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Aos meus pais e minhas irmãs por todo amor e apoio incondicional. A minha famı́lia

(Nascimento) por sempre estar presente!

Ao meu orientador Silas pelos ensinamentos e por acreditar em meu trabalho.

Aos professores Anderson Porto (quem me apresentou o ińıcio da matemática), César
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Abstract

In this thesis, we study the typical behaviour (from the topological viewpoint) of the

decaying rates of the orbits of unitary evolution groups and 𝐶0-semigroups on Hilbert

spaces. We have found that: (1) some dynamical quantities related to evolution groups

have an oscillating behaviour between a polynomially rapid decay and an arbitrarily slow

decay; (2) the decaying rates of each typical orbit, in Baire’s sense, of 𝐶0-semigroups which

are stable but not exponentially stable depend on sequences of time going to infinity. The

proofs are based on the relations between such decaying rates and some spectral properties

of their respective generators.



Resumo

Nesta tese, estudamos o comportamento t́ıpico (do ponto de vista topológico) das taxas de

decaimento das órbitas de grupos unitários de evolução e 𝐶0-semigrupos em espaços de

Hilbert. Encontramos que: (1) algumas quantidades dinâmicas relacionadas aos grupos

de evolução tem um comportamento oscilando entre um decaimento polinomialmente

rápido e um decaimento arbitrariamente lento; (2) as taxas de decaimento de cada órbita

t́ıpica, no sentido de Baire, de 𝐶0-semigrupos que são estáveis mas não exponencialmente

estáveis dependem de sequências do tempo que vão para infinito. As provas são baseadas

nas relações existentes entre essas taxas de decaimento e propriedades espectrais dos

respectivos geradores.
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Introduction

This thesis is divided the following parts:

Part I

In Part I, based on works by Simon [56] and by Carvalho and de Oliveira [15, 16], we

study the behaviour of the decaying rates (from the topological viewpoint) of dynamical

quantities related to the wave packet solutions of the Schrödinger equation ; in particular,

we show that, in the same vein of Simon’s Wonderland Theorem [56], Baire generically,

the rates for which the solutions of the Schrödinger equation escape, in time average,

from each finite-dimensional subspace depend on sequences of time going to infinity. In

this part of the thesis, we also discuss a result about dynamical lower bounds and dense

point spectrum, of independent interest.

Part II

In Part II, we propose a new (and original) approach to the problem of obtaining lower

bounds for the decaying rates of 𝐶0-semigroups on Hilbert spaces, and then show that

the decaying rates of the orbits of 𝐶0-semigroups which are stable but not exponentially

stable, typically in Baire’s sense, depend on sequences of time going to infinity. Namely,

in order to obtain lower bounds for the decaying rates of 𝐶0-semigroups, many authors

(see [8, 9, 11, 50] and references therein) usually have related estimates on the norm of

the resolvent of the generator to quantitative decaying rates of the form

‖𝑇 (𝑡)𝐴−1‖ℬ(ℋ) = 𝑂(𝑟(𝑡)), 𝑡→ ∞,

with lim
𝑡→∞

𝑟(𝑡) = 0, which implies that all classical solutions of the abstract Cauchy problem⎧⎨⎩�̇�(𝑡) = 𝐴𝑥(𝑡), 𝑡 ≥ 0,

𝑥(0) = 𝑥, 𝑥 ∈ ℋ,
(ACP)

converge uniformly (on the unit ball of 𝒟(𝐴) endowed with the graph norm) to zero

at infinity with rate 𝑟. Since 𝒟(𝐴) ⊂ ℋ is dense, one could argue that such solutions
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display typical behaviour. In the present thesis, we consider a different notion of typical

behaviour, in terms of dense 𝐺𝛿 subsets of initial values 𝑥 ∈ ℋ. In this setting, we show

that there exist dense 𝐺𝛿 sets of initial values 𝑥 ∈ ℋ such that the orbit (𝑇 (𝑡)𝑥)𝑡≥0

contains a sequence that decays to zero no faster than a fixed but arbitrarily slow rate,

and a sequence that decays to zero at a fixed rate arbitrarily close to 𝑟. In this sense, we

show that typical orbits display unexpected and erratic behaviour.

Appendices

In the appendices we recall some important concepts and results on spectral theory, theory

of unitary evolution groups and 𝐶0-semigroups used in this work.
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Part I Some results on quantum dynamics
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Selected Notation

ℋ Separable complex Hilbert space

𝑇 Self-adjoint operator in ℋ

𝜚(𝑇 ) Resolvent set of 𝑇

𝑅(𝜆, 𝑇 ) Resolvent operator of 𝑇 at 𝜆 ∈ 𝜚(𝑇 ) ⊂ C

𝜎(𝑇 ) Spectrum of 𝑇

𝐸𝑇 Resolution of the identity of 𝑇

𝜇 Finite positive Borel measure on R

𝜇𝑇
𝜉 Spectral measure of 𝑇 with respect to 𝜉 ∈ ℋ

𝐵(𝑥, 𝜖) Open interval (𝑥− 𝜖, 𝑥+ 𝜖) centered at 𝑥 ∈ R
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Contextualization and main results

Contextualization

There is a vast literature concerning the large time asymptotic behaviour of the solutions

to the Schrödinger equation ⎧⎨⎩𝜕𝑡𝜉 = −𝑖𝑇 𝜉, 𝑡 ∈ R,

𝜉(0) = 𝜉, 𝜉 ∈ ℋ,
(SE)

where 𝑇 is a self-adjoint operator in a separable complex Hilbert space ℋ. Namely, the

relations between the quantum dynamics of solutions of (SE) and the spectral properties

of 𝑇 are a classical subject of the mathematics and physics literatures. In this context,

we refer to [5, 12, 14, 15, 16, 17, 23, 20, 29, 31, 32, 55, 56, 57, 59], among others.

We recall that, for each 𝜉 ∈ ℋ, the unitary evolution group R ∋ 𝑡 ↦→ 𝑒−𝑖𝑡𝑇 is so that

the curve 𝑒−𝑖𝑡𝑇 𝜉, in some sense (see Remark B.1), solves (SE). The state 𝜉, in the context

of quantum mechanics, is called wave packet and describes the “non-relativistic quantum

state” of a one-particle system. Next, we list some quantities usually considered to probe

the large time behaviour of the dynamics 𝑒−𝑖𝑡𝑇 𝜉.

1. The (time-average) quantum return probability, which gives the (time-average)

probability of finding the particle at time 𝑡 > 0 in its initial state 𝜉, is defined

as

⟨𝑝𝜉⟩(𝑡) :=
1

𝑡

𝑡∫︁
0

|⟨𝜉, 𝑒−𝑖𝑠𝑇 𝜉⟩|2 d𝑠. (a)

2. Let 𝐴 be a positive operator such that, for each 𝑡 ∈ R, 𝑒−𝑖𝑡𝑇𝒟(𝐴) ⊂ 𝒟(𝐴). For

each 𝜉 ∈ 𝒟(𝐴), the (time-average) expectation value of 𝐴 in the state 𝜉 at time

𝑡 > 0 is defined as

⟨𝐴𝑇
𝜉 ⟩𝑡 :=

1

𝑡

𝑡∫︁
0

⟨𝑒−𝑖𝑠𝑇 𝜉, 𝐴𝑒−𝑖𝑠𝑇 𝜉⟩ d𝑠. (b)
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3. Let {𝑒𝑛} be an orthonormal basis of ℋ. The (time-average) 𝑞-moment, 𝑞 > 0, of the

position operator at time 𝑡 > 0, with initial condition 𝜉, is defined as

⟨⟨|𝑋|𝑞⟩⟩𝑡,𝜉 :=
1

𝑡

𝑡∫︁
0

∑︁
𝑛

|𝑛|𝑞|⟨𝑒−𝑖𝑠𝑇 𝜉, 𝑒𝑛⟩|2 d𝑠. (c)

Each one of the quantities defined in (c) is a special case of (b), where for each 𝑞 > 0,

𝐴 represents the 𝑞-moment of the position operator:

|𝑋|𝑞 ≡
∑︁
𝑛

|𝑛|𝑞⟨𝑒𝑛, ·⟩𝑒𝑛.

These quantities describe the (time-average) behaviour of the “basis position” of the

wave packet 𝑒−𝑖𝑡𝑇 𝜉, as 𝑡 goes to infinity (see [5, 20, 29, 31, 32, 38] and references therein).

Actually, in the specific case (which is more relevant from a physical point of view) where

ℋ = ℓ2(Z𝜈), 𝜈 ∈ N, and {𝑒𝑛} is the canonical basis {𝛿𝑛}, such quantities characterize the

spreading of the wave packet 𝑒−𝑖𝑠𝑇 𝜉.

Next, we present well known results that relate such quantities to some properties of

the spectral measure 𝜇𝑇
𝜉 of 𝑇 associated with 𝜉 (see Definition A.3). Firstly, we refer to

Wiener’s Lemma [22].

Theorem (Wiener’s Lemma). Let 𝜉 ∈ ℋ. Then,

lim
𝑡→∞

1

𝑡

𝑡∫︁
0

|⟨𝜉, 𝑒−𝑖𝑠𝑇 𝜉⟩|2 d𝑠 =
∑︁
𝜆∈R

|𝜇𝑇
𝜉 ({𝜆})|2.

Now we refer to the notorious RAGE’s Theorem, named after Ruelle, Amrein, Georgescu,

and Enss [22].

Theorem (RAGE’s Theorem). Let 𝐴 be a compact operator on ℋ. Then, for every 𝜉 ∈ ℋ,

lim
𝑡→∞

⟨|𝐴𝑇
𝜉 |⟩𝑡 = 0

if and only if 𝜇𝑇
𝜉 is purely continuous.

Taking into account RAGE’s Theorem, special cases of interest are projectors onto

finite-dimensional subspaces of ℋ. Namely, let {𝑒𝑛} be an orthonormal basis of ℋ and let

𝑃𝑁 be the (compact) projection on a sphere of radius 𝑁 ∈ N, that is,

𝑃𝑁 ≡
∑︁
|𝑛|≤𝑁

⟨𝑒𝑛, ·⟩𝑒𝑛.
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We note that

⟨𝑒−𝑖𝑠𝑇 𝜉, 𝑃𝑁𝑒
−𝑖𝑠𝑇 𝜉⟩ = ⟨𝑒−𝑖𝑠𝑇 𝜉,

∑︁
|𝑛|≤𝑁

⟨𝑒𝑛, 𝑒−𝑖𝑠𝑇 𝜉⟩𝑒𝑛⟩

=
∑︁
|𝑛|≤𝑁

|⟨𝑒−𝑖𝑠𝑇 𝜉, 𝑒𝑛⟩|2.

Thus, if 𝜇𝑇
𝜉 is purely continuous, that is, if 𝜇𝑇

𝜉 has no atoms (for each 𝜆 ∈ R, 𝜇𝑇
𝜉 ({𝜆}) = 0),

then, by RAGE’s Theorem,

lim
𝑡→∞

1

𝑡

𝑡∫︁
0

∑︁
|𝑛|≤𝑁

|⟨𝑒−𝑖𝑠𝑇 𝜉, 𝑒𝑛⟩|2 d𝑠 = 0.

Since 𝑁 is arbitrary and the dynamics 𝑒−𝑖𝑠𝑇 𝜉 is unitary, one has the following result [38].

Corollary (RAGE’s Corollary). If 𝜇𝑇
𝜉 is purely continuous, then, for every 𝑞 > 0,

lim
𝑡→∞

⟨⟨|𝑋|𝑞⟩⟩𝑡,𝜉 = ∞.

Remark.

1. We note that, by Wiener’s Lemma, the (average) probability of finding the particle

at time 𝑡 > 0 in its initial state 𝜉 is asymptotically null if and only if 𝜇𝑇
𝜉 is purely

continuous.

2. Since any projector onto a finite-dimensional subspace of ℋ satisfies the hypotheses

of RAGE’s Theorem, initial states whose spectral measures are purely continuous

can be interpreted as those whose trajectories that escape, in time average, from

every finite-dimensional subspace. Actually, by RAGE’s Corollary, in this case, it

can be said that there is a spreading of the wave packet.

Now we recall some basic definitions.

Definition. A sequence of bounded linear operators (𝑇𝑛) strongly converges to 𝑇 in ℋ
if, for every 𝜉 ∈ ℋ, 𝑇𝑛𝜉 −→ 𝑇𝜉 in ℋ.

We recall that the resolvent set of 𝑇 , 𝜚(𝑇 ), is the set of all 𝜆 ∈ C for which the

resolvent operator of 𝑇 at 𝜆,

𝑅(𝜆, 𝑇 ) : ℋ −→ 𝒟(𝑇 ), 𝑅(𝜆, 𝑇 ) := (𝜆𝐼 − 𝑇 )−1,

exists and is bounded. The spectrum of 𝑇 is the set 𝜎(𝑇 ) = C∖𝜌(𝑇 ).
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Definition. Let 𝑇 be a self-adjoint operator and let (𝑇𝑛) be a sequence of self-adjoint

operators. One says that 𝑇𝑛 converges to 𝑇 in the strong resolvent sense if 𝑅(𝑖, 𝑇𝑛) strongly

converges to 𝑅(𝑖, 𝑇 ).

We also recall that 𝑇 is said to have purely continuous spectrum if, for every 𝜉 ∈ ℋ,

𝜇𝑇
𝜉 is purely continuous.

A complete metric space (𝑋, 𝑑) of self-adjoint operators, acting in ℋ, is said to be

regular if convergence with respect to 𝑑 implies strong resolvent convergence of operators.

One of the results stated in [56], the so-called Wonderland Theorem, says that, for some

regular spaces 𝑋, {𝑇 ∈ 𝑋 | 𝑇 has purely continuous spectrum} is a dense 𝐺𝛿 set in 𝑋.

Hence, for these spaces, by Wiener’s Lemma and RAGE’s Theorem, for each compact

operator 𝐴 and each 0 ̸= 𝜉 ∈ ℋ,

{𝑇 ∈ 𝑋 | lim
𝑡→∞

⟨𝑝𝜉⟩(𝑡) = lim
𝑡→∞

⟨|𝐴𝑇
𝜉 |⟩𝑡 = 0 and lim

𝑡→∞
⟨⟨|𝑋|𝑞⟩⟩𝑡,𝜉 = ∞ for each 𝑞 > 0}

contains a dense 𝐺𝛿 set in 𝑋. In this context, it is quite natural to study the behaviour

of the decaying rates (from the topological viewpoint) of these dynamical quantities.

Consider the following classes of self-adjoint operators.

Jacobi matrices. For every fixed 𝑎 > 0, consider the family of Jacobi matrices,𝑀 , given

on ℓ2(Z) by the action

(𝑀𝑢)𝑗 := 𝑢𝑗−1 + 𝑢𝑗+1 + 𝑣𝑗𝑢𝑗,

where (𝑣𝑗) is a sequence in ℓ∞(Z), such that, for each 𝑗 ∈ Z, |𝑣𝑗| ≤ 𝑎. Denote by 𝑋𝑎 the

set of these matrices endowed with the topology of pointwise convergence on (𝑣𝑗). Then,

𝑋𝑎 is (by Tychonoff’s Theorem) a compact metric space such that convergence in metric

implies strong resolvent convergence. Actually, 𝑀𝑘 −→ 𝑀 in 𝑋𝑎 if and only if, for each

𝑗 ∈ Z, lim
𝑘→∞

𝑣𝑘𝑗 = 𝑣𝑗 and, therefore, if and only if 𝑀𝑘 converges strongly to 𝑀 .

Schrödinger operators. Fix 𝐶 > 0 and consider the family of Schrödinger operators,

𝐻𝑉 , defined in the Sobolev space ℋ2(R) by the action

(𝐻𝑉 𝑢)(𝑥) := −△𝑢(𝑥) + 𝑉 (𝑥)𝑢(𝑥),

with 𝑉 ∈ ℬ∞(R) (the space of bounded Borel functions) so that, for every 𝑥 ∈ R,
|𝑉 (𝑥)| ≤ 𝐶. Denote by 𝑋𝐶 the set of these operators endowed with the topology of

pointwise convergence on (𝑉 (𝑥)). Then, 𝑋𝐶 is (again by Tychonoff’s Theorem) a compact

metric space so that convergence in metric implies strong resolvent convergence. Namely,
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if 𝐻𝑉𝑘
→ 𝐻𝑉 in 𝑋𝐶 , then, for each 𝑥 ∈ R, one has that lim

𝑘→∞
𝑉𝑘(𝑥) = 𝑉 (𝑥). Thus, for each

𝑢 ∈ L2(R), by the second resolvent identity and dominated convergence,

‖(𝑅𝑖(𝐻𝑉𝑘
)−𝑅𝑖(𝐻𝑉 ))𝑢‖L2(R) = ‖𝑅𝑖(𝐻𝑉𝑘

)(𝑉𝑘 − 𝑉 )𝑅𝑖(𝐻𝑉 )𝑢‖L2(R)

≤ ‖(𝑉𝑘 − 𝑉 )𝑅𝑖(𝐻𝑉 )𝑢‖L2(R) −→ 0

as 𝑘 → ∞.

In this part of the work, we study the decaying rates of ⟨|𝐴𝑇
𝜉 |⟩𝑡 for these two different

classes of self-adjoint operators (see [15, 16, 56] for another classes). Namely, we use

RAGE’s Theorem and an argument involving separability to obtain some results about

the typical behaviour of such decaying rates (Theorems II and III). In this part, we also

prove a result about dynamical lower bounds and dense point spectrum (Theorem I), of

independent interest.

Brief discussion of our main results

Carvalho and de Oliveira showed in [15] that for several classes of discrete Schrödinger

operators (from the topological viewpoint), ⟨𝑝𝜉⟩(𝑡) has an oscillating behaviour between

a (maximum) polynomial rapid decay and a (minimum) polynomial slow decay. In [16],

they have confirmed this polynomial dual behaviour for ⟨⟨|𝑋|𝑞⟩⟩𝑡,𝜉. In this setting, here

we discuss some results about the decaying rates of ⟨|𝐴𝑇
𝜉 |⟩𝑡 for 𝑋𝑎 and 𝑋𝐶 (Theorems II

and III). For 𝑋𝑎, we also say something about ⟨⟨|𝑋|𝑞⟩⟩𝑡,𝜉 (Theorem I).

Let 𝑇 be a self-adjoint operator in ℋ. We recall that 𝑇 has dense point spectrum if

the set of eigenvalues of 𝑇 is dense in 𝜎(𝑇 ).

Taking into account some ideas of Simon [56] (which were also explored by Carvalho

and de Oliveira in [15, 16]), it is natural, in 𝑋𝑎, to consider the density of the set of

Jacobi matrices with dense point spectrum. It is well known that this dense subset can be

obtained by using Anderson’s localization. Namely, for every fixed 𝑎 > 0, let Ω = [−𝑎, 𝑎]Z

be endowed with the product topology and with the respective Borel 𝜎-algebra. Assume

that (𝜔𝑗)𝑗∈Z = 𝜔 ∈ Ω is a set of independent, identically distributed real-valued random

variables with a common probability measure 𝜌 not concentrated on a single point and

such that
∫︀
|𝜔𝑗|𝜃d𝜌(𝑤𝑗) <∞, for some 𝜃 > 0. Denote by 𝜈 := 𝜌Z the probability measure

on Ω. The Anderson model is a random Hamiltonian on ℓ2(Z), defined for each 𝜔 ∈ Ω by

(ℎ𝜔𝑢)𝑗 := 𝑢𝑗−1 + 𝑢𝑗+1 + 𝜔𝑗𝑢𝑗.

It turns out that [20, 59]

𝜎(ℎ𝜔) = [−2, 2] + supp(𝜌),

9



and 𝜈-a.s. 𝜔, ℎ𝜔 has pure point spectrum [14, 61]. Thus, if 𝜇 denotes the product of infinite

copies of the normalized Lebesgue measure on [−𝑎, 𝑎], that is, (2𝑎)−1ℓ, then

𝐷 = {𝑀 ∈ 𝑋𝑎 | 𝜎(𝑀) = [−𝑎− 2, 𝑎+ 2], 𝜎(𝑀) is pure point}

is so that 𝜇(𝑋𝑎∖𝐷) = 0 and therefore, 𝐷 is a dense subset of 𝑋𝑎.

Now we recall that to describe the algebraic growth ⟨⟨|𝑋|𝑞⟩⟩𝑡,𝜉 ∼ 𝑡𝛼(𝑞) for large t, one

usually considers the lower and upper transport exponents, respectively, given by

𝛼−(𝜉, 𝑞) := lim inf
𝑡→∞

ln⟨⟨|𝑋|𝑞⟩⟩𝑡,𝜉
ln 𝑡

,

𝛼+(𝜉, 𝑞) := lim sup
𝑡→∞

ln⟨⟨|𝑋|𝑞⟩⟩𝑡,𝜉
ln 𝑡

.

There are some relations between such exponents and the behaviour (as function of

the time) of the spreading of the wave packet. Namely, if there exists a 𝑞 > 0 such that

𝛼+(𝜉, 𝑞) > 0, then there is no dynamical localization (the system (𝑇, 𝜉) is said to be

dynamical localized if, for every 𝑞 > 0 and every 𝛾 > 0, lim𝑡→∞ 𝑡−𝛾⟨⟨|𝑋|𝑞⟩⟩𝑡,𝜉 = 0). In this

case, one says that there is transport, since for at least one temporal sequence, part of

the wave packet is not contained in a bounded region of the space. For more details about

the wave packet spreading phenomenon, see [5]; for a discussion about various types of

localization, see [23, 30].

