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Abstract

This research project has as main objective to generalize and improve recently developed
methods to establish existence, uniqueness and blow-up criteria of local solutions in time
for the Navier-Stokes equations involving Sobolev-Gevrey and Lei-Lin spaces; as well as
assuming the existence of a global solution in time for this same system, present decay rates
of these solutions in these spaces.
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a,σ(R3) . . . . . . . . . . . . . . . . . . . 57

3.2.2 Blow–up of the Integral Related to L1(R3) . . . . . . . . . . . . . . . 59

3.2.3 Blow–up Inequality Involving L1(R3) . . . . . . . . . . . . . . . . . . 60

3.2.4 Blow–up Inequality involving Ḣs
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Introduction

Let us present a study on the mathematical theory of incompressible flows. More specif-
ically, we will address the existence, uniqueness and blow-up criteria for local (in time)
solutions of equations described by these flows; as well as the decay of global solutions in
time for these same systems, considering the Sobolev-Gevrey and Lei-Lin spaces. Below, we
detail the procedures adopted in each chapter.

Initially, using as main inspiration J. Benameur and L. Jlali [4, 7], this thesis presents
results related to local existence, uniqueness and blow-up criteria for solutions of the classical
Navier-Stokes equation:

ut + u · ∇u + ∇p = µ∆u, x ∈ R3, t ∈ [0, T ∗),
div u = 0, x ∈ R3, t ∈ [0, T ∗),
u(x, 0) = u0(x), x ∈ R3,

(1)

where T ∗ > 0 denotes the solution existence time, u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) ∈ R3

denotes the incompressible velocity field, and p(x, t) ∈ R the hydrostatic pressure. The
positive constant µ is the kinematic viscosity and the initial data for the velocity field, given
by u0 in (1), is assumed to be divergence free, i.e., divu0 = 0.

The existence of solutions for this system has been intensively studied in the literature
see, for example, [2, 3, 4, 7, 10, 13, 14, 27, 28, 29, 32]. It is important to add that finding
smooth global solutions for the Navier-Stokes equations (1) is still an open problem. On the
other hand, it is well known that there exists a maximal time T > 0 for which the system
(1) has a classical solution u(x, t), defined for all (x, t) ∈ [0, T )× R3.

J. Benameur and L. Jlali [7] guarantee the existence of a unique u ∈ C([0, T ∗), H1
a,σ(R3))

solution of (1), provided that the initial data u0 is properly chosen in the appropriate Sobolev-
Gevrey space, specifically:

Theorem 0.0.1 (see [7]). Let a > 0 and σ > 1. Let u0 ∈ (H1
a,σ(R3))3 be such that divu0 =

0, then there is a unique T ∗ ∈ (0,∞] and a unique u ∈ C([0, T ∗), H1
a,σ(R3)) solution to

system (1) such that u /∈ C([0, T ∗], H1
a,σ(R3)). If T ∗ <∞, then

c1

(T ∗ − t)
2σ0+1

3σ
+ 1

3

exp

[
ac2

(T ∗ − t) 1
3σ

]
≤ ‖u(t)‖H1

a,σ(R3), (2)
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where c1 = c1(u0, a, σ) > 0, c2 = c2(u0, σ) > 0 and 2σ0 is the integer part of 2σ.

In Chapter 2, some extensions and improvements, for Theorem 0.0.1, have been obtained.
Briefly, we prove that given u0 ∈ Hs0

a,σ(R3), with a > 0, σ > 1 and s0 ∈ (1
2
, 3

2
), we obtain a

unique local solution u ∈ C([0, T ∗), Hs
a,σ(R3)) for the system (1), for all s ≤ s0, defined in

some maximal interval [0, T ∗). Besides, the Theorem 0.0.1 presents blow-up criterion (2) for
the Sobolev-Gevrey norm ‖ · ‖H1

a,σ(R3), which is also valid for the norm ‖ · ‖Hs
a,σ(R3), if s ≤ s0.

In Chapter 3, results of existence, uniqueness and blow-up for local solutions of the
Navier-Stokes equations, analogous to that above, were also obtained for the homogeneous
Sobolev-Gevrey spaces Ḣs

a,σ(R3), for s ∈ (1
2
, 3

2
). As one of the main reasons for attempting

to achieve this goal, it highlights the inclusion Hs
a,σ(R3) ↪→ Ḣs

a,σ(R3).

It is important to note that, considering the critical cases s = 1
2

e s = 3
2
, the local

existence, uniqueness and blow-up of the solution (1) are not discussed here and are of still
open problems in the mathematical theory of incompressible flows. Complementing this
theory, J. Benameur [4] showed a similar result to the Theorem 0.0.1 in Hs

a,σ(R3), with
s > 3

2
.

Theorem 0.0.2 (see [4]). Let a, s, σ ∈ R such that a > 0, s > 3
2

e σ > 1. Let
u0 ∈ (Hs

a,σ(R3))3 such that divu0 = 0. Then, there is a unique time T ∗ ∈ (0,∞]
and a unique solution u ∈ C([0, T ∗), Hs

a,σ(R3)) of Navier-Stokes equations (1) such that
u /∈ C([0, T ∗], Hs

a,σ(R3)). Moreover, if T ∗ <∞, then

C1(T ∗ − t)−
s
3 exp(aC2(T ∗ − t)−

1
3σ ) ≤ ‖u(t)‖Hs

a,σ(R3), ∀ t ∈ [0, T ∗), (3)

where C1 = C1(u0, s, σ) > 0 and C2 = C2(u0, s, σ) > 0.

In addition to the Navier-Stokes equations, the Magneto-Hydrodynamics equations (MHD)
will also be the source of research in this thesis:

ut + u · ∇u + ∇(p+ 1
2
| b |2) = µ∆u + b · ∇b, x ∈ R3, t ∈ [0, T ∗),

bt + u · ∇b = ν ∆b + b · ∇u, x ∈ R3, t ∈ [0, T ∗),
div u = div b = 0, x ∈ R3, t ∈ (0, T ∗),
u(·, 0) = u0(·), b(·, 0) = b0(·), x ∈ R3.

(4)

Here u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) ∈ R3 denotes the incompressible velocity field,
b(x, t) = (b1(x, t), b2(x, t), b3(x, t)) ∈ R3 the magnetic field and p(x, t) ∈ R the hydrostatic
pressure. The positive constants µ and ν are associated with specific properties of the
fluid. The initial data for the velocity and magnetic fields are assumed to be divergence
free. Actually, the MHD equations (4) reduce to the classical Navier-Stokes equations, with
velocity field u(x, t), pressure p(x, t), and viscosity µ, provided that b = 0 (the existence of
solutions for this system has been intensively studied in the literature – see e.g. [4, 7, 13,
14, 27, 28, 29, 32] and references therein).
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In Chapter 4, extensions of the Theorem 0.0.1 were obtained for the more general case
of the system (4) in homogeneous Sobolev-Gevrey spaces Ḣs

a,σ(R3), for s ∈ (1
2
, 3

2
). Moreover

in Chapter 5, in addition to the Theorem 0.0.1, the Theorem 0.0.2 was also extended to
the MHD equations (4) in Sobolev-Gevrey spaces. It is important to note that the main
results obtained by J. Benameur and L. Jlali [4, 7] becomes particular cases of the Theorems
presented here (see Theorems 5.1.1, 5.2.9, 5.2.10, 5.2.11 and 5.2.12), since we have extended
all the results stated in [4, 7] from the classical Navier-Stokes equations to the MHD system
(4).

The research developed in this thesis also seeks results of existence, uniqueness and decay
rates of global solutions in time for the 2D Micropolar system:

ut + u · ∇u + ∇p = (µ+ χ)∆u + χ∇× w, x ∈ R2, t ≥ 0,
wt + u · ∇w = γ∆w + χ∇× u− 2χw, x ∈ R2, t ≥ 0,
div u = 0, x ∈ R2, t > 0,
u(·, 0) = u0(·), w(·, 0) = w0(·), x ∈ R2,

(5)

where u(x, t) = (u1(x, t), u2(x, t)) ∈ R2 denotes the incompressible velocity field, w(x, t) ∈ R
the microrotational velocity field and p(x, t) ∈ R the hydrostatic pressure. The positive
constants µ, χ, γ and ν are associated with specific properties of the fluid. The initial data
for the velocity field is assumed to be divergence-free.

In the literature, results involving blow-up criteria for local solution at the time of systems
(1) and (4) have been developed in numerous papers of great relevance. In order to make
the theory as complete as possible and by using as our main reference J. Benameur and
L. Jlali [6], Chapter 6 will consider the global existence in time of solutions obtained in
Sobolev-Gevrey spaces for the system (5). Our goal is to analyze these decay rate of the
solutions. To cite some references, we give the examples [6, 15, 16, 23, 35, 37]. The decay
rate analysis for the equations (1) and (4) was made by R. H. Guterres, W. G. Melo, J. R.
Nunes e C. F. Perusato [35], in the following result:

Teorema 1 (see [35]). Assume that a > 0, σ > 1, and s > 1/2 with s 6= 3/2. Consider that
(u, b) ∈ C([0,∞);Hs

a,σ(R3)) is a global solution for the MHD equations (4). Then,

i) lim
t→∞
‖(u, b)(t)‖Hs

a,σ(R3) = 0;

ii) lim
t→∞

t
s
2‖(u, b)(t)‖2

Ḣs
a,σ(R3)

= 0.

Finally, in Chapter 7, we present a study related to the local existence, uniqueness and
properties at potential blow-up times for solutions of the following generalized Magnetohy-
drodynamics (GMHD) equations:

ut + (−∆)α u + u · ∇u + ∇(p+ 1
2
| b |2) = b · ∇b, x ∈ R3, t ∈ [0, T ∗),

bt + (−∆)β b + u · ∇b = b · ∇u, x ∈ R3, t ∈ [0, T ∗),
div u = div b = 0, x ∈ R3, t ∈ (0, T ∗),
u(·, 0) = u0(·), b(·, 0) = b0(·), x ∈ R3.

(6)
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Here, it is assumed that α, β ∈ (1
2
, 1] and the initial data for the velocity and magnetic fields

are assumed to be divergence free. The existence of global solutions in time for the GMHD
equations (6) is still an open problem; thus, this issue has become a fruitful field in the study
of the incompressible fluids (see e.g. [44, 45] and references therein).

In [5], J. Benameur and M. Benhamed have studied local existence, uniqueness and blow-
up times for solutions to the quasi-geostrophic equations in Lei-Lin spaces X 1−2α(R2). Apply-
ing the techniques contained in [5], we guarantee local existence and uniqueness for GMHD

equations (6), assuming (u0, b0) ∈ X s(R3), with max
{

1−2α, 1−2β, α(1−2β)
β

, β(1−2α)
α

}
≤ s < 0

and α, β ∈ (1
2
, 1]. Moreover, if we assume that the maximal time of existence T ∗ > 0 is finite,

we conclude

lim sup
t↗T ∗

‖(u, b)(t)‖X s(R3) =∞.

In Chapter 1, we establish some notations and definitions that will be used throughout
the text and we also present some fundamental lemmas used in the proof of results presented
later.
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Chapter 1

Preliminary

This chapter presents notations, definitions as well as lemmas that will be needed for the
proofs of the main theorems.

1.1 Notations and Definitions

The main notations and definitions of this PhD thesis are listed below:

• We denote the standard inner product in Cn by

x · y := x1y1 + x2y2 + ...+ xnyn

and let the norm induced by this product be

|x| :=
√
|x1|2 + |x2|2 + ...+ |xn|2,

with x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Cn (n ∈ N).

• The vector fields are denoted by

f = f(t) = f(x, t) = (f1(x, t), f2(x, t), ..., fn(x, t)),

where x ∈ Ri (i = 1, 2, 3), t ∈ [0, T ∗) and n ∈ N.

• The i-th spatial derivative is denoted by Di = ∂/∂xi (i = 1, 2, 3).

• The gradient field is defined by∇f = (∇f1,∇f2, ...,∇fn), where∇fj = (D1fj, ..., Difj)
(j = 1, 2, ..., n and i = 1, 2, 3).

11



• The usual Laplacian f = (f1, f2, .., fn) is given by ∆f = (∆f1,∆f2, ...,∆fn), where

∆fj =
i∑

k=1

D2
kfj (i = 1, 2, 3).

• The standard divergent is given by div f =
i∑

k=1

Dkfk, provided that f = (f1, ..., fi)

(i = 1, 2, 3).

• The notation f · ∇g means
3∑
i=1

fiDig, where f = (f1, f2, f3) and g = (g1, g2, g3).

However, in the particular case of the 2D Micropolar equations (6.1), f ·∇g =
2∑
i=1

fiDig,

where f = (f1, f2).

• Define Fourier transform of f by

F(f)(ξ) = f̂(ξ) :=

∫
Rn
e−iξ·xf(x) dx, ∀ ξ ∈ Rn,

and its inverse by

F−1(f)(ξ) := (2π)−n
∫
Rn
eiξ·xf(x) dx, ∀ ξ ∈ Rn.

• The fractional Laplacian (−∆)γ, γ > 0, is defined by

F [(−∆)γf ](ξ) = |ξ|2γ f̂(ξ), ∀f ∈ S ′(Rn),

where S ′(Rn) is the set of tempered distributions.

• Here Lp(Rn) denotes the usual Lebesgue space, where

‖f‖Lp(Rn) :=

(∫
Rn
|f(x)|p dx

) 1
p

, ∀p ∈ [1,∞),

and ‖f‖L∞(Rn) := esssupx∈Rn{|f(x)|}.

• Assuming that (X, ‖ · ‖) is a normed vector space and T > 0, the space Lp([0, T ];X)
(or simply LpT (X)), 1 ≤ p ≤ ∞, contains all measurable functions f : [0, T ] → X for
which the following norms are finite:

‖f‖L∞([0,T ];X) = ‖f‖L∞T (X) := esssupt∈[0,T ]{‖f(t)‖}

and

‖f‖Lp([0,T ];X) = ‖f‖LpT (X) :=
[ ∫ T

0

‖f(t)‖p dt
] 1
p , ∀ 1 ≤ p <∞.

Analogously, C([0, T ];X) = CT (X) = {f : [0, T ] → X continuous} is endowed with
the norm ‖ · ‖L∞T (X).
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• Let s ∈ R. Ḣs(Rn) denotes the homogeneous Sobolev space

Ḣs(Rn) :=
{
f ∈ S ′(Rn) :

∫
Rn
|ξ|2s|f̂(ξ)|2 dξ <∞

}
.

It is assumed that the Ḣs(Rn)-norm is given by

‖f‖2
Ḣs(Rn)

:=

∫
Rn
|ξ|2s|f̂(ξ)|2 dξ,

Furthermore, the Ḣs(Rn)-inner product is given by

〈f, g〉Ḣs(Rn) :=

∫
Rn
|ξ|2sf̂(ξ) · ĝ(ξ) dξ.

• Assume s ∈ R. The nonhomogeneous Sobolev space Hs(Rn) is defined by

Hs(Rn) :=
{
f ∈ S ′(Rn) :

∫
Rn

(1 + |ξ|2)s|f̂(ξ)|2 dξ <∞
}
.

This space is assumed to be endowed with the Hs(Rn)-norm

‖f‖2
Hs(Rn) :=

∫
Rn

(1 + |ξ|2)s|f̂(ξ)|2 dξ.

Moreover, the Hs(Rn)-inner product is given by

〈f, g〉Hs(Rn) :=

∫
Rn

(1 + |ξ|2)sf̂(ξ) · ĝ(ξ) dξ.

• Let a > 0, σ ≥ 1 and s ∈ R. The Sobolev-Gevrey space

Ḣs
a,σ(Rn) :=

{
f ∈ S ′(Rn) :

∫
Rn
|ξ|2se2a|ξ|

1
σ |f̂(ξ)|2 dξ <∞

}
is endowed with the Ḣs

a,σ(Rn)-norm

‖f‖2
Ḣs
a,σ(Rn)

:=

∫
Rn
|ξ|2se2a|ξ|

1
σ |f̂(ξ)|2 dξ.

Moreover, the Ḣs
a,σ(Rn)-inner product is given by

〈f, g〉Ḣs
a,σ(Rn) :=

∫
Rn
|ξ|2se2a|ξ|

1
σ f̂(ξ) · ĝ(ξ) dξ.
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• Assume a > 0, σ ≥ 1 and s ∈ R. The nonhomogeneous Sobolev-Gevrey space is given
by

Hs
a,σ(Rn) := {f ∈ S ′(Rn) :

∫
Rn

(1 + |ξ|2)se2a|ξ|
1
σ |f̂(ξ)|2 dξ <∞}.

It is assumed that the Hs
a,σ(Rn)-norm is given by

‖f‖2
Hs
a,σ(Rn) :=

∫
Rn

(1 + |ξ|2)se2a|ξ|
1
σ |f̂(ξ)|2 dξ

and Hs
a,σ(Rn)-inner product by

〈f, g〉Hs
a,σ(Rn) :=

∫
Rn

(1 + |ξ|2)se2a|ξ|
1
σ f̂(ξ) · ĝ(ξ) dξ.

• For s ∈ R, the Lei-Lin space is given by

X s(Rn) := {f ∈ S ′(Rn) :

∫
Rn
|ξ|s|f̂(ξ)| dξ <∞},

which is equipped with the X s(Rn)-norm

‖f‖X s(Rn) =

∫
Rn
|ξ|s|f̂(ξ)| dξ.

• The tensor product is given by f ⊗ g := (g1f, ..., gnf), where f : Rk → Rm and
g : Rk → Rn (k,m, n ∈ N).

• The convolution is defined by ϕ ∗ ψ(x) =

∫
Rn
ϕ(x− y)ψ(y) dy, where ϕ, ψ : Rn → R.

• Let given v : R3 → R3; then, there exist w and ∇φ such that

v = w −∇φ, div w = 0.

In this case, w = PH(v) is called Helmontz’s projector (see e.g. Section 7.2 in [32] and
references therein).

• The gamma function is defined by Γ(z) =

∫ ∞
0

xz−1e−x dx, for all z = x+ iy ∈ C, with

x > 0.

• Let A ⊆ Y . The indicator function χA : Y → R is defined by χA(x) = 1, if x ∈ A, and
χA(x) = 0, if x /∈ A.

• As usual, constants that appear in this thesis may change in value from line to line
without change of notation. Here Cq,r,s denotes a constant that depends on q, r and
s, for example.
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1.2 Auxiliary Results

1.2.1 Auxiliary Results for Chapters 2 to 6

In this section, we presenting some auxiliary results that will be useful in the demonstra-
tion of the statement in Chapters 2 to 6.

The first two Lemmas listed below are the results that will guarantee the existence of a
fixed point for the equations presented in the chapters mentioned above. The Lemma 1.2.1
guarantees the existence and uniqueness of solution for the Navier-Stokes (2.1) and MHD
equations (4.1).

Lemma 1.2.1 (see [13]). Let (X, ‖ · ‖) be a Banach space and B : X×X → X a continuous
bilinear operator, i.e., there exists a positive constant C such that

‖B(x, y)‖ ≤ C‖x‖‖y‖, ∀x, y ∈ X.

Then, for each x0 ∈ X that satisfies 4C‖x0‖ < 1, one has that the equation

a = x0 +B(a, a) (1.1)

admits a solution x = a ∈ X. Moreover, x obeys the inequality ‖x‖ ≤ 2‖x0‖ and it is the
only one such that ‖x‖ ≤ 1

2C
.

Also the next Lemma is the main ingredient to prove the existence and uniqueness of
solution for the Micropolar equations (6.1).

Lemma 1.2.2 (See [13]). Let (X, ‖ · ‖) be a Banach space, L : X → X continuous linear
operator and B : X×X → X continuous bilinear operator, i.e., there exist positive constants
C1 and C2 such that

‖L(x)‖ ≤ C1‖x‖, ‖B(x, y)‖ ≤ C2‖x‖‖y‖, ∀x, y ∈ X.

Then, for each C1 ∈ (0, 1) and x0 ∈ X that satisfy 4C2‖x0‖ < (1 − C1)2, one has that the
equation

a = x0 +B(a, a) + L(a), a ∈ X,

admits a solution x ∈ X. Moreover, x obeys the inequality ‖x‖ ≤ 2‖x0‖
1−C1

and it is the only

one such that ‖x‖ ≤ 1−C1

2C2
.

The following result has been proved by [4] and it is useful in order to obtain some
important inequalities related to the elementary exponential function.

Lemma 1.2.3. The following inequality holds:

(a+ b)r ≤ rar + br, ∀ 0 ≤ a ≤ b, r ∈ (0, 1]. (1.2)
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Proof. First of all, notice that if b = 0 then a = 0 and, consequently, (1.2) holds. Thus,
assume that b > 0 and let c = a/b ∈ [0, 1]. Now, apply Taylor’s Theorem to the function
t 7→ (1 + t)r, with t ∈ [0, c], in order to obtain γ ∈ [0, c] such that

(1 + c)r = 1 + rc+
r(r − 1)(1 + γ)r−2

2
c2.

By using the fact that r, γ ∈ [0, 1], one has (1 + c)r ≤ 1 + rc. Moreover, c, r ∈ [0, 1] implies
that c ≤ cr. As a result, (1 + c)r ≤ 1 + rcr. Replace c = a/b in this last inequality to prove
(1.2).

Now, let us introduce two consequences of Lemma 1.2.3.

Lemma 1.2.4. The inequality below is valid for all n ∈ N:

ea|ξ|
1
σ ≤ eamax{|ξ−η|,|η|}

1
σ e

a
σ

min{|ξ−η|,|η|}
1
σ , ∀ ξ, η ∈ Rn, a > 0, σ ≥ 1.

Proof. Lemma 1.2.3 assures that

a|ξ|
1
σ = a|ξ − η + η|

1
σ ≤ a(|ξ − η|+ |η|)

1
σ ≤ a(max{|ξ − η|, |η|}+ min{|ξ − η|, |η|})

1
σ

≤ amax{|ξ − η|, |η|}
1
σ +

a

σ
min{|ξ − η|, |η|}

1
σ .

Hence, one has

ea|ξ|
1
σ ≤ eamax{|ξ−η|,|η|}

1
σ + a

σ
min{|ξ−η|,|η|}

1
σ = eamax{|ξ−η|,|η|}

1
σ e

a
σ

min{|ξ−η|,|η|}
1
σ .

The proof of Lemma 1.2.4 is complete.

Lemma 1.2.5. Let a > 0, σ ≥ 1 and ξ, η ∈ Rn with n ∈ N. Then,

ea|ξ|
1
σ ≤ ea|ξ−η|

1
σ ea|η|

1
σ . (1.3)

Proof. It is a direct implication of Lemma 1.2.4 and the fact that σ ≥ 1.

The next lemma presents an interpolation property involving the space Ḣs(Rn) with
n = 1, 2, 3, and it has been proved by J.-Y. Chemin.
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Lemma 1.2.6 (see [14]). Let (s1, s2) ∈ R2, such that s1 <
n
2

and s1 + s2 > 0. Then, there

exists a positive constant Cs1,s2 such that, for all f, g ∈ Ḣs1(Rn) ∩ Ḣs2(Rn), we have

‖fg‖
Ḣs1+s2−

n
2 (Rn)

≤ Cs1,s2 [‖f‖Ḣs1 (Rn)‖g‖Ḣs2 (Rn) + ‖f‖Ḣs2 (Rn)‖g‖Ḣs1 (Rn)].

If s1 <
n
2
, s2 <

n
2

and s1 + s2 > 0, then there is a positive constant Cs1,s2 such that

‖fg‖
Ḣs1+s2−

n
2 (R3)

≤ Cs1,s2‖f‖Ḣs1 (Rn)‖g‖Ḣs2 (Rn).

J. Benameur and L. Jlali [7] have proved a version of Chemin’s Lemma (see [14]) by
considering Sobolev-Gevrey space Ḣs

a,σ(Rn) with n = 1, 2, 3. Let us introduce this result
exactly as it has been stated and proved in [7].

Lemma 1.2.7 (see [7]). Let a > 0, σ ≥ 1 and (s1, s2) ∈ R2, such that s1 <
n
2

and s1+s2 > 0.

Then, there exists a positive constant Cs1,s2 such that, for all f, g ∈ Ḣs1
a,σ(Rn)∩ Ḣs2

a,σ(Rn), we
have

‖fg‖
Ḣ
s1+s2−

n
2

a,σ (R3)
≤ Cs1,s2 [‖f‖Ḣs1

a,σ(Rn)‖g‖Ḣs2
a,σ(Rn) + ‖f‖Ḣs2

a,σ(Rn)‖g‖Ḣs1
a,σ(Rn)]. (1.4)

If s1 <
n
2
, s2 <

n
2

and s1 + s2 > 0, then there is a positive constant Cs1,s2 such that

‖fg‖
Ḣ
s1+s2−

n
2

a,σ (Rn)
≤ Cs1,s2‖f‖Ḣs1

a,σ(Rn)‖g‖Ḣs2
a,σ(Rn). (1.5)

Proof. We aim to apply Lemma 1.2.6. Thereby, to accomplish this goal, it is necessary to
use the elementary equality

f̂ g(ξ) = (2π)−n(f̂ ∗ ĝ)(ξ), ∀ ξ ∈ Rn.

Thus, we estimate the expression on the left hand side of the inequalities (1.4) and (1.5) as
follows:

‖fg‖2

Ḣ
s1+s2−

n
2

a,σ (Rn)
=

∫
Rn
|ξ|2s1+2s2−ne2a|ξ|

1
σ |f̂ g(ξ)|2 dξ

= (2π)−2n

∫
Rn
|ξ|2s1+2s2−ne2a|ξ|

1
σ |f̂ ∗ ĝ(ξ)|2 dξ

≤ (2π)−2n

∫
Rn
|ξ|2s1+2s2−ne2a|ξ|

1
σ

(∫
Rn
|f̂(ξ − η)||ĝ(η)| dη

)2

dξ

= (2π)−2n

∫
Rn
|ξ|2s1+2s2−n

(∫
Rn
ea|ξ|

1
σ |f̂(ξ − η)||ĝ(η)| dη

)2

dξ.
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Moreover, the inequality (1.3) implies the following results:

‖fg‖2

Ḣ
s1+s2−

n
2

a,σ (Rn)
≤ (2π)−2n

∫
Rn
|ξ|2s1+2s2−n

(∫
Rn
ea|ξ−η|

1
σ |f̂(ξ − η)|ea|η|

1
σ |ĝ(η)| dη

)2

dξ

= (2π)−2n

∫
Rn
|ξ|2s1+2s2−n{[(ea|·|

1
σ |f̂ |) ∗ (ea|·|

1
σ |ĝ|)](ξ)}2 dξ

=

∫
Rn
|ξ|2s1+2s2−n{F [F−1(ea|ξ|

1
σ |f̂(ξ)|)F−1(ea|ξ|

1
σ |ĝ(ξ)|)]}2 dξ

= ‖F−1(ea|·|
1
σ |f̂ |)F−1(ea|·|

1
σ |ĝ|)‖2

Ḣs1+s2−
n
2 (Rn)

.

Now, we are ready to apply Lemma 1.2.6 and, consequently, deduce (1.4). In fact, one has

‖fg‖
Ḣ
s1+s2−

n
2

a,σ (Rn)
≤ ‖F−1(ea|·|

1
σ |f̂ |)F−1(ea|·|

1
σ |ĝ|)‖

Ḣs1+s2−
n
2 (Rn)

≤ Cs1,s2 [‖F−1(ea|·|
1
σ |f̂ |)‖Ḣs1 (Rn)‖F

−1(ea|·|
1
σ |ĝ|)‖Ḣs2 (Rn)

+ ‖F−1(ea|·|
1
σ |f̂ |)‖Ḣs2 (Rn)‖F

−1(ea|·|
1
σ |ĝ|)‖Ḣs1 (Rn)]

= Cs1,s2 [‖f‖Ḣs1
a,σ(Rn)‖g‖Ḣs2

a,σ(Rn) + ‖f‖Ḣs2
a,σ(Rn)‖g‖Ḣs1

a,σ(Rn)].

On the other hand, if s1, s2 <
n
2

and s1 + s2 > 0, use Lemma 1.2.6 again in order to obtain

‖fg‖
Ḣ
s1+s2−

n
2

a,σ (Rn)
≤ ‖F−1(ea|·|

1
σ |f̂ |)F−1(ea|·|

1
σ |ĝ|)‖2

Ḣs1+s2−
n
2 (Rn)

≤ Cs1,s2‖F−1(ea|·|
1
σ |f̂ |)‖Ḣs1 (Rn)‖F

−1(ea|·|
1
σ |ĝ|)‖Ḣs2 (Rn)

= Cs1,s2‖f‖Ḣs1
a,σ(Rn)‖g‖Ḣs2

a,σ(Rn),

which proves inequality.

One of the application of Lemma 1.2.4 is to obtain interpolation inequalities related to
the space Hs

a,σ(Rn), with n ∈ N. More precisely, the lemma below is an improvement of a
similar result from [4] (see Proposition 4.1 in [4]).

Lemma 1.2.8. Let a ≥ 0, σ ≥ 1 and n ∈ N. For every f, g ∈ Hs
a,σ(Rn) with s ≥ 0, we have

fg ∈ Hs
a,σ(Rn). More precisely, one obtains

i) ‖fg‖Hs
a,σ(Rn) ≤ 2

2s−2n+1
2 π−n[‖e

a
σ
|·|

1
σ f̂‖L1(Rn)‖g‖Hs

a,σ(Rn) + ‖e
a
σ
|·|

1
σ ĝ‖L1(Rn)‖f‖Hs

a,σ(Rn)].

Moreover, for s > n/2, one obtains

ii) ‖fg‖Hs
a,σ(Rn) ≤ 2

2s−2n+1
2 π−nCs,n(‖f‖Hs

a
σ ,σ

(Rn)‖g‖Hs
a,σ(Rn) + ‖f‖Hs

a,σ(Rn)‖g‖Hs
a
σ ,σ

(Rn)),
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where Cs,n =
(∫

Rn(1 + |ξ|2)−s dξ
) 1

2 = (πn/2Γ(s − n/2)/Γ(s))
1
2 . Here Γ(·) is the standard

gamma function.

Proof. This result is a consequence of Lemma 1.2.4. First of all, let us estimate the left hand
side of the inequalities given in i) and ii). Thus,

‖fg‖2
Hs
a,σ(Rn) =

∫
Rn

(1 + |ξ|2)se2a|ξ|
1
σ |f̂ g(ξ)|2 dξ

= (2π)−2n

∫
Rn

(1 + |ξ|2)se2a|ξ|
1
σ |f̂ ∗ ĝ(ξ)|2 dξ

≤ (2π)−2n

∫
Rn

(∫
Rn

(1 + |ξ|2)
s
2 ea|ξ|

1
σ |f̂(ξ − η)||ĝ(η)| dη

)2

dξ

≤ (2π)−2n

∫
Rn

(∫
|η|≤|ξ−η|

(1 + |ξ|2)
s
2 ea|ξ|

1
σ |f̂(ξ − η)||ĝ(η)| dη

+

∫
|η|>|ξ−η|

(1 + |ξ|2)
s
2 ea|ξ|

1
σ |f̂(ξ − η)||ĝ(η)| dη

)2

dξ.

By using basic arguments, it is easy to check that

(1 + |ξ|2)
s
2 ≤ [1 + (|ξ − η|+ |η|)2]

s
2 ≤ [1 + (2 max{|ξ − η|, |η|})2]

s
2

≤ 2s[1 + max{|ξ − η|, |η|}2]
s
2 . (1.6)

Now, we apply Lemma 1.2.4 to obtain

‖fg‖2
Hs
a,σ(Rn) ≤ (2π)−2n22s

∫
Rn

(∫
|η|≤|ξ−η|

(1 + |ξ − η|2)
s
2 ea|ξ−η|

1
σ |f̂(ξ − η)|e

a
σ
|η|

1
σ |ĝ(η)| dη

+

∫
|η|>|ξ−η|

e
a
σ
|ξ−η|

1
σ |f̂(ξ − η)|(1 + |η|2)

s
2 ea|η|

1
σ |ĝ(η)| dη

)2

dξ

≤ (2π)−2n22s+1
[ ∫

Rn

(∫
Rn

(1 + |ξ − η|2)
s
2 ea|ξ−η|

1
σ |f̂(ξ − η)|e

a
σ
|η|

1
σ |ĝ(η)| dη

)2

dξ

+

∫
Rn

(∫
Rn
e
a
σ
|ξ−η|

1
σ |f̂(ξ − η)|(1 + |η|2)

s
2 ea|η|

1
σ |ĝ(η)| dη

)2

dξ
]
.

Rewriting the last inequality above, we deduce

‖fg‖2
Hs
a,σ(Rn) ≤ (2π)−2n22s+1‖[(1 + | · |2)

s
2 ea|·|

1
σ |f̂ |] ∗ [e

a
σ
|·|

1
σ |ĝ|]‖2

L2(Rn)

+ (2π)−2n22s+1‖[e
a
σ
|·|

1
σ |f̂ |] ∗ [(1 + | · |2)

s
2 ea|·|

1
σ |ĝ|]‖2

L2(Rn).

Consequently, it follows from Young’s inequality for convolutions1 that

‖fg‖2
Hs
a,σ(Rn) ≤ 22s−2n+1π−2n[‖(1 + | · |2)

s
2 ea|·|

1
σ f̂‖2

L2(Rn)‖e
a
σ
|·|

1
σ ĝ‖2

L1(Rn)

+ ‖e
a
σ
|·|

1
σ f̂‖2

L1(Rn)‖(1 + | · |2)
s
2 ea|·|

1
σ ĝ‖2

L2(Rn)]. (1.7)

1Let 1 ≤ p, q, r ≤ ∞ such that 1 + 1
r = 1

p + 1
q . Assume that f ∈ Lp(Rn) and g ∈ Lq(Rn); then,

‖f ∗ g‖Lr(Rn) ≤ ‖f‖Lp(Rn)‖g‖Lq(Rn).
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Notice that the L2(Rn)-norm of (1 + |ξ|2)
s
2 ea|ξ|

1
σ f̂(ξ) presented above can be replaced with

the Hs
a,σ(Rn)-norm of f . More precisely, we have

‖(1 + | · |2)
s
2 ea|·|

1
σ f̂‖2

L2(Rn) =

∫
Rn

(1 + |ξ|2)se2a|ξ|
1
σ |f̂(ξ)|2 dξ = ‖f‖2

Hs
a,σ(Rn). (1.8)

This same process can be applied to the equivalent term related to g in (1.7). Thus, it is
true that

‖(1 + | · |2)
s
2 ea|·|

1
σ ĝ‖2

L2(Rn) = ‖g‖2
Hs
a,σ(Rn). (1.9)

As a consequence, replace (1.8) and (1.9) in (1.7) in order to get

‖fg‖Hs
a,σ(Rn) ≤ 2

2s−2n+1
2 π−n[‖e

a
σ
|·|

1
σ f̂‖L1(Rn)‖g‖Hs

a,σ(Rn) + ‖e
a
σ
|·|

1
σ ĝ‖L1(Rn)‖f‖Hs

a,σ(Rn)].

This concludes the proof of i).

It is important to point out that ii) follows directly from results established above and
Cauchy-Schwarz’s inequality. In fact,

‖e
a
σ
|·|

1
σ ĝ‖2

L1(Rn) ≤
(∫

Rn
(1 + |ξ|2)−s dξ

)(∫
Rn

(1 + |ξ|2)se
2a
σ
|ξ|

1
σ |ĝ(ξ)|2 dξ

)
=: Cs,n‖g‖2

Hs
a
σ ,σ

(Rn),

(1.10)

and, consequently,

‖fg‖2
Hs
a,σ(Rn) ≤ (2π)−2n22s+1Cs,n[‖f‖2

Hs
a,σ(Rn)‖g‖2

Hs
a
σ ,σ

(Rn) + ‖f‖2
Hs
a
σ ,σ

(Rn)‖g‖2
Hs
a,σ(Rn)],

which proves ii).

Let us observe that Lemma 1.2.8 ii) also imply

‖fg‖Hs
a,σ(Rn) ≤ (2π)−n2s+1Cs,n‖f‖Hs

a,σ(Rn)‖g‖Hs
a,σ(Rn), (1.11)

since Hs
a,σ(Rn) ↪→ Hs

a
σ
,σ(Rn) (a/σ ≤ a).

The next result gives our extension of Lemma 2.5 given in [7].

Lemma 1.2.9. Let a > 0, σ > 1, and s ∈ [0, 3
2
). For every f, g ∈ Hs

a,σ(R3), we have
fg ∈ Hs

a,σ(R3). More precisely, one obtains

‖fg‖Hs
a,σ(R3)) ≤ 2s−2π−3Ca,σ,s‖f‖Hs

a,σ(R3)‖g‖Hs
a,σ(R3),

where Ca,σ,s :=
√

4πσΓ(σ(3−2s))

[2(a− a
σ

)]σ(3−2s) . As before, Γ(·) is the standard gamma function.
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Proof. By applying Cauchy-Schwarz’s inequality, one infers

‖e
a
σ
|·|

1
σ ĝ‖L1(R3) =

∫
R3

e
a
σ
|ξ|

1
σ |ĝ(ξ)| dξ

≤
(∫

R3

(1 + |ξ|2)−se2( a
σ
−a)|ξ|

1
σ dξ

) 1
2
(∫

R3

(1 + |ξ|2)se2a|ξ|
1
σ |ĝ(ξ)|2 dξ

) 1
2

≤
(∫

R3

|ξ|−2se2( a
σ
−a)|ξ|

1
σ dξ

) 1
2
(∫

R3

(1 + |ξ|2)se2a|ξ|
1
σ |ĝ(ξ)|2 dξ

) 1
2

=: Ca,σ,s‖g‖Hs
a,σ(R3), (1.12)

where

C2
a,σ,s =

4πσΓ(σ(3− 2s))

[2(a− a
σ
)]σ(3−2s)

,

since σ > 1 and 0 ≤ s < 3/2. Similarly, we obtain

‖e
a
σ
|·|

1
σ f̂‖L1(R3) ≤ Ca,σ,s‖f‖Hs

a,σ(R3). (1.13)

Hence, by combining (1.7), (1.8), (1.9), (1.12) and (1.13), we have

‖fg‖2
Hs
a,σ(R3) ≤ 22s−4π−6C2

a,σ,s‖f‖2
Hs
a,σ(R3)‖g‖2

Hs
a,σ(R3).

The next result is our version of Lemma 2.8 in [7], once this last lemma is the same as
Lemma 1.2.10 below, whether it is considered s = 1.

Lemma 1.2.10. Let s ≥ 0, a > 0, σ ≥ 1 and f ∈ Hs
a,σ(Rn) with n ∈ N. Then, the following

inequalities hold:

‖f‖2
Hs
a,σ(Rn) ≤ 2s[e2a(2π)n‖f‖2

L2(Rn) + ‖f‖2
Ḣs
a,σ(Rn)

] ≤ 2s[e2a + 1]‖f‖2
Hs
a,σ(Rn). (1.14)

Proof. This result follows directly from the definition of the spaces Hs
a,σ(Rn), Ḣs

a,σ(Rn) and
L2(Rn). In fact, note that, by using Parseval’s identity, i.e.,

‖f‖2
L2(Rn) = (2π)−n‖f̂‖2

L2(Rn),

one obtains

‖f‖2
Hs
a,σ(Rn) =

∫
Rn

(1 + |ξ|2)se2a|ξ|
1
σ |f̂(ξ)|2 dξ

=

∫
|ξ|≤1

(1 + |ξ|2)se2a|ξ|
1
σ |f̂(ξ)|2 dξ +

∫
|ξ|>1

(1 + |ξ|2)se2a|ξ|
1
σ |f̂(ξ)|2 dξ

≤ 2se2a

∫
Rn
|f̂(ξ)|2 dξ + 2s

∫
Rn
|ξ|2se2a|ξ|

1
σ |f̂(ξ)|2 dξ

= 2se2a(2π)n‖f‖2
L2(Rn) + 2s‖f‖2

Ḣs
a,σ(Rn)

,
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which implies the first inequality in (1.14).

By applying the last equality above, one infers

2se2a(2π)n‖f‖2
L2(Rn) + 2s‖f‖2

Ḣs
a,σ(Rn)

= 2se2a

∫
Rn
|f̂(ξ)|2 dξ + 2s

∫
Rn
|ξ|2se2a|ξ|

1
σ |f̂(ξ)|2 dξ

≤ 2s[e2a + 1]

∫
Rn

(1 + |ξ|2)se2a|ξ|
1
σ |f̂(ξ)|2 dξ

= 2s[e2a + 1]‖f‖2
Hs
a,σ(Rn).

Therefore, the proof of the second inequality in (1.14) is complete.

Remark 1.2.11. It is worth to observe that the proof of the lemma above establishes, for
instance, the standard embeddings Hs

a,σ(R3) ↪→ L2(R3) and Hs
a,σ(R3) ↪→ Ḣs

a,σ(R3) (s ≥ 0).
In fact, note that in the proof of Lemma 1.2.10, we have proved

‖f‖2
L2(R3) = (2π)−3

∫
R3

|f̂(ξ)|2 dξ ≤ (2π)−3

∫
R3

(1 + |ξ|2)se2a|ξ|
1
σ |f̂(ξ)|2 dξ

= (2π)−3‖f‖2
Hs
a,σ(R3).

Consequently, the continuous embedding Hs
a,σ(R3) ↪→ L2(R3) (s ≥ 0) is given by the in-

equality

‖f‖L2(R3) ≤ (2π)−
3
2‖f‖Hs

a,σ(R3).

The other embedding follows directly from the following results:

‖f‖2
Ḣs
a,σ(R3)

=

∫
R3

|ξ|2se2a|ξ|
1
σ |f̂(ξ)|2 dξ ≤

∫
R3

(1 + |ξ|2)se2a|ξ|
1
σ |f̂(ξ)|2 dξ

= ‖f‖2
Hs
a,σ(R3).

To guarantee the veracity of the blow–up criteria, it will be necessary to present two basic
tools. The first one was obtained by J. Benameur [4] and we shall prove it for convenience
of the reader.

Lemma 1.2.12. Let δ > 3/2, and f ∈ Ḣδ(R3) ∩ L2(R3). Then, the following inequality is
valid:

‖f̂‖L1(R3) ≤ Cδ‖f‖
1− 3

2δ

L2(R3)‖f‖
3
2δ

Ḣδ(R3)
,

where

Cδ = 2(2π)
3
2

(1− 3
2δ

)

√
π

3

[(2δ

3
− 1
) 3

4δ
+
(2δ

3
− 1
)−1+ 3

4δ
]
.

