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Abstract

This research project has as main objective to generalize and improve recently developed
methods to establish existence, uniqueness and blow-up criteria of local solutions in time
for the Navier-Stokes equations involving Sobolev-Gevrey and Lei-Lin spaces; as well as
assuming the existence of a global solution in time for this same system, present decay rates
of these solutions in these spaces.
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Introduction

Let us present a study on the mathematical theory of incompressible flows. More specif-
ically, we will address the existence, uniqueness and blow-up criteria for local (in time)
solutions of equations described by these flows; as well as the decay of global solutions in
time for these same systems, considering the Sobolev-Gevrey and Lei-Lin spaces. Below, we
detail the procedures adopted in each chapter.

Initially, using as main inspiration J. Benameur and L. Jlali [4] [7], this thesis presents
results related to local existence, uniqueness and blow-up criteria for solutions of the classical
Navier-Stokes equation:

uy + u-Vu + Vp = pAu, xeR3te[0,T%),
divu = 0, zeR3tel0,T%), (1)
u(z,0) = uo(z), z€R3

where T* > 0 denotes the solution existence time, u(x,t) = (ui(z,t), us(z,t), us(z,t)) € R3
denotes the incompressible velocity field, and p(z,t) € R the hydrostatic pressure. The
positive constant p is the kinematic viscosity and the initial data for the velocity field, given
by ug in , is assumed to be divergence free, i.e., divug = 0.

The existence of solutions for this system has been intensively studied in the literature
see, for example, [2, 3], 4, [7, 10, 13, 14, 27, 28, 29 B2). It is important to add that finding
smooth global solutions for the Navier-Stokes equations is still an open problem. On the
other hand, it is well known that there exists a maximal time 7" > 0 for which the system
has a classical solution u(z,t), defined for all (z,t) € [0,T) x R3.

J. Benameur and L. Jlali [7] guarantee the existence of a unique u € C([0,7%), H; ,(R?))
solution of , provided that the initial data u is properly chosen in the appropriate Sobolev-
Gevrey space, specifically:

Theorem 0.0.1 (see [7]). Let a >0 and o > 1. Let ug € (H, ,(R?))? be such that divu, =
0, then there is a unique T* € (0,00] and a unique v € C([0,T*),H, ,(R?*)) solution to
system such that u ¢ C([0,T%], H; ,(R®)). If T* < oo, then

t ] < )l )



where ¢; = ¢1(ug,a,0) >0, co = ca2(ug,0) > 0 and 200 is the integer part of 20.

In Chapter [2], some extensions and improvements, for Theorem[0.0.1], have been obtained.
Briefly, we prove that given uy € H;’?U(Rg), with a > 0,0 > 1 and sy € (%, %), we obtain a
unique local solution u € C([0,T%), H ,(R?)) for the system , for all s < s, defined in
some maximal interval [0,7*). Besides, the Theorem presents blow-up criterion (2)) for

the Sobolev-Gevrey norm || - ||z sy, which is also valid for the norm || - |

Hs (R3), if 5 < sp.

In Chapter [3 results of existence, uniqueness and blow-up for local solutions of the
Navier-Stokes equations, analogous to that above, were also obtained for the homogeneous
Sobolev-Gevrey spaces H, =5 (R?), for s € (3,2). As one of the main reasons for attempting
to achieve this goal, it highlights the inclusion H¢ ,(R®) < H3 (R?).

It is important to note that, considering the critical cases s = % es = %, the local

existence, uniqueness and blow-up of the solution are not discussed here and are of still
open problems in the mathematical theory of incompressible flows. Complementing this
theory, J. Benameur [4] showed a similar result to the Theorem in H; (R?), with
s> 3

Theorem 0.0.2 (sce []). Let a, s, 0 € R such thata > 0, s > 3 eo > 1. Let
uy € (H;,(R*)® such that divug = 0. Then, there is a unique time T* € (0,00
and a unique solution u € C([0,T*), H; ,(R*)) of Navier-Stokes equations such that
u ¢ C([0,T*], H; ,(R?)). Moreover, if T* < oo, then

Cy(T* — t)75 exp(aCy(T* — t)73) < ||u(t)|

Hg ,(R3) Vtel0,T7), (3)

where Cy = Cy(ug, s,0) > 0 and Cy = Cy(ug, s,0) > 0.

In addition to the Navier-Stokes equations, the Magneto-Hydrodynamics equations (MHD)
will also be the source of research in this thesis:

u + u-Vu+ V(p+3|b*) = pAu+b-Vb, zeRtel0,T%),

by + u-Vb = vAb + b-Vu, zeR3tel0,T*), 4
divu = divb = 0, z€R3te(0,T%), (4)
u(+,0) = ug(), b(-,0) = bo(-), z € R3.

Here u(z,t) = (ui(z,t),us(z,t),uz(x,t)) € R* denotes the incompressible velocity field,
b(z,t) = (by(z,t),ba(x,t),b3(x,t)) € R® the magnetic field and p(x,t) € R the hydrostatic
pressure. The positive constants g and v are associated with specific properties of the
fluid. The initial data for the velocity and magnetic fields are assumed to be divergence
free. Actually, the MHD equations reduce to the classical Navier-Stokes equations, with
velocity field u(x,t), pressure p(x,t), and viscosity u, provided that b = 0 (the existence of
solutions for this system has been intensively studied in the literature — see e.g. [4l [7) [13]
14], 27, 28, 29, [32] and references therein).



In Chapter [4], extensions of the Theorem [0.0.1] were obtained for the more general case
of the system 1} in homogeneous Sobolev-Gevrey spaces H, 570(R3), for s € (%, g) Moreover
in Chapter [f], in addition to the Theorem [0.0.1} the Theorem [0.0.2] was also extended to
the MHD equations in Sobolev-Gevrey spaces. It is important to note that the main
results obtained by J. Benameur and L. Jlali [4], [7] becomes particular cases of the Theorems
presented here (see Theorems |5.1.1} [5.2.9, [5.2.10} |5.2.11{ and [5.2.12)), since we have extended

all the results stated in [4] [7] from the classical Navier-Stokes equations to the MHD system
(1)

The research developed in this thesis also seeks results of existence, uniqueness and decay
rates of global solutions in time for the 2D Micropolar system:

u +u-Vu+ Vp = (u+x)Au + xV xw, z€R*t>0,

wy + u-Vw = yAw + xV xu—2yw, 2z €R2t>0, 5
divu = 0, z€R%t>0, (5)
u(+,0) = uo(+), w(-,0) = we(-), = €R?

where u(z,t) = (ui(w,t),us(z, t)) € R?* denotes the incompressible velocity field, w(z,t) € R
the microrotational velocity field and p(x,t) € R the hydrostatic pressure. The positive
constants u, x,~v and v are associated with specific properties of the fluid. The initial data
for the velocity field is assumed to be divergence-free.

In the literature, results involving blow-up criteria for local solution at the time of systems
and have been developed in numerous papers of great relevance. In order to make
the theory as complete as possible and by using as our main reference J. Benameur and
L. Jlali [6], Chapter [6] will consider the global existence in time of solutions obtained in
Sobolev-Gevrey spaces for the system . Our goal is to analyze these decay rate of the
solutions. To cite some references, we give the examples [0, 15, 16, 23, 35, B7]. The decay
rate analysis for the equations and was made by R. H. Guterres, W. G. Melo, J. R.
Nunes e C. F. Perusato [35], in the following result:

Teorema 1 (see [35]). Assume that a >0, 0 > 1, and s > 1/2 with s # 3/2. Consider that
(u,b) € C([0,00); H ,(R?)) is a global solution for the MHD equations . Then,

i) Jim |, D) (1)

1) Jim 51](u. 5)(1)

s, ®3) = 0;

2 _
s, @) = O-

Finally, in Chapter [7] we present a study related to the local existence, uniqueness and
properties at potential blow-up times for solutions of the following generalized Magnetohy-
drodynamics (GMHD) equations:

u + (—A)*u + u-Vu + V(p+i[b]?) = b-Vb, zeRte[0,T%),

bi + (=AYb +u-Vb = b-Vu, zeR3tel0,T), 6
divu = divh = 0, z€R3¢te (0,1, (6)
u(-,0) = ug(), b(-,0) = bo(-), x€R3.
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Here, it is assumed that o, 5 € (%, 1] and the initial data for the velocity and magnetic fields
are assumed to be divergence free. The existence of global solutions in time for the GMHD
equations @ is still an open problem; thus, this issue has become a fruitful field in the study
of the incompressible fluids (see e.g. [44] [45] and references therein).

In [5], J. Benameur and M. Benhamed have studied local existence, uniqueness and blow-
up times for solutions to the quasi-geostrophic equations in Lei-Lin spaces X172*(R?). Apply-
ing the techniques contained in [5], we guarantee local existence and uniqueness for GMHD
equations @), assuming (ug, bp) € X*(R?), with max {1—2a, 1-28, a(lgw), 5(1;26“)} <s5<0
and «, f € (%, 1]. Moreover, if we assume that the maximal time of existence T* > 0 is finite,

we conclude

lim sup || (u, b)(t)|
t T

Xs(R3) = Q.

In Chapter [I we establish some notations and definitions that will be used throughout
the text and we also present some fundamental lemmas used in the proof of results presented
later.

10



Chapter 1

Preliminary

This chapter presents notations, definitions as well as lemmas that will be needed for the
proofs of the main theorems.

1.1 Notations and Definitions

The main notations and definitions of this PhD thesis are listed below:

e We denote the standard inner product in C" by
Ty 1= 21y + T2Ys + .+ Ty,

and let the norm induced by this product be

2] = V21 2+ 22 + o
with = (21,29, ..., Tn), ¥ = (Y1, Y2, -, Yn) € C" (n € N).
e The vector fields are denoted by
F= 1) = £(5,8) = (ol ), fal,8), o fuls 1),
where z € R* (i = 1,2,3), ¢t € [0,7*) and n € N.
e The i-th spatial derivative is denoted by D; = 0/0z; (i = 1,2, 3).

e The gradient field is defined by Vf = (V f1,V fo, ...,V f,), where V f; = (D1 fj, ..., Difj)
(j=1,2,..,nandi=1,23).

11



The usual Laplacian f = (f1, fo, .., fn) is given by Af = (Af1, Afs, ..., Af,), where
Af;=> Difj (i=1,23).
k=1

The standard divergent is given by divf = Dy f, provided that f = (fi,.... f;)
k=1
(i=1,2,3).

3
The notation f - Vg means ZfiDig, where f = (fi, fa, f3) and g = (91, 92, 93)-
i=1 ,
However, in the particular case of the 2D Micropolar equations 1’ f-Vg= Z fiD.g,
i=1
where f = (fh fg)
Define Fourier transform of f by

FOEQ=F©) = [ e payin, veer,

and its inverse by

FHNE)

(2m)™" /n e f(x)dr, VEER™

The fractional Laplacian (—A)7, v > 0, is defined by
FI=AYAIO) = |67 f(9), vf € S'(RY),
where S'(R"™) is the set of tempered distributions.

Here LP(R™) denotes the usual Lebesgue space, where

ey o= ([ rf<ae>|pdac)‘i . Wpell o),
i

and || 1] peo(rn) := esssup,cpn{|f(z

Assuming that (X, || - ||) is a normed vector space and T > 0, the space LP([0,77]; X)
(or simply L%(X)), 1 < p < oo, contains all measurable functions f : [0,7] — X for
which the following norms are finite:

1AWz om0y = [ fllzgecx) = esssupyepo,r {1 F ()11}

and .
1
oo =1 ligoo = [ [ 7@ a?, vi<p<w.

Analogously, C([0,7]; X) = Cr(X) = {f : [0,T7] — X continuous} is endowed with
the norm || . HL%O(X)

12



Let s € R. H*(R") denotes the homogeneous Sobolev space

@)= {1 e S®): [ IR € < 0},
R
It is assumed that the H*(R™)-norm is given by

/]

2y = | EPIFOP de
Furthermore, the H*(R")-inner product is given by
by = [ 16T de
Assume s € R. The nonhomogeneous Sobolev space H*(R") is defined by

H@) = {f e S®): [ (L+IEPIITFOP de < o0},

n

This space is assumed to be endowed with the H*(R")-norm

/]

o i= | (LHIERPITOP de

Moreover, the H*(R")-inner product is given by

(. g o) = / (1+ [P F(e) - 56) de.

n

Let a > 0,0 > 1 and s € R. The Sobolev-Gevrey space
iy, (RY) = { f e SR [ [ge™H7 | F(&)? de < oo ]
Rn
is endowed with the H. oo (R™)-norm

/]

e = [ 6P o) de

Moreover, the Hj’U(R")—inner product is given by

b o = [ €65 Fle) 516 de

n

13



Assume a > 0, 0 > 1 and s € R. The nonhomogeneous Sobolev-Gevrey space is given

by
HS (RY) = {f € S'(R") - / (1+ €207 | Flo) de < oo}

n

It is assumed that the H;  (R™)-norm is given by

/]

3 () = /Rnﬂ + €Y e | Fle) P de

and H,  (R")-inner product by

~

) ey = / (1+ J€[2) e Fle) - 5e) de.

n

For s € R, the Lei-Lin space is given by

~

A(R") :={f € S'(R") : . EP1F(E)] dE < oo},

which is equipped with the X*(R™)-norm

/]

vy = [ P11 de

The tensor product is given by f ® g = (g1 f,...,gnf), where f : R¥ — R™ and
g:RF - R" (k,m,n € N).

The convolution is defined by ¢ * ¢ (x) = / o(x — y)(y) dy, where p, 1) : R" — R.

n

Let given v : R3 — R3; then, there exist w and V¢ such that
v=w—Vep, divw=0.

In this case, w = Py (v) is called Helmontz’s projector (see e.g. Section 7.2 in [32] and
references therein).

The gamma function is defined by I'(z) = / r*te " dx, for all z = x + iy € C, with
0
x > 0.

Let A C Y. The indicator function x4 : Y — R is defined by xa(z) =1, if z € A, and
xa(z) =0,if = ¢ A.

As usual, constants that appear in this thesis may change in value from line to line
without change of notation. Here C,, ; denotes a constant that depends on ¢, r and
s, for example.

14



1.2 Auxiliary Results

1.2.1 Auxiliary Results for Chapters [2] to [6]

In this section, we presenting some auxiliary results that will be useful in the demonstra-
tion of the statement in Chapters [2] to [6]

The first two Lemmas listed below are the results that will guarantee the existence of a
fixed point for the equations presented in the chapters mentioned above. The Lemma [1.2.1
guarantees the existence and uniqueness of solution for the Navier-Stokes and MHD
equations ({4.1]).

Lemma 1.2.1 (see [13]). Let (X, ||-]|) be a Banach space and B : X x X — X a continuous
bilinear operator, i.e., there exists a positive constant C' such that

[B(z,y)l < Clizllllyll, Va,yeX.
Then, for each xo € X that satisfies 4C||zo|| < 1, one has that the equation
a=x9+ B(a,a) (1.1)

admits a solution x = a € X. Moreover, x obeys the inequality ||x|| < 2||zo|| and it is the
only one such that ||z|| < 55.

Also the next Lemma is the main ingredient to prove the existence and uniqueness of
solution for the Micropolar equations (6.1]).

Lemma 1.2.2 (See [13]). Let (X,|| - ||) be a Banach space, L : X — X continuous linear
operator and B : X x X — X continuous bilinear operator, i.e., there exist positive constants

C1 and Cy such that
IL(x)| < Cillzll, [[B(z, )|l < Collz||[lyll, Vz,ye X

Then, for each Cy € (0,1) and xo € X that satisfy 4Cs||zo|| < (1 — C1)?, one has that the
equation
a=x9+ B(a,a)+ L(a), a€lX,

2|zl
1-C1

admits a solution x € X. Moreover, x obeys the inequality ||z|| < and it is the only

1-C
one such that ||z[| < 5.

The following result has been proved by [4] and it is useful in order to obtain some
important inequalities related to the elementary exponential function.

Lemma 1.2.3. The following inequality holds:

(a+0)" <ra"+b", V0<a<bre(01] (1.2)

15



Proof. First of all, notice that if b = 0 then a = 0 and, consequently, (1.2)) holds. Thus,
assume that b > 0 and let ¢ = a/b € [0,1]. Now, apply Taylor’s Theorem to the function
t— (1+1)", with ¢ € [0,¢], in order to obtain v € [0, ¢| such that

r(r—1)(1+~)? 2

(I+c¢) =1+rc+ 5

By using the fact that r,v € [0,1], one has (1 + ¢)” < 1 + re. Moreover, ¢,r € [0, 1] implies
that ¢ < ¢". As a result, (1 +¢)” <1+ rc". Replace ¢ = a/b in this last inequality to prove

2.

m
Now, let us introduce two consequences of Lemma [1.2.3]
Lemma 1.2.4. The inequality below is valid for all n € N:
(oléls < gamax{le—nl i} (& minllEnl i} e p e R 0> 0,0 > 1,
Proof. Lemma [1.2.3] assures that
1 1 1 . 1
alg|s = alg¢ —n+nl- <a(|€ —n|+[n])7 < a(max{[¢ — ], |9} + min{|¢ — 7], [n]})~
1 a . 1
< amax{[¢ — |, [l}= + —min{[¢ —n], [n]}.
Hence, one has
1 1. 1 1, . 1
elélT < gamax{ié=nlnl}7 +2 min{l¢—nl,lnl}o _ gamax{|¢=nl,ln[}= 2 min{l¢=nl,In[}=
The proof of Lemma|1.2.4]is complete.
m
Lemma 1.2.5. Leta >0, 0 > 1 and £,n € R® withn € N. Then,
1 1 1
17 < galé—nl7 galnl= (1.3)
Proof. 1t is a direct implication of Lemma and the fact that o > 1.
O

The next lemma presents an interpolation property involving the space H *(R™) with
n = 1,2,3, and it has been proved by J.-Y. Chemin.

16



Lemma 1.2.6 (see [14]). Let (s1,s2) € R?, such that sy < % and sy + s, > 0. Then, there
exists a positive constant Cy, o, such that, for all f,g € H*'(R™) N H*2(R"), we have

||f9||HS1+sg—%(Rn) < 081,52[HfHHSl(R”)||g||H32(]R") + ||f||H32(]R”)”g”HSl(R”)]'

If s1 < 5, 82 < 5 and sy + sy > 0, then there is a positive constant Cs, s, such that

1/9]

5115275 (R3) < 081,82Hf| HSl(Rn)Hg‘ Hs2(R")"
J. Benameur and L. Jlali [7] have proved a version of Chemin’s Lemma (see [14]) by
considering Sobolev-Gevrey space HiU(R") with n = 1,2,3. Let us introduce this result

exactly as it has been stated and proved in [7].

Lemma 1.2.7 (see [7]). Leta > 0, o > 1 and (s1, s2) € R?, such that s; < 5 and s;+s3 > 0.

Then, there exists a positive constant Cs, 5, such that, for all f,g € Hj}J(R”) N H;?U(]R”), we
have

/9]

< Cor [l ]

Hz}jsr%(Rg) HZ}J(R")HQ‘ H32% (R™) + I/ Hi?g(Rn)Hg‘ H;}G(R")]' (1.4)

If s1 < 5, 82 < 5 and s1 + so > 0, then there is a positive constant Cy, s, such that

/9] < Gy 5ol 122, () (1.5)

. _n
HoL 272 Ry =

H;}U(R”)Hg‘

Proof. We aim to apply Lemma [1.2.6 Thereby, to accomplish this goal, it is necessary to
use the elementary equality

f9(&) = @m)(F*)E), VEER™
Thus, we estimate the expression on the left hand side of the inequalities ([1.4]) and ((1.5)) as

follows:

I79 = [t Fy)ag
R”l
= (om) 7 [ g e gle)
1 N 2
< n > [ et ([ e mlgonlan) e

= emy > [ g ([ et e~ pliglan) e

2
s _n
W22 ()

17



Moreover, the inequality (|1.3) implies the following results:

2
101 5 gy < 22 [ ferosn ([ oo i = e o an) e

= ) [ Jeper e 7] « 1 I g

= [ JePrrn A e )F P o) de

1 ~

P G s M T
Now, we are ready to apply Lemma and, consequently, deduce ((1.4). In fact, one has
l AN l
10l oron ey < I ITDE P 1)
1~
< oo [IF 1 [ 1])]

1~
+ | F M (e )]
Csps [l ]
On the other hand, if 51,5, < § and s1 + s5 > 0, use Lemma again in order to obtain

fsitse—% (R7)

H51+52*%(Rn)
1
e ey [F (€17 (1)

1
iy IF (e [g])]
iz, & l19ll 22

Hs2 (R")

HSl(Rn)]

Hy% (Rn) | HyY (R”)]'

1~ 1
190y rea-8 gy < IF 7217 T ) 2

H51+52*%(Rn)

1~ 1
< Oy o IF 1D ron ey IF (€ D 2 oy
081,52Hf’ I-'Ia,g(

1% (R);

which proves inequality.

]

One of the application of Lemma is to obtain interpolation inequalities related to
the space H; ,(R"), with n € N. More precisely, the lemma below is an improvement of a
similar result from [4] (see Proposition 4.1 in [4]).

Lemma 1.2.8. Leta >0, 0 > 1 andn € N. For every f,g € H; ,(R") with s > 0, we have
fg € H; ,(R"). More precisely, one obtains

25— 2n+1

ey < 25 e

1
2117 7 el

i) || fgl 2@yl gllms , rny + [l€-

gl

2.

Moreover, for s > n/2, one obtains

i) [Ifgllm;,(

snllfllms @ llgllag @y + 18z, @ l9llms @),

18



where Cyp = (fpn (14 %)~ d{)% = (7"2T(s — n/2)/T(s))z. Here T'(-) is the standard
gamma function.

Proof. This result is a consequence of Lemma [1.2.4] First of all, let us estimate the left hand
side of the inequalities given in i) and ii). Thus,

19l o = [ (1 Iy Fa(e) de
= (an)y > [ (L ePret Fagio) g

<om [ ([ vt e miawi o) @

S o —2n 1+ 2 %ea|§|% iy . —~ d

e [ ([ it e i
14 16123620 | e — oMIatm) dn) d

+A7I>IE—77I( + I€[2)3e 17 | Flg = m)1gln)| dn) de

By using basic arguments, it is easy to check that

L+ 1€z <1+ (€ =nl + 1D)*7 < [1+ 2max{|¢ =], [n[})*]2
< 2°[1 + max{[¢ — ], [n]}*]2.
Now, we apply Lemma to obtain

f 23 . S 2 —2n22s 1+ 5_ 2\5 a\g—n\ fé' U|'q\ d
ol o < @m0 [ (] (1l aseteo g —mles ) dn

(1.6)

o el ) e o)
<my e[ [ (] ele— it Fe - et ) an) dg
[ (e fe - ml o+ et [ dn) e

Rewriting the last inequality above, we deduce
s ql- i 5 alE: ~
1£9l13rs rmy < (2m) 72 22 [+ |- )2 M7 1] % [eo 17 (G 72y
aj. % N s ql % ~
+ (2m) 7222 (e AL (L [ )27 (G112 ey
Consequently, it follows from Young’s inequality for convolutionsﬂ that

1 gl ,ny < 272w [ (14| ?)zetl” fHL2<Rn le

i

g”L1 (R™)

L+ )37 g2, ()] (1.7)

+ %. Assume that f € LP(R™) and g € LY(R"); then,

1 .~
+ [les” ”% (R")

et 1 < p,q, 7 < oo such that 1 —|—% =
If * gller @) < I flloe@n)llgllLa@n)-

1
P

19



Notice that the L?(R")-norm of (1 + ‘5’2)%6(1'5‘%]/0\(6) presented above can be replaced with
the H; ,(R")-norm of f. More precisely, we have

[

I+ )ze ”J?Hia(w):/R (L+ [€2)° €17 | Fe)[ de = £, ey (L8)

This same process can be applied to the equivalent term related to ¢ in (1.7). Thus, it is
true that

1L+ [)zet laAHLQ Rn Rn)- (1.9)
As a consequence, replace ([1.8]) and ((1.9) in in order to get
25— 2n+1 a % i a U
1f9llm;, @ <2 e Fllz @y llgllag , @y + ez 3] &)

This concludes the proof of i).

It is important to point out that ii) follows directly from results established above and
Cauchy-Schwarz’s inequality. In fact,

1643y < ([ 1l de) ([ @ lePred st e de ) = Conloliy oo

(1.10)
and, consequently,
1f9] %Jg’a(R") < (2m) 22O L[| f117 Hs , (R") gl17 1y (R") + Hf| s &™)
which proves ii).
O
Let us observe that Lemma |1.2.8ii) also imply
1£9llms ey < 2m) "2 Conll fll g,z 9l a1z, e (1.11)

since H; ,(R") — Hi (R") (a/o < a).
The next result gives our extension of Lemma 2.5 given in [7].

Lemma 1.2.9. Let a > 0, 0 > 1, and s € [0,2). For every f,g € H (R?), we have
fg € H; (R®). More precisely, one obtains

£l

% As before, I'(+) is the standard gamma function.

s, @9

Hg @) < 277212l | £ Hs (B9,
where Cy 55 =

20



Proof. By applying Cauchy-Schwarz’s inequality, one infers

621 Gl = [ e o)l de
1

< ([ syt i) ([ avigeresipore)
< (f e df) (/RS(H|§|2)562“'5‘1’|§(€)|2d€)5

= Ca,a,s||g| Hs ,(R3), (112)

where

2. ~ AmoT(0(3 — 2s))
w00 o~ B0

since 0 > 1 and 0 < s < 3/2. Similarly, we obtain

al, % >
||6;H f”Ll(R?’) < Ca7075||f| Hj ,(R3)- (1.13)
Hence, by combining ((1.7)), (1.8), (1.9), (1.12) and (1.13]), we have

£l oy < 225 470C2 N F . oo g o

[]

The next result is our version of Lemma 2.8 in [7], once this last lemma is the same as
Lemma [1.2.10| below, whether it is considered s = 1.

Lemma 1.2.10. Let s > 0,a > 0,0 > 1 and f € H; ,(R") with n € N. Then, the following
inequalities hold:

111, ey < 27 (27)" ([ 22y + 1]

2 el 2 U@y (114)

Proof. This result follows directly from the definition of the spaces H;  (R"), H oo (R") and
L?(R™). In fact, note that, by using Parseval’s identity, i.e.,

£ 122 @ny = 7)1 f 2y,

one obtains

10y = / (1+ 6Py e | (6 de
- / (L4 €L e | f(6) 2 de + / (1+ 6Py e | (o) de
|€]<1

|£\>1

<o [ |je)Pde e / €252l | o) de
s

— 2" | s + 2

Hg ,(R™)?
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which implies the first inequality in ((1.14)).

By applying the last equality above, one infers

2 2m) | ey + 2y oy = 2% [ AFOP dg +2° / EPoeI97 | Fe)P de

Rn

<2l 1) [ (e lePyet e ag

= 2°[e** + 1]| £ ?{g’U(R”)'

Therefore, the proof of the second inequality in ((1.14)) is complete.

[]

Remark 1.2.11. It is worth to observe that the proof of the lemma above establishes, for
instance, the standard embeddings H; ,(R?) — L*(R?) and H} ,(R®) — H; (R®) (s > 0).
In fact, note that in the proof of Lemma [1.2.10, we have proved

1By = (2 [ 1@ de < 2m)* [ 1+ lePyemiel o) de
- 0 I

H 5 (R3)

Consequently, the continuous embedding H; ,(R*) — L*(R®) (s > 0) is given by the in-
equality

_3
[ fllez@sy < 2m) 72 || fllas, @s)-
The other embedding follows directly from the following results:
e = [N f@P s < [ (1 jgPe )R dg
= |I£17

1117

Hg o (R3)

To guarantee the veracity of the blow—up criteria, it will be necessary to present two basic
tools. The first one was obtained by J. Benameur [4] and we shall prove it for convenience
of the reader.

Lemma 1.2.12. Let § > 3/2, and f € H*(R?) N L*(R?). Then, the following inequality is
valid:

1_i

1l es) < Collf 1l Ra)l\fﬂm 9"

Cs = 2(2m)50- \/;[(%f ~1)" 4 s (2—; - 1)_1“35].

