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Resumo
Este trabalho ofere
e uma dis
ussão geral sobre o tema de agregação de dados e explo-ração da 
orrelação espaço-temporal dos dados em redes de sensores sem �o (RSSFs)que permite: (i) a identi�
ação de problemas em aberto e (ii) o entendimento dos re-quisitos e impli
ações do uso de agregação de dados em RSSFs, além da exploração da
orrelação espaço-temporal dos dados.Esta dis
ussão é feita através de um levantamento bibliográ�
o do estado-da-arteenvolvendo agregação e 
orrelação espaço-temporal de dados em RSSFs. Como resul-tado da análise de arquiteturas, modelos e métodos de agregação e 
orrelação espaço-temporal de dados identi�
ados neste levantamento bibliográ�
o, propomos quatrosoluções diferentes para o problema de agregação e exploração da 
orrelação espaço-temporal de dados 
onsiderando diferentes 
enários em RSSFs: os algoritmos DAARP,DDAARP, DST e EAST. Os algoritmos propostos reduzem o número de mensagensne
essárias para 
riar uma árvore de roteamento, maximizam o número de rotas so-brepostas, sele
ionam as rotas 
om maior taxa de agregação e realizam transmissões
on�áveis de dados agregados.As soluções propostas foram amplamente 
omparadas 
om outras soluções da lite-ratura em relação aos 
ustos de 
omuni
ação, e�
iên
ia de entrega, taxa de agregação etaxa de entrega de dados agregados. Os resultados mostram que as soluções propostaspodem ser uma boa alternativa para agregar dados e explorar a 
orrelação espaço-temporal dos dados durante o roteamento. Diversos experimentos são mostrados paraavaliar o desempenho dos algoritmos propostos.
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Resumo Estendido
O do
umento desta tese está redigido em inglês 
om o título �Data Aggregation, Spatio-Temporal Correlation and Energy-Aware Solutions to perform Data Colle
tion in Wire-less Sensor Networks�. Para atender às normas da Universidade Federal de MinasGerais, este resumo em português faz um resumo estendido de 
ada 
apítulo destatese.Capítulo 1 � IntroduçãoOs re
entes desenvolvimentos nas áreas de 
omuni
ação sem �o e sensores multifun-
ionais 
om 
apa
idade de 
omuni
ação e pro
essamento impulsionaram o 
res
imentodas redes de sensores sem �o (RSSFs). As RSSFs estão 
ada vez mais presentes em apli-
ações 
omo monitoramento ambiental, vigilân
ia de 
ampos militares e muitas outrasonde a presença humana não é possível ou não desejada. Um nó sensor, por si só, apre-senta uma 
apa
idade limitada de dete
ção de sensoriamento de uma dada grandeza,mas a 
apa
idade global de dete
ção pode ser aumentada drasti
amente quando os nóssão 
ombinados formando uma rede de sensores sem �o. Logo, nós sensores em umaRSSF podem monitorar 
ooperativamente uma determinada área de interesse. Porexemplo, se o
orrer um vazamento de gás em uma sala repleta de botijões de gás eexistir apenas um nó sensor nessa sala, será possível apenas dizer se há ou não vaza-mento de gás. Por outro lado, se for utilizada uma RSSF adequadamente projetada,será possível não só dete
tar o vazamento, mas indi
ar onde o vazamento ini
iou e 
omoele evoluiu. Um monitoramento dessa forma pode salvar vidas e patrim�nio, além dediminuir 
ustos de seguros.Os nós sensores são dispositivos tipi
amente 
om restrições de energia. O 
onsumode energia é geralmente asso
iado à quantidade de dados transmitidos na rede, pois a
omuni
ação é a atividade que tende a demandar uma maior quantidade de energia.Uma solução simples para esse problema seria a reposição da bateria dos nós sensores.Entretanto, essa té
ni
a é inviável devido à grande quantidade de nós na rede ou porquexv



os nós sensores podem ser ina
essíveis em algumas apli
ações, 
omo monitoramento devul
ões ou do espaço. Dessa forma, algoritmos e proto
olos projetados para umaRSSF devem 
onsiderar o 
onsumo de energia em sua 
on
epção. Além disso, os nóssensores podem 
oletar uma grande quantidade de dados que pre
isam ser pro
essadose en
aminhadas, muitas vezes usando 
omuni
ação multihop, em direção a um nó sink,o qual fun
iona 
omo um gateway para uma estação de monitoramento. Nesse 
enário,o roteamento desempenha um papel muito importante no pro
esso de 
oleta de dados.Para realizar a 
oleta de dados de forma mais e�
iente e e�
az 
om um uso mínimode re
ursos limitados, nós sensores devem ser 
on�gurados para reportar dados de formainteligente tomando de
isões lo
ais. Para isso, a agregação de dados e a exploraçãoda 
orrelação espaço-temporal de dados são té
ni
as e�
azes de e
onomia de energiaem RSSFs. Devido à redundân
ia dos dados brutos re
olhidos pelos nós sensores, aagregação de dados e a 
orrelação espaço-temporal de dados muitas vezes podem serusadas para diminuir o 
usto de 
omuni
ação, eliminando a redundân
ia de dados ereportando apenas informações agregadas.A agregação de dados tem sido utilizada em RSSFs 
om dois propósitos: (i)tirar proveito da redundân
ia e melhorar a pre
isão dos dados; e (ii) reduzir o tráfegode dados e e
onomizar energia. No entanto, as propostas atuais têm um 
usto altopara 
riar estruturas de roteamento 
ientes de agregação de dados e muitas delas não
onsideram a 
orrelação espaço-temporal de dados. Além disso, a maioria das propostasnão lida 
om falhas nos nós e interrupções nas 
omuni
ações, o que provo
a perda dedados e não garante a entrega dos dados 
oletados.A prin
ipal 
ontribuição desta tese é o desenvolvimento de quatro diferentessoluções 
ientes de agregação de dados, da 
orrelação espaço-temporal e 
onsumo deenergia para 
oleta de dados em RSSFs, que nos referimos 
omo DAARP, DDAARP,DST e EAST, quais serão apresentados, respe
tivamente, nos 
apítulos 3, 4, 5 e 6.Capítulo 2 � Fundamentação Teóri
aRedes de Sensores sem FioUma Rede de Sensores sem �o (RSSF) pode ser de�nida 
omo uma rede 
ooperativa denós sensores sem �o, operados tipi
amente por bateria, 
ujo prin
ipal objetivo é duplo:monitorar o ambiente e transmitir os dados re
olhidos para um nó sorvedouro (sink)usando normalmente 
omuni
ação multihop. Este nó sorvedouro será responsável porpro
essar todos os dados re
ebidos dos nós fontes e reportá-los para uma estação demonitoramento (veja �gura 2.1). Tipi
amente, uma RSSF é 
omposta por um grandexvi



número de nós sensores que são 
olo
ados dentro ou muito próximos ao fen�meno a seranalisado. Geralmente, 
ada nó sensor é equipado 
om vários tipos de sensores 
omo,por exemplo, temperatura, pressão, sísmi
o, a
ústi
o, radiação e infravermelho. Essesnós sensores são 
onstruídos para serem baratos e normalmente possuem limitações
omputa
ionais, memória, 
omuni
ação e energia.As RSSFs possibilitam a 
oleta de informações ne
essárias em ambientes onde ouso de �os ou 
abeamento não seja possível ou viável. Elas podem estar inseridas naestrutura de um prédio, ponte, no interior de máquinas, tubulações, dentro de 
asas,�orestas, áreas de desastre, plantações, vul
ões, 
ampo de batalha e até mesmo dentrodo 
orpo humano 
omo, por exemplo, a retina. O baixo 
usto dos nós sensores e opoten
ial dessa te
nologia justi�
am a sua utilização em diversas áreas, tais 
omo:� Saúde: 
ontrole de doenças 
ontagiosas; interfa
e para de�
ientes; monitora-mento de pa
ientes; diagnósti
o de distúrbios; administração de drogas em hos-pitais, monitoramento e lo
alização de pa
ientes e médi
os em hospitais.� Apli
ações Militares: monitoramento de tropas; re
onhe
imento de terreno;dete
ção de alvos e de ataques biológi
os, quími
os ou nu
leares.� Meio-ambiente: rastreamento do movimento dos pássaros, pequenos animais;monitoramento de 
ondições ambientais que afetam 
olheitas e plantio (por exem-plo, 
ombate à geada, dete
ção de 
omponentes quími
os ou biológi
os, irrigação);mapeamento da bio-
omplexidade ambiental, estudo da poluição e muitas outras.� Monitoramento de estrutura/equipamentos: monitoramento e identi�-
ação de falhas em estruturas (pontes, prédios, et
); monitoramento da fadigade máquinas e equipamentos (motores, dutos de gás, et
); diagnósti
os de má-quinas.� Apli
ações 
omer
iais: automação de vendas e pro
esso industriais;manutenção de inventário, monitoramento de qualidade de produtos; dete
çãoe vigilân
ia de veí
ulos e estabele
imentos.A tendên
ia é a produção dos nós sensores em larga es
ala, barateando o seu
usto e o investimento no desenvolvimento te
nológi
o levando a novas melhorias, 
omoaumento de pro
essamento e armazenamento e redução do tamanho dos nós sensores.Portanto, novas apli
ações podem surgir aumentando a abrangên
ia de uso das RSSFs.A posição de 
ada nó sensor não pre
isa ser ne
essariamente pré-determinada, oque possibilita uma disposição aleatória em lo
ais de difí
il a
esso, 
omo em áreas dexvii



desastres e in
êndios. Por outro lado, isto signi�
a que os algoritmos e proto
olos pararedes de sensores devem possuir a 
ara
terísti
a de auto-organização dos nós.Agregação de Dados no RoteamentoAgregação de dados durante o roteamento em redes de sensores sem �o envolve dife-rentes formas de transmitir pa
otes de dados a �m de 
ombinar dados provenientes defontes diferentes, mas destinado a um nó espe
í�
o 
hamado sink. Um 
omponente-
have para a agregação de dados em RSSFs é um proto
olo de roteamento 
iente deagregação de dados bem 
on
ebido, que determina onde a agregação deve ser realizada.Agregação de dados requer um paradigma de en
aminhamento diferente do roteamento
lássi
o. Proto
olos de roteamento 
lássi
o tipi
amente usam os 
aminhos mais 
urtos�em relação a alguma métri
a espe
í�
a� para transmitir dados ao sink. Em proto
olosde roteamento 
iente de agregação de dados, os nós devem en
aminhar os pa
otes dedados 
om base no 
onteúdo do pa
ote e es
olher o próximo hop que maximiza a so-breposição de rotas para promover a agregação de dados na rede durante o roteamento.Para realizar a agregação de dados na rede é ne
essária alguma forma de sin-
ronização entre os nós. Tipi
amente os nós não enviam dados, logo que seja possível.A espera de informações provenientes de nós vizinhos pode levar a melhores oportu-nidades de agregação de dados e, 
onsequentemente, melhor desempenho. As prin
ipaisestratégias de temporização propostas na literatura são resumidas a seguir:� Periodi
 simple aggregation exige que 
ada nó espere por um período de tempopré-de�nido, para agregar todos os pa
otes de dados re
ebidos durante esse tempopré-de�nido e, em seguida, envia um pa
ote de dados 
om o resultado da agre-gação de todos os pa
otes de dados re
ebidos;� Periodi
 per-hop aggregation é bastante semelhante à abordagem anterior. Aúni
a diferença é que o pa
ote 
om os dados agregados é transmitido logo queo nó re
ebe um pa
ote de dados de todos os seus �lhos. Isto requer que 
adanó 
onheça os seus �lhos. Além disso, um tempo limite é usado em 
aso de umpa
ote de dados de algum �lho ser perdido durante a transmissão.� Periodi
 per-hop adjusted aggregation ajusta o tempo de espera de um nó, de-pendendo da posição do nó na estrutura de roteamento.É importante observar que a es
olha da estratégia de tempo afeta fortemente ataxa de agregação em rede e a latên
ia para relatar os dados 
oletados. Se o tempode espera no ponto de agregação é alto, a latên
ia e a taxa de agregação é maior. Sexviii



o tempo de espera em pontos de agregação é baixo, a taxa de agregação e a latên
ia émenor.Correlação Espaço-Temporal de DadosPodemos en
ontrar atualmente na literatura três 
ategorias prin
ipais de proto
olos
ientes de 
orrelação de dados: (i) 
orrelação espa
ial; (ii) 
orrelação temporal e (iii)
orrelação espaço-temporal. A seguir, apresentamos os benefí
ios da exploração da
orrelação espa
ial/temporal de dados em RSSFs:1. Correlação Espa
ial : nós espa
ialmente próximos tendem a sensoriar valoressemelhantes. No entanto, essa proximidade depende dos requisitos da apli
açãoe 
ara
terísti
as do evento. Algumas apli
ações são mais 
ríti
as e são menostolerantes a dis
repân
ias nos valores sensoriados sobre o fen�meno observado,exigindo que nós próximos reportam os dados sensoriados (região de 
orrelação émenor). Por outro lado, outras apli
ações podem ser mais tolerantes a dis
repân-
ias nos valores sensoriados, não exigindo que nós próximos reportam os dadossensoriados (região de 
orrelação é maior).Região de 
orrelação: em uma região de 
orrelação, os valores sensoriados pe-los nós sensores são 
onsiderados semelhantes para a apli
ação e, portanto, umaúni
a leitura dentro dessa região é o su�
iente para representá-la. O tamanho daregião de 
orrelação varia de apli
ação para apli
ação e de evento para evento.Assim, o tamanho da região de 
orrelação está diretamente rela
ionado à apli-
ação.2. Correlação Temporal : tipi
amente, a leitura feita pelos sensores no ambiente éperiódi
a. Consequentemente, os dados sensoriados 
onstituem uma série tem-poral. Devido à natureza do fen�meno físi
o, há uma 
orrelação temporal signi-�
ativa entre 
ada observação 
onse
utiva de um nó sensor e os dados re
olhidossão geralmente semelhantes em um 
urto período de tempo. Assim, nesses 
asos,os nós sensores não pre
isam transmitir suas leituras se a leitura atual estiverdentro de um limiar a
eitável em relação à última leitura reportada.Correlação temporal : 
ada nó fonte mantém a última leitura reportada (Rold).Quando a leitura atual (Rnew) estiver disponível, Rnew é 
omparada 
om Rold.
Rnew de um nó fonte é reportada se um dado limiar é maior que a tolerân
iana 
oerên
ia temporal (t
t), isto é, (

|(Rnew−Rold)|
Rold

)

× 100 > tct, onde tct é a por-
entagem de tolerân
ia na 
oerên
ia temporal. Caso 
ontrário o valor Rnew ésuprimido. xix



3. Correlação Espaço-Temporal : a
onte
e quando a natureza dos dados 
oletadosapresenta tanto a 
orrelação espa
ial quanto a temporal, ou seja, nós espa
ial-mente próximos tendem a sensoriar valores semelhantes e os dados re
olhidos sãogeralmente semelhantes em um 
urto período de tempo. Neste 
aso, as soluçõesque utilizam ambas as 
orrelações podem tirar proveito da natureza do eventodete
tado e reduzir o número de dados reportados.
Na literatura existente de algoritmos que exploram a 
orrelação espa
ial e/outemporal dos dados, a maioria das abordagens propostas não 
onsidera o nível de ener-gia dos nós na seleção dos nós representativos e as 
ara
terísti
as do evento durante a
oleta de dados para melhor es
olher os nós representantes de 
ada região de 
orrelação.As abordagens que 
onsideram o nível de energia dos nós apresentam um alto 
ustode 
ontrole e geralmente resultam em altos atrasos e dados desatualizados são en
ami-nhados para o nó sink. No entanto, elas não exploram a 
orrelação espaço-temporale�
ientemente.

Capítulo 3 � DAARP: Um Proto
olo de RoteamentoCiente de Agregação de Dados para RSSFsÉ um novo proto
olo de roteamento 
iente de agregação de dados para RSSFs. Aprin
ipal motivação para projetar um novo algoritmo de roteamento 
iente de agregaçãode dados é que as soluções da literatura apresentam um alto 
usto para 
riar estruturasde roteamento 
ientes de agregação de dados. O algoritmoDAARP 
onstrói uma árvorede roteamento 
om os 
aminhos mais 
urtos (em saltos) que 
one
ta todos os nósfontes ao sink enquanto maximiza a agregação de dados, 
uja prin
ipal 
ontribuição émaximizar a agregação de dados ao longo da rota de 
omuni
ação, de uma forma mais
on�ável, através de um me
anismo de en
aminhamento tolerante a falhas. Resultadosde simulações (apresentados na seção 3.6) revelam que o DAARP tem alguns aspe
tos
haves exigidos pela agregação de dados em RSSFs 
omo um número reduzido demensagens para a 
riação de uma estrutura de roteamento, maximiza o número de rotassobrepostas, alta taxa de agregação e transmissão e agregação de dados 
on�áveis.xx



Capítulo 4 � DDAARP: Um Proto
olo deRoteamento Dinâmi
o e Ciente de Agregação deDados para RSSFsÉ um novo proto
olo de roteamento 
iente de agregação de dados dinâmi
o para RSSFs,que usa o nó sink para o pro
essamento e 
on�guração das rotas 
ientes de agregaçãode dados. A prin
ipal motivação para projetar uma abordagem dinâmi
a, que 
ria es-truturas de roteamento dinâmi
as 
ientes de agregação de dados, é que a qualidade dasestruturas de roteamento 
riadas pelo DAARP e também pela maioria dos algoritmosna literatura depende da ordem de o
orrên
ia dos eventos. Assim, uma vez 
riada essaestrutura, as rotas são mantidas estáti
as durante a o
orrên
ia do evento. A prin
ipal
ontribuição do DDAARP é que as rotas 
riadas não dependem da ordem de o
orrên
iados eventos e não são mantidas �xas durante a o
orrên
ia de eventos. Resultados desimulações (apresentados na seção 4.6) revelam que o DDAARP apresenta baixo 
ustoem termos de pa
otes de 
ontrole, melhora a qualidade da estrutura de roteamento emaximiza a agregação de dados ao longo da rota de 
omuni
ação de uma forma mais
on�ável, através de um me
anismo de roteamento tolerante a falhas.Capítulo 5 � DST: Um Proto
olo de RoteamentoEs
alável, Dinâmi
o e Ciente de Agregação deDados para RSSFsÉ um novo proto
olo de roteamento 
iente de agregação de dados que leva a uma so-lução es
alável, dinâmi
a e apresenta baixo 
usto para 
riar estruturas de roteamento.Apesar do DDAARP ter mostrado bons resultados, ele sofre 
om problemas de es
al-abilidade e torna-se inviável para redes de larga es
ala. Além disso, o nó sink pre
isade 
onhe
imento global da rede. DST é uma solução e�
iente de agregação de dadosque permite o roteamento es
alável e dinâmi
o em RSSFs, que 
onstrói estruturas deroteamento 
om as rotas mais 
urtas (distân
ia Eu
lidiana) que 
one
ta todos os nósfontes ao nó sink maximizando a agregação de dados e reduzindo a distân
ia para
one
tar 
ada nó fonte ao sink. Resultados de simulações (apresentados na seção 5.6)revelam que o DST apresenta baixo 
usto em termos de pa
otes de 
ontrole, maximizaos pontos de agregação e melhora a qualidade da estrutura de roteamento ofere
endorotas dinâmi
as. xxi



Capítulo 6 � EAST: Um Proto
olo de RoteamentoE�
iente para Coleta de Dados Ciente da CorrelaçãoEspaço-Temporal para RSSFsÉ um novo algoritmo 
iente de energia para o en
aminhamento de dados em RSSFs queaproveita os me
anismos de 
orrelação espa
ial e temporal para e
onomizar energia emanter o en
aminhamento de dados pre
isos em tempo oportuno para o nó sink. Aprin
ipal motivação para a 
on
epção do EAST é que a maioria dos algoritmos 
ientesde 
orrelação espa
ial e/ou temporal não 
onsidera o 
onsumo de energia durante a
oleta de dados para melhor es
olher os nós representativos. Além disso, essas soluçõespossuem um grande número de mensagens de 
ontrole e não explora de forma e�
ientea 
orrelação espaço-temporal dos dados, nem a sua dinami
idade. A prin
ipal 
on-tribuição é um me
anismo de 
orrelação espaço-temporal de dados em que os nós quedete
taram o mesmo evento são dinami
amente agrupados em regiões 
orrela
ionadase um nó representante é sele
ionado em 
ada região de 
orrelação para observar o fen�-meno. Resultados de simulações (apresentados na seção 6.4) mostram 
laramente que,usando ambas as 
orrelações espa
ial e temporal, as informações sobre o evento podemser sentidas 
om alta pre
isão e ainda e
onomizar a energia residual dos nós.Capítulo 7 � Con
lusõesEsta tese estudou a importân
ia de realizar agregação de dados e explorar a 
orrelaçãoespaço-temporal dos dados durante o roteamento. Devido à impossibilidade de se teruma úni
a solução para um determinado problema em RSSFs, nesta tese são propostosquatro algoritmos diferentes para a agregação de dados e exploração da 
orrelaçãoespaço-temporal dos dados durante o roteamento.
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Abstra
t
This work provides a general dis
ussion for data aggregation that exploits spatio-temporal data 
orrelation in wireless sensor networks (WSNs), allowing us to iden-tify open issues and understand the requirements and the impli
ations regarding dataaggregation, and spatio-temporal data 
orrelation in WSNs.In this dis
ussion, we survey the state-of-the-art of data aggregation and spatio-temporal data 
orrelation in WSNs. By assessing the ar
hite
tures, models, and meth-ods of data aggregation and spatio-temporal data 
orrelation identi�ed in the survey,we propose four di�erent solutions for the data aggregation and spatio-temporal data
orrelation that are suitable for di�erent s
enarios in WSNs. The proposed solutionsare 
alled DAARP, DDAARP, DST and EAST. The proposed algorithms redu
e thenumber of message ne
essary to set up a routing tree, maximize the number of over-lapping routes, sele
t routes with the highest aggregation rate, and perform reliabledata aggregation transmission.The proposed solutions have been extensively 
ompared with other solutions inthe literature and the results show that the proposed solutions may be potential al-ternatives to perform data aggregation and spatio-temporal data 
orrelation duringthe routing pro
ess. We also present an extensive set of experiments to evaluate theperforman
e of our algorithms. Our results indi
ate that our proposed solutions aresuitable for implementation in WSNs.Keywords: WSNs, routing algorithms, data aggregation, spatio-temporal 
orrela-tion.
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Chapter 1Introdu
tion
1.1 MotivationRe
ent developments in the areas of wireless 
ommuni
ation and multifun
tional sen-sors with 
ommuni
ation and pro
essing 
apability have stimulated the developmentand use of wireless sensor networks (WSNs) in many di�erent domains su
h as the en-vironmental, medi
al, industrial, military �elds and many other where human presen
eis not possible or desired [Bouker
he et al., 2007℄. A sensor node typi
ally presents alimited sensing 
apability, but the overall sensing 
apability 
an be in
reased when thenodes are 
ombined with many other nodes forming a WSN. For example, if a gas leako

urs in a room full of gas 
ylinders and there is only one sensor in this room, it willonly be possible to say that there is a leak or not. On the other hand, if a WSN is used,with appropriate proto
ols, it is possible not only to dete
t the leak, but to indi
atewhere the leak started and how it evolved. A monitoring in this way 
an save lives andassets, and redu
e 
ost insuran
e.Sensor nodes are energy-
onstrained devi
es and the energy 
onsumption isgenerally asso
iated with the amount of gathered data, sin
e 
ommuni
ation isoften the most expensive a
tivity in terms of energy. For that reason, algo-rithms and proto
ols designed for WSNs should 
onsider the energy 
onsumptionin their design [Olariu et al., 2004, AbdelSalam and Olariu, 2009, Villas et al., 2010a,Villas et al., 2011℄. Moreover, WSNs are data-driven networks that usually produ
ea large amount of information that needs to be routed, often in a multihop fashion,toward a sink node, whi
h works as a gateway to a monitoring 
enter. Given thiss
enario, routing plays an important role in the data gathering pro
ess.For more e�
ient and e�e
tive data gathering with a minimum use ofthe limited resour
es, sensor nodes should be 
on�gured to smartly report data1