Moreover, for each δ0 > 3/2 there exists a positive constant Cδ0 such that Cδ ≤ Cδ0, for all
δ ≥ δ0.
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Proof. Consider ε > 0 arbitrary. Thereby, by using Cauchy-Schwarz’s inequality, we deduce

‖f̂‖L1(R3) =

∫
|ξ|≤ε
|f̂(ξ)| dξ +

∫
|ξ|>ε
|f̂(ξ)| dξ

≤
(∫
|ξ|≤ε

dξ

) 1
2
(∫
|ξ|≤ε
|f̂(ξ)|2dξ

) 1
2

+

(∫
|ξ|>ε

1

|ξ|2δ
dξ

) 1
2
(∫
|ξ|>ε
|ξ|2δ|f̂(ξ)|2dξ

) 1
2

.

Now, apply Parseval’s identity and the fact that δ > 3/2 to reach

‖f̂‖L1(R3) ≤ 2

√
π

3
ε
3
2 (2π)

3
2‖f‖L2(R3) + 2

√
π

2δ − 3
ε
3
2
−δ‖f‖Ḣδ(R3)

= 2

√
π

3

ε 3
2 (2π)

3
2‖f‖L2(R3) +

ε
3
2
−δ√

2δ
3
− 1
‖f‖Ḣδ(R3)

 .
Thus, we can guarantee that the function given by

ε 7→ ε
3
2 (2π)

3
2‖f‖L2(R3) +

ε
3
2
−δ√

2δ
3
− 1
‖f‖Ḣδ(R3)

attains its minimum at 
√

2δ
3
− 1‖f‖Ḣδ(R3)

(2π)
3
2‖f‖L2(R3)


1
δ

.

Consequently, we have

‖f̂‖L1(R3) ≤ 2(2π)
3
2

(1− 3
2δ

)

√
π

3

[(
2δ

3
− 1

) 3
4δ

+

(
2δ

3
− 1

)−1+ 3
4δ

]
‖f‖1− 3

2δ

L2(R3)‖f‖
3
2δ

Ḣδ(R3)
.

It is easy to check that

lim
δ→∞

2(2π)
3
2

(1− 3
2δ

)

√
π

3

[(
2δ

3
− 1

) 3
4δ

+

(
2δ

3
− 1

)−1+ 3
4δ

]
= 2(2π)

3
2

√
π

3
.

As a consequence, for each δ0 > 3/2, one deduces that

2(2π)
3
2

(1− 3
2δ

)

√
π

3

[(
2δ

3
− 1

) 3
4δ

+

(
2δ

3
− 1

)−1+ 3
4δ

]
is bounded in the interval [δ0,∞).

This concludes the proof of Lemma 1.2.12.
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It is important to point out that the next lemma can also be used in order to assure that
inequality (2.6) is not trivial.

Lemma 1.2.13. Let a > 0, σ ≥ 1, s ∈ [0, 3
2
) and δ ≥ 3

2
. For every f ∈ Ḣs

a,σ(R3), we have

that f ∈ Ḣδ(R3). More precisely, one concludes that there is a positive constant Ca,s,δ,σ such
that

‖f‖Ḣδ(R3) ≤ Ca,s,δ,σ‖f‖Ḣs
a,σ(R3).

Proof. Notice that R+ ⊆ ∪n∈N∪{0}[n, n + 1) and since 2σ(δ − s) ∈ R+, there exists a n0 ∈
N∪{0} that depends on σ, δ and s such that n0

σ
≤ 2δ−2s < n0+1

σ
. Consequently, one obtains

t ∈ [0, 1] such that, by Young’s inequality2, we infer

|ξ|2δ−2s = |ξ|t·
n0
σ

+(1−t)·n0+1
σ = |ξ|t·

n0
σ |ξ|(1−t)·

n0+1
σ

≤ t|ξ|
n0
σ + (1− t)|ξ|

n0+1
σ ≤ |ξ|

n0
σ + |ξ|

n0+1
σ .

Therefore, one has

‖f‖2
Ḣδ(R3)

=

∫
R3

|ξ|2δ|f̂(ξ)|2 dξ ≤
∫
R3

[|ξ|
n0
σ + |ξ|

n0+1
σ ]|ξ|2s|f̂(ξ)|2 dξ

≤
∫
R3

[(2a+ 1)(2a)n0(n0 + 1)!

(2a)n0+1n0!
|ξ|

n0
σ +

(2a+ 1)(2a)n0+1(n0 + 1)!

(2a)n0+1(n0 + 1)!
|ξ|

n0+1
σ

]
× |ξ|2s|f̂(ξ)|2 dξ.

As a result, we get

‖f‖2
Ḣδ(R3)

≤ (n0 + 1)!(2a+ 1)

(2a)n0+1

∫
R3

[(2a|ξ| 1σ )n0

n0!
+

(2a|ξ| 1σ )n0+1

(n0 + 1)!

]
|ξ|2s|f̂(ξ)|2 dξ.

Hence, we deduce

‖f‖2
Ḣδ(R3)

≤ (n0 + 1)!(2a+ 1)

(2a)n0+1

∫
R3

|ξ|2se2a|ξ|
1
σ |f̂(ξ)|2 dξ =

(n0 + 1)!(2a+ 1)

(2a)n0+1
‖f‖2

Ḣs
a,σ(R3)

,

which completes the proof of Lemma 1.2.13.

Lemma 1.2.14. Let a > 0, σ ≥ 1, s ∈ [0, 3
2
) and δ ≥ 3

2
. For every f ∈ Hs

a,σ(R3), we have

that f ∈ Ḣδ(R3). More precisely, there exists a positive constant Ca,s,δ,σ such that

‖f‖Ḣδ(R3) ≤ Ca,s,δ,σ‖f‖Hs
a,σ(R3).

2Let p and q be positive real numbers such that p > 1 and 1
p + 1

q = 1. Then, ab ≤ ap

p + bq

q , for all a, b > 0.
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Proof. It is sufficient to apply Lemma 1.2.13 and the standard continuous embeddingHs
a,σ(R3) ↪→

Ḣs
a,σ(R3).

Remark 1.2.15. Observe that the proof above assures that Lemma 1.2.14 is still valid if it
is assumed that δ ≥ s > 3/2.

The next result is another version of the Lemmas 1.2.8 i) and 1.2.9 in the spaces Ḣs
a,σ(R3).

Lemma 1.2.16. Let a > 0, σ > 1, and s ∈ [0, n
2
), for each n ∈ N. For every f, g ∈ Ḣs

a,σ(Rn),

we obtain fg ∈ Ḣs
a,σ(Rn). More specifically, one has

i) ‖fg‖Ḣs
a,σ(Rn) ≤ 2

2s+1−2n
2 π−n[‖e

a
σ
|·|

1
σ f̂‖L1(Rn)‖g‖Ḣs

a,σ(Rn) + ‖e
a
σ
|·|

1
σ ĝ‖L1(Rn)‖f‖Ḣs

a,σ(Rn)];

ii) ‖fg‖Ḣs
a,σ(Rn)) ≤ 2s+1−nπ−nCa,σ,s‖f‖Ḣs

a,σ(Rn)‖g‖Ḣs
a,σ(Rn),

where Ca,σ,s,n :=

√
2π

n
2 σΓ(σ(n−2s))

Γ(n
2

)[2(a− a
σ

)]σ(n−2s) <∞. Here Γ(·) is the gamma function.

Proof. It is easy to check that

‖fg‖2
Ḣs
a,σ(Rn)

=

∫
Rn
|ξ|2se2a|ξ|

1
σ |f̂ g(ξ)|2 dξ = (2π)−2n

∫
Rn
|ξ|2se2a|ξ|

1
σ |f̂ ∗ ĝ(ξ)|2 dξ

≤ (2π)−2n

∫
Rn

(∫
|η|≤|ξ−η|

|ξ|sea|ξ|
1
σ |f̂(ξ − η)||ĝ(η)| dη +

∫
|η|>|ξ−η|

|ξ|sea|ξ|
1
σ |f̂(ξ − η)||ĝ(η)| dη

)2

dξ.

By using the inequality |ξ|s ≤ 2s[max{|ξ − η|, |η|}]s and Lemma 1.2.4, one deduces

‖fg‖2
Ḣs
a,σ(Rn)

≤ (2π)−2n22s+1
[ ∫

Rn

(∫
Rn
|ξ − η|sea|ξ−η|

1
σ |f̂(ξ − η)|e

a
σ
|η|

1
σ |ĝ(η)| dη

)2

dξ

+

∫
Rn

(∫
Rn
e
a
σ
|ξ−η|

1
σ |f̂(ξ − η)||η|sea|η|

1
σ |ĝ(η)| dη

)2

dξ
]
,

or equivalently,

‖fg‖2
Ḣs
a,σ(Rn)

≤ (2π)−2n22s+1{‖[| · |sea|·|
1
σ |f̂ |] ∗ [e

a
σ
|·|

1
σ |ĝ|]‖2

L2(Rn) + ‖[e
a
σ
|·|

1
σ |f̂ |] ∗ [| · |sea|·|

1
σ |ĝ|]‖2

L2(Rn)}.

Therefore, Young’s inequality for convolutions implies

‖fg‖2
Ḣs
a,σ(Rn)

≤ 22s+1−2nπ−2n[‖| · |sea|·|
1
σ f̂‖2

L2(Rn)‖e
a
σ
|·|

1
σ ĝ‖2

L1(Rn) + ‖e
a
σ
|·|

1
σ f̂‖2

L1(Rn)‖| · |sea|·|
1
σ ĝ‖2

L2(Rn)]

≤ 22s+1−2nπ−2n[‖f‖2
Ḣs
a,σ(Rn)

‖e
a
σ
|·|

1
σ ĝ‖2

L1(Rn) + ‖e
a
σ
|·|

1
σ f̂‖2

L1(Rn)‖g‖2
Ḣs
a,σ(Rn)

]. (1.15)

25



The proof of i) is completed. Now, let us give the proof of ii). Applying Cauchy-Schwarz’s
inequality, it results

‖e
a
σ
|·|

1
σ ĝ‖L1(Rn) =

∫
Rn
e
a
σ
|ξ|

1
σ |ĝ(ξ)| dξ ≤

(∫
Rn
|ξ|−2se2( a

σ
−a)|ξ|

1
σ dξ

) 1
2

‖g‖Ḣs
a,σ(Rn). (1.16)

Hence, by replacing (1.16) in (1.15), ii) follows.

As a consequence of Lemma 1.2.16 i), we have the following result.

Lemma 1.2.17. Let a ≥ 0, σ ≥ 1, and s > 1. Then, the following inequality holds:

‖fg‖2
Ḣs
a,σ(R2)

≤ 23sπ−1e2a

s− 1
(‖f‖2

L2(R2)‖g‖2
Ḣs
a,σ(R2)

+ ‖f‖2
Ḣs
a,σ(R2)

‖g‖2
L2(R2) + ‖f‖2

Ḣs
a,σ(R2)

‖g‖2
Ḣs
a,σ(R2)

).

(1.17)

Proof. By applying the Cauchy-Schwarz’s inequality, one infers

‖e
a
σ
|·|

1
σ ĝ‖L1(R2) =

∫
R2

e
a
σ
|ξ|

1
σ |ĝ(ξ)| dξ ≤

(∫
R2

(1 + |ξ|2)−s dξ

) 1
2
(∫

R2

(1 + |ξ|2)se2a|ξ|
1
σ |ĝ(ξ)|2 dξ

) 1
2

=

√
π

s− 1
‖g‖Hs

a,σ(R2). (1.18)

It is important to point out that (1.17) follows directly from Lemma 1.2.16 i), (1.18) and
Lemma 1.2.10.

The next lemma is based on the paper [6].

Lemma 1.2.18. Let (s1, s2) ∈ R2 such that s1 < 1 < s2. Then, there is a positive constant
Cs1,s2 such that

‖f̂‖L1(R2) ≤ Cs1,s2‖f‖
s2−1
s2−s1
Ḣs1 (R2)

‖f‖
1−s1
s2−s1
Ḣs2 (R2)

.

Proof. Let c be an arbitrary positive constant. Note that

‖f̂‖L1(R2) =

∫
R2

|f̂(ξ)| dξ =

∫
|ξ|>c
|f̂(ξ)| dξ +

∫
|ξ|≤c
|f̂(ξ)| dξ.

By applying Cauchy-Schwarz’s inequality, we have∫
|ξ|≤c
|f̂(ξ)| dξ ≤

(∫
|ξ|≤c
|ξ|−2s1 dξ

) 1
2
(∫

R2

|ξ|2s1|f̂(ξ)|2 dξ
) 1

2

=

√
2π

2− 2s1

‖f‖Ḣs1 (R2)c
1−s1 .
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Similarly, one obtains∫
|ξ|>c
|f̂(ξ)| dξ ≤

(∫
|ξ|>c
|ξ|−2s2 dξ

) 1
2
(∫

R2

|ξ|2s2|f̂(ξ)|2 dξ
) 1

2

=

√
2π

2s2 − 2
‖f‖Ḣs2 (R2)c

1−s2 .

Consequently, we can write

‖f̂‖L1(R2) ≤
√

2π

2− 2s1

‖f‖Ḣs1 (R2)c
1−s1 +

√
2π

2s2 − 2
‖f‖Ḣs2 (R2)c

1−s2 =: g(c).

It is easy to see that g attains its minimum at c0 =

[
(s2−1)

√
2π

2s2−2
‖f‖Ḣs2 (R2)

(1−s1)
√

2π
2−2s1

‖f‖Ḣs1 (R2)

] 1
s2−s1

. Thus,

‖f̂‖L1(R2) ≤ g(c0) ≤ Cs1,s2‖f‖
s2−1
s2−s1
Ḣs1 (R2)

‖f‖
1−s1
s2−s1
Ḣs2 (R2)

.

It is important to point out that if s ∈ (0, 1); then, one can assume s1 = s and s2 = s+ 1
in Lemma 1.2.18 in order to obtain the following interpolation inequality

‖f̂‖L1(R2) ≤ Cs‖f‖sḢs(R2)
‖f‖1−s

Ḣs+1(R2)
. (1.19)

Lastly, we present an elementary result, which follows from basic Calculus tools.

Lemma 1.2.19 (see [8]). Let a, b > 0. Then, λae−bλ ≤ aa(eb)−a for all λ > 0.

Proof. Consider the real function f defined by f(λ) = λae−bλ, for all λ > 0. It is easy to
verify that f attains its maximum at a/b since

f ′(λ) = λae−bλ
[a
λ
− b
]

and f ′′(λ) = λae−bλ
[(a
λ
− b
)2

− a

λ2

]
, ∀λ > 0.

Therefore, the proof of the lemma is complete.

1.2.2 Auxiliary Results for the Chapter 7

In this section, we present some results that will play an important role in Chapter 7.
The first one is a result well-known as Banach Fixed Point Theorem.
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Lemma 1.2.20 (See [21]). Let Y be a nonempty complete metric space and let S : Y → Y
be a strict contraction, i.e.,

d(Sx, Sy) ≤ Kd(x, y), ∀ x, y ∈ Y,

where 0 < K < 1. Then, S has a unique fixed point.

Now, let us cite an improvement of Lemma 3 in [5] (it is enough to assume s = 1− 2γ).

Lemma 1.2.21. The following inequalities are valid:

i) ‖f‖X s+1(R3) ≤ ‖f‖
1− 1

2γ

X s(R3)‖f‖
1
2γ

X s+2γ(R3), provided that γ ≥ 1
2

and s ∈ R;

ii) ‖f‖X 0(R3) ≤ ‖f‖
1+ s

2γ

X s(R3)‖f‖
− s

2γ

X s+2γ(R3), if γ > 1
2

and −2γ ≤ s ≤ 0.

Proof. By applying Hölder’s inequality3, it is true that

‖f‖X s+1(R3) =

∫
R3

|ξ|s+1|f̂(ξ)| dξ

≤
(∫

R3

|ξ|s|f̂(ξ)| dξ
)1− 1

2γ
(∫

R3

|ξ|s+2γ|f̂(ξ)| dξ
) 1

2γ

= ‖f‖
1− 1

2γ

X s(R3)‖f‖
1
2γ

X s+2γ(R3).

Therefore, item i) is established. The proof of ii) is also a consequence of Hölder’s inequality.
In fact,

‖f‖X 0(R3) =

∫
R3

|f̂(ξ)| dξ

≤
(∫

R3

|ξ|s|f̂(ξ)| dξ
)1+ s

2γ
(∫

R3

|ξ|s+2γ|f̂(ξ)| dξ
)− s

2γ

= ‖f‖
1+ s

2γ

X s(R3)‖f‖
− s

2γ

X s+2γ(R3).

The next result is our version of Lemma 4 obtained by J. Benameur and M. Benhamed
in [5].

3 Let p, q ∈ [1,∞] such that 1
p + 1

q = 1 Consider that f ∈ Lp(Rn) and g ∈ Lq(Rn). Then, ‖fg‖L1(Rn) ≤
‖f‖Lp(Rn)‖g‖Lq(Rn).
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Lemma 1.2.22. Assume that f , g ∈ X s+1(R3)∩X 0(R3), with s ≥ −1. Then, the inequality
below is valid:

‖fg‖X s+1(R3) ≤ 2s−2π−3(‖f‖X 0(R3)‖g‖X s+1(R3) + ‖f‖X s+1(R3)‖g‖X 0(R3)).

Proof. Notice that

‖fg‖X s+1(R3) =

∫
R3

|ξ|s+1|f̂ g(ξ)| dξ

= (2π)−3

∫
R3

|ξ|s+1|f̂ ∗ ĝ(ξ)| dξ

≤ (2π)−3

∫
R3

|ξ|s+1

(∫
R3

|f̂(η)||ĝ(ξ − η)| dη
)
dξ

= (2π)−3

∫
R3

(∫
|η|≤|ξ−η|

|ξ|s+1|f̂(η)||ĝ(ξ − η)| dη

+

∫
|η|>|ξ−η|

|ξ|s+1|f̂(η)||ĝ(ξ − η)| dη
)
dξ.

By using basic arguments, it is easy to check that

|ξ|s+1 ≤ (|ξ − η|+ |η|)s+1 ≤ (2 max{|ξ − η|, |η|})s+1 = 2s+1 max{|ξ − η|, |η|}s+1, ∀ s ≥ −1.

Hence, we deduce

‖fg‖X s+1(R3) ≤ 2s+1(2π)−3

∫
R3

[|f̂(ξ)| ∗ (|ξ|s+1|ĝ(ξ)|) + (|ξ|s+1|f̂(ξ)|) ∗ |ĝ(ξ)|] dξ

= 2s+1(2π)−3[‖|f̂ | ∗ (| · |s+1|ĝ|)‖L1(R3) + ‖(| · |s+1|f̂ |) ∗ |ĝ|‖L1(R3)].

Consequently, it follows from Young’s inequality for convolutions that

‖fg‖X s+1(R3) ≤ 2s+1(2π)−3[‖f̂‖L1(R3)‖| · |s+1|ĝ|‖L1(R3) + ‖| · |s+1|f̂ |‖L1(R3)‖ĝ‖L1(R3)]

= 2s+1(2π)−3[‖f‖X 0(R3)‖g‖X s+1(R3) + ‖f‖X s+1(R3)‖g‖X 0(R3)].

The next two lemmas will be applied in the proof of Theorems 7.1.1, 7.2.1 and 7.3.1.
Moreover, these results were inspired by Lemmas 5 and 6 in [5].

Lemma 1.2.23. Let γ > 0, s ∈ R, and θ, λ ∈ S ′(R3) such that div λ = 0. Then,

i)

∫ t

0

‖e−(t−τ)(−∆)γPH(λ · ∇θ)‖X s(R3) dτ ≤
∫ t

0

‖θ ⊗ λ‖X s+1(R3) dτ ;
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ii)

∫ t

0

‖e−(t−τ)(−∆)γλ · ∇θ‖X s(R3) dτ ≤
∫ t

0

‖θ ⊗ λ‖X s+1(R3) dτ ;

iii)

∥∥∥∥∫ t

0

e−(t−τ)(−∆)γPH(λ · ∇θ) dτ
∥∥∥∥
L1
T (X s+2γ(R3))

≤
∫ t

0

‖θ ⊗ λ‖X s+1(R3) dτ ;

iv)

∥∥∥∥∫ t

0

e−(t−τ)(−∆)γλ · ∇θ dτ
∥∥∥∥
L1
T (X s+2γ(R3))

≤
∫ t

0

‖θ ⊗ λ‖X s+1(R3) dτ ,

for all T > 0 and t ∈ [0, T ], where PH(·) is the Helmontz projector.

Proof. Let us begin with the proof of item i). Notice that∫ t

0

‖e−(t−τ)(−∆)γPH(λ · ∇θ)‖X s(R3) dτ =

∫ t

0

∫
R3

|ξ|s|F{e−(t−τ)(−∆)γPH(λ · ∇θ)}| dξ dτ

=

∫ t

0

∫
R3

e−(t−τ)|ξ|2γ |ξ|s|F{PH(λ · ∇θ)}| dξ dτ

≤
∫ t

0

∫
R3

|ξ|s|F{λ · ∇θ}| dξ dτ.

The inequality above follow from (2.11). On the other hand, since div λ = 0, one can write∫
R3

|ξ|s|F{λ · ∇θ}| dξ =

∫
R3

|ξ|s|
3∑
j=1

F{Dj(λjθ)}| dξ =

∫
R3

|ξ|s|ξ · F{θ ⊗ λ}| dξ

≤
∫
R3

|ξ|s+1|F{θ ⊗ λ}| dξ = ‖θ ⊗ λ‖X s+1(R3), (1.20)

Therefore, this completes the proof of i).

Let us mention that the proof of ii) is similar to the one described above, without using
(2.11). Now, we are going to prove iii). Observe that∥∥∥∥∫ t

0

e−(t−τ)(−∆)γPH(λ · ∇θ) dτ
∥∥∥∥
L1
T (X s+2γ(R3))

≤
∫ T

0

∫ t

0

∫
R3

|ξ|s+2γ|F{e−(t−τ)(−∆)γPH(λ · ∇θ)}| dξ dτ dt

=

∫ T

0

∫ t

0

∫
R3

|ξ|s+2γe−(t−τ)|ξ|2γ |F{PH(λ · ∇θ)}| dξ dτ dt.
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By using (2.11) and following a similar process to the one presented in (1.20), we get∥∥∥∥∫ t

0

e−(t−τ)(−∆)γPH(λ · ∇θ) dτ
∥∥∥∥
L1
T (X s+2γ(R3))

≤
∫ T

0

∫ t

0

∫
R3

|ξ|s+2γ+1e−(t−τ)|ξ|2γ |θ̂ ⊗ λ(ξ)| dξ dτ dt

=

∫
R3

|ξ|s+2γ+1

(∫ T

0

∫ t

0

e−(t−τ)|ξ|2γ |θ̂ ⊗ λ(ξ)|dτ dt
)
dξ. (1.21)

On the other hand, it is easy to see∫ T

0

∫ t

0

e−(t−τ)|ξ|2γ |θ̂ ⊗ λ(ξ)|dτ dt =

∫ T

0

∫ T

τ

e−(t−τ)|ξ|2γ |θ̂ ⊗ λ(ξ)| dt dτ

=

∫ T

0

|θ̂ ⊗ λ(ξ)|
(∫ T

τ

e−(t−τ)|ξ|2γ dt

)
dτ

=

∫ T

0

(
1− e−(T−τ)|ξ|2γ

|ξ|2γ

)
|θ̂ ⊗ λ(ξ)| dτ.

By replacing this last result in (1.21), we infer∥∥∥∥∫ t

0

e−(t−τ)(−∆)γPH(λ · ∇θ) dτ
∥∥∥∥
L1
T (X s+2γ(R3))

≤
∫
R3

|ξ|s+1

(∫ T

0

|θ̂ ⊗ λ(ξ)| dτ
)
dξ

=

∫ T

0

∫
R3

|ξ|s+1|θ̂ ⊗ λ(ξ)| dξ dτ

=

∫ T

0

‖θ ⊗ λ‖X s+1(R3) dτ.

The proof of iii) is complete. Moreover, the proof of iv) is analogous to the one obtained
in iii), without using (2.11).

The next result presents sufficient conditions to prove that θ ⊗ λ ∈ L1
T (X s+1(R3)).

Lemma 1.2.24. Assume that T > 0 and max
{α(1−2β)

β
, β(1−2α)

α

}
≤ s < 0, where α, β ∈ (1

2
, 1].

If λ ∈ L∞T (X s(R3)) ∩ L1
T (X s+2α(R3)) and θ ∈ L∞T (X s(R3)) ∩ L1

T (X s+2β(R3)), then∫ T

0

‖θ ⊗ λ‖X s+1(R3) dτ ≤ Cs[T
1+ s

2α
− 1

2β ‖λ‖1+ s
2α

L∞T (X s(R3))‖θ‖
1− 1

2β

L∞T (X s(R3))‖λ‖
− s

2α

L1
T (X s+2α(R3))

‖θ‖
1
2β

L1
T (X s+2β(R3))

+ T 1+ s
2β
− 1

2α‖λ‖1− 1
2α

L∞T (X s(R3))‖θ‖
1+ s

2β

L∞T (X s(R3))‖λ‖
1
2α

L1
T (X s+2α(R3))

‖θ‖
− s

2β

L1
T (X s+2β(R3))

],

where Cs = 9(2s−2π−3).
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Proof. Notice that∫ T

0

‖θ ⊗ λ‖X s+1(R3) dτ =

∫ T

0

∫
R3

|ξ|s+1

[
3∑

j,k=1

|λ̂jθk(ξ)|2
] 1

2

dξ dτ

≤
3∑

j,k=1

∫ T

0

∫
R3

|ξ|s+1|λ̂jθk(ξ)| dξ dτ

=
3∑

j,k=1

∫ T

0

‖λjθk‖X s+1(R3) dτ.

Hence, by applying Lemma 1.2.22, one obtains∫ T

0

‖θ ⊗ λ‖X s+1(R3) dτ ≤ 2s−2π−3

3∑
j,k=1

∫ T

0

(‖λj‖X 0(R3)‖θk‖X s+1(R3) + ‖λj‖X s+1(R3)‖θk‖X 0(R3)) dτ,

(1.22)

since s ≥ −1. Now, by using Lemma 1.2.21, we deduce

• ‖λj‖X 0(R3) ≤ ‖λj‖
1+ s

2α

X s(R3)‖λj‖
− s

2α

X s+2α(R3);

• ‖θk‖X s+1(R3) ≤ ‖θk‖
1− 1

2β

X s(R3)‖θk‖
1
2β

X s+2β(R3)
;

• ‖λj‖X s+1(R3) ≤ ‖λj‖
1− 1

2α

X s(R3)‖λj‖
1
2α

X s+2α(R3);

• ‖θk‖X 0(R3) ≤ ‖θk‖
1+ s

2β

X s(R3)‖θk‖
− s

2β

X s+2β(R3)
,

provided that max{−2α,−2β} ≤ s < 0 and α, β ∈ (1
2
, 1]. Therefore, by replacing the

inequalities above in (1.22), one concludes∫ T

0

‖θ ⊗ λ‖X s+1(R3) dτ ≤ Cs

∫ T

0

(‖λ‖1+ s
2α

X s(R3)‖λ‖
− s

2α

X s+2α(R3)‖θ‖
1− 1

2β

X s(R3)‖θ‖
1
2β

X s+2β(R3)

+ ‖λ‖1− 1
2α

X s(R3)‖λ‖
1
2α

X s+2α(R3)‖θ‖
1+ s

2β

X s(R3)‖θ‖
− s

2β

X s+2β(R3)
) dτ, (1.23)

where Cs = 9(2s−2π−3). Moreover, since λ ∈ L∞T (X s(R3)) ∩ L1
T (X s+2α(R3)) and θ ∈

L∞T (X s(R3)) ∩ L1
T (X s+2β(R3)), the last two terms in the right hand side of (1.23) can be

estimated as follows.∫ T

0

‖λ‖1+ s
2α

X s(R3)‖λ‖
− s

2α

X s+2α(R3)‖θ‖
1− 1

2β

X s(R3)‖θ‖
1
2β

X s+2β(R3)
dτ

≤ ‖λ‖1+ s
2α

L∞T (X s(R3))‖θ‖
1− 1

2β

L∞T (X s(R3))

∫ T

0

‖λ‖−
s
2α

X s+2α(R3)‖θ‖
1
2β

X s+2β(R3)
dτ.
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By using Hölder’s inequality twice, it follows∫ T

0

‖λ‖1+ s
2α

X s(R3)‖λ‖
− s

2α

X s+2α(R3)‖θ‖
1− 1

2β

X s(R3)‖θ‖
1
2β

X s+2β(R3)
dτ

≤ ‖λ‖1+ s
2α

L∞T (X s(R3))‖θ‖
1− 1

2β

L∞T (X s(R3))‖λ‖
− s

2α

L1
T (X s+2α(R3))

(∫ T

0

‖θ‖
α

β(s+2α)

X s+2β(R3)
dτ

) s+2α
2α

≤ T 1+ s
2α
− 1

2β ‖λ‖1+ s
2α

L∞T (X s(R3))‖θ‖
1− 1

2β

L∞T (X s(R3))‖λ‖
− s

2α

L1
T (X s+2α(R3))

‖θ‖
1
2β

L1
T (X s+2β(R3))

, (1.24)

provided that max
{α(1−2β)

β
, β(1−2α)

α

}
≤ s < 0.

A similar process to the one presented above, yields∫ T

0

‖λ‖1− 1
2α

X s(R3)‖λ‖
1
2α

X s+2α(R3)‖θ‖
1+ s

2β

X s(R3)‖θ‖
− s

2β

X s+2β(R3)
dτ

≤ T 1+ s
2β
− 1

2α‖λ‖1− 1
2α

L∞T (X s(R3))‖θ‖
1+ s

2β

L∞T (X s(R3))‖λ‖
1
2α

L1
T (X s+2α(R3))

‖θ‖
− s

2β

L1
T (X s+2β(R3))

. (1.25)

Finally replacing (1.24) and (1.25) in (1.23), the proof is complete.
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Chapter 2

Navier-Stokes equations: local
existence, uniqueness and blow-up of
solutions in Hs

a,σ(R3)

This Chapter presents a study that determines the local existence, uniqueness and blow–
up criteria of solutions for the following Navier–Stokes equations:

ut + u · ∇u + ∇p = µ∆u, x ∈ R3, t ∈ [0, T ∗),
div u = 0, x ∈ R3, t ∈ [0, T ∗),
u(x, 0) = u0(x), x ∈ R3,

(2.1)

where T ∗ > 0 denotes the solution existence time, u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) ∈ R3

denotes the incompressible velocity field, and p(x, t) ∈ R the hydrostatic pressure. The
positive constant µ is the kinematic viscosity and the initial data for the velocity field, given
by u0 in (2.1), is assumed to be divergence free, i.e., divu0 = 0.

We shall study the above system with initial data in the Sobolev–Gevrey spaces Hs
a,σ(R3),

with a > 0, σ ≥ 1 and s ∈ R.

It is important to emphasize that there are two main goals to be accomplished in this
chapter: prove the local existence and uniqueness of a solution u(x, t) for the Navier-Stokes
equations (2.1) and establish a blow–up criteria for u(x, t). It is important to point out that
the results were mainly inspired by J. Benameur and L. Jlali [7].

Assuming that the initial data u0 belongs to Hs0
a,σ(R3), with s0 ∈ (1

2
, 3

2
), a > 0 and σ ≥ 1,

we prove that there exist a positive time T and a unique solution u ∈ C([0, T ];Hs
a,σ(R3)) of

the Navier-Stokes equations (2.1) for all s ≤ s0 (let us recall that it is not known if T =∞
always holds for these famous equations). Besides, the local existence and uniqueness result
obtained in [7] is a particular case of ours; in fact, it is enough to take s = s0 = 1.
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Under the same assumptions adopted above for s0 and a, and moreover if σ > 1, s ∈ (1
2
, s0]

and the maximal time interval of existence, 0 ≤ t < T ∗, is finite; then, the blow–up inequality

‖u(t)‖Hs
a,σ(R3) ≥

C2 exp{C3(T ∗ − t)− 1
3σ }

(T ∗ − t)
2(sσ+σ0)+1

6σ

, ∀ t ∈ [0, T ∗), (2.2)

holds, where C2 and C3 are positive constants that depend only on a, µ, s, σ and u0, and 2σ0

is the integer part of 2σ. As a consequence, it is easy to check that (2.2) implies

‖u(t)‖Hs
a,σ(R3) ≥

C2

(T ∗ − t)
2(sσ+σ0)+1

6σ

, ∀ t ∈ [0, T ∗).

In order to give more details on what it is going to be done in this chapter, we shall also
prove the following blow–up criteria related to the space L1(R3)∫ T ∗

t

‖e
a

σ(
√
σ)(n−1)

|·|
1
σ

û(τ)‖2
L1(R3) dτ =∞, (2.3)

and

‖e
a

σ(
√
σ)(n−1)

|·|
1
σ

û(t)‖L1(R3) ≥
8π3√µ
√
T ∗ − t

, (2.4)

for all t ∈ [0, T ∗), n ∈ N ∪ {0}. Note that the criteria (2.3) follows from the limit superior

lim sup
t↗T ∗

‖u(t)‖Hs
a

(
√
σ)(n−1)

,σ
(R3) =∞, ∀n ∈ N ∪ {0}. (2.5)

Notice that (2.4) is not trivial; provided that, ‖e
a

σ(
√
σ)(n−1)

|·|
1
σ

û(t)‖L1(R3) is finite for all t ∈
[0, T ∗), n ∈ N ∪ {0}. It can be concluded due to the estimate (1.12) and the standard con-
tinuous embedding Hs

a,σ(R3) ↪→ Hs
a

(
√
σ)(n−1)

,σ(R3). Furthermore, by applying the Dominated

Convergence Theorem in (2.4), one obtains

‖û(t)‖L1(R3) = lim
n→∞

‖e
a

σ(
√
σ)(n−1)

|·|
1
σ

û(t)‖L1(R3) ≥
8π3√µ
√
T ∗ − t

, ∀ t ∈ [0, T ∗). (2.6)

Besides, the inequality (2.6) is not trivial as well. In fact, it follows from Lemmas 1.2.12 and
1.2.14, and (2.52) below.

It is also important to clarify that the lower bound given in (2.2) is not the only one that
is obtained assuming the Hs

a,σ(R3)–norm. More specifically, we shall assure that

‖u(t)‖Hs
a

(
√
σ)n

,σ
(R3) ≥

8π3√µ
C1

√
T ∗ − t

, ∀ t ∈ [0, T ∗), n ∈ N ∪ {0}, (2.7)

where C1 depends only on a, σ, s and n.

Notice that all the blow–up criteria obtained in [7] are particular cases of ours, it suffices
to assume s = s0 = 1.
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2.1 Local Existence and Uniqueness of Solutions

In this section, we shall assume that the initial data u0 belongs to Hs0
a,σ(R3), with s0 ∈

(1
2
, 3

2
), to show the existence of an instant T > 0 and a unique solution u ∈ C([0, T ];Hs

a,σ(R3))
for the Navier–Stokes system (2.1) provided that s ≤ s0, a > 0 and σ ≥ 1.

Let us to establish our first result that presents the local existence and uniqueness of
solutions for the Navier-Stokes equations 2.1.

Theorem 2.1.1. Assume that a > 0, σ ≥ 1 and s ∈ (1
2
, 3

2
). Let u0 ∈ Hs

a,σ(R3) such
that divu0 = 0. Then, there exist an instant T = Ts,a,µ,u0 > 0 and a unique solution
u ∈ C([0, T ];Hs

a,σ(R3)) for the Navier–Stokes equations (2.1).

Proof. Our aim in this proof is to assure that all the assumptions presented in Lemma 1.2.1
are satisfied if (2.13) and (2.14) below hold; thus, first of all, let us rewrite the Navier-Stokes
equations (2.1) as in (1.1).

Use the heat semigroup eµ∆(t−τ), with τ ∈ [0, t], in the first equation given in (2.1), and;
then, integrate the obtained result over the interval [0, t] to reach∫ t

0

eµ∆(t−τ)uτ dτ +

∫ t

0

eµ∆(t−τ)[u · ∇u+∇p] dτ = µ

∫ t

0

eµ∆(t−τ)∆u dτ.

By applying integration by parts to the first integral above and using the properties of the
heat semigroup, one deduces

u(t) = eµ∆tu0 −
∫ t

0

eµ∆(t−τ)[u · ∇u+∇p] dτ. (2.8)

Let us recall that Helmontz’s projector PH is well defined and it is a linear operator such
that

PH(u · ∇u) = u · ∇u+∇p, (2.9)

and also

F [PH(f)](ξ) = f̂(ξ)− f̂(ξ) · ξ
|ξ|2

ξ. (2.10)

Notice that the equality (2.10) implies that

|F [PH(f)](ξ)|2 =
∣∣∣f̂(ξ)− f̂(ξ) · ξ

|ξ|2
ξ
∣∣∣2 = |f̂(ξ)|2 − |f̂(ξ) · ξ|2

|ξ|2
≤ |f̂(ξ)|2. (2.11)

On the other hand, by replacing (2.9) in (2.8), it follows that

u(t) = eµ∆tu0 −
∫ t

0

eµ∆(t−τ)PH [u · ∇u] dτ.

36



Since u · ∇u =
∑3

j=1 ujDju, one has

u(t) = eµ∆tu0 −
∫ t

0

eµ∆(t−τ)PH(u · ∇u) dτ

= eµ∆tu0 −
∫ t

0

eµ∆(t−τ)PH

[
3∑
j=1

(ujDju)

]
dτ

= eµ∆tu0 −
∫ t

0

eµ∆(t−τ)PH

[
3∑
j=1

Dj(uju)

]
dτ,

provided that divu = 0. Rewriting this last equality above, we get

u(t) = eµ∆tu0 −
∫ t

0

eµ∆(t−τ)PH

[
3∑
j=1

Dj(uju)

]
dτ, (2.12)

or equivalently,

u(t) = eµ∆tu0 +B(u, u)(t), (2.13)

where

B(w, v)(t) = −
∫ t

0

eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)] dτ. (2.14)

In order to apply Lemma 1.2.1, let X be the Banach space C([0, T ];Hs
a,σ(R3)) (T > 0

will be chosen later). It is important to notice that (2.13) is the same equation as (1.1) if it
is considered that a = u and x0 = eµ∆tu0. Moreover, it is easy to check that B is a bilinear
operator. Therefore, we shall prove that B is continuous by choosing T small enough.

At first, let us estimate B(w, v)(t) in Ḣs
a,σ(R3). It follows from the definition of the space

Ḣs
a,σ(R3) that

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)]‖2
Ḣs
a,σ(R3)

=

∫
R3

|ξ|2se2a|ξ|
1
σ |F{eµ∆(t−τ)PH [

3∑
j=1

Dj(vjw)]}(ξ)|2 dξ.

It is also well known that

F{e∆tf}(ξ) = e−t|ξ|
2

f̂(ξ), ∀ ξ ∈ R3, t ≥ 0.
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As a consequence, we have

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)]‖2
Ḣs
a,σ(R3)

=

∫
R3

e−2µ(t−τ)|ξ|2|ξ|2se2a|ξ|
1
σ |F{PH [

3∑
j=1

Dj(vjw)]}(ξ)|2 dξ.

By applying (2.11), one can write

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)]‖2
Ḣs
a,σ(R3)

≤
∫
R3

e−2µ(t−τ)|ξ|2|ξ|2se2a|ξ|
1
σ |

3∑
j=1

F [Dj(vjw)](ξ)|2 dξ

≤
∫
R3

e−2µ(t−τ)|ξ|2|ξ|2se2a|ξ|
1
σ |F(w ⊗ v)(ξ) · ξ|2 dξ

≤
∫
R3

e−2µ(t−τ)|ξ|2|ξ|2s+2e2a|ξ|
1
σ |F(w ⊗ v)(ξ)|2 dξ.

Rewriting the last integral above with the goal of applying Lemma 1.2.19, we have

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)]‖2
Ḣs
a,σ(R3)

≤
∫
R3

|ξ|5−2se−2µ(t−τ)|ξ|2|ξ|4s−3e2a|ξ|
1
σ |F(w ⊗ v)(ξ)|2 dξ.

As a result, by using Lemma 1.2.19, it follows

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)]‖2
Ḣs
a,σ(R3)

≤
(5−2s

4eµ
)
5−2s

2

(t− τ)
5−2s

2

∫
R3

|ξ|4s−3e2a|ξ|
1
σ |F(w ⊗ v)(ξ)|2 dξ

=:
Cs,µ

(t− τ)
5−2s

2

‖w ⊗ v‖2

Ḣ
2s− 3

2
a,σ (R3)

, (2.15)

where Cs,µ = [(5 − 2s)/4eµ]
5−2s

2 (s < 3/2). On the other hand, let us estimate the term
‖w⊗ v‖

Ḣ
2s− 3

2
a,σ (R3)

presented in the last equality above. Lemma 1.2.7 is the tool that provides

a suitable result related to our goal in this proof. Thus, by using this lemma, one infers

‖w ⊗ v‖2

Ḣ
2s− 3

2
a,σ (R3)

=

∫
R3

|ξ|4s−3e2a|ξ|
1
σ |ŵ ⊗ v(ξ)|2 dξ

=
3∑

j,k=1

∫
R3

|ξ|4s−3e2a|ξ|
1
σ |v̂jwk(ξ)|2 dξ

=
3∑

j,k=1

‖vjwk‖2

Ḣ
2s− 3

2
a,σ (R3)

≤ Cs‖w‖2
Ḣs
a,σ(R3)

‖v‖2
Ḣs
a,σ(R3)

, (2.16)
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provided that 0 < s < 3/2. Therefore, by replacing (2.16) in (2.15), one deduces

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)]‖Ḣs
a,σ(R3) ≤

Cs,µ

(t− τ)
5−2s

4

‖w‖Ḣs
a,σ(R3)‖v‖Ḣs

a,σ(R3).