Moreover, for each dg > 3/2 there exists a positive constant Cs, such that Cs < Cs,, for all
d > bo.

where
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Proof. Consider € > 0 arbitrary. Thereby, by using Cauchy-Schwarz’s inequality, we deduce
Al = [ \F©lde+ [ 7@ ae
|€1<e [€]>e

< (/asedg)% (/Elge\f(ﬁ)Pdg)i + (/£> wz&d&) </|§> |£|25‘ﬂ£)‘2d5);

Now, apply Parseval’s identity and the fact that 6 > 3/2 to reach

s
nﬂum<2J;%wMmewﬂw%_f?Wﬂmw>
T ¢t

3
=2,/3 |t sl + —— sy
V2
3

Thus, we can guarantee that the function given by

35

3 3 €2
= e2(2m)2 || fll2me) + ——=fll s ()
1

attains its minimum at .

2 — 1S Nl s ey
(27r)%|\f]|L2(R3)

Consequently, we have

3 3
3(1_3 T 2(5 435 25 _H_B =2
Pl < 2(2m) 3030 gkg—g +(5-1) ]wmmwmmw

It is easy to check that

3 B P
‘ sa-2) [T (20 _\" (20 ol i
51210102(270 3 [( 3 1) + 3 1 2(2m) 3

As a consequence, for each o > 3/2, one deduces that

. i 1t
2(2m)2 %)\/é [(2; - 1) + (2—35 - 1) ]

is bounded in the interval [dy, 00).

(S

This concludes the proof of Lemma [1.2.12]
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It is important to point out that the next lemma can also be used in order to assure that
inequality (2.6]) is not trivial.

Lemma 1.2.13. Leta >0, 0 > 1, s € [0,2) and § > 3. For every f € HS’U(R?)), we have

that f € H5(R3). More precisely, one concludes that there s a positive constant Cy 55, such
that

11|25 sy < Casoollf]

H ,(R3)

Proof. Notice that Ry C Upenugo[n,n + 1) and since 20(6 — s) € Ry, there exists a ng €
NU {0} that depends on o, and s such that %0 <20 —2s < ”OH . Consequently, one obtains
t € [0, 1] such that, by Young’s 1nequahtyE| we infer

i e = el “|§|1 S
§t|£|”7°+<1—t>\s
Therefore, one has
1oy = / P F©) de < / L + ¢ e (6 2 de

€+

</Rd[(2a+1)(2a)"°(no—l— 1!

(2a)mot1ng!

x €[] f(€)[* de.

As a result, we get

(2 D200 1) ]
(2a) (g + 1)

1)!(2a + 1 2alé|7)™ (2 notl
Iy < Pt MRAED) [ (ALY | QAT o gy

Hence, we deduce

n +1 (2a +1) s 2 (ng + 1)!(2a + 1)
oy < PHICED. [ (g gyp g = 1ot NEE Dy

which completes the proof of Lemma [1.2.13
O

Lemma 1.2.14. Let a > 0,0 > 1, s € [0,3) and § > 3. For every f € H; (R?), we have
that f € H5(R3). More precisely, there exists a positive constant C, 55, such that

HE o (R3)

1/ 1| 2 g3y < Casaoll f]
2Let p and ¢ be positive real numbers such that p > 1 and %—I— % = 1. Then, ab < % + %, for all a,b > 0.
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Proof. 1t is sufficient to apply Lemma|l.2.13|and the standard continuous embedding H ;’J(R?’) —
H; ,(R?).

]
Remark 1.2.15. Observe that the proof above assures that Lemma [1.2.14]is still valid if it
is assumed that 0 > s > 3/2.

The next result is another version of the Lemmas|1.2.8/1) and|1.2.9|in the spaces H 5 5 (R?).

Lemma 1.2.16. Leta >0, 0 > 1, and s € [0,2), for eachn € N. For every f,g € H, oo (R™),
we obtain fg € aJ(R"). More specifically, one has

2s+1—2n
2

alF 7 &~
D) 1159l <272 7 "[le Flloi@n gl ag gy + 1€ Glloi e 1 £l s gy

ii) | fgl Hs ,(R™)) < 2S+1_n7r_n0a,ms||f|

i3, @) 191 25 )

where Cop5n 1= \/F(%ZF)TQ?:EU@(;Z];%_))QS) < oo. Here T'(+) is the gamma function.
2 o

Proof. 1t is easy to check that

n

2m) 2 €7 Fle — n)|[5(n)] d sealél” dn) d
< [ ([ et ife-miamlans [ e fie - miigo)an)

By using the inequality |£]* < 25[max{|{ — 7], |n|}]® and Lemma one deduces
L ap Lo 2
by < (2020 (] je—apeeteon® g = g)led g an)

+/n </n€”|£ 171 F(E = m)lnl e 5 )|d”) ]

10l oy = [ JPoc e Fate)P g = 2m ™ [ JgPoee Fagie) dg

1/9]

or equivalently,

1 ~

G2y + 1137 17 5 11 e (G g -

iy

1£ 91y ny < 2m) 725N - e o |7 e

Therefore, Young’s inequality for convolutions implies

1~
< 22| et f o llee! 1732, R’L)+||6“H Pzl - 1% “"”QIILQ(W)]

2
2 ) (119)

1 £91I3

H{i,d(Rn) -

< 223+1 2n 72nH|f’

1
il

f Ll(R")Hg’

sl

Hs ,(R) He" ‘UAHLl rey + €7
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The proof of i) is completed. Now, let us give the proof of ii). Applying Cauchy-Schwarz’s
inequality, it results

117 g1l Rn)szea'ﬁ 9(¢ >|d5<< [¢| e el dé) lg]

Hence, by replacing ((1.16]) in ([1.15]), ii) follows.

Hs ,(R") (1.16)

m
As a consequence of Lemma [1.2.16|1), we have the following result.
Lemma 1.2.17. Leta >0, 0 > 1, and s > 1. Then, the following inequality holds:
) 23w~ 1e?
1£allzs g2 < T(HfHLQ w190y oy + 1 e oy 9112 ey + 1 Wy oy 9 ey
(1.17)

Proof. By applying the Cauchy-Schwarz’s inequality, one infers

IR P TIIURIY B 111 L d ( 2—sd)2< 25 ,20l€]7 | 5 2d)2
1% 151 / golde< ([ aieryag) ([ o+ epreper

IIQIIHMGR (1.18)

It is important to point out that (1.17) follows directly from Lemma [1.2.161), (1.18) and
Lemma [[.2.10] O]

The next lemma is based on the paper [6].

Lemma 1.2.18. Let (s, s2) € R? such that sy < 1 < sy. Then, there is a positive constant
Cs, s, such that

7l <C pe gl1 g12 =5
||f||L1(R2) = 51,52||f He1(R2) 1f Hs2(R2)’

Proof. Let ¢ be an arbitrary positive constant. Note that

Il = [ F@nde= [ 1F@lae+ [ ifende

[€1>c

By applying Cauchy-Schwarz’s inequality, we have

f(&)]de < 2“”1d>2< 251 7 2d)2:
/mgc’f@'f (/ﬂgcm INVASRIGIRE

26

. 1—s1
Hs1 (RQ)C

2
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Similarly, one obtains

—~ de < 232d>2( 25| T 2d)2:
/er@l 3 ( /5 e JRGRGIRE

Consequently, we can write
-~ 2m 1—s 2m
1fllzr 2y <4/ 2_—281Hﬂ )¢ 282—_2Hf\

. . . (s2=1)\/ 5aaz I 1l s 27
It is easy to see that ¢ attains its minimum at ¢y = ’ - = 2 AR E) . Thus,
(1=51)\/ 52357 11751 2

. 1—s9
Hs2 (RQ)C

s
171

HSQ(RQ)CPSQ =:g(c).

so—1 1—s7

1 Fllse2) < 9(co) < Copall Pl oo 11| e

]

It is important to point out that if s € (0,1); then, one can assume s; = s and s, = s+ 1
in Lemma [1.2.18) in order to obtain the following interpolation inequality

Hf||L1 r2) < G|l fI3

Hs RZ)HfHHs+1(R2 (119)

Lastly, we present an elementary result, which follows from basic Calculus tools.

Lemma 1.2.19 (see [8]). Let a,b > 0. Then, \e™" < a®(eb)™® for all A > 0.

Proof. Consider the real function f defined by f()\) = A%~ %, for all A > 0. It is easy to
verify that f attains its maximum at a/b since

POy =2 [ o] and o= (§-0) - 5] waso

Therefore, the proof of the lemma is complete.

1.2.2 Auxiliary Results for the Chapter

In this section, we present some results that will play an important role in Chapter [7]
The first one is a result well-known as Banach Fixed Point Theorem.
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Lemma 1.2.20 (See [21]). Let Y be a nonempty complete metric space and let S Y —'Y
be a strict contraction, i.e.,

d(Sz,Sy) < Kd(z,y), Yaz,y€Yy,

where 0 < K < 1. Then, S has a unique fized point.

Now, let us cite an improvement of Lemma 3 in [5] (it is enough to assume s = 1 — 27).

Lemma 1.2.21. The following inequalities are valid:

1) [ flless o) < I ooy |1y provided that > 4 and s € R;

i) [[f]lxoms) < Hf|

xS RS)Hf|Xs+2-y Rs); Zf7> 5 Cmd 2’)/<S<O
Proof. By applying Holder’s inequalityﬂ it is true that

/]

e = [ 61O e

S (/ e dg)l% (/ € 1f @)l df)%

= ||f||Xs(Rs ||fHXs+zw(R3)

Therefore, item i) is established. The proof of ii) is also a consequence of Holder’s inequality.
In fact,

Il = [ 17 de

([ e dg) ([ ermiena)

= 1l 111

X@+2'y ]RB)
O]

The next result is our version of Lemma 4 obtained by J. Benameur and M. Benhamed
in [5].

3 Let p,q € [1,00] such that %—i—% = 1 Consider that f € LP(R") and g € LY(R™). Then, || fg|lr1 (&) <
£l e @) |9l Lo @r)-
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Lemma 1.2.22. Assume that f, g € X*TH(R*)NAX(R?), with s > —1. Then, the inequality
below 1s valid:

1f9]

Xs+1(R3) < 28_27r_3<||fHX0(R3)Hg|

wsr1(rs) + || fllasrrws)llgllxows))-

Proof. Notice that

1 Flless ey = / € Fale)] de

(2n) / €7+ 6(0)] de
< (2w |§|S“< g(¢ — n)ldn) dé

= (271)" s+1 d
(2m) /W(/'nlﬂg_mmr Fonliate )l dn
v el o) dn)as

By using basic arguments, it is easy to check that

|§|s+1 S (|§ _ 77| + |77D8+1 S (2max{|§ o 77|’ ‘77|})8+1 — 25+1 maX{|§ _ 77|> |17‘}s+1’ Y s Z —1.

Hence, we deduce

| Fgllaesss) < 277 (2m)7° /R LFO1= (Mg + (€@ * |a(€)1] dg
=21 @m) I (7 D ey + 1 LD 1)

Consequently, it follows from Young’s inequality for convolutions that

1f9]

ey <2702 P e - P9 e @e) + 1 PP e |19 2 @)

= 271 (2m) [ o lglle ooy + 1 lesssn g

O

The next two lemmas will be applied in the proof of Theorems [7.1.1] [7.2.1] and [7.3.1]
Moreover, these results were inspired by Lemmas 5 and 6 in [5].

Lemma 1.2.23. Let v >0, s € R, and 0, \ € S’(R?) such that div A = 0. Then,

t t
i) / e~ DA Py (- V6) | weqas) dr < / 10/ Al ess o) dr:
0 0
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. t
i) /0 e~ X 0| et dTS/O 1@ A

t
< / 16 ® Al
Lip(X=+27(R?)) 0

t
S/ 10 @ | xs+1(r3y d,
) 0

xs+1 (]Rd) dT N

Xs+1(R3) dT,‘

t
i) / e~ EEAT Py (N - V) dr
0

t
iv) / e~ AN V0 dr
0

LL(xs+27(R3
for allT >0 and t € [0,T], where Py(-) is the Helmontz projector.

Proof. Let us begin with the proof of item i). Notice that

t t
/ le”=DER Py (X - V0)|| s (gs) dr = / / €| F{e~ DA Py (X - V)Y dE dr
0 0 JRr3
t
- / / e TR | F{Pa (X - V0)}| d€ dr
0o Jr
t
< [ [ v vey dcar
0 JR3
The inequality above follow from (2.11)). On the other hand, since div A = 0, one can write

3
s v/’ — s (N0 — si¢. F{g
[ 1erFo-voyae = [ e 2 FD M de [ lerle- Fioa dg

< / E[NFLO @ A dE = 0 & Al esr g, (1.20)
RS

Therefore, this completes the proof of i).

Let us mention that the proof of ii) is similar to the one described above, without using
(2.11). Now, we are going to prove iii). Observe that

T t
< / / |52 Fle EDEA Py (X - VO) Y dE dr dt
0 0 R3

t
/ e~ EIEAT Py (N - V) dr
0

L (X127(R3))

T t
= / / [T CDEP FL Py (X - V) Y| dE dr dt.
0 0 R3
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By using ([2.11)) and following a similar process to the one presented in ([1.20)), we get

t
/ e AT PN - V) dr
0

Ly (X+27(R3))

T t
= / / s+ e DI g A ()| de dr dt
0 0 R3

T ot
3 REEGE (/0 /0 e*(tfr)lfm‘@(g)\dr dt> dg. (1.21)

On the other hand, it is easy to see

T T
/ / ~ET T QN (€)|dr dt = / / e~ ET T N(&)| dt dr
/ 0@ A(€) (/ —=nlel™ dt) dr
0
T 1— e —(T—- T ‘§|2'Y e
0@ \&)| dr.
(=) e
By replacing this last result in ((1.21)), we infer
T —_—
| < [ ([ o ar) e
Lh(xerEe) R 0

T —_—

= [ [ eraene) dear
0 R3
T

— [lown
0

The proof of iii) is complete. Moreover, the proof of iv) is analogous to the one obtained

in iii), without using (2.11)). O

t
/e E=n)=A Py (X - V) dr
0

Xs+1(R3) dT.

The next result presents sufficient conditions to prove that § ® A € LL(X*T1(R3)).

Lemma 1.2.24. Assume thatT > 0 and max{a(lgzﬁ), B(1;2a)} <s5<0, wherea, B € (3,1].
IF A € L(X5(R?) N LL(X*22(R%)) and 0 € L (X*(R?)) N LL(X5+25(R3)), then

T
/ TSN
0

where Cy = 9(2572773).

X stT1(R3) dr < Cs[T % 25||)\HL0<> x5(R3)) ”0||L°° (Xs(R3)) ||)\||L1 L (Xst2o(R3)) HHHLl (Xs+26(R3))

1+25

1
T 2%y 161 ey I 25 o 11 e
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Proof. Notice that

T
/ 10 A
0

1

T 3 2
o1 (o) AT :/ / €[+ ['Z |Aj9k(g)|2] de dr
0o Jr -

3 T
s5+1 /\
gz_/o [ e e asar
—Z/wwmw

J,k=1

Hence, by applying Lemma [1.2.22] one obtains

T 3 T
/ 16 @ Al ssr(psy dr < 27227 ) / (A ooy O |1 sy + ([ A |1 @) 1O || xo sy )
0 — Jo
(1.22)

since s > —1. Now, by using Lemma [1.2.21] we deduce

N DY e

S
® ||)\ ||X0 R3) < ||)\ |XS R3 Xs2$2a(R3);

wwmw<muwwwmﬂ
1_7

* (1Al e A1 35

Xs+1 R&) < ”)\ ’ Xs+2a(R3)

o (18l xogesy < 10kl

xS RS ’lek’|Xs+26(R3)

provided that max{—2a, -2} < s < 0 and «, 8 € (%,1]. Therefore, by replacing the
inequalities above in ((1.22)), one concludes

T
1+—
[ 10 Mo ar < [ uwwmmwmewmwwma
1455
+ ||)‘| X R3)||/\| Yst2a (R3) ”9| X521§3 ||0| Xs+2/3 RB)) dr, (1'23)

where C; = 9(2°72773). Moreover, since A € L¥P(X*(R3)) N LL(X*™*(R?)) and 6 €
LE(X*(R?)) N LL(X*t?(R3)), the last two terms in the right hand side of (1.23) can be
estimated as follows.

T
/w
0

T
1+
< A o) H@HLoo (s (&) / 1A 3 e 1615

1+2a

XS(]R3 ||/\||X8+2a ]RS)HQHXS ||9| dT

Xs+28 (]R3)

dr.

Xs+28 R3)
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By using Holder’s inequality twice, it follows

T
/ I
0

T
1452 —
< I 91 I\ ey (16

1

RN DY e

XS(R3

dr

||9|

Xs+2a RS) ||0| Xs Xs+2B(R3)

s+2a

e 2
B(s+2a)
Xs+26 (]R?’) dT)

<T +2°‘_ﬁ‘|)\HLoo2a s(R3)) HQHLOo Xs(R3)) H)‘HLl (X st2a(R3)) HGHLI (Xs+28(R3))”

provided that max {a (1-26) (1;26“)} <s<0.

A similar process to the one presented above, yields

dr

Xs+2[’3 (R3)

T
1-5L
/IIAIIXs(Rs ||A||Xs+zaRs>H9HXs 16117

1+2£

1
T +26 20LH)‘HLOO XS Ly (xs(R3)) H)\”Ll (Xs+2a(R3)) ||0||L1 (Xs+2B(R3))

ol

Finally replacing (({1.24) and (1.25) in ((1.23]), the proof is complete.
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Chapter 2

Navier-Stokes equations: local
existence, uniqueness and blow-up of
solutions in nga(Rg)

This Chapter presents a study that determines the local existence, uniqueness and blow—
up criteria of solutions for the following Navier—Stokes equations:

u + u-Vu + Vp = pAu, xeR3te[0,T*),
divu = 0, z€R3tel0,T%), (2.1)
U(ZI},O) = UO(Z’), S RSv

where T* > 0 denotes the solution existence time, u(x,t) = (u1(z,t), us(z,t), us(z,t)) € R3
denotes the incompressible velocity field, and p(z,f) € R the hydrostatic pressure. The
positive constant p is the kinematic viscosity and the initial data for the velocity field, given
by ug in (2.1)), is assumed to be divergence free, i.e., divuy = 0.

We shall study the above system with initial data in the Sobolev-Gevrey spaces H; ,(R?),
with a > 0,0 > 1 and s € R.

It is important to emphasize that there are two main goals to be accomplished in this
chapter: prove the local existence and uniqueness of a solution u(x,t) for the Navier-Stokes
equations and establish a blow—up criteria for u(x,t). It is important to point out that
the results were mainly inspired by J. Benameur and L. Jlali [7].

Assuming that the initial data ug belongs to H:°, (R?), with so € (3,3), a > 0 and 0 > 1,
we prove that there exist a positive time 7" and a unique solution u € C([0,T7; H; ,(R?)) of
the Navier-Stokes equations for all s < so (let us recall that it is not known if 7' = oo
always holds for these famous equations). Besides, the local existence and uniqueness result
obtained in [7] is a particular case of ours; in fact, it is enough to take s = sy = 1.
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Under the same assumptions adopted above for sy and a, and moreoverifo > 1, s € ( So)
and the maximal time interval of existence, 0 < ¢t < T™, is finite; then, the blow—up 1nequahty

Coexp{C3(T* —t)" 3}
(T o t) 2(sa+00)+1 Y

st 1, ey > vt e 0,T7), (2:2)

holds, where Cy and (3 are positive constants that depend only on a, i, s, 0 and ug, and 209
is the integer part of 20. As a consequence, it is easy to check that (2.2) implies
&
[u(®)]

2o () 2 2(sotog)+1 )

(T* —t)" 0
In order to give more details on what it is going to be done in this chapter, we shall also
prove the following blow—up criteria related to the space L'(R?)

Vtel0,T).

T*
ﬁ” ~
| 1T ) s = o0, (2.3)
t
and
ﬁl‘ ~ 8/l
|ecv @D a(t) || 1 rey ZT\/—_t’ (2.4)

for all t € [0,7*),n € NU{0}. Note that the criteria (2.3 follows from the limit superior

limsup ||u(t)||gs ®sy =00, VneNU{0}. (2.5)
¢ T V=V
a 1z
Notice that 1) is not trivial; provided that, ||e‘7<\/5>("’1)|| u(t)||1gsy is finite for all ¢ €
[0,7%),n € NU{0}. It can be concluded due to the estimate ([1.12]) and the standard con-

tinuous embedding H; ,(R*) — H* - ,(R?). Furthermore, by applying the Dominated
(Vo)(n=1)”
Convergence Theorem in ([2.4)), one obtains

_ L 87\ /1
u(t)||pyrsy = lim [Jes(v ™D 1R3> ————, Vtec0,T%). 2.6
H ( )HL (R3) n_moH ( )HL (R3) Z m [ ) ( )

Besides, the inequality ([2.6)) is not trivial as well. In fact, it follows from Lemmas|1.2.12|and

1.2.14] and (2.52) below.

It is also important to clarify that the lower bound given in ([2.2)) is not the only one that
is obtained assuming the H; ,(R?)-norm. More specifically, we shall assure that

87T\/;7
s 3) Vtel0,T7"),n e NU{0}, 2.7

where C; depends only on a, 0, s and n.

[[u(?)]

Notice that all the blow—up criteria obtained in [7] are particular cases of ours, it suffices
to assume s = sg = 1.
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2.1 Local Existence and Uniqueness of Solutions

In this section, we shall assume that the initial data ug belongs to H:°, (R?), with s €

(3, 2), to show the existence of an instant 7' > 0 and a unique solution u € C([0, T); H ,(R?))

for the Navier—Stokes system ([2.1]) provided that s < sp, a > 0 and o > 1.

Let us to establish our first result that presents the local existence and uniqueness of
solutions for the Navier-Stokes equations [2.1}

Theorem 2.1.1. Assume that a > 0, 0 > 1 and s € (3,3). Let ug € H;,(R?) such
that divug = 0. Then, there exist an instant T' = Ty, .4, > 0 and a unique solution

ue C([0,T]; H; ,(R?)) for the Navier-Stokes equations (2.1)).

Proof. Our aim in this proof is to assure that all the assumptions presented in Lemma [1.2.1

are satisfied if (2.13) and ([2.14) below hold; thus, first of all, let us rewrite the Navier-Stokes
equations (2.1)) as in (|L.1)).

Use the heat semigroup e*2¢~7) with 7 € [0,¢], in the first equation given in (2.1, and;
then, integrate the obtained result over the interval [0, ] to reach

t 3 ¢
/ ATy dr + / Ay NV + Vpldr = p / 2T Audr.,
0 0 0

By applying integration by parts to the first integral above and using the properties of the
heat semigroup, one deduces

t
u(t) = ety — / ATy Y + Vpl dr. (2.8)
0

Let us recall that Helmontz’s projector Py is well defined and it is a linear operator such
that

Py(u-Vu) =u-Vu+ Vp, (2.9)
and also
Fra(plE) = Flo) - e (210)

~

" for - 'f(fg—lf' < f©)P (2.11)

On the other hand, by replacing (2.9)) in (2.8)), it follows that

FIPa(OP = | (&) -

¢
u(t) = ey — / AT Py fu - Yl dr.
0
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Since u - Vu = 37

i=1 ujDju, one has

t
u(t) = e! Mgy — / AT Py (- V) dr
0

t 3
= My, _/ eHAE=T) p Z(uiju)] dr
0

Lj=1

t 3
= ety —/ AT pyy ZDj(uju)] dr,
0

Lj=1

provided that divu = 0. Rewriting this last equality above, we get

t
u(t) = et ug — / etAt=T) pyy
0

j=1
or equivalently,
u(t) = ey + Blu,u)(t),

where

3

B(w,v)(t) = —/0 e“A(t_T)PH[Z D;(vjw)]dr.

=1

Z Dj (UJU)] dT,

(2.12)

(2.13)

(2.14)

In order to apply Lemma [1.2.1| let X be the Banach space C([0,T7; H; ,(R?)) (T > 0
will be chosen later). It is important to notice that (2.13)) is the same equation as ([1.1)) if it
is considered that a = u and xy = e***uy. Moreover, it is easy to check that B is a bilinear

operator. Therefore, we shall prove that B is continuous by choosing 7' small enough.

At first, let us estimate B(w,v)(t) in H, s »(R?). It follows from the definition of the space

1 (R®) that
3

le# ¢ Py - Dj(vjw)]l}

H; . (R3)

j=1

= [ leBec e B P (S Dy e ds.

7j=1
It is also well known that

FLAfHE) = e f(e), VeEeRt>0.
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As a consequence, we have

3
|e#AET) py [Z; Dj(vjw)] ||§¥g,g(R3)
j=
3
_ —7)[€)? Sed %
_ /36 2,u(t )‘gl ‘5|2 62 ‘5' |f{PH ZD] |2d§
R
J:l

By applying (2.11)), one can write
3
T) - —7)|€|2 s _2a z
Jerat ZD o) sy < /R IR g Sy FID; ()€ de
j=1

< / €—2u(t—7)|§\2’5‘2862a|§|% |]—"(w ® v)(f) : 5’2 d§
RS

< [ eI et w6 u) ) e
R3

Rewriting the last integral above with the goal of applying Lemma [1.2.19, we have
3

2= Py >~ Dj(vyw)]|I?

H . (R3)

j=1
< / 6262 g 033U | Fw @ 0) (6) P d.
R3

As a result, by using Lemma [1.2.19] it follows

()= s palel
lena¢=) ZD (ww)lll, (Rs)ﬁm RS €127 | F(w @ 0) () de
Cs
=: —”52 w vl (2.15)
(t—7)" )

5—2s

where Cy,, = [(5 — 2s)/4ep] 2 (s < 3/2). On the other hand, let us estimate the term
lw® U||H2s_ 3 o) presented in the last equality above. Lemma [1.2.7)is the tool that provides
a suitable result related to our goal in this proof. Thus, by using this lemma, one infers

CEX . / el T o) de
3 [ et e de
jk 1
= Z ijwk” 25 2 3
7,k=1 (R?)
< C le Hs (]R3 HUl Hs (R?’) (216)
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provided that 0 < s < 3/2. Therefore, by replacing (2.16]) in (2.15)), one deduces

CS“LL
5—2s

t—7) 1

By integrating over [0, ], the above estimate, we conclude

3
e Pa3 Dyl o0 < 7 Wl ooy 0] )
7j=1

& el @y llvll s,
a,0 RNTIHE 5 (R3)
/ e Py ZDJ HHS @) AT < Csu/ ’ 5= dr
J=1 0

(t—71) 1

< C,T° ¢ o @) [Vl oo 0,77, m9))-

for all ¢ € [0, T (recall that s > 1/2).

By (2.14), we can assure that 1} implies
1B (w, v)(1)|l

([0,T];Hz . (R3)) V] 2o ([0,T);:Hg , (R3))>

ENY

(2.17)

(2.18)

for all £ € [0,7]. Tt is important to observe that (2.1 (2.18) presents our estimate to the operator

B related to the space H ,(R).

