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Resumo
Este trabalho oferee uma disussão geral sobre o tema de agregação de dados e explo-ração da orrelação espaço-temporal dos dados em redes de sensores sem �o (RSSFs)que permite: (i) a identi�ação de problemas em aberto e (ii) o entendimento dos re-quisitos e impliações do uso de agregação de dados em RSSFs, além da exploração daorrelação espaço-temporal dos dados.Esta disussão é feita através de um levantamento bibliográ�o do estado-da-arteenvolvendo agregação e orrelação espaço-temporal de dados em RSSFs. Como resul-tado da análise de arquiteturas, modelos e métodos de agregação e orrelação espaço-temporal de dados identi�ados neste levantamento bibliográ�o, propomos quatrosoluções diferentes para o problema de agregação e exploração da orrelação espaço-temporal de dados onsiderando diferentes enários em RSSFs: os algoritmos DAARP,DDAARP, DST e EAST. Os algoritmos propostos reduzem o número de mensagensneessárias para riar uma árvore de roteamento, maximizam o número de rotas so-brepostas, seleionam as rotas om maior taxa de agregação e realizam transmissõeson�áveis de dados agregados.As soluções propostas foram amplamente omparadas om outras soluções da lite-ratura em relação aos ustos de omuniação, e�iênia de entrega, taxa de agregação etaxa de entrega de dados agregados. Os resultados mostram que as soluções propostaspodem ser uma boa alternativa para agregar dados e explorar a orrelação espaço-temporal dos dados durante o roteamento. Diversos experimentos são mostrados paraavaliar o desempenho dos algoritmos propostos.
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Resumo Estendido
O doumento desta tese está redigido em inglês om o título �Data Aggregation, Spatio-Temporal Correlation and Energy-Aware Solutions to perform Data Colletion in Wire-less Sensor Networks�. Para atender às normas da Universidade Federal de MinasGerais, este resumo em português faz um resumo estendido de ada apítulo destatese.Capítulo 1 � IntroduçãoOs reentes desenvolvimentos nas áreas de omuniação sem �o e sensores multifun-ionais om apaidade de omuniação e proessamento impulsionaram o resimentodas redes de sensores sem �o (RSSFs). As RSSFs estão ada vez mais presentes em apli-ações omo monitoramento ambiental, vigilânia de ampos militares e muitas outrasonde a presença humana não é possível ou não desejada. Um nó sensor, por si só, apre-senta uma apaidade limitada de deteção de sensoriamento de uma dada grandeza,mas a apaidade global de deteção pode ser aumentada drastiamente quando os nóssão ombinados formando uma rede de sensores sem �o. Logo, nós sensores em umaRSSF podem monitorar ooperativamente uma determinada área de interesse. Porexemplo, se oorrer um vazamento de gás em uma sala repleta de botijões de gás eexistir apenas um nó sensor nessa sala, será possível apenas dizer se há ou não vaza-mento de gás. Por outro lado, se for utilizada uma RSSF adequadamente projetada,será possível não só detetar o vazamento, mas indiar onde o vazamento iniiou e omoele evoluiu. Um monitoramento dessa forma pode salvar vidas e patrim�nio, além dediminuir ustos de seguros.Os nós sensores são dispositivos tipiamente om restrições de energia. O onsumode energia é geralmente assoiado à quantidade de dados transmitidos na rede, pois aomuniação é a atividade que tende a demandar uma maior quantidade de energia.Uma solução simples para esse problema seria a reposição da bateria dos nós sensores.Entretanto, essa ténia é inviável devido à grande quantidade de nós na rede ou porquexv



os nós sensores podem ser inaessíveis em algumas apliações, omo monitoramento devulões ou do espaço. Dessa forma, algoritmos e protoolos projetados para umaRSSF devem onsiderar o onsumo de energia em sua onepção. Além disso, os nóssensores podem oletar uma grande quantidade de dados que preisam ser proessadose enaminhadas, muitas vezes usando omuniação multihop, em direção a um nó sink,o qual funiona omo um gateway para uma estação de monitoramento. Nesse enário,o roteamento desempenha um papel muito importante no proesso de oleta de dados.Para realizar a oleta de dados de forma mais e�iente e e�az om um uso mínimode reursos limitados, nós sensores devem ser on�gurados para reportar dados de formainteligente tomando deisões loais. Para isso, a agregação de dados e a exploraçãoda orrelação espaço-temporal de dados são ténias e�azes de eonomia de energiaem RSSFs. Devido à redundânia dos dados brutos reolhidos pelos nós sensores, aagregação de dados e a orrelação espaço-temporal de dados muitas vezes podem serusadas para diminuir o usto de omuniação, eliminando a redundânia de dados ereportando apenas informações agregadas.A agregação de dados tem sido utilizada em RSSFs om dois propósitos: (i)tirar proveito da redundânia e melhorar a preisão dos dados; e (ii) reduzir o tráfegode dados e eonomizar energia. No entanto, as propostas atuais têm um usto altopara riar estruturas de roteamento ientes de agregação de dados e muitas delas nãoonsideram a orrelação espaço-temporal de dados. Além disso, a maioria das propostasnão lida om falhas nos nós e interrupções nas omuniações, o que provoa perda dedados e não garante a entrega dos dados oletados.A prinipal ontribuição desta tese é o desenvolvimento de quatro diferentessoluções ientes de agregação de dados, da orrelação espaço-temporal e onsumo deenergia para oleta de dados em RSSFs, que nos referimos omo DAARP, DDAARP,DST e EAST, quais serão apresentados, respetivamente, nos apítulos 3, 4, 5 e 6.Capítulo 2 � Fundamentação TeóriaRedes de Sensores sem FioUma Rede de Sensores sem �o (RSSF) pode ser de�nida omo uma rede ooperativa denós sensores sem �o, operados tipiamente por bateria, ujo prinipal objetivo é duplo:monitorar o ambiente e transmitir os dados reolhidos para um nó sorvedouro (sink)usando normalmente omuniação multihop. Este nó sorvedouro será responsável porproessar todos os dados reebidos dos nós fontes e reportá-los para uma estação demonitoramento (veja �gura 2.1). Tipiamente, uma RSSF é omposta por um grandexvi



número de nós sensores que são oloados dentro ou muito próximos ao fen�meno a seranalisado. Geralmente, ada nó sensor é equipado om vários tipos de sensores omo,por exemplo, temperatura, pressão, sísmio, aústio, radiação e infravermelho. Essesnós sensores são onstruídos para serem baratos e normalmente possuem limitaçõesomputaionais, memória, omuniação e energia.As RSSFs possibilitam a oleta de informações neessárias em ambientes onde ouso de �os ou abeamento não seja possível ou viável. Elas podem estar inseridas naestrutura de um prédio, ponte, no interior de máquinas, tubulações, dentro de asas,�orestas, áreas de desastre, plantações, vulões, ampo de batalha e até mesmo dentrodo orpo humano omo, por exemplo, a retina. O baixo usto dos nós sensores e opotenial dessa tenologia justi�am a sua utilização em diversas áreas, tais omo:� Saúde: ontrole de doenças ontagiosas; interfae para de�ientes; monitora-mento de paientes; diagnóstio de distúrbios; administração de drogas em hos-pitais, monitoramento e loalização de paientes e médios em hospitais.� Apliações Militares: monitoramento de tropas; reonheimento de terreno;deteção de alvos e de ataques biológios, químios ou nuleares.� Meio-ambiente: rastreamento do movimento dos pássaros, pequenos animais;monitoramento de ondições ambientais que afetam olheitas e plantio (por exem-plo, ombate à geada, deteção de omponentes químios ou biológios, irrigação);mapeamento da bio-omplexidade ambiental, estudo da poluição e muitas outras.� Monitoramento de estrutura/equipamentos: monitoramento e identi�-ação de falhas em estruturas (pontes, prédios, et); monitoramento da fadigade máquinas e equipamentos (motores, dutos de gás, et); diagnóstios de má-quinas.� Apliações omeriais: automação de vendas e proesso industriais;manutenção de inventário, monitoramento de qualidade de produtos; deteçãoe vigilânia de veíulos e estabeleimentos.A tendênia é a produção dos nós sensores em larga esala, barateando o seuusto e o investimento no desenvolvimento tenológio levando a novas melhorias, omoaumento de proessamento e armazenamento e redução do tamanho dos nós sensores.Portanto, novas apliações podem surgir aumentando a abrangênia de uso das RSSFs.A posição de ada nó sensor não preisa ser neessariamente pré-determinada, oque possibilita uma disposição aleatória em loais de difíil aesso, omo em áreas dexvii



desastres e inêndios. Por outro lado, isto signi�a que os algoritmos e protoolos pararedes de sensores devem possuir a araterístia de auto-organização dos nós.Agregação de Dados no RoteamentoAgregação de dados durante o roteamento em redes de sensores sem �o envolve dife-rentes formas de transmitir paotes de dados a �m de ombinar dados provenientes defontes diferentes, mas destinado a um nó espeí�o hamado sink. Um omponente-have para a agregação de dados em RSSFs é um protoolo de roteamento iente deagregação de dados bem onebido, que determina onde a agregação deve ser realizada.Agregação de dados requer um paradigma de enaminhamento diferente do roteamentolássio. Protoolos de roteamento lássio tipiamente usam os aminhos mais urtos�em relação a alguma métria espeí�a� para transmitir dados ao sink. Em protoolosde roteamento iente de agregação de dados, os nós devem enaminhar os paotes dedados om base no onteúdo do paote e esolher o próximo hop que maximiza a so-breposição de rotas para promover a agregação de dados na rede durante o roteamento.Para realizar a agregação de dados na rede é neessária alguma forma de sin-ronização entre os nós. Tipiamente os nós não enviam dados, logo que seja possível.A espera de informações provenientes de nós vizinhos pode levar a melhores oportu-nidades de agregação de dados e, onsequentemente, melhor desempenho. As prinipaisestratégias de temporização propostas na literatura são resumidas a seguir:� Periodi simple aggregation exige que ada nó espere por um período de tempopré-de�nido, para agregar todos os paotes de dados reebidos durante esse tempopré-de�nido e, em seguida, envia um paote de dados om o resultado da agre-gação de todos os paotes de dados reebidos;� Periodi per-hop aggregation é bastante semelhante à abordagem anterior. Aúnia diferença é que o paote om os dados agregados é transmitido logo queo nó reebe um paote de dados de todos os seus �lhos. Isto requer que adanó onheça os seus �lhos. Além disso, um tempo limite é usado em aso de umpaote de dados de algum �lho ser perdido durante a transmissão.� Periodi per-hop adjusted aggregation ajusta o tempo de espera de um nó, de-pendendo da posição do nó na estrutura de roteamento.É importante observar que a esolha da estratégia de tempo afeta fortemente ataxa de agregação em rede e a latênia para relatar os dados oletados. Se o tempode espera no ponto de agregação é alto, a latênia e a taxa de agregação é maior. Sexviii



o tempo de espera em pontos de agregação é baixo, a taxa de agregação e a latênia émenor.Correlação Espaço-Temporal de DadosPodemos enontrar atualmente na literatura três ategorias prinipais de protoolosientes de orrelação de dados: (i) orrelação espaial; (ii) orrelação temporal e (iii)orrelação espaço-temporal. A seguir, apresentamos os benefíios da exploração daorrelação espaial/temporal de dados em RSSFs:1. Correlação Espaial : nós espaialmente próximos tendem a sensoriar valoressemelhantes. No entanto, essa proximidade depende dos requisitos da apliaçãoe araterístias do evento. Algumas apliações são mais rítias e são menostolerantes a disrepânias nos valores sensoriados sobre o fen�meno observado,exigindo que nós próximos reportam os dados sensoriados (região de orrelação émenor). Por outro lado, outras apliações podem ser mais tolerantes a disrepân-ias nos valores sensoriados, não exigindo que nós próximos reportam os dadossensoriados (região de orrelação é maior).Região de orrelação: em uma região de orrelação, os valores sensoriados pe-los nós sensores são onsiderados semelhantes para a apliação e, portanto, umaúnia leitura dentro dessa região é o su�iente para representá-la. O tamanho daregião de orrelação varia de apliação para apliação e de evento para evento.Assim, o tamanho da região de orrelação está diretamente relaionado à apli-ação.2. Correlação Temporal : tipiamente, a leitura feita pelos sensores no ambiente éperiódia. Consequentemente, os dados sensoriados onstituem uma série tem-poral. Devido à natureza do fen�meno físio, há uma orrelação temporal signi-�ativa entre ada observação onseutiva de um nó sensor e os dados reolhidossão geralmente semelhantes em um urto período de tempo. Assim, nesses asos,os nós sensores não preisam transmitir suas leituras se a leitura atual estiverdentro de um limiar aeitável em relação à última leitura reportada.Correlação temporal : ada nó fonte mantém a última leitura reportada (Rold).Quando a leitura atual (Rnew) estiver disponível, Rnew é omparada om Rold.
Rnew de um nó fonte é reportada se um dado limiar é maior que a tolerâniana oerênia temporal (tt), isto é, (

|(Rnew−Rold)|
Rold

)

× 100 > tct, onde tct é a por-entagem de tolerânia na oerênia temporal. Caso ontrário o valor Rnew ésuprimido. xix



3. Correlação Espaço-Temporal : aontee quando a natureza dos dados oletadosapresenta tanto a orrelação espaial quanto a temporal, ou seja, nós espaial-mente próximos tendem a sensoriar valores semelhantes e os dados reolhidos sãogeralmente semelhantes em um urto período de tempo. Neste aso, as soluçõesque utilizam ambas as orrelações podem tirar proveito da natureza do eventodetetado e reduzir o número de dados reportados.
Na literatura existente de algoritmos que exploram a orrelação espaial e/outemporal dos dados, a maioria das abordagens propostas não onsidera o nível de ener-gia dos nós na seleção dos nós representativos e as araterístias do evento durante aoleta de dados para melhor esolher os nós representantes de ada região de orrelação.As abordagens que onsideram o nível de energia dos nós apresentam um alto ustode ontrole e geralmente resultam em altos atrasos e dados desatualizados são enami-nhados para o nó sink. No entanto, elas não exploram a orrelação espaço-temporale�ientemente.

Capítulo 3 � DAARP: Um Protoolo de RoteamentoCiente de Agregação de Dados para RSSFsÉ um novo protoolo de roteamento iente de agregação de dados para RSSFs. Aprinipal motivação para projetar um novo algoritmo de roteamento iente de agregaçãode dados é que as soluções da literatura apresentam um alto usto para riar estruturasde roteamento ientes de agregação de dados. O algoritmoDAARP onstrói uma árvorede roteamento om os aminhos mais urtos (em saltos) que oneta todos os nósfontes ao sink enquanto maximiza a agregação de dados, uja prinipal ontribuição émaximizar a agregação de dados ao longo da rota de omuniação, de uma forma maison�ável, através de um meanismo de enaminhamento tolerante a falhas. Resultadosde simulações (apresentados na seção 3.6) revelam que o DAARP tem alguns aspetoshaves exigidos pela agregação de dados em RSSFs omo um número reduzido demensagens para a riação de uma estrutura de roteamento, maximiza o número de rotassobrepostas, alta taxa de agregação e transmissão e agregação de dados on�áveis.xx



Capítulo 4 � DDAARP: Um Protoolo deRoteamento Dinâmio e Ciente de Agregação deDados para RSSFsÉ um novo protoolo de roteamento iente de agregação de dados dinâmio para RSSFs,que usa o nó sink para o proessamento e on�guração das rotas ientes de agregaçãode dados. A prinipal motivação para projetar uma abordagem dinâmia, que ria es-truturas de roteamento dinâmias ientes de agregação de dados, é que a qualidade dasestruturas de roteamento riadas pelo DAARP e também pela maioria dos algoritmosna literatura depende da ordem de oorrênia dos eventos. Assim, uma vez riada essaestrutura, as rotas são mantidas estátias durante a oorrênia do evento. A prinipalontribuição do DDAARP é que as rotas riadas não dependem da ordem de oorrêniados eventos e não são mantidas �xas durante a oorrênia de eventos. Resultados desimulações (apresentados na seção 4.6) revelam que o DDAARP apresenta baixo ustoem termos de paotes de ontrole, melhora a qualidade da estrutura de roteamento emaximiza a agregação de dados ao longo da rota de omuniação de uma forma maison�ável, através de um meanismo de roteamento tolerante a falhas.Capítulo 5 � DST: Um Protoolo de RoteamentoEsalável, Dinâmio e Ciente de Agregação deDados para RSSFsÉ um novo protoolo de roteamento iente de agregação de dados que leva a uma so-lução esalável, dinâmia e apresenta baixo usto para riar estruturas de roteamento.Apesar do DDAARP ter mostrado bons resultados, ele sofre om problemas de esal-abilidade e torna-se inviável para redes de larga esala. Além disso, o nó sink preisade onheimento global da rede. DST é uma solução e�iente de agregação de dadosque permite o roteamento esalável e dinâmio em RSSFs, que onstrói estruturas deroteamento om as rotas mais urtas (distânia Eulidiana) que oneta todos os nósfontes ao nó sink maximizando a agregação de dados e reduzindo a distânia paraonetar ada nó fonte ao sink. Resultados de simulações (apresentados na seção 5.6)revelam que o DST apresenta baixo usto em termos de paotes de ontrole, maximizaos pontos de agregação e melhora a qualidade da estrutura de roteamento ofereendorotas dinâmias. xxi



Capítulo 6 � EAST: Um Protoolo de RoteamentoE�iente para Coleta de Dados Ciente da CorrelaçãoEspaço-Temporal para RSSFsÉ um novo algoritmo iente de energia para o enaminhamento de dados em RSSFs queaproveita os meanismos de orrelação espaial e temporal para eonomizar energia emanter o enaminhamento de dados preisos em tempo oportuno para o nó sink. Aprinipal motivação para a onepção do EAST é que a maioria dos algoritmos ientesde orrelação espaial e/ou temporal não onsidera o onsumo de energia durante aoleta de dados para melhor esolher os nós representativos. Além disso, essas soluçõespossuem um grande número de mensagens de ontrole e não explora de forma e�ientea orrelação espaço-temporal dos dados, nem a sua dinamiidade. A prinipal on-tribuição é um meanismo de orrelação espaço-temporal de dados em que os nós quedetetaram o mesmo evento são dinamiamente agrupados em regiões orrelaionadase um nó representante é seleionado em ada região de orrelação para observar o fen�-meno. Resultados de simulações (apresentados na seção 6.4) mostram laramente que,usando ambas as orrelações espaial e temporal, as informações sobre o evento podemser sentidas om alta preisão e ainda eonomizar a energia residual dos nós.Capítulo 7 � ConlusõesEsta tese estudou a importânia de realizar agregação de dados e explorar a orrelaçãoespaço-temporal dos dados durante o roteamento. Devido à impossibilidade de se teruma únia solução para um determinado problema em RSSFs, nesta tese são propostosquatro algoritmos diferentes para a agregação de dados e exploração da orrelaçãoespaço-temporal dos dados durante o roteamento.
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Abstrat
This work provides a general disussion for data aggregation that exploits spatio-temporal data orrelation in wireless sensor networks (WSNs), allowing us to iden-tify open issues and understand the requirements and the impliations regarding dataaggregation, and spatio-temporal data orrelation in WSNs.In this disussion, we survey the state-of-the-art of data aggregation and spatio-temporal data orrelation in WSNs. By assessing the arhitetures, models, and meth-ods of data aggregation and spatio-temporal data orrelation identi�ed in the survey,we propose four di�erent solutions for the data aggregation and spatio-temporal dataorrelation that are suitable for di�erent senarios in WSNs. The proposed solutionsare alled DAARP, DDAARP, DST and EAST. The proposed algorithms redue thenumber of message neessary to set up a routing tree, maximize the number of over-lapping routes, selet routes with the highest aggregation rate, and perform reliabledata aggregation transmission.The proposed solutions have been extensively ompared with other solutions inthe literature and the results show that the proposed solutions may be potential al-ternatives to perform data aggregation and spatio-temporal data orrelation duringthe routing proess. We also present an extensive set of experiments to evaluate theperformane of our algorithms. Our results indiate that our proposed solutions aresuitable for implementation in WSNs.Keywords: WSNs, routing algorithms, data aggregation, spatio-temporal orrela-tion.
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Chapter 1Introdution
1.1 MotivationReent developments in the areas of wireless ommuniation and multifuntional sen-sors with ommuniation and proessing apability have stimulated the developmentand use of wireless sensor networks (WSNs) in many di�erent domains suh as the en-vironmental, medial, industrial, military �elds and many other where human preseneis not possible or desired [Boukerhe et al., 2007℄. A sensor node typially presents alimited sensing apability, but the overall sensing apability an be inreased when thenodes are ombined with many other nodes forming a WSN. For example, if a gas leakours in a room full of gas ylinders and there is only one sensor in this room, it willonly be possible to say that there is a leak or not. On the other hand, if a WSN is used,with appropriate protools, it is possible not only to detet the leak, but to indiatewhere the leak started and how it evolved. A monitoring in this way an save lives andassets, and redue ost insurane.Sensor nodes are energy-onstrained devies and the energy onsumption isgenerally assoiated with the amount of gathered data, sine ommuniation isoften the most expensive ativity in terms of energy. For that reason, algo-rithms and protools designed for WSNs should onsider the energy onsumptionin their design [Olariu et al., 2004, AbdelSalam and Olariu, 2009, Villas et al., 2010a,Villas et al., 2011℄. Moreover, WSNs are data-driven networks that usually produea large amount of information that needs to be routed, often in a multihop fashion,toward a sink node, whih works as a gateway to a monitoring enter. Given thissenario, routing plays an important role in the data gathering proess.For more e�ient and e�etive data gathering with a minimum use ofthe limited resoures, sensor nodes should be on�gured to smartly report data1