By integrating over [0, t], the above estimate, we conclude∫ t

0

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)]‖Ḣs
a,σ(R3) dτ ≤ Cs,µ

∫ t

0

‖w‖Ḣs
a,σ(R3)‖v‖Ḣs

a,σ(R3)

(t− τ)
5−2s

4

dτ

≤ Cs,µT
2s−1

4 ‖w‖L∞([0,T ];Ḣs
a,σ(R3))‖v‖L∞([0,T ];Ḣs

a,σ(R3)), (2.17)

for all t ∈ [0, T ] (recall that s > 1/2).

By (2.14), we can assure that (2.17) implies

‖B(w, v)(t)‖Ḣs
a,σ(R3) ≤ Cs,µT

2s−1
4 ‖w‖L∞([0,T ];Ḣs

a,σ(R3))‖v‖L∞([0,T ];Ḣs
a,σ(R3)), (2.18)

for all t ∈ [0, T ]. It is important to observe that (2.18) presents our estimate to the operator
B related to the space Ḣs

a,σ(R3).

Now, let us estimate B(w, v)(t) in Hs
a,σ(R3). By Lemma 1.2.10 and (2.18), it is enough to

get a upper bound to B(w, v)(t) in L2(R3). Following a similar process to the one presented
above, we have

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)]‖2
L2(R3) =

∫
R3

|eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)](ξ)|2 dξ.

Parseval’s identity implies the following equality:

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)]‖2
L2(R3) = (2π)−3

∫
R3

|F{eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)]}(ξ)|2 dξ.

As a result, we obtain

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)]‖2
L2(R3)

= (2π)−3

∫
R3

e−2µ(t−τ)|ξ|2|F{PH [
3∑
j=1

Dj(vjw)]}(ξ)|2 dξ.

By using (2.11), it is true that

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)]‖2
L2(R3) ≤ (2π)−3

∫
R3

|ξ|2e−2µ(t−τ)|ξ|2|F(w ⊗ v)(ξ)|2 dξ.
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Rewriting the last integral in order to apply Lemma 1.2.19, one has

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)]‖2
L2(R3)

≤ (2π)−3

∫
R3

|ξ|5−2se−2µ(t−τ)|ξ|2|ξ|2s−3|F(w ⊗ v)(ξ)|2 dξ.

As a result, by using Lemma 1.2.19, it follows

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)]‖2
L2(R3) ≤

Cs,µ

(t− τ)
5−2s

2

‖w ⊗ v‖2

Ḣs− 3
2 (R3)

,

since s < 3/2. Now we are interested in estimating the term ‖w⊗ v‖
Ḣs− 3

2 (R3)
above. Lemma

1.2.6 is the tool that lets us obtain this specific bound. More precisely, by using this lemma,
one has

‖w ⊗ v‖2

Ḣs− 3
2 (R3)

=

∫
R3

|ξ|2s−3|ŵ ⊗ v(ξ)|2 dξ =
3∑

j,k=1

∫
R3

|ξ|2s−3|v̂jwk(ξ)|2 dξ

=
3∑

j,k=1

‖vjwk‖2

Ḣs− 3
2 (R3)

≤ Cs‖w‖2
Ḣs(R3)

‖v‖2
L2(R3).

By the continuous embedding Hs
a,σ(R3) ↪→ Ḣs(R3) (s ≥ 0) holds and by applying Lemma

1.2.10, we deduce

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)]‖L2(R3) ≤
Cs,µ

(t− τ)
5−2s

4

‖w‖Hs
a,σ(R3)‖v‖Hs

a,σ(R3).

By integrating over [0, t], the above estimate, we conclude∫ t

0

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)]‖L2(R3) dτ

≤ Cs,µT
2s−1

4 ‖w‖L∞([0,T ];Hs
a,σ(R3))‖v‖L∞([0,T ];Hs

a,σ(R3)), (2.19)

for all t ∈ [0, T ] (since that s > 1/2).

By using the definition (2.14) and applying (2.19), one concludes

‖B(w, v)(t)‖L2(R3) ≤ Cs,µT
2s−1

4 ‖w‖L∞([0,T ];Hs
a,σ(R3))‖v‖L∞([0,T ];Hs

a,σ(R3)), (2.20)

for all t ∈ [0, T ].
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Finally, by using Lemma 1.2.10, (2.18), (2.20) and the fact that Hs
a,σ(R3) ↪→ Ḣs

a,σ(R3)
(s ≥ 0), it follows that

‖B(w, v)(t)‖Hs
a,σ(R3) ≤ Cs,a,µT

2s−1
4 ‖w‖L∞([0,T ];Hs

a,σ(R3))‖v‖L∞([0,T ];Hs
a,σ(R3)), (2.21)

for all t ∈ [0, T ].

To use Lemma 1.2.1, it is enough to guarantee that

4Cs,a,µT
2s−1

4 ‖eµ∆tu0‖L∞([0,T ];Hs
a,σ(R3)) < 1.

Thus, first of all, as we did before, one concludes

‖eµ∆tu0‖2
Hs
a,σ(R3) =

∫
R3

(1 + |ξ|2)se2a|ξ|
1
σ |F{eµ∆tu0}(ξ)|2 dξ

=

∫
R3

e−2µt|ξ|2(1 + |ξ|2)se2a|ξ|
1
σ |û0(ξ)|2 dξ

≤
∫
R3

(1 + |ξ|2)se2a|ξ|
1
σ |û0(ξ)|2 dξ

= ‖u0‖2
Hs
a,σ(R3).

As a result, we write
‖eµ∆tu0‖L∞([0,T ];Hs

a,σ(R3)) ≤ ‖u0‖Hs
a,σ(R3).

Now, choosing

T <
1

[4Cs,a,µ‖u0‖Hs
a,σ(R3)]

4
2s−1

,

where Cs,a,µ is given in (2.21), and apply Lemma 1.2.1 in order to obtain a unique solution
u ∈ C([0, T ]; Hs

a,σ(R3)) for the equation (2.13).

The arguments given above also establish the local existence of a unique solution for the
Navier-Stokes equations (2.1).

Now, let us enunciate precisely our main result related to the local existence and unique-
ness of solutions for the Navier-Stokes equations (2.1).

Theorem 2.1.2. Assume that a > 0, σ ≥ 1 and s0 ∈ (1
2
, 3

2
). Let u0 ∈ Hs0

a,σ(R3) such
that divu0 = 0. Then, there exist an instant T = Ts0,a,µ,u0 > 0 and a unique solution
u ∈ C([0, T ];Hs

a,σ(R3)), for all s ≤ s0, for the Navier–Stokes equations (2.1).

Proof. By applying Theorem 2.1.1, one has T = Ts0,a,µ,u0 > 0 and a unique solution u ∈
C([0, T ];Hs0

a,σ(R3)) of the Navier-Stokes system (2.1). On the other hand, we also have
that s ≤ s0. As a result, one obtains the standard embedding Hs0

a,σ(R3) ↪→ Hs
a,σ(R3) and,

consequently, u ∈ C([0, T ];Hs
a,σ(R3)).
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2.2 Blow–up Criteria for the Solution

In this section, we establish some blow–up criteria for the solution of the Navier-Stokes
equations (2.1). We will argue similarly as in references [2, 3, 4, 7, 10, 11, 34].

2.2.1 Limit Superior Related to Hs
a,σ(R3)

The first blow–up criterion is related to the limit superior given in (2.5) (case n = 1).

Theorem 2.2.1. Assume that a > 0, σ > 1 and s0 ∈ (1
2
, 3

2
). Let u0 ∈ Hs0

a,σ(R3) such that
divu0 = 0. Consider that u ∈ C([0, T ∗);Hs

a,σ(R3)), for all s ∈ (1
2
, s0], is the maximal solution

for the Navier-Stokes equations (2.1) obtained in Theorem 2.1.2. If T ∗ <∞, then

lim sup
t↗T ∗

‖u(t)‖Hs
a,σ(R3) =∞. (2.22)

Proof. Suppose by contradiction that (2.22) is not valid, i.e., assume that

lim sup
t↗T ∗

‖u(t)‖Hs
a,σ(R3) <∞. (2.23)

As a result, we shall prove that the solution u(·, t) can be extended beyond t = T ∗ (it is the
absurd that we shall obtain). Let us prove this statement.

Assuming (2.23) holds, and using Theorem 2.1.2, there is a non negative constant C such
that

‖u(t)‖Hs
a,σ(R3) ≤ C, ∀ t ∈ [0, T ∗). (2.24)

Integrating over [0, t] the inequality (2.40) below, and applying (2.24) and (1.12), one con-
cludes

‖u(t)‖2
Hs
a,σ(R3) + µ

∫ t

0

‖∇u(τ)‖2
Hs
a,σ(R3) dτ ≤ ‖u0‖2

Hs
a,σ(R3) + Cs,a,σ,µC

4T ∗,

for all t ∈ [0, T ∗). As we are interested in using the fact that the integral above is bounded,
we can write∫ t

0

‖∇u(τ)‖2
Hs
a,σ(R3) dτ ≤

1

µ
‖u0‖2

Hs
a,σ(R3) + Cs,a,σ,µC

4T ∗ =: Cs,a,σ,µ,u0,T ∗ , (2.25)

for all t ∈ [0, T ∗).

Now, let (κn)n∈N be a sequence such that κn ↗ T ∗, where κn ∈ (0, T ∗), for all n ∈ N
(choose κn = T ∗ − 1/n, for n large enough, for instance). We will show that (u(κn))n∈N is a
Cauchy sequence in the space Hs

a,σ(R3), that is,

lim
n,m→∞

‖u(κn)− u(κm)‖Hs
a,σ(R3) = 0. (2.26)

42



Let us mention that the limit (2.26) does not depend on the sequence (κn)n∈N. This fact
will be shown later. First of all, we begin with the proof of (2.26). Thereby, one can apply
(2.13) and (2.14) in order to obtain

u(κn)− u(κm) = I1(n,m) + I2(n,m) + I3(n,m), (2.27)

where

I1(n,m) = [eµ∆κn − eµ∆κm ]u0, (2.28)

I2(n,m) =

∫ κm

0

[eµ∆(κm−τ) − eµ∆(κn−τ)]PH [u · ∇u] dτ, (2.29)

and also

I3(n,m) = −
∫ κn

κm

eµ∆(κn−τ)PH [u · ∇u] dτ. (2.30)

Let us prove that Ij(n,m)→ 0 in Hs
a,σ(R3), as n,m→∞, for j = 1, 2, 3.

In order to prove the validity of the limit related to I1(n,m), notice that

‖I1(n,m)‖2
Hs
a,σ(R3) = ‖[eµ∆κn − eµ∆κm ]u0‖2

Hs
a,σ(R3)

=

∫
R3

[e−µκn|ξ|
2 − e−µκm|ξ|2 ]2(1 + |ξ|2)se2a|ξ|

1
σ |û0(ξ)|2 dξ

≤
∫
R3

[e−µκn|ξ|
2 − e−µT ∗|ξ|2 ]2(1 + |ξ|2)se2a|ξ|

1
σ |û0(ξ)|2 dξ.

By using the fact that u0 ∈ Hs
a,σ(R3) and that e−µκn|ξ|

2 − e−µT
∗|ξ|2 ≤ 1, for all n ∈ N, it

results from Dominated Convergence Theorem that

lim
n,m→∞

‖I1(n,m)‖Hs
a,σ(R3) = 0.

Now, our next goal is to establish the limit limn,m→∞ ‖I2(n,m)‖Hs
a,σ(R3) = 0. Thus, we

have

‖I2(n,m)‖Hs
a,σ(R3) ≤

∫ κm

0

‖[eµ∆(κm−τ) − eµ∆(κn−τ)]PH(u · ∇u)‖Hs
a,σ(R3) dτ =∫ κm

0

(∫
R3

[e−µ(κm−τ)|ξ|2 − e−µ(κn−τ)|ξ|2 ]2(1 + |ξ|2)se2a|ξ|
1
σ |F [PH(u · ∇u)](ξ)|2dξ

) 1
2
dτ.

By (2.11), we can write |F [PH(f)](ξ)| ≤ |f̂(ξ)| and, consequently,

‖I2(n,m)‖Hs
a,σ(R3)

≤
∫ T ∗

0

(∫
R3

[1− e−µ(T ∗−κm)|ξ|2 ]2(1 + |ξ|2)se2a|ξ|
1
σ |F [u · ∇u](ξ)|2dξ

) 1
2
dτ.
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Use Cauchy-Schwarz’s inequality in order to obtain

‖I2(n,m)‖Hs
a,σ(R3)

≤
√
T ∗
(∫ T ∗

0

∫
R3

[1− e−µ(T ∗−κm)|ξ|2 ]2(1 + |ξ|2)se2a|ξ|
1
σ |F [u · ∇u](ξ)|2dξdτ

) 1
2
.

On the other hand, observe that by Lemma 1.2.9, (2.24) and (2.25), one infers∫ T ∗

0

‖u · ∇u‖2
Hs
a,σ(R3) dτ ≤ C2

s,a,σ

∫ T ∗

0

‖u‖2
Hs
a,σ(R3)‖∇u‖2

Hs
a,σ(R3) dτ

≤ C2
s,a,σC

2

∫ T ∗

0

‖∇u‖2
Hs
a,σ(R3) dτ <∞. (2.31)

As 1 − e−µ(T ∗−κm)|ξ|2 ≤ 1, for all m ∈ N; then, by Dominated Convergence Theorem, we
deduce

lim
n,m→∞

‖I2(n,m)‖Hs
a,σ(R3) = 0.

Lastly, we show that limn,m→∞ ‖I3(n,m)‖Hs
a,σ(R3) = 0. Indeed

‖I3(n,m)‖Hs
a,σ(R3) ≤

∫ κn

κm

‖eµ∆(κn−τ)PH(u · ∇u)‖Hs
a,σ(R3) dτ

=

∫ κn

κm

(∫
R3

e−2µ(κn−τ)|ξ|2(1 + |ξ|2)se2a|ξ|
1
σ |F [PH(u · ∇u)](ξ)|2dξ

) 1
2
dτ.

By (2.11), we can write |F [PH(f)](ξ)| ≤ |f̂(ξ)| and, consequently,

‖I3(n,m)‖Hs
a,σ(R3) ≤

∫ κn

κm

(∫
R3

(1 + |ξ|2)se2a|ξ|
1
σ |F [u · ∇u](ξ)|2dξ

) 1
2
dτ

≤
∫ T ∗

κm

‖u · ∇u‖Hs
a,σ(R3) dτ.

By Cauchy-Schwarz’s inequality, (2.31) and (2.25), one infers

‖I3(n,m)‖Hs
a,σ(R3) ≤

√
T ∗ − κm

(∫ T ∗

κm

‖u · ∇u‖2
Hs
a,σ(R3) dτ

) 1
2

≤ CCs,a,σ
√
T ∗ − κm

(∫ T ∗

κm

‖∇u‖2
Hs
a,σ(R3) dτ

) 1
2

≤ Cs,a,σ,µ,u0,T ∗
√
T ∗ − κm.

As a result, we infer that limn,m→∞ ‖I3(n,m)‖Hs
a,σ(R3) = 0. Thus, (2.27) implies (2.26). In

addition, (2.26) means that (u(κn))n∈N is a Cauchy sequence in the Banach space Hs
a,σ(R3).

Hence, there exists u1 ∈ Hs
a,σ(R3) such that

lim
n→∞

‖u(κn)− u1‖Hs
a,σ(R3) = 0.
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Now, we shall prove that the above limit does not depend on the sequence (κn)n∈N. Thus,
choose an arbitrary sequence (ρn)n∈N ⊆ (0, T ∗) such that ρn ↗ T ∗ and

lim
n→∞

‖u(ρn)− u2‖Hs
a,σ(R3) = 0,

for some u2 ∈ Hs
a,σ(R3). Let us show that u2 = u1. In fact, define (ςn)n∈N ⊆ (0, T ∗) by

ς2n = κn and ς2n−1 = ρn, for all n ∈ N. It is easy to check that ςn ↗ T ∗. By rewriting the
process above, we guarantee that there is u3 ∈ Hs

a,σ(R3) such that

lim
n→∞

‖u(ςn)− u3‖Hs
a,σ(R3) = 0.

As a consequence, one has

lim
n→∞

‖u(κn)− u3‖Hs
a,σ(R3) = lim

n→∞
‖u(ς2n)− u3‖Hs

a,σ(R3) = 0

and also
lim
n→∞

‖u(ρn)− u3‖Hs
a,σ(R3) = lim

n→∞
‖u(ς2n−1)− u3‖Hs

a,σ(R3) = 0.

By uniqueness of the limit, one infers u1 = u3 = u2. Therefore, the limit (2.26) does not
depend on the sequence (κn)n∈N.

It means that limt↗T ∗ ‖u(t) − u1‖Hs
a,σ(R3) = 0. Thereby, assuming (2.1) with the initial

data u1, instead of u0, we assure, by Theorem 2.1.2, the local existence and uniqueness of
ū ∈ C([0, T̄ ];Hs

a,σ(R3)) (T̄ > 0) for the system (2.1). Hence, ũ ∈ C([0, T̄ + T ∗];Hs
a,σ(R3))

defined by

ũ(t) =

{
u(t), t ∈ [0, T ∗);
ū(t− T ∗), t ∈ [T ∗, T̄ + T ∗],

solves (2.1) in [0, T̄ + T ∗]. Thus, the solution of (2.1) can be extended beyond t = T ∗. It is
a contradiction. Consequently, one must have

lim sup
t↗T ∗

‖u(t)‖Hs
a,σ(R3) =∞.

2.2.2 Blow–up of the Integral Related to L1(R3)

Now, we present the proof of the inequality (2.3) in the case n = 1. It is important to
let the reader know that the next theorem might be written as a corollary of Theorem 2.2.1
since the first one follows from this last result.

Theorem 2.2.2. Assume that a > 0, σ > 1 and s0 ∈ (1
2
, 3

2
). Let u0 ∈ Hs0

a,σ(R3) such that
divu0 = 0. Consider that u ∈ C([0, T ∗);Hs

a,σ(R3)), for all s ∈ (1
2
, s0], is the maximal solution

for the Navier-Stokes equations (2.1) obtained in Theorem 2.1.2. If T ∗ <∞, then∫ T ∗

t

‖e
a
σ
|·|

1
σ û(τ)‖2

L1(R3) dτ =∞.
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Proof. This result follows from the limit superior presented in Theorem 2.2.1. Thus, let us
start taking the Hs

a,σ(R3)-inner product, with u(t), in the first equation of (2.1) to get

〈u, ut〉Hs
a,σ(R3) = 〈u,−u · ∇u−∇p+ µ∆u〉Hs

a,σ(R3). (2.32)

In order to study some terms on the right hand side of the equality above, use the fact that

F(Djf)(ξ) = iξj f̂(ξ), ∀ ξ = (ξ1, ξ2, ξ3) ∈ R3,

to get

F(u) · F [∇p](ξ) = −i
3∑
j=1

F(uj)(ξ)ξj p̂(ξ) = −
3∑
j=1

F(Djuj)(ξ)p̂(ξ)

= −F(divu)(ξ)p̂(ξ) = 0, (2.33)

because u is divergence free (see (2.1)). Thereby, the term related to the pressure in (2.32)
is null, namely

〈u,∇p〉Hs
a,σ(R3) =

∫
R3

(1 + |ξ|2)se2a|ξ|
1
σF(u) · F [∇p](ξ) dξ = 0. (2.34)

On the other hand, following a similar argument, one infers

û · ∆̂u(ξ) =
3∑
j=1

û · D̂2
ju(ξ) = −i

3∑
j=1

û · [ξjD̂ju(ξ)]

= −
3∑
j=1

D̂ju · D̂ju(ξ) = −|∇̂u(ξ)|2. (2.35)

Therefore, the term related to ∆u in (2.32) satisfies

〈u,∆u〉Hs
a,σ(R3) =

∫
R3

(1 + |ξ|2)se2a|ξ|
1
σ û · ∆̂u(ξ) dξ

= −
∫
R3

(1 + |ξ|2)se2a|ξ|
1
σ |∇̂u(ξ)|2 dξ

= −‖∇u‖2
Hs
a,σ(R3). (2.36)

By replacing (2.34) and (2.36) in (2.32), we have

1

2

d

dt
‖u(t)‖2

Hs
a,σ(R3) + µ‖∇u‖2

Hs
a,σ(R3) ≤ |〈u, u · ∇u〉Hs

a,σ(R3)|. (2.37)
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Now, let us study the inner product above. Since divu = 0, one obtains

F(∇u) · F(u⊗ u)(ξ) =
3∑
j=1

F(∇uj) · F(uju)(ξ) =
3∑

j,k=1

F(Dkuj)(ξ)F(ujuk)(ξ)

= i
3∑

j,k=1

ξkF(uj)(ξ)F(ujuk)(ξ) = −
3∑

j,k=1

F(uj)(ξ)F(Dk(ujuk))(ξ)

= −
3∑

j,k=1

F(uj)(ξ)F(ukDkuj)(ξ) = −
3∑
j=1

F(uj)(ξ)F(u · ∇uj)(ξ)

= −F(u) · F(u · ∇u)(ξ).

As a result, by using the tensor product, it follows that

〈u, u · ∇u〉Hs
a,σ(R3) =

∫
R3

(1 + |ξ|2)se2a|ξ|
1
σF(u) · F(u · ∇u)(ξ) dξ

= −
∫
R3

(1 + |ξ|2)se2a|ξ|
1
σF(∇u) · F(u⊗ u)(ξ) dξ

= −〈∇u, u⊗ u〉Hs
a,σ(R3). (2.38)

Hence, using Cauchy-Schwarz’s inequality, (2.37) and (2.38) imply

1

2

d

dt
‖u(t)‖2

Hs
a,σ(R3) + µ‖∇u‖2

Hs
a,σ(R3) ≤ ‖∇u‖Hs

a,σ(R3)‖u⊗ u‖Hs
a,σ(R3). (2.39)

Now, our interest is to find an estimate for the term ‖u⊗ u‖Hs
a,σ(R3) obtained above. Thus,

by applying Lemma 1.2.8 i), one has

‖u⊗ u‖2
Hs
a,σ(R3) =

∫
R3

(1 + |ξ|2)se2a|ξ|
1
σ |F(u⊗ u)(ξ)|2 dξ

=
3∑

j,k=1

∫
R3

(1 + |ξ|2)se2a|ξ|
1
σ |F(ujuk)(ξ)|2 dξ

=
3∑

j,k=1

‖ujuk‖2
Hs
a,σ(R3)

≤ Cs

3∑
j,k=1

[‖e
a
σ
|·|

1
σ ûj‖L1(R3)‖uk‖Hs

a,σ(R3) + ‖e
a
σ
|·|

1
σ ûk‖L1(R3)‖uj‖Hs

a,σ(R3)]
2

≤ Cs

3∑
j,k=1

[‖e
a
σ
|·|

1
σ ûj‖2

L1(R3)‖uk‖2
Hs
a,σ(R3) + ‖e

a
σ
|·|

1
σ ûk‖2

L1(R3)‖uj‖2
Hs
a,σ(R3)]

≤ Cs‖e
a
σ
|·|

1
σ û‖2

L1(R3)‖u‖2
Hs
a,σ(R3),
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or equivalently,

‖u⊗ u‖Hs
a,σ(R3) ≤ Cs‖e

a
σ
|·|

1
σ û‖L1(R3)‖u‖Hs

a,σ(R3).

By replacing this inequality in (2.39), we deduce

1

2

d

dt
‖u(t)‖2

Hs
a,σ(R3) + µ‖∇u‖2

Hs
a,σ(R3) ≤ Cs‖e

a
σ
|·|

1
σ û‖L1(R3)‖u‖Hs

a,σ(R3)‖∇u‖Hs
a,σ(R3).

By Young’s inequality, it results that

1

2

d

dt
‖u(t)‖2

Hs
a,σ(R3) +

µ

2
‖∇u‖2

Hs
a,σ(R3) ≤ Cs,µ‖e

a
σ
|·|

1
σ û‖2

L1(R3)‖u‖2
Hs
a,σ(R3). (2.40)

Consider 0 ≤ t ≤ T < T ∗ in order to obtain, by Gronwall’s inequality (differential form)1,
the following estimate:

‖u(T )‖2
Hs
a,σ(R3) ≤ ‖u(t)‖2

Hs
a,σ(R3) exp{Cs,µ

∫ T

t

‖e
a
σ
|·|

1
σ û(τ)‖2

L1(R3) dτ}.

Passing to the limit superior, as T ↗ T ∗, Theorem 2.2.1 implies∫ T ∗

t

‖e
a
σ
|·|

1
σ û(τ)‖2

L1(R3) dτ =∞, ∀ t ∈ [0, T ∗).

The proof of Theorem 2.2.2 is completed.

2.2.3 Blow–up Inequality Involving L1(R3)

Below, we present the proof of blow–up inequality (2.4) in the case n = 1.

Theorem 2.2.3. Assume that a > 0, σ > 1 and s0 ∈ (1
2
, 3

2
). Let u0 ∈ Hs0

a,σ(R3) such that
divu0 = 0. Consider that u ∈ C([0, T ∗);Hs

a,σ(R3)), for all s ∈ (1
2
, s0], is the maximal solution

for the Navier-Stokes equations (2.1) obtained in Theorem 2.1.2. If T ∗ <∞, then

‖e
a
σ
|·|

1
σ û(t)‖L1(R3) ≥

8π3√µ
√
T ∗ − t

, ∀ t ∈ [0, T ∗).

Proof. Let us mention that this result is a consequence of Theorem 2.2.2. Indeed, apply the
Fourier Transform and take the scalar product in C3 of the first equation of (2.1), with û(t),
in order to obtain

û · ût = −µ|∇̂u|2 − û · û · ∇u,
1Let f, g : [t, T ]→ R be differential functions in (t, T ) such that f ′(s) ≤ g(s)f(s), for all s ∈ [t, T ]. Then,

f(s) ≤ f(t) exp
{∫ s

t
g(τ) dτ

}
, for all s ∈ [t, T ].
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see (2.33) and (2.35). Consequently, one infers

1

2
∂t|û(t)|2 + µ|∇̂u|2 ≤ |û · û · ∇u|. (2.41)

For δ > 0 arbitrary, by applying Cauchy-Schwarz’s inequality, it is easy to check that

∂t
√
|û(t)|2 + δ + µ

|∇̂u|2√
|û|2 + δ

≤ |û|√
|û|2 + δ

|û · ∇u| ≤ |û · ∇u|.

By integrating from t to T , with 0 ≤ t ≤ T < T ∗, one has√
|û(T )|2 + δ + µ|ξ|2

∫ T

t

|û(τ)|2√
|û(τ)|2 + δ

dτ ≤
√
|û(t)|2 + δ +

∫ T

t

| ̂(u · ∇u)(τ)| dτ,

since |∇̂u| = |ξ||û|. Passing to the limit, as δ → 0, multiplying by e
a
σ
|ξ|

1
σ and integrating

over ξ ∈ R3, we obtain

‖e
a
σ
|·|

1
σ û(T )‖L1(R3) + µ

∫ T

t

‖e
a
σ
|·|

1
σ ∆̂u(τ)‖L1(R3) dτ ≤ ‖e

a
σ
|·|

1
σ û(t)‖L1(R3)

+

∫ T

t

∫
R3

e
a
σ
|ξ|

1
σ | ̂(u · ∇u)(τ)| dξdτ, (2.42)

since |∆̂u| = |ξ|2|û|. Studying the last term above, we can assure

| ̂(u · ∇u)(ξ)| =
∣∣∣ 3∑
j=1

ûjDju(ξ)
∣∣∣ = (2π)−3

∣∣∣ 3∑
j=1

ûj ∗ D̂ju(ξ)
∣∣∣

= (2π)−3
∣∣∣ 3∑
j=1

∫
R3

ûj(η)D̂ju(ξ − η) dη
∣∣∣

≤ (2π)−3
∣∣∣ ∫

R3

û(η) · ∇̂u(ξ − η) dη
∣∣∣

≤ (2π)−3

∫
R3

|û(η)||∇̂u(ξ − η)| dη.

Therefore, by (1.3), the last integral in (2.42) can be estimated as follows:∫
R3

e
a
σ
|ξ|

1
σ | ̂(u · ∇u)(ξ)| dξ ≤ (2π)−3

∫
R3

∫
R3

e
a
σ
|ξ|

1
σ |û(η)||∇̂u(ξ − η)| dηdξ

≤ (2π)−3

∫
R3

∫
R3

e
a
σ
|η|

1
σ |û(η)|e

a
σ
|ξ−η|

1
σ |∇̂u(ξ − η)| dηdξ

= (2π)−3

∫
R3

[e
a
σ
|ξ|

1
σ |û(ξ)|] ∗ [e

a
σ
|ξ|

1
σ |∇̂u(ξ)|] dξ

= (2π)−3‖[e
a
σ
|·|

1
σ |û|] ∗ [e

a
σ
|·|

1
σ |∇̂u|]‖L1(R3).
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Applying Young’s inequality for convolutions we obtain the following inequality.∫
R3

e
a
σ
|ξ|

1
σ | ̂(u · ∇u)(ξ)| dξ ≤ (2π)−3‖e

a
σ
|·|

1
σ û‖L1(R3)‖e

a
σ
|·|

1
σ ∇̂u‖L1(R3). (2.43)

Let us obtain an estimate for the term ‖e aσ |·|
1
σ ∇̂u‖L1(R3) above. By Cauchy-Schwarz inequal-

ity, we have

‖e
a
σ
|·|

1
σ ∇̂u‖L1(R3) =

∫
R3

e
a
σ
|ξ|

1
σ |∇̂u(ξ)| dξ =

∫
R3

e
a
σ
|ξ|

1
σ |ξ||û(ξ)| dξ

≤
(∫

R3

e
a
σ
|ξ|

1
σ |ξ|2|û(ξ)| dξ

) 1
2
(∫

R3

e
a
σ
|ξ|

1
σ |û(ξ)| dξ

) 1
2

= ‖e
a
σ
|·|

1
σ ∆̂u‖

1
2

L1(R3)‖e
a
σ
|·|

1
σ û‖

1
2

L1(R3), (2.44)

since |ξ|2|û| = |∆̂u| and |∇̂u| = |ξ||û|. Then, by replacing (2.44) in (2.43), one deduces∫
R3

e
a
σ
|ξ|

1
σ | ̂(u · ∇u)(ξ)| dξ ≤ (2π)−3‖e

a
σ
|·|

1
σ û‖

3
2

L1(R3)‖e
a
σ
|·|

1
σ ∆̂u‖

1
2

L1(R3).

By using Cauchy-Schwarz’s inequality once again, we conclude

(2π)−3‖e
a
σ
|·|

1
σ û‖

3
2

L1(R3)‖e
a
σ
|·|

1
σ ∆̂u‖

1
2

L1(R3) ≤
1

128π6µ
‖e

a
σ
|·|

1
σ û‖3

L1(R3)

+
µ

2
‖e

a
σ
|·|

1
σ ∆̂u‖L1(R3).

Consequently, (2.42) can be rewritten as follows:

‖e
a
σ
|·|

1
σ û(T )‖L1(R3) +

µ

2

∫ T

t

‖e
a
σ
|·|

1
σ ∆̂u(τ)‖L1(R3) dτ ≤ ‖e

a
σ
|·|

1
σ û(t)‖L1(R3)

+
1

128π6µ

∫ T

t

‖e
a
σ
|·|

1
σ û(τ)‖3

L1(R3)dτ.

By Gronwall’s inequality (integral form)2, one gets

‖e
a
σ
|·|

1
σ û(T )‖2

L1(R3) ≤ ‖e
a
σ
|·|

1
σ û(t)‖2

L1(R3) exp

{
1

64π6µ

∫ T

t

‖e
a
σ
|·|

1
σ û(τ)‖2

L1(R3)dτ

}
,

for all 0 ≤ t ≤ T < T ∗, or equivalently,

(
−64π6µ

) d

dT

[
exp

{
− 1

64π6µ

∫ T

t

‖e
a
σ
|·|

1
σ û(τ)‖2

L1(R3)dτ

}]
≤ ‖e

a
σ
|·|

1
σ û(t)‖2

L1(R3).

2Let f, g : [a, b] → R be continuous functions in [a, b] such that f(s) ≤ f(a) +
∫ s

a
g(τ)f(τ) dτ, for all

s ∈ [a, b]. Then, f(s) ≤ f(a) exp
{∫ s

a
g(τ) dτ

}
, for all s ∈ [a, b].
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Integrate from t to t0, with 0 ≤ t ≤ t0 < T ∗, in order to get

(
−64π6µ

)
exp

{
− 1

64π6µ

∫ t0

t

‖e
a
σ
|·|

1
σ û(τ)‖2

L1(R3)dτ

}
+ 64π6µ

≤ ‖e
a
σ
|·|

1
σ û(t)‖2

L1(R3)(t0 − t).

By passing to the limit, as t0 ↗ T ∗, and using Theorem 2.2.2, we have

64π6µ ≤ ‖e
a
σ
|·|

1
σ û(t)‖2

L1(R3)(T
∗ − t), ∀ t ∈ [0, T ∗),

which proves Theorem 2.2.3.

2.2.4 Blow–up Inequality involving Hs
a,σ(R3)

The lower bound (2.7), in the case n = 1, can be rewritten as below. From now on
T ∗ω < ∞ denotes the first blow-up time for the solution u ∈ C([0, T ∗ω);Hs

ω,σ(R3)), where
ω > 0.

Theorem 2.2.4. Assume that a > 0, σ > 1 and s0 ∈ (1
2
, 3

2
). Let u0 ∈ Hs0

a,σ(R3) such that
divu0 = 0. Consider that u ∈ C([0, T ∗a );Hs

a,σ(R3)), for all s ∈ (1
2
, s0], is the maximal solution

for the Navier-Stokes equations (2.1) obtained in Theorem 2.1.2. If T ∗a <∞, then

‖u(t)‖Hs
a√
σ
,σ

(R3) ≥
8π3√µ

C1

√
T ∗a − t

, ∀ t ∈ [0, T ∗a ),

where C1 :=
{

4πσ
[
2a
( 1√

σ
− 1

σ

)]−σ(3−2s)

Γ(σ(3− 2s))
} 1

2
.

Proof. This theorem is a direct implication of Theorem 2.2.3. First of all, notice that a√
σ
∈

(0, a). As a result, it holds the following continuous embedding Hs
a,σ(R3) ↪→ Hs

a√
σ
,σ(R3) that

comes from the inequality
‖u‖Hs

a√
σ
,σ

(R3) ≤ ‖u‖Hs
a,σ(R3).

Then, we can guarantee, by Theorem 2.1.2 and inequality above, that u ∈ C([0, T ∗a ), Hs
a√
σ
,σ(R3))

(since u ∈ C([0, T ∗a ), Hs
a,σ(R3))) and also that

T ∗a√
σ
≥ T ∗a . (2.45)
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Moreover, by applying Theorem 2.2.3 and Cauchy-Schwarz’s inequality, it follows that

8π3√µ√
T ∗a − t

≤ ‖e
a
σ
|·|

1
σ û(t)‖L1(R3) =

∫
R3

e
a
σ
|ξ|

1
σ |û(ξ)| dξ

≤
(∫

R3

(1 + |ξ|2)−se
2( a
σ
− a√

σ
)|ξ|

1
σ
dξ

) 1
2
(∫

R3

(1 + |ξ|2)se
2 a√

σ
|ξ|

1
σ |û(ξ)|2 dξ

) 1
2

≤
(∫

R3

|ξ|−2se
2( a
σ
− a√

σ
)|ξ|

1
σ
dξ

) 1
2
(∫

R3

(1 + |ξ|2)se
2 a√

σ
|ξ|

1
σ |û(ξ)|2 dξ

) 1
2

≤ Ca,σ,s‖u(t)‖Hs
a√
σ
,σ

(R3), (2.46)

for all t ∈ [0, T ∗a ), where

C2
a,σ,s :=

∫
R3

1

|ξ|2s
e
−2a( 1√

σ
− 1
σ

)|ξ|
1
σ
dξ = 4πσ

[
2a

(
1√
σ
− 1

σ

)]−σ(3−2s)

Γ(σ(3− 2s)).

(Recall that s < 3/2 and σ > 1). This concludes the proof of Theorem 2.2.4.

2.2.5 Generalization of the Blow–up Criteria

We are ready to prove the blow–up criteria given in (2.3), (2.4), (2.5) and (2.7) with
n > 1. Actually, it is enough to show the case n = 2; since, the proof of the general case
follows by applying a simple argument of induction.

Theorem 2.2.5. Assume that a > 0, σ > 1 and s0 ∈ (1
2
, 3

2
). Let u0 ∈ Hs0

a,σ(R3) such that
divu0 = 0. Consider that u ∈ C([0, T ∗a );Hs

a,σ(R3)), for all s ∈ (1
2
, s0], is the maximal solution

for the Navier-Stokes equations (2.1) obtained in Theorem 2.1.2. If T ∗a <∞, then

i) lim sup
t↗T ∗a

‖u(t)‖Hs
a√
σ
,σ

(R3) =∞;

ii)

∫ T ∗a

t

‖e
a

σ
√
σ
|·|

1
σ
û(τ)‖2

L1(R3) dτ =∞;

iii) ‖e
a

σ
√
σ
|·|

1
σ
û(t)‖L1(R3) ≥

8π3√µ√
T ∗a − t

;

iv) ‖u(t)‖Hs
a
σ ,σ

(R3) ≥
8π3√µ

C1

√
T ∗a − t

,

52



for all t ∈ [0, T ∗a ), where

C1 = Ca,σ,s :=
{

4πσ
[
2
a√
σ

( 1√
σ
− 1

σ

)]−σ(3−2s)

Γ(σ(3− 2s))
} 1

2
.

Proof. First of all, let us mention that this result is, in its most part, an adaptation of the
proofs of the theorems established before. Understood this, notice that (2.46) implies

lim sup
t↗T ∗a

‖u(t)‖Hs
a√
σ
,σ

(R3) =∞. (2.47)

This demonstrates i).

By applying i), as in the proof of in Theorem 2.2.2, one can infer that∫ T ∗a

t

‖e
a

σ
√
σ
|·|

1
σ
û(τ)‖2

L1(R3) dτ =∞, ∀ t ∈ [0, T ∗a ).

It proves ii).

Consequently, iii) follows from ii) and the proof of Theorem 2.2.3.

Moreover, as an immediate consequence of (2.47), one obtains

T ∗a ≥ T ∗a√
σ
. (2.48)

Thus, using the inequalities (2.45) and (2.48), we reach

T ∗a = T ∗a√
σ
. (2.49)

Then, as in (2.46), by Cauchy-Schwuarz’s inequality, we obtain

8π3√µ√
T ∗a√

σ
− t
≤ ‖e

a
σ
√
σ
|·|

1
σ
û(t)‖L1(R3) =

∫
R3

e
a

σ
√
σ
|ξ|

1
σ |û(ξ)| dξ

≤
(∫

R3

(1 + |ξ|2)−se
−2( a

σ
− a
σ
√
σ

)|ξ|
1
σ
dξ

) 1
2
(∫

R3

(1 + |ξ|2)se
2a
σ
|ξ|

1
σ |û(ξ)|2 dξ

) 1
2

≤ Ca,σ,s‖u(t)‖Hs
a
σ ,σ

(R3), (2.50)

for all t ∈ [0, T ∗a√
σ
), where

C2
a,σ,s =

∫
R3

1

|ξ|2s
e
−2a( 1

σ
− 1
σ
√
σ

)|ξ|
1
σ
dξ = 4πσ

[
2
a√
σ

(
1√
σ
− 1

σ

)]−σ(3−2s)

Γ(σ(3− 2s)).

By (2.49) and (2.50), one has

‖u(t)‖Hs
a
σ ,σ

(R3) ≥
8π3√µ

Ca,σ,s
√
T ∗a − t

, ∀ t ∈ [0, T ∗a ). (2.51)
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This completes the proof of iv).

Remark 2.2.6. Passing to the limit superior, as t↗ T ∗a , in (2.51), we deduce

lim sup
t↗T ∗a

‖u(t)‖Hs
a
σ ,σ

(R3) =∞.

Consequently, the inequality (2.5), with n = 3, holds and the process above established can
be rewritten in order to guarantee the veracity of (2.3), (2.4), (2.5) and (2.7) with n = 3.
Therefore, inductively, one concludes that our blow–up criteria are valid for all n > 1.

2.2.6 Main Blow-up criterion Involving Hs
a,σ(R3)

To end this chapter, let us prove the lower bound given in (2.2). This inequality is our
main blow–up criterion of the solution obtained in Theorem 2.1.2.

Theorem 2.2.7. Assume that a > 0, σ > 1 and s0 ∈ (1
2
, 3

2
). Let u0 ∈ Hs0

a,σ(R3) such that
divu0 = 0. Consider that u ∈ C([0, T ∗);Hs

a,σ(R3)), for all s ∈ (1
2
, s0], is the maximal solution

for the Navier-Stokes equations (2.1) obtained in Theorem 2.1.2. If T ∗ <∞, then

‖u(t)‖Hs
a,σ(R3) ≥

aσ0+ 1
2C2 exp{aC3(T ∗ − t)− 1

3σ }
(T ∗ − t)

2(sσ+σ0)+1
6σ

, ∀ t ∈ [0, T ∗),

where C2 = Cµ,s,σ,u0 , C3 = Cµ,s,σ,u0 and 2σ0 is the integer part of 2σ.

Proof. This result follows from Lemma 1.2.12. In fact, choose δ = s+ k
2σ

, with k ∈ N ∪ {0}
and k ≥ 2σ, and δ0 = s+ 1. By using Lemmas 1.2.12 and 1.2.14, and (2.6), we obtain

8π3√µ
√
T ∗ − t

≤ ‖û(t)‖L1(R3) ≤ Cs‖u(t)‖
1− 3

2(s+ k
2σ )

L2(R3) ‖u(t)‖
3

2(s+ k
2σ )

Ḣs+ k
2σ (R3)

.

By using the energy estimate

‖u(t)‖L2(R3) ≤ ‖u(t0)‖L2(R3), ∀ 0 ≤ t0 ≤ t < T ∗, (2.52)

see (2) in [11], one has

Cµ,s,u0

(T ∗ − t) 2s
3

(
Dσ,s,µ,u0

(T ∗ − t) 1
3σ

)k

≤ ‖u(t)‖2

Ḣs+ k
2σ (R3)

, (2.53)
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where Cµ,s,u0 = (C−1
s 8π3√µ)

4s
3 ‖u0‖

6−4s
3

L2(R3) and Dσ,s,µ,u0 = (C−1
s 8π3√µ‖u0‖−1

L2(R3))
2
3σ . Multiply-

ing (2.53) by (2a)k

k!
, one obtains

Cµ,s,u0

(T ∗ − t) 2s
3

(
2aDσ,s,µ,u0

(T ∗−t)
1
3σ

)k
k!

