 1) (ms)). (6.11)
On the other hand, we have that » > dy +dy + - - - + d;5,, + ma + m3. So

|Q|d1+d2+---+dm1+m2+m3 ‘ |Q|T

Since [6.10|is valid and kg = m; + ms, then

|Q‘d1+d2+-..+dm1+m2+m37m17m271 — |Q’(d171)+---+(dm171)+m3*1 | ’Q|r7k071.

Therefore, using equation [6.11], we obtain that
Q| =Dt dmy —Ddma=1 (g, 1y (d,,, 1) (ms)).
Since by Lemma we have that 4 | |@|, then the previous line gives that
20 9dmigms | ()L (dp,!) (ms)),

which is a contradiction by Lemma [3.4.2] This implies that H; = 1, which
means that if kg < r, then H < S.

Now consider the case where ky = r. Then relation implies that d; = 1
for all ¢ € r. Since each supp(7T;) is H;-invariant, we have that H; acts faithfully
and trivially on X, thus H; = 1. Then if ky = r, we obtain H = Hy < 5.

Therefore, if (H,G) is a CharS-QP inclusion, where G has type Sp, then
H<S.

For the last O’Nan-Scott type Cb, we will denote S = ()1 X -+ X @), where

each @); is a nonabelian simple subgroup and r > 2, because S is nonsimple.

G has type Cb: In this case Cg(S) = 1 and for a fixed a € Q, S, is
a subdirect subgroup of S, but it is not simple. So Lemma [3.2.3] guarantees
that there exist two sets ¥ = {Si,...,S;} and {D1,..., D}, where k > 2,
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each D; is a full diagonal subgroup of S; and S; = HQ], p, &, such that

S =8; x--- xSy, G, acts transitively by conjugation on ¥ and, considering

€supp
the projections 7;: S — .5;, we have that
So = SaT1 X -+ X STk, (6.12)

where each S,7; = D;. Moreover, the actions of G, on ¥ and on {Dy, ..., D;}
are equivalent.

It means that G satisfies all the items of the Embedding Hypothesis. For
each i € k, let S; := [] i S;. Thus G also satisfies the conditions of Example
, and we conclude that & = {I';,..., T}, where each I; is the set of S;-
orbits, is an S-normal cartesian decomposition of ) preserved by G. Moreover,
ST = S; and the G-actions on X and on £ are equivalent. That means that the
actions of G, on € and on {Dy, ..., Dy} are equivalent.

Let Gr, be the stabilizer in G of I';. Now G, induces a permutation group
G on T; for each i € k. Since S < G, S'i < G, We want to prove that ST is
a minimal normal subgroup of G'#. In order to do that, we want to use Corollary
B.1.6 Let Qum, Qn < Si. As G, is transitive on ¥, there exists g € G, such that
Qn? = Q. Since the supports supp(D;) are disjoint and Q,,Y = Q,, < S NS,
we have that S;? = S;. Thus I'/Y =TI, then g € Gr,. Therefore, G, permutes
transitively the nonabelian simple factors of S; = S'i. So according to Corollary
[3.1.6] S™ is a minimal normal subgroup of G

We want to show now that G is a permutation group of type Sp. For each
i € k, let v; be the part in I'; that contains «. Since D; < S, then by equation
5.3l we have D; < (S;),,. Conversely, if s € (5;),, then s stabilizes v; for all
j € k, and so s stabilizes the intersection ﬂj v; = {a}. Thus s € ;N S, = D;.
Therefore, (S;),, = D;, and so each G has type Sp. In particular, we have
soc(G') = ST

Since S = S;, we conclude that
soc(G) = HSi = Hsoc(GFi). (6.13)

As G satisfies Embedding Hypothesis, then by Corollary [5.5.2] we have that H
normalizes each element of ¥. Since the G-actions on ¥ and on & are equivalent,
thus H acts trivially on &, that is,

HSG(g)SGF1X"'XGFk.
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Since H is transitive on €2, then H is transitive on each I';. If we consider
the projection map o;: G' x --- x G'* — G, then each Ho; is transitive
on I';. Since G has type Sp, we can apply the previous case to obtain that
Ho; < soc(G") for all i € k. Thus by equation , we have that

H < HSOC(GFi) =soc(G) = S.