2 Chapter 1. Introdutionby making loal deisions [Chatzigiannakis et al., 2005, Chatzigiannakis et al., 2006,Efthymiou et al., 2006, Villas et al., 2010b℄. For this, data aggregation and spatio-temporal data orrelation are e�etive tehniques for saving energy in WSNs. Due tothe inherent redundany in raw data gathered by sensor nodes, in-networking aggrega-tion and spatio-temporal data orrelation an often be used to derease the ommunia-tion ost by eliminating data redundany and forwarding only aggregated information.Sine minimal ommuniation leads diretly to energy savings, whih extends the net-work lifetime, in-network data aggregation is a key tehnology to be supported byWSNs.Data aggregation has been used in WSNs with two purposes: (i) to take advan-tage of the redundany and improve data auray [Shmid and Shossmaier, 2001,Chakrabarty et al., 2002℄, and (ii) to redue the overall data tra� and save en-ergy [Krishnamahari et al., 2002℄. Nevertheless, urrent proposals have a high ostto reate routing strutures aware of data aggregation and many of them do not on-sider the spatio-temporal data orrelation. In addition, most proposals do not dealwith node failures and interruptions during a ommuniation, whih ause data lossand do not guarantee delivery of the sensed data.One of the main hallenges in routing algorithms for WSNs is how to guaranteethe delivery of the sensed data even in the presene of node failures and interruptionsduring ommuniation. These failures beome even more ritial when data aggrega-tion is performed along the routing paths sine pakets with aggregated data ontaininformation from various soures and, whenever one of these pakets is lost a onsider-able amount of information will also be lost. For this reason, data aggregation awarerouting protools should present a reliable data transmission, through a fault-tolerantrouting mehanism.1.2 ObjetivesThe main goals of this work are twofold. First, we provide a general disussion for dataaggregation and spatio-temporal data orrelation problems in WSNs. The seond goalis to propose, design, and evaluate the performane of di�erent types of algorithms forthe problems of data aggregation and spatio-temporal data orrelation for WSNs. Toahieve these goals, some seondary objetives should be aomplished:1. For the �rst main goal, i.e., in order to allow us to identify open issues andunderstand the requirements and the impliations regarding data aggregation



1.3. Main Contributions 3and spatio-temporal data orrelation in WSNs, the following goals need to beahieved:1.1. survey the state-of-the-art about the use of data aggregation and spatio-temporal data orrelation in WSNs;1.2. assess the arhitetures, models, and methods of data aggregation andspatio-temporal data orrelation identi�ed in the survey;1.3. identify drawbaks of urrent proposals to propose new solutions that over-ome the drawbaks of urrent proposals; and2. For the seond main goal, to propose di�erent solutions for the problems of dataaggregation and spatio-temporal data orrelation that are suitable for di�erentsenarios in a WSN, the following goals need to be ahieved:2.1. speify and design algorithms that onsider the data struture, data orrela-tions (spatial and temporal), the network topology and appliation restri-tions;2.2. propose a solution for the data aggregation problem to be used in mediumsale WSNs;2.3. propose a solution for the data aggregation problem to be used in large saleWSNs; and2.4. analyze the performane of the proposed solutions.1.3 Main ContributionsThe main ontributions of this thesis are the design and development of four di�erentsolutions for data aggregation and spatio-temporal data orrelation for WSNs, whihwe refer to as the DAARP, DDAARP, DST, and EAST algorithms, respetively. Insummary, we have:� Data Aggregation Aware Routing Protool for WSNs (DAARP) is a novel rea-tive data aggregation aware routing protool for WSNs. The main motivationto design a new data aggregation aware routing protool is that the proposedsolutions in the literature present high ost to reate routing strutures awareof data aggregation. The DAARP algorithm builds a routing struture with theshortest paths (in hops) that onnet all soure nodes to the sink while maximiz-ing data aggregation, whose main ontribution is to maximize data aggregation



4 Chapter 1. Introdutionalong the ommuniation route, in a more reliable way, through a routing fault-tolerant mehanism. Simulation results (presented in Setion 3.6) reveal thatDAARP has some keys aspets required by data aggregation in WSNs suh as aredued number messages for setting up a routing struture, maximized numberof overlapping routes, high aggregation rate, and reliable data aggregation andtransmission. This algorithm is fully explained in Chapter 3.� Dynami Data-Aggregation Aware Routing Protool for WSNs (DDAARP) is anovel dynami data-aggregation aware routing protool for WSNs, whih uses thesink node for proessing and on�guration of routes aware of data aggregation.The main motivation to design a dynami approah to reate dynami routingstrutures aware of data aggregation is that we have identi�ed that the qualityof routing strutures reated by DAARP and the most algorithms in the liter-ature depend on the order of events ourrene and one reated, these routesare held �xed during the ourrene of events. The main ontribution is that theroutes reated by DDAARP do not depend on the order of events ourrene andare not held �xed during the ourrene of events suh as the DAARP. Simula-tion results (presented in Setion 4.6) reveal that DDAARP presents low ost interms of paket ontrol, improves the quality of the routing struture and max-imizes data aggregation along the ommuniation route in a more reliable way,through a routing fault-tolerane mehanism. This algorithm is fully explainedin Chapter 4.� Dynami and Salable Tree for WSNs (DST) is an e�ient data aggregationsolution that allows salable and dynami routing in WSNs, whih builds rout-ing strutures with the shortest routes (in Eulidean distane) that onnets allsoure nodes to the sink node maximizing data aggregation and reduing the dis-tane to onnet eah soure node to the sink. Also, the routing struture reateddoes not depend on the event order. The main motivation to design the DSTwas the lak of a solution in the literature salable, dynami and presents lowost to reate routing strutures aware of data aggregation. DDAARP presentsgood results, but it su�ers from salability problems and beomes impratial forlarge-sale networks. In addition, the sink node needs to have a global knowledgeof the network. Simulations results (presented in Setion 5.6) reveal that DSTpresents a low ost in terms of paket ontrol, maximizes aggregation points andimproves the quality of routing struture o�ering dynami routes. This algorithmis fully explained in Chapter 5.



1.4. Organization of the Thesis 5� E�ient Data Colletion Aware of Spatio-Temporal Correlation for WSNs(EAST) is an algorithm for energy-aware data forwarding in WSNs that takes fulladvantage of both spatial and temporal orrelation mehanisms to save energywhile still maintaining real-time, aurate data report towards the sink node.The main motivation to design the EAST is that most of the urrent spatialand/or temporal orrelation algorithms do not onsider the energy dissipationduring data olletion to better hoose the representative nodes. Also, these so-lutions present a high number of ontrol messages and do not exploit e�ientlythe spatio-temporal orrelation nor their dynamiity. The main ontributionis an energy-aware spatio-temporal orrelation mehanism in whih nodes thatdeteted the same event are dynamially grouped in orrelated regions and arepresentative node is seleted at eah orrelation region for observing the phe-nomenon. The entire region of sensors per event is e�etively a set of repre-sentative nodes performing the task of data olletion and temporal orrelation.Simulation results (presented in Setion 6.4) learly show that by using both spa-tial and temporal orrelation, the information about the event an be sensed witha high auray while still saving the residual energy of nodes. This algorithm isfully explained in Chapter 6.1.4 Organization of the ThesisThis thesis is divided into seven hapters. Chapter 2 provides an overview aboutwireless sensor networks, in-network aggregation and spatio-temporal data orrelation.The hapter introdues wireless sensor networks, disusses in-network data aggregationand presents the main tehniques to perform data aggregation. In addition, it disussesspatio-temporal data orrelation and provides an overview of the existing approahesthat exploit spatio-temporal data orrelation.In the seond part of this work, omposed of Chapters 3, 4, 5 and 6, we proposeand explain the DAARP, DDAARP, DST and EAST algorithms, respetively. In eahhapter, the performane of the proposed solution is evaluated through simulations.Finally, in Chapter 7, we present some �nal remarks about the studied problems,their solutions, and the obtained results. We also present some possible extensions ofour work.





Chapter 2Bakground
This hapter presents the theoretial foundation for this work. This hapter is organizedas follows: Setion 2.1 introdues wireless sensor networks, Setion 2.2 disusses in-network data aggregation and presents the related work, and Setion 2.3 disussesspatio-temporal data orrelation and provides an overview of the existing approaheswhih exploit spatio-temporal data orrelation.2.1 Wireless Sensor NetworksWireless Sensor Networks (WSNs) [Akyildiz et al., 2002, Romer and Mattern, 2004,Boukerhe et al., 2007, Anastasi et al., 2009℄ an be de�ned as a ooperative networkof small, battery-operated, wireless sensor nodes whose main goal is twofold: tomonitor their surroundings for loal data and to forward the gathered data towarda sink node using typially multihop ommuniation. This sink node will then beresponsible for proessing all of the reeived data from several soure nodes andreporting them to a monitoring faility (Figure 2.1). This type of network hasbeome popular due to its appliability that inludes several areas suh as envi-ronment, homeland seurity, industry, domestis, agriulture, meteorology, health,spae, military and many other appliations that an be ritial to save lives andassets [Younis et al., 2006, Anastasi et al., 2009, Villas et al., 2010b℄. Several physialproperties an be monitored, inluding temperature, humidity, pressure, ambient light,sound, vibration, and motion.One of the main limitations of the WSNs is the battery-operated nature of theirsensor nodes, whih makes this kind of network highly energy-onstrained. A sim-ple solution to this problem ould be the periodi replaement of the node battery.However, this solution is not feasible due to the large number of nodes in the net-7



8 Chapter 2. Bakground
Figure 2.1. Data routing in WSNs [Oliveira et al., 2009℄.work or beause the sensor nodes may be inaessible in some appliations suh asmonitoring volanoes or spae exploration. For that reason, algorithms and pro-tools designed for WSNs should onsider the energy onsumption in their onep-tion [Olariu et al., 2004, AbdelSalam and Olariu, 2009, Villas et al., 2011℄.For more e�ient data gathering with a minimum use of limited re-soures, sensors should be on�gured to report data more intelligently bymaking loal deisions [Chatzigiannakis et al., 2005, Chatzigiannakis et al., 2006,Efthymiou et al., 2006, Villas et al., 2010b℄. Data aggregation1 and spatio-temporal 2,3data orrelation are possible tehniques for loal deision-making, whih will be pre-sented in the following setions. Suh strategies help to maximize energy onservationin an appliation-spei� sensor network.These tehniques have been exploited in the literature suh as data aggrega-tion [Krishnamahari et al., 2002, Chandrakasan et al., 2002, Nakamura et al., 2006,Fan et al., 2006, Nakamura et al., 2009℄, spatial orrelation [Akyildiz et al., 2004,Yoon and Shahabi, 2005, Liu et al., 2007b, Le et al., 2008, Yuan and Chen, 2009℄ andtemporal orrelation [Min and Chung, 2010, Pham et al., 2010℄. Nevertheless, urrentproposals have a high ost to reate routing strutures aware of data aggregation andmany of them does not deal nodes failures and interruptions in ommuniations, whihauses loss of data and does not guarantee delivery of the sensed data. In addition,these solutions not only introdue delays in data transmissions but also lead to thereeption of outdated information by the sink node.1Data Aggregation eliminates inherent redundany in raw data gathered by the sensor nodesand forwarding only smaller aggregated information.2Spatial orrelation: the hange pattern of the data sensed by nearby nodes is expeted tobe the same or similar. Thus, exploit the spatial data orrelation an eliminate the similars datareporting.3Temporal orrelation: the hange pattern in readings of a sensor node and gathered data isusually similar over a short-time period. Due to the nature of the physial phenomenons, there is asigni�ant temporal orrelation among eah onseutive observation of a sensor node. Thus, exploitthe temporal orrelation an eliminate the similars data reporting.



2.2. In-network Data Aggregation 92.2 In-network Data AggregationIn the ontext of WSNs, in-network data aggregation refers to di�erent tehniquesto forward data pakets toward the sink node. During this proess, nodes ombinedata olleted by di�erent soures, i.e., by fusing sensor readings related to the sameevent or physial quantity, or by loally proessing raw data before its transmission.A key omponent of in-network data aggregation is the design of a data aggregationaware routing protool, whih determines where the aggregation shall be performed.Data aggregation requires a forwarding paradigm that is di�erent from the lassirouting, whih typially involves the shortest path �in relation to some spei� metri�to forward data toward the sink node. Di�erently from the lassi approah in dataaggregation aware routing protools, hooses the node as next hop based on theirproximity in the topology that maximizes the overlap of routes in order to promotein-network data aggregation.Before lassifying the literature on solutions aware data aggregation, �rst weillustrate the importane of oupling between routing and data aggregation in WSNs.As depited in Figure 2.2, assume that the routing struture of data olletion in awsn is a inverted multiast tree rooted at the sink (node A). The onept of in-networkdata aggregation an be illustrated as follow.

Figure 2.2. Data Aggregation Aware RoutingLet eah of the nodes in {E,G and H} in the sensing �eld 1 and {F, I, J and K}in the sensing �eld 2 generate one raw sensory paket of size r and s bits respetively.The arrows in the �gure indiate the data gathering struture. For example, dataolleted by the sensing nodes {E,G and H} in the sensing �eld 1 will be sent tothe sink via nodes C and B. As olleted data from physially proximate nodes areusually orrelated, E an aggregate the data from G and H before forwarding to C.



10 Chapter 2. BakgroundThe result is that the size of the outgoing paket from E, R bits, will be less than thesummation of all the inoming pakets (inluding its own) and often larger than anyof the individual inoming pakets. The amount of the redution depends on the dataorrelation as spei�ed by the appliation. For example, in the extreme ase wherethere is no data orrelation, we have R = 3r (inluding the data sensed by node E)as no data redution an be ahieved. On the other hand, if the desired result is, say,simply average of the measurements, R = r. However, most appliations whih datahas a ertain degree of orrelation will satisfy k < K < 3k. The node B aggregates theolleted data in the sensing �eld 1 and 2. The result is that the size of the outgoingpaket fromB, T bits, will be less than the summation of the inoming pakets of R and
S bits and often larger than the lower individual inoming pakets of size min(R, S)bits, ie, min(R, S) < T < R + S.Based in the above example, a key fator in the proess of data aggregation isthe routing sheme, whih determines where the aggregation shall be performed. Forin-network data aggregation to be realized, some form of synhronization is neededamong the nodes. Typially, in these algorithms, a node usually does not send dataas soon as it is available sine waiting for data from neighboring nodes may lead tobetter data aggregation opportunities. This in turn, will improve the performane ofthe algorithm and save energy. Three main timing strategies are found in the literature[Solis and Obrazka, 2004, Hu et al., 2005℄:� Periodi simple aggregation: requires eah node to wait for a pre-de�ned periodof time while aggregating all reeived data paket and, then, forwards a singlepaket with the result of the aggregation.� Periodi per-hop aggregation: quite similar to the previous approah, but theaggregated data paket is transmitted as soon as the node hears from all of itshildren. This approah requires eah node to know the number of its hildren.In addition, a timeout may be used for the ase of some hildren's paket beinglost.� Periodi per-hop adjusted aggregation: adjusts the transmission time of a nodeaording to this node's position in the gathering tree.Note that the hoie of the timing strategy strongly a�ets the aggregation ratein-network and lateny to report data olleted. If the waiting time in aggregation pointis high, the lateny and aggregation rate is higher. If the waiting time in aggregationpoints is low, the lateny and aggregation rate is lower.



2.2. In-network Data Aggregation 112.2.1 Routing Sheme Aware Data AggregationIn-network data aggregation plays an important role in energy onstrained WSNs sinedata orrelation is exploited and aggregation is performed at intermediate nodes redu-ing size and the number of messages exhanged aross the network. In data gatheringbased appliations, a onsiderable number of ommuniation pakets an be redued byin-network aggregation, resulting in a longer network lifetime. The problem of obtain-ing the optimal aggregation tree is known to be NP −Hard [Al-Karaki et al., 2004℄,whih is equivalent to the Steiner tree problem [Krishnamahari et al., 2002℄.De�nition 1 (Steiner Tree) given a network represented by a graph G = (V,E),where V = {v1, v2, . . . , vn} is the set of sensor nodes, E is the set of edges representingthe onnetions among the nodes, i.e., 〈i, j〉 ∈ E i� vi reahes vj, and w(e) is the ost ofedge e, a minimal ost tree is to be built that spans all soure nodes S = {s1, s2, . . . , sm},
S ⊆ V , and the sink node s0. The ost of the resulting Steiner tree (W ) is the sum ofthe osts of its edges. This problem is a well-known NP-hard problem.In the literature, there are di�erent heuristis to the Steiner tree prob-lem, some of them present 1.598 approximation fator [Hougardy and Prömel, 1999,Robins and Zelikovsky, 2000℄. However, those solutions are not a�ordable to resoure-onstrained networks, suh as WSNs, sine their distributed implementation requiresa large amount of messages to setup the routing tree, whih onsequently leads to highenergy onsumption.Some researh e�orts have also been made to develop routing algorithms forWSNs. Table 2.1 presents a summary of the basi harateristis of the main proposedrouting protools for WSNs. In this work, we lassify these proposals into three at-egories: tree-based, luster-based, and struture-less algorithms. In the next setions,we will brie�y review these protools and their strutures.2.2.1.1 Tree-Based ApproahesProtools in this family [Al-Karaki and Kamal, 2004, Akkaya and Younis, 2005,Fasolo et al., 2007℄ are usually based on a hierarhial organization of the nodes inthe network. In fat, the simplest way to aggregate data �owing from the soures tothe sink node is to elet some speial nodes that work as aggregation points and de�nea preferred diretion to be followed when forwarding data.In these protools, a tree struture is onstruted �rst and then used later to eitherroute the gathered data or respond to queries sent by the sink node. Aggregation isperformed during the routing when two or more data pakets arrive at the same node



12 Chapter 2. BakgroundTable 2.1. Summary of the basi harateristis of some data aggregation awarerouting protoolsSheme Route Stru-ture Objetive AggregationNodes Overhead Salability DrawbakLEACH Cluster-based Maximize life-time Clusterheads Medium Low Low salabil-itySPT Tree Shortest-Path Opportunisti Low High Data redun-danyGIT Tree with pathsharing Minimize totalenergy ost Intermediatenodes Very High Very Low High ostCNS Tree Aggregate loserto the sink Aggregator node High Medium Only oneaggregationpointInFRA Tree-based lus-ter Maximize over-lap routes Clusterheadsand intermediatenodes Very High Low Low salabil-ity and highostDAARP Tree-based lus-ter Maximize over-lap routes Clusterheadsand intermediatenodes Medium Medium Stati routesDDAARP Tree-based lus-ter Maximize over-lap routes Clusterheadsand intermediatenodes Low Medium Requiresglobal knowl-edgeDST Based onstraight linesegments andluster Maximize over-lap routes andminimize over-head Clusterheadsand intermediatenodes Very Low Very High Requires posi-tion informa-tionDAA Anyast Minimize over-head Intermediatenodes Very Low Very High Not all paketsmay be aggre-gatedof the tree. This node then aggregates all reeived data with its own data and forwardsonly one paket to its neighbor that is lower in the tree. However, this approah hassome drawbaks. For instane, when a paket is lost at a ertain level of the tree (e.g.,due to hannel impairments), data from the whole sub tree will be lost as well. Thus,tree-based approahes require a mehanism for fault tolerane to reliably forward theaggregated data.Despite the potentially high ost of maintaining a hierarhial struture in dy-nami networks and the sare robustness of the system in ase of link/devie fail-ures, these approahes are still partiularly suitable for designing optimal aggregationfuntions and performing e�ient energy management. For instane, there are someproposed solutions [III et al., 2007, Villas et al., 2010a℄ where the sink node organizesrouting paths to evenly and optimally distribute the energy onsumption while stillfavoring the aggregation of data at the intermediate nodes.In most ases, tree-based protools build a traditional shortest path routing tree.For instane, the Shortest Path Tree (SPT) algorithm [Krishnamahari et al., 2002℄uses a very simple strategy to build a routing tree in a distributed fashion. In thisapproah, every node that detets an event reports its olleted information by using ashortest path to the sink node. Data aggregation ours whenever paths overlap (op-portunisti data aggregation). The Direted Di�usion [Intanagonwiwat et al., 2003℄algorithm is one of the earliest solutions to also propose attribute-based routing.



2.2. In-network Data Aggregation 13In these ases, data an be opportunistially aggregated when they meet at anyintermediate node. Based on Direted Di�usion, the Greedy Inremental Tree(GIT) [Intanagonwiwat et al., 2002℄ approah was proposed. The GIT algorithm estab-lishes an energy-e�ient path and greedily attahes other soures onto the establishedpath. In the GIT strategy, when the �rst event is deteted, nodes send their infor-mation as in the SPT algorithm and, for every new event, the information is routedusing the shortest path to the urrent tree. There is a new aggregation point everytime a new branh is reated. Some pratial issues make GIT not appropriate inWSNs [Nakamura et al., 2006℄. For example, eah node needs to know the shortestpath to all nodes in the network. The ommuniation ost to reate this infrastrutureis O(n2), where n is the number of nodes. Furthermore, the spae needed to store thisinformation at eah node is O(Dn), where D is the number of hops in the shortestpath onneting the farthest node v ∈ V to the sink node (network diameter). Afterthe initial phase the algorithm needs O(mn) messages to build the routing tree, where
m is the number of soure nodes.Another interesting solution is the Center at Nearest Soure (CNS) algo-rithm [Krishnamahari et al., 2002℄. In CNS, every node that detets an event sendsits information to a spei� node, alled the aggregator, by using a shortest path. Theaggregator is the losest node to the sink (in hops) that detets an event. CNS reduesthe amount of data sent to the sink in relation to the lassial approahes, but theoverhead in CNS is highly dependent on the events' ourrene positions. In senarioswith many events ourring simultaneously, CNS has a high ost to hange the aggre-gator node. In this algorithm, data redundany is only redued when it is already loseto the sink node.2.2.1.2 Cluster-Based ApproahesSimilarly to tree-based approahes, luster-based shemes [Chandrakasan et al., 2002,Nakamura et al., 2006, Villas et al., 2009, Villas et al., 2010a℄ also onsist of a hierar-hial organization of the network. However, in this approah, nodes are subdividedinto lusters. Moreover, speial nodes, referred to as luster-heads, are eleted to ag-gregate data loally and transmit the result of suh an aggregation to the sink node.In the Low-Energy Adaptive Clustering Hierarhy (LEACH) algo-rithm [Chandrakasan et al., 2002℄, lustered strutures are exploited to performdata aggregation. In this algorithm, luster-heads an at as aggregation points andthey ommuniate diretly to the sink node. In order to evenly distribute energyonsumption among all nodes, luster-heads are randomly eleted in eah round.



