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Resumo

Nesta tese estudamos uma teoria de localizacao para super campos vetoriais holomor-
fos em supermanifolds complexas e compactas. Mostramos teoremas de residuos para
super campos vetoriais holomorfos pares e impares, com singularidades isoladas e nao-

degeneradas, e determinamos os residuos sob certas condigoes locais.



Abstract

In this Thesis we will study a localization theory for even and odd holomorphic super
vector fields on compact complex supermanifolds. We prove residue theorems for vec-
tor fields with non-degenerated and isolated singularities. Moreover, we determine the

residues under certain local conditions.



Introduction

The calculation of certain integrals is very important in mathematics and Physics, es-
pecially in String Theory. Localization techniques has been used by theoretical physicists
in order to calculate integrals with the purpose to determinate partition functions, see
[26] and the survey [I5] about applications of localization techniques to supersymmetric
quantum field theories.

In [I0] Duistermaat and Heckman provided a localization formula for a torus action
on a symplectic manifold. Later independently in [4] Berline and Vergne and in [I] Atiyah
and Bott generalized the Duistermaat-Heckman formula. This formula is known as The
Berline-Vergne-Atiyah-Bott localization formula. In [25] Witten has provided a proof of
this result by using supergeometry techniques.

More precisely, the Duistermaat-Heckman Formula can be stated as follows: Let V'
be a vector field, with only nondegenerate zero isolated zeros, on a symplectic manifold
(M, w) of real dimension 2n, with (d + iy )w = 0 and such that there is a smooth function

g such that iyw = dg, then for any s > 0,

e—59(Px)

s _ (2m\"
ftomea= 5= (2, [araationen

(Px)

where p,, € Sing(V) is a singular point of V' and JV(p,) denotes the jacobian of V" at p.

It is worth mentioning that Chern-Gauss-Bonnet and Poincaré-Hopf Theorems were
the first results in which the localization phenomena appear. Bott in [6] generalized
this theorem and in [3] Baum and Bott provided a localization theory for holomorphic
foliations. More precisely, let X be a compact complex manifold v is a holomorphic

vector field with isolated singularities on X. The Poincaré-Hopf Theorem and Chern-
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Gauss-Bonnet Theorem imply that

/ch(TX): > Indy(v),

pe{v(p)=0}

where X is a compact complex manifold, ¢,(7°X) denotes its top Chern class and Ind,(v)
is the Poincaré-Hopf index of v on p. In [22] Weiping gave a simple proof of the Bott
residue theorem in a slightly more general form by using Witten and Bismut [5] techniques.

A complex supermanifold is a ringed space S = (X,Og), where X is a complex
manifold and the sheaf of rings Og on X is locally isomorphic to an exterior algebra
over a vector bundle. Let T'S := Der(Og) be the tangent bundle of S = (X, Og) and v a
holomorphic vetor field on X. Let J(v) be the jacobian of v. Suppose that the singular set
Sing(v) = {v = 0} is isolated and non-degenerate. That is, the superdeterminant([24])
satisfies Ber(V')(p;) # 0 for all p € Sing(v).

In the real supermanifold context Schwarz and Zaboronsky in [I8] have provided a
localization formula for odd supervector fields. See [7] for a similar result due to Bruzzo
and Fucito and [27] for a Zakharevich’s result for odd vector fields with non-isolated
singularities.

In this Thesis, we prove, for even and odd holomorphic vector fields, the following

results:

Theorem 0.1. Let S a complex supermanifold of dimension n|m. Let V be an even or

odd (with n = m) supervector without singularities, then for any 7 € BDAPDI) guch

that (0 +iy)(n) = 0, we have:
/ n=20.
s

Theorem 0.2. Let V' be an even or odd (with n = m) holomorphic supervector field
on S with isolated singularities p; € Sing(V), then for any n € @APDI(") such that
(0 +iv)(n) = 0, we have:

/Sn =>_ Res,,(V,n)

where

t—0 t t

Res,, (V,n) = lim n - exp {_500 B iy (w) }
SBe(pi)

For the even case, we prove the following residue formula:

Theorem 0.3. Let V' be an even holomorphic vector field with a non-degenerate isolated

singularity p; € Sing(V), let S be a compact complex supermanifold with dimension m|n
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and let n € AP be such that (9 + iy)(n) = 0. If det(B(D))(B(p,)) = 1, then we

have:

For the odd case, we prove the following residue formulas:

Theorem 0.4. Let S be a compact complex supermanifold of n|n dimension and let V' be
an odd holomorphic vector field with a non-degenerate isolated singularity p; € Sing(V'),
whose representation in local coordinates is equal to V- = 327" | fia% +>0 gia%, where
gi(z) are even functions without odd variables and f;(z, £) are non-constant odd functions
such that f;(p;) = 0.. Furthermore, let w be the form defined in and let n €
@ APDIs) be a form such that (9 + iy)(n) = 0. If the number n (dimension) is even
(odd), if the functions n@0Imm) n%’o)‘(n_l’n) have only even (odd) quantities of variables
&; in its expansion and if det(B(D))(B(p;)) = 1, then:

g [HEOL 4 0ot

> Ber(V)

Resy, (Vi) = (= v).

1

Theorem 0.5. Let S be a compact complex supermanifold of n|n dimension and let V' be
an odd holomorphic vector field with a non-degenerate isolated singularity p, € Sing(V)
whose representation in local coordinates is equal to V = 37" | f-2 5 T Yo Gine ag , Where
gi(z) are even functions without odd variables and f;(z,&) are odd functions such that
fi(2,6) = Saem & - ab - gi + Xaen €L - gi, with M being the set of multi-indices,
ai, bl € Cand iy € {1,...,%,...,n}. Furthermore, let w be the form defined in m and
let n € @ APDI%) be a form such that (0 + iy)(n) = 0. Then, if det(B(D))(B(px)) = 1,

we have:

(0,0)[(n,n) (L,0)[(n—1,n)

2w\ " 77(1 n,1.. n)+n n,l.n
Respn(vv 77) = (Z) Ber(V)(l L) (pfi> +

n j (170)|(n717n) (0,0)‘(%,%)
(27r>” D=1 22 (AMEM|LON)+L(1)=n) {ai ("?m,l.‘.n) ~ Mp,1..m) >}

Ber(V) (Pr)

?

where L()) are odd numbers.

And as consequence of the previous results, we have the applications:
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1. From the residue formula found at this thesis, we deduced the following Duistermaat-

Heckman type formula for supermanifolds

. . w—sg1(0,0)](n,m)
/ 6_59('07 _ (27T> Z (6 Sg)(l...n,l...n) (pn) .
X n! L/ chimgV) Ber(V)

2. From theorem [0.1] and from the formula (see [9], pg. 28)

we conclude that a projective superspace P™™, with n > m, has no vector field

without singularities.



Notations

2 arbitrary abelian group;
A A-graded commutative ring with unit 1 # 0
Cs : complex Grassmann algebra;
Cm™ . complex Grassmann superspace of dimension m|n ;
S complex supermanifold;
X : complex manifold associated to the supermanifold .S;
B body map ;

SBc(p) : superball centered on p of radius € ;
)

Be(p
w,n,... : forms on Grassmann complex numbers ;

ball centered on p of radius e;

wg, M, --. - forms on complex numbers associated to w,n, ... ;
APDIrs) - forms of type f dz" Ao AdZP AdZY A - AdZINAEY N - N dET /\dfl A NdE.



Chapter

1

Graded commutative linear algebra

1.1 Graded commutative rings and graded modules

Notation 1.1. We will denote by 2 an arbitrary abelian group.

Definition 1.2. An 2(-graded ring is a ring A with the additional property that there
exists a family of subgroups 4, (subgroups with respect to the additive (abelian) structure
of the ring A), a € 2 such that:

b A = @QEQ[ Aa

o Vapjpged: -Aa‘A,BC-Aa-i-B

The elements of A, are called homogeneous elements of parity «. For homogeneous

elements, the parity map € : Uyeq Ao — 2 is defined by e(A,) = a.
Remark 1.3. Note that the parity map isn’t defined on all ring A.
Remark 1.4. Elements of zero parity will be called even.

Remark 1.5. The element 0 € A has ambiguous parity, i.e, 0 € A has any parity that
we wish for because

0eA,, VaelA=¢0)=a, Vae
Remark 1.6. Since A,-Ag C Anyp, YV, € A, then e(Ay.Ag) = e(Ay)+e(Ap) = a+0.
Lemma 1.7. If an A-graded ring A has unit 1 # 0, then (1) = 0.

Proof. Vide [20], pg 3]. ]
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Definition 1.8. An 2f-graded commutative ring is an 2-graded ring together with a
symmetric bi-additive map < _|  >: 20 x 2 — Zy ~ 0,1 such that:

0 €Ay, bE Az = ab=(-1)"pgq
Notation 1.9. From now on we will consider A an 2A-graded commutative ring with unit

10,

Definition 1.10. A -graded left A-module (respectively right) is a left A-module F
(respectively right) together with a family of subgroups E,, a € 2 (subgroups with
respect to the additive (abelian) structure of E) satisfying:

(1) E= Gaa@l EOt
(i) An.Es C Eyyp (respectively E,. Az C Eyip)

The elements of E,, are called homogeneous elements of parity a. The parity map

€ UEa—>Ql

ac
is defined by e(FE,) = a.

Remark 1.11. The parity map is not defined for all £ and £(0) has ambiguous parity
(0 € E).

Remark 1.12. By A,.Es C E,y5 , Va € A,, Ve € Es we have:
e(a.e) =¢e(a) +ele)=a+p

Remark 1.13. Elements of zero parity will be called even elements.

Definition 1.14. A subset F' of an 2(-graded left /right A-module E is called an 2-graded
submodule if F is a submodule of the left/right A-module F and if F', together with the
subsets F,, = F'N E,, is itself a left /right 2A-graded A-module.

Definition 1.15. By an 2-graded .A-module we will always mean an -graded .A-bimodule
for which the left and right actions of A are related by:

e.a = (—1)Pge, Vae A, Vece Eg

Definition 1.16. A subset F' of an 2-graded A-module F is called an 2A-graded submodule
of F if it is an QA-graded submodule of the left or right A-graded A-module E.
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The former definition is well defined because the following lemma.

Lemma 1.17. Given an 2-graded A-module F, let F' be an 2A-graded submodule of the
left structure (right structure) of E. Then F' is too an 2-graded submodule of the right
structure (left structure) of F and it thus will be automatically an 2A-graded .4-module
itself.

Proof. Vide [20] pg 6].
]

Definition 1.18. Let F be an 2d-graded left A-module, let S be a subset of F and let B
be a subset of A. We define the subset Spang(S) C E by:

Spang(S) = {Zaisi IneN, a' € B, s € S}
i=1
Remark 1.19. For an 2-graded right A-module E one just replace > a's; in the
definition by 37, s;a’.

Remark 1.20. When B = A we just write Span(S).

Remark 1.21. It’s easy to verify that Span(S) is a submodule of E, usually called the
submodule generated by S.

Definition 1.22. Suppose that F;, ¢ € I, be a family of submodules of E. Then:

iel k=1
is called the sum of submodules F;.
Remark 1.23. Span(U;c; F;) is usually denoted by > ,c; Fi.

Lemma 1.24. If F is an 2A-graded A-module and if F;, ¢ € I, is a family of QA-graded
submodules of E, then ) ;.; F; is an A-graded submodule of E.

Proof. f €Y icr Fi = f=2>4_1 fi, , with f;, € F;,. Since VF}, is an A-graded submodule,
then fi, = > qca(fir)as With (fi,)a € F;,. Therefore, regrouping the homogeneous terms,

we have:

f:®fa

ac

with f, € Span(U;e; Fi), Va € 2L ]
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Lemma 1.25. If F is an 2A-graded A-module and if S C E is a set of homogeneous
elements only, then Span(S) is an 2A-graded submodule of E.

Proof.
e € Span(S) = e=> a's;=>_ (Z ai) s;, with e(s;) € 2.
i=1

i=1 \acA

Now, regrouping the terms in order of parity, we find
n .
e=> > > (agsi)ﬁ
BeA i=1 ae

that is exactly the decomposition of e in homogeneous elements. O]

1.2 Multi-linear maps

Definition 1.26. Given the 2-graded A-modules Fi,..., E, and F, a k-additive map
¢: FEy x---x E, — F is said to be left k-linear if Vi, Ve; € E; and Va € A, we have:

(1) ¢<€17 ceey€6-1,6,A,€6541, . . ‘7ek) - ¢(617 . '7ei—17€i7aei+17 . 7ek)
(11) ¢(a617627 cee Hek) = a¢(€1,62, cee 77€/€)

The ¢ map is called right k-linear if the condition (ii) is modified to:

(i) o(er, ..., ex_1,exa) = o(er, ..., ek 1,€r)a
Definition 1.27.

(o) The set of all left k-linear maps is denoted by Map, (Ey, ..., Ex; F)
() The set of all right k-linear maps is denoted by Mapy (E1,. .., Ex; F)
(o) Mapg (E,...,Ey; F)=Map, (Ey,...,Ey F) or Mapg (Ey, ..., Eg F)

Definition 1.28. The map ¢ € Mapg (F1, ..., Ex; F) is called a k-linear map of parity
a € A if:

(b((El)Bl? SR (Ek)5k> - Fa+51+---+5k7 vﬁl el

Definition 1.29. Mapg (E1, ..., By F), C Mapg (B4, ..., Ey; F') denote the subset of all

k-linear maps of parity a.

Definition 1.30.
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(e) For left k-linear maps, the right multiplication is defined by:

(pa)(eq,...,ex) = [p(er, ... er)]a

(e) For right k-linear maps, the left multiplication is defined by:

(ap)(ey,...,ex) = alp(ey, ..., ex)

Lemma 1.31. With the former definitions, the set Map, (Ej, ..., Ey; F) becomes a right
A-module and the set Mapy (E1, ..., Ex; F') becomes a left A-module.

Proof. Vide [20] pg 8]. O

Lemma 1.32. V «, 3 € A and ¢ € Mapg (Eh, ..., Ey F),, ¥ € Mapg (F; H)g, then we

have
Yo¢ € Mapg (Er,...,Ex H),yp
Proof. For ey, ..., e, homogeneous, we have:
k k
e(odler, ... ex)) =) +e(gler,...,en)) = B+e(g) + D ele)) =B +a+) ele).
i=1 i=1

]

Definition 1.33. A k-linear map ¢ € Mapg (E\, ..., Ey; F') is called a (homo)morphism
if this map is a finite sum of homogeneous k-linear maps. More precisely, we define the

set Homg (F1, ..., Eg; F) of all k-linear homomorphisms by:

Homg (E4, ..., Ep; F) = ZMapS(El,...,Ek;F)aCMapS(El,...,Ek;F).

acl

Remark 1.34. When all 2-graded .A-modules coincide, we denote Homg (Fy, ..., Ex; F)
by Homg (Ek; F)

Remark 1.35. Homg (E; E) is denoted as Endg(F) and its elements are called endomor-
phisms of E.

Remark 1.36.

(o) Homy (E;.A) is denoted by *E and is called the left dual of E.

(o) Hompg (E;.A) is denoted by E* and is called the right dual of F.
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Lemma 1.37. The left/right A-module Homg (E}, ..., Ey; F') together with its subsets
Homg (E,. .., Ey; F), is an A-graded A-module. If the abelian group 2 is finite, then
Homg (Fy, ..., Ey; F) = Mapg (E, ..., Ex; F).

Proof. Vide [20], pg 9.

Corollary 1.38. Homy (Ei,...,Ey F)y = Hompg (Ey, ..., Ey F),
Proof. Vide [20, pg 10]. ]

Remark 1.39. As Homy, (Ey, ..., Ey F), = Hompg (Ey,. .., Ey; F),, then we can just
write Hom(Ey, ..., Ey; F')o for both.
Definition 1.40.

(e) An even invertible linear map ¢ € Hom(E; F')y is called an isomorphism between E

and F. If there exists an isomorphism between E and F', then they are called isomorphic.

(e) An even invertible endomorphism ¢ € End(E) is called an automorphism of E. The
set of all automorphisms of F is denoted by Aut(E).

1.3 Free 2A-graded A-modules and quotients

Definition 1.41 (free 2A-graded .A-module). Let ¢ : G — 2 be a map from an abstract
set G to A, and define G, C G by G, = ¢! (a). We define the space F(G, ¢) as the set of
all maps f : G — A with the property that f(g) = 0 for all g € G except finitely many.
In F(G,¢), we define the addition by (f+f")(g)=f(g)+{'(g), and a (left) multiplication by
elements of A by (af)(g) = af(g). In this way F(G,¢e) becomes a left A-module. We
identify each element g € G with the map ¢, : G — A defined by ¢,(g) = 1 and ¢4(h) =0
for h # g. Thus, each f € F(G,¢) can be written in a unique way as:

f= =319

geG geG
where f9 € A is defined by f9 = f(g).
Remark 1.42. By definition, the sum above need to be finite.

Definition 1.43.

F(G,e)a:={f € F(G,e) | Vg € G f(g) € Aace)}
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Lemma 1.44. f =Y . f9- g has parity « if and only if f9 has parity o —¢(g), Vg € G.
Furthermore, for ¢, € F(G,¢) we have e(¢,) = €(g).
Proof.

