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Resumo

O estudo de redes tem raizes na teoria dos grafos que remota a 1730. Desde entao,
redes tem sido utilizadas para modelar e simular interacoes entre elementos de sis-
temas complexos, tais como de transporte, de comunicacao e de computadores. Redes
de comunicacao sao amplamente utilizadas para trocar informacoes entre entidades de
um sistema. A importancia das redes de comunicagao aumentou dramaticamente nos
altimos anos, chamando atencao para o estagio de projeto de um sistema real, dando
origem a diversos problemas de otimizacao. Técnicas e solucoes de Pesquisa Opera-
cional tem desempenhado papel fundamental sobre uma vasta gama de problemas de
projeto de redes. Nesta tese, nés estudamos como aplicar técnicas de otimizagao no pro-
jeto de redes de comunicagao. Primeiramente, nés abordamos o problema de projetar
redes de telecomunicagoes hierdarquicas assegurando resiliéncia contra falhas aleatorias
e garantias de atraso na comunicacao. Posteriormente, nés investigamos solucoes para
o problema de roteamento e alocagao de comprimentos de onda com agregacao de
trafego, protecao e qualidade de servico em redes 6pticas WDM. Finalmente, nos estu-
damos como projetar redes de comunicacao eficientes com base em caracteristicas de
redes complexas. Um conjunto de métricas é usado como critério de otimizagao no pro-
jeto dessas redes. Diferentes formulagoes matematicas para modelar os trés problemas
sao propostas. Um algoritmo Branch-and-bound baseado nas formula¢oes compactas
é avaliado e comparado a uma abordagem Branch-and-price baseada nas formulagoes
estendidas dos problemas. Uma anéalise comparativa é realizada, demonstrando que a
abordagem Branch-and-price proposta é capaz de resolver problemas cujas dimensoes

estNo fora do alcance de outras ferramentas tradicionais de otimizagao.

Palavras-chave: Branch-and-Price, Programacao Inteira, Redes de Comunicagao.
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Abstract

The study of networks has roots in graph theory dating back to 1730s. From then on,
networks have been used to model and simulate interactions among elements of intricate
systems, such as transportation, communication and computer ones. Communication
networks are widely used to exchange information among entities of a system. The
importance of communication networks has dramatically increased over the past few
years, drawing attention to the design stage of a real system, giving rise to many op-
timization problems. Operations Research techniques and solutions have been playing
a fundamental role across a wide range of network design problems. In this thesis,
we study how to apply optimization techniques in the design of communication net-
works. Firstly, we dedicate to the problem of designing hierarchical telecommunication
networks ensuring resilience against random failures and maximum delay guarantees
in the communication. Later, we investigate solutions to the routing and wavelength
assignment problem with traffic grooming, protection and quality of service in WDM
optical networks. Finally, we study how to design efficient communication networks
based on complex networks features. A set of metrics is used as optimization cri-
teria while designing such networks. Different mathematical formulations to model
the three problems are proposed. A Branch-and-bound algorithm based on compact
formulations is evaluated and compared to a Branch-and-price approach based on ex-
tended formulations of the problems. Our comparative analysis demonstrates that the
proposed Branch-and-price approach is able to solve problems whose dimensions are

out of reach for other traditional optimization tools.

Keywords: Branch-and-price, Integer Programming, Communication Networks.
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Chapter 1

Introduction

In this Chapter, we provide a brief introduction to the main problems we are going to
discuss along the present thesis. Section 1.1 is devoted to the motivation of this work
while the main objectives are detailed in Section 1.2. In Section 1.3, we specify the
main contributions of this work. Finally, in Section 1.4, the structure of the present

thesis is described.

1.1 Motivation

The study of networks has roots in graph theory dating back to 1730s, when Leonard
Euler formulated the Konigsberg Bridge Problem as a graph optimization problem
[Bondy and Murty, 1976; Diestel, 2005]. From then on, networks have been used to
model and simulate interactions among elements of intricate systems (transportation,
communication and computer, just to name a few ones). In the context of transporta-
tion, consider a road network as an illustrative example. Cities are crossing points
among different roads enabling vehicles to create their own routes along the network.
Rail networks and airline networks work in a similar fashion. One ancient well known
network is the postal network, in which messages are exchanged among different peo-
ple regardless how far they might be located. On the other hand, with the advent of
technology, today we also have other huge networks such as data distribution, cellular
and the Internet.

Communication networks |[Frank et al., 1972| are widely used to exchange infor-
mation (or a packet, a commodity) among entities of a system. We usually call these
entities as “nodes” or “vertices”!, which may be classified into source, destination (or

even both) and transhipment, depending on their role in the network. A general com-

IThe terms “nodes” and “vertices” will be treated interchangeably in this work.
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4 CHAPTER 1. INTRODUCTION

munication network is composed of a large number of nodes, which may not necessarily
be connected to all other nodes of the network. The idea is that a node also works as a
connection point between different incoming and outgoing paths. The communication
among the entities is possible by transmission media (also called “links” or “edges”).
Usually, links are associated to variable capacities. In a single communication network,
links may have different types of facilities and associated capacity.

The importance of telecommunication networks has dramatically increased over
the past few years. We have been facing evolving technologies which offer a variety of
services such as audio, video and general data transmission. Moreover, the increasing
demand from customers and the concern about service reliability in order to avoid
customer complaints require grades of organization, leading to hierarchical telecommu-
nication networks. The basic idea is that priorities are associated to sets of customers
so that network providers can offer higher levels of service in both serviceability (e.g.,
high bandwidth) and survivability (failure protection) to certain key customers.

In this context, quality of service (QoS) [Srikitja et al., 1999] arises to provide
special guarantees to different applications or customers. QoS refers to the ability of
a network to deliver predictable results. Elements of network performance within the
scope of QoS often include availability (uptime), throughput, latency and failure rate.
A set of QoS metrics is discussed along this work. We show how issues like delay,
load balancing, resilience and vulnerability can be taken into account while designing
communication networks.

Network survivability is another key issue that may not be disregarded in the de-
sign of networks. Under failure conditions, protection mechanisms enable the network
to maintain maximum connectivity and quality of service. These mechanisms lie in
the topological level, protocol design or even additional bandwidth allocation. In the
topological level, for instance, a two-connected network is robust against random single
link /node failures. Other examples include the usage of dynamic routing protocols to
reroute traffic against network dynamics during the transition of network dimensioning
or equipment failures. A bandwidth allocation mechanism proactively allocates extra
bandwidth to avoid traffic loss under failure conditions.

Complex networks are found in the real world in different areas of science, in-
cluding the Internet, WWW, neural networks, friendship relationships, among others
[Newman, 2003; Watts and Strogatz, 1998; Faloutsos et al., 1999; Thadakamalla et al.,
2004; Albert et al., 1999]. They are many times characterized by a non-trivial topol-
ogy and present interesting features which may be useful in designing communication
networks. One of these features concerns the low cost for sending information (or a

packet, a commodity) through the network. The small average path length is directly
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related to a small data communication latency. Thereby, engineered networks could
take advantage of being modelled to present specific complex features, to improve their
overall efficiency. Several network models were proposed and studied in an attempt
to represent elements of a system and their relationships [Lewis, 2009; Newman, 2003;
Watts, 2004; Thadakamalla et al., 2008]. Early models include regular [Lewis, 2009
and random networks [Erdos and Rényi, 1959; Gilbert, 1959|. In the late 1990s, new
network models were proposed, and complex network concepts began to be formalized.

One important stage while creating engineered networks concerns the topological
design of the network, in which critical decisions must be taken. This problem is
referred as a “network design problem” in the Operations Research (OR) community
[Magnanti and Wong, 1984|. This stage may involve determining where to place the
components and how to connect them. Moreover, most of the time, fixed and variable
costs are involved, giving rise to many optimization problems. Operations Research
techniques and solutions have been playing a fundamental role across a wide range
of network design problems. Considering the set of requirements to be met while
designing such networks, an optimization phase is certainly of great importance. The
fulfillment of these requirements is becoming increasingly challenging, once entities
have been demanding high standards of service, including hierarchy, serviceability,
survivability and extreme efficiency. Optimization techniques have been successfully
applied in designing engineered networks |[Magnanti and Wong, 1984; Resende and
Pardalos, 2005; Chinneck et al., 2009].

1.2 Objectives

The main goal of the work described in this thesis is to design communication networks
by means of optimization techniques in an exact approach. Therefore, the following

issues compose our general objectives:

e Proposal of alternative mathematical formulations to model three network design

problems, such that they can be based on network flows or path variables.

e Performance comparison between a Branch-and-bound algorithm for compact
formulations and a Branch-and-price algorithm devised by applying a Delayed

Column Generation approach to the problem.

e Study of different branching rules while dealing with the enumeration tree in the

Branch-and-price algorithm.
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e Evaluation of acceleration strategies while solving a Delayed Column Generation

algorithm, such as stabilization and column management.

Based on these issues, we are investigating how state of the art algorithms may
be improved or complemented by alternative approaches. In this context, the specific

objectives of this thesis are:

e Propose an exact solution approach to design a hierarchical network with re-
silience and delay guarantees. The implied solution must deal with different sets
of nodes which have different requirements, single failure resilience constraints

and hop constraints to assure a maximum delay.

e Propose an exact solution to design optical networks considering routing, wave-

length assignment, traffic grooming, protection and quality of service.

e Propose an exact algorithm to design efficient communication networks based on
complex network features. By optimizing desired metrics such as shortest path
length and maximum vertex degree, the overall efficiency of engineered networks

may be improved.

1.3 Contributions

The contributions of this thesis were partially published /submitted and are listed be-

low.

e Souza et al. [2008|, published in the XL Simpdsio Brasileiro de Pesquisa Opera-
cional (SBPO’08). In this work, a GRASP-based algorithm to generate small

world topologies is proposed.

e Souza et al. [2009], published in the First IEEE International Workshop on Net-
work Science For Communication Networks (NetSciCom’09) in conjunction with
IEEFE Infocom (INFOCOM’09). This work addresses the problem of designing
complex networks based on two mathematical formulations and a column gener-

ation algorithm.

e Souza et al. [2010b|!, presented at the 10th INFORMS Telecommunications Con-
ference. This work concerns a column generation algorithm for the resilient multi-

level hop-constrained network design problem.
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Souza et al. [2010c|', presented at the Journées de I’'Optimisation/Optimization
Days 2010 (JOPT’10). This work concerns a column generation algorithm for

the resilient multi-level hop-constrained network design problem.

Souza et al. [2010a|, published in the IEEE GLOBECOM Workshop on Complex
and Communication Networks (CCNet’10). In this work, a Branch-and-price

algorithm for the design of complex networks is developed.

Souza et al. [2012a], published in the Handbook of Optimization in Complex Net-
works: Theory and Applications. In this chapter we review optimization algo-

rithms to design complex communication networks.

Souza et al. [2012b], to be published in the IEEE Symposium on Computers and
Communication (ISCC’12). In this work, we compare solutions for the routing
and wavelength assignment problem with traffic grooming, protection and quality

of service in WDM optical networks.

Work! submitted to the European Journal of Operational Research. In this pa-
per we propose three formulations for the resilient multi-level hop-constrained
network design problem, evaluate algorithms to solve the problem and prove the

equivalence of two distinct formulations.

In parallel with his research topic, the student has been participating as a co-

author in other works related to her research topic: complex communication networks.

As a result of this iteration another work has been published and is listed below.

e Guidoni et al. [2010], published in IEEE Global Communications Conference

(GLOBECOM’10). This work studies the channel assignment problem over a

Heterogeneous Sensor Network with small world features.

e Guidoni et al. [2012], to be published in IEEE Symposium on Computers and

Communication (ISCC’12). This work proposes a framework based on small

world features to provide QoS in Heterogeneous Sensor Networks.

1.4 Outline

This thesis is organized as follows. In Chapter 2, a background of the methods adopted

in our methodology is provided, along with the main concepts on communication net-

works that we study in this work. We start giving a contextualization of Linear and

IThis work was developed during a sandwich program at Université de Montréal.
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Integer Programming, followed by a Delayed Column Generation overview. We also
introduce the Branch-and-price algorithm based on a combination of Delayed Column
Generation and Branch-and-bound methods. Finally, we introduce some concepts on
communication networks.

Chapters 3, 4 and 5 concern three different network design problems in the con-
text of communication networks. All of them are tackled using a similar methodology.
Chapter 3 addresses the Resilient Multi-level Hop-constrained Network Design prob-
lem, which consists of designing a hierarchical network with resilience and delay guar-
antees. The problem is introduced and contextualized in the literature. Two compact
mathematical formulations based on network flows are proposed as well as an extended
formulation based on a exponential number of path variables. A Branch-and-price al-
gorithm based on the last formulation is developed and computational experiments are
run, allowing a comparative analysis on the efficiency of the Branch-and-price algorithm
and a Branch-and-bound algorithm for the former formulations.

Chapter 4 concerns formulations based on network flows and path variables for
the Grooming, Routing and Wavelength Assignment problem with Protection and QoS
in WDM optical networks in order to minimize the number of wavelengths used. We
compare the performance of different algorithms over real world instances.

Chapter 5 is dedicated to the Optimal Topology Design of Complex Networks
problem. We review some models, heuristics as well as exact solution approaches
based on Integer Programming methods to generate topologies owning complex fea-
tures. Two mathematical formulations are proposed, such that the former is based on
network flows and the latter corresponds to an extended formulation with path vari-
ables. A comparative study between a Branch-and-bound algorithm for the flow-based
formulation and a Branch-and-price algorithm for the path-based formulation is also
performed.

The future work along with the final remarks on applying optimization techniques

to design communications networks are presented in Chapter 6.



Chapter 2

Background

This chapter is devoted to the fundamental aspects of Operations Research techniques
and the basic concepts on communication networks. We start contextualizing Linear
and Integer Programming. Next, we provide a general idea of the methods applied in
our solution approach. The Delayed Column Generation method is presented as well
as some related issues. In the following, we introduce the Branch-and-price algorithm.
Finally, we review the main concepts on communication networks in order to provide

a better understanding along this work.

2.1 Linear and Integer Programming

Linear Programming (LP) consists in the optimization of a linear objective function,
subject to linear equality and inequality constraints. The idea of solving a linear
programming problem is usually associated with a way to achieve the best outcome
when different activities compete for a set of scarce resources. The conception of linear
programming is credited to George Dantzig, who proposed the problem around 1947.
In this context, the simpler algorithm |[Dantzig, 1963] was also proposed by Dantzig
in the late 1940s, for solving LP problems. The simplex method is widely known for
its practical ability to solve diverse management decision problems. Moreover, the
theoretical importance of the method cannot be disregarded since it is a basis for other
methods in Integer and Nonlinear Programming |Bazaraa et al., 2004].

Integer Linear Programming (ILP) extends the Linear Programming in the par-
ticular case that variables are all required to be integers. In contrast to Linear Pro-
gramming, which can be usually solved efficiently, Integer Programming problems are
still a challenging field of research. These decision problems modelled as Integer Pro-

grams are classified as NP-hard. Even the special cases, where variables are required to

9
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be 0 or 1 (binary integer programming) or when only some of the variables are required
to be integers (mixed integer programming), are generally also NP-hard. This means
that there are no known polynomial time algorithms to solve (optimally) a general
Integer Programming problem.

Several approaches have been proposed to solve Integer Programs in the last
decades. Early work in this direction accounts for the cutting-plane method intro-
duced by Gomory [1958]. Another approach is the well known Branch-and-bound
(BB) algorithm proposed by Land and Doig [1960], which consists of an implicit enu-
meration procedure of all candidate solutions. These pioneer methods gave rise to other
sophisticated approaches such as the Branch-and-cut (BC) and Branch-and-price (BP)
algorithms. Roughly speaking, these approaches are hybrids of Branch-and-bound plus
cutting-plane and Branch-and-bound plus Delayed Column Generation, respectively.

For further details regarding Integer Programming, see [Wolsey, 1998].

2.2 Delayed Column Generation

The Delayed Column Generation is a technique for solving Linear Programming prob-
lems, in which we do not need to consider all columns (variables) explicitly at once.
In doing so, an extended reformulation of the problem (having exponentially many
variables) works as the basis of the procedure. In order to derive lower bounds for
a given formulation, we must deal with the excessive number of columns (variables)
implicitly. Therefore, the method starts with a restricted set of columns and add new
columns on-the-fly, as needed. This Linear Program is usually referred to as the Re-
stricted Master Program (RMP). A new Restricted Master Program, enlarged with
new columns is solved iteratively until no further columns need to be added. At this
point, the Linear Program has been solved. Typically, the total number of columns at
the end of the procedure is just a tiny fraction of the total number of columns. This
method is known for providing stronger LP bounds compared to the linear relaxation
of a compact formulation for many problems.

Let us now describe how new columns are generated along the procedure. First,
we should associate our LP relaxation to its LP Dual. Consider that we have a basic
feasible solution for the LP relaxation and its corresponding optimal dual solution. By
the Duality Theory, we must check if dual constraints associated to the new columns
that do not belong to the RMP are violated. While this is true, these columns must
be included in the RMP, which will be re-optimized. Otherwise, the current solution

solves the LP relaxation of the problem. The problem of finding new columns that
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violate the dual constraints is usually called pricing problem. The violation checking
is based on the computation of the reduced cost of a new column. Every time a new
RMP is solved, it enables dual prices for each of the constraints, which are used in the
pricing problem in a mutual feeding strategy.

The Delayed Column Generation method will be explored in more detail in Chap-
ters 3, 4 and 5, applied to specific problems. For further information, see |[Desrosiers
and Liibbecke, 2005; Lasdon, 1970; Barnhart et al., 1998|.

2.2.1 Stabilization Methods

Stabilization methods for column generation emerged as an attempt to reduce the total
time spent while solving the algorithm due to degeneracy and convergence difficulties.
One of the problems faced in column generation arises when a primal solution is as-
sociated to multiple dual solutions. As the subproblems are totally dependent on the
dual values, the choice of which dual values to use becomes a relevant issue.

Many stabilization methods have been proposed in the literature [Merle et al.,
1997; Liibbecke and Desrosiers, 2005; Rousseau et al., 2007; Amor et al., 2009]. To
understand how stabilization works, let us consider the interior point stabilization
method proposed by Rousseau et al. [2007]. The main idea of this method is to select
a dual optimal solution interior to the optimal face of the dual polyhedron rather than
retrieving an extreme point. In order to achieve the centralization of dual values,
several extreme points of the optimal dual polyhedron need to be generated, so that
an interior point corresponding to a convex combination of all these extreme points
may be computed. This is accomplished by solving an auxiliary Linear Programming
problem that exploits complementary slackness conditions given by the optimal RMP
primal-dual solution. The literature reports significant gains when such dual values are

used to price columns.

2.2.2 Column Generation Primal Heuristics

Primal heuristics are generally referred to as methods based on truncated exact opti-
mization procedures or constructive processes using relaxation [Barnhart et al., 1998;
Joncour et al., 2010|. Being able to derive “good” primal feasible solutions, they become
an effective algorithm when optimality is not the major concern.

A well known primal heuristic in column generation context is the restricted
master heuristic. In this case, the formulation is solved as a static integer problem,

limited to a set of columns which can be generated heuristically, or by the master itself,
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or even by a mixture of both. The main drawback of this approach is that feasibility
is not guaranteed, and thus, an ad-hoc strategy needs to be used to repair infeasibility.

Rounding heuristics are another way to find approximated solutions. For this,
the master LP solution is taken as a base for column selection. Greedy heuristics have
also been proposed. They consist of iteratively adding a greedy selected column to the
partial solution until a feasible solution is achieved.

The Branch-and-price tree may be used to develop a diving heuristic, which
consists of a searching depth-first heuristic. Different from how the exact approach
explores the tree, in a diving heuristic we do not need to be concerned in balancing
the tree. At each node, a branch is heuristically selected based on greedy or rounding

strategies. For additional details, see [Joncour et al., 2010].

