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RESUMO

Começamos com uma breve introdução ao polinômio cromático e de Tutte de
grafos. Então damos uma introdução às álgebras de Hopf. Em combinátoria, álgebras
de Hopf surgem visto que muitos objetos combinatórios tem associados a eles oper-
ações de união (levando a uma estrutura de multiplicação) e a decomposição (levando
a uma estrutura de comultiplicação). Em seguida, discutimos alguns resultados clássi-
cos de Tutte em V− e W− funções e polinômios de Tutte. Mostramos que o polinômio
cromático é o único morfismo na categoria de álgebras de Hopf de uma álgebra de Hopf
de grafos para uma álgebra de Hopf de polinômios, que é um resultado de Foissy. Em
seguida, apresentamos um método algébrico de Hopf de Schmitt por sistemas de Whit-
ney, demonstrando que o polinômio cromático de um grafo G pode ser determinado
examinando apenas os subgrafos de G duplamente conexos, que é um resultado de
Whitney. O último capítulo é sobre a conjectura de reconstrução de Ulam e Kelly. Aqui
mostramos que certos argumentos de contagem usados por Kocay e Tutte são essen-
cialmente idênticos a um argumento de contagem usado por Schmitt em seus métodos
de álgebra de Hopf para o polinômio cromático.
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ABSTRACT

We begin with a brief introduction to the chromatic and Tutte polynomial of
graphs. We then give an introduction to Hopf algebras. In combinatorics, Hopf algebras
arise since many combinatorial objects have associated with them operations of union
(leading to multiplicative structure) and decomposition (leading to a comultiplicative
structure). We then discuss some classic results of Tutte on V− and W− functions and
Tutte polynomials. We show that the chromatic polynomial is the unique morphism
in the category of Hopf algebras from a Hopf algebra of graphs to a Hopf algebra of
polynomials, which is a result of Foissy. We then present a Hopf algebraic method of
Schmitt for Whitney systems, demonstrating that the chromatic polynomial of a graph
G can be determined by examining only the doubly connected subgraphs of G, which
is a result of Whitney. The last chapter is on the reconstruction conjecture of Ulam
and Kelly. Here we show that certain counting argument used by Kocay and Tutte
are essentially identical to a counting argument used by Schmitt in his Hopf algebra
methods for the chromatic polynomial.
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Introduction

The chromatic polynomial was originally introduced by Birkhoff in the context of
the four-colour problem. One of the fundamental properties of the chromatic polyno-
mial is its contraction-deletion expansion which expresses the chromatic polynomial of
a graph in terms of the chromatic polynomials of graphs obtained by deletion or con-
traction of a single edge, thus allowing a recursive calculation of the chromatic poly-
nomial. Tutte showed that there is a larger class of polynomial invariants satisfying
the deletion-contraction property; the polynomial is now known as the Tutte polyno-
mial. Whitney and Tutte made significant contributions to the theory of chromatic and
Tutte polynomials. Both the chromatic and the Tutte polynomial have been extensively
studied over the past century. The well known Jones polynomial in knot theory is a spe-
cialisation of the Tutte polynomial. The partition functions in statistical mechanics are
also related to the Tutte polynomial. Recently other generalisations of the polynomials
have been studied, notably, the chromatic symmetric function and the symmetric Tutte
polynomial, both introduced by Stanley. Two questions about these invariants (among
other numerous important questions) are of interest: Are there efficient algorithms to
compute these invariants? What are some classes of graphs for which an invariant is
complete? (For example, a famous question of Bollobás and Riordan asks if almost all
graphs are uniquely determined by their Tutte polynomial.)

Hopf algebras arose in the work of Hopf in topology [7]. In informal terms, a
Hopf algebra is an algebra (a vector space or a module with multiplication) which is
also a coalgebra (has comultiplication), with multiplication and comultiplication inter-
acting in a certain way. Hopf algebras have many applications in mathematical physics
(where a certain class of Hopf algebras is called quantum groups). In the 1970s, Gian-
Carlo Rota found many combinatorial examples of Hopf algebras, and encouraged a
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study of combinatorial Hopf algebras. Examples of multiplication and comultiplication
arise naturally when we study combinatorial objects. For example, multiplication may
be thought of as taking a disjoint union of two objects (or combining combinatorial
objects in some way to obtain objects of the same type) and comultiplication may be
thought of as decomposing an object into pairs of objects in many ways.

Reconstruction is one of the great outstanding problems in graph theory. It was
proposed by Ulam and Kelly in the 1940s (possibly somewhat earlier). In a reconstruc-
tion type problem, the main question has the following form: given a combinatorial
structure we may easily construct isomorphism class of its substructures; but given its
substructures, can we construct the original structure uniquely (up to isomorphism)?
Many variations of the original conjecture of Ulam and Kelly have been studied, with
nearly 700 papers published on these problems.

In this dissertation, we study the three themes described above, and make an
attempt to understand connections between them.

In Chapter 1, we present definitions in graph theory, and basic results about the
chromatic polynomial and the Tutte polynomial.

In Chapter 2, we give an introduction to Hopf algebras which are bialgebras with
an additional map (the coinverse map) satisfying the coinverse property.

In Chapter 3, we give an exposition of a classic paper of Tutte [23]. Tutte states
that a V-function can take arbitrary values on one-vertex graphs with loops.

In Chapter 4, we study a result of Foissy [10] that the chromatic polynomial is the
unique morphism in the category of Hopf algebras from a Hopf algebra of graphs to a
Hopf algebra of polynomials.

In Chapter 5, we present the paper of Schmitt [19]. We define a category of objects
called Whitney system that is a more general configuration of graphs and matroids. We
present Whitney’s subgraph expansion theorem using Hopf algebras of graphs.

In Chapter 6, we present the problem of reconstruction and prove results about
reconstruction of invariants that depend of enumerating spanning subgraphs; for ex-
ample, reconstructibility of the number of spanning trees, the number of Hamiltonian
cycles, the characteristic polynomial and the Tutte polynomial.
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Chapter 1

The chromatic and Tutte
polynomials of graphs

We begin by defining graph theoretic terminology and notation. The remaining
sections develop the theory of the chromatic polynomial and the Tutte polynomial. We
discuss some simple ways of calculating the chromatic polynomial, and calculate the
chromatic polynomial for a few examples. We define the Tutte polynomial based on
the rank generating polynomial. The material in this chapter is based on the books by
Biggs [2], Bollobás [3] and Bondy [5].

1.1 Graph theoretic background and notation

Definition 1.1.1 (Hypergraphs and graphs). A hypergraph H is a triple (V,E,I), where
V is the set of vertices of H, often denoted by V(H), and E is the set of edges of H,
often denoted by E(H), and I is a map I : E→ 2V ∖ {∅}, called the incidence relation.
For e ∈ E, the vertices in I(e) are said to be incident with e.

If I is not injective, then H is said to have multiedges. If |I(e)| = 1, then e is
called a loop. If |I(e)| ≤ 2 for all e ∈ E, then H is called a graph. If H is a graph and
has no multiedges or loops, then H is called a simple graph. A simple edge is an edge
e such that |I(e)| = 2 and there is no other edge f with I( f ) = I(e).
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A subgraph of a graph G is another graph formed from a subset of the vertices
and edges of G. An induced subgraph of a graph is a subgraph formed from a subset
of vertices and from all of the edges that have both endpoints in the subset. A subgraph
is spanning when it includes all of the vertices of the given graph.

Definition 1.1.2. The null-graph is the graph with empty vertex and edge sets; we
denote it by Φ = (φ,φ). An empty graph is a graph with empty edge set. A vertex-
graph is a graph with one vertex and no edges. A loop-graph is a graph with one
vertex and one loop.

Definition 1.1.3 (Directed graphs). A directed graph is analogously defined with the
difference that I is a map I : E→ V ∪V2. Edges of a directed graph are called arcs, and
if e ∈ E and I(e) = (u,v), then v is called the head or the terminal vertex of e, and u is
called the tail or the initial vertex of e.

We sometimes use the term multigraph for a graph to emphasise that the graph
may have multiedges or loops. But such a usage is redundant; unless stated explicitly,
by ‘graphs’ we mean graphs that allow multiedges and loops.

When the incidence relation is injective, we may omit the incidence relation, and
define a graph or a hypergraph to be a pair (V,E), where each edge in E is a non-empty
subset of V.

Definition 1.1.4 (Isomorphism of simple graphs). Let G and H be graphs. An iso-
morphism of G to H is a bijection f : V(G) → V(H) such that {u,v} ∈ E(G) if and
only if { f (u), f (v)} ∈ E(H). An isomorphism class of graphs is an equivalence class of
graphs under the isomorphism relation.

Definition 1.1.5 (Complete graph). A complete graph is a simple graph in which there
is an edge joining every pair of vertices. A complete graph on n vertices is denoted by
Kn.

Definition 1.1.6 (Edge-deleted subgraph). Given a graph G and an edge e of G, the
graph G − e obtained by deleting e, leaving all vertices and all other edges intact, is
called an edge-deleted subgraph of G.

Definition 1.1.7 (Vertex-deleted subgraph). Given a graph G and a vertex v of G, the
graph G− v obtained by deleting v and all edges of G that are incident with v is called
a vertex-deleted subgraph of G.
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Definition 1.1.8 (Regular graph). The degree of a vertex v in a graph G is the number
of edges of G that are incident with v, where each loop is counted as two edges. A
graph G is k-regular if the degree of each vertex is k. A regular graph is one that is
k-regular for some k.

Definition 1.1.9 (Homeomorphism). Two graphs are homeomorphic if they can both
be obtained from the same graph by inserting or removing vertices of degree two.

Definition 1.1.10 (Partitions of a set). A partition of a set S is a family ℱ ⊆ 2S such that
the sets in ℱ are non-empty and mutually disjoint, and their union is S. The elements
of ℱ are called blocks of the partition. Let n,k ∈N. The Stirling number of the second
kind, denoted by S(n,k), is the number of partitions of an n-element set in k blocks.

Proposition 1.1.11. The null set ∅ has a single partition ℱ = ∅; this partition has 0 blocks;
hence S(0,0) = 1. (Empty set is not a block of the partition since, by definition, all elements of
ℱ are non-empty sets.)

Definition 1.1.12 (Paths and cycles). Let G = (V,E) be a graph. A path in G is a
sequence v1,e1,v2,e2, ..., vk, where vi are distinct vertices and each ei is an edge incident
with vertices vi and vi+1. A null path has no vertices. A cycle in G is a sequence
v1,e1,v2,e2,...,vk,ek,vk+1 = v1, where vi, i = 1, . . . , k are distinct vertices, and each ei is an
edge incident with vertices vi and vi+1.

Definition 1.1.13 (Connectivity). Let G = (V,E) be a graph. It is connected if for all
u,v ∈ V, there is a path from u to v. A graph that is not connected is disconnected.

Definition 1.1.14 (Separable graph). The graph G is separable if it is either disconnected
or can be disconnected by removing one vertex, called cut-vertex.

Let k ∈N. Let G := (V,E,I) be a simple graph. Then G is k-connected if it has at
least k + 1 vertices and for all S ⊆ V such that |S| = k− 1, the graph G− S is connected.
The connectivity of G is the maximum integer k for which G is k-connected.

A multigraph is 2-connected if it has no loops and the underlying simple graph
is 2-connected. For k ≥ 3, a multigraph is k-connected if its underlying simple graph
is k-connected. (The underlying simple graph is the graph obtained by replacing all
multiedges by simple edges.)
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Let ∼ be an equivalence relation on V defined by: for all x,y ∈ V, x ∼ y if and
only if there exists a path in G from x to y. The subgraphs induced by the equivalence
classes of ∼ are called the components of G.

We make some observations about the null graph. They are needed to make
certain algebraic operations unambiguous.

Proposition 1.1.15. Let G = (V,E) = Φ.

1. G has 0 components. (We have V/∼= ∅. Note that Φ is not a component of G since
V/∼= ∅ implies that there is no U ∈ V/∼ such that G | U = Φ.)

2. G is connected.

3. G has rank 0 and corank 0 (see Definition 1.1.22).

Remark 1.1.16. By our definition of a connected graph, for the null graph, it is vacu-
ously true that for all u,v ∈ V, there exists a path from u to v, hence it is connected.
According to some authors, the null graph is neither connected nor disconnected. See
[15] for more discussion about issues related to the null graph. Also, a single vertex
graph with a loop is connected.

We make some observations about connectivity.

Proposition 1.1.17. Let G = (V,E) be a graph.

1. If G has a single vertex, then it is connected. (If v is the vertex, then we have a unique
path starting and ending at v, with no edges.)

2. If G is connected, then it is either a null-graph or a single vertex graph or a 1-connected
graph.

3. If G is disconnected, then it has at least 2 vertices and has connectivity 0.

Definition 1.1.18 (Blocks of graphs). Let G := (V,E,I) be a multigraph. Define a relation
∼ on E as follows: for all e ∈ E, e ∼ e; for all e1,e2 ∈ E distinct, e1 ∼ e2 if there is a
cycle in G that contains the edges e1 and e2. The relation ∼ is an equivalence relation.
A block of G is either a subgraph consisting of an isolated vertex in G or a subgraph
consisting of the edges in an equivalence class of ∼ and their incident vertices. An edge
that belongs to a single-edge block is called an isthmus or a bridge.
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The following theorem summarises basic facts about blocks.

Theorem 1.1.19. Let G := (V,E,I) be a multigraph.

1. If G is the null graph, then it has no blocks.

2. If G is a single-vertex graph, them it has exactly one block.

3. G is a union of its blocks.

4. If a block of G contains at least 2 edges with distinct sets of incident vertices, then it is a
2-connected subgraph of G.

5. Two blocks can have at most one vertex in common.

Definition 1.1.20 (Incidence matrix). Let G be a graph with vertex set {v1, . . . , vn} and
edge set {e1, . . . , em}. We orient each edge of G arbitrarily (see example 1.1.23). The
incidence matrix D of G, with respect to given orientation of G, is an n×m matrix (dij)

whose entries are

dij =


+1, if vi is the head of ej;
−1, if vi is the tail of ej;
0, otherwise.

Proposition 1.1.21. The incidence matrix D of G has rank n− k(G) where k(G) denote the
number of connected components of G and n the number of vertices of G. In particular, the rank
and the co-rank do not depend on the orientation.

Note that if the graph G has only one vertex with n loops then the incidence
matrix is null and the rank of G is zero.

Definition 1.1.22 (Rank and co-rank). The rank of G and the co-rank of G are, respect-
ively,

r(G) = n− k(G); s(G) = m− n + k(G),

where n denote the number of vertices of G, m the number of edges of G and k(G) the
number of connected components of G.

Example 1.1.23. The rank of the following graph is 3 and the co-rank is 2.
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3 4

1 2a

b
c

e

d D =


1 1 0 0 0
−1 0 1 1 0
0 −1 −1 0 1
0 0 0 −1 −1



Figure 1.1: Shows a graph and its incidence matrix.

1.2 The chromatic polynomial

Definition 1.2.1. A colour-partition of a graph G is a partition of V(G) into subsets,
called colour classes, such that no simple edge of G has both its end vertices in the
same colour class.

Definition 1.2.2 (Proper vertex colouring). A proper vertex colouring of G is defined
to be an assignment of colours to the vertices, with the property that adjacent vertices
have different colours.

Definition 1.2.3 (Chromatic polynomial). Let G be a graph with n vertices. Let mr(G)

denote the number of distinct colour-partitions of V(G) into r colour-classes. Define
ur ∈ Q[u] by ur := u(u− 1) · · · (u− r + 1). The chromatic polynomial of G is defined
by

C(G; u) =
n

∑
r=1

mr(G)ur.

Proposition 1.2.4. If s is a natural number, then C(G; s) is the number of vertex-colourings of
G using colours from a set of cardinality s.

Proof. Note that every vertex-colouring of G in which exactly r colours are used gives
rise to a colour-partition into r colour-classes. Conversely, for each colour-partition into
r colours we can assign s colours to the colour-classes in s(s − 1)...(s − r + 1) ways.
Therefore equality is true.

Example 1.2.5. The chromatic polynomial of the complete graph Kn is given by C(Kn; u) =
u(u− 1) . . . (u− n + 1). If G is a graph with connected components G1, . . . , Gk, then

C(G; u) = C(G1; u)C(G2; u) · · ·C(Gk; u).
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Let e be an edge in a graph G. The graph G/e constructed from G − e (see
Definition 1.1.6) by identifying the two vertices incident with e in G, then deleting e, is
said to be obtained by contracting e.

Proposition 1.2.6. [The deletion-contraction expansion] The chromatic polynomial satisfies the
relation

C(G; u) = C(G− e; u)− C(G/e; u).

Proof. The set of all vertex colourings of G may be partitioned into two disjoint sets:
colourings in which the ends of e are coloured differently, and colourings in which
the ends of e have the same colour. The first set is in bijective correspondence with
the proper colourings of G. The second set is in bijective correspondence with the
colourings of G/e. Therefore C(G− e; s) = C(G; s)+C(G/e; s), for each natural number
s. Hence we have C(G; u) = C(G − e; u)− C(G/e; u) by the fundamental property of
polynomials that any two polynomials agreeing at infinitely many points are equal.

The deletion-contraction has the following immediate consequence for trees. The
chromatic polynomial of trees can also be computed by direct enumeration of the num-
ber of proper colourings with k colours for any k ≥ 1.

Corollary 1.2.7. If T is a tree with n vertices then C(T; u) = u(u− 1)n−1.

Let G1 and G2 be graphs. We define the join G1 + G2 of G1 and G2 to be the graph
with vertex set

V(G1 + G2) = V(G1) + V(G2)

and the edge set

E(G1 + G2) = E(G1) ∪ E(G2) ∪ {{x,y}|x ∈ V(G1),y ∈ V(G2)}.