(i) f9=f(g) € -Aa—s(g)7 VgeG & e(f!)=a—e(g), Vgeq.

(ii) ¢g(g) =1 € Ay = Aa_c(y) and, Vh # g, ¢4(h) =0 € Ay = Au_c(g) = €(dg) = ¢(g). O

Decomposing each f9 € A in its unique homogeneous components, we get (regrouping

the elements) to decompose any f € F(G,¢) in unique homogeneous parts. Therefore:

F(G7€> - @ F<G75)a

acd
Furthermore, we have A, - F(G,€)3 C F(G,€)at+s. So F(G,¢) is an A-graded A-module.
Remark 1.45. F(G,¢) is usually called the free 2A-graded A-module.

Definition 1.46 (quotients). Let E be an 2-graded A-module and let F' be an A-graded
submodule of E. The quotient G = E/F with canonical projection 7 : F — G is defined
by:

m(e) =m(e') & e—¢€ €F.

The addition and (left) multiplication by elements in A is defined by:
(¢) m(e) +m(e) = m(e +¢)

(o) am(e) = w(ae)

The subgroups G, are defined by:
me) €EGo e IfeF: e— feE,

Remark 1.47. By the above definition, we deduce that 7 is an even linear map, i.e.,
7 € Homg (E; G),.

Lemma 1.48. Let E be an 2-graded A-module and let F' be an A-graded submodule of
E. Then, by above definitions, we have that G = E/F is an 2-graded .A-module.

Proof. 1t is clear that G is a A-module and that A,Gz = Go1p. Now, for all e € E, we

have:

m(e) =m(D_ ea) = > m(ea)

acl acd
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with 7(e,) € G4. It remains to prove that this decomposition is unique. For this, it
is enough to show that Y ,cqm(en) = 0 = 7(en) = 0, Vo € A. Indeed: Y cq m(eq) =
T(Xaca€a) =0 = Yqcaea = f € F. Since F is an 2A-graded submodule of E, we have
that e, € F, Va € A = 7m(e,) =0, Va € 2. O

1.4 Tensor products

Let E and F' be 2-graded A-modules and consider the set G = (UseaFo\{0}) x
(UgF3\{0}) C E x Fi.e., G is the product of all non-zero homogeneous elements in E
and in F'. On G we define a parity map ¢ : G — A by ¢(e, f) = e(e) + e(f). Let F(G,¢)
be the free A-graded A-module associated to G. We define the subset S of F/(G,¢) as the

union of two subsets: S =5, U S,, with:

So = A{P(erer, )= Ple.) =P (e.f)> Dlesfrf)—Plef)—Pen|Va,B €, e e € Ey, f,f € Fg}
(1.1)

Sm = {be.f) — ab(e,f)s Pears) — Pleap)|V o, B,7 €A, a € Ay, e € Eg, f e F} (1.2)
Definition 1.49.
E® F := F(G,¢e)/Span(S).
This A-graded A-module is called the tensor product of E and F.
Remark 1.50. £ ® F' is indeed an 2-graded A-module because of lemmas and [T.48|

Definition 1.51. We define the map x : £ X F' = E® F as:

X(e7f) = Z ™ (¢(ea,fﬁ)> . (13)

a,[BeU
Lemma 1.52. The map y: £ X F' — E ® F is even and bilinear.

Proof. Vide [20, pg 18].

Remark 1.53. By induction, we find x(eq,...,ex) = €1 ® -+ @ ex.

Proposition 1.54. Given any 2-graded .A-module H and any ¢ € Mapg (F, F'; H), there
exists a unique ¥ € Mapg (F ® F; H) such that ¢» = ¥ o x. If ¢ has parity «, then so
has W.
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Proof. Vide [20, pg 19]. O

Remark 1.55. The above result can be generalized to any k-linear maps, i.e., given ¢ €
Mapg (E1, - . ., Ex; H), then there exists a unique linear map ¥ € Mapg (E; ® -+ ® Ey; H)
such that ¢ = ¥ o y and if £(¢)) = «, then £(V) = a.

Notation 1.56. For F, ..., Fy A-graded A-modules, we have:

k
RE =F®- - ®E,

=1

1
®Ei:Ek®"‘®El

i=k
k
RE=E®--@F

0
QRE=A (formal definition)

(é)E> ® (éE> :%LE with K, L € N

For K =0 or L =0, we will use the isomorphism m; or mp, i.e
0 L L L
<®E> ® <®E> = A® <®E> ~RFE

K 0 K K
<®E> ® <®E> = (@E) QA=QE
Definition 1.57. For any two -graded A-module FE, F', we define R: EX F - F® FE
by:
R(G, f) = Z (_1)<QIB>X(f,3> 601)

a,BeA

or

Rle,f)= Y (-1)Wfs0e,

a,BeA

Lemma 1.58. R is an even bilinear map.

Proof.

(e) R is even. Indeed, for e, f homogeneous, we have:

e(Rle, ) == (1) f5 @ ea) = e(ea) +2(f5) = v+ 3
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() Let’s prove the additivity in the first entrance. In the second, it’s similar.
R(el + eg, f) = Ea,ﬁeﬂ(_1)<aw>x<fﬁa €1, + €2a) =
Yapea(—D) I (fs, e1,) + X pea( 1) x(f5, e2,) = Rlex, f) + R(ea, f).

(o) R(ea, f) = R(e,af). Indeed, by additivity, choose e, f, @ homogeneous, then:
R(ea7 f) — (_1)(8(6)+€(a)‘8(f)>f ® ea = (_1)<5(e)‘5(a)+5(f)>a/f ® e = R(e) af)

(o) R(ae, f) =aR(e, f). Indeed:
Rlae, f) = (—1)@=@ED f @ ae = (~1)E@Maf @ ¢ = a((-1)EOD foe) =

aR(e, f).
[l

Definition 1.59. The even linear map R : E® F' — F ® F, induced from R, is given by:
Re® f) = (-1 foe Ve, f homogeneous.

This map is called the interchanging map of E and F.
Lemma 1.60. R is an isomorphism between £ ® F and F' ® F.
Proof. ¥V e, f homogeneous, define R~ : F @ E — E® F by:

RUf@e)=(—1)@EDeg £
This map is linear, even and satisfies the following:
R1oRe® f) = (—1)EEEDIRfFe) = (1) (_ECED g f =e® f.

Analogously, Ro R} (f®e)= fRe. O
Remark 1.61. From lemma above, one concludes that £ ® FF = F ® E.
Definition 1.62. We define

Ruiv) 1@ EQE 1 Q- QE, > E1Q® QL1 QE® - Q Ej
by Rupn(e1 @ ®e®e1®@--Qep) = Q- QNR(e; ®e) Q- Qe =
(=1)eEdleCirdle; @ - e ®e; @ -+ ® e
1.5 Exterior powers

Definition 1.63. A k-linear map ¢ : E*¥ — F, where E and F are 2-graded .A-modules,

is called A-graded skew-symmetric if for all homogeneous e; € F and all j =1,... k—1
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we have:

oler, ..., €j,€j41,-..,€k) = — (=)l ey €415 €5,y EL)

Notation 1.64.

(o) Maps (Ek; F ): set of all (left or right) A-graded skew-symmetric k-linear maps.

(o) Hom% (E’f;F): MapgF (EkF) N Homg (EkF) .

Remark 1.65. A k-linear map ¢ : E¥ — F is said to be -graded skew-symmetric if,
and only if, the induced linear map ® : @ F — F satisfies, for j = 1,...,k — 1, the

following relation:
(I) = —(I) O %jj—‘rl or (D (Id+ mjj-i—l) = O

Remark 1.66. If ® = ®ofR,; 4, forall j =1,...,k—1, then we said that ¢ is 2A-graded

symmetric.

Definition 1.67. Let E be an UA-graded A-module and let T, C ®" E be a set defined
by:

T, = {61 Q- @ep+Rpn(e1 @ ®@ex)|l <j <k, e; € E homogeneous Vi}.

Since T}, is composed by homogeneous elements, then Span(T}) is an 2A-graded submodule

of ®" E (lemma [1.25)).

Definition 1.68. i

k
/\ E= ® E/Span(T},)
AF E is called the k-th exterior power of the U-graded A-module E.

Remark 1.69. By lemma |1.48] we conclude that A* F is an 2-graded A-module.
Definition 1.70. Given the canonical projection 7 : @ E — ®* E/Span(T}) = A" F,
we define the even k-linear map w : E¥ — A* E by:

W =T O0Y.

Definition 1.71.

(o) We define Span(T;) = {0}. As @ F = E, we have \'E = E and w : B! —
A" E (= E). Therefore w = Id(E).
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(o) We define Span(Tp) = {0}. As " EF = A, we have \°E = Aand w : E° (= A) —
A’ E (= A). Therefore w = Id(A).

Proposition 1.72. Let E be an 2A-graded A-module and k > 1, then w : E¥ — A*E
is A-graded skew-symmetric. Moreover, given any 2A-graded A-module F' and any map
NS Mapssk (Ek; F), there exists a unique map ® € Mapg </\kE; F) such that ¢ = ¢ ow.
If ¢ has parity «, then so has ®.

Proof. Vide [20, pg 25]. O

Definition 1.73. There exists a unique even linear map A : A¥ Ex A'E — AF E called

the wedge product, such that the following equivalence is true:
k 1 k ! k41
(/\ E) A (/\ E> —u (/\ 5, /\E) ~ @ E/Span(Ts)
Remark 1.74. Since A = A’E, then for a € AYE, we will have:

aNegN---Ne,=ae; N---Neyand eg A---ANegNa=e; A+ Nega

Proposition 1.75. Given an 2-graded A-module E, k.l € Nand K € A*E, L e N'E,

both homogeneous, then:
KANL=(=1Dk. (=1)EELI A K

Proof. Vide [20, pg 27]. O

Definition 1.76. The exterior algebra A\ E of an 2A-graded A-module F is defined as the

direct sum:

NE =EPAE.
k=0

1.6 Zo-graded algebra

Remark 1.77. Throughout this chapter, we will use (as will be seen) A as an R-algebra
and A/N = R, but all the results are also valid for A a C-algebra and A/N = C.

Definition 1.78. From now on we will consider 2 = Z,. The elements of parity zero will
be called even elements and elements of parity one odd elements. The symmetric bilinear

map (| ) :Zs X Zy — Zy will be given by

(alp) =a-p
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Definition 1.79. For any Zs-graded commutative ring A we define the set of nilpotent
elements N by:
N={acA|3keN:d" =0}

Example 1.80. Let X be a real vectorial space (of finite or infinite dimension) and let

A be the exterior algebra A = A X. A become a graded commutative ring if we define:

oo 2k oo 2k+1
AOZ@/\X; A1:®AX
k=0 k=0
In this case, we have 1 € A° X 2R and V' = @, A* X.

Lemma 1.81. Let A be an graded commutative ring and let N/ C A be the set of
nilpotent elements. Then N' = (N N Ay) & A; and N is an ideal of A.

Proof. Vide [20], pg 56]. O

Lemma 1.82. If ny,...,ny is a finite number of nilpotent elements in A, then there

exists a non-zero homogeneous nilpotent n such that Vi : nn; = 0.
Proof. Vide [20, pg 57]. O

Definition 1.83. If A is a graded commutative ring, we denote by B the canonical
projection B : A — A/N and call it the body map. Since N is an ideal, we have that

A/N is a ring, and B will be a ring homomorphism, i.e.:
e B(a; - az) =B(ar) - B(az);
[ B(al + CLQ) = B(al) + B(CLQ).

Definition 1.84. If the graded commutative ring A is a R-algebra (C-algebra), then
we have in particular that Ag, A, N, A/N are vector spaces over R (over C) and
B:A— A/N will be a linear map between vector spaces over R (over C).

Definition 1.85. From now on A will be a graded commutative R-algebra (C-algebra)
with unit, such that A/N =R (A/N = C).

Remark 1.86. For a € A, we write a = r + n, with B(a) =7 and n € N.

Example 1.87. The complex Grassmann algebra Cgiz; is a graded commutative C-
algebra such that Cgpr/N = C.

Definitions 1.88.
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(o) The set M(m x n,.A) denotes the set of all matrices of size m x n with entries in A;

(o) The usual matrix multiplication M(m x n, A) x M(n x r, A) — M(m x r, A) still

makes sense on these sets;

(e) The body map B extends in a natural way to these matrices: B : M(m x n, A) —
M(mxn,R)orB: M(mxn,A) — M(mxn,C), and this map is surjective and preserves

matrix multiplication;
(o) The set M(m x n,.A) equipped with matrix multiplication is a ring with unit In;
(o) B: M(m xn, A) - M(m x n,R or C) is a surjective ring homomorphism.

(o) For a € M(m x n, A) we define the rank of a, denoted as rank (a), as the rank of its
body B(a) € M(m x n,R or C), i.e, rank (a) = rank (B (a)). In other words, rank (a) is

the number of independent rows or columns in B (a).
Lemma 1.89. An element a € M(n x n, A) is invertible if and only if Det (B (a)) # 0.

Proof. Vide [20, pg 58].
[

Definition 1.90. We define Gl(p|g, A) C M ((p + q) x (p + q)) as being an especial set of

A B
invertible matrices such that if X € Gl(p|q, A) then X = oD is a invertible matrix

whose blocks A and D are composed exclusively by even elements and the blocks B and

C are composed exclusively by odd elements.

Remark 1.91. The block A above has order equal to p x p.

1.7 Free graded A-modules

Definition 1.92. We will call a free graded A-module finite dimensional if it admits a
finite (homogeneous) basis. A homogeneous basis ey, ..., e, of a finite dimensional free
graded A-module is called ordered if all even vectors come first, i.e., ¢; even and e; odd

implies 7 < j.

Definition 1.93. A subset F of a free graded A-module F is called a graded subspace if
it is a graded submodule of E that in itself is a free graded .4-module.

Proposition 1.94. Let ey ..., e, be a basis of a graded A-module F.

(i) If fi1,..., fm is another basis of E, then m=n.
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(ii) All other bases {f1,..., fn} are classified by invertible matrices a € M (n x n, . A) with
fi=3; ale;.
(iii) If f1,..., fu is either generating or independent, it is a basis.

Proof. Vide [20], pg 60]. O

Proposition 1.95. The number of even vectors in a homogeneous basis of a finite di-

mensional free graded A-module F is an invariant of F.
Proof. Vide [20], pg 61]. . O

Definition 1.96. The graded dimension of a finite dimensional free graded .A-module
E is a pair of integers (p,q) where p, called the even dimension of E, is the number of
even vectors in a basis for E and ¢, called the odd dimension of E, is the number of odd

vectors in bases. We usually denote this as dim(E) = p|q.

1.8 The Berezinian

The ordinary determinant is defined on square matrices with reals or complex coeffi-
cients. We will see that is possible extend this concept to matrices GI(p|q,.A) through the
definition of a graded determinant Ber : Gl(p|q, A) — A called Berezinian determinant.

A B
Definition 1.97. Let X = oD € Gl(plg, A), then we define the Berezinian deter-

minant Ber : Gl(p|q, A) — Ay by:
Ber(X) = Det (A= BD™'C) (Det (D))"

Remark 1.98. Observe that Det (D) # 0 and the definition of the Berezinian is well
placed. Indeed, since VX € Gl(p|q,.A) is in particular invertible, we have Det (B (X)) # 0
= Det (B (A)) # 0 and Det (B (D)) # 0 (by the classical theory). Therefore, Det (D) #
0.

A B
Remark 1.99. If X = (C D) € Gl(p|q, A) = the blocks A and D are invertible.
Proposition 1.100. The map Ber : Gl(p|q, A) — Ap is a homomorphism, i.e:
Ber (XX) = Ber (X) Ber (X).

Proof. Vide [20, pg 78]. ]
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Corollary 1.101.

Ber A B\ Det(A-BD'C) Det (A)
“Nc¢ b/~ Det(d) ~ Det(D-CAB)

Proof. The first equality come from the definition. We will prove the second. Consider

the following decomposition:

A BY [A 0 I, A'B
¢ p/ \o D)\D'C I
By proposition [1.100, we have:

A B A 1 A'B
Ber ( ) = Ber ( ZO?) -Ber ( P ) _ Det (4) -Det (Ip — AilBDflC) )

C D 0 D'C I, | Det(D)

(1.4)

Now, by lemma 7?7, we have:

Det (I, — A"'BD™'C) - Det (I, - D'CA™'B) =1
= Det (I, - A7 BD7IC) = o - ;IOAIB>. (1.5)
Replacing in , we find
Ber (A B) _ Det (A) _ Det (A)
¢ D) Det(D)Det(I,— D-'CA-'B)  Det(D — CA-'B)

O

Remark 1.102. At this point, it is interesting to compare the expression above with the

expression of the traditional determinant.
Traditional determinant:

Det (2 g) = Det (A) Det (D — CA™'B) = Det (D) Det (A — BD™'C).



Chapter

2

Supersmooth functions,

supermanifolds and integration

2.1 Grassmann algebra

In the previous chapter, we adopted a general graded commutative ring A. From now
on, the complex (real) Grassmann algebra will represent our .A.