2.3 Branch-and-price

Branch-and-price [Barnhart et al., 1998, 2000] considers a combination of the Branch-
and-bound and Delayed Column Generation. In a simple view, the procedure consists
in applying the Delayed Column Generation method to derive lower bounds to be used
during the enumerative search. As mentioned before, the Delayed Column Generation
is expected to provide strong LP bounds through the Branch-and-bound search, al-
lowing a higher number of subproblems to be pruned by bounds. The fewer created
subproblems, more efficient the algorithm tends to be.

A Branch-and-price algorithm starts solving the linear relaxation of the root node
of the Branch-and-bound tree through the Delayed Column Generation procedure. As
mentioned in the last section, when no more columns with negative reduced costs are
found, the LP relaxation of the problem has been computed in the root node. If the
LP solution is integer, it also solves the original integer problem. Otherwise, being
fractional, we must resort to branching.

It should be clear that applying a traditional Branch-and-bound algorithm for
the RMP obtained at the end of the column generation approach does not guarantee
that an optimal (nor even feasible) solution to the problem will be found. In contrast
to that, we embed the whole column generation procedure in an Branch-and-bound
framework, leading to a BP algorithm, where new columns are likely to be generated
at each node in the enumeration tree.

One key issue in the implementation of BP algorithms is how branching is per-
formed [Vanderbeck, 2010; Koch et al., 2004|. Since at each node of the enumeration

tree the pricing subproblems are called repeatedly and solving them accounts for most
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of the computing times in BP algorithms, ideally, the branching rule should not destroy
the structure of the pricing subproblems. Another aspect while branching, involves how
variables are chosen. Once the branching rule over a certain variable is defined, we must
adopt a branching policy, in order to choose which variable on which to branch. This
choice can be based on the fractional variable farthest or closest to integrality, or even
at random.

Finally, in order to choose a node to explore from the list of outstanding nodes
in the branching tree, many approaches may be considered. The main node selection
policies include the breadth first, depth first and best bound. In the breadth first, the
nodes of the tree are explored in the same order in which they were created. Depth
first selection policy explores the last node created, going deeper in the BB tree. The
best bound or best first chooses the node having the lowest value (in a minimization
problem) of the LP relaxation among all BB nodes.

For a more complete review regarding Branch-and-price implementations, see
[Barnhart et al., 1998, 2000; Desrosiers and Liibbecke, 2005].

2.4 Main Concepts on Communication Networks

Many network measurements have been established aiming to characterize the perfor-
mance and general operational conditions of a network. The main metrics are closely
related to the communication in the the network, i.e., the exchange of information (or

packets). Some of them are listed in the following.

e Delay: time interval elapsed between the data departure time from the source

vertex to the arrival time at the destination vertex.
e Jitter: time variation among packets arriving at a destination vertex.
o Throughput: data rate supported by the network.

e Loss: amount of data that did not reach its destination vertex.

The concept of quality of service emerged in an attempt to provide guarantees of
performance in communication networks. We present two important requirements in
the QoS context:

e Serviceability: the ability of a service to be obtained when requested, and continue
to be provided without excessive impairment for a request. It can be associated

to the former metrics presented: delay, jitter, throughput, congestion and so on.
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e Survivability: the ability of a system to continue to function during and after

a natural or man-made disturbance. It is usually associated to fault tolerance
mechanisms. In this case, a system is said to be resilient and reliable. Otherwise,

vulnerability begins to be an issue.

In order to provide survivability in a network, some mechanisms have been pro-

posed.

e Protection: uses pre-assigned capacity to ensure survivability. Two schemes can

be defined:

— Dedicated: all the traffic is allocated twice in the network capacity, i.e.,

different protection paths do not share common resource.
— Shared: multiple protection paths may go through common resources; when

one protection path is activated, other protection paths that share common

resources with it may have to be rerouted.

Restoration: reroutes the affected traffic after failure occurrence by using avail-

able capacity.
In the following, we present the main concepts in Optical Networks:

Wavelength Division Multiplexing (WDM): is a technology which multiplexes a
number of optical carrier signals onto a single optical fiber by using different

wavelengths.

Lightpath: sequence of optical “hops” defined by a physical path through which
the optical signal bypasses intermediate nodes, creating a virtual connection be-

tween its end nodes.

Routing and Wavelength Assignment (RWA): problem of setting up lightpaths
by routing and assigning a wavelength to each request that must be attended by

the network.

Traffic Grooming: technique to group several requests for traffic on the same

wavelength.

— Static: considers the case in which all requests are known in advance and

do not change by long periods of time.

— Dynamic: demands appear dynamically, according to a probability distri-

bution.



Chapter 3

Resilient Multi-level

Hop-constrained Network Design

In this chapter we investigate the Resilient Multi-level Hop-constrained Network De-
sign (RMHND) problem, which consists of designing hierarchical telecommunication
networks, assuring resilience against random failures and maximum delay guarantees
in the communication. Three mathematical formulations are proposed and algorithms

based on the proposed formulations are evaluated.

3.1 Introduction

In the telecommunication context, we have been facing evolving technologies which
offer a variety of services such as audio, video and general data transmission. The
increasing demand from customers and the concern about service reliability in order
to avoid customer dissatisfaction require grades of organization, leading to a hierar-
chical telecommunication network. The basic idea is that priorities are associated to
sets of customers so that network providers can offer higher levels of service in both
serviceability (e.g., low delay, high bandwidth) and survivability (failure protection) to
certain key customers.

The importance of telecommunication networks has dramatically increased over
the past few years. Consequently, Operations Research techniques and solutions have
been playing a fundamental role across a wide range of telecommunication problems
[Magnanti and Wong, 1984; Resende and Pardalos, 2005]. Considering the set of re-
quirements to be met while designing such networks, the employment of an optimization
phase is certainly of great importance.

This work aimed to study the application of Integer Programming techniques

15
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applied to the Resilient Multi-level Hop-constrained Network Design. The Multi-level
Network Design (MLND), introduced by Balakrishnan et al. [1991], generalizes several
well-known optimization models and addresses design decisions for hierarchical telecom-
munication, transportation, and electric power distribution networks. The nodes in this
network have different levels of importance (priorities are associated to the nodes), re-
quiring different levels of technologies in communication. Given an undirected graph
whose nodes are partitioned into L levels, each edge can contain one of the L different
levels of technology, with higher level requiring higher fixed costs. The goal is to select a
connected subset of edges assigned to a technology level so that each source-destination
pair communicate via its minimal necessary level or higher level, minimizing the total
cost of the assigned technologies. We extended this problem to the RMHND, such
that the subgraph implied by the selected edges provides two edge disjoint paths with
up to H hops for each pair of nodes, i.e., it assures single-edge failure resilience and a
maximum delay.

In the present study, we devise two compact formulations for the RMHND whose
solution is accomplished by solving a Mixed Integer Program (MIP) to optimality
through a Branch-and-Bound solver. Given the complexity of the problem, the main
drawback of both compact formulations of a MIP is certainly the very limited size of
the instances likely to be solved. In order to overcome this, we propose a column gener-
ation embedded in a Branch-and-bound algorithm, leading an exact Branch-and-price
algorithm which has been applied successfully in the solution of large-scale problems
[Lasdon, 1970; Barnhart et al., 1998|.

Figure 3.1 shows a RMHND example for a network with 16 nodes, two sets of
nodes and edges (two different levels) and a hop constraint where H = 9. Figure 3.1(a)
depicts the original network, in which dotted lines represent the edges that might be
included in the solution. Figure 3.1(b) displays the resulting network for the RMHND.
Let us consider for instance, pair (5,14), where nodes 5 and 14 belong to the first
level (the most priority level). Note that two edge disjoint paths using only first level
technology edges are available, one with 4 hops (5-9-10-13-14) and another with 6 hops
(5-6-7-8-12-11-14). Taking pair (2,16), where both nodes belong to the second level,
we can also observe two edge disjoint paths. The first path, represented by (2-3-4-8-
12-16) with 5 hops and the second path (2-1-5-9-10-13-14-11-15-16) with 9 hops, cross
edges of its minimal required level (second one) or a higher level (the first level). It is
important to point out that two edge disjoint paths are available for any pair of nodes.

The remainder of this chapter is organized as follows. In Section 3.2, we review
some existing approaches in the literature to design multi-level networks. In Section

3.3, we introduce the Integer Programming formulations while, in Section 3.4, the
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Figure 3.1. RMHND Problem
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Branch-and-price algorithm is described. Section 3.5 is devoted to present the equiva-
lence between two formulations for the problem. Our computational experiments are
presented and discussed in Section 3.6. Finally, the conclusion and future directions

are given in Section 3.7.

3.2 Related Work

The Multi-level Network Design has theoretical importance since it generalizes the
well-known Steiner Tree [Chopra and Rao, 1994] problem and the Hierarchical Network
Design (HND) problem - defined by Current et al. [1986], which designates exactly two
nodes of the network in the first level (also referred to as primary nodes) and the others
in the second level. The MLND was first introduced by Balakrishnan et al. [1994b],
which describes alternative model formulations for the problem and analyzes the worst-
case performance for heuristics based upon Steiner and spanning tree computations.
For the HND special case with only two primary nodes, the worst-case performance
ratio of the heuristic is 4/3. For the general case, the composite heuristic’s worst-case
performance ratio of r+1 depends on the worst-case performance ratio r of any Steiner
network heuristic.

By the same time, Balakrishnan et al. [1994a] have developed an optimization-
based heuristic methodology for solving the MLND problem. This method first applies
certain preprocessing tests to reduce the problem by eliminating or installing primary or
secondary technologies before solving the problem. The core of the method consists of
a dual ascent algorithm to generate good linear programming based lower bounds and
heuristic upper bounds. Computational results on large-scale problems (containing up
to 500 nodes and 5000 edges) show that the method provides very good approximated
solutions (guaranteed to be within 0.9% from optimality).

In [Balakrishnan et al., 1998|, the survivability idea is incorporated to the MLND.
For this, backup paths are provided for pairs of nodes belonging to the primary level.
The authors propose and analyze the worst-case performance of tailored heuristics for
several special cases of the two level problem. Depending upon the particular problem
setting, the heuristics have worst-case performance ratios ranging between 1.25 and
2.6.

Formulations for the Two Level Network Design (TLND) - a particular case of
MLND - are discussed by Gouveia and Telhada [2001]. The authors present an aug-
mented arborescence formulation combining a directed formulation for the Steiner tree

problem with a directed formulation for the spanning tree problem. They show that the
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linear programming value of the new formulation is proved to be theoretically weaker
than the LP bound given by a flow based formulation, although for certain classes of in-
stances the two LP bounds are quite close. In addition, a Lagrangian based relaxation
is presented, where an arborescence minimization problem is solved as the relaxed sub-
problem. Computational results indicate that the Lagrangian relaxation based method
is quite efficient, providing a reasonable alternative to handle the problem.

As an extension of |[Gouveia and Telhada, 2001|, a new formulation for the Multi-
Weighted Steiner Tree (a general case of TLND) problem is proposed in [Gouveia and
Telhada, 2008]. In the previous work, the authors propose a non-symmetric formula-
tion for the problem in the sense that depending on the node selected as a root of the
tree, the corresponding LP bounds could vary. Thus, a reformulation by intersection
is proposed, obtained by the intersection of feasible sets of the models corresponding
to each root selection for the problem. It is shown that the linear programming relax-
ation of the reformulation dominates the linear programming relaxation of the previous
formulation for all possible root selections. They also present a Lagrangian relaxation
scheme derived from the reformulation, with quite favourable results, on instances with
up to 500 nodes and 5000 edges.

An optimal approach for the HND problem is devised in [Obreque et al., 2010|
using a Branch-and-cut procedure. They show how to find valid cuts and how their
separation works. A Branch-and-bound procedure completes the algorithm when no
more cuts can be added. Computational results show that large instances are likely to
be solved in a short CPU time.

To the best of our knowledge, it was not found in the literature the problem
of Multi-level Network Design with hop constraints and resilience against single-edge

failure, as proposed in our work.

3.3 Mathematical Formulations

Let us now formally introduce the Resilient Multi-level Hop-constrained Network
Design problem. For the sake of convenience, we define our problem over a di-
rected graph to allow an easier transition over the different formulations. Given
a directed graph D = (N, A) with set of nodes N and arcs A, installation costs
{c; = ¢} > 0:V(i,j) € A, Vg € G} assigned to the arcs of A, where G denotes
the set of different technologies, numbered from 1 to |G|. A technology g on arc (i, j)
7., with ¢f; > c%{ ifg<yg.

Let K C N x N be a set of requests; K = UQGG K,, where K, is the set of

costs ¢?



20 CHAPTER 3. RESILIENT MULTI-LEVEL HOP-CONSTRAINED NETWORK DESIGN

requests with technology g. The technology g of a request k is defined by the lowest
level of the end-nodes of k. This means that the communication for request & must
take place in the highest technology between its end-nodes. The RMHND problem
consists in finding a subset of arcs S C A, such that each arc is assigned to exactly one
technology and the subgraph of D implied by (N, S) provides two arc disjoint paths
with length at most H for each request.

Three Integer Programming Formulations for RMHND are presented here. In
the first two formulations, named Arc-Flow Formulation and Aggregated Hop-Indexed
Formulation, connectivity between each pair of nodes is enforced through network flow
[Ahuja et al., 1993] arguments. In the third one, Arc-Path Formulation, connectivity is
guaranteed by imposing that two arc disjoint paths connecting every pair of nodes must
be available in the subgraph of D implied by the selected arcs. These formulations are

discussed next.

3.3.1 Arc-Flow Formulation (AFF)

Let us assume that, given D = (N, A), A; and Aj respectively denote the set of arcs
arriving and leaving j € N. To model RMHND, we make use of the following sets
of decision variables: (i) xfjp € R, , indicating the amount of flow of request k that
passes through arc (i,j) which composes path p € {1,2}; (i) yj;, taking value 1 if
arc (i,7) = (j,1) is assigned to technology ¢ and therefore included in the solution (0,
otherwise). RMHND can now be stated as:

min Z Z czgjyigj (3.1)

(i,j)€A:i<j g€G
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s.t.
Z Z a:];f >2 VkeK,s=source(k) (3.2)
pE{LQ}jeAj
>N P =2 Ve K t=dest(k) (3.3)

pe{l,2} icA;

Z xzp - Z xff =0 VkeK,VjeN,j# source(k) # dest(k),Vp € {1,2}, (3.4)

i€AT leA;r
Yoyl <1V, §) = (G,1) € 4 (3.5)
geG
St < 3wl Vke K\Y(i ) = (j,i) € AVp e {1,2) (3.6)
1] — 1] ) ) ) Y ) )
pe{1,2} g'<g(k)
Y 2P <H VkeK\Vpe{l,2}, (3.7)
(i,7)€A
vl =yl Y(i,j) € A Vg EG, (3.8)
0<afP <1 VkeK,V(i,j) € AVpe{l2} (3.9)
g . .
yi; €40,1} V(i j) € A,Vg € G. (3.10)

Constraints (3.2)-(3.4) are flow balance constraints for each request k. Note
that inequalities(3.2) imply that at least two units of flow will leave the source node
of request k, while inequalities (3.3) indicate that every unit of flow for request k
will arrive its destination node. Constraints (3.4) guarantee the flow conservation in
transshipment nodes. Inequalities (3.5) assure that on each arc (i,j) € A at most
one of the technologies is installed. Inequalities (3.6) couple flow and design variables,
imposing that g(k) flows are only allowed to cross ¢ arcs (arcs with higher technologies),
where ¢’ < g(k). Note that inequalities (3.5) along with inequalities (3.6) impose that
paths p € {1,2} are arc disjoint. Constraints (3.7) assure that paths implied by the
flows are no longer than H. Constraints (3.8) impose whenever arc (i, j) is selected to
be in a solution, so is (j,7). Finally, objective function (3.1) minimizes the total cost
of selected arcs. Note that whenever arcs (7, j) and (j,7) are included in the solution,
the cost cgj is considered only once in the objective function.

Formulation (3.1)-(3.10) has O(n?) variables and constraints and therefore, only
RMHND instances of limited size are expected be solved to proven optimality by BB
algorithms based on it. Moreover, as we will see in the following, the LP bounds
provided by the Arc-Flow Formulation may be improved by indexing flow variables
with a hop counter, since constraints (3.7) are considered weak when we are dealing

with the LP relaxation of the problem.
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3.3.2 Aggregated Hop-Indexed Formulation (AHF)

In this formulation, previous constraints (3.7) are treated by an additional index on
flow variables, as proposed in [Gouveia et al., 2006], except that we do not make use
of “loop” variables. Through this indexing strategy, even when we are dealing with the
LP relaxation of the problem, the paths imposed by the flows are guaranteed to have
no more than H hops, making the bounds stronger than in the former formulation.
In addition to variables yf’j previously defined, our second formulation uses vari-
ables w%k indicating the amount of flow of request k that crosses arc (i, j) in the h"

hop of one of the paths. Thus, the problem can be stated as:

min Z Z c?jyigj (3.11)

(i,j)€Aii<j g€G

s.t.
Z w;]k >2 VkeK,s=source(k) (3.12)
jeAT
H
S wit =2 VkeK,t=dest(k) (3.13)
h=1icA;
Z w?jk - Z w?lﬂk =0 VkeK,VjeN,j# source(k) # dest(k),
i€AT leAf
h={1,.,H -1}, (3.14)
Doyt V(i) = (i) € A (3.15)
geG
H !
Sl < 3yl VkeKV(i.j) = (4:i) € A, (3.16)
h=1 9'<g(k)
v =y V(i,j) € AVg € G, (3.17)
0<wiF <1 VkeKV(ij)eAh={1,.,H}, (3.18)
yi; €10,1}  V(i,j) € A,Vg € G. (3.19)

Flow balance constraints for each request k are given by constraints (3.12)-(3.14).
Inequalities (3.12) ensure that at least two units of flow will leave the source node of
request &, indexed by the 15 hop. Inequalities (3.13) guarantee that every unit of flow
for request k will arrive its destination node disregarding the number of hops used to
reach it. Constraints (3.14) guarantee the flow conservation in transshipment nodes,

assuring that each unit of flow leaving a node has an incremented hop index than in
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its arrival. Inequalities (3.15) assure that on each arc (i,7) € A at most one of the
technologies is installed. Inequalities (3.16) couple flow and design variables, as in
the previous formulation. Note that inequalities (3.15) along with inequalities (3.16)
impose that the paths implied by the flows are arc disjoint. Constraints (3.18) impose
that arcs (4,j) and (j,7) are symetric. The objective function (3.11) minimizes the
total cost of selected arcs, as in the Arc-Flow Formulation.

Formulation (3.11)-(3.19) also has O(n*) constraints and far more variables
(O(n®)) than the Arc-Flow Formulation. Although the LP bounds provided by this
formulation are tighter, once again, the size of RMHND instances expected to be solved
is limited.

A third formulation, named Arc-Path Formulation is presented in the sequence.
Despite having exponentially many variables, this formulation is suitable for the im-

plementation of a Branch-and-price [Barnhart et al., 1998| method.

3.3.3 Arc-Path Formulation (APF)

In this formulation, we assume that P* denotes the set of admissible directed paths
connecting the endpoints of request k in D, including a hop constraint (length(p) < H :
p € P¥). The main idea of the Arc-Path Formulation to enforce connectivity and single
arc failure resilience is to impose that, at least two paths connecting every request in the
corresponding or higher level technologies must be available in the subgraph implied
by the selected assignment whose cost we aim to minimize.

Assume that af; € {0, 1} indicates that arc (4, ) or (j,7) belongs to path p taking
value 1 (0, otherwise). In addition to variables yfj previously defined, we make use
of the following set of decision variables: )\’; taking value 1 if path p € P* is selected
for request k (0, otherwise). The Arc-Path Formulation for RMHND is given by the

Integer Program:

min Z Z clgjyigj (3.20)

(i,j)€A:i<j g€G
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s.t.