2 Chapter 1. Introdu
tionby making lo
al de
isions [Chatzigiannakis et al., 2005, Chatzigiannakis et al., 2006,Efthymiou et al., 2006, Villas et al., 2010b℄. For this, data aggregation and spatio-temporal data 
orrelation are e�e
tive te
hniques for saving energy in WSNs. Due tothe inherent redundan
y in raw data gathered by sensor nodes, in-networking aggrega-tion and spatio-temporal data 
orrelation 
an often be used to de
rease the 
ommuni
a-tion 
ost by eliminating data redundan
y and forwarding only aggregated information.Sin
e minimal 
ommuni
ation leads dire
tly to energy savings, whi
h extends the net-work lifetime, in-network data aggregation is a key te
hnology to be supported byWSNs.Data aggregation has been used in WSNs with two purposes: (i) to take advan-tage of the redundan
y and improve data a

ura
y [S
hmid and S
hossmaier, 2001,Chakrabarty et al., 2002℄, and (ii) to redu
e the overall data tra�
 and save en-ergy [Krishnama
hari et al., 2002℄. Nevertheless, 
urrent proposals have a high 
ostto 
reate routing stru
tures aware of data aggregation and many of them do not 
on-sider the spatio-temporal data 
orrelation. In addition, most proposals do not dealwith node failures and interruptions during a 
ommuni
ation, whi
h 
ause data lossand do not guarantee delivery of the sensed data.One of the main 
hallenges in routing algorithms for WSNs is how to guaranteethe delivery of the sensed data even in the presen
e of node failures and interruptionsduring 
ommuni
ation. These failures be
ome even more 
riti
al when data aggrega-tion is performed along the routing paths sin
e pa
kets with aggregated data 
ontaininformation from various sour
es and, whenever one of these pa
kets is lost a 
onsider-able amount of information will also be lost. For this reason, data aggregation awarerouting proto
ols should present a reliable data transmission, through a fault-tolerantrouting me
hanism.1.2 Obje
tivesThe main goals of this work are twofold. First, we provide a general dis
ussion for dataaggregation and spatio-temporal data 
orrelation problems in WSNs. The se
ond goalis to propose, design, and evaluate the performan
e of di�erent types of algorithms forthe problems of data aggregation and spatio-temporal data 
orrelation for WSNs. Toa
hieve these goals, some se
ondary obje
tives should be a

omplished:1. For the �rst main goal, i.e., in order to allow us to identify open issues andunderstand the requirements and the impli
ations regarding data aggregation



1.3. Main Contributions 3and spatio-temporal data 
orrelation in WSNs, the following goals need to bea
hieved:1.1. survey the state-of-the-art about the use of data aggregation and spatio-temporal data 
orrelation in WSNs;1.2. assess the ar
hite
tures, models, and methods of data aggregation andspatio-temporal data 
orrelation identi�ed in the survey;1.3. identify drawba
ks of 
urrent proposals to propose new solutions that over-
ome the drawba
ks of 
urrent proposals; and2. For the se
ond main goal, to propose di�erent solutions for the problems of dataaggregation and spatio-temporal data 
orrelation that are suitable for di�erents
enarios in a WSN, the following goals need to be a
hieved:2.1. spe
ify and design algorithms that 
onsider the data stru
ture, data 
orrela-tions (spatial and temporal), the network topology and appli
ation restri
-tions;2.2. propose a solution for the data aggregation problem to be used in mediums
ale WSNs;2.3. propose a solution for the data aggregation problem to be used in large s
aleWSNs; and2.4. analyze the performan
e of the proposed solutions.1.3 Main ContributionsThe main 
ontributions of this thesis are the design and development of four di�erentsolutions for data aggregation and spatio-temporal data 
orrelation for WSNs, whi
hwe refer to as the DAARP, DDAARP, DST, and EAST algorithms, respe
tively. Insummary, we have:� Data Aggregation Aware Routing Proto
ol for WSNs (DAARP) is a novel rea
-tive data aggregation aware routing proto
ol for WSNs. The main motivationto design a new data aggregation aware routing proto
ol is that the proposedsolutions in the literature present high 
ost to 
reate routing stru
tures awareof data aggregation. The DAARP algorithm builds a routing stru
ture with theshortest paths (in hops) that 
onne
t all sour
e nodes to the sink while maximiz-ing data aggregation, whose main 
ontribution is to maximize data aggregation



4 Chapter 1. Introdu
tionalong the 
ommuni
ation route, in a more reliable way, through a routing fault-tolerant me
hanism. Simulation results (presented in Se
tion 3.6) reveal thatDAARP has some keys aspe
ts required by data aggregation in WSNs su
h as aredu
ed number messages for setting up a routing stru
ture, maximized numberof overlapping routes, high aggregation rate, and reliable data aggregation andtransmission. This algorithm is fully explained in Chapter 3.� Dynami
 Data-Aggregation Aware Routing Proto
ol for WSNs (DDAARP) is anovel dynami
 data-aggregation aware routing proto
ol for WSNs, whi
h uses thesink node for pro
essing and 
on�guration of routes aware of data aggregation.The main motivation to design a dynami
 approa
h to 
reate dynami
 routingstru
tures aware of data aggregation is that we have identi�ed that the qualityof routing stru
tures 
reated by DAARP and the most algorithms in the liter-ature depend on the order of events o

urren
e and on
e 
reated, these routesare held �xed during the o

urren
e of events. The main 
ontribution is that theroutes 
reated by DDAARP do not depend on the order of events o

urren
e andare not held �xed during the o

urren
e of events su
h as the DAARP. Simula-tion results (presented in Se
tion 4.6) reveal that DDAARP presents low 
ost interms of pa
ket 
ontrol, improves the quality of the routing stru
ture and max-imizes data aggregation along the 
ommuni
ation route in a more reliable way,through a routing fault-toleran
e me
hanism. This algorithm is fully explainedin Chapter 4.� Dynami
 and S
alable Tree for WSNs (DST) is an e�
ient data aggregationsolution that allows s
alable and dynami
 routing in WSNs, whi
h builds rout-ing stru
tures with the shortest routes (in Eu
lidean distan
e) that 
onne
ts allsour
e nodes to the sink node maximizing data aggregation and redu
ing the dis-tan
e to 
onne
t ea
h sour
e node to the sink. Also, the routing stru
ture 
reateddoes not depend on the event order. The main motivation to design the DSTwas the la
k of a solution in the literature s
alable, dynami
 and presents low
ost to 
reate routing stru
tures aware of data aggregation. DDAARP presentsgood results, but it su�ers from s
alability problems and be
omes impra
ti
al forlarge-s
ale networks. In addition, the sink node needs to have a global knowledgeof the network. Simulations results (presented in Se
tion 5.6) reveal that DSTpresents a low 
ost in terms of pa
ket 
ontrol, maximizes aggregation points andimproves the quality of routing stru
ture o�ering dynami
 routes. This algorithmis fully explained in Chapter 5.



1.4. Organization of the Thesis 5� E�
ient Data Colle
tion Aware of Spatio-Temporal Correlation for WSNs(EAST) is an algorithm for energy-aware data forwarding in WSNs that takes fulladvantage of both spatial and temporal 
orrelation me
hanisms to save energywhile still maintaining real-time, a

urate data report towards the sink node.The main motivation to design the EAST is that most of the 
urrent spatialand/or temporal 
orrelation algorithms do not 
onsider the energy dissipationduring data 
olle
tion to better 
hoose the representative nodes. Also, these so-lutions present a high number of 
ontrol messages and do not exploit e�
ientlythe spatio-temporal 
orrelation nor their dynami
ity. The main 
ontributionis an energy-aware spatio-temporal 
orrelation me
hanism in whi
h nodes thatdete
ted the same event are dynami
ally grouped in 
orrelated regions and arepresentative node is sele
ted at ea
h 
orrelation region for observing the phe-nomenon. The entire region of sensors per event is e�e
tively a set of repre-sentative nodes performing the task of data 
olle
tion and temporal 
orrelation.Simulation results (presented in Se
tion 6.4) 
learly show that by using both spa-tial and temporal 
orrelation, the information about the event 
an be sensed witha high a

ura
y while still saving the residual energy of nodes. This algorithm isfully explained in Chapter 6.1.4 Organization of the ThesisThis thesis is divided into seven 
hapters. Chapter 2 provides an overview aboutwireless sensor networks, in-network aggregation and spatio-temporal data 
orrelation.The 
hapter introdu
es wireless sensor networks, dis
usses in-network data aggregationand presents the main te
hniques to perform data aggregation. In addition, it dis
ussesspatio-temporal data 
orrelation and provides an overview of the existing approa
hesthat exploit spatio-temporal data 
orrelation.In the se
ond part of this work, 
omposed of Chapters 3, 4, 5 and 6, we proposeand explain the DAARP, DDAARP, DST and EAST algorithms, respe
tively. In ea
h
hapter, the performan
e of the proposed solution is evaluated through simulations.Finally, in Chapter 7, we present some �nal remarks about the studied problems,their solutions, and the obtained results. We also present some possible extensions ofour work.





Chapter 2Ba
kground
This 
hapter presents the theoreti
al foundation for this work. This 
hapter is organizedas follows: Se
tion 2.1 introdu
es wireless sensor networks, Se
tion 2.2 dis
usses in-network data aggregation and presents the related work, and Se
tion 2.3 dis
ussesspatio-temporal data 
orrelation and provides an overview of the existing approa
heswhi
h exploit spatio-temporal data 
orrelation.2.1 Wireless Sensor NetworksWireless Sensor Networks (WSNs) [Akyildiz et al., 2002, Romer and Mattern, 2004,Bouker
he et al., 2007, Anastasi et al., 2009℄ 
an be de�ned as a 
ooperative networkof small, battery-operated, wireless sensor nodes whose main goal is twofold: tomonitor their surroundings for lo
al data and to forward the gathered data towarda sink node using typi
ally multihop 
ommuni
ation. This sink node will then beresponsible for pro
essing all of the re
eived data from several sour
e nodes andreporting them to a monitoring fa
ility (Figure 2.1). This type of network hasbe
ome popular due to its appli
ability that in
ludes several areas su
h as envi-ronment, homeland se
urity, industry, domesti
s, agri
ulture, meteorology, health,spa
e, military and many other appli
ations that 
an be 
riti
al to save lives andassets [Younis et al., 2006, Anastasi et al., 2009, Villas et al., 2010b℄. Several physi
alproperties 
an be monitored, in
luding temperature, humidity, pressure, ambient light,sound, vibration, and motion.One of the main limitations of the WSNs is the battery-operated nature of theirsensor nodes, whi
h makes this kind of network highly energy-
onstrained. A sim-ple solution to this problem 
ould be the periodi
 repla
ement of the node battery.However, this solution is not feasible due to the large number of nodes in the net-7
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Figure 2.1. Data routing in WSNs [Oliveira et al., 2009℄.work or be
ause the sensor nodes may be ina

essible in some appli
ations su
h asmonitoring vol
anoes or spa
e exploration. For that reason, algorithms and pro-to
ols designed for WSNs should 
onsider the energy 
onsumption in their 
on
ep-tion [Olariu et al., 2004, AbdelSalam and Olariu, 2009, Villas et al., 2011℄.For more e�
ient data gathering with a minimum use of limited re-sour
es, sensors should be 
on�gured to report data more intelligently bymaking lo
al de
isions [Chatzigiannakis et al., 2005, Chatzigiannakis et al., 2006,Efthymiou et al., 2006, Villas et al., 2010b℄. Data aggregation1 and spatio-temporal 2,3data 
orrelation are possible te
hniques for lo
al de
ision-making, whi
h will be pre-sented in the following se
tions. Su
h strategies help to maximize energy 
onservationin an appli
ation-spe
i�
 sensor network.These te
hniques have been exploited in the literature su
h as data aggrega-tion [Krishnama
hari et al., 2002, Chandrakasan et al., 2002, Nakamura et al., 2006,Fan et al., 2006, Nakamura et al., 2009℄, spatial 
orrelation [Akyildiz et al., 2004,Yoon and Shahabi, 2005, Liu et al., 2007b, Le et al., 2008, Yuan and Chen, 2009℄ andtemporal 
orrelation [Min and Chung, 2010, Pham et al., 2010℄. Nevertheless, 
urrentproposals have a high 
ost to 
reate routing stru
tures aware of data aggregation andmany of them does not deal nodes failures and interruptions in 
ommuni
ations, whi
h
auses loss of data and does not guarantee delivery of the sensed data. In addition,these solutions not only introdu
e delays in data transmissions but also lead to there
eption of outdated information by the sink node.1Data Aggregation eliminates inherent redundan
y in raw data gathered by the sensor nodesand forwarding only smaller aggregated information.2Spatial 
orrelation: the 
hange pattern of the data sensed by nearby nodes is expe
ted tobe the same or similar. Thus, exploit the spatial data 
orrelation 
an eliminate the similars datareporting.3Temporal 
orrelation: the 
hange pattern in readings of a sensor node and gathered data isusually similar over a short-time period. Due to the nature of the physi
al phenomenons, there is asigni�
ant temporal 
orrelation among ea
h 
onse
utive observation of a sensor node. Thus, exploitthe temporal 
orrelation 
an eliminate the similars data reporting.



2.2. In-network Data Aggregation 92.2 In-network Data AggregationIn the 
ontext of WSNs, in-network data aggregation refers to di�erent te
hniquesto forward data pa
kets toward the sink node. During this pro
ess, nodes 
ombinedata 
olle
ted by di�erent sour
es, i.e., by fusing sensor readings related to the sameevent or physi
al quantity, or by lo
ally pro
essing raw data before its transmission.A key 
omponent of in-network data aggregation is the design of a data aggregationaware routing proto
ol, whi
h determines where the aggregation shall be performed.Data aggregation requires a forwarding paradigm that is di�erent from the 
lassi
routing, whi
h typi
ally involves the shortest path �in relation to some spe
i�
 metri
�to forward data toward the sink node. Di�erently from the 
lassi
 approa
h in dataaggregation aware routing proto
ols, 
hooses the node as next hop based on theirproximity in the topology that maximizes the overlap of routes in order to promotein-network data aggregation.Before 
lassifying the literature on solutions aware data aggregation, �rst weillustrate the importan
e of 
oupling between routing and data aggregation in WSNs.As depi
ted in Figure 2.2, assume that the routing stru
ture of data 
olle
tion in awsn is a inverted multi
ast tree rooted at the sink (node A). The 
on
ept of in-networkdata aggregation 
an be illustrated as follow.

Figure 2.2. Data Aggregation Aware RoutingLet ea
h of the nodes in {E,G and H} in the sensing �eld 1 and {F, I, J and K}in the sensing �eld 2 generate one raw sensory pa
ket of size r and s bits respe
tively.The arrows in the �gure indi
ate the data gathering stru
ture. For example, data
olle
ted by the sensing nodes {E,G and H} in the sensing �eld 1 will be sent tothe sink via nodes C and B. As 
olle
ted data from physi
ally proximate nodes areusually 
orrelated, E 
an aggregate the data from G and H before forwarding to C.
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kgroundThe result is that the size of the outgoing pa
ket from E, R bits, will be less than thesummation of all the in
oming pa
kets (in
luding its own) and often larger than anyof the individual in
oming pa
kets. The amount of the redu
tion depends on the data
orrelation as spe
i�ed by the appli
ation. For example, in the extreme 
ase wherethere is no data 
orrelation, we have R = 3r (in
luding the data sensed by node E)as no data redu
tion 
an be a
hieved. On the other hand, if the desired result is, say,simply average of the measurements, R = r. However, most appli
ations whi
h datahas a 
ertain degree of 
orrelation will satisfy k < K < 3k. The node B aggregates the
olle
ted data in the sensing �eld 1 and 2. The result is that the size of the outgoingpa
ket fromB, T bits, will be less than the summation of the in
oming pa
kets of R and
S bits and often larger than the lower individual in
oming pa
kets of size min(R, S)bits, ie, min(R, S) < T < R + S.Based in the above example, a key fa
tor in the pro
ess of data aggregation isthe routing s
heme, whi
h determines where the aggregation shall be performed. Forin-network data aggregation to be realized, some form of syn
hronization is neededamong the nodes. Typi
ally, in these algorithms, a node usually does not send dataas soon as it is available sin
e waiting for data from neighboring nodes may lead tobetter data aggregation opportunities. This in turn, will improve the performan
e ofthe algorithm and save energy. Three main timing strategies are found in the literature[Solis and Obra
zka, 2004, Hu et al., 2005℄:� Periodi
 simple aggregation: requires ea
h node to wait for a pre-de�ned periodof time while aggregating all re
eived data pa
ket and, then, forwards a singlepa
ket with the result of the aggregation.� Periodi
 per-hop aggregation: quite similar to the previous approa
h, but theaggregated data pa
ket is transmitted as soon as the node hears from all of its
hildren. This approa
h requires ea
h node to know the number of its 
hildren.In addition, a timeout may be used for the 
ase of some 
hildren's pa
ket beinglost.� Periodi
 per-hop adjusted aggregation: adjusts the transmission time of a nodea

ording to this node's position in the gathering tree.Note that the 
hoi
e of the timing strategy strongly a�e
ts the aggregation ratein-network and laten
y to report data 
olle
ted. If the waiting time in aggregation pointis high, the laten
y and aggregation rate is higher. If the waiting time in aggregationpoints is low, the laten
y and aggregation rate is lower.
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heme Aware Data AggregationIn-network data aggregation plays an important role in energy 
onstrained WSNs sin
edata 
orrelation is exploited and aggregation is performed at intermediate nodes redu
-ing size and the number of messages ex
hanged a
ross the network. In data gatheringbased appli
ations, a 
onsiderable number of 
ommuni
ation pa
kets 
an be redu
ed byin-network aggregation, resulting in a longer network lifetime. The problem of obtain-ing the optimal aggregation tree is known to be NP −Hard [Al-Karaki et al., 2004℄,whi
h is equivalent to the Steiner tree problem [Krishnama
hari et al., 2002℄.De�nition 1 (Steiner Tree) given a network represented by a graph G = (V,E),where V = {v1, v2, . . . , vn} is the set of sensor nodes, E is the set of edges representingthe 
onne
tions among the nodes, i.e., 〈i, j〉 ∈ E i� vi rea
hes vj, and w(e) is the 
ost ofedge e, a minimal 
ost tree is to be built that spans all sour
e nodes S = {s1, s2, . . . , sm},
S ⊆ V , and the sink node s0. The 
ost of the resulting Steiner tree (W ) is the sum ofthe 
osts of its edges. This problem is a well-known NP-hard problem.In the literature, there are di�erent heuristi
s to the Steiner tree prob-lem, some of them present 1.598 approximation fa
tor [Hougardy and Prömel, 1999,Robins and Zelikovsky, 2000℄. However, those solutions are not a�ordable to resour
e-
onstrained networks, su
h as WSNs, sin
e their distributed implementation requiresa large amount of messages to setup the routing tree, whi
h 
onsequently leads to highenergy 
onsumption.Some resear
h e�orts have also been made to develop routing algorithms forWSNs. Table 2.1 presents a summary of the basi
 
hara
teristi
s of the main proposedrouting proto
ols for WSNs. In this work, we 
lassify these proposals into three 
at-egories: tree-based, 
luster-based, and stru
ture-less algorithms. In the next se
tions,we will brie�y review these proto
ols and their stru
tures.2.2.1.1 Tree-Based Approa
hesProto
ols in this family [Al-Karaki and Kamal, 2004, Akkaya and Younis, 2005,Fasolo et al., 2007℄ are usually based on a hierar
hi
al organization of the nodes inthe network. In fa
t, the simplest way to aggregate data �owing from the sour
es tothe sink node is to ele
t some spe
ial nodes that work as aggregation points and de�nea preferred dire
tion to be followed when forwarding data.In these proto
ols, a tree stru
ture is 
onstru
ted �rst and then used later to eitherroute the gathered data or respond to queries sent by the sink node. Aggregation isperformed during the routing when two or more data pa
kets arrive at the same node
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kgroundTable 2.1. Summary of the basi
 
hara
teristi
s of some data aggregation awarerouting proto
olsS
heme Route Stru
-ture Obje
tive AggregationNodes Overhead S
alability Drawba
kLEACH Cluster-based Maximize life-time Clusterheads Medium Low Low s
alabil-itySPT Tree Shortest-Path Opportunisti
 Low High Data redun-dan
yGIT Tree with pathsharing Minimize totalenergy 
ost Intermediatenodes Very High Very Low High 
ostCNS Tree Aggregate 
loserto the sink Aggregator node High Medium Only oneaggregationpointInFRA Tree-based 
lus-ter Maximize over-lap routes Clusterheadsand intermediatenodes Very High Low Low s
alabil-ity and high
ostDAARP Tree-based 
lus-ter Maximize over-lap routes Clusterheadsand intermediatenodes Medium Medium Stati
 routesDDAARP Tree-based 
lus-ter Maximize over-lap routes Clusterheadsand intermediatenodes Low Medium Requiresglobal knowl-edgeDST Based onstraight linesegments and
luster Maximize over-lap routes andminimize over-head Clusterheadsand intermediatenodes Very Low Very High Requires posi-tion informa-tionDAA Any
ast Minimize over-head Intermediatenodes Very Low Very High Not all pa
ketsmay be aggre-gatedof the tree. This node then aggregates all re
eived data with its own data and forwardsonly one pa
ket to its neighbor that is lower in the tree. However, this approa
h hassome drawba
ks. For instan
e, when a pa
ket is lost at a 
ertain level of the tree (e.g.,due to 
hannel impairments), data from the whole sub tree will be lost as well. Thus,tree-based approa
hes require a me
hanism for fault toleran
e to reliably forward theaggregated data.Despite the potentially high 
ost of maintaining a hierar
hi
al stru
ture in dy-nami
 networks and the s
ar
e robustness of the system in 
ase of link/devi
e fail-ures, these approa
hes are still parti
ularly suitable for designing optimal aggregationfun
tions and performing e�
ient energy management. For instan
e, there are someproposed solutions [III et al., 2007, Villas et al., 2010a℄ where the sink node organizesrouting paths to evenly and optimally distribute the energy 
onsumption while stillfavoring the aggregation of data at the intermediate nodes.In most 
ases, tree-based proto
ols build a traditional shortest path routing tree.For instan
e, the Shortest Path Tree (SPT) algorithm [Krishnama
hari et al., 2002℄uses a very simple strategy to build a routing tree in a distributed fashion. In thisapproa
h, every node that dete
ts an event reports its 
olle
ted information by using ashortest path to the sink node. Data aggregation o

urs whenever paths overlap (op-portunisti
 data aggregation). The Dire
ted Di�usion [Intanagonwiwat et al., 2003℄algorithm is one of the earliest solutions to also propose attribute-based routing.
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ases, data 
an be opportunisti
ally aggregated when they meet at anyintermediate node. Based on Dire
ted Di�usion, the Greedy In
remental Tree(GIT) [Intanagonwiwat et al., 2002℄ approa
h was proposed. The GIT algorithm estab-lishes an energy-e�
ient path and greedily atta
hes other sour
es onto the establishedpath. In the GIT strategy, when the �rst event is dete
ted, nodes send their infor-mation as in the SPT algorithm and, for every new event, the information is routedusing the shortest path to the 
urrent tree. There is a new aggregation point everytime a new bran
h is 
reated. Some pra
ti
al issues make GIT not appropriate inWSNs [Nakamura et al., 2006℄. For example, ea
h node needs to know the shortestpath to all nodes in the network. The 
ommuni
ation 
ost to 
reate this infrastru
tureis O(n2), where n is the number of nodes. Furthermore, the spa
e needed to store thisinformation at ea
h node is O(Dn), where D is the number of hops in the shortestpath 
onne
ting the farthest node v ∈ V to the sink node (network diameter). Afterthe initial phase the algorithm needs O(mn) messages to build the routing tree, where
m is the number of sour
e nodes.Another interesting solution is the Center at Nearest Sour
e (CNS) algo-rithm [Krishnama
hari et al., 2002℄. In CNS, every node that dete
ts an event sendsits information to a spe
i�
 node, 
alled the aggregator, by using a shortest path. Theaggregator is the 
losest node to the sink (in hops) that dete
ts an event. CNS redu
esthe amount of data sent to the sink in relation to the 
lassi
al approa
hes, but theoverhead in CNS is highly dependent on the events' o