≤
∫
R3

(2a)k

k!
|ξ|2(s+ k

2σ
)|û(t)|2 dξ

=

∫
R3

(2a|ξ| 1σ )k

k!
|ξ|2s|û(t)|2 dξ.

By summing over the set {k ∈ N; k ≥ 2σ} and applying Monotone Convergence Theorem,
it results

Cµ,s,u0

(T ∗ − t) 2s
3

[
exp

{2aDσ,s,µ,u0

(T ∗ − t) 1
3σ

}
−

∑
0≤k<2σ

(
2aDσ,s,µ,u0

(T ∗−t)
1
3σ

)k
k!

]
≤
∫
R3

[
e2a|ξ|

1
σ −

∑
0≤k<2σ

(2a|ξ| 1σ )k

k!

]
|ξ|2s|û(t)|2 dξ

≤
∫
R3

|ξ|2se2a|ξ|
1
σ |û(t)|2 dξ

≤ ‖u(t)‖2
Hs
a,σ(R3),

for all t ∈ [0, T ∗). Finally, if we define

f(x) =
[
ex −

2σ0∑
k=0

xk

k!

]
[x−(2σ0+1)e−

x
2 ], ∀x ∈ (0,∞),

where 2σ0 is the integer part of 2σ; then, f is continuous on (0,∞), f > 0, lim
x→∞

f(x) = ∞

(it means that f is bounded below as x→∞) and lim
x↗0

f(x) =
1

(2σ0 + 1)!
(it implies that f

is bounded below as x↗ 0). Hence, there is a positive constant Cσ0 such that f(x) ≥ Cσ0 ,
for all x > 0. Therefore, we can write

‖u(t)‖2
Hs
a,σ(R3) ≥

Cµ,s,σ0,u0

(T ∗ − t) 2s
3

(
2aDσ,s,µ,u0

(T ∗ − t) 1
3σ

)2σ0+1

exp

{
aDσ,s,µ,u0

(T ∗ − t) 1
3σ

}

=
a2σ0+1Cµ,s,σ,σ0,u0

(T ∗ − t)
2(sσ+σ0)+1

3σ

exp

{
aDσ,s,µ,u0

(T ∗ − t) 1
3σ

}
,

for all t ∈ [0, T ∗). Therefore, the proof of Theorem 2.2.7 is completed.
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Chapter 3

Navier-Stokes equations: local
existence, uniqueness and blow-up of
solutions in Ḣs

a,σ(R3)

Our goal is to improve the results of existence, uniqueness and some blow-up criteria
obtained by J. Benameur and L. Jlali [7] for the Navier-Stokes equations (2.1) in Ḣs

a,σ(R3)
with s ∈ (1

2
, 3

2
). By this we mean that if we take s = 1 in Theorem 3.1.1, the results presented

by J. Benameur and L. Jlali [7] for the space Ḣ1
a,σ(R3) are immediately obtained.

3.1 Local Existence and Uniqueness of Solutions

This section deals with existence and uniqueness solution of the Navier-Stokes equations
(2.1) in Sobolev-Gevrey spaces Ḣs

a,σ(R3) with s ∈ (1
2
, 3

2
). More specifically, we prove the

following result.

Theorem 3.1.1. Assume that a > 0 and s ∈ (1
2
, 3

2
). Let u0 ∈ Ḣs

a,σ(R3) such that divu0 =
0. If σ ≥ 1; then, there exist an instant T = Ts,µ,u0 > 0 and a unique solution u ∈
C([0, T ]; Ḣs

a,σ(R3)) for the Navier-Stokes equations (2.1).

Proof. Our goal is to apply the Lemma 1.2.1 in Navier-Stokes equations (2.1), for this, we
use (2.13) and (2.14) to rewrite (2.1), namely,

u(t) = eµ∆tu0 +B(u, u)(t),
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where

B(w, v)(t) = −
∫ t

0

eµ∆(t−τ)PH [
3∑
j=1

Dj(vjw)] dτ.

Moreover, we use (2.17) to guarantee that B, defined in C([0, T ]; Ḣs
a,σ(R3)) with s ∈

(1
2
, 3

2
), is continuous, more specifically

‖B(w, v)(t)‖Ḣs
a,σ(R3) ≤ Cs,µT

2s−1
4 ‖w‖L∞([0,T ];Ḣs

a,σ(R3))‖v‖L∞([0,T ];Ḣs
a,σ(R3)), (3.1)

for all t ∈ [0, T ]. Therefore, we have proved thatB : C([0, T ]; Ḣs
a,σ(R3))×C([0, T ]; Ḣs

a,σ(R3))→
C([0, T ]; Ḣs

a,σ(R3)), where s ∈ (1
2
, 3

2
), is a continuous bilinear operator. Thus, consider

T < [4Cs,µ‖u0‖Ḣs
a,σ(R3)]

− 4
2s−1 ,

where Cs,µ is given in (3.1) (use the estimative ‖eµ∆tu0‖Ḣs
a,σ(R3) ≤ ‖u0‖Ḣs

a,σ(R3), which comes

from arguments previously established), and apply Lemma 1.2.1 to obtain a unique solution
u ∈ C([0, T ]; Ḣs

a,σ(R3)) for the Navier-Stokes equations (2.1).

3.2 Blow–up Criteria for the Solution

In this section, we establish the blow–up criteria for the solution of the Navier- Stokes
equations (2.1) presented in Theorem 3.1.1, by proving appropriate theorems. It is worth
pointing out the difference between the theorems presented this section and in section 2.2,
in those presented in previous chapter we have a solution the Navier-Stokes equations (2.1)
in nonhomogeneous Sobolev-Gevrey space Hs

a,σ(R3) and the one shown below in Sobolev-

Gevrey space Ḣs
a,σ(R3).

3.2.1 Limit Superior Related to Ḣs
a,σ(R3)

Here, we generalize the arguments presented in the Appendix of [3], where it is considered
the space Ḣs

a,σ(R3) (s ∈ (1/2, 3/2)).

Theorem 3.2.1. Assume that a > 0, σ > 1 and s ∈ (1
2
, 3

2
). Let u0 ∈ Ḣs

a,σ(R3) such that

divu0 = 0. Consider that u ∈ C([0, T ]; Ḣs
a,σ(R3)) is the maximal solution for the Navier-

Stokes equations (2.1) obtained in Theorem 3.1.1. If T ∗ <∞, than

lim sup
t↗T ∗

‖u(t)‖Ḣs
a,σ(R3) =∞. (3.2)
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Proof. By contradiction, consider that this result is not valid. As a result, from the existence
of solution for (2.1) proved above, there exists an absolute positive constant C such that

‖u(t)‖Ḣs
a,σ(R3) ≤ C, ∀ t ∈ [0, T ∗). (3.3)

By integrating over the interval [0, t] the estimate (3.9) below, and using (3.3) and (1.16),
we have∫ t

0

‖∇u(τ)‖2
Ḣs
a,σ(R3)

dτ ≤ 1

µ
‖u0‖2

Ḣs
a,σ(R3)

+ Cs,a,σ,µC
4T ∗ =: Cs,a,σ,µ,u0,T ∗ , ∀ t ∈ [0, T ∗). (3.4)

On the other hand, let (κn)n∈N be a sequence such that κn ↗ T ∗, where κn ∈ (0, T ∗), for all
n ∈ N. As follows, it will be proved that

lim
n,m→∞

‖u(κn)− u(κm)‖Ḣs
a,σ(R3) = 0. (3.5)

In fact, (2.12) implies

u(κn)− u(κm) = [eµ∆κn − eµ∆κm ]u0 +

∫ κm

0

[eµ∆(κm−τ) − eµ∆(κn−τ)]PH [u · ∇u] dτ

−
∫ κn

κm

eµ∆(κn−τ)PH [u · ∇u] dτ =: I1(n,m) + I2(n,m) + I3(n,m). (3.6)

Let us estimate each integral Ij(n,m), where j = 1, 2, 3. Starting with I1(n,m), one deduces

‖I1(n,m)‖2
Ḣs
a,σ(R3)

= ‖[eµ∆κn − eµ∆κm ]u0‖2
Ḣs
a,σ(R3)

≤
∫
R3

[e−µκn|ξ|
2 − e−µT ∗|ξ|2 ]2|ξ|2se2a|ξ|

1
σ |û0(ξ)|2 dξ.

Dominated Convergence Theorem guarantees that lim
n,m→∞

‖I1(n,m)‖Ḣs
a,σ(R3) = 0 (recall that

u0 ∈ Ḣs
a,σ(R3)). Now, let us estimate I2(n,m) by applying the inequality in (2.11) in order

to obtain

‖I2(n,m)‖Ḣs
a,σ(R3)

≤
∫ κm

0

‖[eµ∆(κm−τ) − eµ∆(κn−τ)]PH(u · ∇u)‖Ḣs
a,σ(R3) dτ

=

∫ κm

0

(∫
R3

[e−µ(κm−τ)|ξ|2 − e−µ(κn−τ)|ξ|2 ]2|ξ|2se2a|ξ|
1
σ |F [PH(u · ∇u)](ξ)|2dξ

) 1
2
dτ

≤
√
T ∗
(∫ T ∗

0

∫
R3

[1− e−µ(T ∗−κm)|ξ|2 ]2|ξ|2se2a|ξ|
1
σ |F [u · ∇u](ξ)|2dξdτ

) 1
2
.

On the other hand, by Lemma 1.2.16 ii) and (3.3), one concludes

‖u · ∇u‖Ḣs
a,σ(R3) ≤ Ca,σ,s

3∑
j=1

‖uj‖Ḣs
a,σ(R3)‖Dju‖Ḣs

a,σ(R3) ≤ Ca,σ,sC‖∇u‖Ḣs
a,σ(R3). (3.7)
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As a result,
∫ T ∗

0
‖u·∇u‖2

Ḣs
a,σ(R3)

dτ <∞. Therefore, Dominated Convergence Theorem implies

I2(n,m)→ 0 in Ḣs
a,σ(R3) (see (3.4)).

Now, following an analogous argument to the one presented above to obtain Fourier
transform of the heat semigroup and, furthermore, by using (2.11), (3.7), Cauchy-Schwarz’s
inequality and (3.4), we have

‖I3(n,m)‖Ḣs
a,σ(R3) ≤

∫ κn

κm

‖u · ∇u‖Ḣs
a,σ(R3) dτ ≤ CCs,a,σ,µ,u0,T ∗

√
T ∗ − κm.

As a consequence, limn,m→∞ ‖I3(n,m)‖Ḣs
a,σ(R3) = 0. At last, (3.5) holds and, by apply-

ing this limit, there is u1 ∈ Ḣs
a,σ(R3) such that limn→∞ ‖u(κn) − u1‖Ḣs

a,σ(R3) = 0 (recall

that Ḣs
a,σ(R3) is a Hilbert space if s < 3/2). Notice that the independence of (κn)n∈N

follows the same process presented in proof of Theorem 2.2.1. Besides, a similar proof
shows us how to extend our solution beyond t = T ∗. It is a contradiction. Hence, we
must have lim supt↗T ∗ ‖u(t)‖Ḣs

a,σ(R3) = ∞. In addition, this limit superior also proves that

u /∈ C([0, T ∗]; Ḣs
a,σ(R3)) with s ∈ (1

2
, 3

2
).

3.2.2 Blow–up of the Integral Related to L1(R3)

The next theorem might be written as a corollary of Theorem 3.2.1 since the first one
follows from this last result.

Theorem 3.2.2. Assume that a > 0, σ > 1 and s ∈ (1
2
, 3

2
). Let u0 ∈ Ḣs

a,σ(R3) such that

divu0 = 0. Consider that u ∈ C([0, T ∗); Ḣs
a,σ(R3)) is the maximal solution for the Navier-

Stokes equations (2.1) obtained in Theorem 3.1.1. If T ∗ <∞, then∫ T ∗

t

‖e
a
σ
|·|

1
σ û(τ)‖2

L1(R3) dτ =∞.

Proof. Arguing as in proof of Theorem 2.2.2, we can write

1

2

d

dt
‖u(t)‖2

Ḣs
a,σ(R3)

+ µ‖∇u(t)‖2
Ḣs
a,σ(R3)

≤ ‖∇u‖Ḣs
a,σ(R3)‖u⊗ u‖Ḣs

a,σ(R3). (3.8)

Now, our goal is to find an estimate for the term ‖u ⊗ u‖Ḣs
a,σ(R3) obtained above. Thus, by

applying Lemma 1.2.16 i) (s ∈ (1/2, 3/2)), one has

‖u⊗ u‖2
Ḣs
a,σ(R3)

=
3∑

j,k=1

‖ujuk‖2
Ḣs
a,σ(R3)

≤ Cs‖e
a
σ
|·|

1
σ û‖2

L1(R3)‖u‖2
Ḣs
a,σ(R3)

.
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Replacing this inequality in (3.8) and using Young’s inequality, it results that

1

2

d

dt
‖u(t)‖2

Ḣs
a,σ(R3)

+
µ

2
‖∇u(t)‖2

Ḣs
a,σ(R3)

≤ Cs,µ‖e
a
σ
|·|

1
σ û‖2

L1(R3)‖u‖2
Ḣs
a,σ(R3)

. (3.9)

Let 0 ≤ t ≤ T < T ∗ in order to get, by Gronwall’s inequality (differential form), the
inequality

‖u(T )‖2
Ḣs
a,σ(R3)

≤ ‖u(t)‖2
Ḣs
a,σ(R3)

exp{Cs,µ
∫ T

t

‖e
a
σ
|·|

1
σ û(τ)‖2

L1(R3) dτ}.

Passing to the limit superior, as T ↗ T ∗, Theorem 3.2.1 implies∫ T ∗

t

‖e
a
σ
|·|

1
σ û(τ)‖2

L1(R3) dτ =∞, ∀ t ∈ [0, T ∗).

3.2.3 Blow–up Inequality Involving L1(R3)

The theorem below could be stated as a corollary of Theorem 3.2.2.

Theorem 3.2.3. Assume that a > 0, σ > 1 and s ∈ (1
2
, 3

2
). Let u0 ∈ Ḣs

a,σ(R3) such that

divu0 = 0. Consider that u ∈ C([0, T ∗); Ḣs
a,σ(R3)) is the maximal solution for the Navier-

Stokes equations (2.1) obtained in Theorem 3.1.1. If T ∗ <∞, then

‖e
a
σ
|·|

1
σ û(t)‖L1(R3) ≥

8π3√µ
√
T ∗ − t

, ∀ t ∈ [0, T ∗).

Proof. Arguing as in proof of Theorem 2.2.3 and using Theorem 3.2.2, we have

64π6µ ≤ ‖e
a
σ
|·|

1
σ û(t)‖2

L1(R3)(T
∗ − t), ∀ t ∈ [0, T ∗). (3.10)

3.2.4 Blow–up Inequality involving Ḣs
a,σ(R3)

Let us recall the following notation: T ∗ω < ∞ denotes the first blow-up time for the
solution u ∈ C([0, T ∗ω); Ḣs

ω,σ(R3)), where ω > 0.
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Theorem 3.2.4. Assume that a > 0, σ > 1 and s ∈ (1
2
, 3

2
). Let u0 ∈ Ḣs

a,σ(R3) such that

divu0 = 0. Consider that u ∈ C([0, T ∗a ); Ḣs
a,σ(R3)) is the maximal solution for the Navier-

Stokes equations (2.1) obtained in Theorem 3.1.1. If T ∗a <∞, then

‖u(t)‖Ḣs
a√
σ
,σ

(R3) ≥
8π3√µ

C1

√
T ∗a − t

, ∀ t ∈ [0, T ∗a ),

where C1 :=
{

4πσ
[
2a
( 1√

σ
− 1

σ

)]−σ(3−2s)

Γ(σ(3− 2s))
} 1

2
.

Proof. The following embedding Ḣs
a,σ(R3) ↪→ Ḣs

a√
σ
,σ(R3) holds; then, we can guarantee, by

the existence of solution for (2.1), that u ∈ C([0, T ∗a ), Ḣs
a√
σ
,σ(R3)); since, u ∈ C([0, T ∗a ), Ḣs

a,σ(R3)).

On the other hand, the inequality ‖u(t)‖Ḣs
a√
σ
,σ

(R3) ≤ ‖u(t)‖Ḣs
a,σ(R3), implies that T ∗a√

σ
≥ T ∗a .

Moreover, by applying (3.10) and Cauchy-Schwarz’s inequality (similarly to (1.16)), it follows
that

8π3√µ√
T ∗a − t

≤ ‖e
a
σ
|·|

1
σ û(t)‖L1(R3) ≤ Ca,σ,s‖u(t)‖Ḣs

a√
σ
,σ

(R3), ∀ t ∈ [0, T ∗a ), (3.11)

where C2
a,σ,s = 4πσ

[
2a
(

1√
σ
− 1

σ

)]−σ(3−2s)

Γ(σ(3− 2s)) <∞.

3.2.5 Generalization of the Blow–up Criteria

Now, let us apply a simple argument of induction to prove the blow–up criteria given in
Theorems 3.2.1, 3.2.2, 3.2.3 and 3.2.4, for n > 1.

Theorem 3.2.5. Assume that a > 0, σ > 1 and s ∈ (1
2
, 3

2
). Let u0 ∈ Ḣs

a,σ(R3) such that

divu0 = 0. Consider that u ∈ C([0, T ∗a ); Ḣs
a,σ(R3)) is the maximal solution for the Navier-

Stokes equations (2.1) obtained in Theorem 3.1.1. If T ∗a <∞, then

i) lim sup
t↗T ∗a

‖u(t)‖Ḣs
a

(
√
σ)(n−1)

,σ
(R3) =∞;

ii)

∫ T ∗a

t

‖e
a

σ(
√
σ)(n−1)

|·|
1
σ

û(τ)‖2
L1(R3) dτ =∞;

iii) ‖e
a

σ(
√
σ)(n−1)

|·|
1
σ

û(t)‖L1(R3) ≥
8π3√µ√
T ∗a − t

;
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iv) ‖u(t)‖Ḣs
a

(
√
σ)n

,σ
(R3) ≥

8π3√µ
C1

√
T ∗a − t

,

for all t ∈ [0, T ∗a ), n ∈ N; where

C1 = Ca,σ,s :=
{

4πσ
[
2

a

(
√
σ)(n−1)

( 1√
σ
− 1

σ

)]−σ(3−2s)

Γ(σ(3− 2s))
} 1

2
.

Proof. Notice that (3.11) implies lim sup
t↗T ∗a

‖u(t)‖Ḣs
a√
σ
,σ

(R3) =∞. This limit superior is i) with

n = 2. As it was discussed before, we can infer that∫ T ∗

t

‖e
a

σ
√
σ
|·|

1
σ
û(τ)‖2

L1(R3) dτ =∞, ∀ t ∈ [0, T ∗).

(It proves ii) with n = 2). It concludes iii) with n = 2. Moreover, as an immediate
consequence of the limit superior above, one obtains T ∗a ≥ T ∗a√

σ
. Hence, we deduce T ∗a = T ∗a√

σ
.

Now, reexamining the above steps with a√
σ

instead of a, as in (3.11), one has

8π3√µ√
T ∗a√

σ
− t
≤ ‖e

a
σ
√
σ
|·|

1
σ
û(t)‖L1(R3) ≤ C a√

σ
,σ,s‖u(t)‖Ḣs

a
σ ,σ

(R3), ∀ t ∈ [0, T ∗a√
σ
). (3.12)

The equality T ∗a = T ∗a√
σ

and (3.12) imply

‖u(t)‖Ḣs
a
σ ,σ

(R3) ≥
8π3√µ

C1

√
T ∗ − t

,

for all t ∈ [0, T ∗a ). It proves iv) with n = 2. Passing to the limit superior, as t ↗ T ∗a , one
can get lim supt↗T ∗a ‖(u, b)(t)‖Ḣs

a
σ ,σ

(R3) =∞. Thereby, i) with n = 3 is established. It is easy

to observe that the rest of the proof follows by induction.

3.2.6 Main Blow-up criterion Involving Ḣs
a,σ(R3)

At last, let us prove the inequality that is our main blow–up criterion of the solution
obtained in Theorem 3.1.1.

Theorem 3.2.6. Assume that a > 0, σ > 1 and s ∈ (1
2
, 3

2
). Let u0 ∈ Ḣs

a,σ(R3) such that

divu0 = 0. Consider that u ∈ C([0, T ∗); Ḣs
a,σ(R3)) is the maximal solution for the Navier-

Stokes equations (2.1) obtained in Theorem 3.1.1. If T ∗ <∞, then

aσ0+ 1
2C2 exp{aC3(T ∗ − t)− 1

3σ }
(T ∗ − t)

2(sσ+σ0)+1
6σ

≤ ‖u(t)‖Ḣs
a,σ(R3), provided that u0 ∈ L2(R3),

for all t ∈ [0, T ∗), where C2 = Cµ,s,σ,u0 , C3 = Cµ,s,σ,u0 and 2σ0 is the integer part of 2σ.
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Proof. Take δ = s+ k
2σ

, with k ∈ N ∪ {0} and k ≥ 2σ, and δ0 = s+ 1. Now, using Lemmas
1.2.12 and 1.2.13, and Dominated Convergence Theorem in Theorem 3.2.5 iii), we deduce

8π3√µ
√
T ∗ − t

≤ ‖û(t)‖L1(R3) ≤ Cs‖u(t)‖
1− 3

2(s+ k
2σ )

L2(R3) ‖u(t)‖
3

2(s+ k
2σ )

Ḣs+ k
2σ (R3)

.

Consequently, by using the inequality ‖u(t)‖L2(R3) ≤ ‖u0‖L2(R3), for all 0 ≤ t < T ∗ (see (4)
in [4]), one infers

Cµ,s,u0,b0

(T ∗ − t) 2s
3

(
Dσ,s,µ,u0

(T ∗ − t) 1
3σ

)k

≤ ‖u(t)‖2

Ḣs+ k
2σ (R3)

, (3.13)

where Cµ,s,u0 = (C−1
s 8π3√µ)

4s
3 ‖u0‖

6−4s
3

L2(R3) and Dσ,s,µ,u0 = (C−1
s 8π3√µ‖u0‖−1

L2(R3))
2
3σ . From this

point, just follow the same steps as in proof of Theorem 2.2.7.
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Chapter 4

The Magneto–Hydrodynamic
equations: local existence, uniqueness
and blow-up of solutions in Ḣs

a,σ(R3)

Consider the unforced Magneto–Hydrodynamic (MHD) equations for incompressible flows
on all space R3:


ut + u · ∇u + ∇(p+ 1

2
| b |2) = µ∆u + b · ∇b, x ∈ R3, t ≥ 0,

bt + u · ∇b = ν ∆b + b · ∇u, x ∈ R3, t ≥ 0,
div u = div b = 0, x ∈ R3, t ≥ 0,
u(x, 0) = u0(x), b(x, 0) = b0(x), x ∈ R3,

(4.1)

Here u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) ∈ R3 denotes the incompressible velocity field,
b(x, t) = (b1(x, t), b2(x, t), b3(x, t)) ∈ R3 the magnetic field and p(x, t) ∈ R the hydrostatic
pressure. The positive constants µ and ν are associated with specific properties of the fluid:
The constant µ is the kinematic viscosity and ν−1 is the magnetic Reynolds number. The
initial data for the velocity and magnetic fields, given by u0 and b0 in (4.1), are assumed
to be divergence free, i.e., divu0 = div b0 = 0. Note that the MHD system reduces to the
classical incompressible Navier–Stokes system if b = 0.

We shall study the above system using the Sobolev–Gevrey spaces Ḣs
a,σ(R3). More pre-

cisely, we shall obtain solutions with (u, b) ∈ C([0, T ∗); Ḣs
a,σ(R3)) where 1

2
< s < 3

2
, a > 0

and σ ≥ 1. Even in the Navier–Stokes case it is not known if T ∗ =∞ always holds. In this
paper we shall derive blow–up rates for the solution if T ∗ is finite.

In a recent paper, J. Benameur and L. Jlali [7] proved blow–up criteria for the Navier–
Stokes equations in Sobolev–Gevrey spaces. This chapter extends the results of [7] from the
Navier–Stokes to the MHD system. Also, we prove the blow–up inequality for 1

2
< s < 3

2
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whereas only the value s = 1 was considerded in [7]. For further blow–up results for the
Navier–Stokes and MHD systems we refer to [2, 3, 7, 10, 11, 12, 28, 29, 32, 34, 42] and
references therein.

4.1 Local Existence and Uniqueness of Solutions

The following Theorem one guarantees the existence of a finite time T > 0 and a unique
solution (u, b) ∈ C([0, T ]; Ḣs

a,σ(R3)) with s ∈ (1
2
, 3

2
), a > 0 and σ ≥ 1, for the MHD equations

(4.1).

Theorem 4.1.1. Assume that a > 0, σ ≥ 1 and s ∈ (1
2
, 3

2
). Let (u0, b0) ∈ Ḣs

a,σ(R3) such that
divu0 = div b0 = 0. Then, there exist an instant T = Ts,µ,ν,u0,b0 > 0 and a unique solution
(u, b) ∈ C([0, T ]; Ḣs

a,σ(R3)) for the MHD equations (4.1).

Proof. We first proceed formally and apply the heat semigroup eµ∆(t−τ), with τ ∈ [0, t], to
the velocity equation in (4.1). Integration in time yields∫ t

0

eµ∆(t−τ)uτ dτ +

∫ t

0

eµ∆(t−τ)
(
u · ∇u− b · ∇b+∇(p+

1

2
|b|2)

)
dτ =

µ

∫ t

0

eµ∆(t−τ)∆u dτ.

Using integration by parts one deduces

u(t) = eµ∆tu0 −
∫ t

0

eµ∆(t−τ)
(
u · ∇u− b · ∇b+∇(p+

1

2
|b|2)

)
dτ.

Let us recall that the Helmholtz’s projector PH (see Section 7.2 in [32] and references therein)
is well defined, yielding

PH(u · ∇u− b · ∇b) = u · ∇u− b · ∇b+∇(p+
1

2
|b|2).

As a result, it follows that

u(t) = eµ∆tu0 −
∫ t

0

eµ∆(t−τ)PH(u · ∇u− b · ∇b) dτ.
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Therefore,

u(t) = eµ∆tu0 −
∫ t

0

eµ∆(t−τ)PH(u · ∇u− b · ∇b) dτ

= eµ∆tu0 −
∫ t

0

eµ∆(t−τ)PH [
3∑
j=1

(ujDju− bjDjb)] dτ

= eµ∆tu0 −
∫ t

0

eµ∆(t−τ)PH [
3∑
j=1

Dj(uju− bjb)] dτ,

provided that divu = div b = 0. Hence,

u(t) = eµ∆tu0 −
∫ t

0

eµ∆(t−τ)PH [
3∑
j=1

Dj(uju− bjb)] dτ. (4.2)

Next, our goal is to present an equality for the field b analogous to (4.2). By applying
the heat semigroup eν∆(t−τ), with τ ∈ [0, t], to the second equation in (4.1) and integrating
in time, we obtain∫ t

0

eν∆(t−τ)bτ dτ +

∫ t

0

eν∆(t−τ)[u · ∇b− b · ∇u] dτ = ν

∫ t

0

eν∆(t−τ)∆b dτ.

Using integrating by parts again, we have

b(t) = eν∆tb0 −
∫ t

0

eν∆(t−τ)[u · ∇b− b · ∇u] dτ.

As u and b are divergence free (see (4.1)), it follows that

b(t) = eν∆tb0 −
∫ t

0

eν∆(t−τ)[
3∑
j=1

(ujDjb− bjDju)] dτ

= eν∆tb0 −
∫ t

0

eν∆(t−τ)[
3∑
j=1

Dj(ujb− bju)] dτ,

that is

b(t) = eν∆tb0 −
∫ t

0

eν∆(t−τ)[
3∑
j=1

Dj(ujb− bju)] dτ. (4.3)

By (4.2) and (4.3), one obtains

(u, b)(t) = (eµ∆tu0, e
ν∆tb0) +B((u, b), (u, b))(t), (4.4)
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where

B((w, v), (γ, φ))(t) =

∫ t

0

(−eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)],−eν∆(t−τ)[
3∑
j=1

Dj(wjφ− vjγ)]) dτ.

(4.5)

Here w, v, γ, and φ belong to a suitable function space that we now discuss.

Let us estimate B((w, v), (γ, φ))(t) in Ḣs
a,σ(R3) with 1/2 < s < 3/2, a > 0 and σ ≥ 1. It

follows from the definition of the space Ḣs
a,σ(R3) that

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖2
Ḣs
a,σ(R3)

=

∫
R3

|ξ|2se2a|ξ|
1
σ |F{eµ∆(t−τ)PH [

3∑
j=1

Dj(γjw − vjφ)]}(ξ)|2 dξ.

As a consequence, we have

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖2
Ḣs
a,σ(R3)

=

∫
R3

e−2µ(t−τ)|ξ|2|ξ|2se2a|ξ|
1
σ |F{PH [

3∑
j=1

Dj(γjw − vjφ)]}(ξ)|2 dξ.

By applying (2.11), we can write

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖2
Ḣs
a,σ(R3)

≤
∫
R3

e−2µ(t−τ)|ξ|2|ξ|2se2a|ξ|
1
σ |

3∑
j=1

F [Dj(γjw − vjφ)](ξ)|2 dξ

≤
∫
R3

e−2µ(t−τ)|ξ|2|ξ|2se2a|ξ|
1
σ |F(w ⊗ γ − φ⊗ v)(ξ) · ξ|2 dξ

≤
∫
R3

e−2µ(t−τ)|ξ|2|ξ|2s+2e2a|ξ|
1
σ |F(w ⊗ γ − φ⊗ v)(ξ)|2 dξ.

Rewriting the last integral, we have

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖2
Ḣs
a,σ(R3)

≤
∫
R3

|ξ|5−2se−2µ(t−τ)|ξ|2|ξ|4s−3e2a|ξ|
1
σ |F(w ⊗ γ − φ⊗ v)(ξ)|2 dξ.
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As a result, by using Lemma 1.2.19, it follows that

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖2
Ḣs
a,σ(R3)

≤
(5−2s

4eµ
)
5−2s

2

(t− τ)
5−2s

2

∫
R3

|ξ|4s−3e2a|ξ|
1
σ |F(w ⊗ γ − φ⊗ v)(ξ)|2 dξ

=:
Cs,µ

(t− τ)
5−2s

2

‖w ⊗ γ − φ⊗ v‖2

Ḣ
2s− 3

2
a,σ (R3)

,

since s < 3/2.

On the other hand, by using Lemma 1.2.7, one infers

‖w ⊗ γ‖2

Ḣ
2s− 3

2
a,σ (R3)

=

∫
R3

|ξ|4s−3e2a|ξ|
1
σ |ŵ ⊗ γ(ξ)|2 dξ

=
3∑

j,k=1

∫
R3

|ξ|4s−3e2a|ξ|
1
σ |γ̂jwk(ξ)|2 dξ

=
3∑

j,k=1

‖γjwk‖2

Ḣ
2s− 3

2
a,σ (R3)

≤ Cs‖w‖2
Ḣs
a,σ(R3)

‖γ‖2
Ḣs
a,σ(R3)

, (4.6)

provided that 0 < s < 3/2. Therefore, one deduces

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖Ḣs
a,σ(R3) ≤

Cs,µ

(t− τ)
5−2s

4

‖(w, v)‖Ḣs
a,σ(R3)‖(γ, φ)‖Ḣs

a,σ(R3).

By integrating the above estimate over time from 0 to t, we conclude∫ t

0

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖Ḣs
a,σ(R3) dτ

≤ Cs,µ

∫ t

0

‖(w, v)‖Ḣs
a,σ(R3)‖(γ, φ)‖Ḣs

a,σ(R3)

(t− τ)
5−2s

4

dτ

≤ Cs,µT
2s−1

4 ‖(w, v)‖L∞([0,T ];Ḣs
a,σ(R3))‖(γ, φ)‖L∞([0,T ];Ḣs

a,σ(R3)), (4.7)

for all t ∈ [0, T ] (recall that s > 1/2).

Analogously, we can write∫ t

0

‖eν∆(t−τ)[
3∑
j=1

Dj(wjφ− vjγ)]‖Ḣs
a,σ(R3) dτ

≤ Cs,νT
2s−1

4 ‖(w, v)‖L∞([0,T ];Ḣs
a,σ(R3))‖(γ, φ)‖L∞([0,T ];Ḣs

a,σ(R3)), (4.8)
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for all t ∈ [0, T ].

By (4.5), we can assure that (4.7) and (4.8) imply the bound

‖B((w, v), (γ, φ))(t)‖Ḣs
a,σ(R3) ≤ Cs,µ,νT

2s−1
4 ‖(w, v)‖L∞([0,T ];Ḣs

a,σ(R3))‖(γ, φ)‖L∞([0,T ];Ḣs
a,σ(R3)),

(4.9)

for all t ∈ [0, T ].

To summarize, it has been shown that

‖eν∆tb0‖2
Ḣs
a,σ(R3)

=

∫
R3

|ξ|2se2a|ξ|
1
σ |F{eν∆tb0}(ξ)|2 dξ

=

∫
R3

e−2νt|ξ|2|ξ|2se2a|ξ|
1
σ |b̂0(ξ)|2 dξ

≤
∫
R3

|ξ|2se2a|ξ|
1
σ |b̂0(ξ)|2 dξ = ‖b0‖2

Ḣs
a,σ(R3)

. (4.10)

Therefore, we have established the following estimate:

‖(eµ∆tu0, e
ν∆tb0)‖Ḣs

a,σ(R3) ≤ ‖(u0, b0)‖Ḣs
a,σ(R3).

Notice that B : C([0, T ]; Ḣs
a,σ(R3)) × C([0, T ]; Ḣs

a,σ(R3)) → C([0, T ]; Ḣs
a,σ(R3)) (with

s ∈ (1
2
, 3

2
), a > 0 and σ ≥ 1) is a bilinear operator, which is continuous (see (4.5) and (4.9)).

Choosing a time T > 0 with

T <
1

[4Cs,µ,ν‖(u0, b0)‖Ḣs
a,σ(R3)]

4
2s−1

,

where Cs,µ,ν is given in (4.9), we can apply Lemma 1.2.1 to obtain a unique solution (u, b) ∈
C([0, T ]; Ḣs

a,σ(R3)) for the equation (4.4).

This completes the proof of Theorem 4.1.1.

4.2 Blow–up Criteria for the Solution

4.2.1 Limit Superior Related to Ḣs
a,σ(R3)

By assuming that [0, T ∗) is the maximal interval of existence for the solution (u, b)(x, t)
obtained in Theorem 4.1.1 with T ∗ finite, let us present our blow-up criteria for the solution
(u, b) ∈ C([0, T ∗); Ḣs

a,σ(R3)) with s ∈ (1
2
, 3

2
) of the MHD equations (4.1).
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Theorem 4.2.1. Assume that a > 0, σ > 1 and s ∈ (1
2
, 3

2
). Let (u0, b0) ∈ Ḣs

a,σ(R3) such that

divu0 = div b0 = 0. Assume that (u, b) ∈ C([0, T ∗); Ḣs
a,σ(R3)) is the solution for the MHD

equations (4.1) in the maximal time interval 0 ≤ t < T ∗. If T ∗ <∞, then

lim sup
t↗T ∗

‖(u, b)(t)‖Ḣs
a,σ(R3) =∞.

Proof. We first generalize the arguments given in the Appendix of [7]. We prove this theorem
by contradiction. Suppose the solution (u, b)(t) exists only in the finite time interval 0 ≤ t <
T ∗ and

lim sup
t↗T ∗

‖(u, b)(t)‖Ḣs
a,σ(R3) <∞. (4.11)

We shall prove that the solution can be extended beyond t = T ∗.

By (4.11) and Theorem 4.1.1 (since s ∈ (1
2
, 3

2
)), there exists an absolute constant C with

‖(u, b)(t)‖Ḣs
a,σ(R3) ≤ C, ∀ t ∈ [0, T ∗). (4.12)

Integrating the inequality (4.28) below in time and applying (4.12) and (1.16), one concludes

‖(u, b)(t)‖2
Ḣs
a,σ(R3)

+ θ

∫ t

0

‖∇(u, b)(τ)‖2
Ḣs
a,σ(R3)

dτ ≤ ‖(u0, b0)‖2
Ḣs
a,σ(R3)

+ Cs,a,σ,θC
4T ∗,

for all t ∈ [0, T ∗), where θ = min{µ, ν}. Consequently,∫ t

0

‖∇(u, b)(τ)‖2
Ḣs
a,σ(R3)

dτ ≤ 1

θ
‖(u0, b0)‖2

Ḣs
a,σ(R3)

+ Cs,a,σ,θC
4T ∗

=: Cs,a,σ,θ,u0,b0,T ∗ , (4.13)

for all t ∈ [0, T ∗).

Let (κn)n∈N denote a sequence if times with 0 < κn < T ∗ and κn ↗ T ∗. We shall prove
that

lim
n,m→∞

‖(u, b)(κn)− (u, b)(κm)‖Ḣs
a,σ(R3) = 0. (4.14)

The following equality holds:

(u, b)(κn)− (u, b)(κm) = I1(n,m) + I2(n,m) + I3(n,m), (4.15)

where

I1(n,m) = ([eµ∆κn − eµ∆κm ]u0, [e
ν∆κn − eν∆κm ]b0), (4.16)
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I2(n,m) =
(∫ κm

0

[eµ∆(κm−τ) − eµ∆(κn−τ)]PH [u · ∇u− b · ∇b] dτ,∫ κm

0

[eν∆(κm−τ) − eν∆(κn−τ)](u · ∇b− b · ∇u) dτ
)
, (4.17)

and also

I3(n,m) = −
(∫ κn

κm

eµ∆(κn−τ)PH [u · ∇u− b · ∇b] dτ,
∫ κn

κm

eν∆(κn−τ)(u · ∇b− b · ∇u) dτ
)
.

(4.18)

(See (4.4) and (4.5)). On the other hand, it is easy to check that

‖[eν∆κn − eν∆κm ]b0‖2
Ḣs
a,σ(R3)

=

∫
R3

[e−νκn|ξ|
2 − e−νκm|ξ|2 ]2|ξ|2se2a|ξ|

1
σ |̂b0(ξ)|2 dξ

≤
∫
R3

[e−νκn|ξ|
2 − e−νT ∗|ξ|2 ]2|ξ|2se2a|ξ|

1
σ |̂b0(ξ)|2 dξ.

Since b0 ∈ Ḣs
a,σ(R3) and e−νκn|ξ|

2 − e−νT ∗|ξ|2 ≤ 1 for all n ∈ N the Dominated Convergence
Theorem yields that

lim
n,m→∞

‖[eν∆κn − eν∆κm ]b0‖2
Ḣs
a,σ(R3)

= 0.

Similarly,

lim
n,m→∞

‖[eµ∆κn − eµ∆κm ]u0‖2
Ḣs
a,σ(R3)

= 0.

Consequently, limn,m→∞ ‖I1(n,m)‖Ḣs
a,σ(R3) = 0 (see (4.16)).

We also have:∫ κm

0

‖[eµ∆(κm−τ) − eµ∆(κn−τ)]PH(u · ∇u− b · ∇b)‖Ḣs
a,σ(R3) dτ

=

∫ κm

0

(∫
R3

[e−µ(κm−τ)|ξ|2 − e−µ(κn−τ)|ξ|2 ]2|ξ|2se2a|ξ|
1
σ |F [PH(u · ∇u− b · ∇b)](ξ)|2dξ

) 1
2
dτ.

By applying (2.11), we obtain that∫ κm

0

‖[eµ∆(κm−τ) − eµ∆(κn−τ)]PH(u · ∇u− b · ∇b)‖Ḣs
a,σ(R3) dτ

≤
∫ T ∗

0

(∫
R3

[1− e−µ(T ∗−κm)|ξ|2 ]2|ξ|2se2a|ξ|
1
σ |F [u · ∇u− b · ∇b](ξ)|2dξ

) 1
2
dτ.

The Cauchy-Schwarz’s inequality yields that∫ κm

0

‖[eµ∆(κm−τ) − eµ∆(κn−τ)]PH(u · ∇u− b · ∇b)‖Ḣs
a,σ(R3) dτ

≤
√
T ∗
(∫ T ∗

0

∫
R3

[1− e−µ(T ∗−κm)|ξ|2 ]2|ξ|2se2a|ξ|
1
σ |F [u · ∇u− b · ∇b](ξ)|2dξdτ

) 1
2
.
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Observe that 1 − e−µ(T ∗−κm)|ξ|2 ≤ 1 for all m ∈ N and
∫ T ∗

0
‖u · ∇u − b · ∇b‖2

Ḣs
a,σ(R3)

dτ < ∞
since that

‖u · ∇u‖Ḣs
a,σ(R3) ≤ Ca,σ,s

3∑
j=1

‖uj‖Ḣs
a,σ(R3)‖Dju‖Ḣs

a,σ(R3)

≤ Ca,σ,sC‖∇u‖Ḣs
a,σ(R3). (4.19)

(See Lemma 1.2.16 ii) (0 ≤ s < 3/2 and σ > 1), (4.12) and (4.13)). Application of the
Dominated Convergence Theorem yields that

lim
n,m→∞

∫ κm

0

‖[eµ∆(κm−τ) − eµ∆(κn−τ)]PH(u · ∇u− b · ∇b)‖Ḣs
a,σ(R3) dτ = 0.

Analogously, we obtain

lim
n,m→∞

∫ κm

0

‖[eν∆(κm−τ) − eν∆(κn−τ)](u · ∇b− b · ∇u)‖Ḣs
a,σ(R3) dτ = 0.

Therefore, limn,m→∞ ‖I2(n,m)‖Ḣs
a,σ(R3) = 0 (see (4.17)).

Finally, note that

‖I3(n,m)‖Ḣs
a,σ(R3) ≤

∫ κn

κm

‖eµ∆(κn−τ)PH(u · ∇u− b · ∇b)‖Ḣs
a,σ(R3) dτ

+

∫ κn

κm

‖eµ∆(κn−τ)(u · ∇b− b · ∇u)‖Ḣs
a,σ(R3) dτ.