We note that if 𝛼−(𝜉, 𝑞) = 𝑞 for 𝑞 > 0, then one says that the transport is ballistic,

since the“time law” that describes the behavior of the wave packet refers to the uniform

rectilinear movement. If 𝛼+(𝜉, 𝑞) = 𝑞 for 𝑞 > 0, then one says that the transport is

quasiballistic. In this context, our first result says that for every 𝑇 ∈ 𝐷 ⊂ 𝑋𝑎, the

dynamics of every initial condition in a robust set have quasiballistic behaviour.

Theorem I. Let −∞ < 𝑎 < 𝑏 <∞, and let 𝑇 be a self-adjoint operator with purely dense

point spectrum equal to [𝑎, 𝑏]. So, there exists a dense 𝐺𝛿 set 𝐺𝑇 in ℋ such that, for each

𝜉 ∈ 𝐺𝑇 , if ⟨⟨|𝑋|𝑞⟩⟩𝑡,𝜉 is well defined (finite) for each 𝑡, 𝑞 > 0, then

𝛼+(𝜉, 𝑞) ≥ 𝑞 for each 𝑞 > 0.

Remark.

1. There are rather general sufficient conditions for which ⟨⟨|𝑋|𝑞⟩⟩𝑡,𝜉 is well defined

[29]. Namely, let 𝑇 be a bounded self-adjoint operator on ℋ and let 𝐵 = {𝑒𝑛}𝑛∈Z
be an orthonormal basis of ℋ. Then,

1.1. ⟨⟨|𝑋|𝑞⟩⟩𝑡,𝑒0 is well defined (finite) for all 𝑡, 𝑞 > 0;
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1.2. 𝛼+(𝑒0, 𝑞) are increasing functions of 𝑞;

1.3. 𝛼+(𝑒0, 𝑞) ∈ [0, 𝑞], for all 𝑞 > 0.

2. Theorem I gives a rather general sufficient condition for an operator with pure point

spectrum to present non-trivial dynamical lower bounds. The main ingredient in the

proof of this result involves a fine analysis of the generalized fractal dimensions (see

Definition 1.2) of spectral measures of operators with pure point spectrum. Namely,

in order to prove Theorem I, we explore relations between such dimensions and the

spacing properties of its eigenvalues (see Theorem 1.1), and then apply a result due

to Barbaroux et. al. [5] (see Theorem 1.2).

3. There are in the literature numerous other examples of operators satisfying the

hypotheses of Theorem I (see [14, 20, 23, 25, 55, 57, 61]), showing that this is a

result of independent interest.

Our next results are about the behaviour of the decaying rates of ⟨|𝐴𝑀
𝜉 |⟩𝑡.

Theorem II. Let 𝛼 : R −→ R be such that

lim sup
𝑡→∞

𝛼(𝑡) = ∞.

Then, for each compact operator 𝐴 and each 0 ̸= 𝜉 ∈ ℋ,

{𝑀 ∈ 𝑋𝑎 | 𝑀 has purely continuous spectrum, lim sup
𝑡→∞

𝛼(𝑡)⟨|𝐴𝑀
𝜉 |⟩𝑡 = ∞

𝑎𝑛𝑑 lim inf
𝑡→∞

𝑡⟨|𝐴𝑀
𝜉 |⟩𝑡 = 0}

is a dense 𝐺𝛿 set in 𝑋𝑎.

Theorem III. Let 𝐶 > 0 and let 𝛼 be as in the statement of Theorem II. Then, for every

compact operator 𝐴, there exists a dense 𝐺𝛿 set 𝐺𝛼(𝐴) in L2(R) such that, for every

𝜉 ∈ 𝐺𝛼(𝐴),

{𝐻 ∈ 𝑋𝐶 | 𝐻 ℎ𝑎𝑠 𝑝𝑢𝑟𝑒𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 𝑜𝑛 (0,∞), lim sup
𝑡→∞

𝛼(𝑡)⟨|𝐴𝐻
𝜉 |⟩𝑡 = ∞}

is a dense 𝐺𝛿 set in 𝑋𝐶.

Remark.

1. It is possible to check that the behaviour of lim inf in the statement of Theorem

II follows from Theorem 1.2 in [15]. Thus, our main contribution here refers to the

behaviour of lim sup. In order to prove the behaviour of lim sup, we use the density of

the set of Jacobi matrices in 𝑋𝑎 with dense point spectrum, combined with RAGE’s

Theorem.
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2. Theorem III is a partial version of Theorem II to the class of (unbounded) Schrödinger

operators 𝑋𝐶 . In order to prove Theorem III, we use RAGE’s Theorem, a theory of

existence of negative eigenvalues for Schrödinger operators [22, 53], and an argument

involving separability.

Organization of the text

In Chapter 1, we discuss in details the proof of a result, of independent interest, about

dynamical lower bounds and dense point spectrum (Theorem I).

In Chapter 2, we prove Theorems II and III.
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Chapter 1

Dynamics and dense point spectrum

Our main goal in this chapter is to present a proof of Theorem I.

1.1 Weakly-spaced sequences

In order to properly present our proof of Theorem I, we need the following notion.

Definition 1.1. Let (𝑎𝑗) ⊂ R. One says that (𝑎𝑗) is weakly-spaced if, for each 𝛼 > 0,

there exists a subsequence (𝑎𝑗𝑙) of (𝑎𝑗) such that

1. 𝑐𝑙 := 𝑎𝑗𝑙 − 𝑎𝑗𝑙+1
> 0 is monotone and lim

𝑙→∞
(𝑎𝑗𝑙 − 𝑎𝑗𝑙+1

) = 0.

2. There exists 𝐶𝛼 > 0 so that, for every 𝑙 ≥ 1, 𝑎𝑗𝑙 − 𝑎𝑗𝑙+1
≥ 𝐶𝛼/𝑙

1+𝛼.

Proposition 1.1. Let −∞ < 𝑎 < 𝑏 < ∞. If ∪𝑗{𝑎𝑗} is a dense subset of [𝑎, 𝑏], then (𝑎𝑗)

is weakly-spaced.

Proof. Let 𝛼 > 0. Firstly, we note that, for each 𝑥 > 1,(︂
𝑥

𝑥− 1

)︂𝛼

+

(︂
𝑥

𝑥+ 1

)︂𝛼

> 2. (1.1)

Namely, set

𝑓(𝛼) :=

(︂
𝑥

𝑥− 1

)︂𝛼

+

(︂
𝑥

𝑥+ 1

)︂𝛼

.

So, (︂
𝑥− 1

𝑥

)︂𝛼

𝑓 ′(𝛼) = ln

(︂
𝑥

𝑥− 1

)︂
−
(︂
𝑥− 1

𝑥+ 1

)︂𝛼

ln

(︂
𝑥+ 1

𝑥

)︂
> ln

(︂
𝑥

𝑥− 1

)︂(︂
1−

(︂
𝑥− 1

𝑥+ 1

)︂𝛼)︂
> 0.

Since 𝑓(0) = 2, the inequality in (1.1) follows.
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For each 𝑙 ≥ 1, set

𝑏𝑙 := 𝑎+
1

𝑙𝛼
;

by (1.1), for 𝑙 ≥ 2 one has 𝐾𝑙 := 𝑏𝑙−1 − 2𝑏𝑙 + 𝑏𝑙+1 > 0. Note that

lim
𝑙→∞

𝑙1+𝛼(𝑏𝑙 − 𝑏𝑙+1) = 𝛼. (1.2)

Now, for 𝑙 sufficiently large such that 𝑏𝑙 ∈ [𝑎, 𝑏), pick 𝑎𝑗𝑙 satisfying

0 ≤ 𝑎𝑗𝑙 − 𝑏𝑙 ≤ min

{︂
𝐾𝑙

2
,

𝛼

4𝑙1+𝛼

}︂
. (1.3)

Then, by (1.2) and (1.3), for 𝑙 sufficiently large, one has

𝑎𝑗𝑙 − 𝑎𝑗𝑙+1
= (𝑎𝑗𝑙 − 𝑏𝑙)− (𝑎𝑗𝑙+1

− 𝑏𝑙+1) + (𝑏𝑙 − 𝑏𝑙+1)

≥ − 𝛼

4(𝑙 + 1)1+𝛼
+

3𝛼

4𝑙1+𝛼
≥ 𝛼

2𝑙1+𝛼
,

𝑎𝑗𝑙 − 𝑎𝑗𝑙+1
= (𝑎𝑗𝑙 − 𝑏𝑙)− (𝑎𝑗𝑙+1

− 𝑏𝑙+1) + (𝑏𝑙 − 𝑏𝑙+1)

≤ 𝛼

4𝑙1+𝛼
+

7𝛼

4𝑙1+𝛼
=

2𝛼

𝑙1+𝛼
.

Hence,
𝛼

2𝑙1+𝛼
≤ 𝑎𝑗𝑙 − 𝑎𝑗𝑙+1

≤ 2𝛼

𝑙1+𝛼
.

Moreover,

(𝑎𝑗𝑙 − 𝑎𝑗𝑙+1
)− (𝑎𝑗𝑙+1

− 𝑎𝑗𝑙+2
) = (𝑎𝑗𝑙 − 2𝑎𝑗𝑙+1

+ 𝑎𝑗𝑙+2
)

= 𝑎𝑗𝑙 − 𝑏𝑙 − 2(𝑎𝑗𝑙+1
− 𝑏𝑙+1) + 𝑎𝑗𝑙+2

− 𝑏𝑙+2 + (𝑏𝑙 − 2𝑏𝑙+1 + 𝑏𝑙+2)

≥ −2(𝑎𝑗𝑙+1
− 𝑏𝑙+1) +𝐾𝑙+1 ≥ 0,

which implies that 𝑎𝑗𝑙 −𝑎𝑗𝑙+1
goes to zero monotonically. Therefore, (𝑎𝑗) is weakly-spaced.

1.2 Fractal dimensions and Proof of Theorem I

The study of fractal dimensions of spectral measures in the context of quantum mechanics

appeared as an attempt to answer the following question: “What determines the spreading

of a wave packet?” In this context, we highlight the works [4, 5, 31, 32]. Here, we use a

notorious result due to Barbaroux et. al. [5] (Theorem 1.2) in order to prove Theorem I.

Definition 1.2. Let 𝜇 be a finite positive Borel measure on R and let 𝑞 ∈ R ∖ {1}. The
lower and upper 𝑞-generalized fractal dimensions of 𝜇 are defined, respectively, as

𝐷−
𝜇 (𝑞) := lim inf

𝜖↓0

ln[
∫︀
𝜇(𝐵(𝑥, 𝜖))𝑞−1d𝜇(𝑥)]

(𝑞 − 1) ln 𝜖
and 𝐷+

𝜇 (𝑞) := lim sup
𝜖↓0

ln[
∫︀
𝜇(𝐵(𝑥, 𝜖))𝑞−1d𝜇(𝑥)]

(𝑞 − 1) ln 𝜖
,

where the integration is performed over supp(𝜇).
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These 𝑞-generalized fractal dimensions give the average lower and upper polynomial

behaviour (in the measure itself) of the measure of balls (weighted by the exponent (𝑞−1))

as their radii go to zero. Now we consider the mean-𝑞 dimension, which, for every 𝑞 > 0,

𝑞 ̸= 1, coincide with 𝑞-generalized fractal dimensions.

Definition 1.3. Let 𝜇 be a finite positive Borel measure on R and let 𝑞 ∈ R ∖ {1}. The
lower and upper mean-𝑞 dimensions of 𝜇 are defined, respectively, as

𝑚−
𝜇 (𝑞) := lim inf

𝜖↓0

ln[𝜖−1
∫︀
R 𝜇(𝐵(𝑥, 𝜖))𝑞 d𝑥]

(𝑞 − 1) ln 𝜖
and 𝑚+

𝜇 (𝑞) := lim sup
𝜖↓0

ln[𝜖−1
∫︀
R 𝜇(𝐵(𝑥, 𝜖))𝑞 d𝑥]

(𝑞 − 1) ln 𝜖
.

The next result lists some properties of the above dimensions.

Proposition 1.2 (Theorem 2.1. and Propositions 3.1 and 3.3 in [6]). Let 𝜇 be a finite

positive Borel measure on R. Then,

1. For every 𝑞 > 0, 𝑞 ̸= 1, 𝐷∓
𝜇 (𝑞) = 𝑚∓

𝜇 (𝑞).

2. 𝐷−
𝜇 (𝑞) and 𝐷

+
𝜇 (𝑞) are nonincreasing functions of 𝑞 ∈ R ∖ {1}.

3. If 𝜇 has bounded support, then for all 𝑞 ∈ (0, 1), 0 ≤ 𝐷−
𝜇 (𝑞) ≤ 𝐷+

𝜇 (𝑞) ≤ 1.

For a more detailed discussion on such dimensions, see [6].

Our next result relates such spacing properties (Definition 1.1) of the eigenvalues of

self-adjoint operators with purely point spectrum, to the generalized fractal dimensions

of their spectral measures.

Theorem 1.1. Let 𝑇 be a self-adjoint operator with purely point spectrum. Suppose that

the sequence of eigenvalues of 𝑇 is weakly-spaced. Then,

{𝜉 ∈ ℋ | 𝐷−
𝜇𝑇
𝜉
(𝑞) = 0 𝑎𝑛𝑑 𝐷+

𝜇𝑇
𝜉
(𝑞) = 1 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 0 < 𝑞 < 1}

is a dense 𝐺𝛿 set in ℋ.

Consider the following result due to Barbaroux et. al. [5].

Theorem 1.2 (Theorem 2.1 in [5]). Let 𝑇 be a self-adjoint operator in ℋ. Then, for each

𝜉 ∈ ℋ and each 𝑞 > 0,

𝛼+(𝜉, 𝑞) ≥ 𝐷+
𝜇𝑇
𝜉

(︂
1

1 + 𝑞

)︂
𝑞.

Remark 1.1. We note that Theorem I is a consequence of Proposition 1.1, Theorems

1.1 and 1.2. Namely, since, in this case, 𝑇 has purely dense point spectrum equal to [𝑎, 𝑏],

if follows from Proposition 1.1 that the sequence of eigenvalues of 𝑇 is weakly-spaced.

Thus, Theorem I is a direct consequence of Theorems 1.1 and 1.2. Therefore, it remains

to prove only Theorem 1.1.
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In order to prove Theorem 1.1, we need of some preparation. Let 𝑟 > 0 and let 𝜇 be

a finite positive Borel measure on R so that supp(𝜇) ⊂ [−𝑟, 𝑟]. Consider, for every 𝑡 > 0

and every 𝑞 ∈ R,

𝐶𝜇(𝑞, 𝑡) := 𝑡

𝑟+1∫︁
−𝑟−1

(︂∫︁
R

𝑒−𝑡|𝑥−𝑦|d𝜇(𝑦)

)︂𝑞

d𝑥.

Lemma 1.1. Let 𝜇 be as before and 𝑞 > 0, 𝑞 ̸= 1. Then,

lim inf
𝑡→∞

ln𝐶𝜇(𝑞, 𝑡)

(𝑞 − 1) ln 𝑡
= −𝐷+

𝜇 (𝑞),

lim sup
𝑡→∞

ln𝐶𝜇(𝑞, 𝑡)

(𝑞 − 1) ln 𝑡
= −𝐷−

𝜇 (𝑞).

Proof. We show that

lim inf
𝑡→∞

ln𝐶𝜇(𝑞, 𝑡)

(𝑞 − 1) ln 𝑡
= −𝑚+

𝜇 (𝑞), (1.4)

lim sup
𝑡→∞

ln𝐶𝜇(𝑞, 𝑡)

(𝑞 − 1) ln 𝑡
= −𝑚−

𝜇 (𝑞). (1.5)

Since supp(𝜇) ⊂ [−𝑟, 𝑟], one has, for each 𝑡 > 1 and each 𝑥 ∈ [−𝑟 − 1, 𝑟 + 1]𝑐,

𝜇(𝐵(𝑥, 1
𝑡
)) = 0. Hence, it follows that, for 𝑡 > 1,

𝐶𝜇(𝑞, 𝑡) = 𝑡

𝑟+1∫︁
−𝑟−1

(︂∫︁
R

𝑒−𝑡|𝑥−𝑦|d𝜇(𝑦)

)︂𝑞

d𝑥 ≥ 𝑡

𝑟+1∫︁
−𝑟−1

(︂ ∫︁
|𝑥−𝑦|< 1

𝑡

𝑒−𝑡|𝑥−𝑦|d𝜇(𝑦)

)︂𝑞

d𝑥

≥ 𝑡

𝑒𝑞

𝑟+1∫︁
−𝑟−1

𝜇(𝐵(𝑥,
1

𝑡
))𝑞d𝑥 =

𝑡

𝑒𝑞

∫︁
R

𝜇(𝐵(𝑥,
1

𝑡
))𝑞d𝑥

and, therefore,

lim inf
𝑡→∞

ln𝐶𝜇(𝑞, 𝑡)

(𝑞 − 1) ln 𝑡
≤ −𝑚+

𝜇 (𝑞), lim sup
𝑡→∞

ln𝐶𝜇(𝑞, 𝑡)

(𝑞 − 1) ln 𝑡
≤ −𝑚−

𝜇 (𝑞).

Let 0 < 𝛿 < 1. Then, for each 𝑥 ∈ R and 𝑡 > 0,∫︁
R

𝑒−𝑡|𝑥−𝑦|d𝜇(𝑦) =

∫︁
|𝑥−𝑦|< 1

𝑡1−𝛿

𝑒−𝑡|𝑥−𝑦|d𝜇(𝑦) +

∫︁
|𝑥−𝑦|≥ 1

𝑡1−𝛿

𝑒−𝑡|𝑥−𝑦|d𝜇(𝑦)

≤ 𝜇
(︀
𝐵
(︀
𝑥,

1

𝑡1−𝛿

)︀)︀
+ 𝑒−𝑡𝛿𝜇(R).

Thus, (︂∫︁
R

𝑒−𝑡|𝑥−𝑦|d𝜇(𝑦)

)︂𝑞

≤ 2𝑞 max

{︂
𝜇
(︀
𝐵
(︀
𝑥,

1

𝑡1−𝛿

)︀)︀
, 𝜇(R)𝑒−𝑡𝛿

}︂𝑞

≤ 2𝑞𝜇
(︀
𝐵
(︀
𝑥,

1

𝑡1−𝛿

)︀)︀𝑞
+ 2𝑞𝜇(R)𝑞𝑒−𝑞𝑡𝛿 . (1.6)
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Since, by Proposition 1.2, 𝑚−
𝜇 (𝑞) ≥ 0, it follows from (1.6) that, for sufficiently large 𝑡,

𝐶𝜇(𝑞, 𝑡) ≤ 2𝑞𝑡

∫︁
R

𝜇
(︀
𝐵
(︀
𝑥,

1

𝑡1−𝛿

)︀)︀𝑞
d𝑥+ (2𝑟 + 2)2𝑞𝜇(R)𝑞𝑡𝑒−𝑞𝑡𝛿

≤ 2𝑞+1𝑡

∫︁
R

𝜇
(︀
𝐵
(︀
𝑥,

1

𝑡1−𝛿

)︀)︀𝑞
d𝑥,

and then,
1

(1− 𝛿)
lim inf
𝑡→∞

ln𝐶𝜇(𝑞, 𝑡)

(𝑞 − 1) ln 𝑡
≥ −𝑚+

𝜇 (𝑞),

1

(1− 𝛿)
lim sup
𝑡→∞

ln𝐶𝜇(𝑞, 𝑡)

(𝑞 − 1) ln 𝑡
≥ −𝑚−

𝜇 (𝑞).

Since 0 < 𝛿 < 1 is arbitrary, the complementary inequalities in (1.4) and (1.5) follow. The

results are now a consequence of Proposition 1.2.

Lemma 1.2. Let 𝑇 be a bounded self-adjoint operator on ℋ and 𝑞 ∈ (0, 1). Then, for

each 𝛾 ≥ 0,

1. 𝐺𝑇
𝛾− := {𝜉 ∈ ℋ | 𝐷−

𝜇𝑇
𝜉
(𝑞) ≤ 𝛾} is a 𝐺𝛿 set in ℋ,

2. 𝐺𝑇
𝛾+ := {𝜉 ∈ ℋ | 𝐷+

𝜇𝑇
𝜉
(𝑞) ≥ 𝛾} is a 𝐺𝛿 set in ℋ.

Proof. We just present the proof of item 1. For each 𝑗 ≥ 1, let 𝑔𝑗 : (0,∞) → (0,∞),

𝑔𝑗(𝑡) := 𝑡
1
𝑗
+𝛾. Since, for each 𝑗 ≥ 1 and each 𝑡 > 0, the mapping

ℋ ∋ 𝜉 ↦→ 𝑔𝑗(𝑡)𝐶𝜇𝑇
𝜉
(𝑞, 𝑡)1/(𝑞−1)

is continuous (by dominated convergence), it follows that, for each 𝑗, 𝑘, 𝑛 ∈ N, the set⋃︁
𝑡≥𝑘

{𝜉 ∈ ℋ | 𝑔𝑗(𝑡)𝐶𝜇𝑇
𝜉
(𝑞, 𝑡)1/(𝑞−1) > 𝑛}

is open; thus, by Lemma 1.1,

𝐺𝑇
𝛾− =

⋂︁
𝑗≥1

{𝜉 ∈ ℋ | lim sup
𝑡→∞

𝑔𝑗(𝑡)𝐶𝜇𝑇
𝜉
(𝑞, 𝑡)1/(𝑞−1) = ∞}

=
⋂︁
𝑗≥1

⋂︁
𝑛≥1

⋂︁
𝑘≥1

⋃︁
𝑡≥𝑘

{𝜉 ∈ ℋ | 𝑔𝑗(𝑡)𝐶𝜇𝑇
𝜉
(𝑞, 𝑡)1/(𝑞−1) > 𝑛}

is a 𝐺𝛿 set in ℋ.