14 Chapter 2. BakgroundLEACH-based algorithms assume that the sink an be reahed by any node in onlyone hop, whih limits the size of the network for whih suh protools an be used. Inaddition, in senarios where the data an not be perfetly aggregated, LEACH-basedprotools do not neessarily have signi�ant advantage sine the luster-heads have tosend many pakets to the sink using a high transmission power.The Information Fusion-based Role Assignment (InFRA) algo-rithm [Nakamura et al., 2006℄ builds a luster for eah event inluding only thosenodes that were able to detet it. Then, luster-heads merge the data within theluster and send the result to the sink node. The InFRA algorithm aims to buildthe shortest path tree that maximizes the information fusion. One lusters areformed, luster-heads hoose the shortest path (to the sink node) that maximizesthe information fusion with already formed paths/lusters [Nakamura et al., 2006℄. Adisadvantage of the InFRA algorithm is that for eah new event that arises in thenetwork, the information about the event must be �ooded throughout the network toinform other nodes about its ourrene and to update the paths from the alreadyexisting luster-heads to the sink node. This proedure limits InFRA's salability.Another interesting solution is the Data Aggregation Aware Routing Protool(DAARP) [Villas et al., 2009℄. For eah event this algorithm performs the lusteringof nodes that deteted the same event, as well as the eletion of a luster-head. Then,luster-heads merge data within the luster and send the result to the sink node.After the luster-head formation, routes are reated by seleting nodes in the shortestpath (in hops) to the nearest node that is part of an existing routing infrastruturein whih this node will be an aggregation point. The DAARP routing infrastruturetends to maximize the aggregation points and uses fewer ontrol pakets to build thepaths. Di�erent from InFRA, DAARP does not �ood a message to the whole networkwhenever a new event ours. DAARP is not feasible for senarios with long durationevents beause the routes are stati, whih quikly onsumes the energy of the nodesthat are part of the routing struture.The Dynami Data Aggregation Aware Routing Protool(DDAARP) [Villas et al., 2010a℄ adds an improvement over DAARP. In the DDAARPalgorithm, the routes are omputed at the sink node and do not depend on the orderof events. Routes reated by DDAARP are not kept �xed throughout the durationof events, i.e., routes may hange when neessary. The drawbak of this proposalis that pakets ontaining information from nodes tend to inrease their size at theinformation olleting stage and this solution beomes impratial for large-salenetworks. In addition, the sink node needs to have a global knowledge of the network,suh as node positions, residual energy of nodes, and nodes that deteted events.



2.3. Exploiting Spatio-Temporal Correlation 152.2.1.3 Struture-Less ApproahesFew algorithms for routing aware of data aggregation have been proposed that use astruture-less approah. The Data-Aware Anyast (DAA) algorithm [Fan et al., 2006℄,a struture-less data aggregation algorithm, uses anyast to forward pakets to one-hop neighbors that have pakets to be aggregated. It involves mehanisms to inreasethe hane of pakets meeting at the same node (spatial aggregation) at the sametime (temporal aggregation). Sine the approah does not guarantee aggregation of allpakets, the ost of transmitting pakets with no aggregation inreases with the sizeof the network. In addition, pakets that are unable to be aggregated will not bene�tfrom the energy savings ahieved by eliminating the ontrol overhead.The Dynami and Salable Tree (DST) algorithm [Villas et al., 2010b℄ aims tobuild a routing tree with the shortest routes (in Eulidean distane) that onnetsall soure nodes to the sink node, maximizing data aggregation while reduing thedistane onneting eah oordinator node to the sink. Routes are based on straightline segments, whih are omputed by the oordinator nodes. The reated paths donot depend on the event order. Similar to all approahes that do not exploit thespatial orrelation, DST does not show a good performane in senarios where manynodes detet the same event, sine nodes that report information about the event anonsume their energy quikly.2.3 Exploiting Spatio-Temporal CorrelationIn this setion, we present the bene�ts of exploiting spatio-temporal data orrelationin WSNs. We also disuss some of the existing approahes and algorithms that takeadvantage of spatio-temporal orrelation in WSNs. Table 2.2 presents a summary ofthe basi harateristis of the main proposed spatial and/or temporal data orrelationsalgorithms for WSNs.In the urrent literature, we an �nd three main ategories of data orrelationprotools: (i) spatial orrelation; (ii) temporal orrelation and (iii) spatio-temporalorrelation. In the following, we present some of these protools as well as the bene�tsof exploiting spatial/temporal data orrelation in WSNs.2.3.1 Spatial CorrelationIn a WSN, nodes that detet the same event are typially grouped to save energy, anda node is eleted as the oordinator of the group [Chandrakasan et al., 2002,



16 Chapter 2. BakgroundTable 2.2. Summary of the basi harateristis of the main proposed spatialand/or temporal data orrelations algorithms for WSNsSheme RouteStruture Objetive SpatialCorrel. TemporalCorrel. Overhead Salability DrawbakEEDC Single hop Eliminate on-trol overhead Yes No Very Low Very Low Centralizedand single-hopnetworkCAG Tree-basedluster Eliminate dataredundany Yes No Very High Medium Maintenanedata-entriGSC Tree-basedluster Eliminate dataredundany Yes No High Low Is not appliedto multi-hopmembersSBR Tree-based Eliminate dataredundany No Yes Medium High Sink nodean reeiveoutdated infor-mationSCCS Tree-basedluster Eliminate dataredundany Yes Yes Medium High Sink nodean reeiveoutdated infor-mationEAST Based onstraight linesegmentsand luster Maximize over-lap routes andminimize on-trol overhead Yes Yes Very Low Very High Requiresposition infor-mationYoon and Shahabi, 2005, Yuan and Chen, 2009, Nakamura et al., 2009,Villas et al., 2009, Villas et al., 2010a, Villas et al., 2010b, Villas et al., 2011℄. Theeleted node is then responsible for reeiving all the event noti�ations and forwardingthem toward the sink node. The energy onsumption of the nodes that detet eventsis greater than the other network nodes (see Figure 2.3(a)). This ours beause nodeswithin the group (nodes that detet events) onsume a great deal of energy reeivingand forwarding data pakets from their neighbors, besides their own noti�ations.As an initial motivation, Figure 2.3 presents the energy onsumption in the pro-ess of data olletion in a WSN of two di�erent routing approahes when the sinknode, loated at position (0,0), reeives data from a deteted event that has a radius of70m and is loated at position (600,600). The �rst approah (Figure 2.3(a)) is a simplemethod for data olletion where all nodes that deteted the event send the sensed datatoward the sink node. The seond approah (Figure 2.3(b)) is a more sophistiatedstrategy that uses spatial orrelation to save energy. In this ase, only a subset of nodesthat deteted the event sends sensory data to the sink node. In both senarios, thenoti�ation of the deteted event was performed at eah seond, and the event durationwas of only 10m. The �rst approah (Figure 2.3(a)) sends 32157 noti�ations, whereasthe seond approah (Figure 2.3(b)) sends only 5667 noti�ations.The di�erene between the two approahes is notable and, by using spatial or-relation, the seond approah was able to save a large amount of energy, extending theoverall network lifetime.The spatial orrelation of sensory information among the nodes that detet anevent exists when those nodes are geographially lose, i.e., they have similar infor-
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(b)Figure 2.3. Energy onsumption of nodes during the data olletion when using(a) a lassial approah; and when using (b) a spatial orrelation based approah.mation. In this ase, instead of having all sensor nodes reporting the same data, it ismore e�ient to hoose a few representative nodes to notify the sink node about thedeteted event (see Figure 2.3(b)). A representative node reports the event informationof a given area on behalf of a group of nodes that ollets similar information in thesame area.Akyildiz et al. [Akyildiz et al., 2004℄ studied the relation between reliability ofevent detetion and spatial loation of the sensor nodes in the event area. Their solu-tion estimates the number of sensor nodes (representative nodes) required to send thedeteted event to the sink in order to have reliable event information. Eah represen-tative node represents a spatially orrelated group of nodes. Although their solutionahieves overall energy gain, it fails to onsider the remaining energy during the se-letion of the representative nodes � an assumption that should not be negleted in aWSN beause of hardware onstraints. Thus, if a representative node works in the or-relation region for a long period of time, it will spend more energy due to the numberof transmitted messages ompared to the other nodes.Yoon and Shahabi [Yoon and Shahabi, 2005℄ proposed a new mehanism for spa-tial orrelation in WSNs. The proposed mehanism, alled Clustered AggregationTehnique (CAG), reates lusters of nodes with similar sensing values and only anode inside the luster noti�es its reading to the Sink node whereas the other nodesignore their readings. The CAG algorithm is divided into two phases: query andresponse. In the query phase, the data-entri lusters are reated aording to a user-spei�ed error threshold τ . Nodes that have sensed values smaller than this threshold



18 Chapter 2. Bakgroundbelong to the same luster. In the seond phase (response phase), just one node perluster (luster-head) sends its sensed value to the sink node notifying the detetedevent. The authors showed that the proposed mehanism an redue signi�antly thenumber of transmitted messages during the data olletion. However, during the �rstphase, the CAG algorithm uses a �ooding-based protool to disseminate the query toall sensor nodes, whih is not needed in most senarios. Moreover, the maintenane ofthe data-entri lusters remains a di�ult problem [Boukerhe et al., 2003℄.Liu et al. [Liu et al., 2007a℄ proposed another lustering algorithm, namedEnergy-E�ient Data Colletion framework (EEDC), to exploit spatial data orre-lation. They onsider that nodes ollet data ontinuously and are one-hop onnetedto the sink node or to a enter node. The algorithm was designed to be exeuted atthe sink node, sine this node has the entire data network information. The algorithmreates lusters of nodes that are spatially orrelated. Also, the sink node manages theluster formation dynamially in order to re�et environmental hanges. The primarylimitation of that sheme is the assumption of the single-hop ommuniation. Thisassumption is impratial in a distributed system and di�ult to have in large-salewireless sensor networks. Another disadvantage is the lustering algorithm that is en-tralized at the sink node. Beause of this, all network data needs to be sent to the sinknode, whih will store and proess a great amount of data.Shah et al. [Shah and Bozyigit, 2007℄ proposed a new mehanism for spatial or-relation in WSNs, named Gridiron Spatial Correlation (GSC). The GSC is adaptiveto ahieve the required reliability by dynamially hanging the orrelation region. Theorrelation regions are formed as squared retangles and nodes lying in the retangleare assumed to be spatially orrelated. Cluster-head identi�es the redundant and losesoures in its viinity and turns o� the ativity of nodes by onsidering their energylevel and loseness as riterion. The limitation of GSC is the ontrol mehanism whihis not applied to multi-hop members, ie, it only works well for senarios where theevent radius is smaller than the ommuniation radius of the luster-head.2.3.2 Temporal CorrelationSensor readings about the environment are typially periodi; onsequently, the time-ordered sequene of sensed data onstitutes a time series (see Figure 2.4(a)). Due to thenature of the physial phenomenon, there is a signi�ant temporal orrelation amongeah onseutive observation of a sensor node and gathered data is usually similarover a short-time period. For example, in a daily sampling of temperature performedat eah minute, the temperature may not hange signi�antly. Thus, in these ase,



2.3. Exploiting Spatio-Temporal Correlation 19sensor nodes do not need to transmit their readings if the urrent reading is within anaeptable error threshold regarding the last reported reading (see Figure 2.4(b)). Thesink node an just assume that any unreported data is unhanged from the previouslyreeived ones. The degree of orrelation between onseutive sensor measurementsmight vary aording to the harateristis of the phenomenon.The temporal orrelation an be aptured by mathematial models suh aswavelet transforms or linear models [Liu et al., 2007a℄ (see an example in Figure 2.4).Therefore, the time series an be approximated using a suitable mathematial model.The result obtained is the amount of approximating data, and is usually muh lowerthan the volume of the whole data series. Transferring approximation data, instead ofraw data, an signi�antly redue energy onsumption on ommuniation within thenetwork.
(a) (b)Figure 2.4. (a) The time series and (b) The pieewise linear presentationVuran et al. [Vuran et al., 2004℄ proposed a new framework to reate data entriprotools that explore the nature of the physial phenomenon observed by a WSN.The main goal of the framework is to inorporate temporal orrelation among onseu-tive observations of the phenomenon to redue ommuniation osts. The authors alsoexplore spatial orrelation by showing that nearby nodes tend to have the same ob-served data. The proposed framework an be used in two ways: (i) to develop e�ientprotools, and (ii) to develop reliable sensed information reporting in WSN.Deligiannakis and Kotidis [Deligiannakis and Kotidis, 2008℄ proposed a frame-work based on temporal orrelation that uses a Self-Based Regression (SBR) algo-rithm [Deligiannakis et al., 2004℄ to derease the number of transmitted messages re-quired to monitor a physial phenomenon. The goal of the SBR algorithm is to proessthe observed data before sending it to the sink node. The framework stores the sensedinformation in a bu�er and, when it is full, the SBR algorithm proesses the data to�nd representative information. The authors laim that by sending just the represen-tative information, the sink node an reonstrut the observed event without losingauray. However, the main drawbak of suh an approah is the waiting time untilthe bu�er �lls up. In this ase, the sink node an reeive outdated information about



20 Chapter 2. Bakgroundthe sensed event.2.3.3 Spatio-Temporal CorrelationThe spatio-temporal orrelation happens when the nature of the olleted data has bothspatial and temporal orrelations, i.e., nodes lose geographially have the same readingthat is similar to the previous one. In this ase, solutions that use both orrelations antake advantage of the nature of the deteted event to derease the number of reporteddata. Pham et al. [Pham et al., 2008, Pham et al., 2010℄ proposed a spatio-temporalsolution, alled Spatiotemporal Clustering and Compressing Shemes (SCCS), whihuses a bu�er to store the monitored data. When the bu�er is full, SCCS exeutesa divide and onquer algorithm (DCA) to �nd the representative information insidethe bu�er exploring the temporal orrelation. The goal of the DCA is to �nd theminimum data set to be transmitted to the sink node. Considering all readings insidethe bu�er, the DCA reates a dividing line between the �rst element and the last one.For eah bu�er data, the algorithm alulates the distane between this value and thereated line. If the value is smaller than a prede�ned threshold, the solution indiatesthat it has already been onsidered so that it is not neessary to inlude it again inthe paket to be sent to the sink. When the value is greater than the threshold, thealgorithm splits the line into two (one line up to this value and another one up to theendpoint of the previous line). When a line is split into two lines, all bu�er valuesare veri�ed again. These steps are repeated until a reated line is not split into twoanymore. Also, the SCCS solution reates a luster among nodes that sensed the eventin order to perform spatial orrelation to redue the number of transmitted messages.As mentioned before, by using a bu�er to perform the temporal orrelation, the waitingtime to deliver the gathered data an be inappropriate for a number of real-time sensornetwork appliations.Xu et al. [Yu et al., 2006℄ proposed a wavelet-based spatio-temporal data om-pression algorithm for WSNs. Their algorithm employs a ring topology that exploressimultaneously the temporal and spatial orrelations among the sensed data. The al-gorithm onsiders that the sensor network is divided into lusters and eah luster isontrolled by a luster head. The algorithm also onsiders a virtual grid where thenodes inside eah ell have spatial and temporal orrelation. The nodes exeute awavelet transform algorithm to ompress the sensed data on the ring in suh a wayit an be energy e�iently transmitted to its luster head and then, delivered to thesink node. However, the authors did not investigate the proessing task to exeute the



2.4. Final Remarks 21proposed wavelet transform in sensor nodes with limited apabilities. Also, the reatedvirtual grid is not based on the event harateristis, whih an result in inaurateinformation.Most of the urrent work on spatial and/or temporal orrelation algorithms doesnot onsider the energy dissipation and the event harateristis during data olletionto better hoose the representative nodes. Also, these solutions usually result in highdelays and outdated data arriving at the sink node. The proposed algorithm, alledEAST, presented in the Chapter 6, exploit both spatial and temporal orrelations toperform near real-time data olletion in WSNs. In our algorithm nodes that detetedthe same event are dynamially grouped in orrelated regions and a representative nodeis seleted at eah orrelation region for observing the phenomenon. The entire regionof sensors per event is e�etively a set of representative nodes performing the task ofdata olletion and spatio-temporal orrelation.2.4 Final RemarksThis hapter presents the main aspets of WSNs, inluding their main features, om-mon requirements and operation. Note that energy is a key fator in designing solutionsfor WSNs. The lifetime of the network depends on the adoption of measures to saveenergy. This hapter was also introdued the onept of in-networking data aggrega-tion and spatio-temporal data orrelation and some solutions in the literature. Thenext hapters desribe the work done and obtained results.





Chapter 3DAARP: Data Aggregation AwareRouting Protool
The DAARP is a novel reative data aggregation aware routing protool for WSNs.The main motivation to design a new data aggregation aware routing protool is thatthe solutions in the literature presents high ost to reate routing strutures awareof data aggregation. The main goal of our proposed DAARP algorithm is to build arouting tree with the shortest paths that onnet all soure nodes to the sink whilemaximizing data aggregation. The proposed algorithm onsiders the following roles inthe routing infrastruture reation:� Collaborator: a node that detets an event and reports the gathered data to aoordinator node;� Coordinator: a node that also detets an event and is responsible for gatheringall the gathered data sent by ollaborator nodes, aggregating them and sendingthe result toward the sink node;� Sink: a node interested in reeiving data from a set of oordinator and ollabo-rator nodes;� Relay: a node that forwards data toward the sink.The DAARP algorithm an be divided into three phases. In Phase 1, the hoptree from the sensor nodes to the sink node is built. In this phase, the sink node startsbuilding the hop tree that will be used by Coordinators for data forwarding purposes.Phase 2 onsists of luster formation and luster-head eletion among the nodes thatdeteted the ourrene of a new event in the network. Finally, Phase 3 is responsible23



24 Chapter 3. DAARP: Data Aggregation Aware Routing Protoolfor both setting up a new route for the reliable delivering of pakets and updating thehop tree.3.1 Building the Hop TreeIn this phase, the distane from the sink to eah node is omputed in hops. This phaseis started by the sink node sending, by means of a �ooding, the Hop Con�gurationMessage (HCM) to all network nodes. The HCM message ontains two �elds: ID andHopToTree, where ID is node identi�er that started or retransmitted the HCM messageand HopToTree is the distane, in hops, by whih an HCM message has passed.The HopToTree value is started with value 0 at the sink, whih forwards it to itsneighbors (at the beginning, all nodes set the HopToTree as in�nity). Eah node, uponreeiving the message HCM, veri�es if the value of HopToTree in the HCM message isless than the value of HopToTree that it has stored and if the value of FirstSendingis true, as shown in Algorithm 1 - Line 3. If that ondition is true then the nodeupdates the value of the NextHop variable with the value of the �eld ID of messageHCM, as well as the value of the HopToTree variable, and the values in the �elds ID andHopToTree of the HCM message. The node also relays the HCM message, as shown inAlgorithm 1 - Line 8. Otherwise, if that ondition is false, whih means that the nodealready reeived the HCM by a shorted distane, then the node disards the reeivedHCM message, as shown in Algorithm 1 - Line 12. The steps desribed above ourrepeatedly until the whole network is on�gured.Before the �rst event takes plae, there is no established route and the HopToTreevariable stores the smallest distane to the sink. On the �rst event ourrene,HopToTree will still be the smallest distane; however, a new route will be established.After the �rst event, the HopToTree stores the smaller of two values: the distane tothe sink or the distane to the losest already established route.3.2 Cluster Formation and Leader EletionWhen an event is deteted by one or more nodes, the leader eletion algorithm startsand sensing nodes will be running for leadership (group oordinator); this proess isdesribed in Algorithm 2. For this eletion, all sensing nodes are eligible. If this is the�rst event, the leader node will be the one that is losest to the sink node. Otherwise,the leader will be the node that is losest to an already established route (Algorithm 2,Lines 7 to 9). In the ase of a tie, i.e., two or more onurrent nodes have the same