Therefore, if (H, G) is a CharS-QP inclusion, where G has type Cp, then H < S.

This concludes the proof of the main theorem.
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CharS-QP Inclusions

In this chapter we will see how to apply the Main Theorem to describe CharS-QP
inclusions by analyzing each O’Nan-Scott class with nonabelian plinth.

Throughout this chapter, let G be a finite quasiprimitive permutation group
on § of type HS, HC, As, Tw, Pa, Spb or Cp, and let (H,G) be a CharS-QP
inclusion. Assume that S = Q1 X --- X (), is a nonabelian plinth for G, where
each Q; = @ for a nonabelian simple group @, so that soc(G) = S x Cg(S).
In case Cg(S) is nontrivial, then it is isomorphic to S. Moreover, we consider
the projections 7;: soc(G) — Q; of soc(G) onto its direct factors. According to
Theorem [6.0.1] H < soc(G).

If C(S) =1, in order to get some information about H, we will analyze the
image of H under the projections m;: S — ;. In the next lemma we see that

this approach restricts the possible O’Nan Scott class of G.

Lemma 7.0.1. Let (H,G) be a CharS-QP inclusion and let S be a nonabelian
plinth of G such that Cg(S) = 1. Suppose that for some iy € r we have that
Hmy = 1. Then G has type Sp or Cb.

Proof. We have that S = soc(G) and by Theorem [6.0.1, H < S. Since H is

transitive, we can write S = HS,. Therefore, using that m;, is surjective and
that Hm;, = 1, we have

Qiy = STy = (HSa)miy = (Hmiy)(SaTiy) = SaTig-

Fixing an arbitrary j € r, it follows from the transitivity of G, on the factors
(); that there exists g € G, such that @;,Y = Q;. Then

Qj = Qiog = (Sozﬂ—io)g = SoﬂTj-

73
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Since j was arbitrary, we conclude that @); = S,7; for all 7 € r. This means
that S, is a subdirect subgroup of S, so it follows from Theorem that G
has type Sp or Cp, which completes the proof. n

So by applying Scott’s Lemma (Lemma [3.1.4]), we obtain that if Hm;, = 1
for some ig € r, then
Sy =Dy X -+ xX Dy,

where each D; is a nonabelian diagonal simple group isomorphic to ) and [

divides r.

7.1 G has type As
In this case S is simple and C(S) = 1, thus S = soc(G).

Lemma 7.1.1. Let (H,G) be a CharS-QP inclusion where G has type As, H
is nonsimple and S = soc(G). Then S = A, and G, NS = A,_1, where
n=|G: Gy =|5:G,NS|>10.

Proof. We have that H = T* where k > 2. Using that H is transitive, it follows
from Lemma that G = G, H, in which H £ G, < G. Then we are in the

conditions of |2, Theorem 1.4], so
S=A,and G,NS=A,_1,

where n = |G : Go| = |S : G, N S| > 10. O

In fact, this lemma says that either H is a transitive simple subgroup of
S, that is also a simple group, or H is a nonsimple transitive characteristically

simple subgroup of S = A,,, in the natural action of A, on the set n for n > 10.

7.2 G has type Tw

In this case S is regular and Cg(S) = 1, thus S = soc(G).

Lemma 7.2.1. Let (H,G) be a CharS-QP inclusion where G has type Tw and
S =soc(G). Then H=S5.
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Proof. According to Main Theorem [6.0.1 we have that H < S. Since S is

regular, H is also regular, and we have from the Orbit-Stabilizer Theorem that
S| = 19 = [H].

Then we conclude that H = S. OJ

In particular, the result above says that if (H,G) is a CharS-QP inclusion
where G has type Tw, then H is regular.