Now, let us estimate B(w,v)(t) in H; ,(R*). By Lemma|l.2.10|and ({2.18)), it is enough to
get a upper bound to B(w,v)(t) in L?(R?). Following a similar process to the one presented

above, we have

3 3

e Pl Dyl = [ e Pl Dyl de

j=1 j=1
Parseval’s identity implies the following equality:

3 3

e P32 Dyl = () [ P DO e

j=1 j=1

As a result, we obtain

3
He“A(t_T)PH[Z Dj(vjw””%?(R?’)
=1
3
_ (%)3/ 2R L Py [ Dj(vw)]H(E) [ de.
R3 7=1
By using ([2.11)), it is true that
3
630 Pl D5y < (27 [ 6P| Fw @ )

Jj=1
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Rewriting the last integral in order to apply Lemma [1.2.19, one has

3
HeMA(t R Z Dj(v; w)]||72 (R3)

Jj=1

< (2m)7? / |€[P 22 12973 F(w @ v) (€) [ dE.
R3

As a result, by using Lemma [1.2.19] it follows

3

—T CS
HeuA(t )PH[Z Dj(ij)]H%Z(W) S W
j=1 -

since s < 3/2. Now we are interested in estimating the term ||w ® v|

w R v

i3 w3y

above. Lemma

. 3
% (R3)
1.2.6]is the tool that lets us obtain this specific bound. More precisely, by using this lemma,
one has

e A T |2d§—2/ 2~ wrmn(©)[? de

k=1

=3 ol 3y < Collwll

2 o 01
j,k=1

By the continuous embedding H; ,(R?) < H5(R?) (s > 0) holds and by applying Lemma
1.2.10, we deduce

3
C
H@ﬂA(t 7) ZD] HLZ(RS < Sk

j=1 (- 7')5_725

By integrating over [0, ¢], the above estimate, we conclude

| as @) 10|, @3-

. 3
/ A=) P,y [Z Dj(vjw)]||r2ms) dr

S0 }Hs Rs) HUHLoo ([0,T); Hs (Rs)) (2.19)
for all t € [0,T] (since that s > 1/2).
By using the definition (2.14]) and applying (2.19)), one concludes
251
1B(w, v)()l|lz2@s) < Co T [[wll oo orist , oy 101 oo o5, 29 (2.20)

for all t € [0, 7.
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Finally, by using Lemma |1.2.10|, (]2.18[), (]2.20[) and the fact that H; (R?) — vaa(R:s)
(s > 0), it follows that

2s5—1
s, ®3) < Csap T 7 Wl oo qorms, @) 10l o o,1: 15, (82) (2.21)

1B (w, v)(?)]
for all ¢t € [0,T7.

To use Lemma [1.2.1} it is enough to guarantee that

2s—1

AC, o, T

e o || oo po,715113 , (r3)) < 1.

Thus, first of all, as we did before, one concludes
e uall e = [ (1 I e (P et )
B / P (14 |21 iy () dg
< [ @ lePye me) R de

= [|uol

2
H 5 (R

As a result, we write

e ol o o,y o 2y < Nlol g )

Now, choosing

1
T < ;

4 >
[4C5 4| o HHg,g(RS)] 2t

where C;, , is given in (2.21)), and apply Lemma in order to obtain a unique solution
u e C([0,T]; H ,(R?)) for the equation (2.13).

The arguments given above also establish the local existence of a unique solution for the
Navier-Stokes equations (2.1)). ]

Now, let us enunciate precisely our main result related to the local existence and unique-
ness of solutions for the Navier-Stokes equations ([2.1).

Theorem 2.1.2. Assume that a > 0, 0 > 1 and sy € (5,3). Let ug € H(R?) such
that divug = 0. Then, there ewist an instant T' = T 40, > 0 and a unique solution
ue C([0,T); H; ,(R?)), for all s < sy, for the Navier-Stokes equations (2.1)).

Proof. By applying Theorem one has T' = Ty, 4,4, > 0 and a unique solution u €
C([0,T); Hy,(R?)) of the Navier-Stokes system . On the other hand, we also have
that s < so. As a result, one obtains the standard embedding H:°,(R*) — H; (R?) and,
consequently, v € C([0,T]; H; ,(R?)).

]
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2.2 Blow—up Criteria for the Solution

In this section, we establish some blow—up criteria for the solution of the Navier-Stokes
equations (22.1). We will argue similarly as in references [2], 3|, 4, [7, [10} 1T, 34].

2.2.1 Limit Superior Related to H; ,(R?)

The first blow—up criterion is related to the limit superior given in (2.5)) (case n = 1).

Theorem 2.2.1. Assume that a > 0, 0 > 1 and s € (3,3). Let up € H,(R?) such that

divug = 0. Consider thatu € C([0,T); H; ,(R?)), for all s € (3, s0], is the mazimal solution
for the Navier-Stokes equations (2.1)) obtained in Theorem [2.1.2| If T* < oo, then

limsup ||u(t)|| s sy = o0. (2.22)
t S T* ’

Proof. Suppose by contradiction that (2.22)) is not valid, i.e., assume that

lim sup |[u(t)|| s wsy < 00. (2.23)
t T* ’

As a result, we shall prove that the solution wu(-,¢) can be extended beyond ¢t = T* (it is the
absurd that we shall obtain). Let us prove this statement.

Assuming ([2.23)) holds, and using Theorem [2.1.2} there is a non negative constant C' such
that

ut) 1y ey < €.Vt € 0,7, (2.24)

Integrating over [0,¢] the inequality (2.40|) below, and applying (2.24) and ((1.12]), one con-
cludes

t
()1 oy + 1 / IVa(r) % oy dr < llols o) + Cranorns CT",

for all t € [0, T*). As we are interested in using the fact that the integral above is bounded,
we can write

[ 1vute)

for all t € [0, 7).

1 *
%ig,a(]l@) dr < p”uo, %{gYU(Ri’)) + Cs,a,a,uC4T = Cs,a,a,,u,uo,T*a (225)

Now, let (k,)nen be a sequence such that k, A T, where , € (0,7%), for all n € N
(choose Kk, = T — 1/n, for n large enough, for instance). We will show that (u(ky))nen is a
Cauchy sequence in the space Hj ,(R?), that is,

Hm  ||u(kn) — w(km)|
n,m—00
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Let us mention that the limit (2.26)) does not depend on the sequence (k,)nen. This fact
will be shown later. First of all, we begin with the proof of (2.26)). Thereby, one can apply

(2.13]) and (2.14)) in order to obtain

W(kn) — Wkm) = Ii(n,m) + Iy(n,m) + I3(n,m), (2.27)
where
I (n,m) = [etBrn — elBrmly, (2.28)
Ly(n,m) = / [erAmm=T) _ oA =) Pyl - Vu) dr, (2.29)
0
and also
Is(n,m) = — / A=) Py ly - V) dr. (2.30)

Let us prove that I;(n,m) — 0 in H; (R*), as n,m — oo, for j = 1,2,3.
In order to prove the validity of the limit related to I;(n,m), notice that

[13(n, m)] [eharn — eltdrm]

U0|

2 _ H 2
Hj ,(R3) = H ,(R3)

1
- /3[eunn£|2 _ efunm|£\2]2<1 + |5‘2)s€2a|£\0 \Uo(f)\Q d¢
R
< / [ermnl€ — e TR [g]2)0eR 7 [ (€) de.
R

By using the fact that ug € H; ,(R®) and that emrmnlel® _ =T E* < 1 for all n € N, it
results from Dominated Convergence Theorem that

lim ||I;(n,m)|
—00

. Hz ,(3) = 0.

Now, our next goal is to establish the limit lim,, ;;, o0 ||L2(n, m)]
have

ms &3 = 0. Thus, we

[[12(n, m)]

Hg o (R3) S / [[[e#Atm=) — et AU Py (u - V)| gy sy dT =
0

/Hm (/ [T _ gl =IEP12(] 4 |g[2)e2alel
0 R3
By (2.11)), we can write |F[Pu(f)](€)] < |f(€)] and, consequently,

[22(n, m) ||, ro)

< /OT* (/Rj[l - e_#(T*_Hm)M\?]Q(l + |€|2)s€2a|§\% |.7:[u ) Vu] (£)|2d£>é 0

FPu(u-Vu))(§)ds ) " d.
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Use Cauchy-Schwarz’s inequality in order to obtain
12, m) |, (2e3)

<vre( [ : [ 1= e TS ey Fla D) )

On the other hand, observe that by Lemma [1.2.9] (2.24) and (2.25]), one infers

T+ T*
2 2
|Vl e dr <, [
0 0

T*
<c2,0 [ vy
0

?{gﬁ(ﬂ@) “qu%{g’g(H@) dr

He (v AT < 00, (2.31)

As 1 — e HT"—rm)lEl? < 1, for all m € N; then, by Dominated Convergence Theorem, we
deduce

lim {[12(n, m)| gz, @s) = 0.

Lastly, we show that limy, ;e [ 13(n, m) | ms sy = 0. Indeed

[[3(n, m)]

Hy o (B9) S / A=) Py (w - V)| g es) dr

= [ ([ o ey FRata Tl©)FaE)
Km R3
By , we can write | F[Py(f)](€)] < |f(€)] and, consequently,
o < [ ([ @+ 1ePree 1 vul o Pac) ar

T*
< / lu- vl
Km

By Cauchy-Schwarz’s inequality, (2.31)) and ([2.25]), one infers

T*
Hs (R S VI — Ky, (/ [u- Vul %IgJ(Rf“) dT)
T*
S CCs,a,o' V T* — Rm (/ HVU’
S Cs,a,a,u,uo,T* V T — Rm-

As a result, we infer that limy, ;e [[13(n, m)||ms ®s) = 0. Thus, (2.27) implies (2.26). In
addition, (2.26) means that (u(kn))nen is a Cauchy sequence in the Banach space H; ,(R?).
Hence, there exists u; € H; (R?) such that

[13(n, m)]

H; o (R?) AT

1
2

[[3(n, m)]

2
s, (%9) dT)

lim [Ju(rn) = w g, @s) = 0.
n—00 ’
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Now, we shall prove that the above limit does not depend on the sequence (k,,)nen. Thus,
choose an arbitrary sequence (p,)nen € (0,7%) such that p, /' T* and

Jim [u(pn) — u2llms, ®s) = 0,

for some u, € HE,(R?). Let us show that up = uy. In fact, define (¢,)nen € (0,77) by
Son = Kp and So, 1 = py, for all n € N. It is easy to check that ¢,  T*. By rewriting the
process above, we guarantee that there is uz € H; ,(R?) such that

S fjulen) — usla;, ) = 0.

As a consequence, one has

lim ||U(lin) — U3| Hs (R3) = lim ||U(§2n) - U3‘ Hs (R3) = 0
n—00 2 n—o00 ;

and also
Tim u(pn) = usllm , sy = I [Ju(Son) = usl| g, @) = 0.

By uniqueness of the limit, one infers u; = usz = uy. Therefore, the limit (2.26)) does not
depend on the sequence (K, )nen-

It means that limy sr« [[u(t) — 1| sy = 0. Thereby, assuming with the initial
data wuy, instead of ug, we assure, by Theorem [2.1.2] the local existence and uniqueness of
u e C([0,T]; H; ,(R?)) (T > 0) for the system (2.1). Hence, u € C([0,T + T*]; H; ,(R?))
defined by

o [0, repT)
S a(t—=T*), te[T*,T+T,
solves (2.1)) in [0,T + T*]. Thus, the solution of (2.1) can be extended beyond t = T*. It is
a contradiction. Consequently, one must have

lim sup [[u(t) || g, ®s) = oo
t T

2.2.2 Blow—up of the Integral Related to L'(R?)

Now, we present the proof of the inequality (2.3 in the case n = 1. It is important to
let the reader know that the next theorem might be written as a corollary of Theorem [2.2.1
since the first one follows from this last result.

Theorem 2.2.2. Assume that a > 0, 0 > 1 and sy € (3,3). Let up € H,(R?) such that
divug = 0. Consider thatu € C([0,T*); H: ,(R?)), for all s € (5, s0], is the mazimal solution
for the Navier-Stokes equations ([2.1)) obtained in Theorem [2.1.2| If T* < oo, then

™
/ Heﬂ"[’u(T)H%l(Rg) dr = oo.
t
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Proof. This result follows from the limit superior presented in Theorem [2.2.1] Thus, let us
start taking the H 570(R3)—inner product, with u(t), in the first equation of (2.1)) to get

(u, ut>H;yo(R3) = (u,—u-Vu—Vp+ ,UAU>H3,U(R3)~ (2.32)
In order to study some terms on the right hand side of the equality above, use the fact that

F(D;if) (&) =i&f (&), VE=(&,6,&) € R,

to get
Flu)- FIVPIE) = =i 3 Flu)(©&p(8) = = > F(Dju;)(€)p(€)
= —F(divu)(©)p(§) =0, (2.33)

because u is divergence free (see (2.1))). Thereby, the term related to the pressure in (2.32))
is null, namely

(09 s ey = [ (1 [P 19 F(w) - FIVBIE) d =0 (234
R
On the other hand, following a similar argument, one infers
—_ 3 /\
- Au(g) = Z i-D Z i
3 —
Z = — V()% (2.35)
Therefore, the term related to Aw in (2.32)) satisfies

(1, Aty ey = / (1+ €20 . Ku(e) de
R3

B _/ (1+ |€[2)° €217 [Tu(€) [ de
R3
= _HVUH%I;U(H@)' (2.36)

By replacing (2.34]) and (2.36)) in (2.32)), we have

——||U(t)||?{g,g(R3) + /‘HVUH%{;U(R% < [(u,u- Vu)us & (2.37)
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Now, let us study the inner product above. Since divu = 0, one obtains

F(Vu) - Flu@u)(§) = Z F(Vuj) - Fluju)(§) = Z F (D) (§)F (ujur) (€)
.y Z & (u)) (O F (ugug) (€ Z F (u ) (§)F (D (ujur) ) (€)
— Z F (u;) (€)F (up Dy ) (€ ZF F(u - Vuy)(8)

= —F(u) - F(u-Vu)(§).
As a result, by using the tensor product, it follows that
(- V) ) = / (1+ |¢]) e Fu) - F(u- Vu)(8) dg
: -

- ‘/Rg(l T [E[2) eI F(Vu) - Flu® u)(€) d

—(Vu,u @ u)pg (@3- (2.38)
Hence, using Cauchy-Schwarz’s inequality, (2.37) and ([2.38)) imply
1d 5 5
5 e s, oy + 1l Vullz; @) < [Vullag H , (R9)- (2.39)

Now, our interest is to ﬁnd an estimate for the term ||u ® u|

by applying Lemma [1.2.8/1), one has

Hs (r3) obtained above. Thus,

|lu @ ul

?1370(1@3) = /R (14 ‘5’2)56%'5'% | F(u®u)(&)]* dé

-y [ty By e e

jkl

= Z ||ujuk’||§{g7g(R3)

G k=1

< C, Z He"ll @ 2t sy ||
7,k=1
3

< (s Z [lle=" |U@||L1(R3 g I3

J,k=1

< Cyfles M al, (e [l

el

s &) + e @l e lug | ag o))

ik

Hs ,(R3) + [le~ uk”%l(]l@)HujHIQLIg’U(R%]

Hg 5 (R3)
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or equivalently,

s @l oy < CalleS Ml oyl oy
By replacing this inequality in (2.39)), we deduce
1 d ﬂl I
5 gl W@y + I Vulliy @ey < Colle™ Al sy lull g, o) | Val g, ).
By Young’s inequality, it results that
1d L L 5
MO ey + BNVl r) < ol Pl oy (240

Consider 0 <t < T < T* in order to obtain, by Gronwall’s inequality (differential form)ﬂ
the following estimate:

()17

b < IO e o{Cs [ 15T sy )

Passing to the limit superior, as T'  T*, Theorem [2.2.1] implies

T* 1
[ e (r) | 2aggs dr = 00, Vi€ [0,T7).

The proof of Theorem [2.2.2 is completed.

2.2.3 Blow—up Inequality Involving L!(R?)

Below, we present the proof of blow—up inequality (2.4]) in the case n = 1.

Theorem 2.2.3. Assume that a > 0, 0 > 1 and sy € (3,3). Let up € H,(R?) such that
divug = 0. Consider thatuw € C([0,T*); H; ,(R?)), for all s € (5, s0], is the mazimal solution
for the Navier-Stokes equations (2.1)) obtained in Theorem [2.1.2| If T* < oo, then

1 873

6 STVE e o)

le=" ,
T —t

u(t)| sy >

Proof. Let us mention that this result is a consequence of Theorem [2.2.2, Indeed, apply the
Fourier Transform and take the scalar product in C? of the first equation of (2.1)), with @(t),
in order to obtain

o~ o~ =2 o~ T =
u-u=—p|Vul* —u-u- Vu,

et f,g:[t,T] — R be differential functions in (¢, T) such that f'(s) < g(s)f(s), for all s € [t,T]. Then,
f(s) < f(t)exp { [ 9(r) d7}7 for all s € [t, T].
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see ([2.33) and (2.35]). Consequently, one infers

1 — ~ —_—
§8t|ﬂ(t)|2 + p|Vul? < i -u- Val. (2.41)

For ¢ > 0 arbitrary, by applying Cauchy-Schwarz’s inequality, it is easy to check that
v |2 i
\/ VAEE )

By integrating from t to T', with 0 <t < T < T, one has

VTP _+m5|2/ maf r < |a<t>\2+6+/t [(u- Vu)(r)| dr,

—_~ a l . .
since |Vu| = |€]|d]. Passing to the limit, as § — 0, multiplying by e=¥/” and integrating
over £ € R?, we obtain

/a2 + 0 - Vu| < |u- Vul.

w1l LN ol
w17 a(T) | 1 o) +N/ le="1" Au(r) |1 zsy dr < Jles"17a(8) | 1 rs)
t
T o
+/ / es 517 |(u - V) ()| dédr, (2.42)
t JR3

since \&;\ = [£]?|a]. Studying the last term above, we can assure

|(u Vu)( \—‘ZUJDU ’— (2m)~ ‘ivf ‘
- <2w>*3\ Z [ G Byt = i

(2m)~ ‘/ Vué’ n dn‘
RS
< (@0 [ (2 Fule - o)l dn
R3
Therefore, by (1.3)), the last integral in (2.42)) can be estimated as follows:
[t e vu@ias < en [ [ e e )l s
R
n) [ [ et (e - ) dnd
R3 JR3
— ey [ S[ez‘f'“ AE)) * 519 | Tue) ] de
— (2m) 73 [e37|a] + * [eo! 17 [Vul]|| b1 gs)
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Applying Young’s inequality for convolutions we obtain the following inequality.
a 1 —_— a 1
/ e H17 |(u- V) (©)] dE < (2m) > leSM7 @ sy oS M Tl s . (2.43)
R3

||+ = .
Let us obtain an estimate for the term [|es " Vu|| 11 (gs) above. By Cauchy-Schwarz inequal-
ity, we have

le=M7 V|1 es) = / es 7 |Vu(€)| dE = / er<17 ¢ [a(€)] de
R3 R3

< ([, e ieprato dg) ([ o)

ot~y
= [le=H1” K, @ llee 7Tl 2 oy (2.44)
since |¢[*|u] = |A\u| and \ﬁd = |¢]|@]. Then, by replacing (2.44) in (2.43), one deduces
a % T UA U
e V@ s < @m) el o 81 Kl e

By using Cauchy-Schwarz’s inequality once again, we conclude

o)z

1 —~ 1
(271')_3”@”' ‘a ||L1 (R3) ||6 UAUH[QA(RB) S 12871'6 ||€ uH%l(R?’)

a|. % -~
+ SlleFH” Rullsus)

Consequently, (2.42)) can be rewritten as follows:

afd u
ezt <>||L1R3>+2/ %7 Bu(r)llgs e dr < €51 @)l eo

L ATHPIIEON
el M ] R

By Gronwall’s inequality (integral form )P one gets

JA a o'/\ 1 T Q.%/\
les 17 @(T )||L1(]R3 < |lesM"a(t)||2, Rg)exp{647rﬁlu/ v u(7)||%1(R3)dT},
t

forall 0 <t <T < T*, or equivalently,

d ]- T ﬁ.%/\ o
(~617%%) 7 o { gz [ 1eFH A et ] < 0P Q0 o

Let f,g : [a,b] — R be continuous functions in [a,b] such that f(s) < f(a) + [ g(7)f(7)dr, for all
s € [a,b]. Then, f(s) < f(a)exp { [2g(r) dT}, for all s € [a, b].
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Integrate from ¢ to ¢y, with 0 <t <ty < T™, in order to get

| L NPT
(—647°p) exp {_647r6,u /t v u(T)||2Ll(R3)dT} + 6475y
2|75

< [l ) 31 s (o — 1)

By passing to the limit, as to /* T*, and using Theorem [2.2.2] we have

a l,\ * *
64 < [le= 17 u(t)||7 sy (17 — 1), VE€[0,T7),

which proves Theorem [2.2.3

2.2.4 Blow-up Inequality involving H; ,(R?)

The lower bound ({2.7)), in the case n = 1, can be rewritten as below. From now on
T;; < oo denotes the first blow-up time for the solution u € C([0,T}); HS ,(R?)), where
w > 0.

Theorem 2.2.4. Assume that a >0, 0 > 1 and sy € (3,3). Let ug € H,(R?) such that
divug = 0. Consider thatu € C([0,T7); Hs ,(R?)), for all's € (5, s0], is the mazimal solution
for the Navier-Stokes equations (2.1)) obtained in Theorem 2.1.2| If T < oo, then

8 3
s _STVE e o,

s 3 ;
H%,O‘(R ) - Clm

where Cy = {47?0 [2@(% - %)} 70(3725)11(0(3 — 23))}2.

[u(®)]

=

Proof. This theorem is a direct implication of Theorem W First of all, notice that - €
(0,a). As a result, it holds the following continuous embedding H; ,(R*) < H S% (R?) that

Nea

comes from the inequality

Julr, e < [l

o

HE 5 (R3)

Then, we can guarantee, by Theorem [2.1.2(and inequality above, that u € C([0,T.), H 5% +(R?)
(since u € C([0,T7), H; ,(R?))) and also that

T > T (2.45)

D
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Moreover, by applying Theorem 3| and Cauchy-Schwarz’s inequality, it follows that

8r? o ool
Tt S I O :/Rgeoﬁ'“ra@rds

2y-s A &= 5)E7 4 )5 ( 215,255 167 150212 g >5
< ([ ad) ([ ariepre w9 aopa
< ([ et ) ([ o gpresed epac)
R3 R3

< Coosllu(®) s, _wo), (2.46)

/o

for all t € [0, 7)), where

2. I oa( L _Lygs 1 1\ 1762
A A A D(o(3 - 25)).

(Recall that s < 3/2 and ¢ > 1). This concludes the proof of Theorem [2.2.4]

2.2.5 Generalization of the Blow—up Criteria

We are ready to prove the blow—up criteria given in . - and . with

n > 1. Actually, it is enough to show the case n = 2; since, the proof of the general case
follows by applying a simple argument of induction.

Theorem 2.2.5. Assume that a > 0, 0 > 1 and sy € (3,3). Let ug € H,(R?) such that
divug = 0. Consider thatu € C([0,T); H: ,(R?)), for all s € (5, s0), is the mazimal solution
for the Navier-Stokes equations (2.1)) obtained in Theorem 2.1.2| If T < oo, then

i) limsup [[u(t)|/ms, @s) = oo;
t/‘T* \/Ev

Ty Tt
ll) / Heﬁu a(T)H%1(R3)dT:OO
t
8TV
VT =t

873
Hy, @) 2 C\/%
g’ 1 a

a |}
iii) [lemva a1 sy >

iv) u(t)]
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for allt € [0,T), where

Cr = Coa = {tmo 2 (= )] 7 r0 - 290}

Proof. First of all, let us mention that this result is, in its most part, an adaptation of the
proofs of the theorems established before. Understood this, notice that (2.46)) implies

NG

limsup [u(t)|[r2, @2 = oo. (2.47)
t T

a

This demonstrates i).

By applying i), as in the proof of in Theorem one can infer that

*

/ le7v7H 17 a2, @ dr =00, Vte[0,T)).
¢
It proves ii).

Consequently, iii) follows from ii) and the proof of Theorem [2.2.3]

Moreover, as an immediate consequence of (2.47)), one obtains

T >T% . (2.48)
Ve
Thus, using the inequalities (2.45)) and - we reach
Tr=T"%. (2.49)
NG

Then, as in ([2.46]), by Cauchy-Schwuarz’s inequality, we obtain

8 3
W_\/ﬁ<||eaﬂl W) @) = /Rseaflf G(€)| de

T —1t
Vo
. s 22—l d) ( 14 lel2)se2lel? o 2d>2
< ([ arirr €) ([ arirred et e
< Cogsllul®llm @), (2.50)

for all t € [0,T%_), where
NG

2 L —2at-toje? o (1 1\
C’agsz/ e Moo Ud§:4770{2—(———>} ['(o(3 —2s)).
s P VAN =2
By (2.49) and (2.50)), one has

STV 0,T7). (2.51)

H‘z C(IO'S\/ T*
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This completes the proof of iv).

Remark 2.2.6. Passing to the limit superior, as t /T, in (2.51]), we deduce

tim sup [u(®) 1, s =
t /T

a

Consequently, the inequality (2.5)), with n = 3, holds and the process above established can
be rewritten in order to guarantee the veracity of (2.3), (2.4)), (2.5) and (2.7) with n = 3.
Therefore, inductively, one concludes that our blow—up criteria are valid for all n > 1.

2.2.6 Main Blow-up criterion Involving H; (R?)

To end this chapter, let us prove the lower bound given in (2.2)). This inequality is our
main blow—up criterion of the solution obtained in Theorem
Theorem 2.2.7. Assume that a > 0, 0 > 1 and sy € (3,3). Let ug € H:,(R®) such that
divug = 0. Consider that u € C([0, T*) H; ,(R?)), for all's € (3,50], is the mazimal solution
for the Navier-Stokes equations (2.1)) obtained in Theorem 2.1.2| If T* < oo, then

a®t3C, exp{aCs(T* — t)*%} i}
H;,U(RS) Z (T t) 2(so+og)+1 ) vt E [07 T )7
*— 60

[u(t)]

where Cy = Oy 5,000, C3 = Cps.0u0 and 20 is the integer part of 20.

Proof. This result follows from Lemma [1.2.12] In fact, choose § = s + 4=, with k € NU {0}
and k£ > 20, and §yp = s + 1. By using Lemmas|1.2.12{ and [1.2.14] and (2.6]), we obtain

3
2(S+ 20

8773 /J/ —~ (5
STVE @@ s < Ol ® u®)

VT  — 1 ®) 171 3 (83)
By using the energy estimate
HU(t)HLQ(]RB) S ”U(to)”LZ(RZs), V0 S to S t < T*, (252)
see (2) in [I1], one has
k
Op,s,u Da,s,u,u
- 0% ((T* - t)zlo> S IOty oy (2:53)
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—4s

1873\/_> HuOHL2 (R3) and Dy s jup = (

C9" *5he obtains

kl ’
CIMSKMO (

(T~ 1%

where C), 5.4, = (

2.53) by &

ing

2aDo,s,u,ug
T
(T*—t)30
k!

C; 187 Jh o | 3 sy ) 3% - Multiply-

k
> @ 2s+39) |53 (H) 12 d
< [ Sl b e

— [ CoE e

By summing over the set {k € N;k > 20} and applying Monotone Convergence Theorem,

it results
(mDmWO ) k
C S, 2 Dos u *— %
oo (e} 5 Sl
(T — )% (T* —t)3s 0<k<20 ’
el (20€]7)"7 2 251~
< [ et = 30 SR e

0<k<20

/ ‘€|2s 2a|§\ ( )|2 dg

< lu(®)I;

Hg o (R3)

for all t € [0, 7). Finally, if we define

where 20q is the integer part of 20; then, f is continuous on (0,00), f > 0, lim f(x)
T—r00

(it means that f is bounded below as © — o0) and h}% f(z) =

Cll et e ), e (0,00),

= 0

is bounded below as z * 0). Hence, there is a positive constant C,, such that f(z) > C,,,

for all x > 0. Therefore, we can write

20041
C 8,00, QCLDG,S, Ul aDcr,s, Ui
()l ey = 222 ( : ) p{— - 2}
(T*—t)3 \(T* —t)3s (T* —t)3s
200+1C,us<700 uo ex aDa,s,,u,uo
2(so+oqg)+1 p % 1 )
(T* —t) s (T* —t)30

for all ¢ € [0, T*). Therefore, the proof of Theorem is completed.
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Chapter 3

Navier-Stokes equations: local
existence, uniqueness and blow-up of
solutions in H&,(RZS)

Our goal is to improve the results of existence, uniqueness and some blow-up criteria
obtained by J. Benameur and L. Jlali [7] for the Navier-Stokes equations in H, s - (R?)
with s € (%, %) By this we mean that if we take s = 1 in Theorem , the results presented
by J. Benameur and L. Jlali [7] for the space H.  (R®) are immediately obtained.

3.1 Local Existence and Uniqueness of Solutions

This section deals with existence and uniqueness solution of the Navier-Stokes equations
1) in Sobolev-Gevrey spaces H: (R?) with s € (3,2). More specifically, we prove the
following result.