3.3. Routing Formation, Hop Tree Updates and Data Transmission 25Algorithm 1: Building the hop tree1 Node sink sends a broadast of HCM messages with the value of HopToTree = 0;// Ru is the set of nodes that reeived the message HCM2 foreah u ∈ Ru do3 if HopToTree(u) > HopToTree(HCM) and FirstSending(u) then4 NextHopu ← IDHCM ;5 HopToTreeu ← HopToTreeHCM + 1 ;// Node u updates the value of the ID field in the message HCM6 IDHCM ← IDu ;// Node u updates the value of the HopToTree field in the message HCM7 HopToTreeHCM ← HopToTreeu ;8 Node u sends a broadast message of the HCM with the new values;9 FirstSendingu ← false ;10 end11 else12 Node u disards the reeived message HCM;13 end14 enddistane in hops to the sink (or to an established route), the node with the smallest IDmaintains eligibility, as shown in Lines 11 to 13 of Algorithm 2. Another possibility isto use the energy level as a tiebreak riterion.At the end of the eletion algorithm only one node in the group will be delared asthe leader (Coordinator). The remaining nodes that deteted the same event will be theCollaborators. The Coordinator gathers the information olleted by the Collaboratorsand sends them to the sink. A key advantage of this algorithm is that all of theinformation gathered by the nodes sensing the same event will be aggregated at a singlenode (the Coordinator), whih is more e�ient than other aggregation mehanisms(e.g., opportunisti aggregation).3.3 Routing Formation, Hop Tree Updates andData TransmissionThe eleted group leader, as desribed in Algorithm 2, starts establishing the newroute for the event dissemination. This proess is desribed in Algorithm 3, (Lines 2to 10). For that, the Coordinator sends a route establishment message to its NextHopnode. When the NextHop node reeives a route establishment message, it re-transmitsthe message to its NextHop and starts the hop tree updating proess. These steps arerepeated until either the sink is reahed or a node that is part of an already established



26 Chapter 3. DAARP: Data Aggregation Aware Routing ProtoolAlgorithm 2: Cluster formation and leader eletion1 Input: S // Set of nodes that deteted the event2 Output: u // A node of the set S is eleted leader of the group3 foreah u ∈ S do4 roleu ← coordinator;// Node u sends message MCC in broadast5 Announement of event detetion ;// Nu is the set of neighbors of node u ∈ S6 foreah w ∈ Nu do7 if HopToTree(u) > HopToTree(w) then8 roleu ← collaborator ;9 Node u retransmits the MCC message reeived from node w ;10 end11 else if HopToTree(u) = HopToTree(w) ∧ ID(u) > ID(w) then12 roleu ← collaborator ;13 Node u retransmits the MCC message reeived from node w;14 end15 else16 Node u disards the MCC message reeived from w;17 end18 end19 endroute is found. The routes are reated by hoosing the best neighbor at eah hop. Thehoies for the best neighbor are twofold: (i) when the �rst event ours, the nodethat leads to the shortest path to the sink is hosen (Figure 3.1(a)); and (ii) after theourrene of subsequent events, the best neighbor is the one that leads to the losestnode that is already part of an established route (Figure 3.1()). This proess tendsto inrease the aggregation points, ensuring that they our as lose as possible to theevents.The resulting route is a tree that onnets the Coordinator nodes to the sink.When the route is established, the hop tree updating phase is started. The main goalof this phase is to update the HopToTree value of all nodes so they an take intoonsideration the newly established route. This is done by the new relay nodes thatare part of an established route. These nodes send an HCM message (by means of aontrolled �ooding) for the hop updating (Figure 3.1(b)). The whole ost of this proessis less than a �ooding, i.e. only the set of nodes inside the sope-limited �ooding for theevent will send one paket for the hop updating. This algorithm for the hop updatingfollows the same priniples of the hop tree building algorithm, desribed in Setion 3.1.The data transmission performed by DAARP uses aggregation tehniques that
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(a) Example of the routing treeto 1 event (b) Update of the hop tree () Example of the routing treeto eventFigure 3.1. Example of establishing new routes and updating the hop treeAlgorithm 3: Route formation, hop tree updates and data transmission1 Leader node v of the new event sends a message REM to its NextHopv ;2 repeat// u is the node that reeived the REM message, that was sent by node v3 if u = Nextopv then4 HopToTreeu ← 0 ;// Node u is part of the new route built5 Roleu ← Relay ;6 Node u sends the message REM to its NextHopu ;7 Node u broadasts the message HCM with the value of HopToTree = 1;8 Nodes that reeive the HCM message sent by node u, will run theommand Line 2 until the Line 14 of Algorithm 1;9 end10 until Find out the sink node or a node belonging to the routing struture alreadyestablished ;11 while The node has data to transmit/retransmit do// sonsu is the number of desendants of u12 if sonsu > 1 then13 Aggregates all data and sends it to the nexthopu;14 end15 else16 Forwards the data to nexthopu;17 end18 Exeute the mehanism of Setion 3.419 endare applied in three di�erent ontexts: 1) luster inside opportunisti aggregation; 2)leader inside aggregation; and 3) luster outside aggregation. When the routes overlapinside the luster, the aggregation is performed by the ollaborator nodes (luster insideopportunisti aggregation). Furthermore, the leader node performs data aggregationand sends the results to the sink node (leader inside aggregation). Outside the luster,aggregation is performed by the relay nodes when two or more events overlap along



28 Chapter 3. DAARP: Data Aggregation Aware Routing Protoolrouting (luster outside aggregation).The proess of data transmission is desribed in Algorithm 3 (Lines 11 to 19).While the node has data to transmit, it veri�es whether it has more than one desendantthat relays its data (Line 12 of Algorithm 3). If it is the ase, it waits for a period of timeand aggregates all data reeived and sends the aggregated data to its NextHop (Line 13of Algorithm 3). Otherwise, it forwards the data to its NextHop. For every pakettransmission with aggregated data, the Route Repair Mehanism is exeuted as shownin Line 18 of Algorithm 3. A route repair mehanism is used to send informationin a reliable way. Sender nodes wait a pre-de�ned time period to reeive a paketdelivery on�rmation. When the on�rmation is not reeived by the sender node, anew destination node is seleted and the message is retransmitted by that node. Thisroute repair mehanism (Line 18 of Algorithm 3) is desribed in Setion 3.4.3.4 Route Repair MehanismThe route reated to send the data toward the sink node is unique and e�ient sine itmaximizes the points of aggregation and, onsequently, the data aggregation. However,beause this route is unique, any failure in one of its nodes will ause disruption,preventing the delivery of several gathered event data. Possible auses of failure inludelow energy, physial destrution, and ommuniation blokage. Some fault tolerantalgorithms for WSNs have been proposed in the literature. Some are based on periodi�ooding mehanisms [Intanagonwiwat et al., 2000, Hill et al., 2000℄, and rooted at thesink, to repair broken paths and to disover new routes to forward tra� around faultynodes. This mehanism is not satisfatory in terms of energy saving beause it wastesa lot of energy with repairing messages. Furthermore, during the network �oodingperiod, these algorithms are unable to route data around failed nodes, ausing datalosses.Our DAARP algorithm o�ers a piggybaked, ACK-based, route repair meha-nism, whih onsists of two parts: failure detetion at the NextHop node, and seletionof a new NextHop.When a relay node needs to forward data to its NextHop node, it simply sendsthe data paket, sets a timeout, and waits for the re-transmission of the data paketby its NextHop. This re-transmission is also onsidered an ACK message. If the senderreeives its ACK from the NextHop node, it an infer that the NextHop node is aliveand, for now, everything is ok. However, if the sender node does not reeive the ACKfrom the NextHop node within the pre-determined timeout, it onsiders this node as



3.5. Complexity Analysis 29o�ine and another one should be seleted as the new NextHop node. For this, thesender hooses the neighbor with the lowest hop-to-tree level to be its new NextHop;in ase of a tie, it hooses the neighbor with the highest energy level. After that, thesender updates its routing table to failitate the forwarding of subsequent pakets. Asan example, a disrupted route is shown in Figure 3.2(a). After the repairing mehanismis applied, a newly partial reonstruted path is reated as depited in Figure 3.2(b).
(a) Region with destroyed nodes (b) Repaired pathFigure 3.2. Example of path repair

3.5 Complexity AnalysisIn this setion we derive the ommuniation ost bounds for DAARP, InFRA, and SPTalgorithms (brie�y desribed in Setion 2.2.1). These two algorithms were hosen forbeing well known in the literature and have the same goals that the proposed DAARPalgorithm. More spei�ally, we present the limits for the ommuniation ost of thesealgorithms to reate the routing struture. We also present the best and worst ases,while the average ase will be shown in the simulation results (see Setion 3.6).In the SPT algorithm, there is linear ommuniation ost to build the routinginfrastruture. In a reative fashion operation, it is neessary one �ooding started bythe nodes that sensed the �rst event in order to build the routing tree. One more�ooding, initiated by the sink node, is also neessary for the other nodes to set up theiranestors in the tree infrastruture. Hene, the onstant ommuniation ost for SPTis 2n, where n is number of nodes.The InFRA algorithm also presents onstant ommuniation osts sine it needsone �ooding for every eleted luster head, followed by one �ooding initiated by the sinknode. Eah �ooding is neessary to set up and update the aggregated oordinators-distane at eah node. Also, it is neessary m transmissions to reate the luster, where
m is number of transmissions to reate the lusters. For this reason, InFRA presents



30 Chapter 3. DAARP: Data Aggregation Aware Routing Protoola onstant ommuniation ost of (2kn+m), where n is number of nodes, k is numberof events. The overhead of the InFRA algorithm an be redued in some situations byforing a delay before eah announement of the luster-heads is sent by the sink node.Thus, if suessive events take plae almost simultaneously, only one �ooding startingat the sink will be neessary and the ommuniation ost will be 2n+ (k − 1)n+m.Our proposed DAARP algorithm needs one �ooding from the �rst eleted luster-head and one more �ooding initiated by the sink to building the hop tree. Suessiveluster-heads will make a sope-limited �ooding to update the nodes HopToTree pa-rameter. Thus, the best ase senario for the ommuniation ost is when suessiveevents take plae near the previously established routing tree. The loser the eventtakes plae, the lower the ommuniation ost is; thus, the best ase will be ahievedwhen the events happen on the routing tree. In this ase, eah CH is already attahedto the tree. The number of transmissions to establish the initial routing tree is 2n plus
m transmissions to reate the luster, i.e., the ost is (2n+m). The worst ase of theDAARP algorithm happens when suessive events take plae far from the previouslyreated tree. In this ase, the number of transmissions to build the initial tree is 2n plus
(k−1)n−

∑k
i=2 |Ui| transmissions for the following events plusm messages to reate theluster, where n is number of nodes, k is number of events, m is number of transmissionsto reate the lusters and |Ui| is the ardinality of the set of nodes outside the sope-limited �ooding for the event i, whih will not update their HopToTree for this event.Thus, the worst ase for the DAARP algorithm is (2n+ ((k − 1)n−

∑k
i=2 |Ui|) +m).Table 3.1 presents the ommuniation ost of the algorithms assessed in this work.DAARP requires more ontrol messages ompared to the SPT. However, SPT buildsrouting trees that are worse than the trees built by our DAARP algorithm, thereforethis ost will be reovered by the higher quality of the reated tree as we will show inthe next setion. Regarding to the InFRA algorithm, note that (k− 1)n−

∑k
i=2 |Ui| ismuh smaller than (k − 1)n.Table 3.1. Communiation omplexity of assessed algorithmsAlgorithm Best Case Worst CaseSPT 2n 2nInFRA (2n+ (k − 1)n+m) (2n+ (k − 1)n+m)DAARP (2n+m) (2n+ ((k − 1)n−

∑k

i=2
|Ui|) +m)



3.6. Performane Evaluation 313.6 Performane EvaluationIn this setion, we evaluate the proposed DAARP algorithm and ompare its perfor-mane to two other known routing protools: the InFRA and SPT algorithms. Thesetwo algorithms were hosen for being well known in the literature and have the samegoals that the proposed DAARP algorithm. Table 3.2 shows the basi harateristisof SPT, InFRA and DAARP algorithms. We evaluate the DAARP performane un-der the following metris: (i) paket delivery rate; (ii) ontrol overhead; (iii) e�ieny(pakets per proessed data); (iv) routing tree ost; (v) loss of raw data; (vi) loss ofaggregated data; and (vii) transmissions number.Table 3.2. Summary of the basi harateristis of assessed algorithms.Sheme RouteStruture Objetive AggregationNodes Overhead Salability DrawbakSPT Tree Shortest-Path Opportunisti Low High Data redundanyand stati routesInFRA Tree-basedluster Maximize overlaproutes Clusterheads andintermediate nodes Very High Low Low salabilityand high ostDAARP Tree-basedluster Maximize overlaproutes Clusterheads andintermediate nodes Medium Medium Stati routes
3.6.1 MethodologyThe performane evaluation is ahieved through simulations using the SinalGo ver-sion v.0.75.3 network simulator [Sinalgo, 2008℄. In all results, urves represent averagevalues, while error bars represent on�dene intervals for 95% of on�dene from 33 dif-ferent instanes (seeds). The default simulation parameters are presented in Table 3.3.For eah simulation set, a parameter shown in Table 3.3 will be varied as desribed inthe evaluated senario. The �rst event starts at time 1000 s and all other events start ata uniformly distributed random time between the interval [1000, 3000] seonds. Also,these events our at random positions. The area of the sensor �eld is onsidered asthe relation √

nπr2c/21.7, where n is number of nodes, rc is the ommuniation radius,and 21.7 is the network density. For eah simulation in whih the number of nodesis varied, the sensor �eld dimension is adjusted to maintain the node density to 21.7.Sensor nodes are randomly deployed.To provide a lower bound to the paket transmissions, we used an aggregationfuntion that reeives p data pakets and sends only a �xed size merged paket. How-ever, any other aggregation funtion an be used to take advantage of DAARP fea-tures. This funtion is performed at the aggregation points whenever these nodes senda paket.



32 Chapter 3. DAARP: Data Aggregation Aware Routing ProtoolTable 3.3. Simulation parametersParameter ValueSink node 1 (top left)Network size 1024Communiation radius (m) 80# of events 3Event radius (m) 50Event duration (hours) 3Loss probability (%) 0Simulation duration (hours) 6Noti�ation interval (sec) 60Sensor �eld (m2) 974× 974Node density (node/m2) 21.7The evaluated algorithms used periodi simple aggregation strat-egy [Younis et al., 2006℄ in whih the aggregator nodes transmit periodially thereeived and aggregated information.The following metris were used for the performane evaluation:� Data paket delivery rate: number of pakets that reah the sink node. Thismetri indiates the quality of the routing tree built by the algorithms � thelower the paket delivery rate, the greater the aggregation rate of the built tree;� Control paket overhead : number of ontrol messages used to build the routingtree inluding the overhead to both reate the lusters and set up all the routingparameters for eah algorithm;� E�ieny : pakets per proessed data. It is the rate between the total paketstransmitted (data and ontrol pakets) and the number of data reeived by thesink;� Routing tree ost : total number of edges in the routing tree struture built bythe algorithm;� Loss of aggregated data: number of aggregated data pakets lost during the rout-ing. In this metri, if a paket ontains X aggregated pakets and if this paketis lost, it is aounted the loss of X pakets.� Number of Steiner nodes: number of Steiner nodes in the routing struture, i.e.,the number of relay nodes;



3.6. Performane Evaluation 333.6.1.1 Number of Steiner nodesSine the ideal aggregation is ahieved when the information is routed through the min-imal Steiner tree [Krishnamahari et al., 2002℄, in this setion we evaluate the numberof Steiner tree nodes (i.e., relay nodes) obtained after the onstrution of the routingtree struture for eah of the evaluated algorithms. In this analysis, the network size isvaried from 256 to 2048 sensor nodes; the density varied from 20 to 30; and the numberof events were also varied from 1 to 6.The obtained results are presented in Figure 3.3. We an learly see that thenumber of Steiner nodes in the routing tree built by DAARP algorithm is lower thanthe ones obtained by the SPT and InFRA algorithms in all studied senarios. Whenompared to the MST algorithm, DAARP algorithm results in a slightly larger numberof Steiner nodes. However, the MST algorithm is not suitable for WSNs due to its highoverhead (for building the routing struture) and large amount of required memory(to store the shortest paths to all terminals). We are only omparing our proposedapproah to the MST algorithm beause the number of Steiner nodes in the routingtree built by the MST algorithm is proved to be at most twie the optimum (i.e.,minimum) Steiner tree [Takahashi, 1980℄.The good results obtained by the DAARP algorithm are due to its harateristiof prioritizing nodes that are loser to already existing routes. The InFRA algorithm,on the other hand, prioritizes the distane to the sink node, resulting in lower and/orlater aggregations, whih inreases the number of Steiner nodes.The Tables 3.4, 3.5, 3.6, and 3.7 show a di�erent view of the results presented inFigure 3.3. We an see that in the average ase, DAARP is very lose to MST, of whih,as already mentioned, ost is at most twie the optimal Steiner tree. These results alsoshow that the proposed DAARP algorithm is salable. For instane, Table 3.4 showsthat, on average, the routing struture built by the InFRA algorithm has 35% moreSteiner nodes than DAARP, while Table 3.6 shows that when inreasing the numberof nodes to 2048 this di�erene inreases to 42%.Finally, we an see that in all evaluated senarios, the minimum routing struturesreated by the DAARP algorithm have fewer Steiner nodes than the minimum routingstrutures reated by SPT, InFRA, and even the MST algorithm.3.6.1.2 Impat of the Network SizeIn this simulation senario, the network size was varied from 128 to 1024 to evaluatethe algorithms' salability. Figure 3.4 presents the results. Sine we are not evaluatingthe number of Steiner nodes, the MST algorithm is not inluded in the results. In
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Figure 3.3. Number of Steiner nodes in the routing tree built by the DAARP,InFRA, MST, and SPT algorithms



3.6. Performane Evaluation 35Table 3.4. Senario with 6 events, 256 nodes and density 20Algorithm Min 1st Quart. Median Mean 3rd Quart. MaxDAARP 14 18 19 19.30 21 24INFRA 21 25 26 26.03 28 30MST 19 20 20 20.39 21 24SPT 24 28 30 29.79 32 35Table 3.5. Senario with 6 events, 256 nodes and density 30Algorithm Min 1st Quart. Median Mean 3rd Quart. MaxDAARP 12 14 14 14.45 15 17INFRA 16 19 20 19.67 20 23MST 13 15 16 15.94 17 18SPT 20 22 23 23.61 25 29Table 3.6. Senario with 6 events, 2048 nodes and density 20Algorithm Min 1st Quart. Median Mean 3rd Quart. MaxDAARP 59 66 68 67.58 70 74INFRA 87 93 96 96.21 100 104MST 60 61 62 62.55 64 65SPT 90 98 104 102.90 106 116Table 3.7. Senario with 6 events, 2048 nodes and density 30Algorithm Min 1st Quart. Median Mean 3rd Quart. MaxDAARP 44 50 52 51.85 54 58INFRA 67 73 76 75.48 79 83MST 47 48 48 48.27 49 50SPT 72 78 82 81.33 85 92Figure 3.4(a) we an see that our DAARP algorithm sends only 77% of the data paketssent by InFRA and about 65% of the data pakets sent by SPT. This result learlyindiates that DAARP maintains the quality of the routing tree even when the numberof nodes inreases. Furthermore, Figure 3.4(b) shows that DAARP is more salablethan the InFRA algorithm sine our algorithm needs 30% less ontrol messages to buildthe routing struture. On the other hand, the DAARP algorithm requires, on average,
25% more ontrol messages than the SPT algorithm. However, the routing trees builtby SPT results in 30% less e�ieny than the trees built by DAARP algorithm, asdepited in Figure 3.4(d). At last, Figure 3.4() shows that DAARP is 20% and 28%



36 Chapter 3. DAARP: Data Aggregation Aware Routing Protoolmore e�ient than the InFRA and SPT algorithms, respetively. This ours beauseDAARP algorithm needs less ontrol messages to build the routing tree when omparedto InFRA. Also, the routing tree built by DAARP has a better data aggregation qualitythan InFRA and SPT, as shown in Figure 3.4(d).
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(d) tree ostFigure 3.4. Impat of the Network Size3.6.1.3 Impat of the Number of EventsIn this simulation senario, the number of events was varied to evaluate the behavior ofthe proposed algorithm in networks with 1, 2, 3, 4, 5, and 6 events ourring simultane-ously. The results are presented in Figure 3.5. As depited in Figure 3.5(a), DAARPsends less data pakets than the InFRA and SPT algorithms. For instane, DAARPsends approximately 81% and 67% of the data pakets sent by InFRA and SPT, re-spetively. This result indiates one of the main advantages of our DAARP algorithm:



3.6. Performane Evaluation 37by varying the number of events, DAARP builds routing trees more likely to havehigher data aggregation rates. Also, Figure 3.5(b) shows that DAARP needs only 50%of the ontrol messages used by InFRA in the ourrene of 6 events and, on average,only 29% of the ontrol messages used by InFRA to build the routing struture. Thus,for more than one event, DAARP is more e�ient than SPT and InFRA, as shownin Figure 3.5(). Finally, the ost of the routing tree built by DAARP is 10% smallerthan in the InFRA algorithm, and 30% smaller than in the SPT, as we an see inFigure 3.5(d).
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(d) tree ostFigure 3.5. Impat of the Number of Events3.6.1.4 Impat of the Event DurationIn this simulation senario, the event duration was varied from 1 to 5 hours. Theresults are presented in Figure 3.6. As we an see in Figure 3.6(a), our proposed