Y N>2  VkeK, (3.21)
pEPk
oyl <1, Vij)eAri<y, (3.22)
geG

A< >yl VEeK\V(i,j) € Ari<j, (3.23)

pePk g'<g(k)

k k

Ap €{0,1}  Vke K,Vp e P7, 3.24)
vl €{0,1}  V(i,j) € A:i<j,VgeG. (3.25)

The objective function (3.20) minimizes the total cost of the selected arcs. Con-
straints (3.21) ensure that at least two paths connecting each request will be selected.
Inequalities (3.22) assure that on each arc (i,7) € A at most one technology is in-
stalled. Inequalities (3.23) imply that g(k) paths are only allowed to cross ¢’ arcs,
where ¢ < g(k), i.e., arcs with higher technologies. Following the same idea of the
other formulations, inequalities (3.22) along with inequalities (3.23) guarantee that the

selected paths are arc disjoint.

3.3.4 Considerations

For solving RMHND by a LP based BB algorithm, we have chosen the state-of-the-art
commercial solver CPLEX [2011]. The advantage of the LP based BB approach is that
little programming effort is needed, once one has in hand an Integer Programming
solver like CPLEX.

However, the Arc-Flow Formulation and the Aggregated Hop-Indexed Formula-
tion have O(n*) variables and constraints and O(n°) variables and O(n*) constraints,
respectively. Therefore, even with the help of a highly sophisticated optimization
package like CPLEX, only RMHND instances of limited size are expected be solved to
proven optimality by LP based BB algorithms that rely on these formulations. Conse-
quently, the drawback of this approach is that, in practice, only limited size instances
of RMHND can be actually solved in a reasonable amount of time.

In order to overcome this difficulty, in the following, we present a Branch-
and-price algorithm based on a reformulation for RMHND (Arc-Path Formulation).
Roughly speaking, the procedure consists in applying the Delayed Column Generation

method to derive lower bounds to be used in the search.
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3.4 Branch-and-price Algorithm for the RMHND

The exponentially many columns in (3.20)-(3.25) does not refrain us to use the Arc-
Path Formulation in an exact BB approach to solve RMHND. That could be attained
by embedding a Delayed Column Generation in a BB algorithm.

3.4.1 Lower Bounds given by the Arc-Path Formulation

To understand how the LP bounds given by (3.20)-(3.25) are evaluated, let 7% > 0,
Bij < 0and 7} <0 be the dual variables associated with constraints (3.21), (3.22) and
(3.23), respectively. The dual problem associated to the LP relaxation of (3.20)-(3.25)
is given by:

max Z ok + Z Bij (3.26)

keK (i,7)€A:<g
s.t.
=3 > A< Vi) edii<jVgeQ, (3.27)
g'>g k‘GKg/
+ Y alak <0, VkeK\Vpe Pk (3.28)
(i,)€A<

™>0 VkEK, (3.29)

k .o
;<0 Vke K\V(i,j) € A, (3.30)
v <0 VkeKN(i,j) €A (3.31)
(3.32)

The LP relaxation of (3.20)-(3.25) can be computed as follows. Assume that sets
of simple directed paths C* C P* Vk € K (|C*| << |P*|) are made available. Also,
assume that the Restricted Master Problem

min Z Z ijw (3.33)

(1,))€Ai<j g€G



26 CHAPTER 3. RESILIENT MULTI-LEVEL HOP-CONSTRAINED NETWORK DESIGN

s.t.
Y M>2 VkeK, (3.34)
peCk
oyl <1, V(ij)eAri<y, (3.35)
geG
ddar< » yU, Vk e K,\V(i,j) e A:i<j, (3.36)
peCk 9'<g(k)
Ae>0  VkeK,\VpeCF, (3.37)
v >0 V(i,j)eA:i<jVged. (3.38)

has one basic feasible solution 7, M. Let T, B,& be the corresponding dual optimal

solution. If, for all requests k, no path p € P*\ C* violates the dual constraints

e Y Ak < (3.39)
(i,5)€ A<y
then, §, A solves the LP relaxation of (3.20)-(3.25) and the corresponding optimal LP
function gives a lower bound on (3.20). Otherwise, for a given resquest &k there must
be a path in P¥\ C* that violates (3.39) that must be included in C*. The new RMP,
enlarged with the sets of paths associated to violated constraints (3.39), is re-optimized.
The procedure goes on, until no inequality (3.39) is violated.

In our implementation, the initial sets C* are generated as follows. In order to
guarantee a feasible solution for the problem, two arc disjoint paths must be provided
for each request k € K. Therefore, we computed the first two minimum disjoint paths
connecting request k in terms of number of hops (seeking a feasible solution). Whenever
the length of the maximal path in the generated sets is no greater than H, (3.20)-(3.25)
admits at least one solution. Otherwise, there is no feasible solution for the problem.

The pricing problem, consists in finding a path p € P*\ C* that violates (3.39)
or proving that such path does not exist. Therefore, if there is no path for any request
k € K yielding negative reduced costs 6’; = 7k D) EAsi<; a%‘yfj, the LP relaxation
is solved. Since 4, < 0,Vk € K,V(i,j) € A : i < j (and therefore —35 > 0),
the pricing problems could be solved by any shortest path algorithm with resource
constraints (note that in fact, it is a “longest” path, since 7’“ < 0). In order to deal
with the subproblems, we use the algorithm proposed by Feillet et al. [2004] to solve

the associated Elementary Shortest Path Problem with Resource Constraints.
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3.4.2 The Enumeration Tree

As previously described, when no more columns with negative reduced costs are found,
the associated solution corresponds to the optimal value for the LP relaxation of the
root node. If the LP solution is integer, it also solves the original problem (3.20)-(3.25).
Otherwise, being fractional, an enumeration algorithm is required.

One important issue in the implementation of BP algorithms is how branch-
ing is performed. Since the pricing subproblems are iteratively solved along the BP
procedure, ideally, the branching rule should not destroy the structure of the pricing
subproblems. In this case however, it is irrelevant, as we use an exponential algorithm
to deal with the subproblems, and the complexity will not increase.

We chose to branch on fractional yfj variables. Next, we show that branching
on variables y% will lead us to an optimal integer solution, and no branching in )\’; is
needed, due to the property of elementary paths. Clearly, whenever \* is an optimal
integral solution, variables y* will also be. Although the contrary is not true, we can
state that:

Proposition 1. Given an optimal solution \*, y* to RMHND with objective value O*;
of y* is integral, \* s either integral or there exists an integral feasible solution with

the same objective value.

Proof. Suppose that y* is integral. Let U}, be the set of variables A for request k£ having
positive values, i.e., U = {p € P*: /\'; > 0}. For each request k, if |U}| = 2, there
exist two non-zero variables assuming value 1, ensuring an integral solution. Otherwise
(|Uy| > 2), one may select two variables among the elements of U} and fix them to
1 and the others to 0. It is important to point out that as the paths represented by
the selected variables must be arc disjoint, the selected couple cannot share common
arcs. Once variables \* assume positive values, it is guaranteed that arcs belonging
to the selected paths are included in the solution (remember that y* is integral) and
moreover, computed in the objective function. Therefore, we can obtain an integral
solution with the same objective value O*. To demonstrate that there exist two arc
disjoint elementary paths among the elements of U} for every request k, observe the
following properties of the resulting subgraph implied by the solution of RMHND.
Subgraph D = (N, S) is bridgeless; otherwise, a flow of two units must be traversing
the cut-edge (bridge) to guarantee the set of constraints, which is impossible since
variables yj; € {0,1}. Thus, we can state that D = (N,S) is a two edge connected

graph. According to Menger’s theorem !, for every pair source/destination there are

'Menger’s theorem: Let G be a finite undirected graph and s and t two distinct vertices. The size
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at least two edge disjoint paths in D. O

The idea of branching on yfj variables is the creation of as many branches as
the number of technologies |G| + 1. The first branch concerns the case in which all
technologies g of arc (i,j) = (j,4) are forbidden, i.e., arc (i,j) = (j,4) is actually
forbidden to belong to the solution. The other |G| branches treat the cases where one
of the technologies is imposed to be 1 and the remainder 0. The main advantage of
this branching rule is that it does not affect the pricing subproblem, requiring only the
elimination of the corresponding arc from the input graph when necessary.

The selection of the next fractional variable to branch on is performed at random.
Moreover, the Branch-and-bound tree is explored choosing a node according to a best
bound policy. According to our experiments, the best bound policy presents a better

performance than the breadth first or depth first ones.

3.4.3 Stabilization and Acceleration Strategies

In order to evaluate the behaviour of our algorithm under stabilization, we apply an
interior point stabilization method proposed by Rousseau et al. [2007]. The main
idea of this method is to select a dual solution inside the optimal space rather than
retrieving an extreme point. To obtain a point inside the polyhedron, one can simply
define a random objective function and solve the associated dual problem imposing
complementary slackness conditions. If the problem is solved with a simplex method,
then the optimal solution obtained will always be an extreme point. Solving the dual
problem for a number of random values, we obtain a set of extreme points, whose convex
combinations will lead to an interior point that gives much more centered dual values.
The only parameter to set is the number of points to identify in order to calculate an
interior point of the dual optimal space. The trade-off is that a larger number of points
will produce a more centered point, but also requires more computing time (since a LP
has to be solved for each point).

Evaluating our experiments, it is observed that although the number of iterations
of the procedure indeed decreases, the computational times are not improved. Different
values for the number of points to be calculated were tested, but no advantage was
achieved. The reason for that consists in the fact that the bottleneck of our problem
is the time spent while solving the LP. Since the stabilization method is based on a
number of runs of the associated dual LP, the gain obtained in the number of iterations

of the column generation does not pay off the time spent to compute better dual values.

of the minimum edge cut for s and ¢ (minimum number of edges whose removal disconnects s and t)
is equal to the maximum number of pairwise edge independent paths from s to ¢.
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A common acceleration strategy in column generation concerns the addition of a
large set of good columns in the beginning of the procedure. As presented in Section
3.4.1, the set of initial paths for each request is initialized with only two arc disjoint
paths. A larger set of paths was also tested to initialize the algorithm, but according

to our computational results, this strategy does not improve our current solutions.

3.5 Equivalence of the LP Relaxations of AHF and
APF

Theorem 1. The LP relazations of AHF and APF provide the same solution set and
objective function values for RMHND.

The proof for the theorem is based on showing that for each continuous solution
to AHF (APF) there is a corresponding solution in APF (AHF) and both of them lead
to the same continuous value for RMHND. Let F(.) be the feasible solution set for

problem (.) and AHF;p and APFpp denote the LP relaxations of AHF and APF,
respectively. Let the solutions in AH Fyp and APFp be represented by

(w,y) = (w}F, yi;,)Vk € K,VYh € I,Y(i, j) € A,¥g € G and

(A7) = (M), 5)Vk € K,¥p e PFY(i,j) € A:i < jVgeG,

respectively. For (w,y) € F(AHF.p) and (\,§) € F(APFLp), consider Zagp(w,y)
and Zapr(A,y) the corresponding linear objective function values of AHF and APF,

respectively.

Proof. The equivalence of F(AH Fpp) and F(APFpp) and the equality of the continuous
solutions of AHF;p and APFp are shown in three parts. O

Part 1. To show F(APF.p) C F(AHFyp), we take a solution ()\,7) € F(APFyp) and
construct a solution (w,y) € F(AHFpp).

Let pr be a binary constant assuming value 1 if arc (4, 7) is the h-th arc belonging
to path p and 0, otherwise. It is easy to see that the binary constant afj presented in

APF can be given by

h
k-3l (40
hel
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since paths are acyclic. Given (\,y) € F(APFLp), (w,y) can be constructed as follows.

wit = 3" BPAE ke KY(i,j) € AVhel (3.41)
pEPk
g _ =9 .
yi; =9y,  V(i,j) €AVgEG (3.42)

Claim 1. (w,y) constructed through Eqs. (3.41)-(3.42) is in F(AH Fpp).

Proof of Claim 1. We show that (w,y) constructed through Eqs. (3.41)-(3.42) satisfies
constraints (3.12)-(3.17).

(a) By substituting (3.41) into constraints (3.12), we get

Z Z bg/\l; > 2,5 = source(k)

je AT pePk

As only one arc (s,j) can be the first arc of path p, the sum of binary
P —1).

constants b is said to be equal to 1 (3 4+ by

Thus, we get

Y M>2 VkeK
pePk

Since (A, y) € F(APFpp), these inequalities hold by (3.21).

(b) By substituting (3.41) into constraints (3.13), we have

Z Z Z ngp)\]; > 2,t = destination(k)

hel Z'GAt_ pGPk

=> > da>2 {by (3.40)}
i€ Ay pePF
As exactly one arc (7,t) arriving in ¢t must belong to path p, the sum of a is equal

t0 1 (Yeq a = 1).

Thus, we have

> N>2 VkeK
pePk

Since (A, y) € F(APFyp), these inequalities hold by (3.21).

(c) By substituting (3.41) into constraints (3.14), we get
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DD b= D by T =0

i€A; peP* leA] pePk

_ k h+lp | _

SR DI DD
peEPk €A} leAt

31

We can state that ) . ,- bZP € {0,1} and Zle/ﬁ B ¢ {0,1}. Then we
J

have two situations: (i) node j belongs to path p (both summations are equal

1), (i) otherwise (both summations are equal 0).

Therefore,

> AEx0=0

pEPk

Equalities (3.14) hold, as the equations are null by the substitution.

(d) Constraints (3.15) can be written as

dgl<1 V(i) edii<y
geG

Since (A, y) € F(APFyp), these inequalities hold by (3.22).

(e) Constraints (3.16) can be written as

PIDBLEEEDD ym

=D an < Z ym Vke K\V(i,j)e Ai<j  {by (3.40)}
pePk g'<g(k)

Since (A, y) € F(APFpp), these inequalities hold by (3.23).

(f) By substituting (3.42) into constraints (3.17), we get

U =
=y -9 =0,v(i,j) € AVge G

Equalities (3.17) hold, as the equations are null by the substitution.

With (a), (b), (c), (d), (e) and (f) we show that (A, y) € F(AH Ppp), which proves

Claim 1.

]

Part 2. To show that F(AH Fp) C F(APFyp), we take a solution (w,y) € F(AHFpp)

and construct a solution (\,y) € F(APFp).
Given (w,y) € F(AHFyp), construct (), ) in the following manner
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gh=vl  V(i,j) € AVgeG (3.43)

The set of paths ) is constructed through a flow decomposition algorithm? [Ahuja
et al., 1993] as follows

Algorithm 1 Create set of paths P

Input: w
Output: P
1: for all request k do
2 while there are paths for & with positive flow do
3 1. Find a simple path p, from source(k) to dest(k) as follows.
4 a. Pick and arc leaving source(k) at the first hop with positive flow (w;]k > 0).
5: b. Once you have w?jk, find the next hop arc with positive flow, say w;LlHk.
6 c. Repeat (b) until node ¢ is reached.
7 2. Let f, > 0 be the amount of flow of path p,, i.e, f, = mm{wzhjk :(4,7) € pu}-
8 3. Anti-augment flow f,, from all arcs (i,7) € py.
9 4. Declare p,, as a path in P with value f, and remove all zero residual flow arcs.

10: end while
11: end for
12: return P

Considerations regarding the proposed algorithm:

e Step (1) of the algorithm guarantees that a simple path from source(k) to
destination(k) with positive flow is found at each iteration, so that the con-
structed path has no more than H hops, since the procedure is based on hop-

indexed variables w.

e Although step (3) reduces the amount of flow in arcs belonging to p,, the flow

balance is still ensured in the residual network.

Since at least one arc is removed at each iteration of the algorithm for a request

k, we have at most m = |A|/2 iterations for each request until it terminates.

Claim 2. (X, y) constructed through Eq. (3.43) and Algorithm (1) is in F(APFLp).

Proof of Claim 2. We show that (A, y) constructed through Eq. (3.43) and Algorithm
(1) satisfies constraints (3.21)-(3.23). O

2The original flow decomposition algorithm is designed to decompose arc flows into path and cycle
flows. However, in this work we deal only with simple paths.
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(a) We show that constraints (3.21) hold based on a recurrence relation in terms of

the number of iterations performed by Algorithm (1).

Let u be the number of iterations in Algorithm (1), where 1 < u < m. Con-

sidering that at each iteration a portion of the total amount of flow is extracted

from solution w to solution A for a request k, we can say that in the end of the

procedure the amount of flow transferred for request k£ will sum to 2. Thus, we

can state that

ifu=1
T(u) = N
T(u—1)+ f, otherwise

By solving 3.44, we have

(u—=1)+ fu
(u_2)+fu—1+fu

=T+ fot+ oo+ fu1+ fu
:f1+f2+'--+fu—1+fu

Constraints (3.21) hold by substituting flow-paths by A-paths as follows

> fuz2

=> M>2 VkeK
pEPk

(b) Constraints (3.22) can be written as follows

Syl <1 V(i) edii<y
geG

Since (w,y) € F(AH Fpp), these inequalities hold by (3.15).

(3.44)

3.45
3.46
3.47
3.48
3.49
3.50

~~ N I/~ I/~
O N T T

(c) Following the same idea of (a), constraints (3.23) can be written by means of the

constructed flow-paths. Let d; is a binary constant indicating whether arc (4,7)

belongs to the flow-path u. Substituting the constructed flow paths by A-paths,

we have
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Zd”- = Z yZJ

g'<g(k)

=Y A< Y gl VEEKNV(,j)eAi<]
pePk g'<g(k)

Part 3. We show that the given ()\,y) € F(APFpp) and the constructed (w,y) €
F(AHFpp) lead to the same objective function value, i.e., Zapp(A\,§) = Zagr(w,y).

Claim 3. Zapr(w,y) = Zapr(\, 7)

Proof of Claim 3. By construction of y/;(Vg € G,V(i,j) € A) (see (3.42)), Zaur(w,y)
can be rewritten as
Zanr(w,y) Z Z ijﬂfj
9€G (1,j)EAL<]
This expression corresponds to Zapp(A, ).

O

Corollary 1. The partial LP relaxations under variables w and \ of AHF and APF
provide the same solution set and objective function values for RMHND. Once we define
variables y to assume only binary values, the partial LP relaxations should be equivalent

as well.

3.6 Computational Experience

In this section, we present optimal solutions obtained with the BP algorithm. We
also present the LP relaxations provided by all three formulations. For the Arc-Flow
Formulation and the Aggregated Hop-Indexed Formulation, within a time limit of
3600 s, the optimal solutions found by the BB algorithm based on them are shown. All
computational testings in this study were conducted on a Intel Core 2 Quad machine,
with 2.5 GHz and 8Gb of RAM memory, running under Linux operating system. For
all algorithms, CPLEX [2011] LP solver release 12.1 was used.

Different sets of instances are tested. The first sets of instances consist of artificial
networks created using a random instance generator. The following parameters are
required by the generator: |N| - number of nodes, |G| - number of technologies (or
levels), m - array with the number of nodes in each level, (dx,dy) - area dimensions.
Nodes are uniformly deployed over a random perturbed grid and assigned a different
level at random, according to the values predefined in m. It means that if we have
|G| = 2 and the number of nodes in the first level is n, exactly n nodes must be chosen

at random to belong to the first level. Arc costs are assigned based on the Euclidean



3.6. COMPUTATIONAL EXPERIENCE 35

distance (d) between their endpoints and different technologies have proportional costs.
Accordingly, the costs are given by the formula ¢j; = [d x o x §7|, where a € [0.5, 1.5]
with a uniform random distribution and ¢¢ is a constant factor to indicate how many
times a technology costs more than the cheapest one.

Another set of instances, composed of real world networks, is studied. They
present different topologies, allowing the algorithm analysis in diverse scenarios. In
the same way, random costs are assigned to the arcs of these topologies and levels are
attributed at random to the nodes. Table 3.1 details the characteristics of the instances,
where |N| is the number of nodes, |A| is the number of arcs and |K| corresponds to
the number of requests. Note that we consider the whole set of requests, i.e., requests

connecting every pair of nodes (this number is given by |K|= |N| x (|[N| —1)/2).