7.3 G has type So

In this case Cg(S) = 1 and, for a fixed a € Q, S, is a subdirect subgroup of S
and is simple.
From Lemma [3.1.3] we have that

Sa = D1 ={(gp1,qp2,...,q0:): g € Q} = Q,

where @;: () — @Q; is an isomorphism for each ¢ € r. From now on we will use

these isomorphisms to write arbitrary elements of S in the form

(101, @202, - - -, Grpr)-

Since S is transitive on 2 and S, = @, then |Q| = |Q|"~!. For a fixed j € r,

denote

Qj = Q1 X X Qi1 X Qjgr X - X Q.

Lemma [7.0.1] suggests that to obtain some information about H and G, it
is helpful to analize the projections of H on the direct factors of S. So given
1o € r, we have three options: Hm,, =1, Hm;, = Q;, or 1 < Hm;, < @y, We

obtain the following characterization.

Theorem 7.3.1. Let G be a finite quasiprimitive permutation group on 2 of
type Sp and let S = Q1 X --- X Q, be a plinth of G. Consider the projections
mi: S — Q;, where i € r, and let (H,G) be a CharS-QP inclusion in which
H=TF Then

1. If Hm;y = 1 for some iy € r, then H = @io (in this case H is regular).

2. ]fHT('Z‘O

= @y, for someig € r, then H =S (in this case H is not regular)
or H= @j for some j € r (in this case H is regqular).
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3. If1 < Hmj<Qj foralljer, thenr=k=2T=A=2B H=AXxDB
and Q = AB, where A~ A, B = B, and Q, A and B are described in
Table (in this case H is not reqular).

Proof. Case 1: Suppose that Hm;, = 1 for some 7y € r.

Without loss of generality, assume that ig = 1 and let

Q1 ={(1, @02, ... ¢r¢r): ¢; € Q}.

Notice that S = Q,S5,. In fact, we have, for all q1,...,q, € Q, that

(101, @202 - - - trpr) = (1, (21 D2, - -+, (@rq1 ) (o1, 102, - - -, q1py).-

Since the first element belongs to @, and the second one to S,, we have that
S = @, S,, which implies that @, is transitive. Moreover, as S, N Q, = 1,
then @, is a regular group. Since H < (), and H is transitive, we obtain that
@, = H. This proves item 1.

Case 2: Consider now the case in which Hm;, = );, for some i € 7.

In this case (), is a composition factor of H, which means by the Jordan-
Holder Theorem [21, Theorem VII.1.8] that Q = T, and so k < r. Since S is
transitive on €2,

Q] =|S: Sal = Q" =T
As H is transitive on (2,

H| _ |7

77 =19 = :
|Hol  [Hal

Since k < r,then k =r—1or k=r. If Kk =r, then H = 5. Otherwise,
assume now that k =r — 1.
Given j € r, since Hr; is a homomorphic image of H, by the Isomorphism
Theorem
Hrm; 2T% = Q%.

Since Hm; < Q;, thus s; € {0,1}. If s; = 0 for some j € r, then we are in the
previous case (H = @j) So assume that s; = 1 for all j € r. We will see that

this option is not possible. If it is true, thus H is a subdirect subgroup of S and,
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by Scott’s Lemma, H is a direct product
H=R; X - X R,

of full diagonal subgroups of subproducts [ ], 9 @i, in which {/;} is a partition for
r. Since each R; = @ and H = Q" !, we have that m = r — 1 and, without loss
of generality, we can assume R; < Q x Q2 and R; < Qg forall2 <5 <r —1.
Let 7: S — Q1 X Q2 be a projection. Since 7 is surjective and S = HS,,
then
Q* 2 Q) x Qy = ST = (HT)(S,7).

Notice that H7 and S, 7 are non-trivial full strips of @1 x )2. However, from

Lemmas [4.2.2] and [4.2.3] this is not possible. Thus s; = 0 must hold for some

j € r. Therefore, either H = S or H = @Q; for some j € r, and item 2 is proved.
Case 3: Consider now the case in which 1 < Hr; < Q; for all j € r.