Based on [16], we will define the complex Grassmann algebra e its conjugation.

Definition 2.1. (Complex Grassmann algebra) For each finite positive integer L, Cgyy
denotes the Grassmann algebra over C with L generators. That is, Cgz) is the algebra

over C with generators

17 5[1]7 6[2]7 BRI B[L]
and relations

18y = By=pByl i=1,...,L
Buby = —Bybm Hi=1,...,L

As a direct consequence, we have ;)05 = 0, Vi.
If X € Cgyy, then:
X= > Xy

AeMy,
where M, is the set of all multi-indices (including the empty index 0); g = 1; A € My, =
A=A A, with 1 <A <o < Ay < Land By = B+ -+ Bp,)- Farthermore, X € C,
VA e M.
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We define the even elements of Cg(y by:
Csizo) = {xlx €Csyypy z= Y, X,\ﬁ[/\}} (2.1)
AGMLO

where M, is the set of multi-indices with even numbers of indices. Now, we define the

odd elements of Cgz) by:
Csizy = {$|$ €Csyypy z= Y, Xxﬁm} (2.2)
/\E]WL1
where M7, is the set of multi-indices with odd numbers of indices.

Remark 2.2. This construction give to Cgz) a structure of graded commutative ring,

and the set of nilpotent elements is equal to:

N= > X\by
AE(ML\{0})
Thus, the body map B : Cgpz) — C ~ % is equal to:
B ( Z XAﬁ[A}) = Xp.

ANEM]y,

Remark 2.3. The real Grassmann algebra is quite similar, with one difference: the

coefficients X are real, i.e, if X € Rg(z), then:

X=> X\

AeM,
with X, € R.

Remark 2.4. From now on, we will consider Grassmann algebras with infinite quantity
of generators, i.e., with L — oo, and we will denote these specific Grassmann algebras by
CS and by R S-

2.2 Superspaces

In the next definition, we will use the notations of (2.1 and (2.2]).
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Definition 2.5. We define the m|n dimension superspace Cg”[f] by

st = Csizo) X =+ X Csyrg) X Cypry) X -+ x Cyypy)

m copies n copies

with m said to be the even dimension and n the odd dimension of the superspace.

m,

A typical element of Cgpy) is denoted by (', . 2™ &L L €M), or more briefly as
(2,8).

Cg"" is found doing L — oo, and

C?’HZCSOX"'XCSOXCSIX'“XCSl

m copies n copies

A complex superspace C%™ of m|n dimension is naturally a real superspace R5™*" of

2m|2n dimension. Complexifying this superspace, we have:
Definition 2.6. On RY"*" ® Cg, we define:

(a) (Even holomorphic and antiholomorphic variables)

Zj = Xj +1Y; Zj =xj —1Yy;

with x;,y; even variables and j € {1,...,m}.

(b) (Odd holomorphic and antiholomorphic variables)
Ex = M + G gﬁzm—iCﬁ

with 7,, (, odd variables and x € {1,...,n}.

2.3 DeWitt topology

In this work, we will adopt the DeWitt topology.

Definition 2.7. A subset U of C¢"" is said to be open in the DeWitt topology on Cg"™"

if and only if there exists an open subset V' of C™ such that
U=B"1(V).

Remark 2.8. The DeWitt topology is a non-Hausdorff topology.
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2.4 Superholomorphic functions
By [20] and [16], we define:

Definition 2.9. Suppose that V is an open subset of C"™ and U is a subset of CI"" such
that B(U) = V. Then:

~ C®(V,C) — CO®(U,C,)

—

fB(z)) — [f(z)

The function f is called the Grassmann analytic continuation of f.

—

Remark 2.10. An expression for f(z) is found in [16].

Definition 2.11. Let U be an open set in the Cg-vector space CJ*". Then f : U — Cg
is said to be a superholomorphic function on U if and only if there exists a collection
{fulpr € M, } of Cg - valued functions which are holomorphic on B(U) such that

F(2h e 2 ) = Z gu.ﬁ(zl7... ,2™)

pneMp,

where p € M, is a multi-index p = {pi,, -+, pi, by with g, < -+ < gy, .

Let us generalize the definition to a complexified space with holomorphic and

anti-holomorphic variables.

Definition 2.12. Let U be an open set in a complexified space of 2m|2n dimension.
Then f: U — C, is said to be a supersmooth function on U if and only if there exists a
collection {f,\|p € M,,, A € N, } of C; - valued functions which are smooth functions on
B(U) such that

_ _ -1 =X 7 _ _
f(zlv"'7Zm7217"'7Zm;£17"'7£n7£7"'a§n): z é’,ug 'fu;A(Zla"'7Zm7zl"'7Zm)

HEMp NEN,

where u € M, is a multi-index g = {u;y, -+, i, b, with g, < -+ < p;,, and A € N, is
other multi-index A = {\;,,--- , A}, with Aj, <--- < Aj,.
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2.5 Partitions of unity

Theorem 2.13. Suppose that U is open in CJ"". Let {U,| @ € A} be a locally finite
open cover of U. Then there exist C* (U,, Cg) functions {f,| a € A} with the support

of each f, contained in U, such that

> fa=1

aEA

A collection of functions with these properties is said to be a partition of unity on U
subordinate to {U,| o € A}.

Proof. Vide [16], pg 49]. O

2.6 Supermanifolds
Definition 2.14. Let M be a set, and let m and n be positive integers.

(i) An m|n superholomorphic chart on M is a pair (V,4) where V is a subset of M
and v is a bijective superholomorphic map from V' onto an open subset of C§"" (in
the DeWitt topology);

(ii) An m|n superholomorphic atlas on M is a collection of m|n superholomorphic charts
{(Vas ¥a)| o € A} such that

a. UaEA Vo=M
b. for each a, B in A such that V,, NV # 0 the map

Yootz s (Va\V3) = a (Va1 V)

is a bijective superholomorphic map C* (¢¥3 (Vo NVs);%a (VaN'V3));

(iii) An m|n superholomorphic atlas {(V,,1¥4)| @ € A} on M which is not contained in

any other such atlas on M is called a complete m|n superholomorphic atlas on M.

Based on definition we have the following important definition.

Definition 2.15. An m|n complex (DeWitt) supermanifold consists of a set M together

with a complete m|n superholomorphic atlas on M.
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Remark 2.16. The maps 1, are called coordinate maps and the sets V, are called

coordinate neighbourhoods.

Remark 2.17. To define a topology on M, it is necessary to require that each coordinate

map is a homeomorphism of the corresponding coordinate neighbourhood onto its image.

Remark 2.18. Since the DeWitt topology of C¢"" is not Hausdorff, then the DeWitt

topology of a supermanifold is also non-Hausdorff.

Remark 2.19. By definition we note that the complex supermanifolds are modelled
locally on C¢"". Furthermore, we conclude too that Cg"" is itself such a supermanifold,

as is any open subset of CZ"".

The previous definition of supermanifold has the approach of differential geometry.
There is too one another definition that is linked with the algebraic geometry perspective.
Batchelor in [2] shown that the correspondence is so close that it is often unnecessary to
state explicitly which approach is being used.

The algebro-geometric definition of a supermanifold was given independently in broadly

equivalent form by Berezin and Leites [28] and Kostant [29].

Definition 2.20 (Algebro-geometric definition). A complex supermanifold is a ringed
space S = (X, Og), where X is a complex manifold and Og is a sheaf of super commutative

algebras over X locally isomorphic to an exterior algebra on the vector bundle.

Definition 2.21. The tangent bundle 7'S of S = (X, Og) is defined by:
TS := Der(Og).
Remark 2.22. At this thesis, the differential geometry perspective is sufficient. But

further material on the algebro-geometric approach may be found in [30} 31, 32].

2.7 Body map on supermanifolds

Theorem 2.23. Let M be a complex supermanifold with atlas {(V,,,%,)| @« € A}. Then

a. the relation ~ defined on M by p ~ ¢ if and only if there exists a € A such that
both p and ¢ lie in V,, and

B <¢a(p)) =B (¢a(Q))

is an equivalence relation.



2.8 Superfunction’s Derivation 23

b. The space B (M) = M/ ~ has the structure of a m-dimensional manifold with atlas
{<Vba>¢®a) ‘ a € A} where Vg, = {[p” pE Va} and

Voo : Viu — CM
] — B@a(p)).

(Here square brackets | | denote equivalence classes in M under ~)
Proof. Vide [16], pg 60]. ]

Definition 2.24. The manifold M/ ~ is called the body of M and denoted by Mjy. The
canonical projection of M onto My is denoted by B.

B: M™m — My™

U — BU)=U

Example 2.25. Let S be a supermanifold on C7*", then X = B(S) is a manifold on C™,
and X is called the body manifold associated to S.

Example 2.26. Let SB.(p) C S be a superball centered at p € S in the supermanifold
S. Then B.(B(p)) = B(SB.(p)) is a ball centered at B(p) of radius € in the manifold X.

Remark 2.27. Certain aspects of a supermanifold are determined by its body. For
instance, a supermanifold is compact if its body is compact, and simply connected if its
body is simply connected, while the fundamental group of a supermanifold is simply the

fundamental group of its body.

2.8 Superfunction’s Derivation

Definition 2.28. Suppose that f is a supersmooth function. Then the derivative is

defined as follows:

—_—

O 4, 58 2. 9 _
8Zif(z,z,€,f) = ,uGan:,)\GNn g€ azifw(z,z)
0 7 €£.8) = nogt. i/\ z
azif(Z, z;€,¢) = M€M§€an ¢ azif,m(z, Z)
0 —

ac (ng;éag) = Z pj,,u'f'u/j'g)\'fu;k(zﬁz)

9&; WE My AEN,,
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(=) i =y prcc s oty pe if 5 =gy
where p;, = and p/j=
0 otherwise 0 otherwise
O v oz L) boE\ M S
ff(Z,,%ﬁ,ﬁ) = Z (_1) )Oj,)\'g (5) 'f,u«;)\<Z7Z)
J HWEMy ,AEN,
(_1)1—1 if j=N PYREED VIRD VIRRETD VNS B = ¥
where p;\ = and  \/j=
0 otherwise 0 otherwise

Remark 2.29. L(u) is the length of the multi-index p € M,,.
By [16] (Theorem 10.3.4) and by [I7], page 160, we define the following:

Definition 2.30. Let M be a supermanifold of m|n dimension, and let f(z,£) be a

superfunction, then:
97 =35 5+ e gL

o f 2°7

Then
dF=0"F + 3°F.

9" 7T is called the even derivation of f and 9”7 is called the odd derivation of 7.

Remark 2.31. Since d¥ = 9% + 8" and d° = 9° + 50, then if f(z,£) is holomorphic,
then 0 f =dff + d°Ff.

Definition 2.32. Let U be an open set in the Cg-vector space C7"".

e We say that f: U — Cg is an even supersmooth function on U if and only if there
exists a collection {f,,|ug € M,,} of Cg - valued functions, where M, is the set

of all even multi-indices, such that
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f(zl’.__7zm;£l7_“’£n): Z guE'qu(Zla"'>Zm)
,uEeMnE
where ug € M,, is a even multi-index pp = {fhi,, -, fiy, }, With gy, < -+ < 4,
for k=0,1,2,....

e We say that f : U — Cg is an odd supersmooth function on U if and only if there
exists a collection {f,,|1o € My, } of Cg - valued functions, where M, is the set
of all odd multi-indices, such that

f(zla"'7zm;£17"'7§n): Z é.uo'f,uo(zla"'7zm>
NOeMnO
where po € M,, is a odd multi-index po = {u, - ,,ul-(%ﬂ)}, with p;, < -+ <
for k=01,2,....

/"Li(gk+1) Y

Definition 2.33. Let dX = dx; A --- A dx, be a homogeneous n-form (i.e, each dz; is
homogeneous) and let f be a homogeneous superfunction, then the parity e(dX f) is given
by the formula:

e(dXf)=¢e(dX)+e(f) = <Z e(dxi)> +e(f).

i=1

Lemma 2.34. If f is an odd (even) superfunction, then 0 f is an odd (even) 1-form.

Proof. Let 8 [ = Y0, dzi 2k + ¥, dg; 2L L. Then if f is odd, we have that 97 is odd,
and dzl Wlll be odd too. In the same way, if f is odd, 2 % / will be even, and d¢ 2 it / will

be odd. Therefore, 0 f will be odd.
Now, to 0 f = 3", d?ig—zfi + > dfmf ., if f is even, then

a; will be even, and

consequently dfigi will be even too. Beyond that, % will be odd, and consequently
J

d¢. 2 vt L will be even. Therefore, d f will be even. n

Remark 2.35. By lemma above, we conclude that if f is even, then EET and 507 are
both even, and if f is odd, then 515? and 507 are both odd.

By [16] (Theorem 10.3.4), we have

dlaNp)=d(a)ANB+ (—1)Pand(p),

with a being an p-form.
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Therefore, by the above result, by [I1] (page 17), and by proposition , we get the

following definition:

Definition 2.36. Let dX be an even or odd 1-form. Then, for the section dX f, with f

holomorphic, we have:

AXF) = 3 (—1)E@XEEED) gz, A dng + 30 (= 1) (EE@IEED) G2 A ngg.
i=1 ~i

Jj=1 J

From definition we deduce easily the following analogous formula:

BAXT) =S - OF S~ ax aae 9
I(dXf) = 2 dX/\dZazi +j§::1 dX/\dfjagj,
and
0(dXf) = —dX NdPf —dX A dOF. (2.3)

2.9 Body map on superfunctions

Definition 2.37. Body map applied on superfunctions:

B: C*(U, V) — C>B{U),B(V))

fo= B =fo

Therefore, the supersmooth function f become fj, that is a classic smooth function applied
on the body.

Example 2.38. To the superfunction f(z,%, &, €), we have B(f(2,%,£,€)) = fo (B(2),B(%)).

2.10 Body map on superforms

Definition 2.39. Body map applied on superforms:

B: A@DI(rs) 5 Apa

n = Bmn)=mn

Example 2.40. Let n € AP be = fdz' Ao ANdP AdZ N~ ANdZINDEN N -+~ A
der NdEN A - A dE. Then B(n) =ng € APTisng = fo dz' A+~ AdzP NdZ' N -+ A dZ2.
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2.11 Integration on supermanifolds

This section is based on [16], and the main point is the new concept of the Berezin in-
tegral. We will begin defining the Berezin integral on a purely odd superspace RS (C%").
Next, we will define this integral on a superspace R (Cg"") and on a supermanifold M.
Finally we will generalize the concept of the Berezin integral to even and odd holomorphic
and anti-holomorphic variables on a complexified superspace.

The theory of integration on the purely odd superspace Rg" (C%") is based on the

following definition:

Definition 2.41. Suppose that f is a C(RY", Rg) function of RY" (C%") into Rg (Cg)
with
flet e =€t " f1, + lower order terms.

Then the Berezin integral of f is defined to be

[aErE €)= from

Now, let’s define an integral over an open set U in R ( C"") in terms of a Berezin
integral over anticommuting variables together with an ordinary integral over the body
B(U) of U.

Definition 2.42. Let U be open in R (C¢™) and f : U — Rg (Cg) be C>(U,Rg).
Then the integral of f over U is defined to be

/Udmxd"§ Flat,. ™) :/]B(U)dmx Fralat, 2™,

where the integration over B(U) is evaluated as a standard Riemann integral.

The method of integration on RZ™"™ (C&™) developed leads naturally to an integral of
a Berezin density on a compact supermanifold. Like conventional manifolds, a partition

of unity is used to sum the contribution from different coordinate patches.

Definition 2.43. Suppose that w is a Berezin density on M and that the collection
{(Va, fa)|ae € T'} is a partition of unity on M where each V, is a coordinate neighborhood

with corresponding coordinate map .. Then the integral of w over M is defined to be

L5

ael

/a<va) d"2d"€ wa(w; ) fa 0 Y (2:€),

where w,, is the local representative of w in the chart (V,, ¢s).
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Now, we will generalize the definitions [2.41] [2.42 and [2.43] using holomorphic and

anti-holomorphic variables.

Definition 2.44. [Berezin integral of supersmooth functions with odd holomorphic and
antiholomorphic variables|

From the expansion

=1 -n

f(éla <. 7511,51’ v 7?) = 51 e gn ' g o 6 fl,...,n;l,...,n + lower order terms.

we have:

1

/dné- dng f(z1’ e ’Zm’§1’ ce ’Zm;€1’ ce ’fn,g R ’En) — fl,...,n;l,...,n-
Definition 2.45 (Integral over U C CZ"").

/ d"z d"z d”é‘ dng f(Zl,"‘ 7Zm7§17'“ 7§m7€17"' 7§n7€ )T 7%71) =
U

:/ "z d"z /dnédngf(’zl""7’Zm7§17"'7§m7£17”'7§n7£7”'7?) =
B(U)

Berezin integral

Definition 2.46. Suppose that w is a Berezin density, i.e., w is a volume form on the
compact complex supermanifold S, and suppose that the collection {(V,, fo)|la € T'} is a
partition of unity (that exists because the supermanifold is compact) on S where each V,,
is a coordinate neighbourhood with corresponding coordinate map 1,. Then the integral

of w over S is defined to be

w=3 [ A dE A wou = TED o v W EED.
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3

Localization on supermanifolds

3.1 Definitions
By [16], page 61, we define:

Definition 3.1. The supermanifold S is called compact if X = B(.S) is compact.
Based on [8], [16], [18] [21], [27], we define:

Definition 3.2. Let S be a supermanifold of dimension m|n and let V| in local coordi-
nates, be equal to the supervector field V =Y fi(z, )52 + X1y g;(2,£) 5% ag; on S.