Table 3.1. Real World Networks
instance |N| |A| |K]
carrier 24 86 276
dora 15 52 105
eon 20 78 190
nsf 14 42 91

ring 15 42 105
sul 15 42 105

In Tables 3.2 and 3.3 we present the results of all three formulations for instances
with 16 and 25 nodes respectively, a set of requests between all pairs of nodes, |G| = 2
and a squared area of 100x100m. The first two columns of the tables, indicate the
number of nodes in primary level p, € {2, 4,8} and the number of hops H in the interval
[hmin, hmaz|. Parameter hmin corresponds to the minimum number of hops necessary
to provide two arc disjoint paths for all requests while hmax is the maximum number
of hops that a path can assume, i.e., [N|—1. In the next four columns, results attained
by the Branch-and-bound algorithm based on the Arc-Flow Formulation are presented:
GAP (the LP duality gap), t.p (the time taken to evaluate the LP relaxation), followed
by the number of instances that were proven optimality (#opt) and the respective
time, top. In the next four columns, similar entries are given for the Aggregated Hop-
Indexed Formulation: the LP duality gaps (GAP) and the time taken to compute them
(trp), followed by the number of instances that were proven optimality (#opt) and the
respective time, ¢,,;. Results for the Arc-Path Formulation include the LP duality gaps
(GAP), the time taken to compute them and the number of columns (#col) generated
at the root node. Finally, in the last three columns, we provide the time taken to

compute the optimal solutions given by BP (¢gp), the final number of columns (#col)
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and the number of nodes (#nod) explored in the enumeration tree. It is important
to point out that each line corresponds to average values of 10 randomly generated
instances owning the same features. The best computing times (when optimality is
achieved) are highlighted in boldface.

Results in Tables 3.2 and 3.3 indicate that BP is able to solve all instances for
each network size. On the other hand, it can be observed that the BB algorithm
based on the Arc-Flow Formulation and the Aggregated Hop-Indexed Formulation is
not capable to prove optimality for all tested instances within the time limit imposed
(3600s). Note that column #opt indicates the number of instances solved to optimality
(from a set of 10 instances). Although the time taken to compute the bounds for the
Arc-Flow Formulation is smaller in most of the cases compared to the times needed to
compute them by the other two formulations, the provided gaps are weaker, reaching
values up to 29.07%. On the other hand, the gaps provided by the Aggregated Hop-
Indexed Formulation and the Arc-Path Formulation are stronger and identical, since
these formulations are equivalent. However, the times taken to find optimal solutions
(when the time limit is not achieved) by the Aggregated Hop-Indexed Formulation are
higher than the Arc-Path Formulation for most of the tests.

Analyzing the results achieved by the three formulations, it can be observed that
on average, the BP algorithm based on the Arc-Path Formulation has obtained the best
computational times compared to a BB algorithm based on the other two formulations.
The BB based on the Arc-Flow and Aggregated Hop-Indexed Formulations was not
able to find optimal solutions for all instances, especially when the number of nodes
(and consequently the number of requests) increases. Besides, although the bounds
provided by the Aggregated Hop-Indexed Formulation are tighter than the bounds from
the Arc-Flow Formulation, the overall behaviour of the latter is better, on average. One
interesting result shows that the algorithm based on the Arc-Flow Formulation has a
better performance as the number of hops H increases, while the algorithms for the
other two formulations experience more difficulty. This occurs because the latter two
formulations are based on “paths”. As the number of hops increases, there are more
possibilities of different paths for the Arc-Path Formulation and far more variables for
the Aggregated Hop-Indexed Formulation. On the other hand, for small values of H,
the BP algorithm experiences a better performance, since the set of paths feasible for
the solution is more restricted, allowing less combinations to form different paths.

Table 3.4 presents results for real world instances previously described, with 3
levels (2 nodes in the primary level p,, 4 nodes in the secondary level s, and the others
in the third level). The first two columns of the table correspond to the network

instance and the number of hops H belonging to the first 5 values starting from the
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Table 3.2. Summary of Random Instances with |[N| = 16;|A| = 48;|K| =

120; |G| = 2
Arc-Flow Formulation Hop-Indexed Formulation Arc-Path Formulation
pr  H Linear Relaxation Integer Solution Linear Relaxation Integer Solution Linear Relaxation Branch-and-price
GAP  tpg(s) Hopt  top(s) GAP trgp(s) #Hopt  to(s) GAP tpg(s) Fcol tgp(s) #col  #nod
6 11.9% 0.65 8  780.83 0% 0.2 10 0.24 0% 026 516.3 0.32  516.3 1
7 6.2%  0.52 9 57179 1.64% 0.5 10 3.13 1.64% 0.69  764.6 1.93 9764 21.9
8 3.8% 0.5 10 93.88 0.9% 0.82 10 6.08 0.9% 1.09  931.7 242 1,1474 142
9 3.3%  0.46 10 251.6 1.36% 1.05 10 62.53 1.36% 149 1,071.9 3.62 13815 274
10 1.18% 0.43 10 83.73 0.36% 1.37 10 56.81 0.36% 2.06 1,246.8 3.31 14003 8.7
2 11 0.81% 0.41 10 14.08 047% 1.75 10 147.56 0.47% 2.61 1,380.2 4.33 16146 78
12 0.46% 0.4 10 8 0.31% 2.15 10 269.55 0.31% 2.75 14284 4.49 16605 6.1
13 041% 04 10 3.68 0.34% 2.56 9 755.72 0.34% 3.14 1,479 486 16939 58
14 011% 0.39 10 0.73 0.11% 3.11 10 555.01 0.11% 3.14 1,488.1 391 1,565.2 1.6
15 0.11% 0.38 10 0.67 0.11% 3.95 7 1,386.14 0.11% 3.14 1,488.1 3.89 15634 1.6
avg 283% 0.45 9.7 180.9 0.56% 1.75 9.6  324.28 0.56% 2.04 1,179.51 3.31 1,351.95 9.61
6 19.74% 0.66 9 441.39 1.03% 0.2 10 0.26 1.03% 0.3 529.2 0.4 534.9 5.2
7 10.54% 0.48 9  553.76 2.81% 0.49 10 1.91 2.81% 0.74  786.3 1.65 9219 15.8
8 7.75% 0.44 10 204.36 2.65% 0.84 10 7.99 2.65% 1.16  967.6 2.98 12413 16.9
9 3.63% 0.41 10 75.35 1.31% 1.15 9 397.52 1.31% 1.6  1,106.7 3.42 1,3541 171
10 221% 0.39 10 29.67 0.66% 1.45 10 121.07 0.66% 1.9 1,223 3.83 14827 109
4 11 0.83% 041 10 9.87 0.64% 1.52 10 251.2 0.64% 2.86 14225 4.98 16662 9.1
12 0.35% 0.41 10 4.49 0.31% 1.87 9 462.64 0.31% 3.14 1478 4.41 16185 4
13 0.35% 0.4 10 3.96 0.33% 2.29 10 455.55 0.33% 3.13 1,475.9 4.56 1,639.1 4.6
14 027% 04 10 0.92 0.27% 2.8 10 612.72 0.27% 3.11 14778 4.28 1,593.7 3.7
15 027% 04 10 0.98 0.27% 3.32 8  1,147.77 0.27% 3.15 1,478 437 16069 34
avg  459% 0.44 9.8 132.48 1.03% 1.59 9.6  345.86 1.03% 211 11,1945 3.49 1,365.93 9.07
6 29.07% 0.52 10 123.28 1.08% 0.21 10 0.36 1.08% 0.3 559.3 0.43  573.5 6.1
7 20.78% 0.35 9  840.76 2.89% 0.48 10 1.91 2.80% 0.68 7924 2.15 1,003.1  30.4
8  13.2T% 0.35 10 204.53 2.72% 0.77 10 7.12 2.72% 1.18  993.1 2.77  1,219.7 20
9 9.21% 0.34 10 123.92 1.63% 1 10 24.56 1.63% 1.7 1,159.2 3.87 1,429 21.8
10 6.03% 0.33 10 29.19 1.15% 1.24 10 97.83 1.15% 2 1,242.5 4.3 15076 224
8 11 047% 0.34 10 5.8 0.21% 1.24 10 89.26 0.21% 2.49 14245 3.57 15578 6.8
12 0.08% 0.33 10 0.67 0.08% 1.44 10 268.7 0.08% 2.76 1,470.4 3.6 1,556.4 2.2
13 0.08% 0.31 10 0.67 0.08% 1.66 10 398.14 0.08% 2.83 1,470.3 3.8  1,590.6 2.3
14 0.08% 0.32 10 0.72 0.08% 1.88 9 462.66 0.08% 2.78 1,469.1 398 16224 24
15 0.08% 0.33 10 0.7 0.08% 2.27 8 1,171.87 0.08% 2.8 1,469.1 398 16224 24
avg 7.92% 0.35 9.9 133.02 1% 1.22 9.7 252.24 1% 1.95 1,204.99 3.24 1,368.25 11.68

minimum number of hops necessary for a feasible solution. As we are interested in hop-
constrained guarantees, for now on we will focus on smaller values of H. The remaining
columns are the same ones described earlier. Over again, it is possible to note that
BP is able to find all optimal solutions unlike the other approaches. As before, the
bounds provided by the Arc-Flow Formulation are weaker while stronger and identical
bounds are found for the Aggregated Hop-Indexed and Arc-Path Formulations. It can
be observed that for larger instances as carrier and eon the Arc-Flow Formulation
and Aggregated Hop-Indexed Formulation could proven optimality only for a portion
of the analysed instances.

The results show that the proposed BP algorithm is capable of solving medium
size instances for the RMHND within reasonable times. It is also demonstrated that BP
outperforms the BB based on the compact formulations. It is important to highlight
why larger size instances will demand a higher effort to be solved. Observe that the
hardness involved is not only related to the number of nodes in the network, but more
importantly, the number of requests. Once we work with requests for all pairs of nodes,

the task becomes harder as the number of requests belongs to O(n?).
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Table 3.3. Summary of Random Instances with |[N| = 25,|4| = 80, |K| =

300, |G| = 2
Arc-Flow Formulation Hop-Indexed Formulation Arc-Path Formulation
pr  H Linear Relaxation  Integer Solution Linear Relaxation Integer Solution Linear Relaxation Branch-and-price
GAP  t1g(s) #opt  tou(s) GAP  tpg(s) #Hopt  ton(s) GAP  trp(s)  #col tep(s) #col #nod
8 10.58% 7.84 1 3477.27 0.54% 2.97 10 235.16 0.54% 12.09  2,530.9 20.63  2,914.1 9.5
9 7.14%  6.53 0 3,600 221% 1441 0 3,600 221% 2338 3,244.6 125.68 58837  99.8
10 471% 441 0 3,600 2.1% 29.84 0 3,600 2.1%  42.07  4,181.8 265.1 83919 129.6
11 4.06% 6.7 0 3,600 2.27%  51.03 0 3,600 2.27% 61.01  4,966.3 622.6 12,106.2 243.7
12 3.02% 4.31 0 3,600 1.67%  95.91 0 3,600 1.67% 77.96  5,604.1 568.34 12,648.6 124.9
13 2.44% 4.21 0 3,600 1.48%  191.12 0 3,600 1.48% 9735 6,323.9 900.12 14,8175 156.8
14 1.62% 4.18 1 3,313.65 0.95%  270.28 0 3,600 0.95% 119.54 7,088.9 664.53 13,896 59.2
15 1.38% 4.38 3 2,810.84 0.93%  352.96 0 3,600 0.93% 14278 7,923.6 899.13 16,5114 748
9 16 0.96% 4.15 4 2,497.03 0.6%  473.44 0 3,600 0.6% 160.4  8,535.6 585.01 14,713 28.3
17 0.75%  3.96 5 232484 0.5%  663.62 0 3,600 0.5% 17791 9,011.8 655.18 14,906.7 24.1
18 0.48% 4.01 6 1,745.16 0.31%  556.04 0 3,600 0.31% 195.32 9,423.5 511.53 13,994 12.6
19 0.44% 4.02 8 1,200.93 0.31%  793.56 0 3,600 0.31% 204.42 9,838.2 602.99 15,1756 13.3
20 0.36% 4.21 9 674.94 0.27% 1,038.87 0 3,600 0.27% 222.49 10,274.3 570.5 14,992.1 9.5
21 0.36% 3.84 8 853.98 0.32%  995.32 0 3,600 0.32% 241.55 10,678.9 675.99 159316 11.5
22 0.18% 4.08 10 292.33 0.17% 1,143.44 0 3,600 0.17% 251.19 10,897.9 519.02 14,035 7.6
23 0.01% 4.69 10 63.38 0.01% 1,141.27 0 3,600 0.01% 2675 11,227 361.19 12,6382 34
24 0.01% 3.39 10 154.12 0.01% 1,442.73 0 3,600 0.01% 269.54 11,235 363.46 12,639.8 34
avg  2.26% 4.64 441 2,200.5 0.86% 544.52 0.59  3,402.07 0.86% 150.97 7,822.72 524.18 12,717.38 59.53
8 1357% 6.2 0 3,600 1.45% 2.74 9 510.88 1.45% 11.35 24835 22.61 2,985.1 12.4
9 8.88% 5.74 0 3,600 3.13% 1281 0 3,600 3.13% 233 3,293 116.11 58326  85.8
10 6.46% 4.23 1 3272.86 2.78%  24.32 0 3,600 2.78% 37.32 4,009 182.6 72336  60.7
11 4.02% 3.73 2 3,299.34 1.84%  28.13 0 3,600 1.84% 45.95  4,498.8 306.2  9,108.1 110.4
12 3% 3.38 2 3,299.04 1.09% 75.09 0 3,600 1.09% 60.27  5,084.9 205.48 8,384.4 25.4
13 1.09% 3.2 3 2,886.26 0.72%  134.92 0 3,600 0.72% 7714 5,777.1 319.73  10,526.3  39.8
14 054% 3.58 7 2,017.67 0.36%  150.85 0 3,600 0.36% 89.42  6,280.3 325.36 9,825 24.3
15 0.49% 3.22 7 1,322.33 0.43%  155.62 0 3,600 0.43% 11225 6,896.4 425.98 11,5072 313
4 16 0.33%  3.04 8 1,024.82 0.3% 285.19 0 3,600 0.3% 120.65 7,087.8 350.81 10,515.2 16
17 0.32%  3.27 8 791.76 0.31%  389.64 0 3,600 0.31% 116.7  7,054.5 447.32  11,486.5 232
18 0.16% 3.62 10 364.11 0.16%  415.78 0 3,600 0.16% 11391  6,980.2 307.1  9,980.5 10.3
19 0.15% 3.63 9 390.74 0.15%  544.1 0 3,600 0.15% 115.89  6,975.2 334.52 10,5402 9.5
20 0.12% 3.32 9 373.06 0.12%  588.11 0 3,600 0.12% 116.63  7,030.7 242.93  9,445.6 4.6
21 0.11%  3.64 10 77.39 0.11%  792.24 0 3,600 0.11% 116.84 7,046 235.31 9,417.8 4.6
22 0.11% 3.03 10 20.41 0.11%  766.84 0 3,600 0.11% 117.37 7,009 206.28  8,812.3 4
23 011% 36 10 66.62 0.11%  987.93 0 3,600 0.11% 117.34 7,009 201.24  8,807.1 4
24 011% 2.86 10 12.12 0.11% 1,212.57 0 3,600 0.11% 117.07 7,009 205.79  8,822.9 4
avg  233% 3.72 6.24 1,554.03 0.78%  386.29 0.53 3,418.29 0.78% 88.79 5,972.02 260.9 9,013.55 27.66
8 20.06% 7.05 0 3,600 2.08% 3.23 9 624.23 2.08% 11.47 2514.7 25.68 3,076.8 28
9  14.97% 5.61 0 3,600 3.58% 12.2 0 3,600 3.58% 2343  3,350.6 119.19 5821.6 101.2
10 11.21% 5.18 0 3,600 4.04%  23.33 0 3,600 4.04% 4117 43495 427.2  9,306.7 211.3
11 7.84% 5.75 0 3,600 3.03%  35.63 0 3,600 3.03% 52.85  4,902.4 502.89 10,438.3 1483
12 5.88%  5.08 0 3,600 2.71% 76.53 0 3,600 2.711% 7214 5,577.3 707.64 11,461.1 131.1
13 3.45% 4.33 1 3,429.84 1.82%  132.39 0 3,600 1.82% 90.94  6,362.8 398.36 11,4743 70.2
14 2.45%  3.89 4 2,733.46 1.13% 158.9 0 3,600 1.13% 104.85 6,922.8 376.27 11,0024  18.7
15 0.74% 4.51 7 1,614.71 0.5%  169.15 0 3,600 0.5% 11579  7,531.7 221.06  9,688.8 9.8
8 16 047% 4.14 7 1,135.9 0.42%  225.77 0 3,600 0.42% 1278 7,886.1 214.15  9,334.6 4.4
17 0.1%  4.01 9 499.47 0.09%  266.95 0 3,600 0.09% 135.23  8,154.6 201.58 9,571.2 4.6
18 0.05% 5.24 9 390.35 0.05%  388.48 0 3,600 0.05% 133.22 8,104.1 188.51  9,243.4 3.5
19 0.05% 4.41 10 18.03 0.05%  380.46 0 3,600 0.05% 128.44 8,006.5 188.76  9,264.9 2.8
20 0.04% 441 10 127.01 0.04%  475.4 0 3,600 0.04% 12812 8,025.7 182.68  9,129.9 2.6
21 0.04% 412 10 20.65 0.04%  634.64 0 3,600 0.04% 129.1  8,026.4 189.96  9,301.1 2.7
22 0.04% 4.48 10 13.52 0.04%  656.4 0 3,600 0.04% 129.1  8,084.8 189.78 9,373 2.8
23 0.04% 3.65 10 26.11 0.04%  780.09 0 3,600 0.04% 128.98 8,084.3 187.31  9,364.2 2.8
24 0.04% 412 10 23.45 0.04%  865.01 0 3,600 0.04% 129.01 8,084.3 190.86  9,414.8 3
avg 3.97% 47 5.71 1,648.97 1.16%  310.86 0.53 3,424.95 1.16% 98.92 6,704.04 265.4  9,192.18 43.99

3.7 Conclusion and Future Work

In this chapter, we presented a Branch-and-price algorithm for solving the Resilient
Multi-level Hop-constrained Network Design problem. Our motivation concerns in de-
vising an exact approach to an important problem in the telecommunications field,
comprising issues related to resilience against random failures and delay guarantees.
Extensive computational experiments were held to check the performance of the pro-

posed algorithm. Our computational experience demonstrates that with the proposed
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Table 3.4. Summary of Real Instances with |G| = 3,p, = 2,5, =4