urren
e positions. In s
enarioswith many events o

urring simultaneously, CNS has a high 
ost to 
hange the aggre-gator node. In this algorithm, data redundan
y is only redu
ed when it is already 
loseto the sink node.2.2.1.2 Cluster-Based Approa
hesSimilarly to tree-based approa
hes, 
luster-based s
hemes [Chandrakasan et al., 2002,Nakamura et al., 2006, Villas et al., 2009, Villas et al., 2010a℄ also 
onsist of a hierar-
hi
al organization of the network. However, in this approa
h, nodes are subdividedinto 
lusters. Moreover, spe
ial nodes, referred to as 
luster-heads, are ele
ted to ag-gregate data lo
ally and transmit the result of su
h an aggregation to the sink node.In the Low-Energy Adaptive Clustering Hierar
hy (LEACH) algo-rithm [Chandrakasan et al., 2002℄, 
lustered stru
tures are exploited to performdata aggregation. In this algorithm, 
luster-heads 
an a
t as aggregation points andthey 
ommuni
ate dire
tly to the sink node. In order to evenly distribute energy
onsumption among all nodes, 
luster-heads are randomly ele
ted in ea
h round.
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kgroundLEACH-based algorithms assume that the sink 
an be rea
hed by any node in onlyone hop, whi
h limits the size of the network for whi
h su
h proto
ols 
an be used. Inaddition, in s
enarios where the data 
an not be perfe
tly aggregated, LEACH-basedproto
ols do not ne
essarily have signi�
ant advantage sin
e the 
luster-heads have tosend many pa
kets to the sink using a high transmission power.The Information Fusion-based Role Assignment (InFRA) algo-rithm [Nakamura et al., 2006℄ builds a 
luster for ea
h event in
luding only thosenodes that were able to dete
t it. Then, 
luster-heads merge the data within the
luster and send the result to the sink node. The InFRA algorithm aims to buildthe shortest path tree that maximizes the information fusion. On
e 
lusters areformed, 
luster-heads 
hoose the shortest path (to the sink node) that maximizesthe information fusion with already formed paths/
lusters [Nakamura et al., 2006℄. Adisadvantage of the InFRA algorithm is that for ea
h new event that arises in thenetwork, the information about the event must be �ooded throughout the network toinform other nodes about its o

urren
e and to update the paths from the alreadyexisting 
luster-heads to the sink node. This pro
edure limits InFRA's s
alability.Another interesting solution is the Data Aggregation Aware Routing Proto
ol(DAARP) [Villas et al., 2009℄. For ea
h event this algorithm performs the 
lusteringof nodes that dete
ted the same event, as well as the ele
tion of a 
luster-head. Then,
luster-heads merge data within the 
luster and send the result to the sink node.After the 
luster-head formation, routes are 
reated by sele
ting nodes in the shortestpath (in hops) to the nearest node that is part of an existing routing infrastru
turein whi
h this node will be an aggregation point. The DAARP routing infrastru
turetends to maximize the aggregation points and uses fewer 
ontrol pa
kets to build thepaths. Di�erent from InFRA, DAARP does not �ood a message to the whole networkwhenever a new event o

urs. DAARP is not feasible for s
enarios with long durationevents be
ause the routes are stati
, whi
h qui
kly 
onsumes the energy of the nodesthat are part of the routing stru
ture.The Dynami
 Data Aggregation Aware Routing Proto
ol(DDAARP) [Villas et al., 2010a℄ adds an improvement over DAARP. In the DDAARPalgorithm, the routes are 
omputed at the sink node and do not depend on the orderof events. Routes 
reated by DDAARP are not kept �xed throughout the durationof events, i.e., routes may 
hange when ne
essary. The drawba
k of this proposalis that pa
kets 
ontaining information from nodes tend to in
rease their size at theinformation 
olle
ting stage and this solution be
omes impra
ti
al for large-s
alenetworks. In addition, the sink node needs to have a global knowledge of the network,su
h as node positions, residual energy of nodes, and nodes that dete
ted events.
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ture-Less Approa
hesFew algorithms for routing aware of data aggregation have been proposed that use astru
ture-less approa
h. The Data-Aware Any
ast (DAA) algorithm [Fan et al., 2006℄,a stru
ture-less data aggregation algorithm, uses any
ast to forward pa
kets to one-hop neighbors that have pa
kets to be aggregated. It involves me
hanisms to in
reasethe 
han
e of pa
kets meeting at the same node (spatial aggregation) at the sametime (temporal aggregation). Sin
e the approa
h does not guarantee aggregation of allpa
kets, the 
ost of transmitting pa
kets with no aggregation in
reases with the sizeof the network. In addition, pa
kets that are unable to be aggregated will not bene�tfrom the energy savings a
hieved by eliminating the 
ontrol overhead.The Dynami
 and S
alable Tree (DST) algorithm [Villas et al., 2010b℄ aims tobuild a routing tree with the shortest routes (in Eu
lidean distan
e) that 
onne
tsall sour
e nodes to the sink node, maximizing data aggregation while redu
ing thedistan
e 
onne
ting ea
h 
oordinator node to the sink. Routes are based on straightline segments, whi
h are 
omputed by the 
oordinator nodes. The 
reated paths donot depend on the event order. Similar to all approa
hes that do not exploit thespatial 
orrelation, DST does not show a good performan
e in s
enarios where manynodes dete
t the same event, sin
e nodes that report information about the event 
an
onsume their energy qui
kly.2.3 Exploiting Spatio-Temporal CorrelationIn this se
tion, we present the bene�ts of exploiting spatio-temporal data 
orrelationin WSNs. We also dis
uss some of the existing approa
hes and algorithms that takeadvantage of spatio-temporal 
orrelation in WSNs. Table 2.2 presents a summary ofthe basi
 
hara
teristi
s of the main proposed spatial and/or temporal data 
orrelationsalgorithms for WSNs.In the 
urrent literature, we 
an �nd three main 
ategories of data 
orrelationproto
ols: (i) spatial 
orrelation; (ii) temporal 
orrelation and (iii) spatio-temporal
orrelation. In the following, we present some of these proto
ols as well as the bene�tsof exploiting spatial/temporal data 
orrelation in WSNs.2.3.1 Spatial CorrelationIn a WSN, nodes that dete
t the same event are typi
ally grouped to save energy, anda node is ele
ted as the 
oordinator of the group [Chandrakasan et al., 2002,
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kgroundTable 2.2. Summary of the basi
 
hara
teristi
s of the main proposed spatialand/or temporal data 
orrelations algorithms for WSNsS
heme RouteStru
ture Obje
tive SpatialCorrel. TemporalCorrel. Overhead S
alability Drawba
kEEDC Single hop Eliminate 
on-trol overhead Yes No Very Low Very Low Centralizedand single-hopnetworkCAG Tree-based
luster Eliminate dataredundan
y Yes No Very High Medium Maintenan
edata-
entri
GSC Tree-based
luster Eliminate dataredundan
y Yes No High Low Is not appliedto multi-hopmembersSBR Tree-based Eliminate dataredundan
y No Yes Medium High Sink node
an re
eiveoutdated infor-mationSCCS Tree-based
luster Eliminate dataredundan
y Yes Yes Medium High Sink node
an re
eiveoutdated infor-mationEAST Based onstraight linesegmentsand 
luster Maximize over-lap routes andminimize 
on-trol overhead Yes Yes Very Low Very High Requiresposition infor-mationYoon and Shahabi, 2005, Yuan and Chen, 2009, Nakamura et al., 2009,Villas et al., 2009, Villas et al., 2010a, Villas et al., 2010b, Villas et al., 2011℄. Theele
ted node is then responsible for re
eiving all the event noti�
ations and forwardingthem toward the sink node. The energy 
onsumption of the nodes that dete
t eventsis greater than the other network nodes (see Figure 2.3(a)). This o

urs be
ause nodeswithin the group (nodes that dete
t events) 
onsume a great deal of energy re
eivingand forwarding data pa
kets from their neighbors, besides their own noti�
ations.As an initial motivation, Figure 2.3 presents the energy 
onsumption in the pro-
ess of data 
olle
tion in a WSN of two di�erent routing approa
hes when the sinknode, lo
ated at position (0,0), re
eives data from a dete
ted event that has a radius of70m and is lo
ated at position (600,600). The �rst approa
h (Figure 2.3(a)) is a simplemethod for data 
olle
tion where all nodes that dete
ted the event send the sensed datatoward the sink node. The se
ond approa
h (Figure 2.3(b)) is a more sophisti
atedstrategy that uses spatial 
orrelation to save energy. In this 
ase, only a subset of nodesthat dete
ted the event sends sensory data to the sink node. In both s
enarios, thenoti�
ation of the dete
ted event was performed at ea
h se
ond, and the event durationwas of only 10m. The �rst approa
h (Figure 2.3(a)) sends 32157 noti�
ations, whereasthe se
ond approa
h (Figure 2.3(b)) sends only 5667 noti�
ations.The di�eren
e between the two approa
hes is notable and, by using spatial 
or-relation, the se
ond approa
h was able to save a large amount of energy, extending theoverall network lifetime.The spatial 
orrelation of sensory information among the nodes that dete
t anevent exists when those nodes are geographi
ally 
lose, i.e., they have similar infor-
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(b)Figure 2.3. Energy 
onsumption of nodes during the data 
olle
tion when using(a) a 
lassi
al approa
h; and when using (b) a spatial 
orrelation based approa
h.mation. In this 
ase, instead of having all sensor nodes reporting the same data, it ismore e�
ient to 
hoose a few representative nodes to notify the sink node about thedete
ted event (see Figure 2.3(b)). A representative node reports the event informationof a given area on behalf of a group of nodes that 
olle
ts similar information in thesame area.Akyildiz et al. [Akyildiz et al., 2004℄ studied the relation between reliability ofevent dete
tion and spatial lo
ation of the sensor nodes in the event area. Their solu-tion estimates the number of sensor nodes (representative nodes) required to send thedete
ted event to the sink in order to have reliable event information. Ea
h represen-tative node represents a spatially 
orrelated group of nodes. Although their solutiona
hieves overall energy gain, it fails to 
onsider the remaining energy during the se-le
tion of the representative nodes � an assumption that should not be negle
ted in aWSN be
ause of hardware 
onstraints. Thus, if a representative node works in the 
or-relation region for a long period of time, it will spend more energy due to the numberof transmitted messages 
ompared to the other nodes.Yoon and Shahabi [Yoon and Shahabi, 2005℄ proposed a new me
hanism for spa-tial 
orrelation in WSNs. The proposed me
hanism, 
alled Clustered AggregationTe
hnique (CAG), 
reates 
lusters of nodes with similar sensing values and only anode inside the 
luster noti�es its reading to the Sink node whereas the other nodesignore their readings. The CAG algorithm is divided into two phases: query andresponse. In the query phase, the data-
entri
 
lusters are 
reated a

ording to a user-spe
i�ed error threshold τ . Nodes that have sensed values smaller than this threshold
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kgroundbelong to the same 
luster. In the se
ond phase (response phase), just one node per
luster (
luster-head) sends its sensed value to the sink node notifying the dete
tedevent. The authors showed that the proposed me
hanism 
an redu
e signi�
antly thenumber of transmitted messages during the data 
olle
tion. However, during the �rstphase, the CAG algorithm uses a �ooding-based proto
ol to disseminate the query toall sensor nodes, whi
h is not needed in most s
enarios. Moreover, the maintenan
e ofthe data-
entri
 
lusters remains a di�
ult problem [Bouker
he et al., 2003℄.Liu et al. [Liu et al., 2007a℄ proposed another 
lustering algorithm, namedEnergy-E�
ient Data Colle
tion framework (EEDC), to exploit spatial data 
orre-lation. They 
onsider that nodes 
olle
t data 
ontinuously and are one-hop 
onne
tedto the sink node or to a 
enter node. The algorithm was designed to be exe
uted atthe sink node, sin
e this node has the entire data network information. The algorithm
reates 
lusters of nodes that are spatially 
orrelated. Also, the sink node manages the
luster formation dynami
ally in order to re�e
t environmental 
hanges. The primarylimitation of that s
heme is the assumption of the single-hop 
ommuni
ation. Thisassumption is impra
ti
al in a distributed system and di�
ult to have in large-s
alewireless sensor networks. Another disadvantage is the 
lustering algorithm that is 
en-tralized at the sink node. Be
ause of this, all network data needs to be sent to the sinknode, whi
h will store and pro
ess a great amount of data.Shah et al. [Shah and Bozyigit, 2007℄ proposed a new me
hanism for spatial 
or-relation in WSNs, named Gridiron Spatial Correlation (GSC). The GSC is adaptiveto a
hieve the required reliability by dynami
ally 
hanging the 
orrelation region. The
orrelation regions are formed as squared re
tangles and nodes lying in the re
tangleare assumed to be spatially 
orrelated. Cluster-head identi�es the redundant and 
losesour
es in its vi
inity and turns o� the a
tivity of nodes by 
onsidering their energylevel and 
loseness as 
riterion. The limitation of GSC is the 
ontrol me
hanism whi
his not applied to multi-hop members, ie, it only works well for s
enarios where theevent radius is smaller than the 
ommuni
ation radius of the 
luster-head.2.3.2 Temporal CorrelationSensor readings about the environment are typi
ally periodi
; 
onsequently, the time-ordered sequen
e of sensed data 
onstitutes a time series (see Figure 2.4(a)). Due to thenature of the physi
al phenomenon, there is a signi�
ant temporal 
orrelation amongea
h 
onse
utive observation of a sensor node and gathered data is usually similarover a short-time period. For example, in a daily sampling of temperature performedat ea
h minute, the temperature may not 
hange signi�
antly. Thus, in these 
ase,



2.3. Exploiting Spatio-Temporal Correlation 19sensor nodes do not need to transmit their readings if the 
urrent reading is within ana

eptable error threshold regarding the last reported reading (see Figure 2.4(b)). Thesink node 
an just assume that any unreported data is un
hanged from the previouslyre
eived ones. The degree of 
orrelation between 
onse
utive sensor measurementsmight vary a

ording to the 
hara
teristi
s of the phenomenon.The temporal 
orrelation 
an be 
aptured by mathemati
al models su
h aswavelet transforms or linear models [Liu et al., 2007a℄ (see an example in Figure 2.4).Therefore, the time series 
an be approximated using a suitable mathemati
al model.The result obtained is the amount of approximating data, and is usually mu
h lowerthan the volume of the whole data series. Transferring approximation data, instead ofraw data, 
an signi�
antly redu
e energy 
onsumption on 
ommuni
ation within thenetwork.
(a) (b)Figure 2.4. (a) The time series and (b) The pie
ewise linear presentationVuran et al. [Vuran et al., 2004℄ proposed a new framework to 
reate data 
entri
proto
ols that explore the nature of the physi
al phenomenon observed by a WSN.The main goal of the framework is to in
orporate temporal 
orrelation among 
onse
u-tive observations of the phenomenon to redu
e 
ommuni
ation 
osts. The authors alsoexplore spatial 
orrelation by showing that nearby nodes tend to have the same ob-served data. The proposed framework 
an be used in two ways: (i) to develop e�
ientproto
ols, and (ii) to develop reliable sensed information reporting in WSN.Deligiannakis and Kotidis [Deligiannakis and Kotidis, 2008℄ proposed a frame-work based on temporal 
orrelation that uses a Self-Based Regression (SBR) algo-rithm [Deligiannakis et al., 2004℄ to de
rease the number of transmitted messages re-quired to monitor a physi
al phenomenon. The goal of the SBR algorithm is to pro
essthe observed data before sending it to the sink node. The framework stores the sensedinformation in a bu�er and, when it is full, the SBR algorithm pro
esses the data to�nd representative information. The authors 
laim that by sending just the represen-tative information, the sink node 
an re
onstru
t the observed event without losinga

ura
y. However, the main drawba
k of su
h an approa
h is the waiting time untilthe bu�er �lls up. In this 
ase, the sink node 
an re
eive outdated information about
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kgroundthe sensed event.2.3.3 Spatio-Temporal CorrelationThe spatio-temporal 
orrelation happens when the nature of the 
olle
ted data has bothspatial and temporal 
orrelations, i.e., nodes 
lose geographi
ally have the same readingthat is similar to the previous one. In this 
ase, solutions that use both 
orrelations 
antake advantage of the nature of the dete
ted event to de
rease the number of reporteddata. Pham et al. [Pham et al., 2008, Pham et al., 2010℄ proposed a spatio-temporalsolution, 
alled Spatiotemporal Clustering and Compressing S
hemes (SCCS), whi
huses a bu�er to store the monitored data. When the bu�er is full, SCCS exe
utesa divide and 
onquer algorithm (DCA) to �nd the representative information insidethe bu�er exploring the temporal 
orrelation. The goal of the DCA is to �nd theminimum data set to be transmitted to the sink node. Considering all readings insidethe bu�er, the DCA 
reates a dividing line between the �rst element and the last one.For ea
h bu�er data, the algorithm 
al
ulates the distan
e between this value and the
reated line. If the value is smaller than a prede�ned threshold, the solution indi
atesthat it has already been 
onsidered so that it is not ne
essary to in
lude it again inthe pa
ket to be sent to the sink. When the value is greater than the threshold, thealgorithm splits the line into two (one line up to this value and another one up to theendpoint of the previous line). When a line is split into two lines, all bu�er valuesare veri�ed again. These steps are repeated until a 
reated line is not split into twoanymore. Also, the SCCS solution 
reates a 
luster among nodes that sensed the eventin order to perform spatial 
orrelation to redu
e the number of transmitted messages.As mentioned before, by using a bu�er to perform the temporal 
orrelation, the waitingtime to deliver the gathered data 
an be inappropriate for a number of real-time sensornetwork appli
ations.Xu et al. [Yu et al., 2006℄ proposed a wavelet-based spatio-temporal data 
om-pression algorithm for WSNs. Their algorithm employs a ring topology that exploressimultaneously the temporal and spatial 
orrelations among the sensed data. The al-gorithm 
onsiders that the sensor network is divided into 
lusters and ea
h 
luster is
ontrolled by a 
luster head. The algorithm also 
onsiders a virtual grid where thenodes inside ea
h 
ell have spatial and temporal 
orrelation. The nodes exe
ute awavelet transform algorithm to 
ompress the sensed data on the ring in su
h a wayit 
an be energy e�
iently transmitted to its 
luster head and then, delivered to thesink node. However, the authors did not investigate the pro
essing task to exe
ute the



2.4. Final Remarks 21proposed wavelet transform in sensor nodes with limited 
apabilities. Also, the 
reatedvirtual grid is not based on the event 
hara
teristi
s, whi
h 
an result in ina

urateinformation.Most of the 
urrent work on spatial and/or temporal 
orrelation algorithms doesnot 
onsider the energy dissipation and the event 
hara
teristi
s during data 
olle
tionto better 
hoose the representative nodes. Also, these solutions usually result in highdelays and outdated data arriving at the sink node. The proposed algorithm, 
alledEAST, presented in the Chapter 6, exploit both spatial and temporal 
orrelations toperform near real-time data 
olle
tion in WSNs. In our algorithm nodes that dete
tedthe same event are dynami
ally grouped in 
orrelated regions and a representative nodeis sele
ted at ea
h 
orrelation region for observing the phenomenon. The entire regionof sensors per event is e�e
tively a set of representative nodes performing the task ofdata 
olle
tion and spatio-temporal 
orrelation.2.4 Final RemarksThis 
hapter presents the main aspe
ts of WSNs, in
luding their main features, 
om-mon requirements and operation. Note that energy is a key fa
tor in designing solutionsfor WSNs. The lifetime of the network depends on the adoption of measures to saveenergy. This 
hapter was also introdu
ed the 
on
ept of in-networking data aggrega-tion and spatio-temporal data 
orrelation and some solutions in the literature. Thenext 
hapters des
ribe the work done and obtained results.





Chapter 3DAARP: Data Aggregation AwareRouting Proto
ol
The DAARP is a novel rea
tive data aggregation aware routing proto
ol for WSNs.The main motivation to design a new data aggregation aware routing proto
ol is thatthe solutions in the literature presents high 
ost to 
reate routing stru
tures awareof data aggregation. The main goal of our proposed DAARP algorithm is to build arouting tree with the shortest paths that 
onne
t all sour
e nodes to the sink whilemaximizing data aggregation. The proposed algorithm 
onsiders the following roles inthe routing infrastru
ture 
reation:� Collaborator: a node that dete
ts an event and reports the gathered data to a
oordinator node;� Coordinator: a node that also dete
ts an event and is responsible for gatheringall the gathered data sent by 
ollaborator nodes, aggregating them and sendingthe result toward the sink node;� Sink: a node interested in re
eiving data from a set of 
oordinator and 
ollabo-rator nodes;� Relay: a node that forwards data toward the sink.The DAARP algorithm 
an be divided into three phases. In Phase 1, the hoptree from the sensor nodes to the sink node is built. In this phase, the sink node startsbuilding the hop tree that will be used by Coordinators for data forwarding purposes.Phase 2 
onsists of 
luster formation and 
luster-head ele
tion among the nodes thatdete
ted the o

urren
e of a new event in the network. Finally, Phase 3 is responsible23
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olfor both setting up a new route for the reliable delivering of pa
kets and updating thehop tree.3.1 Building the Hop TreeIn this phase, the distan
e from the sink to ea
h node is 
omputed in hops. This phaseis started by the sink node sending, by means of a �ooding, the Hop Con�gurationMessage (HCM) to all network nodes. The HCM message 
ontains two �elds: ID andHopToTree, where ID is node identi�er that started or retransmitted the HCM messageand HopToTree is the distan
e, in hops, by whi
h an HCM message has passed.The HopToTree value is started with value 0 at the sink, whi
h forwards it to itsneighbors (at the beginning, all nodes set the HopToTree as in�nity). Ea
h node, uponre
eiving the message HCM, veri�es if the value of HopToTree in the HCM message isless than the value of HopToTree that it has stored and if the value of FirstSendingis true, as shown in Algorithm 1 - Line 3. If that 
ondition is true then the nodeupdates the value of the NextHop variable with the value of the �eld ID of messageHCM, as well as the value of the HopToTree variable, and the values in the �elds ID andHopToTree of the HCM message. The node also relays the HCM message, as shown inAlgorithm 1 - Line 8. Otherwise, if that 
ondition is false, whi
h means that the nodealready re
eived the HCM by a shorted distan
e, then the node dis
ards the re
eivedHCM message, as shown in Algorithm 1 - Line 12. The steps des
ribed above o

urrepeatedly until the whole network is 
on�gured.Before the �rst event takes pla
e, there is no established route and the HopToTreevariable stores the smallest distan
e to the sink. On the �rst event o

urren
e,HopToTree will still be the smallest distan
e; however, a new route will be established.After the �rst event, the HopToTree stores the smaller of two values: the distan
e tothe sink or the distan
e to the 
losest already established route.3.2 Cluster Formation and Leader Ele
tionWhen an event is dete
ted by one or more nodes, the leader ele
tion algorithm startsand sensing nodes will be running for leadership (group 
oordinator); this pro
ess isdes
ribed in Algorithm 2. For this ele
tion, all sensing nodes are eligible. If this is the�rst event, the leader node will be the one that is 
losest to the sink node. Otherwise,the leader will be the node that is 
losest to an already established route (Algorithm 2,Lines 7 to 9). In the 
ase of a tie, i.e., two or more 
on
urrent nodes have the same