(i) We say that V is an even vector field if, for all local coordinates, f is an even
function and g is an odd function. Therefore, expanding the homogeneous functions
(see definition [2.32)), we have:

m — — n — a

V=3 [fi(2)g + &abafi(2)yy + - 1+f29j(2)2+"']a?,
=1 ]:1 J

(ii) We say that V' is an odd vector field if, for all local coordinates, f is an odd function

and ¢ is an even function. Therefore, expanding the homogeneous functions (see

definition [2.32]), we have:

V=36 e + 6, + 15,

Definition 3.3. Let S be a supermanifold of m|n dimension. Then we define the form
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n € AP on S as

n = Nw:0) + &) + S0 + & -+ Sl ) + &) + Eall)
+-t f’h e 5%15;“ o 'gu@ﬁ(%'--%l i) T T SES €n§1 gnn 1--m;1-m)s (3'1)

where each term 7)) is given by
~ ~(0,0 ~(1,0/(0,0) ~ ~(1,1)](0,0
Ne;8) = 77((04 ﬁ))| + dZ (a 5))( + dZ A le 77(04 ﬁ))|( ) + -
ot da AN ANdzpg ANdZE AN NdZg NAEG N - NdENAELN - NdE, T)

A(m m )| (n,n)

(3.2)
To unify the notation, we define:

Definition 3.4. Let n € @ AP9|(%) be a form on S. To simplify, we will use the following

notations:
/X Mtomdom) = /X D da A Adz Adzy A N dz ")

(11) . 77((7{ s)n‘(? "T)l) = / dzy N+ Ndz, NdzZy N -+ N dZg U(ISJ(? ni)

where ng S)n‘(?f 7)0 are superfunctions.

Remark 3.5. Therefore, based on the definitions (Berezin integral) and [3.4] we have:

/577 _ /X77<1---n;1---n) / Dda A Adz Adz A A dE N (3.3)

(r,s)

3.2 Localization formula for even vectors

Lemma 3.6. Let S be a compact complex supermanifold of dimension m|n. Then, for

all w € APDI() we have:
/ Ow =10
S

Proof. 1t’s sufficient to consider the following two cases:
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(i) w e AmmImn=1 then [¢dw = 0.

Indeed, based on [11], [16] and [I7], we have:

8u)—-§:d§1AAQ—7+—§:d§ A => d¢

j %

=0

Since, V7, the expansion of d£ /\ in powers of £ and £ has no top term, then, by
definition of the Berezin mtegral we have:

/%—/Z&A _Z/gA
(ii) w € Amm=DImn) “then [y dw = 0.

First, observe that [¢ 0w = 0 because

Ow =

agJ - ; A A agﬂ

=0

and since 3, d&7 A gg“; e Almm=DIntln) “then [ 37, d&0 A ggj = 0 and therefore

Now, without loss of generality, consider w as following:

1 =n

w = d2'A- - -AdFA- - ANZTNDEN- - NdE'[EL . EME T € Wa,..ni1,...n) + (lower terms)].

Then, by the Berezin integral and by stokes, we have:

/Saw:/s(0+0)w:/sdwz
/ d"z dm_lé/dnf' d"€ d ... ¢-€ b 3 nw(l ..... nit,..ny + (lower terms)| =
X=B(S)

d™z d™ 7 dwg o 20

Remark 3.7. From now on, we will use the notations of definitions [2.37 and [2.39}
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Lemma 3.8. Let S be a supermanifold of dimension m|n and let V' be an even holo-
morphic vector field on S. If n € @APDI(™3) such that (0 + iy)(n) = 0, then, for all
w e APDI) and ¢t > 0, we have:

for= fon{ 22}

Proof.

8811/56}@{ (3+zv@w9 N = P /exp 8+ZV@) }77(1 _____ i) =

—/X 8+@V0)w@~exp{—/<a(5+ivw)w@}-77(1 _____ nil,m)-

Now, observe that, since (9 + iy, )?wp = 0 (see [22]), we have:

= L
o - n (=@ i)
(0 +ivy) exp { =k (D + iy, Jwo } = D (0 + %)( T o)) = 0. (3.4)
L=0 :
Since (9 + iy)(n) = 0, then:
(8 + ZV@)T]( ,,,,,, n;l,...,n) — 0 (35)

Therefore, by (3.4]) and (3.5)), we have:

- /X@‘i‘ iy, )wp - €XP {—”v@‘f‘ iv@)ww} “NA,mil,en) =
- /X(5 + ivm)(w@ - €Xp {—/{(5 + iV@)w@} “Na,...ms,.., n))
Then:

[ @+ i) - exp {=r@+iv )}  M1ct) =

/Xé(w@-exp{—m(5+z‘v@)w@}-m1 ..... nile n))+/X ivy (wo-exp { k(D + iy )wo N1, mit,..m)-

By lemma , we have [y O(wp - exp {—m@ + ivm)w@} -n) = 0 and as the contraction iy,
promotes the lost of top form in the integral, then [ iy, (wg-exp {—m(g + iV@)w@} -n) = 0.
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Therefore % [x exp {—m(é + iV@)w@} “NA,...mi1,..n) = 0. Then, we have:

1111

Owy iy, (wp) _/ Owy iy, (wp)
/gn—/)(eXp{ f ¢ na,...n;1,..,n) = SGXp ; ; n

Definition 3.9. Let S be a supermanifold of m|n dimension, let V' be an even supervector
on S and let Sing(Vp) be the set of points B(p) on X such that Vj (B(p)) = 0. Then we
define the set Sing(V') as

Sing(V) == {p € S| B(p) € Sing(Vp)}
Sing(V') is called singular set of V' on S and Vp € Sing(V) is called singular point or
singularity of V on S.

Definition 3.10. We say that Sing(V') is a set of isolated singularities of V' if Sing(Vy)

is a set of isolated singularities of Vj.

Definition 3.11. Let V' be an even supervector on S. We say that p € Sing(V) is a
non-degenerate singularity of V' if B [Ber(V)] (B(p)) exists and B [Ber (V)] (B(p)) # 0.

Let V be an even supervector with isolated singularities . Then choose, for each singu-
larity p;, superballs SB.(p;) (with B.(B(p;)) = B(SB.(p;))) such that B.(B(p;)) N B(B(p,)) =
0, for each B(p;) # B(p;), with p;, p; € Sing(V).

Remark 3.12. If B(p;) = B(p;), then SB.(p;) = SB.(p;) because we are working in the
DeWitt topology (see definition , and, therefore, any superball cover all the odd part

of the supermanifold.

For each SB.(p;), consider, in local coordinates, the following even vector field

o, 0 "0
V=> fim=—+) 97— (3.6)
jzl ]82]' ; J@fj

with all f; being even holomorphic functions and all g; being odd holomorphic functions.

Now, consider the form in SB.(p;):

Wi = Z dzj?j + Z d&;g; (3.7)
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Observe that each w; is defined only locally, because the functions f;, g; are holomor-
phic on the compact supermanifold S. If they were defined globally, then they should be
constant functions ([19], [12]). We will use the partition of unity (see theorem [2.13]) to

define a global form w on S.
With an appropriate partition of unity, we will construct a global form w such that

Wigp, ) = Wis Vi.

Definition 3.13. Let S be a compact supermanifold of dimension m|n, and let SB.(p;)
be superballs in S. Now, let 4 = (S — UiSTE(pi)) U (U;SBae(p;)) be an open cover of S,
such that B.(B(p;)) N B:(B(p;)) = 0, with p;,p; € Sing(V), let w° be a form defined on
(S — U,;SB. (pz)> and let {p;} be an unity partition subordinated to {. Then we define w
as the global form given by:

w = pow’ + > pi;. (3.8)

To complete the definition, we need to construct the form w®. Let U = U; V; be an
open cover of S — U;SB.(p;), where, for each V}, we have V = 31", fg% + 30, gfa%,
and let {u} be an unit partition subordinated to . Then, we construct w’ as follows:

w’ = Z 14 (Z deifl +° d&-?{) : (3.9)

Remark 3.14. The operation S — U;SB.(p;) is defined as follows:

S~ USBe(p:) =B (X — U:B. (B(p))))

where X = B(S).

Now, we will demonstrate the theorem of residues to an even holomorphic supervector
field V on S.

Theorem 3.15. If the even holomorphic vector field V' is a supervector without singu-
larities on S, then for any n € @APDI(3) such that (9 + iy )(n) = 0, we have:

/7]:0.
s

Proof. Choose any hermitian metric on T'Sy and let wy be the dual 1-form to the vector
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Vo = B(V) via this metric. Then iy, (wp) = |Vp|®. Since V has no zeros on S and X = B(S)
is compact, then 3§ > 0 such that |Vy|> > § on X. So, by Lemma we have:

/77 /eXp Sl '77=/exp 0w [Vl® -
s s t t x ; : (Loilsom)
/e au@ e |WD|2 e au@ . |%|2

X —_— X — . nl,...n)| > X - . ) o
P ¢ p n N(1,....n1,....m) p ; D t Mot

Owy 5 LR | Owy \ am— _
< . n /t < 2 / . . (m a,m a)l(nvn) (S/t <
T Jx P { t } Tl(l """" 1., ) € o a=0 O{' X ( t n(l 77777 n;l,..., n) € -
1 1
C-e M — + 4+ 1)Vol(X)

tm tm—l

where C' > 0 is a constant that limit superiorly all continuous functions in the integrals

(remember that X is a compact manifold). Now, taking t — 0, we get the result. O

Theorem 3.16. Let V be an even holomorphic supervector field on S with isolated
singularities p; € Sing(V), then for any n € @APDI™3) such that (9 + iy)(n) = 0, we

have:

[0S esn(Vin
where

t—0 t t

) .
ResPi<Va7l>:lim exp{—(JUQ)_ZV‘Z’((JJ@»},77
SBe(pi)

Proof. By Lemma |3.8, we have:

/Sn:/gexp{_iw_iv@iw@)}_n

Therefore, for p;, p; € Sing(V') such that B.(B(p;)) N B(B(p;)) = 0, we have:

_ 5(")@ /I:VQ) (WG)) % Z.V@ (WQ))
/5 = /S(Ui SBe(pi)) P { t t a Z /SBe(pi) P t t "

%
=0 (by theorem [3.15))

_ _% . iV@(ww)
Jyn= ;/sm» o { ! e

: dwy iy, (wp)
—1 / _d W :
/577 tg%zi: SBe(p;) exp{ t t "

Then:

Thus:
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5 .
Therefore, as Resy,(V,n) = lim exp ) -m, we finally have:
‘ t—0 /5B, (p;) t t

/Sn = Res;,(V,n)

3.3 Determination of residues for even vectors

In this section, we will determine, on some hypotheses, a formula to calculate the

residues Res,, (V,n) . Let’s start with two lemmas.

Lemma 3.17. Let V be a holomorphic even vector, with local coordinates equal to V' =

>y fi£ + 37 gjﬁ, where f; are holomorphic even functions and g; are holomorphic
T J .

odd functions. Then, given w = 321", dz; f; + >°7_; d§;g;, we have:

mm+1) M)

(Fwg)” = VT g Yo A Adfo, AdFo A A,

Proof.
Wy = Z dzif@i.
i=1
Owy = Z —dz; \ dﬂ)i = Z df@i A dz;.
i=1 i=1
(Own)” = (Z dfy. A dzi> —m! dfy Adzn A---Ndfy Adzy =
i=1
ml(=1) ™% dzy A Az Adfg, A Adfy, .
Therefore:
— m m(m+1) m' _ —
(360@) =(=1)"= mdfwl N Ndfy, Ndfg Ao Ndfy,

O

Lemma 3.18. Let V = >, fi% + 30 gj(% be an even supervector field, in local
coordinates, on the complex supermanifold S, and let Vjj = B(V') be the vector field on
X associated to V. If det[(]B% (ggg’;(pj)))nm} # 0 for some point p; € S, then:

B(Ber? )(B(0,)) = o g (B0
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where
Ber(V)(z;§) = sdet of  og | ° JVp = (B(Tz;)) and D = (8%’;).
o0& 04
A B
Proof. Consider T' = ( ) , with:
C D

A=) 5= (). o= (@), o= (%)

Since V' is an even vector, we have that f is an even function and g an odd function.

Therefore

filzh, et ey = Y fu.ﬁ(zl’... 2™

pneMy,

with L(u) = even natural number (where L(u) represents the quantity of indices on the

multi-index p ) and

gk(zla"' >Zm;€17"' 7£n) = Z SA'gl,{:(Zla"' ’zm)

AEM,

with L(A) = odd natural number. With this facts in hands we conclude that the matrices
A and D are composed for even terms, while B and C' for odd terms.
Since det(B(D))(p;) # 0, then by definition [1.97, we have:

Ber(V)(p;) = [det(4 — BD™'C) - (det(D)) ] (1)
Once that BD7!'C is a matrix with nilpotent terms (B and C are odd matrices), then

B(BD~'C) = 0 and, as direct consequence of the definitions and [1.88, we have:

B(Ber(V))(B(p;)) = Bldet(A—BD~'C)-(det(D)) '] = Bldet(A—BD~'C)]-B[(det(D)) '] =

_ det(B(A - BD'C)) _ det(B(A) ~B(BD"'C)) _ det(B(4)) _ det[JV]
- det(BB(D)) a det(B(D)) "~ det(B(D))  det(B( D))( (i))-

]
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Remark 3.19. By lemma [3.18, we have det (JVj) = B(Ber(V)) - det(B(D)). Therefore:
det (JVp) ~ Ber(V) - det(D)

In other words, det (JVj) belongs the same equivalence class of Ber(V) - det(D).

Theorem 3.20. Let V be an even holomorphic vector field with a non-degenerate isolated
singularity p; € Sing(V), let S be a compact complex supermanifold with m|n dimension
and let € @ AP guch that (0 + iy)(n) = 0. Then, we have:

(0,0)|(r,n)

77(1 ..... n;l,...,n) (p )
Ber(V) - det(D) | V7

2m\™
Resp, (V,n) = (2>

where
Ber(V)(z;:€) =sdet | 52 %5 | and D= (%).
9 9§

_Owy vy (wo)
t t

t—0

Proof. Since Res, (V,n) = lim ( )exp{ } -m, then it’s sufficient to
SBe Dpj

show that:

, Owp iy, (wp) (27r>m
lim expy ——— — n=|—
t=0 JSB.(p;) t t 1

with p; € Sing(V).

(0,0)|(r,m)

7](1 ,,,,, n;l,...,n) (p)
Ber(V) - det(D) | 7"

Then, we have:

/ { gw@ iV@ (CL)@) }
expy ———— —— =
SBe(pj) t t

Based in (3.6) and (3.7), we adopt the notation: iy, (wg) = (Vo, Vp).

Therefore (by the notation (ii) of the definition [3.4)), we have:

m Y k

(_1)k Vb ‘/@ @w@ (m—k,m—k)|(n,n)
Z ! S R AR B ’ n(l i1, m)
i K BaEm) Vit ¢ ) et
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Now, linearizing the functions near the singularity ([22], [23]) and doing the change of
variable z — z+/t, we have:

i EAY Vit 0
(m—k,m—k)|(n,n) )
' "N, mil,m det . —
k=0 : e/vi (B(p;)) (V)% (L,eomi1,0m)

- (_1)k 3 m—k,m—k)|(n,n m—
= Z k! / exp{— <Vb7 Vb>} ’ (8w®)k : né1 ,,,,, n;l,...,r)z|)( )(\/5)2 2k
k=0 : B, i (B(p)))
Then, when t — 0, we have:

(_1)m ;0)[(n,n 3, \m
m! /(Cm exp {_ <Vb7 ‘/b)} ’ 77((?,0)]7(1,1,),71) ) (aCU@)

Now, by the lemma [3.17}

det (JVy)

/Cmexp{—Zf@if@i}df@l Ao Ndfo, Ndfg, Ao Ndfy, =
=1

(0,0)|(n,n) m
b)) — fa o dfe, Nd A~ ANdfg. Nd =
(0,0)[(n,n)
(1,...n31,...,n) (p)/ exp{—x%—y%—~~—$2 _yz} %
det (JVp) J R2m " "
88-)"@1 aafwl
% Y
Oxy oY1
det dry Ndyy A -+ Ndxy, A dy,,  (3.10)
Ofp, O,
aitm 6y’m
om  9fom

Oxm, OYm
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But since
oo, 9oy
0x1 oy1
0fp,  0fo,
ory oy
det =
Ofoy,  Ofor,
Oxm OYym
9fo,,  Ofo,,
O0Tm OYym
%(ml + Z’yl) (%1(1’1 + zyl)
3%1(901 — i) a%(xl — i)
det =
1 =z
1 —
det = (—2i)",
1 4
1 —
then we have that the equation (3.10)) is equal to:
(0,0)[(n,n)
1, mid,im) (pj)/ exp {—.I% —y == } - (=20)"dx  Ady A+ - - Ndxp, AdYy,
det (JVp) R2m meom
(0,0)[(n,n)
. 7](1 oniln)
—2q)" = () X
o o [e.e] oo
/_Oo exp {—x%} dzy /_OO exp {—y%} dyy - - /_oo exp {—xfn} dz,, /_oo exp {—yfn} Ay, =
(0,0)[(n,n) (0,0)[(n,n) (0,0)[(n,n)
am (1, nsl,em) 2m am (1,1, ) (27T>m N1, nst,m)
—9ym MLl . — (=o)L Ll N — (25 )
(20" e vy @) (Va)™ = (=2mi) det vy P =\T) gy @)
Then:
3 : m . (0.0)[(nn)
lim exp _% - ’l\/@(w@) o — <27T> 77(1,...,'rL;1,...,n) (p)
=0 JSB.(p)) t t i det(JVp) .