Arc-Flow Formulation Aggregated Hop-Indexed Formulation Arc-Path Formulation
instance  H Linear Relaxation  Integer Solution Linear Relaxation Integer Solution Linear Relaxation Branch-and-Price
GAP  trp(s) Fopt  top(s) GAP tpp(s) FHopt  top(s) GAP typ(s)  #col tpp(s) #col #nod
8 8.79%  6.44 0 3,600 1.73% 6.9 4 2,684.82 1.73% 19.68  3,253.5 209.53 52935  302.7
9 597% 4.48 1 3,508.3 1.72% 12.15 0 3,600 1.72% 31.07  4,129.8 497.81 7,514.5 359
carrier 10 2.9% 4.73 2 3,219.15 0.53% 22 0 3,600 0.53% 44.24 5,103.6 122.44 7,258.9 23.2
11 1.69%  4.08 7 1,785.84 0.34% 42.45 0 3,600 0.34% 55.26 5,816.8 157.66  7,635.3 19
12 1.55%  3.77 6 1,714.66 0.34% 52.28 0 3,600 0.34% 62.6  6,002.7 257.01 8,280.2 274
avg 418% 47 3.2 2765.59 0.93% 27.15 0.8  3,416.96 0.93% 42,57 4,861.28 248.89 7,196.48 146.26
6 8.98% 0.51 9 485.54 2.11% 037 10 2.82 211% 0.77 813.3 2.02 1,042.4 23.8
7 3.19% 047 10 39.61 1.64% 0.6 10 717 1.64% 113  1,011.7 3.16 1,373.6 24.2
dora 8 1.51% 0.4 10 10.03 1.03% 0.83 10 13.58 1.03% 1.33  1,120.9 3.03 1,358.4 17
9 1.08%  0.39 10 4.29 1.04% 0.93 10 28.52 1.04% 1.59  1,190.6 3.42 1,447.2  14.6
10 1.04%  0.39 10 0.87 1.01% 1.4 10 182.95 1.01% 156 1,174.2 3.33 1,453.6 13
avg 3.16% 0.43 9.8 108.07 1.37% 0.83 10 47.01 1.37% 1.28 1,062.14 2.99 1,335.04 18.52
6 6.09% 2.75 5 2,156.45 1.22% 1.67 10 41.01 1.22% 599 20379 16.82  2.,584.9 60.2
7 3.95% 1.88 10 994.26 0.88% 2.87 9  1,041.38 0.88% 9.92 2,754.2 18.34  3,375.9 15
eon 8 1.59%  1.82 10 412.16 0.4% 518 2 2,930.23 0.4% 1258  3,219.7 23.93 3,911.6 8.6
9 0.48%  1.62 9 440.26 0.27%  6.15 1 3,465.15 0.27% 1522  3,681.9 20.66  4,035.2 4.3
10 0.39% 1.69 10 39.3 0.37% 8.84 0 3,600 0.37% 18.83 4,123.5 28.51  4,648.3 5.8
avg 2.5% 1.95 8.8 808.49 0.63% 4.94 4.4 221555 0.63% 12.51 3,163.44 21.65 3,711.18 18.78
5  12.29% 0.33 10 35.62 0.25% 0.11 10 0.2 0.25% 0.13 363.9 0.18 368.1 34
6 6.13% 0.28 10 19.09 1.64% 0.26 10 1.64 1.64% 0.26 480 0.54 543.3 12.6
nsf 7 3.48%  0.26 10 15 1.55%  0.39 10 2.44 1.55% 0.4 586.6 0.95 708.3 15.8
8 1.97% 0.23 10 9.91 1.3%  0.52 10 5.44 1.3%  0.52 637.6 1.06 TATT 14.6
9 1.4% 0.23 10 2.38 1.03% 0.71 10 27.67 1.03% 0.57 669.6 1.18 790.1 12.2
avg 5.05% 0.27 10 16.4 1.15% 04 10 7.48 1.15% 0.38 547.54 0.78 631.5 11.72
8 0.54% 0.19 10 0.44 0.11% 0.3 10 0.54 0.11% 0.4 508.3 0.51 510.6 1.8
9 0.09% 0.18 10 0.42 0.01% 0.4 10 0.75 0.01% 0.52 527.3 0.62 531.1 1.4
ring 10 0% 0.18 10 0.36 0% 0.5 10 0.98 0% 0.52 538.9 0.63 538.9 1
11 0% 0.18 10 0.36 0% 0.61 10 1.3 0% 0.53 531.2 0.61 531.2 1
12 0% 0.18 10 0.36 0% 0.73 10 1.54 0% 0.52 532.8 0.62 532.8 1
avg 0.13% 0.18 10 0.39 0.03% 0.51 10 1.02 0.03% 05 527.7 0.6 528.92 1.24
4 483% 0.04 10 0.48 0.15% 0.02 10 0.04 0.15% 0.04 203.4 0.05 207.3 2.2
5 2.12%  0.03 10 0.22 0.82%  0.04 10 0.08 0.82%  0.06 250.8 0.09 267.9 4.2
sul 6 0.21%  0.04 10 0.07 0.21%  0.05 10 0.1 0.21% 0.07 272.3 0.09 275.3 1.4
7 0.21%  0.03 10 0.07 0.21%  0.06 10 0.14 0.21%  0.08 272.4 0.09 275.4 1.4
8 0.21%  0.03 10 0.07 0.21%  0.07 10 0.2 0.21%  0.07 272.9 0.09 275.9 14
avg 1.52% 0.03 10 0.18 0.32%  0.05 10 0.11 0.32% 0.06 254.36 0.08 260.36 2.12

Branch-and-price method we could solve more problems whose dimensions are out of
reach for BB algorithms based on compact formulations.

Some future directions for investigation include the study of acceleration methods
for the column generation algorithm and the implementation of other branching rules.
Also, we intend to combine our BP algorithm with a heuristic in order to achieve good
integer solutions early. At last, heuristics can be developed for the problem to compare

to our current exact approach.






Chapter 4

Grooming Routing and Wavelength
Assignment with Protection and
QoS in WDM Optical Networks

In this chapter we investigate the Grooming Routing and Wavelength Assignment
(GRWA) with protection and QoS in WDM mesh optical networks. This problem
consists of setting up lightpaths by routing and assigning wavelengths to each arc
aiming to attend a set of requests, allowing traffic grooming and ensuring resilience and
QoS in the communication. Mathematical formulations are proposed and discussed,

along with algorithms specially develop for the problem.

4.1 Introduction

Wavelength Division Multiplexing (WDM) [Mukherjee, 1997, 2006] and optical fiber
are promising technologies which have emerged to accommodate the explosive traffic
growth in telecommunications networks. Optical networks have a large transmission
capacity in the order of tens of Thps. However, the existence of a high capacity physical
media does not imply high standard of quality in communication if the network is not
used properly. Thus, optimization techniques play an important role in the design of
these networks in order to exploit the full potential they offer.

By using WDM technology, the transmission capacity in the order of Thps can be
divided into multiple non-overlapping frequency or wavelength channels. Each WDM
channel can operate at different rates, in the order of Gbps. Thus, optical fiber networks

support tens of wavelength channels, each of which has transmission rates of more than
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one Gbps (OC-48, OC-192). In addition, requests can vary from low rate to very high
demands. Thus, it is possible to further increase the channel utilization, grouping
several requests for traffic on the same wavelength. This technique is known as Traffic
Grooming |[Zhu and Mukherjee, 2003; Mukherjee, 2006]. In this case, traffic requests
are expressed as bandwidth reservation of standard granularities: OC-1, OC-3, OC-12,
0C-48, for example.

Given a set of connections, the problem of setting up lightpaths by routing and
assigning a wavelength to each request is called the Routing and Wavelength Assign-
ment (RWA) problem |Zang et al., 2000; Somani, 2005|. Considering the diversity of
capacities of the requests, this traditional approach of the problem has a drawback of
sub-utilization of the network. For instance, consider a transport backbone of OC-192
capacity (= 10 Gbps). In the absence of traffic grooming devices, an usual approach
would be to take an entire lightpath for a single OC-1 (1 OC = 51.85 Mbps) connection,
leaving most of the capacity of the lightpath unused.

The Grooming, Routing and Wavelength Assignment problem [Zhu and Mukher-
jee, 2003; Barr et al., 2006| has been proposed in order to handle the design of such
networks, also dealing with the wide range of capacities a connection may request. By
applying traffic grooming, two or more incoming connections can be sent out on the
same lightpath. Therefore, traffic grooming increases the utilization of network band-
width as long as the connections respect the bandwidth constraint of the lightpath.
Future networks tend to demand requests with larger capacities, even exceeding the
capacity of a wavelength. These cases are also met in our proposed solution.

The aggregation or disaggregation of traffic at a source, destination or intermedi-
ate node requires the use of optical multiplexers (each multiplexer has an installation
cost) to add/drop the traffic of a wavelength. Therefore, the route of a given request is
composed of “optical hops” defined by a physical path through which the optical signal
bypasses intermediate nodes, creating a virtual connection between its end nodes. The
sequence of “hops” followed by an optical request defines a lightpath [Mukherjee, 2006].
While solving the GRWA problem, the installation costs must be taken into account,
leading to the minimization of the number of wavelength channels used to ensure that
traffic requests are attended.

The aggregation of multiple requests in order to reduce the number of wavelengths
assigned can create very long routes for the requests. Thus, to facilitate the delivery
of certain requests with guarantees of QoS, one should set a maximum bound on the
number of hops of the routes. Thus, it ensures a limit on the delay of service requests.

In today’s networks, fault tolerance and Quality of Service (QoS) are important

measures that should not be disregarded. Considering that usually only a single link
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may failure at a given time, finding backup paths that are arc-disjoint with the original
working path of a request, provides resilience to the network. However, providing two
paths (working and backup) for each request, i.e., dedicated protection, the bandwidth
reservation in the network resources is two times the original traffic demand. Quality
of service may be associated to the ability to provide different priority to different users
or data flows, or to guarantee a certain level of performance to a data flow. Thus, to
balance the tradeoff between fault tolerance and resource allocation, different level of
QoS may be established in order to provide resilience to certain key users or data flows.
Besides, QoS becomes much more important when the network capacity is insufficient.

This chapter aims to contribute with solutions to the GRWA problem with pro-
tection and QoS in optical networks. Mathematical formulations are proposed for
the problem along with a branch-and-price algorithm and a column generation-based
heuristic. We evaluate the performance of the proposed approaches and analyze the
role played by the protection and QoS constraints.

The following sections are organized as follows. Section 4.2 describes the re-
lated work. In Section 4.3, a formal definition of the problem is given. In Section
4.4, two formulations are proposed for the problem and Section 4.5 describes the pro-
posed branch-and-price algorithm along with some computational results. Section 4.6.2

presents the heuristic and computational results. Section 4.7 concludes the paper.

4.2 Related Work

Grooming techniques can be classified into many categories: static traffic grooming
vs. dynamic traffic grooming, non bifurcated flow vs. bifurcated flow and single-hop
traffic grooming vs. multi-hop traffic grooming. The static traffic grooming considers
the case in which all requests are known in advance and do not change by long periods
of time. In contrast, the dynamic traffic grooming addresses the case where demands
appear dynamically, according to a probability distribution. In the non bifurcated
flow, the demands must follow a single path from its source to its destination node.
In the bifurcated flow, a request may be split and routed through one or more paths.
The bifurcated flow turns the problem less complex, since it is easier to accommodate
fractional demands in the remaining capacities of wavelengths. At last, the single-hop
traffic grooming restricts a request to use a single lightpath and the multi-hop traffic
grooming allows a request to use multiple concatenated lightpaths. Therefore, the
bandwidth of a lightpath can be shared by traffic of different source-destination pairs.

In this work and following related work, we are interested in the static grooming, non
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bifurcated flow and multi-hop traffic grooming variation.

The GRWA problem is addressed in [Zhu and Mukherjee, 2002; Hu and Leida,
2004; Vignac et al., 2009; Raghavan and Stanojevi¢, 2011; De et al., 2010|. For a
review in traffic grooming, see [Zhu and Mukherjee, 2003]. In [Zhu and Mukherjee,
2002|, the authors propose a ILP formulation with the objective of improving the
network throughput, along with two heuristics: Maximizing Single-Hop Traffic (MST)
and Maximizing Resource Utilization (MRU). While the ILP formulation is able to
solve instances with up to 6 vertices, the heuristics can find feasible solutions to a
15-vertices network; however, this work does not address the protection problem.

A decomposition method that divides the GRWA into two smaller problems - GR
problem and WA problem - is proposed in [Hu and Leida, 2004]. The two problems can
be solved much more efficiently if taken separately. Under some special conditions, the
method can produce optimal solutions for the GRWA problem, otherwise, approximate
solutions. They also show how protection may be added to the problem, but do not
present computational results for that. The main drawback of this work is that the
logical topology is defined in advance by a restricted set of established lightpaths, while
usually the problem must design the logical topology and the routes altogether.

Reformulations and decomposition approaches are developed in [Vignac et al.,
2009] for the GRWA problem. For realistic size instances (networks with 14 and 20
vertices, but thousands of requests), they provide solutions with optimality gap of
approximately 5% on average within two hours of computing time. The main drawbacks
of this study is that some specific restrictions are assumed: (i) the overall length of the
physical route of each request is at most the length of the third elementary shortest path
between its source and destination, (ii) restrictive grooming scenarios are considered.
Moreover, this work does not also address the protection problem.

Improvements on the results obtained by Zhu and Mukherjee [2002] are shown
in [De et al., 2010]. The authors in [De et al., 2010] also investigate the problem of
GRWA with the objective of maximizing the network throughput, but using a differ-
ent approach, which is based on the clique partitioning problem. They use the same
instances presented by [Zhu and Mukherjee, 2002|, and show that the proposed algo-
rithm called Traffic Grooming based on Clique Partitioning (TGCP) provides higher
throughput than MST and MRU. This work does not address the protection problem
either.

In [Raghavan and Stanojevi¢, 2011], a branch-and-price approach is proposed to
deal with the RWA problem with non bifurcation flow. They use column generation
embedded into a branch-and-bound framework to find optimal solutions for the prob-

lem. This work does not consider traffic grooming and protection. Besides, they only
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solve instances optimally, with up to 7 nodes and 42 demands.

Failures can occur due to fiber cuts from some natural event and therefore should
not be neglect. Protection mechanisms have been proposed in [Ou et al., 2003; Ou et al.,
2004; Yao and Ramamurthy, 2005; Jaekel et al., 2008|. Two schemes define the type
of protection: shared and dedicated. In [Ou et al., 2003|, a shared protection solution
is proposed, so that backup paths can share resources as long as their correspond-
ing working paths are unlikely to fail simultaneously. The authors propose effective
heuristics for the problem. This work addresses the dynamic context of GRWA.

A dedicated protection scheme is proposed in [Ou et al., 2004], in the dynamic
context of GRWA. They propose two protection approaches and developed effective
heuristics for both of them.

In [Yao and Ramamurthy, 2005|, survivable mechanisms are applied to the prob-
lem of traffic grooming in WDM networks. In order to maximize network performance,
ILPs and heuristics are proposed. Heuristics are more scalable than ILPs finding solu-
tions for a 24-vertex network.

An efficient ILP formulation for the problem of resilient traffic grooming in WDM
networks is presented by Jaekel et al. [2008|. The proposed method is able to generate

optimal solutions for networks with up to 14 vertices.

4.3 Problem Definition

The GRWA problem with protection and QoS, which we will call GRWA-PQoS is
NP-hard as it can be reduced to RWA [Somani, 2005]. We also consider the follow-
ing features: static traffic, asymmetric traffic, non bifurcated flow, multi-hop traffic
grooming, dedicated protection and all nodes equipped with optical cross-connect.
This means that each arc of the physical topology can work as a single lightpath in the
network. With static traffic (when the entire set of requests is known in advance), the
GRWA-PQoS problem can be formulated as a integer linear program.

This problem is defined as follows. Let a directed graph D = (V, A), where V'
is the set of vertices and A is the set of arcs connecting the vertices. Given a set of
wavelength channels W, the capacity of each wavelength C", a set of requests K, where
a request k = (s,t,d") is given by a triplet with a source vertex s, a destination vertex
t and a demand d*, the goal is to minimize the total number of wavelengths used for all
arcs, meeting the demands of the requests without exceeding the capacities of channels
and ensuring the protection/backup on working paths, i.e., two arc disjoint paths must

be selected for each request (with a limited number of hops H).
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4.4 Mathematical Formulations

The GRWA-PQoS can be modelled as an integer linear programming problem based on
a network flow formulation [Ahuja et al., 1993]. The solution of such a formulation can
be performed only for networks with a small number of nodes and wavelength channels.
Advanced optimization techniques allow the development of exact algorithms based on
a reformulation of the problem, increasing the scalability. Thus, we present a path-
based reformulation in order to apply column generation and BP in the solution of

instances of real-world network sizes.

4.4.1 Arc-Flow Formulation

Given D = (V, A), A; and Aj denote the set of arcs arriving and leaving node j € V|
respectively. To model the problem, we use the following decision variables: (i) xff €
R, , indicating the amount of flow for request k£ and path p, that passes through arc
(i,7), (i) w;; € Z, indicating how many wavelengths are assigned to arc (i,7). The

problem can be stated as:

s.t.
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Z Z xkp >2,  VkeK,s=source(k), (4.2)
p€{1,2} je A}
Yo ) a2 Vke K t=dest(k), (4.3)
pe{1,2}icA;
Z ] Z mkp =0, Vke K,Vpe{l,2},j+# source(k) # dest(k)4.4)
i€A; leAf
Y aP<1, VkeK\V(ij) € A (4.5)
pe{1,2}
YN d? - Ctw; <0, V(i) € A, (4.6)
keK pe{1,2}
> @ <H, VkeKVpe{l2} (4.7)
(i,5)€A
0<aP <1, VkeKNV(ij)eApe{l2} (4.8)
w;; > 0 integer, V(i,j) € A. (4.9)

Formulation (4.1)-(4.9) states the problem as a network design problem in which
the objective function aims to minimize the total number of wavelengths used in the
arcs of the network. Constraints (4.2)-(4.4) impose flow balance conditions for each pair
source/destination of request k. Note that (4.2) ensures that two paths are established
from the source vertex of the request, while (4.3) ensures that two paths reach the
destination vertex of request k. Constraints (4.4) guarantee the flow conservation in
transhipment vertices. Inequalities (4.5) ensure that the paths of a request are arc
disjoint. Constraints (4.6) couple flow and integer variables, requiring that the sum of
the demands that go through an arc is less than or equal to the sum of the capacities
of all the wavelengths in that arc. Note that in fact, the requests are not associated
to an specific lightpath assigned with a wavelength. They are only allocated in one of
the wavelengths of an arc in the network. Constraints (4.7) imply that paths have a
maximum number of hops H, for delay guarantees. Finally, constraints (4.8) and (4.9)

provide the bounds of the variables.

4.4.2 Arc-Path Formulation

Given a request k € K, we assume that P* denotes the set of all simple directed paths
connecting the endpoints of that request in D. In addition to integer variables w;;

defined previously, our second model uses binary variables {)\’; -k € K,¥p € P*}
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(taking value 1 if path p € P* is selected, 0, otherwise) to choose the paths. Let’s
assume that aj; € {0,1} denotes a binary parameter that indicates whether arc (i, j)

belongs (aj; = 1) or not (aj; = 0) to path p. The arc-path formulation is given by:

min Z (Y (4.10)

(i,7)€A
s.t.
Y M>2  VkeK, (4.11)
pePk
D aiNi <1, Vke KNV, j) €A, (4.12)
pePk
DO dbal N —CTwy <0 V(i j) € A, (4.13)
kGKpEPk
k k
A, €{0,1}  Vke K,pe P, (4.14)
w;; > 0 integer  V(i,j) € A. (4.15)

As in the previous model, the objective function (4.10) minimizes the total num-
ber of wavelengths used in the arcs of the network. Constraints (4.11) guarantee the
selection of two paths for each request & € K. Inequalities (4.12) ensure that the work-
ing and protection paths are arc disjoint for each request £ € K. Constraints (4.13)
couple path and arc variables, requiring that the sum of the demands that go through
an arc is less than or equal to the sum of the capacities of all the wavelengths in that
arc. Note again that in fact, the requests are not associated to an specific lightpath
assigned with a wavelength. They are only allocated in one of the wavelengths of an
arc in the network. Constraints (4.14) and (4.15) define the bounds of the variables.
Note that the constraint to ensure that paths have a maximum size H is not directly
addressed in the model. This constraint will be considered in the pricing problem

associated to this formulation.
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4.5 Branch-and-price Algorithm for the
GRWA-PQoS

From formulation (5.10)-(5.15), we can use column generation to evaluate LP bounds

implied by dropping the integrality constraint of model (4.10)-(4.15).