We have that S, is a full diagonal subgroup of S. Since H is transitive, then
S = HS, by Lemma [2.1.1] So we are under the hypotheses of Corollary [4.1.4]
Thenr =2, T2 A2 B, H=AxDB and Q = AB, where (), A and B are
described in Table [4.3] Therefore, item 3 is proved. O]

Corollary 7.3.2. Let G be a finite quasiprimitive permutation group on ) of
type Sp and let S = Q" be a plinth of G, where () is a nonabelian simple group.
If (H,G) is a CharS-QP inclusion and H is reqular, then H = Q"~'. Otherwise,
if H is not reqular, then either H = S or H = A x B and Q = A B, where
A=A BB, and Q, A and B are described in Table @

7.4 G has type HS

In this case G is primitive, and soc(G) = S x Cg(S), where both S and Cg(S)

are simple and regular.

Theorem 7.4.1. Let G be a finite quasiprimitive permutation group on 2 of
type HS and let S be a plinth of G. If (H,G) is a CharS-QP inclusion, then one
of the following holds.

1. Fither H =S or H = Cg(S) (in this case H is regular).

2. H =soc(G) (in this case H is not reqular).
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3. H=AXB and S = AB, where S, A and B are described in Table [{.]

(in this case H is not reqular).

Proof. According to [8, Lemma 5.1], there is an involution ¢ € Ngymq)(G) that
interchanges S and Cg(S). In particular this says that S = Cg(S). Consider
G = (G, i) < Sym(Q). Since G < G and G is primitive, thus G is also primitive.
If P :=soc(G), then P < G and P is normalized by 7, then we have that P < G,
and by Lemmam (item 2) P is a minimal normal subgroup of G. By Lemma
P, is a subdirect subgroup of P. Since P = S? we have by Lemma
(item 1) that P, is a simple diagonal subgroup of P. Hence by O’Nan-Scott
Theorem (Theorem P = soc(G) and G has type Sp. Since H < G < G,
then (H,G) is a CharS-QP inclusion. By Theorem m H < P. Therefore,
applying Theorem [7.3.T and analyzing the possibilities, the result is proved. [

Corollary 7.4.2. Let G be a finite quasiprimitive permutation group on 2 of

type HS and let S be a plinth of G. If (H,G) is a CharS-QP inclusion and H is
reqular, then either H = S or H = Cg(S). Otherwise, if H is nonregular, then
either H = soc(G) or H=Ax B and S = AB, where S, A and B are described

in Table[].3

7.5 G has type Pa

In this case Cg(S) = 1, hence soc(G) = S and, for a fixed a € Q, S, is not a

subdirect subgroup of S and S is not regular.

Theorem 7.5.1. Let G be a finite quasiprimitive permutation group on 2 of
type PA and let S = Q1 X --- X @Q, be a plinth of G. Consider the projections
mi: S — Q;, where i € r, and let (H,G) be a CharS-QP inclusion in which
H = T*. Then one of the following holds.

1. S=(A,)", So = (A1) and |Q2| =n', where n > 10.
2. T is isomorphic to one of the groups Ag, Mo, PSp(4,2%) or PQy (q).
3. k=randT; < Q; foralli er.

Proof. Let P := Sym X -+ X Sym,. According to Lemma [3.2.2] we have that G,
acts transitively on the direct factors of P. As a consequence, since S, is not a
subdirect subgroup of S, then 1 < S,m; < Q); for all © € r.



Chapter 7. CharS-QP Inclusions 79

Since H = T*, by Isomorphism Theorem and Lemma m (item 2) we have
that Hm; = T for each i € r, where s; > 0. However, as S = S, H (Lemma
2.1.1)),

Qi = Sm; = (Sam;) (Hm;). (7.1)

Since S,m; is proper in @);, then Hm; # 1. Therefore, s; > 1 for all i € r.

Case 1: Suppose that s;, > 2 for some iy € 7.

We have that Hm; # Q; for all ¢ € r. Otherwise, ) would be a composition
factor of H and so 17" = (). Since s;, > 2, this is not possible. Therefore,
1< Hmy < Q; for alli € r.

Consider the factorization in[7.1] By [2, Theorem 1.4], we have that Q = A,
and S,m; = A,_; for all i € r, where n > 10. In particular, P = (A,_1)".

Claim. S, = P.