Since p; € Sing(V) is non-degenerate, by lemma and by remark [3.19] we conclude
that:
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(0,0)|(n,m) (0,0)|(n,n)
1,...,n;1,...,m) (p) ~ 77(1 ..... n;l,...,n) (p) .
det(JVy) 7 Ber(V) - det(D) |
Therefore:
5 . m (0,0)|(n,n)
lim exp —% _ ZV@(WQ) = (Zﬂ—) i) (p;)
t=0 JSB.(p)) t t i Ber(V) - det(D) | “7"
Then:

(4

Res,,(V.n) = (27‘(‘>m

7)(1 ..... n;1,...,n) (p)
Ber(V) - det(D) | 7
Il

Corollary 3.21. Let V be a even holomorphic vector field with a non-degenerate isolated
singularity p; € Sing(V'), let S be a compact complex supermanifold with m|n dimension
and let n € @APDI9) guch that (9 +1iy)(n) = 0. If det(B(D))(B(p,)) = 1, then we have:

3.4 Localization formula for odd vectors

We will begin this section with some definitions and technical lemmas.

Lemma 3.22. If dO; and dO, are both odd 1-forms, and if dE; and dFE5 are both even 1-
forms, then the wedge product between 2-forms composed by 1-forms with inverse parities

are anticommutatives, i.e.,

(dE; A dO;j) A (dEx AdO;) = —(dEj, A dOy) A (dE; A dO;)
(dO; NdAE;) A (dEx AdO;) = —(dEj, A dOy) A (dO; A dE)
(dE; NdOj) A (dOy NdEy) = —(dO; NdEy) A (dE; A dO;)
(dO; NdAE;) A (dOy AdEy) = —(dO; A dEy) A (dO; A dE)

with i,k € {1,2},i # k and j,1 € {1,2}.
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Proof. This is a direct consequence of the following facts (see proposition [1.75]):

dE; NdE, = —(—1)CWR)E@ENJE NdE;, = —dE, A dE;
dE; NdO; = —(—1)C@EEON GO, NdE; = —dO; A dE;
dO; NdO, = —(—1)¢W0EEON GO, AdO; = dO; A dO;.

O

Definition 3.23. Given, in local coordinates, w = S, dz;g, + >, d&;g;, then we define

w; and wy as:

wi =Y dzg; and wy =Y d&g;
i=1

i=1

Lemma 3.24. Let V = 37", fi£ + >0, gi(% be a holomorphic odd vector written in
local coordinates, where the f; are holomorphic odd functions and g; are holomorphic

even functions without odd variables. Then, given w = 1", dz;g; + >_1', d§;g;, we have:
(i) dw =X dg; Adz + 7, dg; A dE;;
(ii) Ow; =X, dg; Adz and Ow, = 1, dg; A d&;;

(i) (Qwi)* ' =7 (n— 1)l dg, Adzy A--- A dgj//w,zj Ao ANdg, N dzy;

(v) @) = (~1)*5 ztipy dgy A== Adga Adgy A--- A dg,,, where JV = (%)

(v) (Ows)? = 0;

(Vi) (@)™t Bup = S (n = 1) (=1)" % dzy Ae- AdE A Adzy Adgy A= A
dg; A - A dg,.

Proof. (i) w= >0 ,dzg;, + > d&g;, then, by equation ([2.3]), we have:

Ow=> " —dz; Ndg; + Y —d& Ndg; = _dg; Ndz + Y _ dg; A d&;

i=1 i=1 =1 i=1

(ii) It’s a direct consequence of (i).

(i) (Dwi)"t = (S dg, Adz)""" = X0 (n—1)! dg, Adzy A- - -Adg, A dz;A---Adg, Adz,.
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(iv)

(Own)" = (Y dgi Ndz)" = (n)! dgy Adz A+ Adg; Adz A Ndg,, Adz,

n(n+l)

(Owr)" = (n)!(—1) dzy A+ Ndz, Ndg, A -+ Ndg,

= nint1) (n)!
(Gwn)" = (=1 = v

dgi A--- Ndg, Ndg, A --- Ndg,

where JV = <g§;>nm'

(v) As a direct consequence of lemma we have (3 dg; A d&;)* = 0. Thus
(Own)? = (X dgi N d&:) =

(vi)

3

(Z(n— 1)! dg, A dz /\---/\dgj//\\dzj/\-~~/\dgn/\dzn) : (ngﬂd@) :
=1

J=1

(Ow))" ™ Owy = (Z(n —Dldg, Ndzy A= Ndgy NdE N - - Adg, A dzn)
j=1

n

(gwl)”—l_ EWQ _ Z(n—l)! (_1)n(n2+1)

=1

A Adzn Ay A - NG A - -Ad,,.

O

Remark 3.25. Since the functions g¢;,i € {1,...,n}, are even functions, then, in this

case, it’s no problem to represent w, w; and wq by
n

= Zﬁldzl + Z?Zd&, w1 = Zgldzz, and Wy = Zgld&
i=1 i=1 i=1

Lemma 3.26. Let V =", f;-2 9. T 2ic1Yige ag be an holomorphic odd vector written in
local coordinates, where f is an holomorphic odd function and g an holomorphic even

function without odd variables. Then, given w = > | g,dz; + > §,d&;, we have:
(i) exp {—iv(w)} = exp{=32Gig:} - (1 = G fo);
(ii) exp{>r,dg, Ndz + >, dg, Nd&} =exp {>iL, dg; Adz} - (1+ 30, dg; A dE;);

(iii) exp {_iw} — exp{ awl} L 1); (awl)“t'j‘” Bun
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Proof. (i)

exp{—iv(@)} = exp{= D79 = 2. G.fi} =exp {= D Gigi| - exp{= D> 7S} =

eXp{—Zgigi} (1_Zngz ZngZ) (Zgz'fz) +>

But observe that the function )7, f; is odd, and thus is nilpotent, i.e:

(Zgifi)Q - (Z?ifi)g == (Z?Ji)k — ...
So, the result follows.

(i)

0.

exp {Z dg; N\ dz; + Zdﬁi A d{z} = exp {Z dg; N dzi} - exp {Z dg; N dfl} =
=1

i=1 =1 =1

u d " dg; A d&) " dg; A d&)’
exp{z /\dzl} <1+<ngi/\d§i>+( i=1 g; &) B g; &) +>
=1 : :

However, as direct consequence of the lemma [3.22] we have:

n 2 n 3 n &
(Zdwd&> —(ngwd&) —"'—<ngi/\d§i> _ .0
=1 =1 i=1

So, the result follows.

(iii) As consequence of the item (ii), we have:
o d O O Own) f Bwn | Owa)
S B2 e T (e PUTt ST
N = \k = =
1 awl 1 8&)1 (90.)2 aWl
T4 .- — — ==t AP & el 7
{+ +(k'—1)!< 75) +k!< t>+ }{ t} exp{ t}+

_ _ . — A
{_8w2 n Owy - 0wy 1 (30)1) - Ows

(1 (Ban)" B 1y () B }

(n—1)! " (n)! tn+l
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(,1)n+1 (5w1>n~5w2

And since ol s — = 0, we find:
_ _ /s \U-1) =
ow| 0wy 2 (=1) (5601) Ows
R R R N e

]

Definition 3.27. Let us to define some notations that will be important to the next

lemma and theorems:

(1,0)|(n—1,n)

1. We define the function U as the function that go along with the form:

2. We define the function 77(1 Oln=Ln) a5 the sum of the functions n(l Ol(n=1,m) e
(1,0)|(n—1,n) 0)|(n—1,n)

Mz
Q)H

7” ~
J=1

3. We define ¥ n%’o)l("_l’”) as the even function given by:

1,0)|(n—1,n
En(;: I( )

A.0)l(n-1n)
J

n

.M:

<
Il
_

(1 0)|(n—1,n)

where each parcel 7 is an even function.

4. We define n (1 OIn=1m) 45 the odd function given by:

1,0)|(n—1,n) - (1,0)|(n—1,n
077( Zon pII¢ )

(1,0)|(n—1,n)

where each parcel %9 o is an odd function.

And as consequence of the items (3) and (4), to a non homogeneous function 77(1 Olln=1.m)

we have:

*

Remark 3.28. Let us to comment some important details to comprehension the proofs

of the next theorems:
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o As On%’o)‘("_l’”) is an odd function, then the term (51 Y SR TRERT 077%8”(2;13)

doesn’t belong to its expansion because this term is even;
)

o If L(p) is an even number (p is a multi-index) and n is an odd number, or if
L(p) is an odd number (x is a multi-index) and n is an even number, then the

term (5“ ' El g EUQ’O)KWI’")) does not belong to the expansion of En%’oﬂ("*l’")

*(p,1...m)
because this term is odd, but the function £y~ ig even.

k)
*

Lemma 3.29. With the notations of the definition [3.27, we have:

S dzy AdECA - NdE; N AdE NE N - A dE, 77(;;0)|(n71,n)/\

j=1
Ndzg N---Nd§; N\ -~ Ndz, Ndgy N\ -+ Ndg,, =
le/\"'/\dZn/\d§1/\"'/\dgn/\dfl/\"'/\dfn/\dgl/\”#\dgn En(é,O)l(n—l,n)
— d21A~--/\dZn/\d§1/\-~-/\d§n/\d§1/\---/\dfn/\dfl/\---/\dzn 077(:1;70”(”_1’71).

Proof. Remembering that n%’o)‘(n_l’") = Enq’o)'("_l’n) + an’o)‘(n_l’"), and using propo-

sition let us to begin studying the following factor:

dziAdE A - -NDE A - - NAEADE A - -AdE, n&OI—m

J

INdzy A - NN - -Adzp NG, A- - -Adg,, =
ey Ny A NG Ao g Ay A WG, (P B0 g 00N gy
NdE; A Nz Adgy A - Adg, =
Az AdELA- - -NE N - -NAELNE A - -AdE,, En%"’)'(”’l’")/\dzl/\~ CAEA- - Nz Adgy A- - A, +
Az AdELA- - -NE ;N - -NAENE A - -NdE,, On%’o)'(”’l’")/\dzm CAEA- - Nz Adg, A- - -Adg,, =
—dE A+ NIEA - NAENE A - -NdE,, En%’(’)'(”*l’”)dzj/\dzl/\- CAEA- Az NG, A- - -Ad,,
—dE i A+ NIEN- - NAENEL A - -NdE,, On%’o)'(”’l’")dzj/\dzl/\- SN Az NGy A- - -Adg,, =
&N - - NDEA- - - NdELNDE A - -NdE,, En%’o)'(”‘l’”)dgj/\dzm- AdziA- - -Adzu gy A- - -Adg,, +
dELA- - -NIE N - - NdELNDE N - -NdE,, On(é’o)'(”‘l’”)dgj/\dzl/\- Az A - -AdzgAdg, A - -G, =
dE N - - NE,A- - -NdELNE, A- - -NdE,, En%’o)‘(”‘l’”)Adzl/\- - Adz ANz Adg, A- - -Adg,,

— A€ A - NDE A - -NELNDE N - -NdE,, On%’o)“n_l’n)/\dzl/\- AdziA- - Nz Adgy A- - -Adg,, =
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dELN- - NdEA- - - NAENEL A - - NIE Nz A - Ndzi A+ - - Adzu NG, A+ - NG, © %’0)'(”‘1’")

— A€ NE A - - NIENEL N - -NIE N2 A - A2 - - Az NGy A - -Ndg,, O (10)‘("’1’”).

Then:

ZdeAd£1/\'--/\C/lgj/\.../\dgn/\dgl /\d§ 0)|(n— ln)/\
=1
Adzy A= NdEj A - ANdz, Ndgy A -+ Adg,, =

déy N NdEy NdEG N - NdE, Ndzy A+~ Ndzy, Ndgy A -+ N dg, (Z

J=1

(1,0)|(n—1,n

E77 I >)

_ € AL AdE G A A dT "~ 0 (1,0)|(n—1,n)

d&y N NdEENAEL N+ NdE, Ndzy N+ Ndz, Adg, A /\dgn(z Uk )
j=1

And by definition [3.27] items (3) and (4), we have:

j=1
ANdzy Ao NdEGN -+ Ndzy Ndgy A -+ N dg,, =

dzi A+ Ndzg Ndgy A -+ Ndg, AdELA -+ N dE NdEy A -+ A dE, EnGOI
—dey A Adzg NGy A AdG, AdELA - AdEg ANdEL A -+ AdE, On;‘”'(”‘l’”).
O
Now, consider the odd vector field in the superball SB.(p;):
V= Z f]a + Zgg 5, (3.12)

with f;(z,£) holomorphic odd functions and g;(z) holomorphic even functions without

odd variables, i.e, even functions with expansion g;(z,£) = gj,(2) + Xacar £ - 0.

Definition 3.30. Let S be a supermanifold of n|n dimension and let V' be an odd super-
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vector on S written locally as done in the equation (3.12). Then, we define:
Sing(V) :=={p€ S| gB(p) =0, vie{l,...,n}}

Sing(V') is called singular set of V on S and Vp € Sing(V) is called singular point or
singularity of V on S.

Definition 3.31. We say that Sing(V) is a set of isolated singularities if Vp; € Sing(V)
3 e > 0 such that B. (B(p;)) N B (Sing(V)) = B(p;).

Definition 3.32. Let S be a supermanifold of n|n dimension, let V' be an odd supervector
on S, written in local coordinates by V' = >, fia%i + >0, gia%, with f; odd functions

e g; even functions. Then we define the Berezinian of the odd vector V' by

7

o0&

Ber(V)(z,§) = sdet | 57 o7
Definition 3.33. Let V be an odd supervector on S. We say that p € Sing(V) is a
non-degenerate singularity of V' if B [Ber(V)] (B(p)) exists and B [Ber(V)] (B(p)) # 0.

Let V' be an odd supervector with isolated singularities. Then, for all p,, € Sing(V),
choose superballs SB.(p,;) (with B.(B(p,)) = B(SB(ps.))) such that B.(B(p;)) N B.(B(p;)) =
0, for each B(p;) # B(p;), with p;, p; € Sing(V).

Remark 3.34. If B(p;) = B(p,), then SB.(p;) = SB.(p;) because we are working in the
DeWitt topology (see definition , and, therefore, any superball cover all the odd part

of the supermanifold.

Now, assuming the conditions over the superballs, consider the form defined in S B (p;):

j=1 i=1

Observe that each @; is defined only locally, because the functions g; are holomor-
phic on the compact supermanifold S. If they were defined globally, then they should be

constant functions ([19], [12]). We will use the unit partition to define a global form w on S.
With an appropriate partition of unity, we will construct a global form w such that

Wigp, ) = Wis Vi.
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Definition 3.35. Let S be a compact supermanifold of n|n dimension, and let SB.(p;)
be superballs in S. Now, let 4 = (S — Uﬂ?&pﬁ) U (UiSBae(p;)) be an open cover of S,
such that B.(B(p;)) N B(B(p;)) = 0, for p;,p; € Sing(V), let w° be a form defined on
(S — U;SB. (p2)> such that B [iy(w°)] > 0 and let {p;} be a partition of unity subordinated
to 4 (see theorem . Then we define w as the global form given by:

w = powo + Z p,cDZ (314)

To complete the definition, we need to construct the form w®. Let Q] = U; W; be an
open cover of S — U;SB(p;), where, for each W;, we have V = Y1, f 2 + 7 gl ag

and let {x1} be a partition of unity subordinated to 2. Then, we construct w® as follows:

o= (Z ggd@-) . (3.15)

With this construction, we ensure that B [iy(w®)] >0 Vp € S — U;SB.(p;)-

Remark 3.36. The operation S — U;SB.(p;) is defined as follows:

S = USB(p)) =B (X - U;B. (B(p))))

where X = B(S).
Lemma 3.37.
(0+iv)(@) =0, Vi and (9+iv)* (") =0.