Following a similar process to the one proved in (4.10) and applying (2.11), one gets

‖I3(n,m)‖Ḣs
a,σ(R3) ≤

∫ κn

κm

‖u · ∇u− b · ∇b‖Ḣs
a,σ(R3) dτ

+

∫ κn

κm

‖u · ∇b− b · ∇u‖Ḣs
a,σ(R3) dτ.

Use (4.19) to obtain

‖I3(n,m)‖Ḣs
a,σ(R3) ≤ CCa,σ,s

∫ T ∗

κm

‖∇(u, b)‖Ḣs
a,σ(R3) dτ.

Therefore, by the Cauchy-Schwarz’s inequality and (4.13), one has

‖I3(n,m)‖Ḣs
a,σ(R3) ≤ Ca,σ,s

√
T ∗ − κm

(∫ T ∗

κm

‖∇(u, b)‖2
Ḣs
a,σ(R3)

dτ

) 1
2

≤ Cs,a,σ,θ,u0,b0,T ∗
√
T ∗ − κm.
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This implies that limn,m→∞ ‖I3(n,m)‖Ḣs
a,σ(R3) = 0. To summarize, we have derived the limit

statement of (4.14) from equality (4.15). In other words, we have proved that ((u, b)(κn))n∈N
is a Cauchy sequence in the Banach space Ḣs

a,σ(R3) (recall that s < 3/2). Therefore, there

is (u1, b1) ∈ Ḣs
a,σ(R3) with

lim
n→∞

‖(u, b)(κn)− (u1, b1)‖Ḣs
a,σ(R3) = 0.

Notice that the independence of (κn)n∈N follows the same process presented in proof of
Theorem 2.2.1.

Finally, consider the MHD equations (4.1) with the initial data (u1, b1) in instead of
(u0, b0) and apply Theorem 4.1.1. As usual, we can piece the two solutions together to obtain
a solution in an extended time interval, 0 ≤ t ≤ T ∗ + T with T > 0. This contradiction
proves that

lim sup
t↗T ∗

‖(u, b)(t)‖Ḣs
a,σ(R3) =∞.

4.2.2 Blow–up of the Integral Related to L1(R3)

The next result generalizes (4.1) of [7]. In fact, taking s = 1 in Theorem 4.2.2 yields
(4.1) in [7].

Theorem 4.2.2. Assume that a > 0, σ > 1 and s ∈ (1
2
, 3

2
). Let (u0, b0) ∈ Ḣs

a,σ(R3) such

that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗); Ḣs
a,σ(R3)) is the maximal solution

for the MHD equations (4.1) obtained in Theorem 4.1.1. If T ∗ <∞, then∫ T ∗

t

‖e
a
σ
|·|

1
σ (û, b̂)(τ)‖2

L1(R3) dτ =∞.

Proof. Taking the Ḣs
a,σ(R3)-inner product of the velocity equation of (4.1) with u(t) yields

〈u, ut〉Ḣs
a,σ(R3) = 〈u,−u · ∇u+ b · ∇b−∇(p+

1

2
|b|2) + µ∆u〉Ḣs

a,σ(R3). (4.20)

On the Fourier side, the second term on the right hand side of the above equation is

F(u) · F [∇(p+
1

2
|b|2)](ξ) = −i

3∑
j=1

F(uj)(ξ)ξjF [(p+
1

2
|b|2)](ξ)

= −
3∑
j=1

F(Djuj)(ξ)F [(p+
1

2
|b|2)](ξ)

= −F(divu)(ξ)F [(p+
1

2
|b|2)](ξ) = 0, (4.21)
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because u is divergence free. As a consequence, we have

〈u,∇(p+
1

2
|b|2)〉Ḣs

a,σ(R3) =

∫
R3

|ξ|2se2a|ξ|
1
σF(u) · F [∇(p+

1

2
|b|2)](ξ) dξ = 0. (4.22)

Furthermore, it happens that

û · ∆̂u(ξ) =
3∑
j=1

û · D̂2
ju(ξ) = −i

3∑
j=1

û · [ξjD̂ju(ξ)] = −
3∑
j=1

D̂ju · D̂ju(ξ) = −|∇̂u(ξ)|2.

(4.23)

Therefore,

〈u,∆u〉Ḣs
a,σ(R3) =

∫
R3

|ξ|2se2a|ξ|
1
σ û · ∆̂u(ξ) dξ = −

∫
R3

|ξ|2se2a|ξ|
1
σ |∇̂u(ξ)|2 dξ

= −‖∇u‖2
Ḣs
a,σ(R3)

. (4.24)

Using (4.22) and (4.24) in (4.20), we conclude that

1

2

d

dt
‖u(t)‖2

Ḣs
a,σ(R3)

+ µ‖∇u(t)‖2
Ḣs
a,σ(R3)

≤ |〈u, u · ∇u〉Ḣs
a,σ(R3)|+ |〈u, b · ∇b〉Ḣs

a,σ(R3)|. (4.25)

Next we consider the magnetic field equation of (4.1) and derive an estimate for b(t)
similar to the velocity estimate (4.25). Taking the Ḣs

a,σ(R3)-inner product of the magnetic
field equation with b(t) yields that

〈b, bt〉Ḣs
a,σ(R3) = 〈u,−u · ∇b+ b · ∇u+ ν∆b〉Ḣs

a,σ(R3).

By applying (4.24), with b instead of u, it follows that

1

2

d

dt
‖b(t)‖2

Ḣs
a,σ(R3)

+ ν‖∇b(t)‖2
Ḣs
a,σ(R3)

≤ |〈b, u · ∇b〉Ḣs
a,σ(R3)|+ |〈b, b · ∇u〉Ḣs

a,σ(R3)|. (4.26)

Combining (4.25) and (4.26), we conclude that

1

2

d

dt
‖(u, b)(t)‖2

Ḣs
a,σ(R3)

+ θ‖∇(u, b)(t)‖2
Ḣs
a,σ(R3)

≤ |〈u, u · ∇u〉Ḣs
a,σ(R3)|+ |〈u, b · ∇b〉Ḣs

a,σ(R3)|+ |〈b, u · ∇b〉Ḣs
a,σ(R3)|+ |〈b, b · ∇u〉Ḣs

a,σ(R3)|,

where θ = min{µ, ν}. Furthermore, since div b = 0, we have

F(∇b) · F(b⊗ u)(ξ) =
3∑
j=1

F(∇bj) · F(ujb)(ξ) =
3∑

j,k=1

F(Dkbj)(ξ)F(ujbk)(ξ)

= i
3∑

j,k=1

ξkF(bj)(ξ)F(ujbk)(ξ)

= −
3∑

j,k=1

F(bj)(ξ)F(Dk(ujbk))(ξ),
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that is

F(∇b) · F(b⊗ u)(ξ) = −
3∑

j,k=1

F(bj)(ξ)F(bkDkuj)(ξ)

= −
3∑
j=1

F(bj)(ξ)F(b · ∇uj)(ξ)

= −F(b) · F(b · ∇u)(ξ).

It follows that

〈b, b · ∇u〉Ḣs
a,σ(R3) =

∫
R3

|ξ|2se2a|ξ|
1
σF(b) · F(b · ∇u)(ξ) dξ

= −
∫
R3

|ξ|2se2a|ξ|
1
σF(∇b) · F(b⊗ u)(ξ) dξ

= −〈∇b, b⊗ u〉Ḣs
a,σ(R3).

Using that u is divergence free and applying the Cauchy-Schwarz’s inequality yields that

1

2

d

dt
‖(u, b)(t)‖2

Ḣs
a,σ(R3)

+ θ‖∇(u, b)(t)‖2
Ḣs
a,σ(R3)

≤ ‖∇u‖Ḣs
a,σ(R3)‖u⊗ u‖Ḣs

a,σ(R3) + ‖∇u‖Ḣs
a,σ(R3)‖b⊗ b‖Ḣs

a,σ(R3)

+ ‖∇b‖Ḣs
a,σ(R3)‖u⊗ b‖Ḣs

a,σ(R3) + ‖∇b‖Ḣs
a,σ(R3)‖b⊗ u‖Ḣs

a,σ(R3). (4.27)

We have to estimate the term ‖u ⊗ b‖Ḣs
a,σ(R3) appearing above. Applying Lemma 1.2.16 i)

(0 ≤ s < 3/2) yields that

‖u⊗ b‖2
Ḣs
a,σ(R3)

=

∫
R3

|ξ|2se2a|ξ|
1
σ |F(u⊗ b)(ξ)|2 dξ

=
3∑

j,k=1

∫
R3

|ξ|2se2a|ξ|
1
σ |F(bjuk)(ξ)|2 dξ

=
3∑

j,k=1

‖bjuk‖2
Ḣs
a,σ(R3)

≤ Cs

3∑
j,k=1

[‖e
a
σ
|·|

1
σ b̂j‖L1(R3)‖uk‖Ḣs

a,σ(R3) + ‖e
a
σ
|·|

1
σ ûk‖L1(R3)‖bj‖Ḣs

a,σ(R3)]
2

≤ Cs

3∑
j,k=1

[‖e
a
σ
|·|

1
σ b̂j‖2

L1(R3)‖uk‖2
Ḣs
a,σ(R3)

+ ‖e
a
σ
|·|

1
σ ûk‖2

L1(R3)‖bj‖2
Ḣs
a,σ(R3)

]

≤ Cs[‖e
a
σ
|·|

1
σ b̂‖2

L1(R3)‖u‖2
Ḣs
a,σ(R3)

+ ‖e
a
σ
|·|

1
σ û‖2

L1(R3)‖b‖2
Ḣs
a,σ(R3)

],
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or, equivalently,

‖u⊗ b‖Ḣs
a,σ(R3) ≤ Cs[‖e

a
σ
|·|

1
σ b̂‖L1(R3)‖u‖Ḣs

a,σ(R3) + ‖e
a
σ
|·|

1
σ û‖L1(R3)‖b‖Ḣs

a,σ(R3)].

Usinging this inequality in (4.27), we infer that

1

2

d

dt
‖(u, b)(t)‖2

Ḣs
a,σ(R3)

+ θ‖∇(u, b)(t)‖2
Ḣs
a,σ(R3)

≤ Cs[‖e
a
σ
|·|

1
σ û‖L1(R3) + ‖e

a
σ
|·|

1
σ b̂‖L1(R3)][‖u‖Ḣs

a,σ(R3) + ‖b‖Ḣs
a,σ(R3)]‖∇(u, b)(t)‖Ḣs

a,σ(R3).

By Young’s inequality:

1

2

d

dt
‖(u, b)(t)‖2

Ḣs
a,σ(R3)

+
θ

2
‖∇(u, b)(t)‖2

Ḣs
a,σ(R3)

≤ Cs,µ,ν [‖e
a
σ
|·|

1
σ û‖L1(R3) + ‖e

a
σ
|·|

1
σ b̂‖L1(R3)]

2[‖u‖Ḣs
a,σ(R3) + ‖b‖Ḣ1

a,σ(R3)]
2

≤ Cs,µ,ν‖e
a
σ
|·|

1
σ (û, b̂)‖2

L1(R3)‖(u, b)‖2
Ḣs
a,σ(R3)

. (4.28)

Consider 0 ≤ t ≤ T < T ∗ and apply the Gronwall’s inequality (differential form) to
obtain:

‖(u, b)(T )‖2
Ḣs
a,σ(R3)

≤ ‖(u, b)(t)‖2
Ḣs
a,σ(R3)

exp{Cs,µ,ν
∫ T

t

‖e
a
σ
|·|

1
σ (û, b̂)(τ)‖2

L1(R3) dτ}.

Passing to the limit superior, as T ↗ T ∗, Theorem 4.2.1 yields that∫ T ∗

t

‖e
a
σ
|·|

1
σ (û, b̂)(τ)‖2

L1(R3) dτ =∞, ∀ t ∈ [0, T ∗).

4.2.3 Blow–up Inequality Involving L1(R3)

In this section, we point out that (4.2) in [7] is a particular case of Theorem 4.2.3 obtained
for s = 1 and b = 0 in (4.1).

Theorem 4.2.3. Assume that a > 0, σ > 1 and s ∈ (1
2
, 3

2
). Let (u0, b0) ∈ Ḣs

a,σ(R3) such

that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗); Ḣs
a,σ(R3)) is the maximal solution

for the MHD equations (4.1) obtained in Theorem 4.1.1. If T ∗ <∞, then

‖e
a
σ
|·|

1
σ (û, b̂)(t)‖L1(R3) ≥

2π3
√
θ√

T ∗ − t
,

for all t ∈ [0, T ∗), where θ = min{µ, ν}.
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Proof. Using Fourier transformation and taking the scalar product in C3 with û(t), we obtain
for the velocity equation of the MHD system:

û · ût = −µ|∇̂u|2 − û · û · ∇u+ û · b̂ · ∇b.

We have used (4.21) and (4.23). Consequently,

1

2
∂t|û(t)|2 + µ|∇̂u|2 ≤ |û · û · ∇u|+ |û · b̂ · ∇b|. (4.29)

Similarly, by applying Fourier transformation and taking the scalar product in C3 with
b̂(t), we obtain from the magnetic field equation of the MHD system:

b̂ · b̂t = −ν|∇̂b|2 − b̂ · û · ∇b+ b̂ · b̂ · ∇u.

Therefore,

1

2
∂t|̂b(t)|2 + ν|∇̂b|2 ≤ |̂b · û · ∇b|+ |̂b · b̂ · ∇u|. (4.30)

Combining (4.29) and (4.30), it follows that

1

2
∂t|(û, b̂)(t)|2 + θ|(∇̂u, ∇̂b)|2 ≤ |û||û · ∇u|+ |û||b̂ · ∇b|+ |̂b||û · ∇b|+ |̂b||b̂ · ∇u|,

where θ = min{µ, ν}. For δ > 0 arbitrary, it is easy to check that

∂t

√
|(û, b̂)(t)|2 + δ + θ

|(∇̂u, ∇̂b)|2√
|(û, b̂)|2 + δ

≤ |û · ∇u|+ |b̂ · ∇b|+ |û · ∇b|+ |b̂ · ∇u|.

Integrating from t to T (where 0 ≤ t ≤ T < T ∗ <∞), one obtains that√
|(û, b̂)(T )|2 + δ + θ|ξ|2

∫ T

t

|(û, b̂)(τ)|2√
|(û, b̂)(τ)|2 + δ

dτ

≤
√
|(û, b̂)(t)|2 + δ +

∫ T

t

[| ̂(u · ∇u)(τ)|+ | ̂(b · ∇b)(τ)|+ | ̂(u · ∇b)(τ)|+ | ̂(b · ∇u)(τ)|] dτ,

since |(∇̂u, ∇̂b)| = |ξ||(û, b̂)|. Passing to the limit, as δ → 0, multiplying by e
a
σ
|ξ|

1
σ and

integrating over ξ ∈ R3, we obtain

‖e
a
σ
|·|

1
σ (û, b̂)(T )‖L1(R3) + θ

∫ T

t

‖e
a
σ
|·|

1
σ (∆̂u, ∆̂b)(τ)‖L1(R3) dτ

≤ ‖e
a
σ
|·|

1
σ (û, b̂)(t)‖L1(R3)

+

∫ T

t

∫
R3

e
a
σ
|ξ|

1
σ [| ̂(u · ∇u)(τ)|+ | ̂(b · ∇b)(τ)|+ | ̂(u · ∇b)(τ)|+ | ̂(b · ∇u)(τ)|] dξdτ,
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because |(∆̂u, ∆̂b)| = |ξ|2|(û, b̂)|. Moreover, we have

| ̂(u · ∇b)(ξ)| =
∣∣∣ 3∑
j=1

ûjDjb(ξ)
∣∣∣ = (2π)−3

∣∣∣ 3∑
j=1

ûj ∗ D̂jb(ξ)
∣∣∣

= (2π)−3
∣∣∣ 3∑
j=1

∫
R3

ûj(η)D̂jb(ξ − η) dη
∣∣∣

≤ (2π)−3
∣∣∣ ∫

R3

û(η) · ∇̂b(ξ − η) dη
∣∣∣ ≤ (2π)−3

∫
R3

|û(η)||∇̂b(ξ − η)| dη.

Using the estimate (1.3), we obtain that∫
R3

e
a
σ
|ξ|

1
σ | ̂(u · ∇b)(ξ)| dξ ≤ (2π)−3

∫
R3

∫
R3

e
a
σ
|ξ|

1
σ |û(η)||∇̂b(ξ − η)| dηdξ

≤ (2π)−3

∫
R3

∫
R3

e
a
σ
|η|

1
σ |û(η)|e

a
σ
|ξ−η|

1
σ |∇̂b(ξ − η)| dηdξ

= (2π)−3

∫
R3

[e
a
σ
|ξ|

1
σ |û(ξ)|] ∗ [e

a
σ
|ξ|

1
σ |∇̂b(ξ)|] dξ

= (2π)−3‖[e
a
σ
|·|

1
σ |û|] ∗ [e

a
σ
|·|

1
σ |∇̂b|]‖L1(R3).

Applying Young’s inequality for convolution it follows that∫
R3

e
a
σ
|ξ|

1
σ | ̂(u · ∇b)(ξ)| dξ ≤ (2π)−3‖e

a
σ
|·|

1
σ û‖L1(R3)‖e

a
σ
|·|

1
σ ∇̂b‖L1(R3). (4.31)

Furthermore, the Cauchy-Schwarz’s inequality implies that

‖e
a
σ
|·|

1
σ ∇̂b‖L1(R3) =

∫
R3

e
a
σ
|ξ|

1
σ |∇̂b(ξ)| dξ =

∫
R3

e
a
σ
|ξ|

1
σ |ξ||̂b(ξ)| dξ

≤
(∫

R3

e
a
σ
|ξ|

1
σ |ξ|2|̂b(ξ)| dξ

) 1
2
(∫

R3

e
a
σ
|ξ|

1
σ |̂b(ξ)| dξ

) 1
2

= ‖e
a
σ
|·|

1
σ ∆̂b‖

1
2

L1(R3)‖e
a
σ
|·|

1
σ b̂‖

1
2

L1(R3), (4.32)

since |ξ|2 |̂b| = |∆̂b| and |∇̂b| = |ξ||̂b|. Using the estimate (4.32) in (4.31) yields that∫
R3

e
a
σ
|ξ|

1
σ | ̂(u · ∇b)(ξ)| dξ ≤ (2π)−3‖e

a
σ
|·|

1
σ û‖L1(R3)‖e

a
σ
|·|

1
σ b̂‖

1
2

L1(R3)‖e
a
σ
|·|

1
σ ∆̂b‖

1
2

L1(R3).

Consequently,

‖e
a
σ
|·|

1
σ (û, b̂)(T )‖L1(R3) + θ

∫ T

t

‖e
a
σ
|·|

1
σ (∆̂u, ∆̂b)(τ)‖L1(R3) dτ

≤ ‖e
a
σ
|·|

1
σ (û, b̂)(t)‖L1(R3) + 4(2π)−3

∫ T

t

‖e
a
σ
|·|

1
σ (û, b̂)(τ)‖

3
2

L1(R3)‖e
a
σ
|·|

1
σ (∆̂u, ∆̂b)(τ)‖

1
2

L1(R3) dτ.
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By using the Cauchy-Schwarz’s inequality again, we conclude that

4(2π)−3‖e
a
σ
|·|

1
σ (û, b̂)‖

3
2

L1(R3)‖e
a
σ
|·|

1
σ (∆̂u, ∆̂b)‖

1
2

L1(R3)

≤ 1

8π6θ
‖e

a
σ
|·|

1
σ (û, b̂)‖3

L1(R3) +
θ

2
‖e

a
σ
|·|

1
σ (∆̂u, ∆̂b)‖L1(R3).

Hence,

‖e
a
σ
|·|

1
σ (û, b̂)(T )‖L1(R3) +

θ

2

∫ T

t

‖e
a
σ
|·|

1
σ (∆̂u, ∆̂b)(τ)‖L1(R3) dτ

≤ ‖e
a
σ
|·|

1
σ (û, b̂)(t)‖L1(R3) +

1

8π6θ

∫ T

t

‖e
a
σ
|·|

1
σ (û, b̂)(τ)‖3

L1(R3)dτ.

By the Gronwall’s inequality (integral form), it follows that

‖e
a
σ
|·|

1
σ (û, b̂)(T )‖2

L1(R3) ≤ ‖e
a
σ
|·|

1
σ (û, b̂)(t)‖2

L1(R3) exp

{
1

4π6θ

∫ T

t

‖e
a
σ
|·|

1
σ (û, b̂)(τ)‖2

L1(R3)dτ

}
,

for all 0 ≤ t ≤ T < T ∗, or equivalently,(
−4π6θ

) d

dT

[
exp

{
− 1

4π6θ

∫ T

t

‖e
a
σ
|·|

1
σ (û, b̂)(τ)‖2

L1(R3)dτ

}]
≤ ‖e

a
σ
|·|

1
σ (û, b̂)(t)‖2

L1(R3).

Integrate from t to t0, with 0 ≤ t ≤ t0 < T ∗, to obtain that(
−4π6θ

)
exp

{
− 1

4π6θ

∫ t0

t

‖e
a
σ
|·|

1
σ (û, b̂)(τ)‖2

L1(R3)dτ

}
+ 4π6θ ≤ ‖e

a
σ
|·|

1
σ (û, b̂)(t)‖2

L1(R3)(t0 − t).

By passing to the limit, as t0 ↗ T ∗, and using Theorem 4.2.2, we have

4π6θ ≤ ‖e
a
σ
|·|

1
σ (û, b̂)(t)‖2

L1(R3)(T
∗ − t), ∀ t ∈ [0, T ∗).

4.2.4 Blow–up Inequality involving Ḣs
a,σ(R3)

Here, T ∗ω <∞ denotes the first blow-up time for the solution (u, b) ∈ C([0, T ∗ω); Ḣs
ω,σ(R3))

of the MHD system, where ω > 0.

Theorem 4.2.4. Assume that a > 0, σ > 1 and s ∈ (1
2
, 3

2
). Let (u0, b0) ∈ Ḣs

a,σ(R3) such

that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗a ); Ḣs
a,σ(R3)) is the maximal solution

for the MHD equations (4.1) obtained in Theorem 4.1.1. If T ∗a <∞, then

‖(u, b)(t)‖Ḣs
a√
σ
,σ

(R3) ≥
2π3
√
θ

C1

√
T ∗a − t

, ∀ t ∈ [0, T ∗a ),

where θ = min{µ, ν} and C1 :=
{

4πσ
[
2a
( 1√

σ
− 1

σ

)]−σ(3−2s)

Γ(σ(3− 2s))
} 1

2
.
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Proof. To demonstrate this result it is sufficient to follow analogous steps those presented in
proof of Theorem 3.2.4.

4.2.5 Generalization of the Blow–up Criteria

Notice that the Theorems 4.2.1, 4.2.2, 4.2.3 and 4.2.4 prove the Theorem 4.2.5 in case
n = 1. From this, it is sufficient to use the induction process presented in proof of Theorem
3.2.5 to guarantee the veracity of theorem below.

Theorem 4.2.5. Assume that a > 0, σ > 1 and s ∈ (1
2
, 3

2
). Let (u0, b0) ∈ Ḣs

a,σ(R3) such

that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗a ); Ḣs
a,σ(R3)) is the maximal solution

for the MHD equations (4.1) obtained in Theorem 4.1.1. If T ∗a <∞, then

i) lim sup
t↗T ∗a

‖(u, b)(t)‖Ḣs
a

(
√
σ)(n−1)

,σ
(R3) =∞;

ii)

∫ T ∗a

t

‖e
a

σ(
√
σ)(n−1)

|·|
1
σ

(û, b̂)(τ)‖2
L1(R3) dτ =∞;

iii) ‖e
a

σ(
√
σ)(n−1)

|·|
1
σ

(û, b̂)(t)‖L1(R3) ≥
2π3
√
θ√

T ∗a − t
;

iv) ‖(u, b)(t)‖Ḣs
a

(
√
σ)n

,σ
(R3) ≥

2π3
√
θ

C1

√
T ∗a − t

,

for all t ∈ [0, T ∗a ), n ∈ N; where θ = min{µ, ν} and

C1 = Ca,σ,s :=
{

4πσ
[
2

a

(
√
σ)(n−1)

( 1√
σ
− 1

σ

)]−σ(3−2s)

Γ(σ(3− 2s))
} 1

2
.

4.2.6 Main Blow-up criterion Involving Ḣs
a,σ(R3)

Lastly, observe also that Theorem 4.2.6, by assuming s = 1 and b = 0, gives the same
lower bound as the one determined in [7].

Theorem 4.2.6. Assume that a > 0, σ > 1 and s ∈ (1
2
, 3

2
). Let (u0, b0) ∈ Ḣs

a,σ(R3) such

that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗); Ḣs
a,σ(R3)) is the maximal solution

for the MHD equations (4.1) obtained in Theorem 4.1.1. If T ∗ <∞, then

aσ0+ 1
2C2 exp{aC3(T ∗ − t)− 1

3σ }
(T ∗ − t)

2(sσ+σ0)+1
6σ

≤ ‖(u, b)(t)‖Ḣs
a,σ(R3), provided that u0 ∈ L2(R3),
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for all t ∈ [0, T ∗), where C2 = Cµ,ν,s,σ,u0,b0 , C3 = Cµ,ν,s,σ,u0,b0 and 2σ0 is the integer part of
2σ.

Proof. Choose δ = s+ k
2σ

with k ∈ N∪{0} and k ≥ 2σ and set δ0 = s+1. By using Lemmas
1.2.12 and 1.2.13, and Dominated Convergence Theorem in Theorem 4.2.5 iii), we obtain

2π3
√
θ√

T ∗ − t
≤ ‖(û, b̂)(t)‖L1(R3) ≤ Cs‖(u, b)(t)‖

1− 3

2(s+ k
2σ )

L2(R3) ‖(u, b)(t)‖
3

2(s+ k
2σ )

Ḣs+ k
2σ (R3)

,

θ = min{µ, ν}. Hence, using the inequality

‖(u, b)(t)‖L2(R3) ≤ ‖(u, b)(t0)‖L2(R3), ∀ 0 ≤ t0 ≤ t < T ∗, (4.33)

(see (2) in [11]) we obtain that

Cθ,s,u0,b0

(T ∗ − t) 2s
3

(
Dσ,s,θ,u0,b0

(T ∗ − t) 1
3σ

)k

≤ ‖(u, b)(t)‖2

Ḣs+ k
2σ (R3)

,

where
Dσ,s,θ,u0,b0 = (C−1

s 2π3
√
θ‖(u0, b0)‖−1

L2(R3))
2
3σ

and

Cθ,s,u0,b0 = (C−1
s 2π3

√
θ)

4s
3 ‖(u0, b0)‖

6−4s
3

L2(R3).

Now, just follow the same steps as in proof of Theorem 2.2.7.
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Chapter 5

The Magneto–Hydrodynamic
equations: local existence, uniqueness
and blow-up of solutions in Hs

a,σ(R3)

This chapter has two main goals: the first one is to generalize all the improvements
obtained in Chapter 2 to the MHD equations; the second one is to extend all the results
established by J. Benameur [4] from the Navier-Stokes equations to the MHD system (4.1).

5.1 Local Existence and Uniqueness of Solutions

Now, let us list our main results related to the space Hs
a,σ(R3). The first one regards to

the existence of an instant t = T > 0 and a unique solution (u, b) ∈ C([0, T ];Hs
a,σ(R3)) for

the MHD equations (4.1). More precisely, we state the following theorem.

Theorem 5.1.1. Let a > 0, σ ≥ 1 and s > 1
2

with s 6= 3
2
. Let (u0, b0) ∈ Hs

a,σ(R3) such that
divu0 = div b0 = 0. If s > 3

2
(respectively s ∈ (1

2
, 3

2
)), then there exist an time T = Ts,µ,ν,u0,b0

(respectively T = Ts,a,µ,ν,u0,b0) and a unique solution (u, b) ∈ C([0, T ];H$
a,σ(R3)), for all

$ ≤ s, of the MHD equations given in (4.1).

Proof. We know that the Magneto-Hydrodynamic equations can be rewritten as follows (see
(4.4) and (4.5)):

(u, b)(t) = (eµ∆tu0, e
ν∆tb0) +B((u, b), (u, b))(t),

where

B((w, v), (γ, φ))(t) =

∫ t

0

(−eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)],−eν∆(t−τ)[
3∑
j=1

Dj(wjφ− vjγ)]) dτ.
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From this point, we analyze the cases s ∈ (1
2
, 3

2
) and s > 3

2
separately.

1o Case: Assume that s > 3/2.

Here w, v, γ, and φ belong to an appropriate space that will be revealed next. In order to
examine (u, b)(t) in Hs

a,σ(R3), let us estimate B((w, v), (γ, φ))(t) in this same space. Thus,
we deduce

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖2
Hs
a,σ(R3)

=

∫
R3

(1 + |ξ|2)se2a|ξ|
1
σ |F{eµ∆(t−τ)PH [

3∑
j=1

Dj(γjw − vjφ)]}(ξ)|2 dξ

=

∫
R3

e−2µ(t−τ)|ξ|2(1 + |ξ|2)se2a|ξ|
1
σ |F{PH [

3∑
j=1

Dj(γjw − vjφ)]}(ξ)|2 dξ.

By applying (2.11), one can write

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖2
Hs
a,σ(R3)

≤
∫
R3

e−2µ(t−τ)|ξ|2(1 + |ξ|2)se2a|ξ|
1
σ |

3∑
j=1

F [Dj(γjw − vjφ)](ξ)|2 dξ

≤
∫
R3

e−2µ(t−τ)|ξ|2(1 + |ξ|2)se2a|ξ|
1
σ |F(w ⊗ γ − φ⊗ v)(ξ) · ξ|2 dξ

≤
∫
R3

|ξ|2e−2µ(t−τ)|ξ|2(1 + |ξ|2)se2a|ξ|
1
σ |F(w ⊗ γ − φ⊗ v)(ξ)|2 dξ.

As a result, by using Lemma 1.2.19, it follows

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖Hs
a,σ(R3) ≤ Cµ(t− τ)−

1
2‖w ⊗ γ − φ⊗ v‖Hs

a,σ(R3).

Similarly, we can write

‖
3∑
j=1

Dje
ν∆(t−τ)(wjφ− vjγ)‖Hs

a,σ(R3) ≤ Cν(t− τ)−
1
2 [‖φ⊗ w‖Hs

a,σ(R3) + ‖γ ⊗ v‖Hs
a,σ(R3)].

Consequently, one gets

‖B((w, v), (γ, φ))(t)‖Hs
a,σ(R3)

≤ Cµ,ν

[ ∫ t

0

(t− τ)−
1
2‖w ⊗ γ‖Hs

a,σ(R3) dτ +

∫ t

0

(t− τ)−
1
2‖φ⊗ v‖Hs

a,σ(R3) dτ

+

∫ t

0

(t− τ)−
1
2‖φ⊗ w‖Hs

a,σ(R3) dτ +

∫ t

0

(t− τ)−
1
2‖γ ⊗ v‖Hs

a,σ(R3) dτ
]
. (5.1)
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On the other hand, it follows

‖w ⊗ γ‖2
Hs
a,σ(R3) =

∫
R3

(1 + |ξ|2)se2a|ξ|
1
σ |ŵ ⊗ γ(ξ)|2 dξ

=
3∑

j,k=1

∫
R3

(1 + |ξ|2)se2a|ξ|
1
σ |γ̂jwk(ξ)|2 dξ

= (2π)−6

3∑
j,k=1

∫
R3

(1 + |ξ|2)se2a|ξ|
1
σ |γ̂j ∗ ŵk(ξ)|2 dξ

≤ C

∫
R3

(1 + |ξ|2)se2a|ξ|
1
σ [(|γ̂| ∗ |ŵ|)(ξ)]2 dξ.

Therefore, one deduces

‖w ⊗ γ‖2
Hs
a,σ(R3) ≤ C

∫
R3

(1 + |ξ|2)s
[∫

R3

ea|ξ|
1
σ |ŵ(η)||γ̂(ξ − η)| dη

]2

dξ.

By using (1.3), we conclude

‖w ⊗ γ‖2
Hs
a,σ(R3) ≤ C

∫
R3

(1 + |ξ|2)s
[∫

R3

ea|η|
1
σ |ŵ(η)|ea|ξ−η|

1
σ |γ̂(ξ − η)| dη

]2

dξ

= C

∫
R3

(1 + |ξ|2)s[ea|ξ|
1
σ |ŵ(ξ)| ∗ ea|ξ|

1
σ |γ̂(ξ)|]2 dξ

= C

∫
R3

(1 + |ξ|2)s{F [F−1(ea|ξ|
1
σ |ŵ(ξ)|)F−1(ea|ξ|

1
σ |γ̂(ξ)|)]}2 dξ

= C‖F−1(ea|·|
1
σ |ŵ|)F−1(ea|·|

1
σ |γ̂|)‖2

Hs(R3).

Hence, by following a similar process to that used in the proof of Lemma 1.2.8, one has

‖w ⊗ γ‖Hs
a,σ(R3) ≤ Cs‖F−1(ea|·|

1
σ |ŵ|)‖Hs(R3)‖F−1(ea|·|

1
σ |γ̂|)‖Hs(R3) = Cs‖w‖Hs

a,σ(R3)‖γ‖Hs
a,σ(R3),

since s > 3/2. Replacing this result in (5.1), one obtains

‖B((w, v), (γ, φ))(t)‖Hs
a,σ(R3)

≤ Cs,µ,ν

[ ∫ t

0

(t− τ)−
1
2‖w‖Hs

a,σ(R3)‖γ‖Hs
a,σ(R3) dτ +

∫ t

0

(t− τ)−
1
2‖φ‖Hs

a,σ(R3)‖v‖Hs
a,σ(R3) dτ

+

∫ t

0

(t− τ)−
1
2‖φ‖Hs

a,σ(R3)‖w‖Hs
a,σ(R3) dτ +

∫ t

0

(t− τ)−
1
2‖γ‖Hs

a,σ(R3)‖v‖Hs
a,σ(R3) dτ

]
.

As a consequence, if we consider T > 0, we get

‖B((w, v), (γ, φ))(t)‖Hs
a,σ(R3)

≤ Cs,µ,νT
1
2 [‖w‖L∞([0,T ];Hs

a,σ(R3)‖γ‖L∞([0,T ];Hs
a,σ(R3)) + ‖φ‖L∞([0,T ];Hs

a,σ(R3))‖v‖L∞([0,T ];Hs
a,σ(R3))

+ ‖φ‖L∞([0,T ];Hs
a,σ(R3))‖w‖L∞([0,T ];Hs

a,σ(R3)) + ‖γ‖L∞([0,T ];Hs
a,σ(R3))‖v‖L∞([0,T ];Hs

a,σ(R3))],
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for all t ∈ [0, T ]. Therefore, we deduce

‖B((w, v), (γ, φ))(t)‖Hs
a,σ(R3) ≤ Cs,µ,νT

1
2‖(w, v)‖L∞([0,T ];Hs

a,σ(R3))‖(γ, φ)‖L∞([0,T ];Hs
a,σ(R3)),

(5.2)

for all t ∈ [0, T ]. By noticing that B : C([0, T ];Hs
a,σ(R3))2 → C([0, T ];Hs

a,σ(R3)) is a bilinear
operator and continuous (see (4.5) and (5.2)), it is enough to apply Lemma 1.2.1 and consider
T small enough in order to obtain a unique solution (u, b) ∈ C([0, T ];Hs

a,σ(R3)) for the
equation (4.4). More specifically, choose

T <
1

[4Cs,µ,ν‖(u0, b0)‖Hs
a,σ(R3)]2

,

where Cs,µ,ν is given in (5.2) and

‖(eµ∆tu0, e
ν∆tb0)‖Hs

a,σ(R3) ≤ ‖(u0, b0)‖Hs
a,σ(R3).

(This estimate comes from a similar process to the one described above).

2o Case: Consider that s ∈ (1/2, 3/2).

Let us estimate B((w, v), (γ, φ))(t) in Hs
a,σ(R3). It is enough to get a lower bound to

B((w, v), (γ, φ))(t) in L2(R3), because (4.9) ensures a lower bound in Ḣs
a,σ(R3) (see Lemma

1.2.10). Following a similar process to the one presented above, we have

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖2
L2(R3) =

∫
R3

|eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)](ξ)|2 dξ.

By using Parseval’s identity, one gets

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖2
L2(R3)

= (2π)−3

∫
R3

|F{eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]}(ξ)|2 dξ

= (2π)−3

∫
R3

e−2µ(t−τ)|ξ|2|F{PH [
3∑
j=1

Dj(γjw − vjφ)]}(ξ)|2 dξ.

By using (2.11), we get

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖2
L2(R3) ≤ (2π)−3

∫
R3

|ξ|2e−2µ(t−τ)|ξ|2|F(w ⊗ γ − φ⊗ v)(ξ)|2 dξ.
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Rewriting the last integral, one has

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖2
L2(R3)

≤ (2π)−3

∫
R3

|ξ|5−2se−2µ(t−τ)|ξ|2|ξ|2s−3|F(w ⊗ γ − φ⊗ v)(ξ)|2 dξ.

As a result, by using Lemma 1.2.19, it follows

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖2
L2(R3) ≤

Cs,µ

(t− τ)
5−2s

2

‖w ⊗ γ − φ⊗ v‖2

Ḣs− 3
2 (R3)

,

since 1/2 < s < 3/2. On the other hand, by utilizing Lemma 1.2.6, one has

‖w ⊗ γ‖2

Ḣs− 3
2 (R3)

=
3∑

j,k=1

‖γjwk‖2

Ḣs− 3
2 (R3)

≤ Cs‖w‖2
Ḣs(R3)

‖γ‖2
L2(R3).

Thereby, as Hs
a,σ(R3) ↪→ Ḣs(R3) (s ≥ 0) and Lemma 1.2.10, we deduce

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖L2(R3) ≤
Cs,µ

(t− τ)
5−2s

4

‖(w, v)‖Hs
a,σ(R3)‖(γ, φ)‖Hs

a,σ(R3).

By integrating the above estimate over [0, t], we conclude∫ t

0

‖eµ∆(t−τ)PH [
3∑
j=1

Dj(γjw − vjφ)]‖L2(R3) dτ

≤ Cs,µT
2s−1

4 ‖(w, v)‖L∞([0,T ];Hs
a,σ(R3))‖(γ, φ)‖L∞([0,T ];Hs

a,σ(R3)), (5.3)

for all t ∈ [0, T ] (since that 1/2 < s < 3/2). Similarly, we can obtain∫ t

0

‖eν∆(t−τ)[
3∑
j=1

Dj(wjφ− vjγ)]‖L2(R3) dτ

≤ Cs,νT
2s−1

4 ‖(w, v)‖L∞([0,T ];Hs
a,σ(R3))‖(γ, φ)‖L∞([0,T ];Hs

a,σ(R3)), (5.4)

for all t ∈ [0, T ]. By using the definition (4.5) and applying (5.3) and (5.4), one concludes

‖B((w, v), (γ, φ))(t)‖L2(R3) ≤ Cs,µ,νT
2s−1

4 ‖(w, v)‖L∞([0,T ];Hs
a,σ(R3))‖(γ, φ)‖L∞([0,T ];Hs

a,σ(R3)),

(5.5)

for all t ∈ [0, T ]. Finally, by using Lemma 1.2.10, (4.9), (5.5) and the fact that Hs
a,σ(R3) ↪→

Ḣs
a,σ(R3) (s ≥ 0), it results

‖B((w, v), (γ, φ))(t)‖Hs
a,σ(R3) ≤ Cs,a,µ,νT

2s−1
4 ‖(w, v)‖L∞([0,T ];Hs

a,σ(R3))‖(γ, φ)‖L∞([0,T ];Hs
a,σ(R3)),

(5.6)
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for all t ∈ [0, T ]. By noticing that B : C([0, T ];Hs
a,σ(R3))2 → C([0, T ];Hs

a,σ(R3)) is a
bilinear operator and continuous (see (4.5) and (5.6)), it is enough to apply Lemma 1.2.1
and consider T small enough in order to obtain a unique solution (u, b) ∈ C([0, T ];Hs

a,σ(R3))
for the equation (4.4). More specifically, choose

T <
1

[4Cs,a,µ,ν‖(u0, b0)‖Hs
a,σ(R3)]

4
2s−1

,

where Cs,a,µ,ν is given in (5.6); since,

‖(eµ∆tu0, e
ν∆tb0)‖Hs

a,σ(R3) ≤ ‖(u0, b0)‖Hs
a,σ(R3).

(This estimate follows the steps present above).

Lastly, by assuming that $ ≤ s, it follows that u ∈ C([0, T ];H$
a,σ(R3)) since Hs

a,σ(R3) ↪→
H$
a,σ(R3).

5.2 Blow–up Criteria for the Solution

Assuming that the maximal time of existence of the solution for the MHD equation (4.1),
obtained in Theorem 5.1.1, is finite, it is possible to establish some blow-up criteria for this
same solution.

5.2.1 Limit Superior Related to Hs
a,σ(R3)

Here, we generalize the arguments presented in subsection 2.2.1 . Moreover, it is impor-
tant to point out that Theorem 5.2.2 is a generalization of the limit superior obtained in
Theorem 2.2.1 and Theorem 5.2.1 is an extension for this same limit determined in [4].

Theorem 5.2.1. Assume that s0 > 3/2, a > 0, and σ ≥ 1. Let (u0, b0) ∈ Hs0
a,σ(R3) such

that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗);Hs
a,σ(R3)), for all s ∈ (3

2
, s0], is the

maximal solution for the MHD equations (4.1) obtained in Theorem 5.1.1. If T ∗ <∞, then

lim sup
t↗T ∗

‖(u, b)(t)‖Hs
a,σ(R3) =∞.

Proof. Suppose by contradiction that Theorem 5.2.1 is not valid, i.e., assume that T ∗ <∞
is the maximal time of existence of the solution (u, b)(x, t) and consider that

lim sup
t↗T ∗

‖(u, b)(t)‖Hs
a,σ(R3) <∞. (5.7)
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As a result, we can extend the solution obtained above beyond t = T ∗. It is an absurd. Let
us prove these assertions as follows.