Proposition 1.2.8. The numbers of colour-partitions of G = G1 + G2 are given by

mi(G) = ∑
j+l=i

mj(G1)ml(G2).

Proof. Since every vertex of G1 is adjacent to every vertex of G2, every colour-class of
vertices in G is either a colour-class in G1 or a colour-class in G2. Now the result
follows.
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Corollary 1.2.9. The chromatic polynomial of the join G1 + G2 is given by

C(G1 + G2; u) = C(G1; u) ∘ C(G2; u),

where the "∘" signifies that we write each polynomial in the form ∑ miui and multiply as if ui

were the power ui.

Definition 1.2.10 (Rank polynomial). The rank polynomial of a general graph G is a
two-variable polynomial in indeterminates x and y given by by

R(G; x,y) := ∑
S⊆E(G)

xr⟨S⟩ys⟨S⟩,

where r⟨S⟩ and s⟨S⟩ are the rank and co-rank of the subgraph ⟨S⟩ of G, and ⟨S⟩ is the
subgraph of G consisting of the set of edges in S and the vertices incident with edges
in S.

If we write R(G; x,y) = ∑ ρrsxrys, then ρrs is the number of subgraphs of G with
rank r and co-rank s, and we say that the matrix (ρrs) is the rank matrix of G.

Theorem 1.2.11. The chromatic polynomial of a graph G with n vertices has an expansion in
terms of subgraphs as follows:

C(G; u) = ∑
S⊆E(G)

(−1)|S|un−r⟨S⟩

The demonstration can be found in Biggs [2].

Corollary 1.2.12. The chromatic polynomial and the rank polynomial of a general graph G with
n vertices are related by the identity

C(G; u) = unR(G;−u−1,− 1). (1.1)

If the chromatic polynomial is

C(G; u) = b0un + . . . + bn−1u + bn

then the coefficients bi can be expressed in terms of the entries in the rank matrix, as follows:
(−1)ibi = ∑

j
(−1)jρij.



Chapter 1. The chromatic and Tutte polynomials of graphs 18

Proof. By definition and the previous theorem,

unR(G;−u−1,− 1) = un( ∑
S⊂E(G)

(−u−1)r⟨S⟩(−1)s⟨S⟩)

= ∑
S⊂E(G)

(−1)|S|un−r⟨S⟩

= C(G; u)

proving Equation 1.1. In terms of the coefficients, we have

∑
i

biun−i = C(G; u)

= unR(G;−u−1,− 1)

= un ∑
r,s

ρrs(−u)−r(−1)s

= ∑
r

∑
s
(−1)r+sρrsun−r,

which implies the result.

The formula for the coefficients expresses bi as an alternating sum of the entries
in the i-th row of the rank matrix.

1.3 The Tutte polynomial

Definition 1.3.1 (Rank generating polynomial). Let G = (V,E) be a graph. We say that
its rank generating polynomial is given by

S(G; x,y) = ∑
S⊆E(G)

xr{E}−r{S}ys{S}

Here we write {S} for the graph (V,S).

Remark 1.3.2. We have S(G) = S(G; x,y) = ∑
S⊆E(G)

xk{S}−k{E}ys{S}, where k{S} is the

number of components of S.
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Theorem 1.3.3. Let G = (V,E) be a graph with e ∈ E(G). Then,

S(G; x,y) =


(x + 1)S(G− e; x,y), if e is a bridge;
(y + 1)S(G− e; x,y), if e is a loop;
S(G− e; x,y) + S(G/e; x,y), otherwise.

Furthermore, S(En; x,y) = 1 for the empty n-vertex graph En, n ≥ 1.

Proof. Let G′ = G − e, G′′ = G/e be and write r′ and s′ for the rank and co-rank
functions in G′, and r′′ and s′′ for those in G′′.

If e ∈ E(G) and S ⊆ E(G)− e then r{S} = r′{S}, s{S} = s′{S}, r{E}− r{S∪ e} =
r′′{E− e} − r′′{S} = r(G′′)− r′′{S},

r{E} =
{

r′{E− e}+ 1, if e is a bridge;
r′{E− e}, otherwise.

and

s{S ∪ e} =
{

s′′{S}+ 1, if e is a loop;
s′′{S}, otherwise.

Let us split S(G; x,y) as follows: S(G; x,y) = S0(G; x,y) + S1(G; x,y) where S0(G; x,y) =

∑
S⊆E(G);e/∈S

xr{E}−r{S}ys{S} and S1(G; x,y) = ∑
S⊆E(G);e∈S

xr{E}−r{S}ys{S}. Thus,

S0(G; x,y) = ∑
S⊆E−e

xr{E}−r{S}ys{S}

=


∑

S⊆E(G′)
xr′{E−e}+1−r′{S}ys′{S}, if e is a bridge;

∑
S⊆E(G′)

xr′{E−e}−r′{S}ys′{S}, otherwise.

=

{
xS(G− e; x,y), if e is a bridge;
S(G− e; x,y), otherwise.
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S1(G; x,y) = ∑
S⊆E−e

xr{E}−r{S∪e}ys{S∪e}

=


∑

S⊆E(G′′)
xr(G′′)−r′′{S}ys′′{S}+1, if e is a loop;

∑
S⊆E(G′′)

xr(G′′)−r′′{S}ys′′{S}+1, otherwise.

=

{
yS(G/e; x,y), if e is a loop;
S(G/e; x,y), otherwise.

Hence,

S(G) =


xS(G− e) + S(G/e), if e is a bridge;
yS(G/e) + S(G− e), if e is a loop;
S(G− e) + S(G/e), otherwise.

and

S(G) =


(x + 1)S(G− e), if e is a bridge;
(y + 1)S(G− e), if e is a loop;
S(G− e) + S(G/e), otherwise.

We define the Tutte polynomial of a graph in terms of its rank polynomial.

Definition 1.3.4 (Tutte polynomial). The Tutte polynomial of a graph G is defined in
terms of the rank generating polynomial as the polynomial

TG(x,y) = S(G; x− 1,y− 1).

Proposition 1.3.5. Let G = (V,E) be a graph with e ∈ E(G). Then, TEn(x,y) = 1 and

TG =


xTG−e, if e is a bridge;
yTG−e, if e is a loop;
TG−e + TG/e, otherwise.

Proof. Using Definition 1.3.4 apply Theorem 1.3.3.

Remark 1.3.6. T is also the unique function on graphs such that:
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1. if G has b bridges, l loops and no other edges then T(G) = xbyl ;

2. if G has no bridges or loops then there is an edge e ∈ E(G) such that TG =

TG−e + TG/e.

1.4 The universal form of the Tutte polynomial

Let 𝒢 be the set of all isomorphism class of finite multigraphs, for convenience, we
will consider the elements of 𝒢 to be graphs rather than isomorphism class of graphs.
Also, we shall refer to the elements of 𝒢 as graphs.

We will show that the Tutte polynomial is easily lifted to a more general polyno-
mial. For this, we see that

degx TG(x,y) = max{r(G)− r{S} | S ⊆ E(G)} = r(G)

and
degy TG(x,y) = max{s{S} | S ⊆ E(G)} = s(G).

Theorem 1.4.1. There is a unique map U : 𝒢 → Z[x,y,α,σ,τ] such that

U(En) = U(En; x,y,α,σ,τ) = αn,

and for every n ≥ 1, and for every e ∈ E(G) we have

U(G) =


xU(G− e), if e is a bridge;
yU(G− e), if e is a loop;
σU(G− e) + τU(G/e), otherwise.

Furthermore,
U(G) = αk(G)σs(G)τr(G)TG(

αx
τ

,
y
σ
). (1.2)

We call the polynomial U above the universal polynomial of graphs. If R is a
commutative ring and x,y,α,σ,τ ∈ R then there is a unique map 𝒢 → R satisfying the
conditions of the theorem. The Tutte polynomial is just U evaluated at α = σ = τ = 1.

The polynomial U is multiplicative in the following sense: If G1 and G2 are vertex
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disjoint graphs then
U(G1 ∪ G2) = U(G1)U(G2).

In fact, U(G1 ∪ G2) = αk(G1)+k(G2)σs(G1)+s(G2)ρr(G1)+r(G2)TG1 TG2 . If G1 and G2 share one
vertex then

U(G1 ∪ G2) =
U(G1)U(G2)

α
.

Indeed, U(G1 ∪ G2) = αk(G1)+k(G2)−1σs(G1)+s(G2)ρr(G1)+r(G2)TG1 TG2 .

Remark 1.4.2. 1. If L is a loop graph then U(L) = αy;

2. U(K2) = α2x;

3. U(K1) = α.

Thus, U is determined by this multiplicativity property together with the condi-
tions above.

Theorem 1.4.3. The chromatic polynomial C(G; u) of a graph G is a specialisation of the Tutte
polynomial:

C(G; u) = (−1)r(G)uk(G)TG(1− u,0).

Proof. The chromatic polynomial has the following properties:

C(En; u) = un,

and for every edge e ∈ E(G),

C(G; u) = C(G− e; u)− C(G/e; u).

We can see the above properties by Equation 1.1 and Proposition 1.2.6.

If e is a loop, then

C(G; u) = C(G− e; u)− C(G− e; u)

= 0.
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If e is a bridge, then

C(G; u) = C(G− e; u)− 1
x

C(G− e; u)

=
x− 1

x
C(G− e; u).

Thus, by previous theorem,

C(G; u) = U(G,
u− 1

u
,0,u,1,− 1)

= (−1)r(G)uk(G)TG(1− u,0).
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Chapter 2

Hopf algebras

The purpose of this chapter is to provide an introduction to Hopf algebras, which
are bialgebras with an additional map (the coinverse map) satisfying the coinverse
property. We assume basic facts about groups, rings, fields, vector spaces and modules.
Contents of this chapter are based on [25], [12] and [8].

Throughout this chapter, K is a field, and ⊗ = ⊗K denotes tensor product over K.

2.1 Tensor products

Let M1, M2, · · · , Mn and A be a collection of R-modules, where R is a commutat-
ive ring with unity.

Definition 2.1.1. A function f : M1 × M2 × · · · × Mn → A is R-n-linear if for all i,
1 ≤ i ≤ n and all ai, bi ∈ Mi, r ∈ R,

1. f (a1,a2, . . . ,ai + bi, . . . ,an) = f (a1,a2, . . . ,ai, . . . ,an) + f (a1,a2, . . . ,bi, . . . ,an),

2. f (a1,a2, . . . ,rai, . . . ,an) = r f (a1,a2, . . . , ai, . . . ,an).

An R-bilinear map is an R-2-linear map.

Definition 2.1.2 (Tensor product). A tensor product of M1, M2, · · · , Mn over R is an
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R-module M1 ⊗M2 ⊗ · · · ⊗Mn together with an R-n-linear map

f : M1 ×M2 × · · · ×Mn → M1 ⊗M2 ⊗ · · · ⊗Mn

so that for every R-module A and R-n-linear map h : M1 ×M2 × · · · ×Mn → A there
exists a unique R-module map ĥ : M1 ⊗M2 ⊗ · · · ⊗Mn → A for which

ĥ f = h.

Let F⟨M1×M2× · · · ×Mn⟩ denote the free R-module on the set M1×M2× · · · ×
Mn. Let J be the submodule of F⟨M1 ×M2 × · · · ×Mn⟩ generated by quantities of the
form

(a1,a2, · · · , ai + bi, · · · , an)− (a1,a2, · · · , ai, · · · , an)− (a1,a2, · · · , bi, · · · , an),

(a1,a2, · · · , rai, · · · , an)− r(a1,a2, · · · , ai, · · · , an),

for all i, 1 ≤ i ≤ n, and ai, bi ∈ Mi, r ∈ R. Let

ι : M1 ×M2 × · · · ×Mn → F⟨M1 ×M2 × · · · ×Mn⟩

be the natural inclusion map and let

s : F⟨M1 ×M2 × · · · ×Mn⟩ → F⟨M1 ×M2 × · · · ×Mn⟩/J

be the canonical surjection. Let f = sι. Then the quotient space F⟨M1 × M2 × · · · ×
Mn⟩/J together with the map f is a tensor product.

Proposition 2.1.3. F⟨M1×M2× · · · ×Mn⟩/J together with the map f is a tensor product of
M1, M2, · · · , Mn over R.

The proof can be found in Underwood [25]. As a consequence of the previous
proposition, we write

F⟨M1 ×M2 × · · · ×Mn⟩/J = M1 ⊗M2 ⊗ · · · ⊗Mn.

The tensor product has some interesting properties.
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Proposition 2.1.4. Let M1, M2, M3 be R-modules and let N1 be an R-submodules of M1 and
let N2 be an R-submodule of M2. Then there is an isomorphism of R-modules

∙ M1/N1 ⊗M2/N2 ∼= (M1 ⊗M2)/(N1 ⊗M2 + M1 ⊗ N2),

∙ M1 ⊗ (M2 ⊗M3) ∼= (M1 ⊗M2)⊗M3.

Proposition 2.1.5. Let M1, M2, · · · , Mn, N1, N2, · · · , Nn be R-modules and let fi : Mi → Ni,
for 1 ≤ i ≤ n, be R-module maps. There exists a unique map of R-modules

( f1 ⊗ f2 ⊗ · · · ⊗ fn) : M1 ⊗M2 ⊗ · · · ⊗Mn → N1 ⊗ N2 ⊗ · · · ⊗ Nn

such that

( f1 ⊗ f2 ⊗ · · · ⊗ fn)(a1 ⊗ a2 ⊗ · · · ⊗ an) = f1(a1)⊗ f2(a2)⊗ · · · ⊗ fn(an)

for all ai ∈ Mi.

Corollary 2.1.6. Let K be a field and let Vi, 1 ≤ i ≤ n, be a finite set of vector spaces over K.
Then

V*1 ⊗V*2 ⊗ · · ·V*n ⊆ (V1 ⊗V2 ⊗ · · · ⊗Vn)
*.

2.2 Algebras and coalgebras

Definition 2.2.1 (Algebra). A K-algebra is a triple (A, m, λ), where A is a vector space
over K, and m : A⊗ A→ A and λ : K → A are K-linear maps that satisfy the following
conditions.

1. (Multiplication is associative.) The following diagram commutes:

A⊗ A⊗ A A⊗ A

A⊗ A A

Id⊗m

m⊗Id m

m
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where the map Id is the identity map. Equivalently, for all a, b, c ∈ A, we have

m(Id⊗m)(a⊗ b⊗ c) = m(m⊗ Id)(a⊗ b⊗ c).

2. The following diagram commutes:

A⊗ K A⊗ A

A K⊗ A

Id⊗λ

s2 λ⊗Id
m

s1

The map s1 : K⊗ A→ A is defined by r⊗ a ↦→ ra, and the map s2 : A⊗ K → A is
defined by a⊗ r ↦→ ra. Equivalently, we have for all r ∈ K and for all a ∈ A,

(Id⊗λ)(a⊗ r) = ra = m(λ⊗ Id)(r⊗ a).

The map m is called the multiplication (or product) map, and the map λ is called the
unit map.

Remark 2.2.2. We can also define an algebra A as a module over a commutative ring
R with a multiplication map and unit map. For most parts of the dissertation, we use
Definition 2.2.1

Definition 2.2.3. A K-algebra is a ring A with unity 1 together with a ring homomorph-
ism λ : K → A which satisfies λ(r)a = aλ(r) for a ∈ A and r ∈ R. Then A is a vector
space over K with scalar multiplication given by

ra := λ(r)a := aλ(r),

for r ∈ K, a ∈ A.

Proposition 2.2.4. The definition 2.2.1 is equivalent the definition 2.2.3.

Definition 2.2.5 (Commutative algebra). A K-algebra (A, m, λ) is commutative if mτ =

m, where τ denotes the twist map defined as τ(a⊗ b) := b⊗ a for a, b ∈ A.
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Coalgebras are in some sense dual to algebras - they are obtained by reversing
the arrows in the definition of algebras.

Definition 2.2.6 (Coalgebra). A K-coalgebra is a triple (C, ∆, ε) consisting of a vector
space C over K, and K-linear maps ∆ : C → C ⊗ C and ε : C → K that satisfy the
following conditions.

1. The following diagram commutes:

C C⊗ C

C⊗ C C⊗ C⊗ C

∆

∆ Id⊗∆

∆⊗Id

Equivalently, for all c ∈ C, we have (Id⊗∆)∆(c) = (∆⊗ Id)∆(c).

2. The following diagram commutes:

C K⊗ C

C⊗ K C⊗ C

1⊗−

−⊗1
∆

ε⊗Id

Id⊗ε

Here the maps −⊗ 1 and 1⊗− are defined by c ↦→ c⊗ 1 and c ↦→ 1⊗ c, respect-
ively. Equivalently, for all c ∈ C, we have

(ε⊗ Id)∆(c) = 1⊗ c and

(Id⊗ε)∆(c) = c⊗ 1.

The map ∆ is called the comultiplication (or coproduct) map, and the map ε is called
the counit map. The first condition above says that the comultiplication is coassociat-
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ive.

Sometimes we use a notation introduced by Sweendler [21] to simplify long ex-
pressions involving comultiplication. We write

∆(c) = ∑
(c)

c(1) ⊗ c(2).

Definition 2.2.7 (Cocommutative coalgebra). A K-coalgebra (C, ∆, ε) is cocommutative
if τ(∆(c)) = ∆(c) for all c ∈ C.

Example 2.2.8 (Polynomial ring). The polynomial ring K[x] is a K-algebra with m : K[x]⊗
K[x] → K[x] given by ordinary polynomial multiplication and λ : K → K[x] defined as
r ↦→ r1, for all r ∈ K. Moreover, K[x] may be given a K-coalgebra structure in two ways,
with K-linear maps defined on {1, x, x2, ...} as follows:

1. ∆1(xm) =
m

∑
i=0

(
m
i

)
xi ⊗ xm−i and ε1(xm) = δ0,m, where δ function is defined as

δi,j := 1 if i = j, and 0 otherwise.