Proof. Consider w; = 71", g;dz;+3>27_; §;d§;. Then, by the fact that f, g are holomorphic
functions together with the properties of the contraction operator (see [13]) and of the
derivation, it follows that:

(In this proof, we will use the proper: iy (a A 8) = iv(a) A B+ (—1)"a Aiy(B), with

a being a k-form)

(O+iv ) (@) = (Z g,dz; + Zgjdfj) (O+iy ) (0+iy) (Z g;dz; + Zgjdg) =
(@ + iv)( 5 (Z 7z + > 9,d8;) + @ +iv)Giv) (D g,dz + Y 9,d) =
@ +iv) (Y dg; Az + " dg; A&+ 3,0+ > 7,05) =
(@) (3 dg; Adz; + 3 dg; Adg; + 39,0+ > 9,0;) +
(iv) (Yo dg; Adz + Y dgy NS +>"9,1+>.9,9,) =
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Z [gyjfj +§j5f]} + Z {gngj _‘_gjggj} +
> (ivldg)) Adz — dg; Aiv(dz)) + 3 (iv(dg,) A dg; — dg; Aiv(dg;)) +
Sy (yjfj) +> v (5,9)) (3.16)
Since df; = dg; = 0 (because f;, g; are holomorphic functions), iv(dg;) = 0, and, by

convencional (see [13]), iv(g;f;) = iv(g,;9;) = 0, we have that the equation is equal
to:

= (3 fidg, + 3 95d,) + (= 3 fidg, — 3 g5dg;) = 0

Now, let us to prove that (9 + iy )*(w’) = 0.

@ + i) (Z#J (Zggd&)) Zu] @j d+iv)? (gfd&)>

And, for each term, we have:

(0+iv) (dgl A d& +glg]) = 3 (dg! A d&; +glg!) +iv (dg) A dé; +7lg]) =
0glg! +gl0g] +iv(dg)) A d& — dgl Niv(d&) = gldg) — gldg] = 0.

]

Remark 3.38. By equation (3.13), lemma and definiton [3.35] we observe that
= w;, Vi, and (9 +iy)?*(w) = 0.

WisBe ()

From now on, the odd holomorphic vector V' and the form w will be given by the
equation (3.12)) and by the definition [3.35] respectively. And remember that g(z) in the
equation (3.12) is a function without odd variables.

Lemma 3.39. Let S be a supermanifold of n|n dimension. If t > 0 and if n € @ APDI9)
is a form such that (9 + iy)(n) = 0, then we have:

o= {22

Proof.

(i/sﬁ.exp{—ﬁ(ﬁ%—iv)w} = _/Sn. (5+iv)w'exp{—/€(5—|—iv)w}'

Now, observe that, by remark [3.38 ((5 +iy)*(w) = O), we have:
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(—/-f@ + iv)w)L

L =0

0+ iv)exp {—r(D+iv)w} = > (0 +iv)

L

Therefore, as (0 + iy)n = 0 and (9 + iy) exp {—/@(5 + iv)w} =0, we have:

_/Sn (0 +iv)w - exp{—/f(g—i—iv)w} = —/S@+ iv) (77 W eXp{—/ﬁ(5—|— iv)w}) _
Then:
/5(5+ iv) (77 ‘W - exp {—li(g—l— iv)w}) =

/55(77 Cw - exp{—ﬁ(5+iv)w}) + /Sz'v (77 “w - exp{—ﬁ@—i— iv)w}) .

By lemma , we have [q0 (77 W - exp {—5(5—1— iv)w}) = 0 and as the contraction iy
promotes the lost of top form in the integral, then [y (77 ‘W - exp {—5(5 + iv)w}> = 0.

Therefore 2 [47 - exp {—/ﬁ@ + iv)w} = 0. So, we have:

/n—/n exp{ Gtw iviw)}
O

Theorem 3.40. If the odd holomorphic vector field V' is a supervector without singu-

larities on a supermanifold S of n|n dimension, then for any n € @A®DI3) such that

(0 +iy)(n) = 0, we have:
/ n=20.
s
Proof. By definition [3.35|, we have:

iv(w) = (3.17)

pow’ + sz (Z g]dfj) sz (Z g]dzj)

To simplify the notation, we will use the following:

L (powo +3p Zg§d§j> (V). (3.18)

Since V' is a supervector without singularities on S, then B (w”) > 0, and as S is
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compact, 30 > 0 such that:

B (w') > 4. (3.19)

Now, note that:

(V) =

[Z pi (Zfﬁ%) > pi (Z g§f})] . (3.20)

Beyond that, we have:

Ow = po ) (Z dg; A dﬁj) +>pi (Z dg' A dsj) +3 i (Z dgi A dzj) (3.21)
k j=1 i J @ J=1
Then, by lemma [3.39
/ / Oow iy (w) / o Ow ox —iy(w)
Sexp{ —— — — : _ ‘
< n o n p ; ; o n p ; p /
By equation (3.17]), we have:

- [ + S (S5 7506) [ (V) [Simi (590d2)] (V)
/Sn-exp{—t}exp - '

t t

By notation (3.18)), we have:

- ‘ [ n.exp{_%}ﬂp{_w_ Zon (517105 <V>}|

t t

Let’s denote exp {—%v} by e/t Then:

Ow i Pi j?dzj V W/t
Z‘/Sn-eXp{—at}eXp{—[ZP(zg ) >}6w/

By equation (3.20)):

N ‘/577 - exp {_a:;} exp {— Zn(Z,815) }e“/t .

t
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By the demonstration of lemma [3.26] item (i), we have:

:anﬂg?H%J&m@%mgewt

t
‘/w-exp{_gtw} o /Sn~exp{‘aw} [En G
‘/Sn.exp{_;u}e—w“/t

t t
By equation (3.21):

<

_|_

<

+§a:§b:

[-esn{ -2}, o8I0

t t

_ ‘ [ e { —po S g (S5 dgy A dE;) — i (? dgy A d§;) = i pi (S dgf A dz) } _—

/S77 exp { —p0 2k Mk (Z?=1 d?? N dfj) — 2P (Zt:? d?; N déj) — 2P ( ?:1 dﬁ; A dzj) } y

00 (GEF5))
t

By lemma [3.26] item (ii):

t

{/ww%‘ﬂm(%”@“%ux
S

_l’_
t t

/577 exp { — i Pi (2?21 dg; N\ dzj) } "

( | Tk (Sypidgh ndg) o (S5 dgy A d;) ) _—y

t

»>

(1 o0 S (S dgy A dg)  Sip (55 dg) A d@-)) o @S] o

<

t t t
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‘/S 0 - exp { — i Pi (Z%l dg} A dzj) } o],
— oy n = ) —k '
22 { 2L } o ()
Sy / y-exp { — X pi (E?? dgi A dz;) } pi (dy;lt/\ dg;) ],
i
P { i (Z?tl g; A d3) } oo )
a b

_l_

/ ) oxp { -2 pi (Z?tl dgi A de> } otk (di{“ A d&) [Pa (gtg 7o) —y

i Pi (Zn:1 dj; N dzj) } Pk (dﬁf A d&) [pa (T3 1)) oW/t <

S (3
/577 exp{ t t t

DB

a l

YTY

a 1
Z": 1 — X pi (S5 g A dey)  pn—an=—al(nn) v/t |
— ol Jx t N1..m,1..n) e

n—1 — .0 n ot . “ -k
a=0 & G X

n—1 N dai Ad @

Z i Z Z B ZZ Pi (Zj:l 9; A Zj) pldg] o (n—an—a-1)[(n-1,n) —w®/t +

0 ol = — |x t t n(l...n,l...n) €
a= i g

ZZZZ

A ,A2, A3, €M
M AAz=Ag+Ag=n

( > Pi (Z] 1 /\dzﬂ))a [ “( bfbm,m)} (n—an—ajl(nn) —wv/t| |

t t (As.Aa)

n—1 1
ISP I ID IS
a=0Y @y k1 A1A2,A3,A4€M

A1+A3=Ag+Ay=n

_|_

(—Zmi(

;l:l dg; N dz]) Po,ukdgf [pa (ggfél(Al,Ag))} (n—a,n—a—1)[(n—1,n) —w”/t
t n n (X3,2q)

J,

nll

22222 X

AoAg, A3, A€M
A +A3=Ao+Ag=n

1o dgh A dz) ) " pidgt pa (9315, | p(nman—a L) —wr |

Js

t t t (A3,04)

(—Zmi(
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And by [3.19] we have:

1 — S (S 4 A dz) T o s
a=0 a! t 77(1..‘n,1...n)
_ — 2 Pi (Z?Zl djj- A dzj) Po,ukdﬁf RN
) n(l...n,l...n) € +
n 1 1 — i Pi (Z?q dg; A de) PG (n—am—a-1)(n-1m)| s/t
) n(l...n,l...n) € +
t t
IS IS
= Oé a b A1A2 A3, EM
A +A3=Xg+Ag=n
_ Zz Pi ( ?:1 dy; A dZ]) {pa (?gﬁ?{)\l,)\g))} (n—an—a)l(n,n)| -6/t
X t t ’ 77()\37)\4) e

222> X
bk 1 AA2A3MeEM
A FA3=Ag+Ag=n

/ 2ihi ( j=149; dzj) potuedgy {pa (ggfl?(mm)} pmmen—a=Dln=Ln)| 5/t
X t t t T0aa)
n—1 1
pI-DI D IEPD
A>A2, A3, €M
A FA3=Ag+Ag=n
) a —=a fa
—2ipi (Zj:l dg; N dzj) prdgy {p“ (gbfbm,m” _p(n—an—a=1)|(n=1,n)| s/t
‘A t t t T.2) ©

Studying each parcel, we find constants C; > 0,Cy > 0,C3 > 0,C4 > 0,C5 > 0,Cg > 0
such that:

et <

(—Zmﬂ

i1dgy A de)) _ n(n—a,n—aﬂ(n,n)

t (1..n,1...n)

1 1
Cre 3t (1 bt ) Vol(x) =80,

tn

n—1 1

e/t <

(—Zim(

?:1 dg; A de) Po,ukdgf . (n—an—a=1)|(n—1n)
t n 77(1...n,1...n)

1 1
Che™ 0/t (t e tn) Vol(X) =30,
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> . 1 — % (S5 g A d2) \ pidg e ae i1 b/t <
1 1
Cye%/t (t + - tn) Vol(X) =3 o;

e 0/t <

(—Zim(

j=1 495 d%'))a 20 (5, 00)] o ainaom
/ 7 T(x3,0)

1 1
Cye (t-+~--4—tn+1)‘/oﬂ)() 290,

”f 1 ~ %o (X 495 A )\ pogundgt [P (305 00)] 0enationim]| s
=0 al Jx t t t 77()\3)\4) €
< Gt (1 LY vox) 2o
(G ) Vel R
(| —2ipi (anl dgs; A de) i prdgy [Pa (?gfl? }
Z - J J kYY1 (A1,22) n(n a,n—a—1)|(n—1,n) _5/t
— ol Jx t t t (Aa,2a)
< Coe (4o = Vol(X) =30
= L€ 12 tntl 0 ’

where C, Cy, C3, Cy, Cs5, Cg are constants that limit superiorly the continuous functions
in each integral (remember that X is a compact manifold). Since all the isolated parcels
above go to zero when ¢t — 0, then the complete sums of each parcel go to zero too, and

thus we get our result. O]

In the next result, we will formalize the theorem of residues to an odd holomorphic

supervector field V' on a supermanifold S of n|n dimension.

Theorem 3.41. Let V be an odd holomorphic supervector field on S with isolated sin-
gularities p; € Sing(V), then for any n € @APII™s) such that (0 + iy)(n) = 0, we

have:

J,n="3 Res, (v.n)

where

t—0

D zv(w)}

Res, (V,n) =1li

Proof. This proof is completely analogous to the proof of the theorem [3.16l Remember
that here we consider only the points p;, p; € Sing(V') such that B.(B(p;)) N B(B(p;)) =
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0 because to points p;,p; € Sing(V) such that B.(B(p;)) N B(B(p;)) # O we have
B.(B(p:)) = Bc(B(p;)), and consequently SB.(p;) = SB(p;) (look definition [3.31]). O

3.5 Determination of residues for odd vectors

Now, we will determine, on some hypotheses, a formula to calculate the residues

Res,,(V,n) to odd vectors. First, consider the following lemma.

Lemma 3.42. Let V = ¥, fz-% + 30 gja%. be an odd supervector field, in local
i J
coordinates, on the complex supermanifold S of n|n dimension, where f; are odd functions
and g; are even functions without odd variables. If det [(IB% (%(pj))) ] # 0 for some
nxn

point p; € S, then:
det (JV)

Ber(V)(p;) = W(pj)-

where

ggi gﬁ ag of
Ber(V)(z;€) = sdet s oh | JV = (82) , and D= (6—5) .
o5 9§ I/ nxn

A B
Proof. Consider T' = , with:
C D

A= (), B= (%) C= (), P=().

Now, note that C' = 0 because the functions g; do not have odd variables. Then, since
det(B(D))(p;) # 0 (hypothesis), by definition we have:

det(A) _det (JV)

Ber(V)(p;) = [det(A — BD™'C) - (det(D)) ] (p;) =

[l
With the notations of the definition [3.27] in hands, we have the following theorems.

Theorem 3.43. Let S be a compact complex supermanifold of n|n dimension and let
V be an odd holomorphic vector field with a non-degenerate isolated singularity p; €
Sing(V'), whose representation in local coordinates is equal to V- = >_7 | fia%i +>0, gl-a%i,
where g;(z) are even functions without odd variables and f;(z,&) are non-constant odd
functions such that f;(p;) = 0. Furthermore, let w be the form defined in and let
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n € @ APDIS) be a form such that (9 +dy)(n) = 0. If the number n (dimension) is

0,0)|(n,n)’ 77(LO)I(nfl,n)

even (odd) and if the functions 7 have only even (odd) quantities of

variables ¢; in its expansion, then:

(0,0)|(r,m) (1,0)[(n—1,n)
/'7(1 n;l.. n)+ F

27T n *(1..n;1...n
Resy, (Vi) = ( i ) Ber(V) -defc(D) - @)

where
% %
2 2 _ (Of
Ber(V) = sdet e o and D = (6—5’;) :
o0& 04

" n }, then it’s sufficient to show

P Since R V,n) =1 : —
roof. Since Res, (V,n) = lim S50 n exp{
that:

— (070)|(n7n) (170)‘(77'717”)
. ex - — J— ).
=0 JSB(p)) e t t i Ber(V) - det(D) bi

Then:

By lemma [3.26] item (iii):

Ow; n(=1) (gwl)(j_l) Oy iv(w)
/SBe(pj)n. exp{ }+Z tj ~eXp{— ; } =

==

By iy ()
/SBe(pj)n exp{ r } exp{ . +

n(_1) 3" B, v (w
2 (§ —1)1)! /SBe(pj)W ( ) t7 .exp{_ V’(f )} -
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Now, linearizing the functions near the singularity through the Taylor series, and doing

the change of variable z — zv/t, we have:

— - <_1)k/ n- (aw;zk -eXp{—iv(W)}det \/E : +
i K JsB s Vit 0 NG
~ (1) / - (8w1>(j1.) O cexp {—iy(w)} det v ’ =
=1 (J — D! s, 40 \/EQJ 0 Vi
li) (_kl')k /SBe/ﬂ(pj) " (EWI)]C e {=iv(w)} \/E%i% i
le (15'11)1];! /SBE/\ﬁ(pj) U (gwl)(j_l) Owy - exp { —iy (w)} - \/52”_%-

Doing ¢t — 0, we have:

(e

n!

foo @) vt (0 [ @) v v

By lemma [3.24] items (iv), (vi), and by definition [3.27] item (1), we have:

n(n+1)
2

(=1 (-

det(IV) ) e dgi N+ - -Ndgu AdGy N - -AdG, NdE N+ -NdE,, exp{—iy(w)} +

n(n+1)

. 3 B de z = (1L0)|(n-1n)
1);/(%;1(”—1)!(—1) ’ (dzj/\d&/\"'/\dfj/\"'/\dgn/\d&/\'”/\dgn7]; )

(n—

Ndzy N Nd§GN - Ndzy Ndgy A== Ndg; A --- Ndg, - exp{—iv(w)}.