Proof (Theorem 1.1). Fix 0 < 𝑞 < 1 and let (𝑒𝑗) be an orthonormal family of eigenvectors

of 𝑇 , that is, 𝑇𝑒𝑗 = 𝜆𝑗𝑒𝑗 for every 𝑗 ≥ 1. Let (𝑏𝑗) ⊂ C be a sequence such that |𝑏𝑗| > 0,
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for all 𝑗 ≥ 1, and
∑︀∞

𝑗=1 |𝑏𝑗|2𝑞 <∞. Given 𝜉 ∈ ℋ, write 𝜉 =
∑︀∞

𝑗=1 𝑎𝑗𝑒𝑗, and then consider,

for each 𝑘 ≥ 1,

𝜉𝑘 :=
𝑘∑︁

𝑗=1

𝑎𝑗𝑒𝑗 +
∞∑︁

𝑗=𝑘+1

𝑏𝑗𝑒𝑗.

It is clear that 𝜉𝑘 → 𝜉. Moreover, for 𝑘 ≥ 1 and each 𝜖 > 0,∫︁
supp(𝜇𝑇

𝜉𝑘
)

𝜇𝑇
𝜉𝑘
(𝐵(𝑥, 𝜖))𝑞−1d𝜇𝑇

𝜉𝑘
(𝑥) =

∞∑︁
𝑗=1

𝜇𝑇
𝜉𝑘
(𝐵(𝜆𝑗, 𝜖))

𝑞−1𝜇𝑇
𝜉𝑘
({𝜆𝑗})

≤
∞∑︁
𝑗=1

𝜇𝑇
𝜉𝑘
({𝜆𝑗})𝑞 =

𝑘∑︁
𝑗=1

|𝑎𝑗|2𝑞 +
∞∑︁

𝑗=𝑘+1

|𝑏𝑗|2𝑞, (1.7)

from which follows that 𝐷∓
𝜇𝑇
𝜉𝑘

(𝑞) = 0. Hence, 𝐺𝑇
0− = {𝜉 ∈ ℋ | 𝐷−

𝜇𝑇
𝜉
(𝑞) = 0} is a dense set

and, therefore, by Lemma 1.2, a dense 𝐺𝛿 set in ℋ.

Now we discuss the upper dimensions. Fix an 𝑛 ∈ N with 𝑛 > 𝑞
1−𝑞

and let (𝜆𝑗𝑙) be a

subsequence of (𝜆𝑗) so that: 1. lim𝑙→∞(𝜆𝑗𝑙 − 𝜆𝑗𝑙+1
) = 0 monotonically; 2. there exists a

𝐶𝑛 > 0 such that, for every 𝑙 ≥ 1, 𝜆𝑗𝑙 − 𝜆𝑗𝑙+1
≥ 𝐶𝑛/𝑙

1+ 1
𝑛 . Consider, for each 𝑘 ≥ 1,

𝜉𝑘 :=
𝑘∑︁

𝑙=1

𝑎𝑙𝑒𝑙 +
∞∑︁

𝑙=𝑟(𝑘)

1√︀
𝑙1+

1
𝑛

𝑒𝑗𝑙 ,

where we set 𝑟(𝑘) large enough so that {𝑒1, ...., 𝑒𝑘, 𝑒𝑗𝑟(𝑘) , 𝑒𝑗𝑟(𝑘)+1
, ...} is an orthonormal set.

Again, 𝜉𝑘 → 𝜉 in ℋ.

For each 𝑚 ≥ 1, put 𝜖𝑚 := |𝜆𝑗𝑚 − 𝜆𝑗𝑚+1|/2. Then, for each 𝑚 > 𝑀(𝑘) and each

1 ≤ 𝑙 ≤ 𝑚,

𝜇𝑇
𝜉𝑘
(𝐵(𝜆𝑗𝑙 , 𝜖𝑚)) = 𝜇𝑇

𝜉𝑘
({𝜆𝑗𝑙}),

where 𝑀(𝑘) is large enough so that for each 𝑚 > 𝑀(𝑘), each 𝑙 ≥ 1 and each 1 ≤ 𝑖 ≤ 𝑘,

𝜆𝑖 ̸∈ 𝐵(𝜆𝑗𝑙 , 𝜖𝑚). Hence, for 𝑚 > max{𝑀(𝑘), 𝑟(𝑘)} =: 𝑠(𝑘),

∫︁
supp(𝜇𝑇

𝜉𝑘
)

𝜇𝑇
𝜉𝑘
(𝐵(𝑥, 𝜖𝑚))

𝑞−1d𝜇𝑇
𝜉𝑘
(𝑥) =

∞∑︁
𝑙=1

𝜇𝑇
𝜉𝑘
(𝐵(𝜆𝑙, 𝜖𝑚))

𝑞−1𝜇𝑇
𝜉𝑘
({𝜆𝑙})

≥
𝑚∑︁

𝑙=𝑠(𝑘)

𝜇𝑇
𝜉𝑘
(𝐵(𝜆𝑗𝑙 , 𝜖𝑚))

𝑞−1𝜇𝑇
𝜉𝑘
({𝜆𝑗𝑙})

=
𝑚∑︁

𝑙=𝑠(𝑘)

𝜇𝑇
𝜉𝑘
({𝜆𝑗𝑙})𝑞 =

𝑚∑︁
𝑙=𝑠(𝑘)

1

𝑙(1+
1
𝑛
)𝑞

≥ 𝐸𝑘𝑚
1−(1+ 1

𝑛
)𝑞 ≥ 𝐸𝑘

(︂
𝐶𝑛

2𝜖𝑚

)︂(1−(1+ 1
𝑛
)𝑞)/(1+ 1

𝑛
)

,
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where 𝐸𝑘 is a constant depending only of 𝑘, which results in

𝐷+
𝜇𝑇
𝜉𝑘

(𝑞) ≥
1− (1 + 1

𝑛
)𝑞

(1− 𝑞)(1 + 1
𝑛
)
=: 𝑡𝑛,𝑞.

Thus, 𝐺𝑇
(𝑡𝑛,𝑞)+

is a dense set and, therefore, by Lemma 1.2, a dense 𝐺𝛿 set in ℋ. Since

𝐺𝑇
1+ =

⋂︁
𝑛> 𝑞

1−𝑞

𝐺𝑇
(𝑡𝑛,𝑞)+

and, by Proposition 1.2, 𝐺𝑇
1+ = {𝜉 ∈ ℋ | 𝐷+

𝜇𝑇
𝜉
(𝑞) = 1}, follows from Baire’s Theorem that

{𝜉 ∈ ℋ | 𝐷−
𝜇𝑇
𝜉
(𝑞) = 0 𝑎𝑛𝑑 𝐷+

𝜇𝑇
𝜉
(𝑞) = 1}

is a dense 𝐺𝛿 set in ℋ. Finally, let Q+ := {𝑥 ∈ Q | 𝑥 > 0}. Since, by Proposition 1.2,

{𝜉 ∈ ℋ | 𝐷−
𝜇𝑇
𝜉
(𝑞) = 0 𝑎𝑛𝑑 𝐷+

𝜇𝑇
𝜉
(𝑞) = 1 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 0 < 𝑞 < 1}

=
⋂︁

𝑞∈Q+∩(0,1)

{𝜉 ∈ ℋ | 𝐷−
𝜇𝑇
𝜉
(𝑞) = 0 𝑎𝑛𝑑 𝐷+

𝜇𝑇
𝜉
(𝑞) = 1},

the result is proven.
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Chapter 2

Dynamics for compact operators

In this chapter, we prove Theorems II and III.

2.1 Proof of Theorem II

In order to proof Theorem II, some preparation is required.

Let 𝑇 be a self-adjoint operator in ℋ. Now, for every measurable 𝑓 : R −→ C, we
denote 𝐸𝑇 (𝑓) simply by 𝑓(𝑇 ), where 𝐸𝑇 represents the resolution of the identity of 𝑇 .

Proposition 2.1 (Proposition 10.1.9 in [22]). A sequence of self-adjoint operators (𝑇𝑛)

converges to a self-adjoint operator 𝑇 in the strong resolvent sense if and only if 𝑓(𝑇𝑛)

strongly converges to 𝑓(𝑇 ) in ℋ for every bounded and continuous 𝑓 : R −→ C.

Definition 2.1. Let 𝜇 be a 𝜎-finite positive Borel measure on R. One says that 𝜇 is

(uniformly) Lipschitz continuous if there exists a constant 𝐶 > 0 such that, for each

interval 𝐼 with ℓ(𝐼) < 1, 𝜇(𝐼) < 𝐶 ℓ(𝐼), where ℓ(·) denotes the Lebesgue measure on R.

Theorem 2.1 (Theorem 3.2 in [38]). If 𝜇𝑇
𝜉 is Lipschitz continuous, then there exists a

constant 𝐶𝜉 such that for any compact operator 𝐴 and any 𝑡 > 0,

⟨|𝐴𝑇
𝜉 |⟩𝑡 < 𝐶𝜉‖𝐴‖1𝑡−1,

where ‖𝐴‖1 denotes the trace norm of 𝐴.

Theorem 2.2. Let 𝜉 ∈ ℋ. Then, the set 𝐿 := {𝑀 ∈ 𝑋𝑎 | 𝜇𝑀
𝜉 𝑖𝑠 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠}

is a dense set in 𝑋𝑎.

Proof. See the proof of Theorem 1.2 in [15].
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Proof (Theorem II). The proof that

{𝑀 ∈ 𝑋𝑎 | lim inf
𝑡→∞

𝑡⟨|𝐴𝑀
𝜉 |⟩𝑡 = 0}

is a dense 𝐺𝛿 set in 𝑋𝑎 is a direct consequence of Theorem 2.2 in [4], Lemma 3.2 and

Theorem 3.2 in [38], and Theorem 1.2 in [15]. For the convenience of the reader, we present

a simple proof of this fact in details.

Since, by Proposition 2.1 and dominated convergence, for each 𝑡 ∈ R the mapping

𝑋𝑎 ∋𝑀 ↦→ 𝛼(𝑡)⟨|𝐴𝑀
𝜉 |⟩𝑡

is continuous, it follows that, for each 𝑘 ≥ 1 and each 𝑛 ≥ 1, the set⋃︁
𝑡≥𝑘

{𝑀 ∈ 𝑋𝑎 | 𝛼(𝑡)⟨|𝐴𝑀
𝜉 |⟩𝑡 > 𝑛}

is open, so

{𝑀 ∈ 𝑋𝑎 | lim sup
𝑡→∞

𝛼(𝑡)⟨|𝐴𝑀
𝜉 |⟩𝑡 = ∞} =

⋂︁
𝑛≥1

⋂︁
𝑘≥1

⋃︁
𝑡≥𝑘

{𝑀 ∈ 𝑋𝑎 | 𝛼(𝑡)⟨|𝐴𝑀
𝜉 |⟩𝑡 > 𝑛}

is a 𝐺𝛿 set in 𝑋𝑎.

Now, as previously discussed, it is well known that

𝐷 = {𝑀 ∈ 𝑋𝑎 | 𝜎(𝑀) = [−𝑎− 2, 𝑎+ 2], 𝜎(𝑀) is pure point}

is a dense subset of 𝑋𝑎. Thus, by RAGE’s Theorem,

𝐷 ⊂ {𝑀 ∈ 𝑋𝑎 | lim sup
𝑡→∞

𝛼(𝑡)⟨|𝐴𝑀
𝜉 |⟩𝑡 = ∞}

is a dense 𝐺𝛿 set in 𝑋𝑎.

We note that, for each 𝑗 ≥ 1,

𝐿𝑗 := {𝑀 ∈ 𝑋𝑎 | lim inf
𝑡→∞

𝑡1−
1
𝑗 ⟨|𝐴𝑀

𝜉 |⟩𝑡 = 0}

is also a 𝐺𝛿 set in 𝑋𝑎. Since, by Theorem 2.1, for each 𝑗 ≥ 1, 𝐿 ⊂ 𝐿𝑗, it follows from

Baire’s Theorem that

{𝑀 ∈ 𝑋𝑎 | lim inf
𝑡→∞

𝑡⟨|𝐴𝑀
𝜉 |⟩𝑡 = 0} =

⋂︁
𝑗≥1

𝐿𝑗

is a dense 𝐺𝛿 set in 𝑋𝑎, concluding the proof of the theorem.
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2.2 Proof of Theorem III

In order to prove Theorem III, we need the following results.

Theorem 2.3 (Theorem 4.5 in [56]). The set

{𝐻𝑉 ∈ 𝑋𝐶 | 𝐻𝑉 ℎ𝑎𝑠 𝑝𝑢𝑟𝑒𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 𝑜𝑛 (0,∞)}

is a dense 𝐺𝛿 set in 𝑋𝐶.

Theorem 2.4 (Corollary 4.6.1 in [53]). Let 𝑉 : R −→ R be a bounded Borel function. If

there exists 𝑐 ≥ 0 such that, for every 𝑥 ≥ 𝑐, 𝑉 (𝑥) ≤ 0 and

∞∫︁
𝑐

𝑉 (𝑥)𝑑𝑥 = −∞,

then 𝐻𝑉 = Δ+ 𝑉 has at least one negative eigenvalue.

If 𝑇 is a self-adjoint operator, denote the set of its eigenvalues by Σ(𝑇 ).

Lemma 2.1. Let 𝑇 be a self-adjoint operator such that Σ(𝑇 ) ̸= ∅, and let 𝛼 be as in the

statement of Theorem II . Then, for any compact operator 𝐴,

𝐺𝛼(𝐴, 𝑇 ) := {𝜉 ∈ ℋ | lim sup
𝑡→∞

𝛼(𝑡)⟨|𝐴𝑇
𝜉 |⟩𝑡 = ∞}

is a dense 𝐺𝛿 set in ℋ.

Proof. Since, for each 𝑡 ∈ R, the mapping

ℋ ∋ 𝜉 ↦→ 𝛼(𝑡)⟨|𝐴𝑇
𝜉 |⟩𝑡

is continuous (by dominated convergence), it follows that

𝐺𝛼(𝑇,𝐴) =
⋂︁
𝑛≥1

⋂︁
𝑘≥1

⋃︁
𝑡≥𝑘

{𝜉 ∈ ℋ | 𝛼(𝑡)⟨|𝐴𝑇
𝜉 |⟩𝑡 > 𝑛}

is a 𝐺𝛿 set in ℋ.

Given 𝜉 ∈ ℋ, write 𝜉 = 𝜉1 + 𝜉2, with 𝜉1 ∈ 𝑆𝑝𝑎𝑛{𝜉0}⊥ and 𝜉2 ∈ 𝑆𝑝𝑎𝑛{𝜉0}, where 𝜉0,
with ‖𝜉0‖ℋ = 1, is an eigenvector of 𝑇 associated with an eigenvalue 𝜆. If 𝜉2 ̸= 0, then

𝜇𝑇
𝜉 ({𝜆}) = ‖𝐸𝑇 ({𝜆})𝜉‖2ℋ

≥ 2𝑅𝑒⟨𝐸𝑇 ({𝜆})𝜉1, 𝐸𝑇 ({𝜆})𝜉2⟩+ ‖𝐸𝑇 ({𝜆})𝜉2‖2ℋ
= ‖𝜉2‖2ℋ > 0,
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where 𝐸𝑇 ({𝜆}) represents the resolution of the identity of 𝑇 over the set {𝜆}. Now, if
𝜉2 = 0, define, for each 𝑘 ≥ 1,

𝜉𝑘 := 𝜉 +
𝜉0
𝑘
.

It is clear that 𝜉𝑘 → 𝜉. Moreover, by the previous arguments, for each 𝑘 ≥ 1, one has

𝜇𝑇
𝜉𝑘
({𝜆}) > 0.

Thus, 𝐺 := {𝜉 ∈ ℋ | 𝜇𝑇
𝜉 has an atom} is a dense set in ℋ. Nevertheless, by RAGE’s

Theorem, 𝐺 ⊂ 𝐺𝛼(𝑇,𝐴), proving that 𝐺𝛼(𝑇,𝐴) is a dense 𝐺𝛿 set in ℋ.

Proof (Theorem III). By the arguments presented in the proof of Theorem II, for every

𝜉 ∈ L2(R),
{𝐻𝑉 ∈ 𝑋𝐶 | lim sup

𝑡→∞
𝛼(𝑡)⟨|𝐴𝐻𝑉

𝜉 |⟩𝑡 = ∞}

is a 𝐺𝛿 set in 𝑋𝐶 .

Now, given 𝐻𝑉 ∈ 𝑋𝐶 , we define for every 𝑘 ≥ 1,

𝑉𝑘(𝑥) :=
𝑘

𝑘 + 1
𝜒𝐵(0,𝑘)𝑉 (𝑥)− 𝐶

(𝑘 + 1)(|𝑥|+ 1)
.

We note that, for each 𝑘 ≥ 1 and each 𝑥 ≥ 𝑘, 𝑉𝑘(𝑥) ≤ 0. Moreover, for each 𝑘 ≥ 1,

∞∫︁
𝑘

𝑉𝑘(𝑥)𝑑𝑥 = −∞.

Therefore, by Theorem 2.4, for every 𝑘 ≥ 1, 𝐻𝑉𝑘
has at least one negative eigenvalue; in

particular, Σ(𝐻𝑉𝑘
) ̸= ∅. Since 𝐻𝑉𝑘

→ 𝐻𝑉 in 𝑋𝐶 , it follows that

𝑌 := {𝐻𝑉 ∈ 𝑋𝐶 | Σ(𝐻𝑉 ) ̸= ∅}

is a dense set in 𝑋𝐶 .

Now, let (𝐻𝑉𝑘
) be a countable dense subset in 𝑌 (which is separable, since 𝑋𝐶 is

separable); then, by Lemma 2.1 and Baire’s Theorem,
⋂︀

𝑘≥1𝐺𝛼(𝐻𝑉𝑘
, 𝐴) is a dense 𝐺𝛿 set

in L2(R). Moreover, for every 𝜉 ∈
⋂︀

𝑘≥1𝐺𝛼(𝐻𝑉𝑘
, 𝐴),

{𝐻𝑉 ∈ 𝑋𝐶 | lim sup
𝑡→∞

𝛼(𝑡)⟨|𝐴𝐻𝑉
𝜉 |⟩𝑡 = ∞} ⊃

⋃︁
𝑘≥1

{𝐻𝑉𝑘
}

is a dense 𝐺𝛿 set in 𝑋𝐶 . The theorem is now a consequence of Theorem 2.3 and Baire’s

Theorem.

Remark 2.1. Note that this separability argument used in the proof of Theorem I has

allowed, in some sense, the use of the typical behaviour in L2(R) (Lemma 2.1) in the

determination of the typical behaviour in 𝑋𝐶 .
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Part II Some results on asymptotic of 𝐶0-semigroups
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Selected Notation

ℋ Complex Hilbert space

ℬ(ℋ) Space of all bounded linear operators on ℋ

𝐼 Identity operator on ℋ

𝒟(𝐴) Domain of the linear operator 𝐴 in ℋ

rng(𝐴) Range of 𝐴

N(𝐴) Kernel of 𝐴

𝜚(𝐴) Resolvent set of 𝐴

𝑅(𝜆,𝐴) Resolvent operator of 𝐴 at 𝜆 ∈ 𝜚(𝐴) ⊂ C

𝜎(𝐴) Spectrum of 𝐴

𝑁 Normal operator in ℋ

𝐸𝑁 Resolution of the identity of 𝑁

𝜇𝑁
𝑥 Spectral measure of 𝑁 with respect to 𝑥 ∈ ℋ

(𝑇 (𝑡))𝑡≥0 𝐶0-semigroup

𝜔0(𝑇 ) Exponential growth bound of (𝑇 (𝑡))𝑡≥0

C+ The set {𝜆 ∈ C : 𝑅𝑒(𝜆) > 0}
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Contextualization and main results

Contextualization

A central question in the theory of differential equations refers to the asymptotic behaviour

of their solutions; for instance, whether they reach an equilibrium and, if so, with which

speed. This kind of question is addressed by the asymptotic theory of 𝐶0-semigroups.

More specifically, here we consider the theory of stability for solutions of the abstract

Cauchy problem on a Hilbert space ℋ, that is,⎧⎨⎩�̇�(𝑡) = 𝐴𝑥(𝑡), 𝑡 ≥ 0,

𝑥(0) = 𝑥, 𝑥 ∈ ℋ,
(ACP)

where 𝐴 is the generator of a 𝐶0-semigroup (𝑇 (𝑡))𝑡≥0 on ℋ.