38 Chapter 3. DAARP: Data Aggregation Aware Routing ProtoolDAARP algorithm sends less data pakets than the other evaluated algorithms. Morespei�ally, DAARP sends approximately 84% and 64% of the data pakets sent byInFRA, and SPT respetively. This indiates that by varying the time of an eventduration, DAARP obtains a data aggregation rate greater than InFRA and SPT. Also,Figure 3.6(b) shows that DAARP requires less ontrol messages to reate the routingstruture than InFRA but it requires more ontrol messages than the SPT algorithm.Although DAARP requires 33% more ontrol messages than SPT, SPT does not builda good data aggregation routing infrastruture, as shown in previous results. At last,Figure 3.6() shows that DAARP is more e�ient than InFRA and SPT. Our proposedalgorithm outperforms the other evaluated algorithms even in senarios of short-termevents while InFRA exeeds the SPT only in senarios where the event duration islonger (typially more than 2 hours).
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3.7. Final Remarks on DAARP 393.6.1.5 Impat of Communiation FailuresIn this senario, we evaluate the reliability of our proposed DAARP algorithm. Forthis, the ommuniation failure probability parameter was varied from 0% to 20%.The results are presented in Figure 3.7. This simulation also aims to evaluate the ostof DAARP path repair mehanism. As we an see in Figure 3.7(a), in the DAARPalgorithm, data paket transmission inreases when the probability of ommuniationfailure inreases. This is due to the fat that lost pakets with aggregated data areretransmitted. On the other hand, SPT and InFRA protools send less data paketswhen the ommuniation failures probability inreases. This happens beause when apaket is lost due to ommuniation failures the pakets are not retransmitted and donot reah the sink, as shown in Figure 3.7(b). In this last �gure, we an also see thatin a senario with 20% ommuniation failure, the delivery rate of InFRA is only 30%,while DAARP delivers all aggregated data that have been sent. In summary, DAARPdelivers aggregated data reliably with the best performane when ompared to SPTand InFRA, as shown in Figure 3.7().
0 5 10 15 20

10
12

14
16

Loss probability (%)

P
ac

ke
ts

 (x
10

3 )

InFRA
DAARP
SPT

(a) data pakets 0 5 10 15 20

30
50

70
90

Loss probability (%)

D
el

iv
er

y 
ra

te
 o

f a
gg

re
ga

te
s 

da
ta

 (
%

)

InFRA
DAARP
SPT(b) Delivery rate of aggregateddata pakets 0 5 10 15 20

5
10

15
20

25
30

Loss probability (%)

P
ac

ke
ts

 p
er

 p
ro

ce
ss

ed
 d

at
a

InFRA
DAARP
SPT

() E�ienyFigure 3.7. Impat of Communiation FailuresThe results presented in this setion learly show that our proposed DAARPalgorithm is more salable than InFRA and SPT in all onsidered senarios in termsof network size, number of events, event duration time and ommuniation failureprobability.3.7 Final Remarks on DAARPAggregation aware routing algorithms play an important role in event based WSNs. Inthis setion we presented the DAARP algorithm, a novel and reliable Data Aggregation



40 Chapter 3. DAARP: Data Aggregation Aware Routing ProtoolAware Routing Protool for WSNs. Our proposed DAARP algorithm was extensivelyompared to two other known routing algorithms, the InFRA and SPT, regardingsalability, ommuniation osts, delivery e�ieny, aggregation rate and aggregateddata delivery rate. By maximizing the aggregation points and o�ering a fault tolerantmehanism to improve delivery rate, the obtained results learly show that DAARPoutperformed the InFRA and SPT algorithms for all evaluated senarios. Also, weshow that our proposed algorithm has some key aspets required by WSNs aggregationaware routing algorithms suh as a redued number of messages for setting up a routingtree, maximized number of overlapping routes, high aggregation rate, and reliable dataaggregation and transmission.Despite DAARP have shown most e�ient that the solutions ompared (InFRAand SPT), the routes reated by DAARP are kept �xed during the ourrene ofthe event. In senarios with long-lasting events, nodes belonging the routes have ex-hausted their energy faster than other network nodes. Moreover, the quality of therouting struture is dependent on the order of event ourrene. Beause of these lim-itations, there was the motivation for the spei�ation and propose a new DynamiData-Aggregation Aware Routing Protool (DDAARP) to modify routes when nees-sary, the DDAARP is desribed in Chapter 4.



Chapter 4DDAARP: Dynami DataAggregation Aware RoutingProtool
The onstrution of routing strutures aware of data aggregation has a onsiderableommuniation ost and solutions from the literature are not e�etive in senarioswith short-term events. The proposed DDAARP protool builds dynami routes thatimproves the ost and quality of the routing struture. It also redues the number ofommuniations neessary to on�gure the routing struture, maximizes the number ofoverlapping routes, selets routes with a high rate of aggregation and performs reliabletransmission of aggregate data.The DDAARP di�ers from the DAARP (presented in the Chapter 3) at least inthree aspets:� The quality of the routing struture reated does not depend on the order ofourrene of events;� The routes reated by DDAARP are not kept �xed throughout the duration ofevents. In addition, routes may hange when neessary;� The DDAARP use the sink node for proessing and on�guration of the routes.DDAARP is performed in four phases. Phase 1 builds the hop tree from the sensornodes to the sink, ollets and delivers information about the nodes' positions to thesink node. The sink node starts building the hop tree that will be used in Phase 3 byCoordinators to notify the sink on the ourrene of the event and request informationabout route for data transmission. Phase 2 onsists of the luster formation and the41



42 Chapter 4. DDAARP: Dynami Data Aggregation Aware RoutingProtooleletion of a luster-head among the nodes that deteted the ourrene of a new eventin the network. Phase 3 is responsible for setting up the new route for delivering datapakets. Finally, Phase 4 is responsible for sending the olleted data to the sink nodein a reliable way.4.1 Building the Hop Tree and GatheringInformation About Nodes' PositionIn Phase 1, the distane from the sink to eah node is omputed in hops. This isdone from the sink, whih sends by means of �ooding, a Hop Con�guration Message(HCM) for the hops on�guration. The HCM message ontains two �elds: ID andHopToSink, where ID is the node identi�er that started/retransmitted the HCM mes-sage and HopToSink is the distane, in hops, by whih an HCM message has passed.The HopToSink parameter is started with value 0 at the sink. In this phase, sensornodes ompute the hop ount to the sink node and stores in HopToSink variable thesmallest distane (in hops) to the sink and stores in the NextHop variable whih neigh-bor will be used to route requests and noti�ations of events ourrene to the sinknode.This proess is desribed in Algorithm 4. The sink node �oods the network witha HCM message, sets the HopToSink value to 0, and forwards it to its neighbors (at thebeginning, all nodes set the distane to the sink as in�nity). Eah node, upon reeivingthe message HCM, veri�es if the value of HopToSink in the HCM message is less thanthe value of HopToSink that it has stored, as shown in Algorithm 4 - Line 3. If thatondition is true then the node updates the value of the NextHop variable with the valueof the �eld ID of message HCM, as well as the value of the HopToSink variable, andthe values in the �elds ID and HopToSink of the HCM message. The node also relaysthe HCM message, as shown in Algorithm 4 - Line 8. Otherwise, the node veri�es ifthe value of HopToSink in the HCM message is bigger than the value of HopToSinkthat it has stored, as shown in Algorithm 4 - Line 10. If that ondition is true thenthe node stores the ID of the node that sent the HCM message in its list of neighborswith the higher hop level and disards the reeived message, as shown in Algorithm 4- Line 11 and 12 respetively. If it is not the ase, then the node disards the reeivedHCM message, as shown in Algorithm 4 - Line 15. The steps desribed above ourrepeatedly until the whole network is on�gured.Algorithm 5 shows how information about nodes' position is gathered from thenetwork and then delivered to the sink node. Border nodes are responsible for starting



4.1. Building the Hop Tree and Gathering Information About Nodes'Position 43Algorithm 4: Building the hop tree1 Node sink sends a broadast of HCM messages with the value of HopToSink = 0;// Ru is the set of nodes that reeived the message HCM2 foreah u ∈ Ru do3 if HopToSink(u) > HopToSink(HCM) then4 NextHopu ← IDHCM ;5 HopToSinku ← HopToSinkHCM + 1 ;// Node u updates the value of the ID field in the message HCM6 IDHCM ← IDu ;// Node u updates the value of the HopToSink field in the message HCM7 HopToSinkHCM ← HopToSinku ;8 Node u sends a broadast message of the HCM with the new values;9 end10 else if HopToSink(HCM) > HopToSink(u) then11 NeighborHopBigger.add(IDHCM ) ;12 Node u disards the reeived message HCM;13 end14 else15 Node u disards the reeived message HCM;16 end17 end
the proess of olleting information about the node's position, i.e., a border node doesnot have any neighbor with higher hop level than itself. Border nodes transmit totheir neighbors of lower hop level a Colleting Information Message (CIM) as shownin Line 1 of Algorithm 5.When a sensor reeives a CIM message from its neighbors of higher hop level, asshown in Line 3 of Algorithm 5, it adds the ID of the node that transmitted the CIMmessage in the list ReeivedNeighborHopBigger and the CIM message is assembledwith the reeived information as shown Lines 4 and 5 of Algorithm 5. When the nodereeives information from all neighbors of higher hop level and is not the sink as shownin Lines 6 and 10 of Algorithm 5, it broadasts its CIM message as shown Line 11of Algorithm 5. If the node is the sink (Line 7 of Algorithm 5) then it reates theadjaeny matrix with olleted information and puts this adjaeny matrix, whihrepresents the network topology as shown in Line 8 of Algorithm 5, to the messageCIM.



44 Chapter 4. DDAARP: Dynami Data Aggregation Aware RoutingProtoolAlgorithm 5: Colleting information about nodes' position1 Border nodes transmit to their neighbors of lower hop level a Colleting InformationMessage (CIM) // Ru is the set of nodes that reeived the message CIM2 foreah u ∈ Ru do3 if NeighborHopBigger. contains(IDCIM) then4 RecevedNeighborHopBigger.add(IDCIM ) ;5 UpdatesCIM ;6 if NeighborHopBigger = RecevedNeighborHopBigger then7 if Roleu = Sink then8 Create adjacency matrix in the Sink ;9 end10 else11 Node u sends message CIM in broadast;12 end13 end14 else15 Node u disards the reeived message CIM;16 end17 end18 else19 Node u disards the reeived message CIM;20 end21 end4.2 Cluster Formation and Leader EletionWhen an event is deteted by one or more nodes, the leader eletion algorithm startsand sensing nodes will be running for leadership (group oordinator); this proess isdesribed in Algorithm 6. For this eletion, all sensing nodes are eligible. However, thegroup leader is the node that is losest to the sink. (Algorithm 6, Lines 7 to 9). In thease of a tie, i.e., two or more onurrent nodes have the same distane in hops to thesink, the node with the smallest ID maintains eligibility, as shown in Lines 11 to 13 ofAlgorithm 6. Another possibility is to use the energy level as a tiebreak riterion.At the end of the eletion algorithm only one node in the group will be delared asthe leader (Coordinator). The remaining nodes that deteted the same event will be theCollaborators. The Coordinator gathers the information olleted by the Collaboratorsand sends them to the sink. A key advantage of this algorithm is that all of theinformation gathered by the nodes sensing the same event will be aggregated at a singlenode (the Coordinator), whih is more e�ient than other aggregation mehanisms(e.g., opportunisti aggregation).



4.3. Routing Formation 45Algorithm 6: Cluster formation and leader eletion1 Input: S // Set of nodes that deteted the event2 Output: u // A node of the set S is eleted leader of the group3 foreah u ∈ S do4 roleu ← coordinator;// Node u sends message MCC in broadast5 Announement of event detetion ;// Nu is the set of neighbors of node u ∈ S6 foreah w ∈ Nu do7 if HopToSink(u) > HopToSink(w) then8 roleu ← collaborator ;9 Node u retransmits the MCC message reeived from node w ;10 end11 else if HopToSink(u) = HopToSink(w) ∧ ID(u) > ID(w) then12 roleu ← collaborator ;13 Node u retransmits the MCC message reeived from node w;14 end15 else16 Node u disards the MCC message reeived from w;17 end18 end19 end4.3 Routing FormationThe eleted group leader desribed in Algorithm 6 noti�es the sink on the ourreneof the event and requests routing information for data transmission. The route usedfor noti�ation and request is the route reated in Phase 1.The Coordinator starts establishing the new route for the event dissemination.This proess is desribed in Algorithm 7. The Coordinator sends a Route EstablishmentMessage (REM) to its NextHop. When the destination node reeives a REM message,it retransmits it to its NextHop. These steps are repeated until the sink is reahed asshown in Lines 2 to 4 of Algorithm 7.When the sink reeives the message REM, it adds the Coordinator ID that noti�edthe ourrene of the new event on the network and runs the route seletion algorithm asshown in Line 5 of Algorithm 7. This algorithm proesses the matrix that represents thenetwork topology, evaluating the ost in terms of relay nodes for eah path. The routesseleted are routes that insert a smaller number of relay nodes. At the end of the routeseletion algorithm, a paket is generated with information on the routes that maximizedata aggregation. The sink then sends a single message, Route Establishment MessageBak (REM-Bak), to the sensors that will be inluded in the routing infrastruture.



46 Chapter 4. DDAARP: Dynami Data Aggregation Aware RoutingProtoolWhen the sensor nodes reeive the REM-Bak message, they set-up their routing tablesupdating in the NextHop variable and sending REM-Bak messages to next ID in theREM-Bak as shown in Lines 10 and 11 of Algorithm 7. The resulting route is a treethat onnets all soure nodes to the sink node.Algorithm 7: Routing formation1 Coordinator sends a Route Establishment Message (REM) to its NextHop ;2 repeat// u is the node that reeived the message REM3 u forwards the Message (REM) to its NextHop4 until Roleu = Sink;5 u run the algorithm for route seletion ;6 u reates a message REM-Bak ;7 u sends the message REM-Bak ;8 repeat// w is the node that reeived the message REM-Bak9 NextHopw ← IDREM−Back;10 Remove IDREM−Back ;11 w send the message to the next IDREM−Back;12 until REM-Bak = Empty;
4.4 Data TransmissionThe data transmission performed by DDAARP uses aggregation tehniques that areapplied to two di�erent ontexts: inside and outside the luster. When the routesoverlap inside the luster, the aggregation is performed by the Collaborator nodes.Furthermore, the leader node performs data aggregation and sends the results to thesink node. Outside the luster, aggregation is performed by the relay nodes when twoor more events overlap along routing.The proess of data transmission is desribed in Algorithm 8 (Lines 1 to 9). Whilethe node has data to transmit, it veri�es whether it has more than one desendant thatrelays its data (Line 2 of Algorithm 8). If it is the ase, it waits for a period oftime and aggregates all data reeived and sends the aggregated data to its NextHop(Line 3 of Algorithm 8). Otherwise, it forwards the data to its NextHop. For everypaket transmission with aggregated data, the Route Repair Mehanism is exeuted asshown in Line 8 of Algorithm 8. A route repair mehanism is used to send informationin a reliable way. Sender nodes wait a pre-de�ned time period to reeive a paketdelivery on�rmation. When the on�rmation is not reeived by the sender node, a



4.5. Complexity Analysis 47new destination node is seleted and the message is retransmitted by that node. Thisroute repair mehanism (Line 18 of Algorithm 3) is desribed in Setion 3.4.Algorithm 8: Data Transmissions1 while The node has data to transmit/retransmit do// sonsu is the number of desendants of u2 if sonsu > 1 then3 Aggregates all data and sends it to the nexthopu;4 end5 else6 Send data to nexthopu;7 end8 Exeute the Repair mehanism presented in Setion 3.4;9 end
4.5 Complexity AnalysisIn this setion, we derive the ommuniation ost bounds of eah algorithm assessedin this work. Here, we show the best and the worst ase whereas the average ase wasestimated by simulation (see Setion 4.6.2.1).The InFRA algorithm presents (2n+(k−1)n)+m) linear ommuniation ost asshown in Setion 3.5. The best ase for the ommuniation ost of DAARP algorithm is
(2n+m), and the worst ase for the DAARP algorithm is (2n+((k−1)n−

∑k
i=2 ui)+m),as shown in Setion 3.5.The DDAARP algorithm will demand one �ooding initiated by the sink to reatethe initial tree infrastruture that will be used by the luster-heads to request routes,and another �ooding initiated by the border nodes to ollet information about nodes'position, whih requires 2n transmissions. It is neessary m transmissions to reatethe lusters. For eah eleted Coordinator, it is neessary to notify the sink on theourrene of the event and request information about route for data transmission. Thisrequires ∑k

i=1 2(hi) transmissions, where hi is the distane in hops from the Coordinator
i to the sink node and k is number of events. Thus, the worst and best ases for theDDAARP algorithm are (2n+

∑k
i=1 2(hi) +m).Table 5.1 presents the ommuniation ost of the algorithms assessed in this work.Note that ∑k

i=1 2(hi) is muh smaller than (k − 1)n and (k − 1)n−
∑k

i=2 ui.



48 Chapter 4. DDAARP: Dynami Data Aggregation Aware RoutingProtoolTable 4.1. Communiation omplexity of assessed algorithmsAlgorithm Best Case Worst CaseInFRA (2n+ (k − 1)n+m) (2n+ (k − 1)n+m)DAARP (2n+m) (2n+ ((k − 1)n−
∑k

i=2
|Ui|) +m)DDAARP (2n+

∑k

i=1
2(hi) +m) (2n+

∑k

i=1
2(hi) +m)4.6 Performane EvaluationThe proposed solution in this work is ompared with two other routing protools:InFRA and DAARP. The main objetive of this omparison is to evaluate the DDAARPperformane under the following metris: (i) omplexity analysis, (ii) ontrol overhead,(iii) e�ieny (pakets per proessed data), and (iv) routing tree ost.4.6.1 Simulation Senario and Metris UsedThe simulation performed in this work evaluates the proposed algorithm in terms ofnumber of nodes (n ∈ {512, 1024, 2048 and 4096}), number of events (ne ∈ {1, 2, 3, 4, 5and 6}), duration of events (de ∈ {1, 5, 15, 30, 45 and 60} minutes), round event (re ∈

{1, 3, 6 and 9}) and noti�ation rate (nr ∈ {1, 20, 40 and 60) per minutes). In allresults, urves represent average values, while error bars represent on�dene intervalsfor 95% of on�dene from 33 di�erent instanes (seeds). The default senario usedfor the simulations is shown in Table 4.2. For some simulations, a parameter shownin Table 4.2 will be varied and this is desribed in the evaluated senario. The �rstevent starts at 1000 s and all other events start at a uniformly distributed random time,where these events our in random positions. SinalGo version v.0.75.3 [Sinalgo, 2008℄was the event simulator used. For eah simulation in whih the number of nodes isvaried, the sensor �eld dimension is adjusted to maintain the node density to 20 theaverage degree of neighbors. We onsider the area of the sensor �eld as the relation
√

nπr2c/20, where n is number of nodes and rc is ommuniation radius. Sensor nodesare randomly deployed.To provide a lower bound to paket transmissions, a funtion was used thatreeives p data pakets and sends only a �xed size merged paket. This funtion is runat the aggregation points whenever these nodes send a paket. Any other aggregationfuntion an be used to take advantage of DDAARP features.The evaluated algorithms use a periodi simple aggregation strat-egy [Younis et al., 2006℄. In this strategy, aggregator nodes transmit periodially



4.6. Performane Evaluation 49Table 4.2. Simulation parametersParameter ValueSink node 1 (top left)Number of Nodes 1024Communiation radius (m) 80# of events 6Round Event 1Event radius (m) 50Event duration (minutes) 5Simulation duration (hours) 12Noti�ation rate (per mimute) 1Density (average degree of neighbors) 20the reeived and aggregated information. The following metris were used for theevaluation:� Control overhead: the overhead is the amount of ontrol messages used tobuild the routing tree inluding the overhead to both reate the lusters and setup all the routing parameters of eah algorithm;� Amount of Steiner nodes: it is the number of Steiner nodes inluded in therouting struture, i.e., the number of relay nodes that is part of the routinginfrastruture;� E�ieny (pakets per proessed data): it is the rate of total pakets trans-mitted (data and ontrol pakets) and the amount of noti�ations to sink;4.6.2 Simulation Results4.6.2.1 OverheadIn this simulation senario, the number of nodes, round event and the amount of eventspresented in Table 4.2 were varied to evaluate the algorithm behavior in networks with
512, 1024, and 2048 nodes; 1, 3, 6, and 9 round events; and 1, 2, 3, 4, 5, and 6events ourring simultaneously. Figure 4.1 shows that the DDAARP is more salablethan DAARP and InFRA, sine it needs fewer ontrol messages to build the routingstruture (average 48% less ontrol message over DAARP and 69% in relation theInFRA).The results in Figure 4.1 show that the DDAARP is salable and onsumes lessenergy to built and manage routing infrastruture than the other evaluated algorithms,sine ommuniation is typially one of the tasks that onsumes more energy in a sensor
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(d) 9 Round EventFigure 4.1. Overheadnode. Figure 4.1(d) shows that DDAARP needs only 42% of the ontrol messages usedby DAARP in the ourrene of 6 events and, only 18% of the ontrol messages usedby InFRA to build the routing struture.As InFRA and DAARP need to reon�gure the values ofoordinators-distane and HopToTree, respetively, eah new round of events isneessary to reon�gure the network to update the values of oordinators-distaneand HopToTree. In DDAARP, eah new round of events ollets the information of



4.6. Performane Evaluation 51the nodes' position to keep the most urrent state of the network topology in the sink.The results in Figure 4.1 show that the DDAARP has a better performane forenvironments with dynami ourrene of events.4.6.2.2 E�ienyFigure 4.2 shows that on average DDAARP is 23% and 57%more e�ient than DAARPand InFRA, respetively. For the evaluated senarios DDAARP needs 1.98 pakets perproessed data whereas DAARP needs 2.58 pakets and InFRA needs 4.56 pakets.This ours beause DDAARP needs less ontrol messages to build the routing treeompared with DAARP and InFRA as shown in Figure 4.1. Also, the routing treebuilt by DDAARP has the best quality of data aggregating ompared with DAARPand InFRA, as shown in Figure 4.3.For events of short duration and with low noti�ation rate as shown in Fig-ure 4.2(a), DDAARP needs 6.6 pakets per proessed data, DAARP needs 9.95, andInFRA needs 20.9. DDAARP presents the best performane, it makes a few datatransmissions and has a low overhead.For events of long duration and with high noti�ation rate as shown in Fig-ure 4.2(d), DDAARP needs 1.39 pakets per proessed data, DAARP needs 1.61, andInFRA needs 2.35.For senarios where the number of noti�ations is very high, i.e., muh higherthan the overhead, the tendeny is to have a lose e�ieny of the algorithms. ButDDAARP is still better beause the amount of data transmitted is smaller, i.e., in allases DDAARP builds the routing tree with less steiner nodes (see Figure 4.3), whihresults in fewer retransmissions.4.6.2.3 Amount of Steiner NodesIn this analysis, the number of nodes and number of events were varied to evaluate theaverage ase for routing tree ost of DDAARP ompared with InFRA and DAARP.The routing tree ost is the total amount of Steiner nodes inluded in the tree built bythe algorithms.We analyzed senarios with 512, 1024, 2048, and 4096 sensor nodes, and 1, 2, 3,
4, 5 and 6 number of events. The results are presented in Figure 4.3. The ost of therouting tree built by DDAARP is smaller than DAARP and InFRA for all ases, i.e.,DDAARP inludes less steiner nodes than the other solutions.Figure 4.3 shows that in all assessed senarios, DDAARP presents a performanebetter than InFRA and DAARP with a lower overhead (see Figure 4.1). In average,
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(d) 60 Noti�ations per minuteFigure 4.2. E�ienyDDAARP needs 12% less steiner nodes than DAARP, and 52% than InFRA. Fig-ure 4.3(d) shows that DDAARP inludes 14% less steiner nodes than DAARP in theourrene of 6 events and, only 70% less steiner nodes than InFRA.DDAARP reates a routing tree with fewer steiner nodes than DAARP due tothe fat the routes reated by DDAARP do not depend on the order of ourrene ofthe events and routes already reated an be reonstruted to improve the ost of the�nal routing tree. On the other hand, routes reated by DAARP are kept �xed until
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(d) 4096 nodesFigure 4.3. Number of Steiner nodesthe end of the event ourrene.4.6.2.4 Probability of Communiation FailuresFor this analysis, the results are not shown here beause DDAARP use the route repairmehanism presented in Setion 3.4 and the performane of DDAARP is idential tothe results of DAARP presented in Setion 3.6.1.5. In summary, DDAARP deliversaggregated data reliably with best performane ompared with InFRA and with a



54 Chapter 4. DDAARP: Dynami Data Aggregation Aware RoutingProtoolperformane similar to DAARP.4.7 Final Remarks on DDAARPThis hapter presented DDAARP, a Dynami Data-Aggregation Aware Routing Proto-ol. DDAARP was extensively ompared with two other routing solutions presented inthe literature (InFRA and DAARP) regarding salability, ommuniation ost, deliverye�ieny, and aggregation rate. By maximizing the aggregation points and o�ering afault tolerant mehanism to improve the delivery rate, the results show that DDAARPoutperformed those two protools for all evaluations.The DDAARP proved to be a potential solution, but the size of pakets ontaininginformation about the positions of the nodes, see Setion 4.1, tend to inrease and thissolution may be impratial for large-sale networks. In addition, the sink node musthave a global knowledge of network. To overome these hallenges, we proposed theDynami Salable Tree (DST), whih will be desribed in Chapter 5.