Assuming (5.7), and using Theorem 5.1.1, there is C ≥ 0 such that

‖(u, b)(t)‖Hs
a,σ(R3) ≤ C, ∀ t ∈ [0, T ∗). (5.8)

As a consequence, integrating over [0, t] the inequality (5.14) below, and applying (5.8),
(1.10) and the fact that Hs

a,σ(R3) ↪→ Hs
a
σ
,σ(R3), one concludes

‖(u, b)(t)‖2
Hs
a,σ(R3) + θ

∫ t

0

‖∇(u, b)(τ)‖2
Hs
a,σ(R3) dτ ≤ ‖(u0, b0)‖2

Hs
a,σ(R3) + Cs,µ,νC

4T ∗,

for all t ∈ [0, T ∗), where s > 3/2, σ ≥ 1 and θ = min{µ, ν}. As a result, we infer∫ t

0

‖∇(u, b)(τ)‖2
Hs
a,σ(R3) dτ ≤

1

θ
‖(u0, b0)‖2

Hs
a,σ(R3) + Cs,µ,νC

4T ∗ =: Cs,µ,ν,u0,b0,T ∗ , ∀ t ∈ [0, T ∗),

(5.9)

where s > 3/2 and σ ≥ 1. Now, let (κn)n∈N be a sequence such that κn ↗ T ∗, where
κn ∈ (0, T ∗), for all n ∈ N. We claim that

lim
n,m→∞

‖(u, b)(κn)− (u, b)(κm)‖Hs
a,σ(R3) = 0. (5.10)

In fact, let us begin with the following equality:

(u, b)(κn)− (u, b)(κm) = I1(n,m) + I2(n,m) + I3(n,m), (5.11)

where I1, I2, I3 were defined in (4.16), (4.17) and (4.18), respectively. On the other hand,
notice that

‖[eν∆κn − eν∆κm ]b0‖2
Hs
a,σ(R3) =

∫
R3

[e−νκn|ξ|
2 − e−νκm|ξ|2 ]2(1 + |ξ|2)se2a|ξ|

1
σ |̂b0(ξ)|2 dξ

≤
∫
R3

[e−νκn|ξ|
2 − e−νT ∗|ξ|2 ]2(1 + |ξ|2)se2a|ξ|

1
σ |̂b0(ξ)|2 dξ.

By utilizing the fact that b0 ∈ Hs
a,σ(R3) (since Hs0

a,σ(R3) ↪→ Hs
a,σ(R3) and b0 ∈ Hs0

a,σ(R3))

and that e−νκn|ξ|
2 − e−νT ∗|ξ|2 ≤ 1, for all n ∈ N, it results from the Dominated Convergence

Theorem that

lim
n,m→∞

‖[eν∆κn − eν∆κm ]b0‖2
Hs
a,σ(R3) = 0.

Analogously, one has

lim
n,m→∞

‖[eµ∆κn − eµ∆κm ]u0‖2
Hs
a,σ(R3) = 0.
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Thus, we have proved that limn,m→∞ ‖I1(n,m)‖Hs
a,σ(R3) = 0 (see (4.16)). It is also true that∫ κm

0

‖[eµ∆(κm−τ) − eµ∆(κn−τ)]PH(u · ∇u− b · ∇b)‖Hs
a,σ(R3) dτ =∫ κm

0

(∫
R3

[e−µ(κm−τ)|ξ|2 − e−µ(κn−τ)|ξ|2 ]2(1 + |ξ|2)se2a|ξ|
1
σ |F [PH(u · ∇u− b · ∇b)](ξ)|2dξ

) 1
2
dτ.

By (2.11), we can write∫ κm

0

‖[eµ∆(κm−τ) − eµ∆(κn−τ)]PH(u · ∇u− b · ∇b)‖Hs
a,σ(R3) dτ

≤
∫ T ∗

0

(∫
R3

[1− e−µ(T ∗−κm)|ξ|2 ]2(1 + |ξ|2)se2a|ξ|
1
σ |F [u · ∇u− b · ∇b](ξ)|2dξ

) 1
2
dτ.

Use Cauchy-Schwarz’s inequality in order to obtain∫ κm

0

‖[eµ∆(κm−τ) − eµ∆(κn−τ)]PH(u · ∇u− b · ∇b)‖Hs
a,σ(R3) dτ

≤
√
T ∗
(∫ T ∗

0

∫
R3

[1− e−µ(T ∗−κm)|ξ|2 ]2(1 + |ξ|2)se2a|ξ|
1
σ |F [u · ∇u− b · ∇b](ξ)|2dξdτ

) 1
2
.

Observe that 1− e−µ(T ∗−κm)|ξ|2 ≤ 1, for all m ∈ N, and
∫ T ∗

0
‖u · ∇u− b · ∇b‖2

Hs
a,σ(R3)dτ <∞;

provided that,

‖u · ∇u‖Hs
a,σ(R3) ≤ Cs

3∑
j=1

‖uj‖Hs
a,σ(R3)‖Dju‖Hs

a,σ(R3) ≤ CsC‖∇u‖Hs
a,σ(R3), (5.12)

Lemma 1.2.8 ii), (5.8) and (5.9) hold. Then, by Dominated Convergence Theorem, we
deduce

lim
n,m→∞

∫ κm

0

‖[eµ∆(κm−τ) − eµ∆(κn−τ)]PH(u · ∇u− b · ∇b)‖Hs
a,σ(R3) dτ = 0.

Following a similar argument, one reaches

lim
n,m→∞

∫ κm

0

‖[eν∆(κm−τ) − eν∆(κn−τ)](u · ∇b− b · ∇u)‖Hs
a,σ(R3) dτ = 0.

We have proved that limn,m→∞ ‖I2(n,m)‖Hs
a,σ(R3) = 0 (see (4.17)). At last, notice that

‖I3(n,m)‖Hs
a,σ(R3) ≤

∫ κn

κm

‖eµ∆(κn−τ)PH(u · ∇u− b · ∇b)‖Hs
a,σ(R3) dτ

+

∫ κn

κm

‖eµ∆(κn−τ)(u · ∇b− b · ∇u)‖Hs
a,σ(R3) dτ.

89



By using an analogous process to the described above; moreover, by applying (5.12), Cauchy-
Schwarz’s inequality and (5.9), one obtains

‖I3(n,m)‖Hs
a,σ(R3) ≤

∫ κn

κm

‖u · ∇u− b · ∇b‖Hs
a,σ(R3) dτ +

∫ κn

κm

‖u · ∇b− b · ∇u‖Hs
a,σ(R3) dτ

≤ CCs
√
T ∗ − κm

(∫ T ∗

κm

‖∇(u, b)‖2
Hs
a,σ(R3) dτ

) 1
2

≤ Cs,µ,ν,u0,b0,T ∗
√
T ∗ − κm.

where s > 3/2 and σ ≥ 1. As a result, we infer that limn,m→∞ ‖I3(n,m)‖Hs
a,σ(R3) = 0 (see

(4.18)). Thus, (5.11) implies (5.10). In addition, (5.10) means that ((u, b)(κn))n∈N is a
Cauchy sequence in the Banach space Hs

a,σ(R3). Hence, there exists (u1, b1) ∈ Hs
a,σ(R3) such

that
lim
n→∞

‖(u, b)(κn)− (u1, b1)‖Hs
a,σ(R3) = 0.

From this point, just follow the same steps as in proof of Theorem 2.5

Theorem 5.2.2. Assume that a > 0, σ > 1 and s0 ∈ (1
2
, 3

2
). Let (u0, b0) ∈ Hs0

a,σ(R3) such
that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗);Hs

a,σ(R3)), for all s ∈ (1
2
, s0], is the

maximal solution for the MHD equations (4.1) obtained in Theorem 5.1.1. If T ∗ <∞, then

lim sup
t↗T ∗

‖(u, b)(t)‖Hs
a,σ(R3) =∞.

Proof. The proof is analogous to that of the Theorem 5.2.1, except for the use of Lemma
1.2.9 instead of Lemma 1.2.8 ii) and the fact that the constants Cs,µ,ν,u0,b0,T ∗ and Cs given
in (5.9) and (5.12), respectively, depends also on a and σ.

5.2.2 Blow–up of the Integral Related to L1(R3)

It is important to emphasize that Theorem 5.2.4 is a generalization of Theorem 2.2.2
(since (u0, b0) ∈ Hs0

a,σ(R3) with 1/2 < s0 < 3/2) and Theorem 5.2.3 is an extension by
considering [4] (provided that (u0, b0) ∈ Hs0

a,σ(R3) with s0 > 3/2).

Theorem 5.2.3. Assume that s0 > 3/2, a > 0, and σ ≥ 1. Let (u0, b0) ∈ Hs0
a,σ(R3) be such

that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗);Hs
a,σ(R3)), for all s ∈ (3

2
, s0], is the

maximal solution for the MHD equations (4.1) obtained in Theorem 5.1.1. If T ∗ <∞, then∫ T ∗

t

‖e
a
σ
|·|

1
σ (û, b̂)(τ)‖2

L1(R3) dτ =∞.
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Proof. Arguing as in proof of Theorem 4.2.2, we can write

1

2

d

dt
‖(u, b)(t)‖2

Hs
a,σ(R3) + θ‖∇(u, b)(t)‖2

Hs
a,σ(R3)

≤ ‖∇u‖Hs
a,σ(R3)‖u⊗ u‖Hs

a,σ(R3) + ‖∇u‖Hs
a,σ(R3)‖b⊗ b‖Hs

a,σ(R3)

+ ‖∇b‖Hs
a,σ(R3)‖u⊗ b‖Hs

a,σ(R3) + ‖∇b‖Hs
a,σ(R3)‖b⊗ u‖Hs

a,σ(R3). (5.13)

Now, our goal is to find an estimate for the term ‖u ⊗ b‖Hs
a,σ(R3) obtained above. Thus, by

applying Lemma 1.2.8 i) (s ≥ 0), one has

‖u⊗ b‖2
Hs
a,σ(R3) =

3∑
j,k=1

‖bjuk‖2
Hs
a,σ(R3)

≤ Cs

3∑
j,k=1

[‖e
a
σ
|·|σ b̂j‖L1(R3)‖uk‖Hs

a,σ(R3) + ‖e
a
σ
|·|

1
σ ûk‖L1(R3)‖bj‖Hs

a,σ(R3)]
2

≤ Cs[‖e
a
σ
|·|

1
σ b̂‖2

L1(R3)‖u‖2
Hs
a,σ(R3) + ‖e

a
σ
|·|

1
σ û‖2

L1(R3)‖b‖2
Hs
a,σ(R3)].

Replacing this last result in (5.13) and using Young’s inequality, one gets

1

2

d

dt
‖(u, b)(t)‖2

Hs
a,σ(R3) +

θ

2
‖∇(u, b)(t)‖2

Hs
a,σ(R3) ≤ Cs,µ,ν‖e

a
σ
|·|

1
σ (û, b̂)‖2

L1(R3)‖(u, b)‖2
Hs
a,σ(R3).

(5.14)

Assume 0 ≤ t ≤ T < T ∗ in order to obtain, by Gronwall’s inequality (differential form), the
following inequality:

‖(u, b)(T )‖2
Hs
a,σ(R3) ≤ ‖(u, b)(t)‖2

Hs
a,σ(R3) exp{Cs,µ,ν

∫ T

t

‖e
a
σ
|·|

1
σ (û, b̂)(τ)‖2

L1(R3) dτ}.

By applying Theorem 5.2.1, we infer∫ T ∗

t

‖e
a
σ
|·|

1
σ (û, b̂)(τ)‖2

L1(R3) dτ =∞, ∀ t ∈ [0, T ∗).

Theorem 5.2.4. Assume that a > 0, σ > 1 and s0 ∈ (1
2
, 3

2
). Let (u0, b0) ∈ Hs0

a,σ(R3) such
that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗);Hs

a,σ(R3)), for all s ∈ (1
2
, s0], is the

maximal solution for the MHD equations (4.1) obtained in Theorem 5.1.1. If T ∗ <∞, then∫ T ∗

t

‖e
a
σ
|·|

1
σ (û, b̂)(τ)‖2

L1(R3) dτ =∞.

Proof. It is enough to remake the proof of Theorem 5.2.3 replacing the use to Theorem 5.2.1
by Theorem 5.2.2.
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5.2.3 Blow–up Inequality Involving L1(R3)

As written before, it is important to make sure that Theorem 5.2.6 is a generalization
of Theorem 2.2.3 (since (u0, b0) ∈ Hs0

a,σ(R3) with 1/2 < s0 < 3/2) and Theorem 5.2.5 is an
extension by considering [4] (provided that (u0, b0) ∈ Hs0

a,σ(R3) with s0 > 3/2). Moreover,
the proofs of theorems below use the same arguments of the proof of Theorem 4.2.3.

Theorem 5.2.5. Assume that s0 > 3/2, a > 0, and σ ≥ 1. Let (u0, b0) ∈ Hs0
a,σ(R3) such

that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗);Hs
a,σ(R3)), for all s ∈ (3

2
, s0], is the

maximal solution for the MHD equations (4.1) obtained in Theorem 5.1.1. If T ∗ <∞, then

‖e
a
σ
|·|

1
σ (û, b̂)(t)‖L1(R3) ≥

2π3
√
θ√

T ∗ − t
,

for all t ∈ [0, T ∗), where θ = min{µ, ν}.

Theorem 5.2.6. Assume that a > 0, σ > 1 and s0 ∈ (1
2
, 3

2
). Let (u0, b0) ∈ Hs0

a,σ(R3) such
that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗);Hs

a,σ(R3)), for all s ∈ (1
2
, s0], is the

maximal solution for the MHD equations (4.1) obtained in Theorem 5.1.1. If T ∗ <∞, then

‖e
a
σ
|·|

1
σ (û, b̂)(t)‖L1(R3) ≥

2π3
√
θ√

T ∗ − t
,

for all t ∈ [0, T ∗), where θ = min{µ, ν}.

5.2.4 Blow–up Inequality involving Hs
a,σ(R3)

As mentioned before, it is important to inform that Theorem 5.2.8 is a generalization
of this same blow-up criterion obtained in Theorem 2.2.4 (since (u0, b0) ∈ Hs0

a,σ(R3) with
1/2 < s0 < 3/2 and the blow–up inequality is valid for 1/2 < s ≤ s0) and Theorem 5.2.7
is an extension by considering [4] (provided that (u0, b0) ∈ Hs0

a,σ(R3) with s0 > 3/2 and the
blow–up inequality is valid for 3/2 < s ≤ s0).

Theorem 5.2.7. Assume that s0 > 3/2, a > 0, and σ ≥ 1. Let (u0, b0) ∈ Hs0
a,σ(R3) such

that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗);Hs
a,σ(R3)), for all s ∈ (3

2
, s0], is the

maximal solution for the MHD equations (4.1) obtained in Theorem 5.1.1. If T ∗ <∞, then

‖(u, b)(t)‖Hs
a
σ ,σ

(R3) ≥
2π3Cs

√
θ√

T ∗ − t
,

for all t ∈ [0, T ∗); where Cs = (
∫
R3(1 + |ξ|2)−s dξ)−

1
2 and θ = min{µ, ν}.
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Proof. This result follows directly from Theorem 5.2.5 and Cauchy-Schwarz’s inequality. In
fact,

2π3
√
θ√

T ∗ − t
≤ ‖e

a
σ
|·|

1
σ (û, b̂)(t)‖L1(R3)

=

∫
R3

e
a
σ
|ξ|

1
σ |(û, b̂)(t)| dξ

≤
(∫

R3

(1 + |ξ|2)−s dξ

) 1
2
(∫

R3

(1 + |ξ|2)se
2a
σ
|ξ|

1
σ |(û, b̂)(t)|2 dξ

) 1
2

=: Cs‖(u, b)(t)‖Hs
a
σ ,σ

(R3), ∀ t ∈ [0, T ∗), (5.15)

recall that s > 3/2.

From now on, T ∗ω < ∞ denotes the first blow-up time for the solution (u, b) ∈
C([0, T ∗ω);Hs

ω,σ(R3)), where ω > 0.

Theorem 5.2.8. Assume that a > 0, σ > 1 and s0 ∈ (1
2
, 3

2
). Let (u0, b0) ∈ Hs0

a,σ(R3) such
that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗a );Hs

a,σ(R3)), for all s ∈ (1
2
, s0], is the

maximal solution for the MHD equations (4.1) obtained in Theorem 5.1.1. If T ∗ <∞, then

‖(u, b)(t)‖Hs
a√
σ
,σ

(R3) ≥
2π3
√
θ

C1

√
T ∗a − t

, ∀ t ∈ [0, T ∗a ),

where θ = min{µ, ν} and C2
1 = C2

a,σ,s,n := 4πσ
[

2a
(
√
σ)(n−1)

(
1√
σ
− 1

σ

)]−σ(3−2s)

Γ(σ(3− 2s)).

Proof. It is sufficient to argue as in proof of Theorem 3.2.4.

5.2.5 Generalization of the Blow–up Criteria

As informed previously, it is important to let the reader know that Theorem 5.2.10 is
a generalization of this same blow-up criterion obtained in Theorem 2.2.5 (since (u0, b0) ∈
Hs0
a,σ(R3) with 1/2 < s0 < 3/2 and the blow–up inequality is valid for 1/2 < s ≤ s0) and

Theorem 5.2.9 is an extension by considering [4] (provided that (u0, b0) ∈ Hs0
a,σ(R3) with

s0 > 3/2 and the blow–up inequality is valid for 3/2 < s ≤ s0).

Theorem 5.2.9. Assume that s0 > 3/2, a > 0, and σ ≥ 1. Let (u0, b0) ∈ Hs0
a,σ(R3) such

that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗);Hs
a,σ(R3)), for all s ∈ (3

2
, s0], is the

maximal solution for the MHD equations (4.1) obtained in Theorem 5.1.1. If T ∗ <∞, then

93



i) lim sup
t↗T ∗

‖(u, b)(t)‖Hs
a

σn−1 ,σ
(R3) =∞;

ii)

∫ T ∗

t

‖e
a
σn
|·|

1
σ (û, b̂)(τ)‖2

L1(R3) dτ =∞;

iii) ‖e
a
σn
|·|

1
σ (û, b̂)(t)‖L1(R3) ≥

2π3
√
θ√

T ∗ − t
;

iv) ‖(u, b)(t)‖Hs
a
σn

,σ
(R3) ≥

2π3Cs
√
θ√

T ∗ − t
,

for all t ∈ [0, T ∗), n ∈ N; where Cs = (
∫
R3(1 + |ξ|2)−s dξ)−

1
2 and θ = min{µ, ν}.

Proof. Notice that the Theorems 5.2.1, 5.2.3, 5.2.5 and 5.2.7 guarantee the veracity of The-
orem 5.2.9 in the case n = 1. Moreover, (5.15) assures that (u, b) ∈ C([0, T ∗), Hs

a
σ
,σ(R3))

(since Hs
a,σ(R3) ↪→ Hs

a
σ
,σ(R3)) and

lim sup
t↗T ∗

‖(u, b)(t)‖Hs
a
σ ,σ

(R3) =∞. (5.16)

The limit above guarantees the veracity of Theorem 5.2.9 i) in the case n = 2. By following
a similar process to the one described above and applying (5.16), instead of Theorem 5.2.1,
one infers ∫ T ∗

t

‖e
a
σ2
|·|

1
σ

(û, b̂)(τ)‖2
L1(R3) dτ =∞, ∀ t ∈ [0, T ∗),

(see Theorem 5.2.9 ii) with n = 2) and, consequently

4π6θ ≤ ‖e
a
σ2
|·|

1
σ

(û, b̂)(t)‖2
L1(R3)(T

∗ − t), ∀ t ∈ [0, T ∗),

which is Theorem 5.2.9 iii) with n = 2. This implies that

lim sup
t↗T ∗

‖(u, b)(t)‖Hs
a
σ2

,σ
(R3) =∞, (5.17)

since

2π3
√
θ√

T ∗ − t
≤ ‖e

a
σ2
|·|

1
σ

(û, b̂)(t)‖L1(R3)

≤
(∫

R3

(1 + |ξ|2)−s dξ

) 1
2
(∫

R3

(1 + |ξ|2)se
2a
σ2
|ξ|

1
σ |(û, b̂)(t)|2 dξ

) 1
2

=: Cs‖(u, b)(t)‖Hs
a
σ2

,σ
(R3), (5.18)

for all t ∈ [0, T ∗) (recall that s > 3/2). Notice that (5.17) is Theorem 5.2.9 i), in the case
n = 3, and (5.18) assures the veracity of Theorem 5.2.9 iv), with n = 2. Thus, inductively,
one proves Theorem 5.2.9 with n > 1.
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Theorem 5.2.10. Assume that a > 0, σ > 1 and s0 ∈ (1
2
, 3

2
). Let (u0, b0) ∈ Hs0

a,σ(R3) such
that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗a );Hs

a,σ(R3)), for all s ∈ (1
2
, s0], is the

maximal solution for the MHD equations (4.1) obtained in Theorem 5.1.1. If T ∗a <∞, then

i) lim sup
t↗T ∗a

‖(u, b)(t)‖Hs
a

(
√
σ)(n−1)

,σ
(R3) =∞;

ii)

∫ T ∗a

t

‖e
a

σ(
√
σ)(n−1)

|·|
1
σ

(û, b̂)(τ)‖2
L1(R3) dτ =∞;

iii) ‖e
a

σ(
√
σ)(n−1)

|·|
1
σ

(û, b̂)(t)‖L1(R3) ≥
2π3
√
θ√

T ∗a − t
;

iv) ‖(u, b)(t)‖Hs
a

(
√
σ)n

,σ
(R3) ≥

2π3
√
θ

C1

√
T ∗a − t

,

for all t ∈ [0, T ∗a ), n ∈ N, where C2
1 = C2

a,σ,s,n := 4πσ
[

2a
(
√
σ)(n−1)

(
1√
σ
− 1

σ

)]−σ(3−2s)

Γ(σ(3− 2s)) and

θ = min{µ, ν}.

Proof. First of all, notice that the Theorems 5.2.2, 5.2.4, 5.2.6 and 5.2.8 prove the Theorem
5.2.10 in case n = 1. The remainder of prove follows a induction process similar to the one
in proof of Theorem 3.2.5.

5.2.6 Main Blow-up criterion Involving Hs
a,σ(R3)

As it was written previously, it is important to inform that Theorems 5.2.11 and 5.2.12 are
generalizations of the same blow-up criteria obtained in [4] and Theorem 2.2.7, respectively.

Theorem 5.2.11. Assume that s0 > 3/2, a > 0, and σ ≥ 1. Let (u0, b0) ∈ Hs0
a,σ(R3) such

that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗);Hs
a,σ(R3)), for all s ∈ (3

2
, s0], is the

maximal solution for the MHD equations (4.1) obtained in Theorem 5.1.1. If T ∗ <∞, then

‖(u, b)(t)‖Hs
a,σ(R3) ≥ C1‖(u, b)(t)‖

1− 2s
3

L2(R3) exp{aC2‖(u, b)(t)‖
− 2

3σ

L2(R)(T
∗ − t)−

1
3σ }(T ∗ − t)−

s
3 ,

for all t ∈ [0, T ∗); where C1 and C2 depend only on µ, ν, s and µ, ν, s, σ, respectively.

Proof. In fact, by choosing δ0 = s (> 3/2) and δ = s+ m
2σ

(≥ δ0) in Lemma 1.2.12, Remark
1.2.15 and Dominated Convergence Theorem in Theorem 5.2.9 iii), where m ∈ N ∪ {0}, we
obtain

4π6θ

T ∗ − t
≤ ‖(û, b̂)(t)‖2

L1(R3) ≤ Cs‖(u, b)(t)‖
2− 3

s+ m
2σ

L2(R3) ‖(u, b)(t)‖
3

s+ m
2σ

Ḣs+ m
2σ (R3)

.
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Hence, using (4.33) below, one has

Cs,θ‖(u, b)(t)‖
2− 4s

3

L2(R3)

(T ∗ − t) 2s
3

Ds,σ,θ‖(u, b)(t)‖
− 2

3σ

L2(R3)

(T ∗ − t) 1
3σ

m

≤ ‖(u, b)(t)‖2

Ḣs+ m
2σ (R3)

, (5.19)

where Cs,θ = (Cs4π
6θ)

2s
3 and Ds,σ,θ = (Cs4π

6θ)
1
3σ . Multiplying (5.19) by (2a)m

m!
, one gets

Cs,θ‖(u, b)(t)‖
2− 4s

3

L2(R3)

(T ∗ − t) 2s
3

(
2aDs,σ,θ‖(u,b)(t)‖

− 2
3σ

L2(R3)

(T ∗−t)
1
3σ

)m

m!
≤
∫
R3

(2a|ξ| 1σ )m

m!
|ξ|2s|(û, b̂)(t)|2 dξ.

By summing over m ∈ N and applying the Monotone Convergence Theorem, it results

Cs,θ‖(u, b)(t)‖
2− 4s

3

L2(R3)

(T ∗ − t) 2s
3

exp

2aDs,σ,θ‖(u, b)(t)‖
− 2

3σ

L2(R3)

(T ∗ − t) 1
3σ

 ≤
∫
R3

e2a|ξ|
1
σ |ξ|2s|(û, b̂)(t)|2 dξ

≤ ‖(u, b)(t)‖2
Hs
a,σ(R3),

for all t ∈ [0, T ∗).

Theorem 5.2.12. Assume that a > 0, σ > 1 and s0 ∈ (1
2
, 3

2
). Let (u0, b0) ∈ Hs0

a,σ(R3) such
that divu0 = div b0 = 0. Consider that (u, b) ∈ C([0, T ∗);Hs

a,σ(R3)), for all s ∈ (1
2
, s0], is the

maximal solution for the MHD equations (4.1) obtained in Theorem 5.1.1. If T ∗ <∞, then

aσ0+ 1
2C2 exp{aC3(T ∗ − t)− 1

3σ }
(T ∗ − t)

2(sσ+σ0)+1
6σ

≤ ‖(u, b)(t)‖Hs
a,σ(R3),

for all t ∈ [0, T ∗), where C2 = Cµ,ν,s,σ,u0,b0 , C3 = Cµ,ν,σ,s,u0,b0 and 2σ0 is the integer part of
2σ.

Proof. Choose δ = s+ k
2σ

, with k ∈ N ∪ {0} and k ≥ 2σ, and δ0 = s+ 1. By using Lemmas
1.2.12 and 1.2.14, and Dominated Convergence Theorem in Theorem 5.2.10 iii), we obtain

2π3
√
θ√

T ∗ − t
≤ ‖(û, b̂)(t)‖L1(R3) ≤ Cs‖(u, b)(t)‖

1− 3

2(s+ k
2σ )

L2(R3) ‖(u, b)(t)‖
3

2(s+ k
2σ )

Ḣs+ k
2σ (R3)

.

Hence, using (4.33), one has

Cθ,s,u0,b0

(T ∗ − t) 2s
3

(
Dσ,s,θ,u0,b0

(T ∗ − t) 1
3σ

)k

≤ ‖(u, b)(t)‖2

Ḣs+ k
2σ (R3)

, (5.20)
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where Cθ,s,u0,b0 = (C−1
s 2π3

√
θ)

4s
3 ‖(u0, b0)‖

6−4s
3

L2(R3) andDσ,s,θ,u0,b0 = (C−1
s 2π3

√
θ‖(u0, b0)‖−1

L2(R3))
2
3σ .

Multiplying (5.20) by (2a)k

k!
, one gets

Cθ,s,u0,b0

(T ∗ − t) 2s
3

(
2aDσ,s,θ,u0,b0

(T ∗−t)
1
3σ

)k
k!

≤
∫
R3

(2a)k

k!
|ξ|2(s+ k

2σ
)|(û, b̂)(t)|2 dξ =

∫
R3

(2a|ξ| 1σ )k

k!
|ξ|2s|(û, b̂)(t)|2 dξ.

By summing over the set {k ∈ N; k ≥ 2σ} and applying the Monotone Convergence Theorem,
it results

Cθ,s,u0,b0

(T ∗ − t) 2s
3

exp

{
2aDσ,s,θ,u0,b0

(T ∗ − t) 1
3σ

}
−

∑
0≤k<2σ

(
2aDσ,s,θ,u0,b0

(T ∗−t)
1
3σ

)k
k!


≤
∫
R3

[
e2a|ξ|

1
σ −

∑
0≤k<2σ

(2a|ξ| 1σ )k

k!

]
|ξ|2s|(û, b̂)(t)|2 dξ

≤
∫
R3

(1 + |ξ|2)se2a|ξ|
1
σ |(û, b̂)(t)|2 dξ = ‖(u, b)(t)‖2

Hs
a,σ(R3),

for all t ∈ [0, T ∗). Finally, this proof follows the same steps as in proof of Theorem 2.2.7.
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Chapter 6

2D Micropolar equations: local
existence, uniqueness and asymptotic
behavior of solutions in
Sobolev-Gevrey spaces

This chapter studies local existence of a unique solution, as well decay rates (if it is
assumed that this solution is global in time), for the following 2D Micropolar equations in
Sobolev-Gevrey spaces:

ut + u · ∇u + ∇p = (µ+ χ)∆u + χ∇× w, x ∈ R2, t ≥ 0,
wt + u · ∇w = γ∆w + χ∇× u− 2χw, x ∈ R2, t ≥ 0,
div u = 0, x ∈ R2, t > 0,
u(·, 0) = u0(·), w(·, 0) = w0(·), x ∈ R2,

(6.1)

where u(x, t) = (u1(x, t), u2(x, t)) ∈ R2 denotes the incompressible velocity field, w(x, t) ∈ R
the microrotational velocity field and p(x, t) ∈ R the hydrostatic pressure. The positive
constants µ, χ, γ and ν are associated with specific properties of the fluid; more precisely,
µ > 0, γ > 0, χ ≥ 0 are the kinematic, spin and vortex viscosities, respectively. The
initial data for the velocity field, given by u0 in (6.1), is assumed to be divergence free, i.e.,
div u0 = 0. Here ∇× u = D1u2 −D2u1 and ∇× w = (D2w,−D1w).

The local existence, uniqueness and blow-up of solutions for the micropolar system (6.1)
and for its periodic version have been extensively studied in the literature, see for instance
[9, 11, 15, 16, 19, 23, 30, 33, 34, 37, 38, 40] and references therein.
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6.1 Local Existence and Uniqueness of Solutions

By considering w = χ = 0 and R3 instead of R2 in (6.1), in the Chapter 2 it was proved
that there are a positive instant t = T and a unique solution u ∈ C([0, T ], Hs

a,σ(R3)) (with
u0 ∈ Hs0

a,σ(R3), s0 > 1/2, s0 6= 3/2, a > 0, σ ≥ 1 and s ≤ s0) for the Navier-Stokes system
(we also cite [4, 6, 7, 10, 28, 29, 32] and references therein). Motivated by the previous
chapters, we are interested in showing which are the assumptions that are necessary in order
to guarantee the local existence and uniqueness of solutions for the equations given in (6.1)
in nonhomogenous Sobolev-Gevrey spaces. More precisely, we present our first result.

Theorem 6.1.1. Let a > 0, σ ≥ 1 and s > 0 with s 6= 1. Let (u0, w0) ∈ Hs
a,σ(R2) such

that divu0 = 0. If s > 1 (respectively s ∈ (0, 1)), then there exist a time T = Ts,µ,χ,γ,u0,w0

(respectively T = Ts,a,µ,χ,γ,u0,w0) and a unique solution (u,w) ∈ C([0, T ];H$
a,σ(R2)), for all

$ ≤ s, of the micropolar equations given in (6.1).

Proof. By applying the heat semigroup e(µ+χ)∆(t−τ), with τ ∈ [0, t], in the first equation of
(6.1), and, subsequently, integrating the result over the interval [0, t], we obtain∫ t

0

e(µ+χ)∆(t−τ)uτ dτ +

∫ t

0

e(µ+χ)∆(t−τ)[u · ∇u+∇p− χ(∇× w)] dτ = (µ+ χ)

∫ t

0

e(µ+χ)∆(t−τ)∆u dτ.

Now, use integration by parts in order to deduce

u(t) = e(µ+χ)∆tu0 −
∫ t

0

e(µ+χ)∆(t−τ)[u · ∇u+∇p] dτ + χ

∫ t

0

e(µ+χ)∆(t−τ)(∇× w) dτ.

Consequently, by (2.9), one can write

u(t) = e(µ+χ)∆tu0 −
∫ t

0

e(µ+χ)∆(t−τ)PH [
2∑
j=1

Dj(uju)] dτ + χ

∫ t

0

e(µ+χ)∆(t−τ)(∇× w) dτ, (6.2)

since u is divergence free.

Analogously, by considering the field w, we deduce the equality below.

w(t) = eγ∆tw0 −
∫ t

0

eγ∆(t−τ)

2∑
j=1

Dj(ujw) dτ + χ

∫ t

0

eγ∆(t−τ)(∇× u) dτ − 2χ

∫ t

0

eγ∆(t−τ)w dτ.

(6.3)

By (6.2) and (6.3), one obtains

(u,w)(t) = (e(µ+χ)∆tu0, e
γ∆tw0) +B((u,w), (u,w))(t) + L(u,w)(t), (6.4)
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where

B((z, v), (ϕ, φ))(t) =

∫ t

0

(−e(µ+χ)∆(t−τ)PH [
2∑
j=1

Dj(ϕjz)],−eγ∆(t−τ)[
2∑
j=1

Dj(zjφ)]) dτ, (6.5)

and

L(z, v)(t) =

∫ t

0

(χe(µ+χ)∆(t−τ)(∇× v), χeγ∆(t−τ)(∇× z)− 2χeγ∆(t−τ)v) dτ. (6.6)

Notice that L is a linear operator and B is a bilinear operator. Furthermore, ϕ, z : R2 → R2

and φ, v : R2 → R belong to appropriate spaces that will be give next. In order to examine
(u,w)(t) in Hs

a,σ(R2), let us estimate B((w, v), (γ, φ))(t) and L(z, v)(t) in this same space.

At first, let us estimate L(z, v)(t) in Hs
a,σ(R2). Thus, we deduce

‖e(µ+χ)∆(t−τ)(∇× v)‖2
Hs
a,σ(R2) =

∫
R2

(1 + |ξ|2)se2a|ξ|
1
σ |F{e(µ+χ)∆(t−τ)(∇× v)}(ξ)|2 dξ

=

∫
R2

e−2(µ+χ)(t−τ)|ξ|2(1 + |ξ|2)se2a|ξ|
1
σ |∇̂ × v(ξ)|2 dξ

≤
∫
R2

|ξ|2e−2(µ+χ)(t−τ)|ξ|2(1 + |ξ|2)se2a|ξ|
1
σ |v̂(ξ)|2 dξ,

since |∇̂ × v| = |ξ||v̂|. As a result, by using Lemma 1.2.19, it follows that

‖e(µ+χ)∆(t−τ)(∇× v)‖Hs
a,σ(R2) ≤ Cµ,χ(t− τ)−

1
2‖(z, v)‖Hs

a,σ(R2).

By integrating over [0, t] (t ∈ [0, T ]) the above estimate, we conclude∫ t

0

‖χe(µ+χ)∆(t−τ)(∇× v)‖Hs
a,σ(R2) dτ ≤ Cµ,χT

1
2‖(z, v)‖L∞([0,T ];Hs

a,σ(R2)). (6.7)

Similarly, one gets∫ t

0

‖χeγ∆(t−τ)(∇× z)‖Hs
a,σ(R2) dτ ≤ Cχ,γT

1
2‖(z, v)‖L∞([0,T ];Hs

a,σ(R2)). (6.8)

since |∇̂ × z| ≤ |ξ||ẑ|. On the other hand, it is valid that

‖eγ∆(t−τ)v‖2
Hs
a,σ(R2) ≤

∫
R2

e−2γ(t−τ)|ξ|2(1 + |ξ|2)se2a|ξ|
1
σ |v̂(ξ)|2 dξ ≤ ‖(z, v)‖2

Hs
a,σ(R2).

By integrating over [0, t], the above estimative, we conclude∫ t

0

‖2χeγ∆(t−τ)v‖Hs
a,σ(R2) dτ ≤ CχT

1
2‖(z, v)‖L∞([0,T ];Hs

a,σ(R2)), ∀ t ∈ [0, T ], (6.9)
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if it is assumed that T < 1. By (6.6), we can assure that (6.7), (6.8) and (6.9) imply

‖L(z, v)(t)‖Hs
a,σ(R2) ≤ Cµ,χ,γT

1
2‖(z, v)‖L∞([0,T ],Hs

a,σ(R2)), ∀ t ∈ [0, T ]. (6.10)

Now, let us estimate B((z, v), (ϕ, φ))(t) in Hs
a,σ(R2). To this end, we shall divide the

proof into two cases:

1o Case: Assume that s > 1.

Notice that

‖e(µ+χ)∆(t−τ)PH [
2∑
j=1

Dj(ϕjz)]‖2
Hs
a,σ(R2)

=

∫
R2

(1 + |ξ|2)se2a|ξ|
1
σ |F{e(µ+χ)∆(t−τ)PH [

2∑
j=1

Dj(ϕjz)]}(ξ)|2 dξ

=

∫
R2

e−2(µ+χ)(t−τ)|ξ|2(1 + |ξ|2)se2a|ξ|
1
σ |F{PH [

2∑
j=1

Dj(ϕjz)]}(ξ)|2 dξ.

By applying (2.11), one can write

‖e(µ+χ)∆(t−τ)PH [
2∑
j=1

Dj(ϕjz)]‖2
Hs
a,σ(R2)

≤
∫
R2

e−2(µ+χ)(t−τ)|ξ|2(1 + |ξ|2)se2a|ξ|
1
σ |

2∑
j=1

F [Dj(ϕjz)](ξ)|2 dξ

=

∫
R2

e−2(µ+χ)(t−τ)|ξ|2(1 + |ξ|2)se2a|ξ|
1
σ |F(z ⊗ ϕ)(ξ) · ξ|2 dξ

≤
∫
R2

|ξ|2e−2(µ+χ)(t−τ)|ξ|2(1 + |ξ|2)se2a|ξ|
1
σ |F(z ⊗ ϕ)(ξ)|2 dξ.

As a result, by using Lemma 1.2.19, it follows

‖e(µ+χ)∆(t−τ)PH [
2∑
j=1

Dj(ϕjz)]‖Hs
a,σ(R2) ≤ Cµ,χ(t− τ)−

1
2‖z ⊗ ϕ‖Hs

a,σ(R2).

Similarly, we can write

‖eγ∆(t−τ)[
2∑
j=1

Dj(zjφ)]‖Hs
a,σ(R2) ≤ Cγ(t− τ)−

1
2‖φ⊗ z‖Hs

a,σ(R2).
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Consequently, one gets

‖B((z, v), (ϕ, φ))(t)‖Hs
a,σ(R2)

≤ Cµ,χ,γ

[ ∫ t

0

(t− τ)−
1
2‖z ⊗ ϕ‖Hs

a,σ(R2) dτ +

∫ t

0

(t− τ)−
1
2‖φ⊗ z‖Hs

a,σ(R2) dτ
]
. (6.11)

On the other hand, it results

‖z ⊗ ϕ‖2
Hs
a,σ(R2) =

∫
R2

(1 + |ξ|2)se2a|ξ|
1
σ |ẑ ⊗ ϕ(ξ)|2 dξ

= (2π)−4

2∑
j,k=1

∫
R2

(1 + |ξ|2)se2a|ξ|
1
σ |ϕ̂j ∗ ẑk(ξ)|2 dξ

≤ C

∫
R2

(1 + |ξ|2)se2a|ξ|
1
σ [(|ϕ̂| ∗ |ẑ|)(ξ)]2 dξ.

Therefore, one deduces

‖z ⊗ ϕ‖2
Hs
a,σ(R2) ≤ C

∫
R2

(1 + |ξ|2)s
[∫

R2

ea|ξ|
1
σ |ẑ(η)||ϕ̂(ξ − η)| dη

]2

dξ.

By using (1.3), we conclude

‖z ⊗ ϕ‖2
Hs
a,σ(R2) ≤ C

∫
R2

(1 + |ξ|2)s
[∫

R2

ea|η|
1
σ |ẑ(η)|ea|ξ−η|

1
σ |ϕ̂(ξ − η)| dη

]2

dξ

= C

∫
R2

(1 + |ξ|2)s[(ea|ξ|
1
σ |ẑ(ξ)|) ∗ (ea|ξ|

1
σ |ϕ̂(ξ)|)]2 dξ

= C

∫
R2

(1 + |ξ|2)s{F [F−1(ea|ξ|
1
σ |ẑ(ξ)|)F−1(ea|ξ|

1
σ |ϕ̂(ξ)|)]}2 dξ

= C‖F−1(ea|·|
1
σ |ẑ|)F−1(ea|·|

1
σ |ϕ̂|)‖2

Hs(R2).

Hence, by the inequality (1.11) with a = 0 and n = 2, one has

‖z ⊗ ϕ‖Hs
a,σ(R2) ≤ Cs‖F−1(ea|·|

1
σ |ẑ|)‖Hs(R2)‖F−1(ea|·|

1
σ |ϕ̂|)‖Hs(R2) = Cs‖z‖Hs

a,σ(R2)‖ϕ‖Hs
a,σ(R2),

since s > 1. Replacing this result in (6.11), one obtains

‖B((z, v), (ϕ, φ))(t)‖Hs
a,σ(R2) ≤ Cs,µ,χ,γ

[ ∫ t

0

(t− τ)−
1
2‖z‖Hs

a,σ(R2)‖ϕ‖Hs
a,σ(R2) dτ

+

∫ t

0

(t− τ)−
1
2‖φ‖Hs

a,σ(R2)‖z‖Hs
a,σ(R2) dτ

]
.

Therefore, we deduce

‖B((z, v), (ϕ, φ))(t)‖Hs
a,σ(R2) ≤ Cs,µ,χ,γT

1
2‖(z, v)‖L∞([0,T ];Hs

a,σ(R2))‖(ϕ, φ)‖L∞([0,T ];Hs
a,σ(R2)),

(6.12)
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for all t ∈ [0, T ]. By noticing that L : X × Y → X × Y is a continuous linear operator
(see (6.6) and (6.10)) and B : (X × Y )2 → X × Y is a continuous bilinear operator (see
(6.5) and (6.12)), where Y = C([0, T ];Hs

a,σ(R2)) and X = Y 2 (with s > 1), it is enough
to apply Lemma 1.2.2 and consider T small enough in order to obtain a unique solution
(u,w) ∈ C([0, T ];Hs

a,σ(R2)) for the equation (6.4). More specifically, choose

T < min
{

[(4Cs,µ,χ,γ‖(u0, w0)‖Hs
a,σ(R2))

1
2 + Cµ,χ,γ]

−4, C−2
µ,χ,γ, 1

}
,

where Cµ,χ,γ and Cs,µ,χ,γ are given in (6.10) and (6.12), respectively; and

‖(e(µ+χ)∆tu0, e
γ∆tw0)‖Hs

a,σ(R2) ≤ ‖(u0, w0)‖Hs
a,σ(R2).