Definition. Let 𝐴 : 𝒟(𝐴) ⊂ ℋ −→ ℋ be a linear operator. The resolvent set of 𝐴,

denoted by 𝜚(𝐴), is the set of all 𝜆 ∈ C for which the resolvent operator of 𝐴 at 𝜆,

𝑅(𝜆,𝐴) : ℋ −→ 𝒟(𝐴), 𝑅(𝜆,𝐴) := (𝜆𝐼 − 𝐴)−1,

exists and is bounded.

Definition. The spectrum of 𝐴 is the set 𝜎(𝐴) = C∖𝜌(𝐴).

We recall that a 𝐶0-semigroup (𝑇 (𝑡))𝑡≥0 on ℋ is said to be bounded if there exists

a constant 𝐶 > 0 so that, for each 𝑡 ≥ 0, ‖𝑇 (𝑡)‖ℬ(ℋ) ≤ 𝐶; if 𝐶 = 1, then it is called a

𝐶0-semigroup of contractions.

We also recall that (𝑇 (𝑡))𝑡≥0 is (strongly) stable if, for every 𝑥 ∈ ℋ,

lim
𝑡→∞

‖𝑇 (𝑡)𝑥‖ℋ = 0;

(𝑇 (𝑡))𝑡≥0 is exponentially stable if there exist constants 𝐶 > 0 and 𝑎 > 0 such that, for

every 𝑡 ≥ 0,

‖𝑇 (𝑡)‖ℬ(ℋ) ≤ 𝐶 𝑒−𝑡𝑎.
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Over the three last decades, the asymptotic theory of 𝐶0-semigroups on Hilbert spaces

had a fast development, with a large number of long-standing open problems being solved.

Among such problems, one can highlight the characterization of exponential stability for

𝐶0-semigroups of contractions on Hilbert spaces (Gearhart’s Theorem), due to Herbst,

Howland and Prüss [33, 36, 48].

Theorem (Gearhart’s Theorem). Let (𝑇 (𝑡))𝑡≥0 be a bounded 𝐶0-semigroup of contractions

on a Hilbert space ℋ, with generator 𝐴. Then, (𝑇 (𝑡))𝑡≥0 is exponentially stable if and only

if

𝑖R ⊂ 𝜚(𝐴) 𝑎𝑛𝑑 lim sup
|𝜆|→∞

‖𝑅(𝑖𝜆, 𝐴)‖ℬ(ℋ) <∞.

The stability theorem, by Arendt, Batty, Lyubich and Vũ [3, 43], states that a bounded 𝐶0-

semigroup on a reflexive Banach space is (strongly) stable if the spectrum of its generator

is countable and contains no residual spectrum.

Theorem (Arendt-Batty-Lyubich-Vũ’s Theorem). Let 𝑋 be a reflexive Banach space

and let (𝑇 (𝑡))𝑡≥0 be a bounded 𝐶0-semigroup on 𝑋 with generator 𝐴. Assume that the

eigenvalues of 𝐴 do not intercept the imaginary axis. If 𝜎(𝐴) ∩ 𝑖R is countable, then

(𝑇 (𝑡))𝑡≥0 is stable.

We also highlight the recent results obtained by Borichev and Tomilov [11], by Batty,

Chill and Tomilov [8], and very recently by Rozendaal, Seifert, and Stahn [50], which

relate estimates on the norm of the resolvent of the generator to quantitative decaying

rates of the form

‖𝑇 (𝑡)𝐴−1‖ℬ(ℋ) = 𝑂(𝑟(𝑡)), 𝑡→ ∞,

with lim
𝑡→∞

𝑟(𝑡) = 0, developed in order to explore polynomial and logarithmic scales, among

others, of decaying rates of 𝐶0-semigroups (see Batty-Chill-Tomilov’s Theorem ahead).

As it is known, this strategy has allowed numerous applications of the theory to PDEs;

namely, estimates on the norm of the resolvent of the generator are often easier to compute

than the estimates on the norm of the semigroup itself. In this context, we refer to [1, 2,

8, 13, 18, 19, 21, 24, 27, 28, 39, 41, 42, 45, 50], among others.

An important intermediate step between Gearhart’s Theorem [33, 36, 48] and the

results by Rozendaal et al. [50] is Batty-Duyckaerts’s Theorem [9], which relates the

decaying rates of ‖𝑇 (𝑡)𝐴−1‖ℬ(𝑋), 𝑖R ⊂ 𝜚(𝐴), with the arbitrary growth of the norm of

the resolvent of the generator. In order to properly recall such result, some preparation is

required.
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For every 𝐴, the generator of a bounded 𝐶0-semigroup (𝑇 (𝑡))𝑡≥0 on a Banach space

𝑋, with 𝑖R ⊂ 𝜚(𝐴), we define a continuous non-decreasing function

𝑀(𝑦) := max
𝜆∈[−𝑦,𝑦]

‖𝑅(𝑖𝜆, 𝐴)‖ℬ(𝑋), 𝑦 ≥ 0,

and the associated function

𝑀log(𝑦) :=𝑀(𝑦)(log(1 +𝑀(𝑦)) + log(1 + 𝑦)), 𝑦 ≥ 0.

We denote by 𝑀−1
log : [𝑀log(0),∞) → R the inverse of 𝑀log.

Theorem (Batty-Duyckaerts’s Theorem). Let (𝑇 (𝑡))𝑡≥0 be a bounded 𝐶0-semigroup on

a Banach space 𝑋, with generator 𝐴 such that 𝑖R ⊂ 𝜚(𝐴). Then, there exists 𝐶 > 0 such

that

‖𝑇 (𝑡)𝐴−1‖ℬ(𝑋) = 𝑂(𝐶(𝑀−1
log (𝑡/𝐶))

−1), 𝑡→ ∞. (d)

For a refinement of (d) on Hilbert spaces, see [8, 11] (see also Batty-Chill-Tomilov’s

Theorem ahead).

The proof of the theorem presented above by Batty and Duyckaerts’s [9], which uses

a technique developed by Korevaar [37], makes use of Cauchy’s Theorem and Neumann

series expansions. Usually, the problem of obtaining lower bounds for the decaying rates

of stable bounded 𝐶0-semigroups passes through the understanding of some theory of

integral representation (like, for instance, Cauchy’s theory and the functional calculus of

sectorial operators [8, 9]). In this part of the thesis, we use the joint resolution of the

identity for normal operators [10, 52] to find the typical asymptotic behaviour, in Baire’s

sense, of the orbits of normal 𝐶0-semigroups of contractions. We also use recent results

of the asymptotic theory of 𝐶0-semigroups [8, 44] to say something about non-normal

semigroups, and then discuss applications to some evolution equations. To the best of our

knowledge, none of this has been detailed in the literature yet.

Brief discussion of our main results

Exact asymptotic behaviour of normal semigroups

Let, for every 𝜆 ∈ C and every 𝑡 ≥ 0, 𝑔𝑡(𝜆) = 𝑒𝑡𝜆, and let 𝑁 be a normal operator in ℋ;

denote by 𝑅𝑒(𝜆) the real part of 𝜆. If C+ ⊂ 𝜚(𝑁), then, by the (Spectral) Functional

Calculus, (𝑒𝑡𝑁)𝑡≥0 := (𝑔𝑡(𝑁))𝑡≥0 is a normal 𝐶0-semigroup of contractions generated by 𝑁 .

It is well known that every normal 𝐶0-semigroup of contractions is of this form [51].

Namely, if (𝑇 (𝑡))𝑡≥0 is a normal 𝐶0-semigroup of contractions on ℋ and 𝐴 is its generator,

then 𝐴 is normal and C+ ⊂ 𝜚(𝐴); in this case, (𝑇 (𝑡))𝑡≥0 can be rewritten as (𝑒𝑡𝐴)𝑡≥0.
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As discussed previously, after Batty and Duyckaerts [9] have related the decay of stable

bounded 𝐶0-semigroups to the arbitrary growth of the norms of the respective resolvents,

the study of polynomial and logarithmic scales of such rates has been the subject of many

recent papers (for instance, [8, 11, 50]). In contrast with this setting, our next result says

that the decaying rates of the orbits of normal 𝐶0-semigroups of contractions, typically

in Baire’s sense, may depend on sequences of time going to infinity.

Theorem IV. Let 𝑁 be a normal operator in ℋ such that sup{𝑅𝑒(𝜆) : 𝜆 ∈ 𝜎(𝑁)} = 0

and let 𝛼, 𝛽 : R+ −→ (0,∞) be real functions so that

lim
𝑡→∞

𝛼(𝑡) = ∞ 𝑎𝑛𝑑 lim
𝑡→∞

𝛽(𝑡)𝑒−𝑡𝜖 = 0, ∀𝜖 > 0.

Suppose that (𝑒𝑡𝑁)𝑡≥0 is stable. Then,

𝒢𝑁(𝛼, 𝛽) := {𝑥 | lim sup
𝑡→∞

𝛼(𝑡)‖𝑒𝑡𝑁𝑥‖ℋ = ∞ 𝑎𝑛𝑑 lim inf
𝑡→∞

𝛽(𝑡)‖𝑒𝑡𝑁𝑥‖ℋ = 0}

is a dense 𝐺𝛿 set in ℋ. Moreover, the assumption on 𝛽 is optimal, that is, 𝛽 can not be

chosen to grow faster than sub-exponentially.

Remark. We note that for every 𝑁 satisfying the hypotheses of Theorem IV, the set

𝒢𝑁(𝛼, 𝛽) has empty interior (see Remark 4.1 ahead); so, it is always a proper subset of ℋ.

Example. Let 𝜙 : [2,∞) −→ C be given by the action 𝜙(𝑦) := 1
ln 𝑦

+ 𝑖𝑦, and then define

𝑀𝜙 : 𝒟(𝑀𝜙) ⊂ L2([2,∞)) −→ L2([2,∞)),

(𝑀𝜙𝑓)(𝑦) = −𝜙(𝑦)𝑓(𝑦),

where 𝑓 ∈ 𝒟(𝑀𝜙) := {𝑢 ∈ L2([2,∞)) | 𝜙𝑢 ∈ L2([2,∞))}.
We note that𝑀𝜙 is a normal operator and 𝜎(𝑀𝜙) = {− 1

ln 𝑦
−𝑖𝑦, 𝑦 ≥ 2}, which implies

that sup{𝑅𝑒(𝜆) : 𝜆 ∈ 𝜎(𝑀𝜙)} = 0. Moreover, it is possible show that

‖𝑒𝑡𝑀𝜙𝑀−1
𝜙 ‖ℬ(L2([2,∞))) = 𝑂(𝑒−2

√
𝑡) (e)

(Example 5.2 in [8]). We also note that 𝑀𝜙 satisfies the hypotheses of Theorem IV.

Therefore, although in this case, by (e), all classical solutions of (ACP) do go to zero with

sub-exponential rate, typically in Baire’s sense, the orbits of this semigroup do not have

this asymptotic behaviour. Namely, by Theorem IV, each typical orbit goes arbitrarily

slow to zero for a sequence of time going to infinity and sub-exponentially fast for another

one. We note that, in this case, 𝒟(𝑀𝜙) ∩ 𝒢𝑁(𝛼, 𝛽) = ∅.
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Example. Let 𝐴 : ℓ2(Z) −→ ℓ2(Z) be the linear operator given by

(𝐴𝑢)𝑛 = 𝑢𝑛−1 + 𝑢𝑛+1, 𝑛 ∈ Z.

It is known that 𝐴 is unitarily equivalent to the multiplication operator ℳ𝜑 on L2[0, 2𝜋),

with 𝜑(𝑥) = 2 cos(𝑥), from which follows that 𝐴 is a bounded self-adjoint operator with

continuous spectrum 𝜎(𝐴) = 𝜎(ℳ𝜑) = 𝜎𝑐(ℳ𝜑) = [−2, 2] (see [22] for details).

Now we consider the discrete Laplacian, △, given on ℓ2(Z) by the action

(△𝑢)𝑛 = (𝐴𝑢)𝑛 − 2𝑢𝑛.

So, △ is a bounded self-adjoint operator with continuous spectrum 𝜎(△) = [−4, 0], from

which follows that (𝑒𝑡△)𝑡≥0 is stable but not exponentially stable; therefore, △ satisfies

the hypotheses of Theorem IV.

It is clear that all orbits of the semigroup (𝑒𝑡△)𝑡≥0 are infinitely differentiable, since

the discrete Laplacian is a bounded linear operator. This illustrates, in Theorem IV, that

in some cases very regular initial data may belong to the typical set 𝒢𝑁(𝛼, 𝛽).

Now we recall that every normal operator 𝑁 can be written as 𝑁 = 𝑁𝑅 + 𝑖𝑁𝐼 , where

𝑁𝑅 and 𝑁𝐼 are self-adjoint operators such that 𝑁𝑅𝑁𝐼 = 𝑁𝐼𝑁𝑅. The next theorem, a new

spectral classification of (strong) stability for normal 𝐶0-semigroups of contractions, is a

direct application of Gearhart’s Theorem and Theorem IV.

Theorem V. Let 𝑁 be a normal operator in ℋ so that C+ ⊂ 𝜚(𝑁). Then:

1. All orbits of (𝑒𝑡𝑁)𝑡≥0 converge to zero with exponential rate if and only if 0 ̸∈ 𝜎(𝑁𝑅).

2. There is a dense 𝐺𝛿 set 𝒢𝑁 ⊂ ℋ so that for each 𝑥 ∈ 𝒢𝑁 , (𝑒
𝑡𝑁𝑥)𝑡≥0 goes arbitrarily

slow to zero for some sequence of time going to infinity, and sub-exponentially fast

for another sequence if and only if 0 ∈ 𝜎(𝑁𝑅) but 0 is not an eigenvalue of 𝑁𝑅.

3. There is a dense 𝐺𝛿 set ℱ𝑁 ⊂ ℋ such that for each 𝑥 ∈ ℱ𝑁 , (𝑒
𝑡𝑁𝑥)𝑡≥0 does not

converge to zero if and only if 0 is an eigenvalue of 𝑁𝑅.

Remark. Theorem V is optimal in the sense that, if 𝑁𝑅 ̸= 0, then the dense 𝐺𝛿 sets

given by cases 2 . and 3 . are necessarily proper. For case 2 ., this follows from Remark 4.1

stated ahead. For case 3 ., this follows from the fact that, for each 𝑥 ∈ N(𝑁𝑅)
⊥,

lim
𝑡→∞

‖𝑒𝑡𝑁𝑥‖ℋ = 0.
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Non-normal semigroups

Our next result is a partial extension of Theorem IV to non-normal semigroups. We recall

that the exponential growth bound of a 𝐶0-semigroup (𝑇 (𝑡))𝑡≥0 on ℋ is defined as [60]

𝜔0(𝑇 ) := lim
𝑡→∞

ln ‖𝑇 (𝑡)‖ℬ(ℋ)

𝑡
.

Theorem VI. Let (𝑇 (𝑡))𝑡≥0 be a bounded 𝐶0-semigroup on ℋ such that 𝜔0(𝑇 ) = 0, and

let 𝐴 be its generator. Suppose that, for some 𝑘 ≥ 1,

‖𝑇 (𝑡)𝐴−𝑘‖ℬ(ℋ) = 𝑂(𝑟(𝑡)), 𝑡→ ∞, (H)

with lim
𝑡→∞

𝑟(𝑡) = 0. Let 𝛼, 𝛽 : R+ −→ (0,∞) be real functions so that

lim
𝑡→∞

𝛼(𝑡) = ∞ 𝑎𝑛𝑑 lim inf
𝑡→∞

𝛽(𝑡)𝑟(𝑡) = 0.

Then,

𝒢𝐴(𝛼, 𝛽) = {𝑥 | lim sup
𝑡→∞

𝛼(𝑡)‖𝑇 (𝑡)𝑥‖ℋ = ∞ and lim inf
𝑡→∞

𝛽(𝑡)‖𝑇 (𝑡)𝑥‖ℋ = 0}

is a dense 𝐺𝛿 set in ℋ.

Remark.

1. The difference between Theorems IV and VI is that the former, under the perspective

of this work, describes the exact asymptotic behaviour of normal 𝐶0-semigroups of

contractions. Moreover, thanks to the Spectral Theorem, we do not need to use

hypothesis (H) in order to prove Theorem IV.

2. We note that, by Batty-Duyckaerts’s Theorem, if 𝑖R ⊂ 𝜚(𝐴), then hypothesis (H)

is satisfied.

3. Suppose that there exists an 𝑎 > 0 such that ‖𝑇 (𝑡)𝐴−1‖ℬ(ℋ) = 𝑂(𝑡−𝑎). Since, for

every 𝑘 ≥ 1,

‖𝑇 (𝑡)𝐴−𝑘‖ℬ(ℋ) = ‖[𝑇 (𝑡/𝑘)𝐴−1]𝑘‖ℬ(ℋ),

one has

‖𝑇 (𝑡)𝐴−𝑘‖ℬ(ℋ) = 𝑂(𝑡−𝑘𝑎).

Thus, it follows from Theorem VI that⋂︁
𝑘≥1

{𝑥 | lim sup
𝑡→∞

𝛼(𝑡)‖𝑇 (𝑡)𝑥‖ℋ = ∞ and lim inf
𝑡→∞

𝑡𝑘𝑎/2‖𝑇 (𝑡)𝑥‖ℋ = 0}

is a dense 𝐺𝛿 set in ℋ. Therefore, in this case, Baire generically in ℋ, the orbits

of the semigroup have an arbitrarily slow decaying rate for some sequence of time

going to infinity and a super-polynomially fast decaying rate for another one.
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Consider the following result [8].

Theorem (Batty-Chill-Tomilov Theorem’s). Let (𝑇 (𝑡))𝑡≥0 be a bounded 𝐶0-semigroup on

a Hilbert space ℋ, with generator 𝐴, so that 𝑖R ⊂ 𝜚(𝐴). Then, given 𝑎 > 0 and 𝑏 ≥ 0, the

following assertions are equivalent:

1. ‖(𝑖𝑠1− 𝐴)−1‖ℬ(ℋ) = 𝑂(|𝑠|𝑎(ln |𝑠|)−𝑏), |𝑠| → ∞,

2. ‖𝑇 (𝑡)𝐴−1‖ℬ(ℋ) = 𝑂(𝑡−
1
𝑎 (ln 𝑡)−𝑏/𝑎), 𝑡→ ∞.

Theorem VI can be naturally combined with Batty-Chill-Tomilov Theorem’s in order

to produce refined scales of decay of 𝐶0-semigroups. Namely, if we replace condition (H)

in Theorem VI by the condition depicted in item 2 . of Batty-Chill-Tomilov Theorem’s,

then, typically, every typical orbit of the semigroup have an arbitrarily slow decaying rate

for some sequence of time going to infinity, and a polynomially fast decaying rate for

another one. There are in the literature numerous examples of bounded 𝐶0-semigroups

satisfying these assumptions (see Chapter 3, [1, 2, 8, 11, 27, 50] and references therein).

Schrödinger semigroups

Stimulated by the category theorems of Eisner and Serény in [26], which show that the

set of all weakly stable unitary groups (isometric semigroups) is of first category, while

the set of all almost weakly stable unitary groups is residual for an appropriate topology,

we also prove some category theorems for Schrödinger semigroups. Specifically, we show

that, for a given class of Schrödinger semigroups, they are, Baire generically, stable but

not exponentially stable.

Fix 𝑙 > 0 and let the family of (negative continuous) Schrödinger operators, 𝐻𝑉 ,

defined in ℋ2(R𝜈), 𝜈 ∈ N, by the action

(𝐻𝑉 𝑢)(𝑥) := △𝑢(𝑥) + 𝑉 (𝑥)𝑢(𝑥),

with 𝑉 ∈ ℬ∞(R𝜈) (the space of bounded Borel functions) such that, for each 𝑥 ∈ R𝜈 ,

−𝑙 ≤ 𝑉 (𝑥) ≤ 0. Denote by 𝑋𝜈
𝑙 the set of these operators endowed with the topology

of pointwise convergence on (𝑉 (𝑥)). Then, 𝑋𝜈
𝑙 is (by Tychonoff’s Theorem) a compact

metric space, so that convergence in metric implies strong resolvent convergence.

Theorem VII. For every 𝑙 > 0 and every 𝜈 ∈ N,

{𝐻 ∈ 𝑋𝜈
𝑙 | (𝑒𝑡𝐻)𝑡≥0 is stable but not exponentially stable}

is a dense 𝐺𝛿 set in 𝑋𝜈
𝑙 .
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Remark. It follows from the Theorems IV and VII that, for every 𝑙 > 0 and every 𝜈 ∈ N,
typically in 𝑋𝜈

𝑙 , the orbits of each Schrödinger semigroup (𝑒𝑡𝐻)𝑡≥0, typically in L2(R𝜈),

have decaying rates depending on sequences of time going to infinity. Hence, for every

𝑋𝜈
𝑙 , the dynamics is typically (from the topological viewpoint) nontrivial.

Definition. Let 𝜇 be a finite (positive) Borel measure on R. The pointwise lower and

upper scaling exponents of 𝜇 at 𝑤 ∈ R are defined, respectively, by

𝑑−𝜇 (𝑤) := lim inf
𝜖↓0

ln𝜇(𝐵(𝑤, 𝜖))

ln 𝜖
and 𝑑+𝜇 (𝑤) := lim sup

𝜖↓0

ln𝜇(𝐵(𝑤, 𝜖))

ln 𝜖
,

if, for all small enough 𝜖 > 0, 𝜇(𝐵(𝑤, 𝜖)) > 0; 𝑑∓𝜇 (𝑤) := ∞ , otherwise.