Theorem 3.1.1. Assume that a > 0 and s € (3,2). Let ug € Hj’U(RS) such that divuy =
0. If o > 1, then, there exist an instant T Ty > 0 and a unique solution u €

c([0,17; H;va(R‘o’)) for the Navier-Stokes equations ‘)

1
29

Proof. Our goal is to apply the Lemma in Navier-Stokes equations (2.1)), for this, we
use (2.13)) and (2.14)) to rewrite (2.1)), namely,

u(t) = e"ug + Blu, u)(t),

o6



where

B(w,v)(t) = —/ e“A(t_T)PH[Z D;(v;w)] dr.

0 j=1

Moreover, we use {} to guarantee that B, defined in C’([O,T];Hjﬂg(R?’)) with s €

(%, %), is continuous, more specifically

2s—1

1B(w,v)(O)ll gy sy < ConT T Nwll oo o812, rop 10l oo 0,183 m2) (3.1)

for all ¢ € [0, T]. Therefore, we have proved that B : C([0, T; H; ,(R®*))xC([0, T]; H; ,(R?)) —

C([0,T]; H 5 5(R?)), where s € (3,3), is a continuous bilinear operator. Thus, consider

4

T< [4Cs,uHUOHHgJ(R3)]_ma

where C , is given in |) (use the estimative ||e#“ | s w3 < l[uollfzs (gs), which comes
from arguments previously established), and apply Lemma to obtain a unique solution
u e C([0,T); H ,(R?)) for the Navier-Stokes equations 1}

]

3.2 Blow—up Criteria for the Solution

In this section, we establish the blow—up criteria for the solution of the Navier- Stokes
equations presented in Theorem , by proving appropriate theorems. It is worth
pointing out the difference between the theorems presented this section and in section [2.2
in those presented in previous chapter we have a solution the Navier-Stokes equations ([2.1|)
in nonhomogeneous Sobolev-Gevrey space H, ij(R?’) and the one shown below in Sobolev-

Cevrey space H, s o(R?).

3.2.1 Limit Superior Related to H: ,(R%)

Here, we generalize the arguments presented in the Appendix of [3], where it is considered
the space H; (R?) (s € (1/2,3/2)).
Theorem 3.2.1. Assume that a >0, 0 > 1 and s € (3,3). Let uy € H;U(R‘g) such that
divug = 0. Consider that u € C(]0,T]; Hig(R?’)) is the mazimal solution for the Navier-
Stokes equations (2.1) obtained in Theorem|3.1.1. If T* < oo, than

lim sup [[u(t) || s (gs) = oc. (3.2)
t /T '
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Proof. By contradiction, consider that this result is not valid. As a result, from the existence
of solution for (2.1)) proved above, there exists an absolute positive constant C' such that

[[u(t)]
By integrating over the interval [0,¢] the estimate - below, and using ) and -

we have

Hgo(Rg) S C, \V/t € [O, T*) (33)

t
1 * *
/O ||VU(T)||iIg7U(R3) dr S ;||U0||§1270(R3) + Cs,a,a7uC4T = O&%@M,“mT*? Vi € [O,T ) (34)

On the other hand, let (k,)nen be a sequence such that x, 7 T, where k,, € (0,7%), for all
n € N. As follows, it will be proved that

lim  ||u(kn) — w(km)]|
n,Mm—00

H«:SL,U(R3) — 0 (35)

In fact, (2.12) implies

u(/{n) — u(/{m) = [eﬂ»Ann _ euAnm]uo +/ [G#A(Hm—ﬂ _ euA(nn—T)]PH [u ) VU] dr
0
- / A=) Py [u - V) dr = Ii(n,m) + Io(n,m) + I3(n,m).  (3.6)

Let us estimate each integral I;(n, m), where j = 1,2, 3. Starting with Iy (n,m), one deduces

[ (n, m)|; = [|fe"2% — et A ug

Hs (]R3 R3)

S/ [emprnlel —6_“T*'€‘2}2lél2862“'5'%Iﬁo(€)|2d§~
R3

Dominated Convergence Theorem guarantees that lim ||I;(n, m)|
n,m—00

up € H 570(]1%3)). Now, let us estimate Iy(n,m) by applying the inequality in 1) in order
to obtain

i1z, ms) = 0 (recall that

[12(n, m)HHg,U(RS)

< / H [euA(nme) _ e”A(””*T)]PH(u ) Vu)|
0

s, @) AT
:/ (/ [ Hem=)IEP _e—u(nn—rnfﬁp|§|2se2a\£|%|]:[pH(u.VU)](5)|2d§>§
0 R3

™ 1 1
* _ o (T* —km)| |2 s 2alélo . 2
VT (/0 /Rg[l I I R 2208 | Fu ) (€) Pdgdr )

On the other hand, by Lemma [1.2.16|ii) and ({3.3), one concludes

|lu - Vul

3
iz @) < C. Z sll s oy I Djull gy gy < CaosCllVUll gy g3y (3.7)
=1
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As aresult, fOT* |lu-Vu|
I(n,m) — 0 in HQU(R?’) (see (3.4)).

zs (R3)dT < 00. Therefore, Dominated Convergence Theorem implies

Now, following an analogous argument to the one presented above to obtain Fourier
transform of the heat semigroup and, furthermore, by using (2.11)), (3.7)), Cauchy-Schwarz’s

inequality and (3.4]), we have
Hg’U(RS) = / ||U . Vu| HS,U(R3) dr < Ccs,a,a,,u,uo,T* m

As a consequence, lim,, o0 ||I3(n, m)|| msowsy = 0. At last, 1} holds and, by apply-
ing this limit, there is u; € H;U(R?’) such that lim, e [[u(kn) — willgs gsy = 0 (recall
that Hjja(R?’) is a Hilbert space if s < 3/2). Notice that the independence of (K, )nen
follows the same process presented in proof of Theorem [2.2.1, Besides, a similar proof

shows us how to extend our solution beyond ¢ = T™. It is a contradiction. Hence, we
must have limsup, »p. |u(t)| s gs)y = oc. In addition, this limit superior also proves that

u g C([0,T]; He ,(R?)) with s € (L, 3).

[[3(n, m)]

]

3.2.2 Blow—up of the Integral Related to L!(RR?)

The next theorem might be written as a corollary of Theorem since the first one
follows from this last result.
Theorem 3.2.2. Assume that a >0, 0 > 1 and s € (3,3). Let up € H570(R3) such that
divug = 0. Consider that u € C([0,T*); H? (R?)) is the mazimal solution for the Navier-
Stokes equations (2.1)) obtained in Theorem |3.1.1. If T* < oo, then

™
/ ||65|“”u(7)||%1(R3) dr = .
t

Proof. Arguing as in proof of Theorem [2.2.2] we can write

1d ,

2+ HIVu()]

Hg ,(R3) < HVUHH;U(R?’)HU ® UHHS,J(R:S)- (3.8)

Now, our goal is to find an estimate for the term ||u ® u|

applying Lemma [1.2.16]1) (s € (1/2,3/2)), one has

3
i'fg,c,(ﬂ%?’) - Z [

jk=1

s, (R9) obtained above. Thus, by

al.|z

luwu 2 < Gl A2 ol

2.
HE o (R3)
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Replacing this inequality in (3.8) and using Young’s inequality, it results that

1d 1% FARE DS
MOl ey + BNV, gy < ol Al

(3.9)

Let 0 < t < T < T* in order to get, by Gronwall’s inequality (differential form), the

inequality

[u(T)]

T
%’é,a(ﬂ@) < Hu(t)‘ifg,[,(R?r) eXp{Cs,u/t ”eEH U(T)’|%1(R3) dr}.

Passing to the limit superior, as T' /' T*, Theorem [3.2.1] implies

™
/ [eEH (7 |21 sy dr = 00, Yt € [0,T7).
t

3.2.3 Blow—up Inequality Involving L!(R?)

The theorem below could be stated as a corollary of Theorem (3.2.2]

Theorem 3.2.3. Assume that a > 0, 0 > 1 and s € (1,2). Let ug € H;J(Rg) such that

272

divug = 0. Consider that u € C([0,T*); H ,(R®)) is the mazimal solution for the Navier-

Stokes equations (2.1)) obtained in Theorem |3.1.1]. If T* < oo, then

V

E.%/\ 87T3 lu’ *
HeaH u(t)HLl(Rd) - \/7_’*7\/__{:7 Vt E [O,T )

Proof. Arguing as in proof of Theorem [2.2.3| and using Theorem [3.2.2 we have

a l/\ *
64m%p < [lev 17 h(t) |13 @oy (T* — 1), V1t €[0,T7).

3.2.4 Blow—up Inequality involving H j’U(R:‘)

(3.10)

Let us recall the following notation: 77, < oo denotes the first blow-up time for the

solution u € C([0,17); ijU(R:”)), where w > 0.

60



Theorem 3.2.4. Assume that a >0, 0 > 1 and s € (3,3). Let up € H;”U(R:”) such that
divug = 0. Consider that u € C([0,T); H: ,(R?)) is the mazimal solution for the Navier-

Stokes equations (2.1)) obtained in Theorem (3.1.1 If T* < oo, then

8 3
TV e

w(t)|| e >_— VP
” ()|HG’U(R3)_Clm

)

1 1
where C 1= {47?0 |:2CL<% -
Proof. The following embedding H s (R?) — H f% »(R?) holds; then, we can guarantee, by
the existence of solution for |) that uw € C([0,T), HS%’U(]R:)’)); since, u € C([0,77), H;G(RS))
On the other hand, the inequality [[u(t)|/zs, ®s) < llu(t)llgs (rs), implies that T*% > T,

NV
Moreover, by applying (3.10)) and Cauchy-Schwarz’s inequality (similarly to ([1.16))), it follows
that

ST\ /1i apql o *
_f<Hem W) |11es) < Comslt@®llie, @y VEE[0,TD), (3.11)

VI = oty

where C7 | = 470 [Qa (\% — %)} - 3( S(S —2s)) < 0.

3.2.5 Generalization of the Blow—up Criteria

Now, let us apply a simple argument of induction to prove the blow—up criteria given in

Theorems [3.2.1], 3.2.2], [3.2.3] and [3.2.4], for n > 1.

Theorem 3.2.5. Assume that a >0, 0 > 1 and s € (3,3). Let uy € H;J(RS) such that

divug = 0. Consider that u € C([0,T%); H ,(R®)) is the mazimal solution for the Navier-
Stokes equations (2.1)) obtained in Theorem (3.1.1. If T* < oo, then

i) limsup [[u(t)|gs .
Ta Vo=’

Tq +|'\%
ii)/ lem M G2, s dr = 00
t

(®3) = %

ST 873
i) e 170 ey 2

a
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871'3\/_
TS 3\ —
e 2 T =7

for allt € [0,T;), n € N; where

Cr = o= {10t (o= D] G- 29 )

Proof. Notice that (3.11) implies limsup [[u(t)[| s, (®s) = oo. This limit superior is i) with
LTy N
n = 2. As it was discussed before, we can infer that

iv) [u(t)]

-
/t 16771 A [21 gy dr = 0, Vi € [0,T7).

(It proves ii) with n = 2). It concludes iii) with n = 2. Moreover, as an immediate
consequence of the limit superior above, one obtains 77 > 7™, . Hence, we deduce 1)) = T%, .

NG
Now, reexamining the above steps with \/LE instead of a, as in 1) one has

]73
STV < erm P ag)
T, —1t

NG
The equality T =T :k% and (3.12)) imply

||L1 (R3) < Oi US||u(t)| HEJ(RS)’ Vit e [O,T%) (3.12)

87T3\/_

u(t TS

” ( )| H%’U(]R3 Cy \/T*i
for all £ € [0,77). It proves iv) with n = 2. Passing to the limit superior, as ¢t  T.", one
can get lim supy . || (u, )(t)| s, _(@s) = 00 Thereby, i) with n = 3 is established. It is easy

to observe that the rest of the proof follows by induction.

3.2.6 Main Blow-up criterion Involving H;J(R?’)

At last, let us prove the inequality that is our main blow—up criterion of the solution
obtained in Theorem [B.1.1]

Theorem 3.2.6. Assume that a >0, 0 > 1 and s € (3,3). Let up € H;U(R?’) such that
divug = 0. C’onsz’der that u € C([0,T*); H (R3)) is the mazimal solution for the Navier-

Stokes equations (2.1) obtained in Theorem 1 If T < oo, then
a® 2 Cy exp{aCy(T* — )30 }

2(so4o0g)+1

(T* —t)~ o0
for allt € [0,T%), where Cy = C 5.5y, C3 = Cpsom, and 20q is the integer part of 20.

< w75 sy, provided that ug € L*(R%),
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Proof. Take § = s+ %, with £ € NU{0} and £ > 20, and §y = s + 1. Now, using Lemmas
[1.2.12] and [1.2.13] and Dominated Convergence Theorem in Theorem [3.2.5]iii), we deduce

3
2(s+4%)

877-3\/[_1/ =R l_ﬁ
T < a0 ) < Clu®llisy ™ @I

T* _ t LQ(RB)

Consequently, by using the inequality [|u(t)||z2ms) < |[uo| r2@ms), for all 0 <t < T* (see (4)
in [4]), one infers

2 (3.13)

35 (R3)]

k
C/J’S,“Ovbgs DU,S,AMUOl S Hu(t)’
(T = )% \(T* —t)s

6-4s
where C) 54 = (C;l8ﬁ3\/ﬁ)4?||u0||L23(R3) and Dy s jyug = (05*187T3\/ﬁ||u0||22}(R3))%. From this
point, just follow the same steps as in proof of Theorem [2.2.7|

]
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Chapter 4

The Magneto—Hydrodynamic
equations: local existence, uniqueness
and blow-up of solutions in nga(]Rg)

Consider the unforced Magneto—Hydrodynamic (MHD) equations for incompressible flows
on all space R3:

u 4+ u-Vu + V(p+3b]*) = pAu+b-Vb, zeR3} >0,
b+ u-Vb = vAb+b-Vu, zeRS, >0,

divu = divhb = 0, z€R3 t>0,

u(x,0) = ug(z), b(x,0) = by(z), =z €R?

(4.1)

Here u(x,t) = (ui(z,t),us(w,t),us(x,t)) € R3 denotes the incompressible velocity field,
b(z,t) = (b(z,t),ba(x,t),b3(z,t)) € R? the magnetic field and p(x,t) € R the hydrostatic
pressure. The positive constants p and v are associated with specific properties of the fluid:
The constant y is the kinematic viscosity and v~! is the magnetic Reynolds number. The
initial data for the velocity and magnetic fields, given by ug and by in , are assumed
to be divergence free, i.e., divuy = divby = 0. Note that the MHD system reduces to the
classical incompressible Navier—Stokes system if b = 0.

We shall study the above system using the Sobolev—Gevrey spaces H jjU(R?’). More pre-
cisely, we shall obtain solutions with (u,b) € C([0,T*); H;}U(R?’)) where £ < s <2 a>0
and ¢ > 1. Even in the Navier—Stokes case it is not known if 7% = oo always holds. In this

paper we shall derive blow—up rates for the solution if 7™ is finite.

In a recent paper, J. Benameur and L. Jlali [7] proved blow—up criteria for the Navier—
Stokes equations in Sobolev—-Gevrey spaces. This chapter extends the results of [7] from the
Navier—Stokes to the MHD system. Also, we prove the blow—up inequality for % < s < %
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whereas only the value s = 1 was considerded in [7]. For further blow—up results for the
Navier-Stokes and MHD systems we refer to [2, 8 [7, 10, 1T, 12, 28| 29| 32, 34, 42] and
references therein.

4.1 Local Existence and Uniqueness of Solutions

The following Theorem one guarantees the existence of a finite time 7' > 0 and a unique
solution (u,b) € C([0,T]; H; ,(R?)) with s € (3,2), @ > 0 and o > 1, for the MHD equations

)

Theorem 4.1.1. Assume thata >0, 0 > 1 and s € (5,2). Let (ug, by) € Hj,g(R:‘) such that
divug = divby = 0. Then, there exist an wnstant T = T, ,uop, > 0 and a unique solution

(u,b) € C([0,T7; H;U(R‘g)) for the MHD equations 1’

Proof. We first proceed formally and apply the heat semigroup e*2¢=7) with 7 € [0,1], to
the velocity equation in (4.1). Integration in time yields

t t 1
/ eFAE=T)y dr + / eHA(t=T) (u -Vu—0b-Vb+V(p+ §|b|2)> dr =
0 0

t
u/ A0 Ay dr
0

Using integration by parts one deduces
At ! A(t—) 1 2
u(t) = eug — [ e <u-Vu—b-Vb+V(p+§|b| )) dr.
0

Let us recall that the Helmholtz’s projector Py (see Section 7.2 in [32] and references therein)
is well defined, yielding

1
PH(u-Vu—b-Vb):u-Vu—b-Vb+V(p+§\b]2).

As a result, it follows that

¢
u(t) = e’y — / et Py (u - Vu — b - Vb) dr.
0
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Therefore,

¢
u(t) = ey — / AT P(u - Vu — b - Vb) dr
0

3

t
= e“Atuo — / GMA(t_T)PH[Z(U,ijU — b]DJb)] dr
0

j=1

t 3
= My — / e“A(t’T)PH[Z Dj(uju — b;b)] dr,
provided that divu = divb = 0. Hence,

t
u(t) = e"ug — / e“A(t’T)PH[Z Dj(uju — b;b)] dr. (4.2)
0

Jj=1

Next, our goal is to present an equality for the field b analogous to (4.2). By applying
the heat semigroup e”2(¢~7) with 7 € [0,1], to the second equation in (4.1)) and integrating

in time, we obtain
t t t
/ /A= dr 4 / /Ay - Vb —b - Vuldr = v / AT Ab dr
0 0 0
Using integrating by parts again, we have
t
b(t) = e"Aby — / "2y . Vb — b - V] dr.
0

4.1

), it follows that

As u and b are divergence free (see

3

b(t) = ey — | "I (u;D;b — b;Dju)] dr

S~

j=1
t 3
= e"Alpy — / VA=) [Z Dj(ujb — bju)]dr,
0 i
that is
t 3
b(t) = "2y — / A=) [Z D;(u;b— bju)]dr. (4.3)
0 =
By (4.2) and (4.3]), one obtains
(u,b)(t) = (e"uo, €"'by) + B((u, b), (u, b)) (t), (4.4)
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where

3

B((w,v), (7,9))(t) :/0 (=" Py Dj(yw = vj9)], —e 277 ZDJ w;¢ —vyy)]) dr

"~ (4.5)

Here w, v, 7, and ¢ belong to a suitable function space that we now discuss.

Let us estimate B((w,v), (7, ¢))(t) in vaU(R?’) with 1/2 <s<3/2,a>0and o > 1. It
follows from the definition of the space H s »(R?) that

3
HeﬂA(t_T)PH[Zl Dj (%w — U]¢)]| f*'{g,U(RS)
J:
2s_2al¢|7 pA(t—7) - 2
= | 6P TPl Dy(yw = v} de.
j=1
As a consequence, we have
3
le# 2 P> D(jw — v )|l gy =
j=1
2 1 >
/Rg e 2n=IER |22l | F L[S Dy(yjw — vj)]H(E) [ de.
j=1
By applying (2.11)), we can write
3
le# 2D Py Dj(viw = vi0)] I, o)
j=1
< /R —2u(t—T |§\2|£‘2s 2a|£| |ZJT.‘ . UJ¢)](£)|2 d¢

< / - 2ult-)lE? |€|2562a|£|3 IFlw @y — 6@ v)(E) - &2 de
RB

< / e~ 2= EP g2 2 200617 | F 1y oy — @ 0)(€) 2 dE.
]R3

Rewriting the last integral, we have

3
le#2¢D Py - Dj(yjw — vi)]II?

Hs ,(R3)

J=1

< / €[5-20e2u=TIER g 45-3201% | F(uy @y — ¢ @ v) (€)|? .
R3
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As a result, by using Lemma [1.2.19] it follows that

et ZD viw = v @)l

5—2
(?,f

IN

since s < 3/2.

)2

(t — 7')5;225 R3

s, (R3)

5—2s

€[15-3¢2167 | Fw © 7 — 6 @ v)(€)|* de

wRy— vl

525 25? 9

(t—T) 2 Hay 2 (R3)

On the other hand, by using Lemma [1.2.7] one infers

o = [ @ de

lw @

—Z/wwwmmn%

]k: 1

- Z H’y]wkH 2s j( 3
7,k=1

< Culluly a1 x

provided that 0 < s < 3/2. Therefore, one deduces

|€MAtT ZD /7]

Cs,
Hg 5 (R3) < (t—T)ME)_fS [ (w, v)]

—v;9)]|

Hg’o(R:”) ” (77 ¢)|

By integrating the above estimate over time from 0 to t, we conclude

+ 3

Dj(vjw = v;0)]]
H RB)H(V )|

H‘S R3) dT

Hs (R3)

tl(w, )l :
S Cs,u/ : a‘G( 5—;5 = dr
0

<Cs#

(t—7)4

(w U)”Loo ([0,T):Hg , (R3)) (7, ¢)||Loo ([0,T); g , (R3))>

for all ¢ € [0, 7] (recall that s > 1/2).

Analogously, we can write

t 3
AH&M*ﬂQijw¢—wwn
j=1

s, (®3) AT

251
<G, T ||(w7U)HLOO([O,T];H;U(]R?’))||<’y7¢)||L°°([O,T};H370(R3))7
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for all ¢t € [0, T7.
By (4.5)), we can assure that (4.7)) and (4.8) imply the bound

1B((w,v), (7,))(t)]

s, (R3) < Os;wT B H(w U)HLOO ([0,T];Hz , (R3 )||(W ¢)||Loo([0T} - (R3))
(4.9)

for all t € [0, 7.

To summarize, it has been shown that

HeyAtb()’

i o (20) = / [€[**e* 7 | F{e" by }(€)* dg
:/ e 2 IF g el By &) de
R3
= / €[**¢* 17 5o (€)[* dé = [1boll}
R3

H ,(R3)

(4.10)

Therefore, we have established the following estimate:

H (euAtUm eyAtbo) ’

H ,(R3) < H(Uo,bo)| H: ,(R3)

Notice that B : C([0,T]; H: ,(R%)) x C([0,T); H: (R®)) — C([0,T]; H;U (R?)) (Wlth

se€(3,3),a>0ando>1)isa bilinear operator, which is continuous (see and 4
Choosing a time T" > 0 with

1
T < ,

_4
[4Cs i ll (10, 00) | gz ()17

where Cs ,, Is given in , we can apply Lemma _ to obtain a unique solution (u, b) €
C([0,T); H; ,(R?)) for the equation 1)

This completes the proof of Theorem [4.1.1]

4.2 Blow—up Criteria for the Solution

4.2.1 Limit Superior Related to HiJ(R?’)

By assuming that [0,7™) is the maximal interval of existence for the solution (u,b)(z,t)
obtained in Theorem [4.1.1j with 7™ finite, let us present our blow—up crlteria for the solution
(u,b) € C([0,T*); H: ,(R?)) with s € (1,3) of the MHD equations (4

27 2)
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Theorem 4.2.1. Assume thata >0, 0 > 1 and s € (3,3). Let (uo, by) € HiU(R?’) such that
divug = divby = 0. Assume that (u,b) € C’([O,T*);H;U(R:”)) is the solution for the MHD
equations (4.1)) in the mazimal time interval 0 <t <T*. If T* < oo, then

lim sup || (u, b)(¢)|
t T+

Hs ,(R3) = O©-

Proof. We first generalize the arguments given in the Appendix of [7]. We prove this theorem
by contradiction. Suppose the solution (u, b)(t) exists only in the finite time interval 0 <t <
T* and

lim sup |[(u, b) ()| s _(ga) < 00 (4.11)
t /T e

We shall prove that the solution can be extended beyond ¢t = T™.

By (4.11) and Theorem m (since s € (

10,0y < €, Wt € [0.T7). (4.12)

Integrating the inequality (4.28)) below in time and applying (4.12)) and (1.16]), one concludes

N =

,2)), there exists an absolute constant C' with

1w, ) (1))

%’S,U(Rg) dr § H (UO, bo)| %I;,U(RB) + Cs,a,o,904T*7

t
e 0 [ V(D))

for all t € [0, T*), where § = min{yu, v}. Consequently,

1
%Ig’(,(R?’) dr < §||(u0a b())l

t
JCG! 2 o+ CoaogCT*
0 )
= Us,a,0,0,u0,b0,T* > (4 13)
for all t € [0, 7).

Let (kn)nen denote a sequence if times with 0 < k,, < T* and k,, /* T*. We shall prove
that

i) 50) = (1 8) )l ey = O (414
The following equality holds:
(u,0)(kn) — (1, 0) (k) = Li(n,m) + Ir(n,m) + I3(n,m), (4.15)
where
I (n,m) = ([erBrn — ehBrmlyy, [e/BFn — e"Armpy), (4.16)
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(/ eMA Km—T) _ eﬂA(”"—T)]PH [u-Vu—>b-Vb| dr,

/0 Al =T) — A (4 W — b V) dr ), (4.17)
and also
I3(n,m) = — ( /Hn A=) Py [u - Vu — b - Vb dr, /Hn A=) (4. Vb — b - Vu) dT).
o o (4.18)
(See and (4.5)). On the other hand, it is easy to check that

—VKn 2 —VKm 2 s _2a %A
S = [ [T — e T 2 g 22017 by ()2 de
Ba®) [
vk €2 T El2 i~
< [ ferri e et ) e
R

H[eVAnn o ellAKm]

Since by € ijU(R?’) and e V€ — e T7IEP < 1 for all n € N the Dominated Convergence
Theorem yields that

: VAEKn _ VAKm 2 —
e = S5l =0
Similarly,
: PAKn AR 2 —
ol |l — e Juol, gy = 0.

Consequently, Ty, [[11(1,m) 1,5, = 0 (see (ET6)).
We also have:

/ |[e#Atm ) — p A =D Py Vi — b - V)|
0

sz, (=) 4T
:/ N / eI — I 2 2017 Py - Vi — b- V0] (€) P ) dr
0 R3

By applying ([2.11)), we obtain that

/ |’[€#A("5m_7) _ euA(nn—T)]pH(u Vu—>b- Vb)|
0

s, @) AT

T* 1 1
< / ( / (L om0 P87 | Flu - Vu - V()P ) dr
0 R3

The Cauchy-Schwarz’s inequality yields that

/ ||[erAtem =) _ rAEn =] Py (4 - Vi — b - Vb)) fs (w3 AT
0 :

T* 1 1
VT [ [ e et Pl b (@) dear)
0 R3
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Observe that 1 — e~ #T"=sm)l€* < 1 for all m € N and fOT* |lu-Vu—>b-Vb|?, (RS)dT < 00

since that

l|lu - Vul

Hy . (R)

sy | Dy

3

sz ) < Cags D [l
j=1

S Caya':sc”quHgyg(RS)' (419)

(See Lemma [1.2.16]ii) (0 < s < 3/2 and ¢ > 1), (4.12) and (4.13)). Application of the

Dominated Convergence Theorem yields that

lim [[e#Atmm=) — erAn=D Py (u - Vu — b Vb)|| gy gy dr = 0.

n,m—o0 [o

Analogously, we obtain

Km

lim ||[erAtrm=) — erAEa=T)](y . Vb — b - V)l ig: @ dr = 0.

n,m—o0 [n
i, &) = 0 (see )

Therefore, lim,, ;o0 [ 12(n, m)|

Finally, note that

() g gasy < [ 15 Pl T = b 1) oy

s, (&) AT

+ / |e#25n=T) (- Vb — b - V)|

Following a similar process to the one proved in (4.10) and applying (2.11)), one gets

[[3(n2, m)]

s, (89) AT

H(‘;J(R?’) S / ||U . Vu — b . Vb|

i3, (@) AT

+/ |lu-Vb—b-Vul

m

Use (4.19) to obtain

[3(n, m)|

T*
Hg,U(RP’) S CCa,o,s/ HV(U, b)|

i3, (&) AT

Therefore, by the Cauchy-Schwarz’s inequality and (4.13]), one has

[[13(n, m)]

1
T* 5
H;,U(RB) S Ca”o—’s v T* - /{m (/ ||v(u’ b)||§‘.lg7a(R3) dT)
S CS,CL,O’,@,’U,Q,Z)Q,T* V T* — K-
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This implies that lim,, ;,,—e0 [|I3(1, M) i1z, ws) = 0. To summarize, we have derived the limit

statement of (£.14) from equality (4.15). In other words, we have proved that ((u, b)(kp))nen
is a Cauchy sequence in the Banach space H? +(R?) (recall that s < 3/2). Therefore, there

is (u1,b) € HE ,(R%) with
lim || (w, b)(kn) — (u1,by)]

n—oo

Hs., 3 = 0

Notice that the independence of (k,)nen follows the same process presented in proof of

Theorem 2.2.11

Finally, consider the MHD equations with the initial data (uq,b;) in instead of
(uo, bo) and apply Theorem As usual, we can piece the two solutions together to obtain
a solution in an extended time interval, 0 < t < T* + T with T" > 0. This contradiction
proves that

lim sup || (u, b)(?)]
t T+

Hs ,(R3) = OO

4.2.2 Blow—up of the Integral Related to L!(R3)

The next result generalizes (4.1) of [7]. In fact, taking s = 1 in Theorem yields
(4.1) in [7].