2. ∆2(xm) = xm ⊗ xm and ε2(xm) = 1.

(The maps are extended linearly to all polynomials.)

Definition 2.2.9 (Homomorphisms and isomorphisms). 1. Let (A, mA, λA) and (B, mB, λB)

be K-algebras. A K-algebra homomorphism from A to B is a map of additive
groups φ : A→ B for which

φ(1A) = 1B,

φ(mA(a⊗ b)) = mB(φ(a)⊗ φ(b)),

φ(λA(r)) = λB(r),

for a, b ∈ A, r ∈ K. In particular, for A to be a subalgebra of B we require that
1A = 1B.

2. Let (C, ∆C, εC) and (D, ∆D, εD) be K-coalgebras. A K-linear map φ : C → D is a



Chapter 2. Hopf algebras 30

K-coalgebra homomorphism if

(φ⊗ φ)∆C(c) = ∆D(φ(c)),

εC(c) = εD(φ(c))

for all c ∈ C.

A homomorphism φ is an isomorphism if φ is injective and surjective.

2.3 Morphisms and quotient structures in algebras and coal-
gebras

Definition 2.3.1 (Ideal). Let (A,m,λ) be a K-algebra. A ideal in A is a subspace I of A
with m(A⊗ I) ⊂ I and m(I ⊗ A) ⊂ I.

Proposition 2.3.2. Let (A, m, λ) be a K-algebra. Let I be an ideal of A. Then the quotient
space A/I is a K-algebra.

Proof. We need to define a multiplication map m̂ and a unit map λ̂ of A/I.

Let s : A → A/I denote the canonical quotient map. The composition s ∘m : A⊗
A → A/I is a map of K-vector spaces defined as (s ∘ m)(a ⊗ b) := ab + I. Note that
I ⊗ A + A⊗ I is a subspace of A⊗ A. Let a⊗ b + c⊗ d ∈ I ⊗ A + A⊗ I for a, d ∈ I and
b, c ∈ A. Since I is an ideal, m(a⊗ b + c⊗ d) = ab + cd ∈ I, we have I ⊗ A + A⊗ I ⊆
ker(s ∘m). Thus by the universal mapping property for kernels, there is a map of vector
spaces

s ∘m : (A⊗ A)/(I ⊗ A + A⊗ I)→ A/I

defined as
s ∘m(a⊗ b + (I ⊗ A + A⊗ I)) := ab + I.

There is an isomorphism of vector spaces

β̂ : A/I ⊗ A/I → (A⊗ A)/(I ⊗ A + A⊗ I)

given by
β̂((a + I)⊗ (b + I)) := a⊗ b + (I ⊗ A + A⊗ I).
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Let m = s ∘m ∘ β̂ be defined by (a + I) ⊗ (b + I) ↦→ ab + I. One can check that m
satisfies the associative property since m does.

For the unit map of A/I, let λ̂ = s ∘ λ. Then λ̂ satisfies the unit property. Thus
(A/I, m̂, λ̂) is a K-algebra.

Definition 2.3.3 (Coideal). Let C be a K-coalgebra. A subspace I ⊂ C is a coideal of C
if ∆(I) ⊂ I ⊗ C + C⊗ I and ε(I) = 0.

Proposition 2.3.4. Let I ⊂ C be a coideal of C. Then the quotient space C/I is a K-coalgebra.

Definition 2.3.5 (Quotient algebra and quotient coalgebra). If I is an ideal of A, then
the K-algebra A/I is the quotient algebra of A by I. If I é a coideal of C, then the
coalgebra C/I is the quotient coalgebra of C by I.

Example 2.3.6. For m ≥ 1, let I be the subspace of K[x] generated by the basis {xm −
1, xm+1 − 1, ...}. For i ≥ 0, ∆2(xi − 1) = (xi − 1)⊗ 1 + 1⊗ (xi − 1) + (xi − 1)⊗ (xi − 1).
Hence ∆2(I) ⊂ I ⊗ K[x] + K[x]⊗ I. Also, ε2(I) = 0, so I is a coideal of K[x]. The quo-
tient coalgebra K[x]/I is a vector space of dimension m on the basis {1, x, x2, ..., xm−1}.

Definition 2.3.7 (Grouplike elements). Let C be a K-coalgebra. A non-zero element c of
C for which ∆(c) = c⊗ c is a grouplike element of C.

In the next proposition, we show an interesting property.

Proposition 2.3.8. Let φ : C → D be a homomorphism of K-coalgebras. If c is a grouplike
element of C, then φ(c) is a grouplike element of D.

Proof. By hypothesis, ∆D(φ(c)) = (φ⊗ φ)∆C(c). Since c is grouplike, we have

(φ⊗ φ)∆C(c) = (φ⊗ φ)(c⊗ c) = φ(c)⊗ φ(c).

Therefore φ(c) is grouplike.

2.4 Duality

In this section we consider the linear duals of algebras and coalgebras. We show
that if (C, ∆, ε) is a coalgebra, then (C*, m, λ) is an algebra, where C* is the linear dual
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of C, and the maps m and λ are induced by the transpose of ∆ and ε, respectively.
However, if A is an algebra, then A* is not always a coalgebra. In general, if A is an
algebra then A∘ ⊂ A*, called the finite dual (see definition 2.4.3) , is a coalgebra.

Proposition 2.4.1. If (C, ∆, ε) is a coalgebra, then C* is an algebra.

Proof. To show that C* is a K-algebra we construct a multiplication map m and a unit
map λ, and show that they satisfy the associative and unit properties, respectively.

The transpose of ∆ is a K-linear map ∆* : (C⊗ C)* → C* defined as

∆*(ψ)(c) := ψ(∆(c)) for ψ ∈ (C⊗ C)* and c ∈ C.

Since C* ⊗ C* ⊆ (C⊗ C)* (see Corollary 2.1.6), ∆* restricts to a K-linear map m : C* ⊗
C* → C* defined as

m( f ⊗ g)(c) = ∆*( f ⊗ g)(c) = ( f ⊗ g)(∆(c)).

We can verify that map m satisfies the associative property.

The transpose of the counit map of C is ε* : K* → C* defined as ε*( f )(c) :=
f (ε(c)) for f ∈ K*, c ∈ C. Identifying K = K*, we have ε* : K → C* defined as
ε*(r)(c) := r(ε(c)) = rε(c), for r ∈ K, c ∈ C. Define λ = ε*. The map λ satisfies the
unit property.

Thus (C*, m, λ) is an algebra.

Definition 2.4.2 (Cofinite ideal). Let (A, m, λ) be a K-algebra. An ideal I of A is cofinite
iff the quotient space A/I is finite dimensional. Let f be an element of A* and let S be
a subset of A. Then f vanishes on S if f (s) = 0 for all s ∈ S.

Definition 2.4.3 (Finite dual). Let A be a K-algebra. The finite dual A∘ of A is the
subspace of A* defined as A∘ = { f ∈ A* | f vanishes on some ideal I ⊂ A of finite
codimension }.

Example 2.4.4. Let ei ∈ K[x]* be defined as ei(xj) = δi,j for i,j ≥ 0. Then ei ∈ K[x]∘.

In fact, ei vanishes on the ideal (xi+1) and dim(K[x]/(xi+1)) = i + 1.

The following two propositions can be found in Underwood [25].
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Proposition 2.4.5. If A is finite dimensional as a K-vector space, then A∘ = A*.

Proposition 2.4.6. If A is an algebra, then A∘ is a coalgebra.

2.5 Bialgebras

Definition 2.5.1 (Bialgebra). A K-bialgebra is a K-vector space B together with maps m,
λ, ∆, ε that satisfy the following conditions:

1. (B, m, λ) is a K-algebra and (B, ∆, ε) is a K-coalgebra,

2. ∆ and ε are homomorphisms of K-algebras.

Since B is a K-algebra the tensor product B⊗ B has the structure of a K-algebra
with multiplication mB⊗B : (B⊗ B)⊗ (B⊗ B)→ B⊗ B defined by

mB⊗B((a⊗ b)⊗ (c⊗ d)) = ac⊗ bd (2.1)

for a,b,c,d ∈ B. The unit map λB⊗B : K → B⊗ B is given as

λB⊗B(r) = λB(r)⊗ 1B

for r ∈ K.

Definition 2.5.2 (Primitive element). Let B be a bialgebra. An element b ∈ B is a
primitive element of B if ∆(b) = 1⊗ b + b⊗ 1.

Definition 2.5.3 (Monoid). A monoid is a pair (S,b) where S is a set and b : S× S → S
is a binary operation, for x,y ∈ S denote b(x,y) = xy, which satisfy the following
properties:

1. (associativity) for any x,y,z ∈ S we have (xy)z = x(yz).

2. (identity) there exists such e ∈ S, that for any x ∈ S we have ex = xe = x.

Example 2.5.4 (Monoid bialgebra). Let K be a field, let S be a monoid. Then the monoid
ring KS is a K-algebra with multiplication map m : KS ⊗ KS → KS defined as m(a ⊗
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b) := ab and unit map λ : K → KS given by λ(r) := r for all a,b ∈ S, r ∈ K. Moreover, KS
is a K-coalgebra with comultiplication map ∆ : KS → KS⊗ KS being the map defined
by

∆(∑
s∈S

rss) := ∑
s∈S

rs(s⊗ s),

and counit map ε : KS→ K defined by

ε(∑
s∈S

rss) = ∑
s∈S

rs.

We can verify that ∆ and ε are homomorphisms of K-algebras, and so KS is a K-
bialgebra.

Example 2.5.5 (Polynomial bialgebra with x grouplike). Let K[x] be the K-algebra and
K-coalgebra given by Example 2.2.8 with comultiplication ∆2 then (K[x],m,λ,∆2,ε2) is a
bialgebra.

Example 2.5.6 (Polynomial bialgebra with x primitive). Let K[x] be the K-algebra and
K-coalgebra given by Example 2.2.8 with comultiplication ∆1 then (K[x],m,λ,∆1,ε1) is a
bialgebra.

Definition 2.5.7 (Bialgebra homomorphism). Let B, B′ be bialgebras. A K-linear map
φ : B → B′ is a bialgebra homomorphism if φ is both an algebra and coalgebra homo-
morphism.

The following proposition can be found in Underwood [25].

Proposition 2.5.8. Suppose the polynomial algebra K[x] is given the structure of a K-bialgebra.
Then there is some z ∈ K[x] so that K[z] = K[x], and z is either grouplike or z is primitive.

By the above proposition, the bialgebra structures on K[x] given in examples 2.5.5
and 2.5.6 are the only bialgebra structures on K[x] up to algebra isomorphism.

Definition 2.5.9 (Biideal). Let B a K-bialgebra. A biideal I is a K-subspace of B that is
both an ideal and a coideal.

Proposition 2.5.10. Let I ⊂ B be a biideal of B. Then B/I is a K-bialgebra.

Proof. From Proposition 2.3.2, we have that B/I is a K-algebra. By Proposition 2.3.4,
B/I is a K-coalgebra. One notes that ∆B/I is an algebra map since ∆ is an algebra map.
Moreover, εB/I is an algebra map since that property holds for ε.
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Proposition 2.5.11. If B is a bialgebra, then B∘ is a bialgebra.

2.6 Hopf Algebras

A K-Hopf algebra H is a K-bialgebra with an additional map called the coinverse
(or antipode) satisfying the coinverse (or antipode) property.

Definition 2.6.1 (Hopf algebra). A K-Hopf algebra is a bialgebra H = (H, m, λ, ∆, ε)

over K together with a K-linear map S : H → H that satisfies

m(Id⊗S)∆(h) = λ(ε(h)) = m(S⊗ Id)∆(h)

for all h ∈ H. The map S is the coinverse (or antipode) map.

Example 2.6.2. Let G be a finite group. Let KG be the monoid bialgebra of Example 2.5.4.
Define a coinverse map S : KG → KG by

S(τ) = τ−1,

for τ ∈ G. Then KG is a K-Hopf algebra.

Example 2.6.3. Let K[x] be the polynomial bialgebra with x primitive (Example 2.5.6).
Define the coinverse map S : K[x] → K[x] by S(xi) = (−x)i, for i ≥ 0. Then K[x] is a
K-Hopf algebra.

A Hopf algebra H is commutative if it is a commutative algebra; H is cocommut-
ative if it is a cocommutative coalgebra.

Definition 2.6.4 (Convolution). Let C be a K-coalgebra and let A be a K-algebra. Let
hom(C, A) denote the collection of linear transformations φ : C → A. On hom(C, A)

we can define a multiplication as follows. For f ,g ∈ hom(C, A), a ∈ C,

( f * g)(a) = m( f ⊗ g)∆(a).

This multiplication is called convolution.

Proposition 2.6.5. Let C be a K-coalgebra and let A be a K-algebra. Then hom(C, A) together
with convolution * is a monoid.
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Proof. 1. (Associativity) For f ,g,h ∈ hom(C,A), we have

( f * (g * h))(a) = m( f ⊗ (g * h))∆(a)

= ∑
(a)

f (a(1))(g * h)(a(2))

= ∑
(a)

f (a(1) ∑
(a(2))

g(a(2)(1))h(a(2)(2))

= ∑
(a)

f (a(1))g(a(2))h(a(3)) (using Sweedler notation).

Now, by the coassociativity of ∆, we have

∑
(a)

f (a(1))g(a(2))h(a(3)) = ∑
(a)

∑
(a(1))

f (a(1)(1))g(a(1)(2))h(a(2))

= ∑
(a)

( f * g)(a(1))h(a(2))

= m(( f * g)⊗ h)∆(a)

= (( f * g) * h)(a),

and so * is associative.

2. (Identity element) The map λε serves as an identity element in hom(C, A). In
fact, for φ ∈ hom(C, A), a ∈ C,

(λε * φ)(a) = m(λε⊗ φ)∆(a)

= ∑
(a)

λ(ε(a(1)))φ(a(2))

= ∑
(a)

ε(a(1))λ(1K)φ(a(2))

= ∑
(a)

ε(a(1))1Aφ(a(2))

= ∑
(a)

φ(ε(a(1))a(2))

= φ(a),

using the counit property and notation of Sweedler. Thus λε * φ = φ. Similarly
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φ * λε = φ.

Therefore, hom(C, A) is a monoid under *.

Let H be a K-Hopf algebra. Let hom(H, H) be the monoid under convolution *.
Then, we can verify that

S * Id = λε = Id *S.

In other words, S is an inverse of Id under *.

Proposition 2.6.6. Let H be a K-Hopf algebra with coinverse S. Then the following properties
hold.

1. S(ab) = S(b)S(a) for all a,b ∈ H,

2. S(1) = 1.

Proposition 2.6.7. Let H be a K-Hopf algebra with coinverse S. If H is cocommutative, then
S2 = Id.

Definition 2.6.8 (Hopf ideal). Let H be a K-Hopf algebra. A Hopf ideal I is a biideal
that satisfies S(I) ⊂ I.

Proposition 2.6.9. Let I ⊂ H be a Hopf ideal of H. Then H/I is a K-Hopf algebra.

Definition 2.6.10 (Homomorphism of Hopf algebras). Let H and H′ be K-Hopf algeb-
ras. A bialgebra homomorphism φ : H → H′ is a homomorphism of Hopf algebras if
φ(S(a)) = S′(φ(a)) for all a ∈ H. The Hopf homomorphism φ is an isomorphism of
Hopf algebras if φ is a bijection.

Proposition 2.6.11. Let H be a finite dimensional vector space over the field K. Then H is a
K-Hopf algebra if and only if H* is a K-Hopf algebra.

Definition 2.6.12 (Graded module). A graded K-module V is one with a K-module
direct sum decomposition V =

⊕
n≥0 Vn. Elements x in Vn are called homogeneous of

degree n.

One endows tensor products V ⊗W of graded K-modules V, W with graded
module structure in which (V ⊗W)n :=

⊕
i+j=n Vi ⊗Wj.
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Definition 2.6.13 (Graded map). A K-linear map ψ : V → W between two graded K-
modules is called graded if ψ(Vn) ⊂ Wn for all n. Say that a K-algebra (coalgebra,
bialgebra) is graded if it is a graded K-module and all of the relevant structure maps
(λ, ε,m,∆) are graded. Say that a graded module V is connected if V0 ∼= K.

The following two propositions can be found in Grinberg [12].

Proposition 2.6.14. A connected graded bialgebra H has a unique antipode S, which is a graded
map S : H → H, endowing it with a Hopf structure.

Theorem 2.6.15 (Takeuchi’s formula). In a connected graded Hopf algebra H, the antipode
has formula

S = ∑
k≥0

m(k−1) f⊗k∆(k−1) (2.2)

where f := Id−λε, f⊗k := f ⊗ · · · ⊗ f (k times) and m−1 f⊗0∆−1 = λε.

2.7 Modules over algebras and comodules over coalgebras

Definition 2.7.1 (Module). Let A be a K-algebra. A left module over A is a K-vector
space M together with a linear map α : A ⊗ M → M such that α(a ⊗ x) := ax and
1Ax = x for all a ∈ A and x ∈ M, and a(by) = (ab)y for all a, b ∈ A and y ∈ M. That is,
the following diagrams commute:

A⊗ A⊗M A⊗M

A⊗M M

Id⊗α

m⊗Id α

α

and

K⊗M A⊗M

M

λ⊗Id

∼ α

A right A-module is defined similarly.

Definition 2.7.2 (Comodule). Let C be a K-coalgebra. A left comodule over C is a K-
vector space M together with a coaction map φ : M → C ⊗M such that the following
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diagrams commute:

M C⊗M

C⊗M C⊗ C⊗M

φ

φ Id⊗φ

∆⊗Id

and

M C⊗M

K⊗M

φ

1⊗− ε⊗Id

A right comodule is defined similarly.

Definition 2.7.3 (Comodule-bialgebra). Let B be a bialgebra over a field K. A comodule-
bialgebra over B is a bialgebra in the category of B-comodules.