3.3. Routing Formation, Hop Tree Updates and Data Transmission 25Algorithm 1: Building the hop tree1 Node sink sends a broad
ast of HCM messages with the value of HopToTree = 0;// Ru is the set of nodes that re
eived the message HCM2 forea
h u ∈ Ru do3 if HopToTree(u) > HopToTree(HCM) and FirstSending(u) then4 NextHopu ← IDHCM ;5 HopToTreeu ← HopToTreeHCM + 1 ;// Node u updates the value of the ID field in the message HCM6 IDHCM ← IDu ;// Node u updates the value of the HopToTree field in the message HCM7 HopToTreeHCM ← HopToTreeu ;8 Node u sends a broad
ast message of the HCM with the new values;9 FirstSendingu ← false ;10 end11 else12 Node u dis
ards the re
eived message HCM;13 end14 enddistan
e in hops to the sink (or to an established route), the node with the smallest IDmaintains eligibility, as shown in Lines 11 to 13 of Algorithm 2. Another possibility isto use the energy level as a tiebreak 
riterion.At the end of the ele
tion algorithm only one node in the group will be de
lared asthe leader (Coordinator). The remaining nodes that dete
ted the same event will be theCollaborators. The Coordinator gathers the information 
olle
ted by the Collaboratorsand sends them to the sink. A key advantage of this algorithm is that all of theinformation gathered by the nodes sensing the same event will be aggregated at a singlenode (the Coordinator), whi
h is more e�
ient than other aggregation me
hanisms(e.g., opportunisti
 aggregation).3.3 Routing Formation, Hop Tree Updates andData TransmissionThe ele
ted group leader, as des
ribed in Algorithm 2, starts establishing the newroute for the event dissemination. This pro
ess is des
ribed in Algorithm 3, (Lines 2to 10). For that, the Coordinator sends a route establishment message to its NextHopnode. When the NextHop node re
eives a route establishment message, it re-transmitsthe message to its NextHop and starts the hop tree updating pro
ess. These steps arerepeated until either the sink is rea
hed or a node that is part of an already established
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olAlgorithm 2: Cluster formation and leader ele
tion1 Input: S // Set of nodes that dete
ted the event2 Output: u // A node of the set S is ele
ted leader of the group3 forea
h u ∈ S do4 roleu ← coordinator;// Node u sends message MCC in broad
ast5 Announ
ement of event dete
tion ;// Nu is the set of neighbors of node u ∈ S6 forea
h w ∈ Nu do7 if HopToTree(u) > HopToTree(w) then8 roleu ← collaborator ;9 Node u retransmits the MCC message re
eived from node w ;10 end11 else if HopToTree(u) = HopToTree(w) ∧ ID(u) > ID(w) then12 roleu ← collaborator ;13 Node u retransmits the MCC message re
eived from node w;14 end15 else16 Node u dis
ards the MCC message re
eived from w;17 end18 end19 endroute is found. The routes are 
reated by 
hoosing the best neighbor at ea
h hop. The
hoi
es for the best neighbor are twofold: (i) when the �rst event o

urs, the nodethat leads to the shortest path to the sink is 
hosen (Figure 3.1(a)); and (ii) after theo

urren
e of subsequent events, the best neighbor is the one that leads to the 
losestnode that is already part of an established route (Figure 3.1(
)). This pro
ess tendsto in
rease the aggregation points, ensuring that they o

ur as 
lose as possible to theevents.The resulting route is a tree that 
onne
ts the Coordinator nodes to the sink.When the route is established, the hop tree updating phase is started. The main goalof this phase is to update the HopToTree value of all nodes so they 
an take into
onsideration the newly established route. This is done by the new relay nodes thatare part of an established route. These nodes send an HCM message (by means of a
ontrolled �ooding) for the hop updating (Figure 3.1(b)). The whole 
ost of this pro
essis less than a �ooding, i.e. only the set of nodes inside the s
ope-limited �ooding for theevent will send one pa
ket for the hop updating. This algorithm for the hop updatingfollows the same prin
iples of the hop tree building algorithm, des
ribed in Se
tion 3.1.The data transmission performed by DAARP uses aggregation te
hniques that
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(a) Example of the routing treeto 1 event (b) Update of the hop tree (
) Example of the routing treeto eventFigure 3.1. Example of establishing new routes and updating the hop treeAlgorithm 3: Route formation, hop tree updates and data transmission1 Leader node v of the new event sends a message REM to its NextHopv ;2 repeat// u is the node that re
eived the REM message, that was sent by node v3 if u = Nextopv then4 HopToTreeu ← 0 ;// Node u is part of the new route built5 Roleu ← Relay ;6 Node u sends the message REM to its NextHopu ;7 Node u broad
asts the message HCM with the value of HopToTree = 1;8 Nodes that re
eive the HCM message sent by node u, will run the
ommand Line 2 until the Line 14 of Algorithm 1;9 end10 until Find out the sink node or a node belonging to the routing stru
ture alreadyestablished ;11 while The node has data to transmit/retransmit do// sonsu is the number of des
endants of u12 if sonsu > 1 then13 Aggregates all data and sends it to the nexthopu;14 end15 else16 Forwards the data to nexthopu;17 end18 Exe
ute the me
hanism of Se
tion 3.419 endare applied in three di�erent 
ontexts: 1) 
luster inside opportunisti
 aggregation; 2)leader inside aggregation; and 3) 
luster outside aggregation. When the routes overlapinside the 
luster, the aggregation is performed by the 
ollaborator nodes (
luster insideopportunisti
 aggregation). Furthermore, the leader node performs data aggregationand sends the results to the sink node (leader inside aggregation). Outside the 
luster,aggregation is performed by the relay nodes when two or more events overlap along
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olrouting (
luster outside aggregation).The pro
ess of data transmission is des
ribed in Algorithm 3 (Lines 11 to 19).While the node has data to transmit, it veri�es whether it has more than one des
endantthat relays its data (Line 12 of Algorithm 3). If it is the 
ase, it waits for a period of timeand aggregates all data re
eived and sends the aggregated data to its NextHop (Line 13of Algorithm 3). Otherwise, it forwards the data to its NextHop. For every pa
kettransmission with aggregated data, the Route Repair Me
hanism is exe
uted as shownin Line 18 of Algorithm 3. A route repair me
hanism is used to send informationin a reliable way. Sender nodes wait a pre-de�ned time period to re
eive a pa
ketdelivery 
on�rmation. When the 
on�rmation is not re
eived by the sender node, anew destination node is sele
ted and the message is retransmitted by that node. Thisroute repair me
hanism (Line 18 of Algorithm 3) is des
ribed in Se
tion 3.4.3.4 Route Repair Me
hanismThe route 
reated to send the data toward the sink node is unique and e�
ient sin
e itmaximizes the points of aggregation and, 
onsequently, the data aggregation. However,be
ause this route is unique, any failure in one of its nodes will 
ause disruption,preventing the delivery of several gathered event data. Possible 
auses of failure in
ludelow energy, physi
al destru
tion, and 
ommuni
ation blo
kage. Some fault tolerantalgorithms for WSNs have been proposed in the literature. Some are based on periodi
�ooding me
hanisms [Intanagonwiwat et al., 2000, Hill et al., 2000℄, and rooted at thesink, to repair broken paths and to dis
over new routes to forward tra�
 around faultynodes. This me
hanism is not satisfa
tory in terms of energy saving be
ause it wastesa lot of energy with repairing messages. Furthermore, during the network �oodingperiod, these algorithms are unable to route data around failed nodes, 
ausing datalosses.Our DAARP algorithm o�ers a piggyba
ked, ACK-based, route repair me
ha-nism, whi
h 
onsists of two parts: failure dete
tion at the NextHop node, and sele
tionof a new NextHop.When a relay node needs to forward data to its NextHop node, it simply sendsthe data pa
ket, sets a timeout, and waits for the re-transmission of the data pa
ketby its NextHop. This re-transmission is also 
onsidered an ACK message. If the senderre
eives its ACK from the NextHop node, it 
an infer that the NextHop node is aliveand, for now, everything is ok. However, if the sender node does not re
eive the ACKfrom the NextHop node within the pre-determined timeout, it 
onsiders this node as



3.5. Complexity Analysis 29o�ine and another one should be sele
ted as the new NextHop node. For this, thesender 
hooses the neighbor with the lowest hop-to-tree level to be its new NextHop;in 
ase of a tie, it 
hooses the neighbor with the highest energy level. After that, thesender updates its routing table to fa
ilitate the forwarding of subsequent pa
kets. Asan example, a disrupted route is shown in Figure 3.2(a). After the repairing me
hanismis applied, a newly partial re
onstru
ted path is 
reated as depi
ted in Figure 3.2(b).
(a) Region with destroyed nodes (b) Repaired pathFigure 3.2. Example of path repair

3.5 Complexity AnalysisIn this se
tion we derive the 
ommuni
ation 
ost bounds for DAARP, InFRA, and SPTalgorithms (brie�y des
ribed in Se
tion 2.2.1). These two algorithms were 
hosen forbeing well known in the literature and have the same goals that the proposed DAARPalgorithm. More spe
i�
ally, we present the limits for the 
ommuni
ation 
ost of thesealgorithms to 
reate the routing stru
ture. We also present the best and worst 
ases,while the average 
ase will be shown in the simulation results (see Se
tion 3.6).In the SPT algorithm, there is linear 
ommuni
ation 
ost to build the routinginfrastru
ture. In a rea
tive fashion operation, it is ne
essary one �ooding started bythe nodes that sensed the �rst event in order to build the routing tree. One more�ooding, initiated by the sink node, is also ne
essary for the other nodes to set up theiran
estors in the tree infrastru
ture. Hen
e, the 
onstant 
ommuni
ation 
ost for SPTis 2n, where n is number of nodes.The InFRA algorithm also presents 
onstant 
ommuni
ation 
osts sin
e it needsone �ooding for every ele
ted 
luster head, followed by one �ooding initiated by the sinknode. Ea
h �ooding is ne
essary to set up and update the aggregated 
oordinators-distan
e at ea
h node. Also, it is ne
essary m transmissions to 
reate the 
luster, where
m is number of transmissions to 
reate the 
lusters. For this reason, InFRA presents
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ola 
onstant 
ommuni
ation 
ost of (2kn+m), where n is number of nodes, k is numberof events. The overhead of the InFRA algorithm 
an be redu
ed in some situations byfor
ing a delay before ea
h announ
ement of the 
luster-heads is sent by the sink node.Thus, if su

essive events take pla
e almost simultaneously, only one �ooding startingat the sink will be ne
essary and the 
ommuni
ation 
ost will be 2n+ (k − 1)n+m.Our proposed DAARP algorithm needs one �ooding from the �rst ele
ted 
luster-head and one more �ooding initiated by the sink to building the hop tree. Su

essive
luster-heads will make a s
ope-limited �ooding to update the nodes HopToTree pa-rameter. Thus, the best 
ase s
enario for the 
ommuni
ation 
ost is when su

essiveevents take pla
e near the previously established routing tree. The 
loser the eventtakes pla
e, the lower the 
ommuni
ation 
ost is; thus, the best 
ase will be a
hievedwhen the events happen on the routing tree. In this 
ase, ea
h CH is already atta
hedto the tree. The number of transmissions to establish the initial routing tree is 2n plus
m transmissions to 
reate the 
luster, i.e., the 
ost is (2n+m). The worst 
ase of theDAARP algorithm happens when su

essive events take pla
e far from the previously
reated tree. In this 
ase, the number of transmissions to build the initial tree is 2n plus
(k−1)n−

∑k
i=2 |Ui| transmissions for the following events plusm messages to 
reate the
luster, where n is number of nodes, k is number of events, m is number of transmissionsto 
reate the 
lusters and |Ui| is the 
ardinality of the set of nodes outside the s
ope-limited �ooding for the event i, whi
h will not update their HopToTree for this event.Thus, the worst 
ase for the DAARP algorithm is (2n+ ((k − 1)n−

∑k
i=2 |Ui|) +m).Table 3.1 presents the 
ommuni
ation 
ost of the algorithms assessed in this work.DAARP requires more 
ontrol messages 
ompared to the SPT. However, SPT buildsrouting trees that are worse than the trees built by our DAARP algorithm, thereforethis 
ost will be re
overed by the higher quality of the 
reated tree as we will show inthe next se
tion. Regarding to the InFRA algorithm, note that (k− 1)n−

∑k
i=2 |Ui| ismu
h smaller than (k − 1)n.Table 3.1. Communi
ation 
omplexity of assessed algorithmsAlgorithm Best Case Worst CaseSPT 2n 2nInFRA (2n+ (k − 1)n+m) (2n+ (k − 1)n+m)DAARP (2n+m) (2n+ ((k − 1)n−

∑k

i=2
|Ui|) +m)



3.6. Performan
e Evaluation 313.6 Performan
e EvaluationIn this se
tion, we evaluate the proposed DAARP algorithm and 
ompare its perfor-man
e to two other known routing proto
ols: the InFRA and SPT algorithms. Thesetwo algorithms were 
hosen for being well known in the literature and have the samegoals that the proposed DAARP algorithm. Table 3.2 shows the basi
 
hara
teristi
sof SPT, InFRA and DAARP algorithms. We evaluate the DAARP performan
e un-der the following metri
s: (i) pa
ket delivery rate; (ii) 
ontrol overhead; (iii) e�
ien
y(pa
kets per pro
essed data); (iv) routing tree 
ost; (v) loss of raw data; (vi) loss ofaggregated data; and (vii) transmissions number.Table 3.2. Summary of the basi
 
hara
teristi
s of assessed algorithms.S
heme RouteStru
ture Obje
tive AggregationNodes Overhead S
alability Drawba
kSPT Tree Shortest-Path Opportunisti
 Low High Data redundan
yand stati
 routesInFRA Tree-based
luster Maximize overlaproutes Clusterheads andintermediate nodes Very High Low Low s
alabilityand high 
ostDAARP Tree-based
luster Maximize overlaproutes Clusterheads andintermediate nodes Medium Medium Stati
 routes
3.6.1 MethodologyThe performan
e evaluation is a
hieved through simulations using the SinalGo ver-sion v.0.75.3 network simulator [Sinalgo, 2008℄. In all results, 
urves represent averagevalues, while error bars represent 
on�den
e intervals for 95% of 
on�den
e from 33 dif-ferent instan
es (seeds). The default simulation parameters are presented in Table 3.3.For ea
h simulation set, a parameter shown in Table 3.3 will be varied as des
ribed inthe evaluated s
enario. The �rst event starts at time 1000 s and all other events start ata uniformly distributed random time between the interval [1000, 3000] se
onds. Also,these events o

ur at random positions. The area of the sensor �eld is 
onsidered asthe relation √

nπr2c/21.7, where n is number of nodes, rc is the 
ommuni
ation radius,and 21.7 is the network density. For ea
h simulation in whi
h the number of nodesis varied, the sensor �eld dimension is adjusted to maintain the node density to 21.7.Sensor nodes are randomly deployed.To provide a lower bound to the pa
ket transmissions, we used an aggregationfun
tion that re
eives p data pa
kets and sends only a �xed size merged pa
ket. How-ever, any other aggregation fun
tion 
an be used to take advantage of DAARP fea-tures. This fun
tion is performed at the aggregation points whenever these nodes senda pa
ket.
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olTable 3.3. Simulation parametersParameter ValueSink node 1 (top left)Network size 1024Communi
ation radius (m) 80# of events 3Event radius (m) 50Event duration (hours) 3Loss probability (%) 0Simulation duration (hours) 6Noti�
ation interval (sec) 60Sensor �eld (m2) 974× 974Node density (node/m2) 21.7The evaluated algorithms used periodi
 simple aggregation strat-egy [Younis et al., 2006℄ in whi
h the aggregator nodes transmit periodi
ally there
eived and aggregated information.The following metri
s were used for the performan
e evaluation:� Data pa
ket delivery rate: number of pa
kets that rea
h the sink node. Thismetri
 indi
ates the quality of the routing tree built by the algorithms � thelower the pa
ket delivery rate, the greater the aggregation rate of the built tree;� Control pa
ket overhead : number of 
ontrol messages used to build the routingtree in
luding the overhead to both 
reate the 
lusters and set up all the routingparameters for ea
h algorithm;� E�
ien
y : pa
kets per pro
essed data. It is the rate between the total pa
ketstransmitted (data and 
ontrol pa
kets) and the number of data re
eived by thesink;� Routing tree 
ost : total number of edges in the routing tree stru
ture built bythe algorithm;� Loss of aggregated data: number of aggregated data pa
kets lost during the rout-ing. In this metri
, if a pa
ket 
ontains X aggregated pa
kets and if this pa
ketis lost, it is a

ounted the loss of X pa
kets.� Number of Steiner nodes: number of Steiner nodes in the routing stru
ture, i.e.,the number of relay nodes;



3.6. Performan
e Evaluation 333.6.1.1 Number of Steiner nodesSin
e the ideal aggregation is a
hieved when the information is routed through the min-imal Steiner tree [Krishnama
hari et al., 2002℄, in this se
tion we evaluate the numberof Steiner tree nodes (i.e., relay nodes) obtained after the 
onstru
tion of the routingtree stru
ture for ea
h of the evaluated algorithms. In this analysis, the network size isvaried from 256 to 2048 sensor nodes; the density varied from 20 to 30; and the numberof events were also varied from 1 to 6.The obtained results are presented in Figure 3.3. We 
an 
learly see that thenumber of Steiner nodes in the routing tree built by DAARP algorithm is lower thanthe ones obtained by the SPT and InFRA algorithms in all studied s
enarios. When
ompared to the MST algorithm, DAARP algorithm results in a slightly larger numberof Steiner nodes. However, the MST algorithm is not suitable for WSNs due to its highoverhead (for building the routing stru
ture) and large amount of required memory(to store the shortest paths to all terminals). We are only 
omparing our proposedapproa
h to the MST algorithm be
ause the number of Steiner nodes in the routingtree built by the MST algorithm is proved to be at most twi
e the optimum (i.e.,minimum) Steiner tree [Takahashi, 1980℄.The good results obtained by the DAARP algorithm are due to its 
hara
teristi
of prioritizing nodes that are 
loser to already existing routes. The InFRA algorithm,on the other hand, prioritizes the distan
e to the sink node, resulting in lower and/orlater aggregations, whi
h in
reases the number of Steiner nodes.The Tables 3.4, 3.5, 3.6, and 3.7 show a di�erent view of the results presented inFigure 3.3. We 
an see that in the average 
ase, DAARP is very 
lose to MST, of whi
h,as already mentioned, 
ost is at most twi
e the optimal Steiner tree. These results alsoshow that the proposed DAARP algorithm is s
alable. For instan
e, Table 3.4 showsthat, on average, the routing stru
ture built by the InFRA algorithm has 35% moreSteiner nodes than DAARP, while Table 3.6 shows that when in
reasing the numberof nodes to 2048 this di�eren
e in
reases to 42%.Finally, we 
an see that in all evaluated s
enarios, the minimum routing stru
tures
reated by the DAARP algorithm have fewer Steiner nodes than the minimum routingstru
tures 
reated by SPT, InFRA, and even the MST algorithm.3.6.1.2 Impa
t of the Network SizeIn this simulation s
enario, the network size was varied from 128 to 1024 to evaluatethe algorithms' s
alability. Figure 3.4 presents the results. Sin
e we are not evaluatingthe number of Steiner nodes, the MST algorithm is not in
luded in the results. In
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Figure 3.3. Number of Steiner nodes in the routing tree built by the DAARP,InFRA, MST, and SPT algorithms



3.6. Performan
e Evaluation 35Table 3.4. S
enario with 6 events, 256 nodes and density 20Algorithm Min 1st Quart. Median Mean 3rd Quart. MaxDAARP 14 18 19 19.30 21 24INFRA 21 25 26 26.03 28 30MST 19 20 20 20.39 21 24SPT 24 28 30 29.79 32 35Table 3.5. S
enario with 6 events, 256 nodes and density 30Algorithm Min 1st Quart. Median Mean 3rd Quart. MaxDAARP 12 14 14 14.45 15 17INFRA 16 19 20 19.67 20 23MST 13 15 16 15.94 17 18SPT 20 22 23 23.61 25 29Table 3.6. S
enario with 6 events, 2048 nodes and density 20Algorithm Min 1st Quart. Median Mean 3rd Quart. MaxDAARP 59 66 68 67.58 70 74INFRA 87 93 96 96.21 100 104MST 60 61 62 62.55 64 65SPT 90 98 104 102.90 106 116Table 3.7. S
enario with 6 events, 2048 nodes and density 30Algorithm Min 1st Quart. Median Mean 3rd Quart. MaxDAARP 44 50 52 51.85 54 58INFRA 67 73 76 75.48 79 83MST 47 48 48 48.27 49 50SPT 72 78 82 81.33 85 92Figure 3.4(a) we 
an see that our DAARP algorithm sends only 77% of the data pa
ketssent by InFRA and about 65% of the data pa
kets sent by SPT. This result 
learlyindi
ates that DAARP maintains the quality of the routing tree even when the numberof nodes in
reases. Furthermore, Figure 3.4(b) shows that DAARP is more s
alablethan the InFRA algorithm sin
e our algorithm needs 30% less 
ontrol messages to buildthe routing stru
ture. On the other hand, the DAARP algorithm requires, on average,
25% more 
ontrol messages than the SPT algorithm. However, the routing trees builtby SPT results in 30% less e�
ien
y than the trees built by DAARP algorithm, asdepi
ted in Figure 3.4(d). At last, Figure 3.4(
) shows that DAARP is 20% and 28%



36 Chapter 3. DAARP: Data Aggregation Aware Routing Proto
olmore e�
ient than the InFRA and SPT algorithms, respe
tively. This o

urs be
auseDAARP algorithm needs less 
ontrol messages to build the routing tree when 
omparedto InFRA. Also, the routing tree built by DAARP has a better data aggregation qualitythan InFRA and SPT, as shown in Figure 3.4(d).
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ostFigure 3.4. Impa
t of the Network Size3.6.1.3 Impa
t of the Number of EventsIn this simulation s
enario, the number of events was varied to evaluate the behavior ofthe proposed algorithm in networks with 1, 2, 3, 4, 5, and 6 events o

urring simultane-ously. The results are presented in Figure 3.5. As depi
ted in Figure 3.5(a), DAARPsends less data pa
kets than the InFRA and SPT algorithms. For instan
e, DAARPsends approximately 81% and 67% of the data pa
kets sent by InFRA and SPT, re-spe
tively. This result indi
ates one of the main advantages of our DAARP algorithm:



3.6. Performan
e Evaluation 37by varying the number of events, DAARP builds routing trees more likely to havehigher data aggregation rates. Also, Figure 3.5(b) shows that DAARP needs only 50%of the 
ontrol messages used by InFRA in the o

urren
e of 6 events and, on average,only 29% of the 
ontrol messages used by InFRA to build the routing stru
ture. Thus,for more than one event, DAARP is more e�
ient than SPT and InFRA, as shownin Figure 3.5(
). Finally, the 
ost of the routing tree built by DAARP is 10% smallerthan in the InFRA algorithm, and 30% smaller than in the SPT, as we 
an see inFigure 3.5(d).
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ostFigure 3.5. Impa
t of the Number of Events3.6.1.4 Impa
t of the Event DurationIn this simulation s
enario, the event duration was varied from 1 to 5 hours. Theresults are presented in Figure 3.6. As we 
an see in Figure 3.6(a), our proposed
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olDAARP algorithm sends less data pa
kets than the other evaluated algorithms. Morespe
i�
ally, DAARP sends approximately 84% and 64% of the data pa
kets sent byInFRA, and SPT respe
tively. This indi
ates that by varying the time of an eventduration, DAARP obtains a data aggregation rate greater than InFRA and SPT. Also,Figure 3.6(b) shows that DAARP requires less 
ontrol messages to 
reate the routingstru
ture than InFRA but it requires more 
ontrol messages than the SPT algorithm.Although DAARP requires 33% more 
ontrol messages than SPT, SPT does not builda good data aggregation routing infrastru
ture, as shown in previous results. At last,Figure 3.6(
) shows that DAARP is more e�
ient than InFRA and SPT. Our proposedalgorithm outperforms the other evaluated algorithms even in s
enarios of short-termevents while InFRA ex
eeds the SPT only in s
enarios where the event duration islonger (typi
ally more than 2 hours).
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3.7. Final Remarks on DAARP 393.6.1.5 Impa
t of Communi
ation FailuresIn this s
enario, we evaluate the reliability of our proposed DAARP algorithm. Forthis, the 
ommuni
ation failure probability parameter was varied from 0% to 20%.The results are presented in Figure 3.7. This simulation also aims to evaluate the 
ostof DAARP path repair me
hanism. As we 
an see in Figure 3.7(a), in the DAARPalgorithm, data pa
ket transmission in
reases when the probability of 
ommuni
ationfailure in
reases. This is due to the fa
t that lost pa
kets with aggregated data areretransmitted. On the other hand, SPT and InFRA proto
ols send less data pa
ketswhen the 
ommuni
ation failures probability in
reases. This happens be
ause when apa
ket is lost due to 
ommuni
ation failures the pa
kets are not retransmitted and donot rea
h the sink, as shown in Figure 3.7(b). In this last �gure, we 
an also see thatin a s
enario with 20% 
ommuni
ation failure, the delivery rate of InFRA is only 30%,while DAARP delivers all aggregated data that have been sent. In summary, DAARPdelivers aggregated data reliably with the best performan
e when 
ompared to SPTand InFRA, as shown in Figure 3.7(
).
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yFigure 3.7. Impa
t of Communi
ation FailuresThe results presented in this se
tion 
learly show that our proposed DAARPalgorithm is more s
alable than InFRA and SPT in all 
onsidered s
enarios in termsof network size, number of events, event duration time and 
ommuni
ation failureprobability.3.7 Final Remarks on DAARPAggregation aware routing algorithms play an important role in event based WSNs. Inthis se
tion we presented the DAARP algorithm, a novel and reliable Data Aggregation



40 Chapter 3. DAARP: Data Aggregation Aware Routing Proto
olAware Routing Proto
ol for WSNs. Our proposed DAARP algorithm was extensively
ompared to two other known routing algorithms, the InFRA and SPT, regardings
alability, 
ommuni
ation 
osts, delivery e�
ien
y, aggregation rate and aggregateddata delivery rate. By maximizing the aggregation points and o�ering a fault tolerantme
hanism to improve delivery rate, the obtained results 
learly show that DAARPoutperformed the InFRA and SPT algorithms for all evaluated s
enarios. Also, weshow that our proposed algorithm has some key aspe
ts required by WSNs aggregationaware routing algorithms su
h as a redu
ed number of messages for setting up a routingtree, maximized number of overlapping routes, high aggregation rate, and reliable dataaggregation and transmission.Despite DAARP have shown most e�
ient that the solutions 
ompared (InFRAand SPT), the routes 
reated by DAARP are kept �xed during the o

urren
e ofthe event. In s
enarios with long-lasting events, nodes belonging the routes have ex-hausted their energy faster than other network nodes. Moreover, the quality of therouting stru
ture is dependent on the order of event o

urren
e. Be
ause of these lim-itations, there was the motivation for the spe
i�
ation and propose a new Dynami
Data-Aggregation Aware Routing Proto
ol (DDAARP) to modify routes when ne
es-sary, the DDAARP is des
ribed in Chapter 4.