Theorem 4.2.2. Assume that a > 0, 0 > 1 and s € (3,3). Let (uo,bo) € H;U(R:;) such

that divug = divby = 0. Consider that (u,b) € C([0,T%); HiJ(R?’)) is the mazimal solution
for the MHD equations (4.1)) obtained in Theorem 4.1.1]. If T* < oo, then

™o
/ Heg"|”(u,b)(7)|\%1(R3) dr = co.
t

Proof. Taking the H gva(R:i)-inner product of the velocity equation of 1) with wu(t) yields

1
(u, Ut>Hg7g(R3) = (u,—u-Vu+0b-Vb—V(p+ §|b|2) + IUAKU/>H3’G(R3). (4.20)

On the Fourier side, the second term on the right hand side of the above equation is

Flu)- FIV(p+ 5[bP) :—zzmy 0+ SR)(E)

- _ Z F(Dju)(€)F[(p+ %IbIQ)](@
= Fliva)©F(p+ bR =0, (@21)
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because u is divergence free. As a consequence, we have

{u, V(p + §|b|2>>H;,U<Rs> = / 32627 Fu) - FIV(p -+ §|b\2>]<5) d¢=0.  (4.22)
RB

Furthermore, it happens that

a-Au() =3 a- Diu(©) = iy _u- [§Du()] = = 3 Dyu- Diul¢) = —|Vu(§)*

j=1 j=1
(4.23)
Therefore,
(0080 sy = [ 166 T By de = [ e Fuce) g
= —Vullg, sy (4.24)
Using and in , we conclude that
1d

S @, g+ uI VUG, gy < [ w V) gy gl + w0 Vo) g sl (4.25)
10 (®) 1.0 ®) , ,

Next we consider the magnetic field equation of (4.1)) and derive an estimate for b(t)
similar to the velocity estimate 1) Taking the H, ;U(RS)—inner product of the magnetic
field equation with b(t) yields that

(b, bt>Hg’U(]R3) = (u,—u-Vb+b-Vu+ VAb>H;YU(R3).
By applying (4.24)), with b instead of u, it follows that

1d
§£||b(t)|

Combining (4.25)) and (4.26]), we conclude that

1d
5% || (’LL, b)(t) ||?‘1§,J(R3) + 0||V(u7 b) (t) ||2 s o (R3)
< - V)] 1B V)| + (B0 Tzl + 10,0 T

i,g’a(Rg,) + v||Vb(t)| fqg’o(Rg) < [(bou-Vb) g ey + (0.6 V) e ga]- (4.26)

where 0 = min{y, v}. Furthermore, since divb = 0, we have

3 3

F(Vh) - Fowu)(©) = 3 F(Vh) - Flub)(€) = > F(Diby) (€ Fu;b)(€)
=12 &F (b)) F (usbe)©)
- Z F(b;)(6)F (D (ujb))(6),
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that is

It follows that
(00 Vg aoy = [ 6260 ) - ()
-/ €[25e20E17 F(Vb) - F(b @ u)(€) de
= —(Vb,b@u)p, (gs)

Using that u is divergence free and applying the Cauchy-Schwarz’s inequality yields that
1d

YOIy + I DO e
< [[Vul Hg,U(R3)||u ® ul s, R3) T [Vl Hg’U(R?’)Hb ® b s (R3)
+ IV Hg’(,(RS)HU ® b Hs,R3) T V0] Hg’g(Rk?’)Hb ® ul s, (R3)" (4.27)

We have to estimate the term ||u ® b|
(0 < s < 3/2) yields that

s, (B) appearing above. Applying Lemma [1.2.16| 1)

|lu® bl

b = [ e P bR e

3 1
=30 [ e F b de

Jk=1

3
= > lIbjul

jk=1

3
1 .~
Ca Y (e bs1l 1 oy s
k=1

2.
H; ,(R9)

ot

s @) T e | |51

IN

2
i3, ()]

w

a.%/\ .%
Cs D e b 17 syl "

7,k=1

al. %’\
< Cullle= "7 blI% gyl

IN

%’S,U(Rg) + H€§ 12\/6||%1(R3)||b]| égﬂ(RS)]

ot

?’{g,c(R:a) + Heo a’|%1(]R3)’|b|

2
Hsz,g(Ri‘)]’
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or, equivalently,

i

|lu® bl

g ,w) < Cs [ P lell s, sy + el @) 16 g )

Usinging this inequality in (4.27)), we infer that

1d

5 B3 oy + OV YOI,

< Cullle# M all sy + e Bl o]

g, &3 T [10]

H; ,(R3) NV (w, b))l

a0 (R3):
By Young’s inequality:

1d

2 0 2
31O e+ 51V DO

< Cop 17 @l agay + €173l 1 oy P

< Copuulles” @, O gy 1, D)1,

o (R?)

fs (R3) T ”b”f{;,a(ﬂ@)]z

(4.28)

Consider 0 < t < T < T* and apply the Gronwall’s inequality (differential form) to
obtain:

T 1 R
YRy, gy < 108 DO gy @D Ci s / e5H7 @, B) () 3+ gy i}

Passing to the limit superior, as T' 7 T*, Theorem yields that

L
/ 65117 @, B)(7)|2gus, dr = 00, Vi € [0,T7).
t

4.2.3 Blow—up Inequality Involving L}(R?)

In this section, we point out that (4.2) in [7] is a particular case of Theorem obtained
for s=1and b =0 in (4.1).

Theorem 4.2.3. Assume that a >0, 0 > 1 and s € (3,3). Let (uo,bo) € H570(R3) such
that divug = divby = 0. Consider that (u,b) € C([0,T*); Hj’U(RS)) is the mazimal solution
for the MHD equations (4.1) obtained in Theorem {4.1.1L If T* < oo, then

27?3\/5

)
eo u,b)(t >
247 (@ D)(O) e = 2=

Y

for allt € [0,T*), where = min{u, v}.
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Proof. Using Fourier transformation and taking the scalar product in C* with @(t), we obtain
for the velocity equation of the MHD system:

TG =—pVu2—a-u-Vu+ia-b- Vb
We have used (4.21)) and (4.23]). Consequently,
| — e ——
§at\u(t)\2 + p|Vul? < |i-u-Vu|+|u-b- V. (4.29)

__ Similarly, by applying Fourier transformation and taking the scalar product in C3 with
b(t), we obtain from the magnetic field equation of the MHD system:

b b= —v|Vb2=D-u-Vb+b-b- Vu.
Therefore,
%8t|3(t)|2 B2 < B u- VB + 55 Val. (4.30)
Combining and , it follows that
%atrm(t)\? +0|(Vu, VO)|* < [l u- Vul + [allb- V| + [blju - Vb| + [b]|b - V],

where § = min{y, v}. For 6 > 0 arbitrary, it is easy to check that

= V. V)2 S
o \(a,b)(t)12+5+0w§!u-Vu|+\b-Vb\+\u-be+yb-Vuy.
(@, 0)]> +0

Integrating from t to 7' (where 0 < ¢ < T < T* < 00), one obtains that

\/|(u b)(T |2+5+0|£|2/ \/| LZ dr

T)?+ 6

< |<a7b><t>|2+6+/t [|<u-w)<r>|+|<b-w><f)|+|<ﬁ><f>|+|<m><r>udn

o~ ~ wial
since |(Vu, Vb)| = |€||(4@,b)|. Passing to the limit, as 6 — 0, multiplying by e=/¥l” and
integrating over £ € R3, we obtain

. R T a1l o~ o~
le=17 (@, D)(T) | s sy + 6 / le=17 (A, Ab)(7) |z gy
t
a 1 o~
< [lew 7 (@, b) (£) | o2z

" / T / 217 (| (- Vu)(r)| + (5~ VB)()| + | (u- VO)(T)| + (b - Va) ()] dédr,
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because |(Au, Ab)| = |£|2|(@,)|. Moreover, we have

(u- V(€)= \i@(é)] = (2m)7 Zd « D3b()|
- <2w>-3] Z / () D;b(E — ) dn)

(27) \/R )- Vb = n)n] < 2m)° [ [@IITHE )l dn.
Using the estimate , we obtain that
| @ lde < eny [ [ e @liFie - o)l dnde
<y [ [ e et The - ) dnde
= (2n) [ [ B @)« o (Th(E) ) dg

aj. % ~ aj. % =3
= (2m) 2 |les V7 [@l) + [e7 17 VBN L1 s)-

Applying Young’s inequality for convolution it follows that
/ 5147 |- TB)(©)] d < (2m) €7 L1y 17 bl o (4.31)
R3

Furthermore, the Cauchy-Schwarz’s inequality implies that
a5 S AP
163 Fllusy = [ T dg = [ e el ag
R3 R3
PR 3 RN 3
< ( / e«'ﬁ'“|f|2|b<f>|df) ( / eaf"’|b<f>|d§)
R3 R3
L7 RpI2 ERETE:
= |le- Ab”il(ﬂ@)Heo bHil(Rsy (4.32)
since |€]2[b] = \A\b\ and \6\1)\ — |¢|b]. Using the estimate (4.32) in (4.31)) yields that

ale|5 ~ 3
/RS 17 (- VB)(©)] € < (2m) 2 [le 7 @ oo e 17 Bl @ lles!"” Ab”p

Consequently,
aH% o~ ’ a||% NN
e (@, b)(T) || L1 (m3) +6/ e (Au, Ab)(T) || L (we) dT
t

1. T e . — 1
'"(u,b)(t)HLl(Rs)+4(27r)‘3/ 51 (@ BTy o 5117 (B, BB 1 o b
t
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By using the Cauchy-Schwarz’s inequality again, we conclude that

al. % o~ 3 ajl, % _ 1
42m) e (@, b) 117 s le=17 (Aw, AD) (171 s

g.% o~ 0 g.% <~ A3
le (u,b)llil<Rs>+§Hev" (Au, Ab) | 11rs).-

Hence,

ap: o~ 0 T s
¥ @DD s + 5 [ 168 B B0 o) dr
t

a'% o~
< |le="" (@, Y[ sy +

| PARE S
g | 168 @D s
t

By the Gronwall’s inequality (integral form), it follows that

1

CANI- IS e A%~ 1 T al|z i~
e @ DD o) < 18 @ DOy exp {75 [ 137 @D et
forall 0 <t <T < T*, or equivalently,
69) 7 L TP A: % 3 D)2
(—4m0) 5 |exof g [ 165 @D oyt || < e @D e
Integrate from t to ty, with 0 <t <ty < T™, to obtain that
6 1 to g||% ~ T 2 6 Ell% o~ 9
(—47°0) exp ~ 159 |, e (@, 0)(T) |71 reydT ¢ + 4700 < [lee"" (@, b) (¢) |71 gy (to — 1)

By passing to the limit, as ¢y /7%, and using Theorem [£.2.2] we have

-~

a 1 —~ * *
Ar%0 < ||eM7 (@ b) (1) |71 sy (T* — 1), VYt €[0,T7).

4.2.4 Blow—up Inequality involving H;)U(R?’)

Here, T} < oo denotes the first blow-up time for the solution (u,b) € C([0,77); vag(]R?’))
of the MHD system, where w > 0.

Theorem 4.2.4. Assume that a > 0, 0 > 1 and s € (3,3). Let (uo,bo) € H;U(R:;) such
that divug = divby = 0. Consider that (u,b) € C([0,T); Hj7J(R3)) is the mazimal solution
for the MHD equations (4.1)) obtained in Theorem A.1.1, If T < oo, then

27?3\/5

1w, ) grs, @) 2 7—Fm—=—> Vt€[0,T7),
Hﬁvf’(R ) Cl T; —1
1 1\7-9(B-29) 3
where 0 = min{p, v} and Cy = {47rc7 [2@(7 - —)] [(o(3 — 23))} .
o o



Proof. To demonstrate this result it is sufficient to follow analogous steps those presented in
proof of Theorem [3.2.4]

]

4.2.5 Generalization of the Blow—up Criteria

Notice that the Theorems 4.2.1} 4.2.2} 4.2.3| and |4.2.4] prove the Theorem {4.2.5 in case
n = 1. From this, it is sufficient to use the induction process presented in proof of Theorem
to guarantee the veracity of theorem below.

Theorem 4.2.5. Assume that a >0, ¢ > 1 and s € (3,3). Let (uo,bo) € H57J(R3) such

1
29
that divug = divby = 0. Consider that (u,b) € C([0,T7); H; ,(R*)) is the mazimal solution
for the MHD equations (4.1)) obtained in Theorem {A.1.1, If T¥ < oo, then

i) hmsupll(u b)(1)]

iy ,(R3) = 09
VI

nll‘
i) [ 1 @B r = oo

213/ ‘
Tr —t’

S 21m3/0
s 3y — T —/m>
T O T =1

forallt € 0,T)), n € N; where § = min{u, v} and

Cy = Copys = {47?0 [2#(% — %)] _U(g_ZS)F(O(S — 23))} :

a |x -
iif) ervm ™ (@, 0)(8) ey >

iv) |[(u, b)) 5

[N

4.2.6 Main Blow-up criterion Involving H;J(R?’)

Lastly, observe also that Theorem [4.2.6, by assuming s = 1 and b = 0, gives the same
lower bound as the one determined in [7].

Theorem 4.2.6. Assume that a >0, 0 > 1 and s € (3,3). Let (uo,bo) € H;J(R3) such
that divug = divby = 0. Consider that (u,b) € C([0,T%); Hj’U(R?’)) is the maximal solution
for the MHD equations (4.1) obtained in Theorem 4.1.1L If T* < oo, then

a®t2Cy exp{aCy(T* — t) "3+ }

Ty < [[(u, b)(t)]

i1y, (r#), provided that ug € L*(R?),
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for all t € [0,T%), where Cy = Cysomoby, C3 = Chpsouepy and 200 is the integer part of
20.

Proof. Choose § = s+ % with & € NU{0} and k£ > 20 and set g = s+ 1. By using Lemmas
[1.2.12] and [1.2.13] and Dominated Convergence Theorem in Theorem iii), we obtain

3 _ 3 3
27 \/5 ™ ! 2st 2 2(st o)

=N )
7= = M@0 Opr@e) < Cll(w,0) )| 2oy 1w YOI 1 K s

0 = min{u, v}. Hence, using the inequality
I YOl o) < B t)l|aqusys YO < to < ¢ < T, (4.33

(see (2) in [I1]) we obtain that

k
C@,s,u b Do’,s,@,u b
T ] < MO e
(T —t)s \(T* —t)3 H"F 20 (RS)
where ,
DU7S79,u07b0 = (05_127T3\/§||(u07 bO)HZ%(I[@))%
and

s 6—4s
Co,smopo = (C7120°V0) ¥ || (o, bo) | 1 F g

Now, just follow the same steps as in proof of Theorem [2.2.7]
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Chapter 5

The Magneto—Hydrodynamic
equations: local existence, uniqueness
and blow-up of solutions in nga(]R?’)

This chapter has two main goals: the first one is to generalize all the improvements
obtained in Chapter [2[ to the MHD equations; the second one is to extend all the results
established by J. Benameur [4] from the Navier-Stokes equations to the MHD system (4.1]).

5.1 Local Existence and Uniqueness of Solutions

Now, let us list our main results related to the space H ,(R?). The first one regards to
the existence of an instant t = 7" > 0 and a unique solution (u,b) € C([0,T]; H ,(R?)) for
the MHD equations (4.1)). More precisely, we state the following theorem.

Theorem 5.1.1. Let a >0, 0 > 1 and s > 5 with s # 3. Let (ug, by) € H ,(R?®) such that
divug =divby = 0. If s > 3 (respectively s € (1,3)), then there exist an time T = Ty ;1 100,50
(respectively T = Tsapvuop) ond a unique solution (u,b) € C([0,T]; HY,(R?)), for all
w < s, of the MHD equations given in (4.1)).

Proof. We know that the Magneto-Hydrodynamic equations can be rewritten as follows (see

and (4.5)):
(uv b) (t) = (eHAtU()? eyAtb(J) + B((“? b), (u7 b))(t)a
where
Bl(w,0). (0 0)(0) = [ (= DPUY iy = 56~ (S Dyt = o)

J=1 J=1
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From this point, we analyze the cases s € (%, %) and s > % separately.
1° Case: Assume that s > 3/2.

Here w, v, v, and ¢ belong to an appropriate space that will be revealed next. In order to
examine (u,b)(t) in Hj ,(R?), let us estimate B((w,v), (v,¢))(t) in this same space. Thus,
we deduce

3

e Py " Dj(vw —v;0)] |3

H;, , (R3)

j=1
3
= [ (U IERy e P PaS Do — i) e de
R3 =1
1 3
= [ TR e P Dy = s HOP e

Jj=1

By applying (2.11)), one can write

2D P[>~ Dj(vw — vl

H; o (R3)
=1
3

< [ eI ey 37 FD (g - v ol(©) e
R3

j=1

< [ eI (1 ey P @ - g2 0)(e) -1 de
R3

s/‘m%2WTMW1+MW%M“ﬂHw®v—¢®w@Wd5
]R3

As a result, by using Lemma [1.2.19] it follows

3
|20 Puly " Dy = 0ol sy < Cult =) Fw @y — ¢ @l

Hg ;- (R3)-
j=1
Similarly, we can write
3
12 —T -1
1D Dse D w;d — vm)lag @) < Colt = 7)72[ll6 ® wll g, e3) + 17 © 0ll g, 23]
j=1

Consequently, one gets

1B ((w,v), (v,0)) ()]

t
<G| [ €= Hwen

Hy . (R)

t
1
memydr+ [ (t=n)Howol
0

Hy ,(R3) AT

t

t
+/ (t - 1) H 16 ® wlly ey d¢+/ (t ) H 7 ® vl ey dr (5.1)
0 0
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On the other hand, it follows

1 —_—
oy, 0 = [ 1+ 1€ TR de

=3 [ v leprens g i

7,k=1

(2m) Z/ (14 €2) e | » T(6) e

7,k=1
<c / (L €Y (5] @) ) de.

Therefore, one deduces

lw @]

2
1
e <C [ @iy | [ et @i - mia| d
By using ((1.3)), we conclude

1 1 2
lw @ @ < C /1+|§| URSe“'"”I@(n)le“'g‘”"’W(é—n)ldn} d¢

C [ -+ ey )] « e e de
/ (14 [€[2) {FIF (€17 @ (€) ) F (€17 [F(e))]}2 de

= CIIF (7 [@)F (e A3

Hs(R3)"

Hence, by following a similar process to that used in the proof of Lemma [1.2.8] one has

o ® Yl sy < CollF (M7 1) Loy 1F (7 A1) sy = Cllwlla sy 1 )
since s > 3/2. Replacing this result in , one obtains
1B((w,v), (v, @) ()l ms, m3)
t t
< Csww[/o (t —7)7%[|wl s @) 1V as ey dT +/0 (t—7)72|¢| s @ |0l ms  @s) dT

Hs, (&3 || w] s, &) |Vl mg, me) dT |

t _ 1 t _1
T / (t— )49l () A7 + / (t =)
0 0

As a consequence, if we consider 7' > 0, we get

1 B((w,v), (v, 0)) ()| ms , re)
1
< Copp T2 [[[wl] oo oy, @) 1Vl oo o153, o)) + @l oo 0,171, o) V]| Lo o,715825 , R3))

1l zee o, 5, o |0 2o o0,73585, v2)) + V[ £oe 0,715, 3y 10| 2o 0,775, (R3]
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for all ¢ € [0, T]. Therefore, we deduce

1
1B((w,v), (v,0) Ol , z2) < Copun T2 [[(w, 0) || oo 0,135, @2 [|(V, D) Lo 0,73585 , (R2)) 5
(5.2)

for all ¢ € [0, T]. By noticing that B : C([0,T]; H; ,(R?))* — C([0,T]; H; ,(R?)) is a bilinear

operator and continuous (see (4.5)) and (5.2))), it is enough to apply Lemma and consider
T small enough in order to obtain a unique solution (u,b) € C([0,T]; H ,(R?)) for the

equation (4.4). More specifically, choose

1
[4C 10|l (1o, bo) |

where Cj ,,, is given in (5.2)) and

H (euAtUm eyAtbo) |

T <

Hs, (&3)]%

s, &) < [[(wo, bo)|lms , r3)-

(This estimate comes from a similar process to the one described above).
2° Case: Consider that s € (1/2,3/2).

Let us estimate B((w,v),(7,¢))(t) in H; (R®). It is enough to get a lower bound to

B((w,v), (v,¢))(t) in L*(R?), because ‘) ensures a lower bound in H;U(R‘g) (see Lemma
1.2.10)). Following a similar process to the one presented above, we have

e Paf3 Dy~ e = [ 1 Pl D O

J=1 J=1

By using Parseval’s identity, one gets

3
le# 2D Py - Dj(yjw — vj6)] |2z
j=1
3
= (2m) ™" nd {20 Puy | Dy(yyw — v;0)]}(€) [ dé
j=1

3

= (n) [ I Y D0 = ) HOF e

Jj=1

By using (2.11)), we get

3
e8Pl 3 Dy = 0y < (2 [ JePe I Flw w0y — 6 0 0)(O e
R3

j=1
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Rewriting the last integral, one has

3
||€MA(t_T)PH[Z D;(vw — Ujﬁb)]H%?(Rf”)

Jj=1
< (2m)~? / [P 20e= 2R 2073 Fw @ y — ¢ @ 0) (€) 2 d.
RZS

As a result, by using Lemma [1.2.19] it follows

3

. Cs
24D P[>~ Dj(vjw — ;)] 172 ms) < W
=1 -

since 1/2 < s < 3/2. On the other hand, by utilizing Lemma [1.2.6] one has

3
Hsfj (R3) ; ’7] k’

Thereby, as H: ,(R®) < H*(R®) (s > 0) and Lemma [1.2.10, we deduce

w@Y= ¢l g0

lw @~

i 3oy S Osllwle @) 17 1Z2ma)-

3
3 .,
1426 Py Dy (w0 — v;0)] |2z < =
i=1 -7

(w, U)HH;;,U(W)H(% )| Hg ,(R3)-

By integrating the above estimate over [0, ¢], we conclude

. 3
/ ||6“A(t*T)p Z Dj(%-w — Uj¢)] ||L2(R3) dr

7j=1
<Csu

N w, )z o mrsrz o @on 17, &) | ooy, 2 (5.3)
for all ¢ € [0, T] (since that 1/2 < s < 3/2). Similarly, we can obtain

t 3
/0 #3356 — vl e
j=1

< Co T |[(w, ) 2oy, @op | (7 )| oo oz, (23 (5.4)
for all t € [0, T]. By using the definition (4.5) and applying (5.3]) and (5.4)), one concludes

25—1
1 B((w,v), (v, 0)) () 2@s)y < Cs T 7 [[(w, ) | Lo o.1y:m5, @2 | (V, 0) || Los 0.1 5., (B2
(5.5)

for all ¢ € [0, T]. Finally, by using Lemma [1.2.10} (4.9), (5.5) and the fact that H; ,(R?) <
1, (R%) (s > 0), it results

I1B((w,v), (v, 0)) ()| g

25—1

S®3) < Csapn T 7 |[(w, )| oo o,z w2 | (Vs @) oo (0,115, (R2))
(5.6)
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for all ¢ € [0,7]. By noticing that B : C([0,T]; H; ,(R?))* — C([0,T]; H; ,(R?)) is a
bilinear operator and continuous (see and ), it is enough to apply Lemma
and consider 7" small enough in order to obtain a unique solution (u,b) € C([0, T]; H; ,(R?))
for the equation . More specifically, choose

1
T < _4
[4C5 a0 || (o, bo) | Hgyo(]R{?’)] o1
where Cj, ., is given in (5.6]); since,

| (GMNUO, BVAtbo) |

s, @) < [[(uo, bo) | as , (r2)-

(This estimate follows the steps present above).

Lastly, by assuming that @ < s, it follows that « € C([0,T]; HZ,(R?)) since Hj (R?) —
1z, (B%)

]

5.2 Blow—up Criteria for the Solution

Assuming that the maximal time of existence of the solution for the MHD equation (4.1)),
obtained in Theorem [5.1.1} is finite, it is possible to establish some blow-up criteria for this
same solution.

5.2.1 Limit Superior Related to H; ,(R?)

Here, we generalize the arguments presented in subsection . Moreover, it is impor-
tant to point out that Theorem [5.2.2| is a generalization of the limit superior obtained in
Theorem and Theorem is an extension for this same limit determined in [4].

Theorem 5.2.1. Assume that so > 3/2, a > 0, and 0 > 1. Let (ug,by) € H (R3) such
that divug = divby = 0. Consider that (u,b) € C([0,T%); H; ,(R?)), for all s € (%, Sol, is the
maximal solution for the MHD equations (4.1)) obtained in Theorem [5.1.1| If T* < oo, then

lim sup || (u, b)(t)||Hgﬁ(R3) = 0.
t T

Proof. Suppose by contradiction that Theorem [5.2.1] is not valid, i.e., assume that T* < oo
is the maximal time of existence of the solution (u,b)(z,t) and consider that

lim sup [|(u, b)(t)] s ) < 0. (5.7)
t ST
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As a result, we can extend the solution obtained above beyond ¢ = T™. It is an absurd. Let
us prove these assertions as follows.