Our next result says something about the local scale spectral properties of this class

of Schrödinger semigroups. It indicates the subtlety of the relation between the dynamics

of a Schrödinger semigroup and the local scale spectral properties of its generator.

Theorem VIII. For each 𝑙 > 0 and each 𝜈 ∈ N, there exists a dense 𝐺𝛿 set 𝐺
𝜈
𝑙 in L2(R𝜈),

such that, for every 𝑓 ∈ 𝐺𝜈
𝑙 ,

𝐽𝜈
𝑙 (𝑓) := {𝐻 ∈ 𝑋𝜈

𝑙 | 𝑑−
𝜇𝐻
𝑓
(0) = 0 𝑎𝑛𝑑 𝑑+

𝜇𝐻
𝑓
(0) = ∞}

is a dense 𝐺𝛿 set in 𝑋𝜈
𝑙 .

Organization of the text

In Chapter 3, we discuss explicit applications of Theorem VI to some specific evolution

equations.

Chapter 4 contains a detailed study of the relation between the decaying rates of a

normal semigroup and the local scale spectral properties of its generator; in particular, in

this chapter we prove Theorems IV, V and VI.

In Chapter 5, we prove Theorems VII and VIII.
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Chapter 3

Applications

Next, we illustrate Theorem VI by presenting applications to specific evolution equations.

We gather below equations whose associated semigroups are polynomially stable, that is,

all classical solutions of (ACP) converge uniformly (on the unit ball of 𝒟(𝐴) endowed

with the graph norm) to zero at infinity with polynomial rate, but not exponentially

stable [1, 2, 27, 58]; therefore, they are examples of semigroups for which the hypotheses

of Theorem VI are satisfied. Hence, the (mild) solutions of these equations, typically in

Baire’s sense, depend on sequences of time going to infinity.

3.1 Damped wave equation on the torus

Let 𝑀 be a smooth compact connected Riemannian manifold with boundary 𝜕𝑀 . The

respective damped wave equation (one of the basic models in control theory) is given by

𝑢𝑡𝑡 −△𝑢+ 𝑎(𝑥)𝑢𝑡 = 0 in R+ ×𝑀,

𝑢 = 0 in R+ × 𝜕𝑀,

𝑢(0, ·) = 𝑢0 in 𝑀,

𝑢𝑡(0, ·) = 𝑢1 in 𝑀. (3.1)

The study of the asymptotic behaviour as 𝑡 → ∞ of the solutions of such equation

has attracted significant interest. An approach that has been successfully used to address

this problem is an involved asymptotic theory of 𝐶0-semigroups. In this context, we refer

to [2, 13, 39, 58], among others.

We note that if one multiplies (3.1) by 𝑢𝑡 and integrates on 𝑀 , one gets the following

dissipation identity
1

2

𝑑

𝑑𝑡
𝐸(𝑢, 𝑡) = −

∫︁
𝑀

𝑎|𝑢𝑡(𝑡)|2𝑑𝑥,
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where the energy of a solution is defined by

𝐸(𝑢, 𝑡) := ‖∇𝑢(𝑡)‖2L2(𝑀) + ‖𝑢𝑡(𝑡)‖2L2(𝑀).

We also note that if one sets

𝑈 =

[︃
𝑢

𝑢𝑡

]︃
,

then
𝑑𝑈

𝑑𝑡
=

[︃
𝑢𝑡

𝑢𝑡𝑡

]︃
=

[︃
𝑢𝑡

△𝑢− 𝑎𝑢𝑡

]︃
=

[︃
0 𝐼

△ −𝑎

]︃[︃
𝑢

𝑢𝑡

]︃
= 𝐴𝑈.

Thus, such equation can be rewritten as an abstract Cauchy problem (ACP) in the Hilbert

space ℋ := 𝐻1
0 (𝑀)× L2(𝑀), with the wave operator 𝐴 defined by

𝒟(𝐴) := (𝐻2(𝑀) ∩𝐻1
0 (𝑀))×𝐻1

0 (𝑀),

𝐴 :=

[︃
0 𝐼

△ −𝑎

]︃
.

It is not hard to show, through Lumer-Philips’s Theorem, that 𝐴 generates a 𝐶0-semigroup

(𝑇 (𝑡))𝑡≥0 of contractions. We note that any estimate on the decaying rates of the norm of

the semigroup is an estimate on the decaying rates of the energy of the system (since the

natural norm on ℋ corresponds to such energy).

For the case𝑀 = T2 := R2/Z2, the 2-dimensional torus with the standard flat metric,

the damped wave equation reduces to

𝑢𝑡𝑡 −△𝑢+ 𝑎(𝑥)𝑢𝑡 = 0 in R+ × T2,

𝑢(0, ·) = 𝑢0 in T2,

𝑢𝑡(0, ·) = 𝑢1 in T2, (3.2)

where 𝑎 ∈ L∞(T2), 𝑎 ≥ 0. It was shown in [2] that, under some conditions on 𝑎, (𝑇 (𝑡))𝑡≥0

is polynomially stable with decay between 1/𝑡1/2 and 1/𝑡2/3; recently, it was proven [58]

that, also under conditions on 𝑎, this decay is exactly 𝑡−4/3.

3.2 Wave equation with localized viscoelasticity

The system below corresponds to the wave equation with localized viscoelasticity of

Kelvin-Voigt type [1],

𝜌1𝑢𝑡𝑡 − 𝑘1𝑢𝑥𝑥 − 𝑘2𝑢𝑥𝑥𝑡 = 0 in ]− 𝐿, 0[ × ]0,∞[ , (3.3)

𝜌2𝑣𝑡𝑡 − 𝑘3𝑣𝑥𝑥 = 0 in ]0, 𝐿[ × ]0,∞[ , (3.4)
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with 𝑘1, 𝑘2 and 𝑘3 denoting positive elastic constants; 𝜌1, 𝜌2 stand for the mass and

densities. Here, we consider Dirichlet boundary conditions, which can be written as

𝑢(−𝐿, 𝑡) = 0, 𝑣(𝐿, 𝑡) = 0, 𝑡 ≥ 0. (3.5)

The transmission conditions are given by

𝑢(0, 𝑡) = 𝑣(0, 𝑡), 𝑘1𝑢𝑥(0, 𝑡) + 𝑘2𝑢𝑥𝑡(0, 𝑡) = 𝑘3𝑣𝑥(0, 𝑡), 𝑡 ≥ 0. (3.6)

Finally, the initial data are given by

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑢𝑡(𝑥, 0) = 𝑢1(𝑥) in ]− 𝐿, 0[ ,

𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑣𝑡(𝑥, 0) = 𝑣1(𝑥) in ]0, 𝐿[ . (3.7)

This equation is related to a transmission problem with localized Kelvin-Voigt viscoelastic

damping; see [1] for details. We note that this equation was studied by several authors

(see [18, 41, 45] and references therein).

It is easy to see that (3.3)-(3.7) can be rewritten as an abstract Cauchy problem (ACP)

in the Hilbert space

ℋ = H1
𝐿 × L2,

where

H𝑚 = 𝐻𝑚(−𝐿, 0)×𝐻𝑚(0, 𝐿), 𝑚 = 1, 2, L2 = L2(−𝐿, 0)× L2(0, 𝐿),

H1
𝐿 = {(𝑢, 𝑣) ∈ H1 : 𝑢(−𝐿) = 𝑣(𝐿) = 0, 𝑢(0) = 𝑣(0)},

equipped with the inner product

⟨(𝑢1, 𝑣1, 𝜂1, 𝜇1), (𝑢2, 𝑣2, 𝜂2, 𝜇2)⟩ℋ = 𝑘1

0∫︁
−𝐿

𝑢1𝑥𝑢2𝑥 𝑑𝑥+ 𝑘3

𝐿∫︁
0

𝑣1𝑥𝑣2𝑥 𝑑𝑥

+ 𝜌1

0∫︁
−𝐿

𝜂1𝜂2 𝑑𝑥+ 𝜌2

𝐿∫︁
0

𝜇1𝜇2 𝑑𝑥.

In this case, the linear operator 𝐴 is given by

𝒟(𝐴) = {𝑈 ∈ ℋ : (𝜂, 𝜇) ∈ H1
𝐿, (𝑘1𝑢+ 𝑘2𝜂, 𝑣) ∈ H2, 𝑘1𝑢𝑥(0) + 𝑘2𝜂𝑥(0) = 𝑘3𝑣𝑥(0)},

where 𝑈 = (𝑢, 𝑣, 𝜂, 𝜇) and

𝐴 =

⎡⎢⎢⎢⎢⎣
0 0 𝐼 0

0 0 0 𝐼
𝑘1
𝜌1
𝜕𝑥𝑥(·) 0 𝑘2

𝜌1
𝜕𝑥𝑥(·) 0

0 𝑘3
𝜌2
𝜕𝑥𝑥(·) 0 0

⎤⎥⎥⎥⎥⎦ .
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It was shown [1], using Hille-Yosida’s Theorem, that 𝐴 generates a 𝐶0-semigroup

(𝑇 (𝑡))𝑡≥0 of contractions on ℋ. It was also shown that (𝑇 (𝑡))𝑡≥0 is polynomially stable

with decay 1/𝑡2 and that this rate is polynomially optimal.

3.3 Thermoelastic systems of Bresse type

Now we consider a systems of Bresse type with frictional damping effective in one of its

equations [27],

𝜌1𝜙𝑡𝑡 − 𝑘(𝜙𝑥 + 𝜓 + 𝑙𝜔)𝑥 − 𝑘0𝑙(𝜔𝑥 − 𝑙𝜙) = 0 in ]0, 𝐿[ × ]0,∞[, (3.8)

𝜌2𝜓𝑡𝑡 − 𝑏𝜓𝑥𝑥 + 𝑘(𝜙𝑥 + 𝜓 + 𝑙𝜔) + 𝛾𝜓𝑡 = 0 in ]0, 𝐿[ × ]0,∞[, (3.9)

𝜌1𝜔𝑡𝑡 + 𝑘0𝑙(𝜔𝑥 − 𝑙𝜙)𝑥 − 𝑘𝑙(𝜙𝑥 + 𝜓 + 𝑙𝜔) = 0 in ]0, 𝐿[ × ]0,∞[, (3.10)

with positive constants 𝜌1, 𝜌2, 𝑘, 𝑘0, 𝑏, 𝑙 and 𝛾. We also consider the Dirichlet-Neumann-

Neumann boundary conditions

𝜙(𝑡, 0) = 𝜙(𝑡, 𝐿) = 𝜓𝑥(𝑡, 0)

= 𝜓𝑥(𝑡, 𝐿) = 𝜔𝑥(𝑡, 0) = 𝜔𝑥(𝑡, 𝐿) = 0 in ]0,∞[, (3.11)

with the following initial conditions:

𝜙(𝑥, 0) = 𝜙0(𝑥), 𝜙𝑡(𝑥, 0) = 𝜙1(𝑥) in ]0, 𝐿[,

𝜓(𝑥, 0) = 𝜓0(𝑥), 𝜓𝑡(𝑥, 0) = 𝜓1(𝑥) in ]0, 𝐿[,

𝜔(0, 𝑥) = 𝜔0(𝑥), 𝜔𝑡(𝑥, 0) = 𝜔1(𝑥) in ]0, 𝐿[. (3.12)

This system, also known as circular arc problem, have been the subject of studies by many

authors (see [27, 28, 42] and references therein).

Once more, (3.8)-(3.12) can be rewritten as an abstract Cauchy problem (ACP) in the

Hilbert space

ℋ = 𝐻1
0 (0, 𝐿) × L2(0, 𝐿) × 𝐻1

* (0, 𝐿) × L2
*(0, 𝐿) × 𝐻1

* (0, 𝐿) × L2
*(0, 𝐿),

with norm given by

‖𝑈‖2ℋ = 𝜌1‖𝜙‖2𝐿2 + 𝜌2‖𝜓‖2𝐿2 + 𝜌1‖𝜔‖2𝐿2 + 𝑏‖𝜓𝑥‖2𝐿2 + 𝑘‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2𝐿2 + 𝑘0‖𝜔𝑥 − 𝑙𝜙‖2𝐿2 ,

where

L2
*(0, 1) = {𝑢 ∈ L2(0, 𝐿) :

𝐿∫︁
0

𝑢(𝑥)𝑑𝑥 = 0} and 𝐻1
* (0, 𝐿) = L2

*(0, 𝐿) ∩𝐻1
0 (0, 𝐿).
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The corresponding linear operator 𝐴 is given by

𝒟(𝐴) = {𝑈 ∈ ℋ : 𝜙 ∈ 𝐻2(0, 𝐿) ∩𝐻1
0 (0, 𝐿), 𝜓, 𝜔 ∈ 𝐻2(0, 𝐿),

𝜓𝑥, 𝜔𝑥 ∈ 𝐻1
0 (0, 𝐿), 𝜙 ∈ 𝐻1

0 (0, 𝐿), 𝜓𝑥, �̃�𝑥 ∈ 𝐻1
* (0, 𝐿)},

where 𝑈 = (𝜙, 𝜓, 𝜔, 𝜙, 𝜓, �̃�) and

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 𝐼 0 0 0 0
𝑘
𝜌1
𝜕𝑥𝑥(·)− 𝑘0𝑙2

𝜌1
𝐼 0 𝑘

𝜌1
𝜕𝑥(·) 0 (𝑘+𝑘0)𝑙

𝜌1
𝜕𝑥(·) 0

0 0 0 𝐼 0 0

− 𝑘
𝜌2
𝜕𝑥(·) 0 𝑏

𝜌2
𝜕𝑥𝑥(·)− 𝑘

𝜌2
𝐼 − 𝛾

𝜌2
𝐼 − 𝑘𝑙

𝜌2
𝐼 0

0 0 0 0 0 𝐼

− (𝑘+𝑘0)𝑙
𝜌1

𝜕𝑥(·) 0 − 𝑘𝑙
𝜌1
𝐼 0 𝑘0

𝜌1
𝜕𝑥𝑥(·)− 𝑘𝑙2

𝜌1
𝐼 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is well known that, by Hille-Yosida’s Theorem, 𝐴 is the generator of a 𝐶0-semigroup

(𝑇 (𝑡))𝑡≥0 of contractions on ℋ [27]. It was shown in [27] that if

𝜌1
𝜌2

=
𝑘

𝑏
and 𝐾 ̸= 𝐾0,

then (𝑇 (𝑡))𝑡≥0 is polynomially stable with decay 1/𝑡1/2 and such decay is polynomially

optimal.

Remark 3.1. There are in the literature numerous other examples of evolution equations

whose associated semigroups satisfy the assumptions in the statement of Theorem VI

(see [8, 19, 50] and references therein); particularly, such result also applies to some

thermoelastic systems of Timoshenko type (see also [21, 24] and references therein).
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Chapter 4

Fine scales of decaying rates

4.1 Normal semigroups: polynomial decaying rates ×
spectral properties

It follows from the Spectral Theorem that every normal operator 𝑁 on a Hilbert space ℋ,

with C+ ⊂ 𝜚(𝑁), generates a normal 𝐶0-semigroup of contractions; namely,

𝑒𝑡𝑁 =

∫︁
𝜎(𝑁)

𝑒𝑡𝜆 𝑑𝐸𝑁(𝜆),

where 𝐸𝑁 is the resolution of the identity of 𝑁 . It is well known that every normal

𝐶0-semigroup of contractions is of this form [51].

We recall that every normal operator 𝑁 can be written as 𝑁 = 𝑁𝑅 + 𝑖𝑁𝐼 , where

𝑁𝑅 =
𝑁 +𝑁*

2
and 𝑁𝐼 = −𝑖𝑁 −𝑁*

2

are self-adjoint operators and 𝑁𝑅𝑁𝐼 = 𝑁𝐼𝑁𝑅. In this case, 𝐸𝑁 corresponds to a joint

resolution of the identity associated with the operator pair {𝑁𝑅, 𝑁𝐼} [10, 52]. Thus, for

every 𝑥 ∈ ℋ, ‖𝑥‖ℋ = 1,

‖𝑒𝑡𝑁𝑥‖2ℋ = ‖𝑒𝑡(𝑁𝑅+𝑖𝑁𝐼)𝑥‖2ℋ
=

∫︁
𝜎(𝑁𝑅)×𝜎(𝑁𝐼)

|𝑒𝑡(𝑦+𝑖𝑣)|2 𝑑𝜇𝑁𝑅
𝑥 (𝑦) 𝑑𝜇𝑁𝐼

𝑥 (𝑣)

=

∫︁
𝜎(𝑁𝐼)

1 𝑑𝜇𝑁𝐼
𝑥 (𝑣)

∫︁
𝜎(𝑁𝑅)

𝑒2𝑡𝑦 𝑑𝜇𝑁𝑅
𝑥 (𝑦)

=

0∫︁
−∞

𝑒2𝑡𝑦𝑑𝜇𝑁𝑅
𝑥 (𝑦) , (4.1)
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where 𝜇𝑁𝑅
𝑥 denotes the spectral measure of 𝑁𝑅 associated with 𝑥; the last equality in

(4.1) is a consequence from fact that (𝑒𝑡𝑁)𝑡≥0 is a semigroup of contractions. Thus, at

least when 𝜇𝑁𝑅
𝑥 has a certain local regularity (with respect to the Lebesgue measure), we

expect that

‖𝑒𝑡𝑁𝑥‖2ℋ =

0∫︁
−∞

𝑒2𝑡𝑦𝑑𝜇𝑁𝑅
𝑥 (𝑦) ∼ 𝜇𝑁𝑅

𝑥 (𝐵(0,
1

𝑡
)) .

If 𝑓 and 𝑔 are two real-value functions, 𝑓 ∼ 𝑔 means that 𝑓 and 𝑔 are asymptotically

equivalent, that is,

lim
𝑡→∞

𝑓(𝑡)

𝑔(𝑡)
= 1 .

We recall that if 𝜇 be a finite (positive) Borel measure on R, then the pointwise lower

and upper scaling exponents of 𝜇 at 𝑤 ∈ R are defined, respectively, as

𝑑−𝜇 (𝑤) := lim inf
𝜖↓0

ln𝜇(𝐵(𝑤, 𝜖))

ln 𝜖
and 𝑑+𝜇 (𝑤) := lim sup

𝜖↓0

ln𝜇(𝐵(𝑤, 𝜖))

ln 𝜖
,

if, for all small enough 𝜖 > 0, 𝜇(𝐵(𝑤, 𝜖)) > 0; 𝑑∓𝜇 (𝑤) := ∞ , otherwise.

Taking into account (4.1), the following result is expected.

Proposition 4.1. Let 𝑁 be a normal operator so that C+ ⊂ 𝜚(𝑁), and let 𝑥 ∈ ℋ, with

𝑥 ̸= 0. Then,

lim inf
𝑡→∞

ln ‖𝑒𝑡𝑁𝑥‖2ℋ
ln 𝑡

= −𝑑+
𝜇
𝑁𝑅
𝑥

(0) and lim sup
𝑡→∞

ln ‖𝑒𝑡𝑁𝑥‖2ℋ
ln 𝑡

= −𝑑−
𝜇
𝑁𝑅
𝑥

(0).

We note that Proposition 4.1 relates, for every 𝑥 ∈ ℋ, the polynomial decaying rates

of ‖𝑒𝑡𝑁𝑥‖ℋ to dimensional properties of the spectral measure 𝜇𝑁𝑅
𝑥 . Namely, this result

establishes an explicit relation between the dynamics of the semigroup and the local scale

spectral properties of its generator.

We also note that Proposition 4.1 indicates that the polynomial decaying rates of an

orbit (𝑒𝑡𝑁𝑥)𝑡≥0 may depend on sequences of time going to infinity; by Proposition 4.1,

this will occur if 𝑑−
𝜇
𝑁𝑅
𝑥

(0) < 𝑑+
𝜇
𝑁𝑅
𝑥

(0). We will show (Corollary 4.1) that if (𝑒𝑡𝑁)𝑡≥0 is stable

but not exponentially stable, then, Baire generically in ℋ,

𝑑−
𝜇
𝑁𝑅
𝑥

(0) = 0 and 𝑑+
𝜇
𝑁𝑅
𝑥

(0) = ∞.

Proof (Proposition 4.1). Let 𝜇 be a finite (positive) Borel measure on R. We show that,

for each 𝑤 ∈ R,

lim inf
𝑡→∞

ln[
∫︀
R 𝑒

−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦)]

ln 𝑡
= −𝑑+𝜇 (𝑤), (4.2)

lim sup
𝑡→∞

ln[
∫︀
R 𝑒

−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦)]

ln 𝑡
= −𝑑−𝜇 (𝑤); (4.3)
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so, Proposition 4.1 becomes a direct consequence of (4.1).