Now, by lemma |3.29 we have:
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. n(n+1)
e
det(JV)(pj) Cnln

()" (T

dgi -+ -Adga NGy A- - -Adg, AdE A - -NdE,, 7OV exp {—iy (w)} +

dzy N Ndzy Ndgy N+ Ndg, NdEy N -+ Ndéy NdEL N -+ NdE, %

EpQONn=tn) - oxp {—iy (w)}

dzy AN+ Ndzy Ndgy A+ Ndg, NdEy N+~ ANdEy NdEL N~ - NdE, X

OO =) oxp {—iy ()} =

Cnln

Ccnln

n(n+1)
(=D)"- (=1~
det(JV) g,  Jomn
n n(n+1)
(—1)" - ()™
det (JV),, Jen

dgi -+ -Adgu NGy A+ - - AdG, AdE A - -NdE,, 7O exp {—iy ()} +

dgi N+ ANdgy Ndgy N+ Ndg, NdEy N+ NdEy NdEL N -+ NdE,, X

EU%D)‘(”_LH) cexp {—iy(w)}
G )
- dgi A+ Ndgn, ANdgy N+ -~ Ndg, NdEL N -+~ NdEy NdEL N -+ - NdE,,

O exp {—iv (W)}

To a better comprehension, let’s study these integrals separately

(a)
(D" (-=E
A N dgiA- - -AdguAdGy A- - -AdG AdEN- - -AdE, 7 OO(nm), i
d€t(JV)(p]) ,/(C"|" gl/\ A g A gl/\ A gn/\ 51/\ A énn eXp{ ZV(M>})
(b)
n(nt1)
)" (=)=
det (JV),,
g Ao Adgy Adgy A~ A dg, Adgr A NdE, PGP - exp {—iv ()
n(n+1)
=) e
det (JV), )

gt Ao N g gy A Ndgy A A AdE, O F T exp iy (w)}
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(a) By lemma [3.26] item (¢), we have:

(- ()T

“ e " “ e Il e I4 (0,0)|(n,n)_ _1 —
det(TV) ) -~ dgi A+ - -Ndgp Adgy - - -Adg, NdEy N - -NdE,, exp {—iy(w)}

n(nt1)
(=)™ (=1)"> / 00
dgi\- - -Adga NdGy A- - -AdG, NdELN- - -NdE (n,m) ’
det(JV)(pj) Cnln 91 Gn/\AGq G, /\dE 577 exp{ Zgzg}
(__1>n (__1)ﬂ(n+n
dgi A -+ Ndgy Adgy A - Adg, AdE A+ AdE
* det(JV ) p,) /(Cn\n g1 g 91 Jn N d&1 g, ¥

O exp {3 g0} (=D fi) . (3:22)

Let’s calculate the first integral of (3.22)):

. n(n+1)
(=)™ (=1)" =
det(JT/)QU) Cnln

dgi - - -Ndgu Adg A+ -Adg NN - -AdE, 1O exp { =" Gigi} =
(3.23)

n(nt1) (0,0)|(n,n)
(_1)n ’ (_1) 2 Na.nl.n — — _
(L...m, )(pj)/(cndgl/\---/\dgn/\dgl/\-~-/\dgn exp{—Zgigi}:

det(JV)
ng?OHQIn%
n n — —
— dgy N dg -Ndg, Nd — Gi ¢ =
Gt (V) / 91 A dgy A gn Adg,, exp{=>7.g:}
(0,0)[(n.n)
det(JV)
991 9qn
Or1 Oy
99, 99,
Or1  Oy1
, det dzyANdyy N+ - -Ndzp, Ndy,, exp {—(x% +yi e+l + yi)}
= Ogn 9gn
Ozn  Oyn
Ozn  Oyn

(3.24)
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But since
991 91
Oor1  Oy1
99, 99,
Ox1 Oy
det =
9gn  Ogn
Oxn Oyn
99, 94y
Orn  Oyn
9er (@1 Y1) g (@1 +iy)
o (@1 —iy1) g (1 — i)
det =
oo (0 +iyn) o (Tn + iys)
ain (Tn — iYn) &(zn — iYn)
1 i
1 —
det = (—2i)",
1
1 —i
then we have that the equation (3.24)) is equal to:
77((?70”({%"))
.-.n7...n . —_— )T .« .. . —2— 2—---— 2— 2 f—
det(JV) (p;) /Rzn( 2i)"dxy Ndyy A - -+ ANdxy, A dys, exp{ 7 —Yi x; yn} =
(20" ety e 2V gy [ 2
devy P /_oo exp { —ai} dry /_oo exp{~uij din
+00 +o0
X /_ exp {—xi} dz,, /_ exp {—yi} dy,, =
\n 0,0)|(n,n 0,0)|(n,n 0,0)|(n,n
(—21) -77E1...3@‘,(1...12) (p;) <ﬁ>2n _ (—2mi)" 7751...2{(1,,,73) (p;) = (27r>n 77((1,.,2,(1..13) (p;)
det(JV) ! det(JV) 7 i det(JV) 777

To analyze the second integral of (3.22)), the hypotheses will be necessary:

e (Even case) The second Berezin integral is equal to zero because g, f; are odd func-
tions (odd quantities of variables ;) but, by hypothesis, n0Imn) has only even
quantities of variables ;. Furthermore (by hypothesis) n is an even number (even

dimension). Therefore, we will never find an even top quantity of variables ¢;, i.e,
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we will always find the following:

J
dii N Ndy &Gy gy — 0. (3.25)
—_—

even quantity odd quantity

e (Odd case) The second Berezin integral is equal to zero because g, f; are odd func-
tions (odd quantities of variables ;) but, by hypothesis, n®»!("") has only odd
quantities of variables ¢;. Furthermore (by hypothesis) n is an odd number (odd
dimension). Therefore, we will never find an odd top quantity of variables &;, i.e,

we will always find the following:

d§i N -+ Nd&y £j1 o 'gjzz L 0. (326)

odd quantity even quantity

Then:

n(n+1)

—1)". (=1
(=D (=)= dgi A - Ndgn Adgy A -+ Adg, AdELA - -

det(JV)(pj) cnin
A dE, @01 ey {_ Z@‘gi} <_ Zgifi) =0 (3.27)

Therefore:
(-1 (=)™
—) A7) 2 dgiA- - -AdgaAdg, A+ - -Adg, AdEA- - -NdE, n©OOIn). —i =
det(JV)(p,) crin 9 Jn G IS En exp{=iv(w)}
(0,0)[(nn)
27 nn(lnln)
— ] == (p;). (3.28
<z) det(gv) P (328)
(b)
()" ()"
dgi A+ Ndgy Ndgy A+ ANdg, NdE N -+ NdEy NdEY N+ NdE,, x
det (JV) ., Cnln

En GO exp { =iy (w)}

n(n+1)
2

1) (=1 _ _
_ =D / dgiN---Ndgn Ndgy A== Ndg, NdE N -+~ NdEg NdE N -+ - NdE,, X
det (JV),,,  Jeoin

OGO exp {—iv (w)}

And by lemma m, item (i):
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(=1)"- (—1)% E, (1,0)|(n—1,n)

’]7/\
= el / dgi A- - -Ndg, Adgy A- - -Ndg 3 G0
Jet (JV) (p;) [, don gn Ay G, e {—>_7,0i}

n n(ntl) (1,0)|(n—1,n)
(=D (=)= In;
L) ‘/d A---Adgy Adgy A--- Adg -3 g0
det (JV) #) [, 4 In O 7. b |- 7.0

n(n+1)
2

—1)". (=1 _ _
_ =Dt =D dgy -+ Adgn Adgy A- - Adg, NdELA - - NdEy NEL A -~ - N dE, X
det (JV)(p]) Cnln

PO ey (35,0 (X 9,)
n(nt1)
2

—1)". (=1 _ _
+< )" (—1) / dgy A+ Ndgn Ndgy A== Ndg, NdE N - - - NdE, NdE N - - - NdE, X

det (JV),) ~ Jeoin
OpAOlm=1m) oy, {— Z?igi} (Z ?jfﬂ‘) '

Since By LOI-1m

remark |3.28)), we have:

(1,0)|(n—1,n) .

is an even function and as “n is an odd function (look

~
*

(=17 - (=1)*5 ByLOlm—1n)

*(1..n,1...n) _ _ _
= ; dgiN\---Ndg, Ndg,\---Nd — Ji
det (JV) (P;)/Cn 91 A 7. exp{— > 7.9}

n(n+1)
1) (=) 3 z
Gt i el D dgy A+ Adgn Adgy A- -~ Adg, NdEy A+ AdE, AdEy A AdE, X
det (JV),,,  Jerin
O exp (=3 giai} (9,05) - (3:29)

To the first integral of (3.29)), we have:

(—1)"- (_1)@ B, (1,0)|(n—1,n)
*(1..n,1..n — — _
( ) (pj) /(C” dgi A\ - -Ndg, Ndg, N\ - -N\dg,, exp {— Zgigi} =

det (JV)

27‘(‘ n ,’7(,1\70) ‘ (nflzn)
N (21 *(1..m,1...n) '
(v) ( i ) det (Jvy | P (3:30)

E (170)‘(n717n)
i det (JV)
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And by a similar argument showed in (3.25)) or (3.26)) (assuming the hypotheses), we have:

n(n+1)
(=D"-(=1) >

s Adgy AdEy A -+ AdE, ORI exp (=S g} (3o 7,85) = 0.

dgi A+ Adga Adg, A~ Adg, NdEr A - -

Therefore, by equations (3.28) and (3.30)), we have:

EaY (070)|(n7n) (130)‘(n717n)
lim o Ow iv(w) (2#)" Na.nam) TN T mitom) ( )
- eX _— — = | — )
0 Jsmpy T T\t t i det (JV) Pi

Since p; € Sing(V') is non-degenerate, by lemma we conclude that:

(070)‘(77“7”) (1,0)|(n—1,n) (070)|(n1n) (170)‘(71_17”)
n(l-“”ﬂm”) T n;\(luﬁﬂmn) ( ) _ n(l...n;l...n) + /*\(1»~n;1mn) ( )
det (JV) Pi Ber(V) - det(D) Pir-
Then
— (Ovo)l(nvn) (170)‘(71_17”)
y Ow iy (w) <27r)” Mmstem) TS0 )
im cexpy—— — =\|(— i) -
t=0 JSB(p)) e t t i Ber(V) - det(D) bi
Therefore

oy [ty
Res (V rr]) — () ( ’ ) (1...n;1...n) (p)
pj ’ Z Ber(V) det(D) 7/

[]

Corollary 3.44. If on the theorem we add the condition det(B(D))(B(p;)) = 1, then

we have:

(0,0)[(n,n) (1,0)[(n—1,n)
271')” 77(1n,1n) + s

— *(1...n51...n) '
Resy, (Vo) = ( i Ber(V) (ps)

In the previous theorem, we imposed conditions over the form 7 and over the su-
permanifold’s dimension. Now we go to choose a class of odd functions such that those

hypotheses will not be more necessary.

Theorem 3.45. Let S be a compact complex supermanifold of n|n dimension and let V' be

an odd holomorphic vector field with a non-degenerate isolated singularity p,, € Sing(V),
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whose representation in local coordinates is equal to V = > | fi(% + > gia%’ where
g:(2) are even functions without odd variables and f;(z,€£) are odd functions such that
fi(2,8) = Soem & -al - gi + Xaen &L - gi, with M being the set of multi-indices,
al, b, € Cgand iy € {1,...,%,...,n}. Furthermore, let w be the form defined in and
let n € @ AP be a form such that (9 + iy )(n) = 0. Then, we have:

0,0)[(n,n 1,0)|(n—1,n
27T>” 77((1...2,(1...71))4' n(;\(l).‘..(n,l...n;

Res,, (V,n) = <z Ber(V) - det(D)

(px) +

n ] (1,0)|(7’L—17TL) (070)‘(717”)
(277>" Sy Sovuemizo+con-m 13 (1500 0" = nn” )} (52)
5 Ber(V) - det(D) Pr)-
where L()) are odd numbers and
_ zj 0z — (9
Ber(V) =sdet (52 % | and D= (%).
o0& 04

9 .
Proof. Since Res,, (V,n) = lim 7 - exp {—:) — Zviw)}, then it’s sufficient to show
SBE(FN)

t—0
that:
) Oow iy (w)
lim nN-expy—— — ——— ¢ =
=0 JSB.(p.) t t
(0,0)|(n,n) 1,0)|(n—1,n
(27r>” n(l...zzl,(l...n)+ 77(?(1).!.(71,1...71; (pe) +
5 Ber(V) - det(D) Pe
n j (170)|(n_17n) (070)‘(77’7”)
(2,/T>n ijl Z(A#EM‘L(A)JFL(N):”) {ag\ (T] /*\(,u71...n) B n(p,,l...n) )} ( )
5 Ber(V) - det(D) Pr)-

Following the same steps of the theorem |3.43] we find:

(a)

(=) (1)
det(JV)(pK)

dgi A -+ ANdga Adgy A+ Ndg, Ndé A -+ A dE, @0 exp {—iy (w)}

X

Cnlin
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(b)
n(n+1)
(-1 ()
det (JV),,,,
/ gy A Adgy Adgy A-ee Adg, Adg A A dE, " M=) oxp { iy (w)}
Cnn
n n(n+1)
B Tt
det (JV),,

[ gt Ao gy gy A Ndgy A A AdE, O FTH exp { iy (W)}

(a) By lemma [3.26] item (¢), we have:

n(n+1)
(=) (=1)" = _ _ — .
dgi A - - Adg NGy A - -Adg. AdELN- - -NdE, nOOIm), _ —
det(JV) ) . G A\ AdgpANAG N - -AdG,NdELN- - -NdE,, 1 exp {—iy(w)}
(-1)" - (-
)t dgi - - -Adgu NG, A- - -AdG, AdEN- - -NE, 70O Z
det(JV ) ) cniln g1 n/\AGy AYST En exp{ Zglg} +
n n(n+1)
(=)™ (=1) "z

dgi N+ Ndg, Ndgy A+~ Ndg, Ndéy N -+ NdE, X

77(070”(”771) + €Xp {— Z@'Qz’} (— Zngz) .

det(JV)(pn) Ccnln

The first integral is equal to:

(1) (—1)"
det(JV)(pﬁ) crlin

dgiA- - -ANdgp Adg, A+ - -NdG, NdE1 N\ - /\df 7700 nan) exp{ Zgzgl}

(0,0)[(n,n)

27 77(1 n,l...n)
= (1) Mendem) )y (331
(z) det(gv) P (331)

Now, let’s calculate the second integral:

(-1 (1)
det(JV )y — Jonin

dgy N~ Ndgy Ndgy A -+~ Ndg, NdEg A -+ A dE,

OO exp{ Zgzgl} (— Z?jfj) =
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)" (=1)"=2— _
B Gt Gt Z/ dgi A Ndgy AdGy A+ Adg, AdE A -+ A dE,x

Coin
OO exp {= 3" G,01} - 7,85 =

n(n+1)

—1)" (=1 z
i N ) dgiA\- - -NdguAdGyA- - -Adg, NELA- - -NE, X
det(JV)ep) G o uEM\L(A) L=n)* """
71 n 00 j j
n(n+1)
1) (=1 _
B Gl Ll o D 3 / dgi A - -AdguAdgy - - NG, NEL- - -NE, X
det(JV) ) 7 (ApeM|LO)+L(w)=n) ' "
=1 -n n,n j
(g g exp (= Y g,0i} - 9,6 - adgi+
(_1)n (_1)n(n2+1)
— > > / dgi A\ - -Ndga Adgy A- - -AdG,, AdELN- - -NdE, ¥
det(JV)p,) 7 (AMuEM|LON+L(k)
(¢n-¢ ---5"77((2?)'(,7")) exp{ > Gigi} 5,8 Vg =
o - n((o?n(nn)
S 3 B Ml / dgy Adg, A- - -NdgaAdg, exp{ =G, V-3,-9;
7 ueMitoy L= det(IV) { } ]]
] 0,0)|(n,n

-2 2.

(pw) /Cn dgiN\dg, A+ - -Ndgn,N\dg,, exp {— Z?igi}'gj'%-
J (A ueM|L(N)+L(pn)=n)

det(JV)
(3.32)

where A, p are multi-indices (A is an odd multi-index because f is odd), M is the set of
all multi-indices and L is the function that gives the length of the multi-index.
Then, from (3.32)), we have the two parcels:

© 0)|(n n)

a)\ 77(;1,1 .n) — — _ _
- e pn)/ dgi gy A+ - -NdgnAdG,, exp{—>_G;9i 19595
J (MUEMIL(A\)+L(p)=n) det(JV) cr { } J
(3.33)
and
b, - 09I
- W () /Cn dgi Ndg, N\ - -Ndg, Ndg,, exp {— Zgigi}'gj'gjy

7 (REM|L(N)+L(p)=n)

(3.34)
First, let’s calculate the integral from ((3.34]):
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[ dg1 ndgi A+ A dg, Adg, exp{=3 7.0} ;- g5 =

/R% dri Adyy A+ - - Adz, Ady, (—21)" -exp {—x% — =2 — yi} (x;j—1y;)(z;, +iy;, ).

Since (z; — iy;)(zj, + iy;,) = xjx;, +ix;y;, — 1T;,Y; + y;9;,, then we have:

:(—2@')”/]R2ndaz:1/\dyl/\---/\dxn/\alyn-exp{—x%—y%—---—xi—yi}-xjxjA +

i(—Qi)”/RQndxl/\dyl/\--~/\d:tn/\dyn-exp{—x%—y%—---— i—yi}-xjyﬁ

2'(—2@')”/Rzndx1/\dy1/\---/\dxn/\dyn-exp{—x%—y%—-~-— i—yi}-xhijL
(—22')"/Rgndx1/\dy1/\---AdarnAdyn-eXp{—xf—yf—---—xi—yi}-yjyh=

(—2i)”/ exp{—22} - / exp{—x?}xj . / exp{—:c?k}:tzjA _ /_OO exp{—y>} +

=0 =0
i(—20)" /_O:O exp{—x?}-“/_o; exp{—xﬁ}wj---/_o; exp{—yi}yjy--/_o:o exp{-y3} —
=0 =0
i(=20)" /O:O eXp{—xf}---/o:o eXp{—w?A}xjy--/o:o exp{—y?}yj---/o:o exp{—ya} +
=0 =0
(—20)" /O:o eXp{—:vf}---/o:o eXp{—y?}yj---/o:o exp{—yi}ij--/o:o exp{—y2} = 0.
=0 =0

Thus:

. Z A n(u,l‘..n) (p )X

7 OpeMILoviLuy=ny  det(JV)

/(C" dgy Ndg, A -+ Ndg, N dg, exp {— Z?igi} “Gj - gj, = 0. (3.35)

with jx € {1,...,7,...,n}.