Proof of Claim. Assume that S, # P. Since S, is a subdirect subgroup of P,
by Scott’s Lemma (Lemma [3.1.4), S, is the direct product of diagonal groups

Sa:D1X"'XDl

for some [ < r. Renumbering if necessary and using that S, # P, we can
assume that D; < Q1 X -+ X @, where 2 < m < r. Consider the projection
m: S — Q1 X Qs. Since S = S, H, then

Q1 X Q2 = ST = (S,7)(HT),

where S, = {(q¥1,qp2): ¢ € A1} and ¢;: A,_1 — S, are isomorphisms
for + = 1,2. Since n > 10, and in this case the automorphisms of A, are
conjugations by elements in S, [37, 2.4.1], we can extend the isomorphisms ¢;
to A, that is, for i = 1,2 there exist isomorphisms ©;: A, — @; such that the

restriction of @; to A, is equal to ¢;, and so
Q1 X Q2= E(Hﬁ) = E(Hm X Hry),

where D = {(q%1, ¢%3): ¢ € A,}. By Corollary we have that the possibil-
ities for @ and H are in Table [4.3] Since we already know that @) = A, with

n > 10, we obtain a contradiction. Therefore S, = P, as desired. O]
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Applying the Orbit-Stabilizer Theorem, we see that

T

2]
Sl

So if s; > 2 for some i € r, then S = (A,)", Sa = (An—1)" and || = n", where
n > 10.

Case 2: Suppose that s; =1 for all i € r.

Since T; is simple, we have that T; is a strip of S for all i € r. Moreover,
the supports of each T; are pairwise disjoint. In fact, if for some [ we have

Tim =T = Tym for distinet 7, j € r, then
T2 = (T; X T}')ﬂ'l < Hﬂ'l %T’

that is an absurd. Then the supports are pairwise disjoint and we can write

Tl S le"'XQll)
Ty < Qi1 X X Quqiy,
T, < Qll+12+“'+lk71+1 X X Qll+l2+“'+lk‘

First suppose that [; > 2 for some i € r. Renumbering, if necessary, assume
that {; > 2.
Write [ := [; and consider the projection map 7: S — Q1 X -+ X ;. As
S =HS,, then
(HT)(SaT) = Q1 X -+ X Q.

Write L := Samy X -+ X Sam. Since H7 = T and S,7 < L, thus
T\L=Q x - xQ.
Therefore, T} acts transitively, by right multiplication, on the coset

(@1 x -+ x Qi: L.

Since T3 is simple, this action is faithful. Consider U := S,m; and fix, for each
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i€l t; € G, such that Q;" = Q. So we define the map

A Q1 xox Qi L] — (Q:: U]
L(qi,..-,q) = (Uq™,...,Ugq").

Analogously to the proof of Lemma [5.4.4] we obtain that A is a bijection. So by
Lemma [2.2.2) we obtain that the actions of T} on [Qy X -+ x Q;: L] and [Q;: U]’
are equivalent. If we write I := [@Q1: U], thus 77 can be considered a transitive
subgroup of Sym(I'). We want to prove that T; < (Sym(T'))!. To see this, let
t = (x1,...,2;) € T. Fix i € [ and consider

o;: T — r
Ug' — Ulga;)",

where each ¢; € Q;. We observe that in the definition above 7, t; and z; are fixed.
Analogously to the proof of Lemma [5.4.7] we obtain that o; is a permutation of
I

Finally, note that

(Uqgtt,....Uq")" = (U(qz1)™, ..., U(qa)")
- ((UQil)o-la ceey (UQZtl)UZ)
(U, U,

Therefore, t = (ay,...,0;) € (Sym(I"))!, and since ¢ was arbitrary, we conclude
that Ty < (Sym(T"))!. According to Theorem we have that 7" is isomorphic
to one of the groups Ag, Mia, PSp(4,2%) or PQ (¢). Further, in this case, [ = 2.

Now suppose that I[; =1 for all ¢ € r. Then kK =r and T; < Q; for all i € r.
Therefore, the result is proved. [

7.6 G has type Co

In this case C(S) = 1 and for a fixed a € 2, S, is a subdirect subgroup of S,

but it is not simple.