To be precise, a comodule-bialgebra over B is a bialgebra H endowed with a linear
map φ : H → B⊗ H such that:

∙ φ is a left coaction, i.e., for all h ∈ H, we have

(∆B ⊗ Id)φ(h) = (Id⊗φ)φ(h) and

(εB ⊗ Id)φ(h) = 1⊗ h.

∙ The coproduct ∆H and the counit εH are morphisms of left B-comodules, where
the comodule structure on K is given by the unit map λB, and the comodule
structure on H ⊗ H is given by φ̃ = (mB ⊗ Id⊗ Id) ∘ τ23 ∘ (φ ⊗ φ), where τ23

stands for the flip of the two middle factors, i.e., for all h ∈ H, we have

φ̃ ∘ ∆H(h) = (Id⊗∆H)φ(h) and

(Id⊗εH)φ(h) = λB ∘ εH(h)

∙ mH and λH are morphisms of left B-comodules. This amounts to saying that φ is
an algebra morphism. In other words, for all k ∈ K and h1,h2 ∈ H, we have

φ ∘mH(h1 ⊗ h2) = (Id⊗mH)φ̃(h1 ⊗ h2)

(Id⊗mH)(mB ⊗ Id⊗ Id) = mB ⊗mH

(Id⊗λH)λB(k) = φ ∘ λH(k).
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Definition 2.7.4 (Comodule-Hopf algebra). A comodule-bialgebra H is a comodule-
Hopf algebra if H is a Hopf algebra with antipode S such that (Id⊗S)φ(h) = φ ∘ S(h)
for all h ∈ H.
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Chapter 3

Algebraic aspects of the Tutte
polynomial

In this chapter we give an exposition of a classic paper of Tutte [23]. Tutte defines
a ring of graphs, and defines an ideal generated by the set of all deletion-contraction
relations. He then shows that each coset of the ideal contains a single graph which has
only vertices and loops. We also discuss topological invariants of graphs proposed by
Tutte.

3.1 An algebra of graphs

Let 𝒢 be the class of all isomorphism classes of finite graphs. We allow mul-
tiedges and loops. We make 𝒢 a commutative monoid by defining multiplication in
𝒢 by G1G2 := G1 ⊎ G2 for any two graphs G1 and G2 in 𝒢. Here G1 ⊎ G2 denotes the
disjoint union of G1 and G2. To be precise, we take disjoint representative graphs in the
isomorphism classes G1 and G2, construct their union, and then define the product to
be the isomorphism class of the union. The identity element in the monoid is the null
graph.

Definition 3.1.1 (Graphic form). Let Z𝒢 be the monoid algebra of 𝒢 over Z. We con-
sider 𝒢 to be a subset of Z𝒢 by identifying each G ∈ 𝒢 with 1G ∈ Z𝒢. Elements of Z𝒢
are finite linear combinations of isomorphism classes of graphs, with coefficients in Z;
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they are called graphic forms.

If e ∈ E(G) then we say that e is a link if it is not a loop.

Definition 3.1.2 (W-function). Let A be an additive abelian group. A function w : 𝒢 →
A is called a W-function if w(G)− w(G− e)− w(G/e) = 0 for all G ∈ 𝒢 for all links e
in G. We say that a module morphism w : Z𝒢 → A (considering A as a Z-module) is a
W-function if its restriction to 𝒢 is a W-function.

Definition 3.1.3 (V-function). Let A be a commutative ring with identity. A func-
tion w : 𝒢 → A is called a V-function if it is a W-function and is multiplicative, i.e.,
w(G1G2) = w(G1)w(G2) for all G1, G2 ∈ 𝒢. A V-function from Z𝒢 to A is a linear
extension of a V-function from 𝒢 to A.

Note that a V-function w : Z𝒢 → A is an algebra morphism (considering A to be
a Z-algebra.)

Example 3.1.4. The function w : 𝒢 → Z, where w(G) equals the number of spanning
trees in G, is a W-function.

Example 3.1.5. Let w(G) := (−1)V(G)C(G; n), where C(G; n) is the value of the chro-
matic polynomial at x = n (i.e., the number of proper colourings of G with n colours)
and V(G) is the number of vertices. Then w : 𝒢 → Z is a W-function since the chromatic
polynomial satisfies the deletion-contraction property.

Definition 3.1.6 (W-forms). Let W be the submodule of Z𝒢 generated by the set

{G− (G− e)− (G/e) | G ∈ 𝒢, e ∈ E(G), where e is a link}.

The elements of W are called W-forms.

Lemma 3.1.7. W is an ideal of Z𝒢.

Proof. If G is a graph and e is a link in G, and G1 is another graph disjoint with G, then
GG1 = G ⊎ G1, and (G− e)G1 = (G ⊎ G1)− e, and (G/e)G1 = (G ⊎ G1)/e. Hence, by
linearity, if X ∈W and Y ∈ Z𝒢, then XY ∈W. Thus W is an ideal of Z𝒢.

We write R := Z𝒢/W.



43 3.1. An algebra of graphs

Theorem 3.1.8. A single-valued function w : 𝒢 → A is a W-function (V-function) if and only
if it has the form w = w ∘ π, where w : R → A is a module morphism (an algebra morphism)
and π : Z𝒢 → R is the canonical projection map.

Proof. If w : Z𝒢 → A is a W-function, then W ⊆ ker(w), and by the mapping property
of modules (the proof can be found in Artin [1]) there is a unique module morphism
w : R → A such that w = w ∘ π. Conversely, if w : R → A is a module morphism, then
w = w ∘ π is a W-function.

If w : Z𝒢 → A is a V-function (hence also an algebra morphism), then there is
a unique algebra map w : R → A such that w = w ∘ π. Conversely, if w : R → A is
an algebra morphism, then w = w ∘ π is a V-function. Since w and π are algebra
morphisms, w is also an algebra morphism, hence is multiplicative. Since w(W) = 0,
we have W ⊆ ker(w), which implies that w is a W-function. Since w is multiplicative
and is a W-function, it is also a V-function.

For each X ∈ Z𝒢 let [X], denote the coset of X mod W. Let yr denote any graph
having just one vertex and r loops; we call these graphs elementary graphs. Note that
yr has rank r(yr) = 0, number of components k(yr) = 1 and corank s(yr) = r.

We now come to the main theorem of the chapter.

Theorem 3.1.9. If G ∈ 𝒢 then [G] can be expressed as a polynomial

P[G] = P([G]; [y0],[y1],[y2],...)

in the [yi] such that

1. P[G] has no constant term,

2. the coefficients of P[G] are non-negative integers,

3. the degree of P[G] is |V(G)|,

4. P[G] involves no term yi with i greater than s(G),

5. if G is connected and has no bridge e such that for some component G0 of G− e, s(G0) =

0; then P[G] has the form [yp] + [Q], where p = s(G) and [Q] is a polynomial in those
[yi] for which i is less than p.
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Proof. By induction on |E(G)|. If |E(G)| = 0, then G is the product of |V(G)| elementary
graphs isomorphic to y0. Thus, we write the polynomial by

P[G] = [y0]
|V(G)|,

and the theorem is true for G.

Assume that the theorem is true for all connected graphs having fewer than some
finite number n of edges. For the case G is not connected, we can obtain P[G] satisfying
the theorem by multiplying together the polynomials of its components. Let G be any
graph having just n edges. If G is connected, then either V(G) = 1 and P[G] = [yn], so
the theorem is true for G; or else G contains a link e and

P[G] = P([G− e] + [G/e]).

Since G − e and G/e have each fewer edges than G and so by inductive hypothesis
the theorem is true for them. Note that Propositions 1 to 4 are true for G because
V(G− e) = V(G), s(G) ≥ s(G− e) and s(G) = s(G/e).

Now suppose that G is connected and has no bridge e such that for some compon-
ent G0 of G− e, s(G0) = 0. Then G/e also satisfies these conditions and by hypothesis

P[G/e] = [yp] + [Q],

where p is s(G) and [Q] denotes another polynomial (not always the same polynomial),
in those [yi] for which i < p. We have P[G − e] = [Q] if e is not a bridge. Otherwise,
G − e is of the form G0G1. Since G satisfies the conditions 5, s(G0),s(G1) > 0, and
therefore since s(G0) + s(G1) = s(G− e) we have s(G0),s(G1) < s(G− e). Hence P[G−
e] = P([G0][G1]) = [Q]. Thus we conclude that P[G] = [yp] + [Q].

This completes the proof that the theorem is true for connected graphs.

Corollary 3.1.10. Any element [X] of R can be expressed as a polynomial in the [yi] with
integer coefficients and no constant term.
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3.2 The structure of R

Let S denote a spanning subgraph of a graph G. Let the number of components
T ⊆ S such that s(T) = r be ir(S). We define a function Z(G) of 𝒢 by

Z(G) := ∑
S⊆G

∏
r

zir(S)
r ,

where the zr are independents indeterminate over Z.

Remark 3.2.1. Z(G) involves a formal infinite product, but for a given S only a finite
number of the ir(S) can be non-zero and so, Z(G) is a polynomial in the zi.

Definition 3.2.2. R0 := Z[z0,z1,...].

Theorem 3.2.3. Z : 𝒢 → R0 is a V-function.

Proof. The subgraphs of G1G2 are the products of the subgraphs S1 of G1 with the
subgraphs S2 of G2. We have

ir(S1S2) = ir(S1) + ir(S2),

therefore,

Z(G1G2) = ∑
S1⊆G1,S2⊆G2

∏
r

zir(S1)+ir(S2)
r

= ( ∑
S1⊆G1

∏
r

zir(S1)
r )( ∑

S2⊆G2

∏
r

zir(S2)
r )

= Z(G1)Z(G2).

Thus Z(G) is multiplicative.

Suppose that e is a link of G. Let ℋ be the set of all subgraphs of G containing e.
Let 𝒦 be the set of all subgraphs of G which do not contain e. The set 𝒦 is equal to the
set of subgraphs of G − e. Let 𝒮(G/e) be the set of all subgraphs of G/e. If f : ℋ →
𝒮(G/e) is such that for every S ∈ ℋ we have f (S) = S/e, then f is bijective. Note also
that for every component T of S, we have s(T/e) = s(T). Hence ir(S/e) = ir(S) for all
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r. Therefore,

Z(G) = ∑
S⊆G−e

∏
r

zir(S)
r + ∑

S⊆G/e
∏

r
zir(S)

r

= Z(G− e) + Z(G/e).

So Z(G) is a V-function, concluding the demonstration.

Theorem 3.2.4. Z(yr) = ∑
i

(
r
i

)
zi.

Proof. Each subgraph of yr has just one component. Hence Z(yr) is a linear form in the
zr. The number of subgraphs S such that s(S) = k is the number of subgraphs with
|E(S)| = k, which is the number of ways of choosing k edges of r.

Lemma 3.2.5.
r

∑
i=0

(−1)i
(

r
i

)(
i
j

)
= (−1)rδrj.

Proof. Note that

xr = ((x− 1) + 1)r

=
r

∑
i=0

(
r
i

)
(x− 1)i

=
r

∑
i=0

(
r
i

) i

∑
j=0

(
i
j

)
xj(−1)i−j.

Equalizing the coefficient of xr on this equation, the result follows.

The next theorem gives the structure of the Z-algebra R.

Theorem 3.2.6. R is isomorphic to the Z-algebra R0.

Proof. Z(G) is a V-function with values R0, by Theorem 3.1.8

Z(G) = w([G])

where w : R→ R0 is an algebra morphism. Then we must prove that w is an isomorph-
ism from R to R0.
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For this, let [ti] be the element of R defined by

[ti] =
i

∑
j=0

(−1)i+j
(

i
j

)
[yj] (3.1)

By results 3.2.4 and 3.2.5, we have

w([ti]) = Z(ti)

=
i

∑
j=0

j

∑
k=0

(−1)i+j
(

i
j

)(
j
k

)
zk

=
i

∑
j=0

(−1)i(−1)iδikzk

= zi

Multiplying Equation 3.1 by (r
i) and summing from i = 0 to i = r gives

r

∑
i=0

(
r
i

)
[ti] =

r

∑
i=0

i

∑
j=0

(−1)i+j
(

r
i

)(
i
j

)
[yj]

= [yr]

By the above conclusions (Corollary 3.1.10), since any element [X] of R has a polynomial
in the [yj] then has in the [ti]. Moreover this expression is unique, otherwise there would
be a polynomial relationship

P([ti]) = 0

and therefore there would be a polynomial relationship

Q(zi) = 0

but this would contradict the definition of the zi, implying the result.

Theorem 3.2.7. Let x0,x1,... be an infinite sequence of connected graphs such that

1. x0 ∼= y0

2. s(xr) = r
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3. xr contains no bridge e such that for some component L0 of (xr − e), s(L0) = 0.

Then any element [X] of R has a unique expression as a polynomial in the [xi] with rational
coefficients and no constant term.

3.3 Topologically invariant W-functions

Definition 3.3.1 (Subdivision). Let e := {u,v} be an edge of G. The graph obtained
by subdividing e is the graph with vertex set V(G) ∪ {w} and edge set (E(G) ∖ {e}) ∪
{{u,w}, {v,w}}.

We seek the condition that a W-function w(G) shall be topologically invariant
(see Definition 1.1.9), i.e., w(G) shall be invariant under subdivision operations.

Let N denote the set of all elements of R which are of the form [y0][X] + [X].
Note that N is ideal of R. Let {X} denote that element of the quotient ring R/N which
contains [X].

Theorem 3.3.2. A function w : 𝒢 → A is a topologically invariant W-function (V-function) if
and only if it is of the form k{G}, where k is a homomorphism of the R/N into A.

Proof. Suppose that e is any edge of L. Let M be obtained from L by subdividing e by
a point p. Let us denote the new edges by f and g. We have

w(M) = w(M− f ) + w(M/ f )

= w((M− f )− g) + w((M− f )/g) + w(M/ f )

= w(p.(M− f )/g) + w((M− f )/g) + w(M/ f ).

Hence p is a graph which consists solely of the vertice p (p ∼= y0). We have M/ f ∼= L
and (M− f )/g ∼= L0, where L0 is the graph derived from L by suppressing e, hence

w(M)− w(L) = w(y0.L0) + w(L0)

= w([y0][L0] + [L0])

Thus, the necessary and sufficient condition for the W-function (or V-function)
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w(L) to be topologically invariant is that w shall map all elements of R of the form
[y0][L] + [L], and therefore all elements of N, on to the zero of A.

Theorem 3.3.3. Let x0,x1,... be an infinite sequence of connected graphs such that

1. x0 ∼= y0

2. s(xr) = r

3. xr contains no bridge e such that for some component L0 of (xr − e), s(L0) = 0.

Then any element {X} of R/N has a unique polynomial in the {xi} with rational coefficients.



50

Chapter 4

Chromatic polynomials and
bialgebras of graphs

We study the chromatic polynomial from a Hopf algebra perspective. We will
present the following result: in the category of Hopf algebras, the chromatic polynomial
is the only homomorphism from the Hopf algebra of graphs to the Hopf algebra of
polynomials. This result was given by Foissy in the paper [10].

All vector spaces in this chapter are over Q. We take K to be the field of rationals.
We denote by m the ordinary multiplication in K[x]. We define two bialgebra structures
on K[x], with comultiplication and counit maps defined on the basis {1, x, x2, . . .} as
follows:

∆1(xm) =
m

∑
i=0

(
m
i

)
xi ⊗ xm−i, ε1(xm) = δ0,m;

∆2(xm) = xm ⊗ xm, ε2(xm) = 1.

In this chapter, we denote by 𝒢 the set of isomorphism classes of all simple finite
graphs. Let K𝒢 be the free vector space generated by 𝒢.
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4.1 Hopf algebraic structures on graphs

We define on K𝒢 a commutative and associative multiplication m : K𝒢 ⊗ K𝒢 →
K𝒢 such that m(G ⊗ H) := G ⊎ H. The unit map is given by λ : K → K𝒢 such that
λ(r) := r1 where 1 is the null graph. This gives K𝒢 an algebra structure. The algebra
K𝒢 is isomorphic to the free commutative algebra generated by connected graphs.

In the following, we define two pairs of comultiplication and counit maps on K𝒢,
one of them gives us a Hopf algebra, while the other gives a bialgebra.

Let G be a graph. For I ⊂ V(G), let G|I denote the subgraph of G induced by I.

Proposition 4.1.1. Let ∆1 : K𝒢 → K𝒢 ⊗ K𝒢 and ε1 : KG → K be defined by

∆1(G) := ∑
V(G)=I⊔J

G|I ⊗ G|J ,

where I ⊔ J denotes disjoint union and

ε1(G) := δG,1,

for all G ∈ 𝒢. (Here δG,1 is 1 if G is the null graph, and 0 otherwise.) Then (K𝒢, m, λ, ∆1, ε1)

is a graded connected, commutative, cocommutative bialgebra.

Proof. 1. (Coassociativity) If G is a graph, and J ⊆ I ⊆ V(G), then (G|I)|J = G|J .
Hence

(∆1 ⊗ Id)∆1(G) = (∆1 ⊗ Id) ∑
V(G)=I⊔J

G|I ⊗ G|J

= ∑
V(G)=I⊔J;I=K⊔L

(G|I)|K ⊗ (G|I)|L ⊗ G|J

= ∑
V(G)=K⊔L⊔J

G|K ⊗ G|L ⊗ G|J

= ∑
V(G)=K⊔I;I=L⊔J

G|K ⊗ (G|I)|L ⊗ (G|I)|J

= (Id⊗∆1)∆1(G).
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2. (Algebra homomorphism) Note that V(GH) = V(G) ⊔V(H), therefore,

∆1(m(G⊗ H)) = ∆1(GH)

= ∑
V(G)=I⊔J;V(H)=K⊔L

GH|J⊔L ⊗ GH|I⊔K

= ∑
V(G)=I⊔J;V(H)=K⊔L

G|J H|L ⊗ G|I H|K

= ∆1(G)∆1(H)

= m(∆1(G)⊗ ∆1(H)),

where the last two lines denote the multiplication in K𝒢 ⊗ K𝒢, as defined in 2.1.