Now, let us to calculate the integral from (3.33):
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[ dgu A dgi Ao Adgo Adg, exp{=3g.0:} 55

/Rzndxl/\dy1/\-~~/\dxn/\dyn(—%)”exp{—xf—y%—---—xi—yi}(m?—i—y?):
/2 da:‘l/\dyl/\-~-/\dxn/\dyn(—2i)”-exp{—x%—yf—~-~—xi—yi}x?+
R2n
/2 dx1/\dy1/\---/\d:vn/\dyn(—%)"-exp{—xf—y%—---—xi—yi}y?:
R2n

(20" [~ exp{=at}o [ exp{=alato [ em{-yl} +

vz

(20 [ expl{=at} oo [ expl-utpde [ expl-u2) =

_

2

(i) (VA VT iy (At YT = (o) = ()" 30)

So, by (3.32)), (3.33)), (3.35)) and (3.36]), we have:

(U ()T
det(JV )y~ Jonn
NG Ny dE 0 exp (= 3 gi0} (- 0,6) =

(0,0)|(n,n)
2m\" a/\ M1...n)
- (F) = ) S ) (337)

! 7 (AEMILO)+L(w)=n)

dgy A -+ Ndgy Adg, A -~ Adg, A déy N

Therefore, by (3.31]) and (3.37)), we finally have:

n(n+1)
(=D"-(=1)" > — — z (0,0 .
o AdT NDEN- - A 0)[(n,n) — —
etV o e dgiN- - -Adgp \dg A- - -Adg, NdE LN~ - -NdE, n exp {—iy(w)}
(0,0)|(r,m) i, (0,0)[(n,n)

27T)n 77(1nln) Z Z a)\ 77(“1 n)
(5) | S| (pe) . (3.38)

i [det(JV) 7 e MILOYL()=n) det(JV)

(b)Let us to calculate:
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. n(n+1)
(=" (1) >
det (JV)(pK) Ccnln

dgi A+ ANdgy Ndgy A+ ANdg, NdE N -+ NdE NdE N+ NdE,, x

GO exp { =iy (w)}

n(n+1)
1) (=1 _ _
B GtV ) dgi A+ Adgn Adgy A+ - Ndg, NdELA- - AdEn NdEL A+ - - NdE, x
det (JV)(pn) Cnln

0, (10)|(n—1,)

U cexp {—iy(w)} =

(=)™ - (_DM En(l,O)\(n—l,n)

2 ~
*(1..n1..m) / dai A+ -ANda. ANdg- A~ - -ANda — g.a. b —
det (JV) (px) |, o1 9n NG, G, e {—>_5,0i}

n n(n+1) 1,0)[(n—1,n
(=1 (=1 opln Tt

det (JV)

n(n+1)
(=1 _ _
(=" (=1) / dgi A~ Ndgn Adgy A~ NdG, AdEL A~ AdE AdEL N -+ NdE, X
det (JV)(pK) Cnln

I e (=Yg} (X 9,05) +

dgi N+ Ndgy Ndgy N+ Ndg, NdEy N+ NdEy NdE N -+ NdE, ¥

On(/i\:o)\(”_lﬁn) - exp {— Z?zgz} (Z gjfj) ’

(pn)/(cndglA-~~/\dgn/\d§1/\~~~/\d§n exp{=Y 7,01} —

n n(n+1)
(=" (=1) "=
det (JV)(pn) (C”|”L

And since En%’oﬂ(n_l’") is an even function and %21 s an odd function (look

remark |3.28)), we have:

(=17 - (—1)"5 ByLOI—1n)

Jet (JV) (ps) |, dg1 gnAdGy G, exp{—>_7.9:} +

. n(n+1)
(=1)"-(=1)" =
det (JV) (pm) (C"|"

dgi N+ Ndg, Ndgy A+ Ndg, Ndéy N -+ NdE, X

OO exp LS gigt (X g,45) - (3:39)

Then, by the first parcel of (3.39):
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(=1)"- (‘Dw E, (1,0)|(n—1,n)

/>k\(1...n,1...n) / d A-- /\d /\d* A-- /\df — a.0: 5 =
det (JV) (px) |, o1 gnNEG1 9 exp {3701
(1,0)|(n—1,n) (L0)[(n=1,n)
() D St | )y ()| Stk ) 3.40)
5 det (JV) | " i det (JV) | 77

Now, by the second parcel of (3.39)), we have:

n(n+1)
(=" (1) >
d@t (JV>(prc) Ccnln

- Adg, Ad&y A -+ A dE, OVl eXp{ Zgzgz} (Zﬁjfj) =

n(n+1)

—1)" . (=1 _
(=D (=)= 3 3 dgi A~ - -Adgy Adgy A+ - - Adg, AdELA- - -NdE,, ¥
det(JV)(pH) 3 OEM|L(A)A4L()=n) el

(gn &g o)) en (= o} 9,6 (ahos +Has) =

dgy A -+ AN dgn A dg, A

n(n+1)

). (—1 _
( d> SR 3 dgi A - - Adgn NG, A- - -AdG, AEA- - - AdE,
et JIV)w) T aueMILO+Luy=n) TC
—=1 -=n n—1mn j
(Su.g € On(i&)\l( n; ) exp{ Zgzgl} Aoad g+
n n(n+1)
(—D"-(=1) "= g 7 €
dgi N\ - -Ndgn, Ndgy N+ - -Ndg, NdEy N+ - - NdE,, ¥
det(JV) p) 7 OwueM|LO)+L(p)=n) * T

(gu .gl s g 077(183'1(”711 ")) exp{ Zgzgl} 'gjf/\ . bZ\ - gjy. (3.41)

And by analogous calculations to those made previously, we have that equation (3.41))

is equal to

j . O (1,0)|(n—1,n)

2m\" @ N 1) _
(z) ; dergv) ) =

(AHEM|L(N)+L(p)=n)

j . (170)|(n_17n)

() xS ) Gay

t J (uEM|L(N)+L(u)=n)
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Therefore, by equations (3.40]) and ( - we have:

n(n+1)
(=D)"-(=1)" > / _ _ = B (10)|(n—1n) :
dgiN - - ANdgaANdg A\ - -ANdg, NdELN- - -Nd < e —
n(n+1)
(=) (=1)" = _ _ = 0 (1,0)|(n-1,n) .
- dgiN - - Adga, ANdG A\ - -ANdG_ NdELN- - -Nd < . —
det (TV) g, o ™ 9nNdG, Gn/NdEs En N5 exp {—iv(w)}
9\ " 77(1 ,0)[(n— ln) g\ (1,0)|(n—1,n)
(1..m,1...n) *(u,1...m)
_ (2 4
( i > det (JV) 2 2 R

i (NREM|L(N)+L(p)=n)

Then, by equations (3.38) and - we have:

) ow iy (w)
lim n-expy—— — =
t—=0 JSB.(p) t t
(0,0)[(r,n) (1,0)[(n—1,n)
(271')” Nndem) T T30 01 ) (p) +
i det (JV) P

j (1,0)|(TL—1,TL) (0,0)|(’I’L,?’L)
{CL)\ (n *(p,1...n) B 7](“71"'") )} (p )
det (JV) g

(27r> | 25 2 (A neMIL(+L(1)=n)

?

Since p, € Sing(V') is non-degenerate, by lemma we conclude that:

(0,0)|(n,n) (1,0)|(n—1,n) (0,0)[(n,n) (LO)[(n—1,n)
77(1 ;.. TL) + /’k\(l...n;l...n) (p ) _ 77(1 n;l. TL) + /’k\(l...n;l...n) (p )
det (JV) " Ber(V) - det(D) e

and

(1 O)‘(n_lvn) (070)|(n1n)
225 22\ uEM|L(N)+L (1) =n) {% (77 Fuden) T Mulon) )}

det (JV) (pr) =

LOln=1m) _ (©00)|(n,n)
55 Covnenity s Li=n 13 (15001 Mouron) ) } (
Ber(V) - det(D)

pn) .
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Then:
_ Oow iy (w)
lim n-expq—— — =
t—0 JSB.(pr) t t
(O’O)Kn’n) (170)|(n_17n)
(271')” n(ln,ln)+ n?(l...n,l...n) ( ) +
5 Ber(V) - det(D) Pr
n j (1,0)|(n—1,n) (0)0)‘(7%”)
(27r>” Zj:lz(/\,ueM\L(/\)JrL(u):n) {af\ (77§(;L,1.‘.n) = 1. )} (Pe)
5 Ber(V) - det(D) Pr)-
Therefore:
(0,0)|(TL,TL) (1,0)‘(%—1,7@)
Res, (V.y) = (27T)" Na.na.m T T30 1. m) (v) +
Pl V511 i Ber(V) - det(D) Pr
n j (1,0)|(n—1,n) (0)0)‘(7%”)
(277>n D=1 22 (AMEM|LON)+L(u)=n) {af\ (77§(#,1.A.n) = 1) )} (p2)
5 Ber(V) - det(D) Pr)-

]

Corollary 3.46. If on the theorem we add the condition det(B(D))(B(p,)) = 1,
then we have:

(070)|(n1n) (170)‘(”‘_17”)
2m\" [Nty T 150 mtn
Resy. (Vo) = (=) (Ll | ) 4

Ber(V)
J (,,(L0)[(n=1n) (0,0)|(n,n)
{aA (771(“,1...@ = Mp1..n) )} (
Ber(V)

(27r>” =1 (A ueMIL()+L(w)=n)

- Dr) -

where L(A) are odd numbers.

3.6 Examples

3.6.1 Duistermaat-Heckman type formula

Let V be a vector field with only nondegenerate zero components on a supermanifold
of dimension n|m. If w is a 2-form of type (1,1) such that w™ # 0, (9 + iy)w = 0 and

there is a smooth superfunction ¢ such that iyw = 9(g), then for any s > 0, then under
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the conditions of Theorems proved in this Thesis we obtain the following Duistermaat-

Heckman type Formula

hera=G) 2

pn€Sing(V)

w— 0,0)|(n,n
(e Sg)gl...)n‘,(l...n))

Ber(V)

()

3.6.2 Complex projective superspaces

The complex projective superspace P*™ is the supermanifold obtained as the quotient
of C"*1™ by the C*-action which is defined as

A2 2 ) = (A A, A

for all A € C*. See [14] for more details about projective superspace.

Consider the Kéhler supermetric on P*™ given by the Fubini-Study supermetric:
1 = i =
7)) = —00log | Z|* = —00log(1 + | Zy|?
wrs(7]) = S-00log |2 = 5-001og(1 +|Z ),

where |Zo|? = 14+ X, 2028 +i%, ¢ On Uy = {2° # 0} C P™" we have the local

coordinates (Z%) = (2§,¢), I =1,...,m + n, where z{ = j—; and ¢4 = &. Thus,

wF5]U0 = ZWIL dZé A dZé/
1,J

with

Wil
Wwrr =
Wy

If n > m, then It follows from [9, pg. 28] that

wia ) O P2 | —iEG
2n(1+ |Zo])? G e+ 1Z0P) - 4R

Wi

n 1
/Pn\m Wrs = (n—m)!’

By the same computation in the case m = 0, we can conclude that (0 + iy )whg = 0 for
all vector field V' on P"™, see for instance [T, pages 25-26]. Therefore, by Theorem m
and Theorem m (n = m) we conclude that projective superspace P"™  with n > m,

has no vector field without singularities.



1]

2]

[10]

Bibliography

M. F. Atiyah and R. Bott. The moment map and equivariant cohomology. Topology
23 (1984) no. 1, 1-28.

M. Batchelor. Two approaches to supermanifolds. Transactions of the American
Mathematical Society 258, pp. 257-270, 1980.

P. Baum and R. Bott. Singularities of Holomorphic Foliations. Jour. of Diff. Geom.
7 (1972), 279-342.

N. Berline and M. Vergne. Classes caractéristiques équivariantes. Formule de local-
isation en cohomologie équivariante. C. R. Acad. Sci. Paris Sér. I Math. 295 (1982)
no. 9, 539-541.

J.-M. Bismut. Localization Formulas, Superconnections, and the Index Theorem for
Families. Commun. Math. Phys. 103, 127-166, 1986.

R. Bott. A residue formula for holomorphic vector fields. J. Differential Geom. 1
(1967), 311-330. MR 38:730.

U. Bruzzo; F. Fucito. Superlocalization formulas and supersymmetric Yang-Mills
theories. Nuclear Physics B, Vol. 678, 638-655, 2004.

L. Caston and R. Fioresi. Mathematical Foundations of Supersymmetry. Diparti-
mento di Matematica, Universita di Bologna Piazza di Porta S. Donato, 5 40126
Bologna, Italia.

D. McNamee, C. Iuliu-Lazaroiu and C. Samann. Generalized Berezin-Toeplitz quan-

tization of Kahler supermanifolds. Journal of High Energy Physics, 2009.

J. J. Duistermaat and G. J. Heckman. On the variation in the cohomology of the
symplectic form of the reduced phase space. Invent. Math. 69 (1982) no. 2, 259-268.



Bibliography 77

[11]
[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

J. Groeger. On Complex Supermanifolds with Trivial Canonical Bundle. (2016).
D. Huybrechts. Complex Geometry An Introduction. Universitext.

J. M. Lee. Introduction to Smooth Manifolds. Springer, second edition edition, 2013.
Y. Manin. Gauge Fields and Complex Geometry. Springer-Verlag, 1988.

V. Pestun et al. Localization techniques in quantum field theories. Journal of Physics
A: Mathematical and Theoretical, 2017.

A. Rogers. Supermanifolds Theory and Applications. World Scientific Publishing Co.
Pte. Ltd., 2007.

T. Schmitt. Supergeometry and Hermitian Conjugation. Journal of Geometry and
Physics. Vol. 7 (1990), no 2.

A. Schwarz and O. Zaboronsky. Supersymmetry and Localization. Communications
in Mathematical Physics. Volume 183 (1997), 463-476.

M. Sebastiani. Introducao a Geometria Analitica Complexa. Colecao Projeto Eu-

clides.

G. M. Tuynman. Supermanifolds and Supergroups. Kluwer Academic Publishers,
2004.

A. Vaintrob. Normal Forms of Homological Vector Fields. Journal of Mathematical
Sciences. Vol. 82 (1996), no. 6.

Z. Weiping. A Remark on a Residue Formula of Bott. Acta Mathematica Sinica.
Volume 6 (1990), no. 4, 306-314.

Z. Weiping. Lectures on Chern-Weil Theory and Witten Deformations. World Sci-
entific Publishing Co. Pte. Ltd., 2001.

E. Witten. Notes On Supermanifolds and Integration. arXiv:1209.2199.

E. Witten. Supersymmetry and Morse theory. J. Differential Geom. 17, 1982, 661-
692.

E. Witten. Two dimensional gauge theories revisited. Journal of Geometry and
Physics,V. 9, Issue 4, October 1992, Pages 303-368.



Bibliography 78

[27] V. Zakharevich. Localization and Stationary Phase Approximation on Supermani-
folds. Journal of Mathematical Physics. Volume 58 (2017).

(28] F. Berezin and D. Leites. Supermanifolds. Soviet Maths Doklady 16, pp. 1218-1222,
1976.

[29] B. Kostant. Graded manifolds, graded Lie theory and prequantization, in K. Bleuler
and A. Reetz (eds.). Differential geometrical methods in mathematical physics: pro-
ceedings of the symposium held at the University of Bonn, July 1-4, 1975, Lecture
Notes in Mathematics, Vol. 570 (Springer), pp. 177-306, 1977.

[30] D. Freed. Five lectures on supersymmetry. American Mathematical Society, 1999.

[31] P. Deligne, P. Etingof, D. Freed, L. Jeffrey, D. Kazhdan, J. Morgan, D. Morrison,
and E. Witten. Quantum Fields and Strings: A Course For Mathematicians, Vol 1.
American Mathematical Society, 1999.

[32] F. Helein. A representation formula for maps on supermanifolds. Math-ph/0603045,
2006.



	Introduction
	Notations
	Graded commutative linear algebra
	Graded commutative rings and graded modules
	Multi-linear maps
	Free A-graded A-modules and quotients
	Tensor products
	Exterior powers
	Z2-graded algebra
	Free graded A-modules
	The Berezinian

	Supersmooth functions, supermanifolds and integration 
	Grassmann algebra
	Superspaces
	DeWitt topology
	Superholomorphic functions
	Partitions of unity
	Supermanifolds
	Body map on supermanifolds
	Superfunction's Derivation
	Body map on superfunctions
	Body map on superforms
	Integration on supermanifolds

	Localization on supermanifolds
	Definitions
	Localization formula for even vectors
	Determination of residues for even vectors
	Localization formula for odd vectors
	Determination of residues for odd vectors
	Examples
	 Duistermaat-Heckman type formula
	Complex projective superspaces


	Bibliography