2o Case: Consider that s ∈ (0, 1).

At first, let us estimate B((z, v), (ϕ, φ))(t) in Ḣs
a,σ(R2). By applying (2.11) and the

Cauchy-Schwarz’s inequality, one can write

‖e(µ+χ)∆(t−τ)PH [
2∑
j=1

Dj(ϕjz)]‖2
Ḣs
a,σ(R2)

≤
∫
R2

|ξ|4−2se−2(µ+χ)(t−τ)|ξ|2 |ξ|4s−2e2a|ξ|
1
σ |F(z ⊗ ϕ)(ξ)|2 dξ.

As a result, by using Lemma 1.2.19, it follows

‖e(µ+χ)∆(t−τ)PH [
2∑
j=1

Dj(ϕjz)]‖2
Ḣs
a,σ(R2)

≤ Cs,µ,χ
(t− τ)2−s‖z ⊗ ϕ‖

2
Ḣ2s−1
a,σ (R2)

,

since 0 < s < 1. On the other hand, by using Lemma 1.2.7, one infers

‖z ⊗ ϕ‖2
Ḣ2s−1
a,σ (R2)

=
2∑

j,k=1

‖ϕjzk‖2
Ḣ2s−1
a,σ (R2)

≤ Cs‖z‖2
Ḣs
a,σ(R2)

‖ϕ‖2
Ḣs
a,σ(R2)

,

provided that 0 < s < 1. Therefore, one deduces

‖e(µ+χ)∆(t−τ)PH [
2∑
j=1

Dj(ϕjz)]‖Ḣs
a,σ(R2) ≤

Cs,µ,χ

(t− τ)
2−s
2

‖(z, v)‖Ḣs
a,σ(R2)‖(ϕ, φ)‖Ḣs

a,σ(R2).

By integrating over [0, t] (t ∈ [0, T ]) the above estimate, we conclude∫ t

0

‖e(µ+χ)∆(t−τ)PH [
2∑
j=1

Dj(ϕjz)]‖Ḣs
a,σ(R2) dτ

≤ Cs,µ,χT
s
2‖(z, v)‖L∞([0,T ];Ḣs

a,σ(R2))‖(ϕ, φ)‖L∞([0,T ];Ḣs
a,σ(R2)). (6.13)
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Similarly, we can write∫ t

0

‖eγ∆(t−τ)[
2∑
j=1

Dj(zjφ)]‖Ḣs
a,σ(R2) dτ ≤ Cs,γT

s
2‖(z, v)‖L∞([0,T ];Ḣs

a,σ(R2))‖(ϕ, φ)‖L∞([0,T ];Ḣs
a,σ(R2)).

(6.14)

By (6.5), we can assure that (6.13) and (6.14) imply

‖B((z, v), (ϕ, φ))(t)‖Ḣs
a,σ(R2) ≤ Cs,µ,χ,γT

s
2‖(z, v)‖L∞([0,T ];Ḣs

a,σ(R2))‖(ϕ, φ)‖L∞([0,T ];Ḣs
a,σ(R2)).

(6.15)

Let us estimate B((z, v), (ϕ, φ))(t) in L2(R2). Following a similar process to the one presented
above, we have, by using the Parseval’s identity, that

‖e(µ+χ)∆(t−τ)PH [
2∑
j=1

Dj(ϕjz)]‖2
L2(R2) = (2π)−2

∫
R2

|F{e(µ+χ)∆(t−τ)PH [
2∑
j=1

Dj(ϕjz)]}(ξ)|2 dξ.

As a result, by using (2.11), we get

‖e(µ+χ)∆(t−τ)PH [
2∑
j=1

Dj(ϕjz)]‖2
L2(R2) ≤ (2π)−2

∫
R2

|ξ|2e−2(µ+χ)(t−τ)|ξ|2 |F(z ⊗ ϕ)(ξ)|2 dξ

≤ (2π)−2

∫
R2

|ξ|4−2se−2(µ+χ)(t−τ)|ξ|2|ξ|2s−2|F(z ⊗ ϕ)(ξ)|2 dξ.

As a result, by using Lemma 1.2.19, it follows

‖e(µ+χ)∆(t−τ)PH [
2∑
j=1

Dj(ϕjz)]‖L2(R2) ≤
Cs,µ,χ

(t− τ)
2−s
2

‖z ⊗ ϕ‖Ḣs−1(R2),

On the other hand, by utilizing Lemma 1.2.6 (provided that 0 < s < 1), one has

‖z ⊗ ϕ‖2
Ḣs−1(R2)

=
2∑

j,k=1

‖ϕjzk‖2
Ḣs−1(R2)

≤ Cs‖z‖2
Ḣs(R2)

‖ϕ‖2
L2(R2).

Thereby, as Hs
a,σ(R2) ↪→ Ḣs(R2) (s ≥ 0) and by applying Lemma 1.2.10, we deduce

‖e(µ+χ)∆(t−τ)PH [
2∑
j=1

Dj(ϕjz)]‖L2(R2) ≤
Cs,µ,χ

(t− τ)
2−s
2

‖(z, v)‖Hs
a,σ(R2)‖(ϕ, φ)‖Hs

a,σ(R2).

By integrating the above estimate over [0, t] (t ∈ [0, T ]), we conclude∫ t

0

‖e(µ+χ)∆(t−τ)PH [
2∑
j=1

Dj(ϕjz)]‖L2(R2) dτ

≤ Cs,µ,χT
s
2‖(z, v)‖L∞([0,T ];Hs

a,σ(R2))‖(ϕ, φ)‖L∞([0,T ];Hs
a,σ(R2)). (6.16)
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Similarly, we can obtain∫ t

0

‖eγ∆(t−τ)[
2∑
j=1

Dj(zjφ)]‖L2(R2) dτ ≤ Cs,γT
s
2‖(z, v)‖L∞([0,T ];Hs

a,σ(R2))‖(ϕ, φ)‖L∞([0,T ];Hs
a,σ(R2)).

(6.17)

By using the definition (6.5) and applying (6.16) and (6.17), one concludes

‖B((z, v), (ϕ, φ))(t)‖L2(R2) ≤ Cs,µ,χ,γT
s
2‖(z, v)‖L∞([0,T ];Hs

a,σ(R2))‖(ϕ, φ)‖L∞([0,T ];Hs
a,σ(R2)),

(6.18)

for all t ∈ [0, T ]. Finally, by using Lemma 1.2.10, (6.15), (6.18) and the fact that Hs
a,σ(R2) ↪→

Ḣs
a,σ(R2) (s ≥ 0), it results

‖B((z, v), (ϕ, φ))(t)‖Hs
a,σ(R2) ≤ Cs,a,µ,χ,γT

s
2‖(z, v)‖L∞([0,T ];Hs

a,σ(R2))‖(ϕ, φ)‖L∞([0,T ];Hs
a,σ(R2)),

(6.19)

for all t ∈ [0, T ]. Choose

T < min
{

[(4Cs,a,µ,χ,γ‖(u0, w0)‖Hs
a,σ(R2))

1
2 + Cµ,χ,γ]

− 4
5 , C−2

µ,χ,γ, 1
}
,

where Cµ,χ,γ and Cs,a,µ,χ,γ is given in (6.10) and (6.19), respectively, and apply Lemma 1.2.2
to obtain the desired result.

Lastly, by assuming that $ ≤ s, it follows that (u,w) ∈ [C([0, T ];H$
a,σ(R2))]3 since

Hs
a,σ(R2) ↪→ H$

a,σ(R2).

6.2 Asymptotic Behavior for the Solution

In this section, we establish the asymptotic behavior of the solution (by assuming its
global existence in time) obtained in Theorem 6.1.1 by extending and improving the steps
presented by J. Benameur and L. Jlali [6]. More specifically, we suppose that the solution
(u,w) obtained above is global in order to present decay rates related to the spaces Hs

a,σ(R2)

and Ḣs
a,σ(R2) (where σ > 1, a > 0 and s > 0 with s 6= 1).

Let us inform that theses rates will be accomplished by applying the following result
established by R. H. Guterres, W. G. Melo, J. R. Nunes and C. F. Perusato [23].

Theorem 6.2.1 (See [23]). Let (u0, w0) ∈ L2(R2) such that divu0 = 0. For a Leray global
solution (u,w) of the Micropolar equations (6.1), one has
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i) lim
t→∞
‖(u,w)(t)‖L2(R2) = 0;

ii) lim
t→∞

t
s
2‖(u,w)(t)‖Ḣs(R2) = 0, for all s ≥ 0.

Moreover, if χ > 0, one obtains

iii) lim
t→∞

t
s+1
2 ‖w(t)‖Ḣs(R2) = 0 for all s ≥ 0.

Remark 6.2.2. Under the same assumptions in Theorems 6.1.1 and 6.2.1, it is important
to point out the following observations:

1. It is easy to check that Theorem 6.2.1 ii) implies the following limit:

lim
t→∞
‖(u,w)(t)‖Ḣs(R2) = 0, (6.20)

since

lim
t→∞
‖(u,w)(t)‖Ḣs(R2) = lim

t→∞
t−

s
2 [t

s
2‖(u,w)(t)‖Ḣs(R2)] = 0, ∀s ≥ 0; (6.21)

2. Notice also that the limit

lim
t→∞
‖(u,w)(t)‖Hs(R2) = 0, ∀s ≥ 0, (6.22)

is a direct consequence of Theorem 6.2.1 i), (6.20), and the elementary inequality

‖f‖2
Hs(R2) ≤ 2s[(2π)2‖f‖2

L2(R2) + ‖f‖2
Ḣs(R2)

], ∀s ≥ 0.

6.2.1 Estimates Involving Ḣs(R2)

In this section, we give some lemmas that will play a key role in the proof of the decay
rates given in Theorems 6.2.6, 6.2.7 and 6.2.8.

Lemma 6.2.3. Consider that (u,w) ∈ C([0,∞);Hs
a,σ(R2)) is a global solution for the Mi-

cropolar equations (6.1). Then, there is an instant t = T that depends only on s, µ, γ and
‖(u0, w0)‖Hs(R2) such that

‖F−1(et|·|(û, ŵ)(t))‖Ḣs(R2) ≤ [1 + 2‖(u0, w0)‖2
Ḣs(R2)

]
1
2 , ∀ t ∈ [0, T ].

Proof. By applying the Fourier Transform and taking the scalar product in C2 of the first
equation of (6.1) with û(t), one has

1

2
∂t|û(t)|2 + (µ+ χ)|∇̂u|2 = −Re [û · û · ∇u] + χRe [û · ∇̂ × w]. (6.23)
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Similarly, considering the second equation of (6.1), one obtains

1

2
∂t|ŵ(t)|2 + γ|∇̂w|2 + 2χ|ŵ|2 = −Re [ŵ · û · ∇w] + χRe [ŵ · ∇̂ × u]. (6.24)

By using (6.23) and (6.24) and the fact that û · ∇̂ × w = ∇̂ × u · ŵ, it follows that

1

2
∂t|(û, ŵ)(t)|2 + (µ+ χ)|∇̂u|2 + γ|∇̂w|2 + 2χ|ŵ|2

= −Re [û · û · ∇u+ ŵ · û · ∇w − 2χ∇̂ × u · ŵ].

By applying Cauchy-Schwarz’s inequality, we obtain

2Re [∇̂ × u · ŵ] ≤ 2|∇̂u||ŵ| ≤ |∇̂u|2 + |ŵ|2.

Therefore,

1

2
∂t|(û, ŵ)(t)|2 + µ|∇̂u|2 + γ|∇̂w|2 + χ|ŵ|2 ≤ −Re [û · û · ∇u+ ŵ · û · ∇w].

As a consequence, one has

∂t|(û, ŵ)(t)|2 + 2θ|(∇̂u, ∇̂w)|2 ≤ −2Re [û · û · ∇u+ ŵ · û · ∇w],

where θ = min{µ, γ}. Multiplying the inequality above by |ξ|2se2t|ξ|, where t ≥ 0, and
integrating over ξ ∈ R2, we have

2Re 〈F−1(et|·|(û, ŵ)(t)),F−1(et|·|(ût, ŵt)(t))〉Ḣs(R2) + 2θ‖F−1(et|·|(∇̂u, ∇̂w)(t))‖2
Ḣs(R2)

≤

− 2Re [〈F−1(et|·|û(t)),F−1(et|·|û · ∇u(t))〉Ḣs(R2) + 〈F−1(et|·|ŵ(t)),F−1(et|·|û · ∇w(t))〉Ḣs(R2)].

(6.25)

On the other hand, one obtains

1

2

d

dt
‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)
= Re 〈F−1(et|·|(û, ŵ)(t)),F−1(| · |et|·|(û, ŵ)(t))〉Ḣs(R2)

+Re 〈F−1(et|·|(û, ŵ)(t)),F−1(et|·|(ût, ŵt)(t))〉Ḣs(R2).

Therefore, by applying Cauchy-Schwarz’s inequality, it results that

2Re 〈F−1(et|·|(û, ŵ)(t)),F−1(et|·|(ût, ŵt)(t))〉Ḣs(R2) ≥
d

dt
‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)
− 2‖F−1(et|·|(û, ŵ)(t))‖Ḣs(R2)‖F

−1(et|·|(∇̂u, ∇̂w)(t))‖Ḣs(R2),

since |(∇̂u, ∇̂w)| = |ξ||(û, ŵ)|. Once again, by using Cauchy-Schwarz’s inequality, one has

2Re 〈F−1(et|·|(û, ŵ)(t)),F−1(et|·|(ût, ŵt)(t))〉Ḣs(R2) ≥
d

dt
‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)
− 1

θ
‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)
− θ‖F−1(et|·|(∇̂u, ∇̂w)(t))‖2

Ḣs(R2)
.

(6.26)
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Thus, replace the inequality (6.26) in (6.25) in order to get

d

dt
‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)
+ θ‖F−1(et|·|(∇̂u, ∇̂w)(t))‖2

Ḣs(R2)
≤ 1

θ
‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)

− 2Re [〈F−1(et|·|û(t)),F−1(et|·|û · ∇u(t))〉Ḣs(R2) + 〈F−1(et|·|ŵ(t)),F−1(et|·|û · ∇w(t))〉Ḣs(R2)].

(6.27)

On the other hand, notice that

∇̂w · û⊗ w(ξ) = −ŵ · û · ∇w(ξ),

provided that div u = 0. As a result, we get

〈F−1(et|·|ŵ(t)),F−1(et|·|û · ∇w(t))〉Ḣs(R2) = −〈F−1(et|·|∇̂w(t)),F−1(et|·|û⊗ w(t))〉Ḣs(R2).

Hence, (6.27) can be rewritten, by using Cauchy-Schwarz’s inequality, as follows:

d

dt
‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)
+ θ‖F−1(et|·|(∇̂u, ∇̂w)(t))‖2

Ḣs(R2)
≤ 1

θ
‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)

+ 2‖F−1(et|·|(∇̂u, ∇̂w)(t))‖Ḣs(R2)[‖F
−1(et|·|û⊗ u(t))‖Ḣs(R2) + ‖F−1(et|·|û⊗ w(t))‖Ḣs(R2)].

(6.28)

From now on, we shall continue this demonstration by studying two cases.

1o Case: Assume that s > 1:

By using Lemma 1.2.17, one has

‖F−1(et|·|û⊗ w(t))‖2
Ḣs(R2)

=
2∑

j,k=1

‖F−1(et|·|ŵjuk(t))‖2
Ḣs(R2)

≤ Cse
2t[‖F−1(et|·|ŵ(t))‖2

Ḣs(R2)
‖u(t)‖2

L2(R2)

+ ‖F−1(et|·|û)‖2
Ḣs(R2)

‖w(t)‖2
L2(R2)

+ ‖F−1(et|·|ŵ(t))‖2
Ḣs(R2)

‖F−1(et|·|û(t))‖2
Ḣs(R2)

].

where Cs is a positive constant. It is well known that the following inequality holds for the
micropolar equations (6.1) (see [15]):

‖(u,w)(t)‖L2(R2) ≤ ‖(u0, w0)‖L2(R2), ∀ t ≥ 0. (6.29)

From (6.29), it results

‖F−1(et|·|û⊗ w(t))‖Ḣs(R2) ≤ Cs,u0,w0e
t[‖F−1(et|·|(û, ŵ)(t))‖Ḣs(R2) + ‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)
].
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where Cs,u0,w0 is a positive constant that depends only on s and ‖(u0, w0)‖L2(R2). Consider
that T ∗ > 0 is fixed and apply Young’s inequality in order to get

‖F−1(et|·|û⊗ w(t))‖Ḣs(R2) ≤ Cs,u0,w0,T ∗ [1 + ‖F−1(et|·|(û, ŵ)(t))‖2
Ḣs(R2)

], ∀ t ∈ [0, T ∗].

Consequently, (6.28) becomes

d

dt
‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)
+ θ‖F−1(et|·|(∇̂u, ∇̂w)(t))‖2

Ḣs(R2)
≤ 1

θ
‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)

+ Cs,u0,w0,T ∗‖F−1(et|·|(∇̂u, ∇̂w)(t))‖Ḣs(R2)[1 + ‖F−1(et|·|(û, ŵ)(t))‖2
Ḣs(R2)

],

for all t ∈ [0, T ∗]. By using Cauchy-Schwarz’s inequality, one infers

d

dt
[1 + ‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)
] ≤ Cs,θ,u0,w0,T ∗ [1 + ‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)
]2,

for all t ∈ [0, T ∗]. Thus, by integrating the inequality above over [0, t] (t ∈ [0, T ∗]), we reach

ϕ(t) ≤ ϕ(0) + Cs,θ,u0,w0,T ∗

∫ t

0

ϕ(τ)2 dτ, ∀ t ∈ [0, T ∗], (6.30)

where

ϕ(t) = 1 + ‖F−1(et|·|(û, ŵ)(t))‖2
Ḣs(R2)

, ∀ t ∈ [0, T ∗].

Let us denote T
′

= [8Cs,θ,u0,w0,T ∗ϕ(0)]−1 (where Cs,θ,u0,w0,T ∗ is given in (6.30)) and T
′′

=
sup{t ∈ [0, T ∗) : ϕ(τ) ≤ 2ϕ(0),∀ τ ∈ [0, t]}. As a consequence, we assure that

ϕ(t) ≤ ϕ(0) + Cs,θ,u0,w0,T ∗

∫ t

0

ϕ(τ)2 dτ ≤ ϕ(0) + 4Cs,θ,u0,w0,T ∗ϕ(0)2t

≤ ϕ(0)[1 + 4Cs,θ,u0,w0,T ∗ϕ(0)T
′
] ≤ 2ϕ(0),

for all t ∈ [0, T ], where T = 1
2

min{T ′′ , T ′}. Rewriting the result above obtained, we have

‖F−1(et|·|(û, ŵ)(t))‖2
Ḣs(R2)

≤ 1 + 2‖(u0, w0)‖2
Ḣs(R2)

, ∀ t ∈ [0, T ].

(Notice that T depends only on s, θ, ‖(u0, w0)‖Hs(R2)).

2o Case: Assume that s ∈ (0, 1):

Note that, by utilizing Lemma 1.2.16 i), we get

‖F−1(et|·|û⊗ w(t))‖2
Ḣs(R2)

=
2∑

j,k=1

‖F−1(et|·|ŵjuk(t))‖2
Ḣs(R2)

≤ Cs

2∑
j,k=1

[‖et|·|ŵj(t)‖L1(R2)‖F−1(et|·|ûk(t))‖Ḣs(R2) + ‖et|·|ûk(t)‖L1(R2)‖F−1(et|·|ŵj(t))‖Ḣs(R2)]
2.
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where Cs is a positive constant. Now, apply the inequality (1.19) in order to obtain

‖F−1(et|·|û⊗ w(t))‖Ḣs(R2) ≤ Cs‖F−1(et|·|(û, ŵ)(t))‖s+1

Ḣs(R2)
‖F−1(et|·|(û, ŵ)(t))‖1−s

Ḣs+1(R2)
.

(6.31)

On the other hand, it is also true that

‖F−1(et|·|(∇̂u, ∇̂w)(t))‖2
Ḣs(R2)

= ‖F−1(et|·|(û, ŵ)(t))‖2
Ḣs+1(R2)

, (6.32)

since |(∇̂u, ∇̂w)| = |ξ||(û, ŵ)|. By replacing (6.31) and (6.32) in (6.28), we obtain

d

dt
‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)
+ θ‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs+1(R2)
≤ 1

θ
‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)

+ Cs‖F−1(et|·|(û, ŵ)(t))‖2−s
Ḣs+1(R2)

‖F−1(et|·|(û, ŵ)(t))‖s+1

Ḣs(R2)
.

By using Young’s inequality, one infers

d

dt
‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)
+
θ

2
‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs+1(R2)
≤ 1

θ
‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)

+ Cs,θ‖F−1(et|·|(û, ŵ)(t))‖
2s+2
s

Ḣs(R2)
.

Once again, by applying Young’s inequality, we have

d

dt
[1 + ‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)
] ≤ Cs,θ[1 + ‖F−1(et|·|(û, ŵ)(t))‖2

Ḣs(R2)
]
s+1
s .

Thus, by integrating the inequality above over [0, t] (t ≥ 0), we reach

1 + ‖F−1(et|·|(û, ŵ)(t))‖2
Ḣs(R2)

≤ [1 + ‖(u0, w0)‖2
Ḣs(R2)

] + Cs,θ

∫ t

0

[1 + ‖F−1(eτ |·|(û, ŵ)(τ))‖2
Ḣs(R2)

]
s+1
s dτ.

As it was done in the first case, we obtain

‖F−1(et|·|(û, ŵ)(t))‖2
Ḣs(R2)

≤ 1 + 2‖(u0, w0)‖2
Ḣs(R2)

, ∀ t ∈ [0, T ].

(Notice that T depends only on s, θ, ‖(u0, w0)‖Ḣs(R2)).

Remark 6.2.4. Now, recall that the limit (6.22) (since (u,w) ∈ C([0,∞); Hs(R2))) assures
that there is a positive constant M such that

‖(u,w)(t)‖Hs(R2) ≤M, ∀ t ≥ 0. (6.33)
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Lemma 6.2.5. Consider that (u,w) ∈ C([0,∞);Hs
a,σ(R2)) is a global solution for the Mi-

cropolar equations (6.1). Then, there is an instant t = T that depends only on s, µ, γ and
M such that

‖F−1(eT |·|(û, ŵ)(t))‖Ḣs(R2) ≤ [1 + 2M2]
1
2 , ∀ t ≥ T,

where M is given in (6.33).

Proof. By considering the system


vt + v · ∇v + ∇p = (µ+ χ)∆v + χ∇× b, x ∈ R2, t ≥ 0,
bt + v · ∇b = γ∆b + χ∇× v − 2χb, x ∈ R2, t ≥ 0,
div v = 0, x ∈ R2, t > 0,
v(·, 0) = u(·, T1), b(·, 0) = w(·, T1), x ∈ R2,

(6.34)

where T1 ≥ 0 is arbitrary, we obtain, by following the proof of Lemma 6.2.3, a constant T
(which depends only on s, θ,M) such that

‖F−1(et|·|(v̂, b̂)(t))‖2
Ḣs(R2)

≤ 1 + 2‖(v, b)(0)‖2
Ḣs(R2)

= 1 + 2‖(u,w)(T1)‖2
Ḣs(R2)

≤ 1 + 2M2,

for all t ∈ [0, T ]. In particular, we infer

‖F−1(eT |·|(v̂, b̂)(T ))‖2
Ḣs(R2)

≤ 1 + 2M2,

that is,

‖F−1(eT |·|(û, ŵ)(T + T1))‖2
Ḣs(R2)

≤ 1 + 2M2.

Now, suppose that t ≥ T in order to obtain (for T1 = t− T ≥ 0)

‖F−1(eT |·|(û, ŵ)(t))‖2
Ḣs(R2)

≤ 1 + 2M2, ∀ t ≥ T.

6.2.2 Decay Rate Related to Ḣs
a,σ(R2)

Now, let us establish the asymptotic behavior in Ḣs
a,σ(R2) of the solution (by assuming

its global existence in time) obtained in Theorem 6.1.1 by extending and improving the steps
presented by J. Benameur and L. Jlali [6].

Theorem 6.2.6. Let a > 0, σ > 1, and s > 0 with s 6= 1. Consider that (u,w) ∈
C([0,∞);Hs

a,σ(R2)) is a global solution for the Micropolar equations (6.1). Then,

lim
t→∞

t
s
2‖(u,w)(t)‖2

Ḣs
a,σ(R2)

= 0.
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Proof. By Lemma 6.2.5, it follows that

‖F−1(eT |·|(û, ŵ)(t))‖2
Ḣs(R2)

≤ 1 + 2M2 =: M2
1 , ∀ t ≥ T. (6.35)

By applying Young’s inequality, we have

‖(u,w)(t)‖2
Ḣs
a,σ(R2)

=

∫
R2

|ξ|2se2a|ξ|
1
σ |(û, ŵ)(t)|2 dξ ≤ CT,σ,a

∫
R2

|ξ|2seT |ξ||(û, ŵ)(t)|2 dξ.

Now, use Cauchy-Schwarz’s inequality and (6.35) in order to conclude that

t
s
2‖(u,w)(t)‖2

Ḣs
a,σ(R2)

≤ CT,σ,at
s
2

(∫
R2

|ξ|2s|(û, ŵ)(t)|2 dξ
) 1

2
(∫

R2

|ξ|2se2T |ξ||(û, ŵ)(t)|2 dξ
) 1

2

= CT,σ,a‖F−1(eT |·|(û, ŵ)(t))‖Ḣs(R2)[t
s
2‖(u,w)(t)‖Ḣs(R2)]

≤ CT,σ,aM1[t
s
2‖(u,w)(t)‖Ḣs(R2)],

for all t ≥ T. Lastly, by applying Theorem 6.2.1 ii), it results that

lim
t→∞

t
s
2‖(u,w)(t)‖2

Ḣs
a,σ(R2)

= 0.

6.2.3 Decay Rate of the Microrotational Velocity in Ḣs
a,σ(R2)

The next theorem assures that the micro-rotational velocity field w(t) decays faster than
the velocity field u(t) (see Theorem 6.2.1), provided that χ > 0.

Theorem 6.2.7. Let a > 0, σ > 1, and s > 0 with s 6= 1. Consider that (u,w) ∈
C([0,∞);Hs

a,σ(R2)) is a global solution for the Micropolar equations (6.1). If χ > 0, one has

lim
t→∞

t
s+1
2 ‖w(t)‖2

Ḣs
a,σ(R2)

= 0.

Proof. By applying Young’s inequality, we have

‖(u,w)(t)‖2
Ḣs
a,σ(R2)

=

∫
R2

|ξ|2se2a|ξ|
1
σ |(û, ŵ)(t)|2 dξ ≤ CT,σ,a

∫
R2

|ξ|2seT |ξ||(û, ŵ)(t)|2 dξ.

Now, use Cauchy-Schwarz’s inequality and (6.35) in order to conclude that

t
s+1
2 ‖w(t)‖2

Ḣs
a,σ(R2)

≤ CT,σ,at
s+1
2

(∫
R2

|ξ|2s|ŵ(t)|2 dξ
) 1

2
(∫

R2

|ξ|2se2T |ξ||(û, ŵ)(t)|2 dξ
) 1

2

= CT,σ,a‖F−1(eT |·|(û, ŵ)(t))‖Ḣs(R2)[t
s+1
2 ‖w(t)‖Ḣs(R2)]

≤ CT,σ,aM1[t
s+1
2 ‖w(t)‖Ḣs(R2)],
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for all t ≥ T. Lastly, by applying Theorem 6.2.1 iii), one has

lim
t→∞

t
s+1
2 ‖w(t)‖2

Ḣs
a,σ(R2)

= 0,

since χ > 0.

6.2.4 Decay Rate Related to Hs
a,σ(R2)

Finally, let us guarantee the asymptotic behavior in Hs
a,σ(R2) of the solution (by assuming

its global existence in time) obtained in Theorem 6.1.1 by extending and improving the steps
presented by J. Benameur and L. Jlali [6].

Theorem 6.2.8. Let a > 0, σ > 1, and s > 0 with s 6= 1. Consider that (u,w) ∈
C([0,∞);Hs

a,σ(R2)) is a global solution for the Micropolar equations (6.1). Then,

lim
t→∞
‖(u,w)(t)‖Hs

a,σ(R2) = 0.

Proof. By applying Theorem 6.2.6, the same way as in (6.21), we obtain

lim
t→∞
‖(u,w)(t)‖Ḣs

a,σ(R2) = 0. (6.36)

As a result, by using Lemma 1.2.10, Theorem 6.2.1 i) and the limit (6.36), one deduces

lim
t→∞
‖(u,w)(t)‖Hs

a,σ(R2) = 0.
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Chapter 7

Generalized MHD equations: local
existence, uniqueness and blow-up of
solutions in Lei-Lin spaces

This chapter presents a study related to the local existence, uniqueness and properties
at potential blow-up times for solutions of the following generalized Magnetohydrodynamics
(GMHD) equations:

ut + (−∆)α u + u · ∇u + ∇(p+ 1
2
| b |2) = b · ∇b, x ∈ R3, t ∈ [0, T ∗),

bt + (−∆)β b + u · ∇b = b · ∇u, x ∈ R3, t ∈ [0, T ∗),
div u = div b = 0, x ∈ R3, t ∈ (0, T ∗),
u(·, 0) = u0(·), b(·, 0) = b0(·), x ∈ R3,

(7.1)

where T ∗ > 0 gives the solution’s existence time, u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) ∈
R3 denotes the incompressible velocity field, b(x, t) = (b1(x, t), b2(x, t), b3(x, t)) ∈ R3 the
magnetic field and p(x, t) ∈ R the hydrostatic pressure. Furthermore, we consider that
α, β ∈ (1

2
, 1]. Lastly, the initial data for the velocity and magnetic fields, given by u0 and b0

in (7.1), are assumed to be divergence free, i.e., div u0 = div b0 = 0.

Notice that the GMHD equations (7.1) are an extension of the MHD equations; in fact, it
is enough to consider α = β = 1 in (7.1). Let us mention that some papers in the literature
have presented a study related to the local existence, uniqueness and blow-up criteria for
solutions of the MHD equations in Sobolev-Gevrey spaces (these ones are defined by a slight
variation of the usual Sobolev spaces as well as Lei-Lin spaces). Here we refer to [24, 25, 26,
31] (and references therein). Although our interest is only connected with the mathematical
theory of incompressible fluids, it is important to point out that “Magnetohydrodynamics is a
branch of Physics devoted to the study of the dynamics of electrically conducting fluids in the
presence of magnetic fields. In addition, MHD applies to most astrophysical plasmas, some
laboratory plasmas, and liquid metals (e.g. mercury, sodium, gallium). More specifically,
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some applications of the MHD are the following: the machinery of the sun, stars, stellar
winds, black holes with the formation of extragalactic jets, interstellar clouds, and planetary
magnetospheres” (for more details see [22, 39] and references therein).

If we assume α = 1 and b = 0 in (7.1), it is also easy to note that the famous Navier-
Stokes equations are a particular case of the GMHD equations (7.1). More specifically, the
Navier-Stokes system has been vastly discussed by various authors in order to establish new
blow-up criteria for local solutions in Lei-Lin, Sobolev-Gevrey and the usual Sobolev spaces
(see, for instance, [5, 10, 29] and included references).

The existence of global solutions in time for the GMHD equations (7.1) is still an open
problem; thus, this issue has become a fruitful field in the study of the incompressible fluids
(see e.g. [45] and references therein). More precisely, this chapter investigates the local
existence and uniqueness of a classical solution (u, b)(x, t) for the GMHD equations (7.1) in

Lei-Lin spaces X s(R3), provided that max
{α(1−2β)

β
, β(1−2α)

α

}
≤ s < 0. Lastly, by assuming

that the maximal time T ∗ > 0 of existence for the solution (u, b)(x, t) is finite, we guarantee
that the limit superior, as t tends to T ∗, of the norm ‖(u, b)(t)‖X s(R3) blows up (whether

max
{

1− 2α, 1− 2β, α(1−2β)
β

, β(1−2α)
α

}
< s < 0).

7.1 Existence of Local Solutions

Below, we shall present one of our main results that establishes the existence of a time
T > 0 and a solution (u, b) ∈ [CT (X s(R3))∩L1

T (X s+2α(R3))]×[CT (X s(R3))∩L1
T (X s+2β(R3))]

for the GMHD equations (7.1), provided that the initial data is in the appropriate Lei-Lin
space.

Theorem 7.1.1. Assume that max
{

1 − 2α, 1 − 2β, α(1−2β)
β

, β(1−2α)
α

}
≤ s < 0, with α, β ∈

(1
2
, 1]. If (u0, b0) ∈ X s(R3) then, there exist a time T > 0 and a solution (u, b) ∈ [CT (X s(R3))∩

L1
T (X s+2α(R3))]× [CT (X s(R3)) ∩ L1

T (X s+2β(R3))] of the GMHD equations (7.1).

Proof. The proof of local existence for solutions of the GMHD equations (7.1) is based on
Lemma 1.2.20. Initially, we must assume that r is a positive constant such that

0 < r <
1

66Cs
, (7.2)

where Cs is given by Lemma 1.2.24. Also, let us choose N ∈ N that satisfies∫
|ξ|>N

|ξ|s|û0(ξ)| dξ < r

33
,

∫
|ξ|>N

|ξ|s|b̂0(ξ)| dξ < r

33
. (7.3)

It comes from the fact that (u0, b0) ∈ X s(R3).
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Now, define V0 = F−1(χ{|ξ|>N}û0) and W0 = F−1(χ{|ξ|>N}b̂0). By using (7.3), one obtains

‖V0‖X s(R3) =

∫
R3

|ξ|s|V̂0(ξ)| dξ

=

∫
R3

|ξ|sχ{|ξ|>N}(ξ)|û0(ξ)| dξ

=

∫
|ξ|>N

|ξ|s|û0(ξ)| dξ

<
r

33
(7.4)

and, analogously, we have

‖W0‖X s(R3) <
r

33
.

Let us also define U(t) = e−t(−∆)αU0 and B(t) = e−t(−∆)βB0, where U0 = F−1(χ{|ξ|≤N}û0)

and B0 = F−1(χ{|ξ|≤N}b̂0). By definition, U(t) and B(t) are the unique solutions of the
systems {

Ut + (−∆)αU = 0;
U(0) = U0,

and

{
Bt + (−∆)βB = 0;

B(0) = B0,
(7.5)

respectively, for all t > 0. Moreover, one concludes

‖U(t)‖X s(R3) =

∫
R3

|ξ|se−t|ξ|2α|Û0(ξ)| dξ ≤
∫
R3

|ξ|sχ{|ξ|≤N}|û0(ξ)| dξ

=

∫
|ξ|≤N

|ξ|s|û0(ξ)| dξ ≤ ‖u0‖X s(R3), (7.6)

for all t ≥ 0. By following a similar process, we get

‖B(t)‖X s(R3) ≤ ‖b0‖X s(R3), ∀t ≥ 0. (7.7)

On the other hand, one can write

‖U‖L1
T (X s+2α(R3)) =

∫ T

0

∫
R3

|ξ|s+2α|Û(ξ)| dξ dt

=

∫ T

0

∫
R3

|ξ|s+2αe−t|ξ|
2α|Û0(ξ)| dξ dt

≤
∫ T

0

∫
R3

|ξ|s+2αe−t|ξ|
2α|û0(ξ)| dξ dt

=

∫
R3

|ξ|s+2α|û0(ξ)|
(∫ T

0

e−t|ξ|
2α

dt

)
dξ

≤
∫
R3

(1− e−T |ξ|2α)|ξ|s|û0(ξ)| dξ. (7.8)
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Similarly, it is possible to obtain

‖B‖L1
T (X s+2α(R3)) ≤

∫
R3

(1− e−T |ξ|2β)|ξ|s|û0(ξ)| dξ. (7.9)

As (u0, b0) ∈ X s(R3), by applying the Dominated Convergence Theorem, one reaches

lim
T↗0
‖U‖L1

T (X s+2α(R3)) = 0, lim
T↗0
‖B‖L1

T (X s+2β(R3)) = 0. (7.10)

By using (7.8) and (7.9), it is also true that

‖U‖L1
T (X s+2α(R3)) ≤ ‖u0‖X s(R3), ‖B‖L1

T (X s+2β(R3)) ≤ ‖b0‖X s(R3). (7.11)

Let us choose ε > 0 small enough satisfying the following conditions:

• Cs(‖u0‖
1− 1

2α

X s(R3)ε
1
2α + ‖u0‖

1+ s
2α

X s(R3)ε
− s

2α ) <
1

33
; (7.12)

• 2Cs‖u0‖
2+ s−1

2α

X s(R3)ε
1−s
2α <

r

33
; (7.13)

• Cs(‖b0‖
1− 1

2β

X s(R3)ε
1
2β + ‖b0‖

1+ s
2β

X s(R3)ε
− s

2β ) <
1

33
; (7.14)

• 2Cs‖b0‖
2+ s−1

2β

X s(R3)ε
1−s
2β <

r

33
; (7.15)

• Cs(‖u0‖
1+ s

2α

X s(R3)‖b0‖
1− 1

2β

X s(R3)ε
1
2β
− s

2α + ‖u0‖
1− 1

2α

X s(R3)‖b0‖
1+ s

2β

X s(R3)ε
1
2α
− s

2β ) <
r

33
. (7.16)

On the other hand, as a consequence of (7.10), there exists a time T = T (ε) ∈ (0, 1) such
that

‖U‖L1
T (X s+2α(R3)) < ε, ‖B‖L1

T (X s+2β(R3)) < ε. (7.17)

Now, define V = u − U e W = b − B. Notice that, if (u, b) is a solution of (7.1), then
(V,W ) is a solution of the following system:

Vt + (−∆)α V + (V + U) · ∇(V + U) +∇(p+ 1
2
|W +B|2) = (W +B) · ∇(W +B),

Wt + (−∆)βW + (V + U) · ∇(W +B) = (W +B) · ∇(V + U),
div V = divW = 0,
V (·, 0) = V0(·), W (·, 0) = W0(·).

(7.18)
Our aim is to assure the existence and uniqueness of local solutions for the equations (7.18).
To do this, we will use Lemma 1.2.20.

First of all, use the heat semigroup e−(t−τ)(−∆)α , with τ ∈ [0, t] (t ∈ [0, T ]), in the first
equation given of the system (7.18), and, after that, integrate the obtained result over the
interval [0, t] to reach∫ t

0

e−(t−τ)(−∆)αVt dτ +

∫ t

0

e−(t−τ)(−∆)α(−∆)αV dτ

= −
∫ t

0

e−(t−τ)(−∆)α [(V + U) · ∇(V + U) +∇(p+
1

2
|W +B|2)− (W +B) · ∇(W +B)] dτ.
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By applying integration by parts to the first integral above and using the proprieties of the
heat semigroup, one deduces

V (t) = e−t(−∆)αV0

−
∫ t

0

e−(t−τ)(−∆)α [(V + U) · ∇(V + U) +∇(p+
1

2
|W +B|2)− (W +B) · ∇(W +B)] dτ.

Let us recall that Helmontz’s projector PH is a linear operator such that

PH [(V + U) · ∇(V + U)− (W +B) · ∇(W +B)]

= (V + U) · ∇(V + U) +∇(p+
1

2
|W +B|2)− (W +B) · ∇(W +B).

Consequently, one can write

V (t) = e−t(−∆)αV0 −
∫ t

0

e−(t−τ)(−∆)αPH [(V + U) · ∇(V + U)− (W +B) · ∇(W +B)] dτ.

(7.19)

Now, we are interested in obtaining an equality analogous to (7.19) related to the field W .
Thus, by using the heat semigroup e−(t−τ)(−∆)β , with τ ∈ [0, t], integrating over [0, t], and
integrating by parts, one gets

W (t) = e−t(−∆)βW0 −
∫ t

0

e−(t−τ)(−∆)β [(V + U) · ∇(W +B)− (W +B) · ∇(V + U)] dτ,

(7.20)

see the second equation of the system (7.18).

On the other hand, let us define the operator

Ψ(V,W )(t) = (Ψ1(V,W )(t),Ψ2(V,W )(t)), ∀t ∈ [0, T ],

where

Ψ1(V,W )(t) = e−t(−∆)αV0

−
∫ t

0

e−(t−τ)(−∆)αPH [(V + U) · ∇(V + U)− (W +B) · ∇(W +B)] dτ

and

Ψ2(V,W )(t) = e−t(−∆)βW0

−
∫ t

0

e−(t−τ)(−∆)β [(V + U) · ∇(W +B)− (W +B) · ∇(V + U)] dτ,

for all t ∈ [0, T ].
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Moreover, let us consider the space

XT = XT,α,β,s(R3) = [CT (X s(R3)) ∩ L1
T (X s+2α(R3))]× [CT (X s(R3)) ∩ L1

T (X s+2β(R3))]

endowed with the norm

‖(f, g)‖XT = ‖f‖L∞T (X s(R3)) + ‖f‖L1
T (X s+2α(R3)) + ‖g‖L∞T (X s(R3)) + ‖g‖L1

T (X s+2β(R3)),

for all (f, g) ∈ XT . Our goal here is to prove that Ψ : XT → XT admits a fixed point, for a
suitable T > 0.

Initially, we will prove that Ψ(XT ) ⊆ XT . In fact, consider that (V,W ) ∈ XT . Note that

‖Ψ1(V,W )(t)‖X s(R3) ≤ ‖e−t(−∆)αV0‖X s(R3) + ‖
∫ t

0

e−(t−τ)(−∆)αPH [(V + U) · ∇(V + U)] dτ‖X s(R3)

+ ‖
∫ t

0

e−(t−τ)(−∆)αPH [(W +B) · ∇(W +B)] dτ‖X s(R3).

By applying Lemma 1.2.23, it results

‖Ψ1(V,W )(t)‖X s(R3) ≤ ‖V0‖X s(R3) +

∫ t

0

‖(V + U)⊗ (V + U)‖X s+1(R3) dτ

+

∫ t

0

‖(W +B)⊗ (W +B)‖X s+1(R3) dτ.