4.5.0.1 Lower bounds implied by Column Generation

To understand how the LP bounds implied by (4.10)-(4.15) are evaluated, let us as-
sociate dual variables (m,v, ) to constraints (4.11), (4.12) and (4.13), respectively.
These variables will be used by the pricing problem, i.e., the problem able to identify
new columns to be added to the RMP. The pricing problem should find the shortest
path for each source/destination pair corresponding to the requests. Thus, at each
iteration of the column generation method, the pricing problem is solved |K| times.
An algorithm to find the shortest path between two vertices in a graph such as Dijkstra
can be applied. In order to check if the generated path is attractive or not to enter the
RMP, the dual values from the last iteration of the RMP are used to price the paths.

Mathematically speaking, one should verify if the dual constrains are violated:

o+ > aiyl+ ) dbalp; <0,Vk € K,Vp e P (4.16)
(i,5)€A (i,5)€A

In our implementation, the initial sets C* are generated as follows. In order to
guarantee a starting feasible solution for the problem, two arc disjoint paths must be
provided for each request £k € K. Therefore, we computed the first two minimum
disjoint paths connecting request k in terms of number of hops (seeking a feasible

solution).

4.5.1 Pricing Problem

To understand how the LP bounds implied by (4.10)-(4.15) are evaluated, let us as-
sociate dual variables to each constraint of the original formulation. These variables
will be used by the pricing problem, i.e., the problem able to identify new columns
to be added to the RMP. The pricing problem should find the shortest path for each
source/destination pair corresponding to the requests. Thus, at each iteration of the
column generation method, the pricing problem is solved |K| times. An algorithm

to find the shortest path between two vertices in a graph such as Dijkstra could be
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applied, if the paths were not restricted to a maximum size. As in our problem the
paths are restricted to a maximum size H, we used an algorithm based on dynamic
programming, which solves the shortest path problem with resource constraints |Feillet
et al., 2004; Irnich and Desaulniers, 2005].

4.5.2 The Enumeration Tree

As stated before, if the LP solution achieved in the end of the column generation
procedure is integer, it solves the original problem (4.10)-(4.15). Otherwise, we must
resort to some kind of enumeration algorithm (to find an integer solution), such as
Branch-and-price. We adopted a branching rule based on fractional variables w;;. Thus,
while the solution is fractional, we must choose one among all continuous variables w;;,
and create two subproblems, which will include a new constraint limiting the bounds of
that variable. This branching rule is usually adopted in BB algorithms [Lasdon, 1970].
Thus, a new constraint is added to each subproblem: w;; < |w;;| and w;; > [w;;],
respectively. The variable selection to start the branching is based on the fractional
variable associated to the maximal integer unfeasibility (farthest from integrality). This
means that among all the fractional variables, the variable closest to the value x.5 will
be selected. In the case of ties, the first variable found is taken. The policy to select the
next subproblem to be solved is based on the relaxation value of the node. Therefore,
the subproblem with the lowest objective function for the relaxed problem is taken to

be solved.

4.5.3 Computational Experience

In this section, we report computational results for the problem, obtained with both
formulations/algorithms. Our aim is to illustrate the main advantages of one method
over another for the problem. We used two well known real world network topologies,
called NSF (National Science Foundation) [Krishnaswamy and Sivarajan, 2001| and
EON (European Optical Network) [O’Mahoney et al., 1995|. In Figure 4.1 topologies
are shown for both networks. The NSF network is composed by 14 vertices and 21
edges. The EON network consists of 20 vertices and 39 edges.

Different numbers of requests |K| € {30, 60,90} were tested with different granu-
larities (types OC-1, OC-3 and OC-12). The capacity of each wavelength was defined
as OC-192 and each arc supports 12 wavelengths. Three increasing values for the num-
ber of hops H were used. The lowest value is the minimum number of hops to ensure

feasibility in the solution. For example, with H = 5, it should be possible to find two
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disjoint paths of up to 5 hops for each request.

All tests reported in this section were conducted with an Intel Core 2 Quad Xeon
with 2GHz and 8 GB of RAM, running under Linux operating system. CPLEX release
12.1 was used for both algorithms (BB and BP restricted master program). A time
limit of two hours (7,200 seconds) was set for CPLEX BB.

(a) NSF (b) EON

Figure 4.1. Small Network Topologies

Tables 4.1, 4.2 and 4.3 summarize the results for NSF and EON networks, with 30,
60 and 90 requests, respectively. The first two columns of the table correspond to the
network instance and the number of hops H. In the next four columns, results attained
by the Branch-and-bound algorithm based on the Arc-Flow Formulation are presented:
GAP (the LP duality gap), t;p (the time taken to evaluate the LP relaxation), followed
by the integer solution obtained after a time limit of 7,200 seconds: GAP and time
(tint) in seconds. Results for the Arc-Path Formulation include the LP duality gaps
(GAP), the time taken to compute them and the number of columns (#col) generated
at the root node. Finally, in the last three columns, we provide the time taken to
compute the optimal solutions given by BP (¢gp), the final number of columns (#col)
and the number of nodes (#nod) explored in the enumeration tree. The best computing
times (when optimality is achieved) are highlighted in boldface.

Figures 4.2, 4.3 and 4.4 illustrates the computational time demanded by each
algorithm. In Figure 4.2, figures 4.2(a) and 4.2(b) correspond to the NSF and EON
networks, for H € {5,6,7} and H € {6,7,8}, respectively. A set of 30 requests of
types OC-1, OC-3 and OC-12 were randomly generated for each network. In the NSF

network, both algorithms were able to find the optimal solution to the problem for all
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Table 4.1. Summary of NSF and EON for 30 requests

Arc-Flow Formulation Arc-Path Formulation
instance  h Linear Relaxation Integer Solution Linear Relaxation Branch-and-Price
GAP trp(s) GAP  tin(s) GAP trp(s) #col tpp(s) #col #nod
5 12.5% 0.27 0% 153.26 3.91% 0.08 146 0.22 156 3
nsf 6 3.45% 0.3 0%  264.68 3.45% 0.18 214 2.76 332 43
7 0% 0.3 0% 8.87 0% 0.18 204 1.39 232 4
6 8.89% 1.16 0% 7,200 3.6% 203 639 22.09 1,280 179
eon 7 4.65% 0.98 0% 7,200 2.75% 3.72 890 142.07 2,879 329
8 2.38% 0.66 0% 7,200 2.26% 5.58 1,083 132.07 3,657 175
Table 4.2. Summary of NSF and EON for 60 requests
Arc-Flow Formulation Arc-Path Formulation
instance h Linear Relaxation Integer Solution Linear Relaxation Branch-and-Price
GAP  trp(s) GAP  ti(s) GAP trp(s) Fcol tpp(s) #col #nod
5 14.53% 1.38 0% 7,200 3.92% 0.23 267 0.83 305 5
nsf 6 8.5% 1.28 0% 74251 2.9% 0.83 423 6.08 543 21
7 6.67% 0.86 0% 7,200 3.33% 0.95 456 1.48 456 1
6 11.3% 7.31 4% 7,200 3.32% 9.1 1177 846.72 3427 861
eon 7 6.67%  4.08 4% 7,200 2.22% 1223 1,374 1,058.14 4,872 166
8 4.55% 3.13 2% 7,200 2.98% 26.6 2,145 1,866.12 9,548 413
Table 4.3. Summary of NSF and EON for 90 requests
Arc-Flow Formulation Arc-Path Formulation
instance  h Linear Relaxation Integer Solution Linear Relaxation Branch-and-Price
GAP  trp(s) GAP ti(s) GAP tpp(s) #col tpp(s) #col  #nod
) 14.53%  3.47 3% 7,200 1.96% 0.41 385 1.65 452 10
nsf 6 11.01% 5.16 0% 7,200 4.37% 126 564 9.71 775 33
7 5.32% 717 3% 7,200 3.08% 2.65 761 25.52 1,123 29
6 11.92% 23.46 6% 7,200 3.3% 2154 1,764 883.62 4,364 303
eon 7 7.68%  38.44 4% 7,200 4.13% 43.18 2,369 4,066.49 10,475 407
8 3.53% 43.61 7% 7,200 1.8% 81.64 3,322 1,895.96 9,648 56

instances. However, the time required by the BP algorithm is much smaller than the
time of CPLEX (logarithmic scale). In the EON network, BP algorithm was able to
find optimal solutions while CPLEX has reached the maximum time limit. The number
above the bars indicates the gap (distance to the optimal solution) of the best solution
found by CPLEX when the time limit has been reached. In this case, optimality was
not proven. One should note that the time required to solve EON network is greater
than NSF network, due to their dimensions.

In Figure 4.3, 60 requests should be attended by each network. Figure 4.3(a)
indicates that optimal solutions were achieved by the BP algorithm, while CPLEX
was able to find the optimal solution just one time. In the other two cases, the time
limit was reached and optimality was not proven. In Figure 4.3(b), BP reaches all the

optimal solutions and the time limit is reached for all cases tested with CPLEX. In all
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Figure 4.2. 30 Requests of Types OC-1, OC-3 e OC-12

cases there are gaps for the feasible solutions obtained by CPLEX.
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Figure 4.3. 60 Requests of Types OC-1, OC-3 e OC-12

Similar results are obtained when the number of requests is set to 90. It may be
noted that in all cases tested the BP algorithm was able to find the optimal solution
of the problem while CPLEX reaches optimality only when the instance has a small
size and the number of requests is small. By increasing the number of requests, the
times demanded by both algorithms increases. In the case of CPLEX, it is observed
that gaps tend to increase with larger network sizes and a higher number of requests.

Figure 4.5 shows the number of wavelengths allocated to each of the networks,
for 90 requests. It can be observed that as the number of hops increases, the number
of wavelengths decreases. This behavior is due to a higher number of wavelengths
demanded to ensure feasibility on the paths, if H is more restricted. Allowing longer
paths, the effect of traffic grooming is more evident, demanding a smaller number

of wavelengths in the network. CPLEX and BP curves do not coincide because the
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Figure 4.4. 90 Requests od Types OC-1, OC-3 e OC-12

solution found by CPLEX in these cases was not optimal, due to the time limit applied.
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Figure 4.5. Objective Function for 90 requests

4.6 Column Generation-based Heuristic

In order to address larger instances with a significantly higher number of requests,
we present a column generation-based heuristic. In the former formulations, QoS was
tackled by a threshold in the number of hops that a path could assume. According
to preliminary tests, this constraint does not apply when the number of requests is
increased so that the network has a high load. Thus, QoS is tackled under another
view from now on. We evaluate the performance of the proposed approach and analyze
the role played by the protection and QoS constraints. Formulation (4.10)-(4.15) is
the basis of our column generation-based heuristic, except that we do not consider the

number of hops constraint anymore.
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4.6.1 QoS constraints

Considering that QoS may be associated to the ability to provide different priority to
different users or data flows, or to guarantee a certain level of performance to a data
flow, we state two variants of the proposed mathematical formulation, in which different
levels of QoS apply. Constraints (4.11) seek for a solution that provides two arc-disjoint
paths for each request k£ € K. This approach guarantees that the traffic will not be
lost if a single failure occur in any arc of the network. On the other hand, the number
of wavelengths necessary to provide this protection will be much larger. It may be the
case that only a key set of requests must be protected, aiming to decrease the number of
wavelengths needed. For that, for a set of key requests, we maintain constraints (4.11),
while for another set of requests, we allow that only the working path be attended
(therefore, we substitute constraints (4.11) by > px Ar>1:Vk e K' C K). Finally,
if we do not want to provide protection to any request, constraints (4.11) will read
ZpePk)\I; >1:Vke K.

4.6.2 Heuristic

A commonly used heuristic to obtain primal solutions is known as restricted master
heuristic [Joncour et al., 2010]. The main idea is to solve the LP relaxation of the prob-
lem through the column generation procedure described above and solve the remaining
RMP with integrality constraints on the variables.

Thus, the restricted master IP is defined by the columns that were generated
while solving the master LP. Solving a static IP over these columns allows us to reach
a feasible solution and evaluate how close this solution is from the optimal. This step
can take a long time depending on the size of the IP, i.e., how big is the set of columns
generated during the master LP execution. Therefore, we have established a time limit

on the IP execution.

4.6.2.1 Pseudo-code

Algorithm 2 describes the main steps followed by the proposed heuristic. In line 1,
the RMP is created. Line 2 sets the initial columns to guarantee a feasible solution in
the starting RMP. Variable improved in line 3 indicates whether the algorithm should
stop due to the lack of attractive columns to be added to the RMP. Variable column
in line 4 starts empty. In line 5, solution receives the first (relaxed) solution of the
RMP. Line 6 indicates that while there is at least one attractive column, the procedure

will not stop. From line 8 to line 15, we repeat the same procedure for each request
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k € K: update the dual values in the pricing problem (line 9), solve the princing
problem seeking for a new column (line 10), check if the column is attractive (line 11)
and add it to RMP in this case (line 12). After that, if a new column is found, we
optimize the RMP again (line 17). When no more columns need to be added to the
RMP, we solve an IP with the columns in the RMP, to get an integer solution.

Algorithm 2 Column Generation-based Heuristic

1: RMP < createRMP();

2: setInitialColumns(RM P);

3: improved < true;

4: column + 0;

5: solution < LPSolver(RM P);

6: while improved do

7 improved <— false;

8: for all k € K do

9: updateDualValues();

10: column < PricingSolver();
11: if f(column) < 0 then

12: addToRMP (column);
13: improved < true;

14: end if

15: end for

16: if tmproved then

17: solution < LPSolver(RM P);

18: end if

19: end while

20: solution <— I PSolver(RMP);
21: return solution;

4.6.3 Computational Experience

In this section, we present computational results for the problem, obtained with our
column generation-based heuristic. Besides NSF and EON networks, we also used
two larger networks available at SNDIib (http://sndlib.zib.de/), called COST266 and
JANOS-US-CA. The COST266 network is composed by 37 vertices and 57 edges, while
the JANOS-US-CA network is formed by 39 vertices and 61 edges. Both networks are
illustrated in Figure 4.6.

In order to create our test instances, different numbers of requests |K| €
{500, 1000, 1500, 2000} were generated for each topology with different granularities
(types OC-1, OC-3, OC-12 and OC-48). The capacity C* of each wavelength was set
to OC-192 and each arc admits |[W| = 64 wavelengths. Parameter M was defined as
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Figure 4.6. Large Network Topologies

the number of requests in each case. All tests reported in this section were conducted
with an Intel Core 2 Quad Xeon with 2GHz and 8GB of RAM, running under Linux
operating system. CPLEX release 12.1 was used. A time limit of 180 seconds was set
for solving the restricted master IP of the heuristic.

We evaluate three different scenarios, which we call Full Protection (FP), Partial
Protection (PP) and None Protection (NOP). In the FP scenario, we consider that
all requests should be protected by a backup path. In the PP scenario, only a subset
of the requests should be protected. The subset was defined to be the first half of
the requests. Finally, in the NOP scenario, we admit that all requests have only the

working path allocated.
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Figure 4.7 shows the computational time demanded by the algorithm to obtain
solutions for the problem. It can be observed that as the the number of requests
increase, the time taken to compute the solutions also increase. Moreover, for the
same number of requests, larger topologies spend more time to execute (see Figures
4.7(a) and 4.7(c)), except for the partial protection scenario (see Figure 4.7(b)). This
occurs due to the randomness in the choice of the set of requests to be protected. As
the network topologies are different, we only set the number of requests to be protected,

but they were chosen randomly for each topology.
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Figure 4.7. Computational Time

Figure 4.8 presents the gap value achieved in each solution, i.e., how close the
solution is from the optimal value. It can be noted that in the full protection scenario,
the gaps are less than 7%, while in the partial protection and none protection scenarios
they are less than 18%. It seems that the grooming works better with a higher traffic
in the network than in a low traffic demand, leading to smaller gap values when full
protection is chosen. It is important to point out that as the number of requests

increases, the gap values improve significantly. For all scenarios, gap values are less
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than 4%, for 2000 requests. In general, smaller networks reached smaller gaps than

larger networks.
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In Figure 4.9, the number of columns generated by the algorithm is analyzed. It
can be observed that as the number of requests increase, the number of columns also
increase. Besides, larger networks lead to a higher number of columns (see Figures
4.9(a) and 4.9(c)), except again for the partial protection scenario (see Figure 4.9(b)),
in which the smaller networks generated more columns due to the randomness of the
requests needing protection.

In Figure 4.10, we show results regarding the number of wavelengths used and the
traffic lost for the three scenarios. The traffic lost is calculated based on the failure of
a single edge. For example, suppose that edge e = (i, j) = (j,¢) fails; this implies that
all the traffic going through arcs (7, j) and (7,4) will be lost. We show the average value
of traffic lost, among all edges of the network. From Figure 4.10(a), the following can
be observed: (i) the number of used wavelengths increases as the number of demands

increases, for all networks and scenarios; (ii) the number of wavelengths increases if
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a type of protection is added to the problem. Thus, the full protection uses more
wavelengths than the partial protection, which uses more wavelengths than the no
protection scenario. In contrast, Figure 4.10(b) shows that the full protection does not
lead to traffic lost, while the partial and the no protection scenarios both have traffic
lost. When no protection is adopted, the traffic lost is even more accentuated. As one
can note, there is a tradeoff between the number of wavelengths used and the traffic
lost in case of failure. Also, it can be observed that NSF network has the highest lost
rate. This occurs due to the total traffic amount be the same for all networks; thus, in
larger networks, the traffic is more balanced among all edges, which is not the case in
NSF.

4.7 Conclusions

In this chapter we presented two formulations for the GRWA-PQoS problem in WDM

optical networks. It was shown that exact algorithms developed specifically for the
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problem by advanced optimization techniques such as column generation and branch-

and-price led to the solution of real-world networks with moderate number of requests

In addition, computational results show that the

(which is practical many times).

It

times required by the proposed BP algorithm are feasible in all cases studied.
can be concluded that the proposed approach was able to design solutions for traffic

engineering in WDM optical networks using optimization techniques efficiently.

We also proposed a Column Generation-based heuristic that finds good solutions
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within a small computational time for small and large topologies and a high number
of requests. We show that the quality of our solutions does not deteriorate as the
number of requests increases, instead, the quality is improved. Finally, we evaluate how
protection constraints can provide different levels of QoS in the network. We show that
there exist a tradeoff between the number of wavelengths used and the traffic lost in case
of failure. It can be concluded that the proposed heuristic was able to design solutions
for traffic engineering in WDM optical networks using optimization techniques. Future
works include the develop of a more elaborated heuristic, in which new columns should
be added after the end of the relaxation procedure. This approach may lead to better
solutions, as a larger set of columns will be taken into account. Another point is the

study of the dynamic approach, mixing optimization and simulation.



Chapter 5

Optimal Topology Design of

Complex Networks

In this chapter we study the Optimal Topology Design problem (OTDP) of Complex
Networks. We apply optimization techniques in the design of efficient communication
networks based on complex networks features. Different formulations are proposed and

analyzed to generate networks with non-trivial topology features.

5.1 Introduction

The Network Science concept has its roots in graph theory dating back to 1730s. How-
ever, it is evolving, since it reemerged in the late 1990s as a new science |Lewis, 2009].
Even though a definitive description of its meaning is still open, there are many ways
to define it, for sure. Network science involves the study of the theoretical foundations
of network structure, dynamic behavior and its application to many subfields [Barabasi
et al., 2000; Albert and Barabasi, 2002; Newman, 2003; Watts, 2004; Thadakamalla
et al., 2008|. Thus, the study of topics like structure, topology, emergence, dynamism,
autonomy and so on is certainly of great importance in the field. In particular, the
origin of real world complex networks is constantly a topic of interest, as an attempt
to clarify what kind of natural processes take place in these networks. On the other
hand, there is a conjecture whether such complex topologies normally appear as a re-
sult of some optimization processes. A challenge can be to identify these processes and
properties and apply them to manage or to design the network from scratch.
Complex systems are found in real world in different areas of science, including
the Internet, WWW, neural networks, friendship relationships, among others [New-
man, 2003; Watts and Strogatz, 1998; Faloutsos et al., 1999; Thadakamalla et al.,

63
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2004; Albert et al., 1999]. All these networks are large scale networks and very differ-
ent from traditional network problems explored by operations researchers. Also, they
have an intense amount of activities and behaviors that cannot be fully explained. Since
then, networks have been used to model and simulate complex interactions among ele-
ments of a system, providing support for a better understanding and analysis. Surely,
it is important to emphasize that complex systems differ from complicated systems
[Thadakamalla et al., 2008]. Large scale systems can be considered complicated, al-
though their components and behaviors are well known. However, complex systems
show diverse behaviors, not always known or predictable.