Assuming (/5.7), and using Theorem [5.1.1} there is C' > 0 such that
B0 g oy < .Vt € 0,7, 5.9

As a consequence, integrating over [0,¢] the inequality (5.14) below, and applying ({5.8),
1.10) and the fact that H;  (R*) — H:  (R?), one concludes

I (u, b) (@)

t
2 a0 /0 1V, B)() by + CopCOT"

%1370(]1{3) dr < ||(uo, bo)|

for all ¢ € [0, T*), where s > 3/2, 0 > 1 and 6 = min{p, v}. As a result, we infer

t
1 * *
/ IV (D) () sy oy A < 20, B0) 13 o) + Con C'T" =2 Coppre, ¥t € [0.T7),
0

=9
(5.9)

where s > 3/2 and ¢ > 1. Now, let (k,)nen be a sequence such that k, T, where
kn € (0,T%), for all n € N. We claim that

lim || (o D) () — (11.5) ()11 a5y = 0. (5.10)

7,M—00

In fact, let us begin with the following equality:
(u,b)(kn) — (u,0) (k) = I1(n,m) + Ioy(n,m) + I3(n,m), (5.11)

where I, I5, I3 were defined in (4.16), (4.17) and (4.18), respectively. On the other hand,

notice that

H [eyAnn . eyAnm]bol

2 —vEm|€|? s 2alé|F 3
b = [ 77— e R e )
= / [emvmnlel — e TTRFR(1 4 [¢[2) e [h (€)1 de.
R3

By utilizing the fact that by € H; ,(R?) (since H%,(R?) — H; (R®) and by € H°, (R%))
and that e vmlel® — e=vT7IE* < 1, for all n € N, it results from the Dominated Convergence
Theorem that

lim ||[e”2Fn — e’2rm]by|
n,Mm—00

13,0(79) = 0
Analogously, one has

lim [l — elArmy,|
n,m—00

;.23 = 0.
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Thus, we have proved that lim,, ,;,— || 11 (12, m)|

s &) =0 (see (4.16)). It is also true that

/ |[e#4m=) _ APy (0 Vi — b - V)|
0

H&C,(R?’) dT =
km 2 2 1 3
/ ( / [emnlrem DI — emnlen=mIERP2(1 4 |¢2)e* 87 | F [Py (u - Vi — b - Vb)](£)|2d§)2 dr.
0 R3

By (2.11)), we can write

/ [[erAtsm=T) — A= Py (v - Vu — b~ V) || s ms) dT

; ,
( * 2 1 %
g/ (/ [1— et om0 4 (g 2)2el7 | Flu - Vu - b-Vb](g)Fdf) dr.
0 R3

Use Cauchy-Schwarz’s inequality in order to obtain

/ I [6MA(Hm—T) _ 6MA(“"_T)]PH(U -Vu—b-Vb)| Hi ,(R3) dr
0
T 5 :
< T(/ / [1 = e HmIER 21 o Je[2)% 2017 | Flu - T — b Vb (€)[2dgdr )
0 R3

Observe that 1 — e #(T" =)t < 1 for all m € N, and fOT* |lu-Vu—>b-Vb
provided that,

2 )
Hg’U(Rg)dT < 00;

3
by, < Cs > luy|

j=1

||u - Vul

HS,G(R?’)HDju‘ Hgyg(R‘?’) < CSCHVUHH;(,(R?’)a (5.12)

Lemma ii), (5.8) and (5.9) hold. Then, by Dominated Convergence Theorem, we
deduce

Km

lim |[[erAtm=T) — enAln =] Py (y - Vu — b - V)|

n,m—o0 [o

Hg’J(R3) dT - 0

Following a similar argument, one reaches

Km

lim [|[erAm=T) — evAEn=T)(4y . Vb — b - V)|

n,m—o0 [n

HESL,CT(RS) dr = 0.
We have proved that lim, ;oo [[12(r, m) || 1 (r3) = 0 (see (4.17))). At last, notice that

[[3(n, m)]

H o (R9) < / #2507 Py (u - Vu — b Vb) || g5 ey dT

- / |e#20n= (u - Vb — b - V) ||y ) d.
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By using an analogous process to the described above; moreover, by applying (5.12)), Cauchy-
Schwarz’s inequality and (5.9)), one obtains

HIg(n,m)HH&g(RS) < / HUVU—()VI)HHS’GORB) dT"—/ HUVb_bVUHHgU(H@) dr

T*
< CCNT" (/ 1 ()|
S Cs,u,l/,uo,bo,T* V T* — K.

where s > 3/2 and ¢ > 1. As a result, we infer that lim,, ,;, .~ ||Z3(n, m)] Hy & =0 (see

(4.18))). Thus, (5.11) implies (5.10). In addition, (5.10) means that ((u,b)(kn))nen is a

Cauchy sequence in the Banach space H ,(R?). Hence, there exists (uy,b1) € HS ,(R?) such
that

2
s, () dT)

lim ||(u,b)(kn) — (u1,b1)]

n—oo

(w3 = 0.
From this point, just follow the same steps as in proof of Theorem

]

Theorem 5.2.2. Assume that a > 0, o0 > 1 and sy € (3,2). Let (ug,by) € H (R?) such
that divug = divby = 0. Consider that (u,b) € C([0,T); H; ,(R?)), for all s € (%, Sol, is the
maximal solution for the MHD equations (4.1)) obtained in Theorem [5.1.1| If T* < oo, then

lim sup ||(u, b)(t)| H ,(R3) = 00.
t T+

Proof. The proof is analogous to that of the Theorem [5.2.1] except for the use of Lemma
instead of Lemma ii) and the fact that the constants Cj ;. 00,7+ and Cs given

in (5.9) and (5.12)), respectively, depends also on a and o.
[

5.2.2 Blow—up of the Integral Related to L'(R?)

It is important to emphasize that Theorem [5.2.4] is a generalization of Theorem [2.2.2
(since (ug,bp) € H(R?) with 1/2 < 59 < 3/2) and Theorem is an extension by
considering [4] (provided that (ug,by) € H, (R?) with so > 3/2).

Theorem 5.2.3. Assume that sy > 3/2, a >0, and 0 > 1. Let (ug,by) € H,(R?) be such
that divug = divby = 0. Consider that (u,b) € C([0,T%); H ,(R?)), for all s € (3, s0], is the
maximal solution for the MHD equations (4.1)) obtained in Theorem [5.1.1 If T* < oo, then

L
/ e (@, )(7’)|\%1(R3) dr = oo.
t

90



Proof. Arguing as in proof of Theorem [£.2.2] we can write

1d
5 DO ey + 1V (D))

< [[Vullms, @ llu @ ullms @) + [Vullus @20 @ bllms @)
+ IVl 1s ey llu @ bl ms @3y + |Vl 1s @2 [|b @ ull g rs)- (5.13)

2
H 5 (R?)

Now, our goal is to find an estimate for the term |u ® b
applying Lemma i) (s > 0), one has

Hs (r3) Obtained above. Thus, by

3
|u @ b||12r{g,J(R3) = Z ||bjuk||2Hg’U(R3)
=1

3
~ 1
< Co Y Mle byl sy lunllag,, o) + e @l o o) 105l g, 2
k=1
2|7

al |z al|F ~
< Cs[H@;H b||%1(R3)||u”%{g,g(R3) + [le- u”%}(R?’)”bH%{g’g(R?’)]'

Replacing this last result in (5.13) and using Young’s inequality, one gets

1d

0 ay, % o~
5 a1 DO ) + IV (@ 0) Ol rs) < Copnalle” (@ D)L sy | (,0)]

2
Hg 5 (R?)

(5.14)

Assume 0 <t < T < T* in order to obtain, by Gronwall’s inequality (differential form), the
following inequality:

~

T
I, )(T) b5y 0o [ 1651 @D o dr).
t

By applying Theorem [5.2.1] we infer

12515,0([&3) <[ (u,b)(t)]

T* 1 R
/ 65117 @, B) (7|2 gus dr = 00, Vi € [0,T7).
t

]

Theorem 5.2.4. Assume that a > 0, 0 > 1 and sy € (3,2). Let (ug,bo) € H: (R®) such
that divug = divby = 0. Consider that (u,b) € C([0,T%); H; ,(R?)), for all s € (%, Sol, is the
mazimal solution for the MHD equations (4.1)) obtained in Theorem |5.1.1 If T* < oo, then

A
|1 @B sy dr = .
t

Proof. 1t is enough to remake the proof of Theorem [5.2.3| replacing the use to Theorem [5.2.1
by Theorem [5.2.2

]
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5.2.3 Blow—up Inequality Involving L!(R?)

As written before, it is important to make sure that Theorem [5.2.6] is a generalization
of Theorem (since (ug,bo) € Hy(R?) with 1/2 < so < 3/2) and Theorem is an
extension by considering [4] (provided that (uo,by) € H% (R?) with so > 3/2). Moreover,
the proofs of theorems below use the same arguments of the proof of Theorem |4.2.3|

Theorem 5.2.5. Assume that so > 3/2, a > 0, and 0 > 1. Let (ug,by) € H (R3) such
that divug = divby = 0. Consider that (u,b) € C([0,T%); H; ,(R?)), for all s € (%, Sol, is the
mazimal solution for the MHD equations (4.1)) obtained in Theorem |5.1.1 If T* < oo, then

w1 27134/0
,Ho— ~
eo u,b) (1)1 > —

9

for all t € [0,T*), where = min{y, v}.

Theorem 5.2.6. Assume that a > 0, 0 > 1 and sy € (3,32). Let (ug,by) € H, (R?) such
that divug = divby = 0. Consider that (u,b) € C([0,T%); H; ,(R?)), for all s € (%, Sol, is the
mazimal solution for the MHD equations (4.1)) obtained in Theorem |5.1.1 If T* < oo, then

27?3\/5
T —t

?

a_% ~
le="7 (@, b) () | 21 re) >

for all t € [0,T*), where = min{u, v}.

5.2.4 Blow—up Inequality involving H j’U(R‘g)

As mentioned before, it is important to inform that Theorem [5.2.8] is a generalization
of this same blow-up criterion obtained in Theorem @ (since (ug,bo) € H, (R?) with
1/2 < sp < 3/2 and the blow—up inequality is valid for 1/2 < s < sg) and Theorem [5.2.7]
is an extension by considering [4] (provided that (ug,bo) € H% (R*) with so > 3/2 and the

blow—up inequality is valid for 3/2 < s < ).

Theorem 5.2.7. Assume that sy > 3/2, a > 0, and 0 > 1. Let (ug,by) € H (R3) such
that divug = divby = 0. Consider that (u,b) € C([0,T%); H; ,(R?)), for all s € (%, Sol, is the
mazimal solution for the MHD equations (4.1)) obtained in Theorem |5.1.1 If T* < oo, then

21300
KR, e

for allt € [0,T*); where Cy = ( [ps(1+[£]*)7* d€)~2 and 0 = min{yu, v}.

I, ) (@)
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Proof. This result follows directly from Theorem 5.2.5| and Cauchy-Schwarz’s inequality. In
fact,

2 3 9 a)|x ™
% < 1651 @ D) (1) e

- / 5 |(@,B)(1)| de
RJ

] (/R?’(l Fen dg)é </Rs“ + |§|2>Se%:|sc1f|<af><ze>|%z£>é

= Cull (. b))l oy, VEE[0,T7), (5.15)

recall that s > 3/2. O

From now on, 7% < oo denotes the first blow-up time for the solution (u,b) €
C([0,T3); HS ,(R?)), where w > 0.

Theorem 5.2.8. Assume that a > 0, 0 > 1 and sy € (3,32). Let (ug,by) € HZ, (R®) such

that divug = divby = 0. Consider that (u,b) € C([0,T); H; ,(R?)), for all s € (%, Sol, is the
mazimal solution for the MHD equations (4.1)) obtained in Theorem |5.1.1 If T* < oo, then

27?3\/5

u, b)(t)| g 3y > , Vtel0,T7),
[[(w, b)(2)] H%,U(R“) Clm [ )
. 2 2 2 1 1)1 a3-29
where § = min{y, v} and C7 = CZ, = 470 [(\/E)% (75 — ;)] ['(o(3 — 2s)).

Proof. 1t is sufficient to argue as in proof of Theorem [3.2.4]

5.2.5 Generalization of the Blow—up Criteria

As informed previously, it is important to let the reader know that Theorem is
a generalization of this same blow-up criterion obtained in Theorem [2.2.5] (since (uo, by) €
H (R?) with 1/2 < so < 3/2 and the blow-up inequality is valid for 1/2 < s < s¢) and
Theorem is an extension by considering [4] (provided that (ug,by) € H (R?) with
sp > 3/2 and the blow—up inequality is valid for 3/2 < s < s0).

Theorem 5.2.9. Assume that sy > 3/2, a > 0, and 0 > 1. Let (ug,by) € H: (R?) such
that divug = divby = 0. Consider that (u,b) € C([0,T); H; ,(R?)), for all s € (g, Sol, is the
maximal solution for the MHD equations (4.1)) obtained in Theorem [5.1.1 If T* < oo, then
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i) hmsupll(u b)(1)]

e, () = 00}

o=

ll) / ||€<’"| ‘ ﬁ ??\)(T)||%1(R3) dr = o0;
2m3/0 ‘
VT =t

s 2m3C V0
T o
1

forallt € [0,T7%),n € N; where Cy = (g (1 + [£*)7*d€)"2 and 6 = min{p, v},

a.%,\’\
i) [le# 17 (@) (1) 11qae) >

iv) |[(u, 0)(®)]a

Proof. Notice that the Theorems [5.2.1} [5.2.3] |5.2.5| and |5.2.7| guarantee the veracity of The-
orem [5.2.9) in the case n = 1. Moreover, (5.15) assures that (u,b) € C([0,7%), H: ,(R?))

(since H; ,(R?) — Hz (R*)) and

limsup |[(u, b)(¢)| g, ,ms) = oo (5.16)
t T+

The limit above guarantees the veracity of Theorem i) in the case n = 2. By following

a similar process to the one described above and applying (5.16]), instead of Theorem
one infers

T L
/'w#”@mmﬁmwh:@ Viel.T)
¢
(see Theorem [5.2.9|1i) with n = 2) and, consequently
4700 < Hezl"?(a D) (t)|[21 @y (T" — 1), Ve [0,T),
which is Theorem [5.2.9|iii) with n = 2. This implies that

limsup || (w, b)(¢)|| s, (r3)y = 00, (5.17)
t /T 027
since
2m3/0 aF ~
T = e @, b) ()] 2 o)

) (/R‘"’(l Fen dg); </Rs(1 + |§|2)Sei‘5|e3f|(a,3)(zf)|2d€>é

=: CSH(U,b)<t)‘ Hiag’a(ﬂ@)’ (518)

o

for all t € [0,77) (recall that s > 3/2). Notice that (5.17) is Theorem i), in the case
n =3, and (5.18)) assures the veracity of Theorem iv), with n = 2. Thus, inductively,

one proves Theorem [5.2.9| with n > 1.

]
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Theorem 5.2.10. Assume that a >0, 0 > 1 and so € (3,3). Let (ug, by) € H:,(R?) such
that divug = divby = 0. Consider that (u,b) € C([0,Ty); H ,(R?)), for all s € (3, so], is the
mazximal solution for the MHD equations (4.1)) obtained in Theorem |5.1.1. If T < oo, then

i) hmsupll(u b)(1)]

HS . (R3) - OO;
Vo) (=17

17
i) [ 1 @ r = o0

27r3\/§ .
T — ¢

a

a e ~
i) lero™ 0 (@, D) ()] ey >

2130
iv) [(w0) Ol , @) 25—
(ﬁ)n"’( : Ci/Tr —t
—o(3—2s)

for allt € [0,T),n € N, where C? = C? = dno [(\/E?% (\/LE - %)} ['(0(3 —2s)) and

a,o,8,n

6 = min{p, v}.

Proof. First of all, notice that the Theorems [5.2.2] [5.2.4] [5.2.6] and [5.2.8| prove the Theorem
5.2.10| in case n = 1. The remainder of prove follows a induction process similar to the one
in proof of Theorem [3.2.5]

O

5.2.6 Main Blow-up criterion Involving H; (R?)

As it was written previously, it is important to inform that Theorems|5.2.11}and [5.2.12|are
generalizations of the same blow-up criteria obtained in [4] and Theorem [2.2.7] respectively.

Theorem 5.2.11. Assume that sy > 3/2, a > 0, and o > 1. Let (ug,by) € H (R?) such
that divug = divby = 0. Consider that (u,b) € C([0,T%); H; ,(R*)), for all s € (g, Sol, is the
mazximal solution for the MHD equations (4.1) obtained in Theorem [5.1.1] m If T* < oo, then

(s, 0) () |11z, () = Chl|(u, b)(t )IILz y exp{aCa||(u, b)(¢ )IIZz‘%@(T* — 1) (T = 1)

for allt € [0, T*); where Cy and Cy depend only on p,v,s and p,v, s, o, respectively.

.S

w \

Proof. In fact, by choosing dy = s (> 3/2) and § = s + 3% (> J) in Lemma|1.2.12, Remark
1.2.15| and Dominated Convergence Theorem in Theorem iii), where m € NU {0}, we

obtain

4756 ~ s I
7 =@ b)()l|2r sy < Csll(u, b)( )HL2 ﬂgf 1w, )(®)] 1;"?%(11&3)'

95



Hence, using (4.33) below, one has

CSﬁH(U, b)( )H 2(]R3 Ds,o,@”(uv b)(t)H;;E%?’)

<[, YOI s 5.19
i F it DO g (519)
where C, g = (C’s47r69)% and Ds, 9 = (C’s4w69)3%. Multiplying (5.19) by @™ one gets
2 m
I L T4
9_4s
Caoll(w, 0) ()| 2 ey (T°-1)37 (2a|§| LI )
P , < [ ST (@ D) (1) de
(T* —t)3 m! R3

By summing over m € N and applying the Monotone Convergence Theorem, it results

o_4s
CS,GH (U, b) (t) HLQ(%S) exp 2aDS7076|| (u’ b)( )||L2(R3)

(T~ )% (T~ )%

< [ @b de

.

< [|(u, b) (t)“ilg,g(um;

for all t € [0, 7).

O

Theorem 5.2.12. Assume that a >0, 0 > 1 and so € (3,3). Let (ug, by) € H:,(R?) such
that divug = divby = 0. Consider that (u,b) € C([0,T%); H; ,(R?)), for all s € (3, 0], is the
maximal solution for the MHD equations (4.1)) obtained in Theorem [5.1.1| If T* < oo, then

a®2Cy exp{aCy(T* — t) 37

2(so+oqg)+1
(10— =

V< b))

Hg 5 (R?)s

for all t € [0,T%), where Cy = Clps.0m0b0, C3 = Cruvosuope ad 200 is the integer part of
20.

Proof. Choose § = s + 5=, with k € NU {0} and k > 20, and 0y = s + 1. By using Lemmas
[1.2.12| and [1.2.14] and Dominated Convergence Theorem in Theorem [5.2.10|iii), we obtain

j;?’é < 1@ D))l sy < Cill(u, b)(¢ )IILz 2“”" I(u, ) ()] e

Hence, using (4.33)), one has

k
C D
“W;<““W>_w B (E)

H5+% (RS) :

, 5.20
(T~ )5 \(T* —t)w v @) (5-20)
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2

s 6—4s - 2
where Cp ¢ o5, = (C _127r3\/_)4?|](u0, Do) || L3\ gsy And De,s.0,u0,0 = (C1273/0]| (uo, bO)”Lzl(Rs))3"
Multiplying (|5.20 by

k, , one gets

(QQDO',S,B uq,bg ) g
Co.5.u0.b (T*—t)30 / (2@)k 2(s+£) 2 / 2(1‘5’ 2 2
Y < | T d . £)|2 de.
(T —1)% 7l —Rsmlﬂ |(@,0)(t)[? de = IﬂK b)(t)[? de

By summing over the set {k € N; k > 20} and applying the Monotone Convergence Theorem,
it results

(T*—1)% (T* —t)3s k!

k
2aDa,s,9,u0,b0
1
Ce,s,uol)o 2aD07S79,u0,b0 (T*—t)3a
——— |exp{ ——————— ¢ — E

0<k<20

)7 (2a|f’%)k 281 (7 TN\ (4]2
SAJG 3 | ermbora

< [l @ RO R de = 1B Ol e

for all t € [0, 7*). Finally, this proof follows the same steps as in proof of Theorem m
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Chapter 6

2D Micropolar equations: local
existence, uniqueness and asymptotic
behavior of solutions in
Sobolev-(GGevrey spaces

This chapter studies local existence of a unique solution, as well decay rates (if it is
assumed that this solution is global in time), for the following 2D Micropolar equations in
Sobolev-Gevrey spaces:

u+u-Vu+ Vp = (n+x)Au + x\Vxw, zeR*t>0,
wy +u-Vw = yAw + xV x u—2yw, =z € R?t>0,
divu = 0, ze€R?t>0,

u(+,0) = up(+), w(-,0) = wo(-), z€R?

(6.1)

where u(z,t) = (uy(z,t), us(z,t)) € R? denotes the incompressible velocity field, w(z,t) € R
the microrotational velocity field and p(x,t) € R the hydrostatic pressure. The positive
constants u, x,7 and v are associated with specific properties of the fluid; more precisely,
uw > 0,7y > 0,y > 0 are the kinematic, spin and vortex viscosities, respectively. The
initial data for the velocity field, given by ug in , is assumed to be divergence free, i.e.,
divug = 0. Here V X u = Dyuy — Douy and V x w = (Dyw, —Dyw).

The local existence, uniqueness and blow-up of solutions for the micropolar system ([6.1]
and for its periodic version have been extensively studied in the literature, see for instance
[9, 111, [15] 16l 19, 23, 0% B3], B4 37, 38, 40] and references therein.
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6.1 Local Existence and Uniqueness of Solutions

By considering w = xy = 0 and R? instead of R? in (6.1]), in the Chapter [2] it was proved
that there are a positive instant ¢ = 7" and a unique solution v € C([0,T7], H; ,(R?)) (with
uy € H (R?), so > 1/2, so #3/2,a > 0,0 >1and s < s0) for the Navier-Stokes system
(we also cite [4 6], [7, 10, 28, 29, 32] and references therein). Motivated by the previous
chapters, we are interested in showing which are the assumptions that are necessary in order
to guarantee the local existence and uniqueness of solutions for the equations given in (/6.1
in nonhomogenous Sobolev-Gevrey spaces. More precisely, we present our first result.

Theorem 6.1.1. Let a > 0, 0 > 1 and s > 0 with s # 1. Let (ug,wy) € Hj ,(R?) such
that divug = 0. If s > 1 (respectively s € (0,1)), then there exist a time T = T 1 ~uo.wo
(respectively T = Ty qpyryuowo) 0nd a unique solution (u,w) € C([0,T]; HT,(R?)), for all
w < s, of the micropolar equations given in .

Proof. By applying the heat semigroup e*)20¢=7) with 7 € [0,¢], in the first equation of
(6.1]), and, subsequently, integrating the result over the interval [0, ¢], we obtain

t t t
/ eWHIAE=T)y dr 4 / WAy -y + Vp — x(V x w)]dr = (1 + X) / eWHORE=T) Ay dr,
0 0 0
Now, use integration by parts in order to deduce
t t
u(t) = eWHIaty, — / WA=y . oy 4 Vp| dr + X/ WHIA=T) (T x w) dr.
0 0

Consequently, by (2.9)), one can write

t 2 t
u(t) = e 0Ay) — / e(’““X)A(t_T)PH[Z Dj(uju)] dr + X/ WHIAE=T) (T x w) dr, (6.2)
0 0

=1
since u is divergence free.

Analogously, by considering the field w, we deduce the equality below.

t 2 t t
w(t) = 7wy — / erAltT Z Dj(ujw)dr + X/ AT X u) dr — 2)(/ Ay dr
j=1 0 0

(6.3)
By and , one obtains
(u,w)(t) = (e(“+X)Atu0, "Awg) + B((u, w), (u, w))(t) + L(u, w)(t), (6.4)
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where
t 2
Bl(210): (9, 0))(t) = [ (~elrio3e) PulY_ Dyl =€ OIY Dyl (63)
0
and
t
L(z,v)(t) = / (xeHTOAET(T 5 ), xe 2V x 2) — 2xe? ) dr. (6.6)
0

Notice that L is a linear operator and B is a bilinear operator. Furthermore, ¢, z : R? — R?
and ¢, v : R? — R belong to appropriate spaces that will be give next. In order to examine
(u, w)(t) in H ,(R?), let us estimate B((w,v), (7,¢))(t) and L(z,v)(t) in this same space.

At first, let us estimate L(z,v)(t) in H; ,(R?). Thus, we deduce
e OSTT X 0)rg a2y = / (1 [¢]2)e2 7 [ F{eb 020 (T ) H(I de
a,o R2

:/ e 200N (1 1 |62y kI7 [ 0(6)[? de
R2

| JelPem20m R 4 fefye 16 [o(¢) 2 de,

since |V/><\v] = [£||v]. As a result, by using Lemma [1.2.19] it follows that

leHIRED(T ¢ v)]

1
H;, o (R2) < CMX(t — ’7') 2||(Z,’U)| HSVU(RQ)'

By integrating over [0,t] (¢t € [0,T]) the above estimate, we conclude

t
1

/ Ixe® XY X 0)||ug 2y dT < Cun T2 (2,0) | o o,77:815,, (22))- (6.7)

0

Similarly, one gets
t
r 1
/ HX‘B’YA(t )(V x z)| H; ,(R?) dr < Cy T2 ||(z, U)HLOO([O,T};H;(,(R?))- (6.8)
0

since |V/-\><z| < |€]|Z]. On the other hand, it is valid that

”e’yA(t—T) 2

HE o (R?)

vl

— —7)|€|2 s 2a &~
b < [ IR RO de < o)

By integrating over [0, ¢], the above estimative, we conclude

t
1
/ 12xe™ 0|y 2y d7 < CVT2(|(2,0) |l oo oy, ey, Y€ [0,T], (6.9)
0
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if it is assumed that T < 1. By , we can assure that (6.7)), and imply
IL(2,0) (D) 1z, 82) < Cuxen T2 (2, 0) | oo (o111, 82y, VT € [0, T7. (6.10)

Now, let us estimate B((z,v), (¢, ¢))(t) in H; (R?). To this end, we shall divide the
proof into two cases:

1° Case: Assume that s > 1.

Notice that

2

et Py S " Dy(p;2)]|

Jj=1

2
H;, , (B2)

2

= [ I S Py 3 D ) P

Jj=1
2

:/ e—2<“+><)(t‘7"5'2(1+\5I2)562“'5‘%If{PH[ZDj(%Z)]}(f)\QdS-
R2 j

7j=1
By applying (2.11)), one can write
2

02D Py | D)y, e

J=1

2
< /RQ e 2B (1 4 |e?)oeIe7 | S FD; (0,2))(€) [ dé

j=1
2 1
- / e 200D (1 | P)e 7| F(z @ 0)(€) - €] de
R2
< [ [gPe 2R (L 1 g )l | F (2 @ ) (€)[ dé.
R2
As a result, by using Lemma [1.2.19} it follows

2

—r _1
e 02D Py Y~ D02 g, w2y < Cun(t = 1) 7212 ® g, m2)-
j=1
Similarly, we can write
2
r _1
172Dy " Dyl lag ) < Oyt = 7) 72116 @ 2|z, (u2)-
j=1
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Consequently, one gets

IB((z.0). (0. 0))
< G| [ (=71 H 2004

)|

Hy ,(R2)

On the other hand, it results

Iz @ ¢l

Therefore, one deduces

Iz ® ¢l

t
_1
H;,0<R2>d7+/(t—f) 2l¢ @ 2|
0

SR
) = / (L 1€ ee? E@ () dg

H;,o (RZ) dT:| .

(27)~ Z/ (1+ [£]?) e2alél? |25 * Z1(€)|? dE

7,k=1

<C [ (+1Rye? (]« O de

By using ([1.3)), we conclude

2 ® ol ey

<

\\

CIIF (7 [2)F (17 |32

Hes(R2)-

Hence, by the inequality ((1.11)) with @ = 0 and n = 2, one has

Iz ® ¢l

1
i3, z2) < Col|lF 1 (7 2))]

1
o |5 (e 1))

since s > 1. Replacing this result in (6.11]), one obtains

1B((2, ), (¢, 0)) (1) 115

t
- (R2) <Csux7[/0(t_7—)_2”z|

t _1
4 [ =) 0l 2l vy ]
0

Therefore, we deduce

1B((z,0), (¢, @) ()]l 15

Hs(R?)

:CS||Z|

H; 0 (22|

Hg &2 |||

. 2
b <€ [ 1R | [ 9t Bmliae - nlan) e

[ ey [/ e e s — ) de
(L IR ) (e B ] de
—C / 1+ )S{F[f‘l(e“'g'% [2(E))F (e B de

Hy ,(R2) AT

(6.11)

Hg 5 (R?)

1
J82) < Oy T2 (2, 0) | oo 0,135, w2 11 (05 D) Lo (0,775, (%2

102

(6.12)



for all ¢ € [0,T]. By noticing that L : X x Y — X X Y is a continuous linear operator
(see and (6.10)) and B : (X x Y)? — X x Y is a continuous bilinear operator (see

(6.5) and (6.12)), where Y = C([0,T]; H; ,(R*)) and X = Y? (with s > 1), it is enough
to apply Lemma and consider 7" small enough in order to obtain a unique solution

(u,w) € C([0,T]; H; ,(R?)) for the equation (6.4)). More specifically, choose

T < min {[(4C x5 1, wo)|

1 — _
H370(R2)) 2 + CMX,V] 47 CH,?O’Y, 1} ’

where C),, , and C; , - are given in (6.10) and (6.12)), respectively; and

[(e®9%ug, € wo)| s w2y < (o, wo)ll s, z2)-

2° Case: Consider that s € (0, 1).