Fix 𝑤 ∈ R. If there exists 𝜖 > 0 such that 𝜇(𝐵(𝑤, 𝜖)) = 0, then, for each 𝑡 ≥ 0,∫︁
R

𝑒−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦) =

∫︁
𝐵(𝑤,𝜖)𝑐

𝑒−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦) ≤ 𝜇(R)𝑒−2𝑡𝜖;

thus,

lim inf
𝑡→∞

ln[
∫︀
R 𝑒

−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦)]

ln 𝑡
= lim sup

𝑡→∞

ln[
∫︀
R 𝑒

−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦)]

ln 𝑡
= −∞

and the result follows. Suppose that, for each 𝜖 > 0, 𝜇(𝐵(𝑤, 𝜖)) > 0. Since∫︁
R

𝑒−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦) ≥
∫︁

𝐵(𝑤, 1
𝑡
)

𝑒−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦) ≥ 𝑒−2𝜇(𝐵(𝑤,
1

𝑡
)),

it follows that

lim inf
𝑡→∞

ln[
∫︀
R 𝑒

−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦)]

ln 𝑡
≥ − lim sup

𝑡→∞

ln𝜇(𝐵(𝑤, 1
𝑡
))

ln 𝑡−1
= −𝑑+𝜇 (𝑤)

and that

lim sup
𝑡→∞

ln[
∫︀
R 𝑒

−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦)]

ln 𝑡
≥ − lim inf

𝑡→∞

ln𝜇(𝐵(𝑤, 1
𝑡
))

ln 𝑡−1
= −𝑑−𝜇 (𝑤).

Now, let 0 < 𝛿 < 1. Then, for each 𝑡 > 0,∫︁
R

𝑒−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦) =

∫︁
𝐵(𝑤, 1

𝑡1−𝛿 )

𝑒−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦) +

∫︁
𝐵(𝑤, 1

𝑡1−𝛿 )
𝑐

𝑒−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦)

≤ 𝜇
(︀
𝐵
(︀
𝑤,

1

𝑡1−𝛿

)︀)︀
+ 𝑒−𝑡𝛿𝜇(R). (4.4)

Given that it is not possible to compare directly the two terms on the right-hand side

of (4.4), one needs to analyse two distinct cases.

Case 𝑑−𝜇 (𝑤) <∞: One has, from the definition of 𝑑−𝜇 (𝑤), that

lim inf
𝑡→∞

ln𝜇(𝐵(𝑤, 1
𝑡1−𝛿 ))

ln 𝑡−(1−𝛿)
= 𝑑−𝜇 (𝑤) < max{2𝑑−𝜇 (𝑤), 1} =: 𝛾

(𝛾 can be defined as any positive number greater than 𝑑−𝜇 (𝑤)), so

lim sup
𝑡→∞

ln𝜇(𝐵(𝑤, 1
𝑡1−𝛿 ))

ln 𝑡(1−𝛿)
> −𝛾.

Hence, there exists a sequence (𝑡𝑘), with lim
𝑘→∞

𝑡𝑘 = ∞, such that, for sufficiently large 𝑘,

𝜇(𝐵(𝑤,
1

𝑡1−𝛿
𝑘

)) ≥ 𝑡
−𝛾(1−𝛿)
𝑘 ≥ 𝑒−𝑡𝛿𝑘𝜇(R). (4.5)
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Now, combining (4.4) and (4.5) one has, for sufficiently large 𝑘,∫︁
R

𝑒−2𝑡𝑘|𝑤−𝑦|𝑑𝜇(𝑦) ≤ 2𝜇
(︀
𝐵
(︀
𝑤,

1

𝑡1−𝛿
𝑘

)︀)︀
,

which results in

1

(1− 𝛿)
lim inf
𝑡→∞

ln[
∫︀
R 𝑒

−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦)]

ln 𝑡
≤ − lim sup

𝑡→∞

ln𝜇(𝐵(𝑤, 1
𝑡1−𝛿 ))

ln 𝑡−(1−𝛿)
= −𝑑+𝜇 (𝑤).

Since 0 < 𝛿 < 1 is arbitrary, the complementary inequality in (4.2) follows.

It remains to prove the complementary inequality in (4.3). This is trivial if 𝑑−𝜇 (𝑤) = 0,

since lim sup
𝑡→∞

ln[
∫︀
R 𝑒

−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦)]/ ln 𝑡 ≤ 0. So, let 𝑑−𝜇 (𝑤) > 0; it follows from the definition

of 𝑑−𝜇 (𝑤) that, for each 0 < 𝜖 < 𝑑−𝜇 (𝑤), there exists 𝑡𝛿,𝜖 > 0 such that, for 𝑡 > 𝑡𝛿,𝜖,

𝜇
(︀
𝐵(𝑤,

1

𝑡1−𝛿
)
)︀
≤ 𝑡−(1−𝛿)(𝑑−𝜇 (𝑤)−𝜖). (4.6)

Combining (4.4) with (4.6), one gets, for sufficiently large 𝑡,∫︁
R

𝑒−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦) ≤ 2𝑡−(1−𝛿)(𝑑−𝜇 (𝑤)−𝜖).

Thus,

lim sup
𝑡→∞

ln[
∫︀
R 𝑒

−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦)]

ln 𝑡
≤ −(1− 𝛿)(𝑑−𝜇 (𝑤)− 𝜖),

and since 0 < 𝛿 < 1 and 0 < 𝜖 < 𝑑−𝜇 (𝑤) are arbitrary, the result follows.

Case 𝑑−𝜇 (𝑤) = ∞: One has

lim
𝑡→∞

ln𝜇(𝐵(𝑤, 1
𝑡
))

ln 𝑡
= −∞ ;

given an arbitrary 𝛼 > 0, there is 𝑡𝛼 > 0 so that, for each 𝑡 > 𝑡𝛼, 𝜇(𝐵(𝑤, 1
𝑡
)) ≤ 𝑡−2𝛼.

Combining this inequality with (4.4) (taking 𝛿 = 1
2
), one obtains, for sufficiently large 𝑡,∫︁

R

𝑒−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦) ≤ 𝜇
(︀
𝐵
(︀
𝑤,

1

𝑡1/2
)︀)︀

+ 𝑒−𝑡1/2𝜇(R) ≤ 2𝑡−𝛼,

from which follows that

lim inf
𝑡→∞

ln[
∫︀
R 𝑒

−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦)]

ln 𝑡
≤ −𝛼

and that

lim sup
𝑡→∞

ln[
∫︀
R 𝑒

−2𝑡|𝑤−𝑦|𝑑𝜇(𝑦)]]

ln 𝑡
≤ −𝛼;

since 𝛼 > 0 is arbitrary, the result follows.
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4.2 Proof of Theorem IV

Next, we present a proof of Theorem IV. The main ingredient of this proof is the relation,

given by the Spectral Theorem, between the decaying rates of the semigroup (𝑒𝑡𝑁)𝑡≥0 and

the local scale properties of the corresponding spectral measures of 𝑁𝑅. However, some

preparation is required.

We recall that a 𝐶0-semigroup (𝑇 (𝑡))𝑡≥0 is weakly stable if it converges to zero as

𝑡→ ∞ in the weak operator topology.

Theorem 4.1 (Theorem 5.3 in [44]). Let (𝑇 (𝑡))𝑡≥0 be a weakly stable 𝐶0-semigroup on

a Hilbert space ℋ, with generator 𝐴, such that 𝜔0(𝑇 ) = 0. Let 𝑔 : R+ −→ (0,∞) be a

bounded function such that lim
𝑡→∞

𝑔(𝑡) = 0 and let 𝜖 > 0. Then, there exists 𝑥0 ∈ ℋ so that

‖𝑥0‖ℋ < sup
𝑡≥0

{𝑔(𝑡)}+ 𝜖 and

|⟨𝑇 (𝑡)𝑥0, 𝑥0⟩| > 𝑔(𝑡), ∀𝑡 ≥ 0.

The next result is a particular case of Gearhart’s Theorem [33, 36, 48].

Proposition 4.2. Let 𝑁 be a normal operator so that C+ ⊂ 𝜚(𝑁). Then, (𝑒𝑡𝑁)𝑡≥0 is

exponentially stable if and only if 0 ̸∈ 𝜎(𝑁𝑅).

Lemma 4.1. Let 𝐴 be a negative self-adjoint operator such that 0 ∈ 𝜎(𝐴) and let also

𝛼 : R+ −→ (0,∞) such that

lim
𝑡→∞

𝛼(𝑡) = ∞.

Then, there exist 𝑥 ∈ ℋ and a sequence 𝑡𝑗 → ∞ such that, for sufficiently large 𝑗,

𝜇𝐴
𝑥

(︀
𝐵(0,

1

𝑡𝑗
)
)︀
≥ 1

𝛼(𝑡𝑗)
.

Proof. We note that, by Proposition 4.2, (𝑒𝑡𝐴)𝑡≥0 is not exponentially stable. We also

note that it is sufficient to prove the case in which there exists a sequence 𝑠𝑗 → ∞ such

that 𝛼(𝑠𝑗) ≤ 𝑒𝑠𝑗 , for sufficiently large 𝑗. Set 𝑔 : R+ −→ (0,∞) such that it satisfies the

hypotheses of Theorem 4.1, sup
𝑡≥0

{𝑔(𝑡)} < 1 and

lim
𝑡→∞

1

𝑔(𝑡)𝛼(
√
𝑡)

= 0. (4.7)

Since
√
𝑔 also satisfies the hypotheses of Theorem 4.1, there exists 𝑥 ∈ ℋ, ‖𝑥‖ℋ ≤ 1, such
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that for every 𝑡 > 0,

𝑔(𝑡) ≤ ‖𝑒𝑡𝐴𝑥‖2ℋ =

∫︁
R

𝑒2𝑡𝑦𝑑𝜇𝐴
𝑥 (𝑦)

=

∫︁
𝐵(0, 1√

𝑡
)

𝑒2𝑡𝑦𝑑𝜇𝐴
𝑥 (𝑦) +

∫︁
𝐵(0, 1√

𝑡
)𝑐

𝑒2𝑡𝑦𝑑𝜇𝐴
𝑥 (𝑦)

≤ 𝜇𝐴
𝑥

(︀
𝐵
(︀
0,

1√
𝑡

)︀)︀
+ 𝑒−

√
𝑡. (4.8)

Now, if there does not exist a sequence 𝑡𝑗 → ∞ so that, for large enough 𝑗,

𝜇𝐴
𝑥 (𝐵(0, 1/𝑡𝑗)) ≥

1

𝛼(𝑡𝑗)
,

then, by (4.8), for large enough 𝑡,

𝑔(𝑡) ≤ 1

𝛼(
√
𝑡)

+ 𝑒−
√
𝑡,

which implies, for large enough 𝑗,

2

𝑔(𝑠𝑗)𝛼(
√
𝑠𝑗)

≥ 1;

since this contradicts (4.7), the result is proven.

Proof (Theorem IV). Since sup{𝑅𝑒(𝜆) : 𝜆 ∈ 𝜎(𝑁)} = 0 and 𝜎(𝑁𝑅) ⊂ R− is closed, one

has 0 ∈ 𝜎(𝑁𝑅). Therefore, by (4.1), one can assume without loss of generality that 𝑁 is a

self-adjoint operator such that 0 ∈ 𝜎(𝑁) ⊂ R−; thus, it follows from Proposition 4.2 that

(𝑒𝑡𝑁)𝑡≥0 is not exponentially stable.

Since, for each 𝑡 ≥ 0, the mapping

ℋ ∋ 𝑥 ↦−→ 𝛼(𝑡) ‖𝑒𝑡𝑁𝑥‖ℋ

is continuous, one has that

𝒢𝑁(𝛼) := {𝑥 | lim sup
𝑡→∞

𝛼(𝑡)‖𝑒𝑡𝑁𝑥‖ℋ = ∞}

=
⋂︁
𝑛≥1

⋂︁
𝑘≥1

⋃︁
𝑡≥𝑘

{𝑥 | 𝛼(𝑡)‖𝑒𝑡𝑁𝑥‖ℋ > 𝑛}

is a 𝐺𝛿 set in ℋ. The proof that

𝒢𝑁(𝛽) := {𝑥 | lim inf
𝑡→∞

𝛽(𝑡)‖𝑒𝑡𝑁𝑥‖ℋ = 0}

is a 𝐺𝛿 set in ℋ is completely analogous, being, therefore, omitted.
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Let 𝑥 ∈ ℋ, let (𝑡𝑗) be the sequence given by Lemma 4.1 and set, for every 𝑥 ∈ ℋ and

every 𝑘 ≥ 1,

𝑥𝑘 := 𝐸𝑁(𝐷𝑘)𝑥+
1

𝑘
𝑥,

where 𝐷𝑘 := (−∞,−1/𝑘) ∪ {0} ∪ (1/𝑘,∞). It is clear that 𝑥𝑘 → 𝑥 in ℋ.

Now, since (𝑒𝑡𝑁)𝑡≥0 is stable, 𝐸𝑁({0}) = 0. Namely, it follows from the Spectral

Theorem and dominated convergence that, for each 𝑥 ∈ ℋ,

lim
𝑡→∞

‖𝑒𝑡𝑁𝑥‖2 = 𝜇𝑁
𝑥 ({0}) + lim

𝑡→∞

∫︁
R−∖{0}

𝑒2𝑡𝑦𝑑𝜇𝑁
𝑥 (𝑦) = 𝜇𝑁

𝑥 ({0});

thus, (𝑒𝑡𝑁)𝑡≥0 is stable if and only if 0 is not an eigenvalue of 𝑁 , that is, if and only if

𝐸𝑁({0}) = 0. Hence, for each 𝑘 ≥ 1 and each 𝑗 such that 1
𝑡𝑗
< 1

𝑘
, one has

𝜇𝑁
𝑥𝑘
(𝐵(0,

1

𝑡𝑗
)) = ⟨𝐸𝑁(𝐵(0,

1

𝑡𝑗
))𝐸𝑁(𝐷𝑘)𝑥,𝐸

𝑁(𝐷𝑘)𝑥⟩+
1

𝑘2
⟨𝐸𝑁(𝐵(0,

1

𝑡𝑗
))𝑥, 𝑥⟩

= ⟨𝐸𝑁({0})𝑥,𝐸𝑁(𝐷𝑘)𝑥⟩+
1

𝑘2
⟨𝐸𝑁(𝐵(0,

1

𝑡𝑗
))𝑥, 𝑥⟩

=
1

𝑘2
𝜇𝑁
𝑥 (𝐵(0,

1

𝑡𝑗
)),

from which follows that, for sufficiently large 𝑗,

𝛼(𝑡𝑗)‖𝑒𝑡𝑗𝑁𝑥𝑘‖ℋ ≥ 𝛼(𝑡𝑗)

(︂ ∫︁
𝐵(0, 1

𝑡𝑗
)

𝑒2𝑡𝑗𝑦𝑑𝜇𝑁
𝑥𝑘
(𝑦)

)︂1/2

≥ 𝛼(𝑡𝑗)

𝑒

(︂
𝜇𝑁
𝑥𝑘
(𝐵(0,

1

𝑡𝑗
))

)︂1/2

=
𝛼(𝑡𝑗)

𝑘𝑒

(︂
𝜇𝑁
𝑥 (𝐵(0,

1

𝑡𝑗
))

)︂1/2

≥
√︀
𝛼(𝑡𝑗)

𝑘𝑒
.

Consequently, for every 𝑘 ≥ 1,

lim sup
𝑡→∞

𝛼(𝑡)‖𝑒𝑡𝑁𝑥𝑘‖ℋ = ∞;

this proves that 𝒢𝑁(𝛼) is a dense set in ℋ.

Now we prove that

𝒢𝑁(𝛽) := {𝑥 ∈ ℋ | lim inf
𝑡→∞

𝛽(𝑡)‖𝑒𝑡𝑁𝑥‖ℋ = 0}

is a dense set in ℋ. Given 𝑥 ∈ ℋ, define, for each 𝑘 ≥ 1,

𝑥𝑘 := 𝐸𝑁(𝐷𝑘)𝑥.
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Then, 𝑥𝑘 → 𝑥 in ℋ. Moreover, since 𝐸𝑁({0}) = 0, it follows that for each 𝜖 < 1
𝑘
,

𝜇𝑁
𝑥𝑘
(𝐵(0, 𝜖)) = 0. Thus,

lim
𝑡→∞

𝛽(𝑡)‖𝑒𝑡𝑁𝑥𝑘‖ℋ ≤ lim
𝑡→∞

𝛽(𝑡)𝑒−𝑡𝜖‖𝑥𝑘‖ℋ = 0. (4.9)

It remains to prove that the assumption on 𝛽 is optimal. Let 𝑥 ∈ ℋ be such that

there exits 𝜖 > 0 with 𝜇𝑁
𝑥 ([−𝜖, 0]) = 0; then, ‖𝑒𝑡𝑁𝑥‖ℋ = 𝑂(𝑒−𝑡𝜖). Set 𝛼(𝑡) = 𝑡 and

consider 𝒢𝑁(𝛼), which is a dense 𝐺𝛿 in ℋ. Then, for each 𝑥 ∈ 𝒢𝑁(𝛼) and each 𝜖 > 0,

𝜇𝑁
𝑥 ([−𝜖, 0]) > 0. It follows from the Spectral Theorem and Jensen’s inequality that

1

‖𝑒𝑡𝑁𝑥‖2ℋ
=

(︂ 0∫︁
−∞

𝑒2𝑡𝑦𝑑𝜇𝑁
𝑥 (𝑦)

)︂−1

≤
(︂ 0∫︁

−𝜖

𝑒2𝑡𝑦𝑑𝜇𝑁
𝑥 (𝑦)

)︂−1

≤ 1

(𝜇𝑁
𝑥 ([−𝜖, 0]))2

0∫︁
−𝜖

𝑒−2𝑡𝑦𝑑𝜇𝑁
𝑥 (𝑦) ≤

𝑒2𝑡𝜖

𝜇𝑁
𝑥 ([−𝜖, 0])

.

Thus, for each 𝑥 ∈ 𝒢𝑁(𝛼), one has that ‖𝑒𝑡𝑁𝑥‖ℋ vanishes slower than exponential as

𝑡→ ∞.

The next result, which is a direct consequence of Proposition 4.1 and Theorem IV,

indicates how delicate is the relation between the dynamics of the semigroup and the

spectral properties of its generator.

Corollary 4.1. Let 𝑁 be as in the statement of Theorem IV. Suppose that (𝑒𝑡𝑁)𝑡≥0 is

stable. Then,

𝐺𝑁 := {𝑥 | 𝑑−
𝜇
𝑁𝑅
𝑥

(0) = 0 𝑎𝑛𝑑 𝑑+
𝜇
𝑁𝑅
𝑥

(0) = ∞}

is a dense 𝐺𝛿 set in ℋ.

Proof. For every 𝑛 ≥ 1 and 𝑡 > 0, consider 𝛼𝑛(𝑡) := 𝑡1/𝑛 and 𝛽𝑛(𝑡) := 𝑡𝑛. Then, by

Proposition 4.1,

𝐺𝑁 =
⋂︁
𝑛≥1

𝒢𝑁(𝛼𝑛, 𝛽𝑛).

It follows from Theorem IV that 𝐺𝑁 is a dense 𝐺𝛿 set in ℋ.

Remark 4.1.

i) We note that for each 𝑁 , 𝛼 and 𝛽 satisfying the hypotheses of Theorem IV, the set

𝒢𝑁(𝛼, 𝛽) has empty interior. Namely, by (4.9)

{𝑥 | lim
𝑡→∞

𝛽(𝑡)‖𝑒𝑡𝑁𝑥‖ℋ = 0}

is a dense set in ℋ.
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ii) In proof of Theorem VI we exhibit another proof that 𝒢𝑁(𝛼) is a dense set in

ℋ. The above proof explicitly indicates the relation between the decaying rates of

the semigroup (𝑒𝑡𝑁)𝑡≥0 and the local scale properties of the corresponding spectral

measures of 𝑁𝑅 (Lemma 4.1).

4.3 Proof of Theorem V

Proof (Theorem V). Again, by (4.1), we assume without loss of generality that 𝑁 is a

self-adjoint operator such that 𝑁 ≤ 0.

1.. This is a direct consequence of Proposition 4.2.

2.. This is a consequence of Theorem IV and the fact that (𝑒𝑡𝑁)𝑡≥0 is stable if and only

if 0 is not an eigenvalue of 𝑁 .

3.. If there exists an 𝑥 ∈ ℋ such that

lim
𝑡→∞

‖𝑒𝑡𝑁𝑥‖2 = 𝜇𝑁
𝑥 ({0}) > 0,

then it follows that 0 is an eigenvalue of 𝑁 . Therefore, it remains to prove that, generically

in ℋ, each orbit of (𝑒𝑡𝑁)𝑡≥0 does not converge to zero if 0 is an eigenvalue of 𝑁 . Since, for

each 𝑡 ≥ 0, the mapping

ℋ ∋ 𝑥 ↦−→ ‖𝑒𝑡𝑁𝑥‖ℋ

is continuous, it follows that

ℱ𝑁 := {𝑥 | lim
𝑡→∞

‖𝑒𝑡𝑁𝑥‖ℋ > 0} = {𝑥 | lim sup
𝑡→∞

‖𝑒𝑡𝑁𝑥‖ℋ > 0}

=
⋂︁
𝑘≥1

⋃︁
𝑡≥𝑘

{𝑥 | ‖𝑒𝑡𝑁𝑥‖ℋ > 0}

is a 𝐺𝛿 set in ℋ.

Now, given 𝑥 ∈ ℋ, write 𝑥 = 𝑥1+𝑥2, with 𝑥1 ∈ Span{𝑥0}⊥ and 𝑥2 ∈ Span{𝑥0}, where
𝑥0, with ‖𝑥0‖ℋ = 1, is an eigenvector of 𝑁 associated with the eigenvalue 0. If 𝑥2 ̸= 0,

then

‖𝑒𝑡𝑁𝑥‖2ℋ = 𝜇𝑁
𝑥 ({0}) +

∫︁
R−∖{0}

𝑒2𝑡𝑦𝑑𝜇𝑁
𝑥 (𝑦) ≥ 𝜇𝑁

𝑥 ({0}) = ‖𝐸𝑁({0})𝑥‖2ℋ

≥ 2𝑅
⟨︀
𝐸𝑁({0})𝑥1, 𝐸𝑁({0})𝑥2

⟩︀
+ ‖𝐸𝑁({0})𝑥2‖2ℋ

= ‖𝑥2‖2ℋ,
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from which follows that

lim
𝑡→∞

‖𝑒𝑡𝑁𝑥‖ℋ > 0.