Theorem 7.6.1. Let G be a finite quasiprimitive permutation group on 2 of
type Cp and let S = Q1 X - - X Q, be a plinth of G, where each Q; is isomorphic
to a nonabelian simple group (). Consider the projections m;: S — Q;, where
i €r,and let (H,G) be a CharS-QP inclusion in which H =Ty x --- x T}, and
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each T; =2 T for a nonabelian simple group T'. Then

1. If 1< Hmj < Qj forallj €r, thenk =r, H= A" and Q) = A B, where
A=A, BB, and Q, A and B are described in Table @

2. If Hm, € {1,Qi,} for someig € r, then So, = Dy x---x Dy, where | divides
r, and T = @, where each D; and each T; are full strips of S such that
| supp(7;) Nsupp(D;)| < 1 and |supp(D;)Nsupp(H)| =r/l orr/l—1, for
all i € k and j € . Among the options for H satisfying these properties,
Algorithm [{.1] decides those that satisfy S = SoH.

Proof. Lemma guarantees that there exist two sets X := {S1,..., 5} and
D :={Dy,...,D;}, where | > 2, each D; is a full diagonal subgroup of S; and
S; = HQ]_ESuppDi Q;, such that S =5 x -+ x S}, and

S, =Dy x---xD; =Q" (7.2)

As we saw in the proof of the Main Theorem (Section case GG has type Cp),
there is an S-normal cartesian decomposition & = {I'y,..., I} preserved by G
such that G'* < Sym(T;) has type Sp with socle S;, for all i € [. Moreover, if we
consider the projections 7;: S — S;, then (H7;, G'7) is a CharS-QP inclusion.

Case 1: Suppose that 1 < Hm; < @Q); for all j €r.

Applying Theorem[7.3.1] (item 3) to the inclusion (H7;, G'*), we obtain that
|supp(D;)| = 2 for all i € [, that is, r is even and S; & Q? Hm; = A for all
i € r and T = A, which implies that H = A* where k < r, and Q = A B, where
A~ A B=B, and Q, A and B are described in Table .

Renumbering, if necessary, consider

S=0Q1 X Qa2 X Q3 X QyX--XQr 1 XQy.
—_——— ——— —_———

S1 So Sr/2

Claim. H = Hmy X --- X Hm,.

Proof of Claim. It is equivalent to prove that Hm; < H for all i € r. So assume
the opposite, that is, Hm;, £ H for some i1 € r. Then H has a nontrivial strip
X = A such that supp(X) = {Qy, ..., Q;,, }, where m > 2.

Notice that the two factors @; in each S; never appear together in supp(X),
that is, supp(D;) € supp(X) for each ¢ € [. In fact, if we assume that Qq,Qs €
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supp(X) and consider the projection 7;: S — Sy, since S = S, H, thus
Sl = Sfl = (Saﬁl)(Hﬁl) - (Dl)(Xﬁl)

However, analyzing the orders,

__ Q4]

2
= <
| Dy N X7 QI

QI
an absurd. Notice that there is nothing special about )q,(@s. Therefore,
supp(D;) ¢ supp(X) for all i € [. Again, renumbering if necessary, we may
assume that @2, Q3 € supp(X). Considering the projection 7: S — S; X Sy, we
have

S1 x Sy = 8T = (S,7)(HT) = (D1 x Dy)(HT), (7.3)

where HT is contained in a subgroup H of S; x S, that is isomorphic to A°%. Let

P :=(Dy x Dy) N (H). Then |Q[* = ‘Q||21l|Algv thus

_ AP

1= 1op

(7.4)

For what follows, consult Appendix [A]if necessary.

Suppose that Q = Ag and A = As. Then by |P| = 5/3, which is an
absurd. Therefore, if () = Ag, then H does not have strips.

Assume that @ = PQJ (¢) and A = Q;(g). Then by

(¢°—1)
(¢>+1)

|P| = d.¢*.