At first, let us estimate B((z,v),(p,®))(t) in Hjﬁa(Rz). By applying 1} and the
Cauchy-Schwarz’s inequality, one can write

2

02 Py [y~ Dj(p52)]|

Jj=1

—2s5 — —7)|€)? s— a 3
g a(72) S / g2 em 2D lem2 27 |7 (2 @ ) (€)1 de.
As a result, by using Lemma [1.2.19] it follows

2
—T 037 )
e3Py Di(i2) G, (se < = rys 17 © Pllag oy

Jj=1

since 0 < s < 1. On the other hand, by using Lemma [1.2.7] one infers

2

12 ® el any = O ozl gy < Cill
4 k=1

2 2
iz, @) 12l @)

provided that 0 < s < 1. Therefore, one deduces

2
_r Cs1 9.
102D U ST Do) s ey <

j=1 ’ (t—71)>

By integrating over [0,¢] (¢ € [0,T]) the above estimate, we conclude

(2, 0) iz w2y (0, D)l 75 g2y

3, (R?) dr

t 2
[ e3Py (37 D)
0 1

j=

< Cs,u,xT% 1(z,v) HLOO([O,T];H;(,(RQ)) (¢, 9) ”LW([O,T];Hg,U(RQ))' (6.13)
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Similarly, we can write

| 1 D0

H ,(R?) dr < Cs T2 ||(2,v) HLOO([O,T];HQJ(R%) (¢, &) ||L°°([0,T];Hg’a(R2))'
(6.14)

By (6.5)), we can assure that (6.13]) and (6.14]) imply
1B((2,v), (9, 9))(t)]

H; ,(R2) < Cspuxnl? (2, v) HLOO([O,T];H;U(RQ)) (0, ®) ||Loo([o,T];Hg,U(R2))'
(6.15)

Let us estimate B((z,v), (¢, ¢))(t) in L?*(R?). Following a similar process to the one presented
above, we have, by using the Parseval’s identity, that

2 2
e IS PYY T Dy(052)] 17 2gey = (27) 72 /RQ |[F{e# 0800 Py [N 7 Dy 2)]HE) de.
j=1 J=1
As a result, by using (2.11f), we get
2
||e(u+x)A(t—T)PH[Z Dj(%'z)]”%m@) < (27r)—2 /R2 |§|26—2(u+x)(t—r)|€\2|]__<Z 2 SD)(QF d¢
j=1

< (2m)7? / €[22 0 E=IER 2922 (2 @ ) (€) 2 d.
R2

As a result, by using Lemma [1.2.19} it follows

2
—T 057 )
|08 Pyl D D05 2)lsme) < —— 2=z @ ¢l

j=1 (t—71)72
On the other hand, by utilizing Lemma m (provided that 0 < s < 1), one has

2

Fror = D Izl

jk=1

Hs—l(Rz),

Iz ® ¢

i]sfl(RZ) < CSH'Z‘ ?’{s(R2)H@H%Q(R2)'

Thereby, as H ,(R?) < H*(R?) (s > 0) and by applying Lemma [1.2.10} we deduce

2
—T CS7 )
[t P> " Dj(p2)lp2mey < — 25—
j=1 (t—7)72

By integrating the above estimate over [0,¢] (¢ € [0,7]), we conclude

(2,0)]

s, @) | (0, d) s, @2)-

2

t
/0 G086 Py S™ D (9] ey dr

j=1

< CopxT2 (2 0) oo o.r; 112, @20 || (95 D) | oo 10,7131, (B2))- (6.16)
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Similarly, we can obtain

t 2
/0 12D Di(29)]ll2@2) dr < Coy T3 (2,0) | no (o115, @20 |0 O) |l Loe o 115, (B2))-

Jj=1

(6.17)
By using the definition (6.5)) and applying (6.16]) and (6.17)), one concludes

1B((2,0), (9, ) (Ol r22) < Copurn T2

(2, V)| Lo (0,70 m5 , (2)) | (05 D) oo (0,75, (R2))
(6.18)

for all t € [0, 7). Finally, by using Lemma|1.2.10} (6.15), (6.18) and the fact that H; ,(R*) <
Hia(RQ) (s > 0), it results

IB((2,0), (2, 0) ()13, 22) < Coagxr T 12, 0) | ooz, 2 (05 &) | oo 0,131, 2)):
(6.19)

for all t € [0, 7. Choose

where C,y and Cy g 1y, is given in (6.10) and (6.19)), respectively, and apply Lemma [1.2.2]
to obtain the desired result.

Lastly, by assuming that w < s, it follows that (u,w) € [C([0,T]; HT,(R?))]® since
H; ,(R?) — HE,(R?).

]

6.2 Asymptotic Behavior for the Solution

In this section, we establish the asymptotic behavior of the solution (by assuming its
global existence in time) obtained in Theorem by extending and improving the steps
presented by J. Benameur and L. Jlali [6]. More specifically, we suppose that the solution
(u, w) obtained above is global in order to present decay rates related to the spaces H; ,(R?)

and HJU(RZ) (where 0 > 1, a > 0 and s > 0 with s # 1).

Let us inform that theses rates will be accomplished by applying the following result
established by R. H. Guterres, W. G. Melo, J. R. Nunes and C. F. Perusato [23].

Theorem 6.2.1 (See [23]). Let (ug,wy) € L*(R?) such that divug = 0. For a Leray global
solution (u,w) of the Micropolar equations (6.1]), one has
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i) Jim () (1) | ey = O

ii) tliglo £2 || (u, w)(t)] o2y = 0, for all s > 0.

Moreover, if x > 0, one obtains

iii) lim £ ||lw(?)|
—00

fswzy = 0 for all s > 0.

Remark 6.2.2. Under the same assumptions in Theorems [6.1.1] and [6.2.1] it is important
to point out the following observations:

1. It is easy to check that Theorem ii) implies the following limit:

i [ (1, 0)(8) 7 ey = 0, (6.20)
since
B [t 0)0) oy = Jim 56 0) O o) = 0, V205 (620)
2. Notice also that the limit
tlggo | (w, w)(t)|| rsm2y = 0, Vs >0, (6.22)

is a direct consequence of Theorem i), (6.20)), and the elementary inequality

112 g2y < 2°[2m)* N fIIZ2 ) + 1] Vs 2 0.

2
HS(]R2)]’

6.2.1 Estimates Involving H*(R?)

In this section, we give some lemmas that will play a key role in the proof of the decay
rates given in Theorems [6.2.6], [6.2.7] and [6.2.8|

Lemma 6.2.3. Consider that (u,w) € C([0,00); Hi ,(R?)) is a global solution for the Mi-
cropolar equations (6.1). Then, there is an instant t = T that depends only on s,p,~y and
| (w0, wo) || s (r2) such that

17~ (e (@, @) (1))

1
ey < (142 (w0, w0) [} ]2, V't €[0,T].

Proof. By applying the Fourier Transform and taking the scalar product in C? of the first
equation of (6.1)) with u(t), one has

—

1 ~ —
§8t|ﬁ(t)]2 + (u+x)|Vu|* = =Re[t-u- Vu] + xRe [ - V x w]. (6.23)
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Similarly, considering the second equation of (6.1]), one obtains
1 ~ — ~ ~ —_— ~ —_—
§8t|w(t)|2 +7|Vw|* + 2x|@6]* = —Re[@ - u - Vw] + xRe [ - V x u]. (6.24)

By using 1' and 1} and the fact that @-V x w =V x u - w, it follows that

SO, D) + (0Tl + 1Tl + 2P
= Reli-u-Vu+@-u-Vw—2yV x u- @l
By applying Cauchy-Schwarz’s inequality, we obtain
Me [V x u- @) < 2|Vul|d] < |Vul2 + @]

Therefore,
%fwa, @) () + plVul? + 5[ Vwl + x5 < —Re i u- Vu+ @ - u- V).
As a consequence, one has
(@, @)(1))? + 20| (Vu, Vw)|> < —2Re @ - u- Vu+ @ - u - V),

where § = min{u,~}. Multiplying the inequality above by [£[?¢?I¢l. where ¢ > 0, and
integrating over ¢ € R?, we have
ey S

2Re (F (M@, @) (1)), F (e (@, @) (1)) o ey + 201 F (M (T, T0) () 2. oy
— 2Re [(F Y (eMa(t)), FH(eMa - Vu(t))) geggey + (FHeM@()), FHeMa Vw(t)) o)

(6.25)
On the other hand, one obtains
Td ¢y i~ ~ 1t~ _ L
5 SIF M@, D) (1)) gy = Re (F M@ )(0)), (- M3, 0) (1)) o

+Re (F~H (M@, @) (1)), F (T (@, @) (1)) fre gy
Therefore, by applying Cauchy-Schwarz’s inequality, it results that
2Re (F~L(e!M(@, ) (1)), F (M (T, We)(1))) frs(r2y =

%nf*(et"(a, D)D) 3o ey — 20F (M@, @) ()] oy | F (e (Y, Vo) (1))

Hs(R2)»
since |(§a7 %)| = |¢]|(u, w)|. Once again, by using Cauchy-Schwarz’s inequality, one has

2Re (F (M@, ) (t)), F (e (@, @)(1))) gro oy =
9 1
Hs(R2) 5

A1t “Let(@, o
SIF M @ )(0) |F (M (@, )(t))]

%IS(RZ) _ 9”‘/—_-—1(€t|~|(VU’ V’w)(t))| %S(Rg).

(6.26)
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Thus, replace the inequality (6.26)) in (6.25]) in order to get

d 1 g e = )
7 (M@, @) () (T, V) () oy < 5

(e @ @) () 3 ®2)

—2Re [<f’1(et"'ﬂ(t)),f’ (et"'u-Vu(t))ms(Rz) + (F M@ ), FH e Vi) o))
(6.27)

On the other hand, notice that
V- u®w(§) =~ -u- V().
provided that divu = 0. As a result, we get
(FH @), F M Vu(t) ey = —(FHeMVw(t)), FH M@ w0(1)) o ez,
Hence, can be rewritten, by using Cauchy-Schwarz’s inequality, as follows:

2
Hs(R2)

%I\fl( @, @) (8)) [y ey + OIF (" (T, T (1))
+ 2|l F (e (T, Vo) (1)) | ooy (1 F (M@ ue))]

L ~
b < 1@ )(0)
Hs(R2) + H]:_l(etHu ® W(t))

From now on, we shall continue this demonstration by studying two cases.
1° Case: Assume that s > 1:

By using Lemma [1.2.17] one has

||]_——1(€t\.|u®w ||2SR2 Z H]_— t\l@( »”?JS(W)

7,k=1
< Coe®[|FH M DO) e oy ()| 2 g2y
+ 1F M) | gy [0 (D) | 22 e

+ 1F M D) oo |F (M (0) 15

Hs(R?)]'

where C is a positive constant. It is well known that the following inequality holds for the
micropolar equations (6.1)) (see [15]):

ot )8 ) < o, wo)ll oy, ¥ 0. (6.29)
From (/6.29)), it results

177 (M@ W) ey < Coonn€ [IF (M (@ @) (2))]

Hs(R2) + ”]:_ ( tl ‘(u w)(t)” ?‘{s(Rz)]'
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where C 0.0, 15 a positive constant that depends only on s and ||(uo, wo)l|z2(r2). Consider
that 7™ > 0 is fixed and apply Young’s inequality in order to get

[FaCET=m ()]
Consequently, (6.28)) becomes

fe®?) < Csuowo, [1+ || F e @, @) ()2, RQ)] Vte 0,77

2

| PO
HS(RQ = _||‘F 1( t |(U U))(t))| Hs(Rz)

oL+ 17 (@ D)0)
for all ¢ € [0, T*]. By using Cauchy-Schwarz’s inequality, one infers

d
dt

for all ¢ € [0, T7*]. Thus, by integrating the inequality above over [0,t] (¢ € [0,7*]), we reach

At o~
(e (@, @)(1))]

g2y T OIF (M (Tu, V) (1)) |2
F e (Vu, Vo) (t))]

+ Os,uo,wO,T*

2 2
HS(RZ)] )

L+ IF @, @) ()]

Hro)) < Couounsre [L+ | FH (e (@, @) (2))]

t
P(0) < 9(0) + Cunpunr- | (P dr, Vit 0.7, (6:30)
0
where
p(t) =1+ |F M@ @) O) ooy Y€ [0,T7].
Let us denote 7" = [8C, g.upawo.7+2(0)] 1 (Where Oy g uowor is given in (6.30)) and 7" =
sup{t € [0,T*) : ¢(7) < 2¢(0),V7 € [0,t]}. As a consequence, we assure that
t
P(0) < ¢0) + Coppunr- | 0lr)? 47 < 9(0) +ACup g o0V
0
< P(0)[1 +4C g 07+ 0 (0)T'] < 20(0),
for all t € [0, 7], where T' = $ min{T",T"}. Rewriting the result above obtained, we have

17~ (e (@, @) () 2y < 1+ 20 (o, wo) I oy,

vVt e [0,T].

(Notice that T" depends only on s, 8, || (uo, wo) || z=(r2))-
2° Case: Assume that s € (0,1):

Note that, by utilizing Lemma [1.2.16|1), we get

F BT ey = 3 IF TR

7,k=1

2
Co Y MeM@; ()1 ) 17 (M) o ey + e @) oy IF (M@ (0)] ey -
7,k=1
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where C is a positive constant. Now, apply the inequality (1.19]) in order to obtain

IF (M w@w(t)) | o) < Coll FH (M@, @) (1)) ) Vol G ORI [adpmns
(6.31)
On the other hand, it is also true that
17 (M (Va, V) () e ey = 1F (M @ ) () s ey (6.32)

since |(Vu Vw)| = |¢]|(@, @)|. By replacing (6.31) and - in - we obtain
SIF @Ol
dt
+ O FH M@ @) )|

o2y T OIF (@ @) (1)) 113
Hro e | F (M@, @) (2))]

1 -
< S F @ D) 0) . oo

s+l (R2)

s_—l—l
Hs(R2)"

By using Young’s inequality, one infers

d,. PR 0. SN 1 .
SIF M@ BNy + 51 @ D) s gy < I F (@ DOy
. tl ‘ 25:2
+ Col FH @ ) (0)]] 7 g
Once again, by applying Young’s inequality, we have
d ds~ o~ _ o~ o~ s+1
[ IF 7M@) (1)) e o] < gL+ IF (e (@ D) (1)) 1o )]
Thus, by integrating the inequality above over [0,¢] (¢ > 0), we reach
-1 ~ 2
L [ F M D)) e
t
S [1 + ||(U0,w0)| %IS(R2):| + Cs,@/ [1 + ||f_1( 7| |(a @)(7’)” ?{S(RQ)] -: dr.
0
As it was done in the first case, we obtain
1F 1M @, D) ) gy < 1+ 201 (w0, w0) [ gey. VE € [0, T
(Notice that 7" depends only on s, 8, || (u, wo) )
O

Remark 6.2.4. Now, recall that the limit ((6.22)) (since (u,w) € C([0,00); H*(R?))) assures
that there is a positive constant M such that

[, w) (8]

Hegey <M, Vi>0. (6.33)
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Lemma 6.2.5. Consider that (u,w) € C([0,00); H; ,(R?)) is a global solution for the Mi-
cropolar equations (6.1). Then, there is an instant t = T that depends only on s, u,~y and
M such that

1F 1 (e (@, @) (1))

where M is given in (6.33)).

ey < [L+2M%)5, Vt>T,

Proof. By considering the system

v+ v-Vo+Vp = (u+x)Av + xV xb, z€R*t>0,
by + v-Vb = vAb + x\V x v —2xb, x€R%t>0,

dive = 0, z€R%t>0,

U(-,O) = U('aTI)v b<70) = U)(',Tl), Z €R27

where T} > 0 is arbitrary, we obtain, by following the proof of Lemma [6.2.3, a constant T’
(which depends only on s, 6, M) such that

(6.34)

1771 (M@, B)(1)) < 1+ 2[/(v,0)(0)]

||?-‘IS(]R2) ?-.IS(]R2) =1 + 2||(U, w)<T1)||i]s(R2) S 1 + 2M27

for all t € [0, T]. In particular, we infer

1F (@, B) (1)) %0 oy < 1+ 2M2,

Hs(R2)

that is,

1F (M@, @)(T + T0)) |3 oy < 1+ 2M°.

S(RQ)
Now, suppose that ¢ > T in order to obtain (for 73 =t — T > 0)

1F (M@, @) (1)) 3oy < 1+2M°, VE>T.

R2)

6.2.2 Decay Rate Related to Hj’a(]l@)

Now, let us establish the asymptotic behavior in H, s +(R?) of the solution (by assuming
its global existence in time) obtained in Theorem by extending and improving the steps
presented by J. Benameur and L. Jlali [6].

Theorem 6.2.6. Let a > 0, 0 > 1, and s > 0 with s # 1. Consider that (u,w) €
C([0,00); H ,(R?)) is a global solution for the Micropolar equations (6.1). Then,

Jim 15 [, )0 0.

2 _
Hg o (R?)
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Proof. By Lemma [6.2.5] it follows that

| F~ (™ (@, w) (1)) || <142M? = M?, Vt>T. (6.35)

Hs(R?)

By applying Young’s inequality, we have

00Ol ey = [ I @B OF de < Cog [ €7 @ 0)(0)

Now, use Cauchy-Schwarz’s inequality and ((6.35)) in order to conclude that

1

b < Croatt [ 1€P10. 000 |%ﬁ) ([ teemdi@aiopa)

= Croall 7 (M@ @) () 7oy [£2 1 (w, w0) ()] 2]
< Croaly [t2 (e, w) ()| s )

£2 | (u, w)(t)|

for all t > T Lastly, by applying Theorem ii), it results that

lim ¢2 || (w, w)(t) 2
t—o0

Iz, , 2y = O-

6.2.3 Decay Rate of the Microrotational Velocity in Hj,U(RQ)

The next theorem assures that the micro-rotational velocity field w(t) decays faster than
the velocity field u(t) (see Theorem [6.2.1]), provided that x > 0.

Theorem 6.2.7. Let a > 0, 0 > 1, and s > 0 with s # 1. Consider that (u,w) €
([0, 00); Hj,U(RQ)) is a global solution for the Micropolar equations (6.1). If x > 0, one has

lim ¢ [Jw(t)]|%

=0.
t—o0 a0 (R?)

Proof. By applying Young’s inequality, we have

00Ol ey = [ I @B OF de < Crg [ €7@ 0)(0)

Now, use Cauchy-Schwarz’s inequality and (6.35)) in order to conclude that

(/|a%m)|%w) (/\Q%QNW ><M%M)é

= Croal| F~ ( Tl‘(ﬂ @)(t))|Hs(R2)[ g ||w<t>|
< Croa My [tF |w(t)]

s+1

2 Jw(?)]

2
Hg,a (R2) S OT,a,a

HS(]RQ)]

HS(R2)]7
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for all t > T'. Lastly, by applying Theorem iii), one has

2 :07

s+l
i = {lw (), | ge)

since x > 0.

6.2.4 Decay Rate Related to H; ,(R?)

Finally, let us guarantee the asymptotic behavior in H ,(R?) of the solution (by assuming
its global existence in time) obtained in Theorem by extending and improving the steps
presented by J. Benameur and L. Jlali [6].

Theorem 6.2.8. Let a > 0, 0 > 1, and s > 0 with s # 1. Consider that (u,w) €
C([0, 00); vaU(RQ)) is a global solution for the Micropolar equations (6.1)). Then,

lim ||(u, w)(t)| #s ,®2) = 0.
t—o00 ’

Proof. By applying Theorem [6.2.6, the same way as in (6.21]), we obtain
Jim [t )0 sy = 0. (6.36)

As a result, by using Lemma [1.2.10, Theorem i) and the limit (6.36)), one deduces

lim [ (u, w)(t)]| g, (2) = 0.

t—o00
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Chapter 7

Generalized MHD equations: local
existence, uniqueness and blow-up of
solutions in Lei-Lin spaces

This chapter presents a study related to the local existence, uniqueness and properties
at potential blow-up times for solutions of the following generalized Magnetohydrodynamics
(GMHD) equations:

u + (—A)*u + u-Vu + V(p+3|b|*) = b-Vb, zeRtel0,T%),
b+ (=APb +u-Vb = b-Vu, z€Rtel0,T),

divu = divhb = 0, zeR*te (0,7, (7.1)
u(,O) = UO('), b(70) = bO(')a YIS RS’
where T* > 0 gives the solution’s existence time, u(z,t) = (ui(z,t), us(z,t), uz(z,t)) €

R3 denotes the incompressible velocity field, b(z,t) = (bi(z,t),bo(z,t),b3(z,t)) € R3 the
magnetic field and p(z,t) € R the hydrostatic pressure. Furthermore, we consider that
a, € (%, 1]. Lastly, the initial data for the velocity and magnetic fields, given by ug and b
in (7.1)), are assumed to be divergence free, i.e., div ug = div by = 0.

Notice that the GMHD equations are an extension of the MHD equations; in fact, it
is enough to consider a« = =1 in . Let us mention that some papers in the literature
have presented a study related to the local existence, uniqueness and blow-up criteria for
solutions of the MHD equations in Sobolev-Gevrey spaces (these ones are defined by a slight
variation of the usual Sobolev spaces as well as Lei-Lin spaces). Here we refer to [24], 25] 26,
31] (and references therein). Although our interest is only connected with the mathematical
theory of incompressible fluids, it is important to point out that “Magnetohydrodynamics is a
branch of Physics devoted to the study of the dynamics of electrically conducting fluids in the
presence of magnetic fields. In addition, MHD applies to most astrophysical plasmas, some
laboratory plasmas, and liquid metals (e.g. mercury, sodium, gallium). More specifically,
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some applications of the MHD are the following: the machinery of the sun, stars, stellar
winds, black holes with the formation of extragalactic jets, interstellar clouds, and planetary
magnetospheres” (for more details see [22], B9] and references therein).

If we assume @« = 1 and b = 0 in , it is also easy to note that the famous Navier-
Stokes equations are a particular case of the GMHD equations . More specifically, the
Navier-Stokes system has been vastly discussed by various authors in order to establish new
blow-up criteria for local solutions in Lei-Lin, Sobolev-Gevrey and the usual Sobolev spaces
(see, for instance, [5], 10, 29] and included references).

The existence of global solutions in time for the GMHD equations is still an open
problem; thus, this issue has become a fruitful field in the study of the incompressible fluids
(see e.g. [45] and references therein). More precisely, this chapter investigates the local
existence and uniqueness of a classical solution (u, b)(x,t) for the GMHD equations in
Lei-Lin spaces X*(R3), provided that max{a(lgw), 5(1;2‘1)} < s < 0. Lastly, by assuming
that the maximal time 7% > 0 of existence for the solution (u,b)(z,t) is finite, we guarantee
that the limit superior, as ¢ tends to 7™, of the norm ||(u,b)(t)||xsm®s) blows up (whether

max {1 — 2a, 1 — 25, 20520 2022004 5 < (),

7.1 Existence of Local Solutions

Below, we shall present one of our main results that establishes the existence of a time
T > 0 and a solution (u,b) € [Cr(X*(R3))NLL(XT2(R3))] x [Cr(X5(R3)) N LL(AX T2 (R3))]
for the GMHD equations (|7.1)), provided that the initial data is in the appropriate Lei-Lin
space.

Theorem 7.1.1. Assume that max{l —2a,1 — 20, a(1225)7 ’8(1;20‘)} < s <0, with a, €
(3, 1]. If (uo, bo) € X*(R3) then, there exist a time T > 0 and a solution (u,b) € [Cr(X*(R?))N
LE(X5122(R3))] x [Cp(X*(R3)) N LAL(X*+?(R?))] of the GMHD equations (7.1)).

Proof. The proof of local existence for solutions of the GMHD equations (7.1]) is based on
Lemma [1.2.20} Initially, we must assume that r is a positive constant such that

1
— .2
0<r<6608, (7.2)

where C is given by Lemma [1.2.24] Also, let us choose N € N that satisfies

r
)

S| _ 5|} L
[ i@ < g [ lerthe)de < g (73

It comes from the fact that (ug, by) € X*(R?).
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Now, define Vo = F ! (xq¢j>n}lo) and Wy = fﬁl(x{|§|>N}lA)0). By using 1' one obtains
Wallere) = [ I6Tale)] de
— [ letxia-m©)ldale) d

=/ €] la0(€)] de
|€|>N

r
< = 7.4
33 (7.4)
and, analogously, we have
r
||WO| X5 (R3) < ﬁ

Let us also define U(t) = e~ U, and B(t) = e""=)" By, where Uy = F = (x{/e|<n} tlo)
and By = f‘l(x{|§|SN}50). By definition, U(t) and B(t) are the unique solutions of the
systems

{Ut+(—A)aU: 0; i {Bt+(—A)5B: 0; (75)

U0) = Uy, B(0) = By,
respectively, for all ¢ > 0. Moreover, one concludes

0@y = [ 6P 100(e)] de < [ 1€Pxem aale)] de

- / € 10(6)] dE < [lwolxoa, (7.6)
|€|<N

for all ¢ > 0. By following a similar process, we get

1B(t)] xsw3);, Vvt >0. (7.7)

xs@sy < ||bol
On the other hand, one can write

T
Ullgeosmoy = [ [ 16106 dea
T e~
= [ ] Jelree e Gte) d a
0 R3

T
< / €726 4 (€)] e

Jo Jms

T
_ s+2a 1 —tl¢[? d) d
[t etaate ([ et ar) g

< [ = e o) s (7.8)
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Similarly, it is possible to obtain
1Bl es+am ey féL[L3<1-—»6‘7’5“6>|§|8rao<5>|(15. (7.9)

As (ug, by) € X*(R?), by applying the Dominated Convergence Theorem, one reaches

71}% ||U||L1 (Xs+2a(R3)) = O 7111;110 ||B||L1T(XS+2»3(R3)) =0. (710)

By using ([7.8) and ( , it is also true that

||U||L%(XS+20‘(R3)) S ||U,0| XS(R3)7 ||B||L%(X5+25(R3)) S ||b0| XS(R?’)- (711)
Let us choose € > 0 small enough satisfying the following conditions:
1—L _i 1
[ ] CS(HU'O‘ XS2§3) + ”uo‘ XS RB) 2a) < %’ (712)
- r
o 2C Hu0| XS(R;), e < 33 (7.13)
o Culllbollon e + (bl o2, e %) < & (7.14)
Ol xs ]RS) Ol xs (R3) 337 .
. zcsubouxsga% < ﬁ; (7.15)
55 L _ s 1—L 1+5% 1 _ s r
o O (ol 0l -5y 555 ol oy ol %) < o (7.16)

On the other hand, as a consequence of (7.10)), there exists a time T'= T'(¢) € (0,1) such
that

HU”LIT(XS'*‘QQ(R?’)) <eg, “BHL}(XS"'Q[*(R?’)) < €. (717)

Now, define V. =u —U e W = b — B. Notice that, if (u,b) is a solution of (7.1)), then
(V,W) is a solution of the following system:

Vi + (=A)*V + (V+U)-V(V+U)+V(p+3W+B]*)=(W+B)-V(W + B),

W, + (AW + (V+U)-V(W+B) = (W+B)-V(V+U),

divV = divW = 0,

(7.18)

Our aim is to assure the existence and uniqueness of local solutions for the equations .
To do this, we will use Lemma [1.2.20]

First of all, use the heat semigroup e~*=" 2" with 7 € [0,¢] (¢ € [0,T]), in the first
equation given of the system ([7.18)), and, after that, integrate the obtained result over the
interval [0, ] to reach

t t
/ e~ A Y dr —|—/ e~ EIEAY LAY dr
0 0

——/te_( (V4 U) - V(V+U)+V(p+%|W+B|2)—(W+B)~V(W+B)] dr.
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By applying integration by parts to the first integral above and using the proprieties of the
heat semigroup, one deduces

V(t)=e "0

— /t e EIEA (V4 U)-V(VHU)+V(p+ %|W + B*) — (W + B) - V(W + B)] dr.

Let us recall that Helmontz’s projector Py is a linear operator such that
Pyl(V+U) - V(V+U)—(W+B)- V(W + B)|
=(V+U) -V(V+U)+V(p+%|W+B|2) — (W +B)-V(W + B).
Consequently, one can write
V(t) = e 1Y, — / t e IEA PRIV + U)-V(V +U) — (W + B) - V(W + B)] dr.
" (7.19)
Now, we are interested in obtaining an equality analogous to related to the field W.

Thus, by using the heat semigroup e~ "2 with 7 € [0,t], integrating over [0, ], and
integrating by parts, one gets

W(t) = e AW, — /Ot e N (Y L U) V(W + B) — (W + B) - V(V + U)] dr,
(7.20)

see the second equation of the system ((7.18)).