Chapter 4DDAARP: Dynami
 DataAggregation Aware RoutingProto
ol
The 
onstru
tion of routing stru
tures aware of data aggregation has a 
onsiderable
ommuni
ation 
ost and solutions from the literature are not e�e
tive in s
enarioswith short-term events. The proposed DDAARP proto
ol builds dynami
 routes thatimproves the 
ost and quality of the routing stru
ture. It also redu
es the number of
ommuni
ations ne
essary to 
on�gure the routing stru
ture, maximizes the number ofoverlapping routes, sele
ts routes with a high rate of aggregation and performs reliabletransmission of aggregate data.The DDAARP di�ers from the DAARP (presented in the Chapter 3) at least inthree aspe
ts:� The quality of the routing stru
ture 
reated does not depend on the order ofo

urren
e of events;� The routes 
reated by DDAARP are not kept �xed throughout the duration ofevents. In addition, routes may 
hange when ne
essary;� The DDAARP use the sink node for pro
essing and 
on�guration of the routes.DDAARP is performed in four phases. Phase 1 builds the hop tree from the sensornodes to the sink, 
olle
ts and delivers information about the nodes' positions to thesink node. The sink node starts building the hop tree that will be used in Phase 3 byCoordinators to notify the sink on the o

urren
e of the event and request informationabout route for data transmission. Phase 2 
onsists of the 
luster formation and the41
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 Data Aggregation Aware RoutingProto
olele
tion of a 
luster-head among the nodes that dete
ted the o

urren
e of a new eventin the network. Phase 3 is responsible for setting up the new route for delivering datapa
kets. Finally, Phase 4 is responsible for sending the 
olle
ted data to the sink nodein a reliable way.4.1 Building the Hop Tree and GatheringInformation About Nodes' PositionIn Phase 1, the distan
e from the sink to ea
h node is 
omputed in hops. This isdone from the sink, whi
h sends by means of �ooding, a Hop Con�guration Message(HCM) for the hops 
on�guration. The HCM message 
ontains two �elds: ID andHopToSink, where ID is the node identi�er that started/retransmitted the HCM mes-sage and HopToSink is the distan
e, in hops, by whi
h an HCM message has passed.The HopToSink parameter is started with value 0 at the sink. In this phase, sensornodes 
ompute the hop 
ount to the sink node and stores in HopToSink variable thesmallest distan
e (in hops) to the sink and stores in the NextHop variable whi
h neigh-bor will be used to route requests and noti�
ations of events o

urren
e to the sinknode.This pro
ess is des
ribed in Algorithm 4. The sink node �oods the network witha HCM message, sets the HopToSink value to 0, and forwards it to its neighbors (at thebeginning, all nodes set the distan
e to the sink as in�nity). Ea
h node, upon re
eivingthe message HCM, veri�es if the value of HopToSink in the HCM message is less thanthe value of HopToSink that it has stored, as shown in Algorithm 4 - Line 3. If that
ondition is true then the node updates the value of the NextHop variable with the valueof the �eld ID of message HCM, as well as the value of the HopToSink variable, andthe values in the �elds ID and HopToSink of the HCM message. The node also relaysthe HCM message, as shown in Algorithm 4 - Line 8. Otherwise, the node veri�es ifthe value of HopToSink in the HCM message is bigger than the value of HopToSinkthat it has stored, as shown in Algorithm 4 - Line 10. If that 
ondition is true thenthe node stores the ID of the node that sent the HCM message in its list of neighborswith the higher hop level and dis
ards the re
eived message, as shown in Algorithm 4- Line 11 and 12 respe
tively. If it is not the 
ase, then the node dis
ards the re
eivedHCM message, as shown in Algorithm 4 - Line 15. The steps des
ribed above o

urrepeatedly until the whole network is 
on�gured.Algorithm 5 shows how information about nodes' position is gathered from thenetwork and then delivered to the sink node. Border nodes are responsible for starting



4.1. Building the Hop Tree and Gathering Information About Nodes'Position 43Algorithm 4: Building the hop tree1 Node sink sends a broad
ast of HCM messages with the value of HopToSink = 0;// Ru is the set of nodes that re
eived the message HCM2 forea
h u ∈ Ru do3 if HopToSink(u) > HopToSink(HCM) then4 NextHopu ← IDHCM ;5 HopToSinku ← HopToSinkHCM + 1 ;// Node u updates the value of the ID field in the message HCM6 IDHCM ← IDu ;// Node u updates the value of the HopToSink field in the message HCM7 HopToSinkHCM ← HopToSinku ;8 Node u sends a broad
ast message of the HCM with the new values;9 end10 else if HopToSink(HCM) > HopToSink(u) then11 NeighborHopBigger.add(IDHCM ) ;12 Node u dis
ards the re
eived message HCM;13 end14 else15 Node u dis
ards the re
eived message HCM;16 end17 end
the pro
ess of 
olle
ting information about the node's position, i.e., a border node doesnot have any neighbor with higher hop level than itself. Border nodes transmit totheir neighbors of lower hop level a Colle
ting Information Message (CIM) as shownin Line 1 of Algorithm 5.When a sensor re
eives a CIM message from its neighbors of higher hop level, asshown in Line 3 of Algorithm 5, it adds the ID of the node that transmitted the CIMmessage in the list Re
eivedNeighborHopBigger and the CIM message is assembledwith the re
eived information as shown Lines 4 and 5 of Algorithm 5. When the nodere
eives information from all neighbors of higher hop level and is not the sink as shownin Lines 6 and 10 of Algorithm 5, it broad
asts its CIM message as shown Line 11of Algorithm 5. If the node is the sink (Line 7 of Algorithm 5) then it 
reates theadja
en
y matrix with 
olle
ted information and puts this adja
en
y matrix, whi
hrepresents the network topology as shown in Line 8 of Algorithm 5, to the messageCIM.



44 Chapter 4. DDAARP: Dynami
 Data Aggregation Aware RoutingProto
olAlgorithm 5: Colle
ting information about nodes' position1 Border nodes transmit to their neighbors of lower hop level a Colle
ting InformationMessage (CIM) // Ru is the set of nodes that re
eived the message CIM2 forea
h u ∈ Ru do3 if NeighborHopBigger. contains(IDCIM) then4 RecevedNeighborHopBigger.add(IDCIM ) ;5 UpdatesCIM ;6 if NeighborHopBigger = RecevedNeighborHopBigger then7 if Roleu = Sink then8 Create adjacency matrix in the Sink ;9 end10 else11 Node u sends message CIM in broad
ast;12 end13 end14 else15 Node u dis
ards the re
eived message CIM;16 end17 end18 else19 Node u dis
ards the re
eived message CIM;20 end21 end4.2 Cluster Formation and Leader Ele
tionWhen an event is dete
ted by one or more nodes, the leader ele
tion algorithm startsand sensing nodes will be running for leadership (group 
oordinator); this pro
ess isdes
ribed in Algorithm 6. For this ele
tion, all sensing nodes are eligible. However, thegroup leader is the node that is 
losest to the sink. (Algorithm 6, Lines 7 to 9). In the
ase of a tie, i.e., two or more 
on
urrent nodes have the same distan
e in hops to thesink, the node with the smallest ID maintains eligibility, as shown in Lines 11 to 13 ofAlgorithm 6. Another possibility is to use the energy level as a tiebreak 
riterion.At the end of the ele
tion algorithm only one node in the group will be de
lared asthe leader (Coordinator). The remaining nodes that dete
ted the same event will be theCollaborators. The Coordinator gathers the information 
olle
ted by the Collaboratorsand sends them to the sink. A key advantage of this algorithm is that all of theinformation gathered by the nodes sensing the same event will be aggregated at a singlenode (the Coordinator), whi
h is more e�
ient than other aggregation me
hanisms(e.g., opportunisti
 aggregation).



4.3. Routing Formation 45Algorithm 6: Cluster formation and leader ele
tion1 Input: S // Set of nodes that dete
ted the event2 Output: u // A node of the set S is ele
ted leader of the group3 forea
h u ∈ S do4 roleu ← coordinator;// Node u sends message MCC in broad
ast5 Announ
ement of event dete
tion ;// Nu is the set of neighbors of node u ∈ S6 forea
h w ∈ Nu do7 if HopToSink(u) > HopToSink(w) then8 roleu ← collaborator ;9 Node u retransmits the MCC message re
eived from node w ;10 end11 else if HopToSink(u) = HopToSink(w) ∧ ID(u) > ID(w) then12 roleu ← collaborator ;13 Node u retransmits the MCC message re
eived from node w;14 end15 else16 Node u dis
ards the MCC message re
eived from w;17 end18 end19 end4.3 Routing FormationThe ele
ted group leader des
ribed in Algorithm 6 noti�es the sink on the o

urren
eof the event and requests routing information for data transmission. The route usedfor noti�
ation and request is the route 
reated in Phase 1.The Coordinator starts establishing the new route for the event dissemination.This pro
ess is des
ribed in Algorithm 7. The Coordinator sends a Route EstablishmentMessage (REM) to its NextHop. When the destination node re
eives a REM message,it retransmits it to its NextHop. These steps are repeated until the sink is rea
hed asshown in Lines 2 to 4 of Algorithm 7.When the sink re
eives the message REM, it adds the Coordinator ID that noti�edthe o

urren
e of the new event on the network and runs the route sele
tion algorithm asshown in Line 5 of Algorithm 7. This algorithm pro
esses the matrix that represents thenetwork topology, evaluating the 
ost in terms of relay nodes for ea
h path. The routessele
ted are routes that insert a smaller number of relay nodes. At the end of the routesele
tion algorithm, a pa
ket is generated with information on the routes that maximizedata aggregation. The sink then sends a single message, Route Establishment MessageBa
k (REM-Ba
k), to the sensors that will be in
luded in the routing infrastru
ture.
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 Data Aggregation Aware RoutingProto
olWhen the sensor nodes re
eive the REM-Ba
k message, they set-up their routing tablesupdating in the NextHop variable and sending REM-Ba
k messages to next ID in theREM-Ba
k as shown in Lines 10 and 11 of Algorithm 7. The resulting route is a treethat 
onne
ts all sour
e nodes to the sink node.Algorithm 7: Routing formation1 Coordinator sends a Route Establishment Message (REM) to its NextHop ;2 repeat// u is the node that re
eived the message REM3 u forwards the Message (REM) to its NextHop4 until Roleu = Sink;5 u run the algorithm for route sele
tion ;6 u 
reates a message REM-Ba
k ;7 u sends the message REM-Ba
k ;8 repeat// w is the node that re
eived the message REM-Ba
k9 NextHopw ← IDREM−Back;10 Remove IDREM−Back ;11 w send the message to the next IDREM−Back;12 until REM-Ba
k = Empty;
4.4 Data TransmissionThe data transmission performed by DDAARP uses aggregation te
hniques that areapplied to two di�erent 
ontexts: inside and outside the 
luster. When the routesoverlap inside the 
luster, the aggregation is performed by the Collaborator nodes.Furthermore, the leader node performs data aggregation and sends the results to thesink node. Outside the 
luster, aggregation is performed by the relay nodes when twoor more events overlap along routing.The pro
ess of data transmission is des
ribed in Algorithm 8 (Lines 1 to 9). Whilethe node has data to transmit, it veri�es whether it has more than one des
endant thatrelays its data (Line 2 of Algorithm 8). If it is the 
ase, it waits for a period oftime and aggregates all data re
eived and sends the aggregated data to its NextHop(Line 3 of Algorithm 8). Otherwise, it forwards the data to its NextHop. For everypa
ket transmission with aggregated data, the Route Repair Me
hanism is exe
uted asshown in Line 8 of Algorithm 8. A route repair me
hanism is used to send informationin a reliable way. Sender nodes wait a pre-de�ned time period to re
eive a pa
ketdelivery 
on�rmation. When the 
on�rmation is not re
eived by the sender node, a



4.5. Complexity Analysis 47new destination node is sele
ted and the message is retransmitted by that node. Thisroute repair me
hanism (Line 18 of Algorithm 3) is des
ribed in Se
tion 3.4.Algorithm 8: Data Transmissions1 while The node has data to transmit/retransmit do// sonsu is the number of des
endants of u2 if sonsu > 1 then3 Aggregates all data and sends it to the nexthopu;4 end5 else6 Send data to nexthopu;7 end8 Exe
ute the Repair me
hanism presented in Se
tion 3.4;9 end
4.5 Complexity AnalysisIn this se
tion, we derive the 
ommuni
ation 
ost bounds of ea
h algorithm assessedin this work. Here, we show the best and the worst 
ase whereas the average 
ase wasestimated by simulation (see Se
tion 4.6.2.1).The InFRA algorithm presents (2n+(k−1)n)+m) linear 
ommuni
ation 
ost asshown in Se
tion 3.5. The best 
ase for the 
ommuni
ation 
ost of DAARP algorithm is
(2n+m), and the worst 
ase for the DAARP algorithm is (2n+((k−1)n−

∑k
i=2 ui)+m),as shown in Se
tion 3.5.The DDAARP algorithm will demand one �ooding initiated by the sink to 
reatethe initial tree infrastru
ture that will be used by the 
luster-heads to request routes,and another �ooding initiated by the border nodes to 
olle
t information about nodes'position, whi
h requires 2n transmissions. It is ne
essary m transmissions to 
reatethe 
lusters. For ea
h ele
ted Coordinator, it is ne
essary to notify the sink on theo

urren
e of the event and request information about route for data transmission. Thisrequires ∑k

i=1 2(hi) transmissions, where hi is the distan
e in hops from the Coordinator
i to the sink node and k is number of events. Thus, the worst and best 
ases for theDDAARP algorithm are (2n+

∑k
i=1 2(hi) +m).Table 5.1 presents the 
ommuni
ation 
ost of the algorithms assessed in this work.Note that ∑k

i=1 2(hi) is mu
h smaller than (k − 1)n and (k − 1)n−
∑k

i=2 ui.



48 Chapter 4. DDAARP: Dynami
 Data Aggregation Aware RoutingProto
olTable 4.1. Communi
ation 
omplexity of assessed algorithmsAlgorithm Best Case Worst CaseInFRA (2n+ (k − 1)n+m) (2n+ (k − 1)n+m)DAARP (2n+m) (2n+ ((k − 1)n−
∑k

i=2
|Ui|) +m)DDAARP (2n+

∑k

i=1
2(hi) +m) (2n+

∑k

i=1
2(hi) +m)4.6 Performan
e EvaluationThe proposed solution in this work is 
ompared with two other routing proto
ols:InFRA and DAARP. The main obje
tive of this 
omparison is to evaluate the DDAARPperforman
e under the following metri
s: (i) 
omplexity analysis, (ii) 
ontrol overhead,(iii) e�
ien
y (pa
kets per pro
essed data), and (iv) routing tree 
ost.4.6.1 Simulation S
enario and Metri
s UsedThe simulation performed in this work evaluates the proposed algorithm in terms ofnumber of nodes (n ∈ {512, 1024, 2048 and 4096}), number of events (ne ∈ {1, 2, 3, 4, 5and 6}), duration of events (de ∈ {1, 5, 15, 30, 45 and 60} minutes), round event (re ∈

{1, 3, 6 and 9}) and noti�
ation rate (nr ∈ {1, 20, 40 and 60) per minutes). In allresults, 
urves represent average values, while error bars represent 
on�den
e intervalsfor 95% of 
on�den
e from 33 di�erent instan
es (seeds). The default s
enario usedfor the simulations is shown in Table 4.2. For some simulations, a parameter shownin Table 4.2 will be varied and this is des
ribed in the evaluated s
enario. The �rstevent starts at 1000 s and all other events start at a uniformly distributed random time,where these events o

ur in random positions. SinalGo version v.0.75.3 [Sinalgo, 2008℄was the event simulator used. For ea
h simulation in whi
h the number of nodes isvaried, the sensor �eld dimension is adjusted to maintain the node density to 20 theaverage degree of neighbors. We 
onsider the area of the sensor �eld as the relation
√

nπr2c/20, where n is number of nodes and rc is 
ommuni
ation radius. Sensor nodesare randomly deployed.To provide a lower bound to pa
ket transmissions, a fun
tion was used thatre
eives p data pa
kets and sends only a �xed size merged pa
ket. This fun
tion is runat the aggregation points whenever these nodes send a pa
ket. Any other aggregationfun
tion 
an be used to take advantage of DDAARP features.The evaluated algorithms use a periodi
 simple aggregation strat-egy [Younis et al., 2006℄. In this strategy, aggregator nodes transmit periodi
ally



4.6. Performan
e Evaluation 49Table 4.2. Simulation parametersParameter ValueSink node 1 (top left)Number of Nodes 1024Communi
ation radius (m) 80# of events 6Round Event 1Event radius (m) 50Event duration (minutes) 5Simulation duration (hours) 12Noti�
ation rate (per mimute) 1Density (average degree of neighbors) 20the re
eived and aggregated information. The following metri
s were used for theevaluation:� Control overhead: the overhead is the amount of 
ontrol messages used tobuild the routing tree in
luding the overhead to both 
reate the 
lusters and setup all the routing parameters of ea
h algorithm;� Amount of Steiner nodes: it is the number of Steiner nodes in
luded in therouting stru
ture, i.e., the number of relay nodes that is part of the routinginfrastru
ture;� E�
ien
y (pa
kets per pro
essed data): it is the rate of total pa
kets trans-mitted (data and 
ontrol pa
kets) and the amount of noti�
ations to sink;4.6.2 Simulation Results4.6.2.1 OverheadIn this simulation s
enario, the number of nodes, round event and the amount of eventspresented in Table 4.2 were varied to evaluate the algorithm behavior in networks with
512, 1024, and 2048 nodes; 1, 3, 6, and 9 round events; and 1, 2, 3, 4, 5, and 6events o

urring simultaneously. Figure 4.1 shows that the DDAARP is more s
alablethan DAARP and InFRA, sin
e it needs fewer 
ontrol messages to build the routingstru
ture (average 48% less 
ontrol message over DAARP and 69% in relation theInFRA).The results in Figure 4.1 show that the DDAARP is s
alable and 
onsumes lessenergy to built and manage routing infrastru
ture than the other evaluated algorithms,sin
e 
ommuni
ation is typi
ally one of the tasks that 
onsumes more energy in a sensor
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(d) 9 Round EventFigure 4.1. Overheadnode. Figure 4.1(d) shows that DDAARP needs only 42% of the 
ontrol messages usedby DAARP in the o

urren
e of 6 events and, only 18% of the 
ontrol messages usedby InFRA to build the routing stru
ture.As InFRA and DAARP need to re
on�gure the values of
oordinators-distan
e and HopToTree, respe
tively, ea
h new round of events isne
essary to re
on�gure the network to update the values of 
oordinators-distan
eand HopToTree. In DDAARP, ea
h new round of events 
olle
ts the information of



4.6. Performan
e Evaluation 51the nodes' position to keep the most 
urrent state of the network topology in the sink.The results in Figure 4.1 show that the DDAARP has a better performan
e forenvironments with dynami
 o

urren
e of events.4.6.2.2 E�
ien
yFigure 4.2 shows that on average DDAARP is 23% and 57%more e�
ient than DAARPand InFRA, respe
tively. For the evaluated s
enarios DDAARP needs 1.98 pa
kets perpro
essed data whereas DAARP needs 2.58 pa
kets and InFRA needs 4.56 pa
kets.This o

urs be
ause DDAARP needs less 
ontrol messages to build the routing tree
ompared with DAARP and InFRA as shown in Figure 4.1. Also, the routing treebuilt by DDAARP has the best quality of data aggregating 
ompared with DAARPand InFRA, as shown in Figure 4.3.For events of short duration and with low noti�
ation rate as shown in Fig-ure 4.2(a), DDAARP needs 6.6 pa
kets per pro
essed data, DAARP needs 9.95, andInFRA needs 20.9. DDAARP presents the best performan
e, it makes a few datatransmissions and has a low overhead.For events of long duration and with high noti�
ation rate as shown in Fig-ure 4.2(d), DDAARP needs 1.39 pa
kets per pro
essed data, DAARP needs 1.61, andInFRA needs 2.35.For s
enarios where the number of noti�
ations is very high, i.e., mu
h higherthan the overhead, the tenden
y is to have a 
lose e�
ien
y of the algorithms. ButDDAARP is still better be
ause the amount of data transmitted is smaller, i.e., in all
ases DDAARP builds the routing tree with less steiner nodes (see Figure 4.3), whi
hresults in fewer retransmissions.4.6.2.3 Amount of Steiner NodesIn this analysis, the number of nodes and number of events were varied to evaluate theaverage 
ase for routing tree 
ost of DDAARP 
ompared with InFRA and DAARP.The routing tree 
ost is the total amount of Steiner nodes in
luded in the tree built bythe algorithms.We analyzed s
enarios with 512, 1024, 2048, and 4096 sensor nodes, and 1, 2, 3,
4, 5 and 6 number of events. The results are presented in Figure 4.3. The 
ost of therouting tree built by DDAARP is smaller than DAARP and InFRA for all 
ases, i.e.,DDAARP in
ludes less steiner nodes than the other solutions.Figure 4.3 shows that in all assessed s
enarios, DDAARP presents a performan
ebetter than InFRA and DAARP with a lower overhead (see Figure 4.1). In average,
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(d) 60 Noti�
ations per minuteFigure 4.2. E�
ien
yDDAARP needs 12% less steiner nodes than DAARP, and 52% than InFRA. Fig-ure 4.3(d) shows that DDAARP in
ludes 14% less steiner nodes than DAARP in theo

urren
e of 6 events and, only 70% less steiner nodes than InFRA.DDAARP 
reates a routing tree with fewer steiner nodes than DAARP due tothe fa
t the routes 
reated by DDAARP do not depend on the order of o

urren
e ofthe events and routes already 
reated 
an be re
onstru
ted to improve the 
ost of the�nal routing tree. On the other hand, routes 
reated by DAARP are kept �xed until
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(d) 4096 nodesFigure 4.3. Number of Steiner nodesthe end of the event o

urren
e.4.6.2.4 Probability of Communi
ation FailuresFor this analysis, the results are not shown here be
ause DDAARP use the route repairme
hanism presented in Se
tion 3.4 and the performan
e of DDAARP is identi
al tothe results of DAARP presented in Se
tion 3.6.1.5. In summary, DDAARP deliversaggregated data reliably with best performan
e 
ompared with InFRA and with a
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olperforman
e similar to DAARP.4.7 Final Remarks on DDAARPThis 
hapter presented DDAARP, a Dynami
 Data-Aggregation Aware Routing Proto-
ol. DDAARP was extensively 
ompared with two other routing solutions presented inthe literature (InFRA and DAARP) regarding s
alability, 
ommuni
ation 
ost, deliverye�
ien
y, and aggregation rate. By maximizing the aggregation points and o�ering afault tolerant me
hanism to improve the delivery rate, the results show that DDAARPoutperformed those two proto
ols for all evaluations.The DDAARP proved to be a potential solution, but the size of pa
kets 
ontaininginformation about the positions of the nodes, see Se
tion 4.1, tend to in
rease and thissolution may be impra
ti
al for large-s
ale networks. In addition, the sink node musthave a global knowledge of network. To over
ome these 
hallenges, we proposed theDynami
 S
alable Tree (DST), whi
h will be des
ribed in Chapter 5.