Thus, use Lemma 1.2.24 to obtain

‖Ψ1(V,W )(t)‖X s(R3) ≤ ‖V0‖X s(R3) + 2Cs[‖V + U‖2+ s−1
2α

L∞T (X s(R3))‖V + U‖
1−s
2α

L1
T (X s+2α(R3))

+ ‖W +B‖
2+ s−1

2β

L∞T (X s(R3))‖W +B‖
1−s
2β

L1
T (X s+2β(R3))

].

Consequently, by using (7.6), (7.7) and (7.11), we deduce

‖Ψ1(V,W )(t)‖X s(R3) ≤ ‖V0‖X s(R3) + 4Cs[‖(V,W )‖XT + ‖(u0, b0)‖X s(R3)]
2, ∀t ∈ [0, T ].

Lastly, (7.4) lets us conclude that

‖Ψ1(V,W )‖L∞T (X s(R3)) <
r

33
+ 4Cs[‖(V,W )‖XT + ‖(u0, b0)‖X s(R3)]

2 <∞,

provided that (V,W ) ∈ XT and (u0, b0) ∈ X s(R3). It is important to point out here that, by
following a similar process, we have

• ‖Ψ1(V,W )‖L1
T (X s+2α(R3)) <

r

33
+ 4Cs[‖(V,W )‖XT + ‖(u0, b0)‖X s(R3)]

2 <∞;

• ‖Ψ2(V,W )‖L∞T (X s(R3)) <
r

33
+ 4Cs[‖(V,W )‖XT + ‖(u0, b0)‖X s(R3)]

2 <∞;

• ‖Ψ2(V,W )‖L1
T (X s+2β(R3)) <

r

33
+ 4Cs[‖(V,W )‖XT + ‖(u0, b0)‖X s(R3)]

2 <∞.
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Thereby, we have Ψ(XT ) ⊆ XT .

Now, denote

Br = Br,α,β,s

= {(V,W ) ∈ XT : ‖V ‖L∞T (X s(R3)), ‖W‖L∞T (X s(R3)), ‖V ‖L1
T (X s+2α(R3)), ‖W‖L1

T (X s+2β(R3)) ≤ r}.

Thus, we shall show that Ψ(Br) ⊆ Br. In fact, let us consider (V,W ) ∈ Br to infer

‖Ψ1(V,W )(t)‖X s(R3) ≤ ‖e−t(−∆)αV0‖X s(R3) +

∫ t

0

‖e−(t−τ)(−∆)αPH(V · ∇V )‖X s(R3) dτ

+

∫ t

0

‖e−(t−τ)(−∆)αPH(V · ∇U)‖X s(R3) dτ +

∫ t

0

‖e−(t−τ)(−∆)αPH(U · ∇V )‖X s(R3) dτ

+

∫ t

0

‖e−(t−τ)(−∆)αPH(U · ∇U)‖X s(R3) dτ +

∫ t

0

‖e−(t−τ)(−∆)αPH(W · ∇W )‖X s(R3) dτ

+

∫ t

0

‖e−(t−τ)(−∆)αPH(W · ∇B)‖X s(R3) dτ +

∫ t

0

‖e−(t−τ)(−∆)αPH(B · ∇W )‖X s(R3) dτ

+

∫ t

0

‖e−(t−τ)(−∆)αPH(B · ∇B)‖X s(R3) dτ =:
8∑
j=0

Ij(t). (7.21)

By (7.4), we have

I0(t) = ‖e−t(−∆)αV0‖X s(R3) ≤ ‖V0‖X s(R3) <
r

33
, ∀t ∈ [0, T ]. (7.22)

On the other hand, by applying Lemmas 1.2.23 and 1.2.24, it follows that

I1(t) =

∫ t

0

‖e−(t−τ)(−∆)αPH(V · ∇V )‖X s(R3) dτ ≤
∫ t

0

‖V ⊗ V ‖X s+1(R3) dτ

≤ 2Cs‖V ‖
2+ s−1

2α

L∞T (X s(R3))‖V ‖
1−s
2α

L1
T (X s+2α(R3))

≤ 2Csr
2,

since (V,W ) ∈ Br. Then, use (7.2) to conclude that

I1(t) <
r

33
, ∀t ∈ [0, T ]. (7.23)

Again, by applying Lemmas 1.2.23 and 1.2.24, one checks that

I2(t) =

∫ t

0

‖e−(t−τ)(−∆)αPH(V · ∇U)‖X s(R3) dτ ≤
∫ t

0

‖U ⊗ V ‖X s+1(R3) dτ

≤ Cs[‖V ‖
1+ s

2α

L∞T (X s(R3))‖U‖
1− 1

2α

L∞T (X s(R3))‖V ‖
− s

2α

L1
T (X s+2α(R3))

‖U‖
1
2α

L1
T (X s+2α(R3))

+ ‖V ‖1− 1
2α

L∞T (X s(R3))‖U‖
1+ s

2α

L∞T (X s(R3))‖V ‖
1
2α

L1
T (X s+2α(R3))

‖U‖−
s
2α

L1
T (X s+2α(R3))

].
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By using (7.6), (7.12) and (7.17), we infer

I2(t) ≤ Csr[‖u0‖
1− 1

2α

X s(R3)ε
1
2α + ‖u0‖

1+ s
2α

X s(R3)ε
− s

2α ] <
r

33
, ∀t ∈ [0, T ], (7.24)

provided that (V,W ) ∈ Br. Analogously, we get the following estimate

I3(t) <
r

33
, ∀t ∈ [0, T ]. (7.25)

Moreover, let us observe that Lemmas 1.2.23 and 1.2.24 also imply that

I4(t) =

∫ t

0

‖e−(t−τ)(−∆)αPH(U · ∇U)‖X s(R3) dτ ≤
∫ t

0

‖U ⊗ U‖X s+1(R3) dτ

≤ 2Cs‖U‖
2+ s−1

2α

L∞T (X s(R3))‖U‖
1−s
2α

L1
T (X s(R3))

.

As a result, by (7.6), (7.13) and (7.17), it follows

I4(t) < 2Cs‖u0‖
2+ s−1

2α

X s(R3)ε
1−s
2α <

r

33
, ∀t ∈ [0, T ]. (7.26)

By following a similar process to the one presented above and applying (7.14) and (7.15),
we have

I5(t), I6(t), I7(t), I8(t) <
r

33
, ∀t ∈ [0, T ]. (7.27)

Therefore, by replacing (7.22)–(7.27) in (7.21), we can guarantee that

‖Ψ1(V,W )‖L∞T (X s(R3)) < r. (7.28)

Now, let us estimate Ψ2(V,W ) in L∞T (X s(R3))-norm. First of all, notice that

‖Ψ2(V,W )(t)‖X s(R3) ≤
8∑
i=0

Ji(t), ∀t ∈ [0, T ], (7.29)

where

• J0(t) = ‖e−t(−∆)βW0‖X s(R3), J1(t) =

∫ t

0

‖e−(t−τ)(−∆)βV · ∇W‖X s(R3) dτ ;

• J2(t) =

∫ t

0

‖e−(t−τ)(−∆)βV · ∇B‖X s(R3) dτ, J3(t) =

∫ t

0

‖e−(t−τ)(−∆)βU · ∇W‖X s(R3) dτ ;

• J4(t) =

∫ t

0

‖e−(t−τ)(−∆)βU · ∇B‖X s(R3) dτ, J5(t) =

∫ t

0

‖e−(t−τ)(−∆)βW · ∇V ‖X s(R3) dτ ;

• J6(t) =

∫ t

0

‖e−(t−τ)(−∆)βW · ∇U‖X s(R3) dτ, J7(t) =

∫ t

0

‖e−(t−τ)(−∆)βB · ∇V ‖X s(R3) dτ ;

• J8(t) =

∫ t

0

‖e−(t−τ)(−∆)βB · ∇U‖X s(R3) dτ,
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for all t ∈ [0, T ]. Initially, by applying (7.2), one obtains

J0(t) = ‖e−t(−∆)βW0‖X s(R3) ≤ ‖W0‖X s(R3) <
r

33
, ∀t ∈ [0, T ]. (7.30)

Moreover, use Lemmas 1.2.23, 1.2.24 and (7.2) in order to deduce

J1(t) =

∫ t

0

‖e−(t−τ)(−∆)βV · ∇W‖X s(R3) dτ ≤
∫ t

0

‖W ⊗ V ‖X s+1(R3) dτ

≤ Cs[‖V ‖
1+ s

2α

L∞T (X s(R3))‖W‖
1− 1

2β

L∞T (X s(R3))‖V ‖
− s

2α

L1
T (X s+2α(R3))

‖W‖
1
2β

L1
T (X s+2β(R3))

+ ‖V ‖1− 1
2α

L∞T (X s(R3))‖W‖
1+ s

2β

L∞T (X s(R3))‖V ‖
1
2α

L1
T (X s+2α(R3))

‖W‖
− s

2β

L1
T (X s+2β(R3))

]

≤ 2Csr
2 <

r

33
, (7.31)

for all t ∈ [0, T ]; since, (V,W ) ∈ Br. Now, let us present an estimate related to J2(t). Thus,
one has

J2(t) =

∫ t

0

‖e−(t−τ)(−∆)βV · ∇B‖X s(R3) dτ ≤
∫ t

0

‖B ⊗ V ‖X s+1(R3) dτ

≤ Cs[‖V ‖
1+ s

2α

L∞T (X s(R3))‖B‖
1− 1

2β

L∞T (X s(R3))‖V ‖
− s

2α

L1
T (X s+2α(R3))

‖B‖
1
2β

L1
T (X s+2β(R3))

+ ‖V ‖1− 1
2α

L∞T (X s(R3))‖B‖
1+ s

2β

L∞T (X s(R3))‖V ‖
1
2α

L1
T (X s+2α(R3))

‖B‖
− s

2β

L1
T (X s+2β(R3))

].

Hence, by applying (7.7), (7.14) and (7.17), one deduces

J2(t) ≤ Csr[‖b0‖
1− 1

2β

X s(R3)ε
1
2β + ‖b0‖

1+ s
2β

X s(R3)ε
− s

2β ] <
r

33
, ∀t ∈ [0, T ]. (7.32)

Similarly, we get

J3(t) <
r

33
, ∀t ∈ [0, T ]. (7.33)

At last, Lemmas 1.2.23 and 1.2.24 imply

J4(t) =

∫ t

0

‖e−(t−τ)(−∆)βU · ∇B‖X s(R3) dτ ≤
∫ t

0

‖B ⊗ U‖X s+1(R3) dτ

≤ Cs[‖U‖
1+ s

2α

L∞T (X s(R3))‖B‖
1− 1

2β

L∞T (X s(R3))‖U‖
− s

2α

L1
T (X s+2α(R3))

‖B‖
1
2β

L1
T (X s+2β(R3))

+ ‖U‖1− 1
2α

L∞T (X s(R3))‖B‖
1+ s

2β

L∞T (X s(R3))‖U‖
1
2α

L1
T (X s+2α(R3))

‖B‖
− s

2β

L1
T (X s+2β(R3))

],

for all t ∈ [0, T ]. Thus, use the estimates obtained in (7.6), (7.7) and (7.17) in order to
conclude that

J4(t) ≤ Cs[‖u0‖
1+ s

2α

X s(R3)‖b0‖
1− 1

2β

X s(R3)ε
1
2β
− s

2α + ‖u0‖
1− 1

2α

X s(R3)‖b0‖
1+ s

2β

X s(R3)ε
1
2α
− s

2β ].
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Consequently, (7.16) assures that

J4(t) <
r

33
, ∀t ∈ [0, T ]. (7.34)

In an analogous way, we are able to prove that

J5(t), J6(t), J7(t), J8(t) <
r

33
, ∀t ∈ [0, T ]. (7.35)

Thereby, by replacing (7.30)–(7.35) in (7.29), we conclude

‖Ψ2(V,W )‖L∞T (X s(R3)) < r. (7.36)

It is easy to check, by applying Lemma 1.2.23 and the process established above, that

‖Ψ1(V,W )‖L1
T (X s+2α(R3)) < r, ‖Ψ2(V,W )‖L1

T (X s+2β(R3)) < r. (7.37)

The estimates (7.28), (7.36) and (7.37) complete the proof of the fact that Ψ(Br) ⊆ Br.

Finally, let us prove that the operator Ψ satisfies the following inequality:

‖Ψ(V1,W1)−Ψ(V2,W2)‖XT ≤ K‖(V1,W1)− (V2,W2)‖XT , ∀(V1,W1), (V2,W2) ∈ Br,

provided that 0 < K < 1. First of all let us write

‖Ψ1(V1,W1)(t)−Ψ1(V2,W2)(t)‖X s(R3) ≤
8∑
j=1

Lj(t), ∀t ∈ [0, T ], (7.38)

where

• L1(t) =

∫ t

0

‖e−(t−τ)(−∆)αPH [(V1 − V2) · ∇U ]‖X s(R3) dτ ;

• L2(t) =

∫ t

0

‖e−(t−τ)(−∆)αPH [U · ∇(V1 − V2)]‖X s(R3) dτ ;

• L3(t) =

∫ t

0

‖e−(t−τ)(−∆)αPH [(V1 − V2) · ∇V1]‖X s(R3) dτ ;

• L4(t) =

∫ t

0

‖e−(t−τ)(−∆)αPH [V2 · ∇(V1 − V2)]‖X s(R3) dτ,

and also

• L5(t) =

∫ t

0

‖e−(t−τ)(−∆)αPH [(W1 −W2) · ∇B]‖X s(R3) dτ ;

• L6(t) =

∫ t

0

‖e−(t−τ)(−∆)αPH [B · ∇(W1 −W2)]‖X s(R3) dτ ;

• L7(t) =

∫ t

0

‖e−(t−τ)(−∆)αPH [(W1 −W2) · ∇W1]‖X s(R3) dτ ;

• L8(t) =

∫ t

0

‖e−(t−τ)(−∆)αPH [W2 · ∇(W1 −W2)]‖X s(R3) dτ,
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for all t ∈ [0, T ]. Thus, by applying Lemmas 1.2.23 and 1.2.24, one has

L1(t), L2(t) ≤ Cs[‖V1 − V2‖
1+ s

2α

L∞T (X s(R3))‖U‖
1− 1

2α

L∞T (X s(R3))‖V1 − V2‖
− s

2α

L1
T (X s+2α(R3))

‖U‖
1
2α

L1
T (X s+2α(R3))

+ ‖V1 − V2‖
1− 1

2α

L∞T (X s(R3))‖U‖
1+ s

2α

L∞T (X s(R3))‖V1 − V2‖
1
2α

L1
T (X s+2α(R3))

‖U‖−
s
2α

L1
T (X s+2α(R3))

],

for all t ∈ [0, T ]. Thus, by applying Lemmas 1.2.23 and 1.2.24, one has

L1(t), L2(t) ≤ Cs[‖V1 − V2‖
1+ s

2α

L∞T (X s(R3))‖U‖
1− 1

2α

L∞T (X s(R3))‖V1 − V2‖
− s

2α

L1
T (X s+2α(R3))

‖U‖
1
2α

L1
T (X s+2α(R3))

+ ‖V1 − V2‖
1− 1

2α

L∞T (X s(R3))‖U‖
1+ s

2α

L∞T (X s(R3))‖V1 − V2‖
1
2α

L1
T (X s+2α(R3))

‖U‖−
s
2α

L1
T (X s+2α(R3))

].

Use the estimates obtained in (7.6) and (7.17) in order to conclude that

L1(t), L2(t) < Cs‖(V1 − V2,W1 −W2)‖XT [‖u0‖
1− 1

2α

X s(R3)ε
1
2α + ‖u0‖

1+ s
2α

X s(R3)ε
− s

2α ]

<
1

33
‖(V1 − V2,W1 −W2)‖XT , ∀t ∈ [0, T ], (7.39)

see (7.12). It is also true that

L3(t), L4(t) ≤ 2Csr‖(V1 − V2,W1 −W2)‖XT <
1

33
‖(V1 − V2,W1 −W2)‖XT , ∀t ∈ [0, T ].

(7.40)

It is enough to apply Lemma 1.2.23, Lemma 1.2.24 and (7.2), since that (V1,W1), (V2,W2) ∈
Br. Analogously, we can estimate L5(t), L6(t), L7(t) and L8(t) in order to infer

L5(t), L6(t), L7(t), L8(t) <
1

33
‖(V1 − V2,W1 −W2)‖XT , ∀t ∈ [0, T ]. (7.41)

Therefore, by replacing (7.39)–(7.41) in (7.38), we conclude

‖Ψ1(V1,W1)−Ψ1(V2,W2)‖L∞T (X s(R3)) <
8

33
‖(V1 − V2,W1 −W2)‖XT , (7.42)

for all (V1,W1), (V2,W2) ∈ Br. By following a similar process, we guarantee that

• ‖Ψ2(V1,W1)−Ψ2(V2,W2)‖L∞T (X s(R3)) <
8

33
‖(V1 − V2,W1 −W2)‖XT ; (7.43)

• ‖Ψ1(V1,W1)−Ψ1(V2,W2)‖L1
T (X s+2α(R3)) <

8

33
‖(V1 − V2,W1 −W2)‖XT ; (7.44)

• ‖Ψ2(V1,W1)−Ψ2(V2,W2)‖L1
T (X s+2β(R3)) <

8

33
‖(V1 − V2,W1 −W2)‖XT , (7.45)

for all (V1,W1), (V2,W2) ∈ Br. Thereby, by (7.42)–(7.45), one concludes

‖Ψ(V1,W1)−Ψ(V2,W2)‖XT <
32

33
‖(V1,W1)− (V2,W2)‖XT , ∀(V1,W1), (V2,W2) ∈ Br.

(7.46)
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Lastly, by noticing that Ψ : Br → Br is a contraction mapping (see (7.46)), it is enough
to apply Lemma 1.2.20 in order to obtain a unique solution (V,W ) ∈ Br for the equations
(7.18). Thus, (u, b) = (V,W ) + (U,B) ∈ XT is a local solution of the GMHD system (7.1),
where (V,W ) is a solution of (7.18) and (U,B) of the heat equations presented in (7.5).

7.2 Uniqueness of Local Solutions

The Theorem below guarantee uniqueness for solutions of the GMHD equations, obtained
in Theorem 7.1.1.

Theorem 7.2.1. Assume that max
{

1 − 2α, 1 − 2β, α(1−2β)
β

, β(1−2α)
α

}
≤ s < 0, with α, β ∈

(1
2
, 1]. If (u0, b0) ∈ X s(R3) then, the solution (u, b) ∈ [CT (X s(R3)) ∩ L1

T (X s+2α(R3))] ×
[CT (X s(R3)) ∩ L1

T (X s+2β(R3))] for the GMHD equations (7.1) obtained in Theorem 7.1.1 is
unique.

Proof. Suppose that (u1, b1), (u2, b2) ∈ XT are local solutions of the GMHD equations (7.1),
related to the pressures p1 and p2 respectively. It is important to emphasize that we are
interested in proving that (u1, b1)(t) = (u2, b2)(t) for all t ∈ [0, T ] (here T is given in Theorem
7.1.1) Thus, it is true that

δt + (−∆)α δ + δ · ∇u1 + u2 · ∇δ +∇( p1 − p2 + 1
2
| b1 |2 − 1

2
| b2 |2) = ρ · ∇b1 + b2 · ∇ρ,

ρt + (−∆)β ρ + δ · ∇b1 + u2 · ∇ρ = ρ · ∇u1 + b2 · ∇δ,
div δ = div ρ = 0,
δ(·, 0) = ρ(·, 0) = 0,

(7.47)
where δ = u1 − u2, and ρ = b1 − b2. By applying Fourier Transform and taking the scalar
product in C3 of the first equation of (7.47) with δ̂(t), one has

δ̂ · δ̂t + δ̂ · (|ξ|2αδ̂) + δ̂ · δ̂ · ∇u1 + δ̂ · û2 · ∇δ = δ̂ · ρ̂ · ∇b1 + δ̂ · b̂2 · ∇ρ.

Thereby, it follows that

1

2
∂t|δ̂(t)|2 + |ξ|2α|δ̂(t)|2 ≤ |δ̂(t)|[|δ̂ · ∇u1|+ |û2 · ∇δ|+ |ρ̂ · ∇b1|+ |b̂2 · ∇ρ|]. (7.48)

Considering ε > 0 arbitrary, we can write

1

2
∂t|δ̂(t)|2 =

1

2
∂t(|δ̂(t)|2 + ε) =

√
|δ̂(t)|2 + ε ∂t

√
|δ̂(t)|2 + ε.

By replacing this last equality in (7.48), one gets

∂t

√
|δ̂(t)|2 + ε+

|ξ|2α|δ̂(t)|2√
|δ̂(t)|2 + ε

≤ |δ̂(t)|√
|δ̂(t)|2 + ε

[|δ̂ · ∇u1|+ |û2 · ∇δ|+ |ρ̂ · ∇b1|+ |b̂2 · ∇ρ|].
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Moreover, by integrating from 0 to t, we obtain√
|δ̂(t)|2 + ε+

∫ t

0

|ξ|2α|δ̂(τ)|2√
|δ̂(τ)|2 + ε

dτ ≤
√
ε+

∫ t

0

(|δ̂ · ∇u1|+ |û2 · ∇δ|+ |ρ̂ · ∇b1|+ |b̂2 · ∇ρ|) dτ.

Taking the limit as ε → 0, multiplying by |ξ|s and integrating over ξ ∈ R3, we get the
following estimate:

‖δ(t)‖X s(R3) +

∫ t

0

‖δ(τ)‖X s+2α(R3) dτ

≤
∫ t

0

(‖δ · ∇u1‖X s(R3) + ‖u2 · ∇δ‖X s(R3) + ‖ρ · ∇b1‖X s(R3) + ‖b2 · ∇ρ‖X s(R3)) dτ. (7.49)

Analogously, we guarantee a similar estimative to (7.49) by considering the second equa-
tion of (7.47). More precisely, we infer

‖ρ(t)‖X s(R3) +

∫ t

0

‖ρ(τ)‖X s+2β(R3) dτ

≤
∫ t

0

(‖δ · ∇b1‖X s(R3) + ‖u2 · ∇ρ‖X s(R3) + ‖ρ · ∇u1‖X s(R3) + ‖b2 · ∇δ‖X s(R3)) dτ. (7.50)

Hence, by following a similar process as in the proof of Lemma 1.2.23, we can rewrite (7.49)
as follows:

‖δ(t)‖X s(R3) +

∫ t

0

‖δ(τ)‖X s+2α(R3) dτ

≤
∫ t

0

(‖u1 ⊗ δ‖X s+1(R3) + ‖δ ⊗ u2‖X s+1(R3) + ‖b1 ⊗ ρ‖X s+1(R3) + ‖ρ⊗ b2‖X s+1(R3)) dτ.

Now, by using the proof of Lemma 1.2.24, it follows that

‖δ(t)‖X s(R3) +

∫ t

0

‖δ(τ)‖X s+2α(R3) dτ

≤ Cs

2∑
i=1

∫ t

0

(‖δ‖1+ s
2α

X s(R3)‖ui‖
1− 1

2α

X s(R3)‖δ‖
− s

2α

X s+2α(R3)‖ui‖
1
2α

X s+2α(R3)

+ ‖δ‖1− 1
2α

X s(R3)‖ui‖
1+ s

2α

X s(R3)‖δ‖
1
2α

X s+2α(R3)‖ui‖
− s

2α

X s+2α(R3)

+ ‖ρ‖
1+ s

2β

X s(R3)‖bi‖
1− 1

2β

X s(R3)‖ρ‖
− s

2β

X s+2β(R3)
‖bi‖

1
2β

X s+2β(R3)

+ ‖ρ‖
1− 1

2β

X s(R3)‖bi‖
1+ s

2β

X s(R3)‖ρ‖
1
2β

X s+2β(R3)
‖bi‖

− s
2β

X s+2β(R3)
) dτ. (7.51)
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By using Young’s inequality, we infer

‖δ(t)‖X s(R3) +

∫ t

0

‖δ(τ)‖X s+2α(R3) dτ ≤
1

4

∫ t

0

‖δ‖X s+2α(R3) dτ +
1

4

∫ t

0

‖ρ‖X s+2β(R3) dτ

+ Cs,α,β

2∑
i=1

∫ t

0

[‖δ(τ)‖X s(R3)(‖ui‖
2α−1
s+2α

X s(R3)‖ui‖
1

s+2α

X s+2α(R3) + ‖ui‖
s+2α
2α−1

X s(R3)‖ui‖
− s

2α−1

X s+2α(R3))

+ ‖ρ(τ)‖X s(R3)(‖bi‖
2β−1
s+2β

X s(R3)‖bi‖
1

s+2β

X s+2β(R3)
+ ‖bi‖

s+2β
2β−1

X s(R3)‖bi‖
− s

2β−1

X s+2β(R3)
)] dτ. (7.52)

Moreover, by using (7.50) and an analogous argument as in (7.52), one concludes

‖ρ(t)‖X s(R3) +

∫ t

0

‖ρ(τ)‖X s+2β(R3) dτ ≤
1

4

∫ t

0

‖δ‖X s+2α(R3) dτ +
1

4

∫ t

0

‖ρ‖X s+2β(R3) dτ

+ Cs,α,β

2∑
i=1

∫ t

0

[‖δ(τ)‖X s(R3)(‖bi‖
α(2β−1)
β(s+2α)

X s(R3) ‖bi‖
α

β(s+2α)

X s+2β(R3)
+ ‖bi‖

α(s+2β)
β(2α−1)

X s(R3) ‖bi‖
− αs
β(2α−1)

X s+2β(R3)
)

+ ‖ρ(τ)‖X s(R3)(‖ui‖
β(2α−1)
α(s+2β)

X s(R3) ‖ui‖
β

α(s+2β)

X s+2α(R3) + ‖ui‖
β(s+2α)
α(2β−1)

X s(R3) ‖ui‖
− βs
α(2β−1)

X s+2α(R3))] dτ. (7.53)

Therefore, by combining the inequalities (7.52) and (7.53), we deduce

‖(δ, ρ)(t)‖X s(R3) +
1

2

∫ t

0

‖δ‖X s+2α(R3) dτ +
1

2

∫ t

0

‖ρ‖X s+2β(R3) dτ ≤ Cs,α,β

∫ t

0

‖(δ, ρ)(τ)‖X s(R3)

×
2∑
i=1

(‖ui‖
2α−1
s+2α

X s(R3)‖ui‖
1

s+2α

X s+2α(R3) + ‖ui‖
s+2α
2α−1

X s(R3)‖ui‖
− s

2α−1

X s+2α(R3) + ‖bi‖
2β−1
s+2β

X s(R3)‖bi‖
1

s+2β

X s+2β(R3)

+ ‖bi‖
s+2β
2β−1

X s(R3)‖bi‖
− s

2β−1

X s+2β(R3)
+ ‖bi‖

α(2β−1)
β(s+2α)

X s(R3) ‖bi‖
α

β(s+2α)

X s+2β(R3)
+ ‖bi‖

α(s+2β)
β(2α−1)

X s(R3) ‖bi‖
− αs
β(2α−1)

X s+2β(R3)

+ ‖ui‖
β(2α−1)
α(s+2β)

X s(R3) ‖ui‖
β

α(s+2β)

X s+2α(R3) + ‖ui‖
β(s+2α)
α(2β−1)

X s(R3) ‖ui‖
− βs
α(2β−1)

X s+2α(R3)) dτ.

Thereby, apply Gronwall’s inequality (integral form) in order to obtain (δ, ρ)(t) = 0, for all
0 ≤ t ≤ T , provided that∫ t

0

2∑
i=1

(‖ui‖
2α−1
s+2α

X s(R3)‖ui‖
1

s+2α

X s+2α(R3) + ‖ui‖
s+2α
2α−1

X s(R3)‖ui‖
− s

2α−1

X s+2α(R3) + ‖bi‖
2β−1
s+2β

X s(R3)‖bi‖
1

s+2β

X s+2β(R3)

+ ‖bi‖
s+2β
2β−1

X s(R3)‖bi‖
− s

2β−1

X s+2β(R3)
+ ‖bi‖

α(2β−1)
β(s+2α)

X s(R3) ‖bi‖
α

β(s+2α)

X s+2β(R3)
+ ‖bi‖

α(s+2β)
β(2α−1)

X s(R3) ‖bi‖
− αs
β(2α−1)

X s+2β(R3)

+ ‖ui‖
β(2α−1)
α(s+2β)

X s(R3) ‖ui‖
β

α(s+2β)

X s+2α(R3) + ‖ui‖
β(s+2α)
α(2β−1)

X s(R3) ‖ui‖
− βs
α(2β−1)

X s+2α(R3)) dτ
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is finite, for all 0 ≤ t ≤ T ; provided that, (ui, bi) ∈ XT (with i = 1, 2). In fact, it is sufficient
to apply Hölder’s inequality and a similar process as in (1.24); since that, max

{
1− 2α, 1−

2β, α(1−2β)
β

, β(1−2α)
α

}
≤ s < 0 (with α, β ∈ (1

2
, 1]).

This completes the proof of Theorem 7.2.1.

7.3 Blow-up Criterion for the Solution

The next theorem assures a blow-up criterion for solutions of the GMHD equations (7.1)
if we assume that the maximal time of existence is finite.

Theorem 7.3.1. Assume that α, β ∈ (1
2
, 1], max

{
1− 2α, 1− 2β, α(1−2β)

β
, β(1−2α)

α

}
< s < 0,

and (u0, b0) ∈ X s(R3). Consider that (u, b) ∈ C([0, T ∗);X s(R3)) is the maximal solution for
the GMHD equations (7.1) obtained in Theorem 7.1.1. If T ∗ <∞, then

lim sup
t↗T ∗

‖(u, b)(t)‖X s(R3) =∞. (7.54)

Proof. Consider that (u, b) ∈ C([0, T ∗);X s(R3)) is the maximal solution for the GMHD
equations (7.1) obtained in Theorem 7.1.1, with T ∗ <∞. Thus, let us prove that the blow-
up criterion (7.54) is valid. It is important to point out here that we have used the techniques
presented in [5].

Suppose by contradiction that Theorem 7.3.1 does not hold, i.e., consider that

lim sup
t↗T ∗

‖(u, b)(t)‖X s(R3) <∞. (7.55)

Thus, by (7.55) and Theorem 7.1.1, there exists an absolute constant C > 0 such that

‖(u, b)(t)‖X s(R3) ≤ C, ∀ t ∈ [0, T ∗). (7.56)

On the other hand, we can show analogously to (7.51) and by assuming the GMHD
system (7.1), that

|u(t)‖X s(R3) +

∫ t

0

‖u(τ)‖X s+2α(R3) dτ

≤ Cs

∫ t

0

(‖u‖2+ s−1
2α

X s(R3)‖u‖
1−s
2α

X s+2α(R3) + ‖b‖
2+ s−1

2β

X s(R3)‖b‖
1−s
2β

X s+2β(R3)
) dτ (7.57)
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and also

‖b(t)‖X s(R3) +

∫ t

0

‖b(τ)‖X s+2β(R3) dτ

≤ Cs

∫ t

0

(‖u‖1+ s
2α

X s(R3)‖b‖
1− 1

2β

X s(R3)‖u‖
− s

2α

X s+2α(R3)‖b‖
1
2β

X s+2β(R3)

+ ‖u‖1− 1
2α

X s(R3)‖b‖
1+ s

2β

X s(R3)‖u‖
1
2α

X s+2α(R3)‖b‖
− s

2β

X s+2β(R3)
) dτ. (7.58)

As a consequence, by replacing (7.56) in (7.57), one has

‖u(t)‖X s(R3) +

∫ t

0

‖u(τ)‖X s+2α(R3) dτ

≤ CsC
2+ s−1

2α

∫ t

0

‖u(τ)‖
1−s
2α

X s+2α(R3) dτ + CsC
2+ s−1

2β

∫ t

0

‖b(τ)‖
1−s
2β

X s+2β(R3)
dτ.

Similarly, by using (7.56) in (7.58), we obtain

‖b(t)‖X s(R3) +

∫ t

0

‖b(τ)‖X s+2β(R3) dτ ≤ CsC
2+ s

2α
− 1

2β

∫ t

0

‖u‖−
s
2α

X s+2α(R3)‖b‖
1
2β

X s+2β(R3)

+ CsC
2+ s

2β
− 1

2α

∫ t

0

‖u‖
1
2α

X s+2α(R3)‖b‖
− s

2β

X s+2β(R3)
dτ.

Apply Young’s inequality in order to obtain

‖u(t)‖X s(R3) +

∫ t

0

‖u(τ)‖X s+2α(R3) dτ ≤
1

4

∫ t

0

‖u(τ)‖X s+2α(R3) dτ + Cs,α(T ∗)1− 1−s
2α

+
1

4

∫ t

0

‖b(τ)‖X s+2β(R3) dτ + Cs,β(T ∗)1− 1−s
2β (7.59)

and also

‖b(t)‖X s(R3) +

∫ t

0

‖b(τ)‖X s+2β(R3) dτ ≤
1

4

∫ t

0

‖u(τ)‖X s+2α(R3) dτ + Cs,α,β(T ∗)1− α
β(s+2α)

+
1

4

∫ t

0

‖b(τ)‖X s+2β(R3) dτ + Cs,α,β(T ∗)1− β
α(s+2β) . (7.60)

Thereby, by combining (7.59) and (7.60), we get∫ t

0

‖u(τ)‖X s+2α(R3) dτ ≤ Cs,α,β,T ∗ ,

∫ t

0

‖b(τ)‖X s+2β(R3) dτ ≤ Cs,α,β,T ∗ , ∀t ∈ [0, T ∗). (7.61)

Now, consider that (κn)n∈N is a sequence such that κn ↗ T ∗, where κn ∈ (0, T ∗), for all
n ∈ N. Let us show that

lim
n,m→∞

‖(u, b)(κm)− (u, b)(κn)‖X s(R3) = 0. (7.62)
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First of all, analogously to (7.19) and (7.20) and by using (7.1), we obtain

u(t) = e−t(−∆)αu0 −
∫ t

0

e−(t−τ)(−∆)αPH(u · ∇u− b · ∇b) dτ

and

b(t) = e−t(−∆)βb0 −
∫ t

0

e−(t−τ)(−∆)β(u · ∇b− b · ∇u) dτ.

Therefore, we can write

(u, b)(κm)− (u, b)(κn) = Q1(m,n) +Q2(m,n) +Q3(m,n),

where

Q1(m,n) = ([e−κm(−∆)α − e−κn(−∆)α ]u0, [e
−κm(−∆)β − e−κn(−∆)β ]b0),

Q2(m,n) = −(

∫ κm

0

[e−(κm−τ)(−∆)α − e−(κn−τ)(−∆)α ]PH(u · ∇u− b · ∇b) dτ,∫ κm

0

[e−(κm−τ)(−∆)β − e−(κn−τ)(−∆)β ](u · ∇b− b · ∇u) dτ)

and

Q3(m,n) = (

∫ κn

κm

[e−(κn−τ)(−∆)αPH(u · ∇u− b · ∇b) dτ,
∫ κn

κm

e−(κn−τ)(−∆)β(u · ∇b− b · ∇u) dτ).

Notice that

‖[e−κm(−∆)α − e−κn(−∆)α ]u0‖X s(R3) =

∫
R3

|ξ|s(e−κm|ξ|2α − e−κn|ξ|2α)|û0(ξ)| dξ

≤
∫
R3

|ξ|s(e−κm|ξ|2α − e−T ∗|ξ|2α)|û0(ξ)| dξ,

provided that κn < T ∗, for all n ∈ N. Thus, by using the fact that u0 ∈ X s(R3), it results
from Dominated Convergence Theorem that

lim
n,m→∞

‖[e−κm(−∆)α − e−κn(−∆)α ]u0‖X s(R3) = 0.

By following a similar argument, one reaches

lim
n,m→∞

‖[e−κm(−∆)β − e−κn(−∆)β ]b0‖X s(R3) = 0.
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Therefore, we have lim
n,m→∞

‖Q1(m,n)‖X s(R3) = 0. Moreover, by using (2.11), one deduces∫ κm

0

‖[e−(κm−τ)(−∆)α − e−(κn−τ)(−∆)α ]PH(u · ∇u− b · ∇b)‖X s(R3) dτ

≤
∫ κm

0

∫
R3

|ξ|s[e−(κm−τ)|ξ|2α − e−(κn−τ)|ξ|2α ]|F(u · ∇u− b · ∇b)(ξ)| dξ dτ

≤
∫ T ∗

0

∫
R3

|ξ|s[1− e−(T ∗−κm)|ξ|2α ]|F(u · ∇u− b · ∇b)(ξ)| dξ dτ,

since κn < T ∗, for all n ∈ N. On the other hand, by following a similar process to the one
applied in the proof of Lemma 1.2.23, one infers∫ T ∗

0

‖u · ∇u− b · ∇b‖X s(R3) dτ ≤
∫ T ∗

0

‖u⊗ u‖X s+1(R3) dτ +

∫ T ∗

0

‖b⊗ b‖X s+1(R3) dτ.

Consequently, by applying Lemma 1.2.24, it follows∫ T ∗

0

‖u · ∇u− b · ∇b‖X s(R3) dτ

≤ 2Cs[(T
∗)1+ s

2α
− 1

2β ‖u‖2+ s−1
2α

L∞
T∗ (X s(R3))‖u‖

1−s
2α

L1
T∗ (X s+2α(R3))

+ (T ∗)1+ s
2β
− 1

2α‖b‖
2+ s−1

2β

L∞
T∗ (X s(R3))‖b‖

1−s
2β

L1
T∗ (X s+2β(R3))

]

≤ 2Cs[(T
∗)1+ s

2α
− 1

2βC2+ s−1
2α C

1−s
2α
s,α,β,T ∗ + (T ∗)1+ s

2β
− 1

2αC2+ s−1
2β C

1−s
2β

s,α,β,T ∗ ] <∞,

provided that the estimates (7.56) and (7.61) are valid. As
∫ T ∗

0
‖u·∇u−b·∇b‖X s(R3) dτ <∞;

then, by Dominated Convergence Theorem, we deduce

lim
n,m→∞

∫ κm

0

‖[e−(κm−τ)(−∆)α − e−(κn−τ)(−∆)α ]PH(u · ∇u− b · ∇b)‖X s(R3) dτ = 0.

Analogously, one obtains

lim
n,m→∞

∫ κm

0

‖[e−(κm−τ)(−∆)β − e−(κn−τ)(−∆)β ](u · ∇b− b · ∇u)‖X s(R3) dτ = 0.

Hence, lim
n,m→∞

‖Q2(m,n)‖X s(R3) dτ = 0. Lastly, by applying Lemma 1.2.23 and the proof of

Lemma 1.2.24, we infer∫ κn

κm

‖e−(κn−τ)(−∆)αPH(u · ∇u− b · ∇b)‖X s(R3) dτ ≤

2Cs

∫ T ∗

κm

[‖u‖2+ s−1
2α

X s(R3)‖u‖
1−s
2α

X s+2α(R3) + ‖b‖
2+ s−1

2β

X s(R3)‖b‖
1−s
2β

X s+2β(R3)
] dτ.

Apply (7.56) in order to obtain∫ κn

κm

‖e−(κn−τ)(−∆)αPH(u · ∇u− b · ∇b)‖X s(R3) dτ ≤ Cs,α,β

∫ T ∗

κm

(‖u‖
1−s
2α

X s+2α(R3) + ‖b‖
1−s
2β

X s+2β(R3)
) dτ.
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By Hölder’s inequality and using (7.61), one checks that∫ κn

κm

‖e−(κn−τ)(−∆)αPH(u · ∇u− b · ∇b)‖X s(R3) dτ ≤ Cs,α,β,T ∗ [(T
∗ − κm)1− 1−s

2α + (T ∗ − κm)1− 1−s
2β ].

Consequently, taking n,m→∞, we get

lim
n,m→∞

∫ κn

κm

‖e−(κn−τ)(−∆)αPH(u · ∇u− b · ∇b)‖X s(R3) dτ = 0,

where max{1 − 2β, 1 − 2α} < s < 0 and α, β ∈ (1
2
, 1]. Moreover, by applying an analogous

process, we conclude that

lim
n,m→∞

∫ κn

κm

‖e−(κn−τ)(−∆)β(u · ∇b− b · ∇u)‖X s(R3) dτ = 0.

Consequently, lim
n,m→∞

‖Q3(m,n)‖X s(R3) dτ = 0. Therefore, (7.62) is proved.

In addition, (7.62) means that ((u, b)(κn))n∈N is a Cauchy sequence in the Banach space
X s(R3). Thus, there exists (u1, b1) ∈ X s(R3) such that

lim
n→∞

‖(u, b)(κn)− (u1, b1)‖X s(R3) = 0.

Now, we are going to prove that the limit above does not depend on (κn)n∈N. Thus,
choose (ρn)n∈N ⊆ (0, T ∗) such that ρn ↗ T ∗ and

lim
n→∞

‖(u, b)(κn)− (u2, b2)‖X s(R3) = 0,

for some (u2, b2) ∈ X s(R3) (repeat the same process). Let us verify that (u2, b2) = (u1, b1).
In fact, define (ςn)n∈N ⊆ (0, T ∗) by ς2n = κn and ς2n−1 = ρn, for all n ∈ N. It is easy to check
that ςn ↗ T ∗. By rewriting the process above, we guarantee that there is (u3, b3) ∈ Xs(R3)
such that

lim
n→∞

‖(u, b)(ςn)− (u3, b3)‖X s(R3) = 0.

By uniqueness of limit, one infers (u1, b1) = (u3, b3) = (u2, b2). This means that

lim
t↗T ∗

‖(u, b)(t)− (u1, b1)‖X s(R3) = 0.

Thereby, by assuming (7.1) with the initial data (u1, b1), instead of (u0, b0), we assure, by
Theorems 7.1.1 and 7.2.1, the existence and uniqueness of (ū, b̄) ∈ CT̄ (X s(R3)) (T̄ > 0) for
the GMHD system (7.1). Therefore, (ũ, b̃) ∈ CT̄+T ∗(X s(R3)) given by

(ũ, b̃)(t) =

{
(u, b)(t), t ∈ [0, T ∗);
(ū, b̄)(t− T ∗), t ∈ [T ∗, T̄ + T ∗],

solves (7.1) in [0, T̄ + T ∗]. This is a contradiction. Consequently, one must have

lim sup
t↗T ∗

‖(u, b)(t)‖X s(R3) =∞.
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