Now, if 𝑥2 = 0, define, for each 𝑘 ≥ 1,

𝑥𝑘 := 𝑥+
𝑥0
𝑘
.

It is clear that 𝑥𝑘 → 𝑥. Moreover, by the previous arguments, one has, for each 𝑘 ≥ 1,

lim
𝑡→∞

‖𝑒𝑡𝑁𝑥𝑘‖ℋ > 0.

This proves that ℱ𝑁 is a dense set in ℋ.

4.4 Proof of Theorem VI

The proof of Theorem VI relies, once more, on Theorem 4.1.

Proof (Theorem V). The proof that each one of the sets

𝒢𝐴(𝛼) := {𝑥 | lim sup
𝑡→∞

𝛼(𝑡)‖𝑇 (𝑡)𝑥‖ℋ = ∞}

and

𝒢𝐴(𝛽) := {𝑥 | lim inf
𝑡→∞

𝛽(𝑡)‖𝑇 (𝑡)𝑥‖ℋ = 0}

is a 𝐺𝛿 set in ℋ follows the same reasoning presented in the proof of Theorem IV.

Since, by hypothesis (H), there exists 𝐶 > 0 such that, for every 𝑥 ∈ 𝒟(𝐴𝑘) and every

sufficiently large 𝑡,

‖𝑇 (𝑡)𝑥‖ℋ ≤ 𝐶𝑟(𝑡)‖𝐴𝑘𝑥‖ℋ,

it follows that, for every 𝑥 ∈ 𝒟(𝐴𝑘),

lim inf
𝑡→∞

𝛽(𝑡)‖𝑇 (𝑡)𝑥‖ℋ = 0.

Thus, 𝒢𝐴(𝛽) ⊃ 𝒟(𝐴𝑘) is a dense set in ℋ.

It remains to prove that 𝒢𝐴(𝛼) is dense in ℋ. We note that, by Theorem 4.1, there

exists 𝑥0 ∈ ℋ such that ‖𝑥0‖ℋ ≤ 1 and, for each 𝑡 ≥ 0,

‖𝑇 (𝑡)𝑥0‖ℋ >
1√︀

𝛼(𝑡) + 2
. (4.10)

So, given 𝑥 ∈ ℋ, suppose now that, for each 𝑘 ≥ 1, there exists a sequence 𝑡𝑗 → ∞ so

that, for each 𝑗,

‖𝑇 (𝑡𝑗)𝑥‖ℋ <
‖𝑇 (𝑡𝑗)𝑥0‖ℋ

4𝑘
; (4.11)
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otherwise, it follows from (4.10) that 𝑥 ∈ 𝒢𝐴(𝛼). Set, for each 𝑘 ≥ 1,

𝑥𝑘 := 𝑥+
𝑥0
𝑘
.

It is clear that 𝑥𝑘 → 𝑥 in ℋ. Moreover, by (4.11), for each 𝑘 ≥ 1 and each 𝑗,

‖𝑇 (𝑡𝑗)𝑥𝑘‖2ℋ ≥ −2‖𝑇 (𝑡𝑗)𝑥‖ℋ‖𝑇 (𝑡𝑗)𝑥0‖ℋ
𝑘

+
‖𝑇 (𝑡𝑗)𝑥0‖2ℋ

𝑘2

≥ ‖𝑇 (𝑡𝑗)𝑥0‖2ℋ
2𝑘2

. (4.12)

Thus, combining (4.10) and (4.12) it follows that, for each 𝑘 ≥ 1,

lim sup
𝑡→∞

𝛼(𝑡)‖𝑇 (𝑡)𝑥𝑘‖ℋ = ∞.
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Chapter 5

Category theorems for Schrödinger

semigroups

5.1 Proof of Theorem VII

We recall that a metric space (𝑋, 𝑑) of negative self-adjoint operators, acting in ℋ, is

called regular if it is complete and convergence with respect to 𝑑 implies strong resolvent

convergence of operators.

Proposition 5.1. Let (𝑋, 𝑑) be a regular space of negative self-adjoint operators. Suppose

that

1. {𝐴 ∈ 𝑋 | 0 ∈ 𝜎(𝐴)} is dense in 𝑋,

2. {𝐴 ∈ 𝑋 | 0 ̸∈ 𝜎(𝐴)} is dense in 𝑋.

Then,

{𝐴 ∈ 𝑋 | (𝑒𝑡𝐴)𝑡≥0 is stable but not exponentially stable}

is a dense 𝐺𝛿 set in 𝑋.

Proof. To prove Proposition 5.1, it is enough to show that

1. 𝐸 := {𝐴 ∈ 𝑋 | (𝑒𝑡𝐴)𝑡≥0 is exponentially stable} is meager in 𝑋,

2. 𝑌 := {𝐴 ∈ 𝑋 | (𝑒𝑡𝐴)𝑡≥0 is stable} is a dense 𝐺𝛿 set in 𝑋.

Firstly, let us show that 𝐸 is an 𝐹𝜎 set in 𝑋. It follows from Proposition 2.1 that each

section of the mapping

R+ ×ℋ×𝑋 ∋ (𝑡, 𝑥, 𝐴) ↦→ ‖𝑒𝑡𝐴𝑥‖ℋ
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is continuous. Thus, for each 𝑛 ≥ 1, the mapping

𝑋 ∋ 𝐴 ↦→ sup
𝑡≥0

sup
‖𝑥‖ℋ=1

𝑒
𝑡
𝑛‖𝑒𝑡𝐴𝑥‖ℋ = sup

𝑡≥0
𝑒

𝑡
𝑛‖𝑒𝑡𝐴‖ℬ(ℋ)

is lower semicontinuous, from which it follows that, for each 𝑛 ≥ 1, the set

𝐹𝑛 = {𝐴 ∈ 𝑋 | sup
𝑡≥0

𝑒
𝑡
𝑛‖𝑒𝑡𝐴‖ℬ(ℋ) ≤ 1}

is closed.

Since the inclusion ∪𝑛≥1𝐹𝑛 ⊂ 𝐸 is immediate, we just need to prove that 𝐸 ⊂ ∪𝑛≥1𝐹𝑛.

Let 𝐴 ∈ 𝐸; then, by Proposition 4.2, one has that 𝑎 := − sup𝜎(𝐴) > 0. Nevertheless,

sup𝑡≥0 𝑒
𝑡𝑎‖𝑒𝑡𝐴‖ℬ(ℋ) ≤ 1, from which it follows that 𝐴 ∈ ∪𝑛≥1𝐹𝑛. Thus, 𝐸 is an 𝐹𝜎 in 𝑋.

Now, since {𝐴 ∈ 𝑋 | 0 ∈ 𝜎(𝐴)} is dense in 𝑋, it follows from Proposition 4.2 that 𝐸𝑐

is dense in 𝑋; therefore, 𝐸 is meager in 𝑋 and 1. is proven.

It remains to prove 2. By the previous arguments, given 𝑥 ∈ ℋ, for each 𝑘 ≥ 1 and

each 𝑛 ≥ 1, ⋃︁
𝑡≥𝑘

{︀
𝐴 ∈ 𝑋 | ‖𝑒𝑡𝐴𝑥‖ℋ <

1

𝑛

}︀
is open, hence

𝑌𝑥 := {𝐴 ∈ 𝑋 | lim
𝑡→∞

‖𝑒𝑡𝐴𝑥‖ℋ = 0} = {𝐴 ∈ 𝑋 | lim inf
𝑡→∞

‖𝑒𝑡𝐴𝑥‖ℋ = 0}

=
⋂︁
𝑛≥1

⋂︁
𝑘≥1

⋃︁
𝑡≥𝑘

{︀
𝐴 ∈ 𝑋 | ‖𝑒𝑡𝐴𝑥‖ℋ <

1

𝑛

}︀
is a 𝐺𝛿 set in 𝑋. Since, by Proposition 4.2, {𝐴 ∈ 𝑋 | 0 ̸∈ 𝜎(𝐴)} ⊂ 𝑌𝑥 is dense in 𝑋, it

follows that 𝑌𝑥 is a dense 𝐺𝛿 set in 𝑋.

Finally, let ∪𝑘≥1{𝑥𝑘} be a dense subset in ℋ (which is separable). Then,

𝑌 =
⋂︁
𝑘≥1

𝑌𝑥𝑘
.

Namely, the inclusion 𝑌 ⊂
⋂︀

𝑘≥1 𝑌𝑥𝑘
is obvious, and the reciprocal one follows from the

fact that, for each 𝐴 ∈
⋂︀

𝑘≥1 𝑌𝑥𝑘
and each 𝑥 ∈ ℋ, by Moore-Osgood Theorem,

lim
𝑡→∞

‖𝑒𝑡𝐴𝑥‖ℋ = lim
𝑘→∞

lim
𝑡→∞

‖𝑒𝑡𝐴𝑥𝑘‖ℋ = 0.

Thus, by Baire’s Theorem, 𝑌 is a dense 𝐺𝛿 set in 𝑋 and 2. is proven.

Definition 5.1. Let 𝑇 be a self-adjoint operator in ℋ. The essential spectrum of 𝑇 is

the set 𝜎ess(𝑇 ) of the accumulation points of 𝜎(𝑇 ) together with the eigenvalues of 𝑇 of

infinite multiplicity.
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Proposition 5.2 (Weyl’s criterion). Let 𝑉 : R𝜈 −→ C be a mensurable Borel function

such that

lim
|𝑥|→∞

|𝑉 (𝑥)| = 0.

Then, the essential spectrum of 𝐻𝑉 = Δ+ 𝑉 is 𝜎ess(𝐻𝑉 ) = (−∞, 0].

Theorem VII is a consequence of Proposition 5.1 and Proposition 5.2.

Proof (Theorem VII). By Proposition 5.1, we just need to show that, for every 𝑙 > 0 and

every 𝜈 ∈ N,

1. {𝐻𝑉 ∈ 𝑋𝜈
𝑙 | 0 ∈ 𝜎(𝐻𝑉 )} is dense in 𝑋𝜈

𝑙 ,

2. {𝐻𝑉 ∈ 𝑋𝜈
𝑙 | 0 ̸∈ 𝜎(𝐻𝑉 )} is dense in 𝑋𝜈

𝑙 .

Let 𝐻𝑉 ∈ 𝑋𝜈
𝑙 and define, for each 𝑘 ≥ 1, 𝑉𝑘 := 𝜒𝐵(0,𝑘)𝑉 . Then, by Weyl’s criterion,

the essential spectrum of 𝐻𝑉𝑘
is given by 𝜎ess(𝐻𝑉𝑘

) = (−∞, 0]; moreover, 𝐻𝑉𝑘
→ 𝐻𝑉 in

𝑋𝜈
𝑙 . Thus, {𝐻𝑉 ∈ 𝑋𝜈

𝑙 | 0 ∈ 𝜎(𝐻𝑉 )} is dense in 𝑋𝜈
𝑙 .

Now, let (𝐻𝑉𝑗
) be a sequence in 𝑋𝜈

𝑙 such that, for each 𝑗 ≥ 1,

𝑉𝑗 :=
𝑗

𝑗 + 1
𝑉 − 𝑙

𝑗 + 1
.

It is clear that, for each 𝑗 ≥ 1, 0 ̸∈ 𝜎(𝐻𝑉𝑗
). Moreover, 𝐻𝑉𝑗

→ 𝐻𝑉 in 𝑋𝜈
𝑙 . Therefore,

{𝐻𝑉 ∈ 𝑋𝜈
𝑙 | 0 ̸∈ 𝜎(𝐻𝑉 )} is dense in 𝑋𝜈

𝑙 .

5.2 Proof of Theorem VIII

Proof (Theorem VIII). Since, by Proposition 4.1,

𝐽𝜈
𝑙 (𝑓) = {𝐻 | 𝑑−

𝜇𝐻
𝑓
(0) = 0 and 𝑑+

𝜇𝐻
𝑓
(0) = ∞}

=
⋂︁
𝑛≥1

{︀
𝐻 | lim sup

𝑡→∞
𝑡1/𝑛‖𝑒𝑡𝐻𝑓‖L2(R𝜈) = ∞ and lim inf

𝑡→∞
𝑡𝑛‖𝑒𝑡𝐻𝑓‖L2(R𝜈) = 0

}︀
,

it follows from the arguments presented in the proof of Proposition 5.1 that, for every

𝑓 ∈ L2(R𝜈), 𝐽𝜈
𝑙 (𝑓) is a 𝐺𝛿 set in 𝑋

𝜈
𝑙 .

Now, let

𝐶𝜈
𝑙 = {𝐻 ∈ 𝑋𝜈

𝑙 | (𝑒𝑡𝐻)𝑡≥0 is stable but not exponentially stable}.

It follows from Theorem VII that 𝐶𝜈
𝑙 is a dense 𝐺𝛿 set in 𝑋𝜈

𝑙 . Let ∪𝑘≥1(𝐻𝑘) be an

enumerable dense subset of 𝐶𝜈
𝑆 (which is separable, since 𝑋𝜈

𝑙 is separable). Then, by

Corollary 4.1,

𝐺𝜈
𝑙 :=

⋂︁
𝑘≥1

{𝑓 | 𝑑−
𝜇
𝐻𝑘
𝑓

(0) = 0 and 𝑑+
𝜇
𝐻𝐾
𝑓

(0) = ∞}
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is a dense 𝐺𝛿 set in L2(R𝜈). Nevertheless, for every 𝑓 ∈ 𝐺𝜈
𝑙 , 𝐽

𝜈
𝑙 (𝑓) ⊃ ∪𝑘≥1𝐻𝑘 is a dense

𝐺𝛿 set in 𝑋
𝜈
𝑙 .

The next example, together with Theorem VIII, says that for each 𝑓 ∈ 𝐶𝜈
𝑙 and each

𝐻 ∈ 𝐽𝜈
𝑙 (𝑓), 𝑓 ̸∈ rng𝐻, or equivalent, that the partial differential equation

𝐻𝑢 = 𝑓

does not have a solution in 𝒟(𝐻).

Example 5.1. Let 𝐴 be a negative self-adjoint operator. Then, for 𝑢 ∈ rng𝐴, 𝑑∓
𝜇𝐴
𝑢
(0) ≥ 2.

Example 5.1 can be seen as a statement from the fact that every spectral measure

associated with every vector of the range of a negative self-adjoint operator has a certain

local regularity with respect to the Lebesgue measure. We note that this is a direct

consequence of Propositions 4.1 and 5.3.

Proposition 5.3. Let 𝐴 be a negative self-adjoint operator. Then, for 𝑢 ∈ rng𝐴 and

every 𝑥 ∈ 𝐴−1{𝑢}, one has, for each 𝑡 > 0,

‖𝑒𝑡𝐴𝑢‖ℋ ≤ ‖𝑥‖ℋ
𝑒 𝑡

.

Proof. Let 𝑥 ∈ 𝐴−1{𝑢}. Then, by the Spectral Theorem, for each 𝑡 > 0,

𝑡2‖𝑒𝑡𝐴𝑢‖2ℋ = 𝑡2‖𝐴𝑒𝑡𝐴𝑥‖2ℋ =

0∫︁
−∞

(𝑡𝑦)2 𝑒2𝑡𝑦 d𝜇𝐴
𝑥 (𝑦)

≤ 1

𝑒2

0∫︁
−∞

1 d𝜇𝐴
𝑥 (𝑦) =

‖𝑥‖2ℋ
𝑒2

.

Remark 5.1.

i) We note that the polynomial decaying rate obtained in Proposition 5.3 is optimal.

Namely, define 𝑀 : 𝒟(𝑀) ⊂ L2[0,∞) −→ L2[0,∞) by the action

(𝑀𝑢)(𝑦) = −𝑦𝑢(𝑦),

where 𝑢 ∈ 𝒟(𝑀) := {𝑢 ∈ L2[0,∞) | 𝑦𝑢 ∈ L2[0,∞)}. Consider 1
2
< 𝛿 < 1, and then

define 𝑓𝛿 : [0,∞) → R by the action 𝑓𝛿(𝑦) = 𝜒[0,1]𝑦
𝛿; 𝑓𝛿 clearly belongs to rng𝑀 .

Moreover, for every 0 < 𝜖 ≤ 1,

𝜇𝑀
𝑓𝛿
(𝐵(0, 𝜖)) =

𝜖∫︁
0

|𝑓𝛿|2𝑑𝑦 =

𝜖∫︁
0

𝑦2𝛿𝑑𝑦 =
𝜖2𝛿+1

2𝛿 + 1
.
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Thus, by Proposition 4.1, ‖𝑒𝑡𝑀𝑓𝛿‖L2[0,∞) ≥ 𝐶𝑓𝛿𝑡
−1/2−𝛿, for all 𝑡 ≥ 1, where 𝐶𝑓𝛿 is a

constant depending only on 𝑓𝛿.

ii) Let 𝐴 be as in the statement of Proposition 5.3. If 𝑎 = − sup𝜎(𝐴) > 0, then (𝑒𝑡𝐴)𝑡≥0

is exponentially stable. Actually, ‖𝑒𝑡𝐴‖ℬ(ℋ) = 𝑂(𝑒−𝑡𝑎), which implies that, for each

𝑥 ∈ ℋ, ‖𝑒𝑡𝐴𝑥‖ℋ = 𝑂(𝑒−𝑡𝑎). Proposition 5.3 presents more information about the

decay of ‖𝑒𝑡𝐴𝑢‖ℋ in case 𝑢 ∈ rng(𝐴 + 𝑎1), since, in this case, it shows that there

exists 𝐶𝑢 > 0, depending only on 𝑢, such that, for every 𝑡 > 0,

‖𝑒𝑡𝐴𝑢‖ℋ ≤ 𝐶𝑢
𝑒−𝑡𝑎

𝑡
.

Namely, let 𝑡 ∈ R and 𝑣 ∈ ℋ; then,

‖𝑣‖ℋ = ‖𝑒−𝑡𝑎1𝑒𝑡𝑎1𝑣‖ℋ ≤ ‖𝑒−𝑡𝑎1‖ℬ(ℋ)‖𝑒𝑡𝑎1𝑣‖ℋ ≤ 𝑒−𝑡𝑎‖𝑒𝑡𝑎1𝑣‖ℋ.

If 𝑢 ∈ rng(𝐴+ 𝑎1) and 𝑥 ∈ 𝒟(𝐴) with (𝐴+ 𝑎1)𝑥 = 𝑢, then, by Proposition 5.3,

‖𝑥‖ℋ
1

𝑒 𝑡
≥ ‖𝑒𝑡(𝐴+𝑎1)𝑢‖ℋ = ‖𝑒𝑡𝑎1𝑒𝑡𝐴𝑢‖ℋ ≥ 𝑒𝑡𝑎‖𝑒𝑡𝐴𝑢‖ℋ.
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Appendix A

Spectral theorem for normal

operators

In this Appendix, we present some results in the spectral theory of normal operators. The

material presented here is based on [22, 51].

We recall that, for each densely defined linear operator 𝐴 in ℋ, corresponds a unique

linear operator 𝐴* in ℋ, the so-called Hilbert adjoint of 𝐴, whose domain 𝒟(𝐴*) consist

of all 𝜂 ∈ ℋ for which the linear functional

𝒟(𝐴) ∋ 𝜉 ↦→ ⟨𝐴𝜉, 𝜂⟩

is continuous; by the Hahn-Banach theorem, such functional can be continuously extended

to ℋ and, therefore, there exists an element unique 𝐴*𝜂 ∈ ℋ so that

⟨𝐴𝜉, 𝜂⟩ = ⟨𝜉, 𝐴*𝜂⟩, 𝜉 ∈ 𝒟(𝐴).

Definition A.1. Let 𝐴 : 𝒟(𝐴) ⊂ ℋ −→ ℋ be a linear operator. One says that 𝐴 is a

symmetric operator if

⟨𝐴𝜉, 𝜂⟩ = ⟨𝜉, 𝐴𝜂⟩, 𝜉, 𝜂 ∈ 𝒟(𝐴).

If 𝐴 is densely defined and 𝐴 = 𝐴*, then one says that 𝐴 is a self-adjoint operator.

Definition A.2. A densely defined linear operator 𝐴 : 𝒟(𝐴) ⊂ ℋ −→ ℋ is said to be

normal if is closed and if

𝐴*𝐴 = 𝐴𝐴*.

Now we present some examples of normal and self-adjoint operators [22].

Example A.1 (Multiplication operator). Let 𝜇 be a 𝜎-finite positive Borel measure over

a metric space 𝑋. Let 𝜙 : 𝐹 ⊂ 𝑋 −→ C be a measurable function. The respective
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multiplication operator by 𝜙, 𝑀𝜙, is the linear operator given by

𝒟(𝑀𝜙) := {𝜓 ∈ L2
𝜇(𝐹 ) : 𝜙𝜓 ∈ L2

𝜇(𝐹 )},

(𝑀𝜙𝜓)(𝑥) := 𝜙(𝑥)𝜓(𝑥), 𝜓 ∈ 𝒟(𝑀𝜙).