Chapter 5DST: Dynami
 and S
alable Tree
The main idea of the proposed DST algorithm is to manage the energy 
onsumptionof the nodes that dete
ted an event by eliminating redundant noti�
ations. The pro-posed algorithm builds a routing tree using shortest routes (in Eu
lidean distan
e) that
onne
t all 
oordinator nodes to the sink node while maximizing data aggregation andredu
ing distan
es 
onne
ting ea
h 
oordinator node to the sink. The 
reated routingtree does not depend on the order of the events. In the DST algorithm, the nodes 
anbe 
lassi�ed a

ording to their roles in the 
reated routing infrastru
ture:� Collaborator: A node that dete
ts an event and reports the gathered data to a
oordinator node;� Coordinator : A node that is also dete
ting an event and is responsible for gath-ering all the data events sent by representative nodes, aggregating them andsending the result toward the sink node.� Aggregator : A node that aggregates data from two or more sour
es and forwardsthe aggregated data. It might or might not be dete
ting an event.� Relay : A node that forwards data toward the sink.� Sink : A node interested in re
eiving data from a set of 
oordinator nodes.The DST algorithm is performed in four phases. In Phase-1, presented in Se
-tion 5.1, sensor nodes store the sink's position as well as its neighbor's position. Phase-2, presented in Se
tion 5.2, 
onsists of 
luster formation and the ele
tion of a Coor-dinator among the nodes that dete
ts the o

urren
e of a new event. In Phase-3,presented in Se
tion 5.3, when an event o

urs, the Coordinator sends a pa
ket to thesink node informing its position. The sink then noti�es all other Coordinators of the55
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 and S
alable Treenew Coordinator position. The sink also noti�es the new Coordinator about the posi-tions of Coordinators that already exist. Finally, Phase-4, presented in Se
tion 5.4, isresponsible for 
reating the routing tree 
onne
ting all Coordinators to the sink nodeand sending the 
olle
ted data to the sink node.The tree building (Phase 4) is an important part of the proposed algorithm interms of energy savings. In this work, we present three di�erent variations for theproposed DST tree 
reation algorithm. These variations aim at building a routing treethat 
onne
ts all 
oordinators to the sink node a

ording to di�erent goals. The �rstvariation, Dynami
 and S
alable T ree � C losest F irst (DST-CF), aims at buildinga routing tree that prioritizes the 
ost (in Eu
lidean distan
e) of the routing tree.The se
ond variation, Dynami
 and S
alable T ree � Farthest F irst (DST-FF), aimsat building a routing tree that tries to de
rease the 
ost (in Eu
lidean distan
e) ofhigh-
ost routes (in Eu
lidean distan
e) of the tree. The third variation, Dynami
 andS
alable T ree � Best C ombination (DST-BC), aims at building a routing tree thathas the lowest 
ost (in Eu
lidean distan
e). The di�eren
e between ea
h approa
h lieson whi
h straight line segments to 
hoose during the 
reation of the routing stru
ture(as detailed in Se
tion 5.4).5.1 Dis
overy of Neighbors' and Sink's PositionsThis is the �rst phase of the DST algorithm. It is responsible for dis
overing andstoring the neighbors' position and the sink's position. As shown in Algorithm 9,the sink node starts this phase by �ooding a Con�guration Message. The message
ontains three �elds: ID, CoordSender and CoordSink, where ID is the node identi�erthat retransmits the message, CoordSender is the node's position (xn, yn) that relaysthe 
on�guration message, and CoordSink is the sink's position (xs, ys).Algorithm 9: Dis
overy of neighbors' position1 Sink node broad
asts a Con�guration Message;// Ru is the set of nodes that re
eived the Configuration Message2 forea
h u ∈ Ru do3 neighborhood (u).ID← IDMessage;4 neighborhood (u).CoordSender ← CoordSenderMessage;5 neighborhood (u).CoordSink← CoordSinkMessage;6 if Node(u) did not transmit its position then// Node u updates the value of the ID in Configuration Message7 IDMessage ← IDu ;// Node u updates the value of the CoordSender in Configuration Message8 CoordSenderMessage ← Coordinatesu ;9 Node u broad
asts a 
on�guration message with the new values;10 end11 end



5.2. Cluster Formation and Leader Ele
tion 57In this phase, sensor nodes store information about their neighbors in the Tableneighborhood. For instan
e, identi�
ation, neighbors' position, and sink's position.This information is used in Phases 2, 3 and 4.5.2 Cluster Formation and Leader Ele
tionAfter the �rst phase of the DST algorithm, the rea
tive part is started and is onlyrun in the presen
e of events. When an event is dete
ted by one or more nodes,the leader ele
tion algorithm is started with the nodes running for leadership (group
oordinator) � this pro
ess is des
ribed in Algorithm 10. For this ele
tion, all nodesare eligible (Lines 3 and 4 of Algorithm 10), but the group leader will be the node
loser to the sink. (Lines 7 and 8 of Algorithm 10). When two or more eligible nodeshave the same distan
e to the sink, the node with the higher ID is ele
ted (Lines 11and 12 of Algorithm 10). At the end of the ele
tion algorithm only one leader node(
oordinator) exists in the group. The remaining nodes that dete
ted the same eventbe
ome 
ollaborator nodes. The 
oordinator gathers the information 
olle
ted by the
ollaborator nodes, aggregates the information, and sends it to the sink.Algorithm 10: Cluster formation and leader ele
tion1 Input: S // Set of nodes that dete
ted the event2 Output: u // A node of the set S is ele
ted leader of the group3 forea
h u ∈ S do4 roleu ← 
oordinator;// Node u broad
asts the 
luster 
onfiguration message5 Announ
ement of event dete
tion ;// Nu is the set of neighbors of node u6 forea
h w ∈ Nu do7 if DistanceToSink(u) > DistanceToSink(w) then8 roleu ← 
ollaborator ;9 Node u retransmits the message re
eived from node w ;10 end11 else if DistanceToSink(u) = DistanceToSink(w) ∧ ID(u) > ID(w) then// Node u 
hanges its role to Collaborator12 roleu ← 
ollaborator ;13 Node u retransmits the MCC message re
eived from node w;14 end15 end16 end
5.3 Noti�
ation of a New EventThe node 
hosen as the event Coordinator in Phase-2, as dis
ussed in Se
tion 5.2,gathers the information 
olle
ted by the Collaborators. Based on its position and thesink's position, the Coordinator 
reates a straight line segment that 
onne
ts itself to
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 and S
alable Treethe sink. The sensor nodes 
loser to this straight line segment and to the sink are
hosen as Relay nodes.When the sink re
eives the �rst data message, it adds ID and CoordSender to itsTable CoordinatorTable, where ID is the 
oordinator's identi�er and CoordSender isthe 
oordinator's position (xn, yn) that noti�ed the o

urren
e of a new event in thenetwork. The sink node sends to all 
oordinators the 
oordinator's positions storedin its Table CoordinatorTable. Ea
h 
oordinator that re
eives su
h a message willupdate its table of 
oordinators. This information will then be used in Phase 4 to
ompute the straight line segments starting at ea
h 
oordinator.5.4 Routing Tree Creation and Data TransmissionsIn this work, we present three variations of the DST algorithm. Ea
h variation de�nesa new approa
h for a 
oordinator node to 
reate its straight lines.1. DST-CF (C losest F irst): In this variation, the 
losest 
oordinators to the sinknode are the �rst to 
reate their straight line segments to the sink. Then, these
ond 
losest 
oordinators 
reate their straight line segments to the nearestpoint of the straight line segments that already exist. These steps are repeateduntil all 
oordinators 
reate their straight line segments (see Figure 5.1(a)). The
omputational 
ost to 
reate the straight lines of 
losest 
oordinators has a linear
omplexity of O(e), where e is the number of events.2. DST-FF (Farthest F irst): In this variation, the farthest 
oordinators from thesink are the �rst to 
reate their straight line segments to the sink. Then, these
ond farthest 
oordinators 
reate their straight line segments to the nearestpoint of the straight line segments that already exist. These steps are repeateduntil all 
oordinators 
reate their straight line segments (see Figure 5.1(b)). The
omputational 
ost to 
reate the straight lines of farthest 
oordinators has a linear
omplexity of O(e), where e is the number of events.3. DST-BC (Best C ombination): This variation of the DST algorithm 
he
ks allpossible 
ombinations of straight lines and 
hooses the 
ombination that providesthe shortest Eu
lidean distan
e to 
reate the routing tree (see Figure 5.1(
)).This approa
h is optimal, sin
e it �nds the routing tree of lowest 
ost. The
omputational 
ost to pro
ess all possible 
ombinations of straight lines leads toa fa
torial 
omplexity of O(e!), where e is the number of events. Due to theresour
e 
onstraints of a sensor node, this approa
h is probably unfeasible for
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enarios with a high number of events. Therefore, this approa
h will be used asa baseline in all evaluations.When a 
oordinator node needs to 
ompute its straight line segment, it uses theinformation obtained in Phases 1�3 (information about the positions of all the other
oordinators and the sink). Before 
omputing its straight line segment, the 
oordinatornode 
omputes lo
ally the straight line segments of all other 
oordinators that havealready 
reated their straight lines, depending on the DST variation � DST-CF, DST-FF, or DST-BC. The 
oordinator node will then 
reate its straight line segment to thenearest point of a straight line segment of other 
oordinators.Figure 5.1 shows the routing stru
ture 
reated for ea
h variation of DST. Be
ausethe goal here is to illustrate how the line segments are 
omputed, 
lusterization analysisis presented only in Se
tion 5.2.

(a) DST-CF (b) DST-FF (
) DST-BCFigure 5.1. Examples of routing stru
ture establishment for DST variationsThis s
enario is 
omprised of four events, whose o

urren
e order is given by thenumber inside the 
oordinator node. The lighter grey nodes are 
hosen to be part ofthe routing stru
ture and the darker grey nodes are points of data aggregation.When the 
oordinator node performs data transmission, the 
losest nodes toboth its straight line segment and to the endpoint of this straight line will be 
hosento forward the data.The data transmission performed by DST uses aggregation te
hniques applied totwo di�erent 
ontexts: inside and outside the 
luster. The 
oordinator node performsdata aggregation inside the 
luster and sends the results to the sink node. Outside the
luster, aggregation is performed by aggregator nodes when the o

urren
e of two ormore events overlap along the routing path (dark grey nodes in Figure 5.1).
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 and S
alable Tree5.5 Complexity AnalysisIn this se
tion we derive the 
ommuni
ation 
ost bounds of ea
h algorithm assessedin this work. Here we show the best and the worst 
ase whereas the average 
ase wasestimated by simulation (see Se
tions 5.6.1.1 and 5.6.1.2).The InFRA algorithm presents (2n+(k−1)n)+m) linear 
ommuni
ation 
ost asshown in Se
tion 3.5. The best 
ase for the 
ommuni
ation 
ost of DAARP algorithm is
(2n+m), and the worst 
ase for the DAARP algorithm is (2n+((k−1)n−

∑k
i=2 Ui)+m),as shown in Se
tion 3.5.The DST algorithm will demand one �ooding initiated by the sink to dis
overyof neighbors' and Sink' positions, whi
h requires n transmissions. It is ne
essary mtransmissions to 
reate the 
lusters. For ea
h ele
ted Coordinator, it is ne
essary tonotify the sink on the o

urren
e of the event and request information about all the
oordinators positions. This requires ∑k

i=2 2(hi) transmissions, where hi is the distan
ein hops from the Coordinator i to the sink node and k is number of events. Thus, theworst and best 
ases for the DST algorithm are (n+
∑k

i=1 2(hi) +m).Table 5.1 presents the 
ommuni
ation 
ost of the algorithms assessed in this work.Note that ∑k
i=1 2(hi) is mu
h smaller than (k − 1)n and ((k − 1)n−

∑k
i=2 |Ui|).Table 5.1. Communi
ation 
omplexity of assessed algorithmsAlgorithm Best Case Worst CaseInFRA (2n+ (k − 1)n+m) (2n+ (k − 1)n+m)DAARP (2n+m) (2n+ ((k − 1)n−

∑k

i=2
|Ui|) +m)DST (n+

∑k

i=1
2(hi) +m) (2n+

∑k

i=1
2(hi) +m)

5.6 Performan
e EvaluationIn this se
tion, we evaluate the performan
e of our proposed DST algorithm and itsvariations. We also 
ompare their performan
e with two other known routing proto
ols:InFRA and DAARP.5.6.1 MethodologyThe performan
e evaluation is performed through simulations using the SinalGov.0.75.3 [Sinalgo, 2008℄ simulator. In all results, 
urves represent average values, while



5.6. Performan
e Evaluation 61error bars represent 
on�den
e intervals for 95% of 
on�den
e from 33 di�erent in-stan
es (seeds). The default simulation parameters are presented in Table 5.2. Forsome simulations, a parameter shown in Table 5.2 will be varied and this is des
ribedin the s
enario evaluated. The �rst event starts at 1000 s and all other events start at auniformly distributed random time at uniformly distributed random positions. We 
on-sider the area of the sensor �eld as the relation √

nπr2c/d to ensure the desired density,when the simulation parameters are varied, where n is the number of nodes, rc is the
ommuni
ation radius, and d is the average degree of neighbors. In the experimentals
enarios, sensor nodes are randomly deployed in the sensor �eld.Table 5.2. Simulation parametersParameters ValuesSink node 1 (top left)Event duration (minutes) 60Number of nodes 1024Number of events 6Density 20Noti�
ation rate (per minute) 1Communi
ation radius (meters) 80Simulation time (hours) 10Event radius (meters) 50To provide a lower bound for pa
ket transmissions, a fun
tion was used that re-
eives p data pa
kets and sends only a �xed-size aggregated pa
ket. This fun
tion is runat the aggregation points whenever these nodes send a pa
ket. Any other aggregationfun
tion 
an be used to take advantage of DST features. The evaluated algorithms usea periodi
 simple aggregation strategy [Younis et al., 2006℄ employed by the aggregatornodes to periodi
ally transmit the re
eived and aggregated information. The followingmetri
s were used for the performan
e evaluation:� Overhead: amount of 
ontrol messages used to build the routing tree in
ludingthe overhead to 
reate the 
lusters as well as to set up all the routing parametersof ea
h algorithm;� Cost of the routing tree: number of Steiner nodes in
luded in the routingtree, i.e., the number of relay nodes;� Length of the longest route: number of hops from the farthest 
oordinatorto the sink node in the routing tree;� Aggregation rate: ratio between the number of all data pa
kets sent and thenumber of data pa
kets re
eived by the sink node; and



62 Chapter 5. DST: Dynami
 and S
alable Tree� E�
ien
y: ratio between the total of pa
kets transmitted (in
luding both dataand 
ontrol pa
kets) and the amount of data messages re
eived by the sink node.5.6.1.1 Impa
t of Event S
aleIn this evaluation, the number of events was varied to evaluate the impa
t of events
ale in the routing tree 
ost, length of the longest route, and overhead. The resultsare presented in Figures 5.2(a), 5.2(b), and 5.2(
).Figure 5.2(a) shows that the proposed DST-CF variation is the most e�
ientin building the lowest 
ost routing tree and also presents results very 
lose to DST-BC variation. This is a good result sin
e the DST-BC is the optimum result and ourbaseline proto
ol. This o

urs be
ause the 
losest 
oordinators to the sink node are the�rst to 
reate their straight lines, whi
h 
onsequently prioritizes the low 
ost routingtree. For six events, DST-CF in
ludes 4% less Steiner nodes than DAARP, 8% lessSteiner nodes than DST-FF, and 32% less Steiner nodes than the InFRA algorithm.Figure 5.2(b) shows that the DST-FF variation is more e�
ient in building therouting tree with shorter routes. This o

urs be
ause the 
oordinator node that isfarthest from the sink 
reates its straight line segment to the sink, thus a shortestpath is 
reated between the 
oordinator node that is farthest from the sink and sinknode. For six events, DST-FF in
ludes 10% less Steiner nodes than DAARP and 23%less Steiner nodes than DST-CF. Regarding the InFRA algorithm, DST-FF in
ludes3% more Steiner nodes, however, the InFRA algorithm 
onstru
ts a routing tree 45%worse than DST-FF (see Figure 5.2(a)) and, as we will see, with higher 
ommuni
ationoverhead (see Figure 5.2(
)).
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t of Event S
aleThe DST algorithm presents a mu
h lower overhead than DAARP and InFRA.This o

urs be
ause the routes are 
omputed lo
ally at 
oordinator nodes, unlike other



5.6. Performan
e Evaluation 63solutions that require many transmissions to 
on�gure the routes. Figure 5.2(
) showsthat the 
ost of building the DST routing tree is on average 261% less than DAARPand 428% less than InFRA.5.6.1.2 Impa
t of Network S
aleIn this evaluation, the number of nodes was varied to analyze the impa
t of the networks
ale, the routing tree 
ost, length of the longest route and overhead. Simulation resultsare presented in Figures 5.3(a), 5.3(b), and 5.3(
).Figure 5.3(a) shows that DST-CF, on average, is the most e�
ient algorithm tobuild a low 
ost routing tree 
ompared to the other approa
hes and presents results very
lose to DST-BC. This o

urs be
ause DST-CF builds a routing tree that prioritizesthe 
ost (in Eu
lidean distan
e) of the routing tree. Note that when the network s
alein
reases, DST-FF tends to be better than DST-CF. For 8192 nodes, both DST-FFand DST-CF are similar and in
lude 6% less Steiner nodes than DAARP and 37% lessSteiner nodes than InFRA.Figure 5.3(b) shows that DST-FF is more e�
ient in building the routing treewith shorter routes. This o

urs be
ause DST-FF builds a routing tree that tries tode
rease the 
ost (in Eu
lidean distan
e) of high-
ost routes (in Eu
lidean distan
e) ofthe tree. For 8192 nodes, DST-FF in
ludes 10% less Steiner nodes than DAARP and22% less Steiner nodes than DST-CF. DST-FF in
ludes 3% more Steiner nodes thanInFRA, whi
h 
onstru
ts a routing tree 56% worse than DST-FF (see Figure 5.3(a)).Finally, the overhead of InFRA is 672% higher than DST-FF (see Figure 5.3(
)).
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64 Chapter 5. DST: Dynami
 and S
alable Tree5.6.1.3 Impa
t of Event DurationIn this evaluation, the event duration was varied to evaluate the aggregation rate ande�
ien
y of the DST algorithm and its proposed variations. Figure 5.4(a) shows thaton average DST is 43% more e�
ient than DAARP and 130% more e�
ient thanInFRA. This o

urs be
ause, as mentioned in the previous se
tions, our proposed DSTalgorithm needs fewer 
ontrol messages to build a better low 
ost routing tree.
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(b) Aggregation Rate × EventDurationFigure 5.4. Impa
t of Event DurationFor short duration events (e.g., 7.5 minutes) as shown in Figure 5.4(a), DST-BC needs 3.63, DST-CF 3.65, and DST-FF 3.71 pa
kets per pro
essed data, whereasDAARP needs 6.95, and InFRA needs 12.9. The DST algorithm presents the bestperforman
e from the beginning, sin
e it makes fewer data transmissions and has loweroverhead. For long duration events (480 minutes), as shown in Figure 5.4(a), DST-BCneeds 1.93, DST-CF needs 1.94, and DST-FF needs 1.93 pa
kets per pro
essed data,whereas DAARP needs 2.16, and InFRA needs 2.94. It is important to note that evenin s
enarios where the number of noti�
ations is very high, the algorithms present asimilar e�
ien
y so the results are not shown. However, the DST algorithm is stillbetter sin
e the amount of transmitted data is smaller.The internal graph in Figure 5.4(a) is the result for events lasting from 180 to480 minutes. It is easy to per
eive the advantage of the DST algorithm for events oflong duration in relation to DAARP and InFRA.Figure 5.4(b) shows that the DST-FF variation has the highest aggregation rateof all experimented algorithms. The DST-FF algorithm has, on average, 38% higheraggregation rate than DAARP and 111% higher than InFRA. In the DST-FF algo-rithm, for ea
h aggregated pa
ket that arrives at the sink node, this aggregated pa
kethas information of 7.2 raw pa
kets, while in the DAARP algorithm it has information



5.7. Final Remarks on DST 65of 5.2 and, in the InFRA algorithm, only 3.4. The higher the aggregation rate, thelower the transmission 
ost for delivering the 
olle
ted data, and therefore the lowerthe power 
onsumption for data 
olle
tion.5.7 Final Remarks on DSTThis 
hapter presented the DST algorithm, an e�
ient data aggregation solution thatallows s
alable and dynami
 routing in WSNs. Most routing proto
ols for data aggrega-tion are stati
, i.e., they 
annot 
hange routes dynami
ally to perform data aggregatione�
iently. DST was extensively 
ompared to two other data aggregation aware routingsolutions presented in the literature (InFRA and DAARP) regarding s
alability, 
om-muni
ation 
ost, routing tree 
ost, e�
ien
y, and aggregation rate. Simulation resultsshow that DST outperformed those two proto
ols for all evaluations, maximizing theaggregation points and o�ering dynami
 routes to improve the quality of the routingtree.