Chapter 5DST: Dynami and Salable Tree
The main idea of the proposed DST algorithm is to manage the energy onsumptionof the nodes that deteted an event by eliminating redundant noti�ations. The pro-posed algorithm builds a routing tree using shortest routes (in Eulidean distane) thatonnet all oordinator nodes to the sink node while maximizing data aggregation andreduing distanes onneting eah oordinator node to the sink. The reated routingtree does not depend on the order of the events. In the DST algorithm, the nodes anbe lassi�ed aording to their roles in the reated routing infrastruture:� Collaborator: A node that detets an event and reports the gathered data to aoordinator node;� Coordinator : A node that is also deteting an event and is responsible for gath-ering all the data events sent by representative nodes, aggregating them andsending the result toward the sink node.� Aggregator : A node that aggregates data from two or more soures and forwardsthe aggregated data. It might or might not be deteting an event.� Relay : A node that forwards data toward the sink.� Sink : A node interested in reeiving data from a set of oordinator nodes.The DST algorithm is performed in four phases. In Phase-1, presented in Se-tion 5.1, sensor nodes store the sink's position as well as its neighbor's position. Phase-2, presented in Setion 5.2, onsists of luster formation and the eletion of a Coor-dinator among the nodes that detets the ourrene of a new event. In Phase-3,presented in Setion 5.3, when an event ours, the Coordinator sends a paket to thesink node informing its position. The sink then noti�es all other Coordinators of the55



56 Chapter 5. DST: Dynami and Salable Treenew Coordinator position. The sink also noti�es the new Coordinator about the posi-tions of Coordinators that already exist. Finally, Phase-4, presented in Setion 5.4, isresponsible for reating the routing tree onneting all Coordinators to the sink nodeand sending the olleted data to the sink node.The tree building (Phase 4) is an important part of the proposed algorithm interms of energy savings. In this work, we present three di�erent variations for theproposed DST tree reation algorithm. These variations aim at building a routing treethat onnets all oordinators to the sink node aording to di�erent goals. The �rstvariation, Dynami and Salable T ree � C losest F irst (DST-CF), aims at buildinga routing tree that prioritizes the ost (in Eulidean distane) of the routing tree.The seond variation, Dynami and Salable T ree � Farthest F irst (DST-FF), aimsat building a routing tree that tries to derease the ost (in Eulidean distane) ofhigh-ost routes (in Eulidean distane) of the tree. The third variation, Dynami andSalable T ree � Best C ombination (DST-BC), aims at building a routing tree thathas the lowest ost (in Eulidean distane). The di�erene between eah approah lieson whih straight line segments to hoose during the reation of the routing struture(as detailed in Setion 5.4).5.1 Disovery of Neighbors' and Sink's PositionsThis is the �rst phase of the DST algorithm. It is responsible for disovering andstoring the neighbors' position and the sink's position. As shown in Algorithm 9,the sink node starts this phase by �ooding a Con�guration Message. The messageontains three �elds: ID, CoordSender and CoordSink, where ID is the node identi�erthat retransmits the message, CoordSender is the node's position (xn, yn) that relaysthe on�guration message, and CoordSink is the sink's position (xs, ys).Algorithm 9: Disovery of neighbors' position1 Sink node broadasts a Con�guration Message;// Ru is the set of nodes that reeived the Configuration Message2 foreah u ∈ Ru do3 neighborhood (u).ID← IDMessage;4 neighborhood (u).CoordSender ← CoordSenderMessage;5 neighborhood (u).CoordSink← CoordSinkMessage;6 if Node(u) did not transmit its position then// Node u updates the value of the ID in Configuration Message7 IDMessage ← IDu ;// Node u updates the value of the CoordSender in Configuration Message8 CoordSenderMessage ← Coordinatesu ;9 Node u broadasts a on�guration message with the new values;10 end11 end



5.2. Cluster Formation and Leader Eletion 57In this phase, sensor nodes store information about their neighbors in the Tableneighborhood. For instane, identi�ation, neighbors' position, and sink's position.This information is used in Phases 2, 3 and 4.5.2 Cluster Formation and Leader EletionAfter the �rst phase of the DST algorithm, the reative part is started and is onlyrun in the presene of events. When an event is deteted by one or more nodes,the leader eletion algorithm is started with the nodes running for leadership (groupoordinator) � this proess is desribed in Algorithm 10. For this eletion, all nodesare eligible (Lines 3 and 4 of Algorithm 10), but the group leader will be the nodeloser to the sink. (Lines 7 and 8 of Algorithm 10). When two or more eligible nodeshave the same distane to the sink, the node with the higher ID is eleted (Lines 11and 12 of Algorithm 10). At the end of the eletion algorithm only one leader node(oordinator) exists in the group. The remaining nodes that deteted the same eventbeome ollaborator nodes. The oordinator gathers the information olleted by theollaborator nodes, aggregates the information, and sends it to the sink.Algorithm 10: Cluster formation and leader eletion1 Input: S // Set of nodes that deteted the event2 Output: u // A node of the set S is eleted leader of the group3 foreah u ∈ S do4 roleu ← oordinator;// Node u broadasts the luster onfiguration message5 Announement of event detetion ;// Nu is the set of neighbors of node u6 foreah w ∈ Nu do7 if DistanceToSink(u) > DistanceToSink(w) then8 roleu ← ollaborator ;9 Node u retransmits the message reeived from node w ;10 end11 else if DistanceToSink(u) = DistanceToSink(w) ∧ ID(u) > ID(w) then// Node u hanges its role to Collaborator12 roleu ← ollaborator ;13 Node u retransmits the MCC message reeived from node w;14 end15 end16 end
5.3 Noti�ation of a New EventThe node hosen as the event Coordinator in Phase-2, as disussed in Setion 5.2,gathers the information olleted by the Collaborators. Based on its position and thesink's position, the Coordinator reates a straight line segment that onnets itself to



58 Chapter 5. DST: Dynami and Salable Treethe sink. The sensor nodes loser to this straight line segment and to the sink arehosen as Relay nodes.When the sink reeives the �rst data message, it adds ID and CoordSender to itsTable CoordinatorTable, where ID is the oordinator's identi�er and CoordSender isthe oordinator's position (xn, yn) that noti�ed the ourrene of a new event in thenetwork. The sink node sends to all oordinators the oordinator's positions storedin its Table CoordinatorTable. Eah oordinator that reeives suh a message willupdate its table of oordinators. This information will then be used in Phase 4 toompute the straight line segments starting at eah oordinator.5.4 Routing Tree Creation and Data TransmissionsIn this work, we present three variations of the DST algorithm. Eah variation de�nesa new approah for a oordinator node to reate its straight lines.1. DST-CF (C losest F irst): In this variation, the losest oordinators to the sinknode are the �rst to reate their straight line segments to the sink. Then, theseond losest oordinators reate their straight line segments to the nearestpoint of the straight line segments that already exist. These steps are repeateduntil all oordinators reate their straight line segments (see Figure 5.1(a)). Theomputational ost to reate the straight lines of losest oordinators has a linearomplexity of O(e), where e is the number of events.2. DST-FF (Farthest F irst): In this variation, the farthest oordinators from thesink are the �rst to reate their straight line segments to the sink. Then, theseond farthest oordinators reate their straight line segments to the nearestpoint of the straight line segments that already exist. These steps are repeateduntil all oordinators reate their straight line segments (see Figure 5.1(b)). Theomputational ost to reate the straight lines of farthest oordinators has a linearomplexity of O(e), where e is the number of events.3. DST-BC (Best C ombination): This variation of the DST algorithm heks allpossible ombinations of straight lines and hooses the ombination that providesthe shortest Eulidean distane to reate the routing tree (see Figure 5.1()).This approah is optimal, sine it �nds the routing tree of lowest ost. Theomputational ost to proess all possible ombinations of straight lines leads toa fatorial omplexity of O(e!), where e is the number of events. Due to theresoure onstraints of a sensor node, this approah is probably unfeasible for



5.4. Routing Tree Creation and Data Transmissions 59senarios with a high number of events. Therefore, this approah will be used asa baseline in all evaluations.When a oordinator node needs to ompute its straight line segment, it uses theinformation obtained in Phases 1�3 (information about the positions of all the otheroordinators and the sink). Before omputing its straight line segment, the oordinatornode omputes loally the straight line segments of all other oordinators that havealready reated their straight lines, depending on the DST variation � DST-CF, DST-FF, or DST-BC. The oordinator node will then reate its straight line segment to thenearest point of a straight line segment of other oordinators.Figure 5.1 shows the routing struture reated for eah variation of DST. Beausethe goal here is to illustrate how the line segments are omputed, lusterization analysisis presented only in Setion 5.2.

(a) DST-CF (b) DST-FF () DST-BCFigure 5.1. Examples of routing struture establishment for DST variationsThis senario is omprised of four events, whose ourrene order is given by thenumber inside the oordinator node. The lighter grey nodes are hosen to be part ofthe routing struture and the darker grey nodes are points of data aggregation.When the oordinator node performs data transmission, the losest nodes toboth its straight line segment and to the endpoint of this straight line will be hosento forward the data.The data transmission performed by DST uses aggregation tehniques applied totwo di�erent ontexts: inside and outside the luster. The oordinator node performsdata aggregation inside the luster and sends the results to the sink node. Outside theluster, aggregation is performed by aggregator nodes when the ourrene of two ormore events overlap along the routing path (dark grey nodes in Figure 5.1).



60 Chapter 5. DST: Dynami and Salable Tree5.5 Complexity AnalysisIn this setion we derive the ommuniation ost bounds of eah algorithm assessedin this work. Here we show the best and the worst ase whereas the average ase wasestimated by simulation (see Setions 5.6.1.1 and 5.6.1.2).The InFRA algorithm presents (2n+(k−1)n)+m) linear ommuniation ost asshown in Setion 3.5. The best ase for the ommuniation ost of DAARP algorithm is
(2n+m), and the worst ase for the DAARP algorithm is (2n+((k−1)n−

∑k
i=2 Ui)+m),as shown in Setion 3.5.The DST algorithm will demand one �ooding initiated by the sink to disoveryof neighbors' and Sink' positions, whih requires n transmissions. It is neessary mtransmissions to reate the lusters. For eah eleted Coordinator, it is neessary tonotify the sink on the ourrene of the event and request information about all theoordinators positions. This requires ∑k

i=2 2(hi) transmissions, where hi is the distanein hops from the Coordinator i to the sink node and k is number of events. Thus, theworst and best ases for the DST algorithm are (n+
∑k

i=1 2(hi) +m).Table 5.1 presents the ommuniation ost of the algorithms assessed in this work.Note that ∑k
i=1 2(hi) is muh smaller than (k − 1)n and ((k − 1)n−

∑k
i=2 |Ui|).Table 5.1. Communiation omplexity of assessed algorithmsAlgorithm Best Case Worst CaseInFRA (2n+ (k − 1)n+m) (2n+ (k − 1)n+m)DAARP (2n+m) (2n+ ((k − 1)n−

∑k

i=2
|Ui|) +m)DST (n+

∑k

i=1
2(hi) +m) (2n+

∑k

i=1
2(hi) +m)

5.6 Performane EvaluationIn this setion, we evaluate the performane of our proposed DST algorithm and itsvariations. We also ompare their performane with two other known routing protools:InFRA and DAARP.5.6.1 MethodologyThe performane evaluation is performed through simulations using the SinalGov.0.75.3 [Sinalgo, 2008℄ simulator. In all results, urves represent average values, while



5.6. Performane Evaluation 61error bars represent on�dene intervals for 95% of on�dene from 33 di�erent in-stanes (seeds). The default simulation parameters are presented in Table 5.2. Forsome simulations, a parameter shown in Table 5.2 will be varied and this is desribedin the senario evaluated. The �rst event starts at 1000 s and all other events start at auniformly distributed random time at uniformly distributed random positions. We on-sider the area of the sensor �eld as the relation √

nπr2c/d to ensure the desired density,when the simulation parameters are varied, where n is the number of nodes, rc is theommuniation radius, and d is the average degree of neighbors. In the experimentalsenarios, sensor nodes are randomly deployed in the sensor �eld.Table 5.2. Simulation parametersParameters ValuesSink node 1 (top left)Event duration (minutes) 60Number of nodes 1024Number of events 6Density 20Noti�ation rate (per minute) 1Communiation radius (meters) 80Simulation time (hours) 10Event radius (meters) 50To provide a lower bound for paket transmissions, a funtion was used that re-eives p data pakets and sends only a �xed-size aggregated paket. This funtion is runat the aggregation points whenever these nodes send a paket. Any other aggregationfuntion an be used to take advantage of DST features. The evaluated algorithms usea periodi simple aggregation strategy [Younis et al., 2006℄ employed by the aggregatornodes to periodially transmit the reeived and aggregated information. The followingmetris were used for the performane evaluation:� Overhead: amount of ontrol messages used to build the routing tree inludingthe overhead to reate the lusters as well as to set up all the routing parametersof eah algorithm;� Cost of the routing tree: number of Steiner nodes inluded in the routingtree, i.e., the number of relay nodes;� Length of the longest route: number of hops from the farthest oordinatorto the sink node in the routing tree;� Aggregation rate: ratio between the number of all data pakets sent and thenumber of data pakets reeived by the sink node; and



62 Chapter 5. DST: Dynami and Salable Tree� E�ieny: ratio between the total of pakets transmitted (inluding both dataand ontrol pakets) and the amount of data messages reeived by the sink node.5.6.1.1 Impat of Event SaleIn this evaluation, the number of events was varied to evaluate the impat of eventsale in the routing tree ost, length of the longest route, and overhead. The resultsare presented in Figures 5.2(a), 5.2(b), and 5.2().Figure 5.2(a) shows that the proposed DST-CF variation is the most e�ientin building the lowest ost routing tree and also presents results very lose to DST-BC variation. This is a good result sine the DST-BC is the optimum result and ourbaseline protool. This ours beause the losest oordinators to the sink node are the�rst to reate their straight lines, whih onsequently prioritizes the low ost routingtree. For six events, DST-CF inludes 4% less Steiner nodes than DAARP, 8% lessSteiner nodes than DST-FF, and 32% less Steiner nodes than the InFRA algorithm.Figure 5.2(b) shows that the DST-FF variation is more e�ient in building therouting tree with shorter routes. This ours beause the oordinator node that isfarthest from the sink reates its straight line segment to the sink, thus a shortestpath is reated between the oordinator node that is farthest from the sink and sinknode. For six events, DST-FF inludes 10% less Steiner nodes than DAARP and 23%less Steiner nodes than DST-CF. Regarding the InFRA algorithm, DST-FF inludes3% more Steiner nodes, however, the InFRA algorithm onstruts a routing tree 45%worse than DST-FF (see Figure 5.2(a)) and, as we will see, with higher ommuniationoverhead (see Figure 5.2()).
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5.6. Performane Evaluation 63solutions that require many transmissions to on�gure the routes. Figure 5.2() showsthat the ost of building the DST routing tree is on average 261% less than DAARPand 428% less than InFRA.5.6.1.2 Impat of Network SaleIn this evaluation, the number of nodes was varied to analyze the impat of the networksale, the routing tree ost, length of the longest route and overhead. Simulation resultsare presented in Figures 5.3(a), 5.3(b), and 5.3().Figure 5.3(a) shows that DST-CF, on average, is the most e�ient algorithm tobuild a low ost routing tree ompared to the other approahes and presents results verylose to DST-BC. This ours beause DST-CF builds a routing tree that prioritizesthe ost (in Eulidean distane) of the routing tree. Note that when the network saleinreases, DST-FF tends to be better than DST-CF. For 8192 nodes, both DST-FFand DST-CF are similar and inlude 6% less Steiner nodes than DAARP and 37% lessSteiner nodes than InFRA.Figure 5.3(b) shows that DST-FF is more e�ient in building the routing treewith shorter routes. This ours beause DST-FF builds a routing tree that tries toderease the ost (in Eulidean distane) of high-ost routes (in Eulidean distane) ofthe tree. For 8192 nodes, DST-FF inludes 10% less Steiner nodes than DAARP and22% less Steiner nodes than DST-CF. DST-FF inludes 3% more Steiner nodes thanInFRA, whih onstruts a routing tree 56% worse than DST-FF (see Figure 5.3(a)).Finally, the overhead of InFRA is 672% higher than DST-FF (see Figure 5.3()).
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64 Chapter 5. DST: Dynami and Salable Tree5.6.1.3 Impat of Event DurationIn this evaluation, the event duration was varied to evaluate the aggregation rate ande�ieny of the DST algorithm and its proposed variations. Figure 5.4(a) shows thaton average DST is 43% more e�ient than DAARP and 130% more e�ient thanInFRA. This ours beause, as mentioned in the previous setions, our proposed DSTalgorithm needs fewer ontrol messages to build a better low ost routing tree.
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(b) Aggregation Rate × EventDurationFigure 5.4. Impat of Event DurationFor short duration events (e.g., 7.5 minutes) as shown in Figure 5.4(a), DST-BC needs 3.63, DST-CF 3.65, and DST-FF 3.71 pakets per proessed data, whereasDAARP needs 6.95, and InFRA needs 12.9. The DST algorithm presents the bestperformane from the beginning, sine it makes fewer data transmissions and has loweroverhead. For long duration events (480 minutes), as shown in Figure 5.4(a), DST-BCneeds 1.93, DST-CF needs 1.94, and DST-FF needs 1.93 pakets per proessed data,whereas DAARP needs 2.16, and InFRA needs 2.94. It is important to note that evenin senarios where the number of noti�ations is very high, the algorithms present asimilar e�ieny so the results are not shown. However, the DST algorithm is stillbetter sine the amount of transmitted data is smaller.The internal graph in Figure 5.4(a) is the result for events lasting from 180 to480 minutes. It is easy to pereive the advantage of the DST algorithm for events oflong duration in relation to DAARP and InFRA.Figure 5.4(b) shows that the DST-FF variation has the highest aggregation rateof all experimented algorithms. The DST-FF algorithm has, on average, 38% higheraggregation rate than DAARP and 111% higher than InFRA. In the DST-FF algo-rithm, for eah aggregated paket that arrives at the sink node, this aggregated pakethas information of 7.2 raw pakets, while in the DAARP algorithm it has information



5.7. Final Remarks on DST 65of 5.2 and, in the InFRA algorithm, only 3.4. The higher the aggregation rate, thelower the transmission ost for delivering the olleted data, and therefore the lowerthe power onsumption for data olletion.5.7 Final Remarks on DSTThis hapter presented the DST algorithm, an e�ient data aggregation solution thatallows salable and dynami routing in WSNs. Most routing protools for data aggrega-tion are stati, i.e., they annot hange routes dynamially to perform data aggregatione�iently. DST was extensively ompared to two other data aggregation aware routingsolutions presented in the literature (InFRA and DAARP) regarding salability, om-muniation ost, routing tree ost, e�ieny, and aggregation rate. Simulation resultsshow that DST outperformed those two protools for all evaluations, maximizing theaggregation points and o�ering dynami routes to improve the quality of the routingtree.