Complex networks can be defined as large scale networks with an intricate rela-
tionship among their components and many degrees of freedom in the possible actions
of components [Alderson, 2008|. In this context the concept of complex is based on
behaviors exhibited by the network that arises naturally and unplanned. On the other
hand, a complicated network is also a large scale network where the components and
the rules governing its functioning are known |Thadakamalla et al., 2008]. In this
case complex is associated with the difficulties to solve the problems using traditional
approaches, including the computational complexity.

Given the network structure with their components, interactions and constraints,
the objective is to optimize a well known function resulting from that structure. This
solution allows the user to control and design the network.The models consider costs,
performance, resource and design constraints. In complex networks we have the inverse
problem, or the reverse engineering, where the objective is to know how the observed
structure supports a perceived function [Alderson, 2008|.

Complex networks are many times characterized by a non-trivial topology and
present interesting features which may be useful in designing engineered networks. One
of these features concerns the low cost for sending information (or a packet, a com-
modity) through the network. Thereby, computer, communication and transportation
networks, just to name a few, could take advantage of being modelled to present spe-
cific complex features, to improve their overall efficiency. On the other hand, it is
expected that the structure and function of a complex network can be interpreted from
some optimization process. Consequently, the existing complex network can also be
redesigned or restructured or a new network can be designed from scratch.

Regarding these considerations, the objective of this chapter is the investigation of
how optimization strategies could be applied in the context of complex communication
networks. We show that a given network can be tuned to satisfy a desired property or
set of properties and to avoid others. This tuning can be guided by a set of patterns

previously defined. This is possible by changing the structure level, i.e., modifying the
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physical topology of the network to get improvements in a function.

This chapter is organized as follows. Section 5.2 presents the main network
metrics used in complex theory. In Section 5.3, different network structures and models
are introduced; in particular, we present the regular, random, small world and scale
free concepts of networks. Section 5.4 presents optimization models and algorithms
to create complex network topologies while Section 5.5 describes the computational
experience. Section 5.7 explores alternative approaches and in Section 5.8, the related

work is presented. Final remarks are given in Section 5.9.

5.2 Measurements of Complex Networks

Complex systems have been modelled through network representation, making pos-
sible the analysis of topological features using informative measurements. A central
issue in the study of complex systems is understanding the relationship between system
structure and function. Network metrics are therefore of great importance while inves-
tigating network representation, characterization and behavior. This section is devoted
to the presentation of the key measurements of networks which will be discussed along
the chapter.

Let an undirected graph G = (V, E') where V is the set of vertices and F is the
set of edges connecting the nodes. The degree of a vertex i € V is the number of
edges incident to vertex ¢ and the degree distribution is the probability distribution of
these degrees over the whole network. The density of a graph is the ratio between the
number of edges and the upper bound on the number of edges.

A path connecting two vertices i, 7 € V is said to be minimal, if there is no other
path connecting ¢ to j with fewer links. Accordingly, the average path length of G is
given by the average number of links in all shortest paths connecting all pairs of vertices
in V. The graph diameter is the maximum shortest path length between all pairs of
vertices in V. The clustering coefficient of a vertexr i is the ratio between the number
of edges between neighbors of vertex ¢ and the upper bound on the number of edges
between them. For instance, given i, j,k € N and assuming that edges (i, 7j), (i, k) €
E, the clustering coefficient defines the probability that (j,%) also belongs to set E.
The clustering coefficient of a graph is the average value of the clustering coefficients
of all vertices in G. The betweenness centrality of a vertex ¢ is associated with an
importance measure, based on the number of shortest paths between other pairs of
vertices that include vertex i. The global efficiency of a network quantifies the efficiency

in sending information between vertices, assuming that for a pair of vertices ¢ and j it is
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Table 5.1. Network Metrics

Metric Formula
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proportional to the reciprocal of their distance. Table 5.1 summarizes the mathematical

formulas for the main network metrics outlined above. See [Costa et al., 2007] for a

complete review of measurements.

5.3 Network Models

Several network models were proposed and studied in an attempt to represent ele-
ments of a system and their relationships [Lewis, 2009; Newman, 2003; Watts, 2004;

Thadakamalla et al., 2008|. In the following sections, different network structures and

the models used to generate them are introduced. Network models can be classified as

either static or dynamic. Three static and one dynamic network models are discussed.



5.3. NETWORK MODELS 67

5.3.1 Regular Networks

Regular networks are characterized by an associated regular graph structure where the
connections between vertices follow a common pattern. They have some theoretical
importance since other models can be derived by rewiring the regular networks. Early
work on the design of complex networks [Watts and Strogatz, 1998; Newman and
Watts, 1999] contrasted the features of regular and random graphs. A regular network
with vertices of degree k is called a k-regular network or regular network of degree
k. Sparse k-regular networks are known to own high average path length and high
clustering coefficient. As we will show in Section 5.3.3, k-regular networks are used in
the design of small world networks.

Other examples of regular networks include rings, lattices, n-ary trees, stars and
full or complete graphs [Lewis, 2009]|. Ring networks are a special case of a connected
k-regular network, in which k£ = 2. In a lattice, the vertices are placed on a grid and
connected to their immediate neighbors. A n-ary tree consists of a connected network
without cycles, with a root vertex and each vertex which is not a leaf having at most n
children. A star network is a special tree, where every vertex is connected to the root.
In a full or complete network there is an edge between every pair of vertices. Figure 5.1
illustrates regular network structures. Figure 5.1(a), in particular, depicts a 4-regular

ring network.

5.3.2 Random Networks

Random networks have been studied since the 1950s, when they were independently
defined by Erdés and Rényi [1959] and Gilbert [1959]. A random network is generated
by a random process, in which a set of edges are added at random between pairs of
vertices belonging to the network. The class of random networks contrasts directly
to that of regular networks mainly in the structure aspect, being a useful baseline for
comparison.

The main idea of the Gilbert [1959] random network model is to add edges in-
dependently with probability p (0 < p < 1) from the n(n — 1)/2 potential edges of
an undirected graph. Let G(n,p) denote a graph G with n vertices and an associated
probability p. One may note that the number of edges of a network added according
to the G(n,p) model is not known in advance. Moreover, the total number of pos-

n=1/2 On average, the resulting network ends up with

sible graphs sums up to 2"
m = p[n(n —1)/2] and p also corresponds to the density of the network.
Another random network model, also known as ER model, was proposed by

Erdés and Reényi [1959]. Unlike Gilbert’s procedure, the ER model is characterized
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Figure 5.1. Regular Networks

by generating networks with a previously known fixed number m of edges. In the
G(n,m) model, equal probability is assigned to all graphs with exactly m edges. In
other words, considering a stochastic process that starts with n vertices and no edges
and at each step adds one new edge chosen uniformly from the set of missing edges,
G(n, m) represents a snapshot at a particular time (m) of this process.

The difference between ER and Gilbert models is that the ER model generates a
network with a certain number of edges while the Gilbert model generates a network
with a defined density. However, in both models the probability that a given vertex
has degree k approaches a Poisson distribution for n >> 1, i.e., P(k) =< k >F e % /K,
where < k > is the average vertex degree. This means that random graphs tend to
be homogeneous in vertex degree as the majority of the vertex degrees are close to the
average value. The randomness attached to this class of networks induces properties
based on two of the metrics presented above, small average path length and small
clustering coefficient. Figure 5.2 shows an example of a random network (5.2(a)) and
its Poisson degree distribution curve (5.2(b)).

For a long time, random networks were widely studied and used to model com-
plex systems. Indeed, real world networks present an average path length close to the
average path length of a random network with the same number of edges. However,

in the last few years it was noticed that general properties of real world networks are
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quite different from those of random networks. For instance, the clustering coefficient
of a network found in nature is remarkably larger than the clustering coefficient of
a random network with the same number of vertices and edges. It seems that real
networks present a kind of local interaction not observed in random networks. Fur-
thermore, the typical degree distribution found in nature is significantly different from
a Poisson distribution. Thus, new models were developed as Small World and Scale

Free networks.

5.3.3 Small World Networks

The small world concept, first introduced from Milgram’s experiment [Milgram, 1967],
showed that the “world is small” because a person can reach all other people in the
world, directly or indirectly, through few intermediaries. In [Watts and Strogatz, 1998;
Newman and Watts, 1999, the authors formalized the small world concept and defined
small world networks. The small world phenomenon is found in several networks like
the Internet, telephone calls, road maps, food chain, electric power grids, metabolic
processing networks and in social environments [Watts, 2004; Kleinberg, 2000; Watts
et al., 2002]. Small world graphs are intriguing, because, among other reasons, they
share characteristics of regular graphs (high clustering coefficient) and random graphs
(small average path length).

In [Watts and Strogatz, 1998|, a simple procedure to generate a small world
network based on rewiring edges of the network was proposed by Watts and Strogatz
(WS model). The WS model of a small world network is described as follows. Given a
k-regular ring graph G = (V, E) where each node is connected to its first k£ neighbors,
rewiring edge (i,j) € E according to a probability p (0 < p < 1), consists in randomly



70 CHAPTER 5. OPTIMAL TOPOLOGY DESIGN OF COMPLEX NETWORKS

replacing one of its endpoints ¢ or j by another vertex ¢. After all edges of E are
attempted to be rewired, one at a time, multiple edges and loops are not allowed,
another type of graph may emerge from this process. Depending on which probabilities
are used, the graph obtained may exhibit small world features. An example of the
rewiring procedure is presented in Figure 5.3. Starting with the 4-regular graph (p = 0)
depicted in Figure 5.3(a), two other types of graphs can be obtained. If a small value of
p is used, a small world structure like that in Figure 5.3(b) arises. On the other hand,

if larger values of p are used, random graphs like that in Figure 5.3(c) may appear.

(a) Regular network (b) Small world network (¢) Random network

Figure 5.3. WS Small World Network

A similar procedure grounded in a slight improvement of the method was proposed
by Newman and Watts [1999]. Instead of rewiring edges, the addition model starts with
a k-regular graph G = (V| F) and then adds new edges, according to probability p. As
in the rewiring process, depending on the probability p, different graph structures may
appear: small world graphs if p is small and random graphs if larger values of p are
used.

This class of networks presents a high clustering coefficient for small values of p
as the procedure starts with a regular graph, which has a high clustering coefficient
value. However, the average path length falls significantly, since the random rewiring
or addition of an edge works as a shortcut in the network, decreasing the distance
among the vertices. This particular feature is extremely profitable in communication
networks and indeed resides in real world networks such as social networks. As the
global efficiency of the network (defined in Table 5.1) is based on the distance among its
elements, the overall efficiency of small world networks is said to be improved comparing

to regular networks.
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5.3.4 Scale Free Networks

The dynamic behavior of real world systems leads to the emergence of another im-
portant class of networks, known as scale free [Newman, 2003; Barabési et al., 2000;
Albert and Barabéasi, 2002; Faloutsos et al., 1999]. Static models formerly presented
are not able to capture the constant growth of a large scale network or how to attach
new vertices and to connect them to existing ones. Scale free networks, in contrast to
random ER graphs that follow a Poisson distribution, are characterized by a power-law
degree distribution, in which there is a small number of high-degreed vertices and a
large number of low-degreed vertices. The few vertices with high degree are usually
called hubs, resulting in a network with skewed degree distribution. A power-law dis-
tribution follows the form P(k) ~ k=7, where k is the degree (1 < k < oo0) and 7 is an
exponent (2 <y < 3).

Barabasi and Albert [1999] introduced the idea of evolving networks and ad-
dressed the origin of this power-law degree distribution in many real networks in a
pioneering work. As previously noticed, contrary to the idea that real networks could
be represented by random networks, it was proven that many real networks obey a
power-law degree distribution instead of a Poisson distribution. Examples include the
WWW, the Internet, railroads, market networks, phone call networks, and protein-
protein interaction networks [Newman, 2003|, just to name a few.

The Barabasi-Albert network, also called BA network, is generated through a
constructive procedure known as preferential attachment. The preferential attachment
is biased (not random), in which new vertices entering the network do not connect
uniformly to existing nodes, but attach preferentially to vertices of a higher degree.
This model better represents the evolving real world networks, creating hubs in an
unequal addition of new components. It starts with a small number (mg) of connected
vertices and assume that every time step a new vertex is added, and m < mg edges are
connecting the new vertex to m different vertices already present in the network.The
preferential attachment is incorporated assuming that the probability II; that a new
vertex will be connected to the existing vertex ¢ depends on the degree k; of that vertex,
so that II;) = k;/ >, k;. After ¢ time steps, the model leads to a random network with
t + mg vertices and mt edges.

The main property of this class of networks is the extremely high hub degree.
This also means that the betweenness values of these vertices tend to be high, since
they can participate in many paths connecting vertices in the network. The average
path length of this class grows as log(n)/log(log(n)) and thus displays the small world

property. A linear relationship between clustering coefficient versus number of edges
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Table 5.2. Network Models’ Features

Network Model Features

Regular Networks - Small average path length
- High clustering coefficient

Random Networks - Small average path length

- Small clustering coefficient
- Poisson degree distribution

Small World Networks - Small average path length
- High clustering coefficient
Scale Free Networks - Small average path length

- High betweenness centrality
- Power-law degree distribution (small number of high-degreed
vertices and high number of low-degreed vertices)

is found in a scale free network. This means that the clustering coefficient increases
linearly with density (CC ~ O(p)). At last, it was observed that random failures do
not affect the usual operation of the network as the majority of vertices are those with
a small degree and the likelihood that a hub be affected is almost minimum. On the
other hand, if the vertices chosen to quit the network are specific, it may be turned
into a set of isolated graphs easily. A scale free network is presented in Figure 5.4(a),

while Figure 5.4(b) shows a power-law degree distribution.

5.3.5 Summary of Network Models

As presented above, each network model has specific features according to the particular
structure of the network. Table 5.2 summarizes the features for each one of the network
models and allows us to identify the differences among them.

As mentioned before, complex and engineered network principles follow different
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paradigms. Engineered networks are explored from individual components perspective
related to well known metrics such as delay, resilience and efficiency. This means that
for a long time, engineering problems are solved through application-driven research.
On the other hand, complex theory has a more general approach, dealing with statis-
tical metrics independent of the application, but intrinsically related to the dynamics
of the network. Optimization techniques may be applied in both contexts. In order to
apply optimization strategies in the complex network scenario, we must resort to some
kind of association among metrics of both sides. To illustrate this idea, let us take a
telecommunication network as motivation to establish a comparison. Although engi-
neering metrics have been used for a long time as optimization criteria, it is possible to
explore complex metrics to achieve similar objectives. Thus, four widely known metrics
in traffic engineering for telecommunication networks were chosen: delay, load balanc-
ing, resilience and vulnerability. Table 5.3 presents the relation between engineering

and complex metrics.

Table 5.3. Engineering Metrics x Complex Metrics

Telecommunication Metric Complex Metric
Delay - Small average path length

- High betweenness centrality
Load balancing - High average path length

- Small betweenness centrality

Resilience - High average path length

- High clustering coefficient

- Poisson degree distribution
Vulnerability - Small average path length

- High betweenness centrality

- Power-law degree distribution

5.4 Optimization Models for Complex Networks

As pointed out in Section 5.3, early work in complex systems has focused mainly on
how complex networks can be obtained by means of stochastic algorithms. In contrast,
this section is dedicated to introduce optimization models representing networks that,
if solved to optimality by exact solution algorithms, allow such networks to exhibit
complex features. Our goal is to show that some complex features (such as small path
length, high clustering coefficient and power-law degree distribution), often desirable
for engineered networks outside the complex network domain, may arise as a result of

deterministic optimization processes and algorithms.
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In order to attain the goals we have set, we start with a network given by a
directed graph G = (V, A) having costs assigned to its arcs and state the core opti-
mization problem we deal with in the section, the Optimal Topology Design Problem
(OTDP). We formulate OTDP as two different Integer Programs and describe algo-
rithms for solving each of them. Advantages of one program (and associated algorithm)
over the other are also highlighted. We close the section indicating how small modifi-
cations in the core optimization problem allow us to obtain engineered networks where

other complex features arise.

5.4.1 The Optimal Topology Design Problem

The Optimal Topology Design Problem (OTDP) for complex networks is defined as
follows. Given a complete directed graph G = (V, A) (with set of vertices V and arcs A),
costs' {c;; > 0:V(i,7) € A,i < j} assigned to the arcs of A, the total number of edges
D, and a budget B, OTDP consists in defining a subset S C A : Z(i,j)es ¢;j < B, such
that the subgraph (V, S) of G is connected and exhibits complex network features. By
minimizing the average path length among all pairs of vertices under a limited budget,
complex features may arise as we show in the sequence.

An Integer Program to model an optimization problem like OTDP can be de-
fined in many different ways, depending on our choices to select decision variables, to
state the constraint set and the objective function (the function we wish to minimize).
Usually, there is a close connection between the way the model is formulated and the
algorithms we devise to solve it.

Two Integer Programming Formulations for OTDP are proposed. In the first one,
named Arc-Flow Formulation, connectivity between each pair of vertices is enforced
through network flows [Ahuja et al., 1993]. In the second, the Arc-Path Formulation,
connectivity is guaranteed by imposing that one path connecting every pair of vertices
must be available in the subgraph of GG implied by the arcs selected in a solution. In
the next two sections, we discuss the two formulations. Each one leads to a different

exact algorithm.

5.4.2 Arc-Flow Formulation

Let us assume that, given G = (V, A4), A

incoming and outgoing arcs in 7 € V. To model OTDP, two sets of decision variables

and A;r respectively denote the set of

are used: (i) z; € Ry, indicates the amount of flow that leaves vertex s in direction

!Note that when cij =1:V(i,j) € A, i < j the problem turns into polynomial.
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to vertex ¢, that passes through arc (7, 5); (it) y;; € {0, 1}, taking value 1 if arc (¢, j) is
selected to belong to S (0, otherwise). OTDP can be stated as:

minzz Z 5 (5.1)

seV teV (i,j)eA

s.t.
in?zl Vs, t € V,s #1, (5.2)
jEAT
fole Vs, t € V,s #t, (5.3)
i€A;
doaf =D =0 VstjeVis#Ets#jtA] (5.4)
i€AT keAT
Z iy < B i<y, (5.5)
(1,j)€A
Y wy=D i<}, (5.6)
(1,j)EA
w oy <y Vst e VV(i,j) € Ai <, (5.7)
0<az; <1 Vs teVV(,j) €A, (5.8)
i €{0,1}  Y(i,j) € A:i <] (5.9)

Formulation (5.1)-(5.9) states OTDP as a network design problem in which the
linear objective function (5.1) can be defined to achieve efficient communication in a
network. The constraints of the model guarantee the satisfaction of the basic conditions
of existence of the network: topology connectivity and the limited budget for a given
number of edges.

Objective function (5.1) minimizes the average path length of the whole network.
Constraints (5.2)-(5.4) impose flow balance conditions for each pair of vertices s, t.
Observe that (5.2) guarantees that one flow unity will be sent from s to ¢, for all
pairs of vertices s,t € V., while (5.3) ensures that the flow sent by s will arrive at
destination vertex t. Equalities (5.4) assure the flow conservation in transshipment
vertices. Constraint (5.5) guarantees that the selected arcs will not violate the budget.
Equality (5.6) impose the total number of edges that must be included. Inequalities
(5.7) couple flow and binary variables, imposing that an arc cannot be used to send flow
if it is not included in the solution. Note that in model (5.1)-(5.9), variables x; were not

imposed to assume binary values. However, due to constraints (5.7) and (5.9), whenever
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{yij : (i,5) € A:i < j} variables assume integer values, {z} : (i,7) € A,s,t € V,s # t}
variables also do.