Chapter 6EAST: E�
ient Data Colle
tionAware of Spatio-TemporalCorrelation
In this 
hapter, we de�ne our spatio-temporal 
orrelation models and propose theEAST algorithm. One of the key aspe
ts of EAST is that the size of the 
orrelationregion and error threshold of readings 
an be 
hanged dynami
ally a

ording to theevent 
hara
teristi
s in order to a
hieve the appli
ation's a

ura
y requirements. Thisresults in a better use of the available energy in the nodes that are sensing the eventby eliminating redundant noti�
ations as well as by using dynami
 routes and low
ommuni
ation overhead. These and other 
hara
teristi
s of our EAST algorithm aredis
ussed in this se
tion.6.1 Spatial Correlation ModelSpatially 
lose nodes tend to dete
t similar values. However, this 
loseness (θ), i.e.,the Eu
lidean distan
e between the nodes that dete
t similar values, depends on bothappli
ation requirements and event 
hara
teristi
s. Some appli
ations are more 
riti
aland less tolerant to dis
repan
ies in the sensed values of the observed phenomenon,requiring that 
loser nodes notify the sensed data (the 
orrelation region is smaller).Other appli
ations 
an be more tolerant to dis
repan
ies in the sensed values, notdemanding that 
loser nodes report the sensed data (the 
orrelation region is greater).De�nition 6.1.1 (
orrelation region) We de�ne a 
orrelation region as an areawhere the values sensed by the sensor nodes are 
onsidered similar (for the appli
a-67



68 Chapter 6. EAST: Effi
ient Data Colle
tion Aware ofSpatio-Temporal Correlationtion). Therefore, a single reading within this region is su�
ient to represent it. Thesize of the 
orrelation region (c) varies a

ording to both appli
ation and event 
har-a
teristi
s. For events whose 
hara
teristi
s 
hange signi�
antly at short range, thesink node 
an de
rease the size of the 
orrelated region to keep high a

ura
y in the
olle
ted data, i.e., the event needs to be noti�ed by 
loser nodes. For events whose
hara
teristi
s do not 
hange signi�
antly at short range, the sink node 
an in
reasethe size of the 
orrelated region to save energy of member nodes. The size of the 
orre-lation region 
an be resized by the sink node, whi
h sends the new size of the 
orrelationregion to the event's 
oordinator by using the shortest path. The event's 
oordinatorthen disseminates the new size of the 
orrelation region to all of the nodes within theevent's area, so the size of the 
orrelation region is re
on�gured.6.2 Temporal Correlation ModelSensor readings about the environment are typi
ally periodi
; 
onsequently, the time-ordered sequen
e of sensed data 
onstitutes a time series. Due to the nature of thephysi
al phenomenon, there is a signi�
ant temporal 
orrelation among ea
h 
onse
u-tive observation of a sensor node, and gathered data are usually similar over a short-time period. Thus, in these 
ases, sensor nodes do not need to transmit their readings ifthe 
urrent reading is within an a

eptable error threshold regarding the last reportedreading. The sink node 
an just assume that any unreported data is un
hanged fromthe previously re
eived ones. The degree of 
orrelation between 
onse
utive sensormeasurements might vary a

ording to the 
hara
teristi
s of the phenomenon.De�nition 6.2.1 (temporal suppression) Ea
h sour
e node keeps the last reportedreading. When 
urrent reading (Rnew) is available, Rnew is 
ompared to the last reportedreading (Rold). The 
urrent reading of a sour
e node is reported if the given relativethreshold is greater than the temporal 
oheren
y toleran
e (t
t), i.e. (

|(Rnew−Rold)|
Rold

)

×100

> tct, where tct is the per
entage of temporal 
oheren
y toleran
e. Otherwise the value
Rnew is suppressed.6.3 Overview of the EAST AlgorithmThe main idea of our proposed EAST algorithm is to manage the energy 
onsumptionof nodes that dete
ted an event by eliminating redundant noti�
ations. Our algorithm
onsiders the following roles to perform data routing (see Figure 6.1):



6.3. Overview of the EAST Algorithm 69� Member Node: A node that is 
urrently dete
ting one or more events. In the
ase where its sensed data is redundant, it will not report the gathered data.� Representative Node: A node that dete
ts an event and reports the gathered datato a 
oordinator representing not only itself but all nearby nodes with similarreadings while still applying temporal suppression.� Coordinator Node: A node that dete
ts the event and is responsible for gatheringall event data sent by representative nodes. It pro
esses the re
eived data andsends the result towards the sink node.� Relay Node: A node that forwards data towards the sink node.� Sink Node: The gateway between the WSN and the monitoring fa
ility.
Sink

MemberRepresentativeCoordinator Relay(a) Routing stru
ture at instant
i.

Sink

MemberRepresentativeCoordinator Relay(b) Routing stru
ture at instant
i+ 1.Figure 6.1. Examples of routing stru
ture used by the EAST algorithm.The EAST algorithm uses shortest routes (in Eu
lidean distan
e) in two di�er-ent levels for forwarding the gathered data towards the sink node. In the �rst level,representative nodes use shortest routes to forward data toward the 
oordinator node.In the se
ond level, the 
oordinator nodes use shortest routes to forward data towardthe sink node. Figure 6.1 shows two examples of the routing stru
ture obtained by theEAST algorithm (the gray �eld indi
ates the event area, the 
ells represent the regionsof 
orrelation and the red dotted line shows the shortest route).The main obje
tive of the EAST algorithm is to redu
e energy 
onsumption indata gathering while preserving both data a

ura
y and real-time reporting. To a
hievethis goal, EAST dynami
ally 
hanges the size of the 
orrelation region and the value ofthe 
oheren
y toleran
e a

ording to the event 
hara
teristi
s. For this, an event areais divided into 
ells, as depi
ted in Figure 6.2. Ea
h 
ell de�nes a 
orrelation region and



70 Chapter 6. EAST: Effi
ient Data Colle
tion Aware ofSpatio-Temporal Correlationnodes within ea
h 
ell are assumed to be spatially 
orrelated. Only one node withina 
ell noti�es the sensed information, if and only if, the given relative error thresholdis greater than the temporal 
oheren
y toleran
e. This last node is the representativenode of the 
ell. Cells are independent from ea
h other, so the 
hange of representativenodes in one 
ell does not require any re
on�guration. The 
hange of a representativenode in ea
h 
ell is performed to balan
e the energy 
onsumption of spatially 
orrelatednodes, while temporal suppression is applied to redu
e the reporting of redundant data.Sin
e 
orrelation regions are independent, their resizing does not require any additional
ommuni
ation among the nodes within the event areas in order to 
ompute the new
ell they belong to. Furthermore, ea
h node performs temporal suppression lo
allywithout 
ommuni
ating with its neighbors. The proposed spatio-temporal 
orrelationapproa
h is adaptive and s
alable regarding events of di�erent intensities as will beshown during its evaluation.The EAST algorithm is performed in three phases. In Phase 1, presented inSe
tion 6.3.1, sensor nodes store the sink position as well as their neighbors� positions.In Phase 2, presented in Se
tion 6.3.2, three di�erent a
tions are performed: 
lusterformation; 
oordinator�s ele
tion; and the division of the event area into 
ells. Finally,in Phase 3, presented in Se
tion 6.3.3, representative nodes are 
hosen, the proposedtemporal 
orrelation me
hanism is applied, and data is then transmitted.6.3.1 Node Lo
alizationAfter the deployment of the sensor nodes, the sink node starts by �ooding a 
on-�guration message that 
ontains four �elds: ID, CoordSender, CoordSink, andPhenomenon_of_Interest, where ID is the node identi�er that retransmitted the mes-sage, Phenomenon_of_Interest is the appli
ation's interest (e.g., temperature higherthan 25 degrees), CoordSender is the node's position (xn, yn) that relays the 
on�gura-tion message, and CoordSink is the sink's position (xs, ys). In this phase (Lines 4 to 7of Algorithm 11), sensor nodes store the re
eived information in a table of neighborsneighborhood that will be used in the next two phases.6.3.2 Cluster Formation, Leader Ele
tion, and Division of theEvent Area into CellsThe se
ond phase of the EAST algorithm starts whenever an event happens. Thus,when an event is dete
ted by one or more nodes, the leader ele
tion algorithm is startedwith the sensing nodes running for leadership (group 
oordinator) � this pro
ess is



6.3. Overview of the EAST Algorithm 71des
ribed in Algorithm 11. For this ele
tion, all dete
ting nodes are eligible (Lines 8and 9 of Algorithm 11) and the group leader (Coordinator node) will be the node withthe higher residual energy. (Lines 13 and 14 of Algorithm 11). At the end of theele
tion algorithm only one leader node exists in the group. In the 
ase of a tie, the IDparameter is used as a tie breaker. The remaining nodes that dete
t the same eventbe
ome member nodes. At ea
h noti�
ation, a subset of the member nodes will berepresentative nodes, as explained later in this se
tion. The 
oordinator gathers theinformation 
olle
ted by the representative nodes, pro
esses the information, and sendsit toward the sink node.After the 
lustering pro
ess, the proposed spatial 
orrelation me
hanism is exe-
uted. Figure 6.2(a) illustrates the proposed spatial 
orrelation me
hanism. For thesake of simpli�
ation, the shape of the 
onsidered event is a 
ir
le, but any shape
an work for the proposed solution. The event region is de
omposed into (

2re
c

)2 
ells,where re is the event�s maximum radius and c is the 
ell�s size (
orrelation region).Figure 6.2(a) shows an example in whi
h the event region is de
omposed into 25 
ells.Ea
h 
ell is represented by an ordered pair (xc, yc). If c = 0, then there is no spatial
orrelation between nodes and all nodes in the group are representative nodes. Oth-erwise, ea
h node 
omputes the 
oordinates xc and yc of the 
ell to whi
h it belongsto. For this 
omputation, the node position (xn, yn), the 
entral position (xe, ye) ofthe event, and the 
ell size (c) are required. Lines 18 to 28 of Algorithm 11 show this
omputation.If the sink needs to dynami
ally resize the 
orrelation region or the 
oheren
ytoleran
e value to meet any appli
ation requirement, it sends a new value of c to thenodes of the group so that they 
an re
al
ulate their 
ells� size or it sends a newvalue of tct to the nodes of the group. Thus, the parameters of our algorithm 
an bedynami
ally 
ontrolled by the sink node, whi
h has a 
omplete view of the phenomenon.It is important to point out that the maximum size of a 
ell c 
an be the length ofthe triangle's leg in a right triangle, sin
e rc is the hypotenuse (c = rc cos 45
◦) where rcis the 
ommuni
ation radius of sensor nodes. This 
onsideration is important to ensurethat all nodes in the same 
ell 
ommuni
ate with ea
h other. The 
ell size 
an varyto 
ontrol the tradeo� between pre
ision of the sensed data and energy 
onsumption.In this 
ase, the 
orrelation region may vary between 0 ≤ c ≤ rc cos 45

◦. When c = 0,all nodes report the sensed data (an optimal solution in terms of a

ura
y in theinformation). For c > 0, only the representative node at ea
h 
ell reports the senseddata. The EAST algorithm sele
ts a single representative node at ea
h 
ell of dimensions
c2 for ea
h noti�
ation. Figures 6.2(b), 6.2(
), and 6.2(d) show representative nodes



72 Chapter 6. EAST: Effi
ient Data Colle
tion Aware ofSpatio-Temporal Correlationat di�erent times in the event region. The representative nodes in the set of membernodes are the nodes that have higher energy residual among nodes belonging to thesame 
ell. This ensures the energy 
onsumption distribution in the network.
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6.3.3 Data TransmissionsAfter 
omputing the 
ell that a node belongs to, the node 
he
ks whether it is arepresentative node and also if the relative error threshold is greater than the temporal
oheren
y toleran
e (Line 31 of Algorithm 11). If both 
onditions are satis�ed, thenthe sensed value (Rrew) is sent towards the group 
oordinator, whi
h in turn pro
essesand sends the 
olle
ted information towards the sink using the shortest path. Based onits position and the sink position, the Coordinator 
reates a straight line segment that
onne
ts itself to the sink. When data transmission is performed, the 
losest nodes toboth its straight line segment and the endpoint of this straight line segment will be
hosen to forward the data. Figure 6.1 shows the straight line between the 
oordinatorand the sink node as well as the relay nodes. The evaluation of our algorithm ispresented in the next Se
tion.6.4 Performan
e EvaluationIn this se
tion, we evaluate the performan
e of the spatio-temporal 
orrelation me
h-anism of our proposed EAST algorithm. We also 
ompare its performan
e with twoother known routing proto
ols:� Spatio-temporal Clustering and Compressing S
hemes - SCCS (brie�y des
ribedin Se
tion 2.3.3).
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e Evaluation 73Algorithm 11: EAST Algorithm.
⊲ Variables:1: tct = {Temporal Coherent Toleran
e.}2: Rold = ∅ {Last Reported Reading.}3: Start Announ
ement Interest Message
⊲ Input:4: Announ
ement Interest MessageA
tion:5: Stores the Neighbor's and Sink's Positions6: Stores the Phenomenon of Interest7: [Re℄Start Announ
ement Interest Message
⊲ Input:8: Event Dete
tedA
tion:9: node.Role ← Coordinator10: Send Event Announ
ement Message11: Start 
ellComputation
⊲ Input:12: msgi = response(Event Announ
ement Message)A
tion:13: if (EnergyLevel(node) < EnergyLevel(msgi) and node.Role == Coordinator) then14: node.Role ← Member ;15: Retransmits (Event Announ
ement Message)16: Start DataTransmissions17: end if
⊲ Input:18: 
ellComputation timeoutA
tion:19: xc ← 020: yc ← 021: if (xn−xe)

( c

2
)

> 1 then22: xc ← ⌊
(xn−xe)−( c

2
)

c
⌋ + 123: yc ← ⌊

(yn−ye)−( c

2
)

c
⌋ + 124: end if25: if (xn−xe)

( c

2
)

< −1 then26: xc ← ⌊
(xn−xe)+( c

2
)

c
⌋ − 127: yc ← ⌊

(yn−ye)+( c

2
)

c
⌋ − 128: end if

⊲ Input:29: Data TransmissionsA
tion:30: Rnew ← sensed value31: if node.Role = Representative and
(

|(Rnew−Rold)|
Rold

)

× 100 > tct then32: Send Rnew to Coordinator33: Rnew ← Rnew34: end if35: if node.Role = Member then36: Forwards Rnew to Coordinator37: end if38: if node.Role = Coordinator then39: Pro
essing re
eived Rnew40: Forwards the result to Sink41: if node.Role = Relay then42: Forwards Rnew to Sink43: end if44: end if
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ient Data Colle
tion Aware ofSpatio-Temporal Correlation� A

urate data 
olle
tion strategy, whi
h is the optimal solution in terms of a

u-ra
y. In this solution, all nodes send their sensed information to the sink node.6.4.1 MethodologyThe evaluation is performed through simulations by using the SinalGo versionv.0.75.3 [Sinalgo, 2008℄ simulator. In all results, 
urves represent average values, whileerror bars represent 
on�den
e intervals for 95% of 
on�den
e from 33 di�erent in-stan
es (seeds). The simulation parameters are presented in Table 6.1. The evento

urs in random positions. We 
onsider the area of the sensor �eld as the relation
√

nπr2c/d, where n is the number of nodes, rc is the 
ommuni
ation radius, and d isthe average degree of neighbors. Sensor nodes are randomly deployed.Table 6.1. Simulation parametersParameters ValuesSink node 1 (top left)# of nodes 1024# of events 1Density (avg. neigh. number) (20, 25, 30)Event diameter (m) (50, 100, 150, 200)Correlation Region (φ) (0, 10, 20, 30, 40, 50)Event duration (hours) (1 to 10)Noti�
ation rate (per minute) 1Communi
ation radius (m) 80Simulation duration (days) 76.4.2 Event ModelFor our event model, we used a set of one-week environmental temperature data (degreein Celsius) from the Amazon rainforest in Brazil 
olle
ted at intervals of 1 minute. Thesamples are shown in Figure 6.3.In our appli
ation, the temperature in a region of interest is monitored. All nodesin this region will then send the data a

ording to our proposed algorithm. To use thereal-world data in our simulations, we 
onsider the temperature at 
oordinate (x, y) inthe event area given by Equation 6.1, where TE is the temperature at the event 
enter,whi
h was obtained from the real-world data set presented in Figure 6.3, DE is theEu
lidean distan
e (meters) to the event 
enter and TD is the temperature de
rease(degree Celsius per meters).temperature = TE − (DE × TD) (6.1)
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1 2 3 4 5 6 7Figure 6.3. Data 
olle
ted from Amazon rainforest.6.4.3 Performan
e Evaluation of the Spatial CorrelationMe
hanismIn this se
tion, the proposed spatial 
orrelation me
hanism is evaluated and 
omparedto the a

urate data 
olle
tion strategy, whi
h is the optimal solution in terms ofa

ura
y. In the a

urate data 
olle
tion strategy, every sensor is requested to reportits reading to the sink node at ea
h round of data gathering. The main purposeof this subse
tion is to 
ompare the performan
e of our proposed spatial 
orrelationme
hanism to the a

urate data 
olle
tion strategy 
onsidering the following metri
s:� Number of Representative nodes: The number of nodes that report data aboutthe phenomenon.� Energy 
onsumption in data 
olle
tion: The amount of energy 
onsumed by sen-sors that dete
ted the event. This metri
 indi
ates how mu
h of a sensor nodeenergy is possible to save when the spatial 
orrelation te
hnique is exploited.� Data a

ura
y : The a

ura
y of the data on the observed phenomenon regardingthe original information.When c = 0 the spatial 
orrelation is not explored, i.e., all nodes re-port the sensed data, whi
h is the optimal solution in terms of data a

ura
y.The results for the DST [Villas et al., 2010b℄, DAARP [Villas et al., 2009℄, and In-FRA [Nakamura et al., 2009℄ algorithms, as well as the other solutions that do notexploit spatial 
orrelation, are the same as the results obtained with c = 0.



76 Chapter 6. EAST: Effi
ient Data Colle
tion Aware ofSpatio-Temporal Correlation6.4.3.1 Number of Representative NodesThe number of representative nodes that noti�es events depends on three main parame-ters: event diameter, size of 
orrelation region, and density. In this simulation s
enario,the event diameter, the density, and the size of the 
orrelation region (presented in Ta-ble 6.1) were all varied to evaluate their impa
t on the number of representative nodes.Figure 6.4 presents the number of representative nodes when the 
orrelation re-gion, density, and event diameter were varied. As expe
ted, if the 
orrelation regionremains �xed, the number of representative nodes in
reases when the event diameterin
reases. It is also easy to see that for larger values of c, there are less representativenodes and, therefore, a lower reporting rate. The region event is divided into (2re/c)
2
orrelation regions. In parti
ular, for the event diameter of 200m, 
orrelation regionsof 50m, and density 30, the number of representative nodes is redu
ed four times when
ompared to the a

urate data 
olle
tion strategy (c = 0). Consequently, the amountof energy 
onsumed by nodes within the observed phenomena area is also redu
ed fourtimes (as shown in the next se
tion).
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Figure 6.4. Number of representative nodesNote that for larger 
orrelation regions the number of representative nodes issmaller, hen
e the energy 
onsumption is lower (as shown in the next se
tion); however,the a

ura
y will be smaller (see Se
tion 6.4.3.3). In our solution, appli
ations 
ande�ne the 
orrelation region size by setting the value of c a

ording to the required
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ura
y.6.4.3.2 Energy ConsumptionFigure 6.5 shows the energy 
onsumption of nodes within the observed phenomenaarea. For this analysis, the density, event diameter, event lasting, and 
orrelationregion (presented in Table 6.1) were all varied to evaluate their impa
t on the en-ergy 
onsumption. In the EAST algorithm, the representative nodes are alternated toa
hieve a more balan
ed energy 
onsumption of the nodes that are reporting data.
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Figure 6.5. Energy 
onsumption of the nodes that are reporting dataAs depi
ted in Figure 6.4, when the size of the 
orrelation region in
reases, thenumber of representative nodes de
reases. Consequently, the energy 
onsumption alsode
reases, sin
e fewer sensor nodes report data. In this s
enario, it is possible to saveup to 75% of the residual energy of the nodes within the observed phenomena areawhen 
ompared to the 
lassi
al approa
h for data 
olle
tion (a

urate data 
olle
tionstrategy) while maintaining an information a

ura
y greater than 97%, as shown below.6.4.3.3 Data A

ura
yWhen the spatial 
orrelation is exploited, the level of a

ura
y in information about theobserved phenomenon tends to redu
e. In this simulation s
enario, the event diameter,density and size of the 
orrelation region were varied to evaluate the data a

ura
y. As



78 Chapter 6. EAST: Effi
ient Data Colle
tion Aware ofSpatio-Temporal Correlationmentioned before, when c = 0, the 
lassi
al approa
h for data 
olle
tion is performed(100% a

urate data 
olle
tion strategy). It means that the spatial 
orrelation is notexploited and all nodes that dete
t an event will report their readings. Consequently,the a

ura
y is optimum (100%). The phenomenon observed was the temperature,but the proposed me
hanism works for any other type of phenomenon with di�erent
hara
teristi
s. We analyzed the a

ura
y at the sink node when 
omputing the valuesfor minimum, mean, and maximum temperatures.As we 
an see in Figure 6.6, when the node density in
reases, the data a

ura
yde
reases slightly, whi
h is an unexpe
ted result in most algorithms. It happens be
ausethe number of nodes within ea
h 
ell in
reases, but the number of representative nodesremains the same. The di�eren
e between the 
ombined readings of all nodes and the
ombined readings of only representative nodes in
reases.
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Figure 6.6. A

ura
y in the readingsOn the one hand, it 
an be noted that the worst a

ura
ies are obtained bythe maximum value readings. This happens be
ause nodes that dete
t the maximumvalue are in the 
entral 
ell (see Figure 6.2). With a greater number of nodes within the
entral 
ell, there will be a greater number of nodes that noti�es data with values 
loserto the maximum value. However, for the evaluated s
enarios, the smallest observeda

ura
y was of 97% while the energy 
onsumption was redu
ed by more than 75%,whi
h indi
ates the advantages of using the proposed spatial 
orrelation te
hnique ofthe EAST algorithm.
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e Evaluation 79On the other hand, the reading of the minimum value had the highest a

ura
ysin
e there are more 
ells with nodes that dete
t this value (
ells in the border of theevent). In the 
ase of this phenomenon, the smallest observed a

ura
y was greaterthan 99% while, again, the energy 
onsumption was redu
ed by 75%.It is important to note that there is a trade-o� between the data a

ura
y andthe energy 
onsumption. For instan
e, if the appli
ation requires the measurement ofthe maximum value with an a

ura
y of at least 99.5%, then the value of c will haveto be set to 10 (c = 10). In this 
ase, the a

ura
y in the readings of the maximumvalue would be more than 99.5% and the redu
tion in energy 
onsumption would beredu
ed to 33%.6.4.3.4 Data A

ura
y for Ea
h Round of Data GatheringIn this se
tion, we present the analysis of the data a

ura
y for ea
h noti�
ation,
omplementing the results presented above that analyzed the average a

ura
y of themeasurements. In this simulation s
enario, the size of the 
orrelation region was variedto evaluate the data a

ura
y at ea
h noti�
ation. The obje
tive of this analysis is toshow that it is possible to ensure the a

ura
y of insensitive dupli
ation data (su
h asmaximum and minimum) at di�erent times. Consequently, if time and re
ent readingsare taken into a

ount, it is possible to estimate the exa
t (minimum and maximum)value.Figure 6.7 shows that the minimum a

ura
y for reading the minimum valueat a given time is 92% (when the 
orrelation region is 50m). However, at least forevery four reports, the exa
t minimum value is reported. Be
ause of this, the exa
tminimum value 
an be estimated by representative nodes. Consequently, the a

ura
yof the readings for a minimum value 
an be in
reased very 
lose to the exa
t value.Note that for a 
orrelation region smaller than 30m, the minimum a

ura
y is 98%and at least for every two noti�
ations the exa
t minimum value is reported.Similarly, Figure 6.8 shows that the minimum a

ura
y for reading the maximumvalue at a given time is 93%, but at least for every four reports the exa
t maximumvalue is reported. Be
ause of this, the exa
t maximum value 
an be estimated byrepresentative nodes and, as a result, in
rease the a

ura
y of the reading to a maximumvalue very 
lose to the exa
t value.Di�erent from minimum and maximum values, the exa
t mean value is not re-ported at ea
h time interval, as depi
ted in Figure 6.9. This o

urs be
ause meanvalues are sensitive to dupli
ation data. If taken into a

ount the time and re
entreadings, it is possible to estimate the mean value to in
rease the a

ura
y at ea
h
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6.4. Performan
e Evaluation 816.4.4 Performan
e Evaluation of Temporal CorrelationMe
hanismIn this se
tion, we 
ompared our proposed temporal 
orrelation me
hanism for theEAST algorithm to the SCCS algorithm as well as the a

urate data 
olle
tion strategy,whi
h is the optimal solution in terms of a

ura
y. For our event model, we used aset of one-week environmental temperature data from the Amazon rainforest in Braziltaken at intervals of 1 minute. The samples are shown in Figure 6.3. For the SCCSalgorithm, as mentioned before, ea
h node stores its monitored data in a bu�er and,when the bu�er is full, the node pro
esses the data in its bu�er to 
onsider the temporal
orrelation among the monitored values and report the result to the sink node. Forthe a

urate data 
olle
tion strategy, every sensor is requested to report its readings tothe sink node at ea
h round of data gathering. The main purpose of this 
omparisonis to evaluate the performan
e of our proposed algorithm 
onsidering the followingmetri
s: (i) noti�
ations, (ii) readings reported, (iii) readings per data pa
ket, (iv)energy 
onsumption, (v) data a

ura
y, and (vi) delay noti�
ation.The simulation parameters used in this performan
e evaluation are the sameof previous experimentations (shown in Table 6.1) with the new values presented inTable 6.2. Table 6.2. Simulation parametersParameters ValuesDensity (avg. neigh. number) 25Correlation Region (c) (15, 30, 45)Temporal 
oherent toleran
e (0.5, 1, 2, 3, 4)Bu�er size (bytes) (25, 50, 100, 200)Sensor �eld (m) 900× 900The following metri
s were used for the evaluation:� Number of noti�
ations: Number of noti�
ations sent by nodes that dete
t theevent.� Number of readings reported : Number of readings reported.� Readings per data pa
ket : Average number of readings within ea
h pa
ket (it isthe ratio of Readings reported and Noti�
ations).� Energy 
onsumption: The amount of energy 
onsumed by sensors that dete
tedthe event.