On the other hand, let us define the operator
UV, W)(t) = (W (V,W)(1), Oa(V,W)(1)), Yt € [0,T],
where
U (V,W)(t) = e "2

— /Ot e TR PV +U)-V(V +U) — (W + B)- V(W + B)] dr
and
Uy (V, W)(t) = e "0
- /Ot e IEA (V4 U) - V(W + B) — (W + B) - V(V +U)] dr,
for all t € [0, T].

118



Moreover, let us consider the space
X = Xpaps(RY) = [Cr(X(RY) N LH(H29(RY)] x [Cr(A*(RY) N L (X 2(RY))
endowed with the norm
I(fs Dl = 1 |oge s ray) + ||f||L1T(xs+2a(R3)) + 1|91l 2o (20s (m3y) + ||9||L1 (Xs+28(R3)))

for all (f,g) € Xp. Our goal here is to prove that ¥ : X — X admits a fixed point, for a
suitable T" > 0.

Initially, we will prove that U(Xr) C Xp. In fact, consider that (V, W) € Xr. Note that

W (V, W) (2))

xses) < [l AT

t
Xs(R3) + || / 6_(t_7)(_A)aPH[(V + U) . V(V + U)] dT| Xs(R3)
0
t
+ | / e~ TIERT PU (W + B) - V(W + B)] d7|| s m9).
0
By applying Lemma [1.2.23] it results

[0 (V, W) ()]

xs@sy < [|Vo

Xs+L(R3) dr

t
XW%+/HW+UWNV+W|
0

+/t||(W+B)®(W+B)|

Xs+1(R3) dr.
Thus, use Lemma to obtain

24
0L (VW) (@) s @sy < [Vollxs sy + 2C5[[[V + UHLoo ooy IV + Ul i, T (a2

W+ By W+ BILT sas

Consequently, by using (7.6]), (7.7) and (7.11]), we deduce
W1 (V, W) (2)] wew) + 4[| (VW) [laer + [ (w0, bo)ll s ], VE € [0, 7.

(R?))

23y < ||V

Lastly, (7.4) lets us conclude that
r
1 (V, W)l e (es (3 < 33T ACS[I(V W) |l aer + [ (w0, bo) [l s r)]* < 00,

provided that (V, W) € X and (ug, by) € X*(R?). It is important to point out here that, by
following a similar process, we have

r
o [ Wi(V, W)l oy aeszaqmey) < 5z +ACI(V. W)L + [[ (o, bo) [l s )] < 00;

33
o [|Wo(V, W)l Lo (s (m3y) < g + 4G (VW) =+ 11 (o, bo) [l s ) ]* < 00
o [[Wo(V, W)l L1 (as+28may) < ﬁ + 4GV, W) =+ 11 (o, bo) [ s ) ]* < 00
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Thereby, we have W(Xr) C Xp.

Now, denote

B’r - Br,a,ﬁ,s
={(V.W) € X1 |[VllLgexs@s)), IWllgexs ey IV |1 (vstzamsyys WLy vst28@msyy < 7}

Thus, we shall show that W(B,) C B,. In fact, let us consider (V, W) € B, to infer

2 (V, W) ()]

xS R3) < ||€ )a%

t
| s (m3) + / e DR Py (V- V) || rsy dT
0

t t
+/ leCDERP(V - VU) || s gs) dr +/ le”CDERP(U - VV)| s ms) dr
0 0

t t

+/ le”CERT Py (U - VU) || s (zsy dr +/ e ERA Py (W - VW)|| s rs) d
0 0
t t

+ / e~ B Py (W - VB eqas) dr + / e Py(B - VW) eqes) dr
0 0
t 8

+ / le” =R Py(B - VB) || sy dr =2 Y Ii(1). (7.21)
0 j=0

By ((7.4), we have
Io(t) = le™* A Vol xomsy < [Vollasms) < 33, vt € [0,T]. (7.22)

On the other hand, by applying Lemmas [1.2.23| and [1.2.24] it follows that

t t
= / Hef(tff)(*A)&PH(V . vv)HXS(R3) dr < / HV (%9 VHXs-»-l(RS) dr
245
<20, HVHLOOQ;;S RS )HVHL1 (s ra(s)) S 20, r?
since (V, W) € B,. Then, use ([7.2)) to conclude that

L(t) < —, Vtel0,T). (7.23)

Again, by applying Lemmas [1.2.23] and [1.2.24] one checks that

t t
1) = / A" Py (V - VU ety dr < / |U ©Vxess gy dr
0

1+35 %a
< C [HV”LOOQO:YS R3) ||U||L°°(Xs (R3)) HV”Ll (X s+2a(R3)) ||U||z(;()(s+2a(R3))

1+ 52 —5=
+ HVHLOO(XS R3)) ||UHL0<>2QXS(]R3 ”V||Lq;()(s+2a(]g3))||U”L§((l)(s+2a(R3))]'
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By using (7-6), (712) and ([TI7), we infer

L(t) < Cur||u| vt € [0, 77, (7.24)

1,
XS(]R3 2a 4 ||u0|

XS(R3 8 ] < %
provided that (V,W) € B,. Analogously, we get the following estimate

I3(t) < =, Vte|0,T]. (7.25)

Moreover, let us observe that Lemmas [1.2.23] and [1.2.24] also imply that

t t
£) :/ le™EDEA Py(U - VU)o sy dr < / |U & Ul|xs+1msy dT
0

<20, |U|2L 5,

L2 (X3(R3)) HU”Ll (Xs(R3))"

As a result, by (7.6]), (7.13) and (7.17)), it follows

—s

Li(t) < 20, |uoll e Gy = < ;—3 vt e [0,7]. (7.26)

By following a similar process to the one presented above and applying (7.14]) and -,
we have

Is(1), Is(t), I+ (1), Is(t) < % vt € [0, 7. (7.27)

Therefore, by replacing ((7.22))—(7.27)) in (7.21)), we can guarantee that

91 (V, W)l o (a0 r3yy <7 (7.28)

Now, let us estimate Wo(V, W) in L (X*(R3))-norm. First of all, notice that

[0 (V, W)(

8

sy < Y Jilt), Ve [0,T], (7.29)
=0

where

o Jo(t) = [le A Wy

xs(R3) dT;

t
v, () = / Je=t=I=A Y gy

. / le™EAY VB eges) dr,  Js(t) =/Ot||e‘“‘T)(‘A)BU-VWHxs(Rg) dr;

. / e~ ATV B yo sy dr, J5(t):/0t\|e(tT)(A)BW-VV\Xs(Ra) dr;

. = / e~ DA W U | o sy dr,  Jo(t) = / t le= A B YV || s sy dr
0

. / le=EN B VU | s es)
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for all ¢ € [0, T]. Initially, by applying (7.2]), one obtains

Jo(t) = [le” 2 W]

xs(r3) < ||[Wo

xo@s) < vt € [0, 7. (7.30)

r
33’
Moreover, use Lemmas [1.2.23] 1.2.24] and ([7.2)) in order to deduce

Xs+1(R3) dr

t t
:/ le”EDERY T | e as) dfg/ W& V]
0

1+2
< Vo ||W||WS IV oy [ W12 sy

T Hvum e W e IV sy IV sy

< 20, — 7.31
r? < 33 ( )

for all ¢ € [0, T]; since, (V,W) € B,. Now, let us present an estimate related to Jo(¢). Thus,

one has
/”6 t‘r

< OV ey Bl e IV e ||B||L1(Xsm(R3))

_L 1+
IV e iy | B e g 1V 125 s 1B s

Hence, by applying (7.7)), (7.14]) and (7.17)), one deduces

s (R3) d7'</ ||B®VHXS+1 (R3) dr

1+5%  _ s r
To(t) < Cor{|boll xs RB)g % + ol xo@E ] < 330 VEE [0, 7. (7.32)
Similarly, we get
J(t) < % vt € [0, 7. (7.33)

At last, Lemmas [1.2.23| and [1.2.24] imply

/ e —(t—T) U VBHXS R3) dT</ |B @ U||xs+1 (R3) dr

1+
< C [||U||L°O2a)(s(]1§3 ||B||L°° X's R3 HUHL )(s+2a R3 “BHLI (Xs+2B(R3))

1+ =
U2y Bl e i U112 e I Bl s oy -

for all ¢ € [0,7]. Thus, use the estimates obtained in (7.6, (7.7) and (7.17) in order to

conclude that

1+ _s 1—L I+55  1_ s
Ji(t) < CllluolL54 22, 1ol 5 ol o 1o o %55

1— = 1
23 53
xs(R3)E?
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Consequently, (7.16]) assures that

Tat) < % vt € [0, 7). (7.34)
In an analogous way, we are able to prove that
Js(t), Jo(t), Jo(t), Js(t) < % vt € [0, 7. (7.35)
Thereby, by replacing ((7.30)—(7.35)) in ((7.29)), we conclude
[ W2 (V, W) o (a0 (m3yy <7 (7.36)

It is easy to check, by applying Lemma [1.2.23| and the process established above, that
H\Ifl(‘/, W)”LlT(XS'*‘M(R?’)) <r, ||\112(‘/, W) ’lLlT(XS+2/3(R3)) <. (737)
The estimates ([7.28)), (7.36)) and ((7.37) complete the proof of the fact that ¥(B,) C B,.

Finally, let us prove that the operator W satisfies the following inequality:
H\Ij<‘/17 Wl) - \Ij(‘/% WQ)”XT S KH(‘/D Wl) - (‘/27 WQ)”XTa v(‘/la Wl): (‘/2) WQ) € BT,
provided that 0 < K < 1. First of all let us write

10 (Vi W) () — By (Va, Wa) (8) || s ey < ZL ), Vtelo,T], (7.38)
where
o Li(t)= /t le=EDEA Py (Vi = Vo) - VU] | s ey drs
0
. = /0 t |e”EDER Py (U - V(i — Vi) || s ey dT
J = /Ot He_(t_T)(_A)aPH[(Vl —Va) - VVi|| s msy dT;
. L(t) = /0 e PV - T (V= Vi)l s,
and also
. / e~ Py l(W; — Wa) - VB]l|equsy
o Lylt) - / e~ DA Py (B (Wi — Wa)]lseoy d
. / e~ Py [(W; — Wa) - TW] s ey
. / e~ Py [y - V(W3 — Wa)]lequ) .

123



for all ¢ € [0, T]. Thus, by applying Lemmas [1.2.23| and |[1.2.24} one has

1,i

_ s 1
Ll(t)a L2<t) S OS[H‘/l ‘/2||Loo XS(R?’ )||U||LOO(XS R3) ||‘/1 ‘/2||L12a)(s+2a ]R3 ||U||z? (XS+2O‘(R3))

Vi = VallyZn o I e g 1 Vi = VIS s 1011 Pz -

for all t € [0, T]. Thus, by applying Lemmas [1.2.23 and [1.2.24] one has

1+ 1—-L _ s
Ll(t)7 L2<t> S CS[H‘/I - ‘/2||Loo2o‘3(s(R3))HUHLooQ(o:ys(RS))H‘/l - V "L12axs+2a(R3 ||U||L1 XS+20‘(R3))

I+5
1V = Vel oy 10 e g 1 Vi = VIZ5 s 1011 Pz ey -

Use the estimates obtained in ([7.6) and ((7.17)) in order to conclude that

I+5- —2
xs(R3)E “]

La(t), La(t) < Cul[(Vi = Vo, Wi — Wa) || [[| o ;f?ﬁaﬁi + [Juo|

1
< £||(V1 — Vo, Wy — Wo)llay, VE€[0,T], (7.39)
see ([7.12)). Tt is also true that

1
33”<V1 — Vo, Wi — Wo)l|x,, VEte[0,T].
(7.40)

It is enough to apply Lemma[1.2.23] Lemma [1.2.24]and (7.2)), since that (Vi, W), (Vo, W) €
B,.. Analogously, we can estimate Ls(t), Lg(t), L7(t) and Lg(t) in order to infer

Ls(t), La(t) < 2Csr|[(Vi — Vo, Wi — W) || ap <

Ls(t), Lo(t), Lo(t), La(t) < 3—13||<v1 VWi = W)l VEEO,T]. (T.41)
Therefore, by replacing ((7.39)(7.41) in (7.38)), we conclude
92 (Vi, W) = 3 (Vi W) sraeqooy < sl (V= Vo Wi = Mo, (7.42)
for all (Vi, W), (Va, Ws) € B,. By following a similar process, we guarantee that
o Ve, 1) — WV, W)l ey < a5 (Vi = Vo Wy = W)l (7.43)
o (Vi W) = W3 (Vo W) g sty < el (Vi — Vo, Wi = Walllags (7.44)
o (Vi W) = (Vo W) g vy < oV = Vo, Wi = W), (745)

for all (Vi, Wh), (Va, Ws) € B,. Thereby, by (7.42)—(7.45)), one concludes

32
—|(Vi, W) — (Va, Wa)|lxp, YV (Vi,Wh), (Va, W2) € B,.

||\I](‘/i7W1> _\Ija/?vW?)”XT 33
(7.46)
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Lastly, by noticing that ¥ : B, — B, is a contraction mapping (see ), it is enough
to apply Lemma in order to obtain a unique solution (V, W) € B, for the equations
(7.18). Thus, (u,b) = (V,W) + (U, B) € Xr is a local solution of the GMHD system (7.1)),
where (V, W) is a solution of and (U, B) of the heat equations presented in ([7.5]).

]

7.2 Uniqueness of Local Solutions

The Theorem below guarantee uniqueness for solutions of the GMHD equations, obtained

in Theorem [T.1.11

Theorem 7.2.1. Assume that max {1 — 2,1 — 283, a(lgw), 5(1;20‘)} < s<0, with a,8 €
(5.1]. If (ug,by) € X5(R?) then, the solution (u,b) € [Cp(X*(R*)) N Li(X*H2*(R?))] x

[Cr(X3(R3)) N LL(X525(R3))] for the GMHD equations (7.1)) obtained in Theorem is

unique.

Proof. Suppose that (uy,b;), (ug,by) € Xr are local solutions of the GMHD equations ([7.1)),
related to the pressures p; and py respectively. It is important to emphasize that we are
interested in proving that (uy, by)(t) = (ug, bo)(t) for all t € [0, T] (here T is given in Theorem

7.1.1)) Thus, it is true that

(St + (_A)a5 + 5VU1 + u2V5+V(p1 — P2 + %’bl ’2—%’62’2) :pVb1+b2Vp,
pr + (=A)p +5-Vby +uy-Vp = p-Vuy + by V6,
divy = divp = 0,
5(70) = p('v()) = 0,
(7.47)
where 0 = u; — ug, and p = by — by. B applying Fourier Transform and taking the scalar
product in C? of the first equation of (7.47) with 6(¢), one has

5040 (D) +38-0 Vur+0-uz-V6=0-p-Vb+0-by- Vp.
Thereby, it follows that

1~ ~ ~ _ _— _ _
§&:I5(1t)l2 + €PN < 6|0 - Vur| + |ug - VO] + [p- Vbi| + by - V). (7.48)

Considering € > 0 arbitrary, we can write

1 -~
5&]5(1&)\2:—& SR +¢) = B + € an/ B +e.

By replacing this last equahty in , one gets

\/ |2+6 |;5\(t)\2—|—e
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Moreover, by integrating from 0 to ¢, we obtain

Jor e+ / il

t
dr < ﬁ*/ (16 - Vur| + Jug - V| + [p - Vbi| + [by - V) dr.
e ’

Taking the limit as ¢ — 0, multiplying by |£|® and integrating over £ € R3, we get the
following estimate:

t
Hé(t)”Xs(R?’) +/0 ||6(T)||XS+2°‘(R3) dr

t
< / (115 - Vaa|
0

Analogously, we guarantee a similar estimative to ([7.49)) by considering the second equa-
tion of ((7.47). More precisely, we infer

10(0) ey + / lo(r)

t
s/(Ha-w
0

Hence, by following a similar process as in the proof of Lemma |1.2.23 we can rewrite ((7.49))
as follows:

t
16() e o) + /0 1607 | ss2m e, dr

t
< [ s
0

Now, by using the proof of Lemma [1.2.24] it follows that

1608) oy + / 16(r)

Xs(R3) + Hbg : RB)) dr. (749)

XS(]R3) + HUQ .

’ Xs+28(R3) dr

xoms)) dr. (7.50)

xs@sy T ||z - V| xsmsy + [|p - V|

Xs+l(]R3)) dT.

xs+1(®3) + ||p @ by

XsHL(R3) T H5 X u2] as+HL(R3) T Hbl ® p\

‘ Xs+2a (Rd) dT

<c, Z A RN A

161y s 2 18122 gy el 2

1l 102 iy 1041

1l e 14 2 N iy 104 2 ) (7.51)
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By using Young’s inequality, we infer

t 1 t
10Oleresy + [ 16 aesanesy ar < 5 [ 1

1 t
Xs5+2a(R3) dr + Z/ ||p||Xs+2ﬁ(R3) dr
0

1
+Csa,ﬂ2/ H(S HXS ]R3)<Huz| RS)HU/’L jytioéa(R;a + Huz‘ R;a)Huz‘ Eizal(R:a))
e b e
+ [o07) Laes e (1102 | < g [0 szﬁ &2) 106l e oy 106]] o425 sy )] AT (7.52)

Moreover, by using ((7.50) and an analogous argument as in ((7.52)), one concludes

t 1 t 1 t
oty + | ooy dr < 3 [ Wollaesanesy dr+ 7 [ olleanasy r
2(2621) B(s+2a) Q(;+2€) 5(2 1)
s+2a S+ et a @
+ Csa Z/ [116(7)][ 2= R3)(Hb |Xs (R3) b As+28(R3) + [[b: | xs(R3) 16| xs+28 RS))
e el sy el
() sy (o] 350 Nloaal| 370y + Nall 35500 el 3% gy )] i (7.53)

Therefore, by combining the inequalities ((7.52)) and (7.53|), we deduce

1 [ I
16, P)(Ollesusy + 5 [ Nellaosanusy dr 45 [l
0 0

t
Xs+28(R3) dr < Cs,aﬁ/o H((;’ p)(T)HXS(RS)

2 —1 1 28—-1 1
X Z(Huz ;?;ZES)HM }ﬁioéa(Rg + Huz||§(°;(]§3 ||Uz||/\/fi2a1 gy T [[bi ;;2%3 ||b; }ﬁﬂm(Rs)
i—1
aen Bls+2a) 62D 1 By
2 1 2 1 —
T O T W O TNl o DN o T o
B(2a—1) B(s+2a) Bs
2 2 2 1 2
+ [Ju H;((:E{f) | u ||§((§++252Rs + [l 3 il o gs)) dr-

Thereby, apply Gronwall’s inequality (integral form) in order to obtain (4, p)(t) = 0, for all
0 <t < T, provided that

s+2a s 25;1 %
/ Z o 3 s 5y a3 a2 ey 10005 00 ey
524 31 Boza) B +2a) Saat} |17 (1~ ATy
26—1 28—1 ¥ T >
+ “b | Xﬂs RS “b | Xsfw(Rs + ||b | Xss R; Hb | Xss+26a(]R3) + Hb | XSFRi” Hb | Xs+2aB(R3)
B(Qazl) 2 B(ZH(){) 26—1
o S ot 3+ Nl Sl 200 ) i
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is finite, for all 0 < ¢ < T'; provided that, (u;,b;) € Xr (with ¢ = 1,2). In fact, it is sufficient
to apply Holder’s inequality and a similar process as in 1 ; since that, max {1 —2a,1 —
23, 2= Qﬁ B Qa)}§s<0(with o, B € (35,1]).

This completes the proof of Theorem [7.2.1]

7.3 Blow-up Criterion for the Solution

The next theorem assures a blow-up criterion for solutions of the GMHD equations (7.1))
if we assume that the maximal time of existence is finite.

Theorem 7.3.1. Assume that o, € (3,1], max {1 — 22,1 — 23,2 a(l— M , (lja)} <s<0,
and (ug, bo) € X*(R?). Consider that (u,b) € C([0,T*); X*(R?)) is the mazximal solution for
the GMHD equations (7.1)) obtained in Theorem [7.1.1]. If T* < oo, then

lim sup || (u, b) (¢) || s rs) = oo. (7.54)
t T+

Proof. Consider that (u,b) € C([0,T*); X*(R?)) is the maximal solution for the GMHD
equations obtained in Theorem , with 7" < oo. Thus, let us prove that the blow-
up criterion ([7.54)) is valid. It is important to point out here that we have used the techniques
presented in [5].

Suppose by contradiction that Theorem does not hold, i.e., consider that

lim sup || (u, b)(¢)
t /T

Thus, by ([7.55) and Theorem [7.1.1] there exists an absolute constant C' > 0 such that

1w, b)(1)]

‘(@) < 0. (7.55)

@y <O, VEe[0,T7). (7.56)

On the other hand, we can show analogously to (7.51) and by assuming the GMHD
system ([7.1)), that
t
e + [ lutr)

t

2+;

<c. [l
0

| Xs+2a(R3) dt

242 S

)(s(]?é’) ||b| Xs+2B8(R3

1 1—s
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and also

| Xs+28(R3) dr

BOlees + [ 1067)

1+2a

t
safwwpwwuwwwwmmwmmw)
1 1+2
ol 0 e 0135 i 101 3 ) (7.58)

As a consequence, by replacing ((7.56)) in (7.57)), one has

mmm+/mm

[

’ Xs+2a (RJ) dT

<, T Xs+2a(R3 dr + C,C* 55 / |b(7) XS+25(R3) dr.
Similarly, by using |D in (7.58)), we obtain
||b< )HXS (R3) +/ Hb X5+25 (R3) dr < C,C #aa 2B/' ||U| X.s+2oz (R3) ||b| Xs+28(R3)

+ C,C* e / | 2

Xs+2a(R3 HbHXs-Q—QB RS) d

Apply Young’s inequality in order to obtain

K 1/t 1
Ju®llaos) + [ () assusy dr < 5 [ ) aesanges dr + CoaT)
0 0

1 ¢ —1=s
+7 / 16(T) | o253y d7 + Cop(T7)' 5 (7.59)
0
and also
! 1/t o
||b(t)|X5<R3>+/ ()|l 20 sy d < ;1/ [u() || xst2amsy dT + Ca,5(T™) 702
0 0

)| X528 (R3) dr + Csyaﬁ(T*)liO‘(Si?B). (7.60)

1 t
- b
AL

Thereby, by combining ((7.59)) and ( -, we get

[t

Now, consider that (k,)nen is a sequence such that x,, » T*, where k,, € (0,7%), for all
n € N. Let us show that

‘Xs+2a(R3) dr < Csap1+, / Hb(T)HXerw(Rs) dr < Csapre, Vte€[0,T7). (7.61)
0

lim [ (u, 0)(km) = (u, b) (kn)]

n,m—00

o) = 0. (7.62)
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First of all, analogously to ([7.19) and ([7.20]) and by using ([7.1)), we obtain

t
u(t) = e M2y, — / e~ A Py (u - Vu — b - Vb) dr
0

and
t
b(t) = e 12 py — / e (4 Vb — b - V) dr.
0

Therefore, we can write

(u,0)(km) — (u,0)(Kn) = Q1(m,n) + Qa2(m,n) + Qs(m,n),

where
Qi(m,n) = ([e7r A" — e8Iy [e7mm(A)7 — omrin (=81 pg)
Qs(m,n) = —( / e DA Py (4 Y — b V) di,
0
/ [e=(rm =) (=8) _ o=(sn=) (=8| (yy . Vb — b - Vi) d7)
0
and

Qs(m,n) = ( / [e=(n=") R Py - Vu — b - VD) dr, / e N (4 Tk — b - V) dr).

Notice that

e — e

oy = [ (T = e k@) de
< [ eI = e ) d
R3

provided that x, < T*, for all n € N. Thus, by using the fact that uy € X*(R?), it results
from Dominated Convergence Theorem that

lim_ e~ — =2y
n,m—00

Xs(R:‘s) - 0

By following a similar argument, one reaches

lim [[e="m A" — e 758 g es) = 0.

n,Mm—00
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Therefore, we have lLim ||Q1(m, n)||xs®s) = 0. Moreover, by using (2.11]), one deduces
n,m—00

dr

/ [le™ (AT — o=t DER P (0 - Vi — b - VD) | s (e9)
0

< / 3 &[5 [e(om—TEP _ o= (on=IEPY F(yy . W — b - VD)(E)| dE dr
o JRr

.
<[] JeP— e T E L V- b V(O] dedr,
0 R3

since k,, < T™, for all n € N. On the other hand, by following a similar process to the one
applied in the proof of Lemma [1.2.23] one infers

T* T* T*
/ |u-Vu—>b-Vb| X5 (R3) dr < / ||u @ ul X5HL(R3) dr + / Ib ® b X5+1(R3) dr.
0 0 0

Consequently, by applying Lemma it follows

N
/ ||u.vu—b.Vb|st(R3) dr
0

248
Loo%}s(m ||bH

< 20,[(T*) o~ 2a||u||Loo (s (83)) HuHL1 (otra(s)) T + (T35 ||b XS+2B(]R3))]

ST EHCTROE 4 (T B RCTFCT 1] < o0

provided that the estimates (|7.56|) and ([7.61|) are valid. As fOT* |u-Vu—0b-Vb|
then, by Dominated Convergence Theorem, we deduce

Xs(R3) dT < (G O

K

lim [[e7rm =R — == A P (4 - Vi — b - V)| xs sy dT = 0.
n,m—oo [q
Analogously, one obtains
lim [~ (DA o= (on=D N (4 T — b - V)| sy dr = 0.

n,m—oo [

Hence, lim [|Q2(m,n)]
n,m—00

Lemma [1.2.24], we infer

xsrs) dT = 0. Lastly, by applying Lemma [1.2.23| and the proof of

/ e Fn =R Py (u - Vi — b - VD) || s (msy dT <
T* _ _ —1 1—
2451 1o 245 Los
20, [ [l Nl e O 1Bl s ]

Apply (7.56) in order to obtain

1 s

X5+25(R3

Kn ”
/ le= =R Py (w - V= b - Vb) || s e dT<Csa5/ <”““Xs+2a<R3 bllvesas s))
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By Holder’s inequality and using ([7.61]), one checks that

1—s 1_1—5

/ ||e_(”"_7)(_A)aPH(u VU —b- V)| xsmsy dT < Cs a5+ [(T" — ﬂm)l_ﬁ + (T — Kp) 28

Consequently, taking n, m — oo, we get
Kn

lim e~ n =R Py (- Vi — b - Vb) || wsmsy dT = 0,

7,Mm—00
) Km

where max{l — 24,1 —2a} < s <0and o, € (%, 1]. Moreover, by applying an analogous
process, we conclude that

Kn

lim e~ (DA (4 b — b - V)|

n,Mm—00

XS(]R3) dT = 0

K

Consequently, lim [|Qs(m,n)| xsmgs) dr = 0. Therefore, ((7.62) is proved.
n,m—00

In addition, ((7.62) means that ((u,b)(k,))nen is a Cauchy sequence in the Banach space
X*(R3). Thus, there exists (u1,b) € X*(R3) such that

nlLHJO | (w, b)(kpn) — (u1,b1)]

Xs(Ra‘) - O

Now, we are going to prove that the limit above does not depend on (k;,)nen. Thus,
choose (pn)nen C (0,7%) such that p, ~ T* and

Jim [ (w, 0)(kin) — (uz, ba)l|xs(msy = 0,

for some (ug,by) € X*(R?) (repeat the same process). Let us verify that (ug,by) = (uy,b).
In fact, define (¢, )neny € (0, 7%) by on = Ky, and <o, 1 = py, for all n € N. It is easy to check
that ¢,  T*. By rewriting the process above, we guarantee that there is (uz, b3) € X*(R?)
such that

T [[(5)(5.) = (uz, )

By uniqueness of limit, one infers (uy, b1) = (us3, b3) = (ug, by). This means that

T, D)6~ (s, )
Thereby, by assuming (7.1)) with the initial data (u1,b:), instead of (ug,by), we assure, by
Theorems and [7.2.1] the existence and uniqueness of (,b) € C7(X*(R?)) (T > 0) for
the GMHD system (7.1). Therefore, (@,b) € Cypp-(X*(R?)) given by
= vy - ) (@ D)), te€0,17);

solves (7.1 in [0, 7 4 T*]. This is a contradiction. Consequently, one must have

XS(R?’) - 0

XS(R?)) — O

lim sup || (u, b) (¢) || s (r2) = oo.
t ST
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