We will prove that there exists an odd prime that divides ¢ + 1 but does not
divide d.¢®.(¢®—1). If ¢ is even, then ¢*+1 is odd, then there exists an odd prime
p that divides ¢? + 1. On the other hand, if ¢ is odd, then ¢*> + 1 = 2 (mod 4).
Thus ¢ + 1 is even but it is not a 2-power, so there exists an odd prime p that
divides ¢® + 1. Therefore, in any of the cases, there exists an odd prime p that
divides ¢* + 1. We want to prove that p does not divide d.¢>.(¢® — 1). Since p is
odd, then p does not divide ¢> —1. As ¢® —1 = (¢*>—1).(¢* +¢*+1), and p does
not divide ¢> — 1 but divides ¢? + 1, thus p does not divide ¢° — 1. Then p is
the prime which we are looking for. This means that also |P| is not an integer,
which is an absurd. Thus if Q = PQZ (¢), H does not have strips.

Finally, suppose that @ = M, and A = M;;. Then by (7.4), |P| = 55.
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Denote A; := Hm;. By Lemma there exist isomorphisms @y: Q1 — Qo,
w4: Q3 — Q4 and ¢: Ay — Aj such that

Dy x Dy ={(p, p2,q,q¢4): p € Q1,9 € Qs},
H ={(a1, az,a21), as): a; € A;}.

Consider isomorphisms 7;: Q — @;. Then we define the isomorphism
¢: Sl X S2 — Q47

where ¢ = (', "7 ng i g ). Let Ay o= Aupt, Ay = Asppy ',
Az = Asnz! and Ay := Agp;'n3t. Thus A; = A and applying ¢ in (7.3), we
obtain Q* = (D; x Dy)¢(Hp), where ¢): Ay — Aj is an isomorphism and

(D1 x Dy)o ={(p,p,9:9): p.q € Q},
Ho ={(ay,ay, a0, a,): @; € A;}.

However, this an absurd by Lemma Then if @ = Mz, H does not have
strips.
Therefore, H = Hm x --- X Hm, as asserted. [l

It means that if 1 < Hm; < Q; for all © € r, then £ =r and so H = A".
Case 2: Suppose that Hm;, = Q;, for some iy € r.

In this case );, is a composition factor of H, which means by the Jordan-
Holder Theorem [21, Theorem VII.1.8] that @ = T, and so k < r. So each T; is
a full strip of S.

Since S = SoH by Lemma [2.1.1] we have by Corollary (item 3) that
| supp(T;) N supp(D;)| < 1 and |supp(D;) Nsupp(H)| = r/l or r/l — 1 for all
i € kand j € [. Among the options for H satisfying these properties, Algorithm
decides those that satisfy S = S, H.

Case 3: Suppose that Hm,;, = 1 for some i € r.

Let jo € [ such that Q;, < Sj, = Qi X -+-Q;,,,_,. Since (H7j,, GY0) is a
CharS-QP inclusion where GT9 has type Sp, by applying Theorem m (item
1) we obtain that H7j, = Qi X --- Qi ,_, = Q"' Then Hm;, = Q;,. So this

case is a particular case of Case 2. n
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7.7 G has type HC

In this case G is primitive, and soc(G) = S x Cg(S), where both S and Cg(S)
are regular and nonsimple. Since S is isomorphic to Cg(5), if S = Q" then

soc(G) = Q™, where m = 2r.

Theorem 7.7.1. Let G be a finite quasiprimitive permutation group on §2 of
type HC and let P := soc(G) = Q1 X - -+ X Q, where each Q; is isomorphic to a
nonabelian simple group (). Consider the projections w;: P — @);, where i € m,
and let (H,G) be a CharS-QP inclusion in which H = Ty x --- x T}, and each
T; =2 T for a nonabelian simple group T. Let S = Q" be a plinth for G and take
a € Q. Then

1. If1 < Hm; < Qj forallj € m, then k =m, H= A™ and Q) = A B, where
A=A BB, and Q, A and B are described in Table @

2. If Hmy € {1,Qq} for some ig € m, then P, = Dy X --- X D,, and
T = @, where each D; and each T; are full strips of P in such a way that
| supp(T;) N supp(D;)| < 1 and |supp(D;) Nsupp(H)| = 2 or 1, for all
i € k and 7 € r. Among the options for H satisfying these properties,
Algorithm [{.1] decides those that satisfy P = P,H.