Chapter 6EAST: E�ient Data ColletionAware of Spatio-TemporalCorrelation
In this hapter, we de�ne our spatio-temporal orrelation models and propose theEAST algorithm. One of the key aspets of EAST is that the size of the orrelationregion and error threshold of readings an be hanged dynamially aording to theevent harateristis in order to ahieve the appliation's auray requirements. Thisresults in a better use of the available energy in the nodes that are sensing the eventby eliminating redundant noti�ations as well as by using dynami routes and lowommuniation overhead. These and other harateristis of our EAST algorithm aredisussed in this setion.6.1 Spatial Correlation ModelSpatially lose nodes tend to detet similar values. However, this loseness (θ), i.e.,the Eulidean distane between the nodes that detet similar values, depends on bothappliation requirements and event harateristis. Some appliations are more ritialand less tolerant to disrepanies in the sensed values of the observed phenomenon,requiring that loser nodes notify the sensed data (the orrelation region is smaller).Other appliations an be more tolerant to disrepanies in the sensed values, notdemanding that loser nodes report the sensed data (the orrelation region is greater).De�nition 6.1.1 (orrelation region) We de�ne a orrelation region as an areawhere the values sensed by the sensor nodes are onsidered similar (for the applia-67



68 Chapter 6. EAST: Effiient Data Colletion Aware ofSpatio-Temporal Correlationtion). Therefore, a single reading within this region is su�ient to represent it. Thesize of the orrelation region (c) varies aording to both appliation and event har-ateristis. For events whose harateristis hange signi�antly at short range, thesink node an derease the size of the orrelated region to keep high auray in theolleted data, i.e., the event needs to be noti�ed by loser nodes. For events whoseharateristis do not hange signi�antly at short range, the sink node an inreasethe size of the orrelated region to save energy of member nodes. The size of the orre-lation region an be resized by the sink node, whih sends the new size of the orrelationregion to the event's oordinator by using the shortest path. The event's oordinatorthen disseminates the new size of the orrelation region to all of the nodes within theevent's area, so the size of the orrelation region is reon�gured.6.2 Temporal Correlation ModelSensor readings about the environment are typially periodi; onsequently, the time-ordered sequene of sensed data onstitutes a time series. Due to the nature of thephysial phenomenon, there is a signi�ant temporal orrelation among eah onseu-tive observation of a sensor node, and gathered data are usually similar over a short-time period. Thus, in these ases, sensor nodes do not need to transmit their readings ifthe urrent reading is within an aeptable error threshold regarding the last reportedreading. The sink node an just assume that any unreported data is unhanged fromthe previously reeived ones. The degree of orrelation between onseutive sensormeasurements might vary aording to the harateristis of the phenomenon.De�nition 6.2.1 (temporal suppression) Eah soure node keeps the last reportedreading. When urrent reading (Rnew) is available, Rnew is ompared to the last reportedreading (Rold). The urrent reading of a soure node is reported if the given relativethreshold is greater than the temporal ohereny tolerane (tt), i.e. (

|(Rnew−Rold)|
Rold

)

×100

> tct, where tct is the perentage of temporal ohereny tolerane. Otherwise the value
Rnew is suppressed.6.3 Overview of the EAST AlgorithmThe main idea of our proposed EAST algorithm is to manage the energy onsumptionof nodes that deteted an event by eliminating redundant noti�ations. Our algorithmonsiders the following roles to perform data routing (see Figure 6.1):



6.3. Overview of the EAST Algorithm 69� Member Node: A node that is urrently deteting one or more events. In thease where its sensed data is redundant, it will not report the gathered data.� Representative Node: A node that detets an event and reports the gathered datato a oordinator representing not only itself but all nearby nodes with similarreadings while still applying temporal suppression.� Coordinator Node: A node that detets the event and is responsible for gatheringall event data sent by representative nodes. It proesses the reeived data andsends the result towards the sink node.� Relay Node: A node that forwards data towards the sink node.� Sink Node: The gateway between the WSN and the monitoring faility.
Sink

MemberRepresentativeCoordinator Relay(a) Routing struture at instant
i.

Sink

MemberRepresentativeCoordinator Relay(b) Routing struture at instant
i+ 1.Figure 6.1. Examples of routing struture used by the EAST algorithm.The EAST algorithm uses shortest routes (in Eulidean distane) in two di�er-ent levels for forwarding the gathered data towards the sink node. In the �rst level,representative nodes use shortest routes to forward data toward the oordinator node.In the seond level, the oordinator nodes use shortest routes to forward data towardthe sink node. Figure 6.1 shows two examples of the routing struture obtained by theEAST algorithm (the gray �eld indiates the event area, the ells represent the regionsof orrelation and the red dotted line shows the shortest route).The main objetive of the EAST algorithm is to redue energy onsumption indata gathering while preserving both data auray and real-time reporting. To ahievethis goal, EAST dynamially hanges the size of the orrelation region and the value ofthe ohereny tolerane aording to the event harateristis. For this, an event areais divided into ells, as depited in Figure 6.2. Eah ell de�nes a orrelation region and



70 Chapter 6. EAST: Effiient Data Colletion Aware ofSpatio-Temporal Correlationnodes within eah ell are assumed to be spatially orrelated. Only one node withina ell noti�es the sensed information, if and only if, the given relative error thresholdis greater than the temporal ohereny tolerane. This last node is the representativenode of the ell. Cells are independent from eah other, so the hange of representativenodes in one ell does not require any reon�guration. The hange of a representativenode in eah ell is performed to balane the energy onsumption of spatially orrelatednodes, while temporal suppression is applied to redue the reporting of redundant data.Sine orrelation regions are independent, their resizing does not require any additionalommuniation among the nodes within the event areas in order to ompute the newell they belong to. Furthermore, eah node performs temporal suppression loallywithout ommuniating with its neighbors. The proposed spatio-temporal orrelationapproah is adaptive and salable regarding events of di�erent intensities as will beshown during its evaluation.The EAST algorithm is performed in three phases. In Phase 1, presented inSetion 6.3.1, sensor nodes store the sink position as well as their neighbors� positions.In Phase 2, presented in Setion 6.3.2, three di�erent ations are performed: lusterformation; oordinator�s eletion; and the division of the event area into ells. Finally,in Phase 3, presented in Setion 6.3.3, representative nodes are hosen, the proposedtemporal orrelation mehanism is applied, and data is then transmitted.6.3.1 Node LoalizationAfter the deployment of the sensor nodes, the sink node starts by �ooding a on-�guration message that ontains four �elds: ID, CoordSender, CoordSink, andPhenomenon_of_Interest, where ID is the node identi�er that retransmitted the mes-sage, Phenomenon_of_Interest is the appliation's interest (e.g., temperature higherthan 25 degrees), CoordSender is the node's position (xn, yn) that relays the on�gura-tion message, and CoordSink is the sink's position (xs, ys). In this phase (Lines 4 to 7of Algorithm 11), sensor nodes store the reeived information in a table of neighborsneighborhood that will be used in the next two phases.6.3.2 Cluster Formation, Leader Eletion, and Division of theEvent Area into CellsThe seond phase of the EAST algorithm starts whenever an event happens. Thus,when an event is deteted by one or more nodes, the leader eletion algorithm is startedwith the sensing nodes running for leadership (group oordinator) � this proess is



6.3. Overview of the EAST Algorithm 71desribed in Algorithm 11. For this eletion, all deteting nodes are eligible (Lines 8and 9 of Algorithm 11) and the group leader (Coordinator node) will be the node withthe higher residual energy. (Lines 13 and 14 of Algorithm 11). At the end of theeletion algorithm only one leader node exists in the group. In the ase of a tie, the IDparameter is used as a tie breaker. The remaining nodes that detet the same eventbeome member nodes. At eah noti�ation, a subset of the member nodes will berepresentative nodes, as explained later in this setion. The oordinator gathers theinformation olleted by the representative nodes, proesses the information, and sendsit toward the sink node.After the lustering proess, the proposed spatial orrelation mehanism is exe-uted. Figure 6.2(a) illustrates the proposed spatial orrelation mehanism. For thesake of simpli�ation, the shape of the onsidered event is a irle, but any shapean work for the proposed solution. The event region is deomposed into (

2re
c

)2 ells,where re is the event�s maximum radius and c is the ell�s size (orrelation region).Figure 6.2(a) shows an example in whih the event region is deomposed into 25 ells.Eah ell is represented by an ordered pair (xc, yc). If c = 0, then there is no spatialorrelation between nodes and all nodes in the group are representative nodes. Oth-erwise, eah node omputes the oordinates xc and yc of the ell to whih it belongsto. For this omputation, the node position (xn, yn), the entral position (xe, ye) ofthe event, and the ell size (c) are required. Lines 18 to 28 of Algorithm 11 show thisomputation.If the sink needs to dynamially resize the orrelation region or the oherenytolerane value to meet any appliation requirement, it sends a new value of c to thenodes of the group so that they an realulate their ells� size or it sends a newvalue of tct to the nodes of the group. Thus, the parameters of our algorithm an bedynamially ontrolled by the sink node, whih has a omplete view of the phenomenon.It is important to point out that the maximum size of a ell c an be the length ofthe triangle's leg in a right triangle, sine rc is the hypotenuse (c = rc cos 45
◦) where rcis the ommuniation radius of sensor nodes. This onsideration is important to ensurethat all nodes in the same ell ommuniate with eah other. The ell size an varyto ontrol the tradeo� between preision of the sensed data and energy onsumption.In this ase, the orrelation region may vary between 0 ≤ c ≤ rc cos 45

◦. When c = 0,all nodes report the sensed data (an optimal solution in terms of auray in theinformation). For c > 0, only the representative node at eah ell reports the senseddata. The EAST algorithm selets a single representative node at eah ell of dimensions
c2 for eah noti�ation. Figures 6.2(b), 6.2(), and 6.2(d) show representative nodes



72 Chapter 6. EAST: Effiient Data Colletion Aware ofSpatio-Temporal Correlationat di�erent times in the event region. The representative nodes in the set of membernodes are the nodes that have higher energy residual among nodes belonging to thesame ell. This ensures the energy onsumption distribution in the network.
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6.3.3 Data TransmissionsAfter omputing the ell that a node belongs to, the node heks whether it is arepresentative node and also if the relative error threshold is greater than the temporalohereny tolerane (Line 31 of Algorithm 11). If both onditions are satis�ed, thenthe sensed value (Rrew) is sent towards the group oordinator, whih in turn proessesand sends the olleted information towards the sink using the shortest path. Based onits position and the sink position, the Coordinator reates a straight line segment thatonnets itself to the sink. When data transmission is performed, the losest nodes toboth its straight line segment and the endpoint of this straight line segment will behosen to forward the data. Figure 6.1 shows the straight line between the oordinatorand the sink node as well as the relay nodes. The evaluation of our algorithm ispresented in the next Setion.6.4 Performane EvaluationIn this setion, we evaluate the performane of the spatio-temporal orrelation meh-anism of our proposed EAST algorithm. We also ompare its performane with twoother known routing protools:� Spatio-temporal Clustering and Compressing Shemes - SCCS (brie�y desribedin Setion 2.3.3).



6.4. Performane Evaluation 73Algorithm 11: EAST Algorithm.
⊲ Variables:1: tct = {Temporal Coherent Tolerane.}2: Rold = ∅ {Last Reported Reading.}3: Start Announement Interest Message
⊲ Input:4: Announement Interest MessageAtion:5: Stores the Neighbor's and Sink's Positions6: Stores the Phenomenon of Interest7: [Re℄Start Announement Interest Message
⊲ Input:8: Event DetetedAtion:9: node.Role ← Coordinator10: Send Event Announement Message11: Start ellComputation
⊲ Input:12: msgi = response(Event Announement Message)Ation:13: if (EnergyLevel(node) < EnergyLevel(msgi) and node.Role == Coordinator) then14: node.Role ← Member ;15: Retransmits (Event Announement Message)16: Start DataTransmissions17: end if
⊲ Input:18: ellComputation timeoutAtion:19: xc ← 020: yc ← 021: if (xn−xe)

( c

2
)

> 1 then22: xc ← ⌊
(xn−xe)−( c

2
)

c
⌋ + 123: yc ← ⌊

(yn−ye)−( c

2
)

c
⌋ + 124: end if25: if (xn−xe)

( c

2
)

< −1 then26: xc ← ⌊
(xn−xe)+( c

2
)

c
⌋ − 127: yc ← ⌊

(yn−ye)+( c

2
)

c
⌋ − 128: end if

⊲ Input:29: Data TransmissionsAtion:30: Rnew ← sensed value31: if node.Role = Representative and
(

|(Rnew−Rold)|
Rold

)

× 100 > tct then32: Send Rnew to Coordinator33: Rnew ← Rnew34: end if35: if node.Role = Member then36: Forwards Rnew to Coordinator37: end if38: if node.Role = Coordinator then39: Proessing reeived Rnew40: Forwards the result to Sink41: if node.Role = Relay then42: Forwards Rnew to Sink43: end if44: end if



74 Chapter 6. EAST: Effiient Data Colletion Aware ofSpatio-Temporal Correlation� Aurate data olletion strategy, whih is the optimal solution in terms of au-ray. In this solution, all nodes send their sensed information to the sink node.6.4.1 MethodologyThe evaluation is performed through simulations by using the SinalGo versionv.0.75.3 [Sinalgo, 2008℄ simulator. In all results, urves represent average values, whileerror bars represent on�dene intervals for 95% of on�dene from 33 di�erent in-stanes (seeds). The simulation parameters are presented in Table 6.1. The eventours in random positions. We onsider the area of the sensor �eld as the relation
√

nπr2c/d, where n is the number of nodes, rc is the ommuniation radius, and d isthe average degree of neighbors. Sensor nodes are randomly deployed.Table 6.1. Simulation parametersParameters ValuesSink node 1 (top left)# of nodes 1024# of events 1Density (avg. neigh. number) (20, 25, 30)Event diameter (m) (50, 100, 150, 200)Correlation Region (φ) (0, 10, 20, 30, 40, 50)Event duration (hours) (1 to 10)Noti�ation rate (per minute) 1Communiation radius (m) 80Simulation duration (days) 76.4.2 Event ModelFor our event model, we used a set of one-week environmental temperature data (degreein Celsius) from the Amazon rainforest in Brazil olleted at intervals of 1 minute. Thesamples are shown in Figure 6.3.In our appliation, the temperature in a region of interest is monitored. All nodesin this region will then send the data aording to our proposed algorithm. To use thereal-world data in our simulations, we onsider the temperature at oordinate (x, y) inthe event area given by Equation 6.1, where TE is the temperature at the event enter,whih was obtained from the real-world data set presented in Figure 6.3, DE is theEulidean distane (meters) to the event enter and TD is the temperature derease(degree Celsius per meters).temperature = TE − (DE × TD) (6.1)
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1 2 3 4 5 6 7Figure 6.3. Data olleted from Amazon rainforest.6.4.3 Performane Evaluation of the Spatial CorrelationMehanismIn this setion, the proposed spatial orrelation mehanism is evaluated and omparedto the aurate data olletion strategy, whih is the optimal solution in terms ofauray. In the aurate data olletion strategy, every sensor is requested to reportits reading to the sink node at eah round of data gathering. The main purposeof this subsetion is to ompare the performane of our proposed spatial orrelationmehanism to the aurate data olletion strategy onsidering the following metris:� Number of Representative nodes: The number of nodes that report data aboutthe phenomenon.� Energy onsumption in data olletion: The amount of energy onsumed by sen-sors that deteted the event. This metri indiates how muh of a sensor nodeenergy is possible to save when the spatial orrelation tehnique is exploited.� Data auray : The auray of the data on the observed phenomenon regardingthe original information.When c = 0 the spatial orrelation is not explored, i.e., all nodes re-port the sensed data, whih is the optimal solution in terms of data auray.The results for the DST [Villas et al., 2010b℄, DAARP [Villas et al., 2009℄, and In-FRA [Nakamura et al., 2009℄ algorithms, as well as the other solutions that do notexploit spatial orrelation, are the same as the results obtained with c = 0.



76 Chapter 6. EAST: Effiient Data Colletion Aware ofSpatio-Temporal Correlation6.4.3.1 Number of Representative NodesThe number of representative nodes that noti�es events depends on three main parame-ters: event diameter, size of orrelation region, and density. In this simulation senario,the event diameter, the density, and the size of the orrelation region (presented in Ta-ble 6.1) were all varied to evaluate their impat on the number of representative nodes.Figure 6.4 presents the number of representative nodes when the orrelation re-gion, density, and event diameter were varied. As expeted, if the orrelation regionremains �xed, the number of representative nodes inreases when the event diameterinreases. It is also easy to see that for larger values of c, there are less representativenodes and, therefore, a lower reporting rate. The region event is divided into (2re/c)
2orrelation regions. In partiular, for the event diameter of 200m, orrelation regionsof 50m, and density 30, the number of representative nodes is redued four times whenompared to the aurate data olletion strategy (c = 0). Consequently, the amountof energy onsumed by nodes within the observed phenomena area is also redued fourtimes (as shown in the next setion).
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Figure 6.4. Number of representative nodesNote that for larger orrelation regions the number of representative nodes issmaller, hene the energy onsumption is lower (as shown in the next setion); however,the auray will be smaller (see Setion 6.4.3.3). In our solution, appliations ande�ne the orrelation region size by setting the value of c aording to the required



6.4. Performane Evaluation 77auray.6.4.3.2 Energy ConsumptionFigure 6.5 shows the energy onsumption of nodes within the observed phenomenaarea. For this analysis, the density, event diameter, event lasting, and orrelationregion (presented in Table 6.1) were all varied to evaluate their impat on the en-ergy onsumption. In the EAST algorithm, the representative nodes are alternated toahieve a more balaned energy onsumption of the nodes that are reporting data.
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Figure 6.5. Energy onsumption of the nodes that are reporting dataAs depited in Figure 6.4, when the size of the orrelation region inreases, thenumber of representative nodes dereases. Consequently, the energy onsumption alsodereases, sine fewer sensor nodes report data. In this senario, it is possible to saveup to 75% of the residual energy of the nodes within the observed phenomena areawhen ompared to the lassial approah for data olletion (aurate data olletionstrategy) while maintaining an information auray greater than 97%, as shown below.6.4.3.3 Data AurayWhen the spatial orrelation is exploited, the level of auray in information about theobserved phenomenon tends to redue. In this simulation senario, the event diameter,density and size of the orrelation region were varied to evaluate the data auray. As



78 Chapter 6. EAST: Effiient Data Colletion Aware ofSpatio-Temporal Correlationmentioned before, when c = 0, the lassial approah for data olletion is performed(100% aurate data olletion strategy). It means that the spatial orrelation is notexploited and all nodes that detet an event will report their readings. Consequently,the auray is optimum (100%). The phenomenon observed was the temperature,but the proposed mehanism works for any other type of phenomenon with di�erentharateristis. We analyzed the auray at the sink node when omputing the valuesfor minimum, mean, and maximum temperatures.As we an see in Figure 6.6, when the node density inreases, the data auraydereases slightly, whih is an unexpeted result in most algorithms. It happens beausethe number of nodes within eah ell inreases, but the number of representative nodesremains the same. The di�erene between the ombined readings of all nodes and theombined readings of only representative nodes inreases.
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Figure 6.6. Auray in the readingsOn the one hand, it an be noted that the worst auraies are obtained bythe maximum value readings. This happens beause nodes that detet the maximumvalue are in the entral ell (see Figure 6.2). With a greater number of nodes within theentral ell, there will be a greater number of nodes that noti�es data with values loserto the maximum value. However, for the evaluated senarios, the smallest observedauray was of 97% while the energy onsumption was redued by more than 75%,whih indiates the advantages of using the proposed spatial orrelation tehnique ofthe EAST algorithm.