3. (Graded and connected) A graduation is given by K𝒢 = ⊕i∈NK𝒢i, where 𝒢i is the
set of graphs with i vertices.

Since 𝒢0 = {∅}, we have K𝒢0 ∼= K; hence K𝒢 is connected.

4. (counit) For all G ∈ 𝒢,

(ε1 ⊗ Id)∆1(G) = (ε1 ⊗ Id) ∑
V(G)=I⊔J

G|I ⊗ G|J

= ∑
V(G)=I⊔J

ε(G|I)⊗ G|J

= 1⊗ G.

Similarly, (Id⊗ε1)∆1(G) = G⊗ 1.

We have that ∆1 is homogeneous and cocommutative, concluding the proof.

Since the bialgebra defined above is graded and connected, there exists an anti-
pode (by Proposition 2.6.14), and hence it is also a Hopf algebra.

Example 4.1.2. ∆1( )= ⊗1 + 1⊗ +3 ⊗ +3 ⊗

Let V be a finite set. Let ∼ be an equivalence relation on V. Let π : V → V/∼ be
the canonical projection.

Definition 4.1.3. Let G a graph. Let ∼ be an equivalence relation on V(G).
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1. (Contraction) The graph G/∼ is defined by V(G/∼) := V(G)/∼ and

E(G/∼) := {{π(x),π(y)} | {x,y} ∈ E(G),π(x) ̸= π(y)}.

2. (Extraction) The graph G |∼ is defined by V(G |∼) := V(G) and

E(G |∼) := {{x,y} ∈ E(G) | x ∼ y}.

3. We write ∼ �G if G|π−1(x) is connected for all x.

Example 4.1.4. Let G be the graph shown below.

3 4

1 2

5 6

7

For the equivalence relation∼ on V(G) defined by equivalence classes {1,2,3},{5,6,7},{4},
we have G/∼ = and G |∼ = .

Proposition 4.1.5. Let ∆2 : K𝒢 → K𝒢 ⊗ K𝒢 and ε2 : KG → K be defined by

∆2(G) := ∑
∼�G

(G/∼)⊗ (G |∼)

and

ε2(G) :=

{
1, if G is empty;
0, otherwise,

for all G ∈ 𝒢. Then (K𝒢, m, λ, ∆2, ε) is a bialgebra. The rank of G defines a grading on K𝒢.
The bialgebra is not connected.

Proof. 1. (Coassociativity) Let G be a graph. If ∼ �G, then the connected compon-
ents of G/∼ are images of the canonical surjection of the connected components
of G; the connected components of G |∼ are the equivalence classes of ∼. If ∼
and ∼′ are two equivalences on G, then we shall write ∼′≤∼ if for all x, y ∈ V(G),
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x ∼ y implies x ∼′ y. We have

(∆2 ⊗ Id) ∘ ∆2(G) = ∑
∼�G;∼′�G/∼

(G/∼)/∼′ ⊗(G/∼) |∼′ ⊗G |∼

= ∑
∼,∼′�G;∼′≤∼

(G/∼)/∼′ ⊗(G/∼) |∼′ ⊗G |∼

= ∑
∼,∼′�G;∼′≤∼

(G/∼′)⊗ (G |∼′)/∼ ⊗(G |∼′) |∼

= ∑
∼�G,∼′�G|∼

(G/∼′)⊗ (G |∼′)/∼ ⊗(G |∼′) |∼

= (Id⊗∆2) ∘ ∆2(G),

where the second equality is valid provided that the equivalence relation ∼′ in
G/∼ and G are taken in a similar way.

2. (Algebra homomorphism) Let G, H be a graphs. Let ∼ be an equivalence on
V(GH) = V(G) ⊔ V(H). We put ∼′=∼|V(G) and ∼′′=∼|V(H). We have ∼ �GH
if and only if satisfies: ∼′ �G and ∼′′ �H, if x ∼ y, then (x,y) ∈ V(G)2 or
(x,y) ∈ V(H)2. Note also that (GH)/∼ = (G/∼′)(H/∼′′) and (GH) |∼ =

(G |∼′)(H |∼′′), so:

∆2(m(G⊗ H) = ∆2(GH)

= ∑
∼′�G;∼′′�H

(G/∼′)(H/∼′′)⊗ (G |∼′)(H |∼′′)

= ∆2(G)∆2(H)

= m(∆2(G)⊗ ∆2(H)),

where the last two lines denote the multiplication in K𝒢 ⊗ K𝒢, as defined in 2.1.

3. (Counit) For all x, y ∈ V(G) define: x ∼0 y if and only if x = y, and x ∼1 y if and
only if x and y are in the same connected component of G. If ∼ �G, then G/∼ is
not empty except if ∼=∼1, and G |∼ is not empty except if ∼=∼0. Hence, if G is
empty, then ∆2(G) = G⊗ G, and

(ε2 ⊗ Id)∆2(G) = (ε2 ⊗ Id)(G⊗ G) = 1⊗ G,
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and
(Id⊗ε2)∆2(G) = G⊗ 1.

Otherwise, denoting by n the number of vertices of G, and by k the number of
connected components of G, we have:

∆2(G) = k ⊗ G + G⊗ n + ker(ε2)⊗ ker(ε2).

Hence ε2 is the counit of ∆2.

4. (Homogeneous) Let G be a graph with n vertices and k connected components.
If ∼ �G, then G/∼ has |V/∼| vertices and k connected components, so r(G/∼
) = |V/∼| − k, and G |∼ has n vertices and |V/∼| connected components, so
r(G |∼) = n− |V/∼|. Hence,

r(G/∼) + r(G |∼) = |V/∼| − k + n− |V/∼| = r(G).

The bialgebra KG defined above is not connected because r(G0) = 0 if and only
if G0 is empty, and thus K𝒢0 � K.

Example 4.1.6. ∆2( ) = ⊗ + ⊗ .

Proposition 4.1.7. (K𝒢, m, λ, ∆2, ε2) is not a Hopf algebra.

Proof. Suppose that there exists an antipode function S : K𝒢 → K𝒢. Hence, by defini-
tion of antipode, we have

m(S⊗ Id)∆2( ) = m(S⊗ Id)( ⊗ ) = m(S( )⊗ ),

which cannot be λ(ε2( )1) since λ(ε2( )1) is the null graph, while the disjoint union of
S( ) and is not the null graph.

Now, H := (K𝒢, m, λ, ∆2, ε2)/⟨ − 1⟩ := (K𝒢 ′,m′,λ′,∆′2,ε′2) becomes a graded con-
nected bialgebra, hence a Hopf algebra with antipode S′. In effect, we identify the graph

with the null graph. Thus, n = 1 and r(G) = 0 if and only if G ∼= 1, concluding that
H is connected.

Definition 4.1.8. Let G be a connected graph, and suppose that G ̸= .
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1. A forest of G is a set ℱ of subsets of V(G) such that:

∙ V(G) ∈ ℱ .

∙ If I,J ∈ ℱ , then I ⊆ J, or J ⊆ I, or I ∩ J = ∅.

∙ For all I ∈ ℱ , the graph G|I is connected and G|I ̸= .

2. The set of forests of G is denoted by F.

Example 4.1.9. Let G be the graph shown below.

3 4

1 2

5

ℱ := {V(G),{1,2,3},{4,5},{1,2}} is a forest of G.

Definition 4.1.10. Let ℱ ∈ F(G). For any I ∈ ℱ , the relation ∼I is an equivalence
relation on I whose classes are the maximal elements (for the inclusion) of {J ∈ ℱ | J  
I} (if this set is nonempty), and singletons. We put

Gℱ := ∏
I∈ℱ

(G|I)/∼I .

Example 4.1.11. If G = , then ℱ = { } and Gℱ = .

Theorem 4.1.12. For any connected graph G, G ̸= , define

S′(G) := ∑
ℱ∈F(G)

(−1)|ℱ |Gℱ .

Then S′ is the antipode in H.

Proof. By induction on the number n of vertices of G. If n = 2, then G = . Thus,

0 = λ′ε′2(G)

= m′(S′ ⊗ Id)∆′2(G)

= m′(S′ ⊗ Id)( ⊗ 1 + 1⊗ )

= S′( ) +
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Therefore, S′( ) = − and ∑
ℱ∈F(G)

(−1)|ℱ |Gℱ = (−1)1 = − .

Suppose the assertion is valid for n = k. We will prove it for k + 1. Let G be a
connected graph such that |V(G)| = k + 1. Then,

0 = λ′ε′2(G)

= m′(Id⊗S′)∆′2(G)

= m′(Id⊗S′) ∑
∼�G

(G/∼)⊗ (G |∼)

= ∑
∼�G

S′(G |∼)(G/∼).

Now, using the induction hypothesis, we have

S′(G) = −G− ∑
∼�G

S′(G |∼)(G/∼)

= −G− ∑
∼�G;G/∼={I1,...,Ik}

∑
ℱi∈F(G|Ii )

(−1)|ℱ1|+...+|ℱk |(G/∼)(G|I1
)ℱ1 ...(G|Ik

)ℱk

= −G− ∑
ℱ∈F(G);ℱ ̸={G}

(−1)|ℱ |−1Gℱ

= ∑
ℱ∈F(G)

(−1)|ℱ |Gℱ

4.2 Cointeraction

Theorem 4.2.1. With the coaction ∆2, the bialgebras (K𝒢, m, λ, ∆1, ε1) and (K𝒢, m, λ, ∆2, ε2)

are in cointeraction, that is, (K𝒢, m, λ, ∆1, ε1) is a (K𝒢, m, λ, ∆2, ε2)-comodule bialgebra, or a
Hopf algebra in the category of (K𝒢, m, λ, ∆2, ε2)-comodules. In other words:

1. ∆2(1) = 1⊗ 1.

2. For all a, b ∈ K𝒢 we have ∆2(ab) = ∆2(a)∆2(b).

3. For all a ∈ K𝒢 we have (ε1 ⊗ Id)∆2(a) = ε1(a)1.
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4. m3
2,4 ∘ (∆2 ⊗ ∆2) ∘ ∆1 = (∆1 ⊗ Id)∆2, where:

m3
2,4 :

{
K𝒢 ⊗ K𝒢 ⊗ K𝒢 ⊗ K𝒢 → K𝒢 ⊗ K𝒢 ⊗ K𝒢

a1 ⊗ b1 ⊗ a2 ⊗ b2 ↦→ a1 ⊗ a2 ⊗ b1b2

Proof. The assertions 1 and 2 are true because ∆2 is a linear map, and assertion 3 is
immediate because is not necessary to count. Let us prove the 4th assertion. For any
graph G, we have

(∆1 ⊗ Id) ∘ ∆2(G) = ∑
∼�G;V(G)/∼=I⊔J

(G/∼)|I ⊗ (G/∼)|J ⊗ G |∼

= ∑
V(G)=I′⊔J′;∼′�G|I ,∼′′�G|J

(G|I′)/∼′ ⊗(G|J′)/∼′′ ⊗(G|I′) |∼′ (G|J′)/∼′′

= m3
2,4 ∘ (∆2 ⊗ ∆2) ∘ ∆1(G).

The second equality follows from I′ = π−1(I), I′′ = π−1(J), ∼′=∼|I′ and ∼′′=∼|J′ .

Definition 4.2.2 (Monoid of characters). Let M𝒢 be the set of algebra homomorphisms
from K𝒢 to K; it is a monoid under the operation of convolution. It is called the monoid
of characters of K𝒢.

To demonstrate the next theorem we need Theorem 4.2.1 and the results of the
paper [11]

Theorem 4.2.3. 1. Let λ ∈ M𝒢 . It is an invertible element if and only if λ( ) ̸= 0.

2. Let B be a Hopf algebra. Let EK𝒢→B be the set of Hopf algebra morphisms from K𝒢 → B.
Then M𝒢 acts on EK𝒢→B by:{

E×M𝒢 → E
(φ, λ) ↦→ (φ← λ) := m(φ⊗ λ)∆2

3. There exists a unique φ0 ∈ EK𝒢→K[x] such that φ0 is homogeneous and φ0( ) = x. There
exists a unique λ0 ∈ M𝒢 such that, for all G ∈ 𝒢, φ0(G) = λ0(G)x|V(G)|. Moreover,{

M𝒢 → EK𝒢→K[x]

λ ↦→ (φ0 ← λ)
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is bijection.

4. Let λ ∈ M𝒢 . There exists a the unique element φ ∈ EK𝒢→K[x] such that, for all x ∈ K𝒢,
we have φ(x)(1) = λ(x). This morphism is φ0 ← (λ−1

0 * λ).

5. There exists a unique morphism φ1 : K𝒢 → K[x] such that:

∙ φ1 is a Hopf algebra morphism from (K𝒢, m, ∆1) to (K[x], m, ∆1).

∙ φ1 is a bialgebra morphism from (K𝒢, m, ∆2) to (K[x], m, ∆2).

This morphism is unique element of EK𝒢→K[x] such that for all x ∈ K𝒢, we have φ1(x)(1) =
ε2(x). Moreover, φ1 = φ0 ← λ−1

0 .

4.3 The chromatic polynomial as a Hopf algebra morphism

We will determine φ0 and φ1.

Proposition 4.3.1. For any graph G, we have φ0(G) = x|V(G)| and λ0(G) = 1.

Proof. Let ψ : K𝒢 → Q[x] be such that ψ(G) = x|G| for all G ∈ 𝒢. It is a homogeneous
algebra morphism. For any graph G on n vertices, we have

(ψ ∘ ψ)∆1(G) = (ψ ∘ ψ) ∑
V(G)=I⊔J

G|I ⊗ G|J

= ∑
V(G)=I⊔J

x|I| ⊗ x|J|

=
n

∑
i=0

(
n
i

)
xi ⊗ xn−i

= ∆1(xn)

= ∆1(ψ(G)).

So ψ is a Hopf algebra morphism. Since ψ( ) = x| | = x, by Theorem 4.2.3,
ψ = φ0.

Theorem 4.3.2. The map C : K𝒢 → K[x], where C(G) = C(G, x) is the chromatic polynomial
of G, is the morphism φ1.
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Proof. By Equation 1.2.9, C is an algebra morphism. Let G be a graph. We consider:

𝒱(G, [k + l]) := { f : V(G)→ [k + l] | f (i) ̸= f (j); {i, j} ∈ E(G)},

D2 := {(I, c′, c′′) | I ⊆ V(G), c′ ∈ 𝒱(G|I , [k]), c′′ ∈ 𝒱(G|V(G)∖I , [l]},

where k, l ∈ Z+ and [k] = {1, ..., k}. We define a map θ : 𝒱(G, [k + l]) → D2 by θ(c) =
(I, c′, c′′), where I = {x ∈ V(G) | c(x) ∈ [k]}, and for all x ∈ I, c′(x) = c(x), and for all
x /∈ I, c′′(x) = c(x)− k. We define θ′ : D2 → 𝒱(G, [k + l]) by θ(I, c′, c′′) = c, where for
all x ∈ I, c(x) = c′(x), and for all x /∈ I′, c(x) = c′′(x) + k.

Both θ and θ′ are well-defined; moreover θ ∘ θ′ = IdD2 and θ′ ∘ θ = Id𝒱(G,[k+l]), so
θ is bijection. By identifying Q[x]⊗Q[x] with Q[x, y], we have, for all k, l ≥ 1,

∆1(C(G; k, l)) = C(G, k + l)

= |𝒱(G, [k + l])|
= |D2|
= ∑

I⊆V(G)

C(G|I , k)C(G|V(G)∖I , l)

= (C⊗ C)( ∑
V(G)=I⊔J

G|I ⊗ G|J)(k, l)

= (C⊗ C)∆1(G)(k, l).

Moreover, we have

ε1(G) = ε1(C(G)) = C(G)(0) =

{
1, if G is null;
0, otherwise.

So C ∈ EK𝒢→Q[x].

For any graph G, we have

C(G)(1) =

1, if G is empty;

0, otherwise.

= ε2(G).

Hence C is also a coalgebra morphism and φ1 = C(G, k).
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By Theorem 4.2.3, it is the unique morphism from K𝒢 to K[x].
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Chapter 5

Whitney systems

In this chapter, we study another Hopf algebraic framework introduced by Schmitt
[19]. Schmitt defines a category of objects, called Whitney systems, which are set sys-
tems that have minimal structure necessary to define the familiar notion of connectivity
in graphs, matroids and other combinatorial structures.

Let the type of a graph be defined as the unordered list (multiset) of the iso-
morphism types of its blocks (see Definition 1.1.18). Let σ := t1, . . . , tk be a type, i.e., a
graph of type σ has blocks t1, . . . , tk. Given a graph G, let the number of subgraphs of
type σ in G be denoted by nσ. Whitney [26] showed that nσ is a polynomial in nt1 , . . . , ntk

over rationals, and that the polynomial does not depend on G. Schmitt showed that
Whitney’s theorem is equivalent to a Hopf algebra structure theorem in the special case
of a certain class of Whitney systems arising from graphs (see theorem 5.3.5).

5.1 Definitions and examples

Definition 5.1.1 (Whitney system). A Whitney system is a pair H = (V, 𝒞), where
V is a set and 𝒞 is a collection of non-empty subsets of V such that if X, Y ∈ 𝒞 and
X ∩Y ̸= ∅, then X ∪Y belongs to 𝒞.

If H = (V, 𝒞) is a Whitney system, then sometimes we write V(H) for the un-
derlying set V, and 𝒞(H) for the family of subsets 𝒞. A Whitney system H = (V, 𝒞) is
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called an empty Whitney system if V = ∅ and 𝒞 = ∅.