82 Chapter 6. EAST: Effi
ient Data Colle
tion Aware ofSpatio-Temporal Correlation� Data a

ura
y : The a

ura
y of the information on the observed phenomenonregarding the original information.� Delay noti�
ation: Time to deliver the gathered data.In all evaluated 
ases, a number of variations of our proposed EAST algorithmwas
onsidered. First, we evaluated our EAST algorithm while exploring only the temporal
orrelation. We also evaluated our algorithm (EAST-15, EAST-30, and EAST-45)exploiting both temporal 
orrelation and spatial 
orrelation (with 
orrelation regionsof size 15, 30, and 45). For the SCCS algorithm, we 
onsidered bu�ers with di�erentstorage 
apa
ities of 25, 50, 100, and 200 readings.6.4.4.1 Noti�
ations and Readings ReportedFor this analysis, the temporal 
oheren
y toleran
e, bu�er size, and 
orrelation region(presented in Table 6.2) were all varied to evaluate their impa
t on the number ofreadings that 
an be eliminated by exploiting the spatio-temporal 
orrelation.Figure 6.10(a) shows that when the temporal 
oheren
y toleran
e in
reases, thenumber of noti�
ations performed by our EAST algorithm de
reases while the numberof noti�
ations in the SCCS remains �xed sin
e the readings will only be transmit-ted when the bu�er �lls up. Consequently, in the SCCS, the number of noti�
ationsdepends on the bu�er size and not on the temporal 
oheren
y toleran
e. Moreover,in our EAST algorithm, when the size of the 
orrelation region in
reases (15, 30 e45), the number of representative nodes de
reases, whi
h also de
reases the number ofnoti�
ations.In Figure 6.10(b), we 
an see that the number of readings reported by our EASTalgorithm is similar to the ones presented in Figure 6.10(a). This is be
ause wheneverthe 
urrent reading is above the temporal 
oheren
y toleran
e, the data is noti�ed.Note that in most 
ases the EAST algorithm reports fewer readings than the SCCS al-gorithm, but for small values of the temporal 
oheren
y toleran
e, the SCCS algorithmpresents less noti�
ations by exploring the use of a bu�er, in whi
h ea
h noti�
ationmay 
ontain more than one reading. Sin
e the SCCS algorithm 
reates a line segmentbetween the �rst and last reading of the bu�er, this te
hnique has good results in termsof energy 
onsumption when the bu�er size in
reases (as depi
ted in Figure 6.11). Inthis 
ase, it is ne
essary a few line segments to represent all values inside the bu�er.Figure 6.10(
) shows the average number of readings within ea
h transmittedpa
ket. As we 
an see, the EAST algorithm, in any situation, sends only one readingwithin ea
h transmitted pa
ket. But the number of readings per pa
ket in the SCCS
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(
) Readings at ea
h data pa
ketFigure 6.10. Noti�
ations × Readings
algorithm depends both on the 
apa
ity of the bu�er and the temporal 
oheren
ytoleran
e. When the temporal 
oheren
y toleran
e is small, the SCCS algorithm needsto split the original line segment into a high number of other line segments to representthe original values. Be
ause of this, more readings will be ne
essary to represent themonitored values. It is important to point out that when we in
rease the bu�er size, theSCCS algorithm will split the original line segment into more line segments to representthe original values, sin
e more readings are being 
onsidered by the algorithm. Whenwe in
rease the temporal 
oheren
y toleran
e, it is not ne
essary to split the originalline segment into a high number of line segments. For instan
e, when the temporal
oheren
y toleran
e is 4%, the SCCS algorithm transmits the same number of readings(
ompared to our proposal) to represent the sensed event.



84 Chapter 6. EAST: Effi
ient Data Colle
tion Aware ofSpatio-Temporal Correlation6.4.4.2 EnergyFigure 6.11 shows the average energy 
onsumption of the nodes within the observedphenomena area. For this analysis, the temporal 
oheren
y toleran
e, bu�er size, and
orrelation region (presented in Table 6.2) were all varied to evaluate their impa
t onthe energy 
onsumption.
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Figure 6.11. Average energy 
onsumptionAs depi
ted in Figure 6.10(a), when the temporal 
oheren
y toleran
e in
reases,the number of noti�
ations performed by EAST de
reases while the number of no-ti�
ations in the SCCS remains �xed and depends on the bu�er size, whi
h has animpa
t on the data a

ura
y (see Figure 6.12). Consequently, the energy 
onsumptionalso de
reases in the EAST algorithm (see Figure 6.11). Moreover, when the size ofthe 
orrelation region in
reases (15, 30 e 45), the number of noti�
ations de
reases.Consequently, the energy 
onsumption also de
reases, sin
e a smaller number of sensornodes report their readings.The results for the a

urate data 
olle
tion strategy were not plotted on the graphbe
ause of its very high energy 
onsumption, whi
h is due to the fa
t that all readingsare noti�ed to ensure data a

ura
y of 100%. On average, the a

urate data 
olle
tionstrategy 
onsumes 10J , i.e., 14 times more than the SCCS and EAST algorithms.6.4.4.3 Data A

ura
yIn this simulation s
enario, the temporal 
oheren
y toleran
e, bu�er size, and 
orrela-tion region were all varied to evaluate the a

ura
y of the readings. The phenomenonobserved was the temperature but, as mentioned before, the proposed me
hanism worksfor any other type of phenomenon with di�erent 
hara
teristi
s. We analyzed the a

u-
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y at the sink node when 
omputing the values for minimum, mean, and maximumtemperatures.As depi
ted in Figure 6.12, when the temporal 
oheren
y toleran
e in
reases,the data a

ura
y in the EAST algorithm slowly de
reases. For the SCCS algorithm,when the bu�er 
apa
ity in
reases, the data a

ura
y de
reases faster. This happensbe
ause when we in
rease the bu�er size, less readings will be ne
essary to representthe monitored event (see Figure 6.10(b)). Thus, 
onsidering less values, the SCCSalgorithm will not a
hieve good values of data a

ura
y.
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Figure 6.12. Data a

ura
yFor the evaluated s
enarios, the smallest a

ura
y observed in our proposed algo-rithm was of 98.7% and the energy 
onsumption was less than 0.2J , while the a

uratedata 
olle
tion strategy 
onsumes 10J , whi
h indi
ates the advantages of using ourspatial and temporal 
orrelation te
hniques.6.4.4.4 Average Delay in Reporting the ReadingsIn this se
tion, we evaluate the average delay in reporting the readings for both s
e-narios of low and high noti�
ation rate, whi
h is shown in Figures 6.13 and 6.14,respe
tively. For this analysis, the noti�
ation rate was varied to evaluate the averagedelay in reporting the readings. As mentioned before, the SCCS algorithm exploresthe use of a bu�er to store the readings and, then, it is pro
essed while exploitingtemporal 
orrelation. However, the use of a bu�er has some disadvantages. The maindrawba
k of this te
hnique is the delay of the noti�
ation of ea
h data. Figures 6.13and 6.14 show that the delay to notify the sensed data is very high in the SCCS. Asexpe
ted, the larger the bu�er size or the range of noti�
ation, the greater the delay.For instan
e, for the s
enario of SCCS with a bu�er size of 100 readings and an interval



86 Chapter 6. EAST: Effi
ient Data Colle
tion Aware ofSpatio-Temporal Correlationof 1 reading per se
ond (see Figure 6.14), the node will send its values only after 100readings, whi
h implies an average delay of nearly 100 se
onds. Thus, the sink nodewill be noti�ed about the event 
onsidering old readings, whi
h is not a

eptable byseveral WSN appli
ations. One way to over
ome this problem is to redu
e the bu�ersize. However, as depi
ted in Figure 6.11, when the SCCS uses a small bu�er size,the average energy 
onsumption is greater than the EAST algorithm. For instan
e,the use of a bu�er of 25 readings 
onsumes on average 55% more energy than the theEAST algorithm. Even with a bu�er size of 25 readings, the SCCS algorithm rea
hes,on average, a data a

ura
y of 99.62% while the EAST algorithm remains on 99.14%(see Figure 6.12).
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Figure 6.14. Average delay in low reporting rateBe
ause the EAST algorithm 
onsiders the last noti�ed reading to exploit thetemporal 
orrelation, as soon as the relative error threshold of the a
tual reading isgreater than the determined toleran
e of temporal 
oheren
y, the algorithm noti�es the
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tual reading to the sink node. As a result, every time the sensed value is beyond theerror threshold the sink will be noti�ed in real time what is expe
ted in most WSNsappli
ations.6.5 Final Remarks on EASTThis 
hapter presented the EAST algorithm, an algorithm for energy-aware data for-warding in WSNs that takes full advantage of both spatial and temporal 
orrelationme
hanisms to save energy while still maintaining real-time, a

urate data report to-wards the sink node. In the 
urrent literature of spatial and/or temporal 
orrelationalgorithms, most of the proposed studies do not 
onsider the energy dissipation duringdata 
olle
tion to better 
hoose the representative nodes. Also, these solutions presenta high number of 
ontrol messages and do not exploit e�
iently the spatio-temporal
orrelation nor their dynami
ity. In this work, we went further and proposed an energy-aware spatio-temporal 
orrelation me
hanism in whi
h nodes that dete
ted the sameevent are dynami
ally grouped in 
orrelated regions and a representative node is se-le
ted at ea
h 
orrelation region for observing the phenomenon. The entire region ofsensors per event is e�e
tively a set of representative nodes performing the task of data
olle
tion and temporal 
orrelation.We exhaustively simulated our proposed algorithm 
onsidering several s
enariosand parameters to allow a better understand of its behavior. Simulation results 
learlyshow that by using both spatial and temporal 
orrelation, the information about theevent 
an be sensed with a high a

ura
y of more than 99.7% while still saving theresidual energy of the nodes in more than 14 times when 
ompared to the a

urate data
olle
tion strategy. These results are very promising, but some issues still need to befurther exploited. As future work we intend to 
onsider not only the last reading, butalso the previous readings in the 
orrelation region to improve the a

ura
y of senseddata about the observed phenomenon. To a
hieve this goal, representative nodes 
anestimate the values of their 
orrelation region by taking into a

ount the time andre
ent readings. In addition, we intend to 
onsider 
orrelation regions of di�erent sizesfor the same event to further explore the dynami
ity of the event.





Chapter 7Final Remarks
This 
hapter summarizes this thesis and dis
usses dire
tions for future resear
h. Theobje
tive is to highlight our 
ontributions and point out some possible dire
tions topro
eed with the resear
h to address the drawba
ks of the proposed solutions. In this
ontext, we �rst present the thesis 
on
lusions in Se
tion 7.1. Then, in Se
tion 7.2, wepoint out the limitations of the proposed algorithms. In Se
tion 7.3 we present futuredire
tions of this work. Finally, in Se
tion 7.4.1 we present the publi
ations related tothis thesis.7.1 Con
lusionsIn this dissertation, we have provided a survey on the state-of-the-art about the useof data aggregation and spatio-temporal data 
orrelations in WSNs. This survey hasallowed us to understand how data aggregation and spatio-temporal data 
orrelationshave been used in WSN, and how it 
an still be used to address open issues on WSNs.In addition, it has allowed us to identify drawba
ks of 
urrent proposals and to proposenew solutions that over
ome the drawba
ks of 
urrent proposals.The di�erent s
enarios in whi
h a WSN 
an be deployed as well as the broadappli
ability of WSNs indi
ate there is no single solution for a problem in WSNs.For this reason, there are several di�erent solutions for the same problem in WSNs.Ea
h solution is designed to work well in a spe
i�
 s
enario su
h as stati
 or mobilenetworks; small, medium, or large s
ale networks; sparse or dense networks; and et
.Due of this, the 
hoi
e of whi
h proto
ols and algorithms should be uses to providerouting stru
ture for a WSN depends on both the s
enarios and the appli
ation.Based on the survey presented, and on the impossibility of designing a singlesolution to a problem in WSNs, we have proposed four di�erent solutions for the data89



90 Chapter 7. Final Remarksaggregation and exploiting spatio-temporal data 
orrelations for WSNs, whi
h we referto as DAARP, DDAARP, DST, and EAST algorithms, respe
tively.� DAARP: Data Aggregation Aware Routing Proto
ol for WSNs (shown in Chap-ter 3) builds a routing stru
ture with the shortest paths (in hops) that 
onne
tall sour
e nodes to the sink while maximizing data aggregation, whose main 
on-tribution is to maximize data aggregation along the 
ommuni
ation route, ina more reliable way, through a routing fault tolerant me
hanism. Simulationsresults (presented in Se
tion 3.6) reveal that DAARP has some keys aspe
ts re-quired by data aggregation in WSNs su
h as a redu
ed number messages forsetting up a routing stru
ture, maximized number of overlapping routes, highaggregation rate, and reliable data aggregation and transmission.� DDAARP: Dynami
 Data-Aggregation Aware Routing Proto
ol for WSNs (showin Chapter 4) is a novel dynami
 data aggregation aware routing proto
ol forWSNs, whi
h uses the sink node for pro
essing and 
on�guration of the routesaware of data aggregation. The main 
ontribution is that the routes 
reated byDDAARP does not depend on the order of events and are not held �xed duringthe o

urren
e of events su
h as the DAARP and the most algorithms in theliterature. Simulations results (presented in Se
tion 4.6) reveal that DDAARPpresents low 
ost in terms of pa
kets 
ontrol, improves the quality of the routingstru
ture and maximizes data aggregation along the 
ommuni
ation route in amore reliable way, through a routing fault toleran
e me
hanism.� DST: Dynami
 and S
alable Tree for WSNs (shown in Chapter 5) is an e�
ientdata aggregation solution that allows s
alable and dynami
 routing in WSNs,whi
h builds routing stru
tures with the shortest routes (in Eu
lidean distan
e)that 
onne
ts all sour
e nodes to the sink node maximizing data aggregationand redu
ing the distan
e to 
onne
t ea
h sour
e node to the sink. Also, therouting stru
ture 
reated does not depend on the event order. Simulations re-sults (presented in Se
tion 5.6) reveal that DST presents low 
ost in terms ofpa
kets 
ontrol, maximizes aggregation points and improve the quality of routingstru
ture o�ering dynami
 routes.� EAST: E�
ient Data Colle
tion Aware of Spatio-Temporal Correlation for WSNs(shown in Chapter 6) is an algorithm for energy-aware data forwarding in WSNsthat takes full advantage of both spatial and temporal 
orrelation me
hanisms tosave energy while still maintaining real-time, a

urate data report towards thesink node. The main 
ontribution is an energy-aware spatio-temporal 
orrelation
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hanism in whi
h nodes that dete
ted the same event are dynami
ally groupedin 
orrelated regions and a representative node is sele
ted at ea
h 
orrelationregion for observing the phenomenon. The entire region of sensors per event ise�e
tively a set of representative nodes performing the task of data 
olle
tionand temporal 
orrelation. Simulations results (presented in Se
tion 6.4) 
learlyshow that by using both spatial and temporal data 
orrelations, the informationabout the event 
an be sensed with a high a

ura
y while still saving the residualenergy of the nodes.7.2 LimitationsSome limitations have been identi�ed in the 
urrent state of the resear
h, and su
h lim-itations leads to future dire
tions. First, the proposed algorithms (DAARP, DDAARP,DST and EAST) present improvements on distributed heuristi
s for the Steiner treeproblem when we have resour
e-
onstrained networks, su
h as energy, memory andbandwidth. However, the 
urrent version of proposed algorithms 
onsiders only stati
events. In addition, ea
h proposed algorithm presents some drawba
k as des
ribedbellow.The main drawba
k of DAARP algorithm is the stati
 route. Sin
e, the routes
reated by DAARP are held �xed during the o

urren
e of events, in s
enarios wherethe events are of long duration, the energy of nodes that are part of the routes exhaustsqui
kly to forward the data 
olle
ted. Despite DDAARP deal with the stati
 routesproblem, it su�ers from s
alability problems and be
omes impra
ti
al for large-s
alenetworks. In addition, the sink node need a global knowledge network. The DST andEAST algorithms are potential solutions to deal with the s
alability and stati
 routesproblems. However, some issues still need to be further explored su
h as 
orrelationregions of di�erent sizes for the same event to further explore the dynami
ity of theevent to improve the a

ura
y of sensed data.7.3 Dire
tions for Future Resear
hThe results obtained in this thesis are very promising. The solutions proposed in the
urrent work usually take advantage of both data aggregation and spatio-temporal data
orrelations to improve the routing performan
e and redu
e energy 
onsumption in datagathering while preserving both data a

ura
y and real-time reporting. However the
urrent version of these algorithms are impra
ti
able for mobile networks.



92 Chapter 7. Final RemarksAs future work we intend extend the solutions proposed to work in mobile wire-less sensor networks. Also, we intend to investigate a spe
ial kind of Mobile Ad Ho
Network known as Vehi
ular Ad Ho
 Network (VANET), in whi
h vehi
les equippedwith wireless and pro
essing 
apabilities 
an 
reate a spontaneous network while mov-ing along roads. Vehi
ular Ad Ho
 Networks (VANETs) have emerged as an ex
itingresear
h and appli
ation area. The envisioned appli
ations, as well as some inher-ent VANET 
hara
teristi
s su
h as highly dynami
 topology, frequently dis
onne
tednetwork, and di�erent and dynami
 network density, make data dissemination a 
hal-lenging task in these networks. Several approa
hes for data dissemination in VANETshave been re
ently proposed in the literature. However, more work needs to be donesin
e most of the proposed solutions do not e�e
tively address some or all of the main
hallenges in these s
enarios su
h as the broad
ast storm, network partition and tem-poral network fragmentation.7.4 Comments on Publi
ationsWe list all the publi
ations obtained during the do
torate below.7.4.1 Journals� Villas, Leandro A.; Bouker
he, Azzedine; Guidoni, Daniel L.; de Oliveira, Hora-
io B.F.; de Araujo, Regina Borges; Loureiro, Antonio A.F. "An Energy-awareSpatio-Temporal Correlation Me
hanism to Perform Real-Time Data Colle
tionin Wireless Sensor Networks" Computer Communi
ations, 2012. To Appear.[Thesis℄� Villas, Leandro A.; Bouker
he, Azzedine; de Oliveira, Hora
io B.F.; de Araujo,Regina Borges; Loureiro, Antonio A.F. "Data Dissemination in Vehi
ular Net-works: Challenges, Solutions, and Future Perspe
tives" Wireless Communi
a-tions Magazine, 2012. To Appear. [Thesis℄� Villas, Leandro A.; Bouker
he, Azzedine; de Oliveira, Hora
io B.F.; de Araujo,Regina Borges; Loureiro, Antonio A.F. "A Spatial Correlation Aware Algorithmto Perform E�
ient Data Colle
tion in Wireless Sensor Networks." Ad Ho
 Net-works, v. 1, p. 10-30, 2011. [Thesis℄� Villas, Leandro; Bouker
he, Azzedine; Ramos, Heitor; Oliveira, Hora
io; deAraujo, Regina; Loureiro, Antonio A.F. "DRINA: A Lightweight and Reliable
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ations 93Routing Approa
h for in-Network Aggregation in Wireless Sensor Networks".I.E.E.E. Transa
tions on Computers (Print), v. 12, p. 1, 2011. [Thesis℄� Nakamura, Eduardo F.; Ramos, Heitor S.; Villas, Leandro A.; de Oliveira, Ho-ra
io A.B.F.; de Aquino, Andre L.L.; Loureiro, Antonio A.F. "A rea
tive roleassignment for data routing in event-based wireless sensor networks". ComputerNetworks, v. 53, p. 1980-1996, 2009.� Araujo, Regina B.; Villas, Leandro A.; Bouker
he, A. "Uma Solução de QoS 
omPro
essamento Centrado para Redes de Atuadores e Sensores sem Fio." RevistaBrasileira de Redes de Computadores e Sistemas Distribuídos, v. 1, p. 51-60,2008.7.4.2 Conferen
es� Villas, Leandro A. ; Guidoni, Daniel; Bouker
he, Azzedine.; Araujo, Regina B.;Loureiro, Antonio A. F. "Um Algoritmo Ciente da Correlação Espaço-Temporale Consumo de Energia para Coleta de Dados em Redes de Sensores sem Fio."In XXX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos,2012 (to appear). [Thesis℄� Guidoni, Daniel; Bouker
he, Azzedine.; Villas, Leandro A.; Mini, Raquel;Loureiro, Antonio A. F. "A Framework based on Small World Features to DesignHSNs Topologies with QoS" In The Seventeenth IEEE Symposium on Computersand Communi
ation (ISCC '12), 2012 (to appear).� Villas, Leandro A.; Guidoni, Daniel; Bouker
he, Azzedine.; Araujo, Regina B.;Loureiro, Antonio A. F. "Dynami
 and S
alable Routing to Perform E�
ientData Aggregation in Wireless Sensor Networks." In: IEEE International Confer-en
e on Communi
ations ICC 2011, 2011, Kyoto. IEEE International Conferen
eon Communi
ations, 2011. [Thesis℄� Villas, Leandro A.; Bouker
he, Azzedine; Guidoni, Daniel L.; de Oliveira, Hora
ioA.B.F.; Araujo, Regina B.; Loureiro, Antonio A. F., "Time-Spa
e Correlationfor Real-Time, A

urate, and Energy-Aware Data Reporting in Wireless SensorNetworks." In: The 14th ACM International Conferen
e on Modeling, Analysisand Simulation of Wireless and Mobile Systems, 2011, Miami. [Thesis℄� Villas, Leandro A.; Guidoni, Daniel L.; Bouker
he, Azzedine; Araujo, ReginaB.; Loureiro, Antonio A.F., "An Energy-Aware Spatial Correlation Me
hanism
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tion in WSNs." In: The 11th IEEE Interna-tional Workshop on Wireless Lo
al Networks (WLN'11) held in 
onjun
tion withThe 36th IEEE Conferen
e on Lo
al Computer Networks (LCN'11), 2011, Boon.[Thesis℄� Villas, Leandro A.; Guidoni, Daniel L.; Bouker
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he, Azzedine; Villas, Leandro A.; MINI, R.; Loureiro,A. A. F. "A Tree-based Approa
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epts." In: The 11th IEEE International Workshopon Wireless Lo
al Networks (WLN'11) held in 
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tion with The 36th IEEEConferen
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al Computer Networks (LCN'11), 2011, Boon.� Favarin, G.; Villas, Leandro; Bossonaro, A.; Mar
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