Proof. According to [8, Lemma 5.1], there is an involution ¢ € Ngyma)(G) that
interchanges S and Cg(S). In particular this says that S = Cg(S). Consider
G = (G, i) < Sym(Q). Since G < G and G is primitive, thus G is also primitive.
If P := soc(G), we have that P < G, and by Lemma (item 2) that P must
be a direct product of some of the direct factors of S and Cg(S). Since G is
transitive on these direct factors, we have by Lemma [3.1.4] (item 2) that P is
a minimal normal subgroup of G. Consider the projections m: P — S and
7o P — Cg(G). By Lemma m, P,m = S and P,m = Cg(S). Then P,
is a subdirect subgroup of P. Moreover, P, N S is a subdirect subgroup of
S and P, N Cg(S) is a subdirect subgroup of Cg(S). Then P, is nonsimple.
Hence by O’Nan-Scott Theorem (Theorem P = soc(G) and G has type
Cp. Since H < G < G, then (H, @) is a CharS-QP inclusion. By Theorem
6.0.1, H < P. Therefore, applying Theorem we obtain that 7" = ) and
P, = D; x --- x Dy, where each D; and each T; are full strips of P such that
| supp(7;) Nsupp(D;)| < 1 and |supp(D;) Nsupp(H)| = m/l or m/l — 1, for all
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i € k and j € [. However, since S is regular, || = |Q[", and so

QF 1P :
o =y = 1= 10

86

Then [ = r = m/2, which means that |supp(D;)| = 2 for all i € r. Therefore,

the result is proved.

]
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Appendix A

Orders of some groups

G |G|

As 22.3.5

Ag 23.3%.5

Az 23.3%2.5.7

As 20.32.5.7

Ag 26.31.5.7

Sz 21.32.5.7

Ss 27.32.5.7

My, 24.3%2.5.11

Mz 20.33.5.11

PSLy(11) 22.3.5.11

Sp(6,2) 29.315.7

Z5° X A 29.32.5.7

7% % Ag 2123257

Zs® x PSL4(3) 27.3'2.5.13

Q7(3) 29.3%.5.7.13

G2(2) 20.33.7

Go(2) 2°.3%.7

Og (2) 27.32.5.7

04 (2) 27.31.5

05.,(2) 24a272a+1.(22a +1). H?i;l(?i —1)
Q(q) 2.¢°.(¢* = 1).(¢* = 1).(¢° — 1), where d = mdc(2,q — 1)
PQI (q) +.4"%.(¢* —1).(¢* = 1)%.(¢° — 1), where d = mdc(2,q — 1)
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G-invariant
cartesian decomposition, [51]
partition, [27]

set, [12]

jJ-th component, [54]

action, [12]
base group,
coset, [23]
equivalent,
faithful,
product, of wreath product, [50]
right coset,
right multiplication,
automorphism
fixed-point-free,
uniform,

base group

of the holomorph,

of the wreath product,
block, [I9]

system, [27]

cartesian decomposition,
S-normal,
homogeneous,
trivial,

Embedding Theorem,

factorization, [T4] [39]
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full,

multiple, [39)
strong multiple,

Feit-Thompson Theorem,

group
characteristically simple,
imprimitive, [12]
intransitive, [12]
outer automorphism,
primitive, [12]
regular,
symmetric, [TT]

transitive, [12], [I9]
holomorph,

inclusion

CharS-P,
CharS-QP, [T
problem,

Legendre’s Formula,

O’Nan-Scott Theorem, [29]

orbit,
Orbit-Stabilizer Theorem,

permutation group, [I1]
imprimitive, 26|
innately transitive, [13] 27]
primitive, [26]



Index

quasiprimitive, [I3] 27]
permutational isomorphism,

plinth, [27]

Schreier’s Conjecture,
Scott’s Lemma, [32]

socle,

stabilizer,

pointwise, [IT]
pointwise, of a cartesian decompo-

sition, [5]]

setwise, [T]]
strip, 30]

full,

non-trivial,
subgroup

diagonal,
full diagonal,
minimal normal, [26]

subdirect,
trivial partitions, [12]

wreath product,
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