Definition 5.1.2 (Morphism). A morphism ϕ : H1 → H2 of Whitney systems is a func-
tion ϕ from V(H1) to V(H2) such that ϕ(U) ∈ 𝒞(H2) whenever U ∈ 𝒞(H1). We say that
ϕ is a isomorphism if ϕ is a bijection such that ϕ(U) ∈ 𝒞(H2) if and only if U ∈ 𝒞(H1)

The isomorphism class of an object H in the category of Whitney systems is
denoted by [H].

Definition 5.1.3 (Sum). The sum of Whitney systems H1 = (V1, 𝒞1) and H2 = (V2, 𝒞2)

is the Whitney systems (disjoint union) such that

H1 + H2 = (V1 ⊔V2, 𝒞1 ⊔ 𝒞2).

Definition 5.1.4 (Restriction). The restriction of a Whitney system H to a subset U of
V(H) is the Whitney systems given by

H|U := (U, {X ∈ 𝒞(H) | X ⊆ U}).

Definition 5.1.5. A Whitney system H = (V, 𝒞) is connected if and only if V ∈ 𝒞, or if
|V| = 1. We say that U ∈ V(H) is connected if and only if H|U is connected.

By definition, a Whitney system H is connected if and only if it is non-empty and
cannot be written as the sum of two non-empty Whitney system.

If |V(H)| = 1 and V(H) ∈ 𝒞(H), then H is a called a loop; and U ⊆ V(H) is a
loop if H|U is a loop.

Given a Whitney system H = (V, 𝒞), where V is finite, let σH denote the collection
of maximal connected subsets of V. Note that σH is a partition of V. The elements of σH

are called the connected components of H, and H|U , for U ∈ σH are called the blocks
of H. The set of all blocks of H is denoted by β(H). Thus any Whitney system H has
the unique decomposition into blocks H = ∑B∈β(H) B.

Example 5.1.6 (Whitney systems from graphs). Let G = (V, E) be a graph. If U ⊆ V(G),
then G|U is the subgraph of G induced by U. If T ⊆ E(G), then G|T denotes the
subgraph of G consisting of edges in T and vertices which are incident to edges in T.
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Consider the sets:

Cv := {U ⊆ V | G|U is connected},
Ce := {T ⊆ E | G|T is connected},
Cd := {T ⊆ E | G|T is doubly connected and |U| > 1 where U ⊆ V(G|T)} ∪ {{e} | e is a loop of G}.

The pairs Gv = (V, Cv), Ge = (E, Ce) and Gd = (E, Cd) are Whitney systems.

Definition 5.1.7 (Matroid). A matroid is an ordered pair (S,ℬ), consisting of a finite set
S and a nonempty family ℬ of subsets of S, called bases, which satisfy the following
properties:

1. if B1, B2 ∈ ℬ and e ∈ B1 ∖ B2 then there exists f ∈ B2 ∖ B1 such that (B1 ∖ {e}) ∪
{ f } ∈ ℬ;

2. if B1 ∈ ℬ and B2 ⊆ B1, then B2 ∈ ℬ.

Example 5.1.8 (A Whitney system from a matroid). Let M = (S,ℬ) be a matroid. An
element e of a matroid M is a loop if it contained in no basis of M. If U ⊆ S, then
M|U := (U, {X ⊆ U | X ∈ ℬ}) denotes the restriction of M to U. Define Cr = {U ⊆
S | M|U is connected and |U| > 1} ∪ {{x} | x is a loop of M}. Then Mr = (S, Cr) is
Whitney system.

Example 5.1.9 (A Whitney system from a topology). Let 𝒯 be a topology on a set X,
and let 𝒯c be the collection of connected subsets of X. The pair (X, 𝒯c) is a Whitney
system.

5.2 Hopf algebras of Whitney Systems

Let 𝒫 be a set of isomorphism types of finite Whitney system which is closed
under the operations of sum and restriction. The set 𝒫 is a commutative monoid with
product defined by

[H1][H2] = [H1 + H2].

The identity element of the monoid is the empty Whitney system denoted by [0].
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Let 𝒫0 ⊆ 𝒫 denote the set of isomorphism types of connected Whitney system
in 𝒫 . Because 𝒫 is closed under restriction, it follows that 𝒫 is the free commutative
monoid on the set 𝒫0. Every [H] in 𝒫 may be written as

[H] = [B1][B2]...[Bk]

where Bi is a block for all i.

Suppose K is a field of characteristic zero. Let C(𝒫) denote the monoid algebra
of 𝒫 over K. Note that, every element x ∈ C(𝒫) can be written as ∑[H]∈𝒫 kB[H], where
only finitely many coefficients kH are non-zero. By remark above, C(𝒫) ≃ K[𝒫0], where
K[𝒫0] is the polynomial algebra over K with the set of indeterminates 𝒫0.

Define linear maps ∆ : C(𝒫) → C(𝒫) ⊗ C(𝒫) (coproduct) and ε : C(𝒫) → K
(counit) by

∆[H] = ∑
U1∪U2=V(H)

[H|U1
]⊗ [H|U2

]

and

ε[H] =

{
1, if V(H) = ∅;
0, otherwise.

for all [H] ∈ 𝒫 .

Next we verify that the maps ∆ and ε satisfy the comultiplication and counit
properties, respectively, making C(𝒫) a bialgebra.

(Id⊗ ∆)∆[H] = (Id⊗ ∆) ∑
U1∪U2=V(H)

[H|U1
]⊗ [H|U2

]

= ∑
U1∪U2=V(H),K1∪K2=V(H|U2

)

[H|U1
]⊗ [H|K1

]⊗ [H|K2
]

= ∑
U1∪U2=V(H),T1∪T2=V(H|U1

)

[H|T1
]⊗ [H|T2

]⊗ [H|U2
] = (∆⊗ Id)∆[H]
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and

(ε⊗ Id)∆[H] = ∑
U1∪U2=V(H)

ε[H|U1
]⊗ [H|U2

]

= 1⊗ [H].

Analogically, we see that (Id ⊗ ε)∆[H] = [H] ⊗ 1. Thus C(𝒫) is a bialgebra with
coproduct ∆ and counit ε. In fact, ∆ is an algebra map,

∆([H1][H2]) = ∆[H1 + H2]

= ∑
U1∪U2=V(H1+H2)

[(H1 + H2)|U1
]⊗ [(H1 + H2)|U2

]

= ( ∑
U1∪U2=V(H1)

[(H1)|U1
]⊗ [(H1)|U2

])( ∑
U1∪U2=V(H2)

[(H2)|U1
]⊗ [(H2)|U2

])

= ∆[H1]∆[H2]

For each n ≥ 1, let In be the ideal of C(𝒫) generated by the set {[H] ∈ 𝒫 |
|V(H)| ≥ n}. Furthermore, the set of ideals {In : n ≥ 1} forms a local base at 0 for
a topology on C(𝒫) which is a topological algebra. We use the notation Ĉ(𝒫) to the
completion of C(𝒫) which is isomorphic to the algebra of formal power series K[[𝒫0]]

the fact C(𝒫) ≃ K[𝒫0]) and contains C(𝒫) as dense subalgebra.

The composition C(𝒫)→ C(𝒫)⊗C(𝒫) ↪→ Ĉ(𝒫)⊗ Ĉ(𝒫) is continuous, and thus
extends uniquely to a continuous (and coassociative) map ∆̂ : Ĉ(𝒫) → Ĉ(𝒫)⊗ Ĉ(𝒫).
Also, the counit ε : C(𝒫) → K is continuous (with the discrete topology on K) and
hence extends to a continuous map ε̂ : Ĉ(𝒫) → K. Thus, Ĉ(𝒫) is a bialgebra, with
coproduct ∆̂ and counit ε̂.

Proposition 5.2.1. Ĉ(𝒫) is a Hopf algebra with antipode S : Ĉ(𝒫) → Ĉ(𝒫) defined by
S(1) = 1 and

S[H] = ∑
n≥1

∑(−1)n
n

∏
i=1

[H|Ui
]
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for all non-empty [H] ∈ 𝒫 , where the inner sum is over all ordered n-tuples (U1, U2, ..., Un) of

non-empty subsets of V(H) such that
n⋃

i=1

Ui = V(H).

For f ∈ Ĉ(𝒫)
*

(the dual algebra of Ĉ(𝒫)) and [H] ∈ 𝒫 , let ⟨ f , [H]⟩ denote the

value of f on [H]. For any [H] in 𝒫 , define δH ∈ Ĉ(𝒫)
*

by

⟨δH, [G]⟩ =
{

1, if [G] = [H];
0, otherwise.

for all [G] ∈ 𝒫 . For Whitney systems H, H1, ..., Hk, define

(H : H1, · · · , Hk)

to be the number of ordered k-tuples (U1, ..., Uk) of subsets of V(H), with union V(H),
such that [H|Ui

] = [Hi], for all 1 ≤ i ≤ k.

Example 5.2.2. For the graphs H := , H1 := , and H2 := , we have (H : H1, H2) =

2.

Proposition 5.2.3. We have the following formula for the convolutional product in Ĉ(𝒫)
*
:

k

∏
i=1

δ[Hi ] = ∑
[H]∈𝒫

(H : H1, ..., Hk)δH. (5.1)

whenever [H1], ..., [Hk] belong to 𝒫 .

Proof. For all i, δ[Hi ] ∈ hom(Ĉ(𝒫), K). Let m and ∆ be the multiplication in K and

comultiplication in Ĉ(𝒫), respectively. Then,

δH1 * · · · * δHk = m(k−1) ∘ (δH1 ⊗ · · · ⊗ δHk) ∘ ∆(k−1).

For arbitrary [G], we write, using Sweedler notation,

(
k

∏
i=1

δHi)[G] = ∑
(G)

δH1 [G1] · · · δHk [Gk]

where G1, · · · , Gk are Whitney systems such that ∪iV(Gi) = V(G), and the sum is over
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all such tuples (G1, · · · , Gk) of induced Whitney systems of G. Therefore, the sum is
equal (G : H1, · · · , Hk) since only those tuples (G1, ..., Gk) contribute to the sum for
which Gi

∼= Hi for all i. But,

(G : H1, · · · , Hk) = ∑
[H]∈𝒫

(H : H1, ..., Hk)δH [G].

Now the result follows.

Proposition 5.2.4. Suppose that the field K is given the discrete topology.

1. f ∈ Ĉ(𝒫)
*

is continuous if and only if there exists n ∈N such that f [H] = 0 whenever
|V(H)| ≥ n.

2. there exists n ∈ N such that f [H] = 0 whenever |V(H)| ≥ n if and only if f is a finite
linear combination of the functions δH.

By Equation 5.1, the product of continuous elements of Ĉ(𝒫)
*

is also continuous.

The continuous dual algebra of Ĉ(𝒫) denoted by C(𝒫)′ is the subalgebra of Ĉ(𝒫)
*

generated by {δH | [H] ∈ 𝒫}.

If G, H are Whitney system where H has blocks B1, ..., Bk then let c(G, H) := (G :
B1, ...Bk). If H has exactly kB blocks isomorphic to B for all [B] ∈ 𝒫0, then c(H, H) =

∏[B]∈𝒫0
kB!.

Definition 5.2.5. We say that [G] ≤ [H] for all [G], [H] ∈ 𝒫 if and only if c(G, H) ̸= 0,
or if G = ∅.

Proposition 5.2.6. The relation ≤ defined above is a partial order on 𝒫 .

Proof. If c(G, H) ̸= 0, then there is a function f : V(H) → V(G) such that [H|U] =

[G| f (U)] for all connected U ∈ 𝒞(H) and f is surjection.

∙ (Reflective) Since c(H, H) = ∏[B]∈𝒫0
kB! ≥ 1, we have [H] ≤ [H].

∙ (Transitive) Suppose [G] ≤ [H] and [H] ≤ [F]. Thus, there are surjections f1 : V(H)→
V(G) and f2 : V(F)→ V[H] as above, hence for all U connected [F|U] = [H| f2(U)] =

[G| f1 ∘ f2(U)]. Also, f1 ∘ f2 is surjection, hence [G] ≤ [F].
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∙ (Antisymmetric) Suppose [G] ≤ [H] and [H] ≤ [G] then there are f1 : V(G) →
V(H) and f2 : V(H) → V(G) surjections such that [H|U] = [G| f2(U)] and
[G|W] = [H| f1(W)] for all U, W connected, and thus [G] = [H].

If Q is a partially ordered set and x ≤ y in Q, then the set [x, y] := {z ∈ Q | x ≤
z ≤ y} is called an interval in Q. The poset Q is said to be locally finite if all of its
intervals are finite.

Definition 5.2.7 (Incidence algebra). The incidence algebra over K of a locally finite
the partially ordered set Q is the collection I(Q) of all f : I → K with addition (g +

f )(x, y) = g(x, y) + f (x, y), scalar multiplication (λ f )(x, y) = λ( f (x, y)), and product
(convolution) of f , g in I(Q) defined by

f * g(x, y) = ∑
x≤z≤y

f (x, z)g(z, y)

for all x ≤ y in Q. The identity element e of I(Q) is defined by e(x, y) = δx,y for all
x ≤ y in Q.

Proposition 5.2.8. A function f ∈ I(Q) has a convolutional inverse if and only if f (x, x) ̸= 0
for all x ∈ Q, in which case

f−1(x, x) =
1

f (x, x)

f−1(x, y) = ∑
k≥0

∑
x=x0<···<xk=y

(−1)k f (x0, x1) · · · f (xk−1, xk)

f (x0, x0) · · · f (xk, xk)
(5.2)

for all x < y in Q.

Proof. By definition, f has a convolution inverse if and only if 1 = δx,x = f * f−1(x, x) =
f (x, x) f−1(x, x) if and only if f (x, x) ̸= 0.
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For x < y in Q, we have

0 = δx,y

= ( f−1 * f )(x, y)

= ∑
x≤z≤y

f−1(x, z) f (z, y)

= ∑
x≤z<y

f−1(x, z) f (z, y) + f−1(x, y) f (y, y).

Thus,

f−1(x, y) = − 1
f (x, y) ∑

x≤z<y
f−1(x, z) f (z, y). (5.3)

Now, we will prove Equation 5.2 by induction on |[x,y]|. If |[x,y]| = 1, then
x = y and f−1(x, x) = 1

f (x,x) . Suppose the assertion is valid for |[x, y]| = k. When
|[x, y]| = k + 1 and using Equation 5.3,

f−1(x, y) = − 1
f (y, y) ∑

x≤z<y
(∑

k≥0
∑

x=x0<···<xk

(−1)k f (x0, x1) · · · f (xk−1, xk)

f (x0, x0) · · · f (xk, xk)
) f (z, y)

= ∑
k≥0

∑
x=x0<···<xk+1=y

(−1)k f (x0, x1) · · · f (xk, xk+1)

f (x0, x0) · · · f (xk+1, xk+1)
.

Theorem 5.2.9. The linear map from C(𝒫)′ onto the polynomial algebra K[𝒫0] defined by
δB → [B], for all [B] ∈ 𝒫0, is an algebra isomorphism.

Proof. Let f : C(P)′ → C(P)′ be a linear map defined by f (δH) = ∏B∈β(H) δB. By
Equation 5.1, we have

f (δH) = ∑
G

c(G, H)δG.

Let g : C(P)′ → C(P)′ be a linear map defined by

g(δH) = ∑
G

c−1(G, H)δG.
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Here c−1 is the inverse of c in the incidence algebra I(P) over K; it exists because
c(H, H) ̸= 0 for all H.

We show that g( f (δH)) = f (g(δH)) = δH for all H. For all H, we have

g( f (δH)) = g

(
∑
G

c(G, H)δG

)
= ∑

G
c(G, H)g(δG) ∵ c(G, H) is a constant (in K) and g is linear

= ∑
G

c(G, H)∑
G′

c−1(G′, G)δG′

= ∑
G′

∑
G

c−1(G′, G)c(G, H)δG′

= ∑
G′

e(G′, H)δG′

= δH.

Here e is the identity of convolution in the incidence algebra I(P). Similarly, f (g(δH)) =

δH. Hence f (g(x)) = g( f (x)) for all x in C(P)′ (since {δH | H ∈ P} is a basis of
C(P)′, and f and g are linear maps). Thus f ∘ g = g ∘ f = Id (which is the identity
automorphism of C(P)′), implying that f and g are bijective, they are inverses of each
other, and they are vector space automorphisms.

We have a natural bijective correspondence between finite subsets of P0, monomi-
als in K[P0] and P, given by S ↦→ ∏B∈S B ∈ K[P0] and S ↦→ ⊎B∈SB ∈ P for all finite
S ∈ P0. Since {δH | H ∈ P} is a basis of C(P)′, the linear map ψ : K[P0] → C(P)′

defined by ∏B∈S B ↦→ δH, where H := ⊎B∈SB for all finite S ⊆ P0, is a vector space
isomorphism. Hence the composition f ∘ ψ is a vector space isomorphism. Moreover,
( f ∘ ψ)(∏B∈S B) = ∏B∈S δB for all finite sets S ⊆ P0, hence f ∘ ψ is multiplicative (ho-
momorphism for ring multiplication). Hence ψ ∘ f is an algebra isomorphism.

Since g ∘ f (δH) = δH (by proof of Theorem 5.2.9) we have:

δH = ∑
G≤H

c−1(G, H) ∏
B∈β(H)

δB (5.4)
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Proposition 5.2.10.