6.4. Performane Evaluation 79On the other hand, the reading of the minimum value had the highest auraysine there are more ells with nodes that detet this value (ells in the border of theevent). In the ase of this phenomenon, the smallest observed auray was greaterthan 99% while, again, the energy onsumption was redued by 75%.It is important to note that there is a trade-o� between the data auray andthe energy onsumption. For instane, if the appliation requires the measurement ofthe maximum value with an auray of at least 99.5%, then the value of c will haveto be set to 10 (c = 10). In this ase, the auray in the readings of the maximumvalue would be more than 99.5% and the redution in energy onsumption would beredued to 33%.6.4.3.4 Data Auray for Eah Round of Data GatheringIn this setion, we present the analysis of the data auray for eah noti�ation,omplementing the results presented above that analyzed the average auray of themeasurements. In this simulation senario, the size of the orrelation region was variedto evaluate the data auray at eah noti�ation. The objetive of this analysis is toshow that it is possible to ensure the auray of insensitive dupliation data (suh asmaximum and minimum) at di�erent times. Consequently, if time and reent readingsare taken into aount, it is possible to estimate the exat (minimum and maximum)value.Figure 6.7 shows that the minimum auray for reading the minimum valueat a given time is 92% (when the orrelation region is 50m). However, at least forevery four reports, the exat minimum value is reported. Beause of this, the exatminimum value an be estimated by representative nodes. Consequently, the aurayof the readings for a minimum value an be inreased very lose to the exat value.Note that for a orrelation region smaller than 30m, the minimum auray is 98%and at least for every two noti�ations the exat minimum value is reported.Similarly, Figure 6.8 shows that the minimum auray for reading the maximumvalue at a given time is 93%, but at least for every four reports the exat maximumvalue is reported. Beause of this, the exat maximum value an be estimated byrepresentative nodes and, as a result, inrease the auray of the reading to a maximumvalue very lose to the exat value.Di�erent from minimum and maximum values, the exat mean value is not re-ported at eah time interval, as depited in Figure 6.9. This ours beause meanvalues are sensitive to dupliation data. If taken into aount the time and reentreadings, it is possible to estimate the mean value to inrease the auray at eah
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Figure 6.7. Auray in the readings of min value
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6.4. Performane Evaluation 816.4.4 Performane Evaluation of Temporal CorrelationMehanismIn this setion, we ompared our proposed temporal orrelation mehanism for theEAST algorithm to the SCCS algorithm as well as the aurate data olletion strategy,whih is the optimal solution in terms of auray. For our event model, we used aset of one-week environmental temperature data from the Amazon rainforest in Braziltaken at intervals of 1 minute. The samples are shown in Figure 6.3. For the SCCSalgorithm, as mentioned before, eah node stores its monitored data in a bu�er and,when the bu�er is full, the node proesses the data in its bu�er to onsider the temporalorrelation among the monitored values and report the result to the sink node. Forthe aurate data olletion strategy, every sensor is requested to report its readings tothe sink node at eah round of data gathering. The main purpose of this omparisonis to evaluate the performane of our proposed algorithm onsidering the followingmetris: (i) noti�ations, (ii) readings reported, (iii) readings per data paket, (iv)energy onsumption, (v) data auray, and (vi) delay noti�ation.The simulation parameters used in this performane evaluation are the sameof previous experimentations (shown in Table 6.1) with the new values presented inTable 6.2. Table 6.2. Simulation parametersParameters ValuesDensity (avg. neigh. number) 25Correlation Region (c) (15, 30, 45)Temporal oherent tolerane (0.5, 1, 2, 3, 4)Bu�er size (bytes) (25, 50, 100, 200)Sensor �eld (m) 900× 900The following metris were used for the evaluation:� Number of noti�ations: Number of noti�ations sent by nodes that detet theevent.� Number of readings reported : Number of readings reported.� Readings per data paket : Average number of readings within eah paket (it isthe ratio of Readings reported and Noti�ations).� Energy onsumption: The amount of energy onsumed by sensors that detetedthe event.



82 Chapter 6. EAST: Effiient Data Colletion Aware ofSpatio-Temporal Correlation� Data auray : The auray of the information on the observed phenomenonregarding the original information.� Delay noti�ation: Time to deliver the gathered data.In all evaluated ases, a number of variations of our proposed EAST algorithmwasonsidered. First, we evaluated our EAST algorithm while exploring only the temporalorrelation. We also evaluated our algorithm (EAST-15, EAST-30, and EAST-45)exploiting both temporal orrelation and spatial orrelation (with orrelation regionsof size 15, 30, and 45). For the SCCS algorithm, we onsidered bu�ers with di�erentstorage apaities of 25, 50, 100, and 200 readings.6.4.4.1 Noti�ations and Readings ReportedFor this analysis, the temporal ohereny tolerane, bu�er size, and orrelation region(presented in Table 6.2) were all varied to evaluate their impat on the number ofreadings that an be eliminated by exploiting the spatio-temporal orrelation.Figure 6.10(a) shows that when the temporal ohereny tolerane inreases, thenumber of noti�ations performed by our EAST algorithm dereases while the numberof noti�ations in the SCCS remains �xed sine the readings will only be transmit-ted when the bu�er �lls up. Consequently, in the SCCS, the number of noti�ationsdepends on the bu�er size and not on the temporal ohereny tolerane. Moreover,in our EAST algorithm, when the size of the orrelation region inreases (15, 30 e45), the number of representative nodes dereases, whih also dereases the number ofnoti�ations.In Figure 6.10(b), we an see that the number of readings reported by our EASTalgorithm is similar to the ones presented in Figure 6.10(a). This is beause wheneverthe urrent reading is above the temporal ohereny tolerane, the data is noti�ed.Note that in most ases the EAST algorithm reports fewer readings than the SCCS al-gorithm, but for small values of the temporal ohereny tolerane, the SCCS algorithmpresents less noti�ations by exploring the use of a bu�er, in whih eah noti�ationmay ontain more than one reading. Sine the SCCS algorithm reates a line segmentbetween the �rst and last reading of the bu�er, this tehnique has good results in termsof energy onsumption when the bu�er size inreases (as depited in Figure 6.11). Inthis ase, it is neessary a few line segments to represent all values inside the bu�er.Figure 6.10() shows the average number of readings within eah transmittedpaket. As we an see, the EAST algorithm, in any situation, sends only one readingwithin eah transmitted paket. But the number of readings per paket in the SCCS
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algorithm depends both on the apaity of the bu�er and the temporal oherenytolerane. When the temporal ohereny tolerane is small, the SCCS algorithm needsto split the original line segment into a high number of other line segments to representthe original values. Beause of this, more readings will be neessary to represent themonitored values. It is important to point out that when we inrease the bu�er size, theSCCS algorithm will split the original line segment into more line segments to representthe original values, sine more readings are being onsidered by the algorithm. Whenwe inrease the temporal ohereny tolerane, it is not neessary to split the originalline segment into a high number of line segments. For instane, when the temporalohereny tolerane is 4%, the SCCS algorithm transmits the same number of readings(ompared to our proposal) to represent the sensed event.



84 Chapter 6. EAST: Effiient Data Colletion Aware ofSpatio-Temporal Correlation6.4.4.2 EnergyFigure 6.11 shows the average energy onsumption of the nodes within the observedphenomena area. For this analysis, the temporal ohereny tolerane, bu�er size, andorrelation region (presented in Table 6.2) were all varied to evaluate their impat onthe energy onsumption.

Temporal coherency tolerance (%)

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

0.2

0.4

0.6

1 2 3 4

Approaches
EAST
EAST−15

EAST−30
EAST−45

SCCS−100
SCCS−200

SCCS−25
SCCS−50

Figure 6.11. Average energy onsumptionAs depited in Figure 6.10(a), when the temporal ohereny tolerane inreases,the number of noti�ations performed by EAST dereases while the number of no-ti�ations in the SCCS remains �xed and depends on the bu�er size, whih has animpat on the data auray (see Figure 6.12). Consequently, the energy onsumptionalso dereases in the EAST algorithm (see Figure 6.11). Moreover, when the size ofthe orrelation region inreases (15, 30 e 45), the number of noti�ations dereases.Consequently, the energy onsumption also dereases, sine a smaller number of sensornodes report their readings.The results for the aurate data olletion strategy were not plotted on the graphbeause of its very high energy onsumption, whih is due to the fat that all readingsare noti�ed to ensure data auray of 100%. On average, the aurate data olletionstrategy onsumes 10J , i.e., 14 times more than the SCCS and EAST algorithms.6.4.4.3 Data AurayIn this simulation senario, the temporal ohereny tolerane, bu�er size, and orrela-tion region were all varied to evaluate the auray of the readings. The phenomenonobserved was the temperature but, as mentioned before, the proposed mehanism worksfor any other type of phenomenon with di�erent harateristis. We analyzed the au-



6.4. Performane Evaluation 85ray at the sink node when omputing the values for minimum, mean, and maximumtemperatures.As depited in Figure 6.12, when the temporal ohereny tolerane inreases,the data auray in the EAST algorithm slowly dereases. For the SCCS algorithm,when the bu�er apaity inreases, the data auray dereases faster. This happensbeause when we inrease the bu�er size, less readings will be neessary to representthe monitored event (see Figure 6.10(b)). Thus, onsidering less values, the SCCSalgorithm will not ahieve good values of data auray.
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Figure 6.12. Data aurayFor the evaluated senarios, the smallest auray observed in our proposed algo-rithm was of 98.7% and the energy onsumption was less than 0.2J , while the auratedata olletion strategy onsumes 10J , whih indiates the advantages of using ourspatial and temporal orrelation tehniques.6.4.4.4 Average Delay in Reporting the ReadingsIn this setion, we evaluate the average delay in reporting the readings for both se-narios of low and high noti�ation rate, whih is shown in Figures 6.13 and 6.14,respetively. For this analysis, the noti�ation rate was varied to evaluate the averagedelay in reporting the readings. As mentioned before, the SCCS algorithm exploresthe use of a bu�er to store the readings and, then, it is proessed while exploitingtemporal orrelation. However, the use of a bu�er has some disadvantages. The maindrawbak of this tehnique is the delay of the noti�ation of eah data. Figures 6.13and 6.14 show that the delay to notify the sensed data is very high in the SCCS. Asexpeted, the larger the bu�er size or the range of noti�ation, the greater the delay.For instane, for the senario of SCCS with a bu�er size of 100 readings and an interval



86 Chapter 6. EAST: Effiient Data Colletion Aware ofSpatio-Temporal Correlationof 1 reading per seond (see Figure 6.14), the node will send its values only after 100readings, whih implies an average delay of nearly 100 seonds. Thus, the sink nodewill be noti�ed about the event onsidering old readings, whih is not aeptable byseveral WSN appliations. One way to overome this problem is to redue the bu�ersize. However, as depited in Figure 6.11, when the SCCS uses a small bu�er size,the average energy onsumption is greater than the EAST algorithm. For instane,the use of a bu�er of 25 readings onsumes on average 55% more energy than the theEAST algorithm. Even with a bu�er size of 25 readings, the SCCS algorithm reahes,on average, a data auray of 99.62% while the EAST algorithm remains on 99.14%(see Figure 6.12).
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Figure 6.13. Average delay in high reporting rate
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Figure 6.14. Average delay in low reporting rateBeause the EAST algorithm onsiders the last noti�ed reading to exploit thetemporal orrelation, as soon as the relative error threshold of the atual reading isgreater than the determined tolerane of temporal ohereny, the algorithm noti�es the



6.5. Final Remarks on EAST 87atual reading to the sink node. As a result, every time the sensed value is beyond theerror threshold the sink will be noti�ed in real time what is expeted in most WSNsappliations.6.5 Final Remarks on EASTThis hapter presented the EAST algorithm, an algorithm for energy-aware data for-warding in WSNs that takes full advantage of both spatial and temporal orrelationmehanisms to save energy while still maintaining real-time, aurate data report to-wards the sink node. In the urrent literature of spatial and/or temporal orrelationalgorithms, most of the proposed studies do not onsider the energy dissipation duringdata olletion to better hoose the representative nodes. Also, these solutions presenta high number of ontrol messages and do not exploit e�iently the spatio-temporalorrelation nor their dynamiity. In this work, we went further and proposed an energy-aware spatio-temporal orrelation mehanism in whih nodes that deteted the sameevent are dynamially grouped in orrelated regions and a representative node is se-leted at eah orrelation region for observing the phenomenon. The entire region ofsensors per event is e�etively a set of representative nodes performing the task of dataolletion and temporal orrelation.We exhaustively simulated our proposed algorithm onsidering several senariosand parameters to allow a better understand of its behavior. Simulation results learlyshow that by using both spatial and temporal orrelation, the information about theevent an be sensed with a high auray of more than 99.7% while still saving theresidual energy of the nodes in more than 14 times when ompared to the aurate dataolletion strategy. These results are very promising, but some issues still need to befurther exploited. As future work we intend to onsider not only the last reading, butalso the previous readings in the orrelation region to improve the auray of senseddata about the observed phenomenon. To ahieve this goal, representative nodes anestimate the values of their orrelation region by taking into aount the time andreent readings. In addition, we intend to onsider orrelation regions of di�erent sizesfor the same event to further explore the dynamiity of the event.





Chapter 7Final Remarks
This hapter summarizes this thesis and disusses diretions for future researh. Theobjetive is to highlight our ontributions and point out some possible diretions toproeed with the researh to address the drawbaks of the proposed solutions. In thisontext, we �rst present the thesis onlusions in Setion 7.1. Then, in Setion 7.2, wepoint out the limitations of the proposed algorithms. In Setion 7.3 we present futurediretions of this work. Finally, in Setion 7.4.1 we present the publiations related tothis thesis.7.1 ConlusionsIn this dissertation, we have provided a survey on the state-of-the-art about the useof data aggregation and spatio-temporal data orrelations in WSNs. This survey hasallowed us to understand how data aggregation and spatio-temporal data orrelationshave been used in WSN, and how it an still be used to address open issues on WSNs.In addition, it has allowed us to identify drawbaks of urrent proposals and to proposenew solutions that overome the drawbaks of urrent proposals.The di�erent senarios in whih a WSN an be deployed as well as the broadappliability of WSNs indiate there is no single solution for a problem in WSNs.For this reason, there are several di�erent solutions for the same problem in WSNs.Eah solution is designed to work well in a spei� senario suh as stati or mobilenetworks; small, medium, or large sale networks; sparse or dense networks; and et.Due of this, the hoie of whih protools and algorithms should be uses to providerouting struture for a WSN depends on both the senarios and the appliation.Based on the survey presented, and on the impossibility of designing a singlesolution to a problem in WSNs, we have proposed four di�erent solutions for the data89



90 Chapter 7. Final Remarksaggregation and exploiting spatio-temporal data orrelations for WSNs, whih we referto as DAARP, DDAARP, DST, and EAST algorithms, respetively.� DAARP: Data Aggregation Aware Routing Protool for WSNs (shown in Chap-ter 3) builds a routing struture with the shortest paths (in hops) that onnetall soure nodes to the sink while maximizing data aggregation, whose main on-tribution is to maximize data aggregation along the ommuniation route, ina more reliable way, through a routing fault tolerant mehanism. Simulationsresults (presented in Setion 3.6) reveal that DAARP has some keys aspets re-quired by data aggregation in WSNs suh as a redued number messages forsetting up a routing struture, maximized number of overlapping routes, highaggregation rate, and reliable data aggregation and transmission.� DDAARP: Dynami Data-Aggregation Aware Routing Protool for WSNs (showin Chapter 4) is a novel dynami data aggregation aware routing protool forWSNs, whih uses the sink node for proessing and on�guration of the routesaware of data aggregation. The main ontribution is that the routes reated byDDAARP does not depend on the order of events and are not held �xed duringthe ourrene of events suh as the DAARP and the most algorithms in theliterature. Simulations results (presented in Setion 4.6) reveal that DDAARPpresents low ost in terms of pakets ontrol, improves the quality of the routingstruture and maximizes data aggregation along the ommuniation route in amore reliable way, through a routing fault tolerane mehanism.� DST: Dynami and Salable Tree for WSNs (shown in Chapter 5) is an e�ientdata aggregation solution that allows salable and dynami routing in WSNs,whih builds routing strutures with the shortest routes (in Eulidean distane)that onnets all soure nodes to the sink node maximizing data aggregationand reduing the distane to onnet eah soure node to the sink. Also, therouting struture reated does not depend on the event order. Simulations re-sults (presented in Setion 5.6) reveal that DST presents low ost in terms ofpakets ontrol, maximizes aggregation points and improve the quality of routingstruture o�ering dynami routes.� EAST: E�ient Data Colletion Aware of Spatio-Temporal Correlation for WSNs(shown in Chapter 6) is an algorithm for energy-aware data forwarding in WSNsthat takes full advantage of both spatial and temporal orrelation mehanisms tosave energy while still maintaining real-time, aurate data report towards thesink node. The main ontribution is an energy-aware spatio-temporal orrelation



7.2. Limitations 91mehanism in whih nodes that deteted the same event are dynamially groupedin orrelated regions and a representative node is seleted at eah orrelationregion for observing the phenomenon. The entire region of sensors per event ise�etively a set of representative nodes performing the task of data olletionand temporal orrelation. Simulations results (presented in Setion 6.4) learlyshow that by using both spatial and temporal data orrelations, the informationabout the event an be sensed with a high auray while still saving the residualenergy of the nodes.7.2 LimitationsSome limitations have been identi�ed in the urrent state of the researh, and suh lim-itations leads to future diretions. First, the proposed algorithms (DAARP, DDAARP,DST and EAST) present improvements on distributed heuristis for the Steiner treeproblem when we have resoure-onstrained networks, suh as energy, memory andbandwidth. However, the urrent version of proposed algorithms onsiders only statievents. In addition, eah proposed algorithm presents some drawbak as desribedbellow.The main drawbak of DAARP algorithm is the stati route. Sine, the routesreated by DAARP are held �xed during the ourrene of events, in senarios wherethe events are of long duration, the energy of nodes that are part of the routes exhaustsquikly to forward the data olleted. Despite DDAARP deal with the stati routesproblem, it su�ers from salability problems and beomes impratial for large-salenetworks. In addition, the sink node need a global knowledge network. The DST andEAST algorithms are potential solutions to deal with the salability and stati routesproblems. However, some issues still need to be further explored suh as orrelationregions of di�erent sizes for the same event to further explore the dynamiity of theevent to improve the auray of sensed data.7.3 Diretions for Future ResearhThe results obtained in this thesis are very promising. The solutions proposed in theurrent work usually take advantage of both data aggregation and spatio-temporal dataorrelations to improve the routing performane and redue energy onsumption in datagathering while preserving both data auray and real-time reporting. However theurrent version of these algorithms are impratiable for mobile networks.



92 Chapter 7. Final RemarksAs future work we intend extend the solutions proposed to work in mobile wire-less sensor networks. Also, we intend to investigate a speial kind of Mobile Ad HoNetwork known as Vehiular Ad Ho Network (VANET), in whih vehiles equippedwith wireless and proessing apabilities an reate a spontaneous network while mov-ing along roads. Vehiular Ad Ho Networks (VANETs) have emerged as an exitingresearh and appliation area. The envisioned appliations, as well as some inher-ent VANET harateristis suh as highly dynami topology, frequently disonnetednetwork, and di�erent and dynami network density, make data dissemination a hal-lenging task in these networks. Several approahes for data dissemination in VANETshave been reently proposed in the literature. However, more work needs to be donesine most of the proposed solutions do not e�etively address some or all of the mainhallenges in these senarios suh as the broadast storm, network partition and tem-poral network fragmentation.7.4 Comments on PubliationsWe list all the publiations obtained during the dotorate below.7.4.1 Journals� Villas, Leandro A.; Boukerhe, Azzedine; Guidoni, Daniel L.; de Oliveira, Hora-io B.F.; de Araujo, Regina Borges; Loureiro, Antonio A.F. "An Energy-awareSpatio-Temporal Correlation Mehanism to Perform Real-Time Data Colletionin Wireless Sensor Networks" Computer Communiations, 2012. To Appear.[Thesis℄� Villas, Leandro A.; Boukerhe, Azzedine; de Oliveira, Horaio B.F.; de Araujo,Regina Borges; Loureiro, Antonio A.F. "Data Dissemination in Vehiular Net-works: Challenges, Solutions, and Future Perspetives" Wireless Communia-tions Magazine, 2012. To Appear. [Thesis℄� Villas, Leandro A.; Boukerhe, Azzedine; de Oliveira, Horaio B.F.; de Araujo,Regina Borges; Loureiro, Antonio A.F. "A Spatial Correlation Aware Algorithmto Perform E�ient Data Colletion in Wireless Sensor Networks." Ad Ho Net-works, v. 1, p. 10-30, 2011. [Thesis℄� Villas, Leandro; Boukerhe, Azzedine; Ramos, Heitor; Oliveira, Horaio; deAraujo, Regina; Loureiro, Antonio A.F. "DRINA: A Lightweight and Reliable



7.4. Comments on Publiations 93Routing Approah for in-Network Aggregation in Wireless Sensor Networks".I.E.E.E. Transations on Computers (Print), v. 12, p. 1, 2011. [Thesis℄� Nakamura, Eduardo F.; Ramos, Heitor S.; Villas, Leandro A.; de Oliveira, Ho-raio A.B.F.; de Aquino, Andre L.L.; Loureiro, Antonio A.F. "A reative roleassignment for data routing in event-based wireless sensor networks". ComputerNetworks, v. 53, p. 1980-1996, 2009.� Araujo, Regina B.; Villas, Leandro A.; Boukerhe, A. "Uma Solução de QoS omProessamento Centrado para Redes de Atuadores e Sensores sem Fio." RevistaBrasileira de Redes de Computadores e Sistemas Distribuídos, v. 1, p. 51-60,2008.7.4.2 Conferenes� Villas, Leandro A. ; Guidoni, Daniel; Boukerhe, Azzedine.; Araujo, Regina B.;Loureiro, Antonio A. F. "Um Algoritmo Ciente da Correlação Espaço-Temporale Consumo de Energia para Coleta de Dados em Redes de Sensores sem Fio."In XXX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos,2012 (to appear). [Thesis℄� Guidoni, Daniel; Boukerhe, Azzedine.; Villas, Leandro A.; Mini, Raquel;Loureiro, Antonio A. F. "A Framework based on Small World Features to DesignHSNs Topologies with QoS" In The Seventeenth IEEE Symposium on Computersand Communiation (ISCC '12), 2012 (to appear).� Villas, Leandro A.; Guidoni, Daniel; Boukerhe, Azzedine.; Araujo, Regina B.;Loureiro, Antonio A. F. "Dynami and Salable Routing to Perform E�ientData Aggregation in Wireless Sensor Networks." In: IEEE International Confer-ene on Communiations ICC 2011, 2011, Kyoto. IEEE International Confereneon Communiations, 2011. [Thesis℄� Villas, Leandro A.; Boukerhe, Azzedine; Guidoni, Daniel L.; de Oliveira, HoraioA.B.F.; Araujo, Regina B.; Loureiro, Antonio A. F., "Time-Spae Correlationfor Real-Time, Aurate, and Energy-Aware Data Reporting in Wireless SensorNetworks." In: The 14th ACM International Conferene on Modeling, Analysisand Simulation of Wireless and Mobile Systems, 2011, Miami. [Thesis℄� Villas, Leandro A.; Guidoni, Daniel L.; Boukerhe, Azzedine; Araujo, ReginaB.; Loureiro, Antonio A.F., "An Energy-Aware Spatial Correlation Mehanism
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