It is not hard to show that 𝒟(𝑀𝜙) is dense in L2
𝜇(𝐹 ) and that 𝑀*

𝜙 = 𝑀𝜙, from which

follows that 𝑀𝜙 is a normal operator. If 𝜙 is a real function, then 𝑀𝜙 is a self-adjoint

operator.

Example A.2 (Schrödinger operator). A Schrödinger operator defined in ℋ2(R𝜈), 𝜈 ∈ N,
is a linear operator of the form

𝐻 = −Δ+ 𝑉,

where Δ is the (self-adjoint) Laplacian and 𝑉 a real-valued multiplication operator (the

so-called potential), so that −Δ+𝑉 is a self-adjoint operator in ℋ2(R𝜈) (for instance, by

the Kato-Rellich theorem, 𝑉 can be any bounded Borel function [22]).

We note that for every measurable Borel 𝑉 : R𝜈 −→ C, 𝑉 ∈ L2
𝐿𝑜𝑐(R𝜈)

−Δ+ 𝑉 : 𝐶∞
0 (R𝜈) ⊂ L2(R𝜈) −→ L2(R𝜈)

is always a symmetric operator, but not necessarily self-adjoint.

A.1 Resolution of the identity

Every normal operator corresponds to a unique resolution of the identity (and vice versa),

and this is what allows us to present a complete description of each normal operator.

Definition A.3. Denote by 𝒜 the Borel 𝜎-algebra in Ω ⊂ C. A resolution of the identity

is a mapping

𝒜 ∋ Λ ↦→ 𝐸(Λ) ∈ ℬ(ℋ)

with the following properties:

1. 𝐸(∅) = 0 and 𝐸(Ω) = 𝐼.

2. Every 𝐸(Λ) is an orthogonal projection.

3. If Λ1 ∩ Λ2 = ∅, then 𝐸(Λ1 ∪ Λ2) = 𝐸(Λ1) + 𝐸(Λ2).

4. 𝐸(Λ1 ∩ Λ2) = 𝐸(Λ1)𝐸(Λ2).
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5. For every 𝜉 ∈ ℋ and every 𝜂 ∈ ℋ,

𝒜 ∋ Λ ↦→ ⟨𝐸(Λ)𝜉, 𝜂⟩

is a regular Borel complex measure, the so-called spectral measure of 𝐸 with respect

to 𝜉, 𝜂, denoted by 𝜇𝐸
𝜉,𝜂.

We note that for 𝜉 = 𝜂, the spectral measure of 𝐸 with respect to 𝜉 is always a

real-valued measure, since 𝐸(Λ) ≥ 0; in this case, we denote it by 𝜇𝐸
𝜉 .

Example A.3. Consider the normal operator𝑀𝜙, for 𝜙 : 𝐹 ⊂ 𝑋 −→ C, acting in L2
𝜇(𝐹 ),

defined in Example A.1. The mapping [22]

𝒜 ∋ Λ ↦→ 𝐸𝑀𝜙(Λ) := 𝜒𝜙−1(Λ)

is the resolution of the identity of 𝑀𝜙.

Example A.4. Let 𝑁 be a normal operator on a finite-dimensional complex Hilbert space

ℋ. It is well know that there exists an orthonormal basis of ℋ whose elements are the

eigenvectors of 𝑁 , corresponding to the eigenvalues 𝜆𝑗. The mapping [22]

𝒜 ∋ Λ ↦→ 𝐸𝑁(Λ) :=
∑︁

𝑗:𝜆𝑗∈Λ

𝐸𝑗,

where each 𝐸𝑗 represents the orthogonal projection onto the eigenspace corresponding to

the eigenvalue 𝜆𝑗, defines the resolution of the identity of 𝑁 . We note that

𝑁 =
∑︁

𝑗:𝜆𝑗∈C

𝜆𝑗𝐸𝑗. (A.1)

The next result lists some properties of a resolution of the identity [51].

Theorem A.1 (Functional Calculus). Let 𝐸 be a resolution of the identity. Then:

1. For each measurable 𝑓 : Ω ⊂ C −→ C corresponds a closed densely defined linear

operator

𝐸(𝑓) =

∫︁
Ω

𝑓(𝜆) 𝑑𝐸(𝜆)

in ℋ, such that, for every 𝜉 ∈ 𝒟(𝐸(𝑓)),

‖𝐸(𝑓)𝜉‖2 =
∫︁
Ω

|𝑓(𝜆)|2 𝑑𝜇𝐸
𝜉 (𝜆).
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2. If 𝑓, 𝑔 : Ω ⊂ C −→ C are measurable, then

𝐸(𝑓)𝐸(𝑔) ⊂ 𝐸(𝑓𝑔) 𝑎𝑛𝑑 𝒟(𝐸(𝑓)𝐸(𝑔)) = 𝒟(𝐸(𝑔)) ∩ 𝒟(𝐸(𝑓𝑔)).

Hence, 𝐸(𝑓)𝐸(𝑔) = 𝐸(𝑓𝑔) if and only if 𝒟(𝐸(𝑓𝑔)) ⊂ 𝒟(𝐸(𝑔)).

3. For every measurable 𝑓 : Ω ⊂ C −→ C,

𝐸(𝑓)* = 𝐸(𝑓) 𝑎𝑛𝑑 𝐸(𝑓)𝐸(𝑓)* = 𝐸(|𝑓 |2) = 𝐸(𝑓)*𝐸(𝑓).

A.2 Spectral theorem

We present below a version of the Spectral Theorem, which says that any normal operator,

in some sense, can be written as (A.1) [51].

Theorem A.2 (Spectral Theorem). Every normal operator 𝑁 corresponds to a unique

resolution 𝐸𝑁 of the identity such that

𝑁 =

∫︁
𝜎(𝑁)

𝜆 𝑑𝐸𝑁(𝜆).

Moreover, 𝐸𝑁 is supported on 𝜎(𝑁) ⊂ C, in the sense that 𝐸𝑁(𝜎(𝑁)) = 𝐼.
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Appendix B

Unitary evolution groups

In this Appendix, we introduce some concepts concerning unitary evolution groups [22].

A major interest here is the in solutions of the Schrödinger equation⎧⎨⎩𝜕𝑡𝜉 = −𝑖𝑇 𝜉, 𝑡 ∈ R,

𝜉(0) = 𝜉, 𝜉 ∈ ℋ,
(SE)

where 𝑇 is a self-adjoint operator in a separable complex Hilbert space ℋ.

B.1 Definitions and examples

Definition B.1. A transformation 𝐺 : R −→ ℬ(ℋ) is a one-parameter unitary evolution

group, or simply a unitary evolution group, on ℋ if 𝐺(𝑡) is a unitary operator onto ℋ
and 𝐺(𝑡+ 𝑠) = 𝐺(𝑡)𝐺(𝑠), ∀ 𝑡, 𝑠 ∈ R.

Definition B.2. The generator of a unitary evolution group 𝐺(𝑡) is the linear operator

𝑇 defined by

𝒟(𝑇 ) := {𝜉 ∈ ℋ | lim
ℎ→0

𝐺(ℎ)𝜉 − 𝜉

ℎ
exists},

𝑇 𝜉 := 𝑖 lim
ℎ→0

𝐺(ℎ)𝜉 − 𝜉

ℎ
, 𝜉 ∈ 𝒟(𝑇 ).

Example B.1 (Multiplication group). Consider 𝑀𝜙, acting in L2
𝜇(𝐹 ), the self-adjoint

operator defined in Example A.1 for 𝜙 : 𝐹 ⊂ 𝑋 −→ C real. It is easy to check that

𝑒−𝑖𝑀𝜙𝑡 : L2
𝜇(𝐹 ) −→ L2

𝜇(𝐹 ) defined, for each 𝑡 ∈ R and each 𝑓 ∈ L2
𝜇(𝐹 ), by

(𝑒−𝑖𝑀𝜙𝑡𝑓)(𝑥) = 𝑒−𝑖𝜙(𝑥)𝑡𝑓(𝑥), 𝑥 ∈ 𝐹,

is a unitary evolution group whose generator is 𝑀𝜙.
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Example B.2 (Schrödinger group). Consider a Schrödinger operator 𝐻 = −Δ + 𝑉 ,

acting in ℋ2(R𝜈), defined in Example A.2. By the Functional Calculus, 𝑒−𝑖𝐻𝑡 is a unitary

evolution group whose generator is 𝐻.

B.2 Stone theorem

The next results show that there exists a one-to-one relation between self-adjoint operators

and unitary evolution groups.

Theorem B.1. If 𝑇 is self-adjoint, there exists a unitary evolution group 𝐺(𝑡) for which

𝑇 is its generator. In this case, one writes 𝐺(𝑡) = 𝑒−𝑖𝑇 𝑡, 𝑡 ∈ R.

Theorem B.2 (Stone). If 𝐺(𝑡) is a unitary evolution group on ℋ, then its generator 𝑇

is self-adjoint, that is, 𝐺(𝑡) = 𝑒−𝑖𝑇 𝑡, 𝑡 ∈ R.

Corollary B.1. Let 𝐺 : R −→ ℬ(ℋ) be a unitary evolution group. Then, its generator

𝑇 is self-adjoint and, therefore, 𝐺(𝑡) = 𝑒−𝑖𝑇 𝑡, 𝑡 ∈ R. Moreover, for every 𝜉 ∈ 𝒟(𝑇 ), the

curve 𝜉(𝑡) := 𝑒−𝑖𝑇 𝑡𝜉 in ℋ is the unique solution of (SE).

Remark B.1. We note that since 𝒟(𝑇 ) is dense in ℋ, for every 𝜉 ∈ ℋ, there exists a

sequence (𝜉𝑛) ⊂ 𝒟(𝑇 ) such that for every 𝑛, (SE𝜉𝑛) has a unique solution 𝜉(𝑡, 𝜉𝑛) with

lim
𝑛→∞

𝜉(𝑡, 𝜉𝑛) = 𝜉(𝑡) uniformly for 𝑡 ≥ 0. Thus, if 𝜉 ̸∈ 𝒟(𝑇 ), one says that 𝜉(𝑡), although

not differentiable, is a (weak) solution of (SE).

Example B.3. Consider a Schrödinger operator 𝐻 = −Δ+𝑉 , acting in ℋ2(R𝜈), and the

respective Schrödinger group 𝑒−𝑖𝐻𝑡 that is directly connected to the Schrödinger equation.

Namely, if 𝑓 ∈ L2(R𝜈), then

𝑢(𝑥, 𝑡) = (𝑒−𝑖𝐻𝑡𝑓)(𝑥), 𝑡 ∈ R,

is the solution to the Schrödinger equation⎧⎨⎩𝑖𝜕𝑡𝑢 = −Δ𝑢+ 𝑉 𝑢, 𝑡 ∈ R,

𝑢0(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ R𝜈 .
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Appendix C

𝐶0-semigroups and their generators

Finally, we recall the main concepts of the theory of 𝐶0-semigroups [34, 46, 60]. The most

basic results of the theory are presented. Throughout this section, 𝑋 represents a Banach

space.

C.1 Definitions and examples

Definition C.1. A family (𝑇 (𝑡))𝑡≥0 of bounded linear operators acting on 𝑋 is called a

𝐶0-semigroup if the following properties are satisfied:

1. 𝑇 (0) = 𝐼 and 𝑇 (𝑡+ 𝑠) = 𝑇 (𝑡)𝑇 (𝑠), 𝑡, 𝑠 ≥ 0,

2. lim
𝑡↓0

‖𝑇 (𝑡)𝑥− 𝑥‖𝑋 = 0, ∀𝑥 ∈ 𝑋.

Remark C.1. It is easy to see that there are constants 𝜔 ≥ 0 and 𝑀 ≥ 1 such that

‖𝑇 (𝑡)‖ℬ(𝑋) ≤𝑀𝑒𝜔𝑡, 𝑡 ≥ 0,

and that, for each 𝑥 ∈ 𝑋, the mapping [0,∞) ∋ 𝑡 ↦−→ 𝑇 (𝑡)𝑥 is continuous.

Definition C.2. The generator of a 𝐶0-semigroup (𝑇 (𝑡))𝑡≥0 is the linear operator 𝐴

defined by

𝒟(𝐴) := {𝑥 ∈ 𝑋 | lim
ℎ↓0

𝑇 (ℎ)𝑥− 𝑥

ℎ
exists},

𝐴𝑥 := lim
ℎ↓0

𝑇 (ℎ)𝑥− 𝑥

ℎ
, 𝑥 ∈ 𝒟(𝐴).

We recall that a 𝐶0-semigroup (𝑇 (𝑡))𝑡≥0 on 𝑋 is said to be bounded if there exists

a constant 𝐶 > 0 so that, for each 𝑡 ≥ 0, ‖𝑇 (𝑡)‖ℬ(ℋ) ≤ 𝐶; if 𝐶 = 1, then it is called a

𝐶0-semigroup of contractions.

61



Example C.1. Let 𝑎 ∈ R. It follows from the Spectral Theorem that every normal

operator 𝑁 in a Hilbert space ℋ, with {𝜆 ∈ C | 𝑅𝑒(𝜆) > 𝑎} ⊂ 𝜚(𝑁), generates the

normal 𝐶0-semigroup [46]

𝑒𝑡𝑁 =

∫︁
𝜎(𝑁)

𝑒𝑡𝜆 𝑑𝐸𝑁(𝜆).

We note that (𝑒𝑡𝑁)𝑡≥0 is of contractions if and only if 𝑎 ≤ 0.

Example C.2. Consider𝑋 = L𝑝[0, 1] with the norm ‖𝑢‖𝑋 = ‖𝑒−𝑦𝑢(𝑦)‖L𝑝(0,1), 1 ≤ 𝑝 <∞.

Define the interacted fractional integral of order 𝑡 of 𝑢 ∈ 𝑋 by [34]

(𝐼 𝑡𝑢)(𝑦) :=
1

Γ(𝑡)

𝑦∫︁
0

(𝑦 − 𝑤)𝑡−1𝑢(𝑤) 𝑑𝑤, 𝑦 ∈ [0, 1], 𝑡 > 0,

where Γ(·) denotes the Gamma function; 𝐼0 := 𝐼. (𝐼 𝑡)𝑡≥0 is an unbounded 𝐶0-semigroup

whose generator has empty spectrum.

Now we recall that a classical solution of the abstract Cauchy problem⎧⎨⎩�̇�(𝑡) = 𝐴𝑥(𝑡), 𝑡 ≥ 0,

𝑥(0) = 𝑥, 𝑥 ∈ 𝑋,
(ACP)

is a continuously differentiable function 𝑢 : [0,∞) −→ 𝑋, taking its values in 𝒟(𝐴), which

satisfies (ACP). A continuous function 𝑢 : [0,∞) −→ 𝑋 is a mild solution of (ACP) if

there exists a sequence (𝑥𝑛) ⊂ 𝒟(𝐴) such that for each 𝑛, the problem (ACP𝑥𝑛) has a

classical solution 𝑢(𝑡, 𝑥𝑛) with lim
𝑛→∞

𝑢(𝑡, 𝑥𝑛) = 𝑢(𝑡) locally uniformly for 𝑡 ≥ 0.

The next theorem says that (ACP) has a solution for every 𝑥 ∈ 𝑋, and this solution

is 𝑇 (𝑡)𝑥 [46].

Theorem C.1. Let (𝑇 (𝑡))𝑡≥0 be a 𝐶0-semigroup and let 𝐴 be its generator. Then,

i) 𝐴 is a closed densely defined linear operator.

ii) For each 𝑥 ∈ 𝒟(𝐴), 𝑡 ↦−→ 𝑇 (𝑡)𝑥 is continuously differentiable for 𝑡 ≥ 0 and

𝑑

𝑑𝑡
𝑇 (𝑡)𝑥 = 𝐴𝑇 (𝑡)𝑥 = 𝑇 (𝑡)𝐴𝑥, 𝑡 ≥ 0.

C.2 Hille-Yosida and Lumer-Phillips theorems

Hille-Yosida’s and Lumer-Phillips’s Theorems [46] give conditions on the behaviour of

the resolvent of a linear operator 𝐴, which are necessary and sufficient for 𝐴 to be the

generator of a 𝐶0-semigroup.
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Theorem C.2 (Hille-Yosida’s Theorem). A linear operator 𝐴 : 𝒟(𝐴) ⊂ 𝑋 −→ 𝑋 is the

generator of a 𝐶0-semigroup (𝑇 (𝑡))𝑡≥0 such that, for constants 𝜔 ≥ 0 and 𝑀 ≥ 1,

‖𝑇 (𝑡)‖ℬ(𝑋) ≤𝑀𝑒𝜔𝑡, 𝑡 ≥ 0,

if and only if

1. 𝐴 is closed and densely defined;

2. The resolvent set 𝜚(𝐴) of 𝐴 contains (𝜔,∞), and for each 𝜆 > 𝜔,

‖𝑅(𝜆,𝐴)‖ℬ(𝑋) ≤
1

𝜆− 𝜔
.

Let 𝑋* be the dual to 𝑋. We denote the value of 𝑥* ∈ 𝑋 at 𝑥 ∈ 𝑋 by ⟨𝑥, 𝑥*⟩. For
every 𝑥 ∈ 𝑋, we define the duality set 𝐽(𝑥) ⊂ 𝑋* by

𝐽(𝑥) = {𝑥* : ⟨𝑥, 𝑥*⟩ = ‖𝑥‖2𝑋 = ‖𝑥*‖2𝑋*}.

It follows from the Hahn-Banach theorem that, for every 𝑥 ∈ 𝑋, 𝐽(𝑥) ̸= ∅.

Definition C.3. A linear operator 𝐴 is dissipative if, for every 𝑥 ∈ 𝒟(𝐴), there exists a

𝑥* ∈ 𝐽(𝑥) such that 𝑅𝑒⟨𝐴𝑥, 𝑥*⟩ ≤ 0.

Theorem C.3 (Lumer-Phillips’s Theorem). Let 𝐴 be a linear operator with dense domain

𝒟(𝐴) in 𝑋.

1. If 𝐴 is dissipative and there exists a 𝜆0 > 0 such that rng(𝜆0𝐼 −𝐴) = 𝑋, then 𝐴 is

the generator of a 𝐶0-semigroup of contractions.

2. If 𝐴 is the generator of a 𝐶0-semigroup of contractions, then rng(𝜆𝐼 − 𝐴) = 𝑋 for

every 𝜆 > 0 and 𝐴 is dissipative. Moreover, for every 𝑥 ∈ 𝒟(𝐴) and every 𝑥* ∈ 𝐽(𝑥),

𝑅𝑒⟨𝐴𝑥, 𝑥*⟩ ≤ 0.

Hille-Yosida’s and Lumer-Phillips’s Theorems are employed to show the existence of

solutions for evolution equations with energy dissipation, for instance, wave equations,

thermoelastic systems of Bresse type and Timoshenko type. We note that in the literature,

there are other results, similar to such theorems, which are often applied to systems

without energy dissipation (see [54] and references therein).
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[2] N. Anantharaman and M. Léautaud, Sharp polynomial decay rates for the damped

wave equation on the torus. With an appendix by S. Nonnenmacher. Anal. PDE. 7

(2014), 159–214.

[3] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter

semigroups. Trans. Amer. Math. Soc. 306 (1988), 837–852.

[4] J.-M. Barbaroux, J.-M. Combes, and R. Montcho, Remarks on the relation between

quantum dynamics and fractal spectra. J. Math. Anal. Appl. 213 (1997), 698-722.

[5] J.-M. Barbaroux, F. Germinet, and S. Tcheremchantsev, Fractal dimensions and

the phenomenon of intermittency in quantum dynamics. Duke Math. J. 110 (2001),

161–194.

[6] J.-M. Barbaroux, F. Germinet, and S. Tcheremchantsev, Generalized fractal dimen-

sions: equivalence and basic properties. J. Math. Pure et Appl. 80 (1997), 977–1012.

[7] C. J. K. Batty, Asymptotic behaviour of semigroups of operators. Functional analysis

and operator theory, Banach Center Publ. 30 (1994), 35-52.

[8] C. J. K. Batty, R. Chill, and Y. Tomilov, Fine scales of decay of operator semigroups.

J. Eur. Math. Soc. 18 (2016), 853–929.

[9] C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups

on Banach spaces. J. Evol. Eq. 8 (2008), 765-780.

[10] Yu. M. Berezannskii, The projection spectral theorem. Russ. Math. Surveys. 39

(1984), 1-162.

64



[11] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator

semigroups. Math. Ann. 347 (2010), 455–478.

[12] J. Breuer, Y. Last, and Y. Strauss, Eigenvalue spacings and dynamical upper bounds

for discrete one-dimensional Schrödinger operators. Duke Math. J. 157 (2011), 425–

460.
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(2009).

[23] R. Del Rio, S. Jitomirskaya, Y. Last, and B. Simon B, Operators with singular con-

tinuous spectrum, IV: Hausdorff dimensions, rank one perturbations and localization.

J. Anal. Math. 69 (1996), 153–200.

65



[24] F. Dell’Oro and V. Pata, On the stability of Timoshenko systems with Gurtin-Pipkin

thermal law. J. Differential Equations. 257 (2014), 523–548.

[25] E. I. Dinaburg, Stark effect for a difference Schrödinger operator. Theoret. and Math.

Phys. 78 (1989), 50–57.
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