δH = c−1(H, H)

 ∏
B∈β(H)

δB − ∑
G<H

c(G, H)δG

 (5.5)

Proof. We have, using Equation 5.3,

δH = ∑
G≤H

c−1(G, H) ∏
B∈β(H)

δB

= c−1(H, H) ∏
B∈β(H)

δB + ∑
G<H

c−1(G, H) ∏
B∈β(H)

δB

= c−1(H, H) ∏
B∈β(H)

δB − ∑
G<H

c−1(H, H) ∑
G′|G≤G′<H

c−1(G, G′)c(G′, H) ∏
B∈β(H)

δB

= c−1(H, H) ∏
B∈β(H)

δB − c−1(H, H) ∑
G′<H

c(G′, H) ∑
G|G≤G′<H

c−1(G, G′) ∏
B∈β(H)

δB

= c−1(H, H) ∏
B∈β(H)

δB − c−1(H, H) ∑
G′<H

c(G′, H)δG′

= c−1(H, H)

 ∏
B∈β(H)

δB − ∑
G<H

c(G, H)δG

 .

The dual Hopf algebra of Ĉ(𝒫), denoted by Ĉ(𝒫)
∘
= { f ∈ Ĉ(𝒫)

*
| ker f contains

a cofinite ideal}, is the subalgebra of all elements of Ĉ(𝒫)
*
, with coproduct ψ given by

restriction of the transpose of the product.

Proposition 5.2.11. The algebra C(𝒫)′ is contained in Ĉ(𝒫)
∘
.

Proof. For each [H] ∈ 𝒫 , we have δH(I) = 0 whenever I = ⟨{[B]kB+1 | [B] ∈ 𝒫0}⟩,
where H has exactly kB blocks which are isomorphic to B for all [B] ∈ 𝒫0, and this
ideal is cofinite.

Thus C(𝒫)′ is a Hopf algebra, with coproduct given by
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⟨ψ(δH), [G1]⊗ [G2]⟩ = ⟨δH, [G1][G2]⟩
= ∑

[H1][H2]=[H]

⟨δH1 , [G1]⟩⟨δH2 , [G2]⟩

where line 1 is the definition of transpose. Therefore

ψ(δH) = ∑
[H1][H2]=[H]

δH1 ⊗ δH2 ,

for all [H] ∈ 𝒫 .

Note that if [B] ∈ 𝒫0 we have ψ(δB) = δB ⊗ ε + ε⊗ δB, then δB is primitive. The
antipode S′ of C(𝒫)′ is determined by S′(δB) = −δB (since C(𝒫)′ ∼= K[𝒫0] and δB is
primitive). Moreover, by Theorem 5.2.9, {δB : [B] ∈ 𝒫0} is a basis for the space of
primitive elements of C(𝒫)′.

5.3 Restriction invariants and Hopf algebras

We now introduce another bialgebra structure on the monoid algebra of 𝒫 . Let
M(𝒫) denote the monoid algebra of 𝒫 over K, together with linear maps Θ : M(𝒫)→
M(𝒫)⊗M(𝒫) and α : M(𝒫)→ K given by

Θ[H] = [H]⊗ [H]

and
α[H] = 1,

for all [H] ∈ 𝒫 . M(𝒫) is a bialgebra with coproduct Θ and counit α.

Definition 5.3.1 (Algebra of invariants). The dual algebra M(𝒫)* is called the algebra
of (K-valued) invariants on 𝒫 and can be identified with algebra of all functions from
𝒫 to K, under point-wise sum, product, and scalar multiplication.

Definition 5.3.2 (Algebra of restriction invariants). Let nH : M(𝒫) → K defined by
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nH(G) =| {U ⊂ V(G) | [G|U] = [H]} |. The subalgebra of M(𝒫)* generated by the set
{nH | [H] ∈ 𝒫} is denoted by M(𝒫)′, and is called the algebra of restriction invariants
on 𝒫 .

Proposition 5.3.3. The linear map J : M(𝒫)→ C(𝒫) defined by

J[H] = ∑
U⊂V(H)

[H|U ],

for all [H] ∈ 𝒫 , is a bialgebra isomorphism.

Proof. For all [H] ∈ 𝒫 ,

∆ ∘ J[H] = ∆( ∑
U⊆V(H)

[H|U ])

= ∑
U⊆V(H)

∑
U1∪U2=U

[H|U1
]⊗ [H|U2

]

= ∑
U1,U2⊆V(H)

[H|U1
]⊗ [H|U2

]

= J[H]⊗ J[H]

= (J ⊗ J)Θ[H]

and

ε(J[H]) = ε( ∑
U⊆V(H)

[H|U ])

= ∑
U⊆V(H)

ε[H|U ]

= 1

= α[H].
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For all [H1], [H2] ∈ 𝒫 ,

J([H1][H2]) = ∑
U⊆V(H1+H2)

[(H1 + H2)|U ]

= ∑
U1⊆V[H1]

∑
U2⊆V[H2]

[(H1)|U1
][(H2)|U2

]

= J[H1]J[H2].

Hence J is a bialgebra homomorphism with inverse given by

J−1[H] = ∑
U⊆V(H)

(−1)|V(H)∖U|[H|U ].

Therefore J is an isomorphism.

The composition M(𝒫) →J C(𝒫) ↪→ Ĉ(𝒫) is an injective bialgebra map. Let J′

denote the restriction to C(𝒫)′ of the transpose of this map.

Corollary 5.3.4. J′ : C(𝒫)′ → M(𝒫)′ is an algebra isomorphism, which maps δH to nH for
all [H] in 𝒫 .

Proof. Since J is a coalgebra homomorphism we have J′ is an algebra homomorphism,
and for all [G], [H] ∈ 𝒫 ,

⟨J′(δH), [G]⟩ = ⟨δH, J[G]⟩
= ∑

U⊆V(G)

⟨δH, [G|U ]⟩

= ⟨nH, [G]⟩.

The next result is more general than a classic result of Whitney (see section 5.4).

Theorem 5.3.5. The algebra map K[𝒫0] → M(𝒫)′ defined by [B] → nB for all [B] ∈ 𝒫0, is
an isomorphism.
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Proof. By Theorem 5.2.9 there is an algebra isomorphism f : K[𝒫0] → C(𝒫)′, and by
Corollary 5.3.4 there is and algebra isomorphism J′ : C(𝒫)′ → M(𝒫)′, hence g = J′ ∘ f
is an algebra isomorphism.

By Corollary 5.3.4 and Equation 5.4 we have

nH = ∑
[G]≤[H]

c−1(G, H) ∏
B∈β(G)

nB. (5.6)

By Proposition 5.2.10, we have

nH =
1

c(H, H)
[ ∏
B∈β(H)

nB − ∑
[G]<[H]

c(G, H)nG].

For all n ≥ 1, let În denote the image in M(𝒫) of the ideal In ⊆ C(𝒫), under the
inverse isomorphism J−1 : C(𝒫)→ M(𝒫), i. e.,

În = J−1(In).

Proposition 5.3.6. The set of ideals { În | n ≥ 1} forms a local base at 0 for a topology on
M(𝒫).

Let M̂(𝒫) denote the completion of M(𝒫) (We have M̂(𝒫) ∼= K[[�̂�0]], where
�̂�0 = {J−1[B] | [B] ∈ 𝒫0}). The composition M(𝒫)→J C(𝒫) ↪→ Ĉ(𝒫) extends uniquely
to a continuous Hopf algebra isomorphism

Ĵ : M̂(𝒫)→ Ĉ(𝒫).

The continuous dual of M̂(𝒫) can be identified with the algebra of restriction invari-
ants M(𝒫)′. Therefore M(𝒫)′ is a Hopf algebra, and the restricted transpose map
J′ : C(𝒫)′ → M(𝒫)′ is a Hopf algebra isomorphism. Thus, the coproduct Ψ of M(𝒫)′

is given by
Ψ(nH) = ∑

[H1][H2]=[H]

n[H1] ⊗ n[H2], (5.7)

for all [H] ∈ 𝒫 .

Proposition 5.3.7. Î = Î1 · M̂(𝒫) = ker α of M̂(𝒫) is an ideal.
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Proof. Suppose that [G] ∈ I1, then

α(J−1[G]) = ∑
U⊆V

(−1)|V∖U|α[G|U ]

= ∑
U⊆V

(−1)|V∖U|

= 0

because V(G) ̸= ∅, and thus Î1 ⊆ ker α in M(𝒫). Suppose that
n

∑
i=1

ai[Gi] ∈ ker α

in M(𝒫). Then
n

∑
i=1

aiα[Gi] = 0, which implies that
n

∑
i=1

ai = 0. Since J(
n

∑
i=1

aiGi) =

n

∑
i=1

ai∅ +
n

∑
i=1

ai ∑
U⊆V(H);U ̸=∅

[(Gi)|U ], we have
n

∑
i=1

ai[Gi] ∈ Î1.

The function log : 1 + Î → Î defined by

log(x) = ∑
n≥1

(−1)n−1

n
(x− 1)n

is a bijection with inverse exp : Î → 1 + Î given by

exp(x) = ∑
n≥0

xn

n!
.

For [H] ∈ 𝒫 , define fH ∈ M(𝒫)′ by ⟨ fH, 0⟩ = 0 and ⟨ fH, [G]⟩ = ⟨nH, log[G]⟩, for
all [G] ∈ 𝒫 . Note that log[G] converges, because [G]− 1 is in the kernel of α, and thus
[G] ∈ 1 + Î.

Proposition 5.3.8. For all [H] ∈ 𝒫 ,

fH = ∑
n≥1

(−1)n−1

n ∑
[H1...[Hn]=[H];[Hi ] ̸=1

n

∏
i=1

nHi .
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Proof. If [G] ∈ 𝒫 , we have

⟨ fH, [G]⟩ = ⟨nH, log[G]⟩

= ∑
n≥1

(−1)n−1

n
⟨nH, ([G]− 1)n⟩

= ∑
n≥1

(−1)n−1

n ∑
[H1]···[Hn]=[H]

n

∏
i=1
⟨nHi , [G]− 1⟩

by definition, and nHi([Gi]− 1) = nHi [G]− nHi(1) = nHi [G] if [Hi] ̸= 1, from which the
result follows.

For all [B] ∈ 𝒫0, by Proposition 5.3.8, fB = nB. The inverse correspondence is
given by

Proposition 5.3.9. For all [H] ∈ 𝒫 , nH = ∑
n≥0

1
n! ∑

[H1...[Hn]=[H]

n

∏
i=1

fHi .

Proposition 5.3.10. ψ( f[H]) = fH ⊗ α + α⊗ fH, for all [H] ∈ 𝒫 .

Proof. By definition of dual map, for all [G1], [G2] ∈ 𝒫 , we have

⟨ψ( fH), [G1]⊗ [G2]⟩ = ⟨ fH, [G1][G2]⟩
= ⟨nH, log([G1][G2])⟩
= ⟨nH, log[G1] + log[G2]⟩
= ⟨ fH, [G1]⟩+ ⟨ fH, [G2]⟩
= ⟨ fH ⊗ α, [G1]⊗ [G2]⟩+ ⟨α⊗ fH, [G1]⊗ [G2]⟩
= ⟨ fH ⊗ α + α⊗ fH, [G1]⊗ [G2]⟩.

Thus fH is an additive invariant for all [H] ∈ 𝒫 , that is, ⟨ fH, [G1 + G2]⟩ =

⟨ fH, [G1]⟩+ ⟨ fH, [G2]⟩ for all [G1], [G2] ∈ 𝒫 .

Proposition 5.3.11. For all [H] ∈ 𝒫 , we have fH = ∑
[B]∈𝒫0

c−1(B, H)nB.
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Proof. By Proposition 5.3.8 and Equation 5.6

fH = ∑
n≥1

(−1)n−1

n ∑
H1...[Hn]=[H];[Hi ] ̸=1

( ∑
[G]≤[Hi ]

c−1(G, Hi) ∏
B∈β(G)

nB).

Since fH is a primitive element of M(𝒫)′ and all primitive elements of M(𝒫)′ are the
linear homogeneous polynomials in the n′Bs, all non-linear terms in the above expres-
sion cancel, and,

fH = ∑
[B]∈𝒫0

c−1(B, H)nB.

This shows that fH is equal to the sum of the linear terms in the expression for
nH as a polynomial in the n′Bs.

Corollary 5.3.12. For all [G], [H] ∈ 𝒫 , we have

∑
n≥1

(−1)n−1

n ∑
[H1...[Hn]=[H];[Hi ] ̸=1

(G : H1, . . . , Hn) =

{
c−1(G, H), if G ∈ 𝒫0;
0, otherwise.

Proof. By Proposition 5.3.8 and expanding the product yields,

fH = ∑
n≥1

(−1)n−1

n ∑
[H1]···[Hn]=[H];[Hi ] ̸=1

∑
[G]∈𝒫

(G : H1, . . . , Hn)nG,

which is equal to

∑
[G]∈𝒫

(∑
n≥1

(−1)n−1

n ∑
[H1],...,[Hn]=[H];[Hi ] ̸=1

(G : H1, . . . , Hn))nG

and comparing the above with the expression for fH in Proposition 5.3.11 follows the
result.
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5.4 A result of Whitney

Definition 5.4.1 (Cycle type). The graphs G = (V, E) and H = (W, F) are said to have
the same cycle type whenever there exists a bijection f : E → F such that C ⊆ E is a
cycle of G if and only if f (C) is a cycle of H.

Note that if G and H have the same cycle type, then r(G) = r(H) and s(H) =

s(G).

Proposition 5.4.2. Let 𝒢 be the set of all Whitney systems of the form Gd, where G is a graph
(see Example 5.1.6) we have [Gd] = [Hd] if and only if G and H have the same cycle type.

Proof. Let f : Gd → Hd be an isomorphism. Then A is a minimal element in Cd (or Gd)
if and only if f (A) is a minimal element in Cd (or Hd). The minimal elements in Gd and
Hd are precisely the edges sets of cycles and loops in G and H, respectively. Hence f
is also a bijection that defines equality of cycle structures of G and H. Conversely, let
f : E(G) → E(H) be a bijective map for which A ⊆ E(G) is a cycle in G if and only if
f (A) is a cycle in H. Let T ∈ Cd ( or Gd). If T = {x}, then f (x) is a loop in H, hence
f (T) ∈ Cd(or Hd). If T is doubly connected, then for all x, y ∈ T there is a cycle in
G that contains x, y hence there is a cycle in H that contains f (x), f (y), hence f (T) is
doubly connected and f (T) ∈ Cd(or Hd).

Definition 5.4.3. For all i, j ≥ 0, the invariant mij ∈ M(𝒢)′ is defined by

mij = ∑ nH,

where the sum is over all types [H] having rank i and corank j.

Whitney showed that the chromatic polynomial of a graph G = (V, E) is given
by (see Theorem 1.2.11)

C(G, λ) = ∑
i,j≥0

(−1)i+jmij(G)λ|V|−i.

The main results of Whitney that state the invariants mij can be expressed as
polynomial with rational coefficients in the invariants nB, for B doubly connected, and
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that the invariants nB are algebraically independent over rationals. By Theorem 5.3.5,
is special case 𝒫 = 𝒢.

Proposition 5.4.4.
mij[G + H] = ∑

i1+i2=i;j1+j2=j
mi1 j1 [G]mi2 j2 [H].

Proof. By Equation 5.7 and Definition 5.4.3, we have

ψ(mij) = ∑
[H]∈𝒢ij

∑
[H1][H2]=[H]

nH1 ⊗ nH2

= ∑
i1+i2=i,j1+j2=j

( ∑
[H1]∈𝒢i1 j1

nH1)⊗ ( ∑
[H2]∈𝒢i2 j2

nH2)

= ∑
i1+i2=i,j1+j2=j

mi1 j1 ⊗mi2 j2 ,

where 𝒢ij are all graphs of rank i and corank j. Thus,

⟨mij, [A] + [B]⟩ = ⟨ψ(mij), [A]⊗ [B]⟩
= ⟨ ∑

i1+i2=i,j1+j2=j
mi1 j1 ⊗mi2 j2 , [A]⊗ [B]⟩

= ⟨ ∑
i1+i2=i,j1+j2=j

mi1 j1 mi2 j2 , [A] + [B]⟩.

We write fij := ∑ fH, where the sum is over all block-types [H] having rank i and
corank j.

Proposition 5.4.5. fij[G + F] = fij[G] + fij[F]

Proof. Using the proof of Proposition 5.3.10,

⟨ fij, [G + F]⟩ = ∑⟨ fH, [G + F]⟩
= ∑⟨ fH, [G]⟩+ ∑⟨ fH, [F]⟩
= ⟨ fij, [G]⟩+ ⟨ fij, [F]⟩.

Proposition 5.4.6. fij = ∑
n≥1

(−1)n−1

n ∑
i1+···+in=i;ji+···+jn=j;ir ,jr ̸=0

n

∏
r=1

mir jr .
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Proof. By Proposition 5.3.8, we have

fij = ∑
[H]∈𝒢ij

(∑
n≥1

(−1)n−1

n ∑
[H1]···[Hn]=[H];[Hi ] ̸=1

n

∏
i=1

nHi)

= ∑
n≥1

(−1)n−1

n
( ∑
[H]∈𝒢ij

∑
[H1]···[Hn]=[H];[Hi ] ̸=1

n

∏
i=1

nHi)

= ∑
n≥1

(−1)n−1

n ∑
i1+···+in=i;ji+···+jn=j;ir ,jr ̸=0

n

∏
r=1

mir jr ,

where 𝒢ij are all graphs of rank i and corank j.

This formula for fij was originally proved by Whitney [26].

5.5 An application to Stirling numbers

Let one-point Whitney system be denoted by x (either a loop or non-loop). The
set of types 𝒫 consists of all non-negative integral powers of x, and is linearly ordered
by degree. We have

Ĉ(𝒫) ∼= K[[x]],

with coproduct given by

∆(x) = x⊗ 1 + x⊗ x + 1⊗ x.

The antipode of Ĉ(𝒫) is given by

S(x) = ∑
n≥1

(−1)nxn =
−x

1 + x
.

For k ≥ 0, let nk = nH, where H is the Whitney system of type xk. By Theorem 5.3.5,
the algebra of restriction invariants M(𝒫)′ is the polynomial algebra.

Proposition 5.5.1. The expression for nk as a polynomial in n1 is nk = (n1
k )

Proof. Since ⟨n1, xn⟩ = n and ⟨nk, xn⟩ = (n
k), we conclude that nk = (n1

k ).
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For all n and k, c(xk, xn) is equal to the number of surjections from an n-element
set onto a k-element set which is given by k!S(n, k), where S(n, k) is Stirling number of
the second kind (see Definition 1.1.10).

Proposition 5.5.2. We have

c−1(xk, xn) =
s(n, k)

n!
,

where s(n, k) denotes Stirling number of the first kind.

By Equation 5.6,
nk = ∑

r≤k
c−1(xr, xk)nr

1 (5.8)

which is equivalent to the classical expression for falling factorials in terms of powers.

By Proposition 5.3.11,

fk = c−1(x1, xk)n1

=
s(k, 1)

k!
n1

=
(k− 1)!(−1)k−1

k!
n1

=
n1(−1)k−1

k

Using Proposition 5.3.9, we obtain

nk = ∑
r≥0

1
r! ∑

k1+...+kr=k;ki ̸=0

k

∏
i=1

(−1)ki−1

ki
n1

= ∑
r≥0

(
(−1)k−r

r!

r

∏
i=1

1
ki

)
nr

1

Comparing this with the expression for nk given in Equation 5.8 yields the identity
for the Stirling numbers of the first kind.

s(k, r) =
(−1)k−rk!

r! ∑
k1+...+kr=k

ki ̸=0

r

∏
i=1

1
ki

.
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Chapter 6

Graph reconstruction problems

Some of the outstanding open problems in graph theory are the reconstruction
conjectures. In the 1940s, Ulam and Kelly proposed the vertex reconstruction con-
jecture, which asserts that finite simple graphs can be uniquely constructed (up to
isomorphism) from the collection (called the deck) of their unlabelled proper induced
subgraphs. Variations of the conjecture have been studied by many researchers.

One of the directions of research on the conjecture of Ulam and Kelly is to demon-
strate that strong invariants of graphs can be calculated from the deck. Tutte [24]
proved fundamental results along these lines. In particular, Tutte showed that the rank
polynomial, the number of spanning trees, the number of Hamiltonian cycles, and the
characteristic polynomial can all be calculated given the deck of a graph. Kocay [18]
gave an elegant counting argument to simplify the results of Tutte.

A motivation of this chapter came from the observation that Kocay’s counting
argument is essentially the same as that of Schmitt, Equation 5.1 in Chapter 5) . In fact,
Thatte [22] used Kocay’s argument to prove many other stronger results on reconstruc-
tion, as well as used it to show Whitney’s subgraph expansion theorem. In this chapter,
we present Kocay’s lemma and its applications to reconstruction.

For a survey of graph reconstruction, we refer to [5] and [4] Tutte’s results and a
simplification due to Kocay are based on Tutte [24] and Kocay [18], respectively.
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6.1 Graph reconstruction conjectures

Two graphs G and H on the same vertex set V are called hypomorphic if, for all
v ∈ V, their vertex-deleted subgraphs G− v and H − v are isomorphic. This does not
imply that G and H are themselves isomorphic. In fact, if G = 2K1 and H = K2, then G
and H are hypomorphic but G and H are not isomorphic. However, these two graphs
are the only known nonisomorphic but hypomorphic simple graphs. It was conjectured
by Kelly and Ulam that there is no other such pair. This conjecture was reformulated
by Harary (1964) in the more intuitive language of reconstruction.

Definition 6.1.1. A reconstruction of a graph G is any graph that is hypomorphic to
G. A graph G is vertex reconstructible if every reconstruction of G is isomorphic to G.

In other words, G is vertex reconstructible if G can be reconstructed up to iso-
morphism from its (unlabelled) vertex-deleted subgraphs.

Figure 6.1: Graph G

G− 1 G− 2 G− 3 G− 4 G− 5

Figure 6.2: The collection of vertex-deleted subgraphs of G

Conjecture 6.1.2 (The vertex reconstruction conjecture). Every finite simple graph on at
least three vertices is vertex reconstructible.

An analogous edge reconstruction conjecture was proposed by Harary [13]. A
graph is edge recontructible if it can be reconstructed up to isomorphism from its
edge-deleted subgraphs. The only graphs that are known to be not edge reconstructible
are the pair K1,2 ⊎ K1, and the pair K3 ⊎ K1 and K1,3.
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Conjecture 6.1.3 (The edge reconstruction conjecture). Every finite simple graph on at least
four edges is edge-reconstructible.

One approach to the reconstruction conjecture is to show that it holds for various
classes of graphs. A class of graphs is reconstructible if every member of the class is
reconstructible. In the following two propositions, we summarise results on the vertex
and the edge reconstruction of classes of graphs. We refer to Bondy [4] for more details.

Proposition 6.1.4. Regular graphs, disconnected graphs, trees, outerplanar graphs, separable
graphs without end vertices and unicyclic graphs are vertex reconstructible.

Proposition 6.1.5. All vertex reconstructible classes of graphs are edge reconstructible. Addi-
tionally, maximal planar graphs, bidegreed graphs, 4-connected planar graphs, chordal graphs,
claw-free graphs, graphs (with sufficiently many vertices) containing Hamiltonian cycles are
edge reconstructible.

Because the edge-deleted subgraphs are in general much closer to the original
graph than are the vertex-deleted subgraphs, it is intuitively clear that the edge recon-
struction conjecture is no harder than the reconstruction conjecture. In fact, it can be
proved that the vertex reconstruction conjecture implies the edge reconstruction con-
jecture. We present a proof of this result in Section 6.2

Another approach to the conjectures is to prove that specific parameters or invari-
ants of graphs are reconstructible. We call a graphical parameter to be reconsctructible
if the parameter takes the same value on all reconstructions of every graph G. We
present such results in Section 6.3.

Theorem 6.1.6 (Tutte). The number of disconnected subgraphs of a given isomorphism class,
the number of spanning trees, the number of unicyclic graphs, the number of Hamiltonian cycles,
the characteristic polynomial, and the rank polynomial (hence, as a special case, the chromatic
and the Tutte polynomials) are reconstructible invariants.

We end this introduction by listing a few more important conjectures.

Infinite graphs are in general not vertex reconstructible. Take, for example, a tree
T in which every vertex is of infinite degree, and another graph T ⊎ T. The graphs T
and T ⊎ T are clearly hypomorphic but not isomorphic. Halin proposed a modified
vertex reconstruction conjecture as follows.
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Conjecture 6.1.7 (Halin, 1970). Let G and H be undirected (finite or infinite) graphs. Let
f : V(G)→ V(H) be a bijection such that

∀v ∈ V(G), G− v ∼= H − f (v).

Then G is isomorphic to a subgraph of H, and H is isomorphic to a subgraph of G.

Harary et al. [14] proposed the following conjecture.

Conjecture 6.1.8. Let T1 and T2 be locally finite, hypomorphic trees. Then T1
∼= T2.

The conjectures of Halin and Harary et al. were very recently settled negatively
by Bowler et al. [6]

Another well known conjecture is due to Stanley [20]. Given a graph G and a
vertex u of G, the graph obtained by switching u is the graph on the same vertex set
obtained by deleting all edges incident with u and adding all non-edges at u. The
vertex-switching deck of a graph G is the collection of unlabelled graphs obtained by
switching each vertex of G. Stanley proposed the following conjecture.

Conjecture 6.1.9 (Stanley’s vertex switching conjecture). Graphs on n vertices are vertex
switching reconstructible provided n is not divisible by 4.

The conjecture has been proved for triangle-free graphs by Ellingham and Royle
[9].

6.2 From the edge-deck to the vertex-deck

Definition 6.2.1 (Deck). For a graph G, the vertex-deck (edge-deck) of G is the collection
of all vertex-deleted (edge-deleted) subgraphs of G. Each vertex-deleted subgraphs of
G is called a card.

To prove that the edge reconstruction conjecture is weaker than the vertex re-
construction conjecture, we may consider line graphs: if two graphs have the same
edge-deck then their line graphs have the same vertex deck. Thus solving the vertex
reconstruction problem for the line graph of a graph G solves the edge reconstruction
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problem for the graph G. Moreover, we know that K3 and K1,3 are the only non-
isomorphic graphs that have isomorphic line graph.

Here we present a different approach. We explicitly construct the vertex deck of
a graph from its edge deck. We present a more concise proof of a result originally due
to Hemminger [16].

Lemma 6.2.2. If G is a graph without isolated vertices, then the vertex-deck of G can be con-
structed from its edge-deck.

Proof. Let G = (V,E), where V := {v1, . . . , vn} and E := {e1, . . . , em}. Let 𝒟v := {[G−
vi] | 1 ≤ i ≤ n} be the vertex-deck of G. Let 𝒟e := {[G − ei] | 1 ≤ i ≤ m} be the
edge-deck of G. (Both 𝒟v and 𝒟e are considered as multisets.)

Consider the collection 𝒟ev := {[G − ei − vj] | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. (Here the
order of deletion - first the edge, then the vertex - is important.) Each graph in the
vertex-deck 𝒟v appears in the collection 𝒟ev: for each vertex vi in G and for each edge
e incident with vi, we have G− vi = G− e− vi, and there are no isolated vertices in G.
Moreover, if di is the degree of vi in G and mi is the multiplicity of [G− vi] in 𝒟v, then
[G − vi] appears at least midi times in 𝒟ev. Moreover, each graph in 𝒟ev is in 𝒟v or is
an edge-deleted subgraph of a graph in 𝒟v (or both).

Let [H1], . . . , [Hk] be the distinct graphs in 𝒟ev ordered so that |E(Hi)| ≥ |E(Hj)|
for i < j. Let µi be the multiplicity of Hi in 𝒟ev, mi the multiplicity of Hi in 𝒟v (note that
mi may be 0), pi = m− |E(Hi)| and nij the number of edge-deleted subgraphs of Hi that
are isomorphic to Hj. We have m1 p1 = µ1. For all j > 1, we have µj = mj pj + ∑i<j minij.
We can thus calculate mj recursively in terms of mi, i < j.

6.3 Counting spanning subgraphs

Let s(H,G) be the number of subgraphs of G that are isomorphic to H. For a
tuple ℱ := (F1, . . . ,Fk) of graphs, define the number of ways to decompose H into ℱ
(or the number of ways to cover H by ℱ ) as

d(ℱ , H) := |{(H1, . . . ,Hk) | ∀i Hi ⊆ H, Hi
∼= Fi, and ∪k

i=1 Hi = H}|.
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Example 6.3.1. If F1 = , F2 = , and H = , then d(ℱ ,H) = 3.

Similarly, we can define the induced subgraph versions of the above notation as
follows. Let i(H,G) be the number of induced subgraphs of G that are isomorphic to
H. Let G ⊆i H denote that G is an induced subgraph of H. Let

c(ℱ , H) := |{(H1, . . . ,Hk) | ∀i Hi ⊆i H, Hi
∼= Fi, and ∪k

i=1 V(Hi) = V(H)}|
:= |{(X1, . . . ,Xk) | ∀i Xi ⊆ V(H), H[Xi] ∼= Fi, and ∪k

i=1 V(Hi)Xi = V(H)}|

The problem of graph reconstruction is completly solved in the case of trees, see
Kelly [17].

Lemma 6.3.2 (Kelly’s lemma). Let v(G) and v(H) be the number of vertices of G and H,
respectively. If v(H) < v(G), then

s(H,G) =
∑v∈V(G) s(H, G− v)

v(G)− v(H)
.

Lemma 6.3.3 (Kocay’s lemma). Let ℱ := (F1, . . . ,Fk) be a tuple of graphs, and let G be a
graph. We have

k

∏
i=1

s(Fi,G) = ∑
H

d(ℱ ,H)s(H,G),

where the sum is over all distinct (mutually non-isomorphic) H.

The induced subgraph version of the above lemma is the following.

Lemma 6.3.4. Let ℱ := (F1, . . . ,Fk) be a tuple of graphs, and let G be a graph. We have

k

∏
i=1

i(Fi,G) = ∑
H

c(ℱ ,H)i(H,G),

where the sum is over all distinct (mutually non-isomorphic) H.

Remark 6.3.5. Equation 5.1 is equivalent to Lemma 6.3.4.

Lemma 6.3.6 (Counting disconnected spanning subgraphs). Let G be a graph, and let
ℱ := (F1, . . . ,Fk) be a tuple of non-empty connected graphs such that k > 1 and ∑i v(Fi) =

v(G). Then s(⊎iFi, G) is reconstructible.
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Proof. We have

k

∏
i=1

s(Fi,G) = ∑
H

d(ℱ ,H)s(H,G)

= ∑
H|v(H)<v(G)

d(ℱ ,H)s(H,G) + ∑
H|v(H)=v(G)

d(ℱ ,H)s(H,G).

The term on the left and the first sum in the last line are obtained from Kelly’s
lemma; hence the second sum in the last line is reconstructible. The second summation
consists of only one term - the one corresponding to H ∼= ⊎iFi, which implies the
result.

Lemma 6.3.7 (Counting the number of spanning trees). Let G be a graph with at least 3
vertices. The total number of spanning trees in G is reconstructible.

Proof. Let v(G) = n > 2, and let ℱ := (F1, . . . ,Fn−1), where each Fi is isomorphic to K2.
By Kocay’s lemma, we have

k

∏
i=1

s(Fi,G)

= ∑
H|v(H)<v(G)

d(ℱ ,H)s(H,G) + ∑
H|v(H)=v(G)

H is disconnected

d(ℱ ,H)s(H,G) + ∑
H|v(H)=v(G)
H is connected

d(ℱ ,H)s(H,G).

The term on the left and the first sum on the right are obtained from Kelly’s lemma;
the second sum on the right is known by Lemma 6.3.6. So the third term on the
right can be calculated. A graph H contributes to the third sum if and only if H is
a spanning tree, and for all spanning trees H, we have d(ℱ , H) = (n − 1)!. Now

∑H s(H,G) over spanning trees H is the total number of spanning trees, which can now
be calculated.

Lemma 6.3.8 (Counting unicyclic graphs). Let G be a graph with at least 3 vertices. The
total number of unicyclic spanning subgraphs of G which contain a cycle of length k < v(G) is
reconstructible.
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Proof. Let v(G) = n > 2, and let ℱ := (F1, . . . ,Fn−1), where F1
∼= Ck, k < n (a cycle of

length k), and Fi
∼= K2 for i = 2, . . . , n− k + 1. By Kocay’s lemma, we have

k

∏
i=1

s(Fi,G)

= ∑
H|v(H)<v(G)

d(ℱ ,H)s(H,G) + ∑
H|v(H)=v(G)

H is disconnected

d(ℱ ,H)s(H,G) + ∑
H|v(H)=v(G)
H is connected

d(ℱ ,H)s(H,G).

where the term on the left is obtained by Kelly’s lemma; the first sum on the right is
obtained by Lemma 6.3.2; the second sum on the right obtained by Lemma 6.3.6; in the
third sum, H cannot be a graph other than a spanning unicyclic graph containing Ck.
Thus ∑H s(H,G) over unicyclic graphs H that contain Ck can be calculated. (Note that
d(ℱ ,H) in the third sum is (n− k)! for each unicyclic graph H that contains Ck.)

Lemma 6.3.9 (Counting Hamiltonian cycles). Let G be a graph with at least 3 vertices. The
total number of Hamiltonian cycles in G is reconstructible.

Proof. Let v(G) = n > 2, and let ℱ := (F1, . . . ,Fn), where Fi
∼= K2 for all i. As in

the above proofs, we write the equation in Kocay’s lemma, and consider five cases of
H in the summation: the contribution from H such that v(H) < v(G) is obtained by
Lemma 6.3.2; the contribution from H such that v(H) = v(G) and H is disconnected is
obtained by Lemma 6.3.6; the contribution from H such that v(H) = v(G) and H is a
spanning tree is obtained by Lemma 6.3.7; the contribution from H such that v(H) =

v(G) and H is a spanning unicyclic graph containing Ck for some k < n is obtained by
Lemma 6.3.8; the remaining contribution is from Hamiltonian cycles H, which can now
be calculated. (Note that in the calculation of the contribution of spanning trees, the
factor d(ℱ , H) is the same for all spanning trees, and is equal to the number of bijections
from a set with n elements to a set with n − 1 elements. Similarly, in the calculation
of the contribution from spanning unicyclic graphs and from Hamiltonian cycles, the
factor d(ℱ , H) is the same for all spanning unicyclic graphs and for all Hamiltonian
cycles, and is equal to n!.)

Lemma 6.3.10. The Tutte polynomial is reconstructible.

Proof. Since the Tutte polynomial is given by TG(x,y) = S(G; x− 1,y− 1), it is enough
to prove the result for the rank generating polynomial. By definition, S(G; x,y) =
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∑
S⊆E(G)

xr{E}−r{S}ys{S}. For all connected spanning subgraphs, we have r{E} − r{S} = 0

and s{S} = |E(S)| − |V(G)| + 1. Then, by Lemma 6.3.6, we know for each value of
k, the number of connected spanning subgraphs S such that |E(S)| = k, as well as
contribution from each type of disconnected spanning subgraphs.

Lemma 6.3.11 (Lemma 7.3, Biggs [2]). The coefficients of the characteristic polynomial are
given by

(−1)ici = ∑(−1)r(S)2s(S),

where the summation is over all subgraphs S of G such that each component of S is a single edge
or a cycle, and S has i vertices.

Lemma 6.3.12. The characteristic polynomial written as P(G,λ) = λn + c1λn−1 + c2λn−2 +

· · ·+ cn is reconstructible.

Proof. For i < n, subgraphs of each type with i vertices are counted using Kelly’s
lemma, and then ci is calculated using Lemma 6.3.11. Now, cn has contribution from
hamiltonian cycles and from disconnected spanning subgraphs, therefore, cn also can
be calculated from Lemma 6.3.9 and Lemma 6.3.6.
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