For solving OTDP by a LP based BB algorithm, we have chosen the state-of-the-
art commercial solver CPLEX [2011]. The advantage of the LP based BB approach we
just described for OTDP is that, after model (5.1)-(5.9) is stated and loaded into an
optimization package, little additional programming effort is needed, once one has in
hands an Integer Programming solver like CPLEX.

Formulation (5.1)-(5.9), however, has O(n?) variables and constraints. Therefore,
only OTDP instances of limited size are expected be solved to proven optimality by
LP based BB algorithms that rely on this formulation. In the following, we present a
reformulation for OTDP that, despite having exponentially many variables, can lead

to a specialized Branch-and-price algorithm.

5.4.3 Arc-Path Formulation

Given a pair of vertices s,t € V,s # t, assume that P*' denotes the set of all simple
directed paths connecting s to ¢ in G. The main idea of the Arc-Path Formulation to
enforce connectivity is to impose that, for every s, t, out of all paths in P, exactly one
that uses only the arcs included in the solution will be used to compute the average
paths we aim to minimize. Accordingly, in addition to binary variables y;; defined
previously, our second model uses binary variables {\5' : s,t € Vs # t,Vp € P}
(taking value 1 if path p € P* is selected, 0, otherwise) to choose the paths. Assume
that a;; € {0,1} denotes a binary parameter that indicates whether arc (7, j) belongs
(aj; = 1) or not (aj; = 0) to path p. The Arc-Path Formulation for OTDP is given by

the Integer Program:

min > Yy dia (5.10)

sEV teV pepst
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S.t.

Z M=1  VsiteV,s#t, (5.11)

pePst
D ciw <B, i<y, (5.12)

(i,5)€A

Y ow=D i<y, (5.13)

(i,5)€A
DA~y <0 Vst € V(i) € A (5.14)

pePst

Atefo,1}  Vs,teV,Vpe P, (5.15)
iy €{0,1} V(i j) € A, (5.16)

where dff stands for the costs of the arcs in path p. As before, the objective function
(5.10) minimizes the average path length among all pair of vertices. Convexity con-
straints (5.11) ensure that exactly one path connecting every pair of distinct vertices
s,t will be selected. Inequalities (5.14) assure that if at least one selected path crosses
arc (2, j), this arc should be included in the solution.

Despite the exponentially many variables (columns) in formulation (5.10)-(5.16),
we can use a Delayed Column Generation to evaluate the Linear Programming bounds

implied by dropping integrality constraints of model (5.10)-(5.15).

5.4.3.1 Lower Bounds in Column Generation

To understand how the LP bounds implied by (5.10)-(5.16) are evaluated, let us as-
sociate dual variables 7 € R,y < 0,¢ € R and 3} < 0 to constraints (5.11), (5.12),
(5.13) and (5.14), respectively. The LP Dual associated to the LP relaxation of (5.10)-

(5.16) is given by:

maXZZWSt + By + D¢ (5.17)

seVteV



78 CHAPTER 5. OPTIMAL TOPOLOGY DESIGN OF COMPLEX NETWORKS

s.t.
Y s
(i,5)€A
Cij Y+ ¢ — Z $<0
(s,t)eV

T €R,

v <0,

¢ €R,

p <0.

Vs, t € V,s #t,Vp € P

V(i j) € 4,

(5.18)

(5.19)

5.20
5.21
0.22
5.23

~—~~ I~
—_ — ~— —

The LP relaxation of (5.10)-(5.16) can be computed as follows. Assume that sets
of simple directed paths C** C P Vst € V,s # t (|C*| << |P*|) are made available.

Assume as well that, given the sets C'*,Vs, t, the Restricted Master Program

min Z Z Z d;t)\f,t

SEV teEV peCst

s.t.

> N=1

peC'st

Z cij Yij < B,

(3,7)€A
Z yij = D

(i,7)EA

p t
D ahxy — i <0
pECSt
>0

Yij = 0

Vs,t e V,s#£t,

i <7,

i <7

Vs, t € V,V(i,5) € A,

Vs, t € V,¥p e C%,
(i, j) € A,

(5.24)

(5.25)
(5.26)
(5.27)

(5.28)

(5.29)
(5.30)

has one basic feasible solution 5\, 7. Let ﬁ,’},é and B be the corresponding optimal

dual solutions. If, for all pairs s, ¢, no path p € P\ C* violates the dual constraints

~ st 2: Dst st
T+ ijﬁdp,

(i,7)EA

(5.31)

then, A, § solves the LP relaxation of (5.10)-(5.15) and the corresponding optimal LP

function gives a lower bound on the optimal value for (5.10). Otherwise, for a given
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pair s, t there must be a path in P\ C'*' that violates (5.31) that must be included in
C%t. The new Restricted Master Problem, enlarged with the sets of paths associated to
violated constraints (5.31), is reoptimized. The procedure goes on, until no inequality
(5.31) is violated.

Let us now discuss how, for a given pair s,¢ € V, the associated pricing problem
is solved. Firstly, recall that dff denotes the costs of the arcs in path p. Define the
reduced cost of a path p € P as ¢ 1= —7" + 37 5y, (1 — f;) In the previous
definition, we allow ourselves the abuse of notation (i, j) € p to mean the arcs that are
included in path p. Note that constraint (5.31) associated with path p € P is violated
if and only if E;t < 0. Instead of checking for the reduced cost of each possible path
p € P\ C*, the pricing problem is formulated as an optimization problem as well.

It involves finding a constrained shortest path connecting s to ¢ in digraph D, under
;
ﬁff < 0). The paths are constrained to use a budget that does not exceed B. If the sum
st

arcs costs given by {1 — 5 : (i,j) € A} (note that these costs are non negative since

of the optimal constrained path length plus —7% is negative, the corresponding path
has negative reduced cost, i.e., a violated constraint (5.31) has been found. For details
on algorithms for the resolution of the Resource Constrained Shortest Path Problems
see [Feillet et al., 2004; Irnich and Desaulniers, 2005]. For the particular case considered

here, for each pair s, the associated pricing problem can be solved in O(Bn) time.

5.4.3.2 The Enumeration Tree

As stated before, if the LP solution achieved in the end of the Column Generation
procedure is integer, it solves the original problem (5.10)-(5.16). Otherwise, being
fractional, we must resort to some kind of enumeration algorithm.

One key issue in the implementation of BP algorithms is how branching is to
choose a branching rule that do not destroy the structure of the pricing subproblems.

To illustrate, assume that )\ff is fractional and that branching on variable di-
chotomy (by imposing )\;t =1 and )\;t = 0 on the two child nodes) is performed. While
the first branching decision can be easily accommodated, the latter cannot. Note that
for the first branch (A5' = 1), it is sufficient to remove from the associated RMP all the
other columns associated to paths that connect s,¢ and not to solve the subproblem
defined by the pair s,t. However, the latter branch cannot be enforced by solving a
simple shortest path problem. This is true since the same path could be regenerated,
i.e., there is no guarantee that variable A\Z, will not be regenerated again and again.
Although this issue could be tackled by finding the next cheapest shortest path, as we

go deeper in the enumeration tree, and k next-shortest paths must be found, solving
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the pricing subproblems become more and more inefficient.

In order to overcome the difficulty associated to the AZ, = 0 branch, we branch
on variables y;;. Based on variable dichotomy, it may be implemented imposing y;; = 1
and y;; = 0 on the two child nodes. This branching rule does not affect the pricing
subproblem, requiring just the elimination of the corresponding arc from the input
graph in the latter case.

The selection of which variable to branch on is based on the fractional variable
associated to the maximal integer unfeasibility (farthest from integrality). This means
that among all fractional variables, the variable closest to the value 0.5 is to be selected.
In the case of ties, the last fractional variable found is taken. Preliminary tests indicated
that this branching policy is more suitable for the problem than choosing the variable
closest to one or at random. A depth-first strategy for selecting nodes from the list is

also implemented, aiming to find feasible integer solutions earlier.

5.5 Computational Experience

In this Section, we report computational results for OTDP, obtained with both formu-
lations/algorithms discussed previously. Our results are based on two networks: one
with 12 vertices and 24 edges and another with 14 vertices and 28 edges. Arc costs
{cij > 0:(i,j) € A:i < j} are generated according to the Euclidian distance among
vertices, supposing that the vertices are arranged symmetrically along a ring. Different
budget values B in the interval [Bin, Bnas| are tested. Parameter B,,;, corresponds
to the sum of the first D smaller costs on the edges, while B,,,, is the sum of the first
D larger costs on the edges.

All computational results reported in this section were conducted with a Intel
Xeon Core 2 Quad machine, with 2GHz and 8Gb of RAM memory, running under
Linux operating system. CPLEX release 12.1 was used for both algorithms.

Table 5.4 provides computational results for both algorithms. The first two
columns in the table indicate the number of nodes, n and the budget value B. In
the next two columns, we report GAP (in % figures), the LP duality gap implied by
the Arc-Flow formulation and ¢, p, the time (in seconds) taken to evaluate the LP relax-
ation bound. The next column, named Integer Sol./t,,:(s) gives the time taken for the
integer problem. In the next three columns, similar entries are given for the Arc-Path
Formulation: the implied LP duality gap (GAP), the time t;p (also in seconds) taken
by the Delayed Column Generation, at the root node, to evaluate the bound, and, the

number of columns (#col) generated at the root node. In the last four columns, we
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provide more detailed results for the Branch-and-Price search tree. They are: the op-
timal solution values (under headings opt), the total time tgp (in seconds) spent in the
search, the total number of columns (#col) priced out and, finally, the total number
of nodes (#nod) investigated in the tree. A time limit of 3,600s is applied for both

algorithms.
Table 5.4. Summary of OTDP model
Arc-Flow Formulation Arc-Path Formulation
n B Linear Relax. Integer Sol. Linear Relaxation Branch-and-Price
GAP trr(s) Lopt(8) GAP tpr(s) col opt  tpp(s) Fcol F#nod

936 14.29% 0.36 0.23 0% 0.36 804 126 0.54 804 1
978 3.08% 0.5 5.45 3.08% 0.44 715 125 31 2,165 1,223
997 2.49% 0.4 2.29 2.49% 0.41 656 122 15.74 1,693 443

12 1,025  2.75%  0.49 10.89 2.75% 0.36 591 119 1753 1,322 565
1,066 4.31%  0.52 25.55 431% 0.32 505 116 38.81 1,430 1,440
1,126  4.42% 0.39 213.52 442% 0.2 436 113 363.36 2,248 16,283
1,213 0.92%  0.42 132.52 0.92% 0.17 342 109 172,75 1,499 7,921
1,340 0% 0.38 1.48 0% 0.13 282 108 1.21 498 28
910 21.43% 1.09 2.95 0%  1.31 1,959 196  1.97 1,959 1
947 2.99% 1.29 226.18 2.99% 2.09 1,659 190 127.93 4814 1,163
964  2.79% 1.31 179.75 2.79% 2.5 1,512 185 214.66 4,608 661

1 989 2.63% 1.44 149.14 2.63% 2.93 1,445 179 234.02 4,466 1,079
1,025 3.81% 1.57 276.19 3.81% 2.75 1,273 174  951.83 5,115 7,951
1,077 6.75% 1.63 2,566.83 * * * * * * *
17154 * * * * * * * * * *
1’266 * * * * * * * * * *

* Not available, time limit exceeded.

Results in Table 5.4 indicate that in general, the BB outperforms the BP ap-
proach. The best computing times are highlighted in boldface. It can be observed
that, increasing the budget B, the CPU time to solve the instances to prove optimality
becomes larger. However, when budget values are too large, the LP bounds are very
tight and the time taken to compute the solution drops significantly . The difficulty
associated to this problem is partially observed by the gaps, i.e., how far the optimal
solution is from the bounds provided by both formulations. It can be seen that for a
very small budget (B,,,), the bounds provided by the column generation approach is
tighter. Although the number of columns generated by the BP is not high, the number
of nodes explored in the enumeration tree can be quite high. It can be seen that none
of the approaches fit well for this problem, as the number of nodes of the network
increases.

Let us now investigate the subgraphs implied by the optimal solutions for differ-
ent values of parameter B, trying to identify, in each of them, features that indicate

improvements on the communication. In doing so, we attempt to establish how the
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Figure 5.5. Evolution of Network Topologies for |V| =12 and D = 24

efficiency in communication increases, as the budget B changes, as a consequence of
the inherent optimization process.

In Figure 5.5, we present the optimal network topology found for each budget
B, when |[V]| = 12 and D = 24. The smallest budget leads to a topology that can
be regarded as a k-regular network structure, with & = 4 (see Figure 5.5(a)). As
expected, when we assume B,,;, as the budget, only edges of very low cost are allowed
to be included, so that a regular network emerges with a uniform degree and a high
average path length. Increasing the budget values, it is possible to observe the presence
of a few edges a little bit more longer (see Figures 5.5(b), 5.5(c), 5.5(d)), inducing the
average path length of the network to decrease. For intermediate values of B, we also
identify the appearance of hubs, associated to a power-law degree distribution (see
Figures 5.5(e), 5.5(f), 5.5(g)). Finally, budget values near B,,,, clearly induce a main
hub (Figure 5.5(h)), turning the average path length very small. In this sense, the
budget value B plays here an important role to induce the reduction of the average

path length of the network and the changes in the degree distribution of the vertices.

5.6 Creating Optimized Communication Networks

The main drawback of designing networks based on the mathematical models proposed
above is that only instances of limited size are expected be solved. However, we present

a simple deterministic construction procedure for larger optimized networks. Our pro-
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cedure is based on the replacement of the vertices of our original network with other
networks, resulting in a new also efficient communication network which have more
vertices and edges than the original.

The procedure to create optimized communication networks can be divided in

two steps:

1. Design a network topology (which we call original network) through the math-
ematical model just presented, for a given number of vertices, arcs, costs and a
limited budget.

2. Expand the original network obtained in step (1), substituting each vertex by a

“new network" (the new network corresponds to the original network itself).

Figure 5.6 illustrates the idea of step (2), for a network with 5 vertices. Let
Figure 5.6(a) be the original network generated through step 1. Take the first vertex
of the original network, say vertex 1. Substitute vertex 1 by the original network itself,
so that the point of connection be the most connected vertex of the network (in this
example, vertex 1). Take now vertex 2, and substitute it by the original network,
allowing vertex 2 to be the most connected vertex (i.e., vertex 1). Figure 5.6(b) shows
the result of both substitutions. The procedure should iterate along all vertices until
the final network is reached (see Figure 5.6(c)).

(a) Original net- (b) Partial network (c) Final network
work

Figure 5.6. Network Construction

The proposed procedure creates a new network from an original optimized net-
work, having |V'|? vertices and (|V|+1) x D edges. Scale invariance or self-similarity is
an interesting property observed in complex systems |[Thadakamalla et al., 2008]. This
property claims that the structure of a system is similar regardless of the scale (such
as fractals, for example). Following this idea, we say that the larger network obtained

by the proposed procedure will preserve similar features of the original small network.



4 CHAPTER 5. OPTIMAL TOPOLOGY DESIGN OF COMPLEX NETWORKS

In the next section, we will present the results and discussion regarding the properties
and features of the networks obtained through this construction procedure.

Figure 5.7 shows the achieved topologies when we apply the procedure described
in Section 5.6 to the network topologies above and obtain new networks with |V| =
144 and D = 312. In a similar fashion of Figure 5.5, the topologies evolve from
an apparently regular structure to a more interconnect structure, where hubs play a

fundamental role to decrease the average path length of the networks.

Figure 5.7. Evolution of Network Topologies for |V| = 144 and D = 312

In order to understand the behavior of the topologies as the budget value B is
varied, it is important to analyze the network metrics found in those networks. For
that, we calculated the average path length (L) and the clustering coefficient (C') of
all topologies. As B,,;, lead us to a k-regular topology network, we take it as a basis
to compare with further topologies. Thus, we say that the average path length of the
basis network is given by L(0) and the clustering coefficient is given by C'(0). We can
now compute the ratio between the metrics of the generated topologies and the basis
topology.

Figure 5.8(a) shows the evolution of the normalized metrics for our original net-
work (|V]| = 12 and D = 24) as the budget value B increases, while Figure 5.8(b)
presents the same evaluation for the constructed larger network (|V| = 144 and
D = 312). We can see that the normalized average path length slowly decreases
as the budget value increases. As our original network is small, we cannot observe

a sharp drop in this metric, but we can say that as the network becomes larger, the
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decreasing of the average path length will be more evident. On the other hand, the
clustering coefficient presents a significant increase for intermediate budgets, getting

lower again for larger budgets.
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(a) |V| =12 and D = 24 (b) |V| = 144 and D = 312

Figure 5.8. Path Length and Clustering Coefficient Analysis

In summary, it can be seen that although we moved from a 12 vertices network to
another with 144 vertices, the properties of both networks remain very closer. Looking
at Figures 5.8(a) and 5.8(b), it is possible to see that the behavior of the metrics in both
figures is very similar. After evaluating these results, the following become apparent:
(i) the increase of the budget allows longer range edges, reducing the average path
length of the network; (ii) higher budget values induce the emergence of hub vertices
in the network; and (iii) the creation of a larger network from an efficient small network

leads to a network also efficient.

5.7 Exploring the Objective Function and

Constraints

As mentioned before, depending on the desired complex network features and prop-
erties (network structure, function and the different metrics), different criteria may
be explored in the objective function or even in the constraints of an optimization
problem.

In what follows, minor modifications into the core optimization problem, OTDP,
are introduced. These modifications account for different objective functions and con-
straints in order to capture other network features into our mathematical models. For
simplicity, such functions and constraints are formulated to replace or to be appended

in the Arc-Flow Formulation. Equivalent counterparts could be presented in terms of
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the variables of the Arc-Path Formulation. The optimization problems discussed next,
thus, correspond to variants of OTDP, in which some complex metrics and network
models are explored.

Generally, the formation of hubs (high-degreed vertices) is associated with a sort
of vulnerability to external attacks and does not prioritize the resilience [Albert et al.,
2000, 2004]|. A practical way to avoid them is to impose constraints limiting vertex
degrees from above. Expected topologies tend to show a regular structure as the vertex
degrees will be close to the average value, a regular structure in its characteristic of
high average path length and a small betweenness for all nodes. Compared to OTDP
model (5.1)-(5.9), the Integer Program

min w (5.32)
s.t.
d iy <w, Vi€V, (5.33)
JjEV
(5.34)
(5.2)-(5.9)

makes use of a new decision variable w that means the maximum degree of a vertex in a
solution, in addition to :vfjt and y;; variables that keep their previously defined meaning.
Note that constraints (5.33) assure that the degree of each vertex is no more than w, the
variable that it is minimized through objective function (5.32). Applying the complex
metric to minimize the maximal degree of each vertex in the telecommunication context,
implies to improve the load balance and the resilience aspects and consequently to
reduce the vulnerability.

A third formulation can be proposed with the objective of decreasing the maxi-
mum distance (in number of hops) between pairs of vertices in the network and, there-
fore, leading to a network with smaller average length. Following this idea, the created
network is characterized by the small world phenomenon and scale free properties since
it can generate a subset of high-degreed vertices with high betweenness and a subset

of low-degreed vertices. To attain this goal, we formulated the next model:

min x (5.35)
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s.t.

Z ZL'fjt <X, Vs, t €V (5.36)
(3,5)€A

(5.2)-(5.9)

The model uses variable y that represents the maximum number of arcs in any
path connecting two vertices of the network. Constraints (5.36) assure that only paths
with less than x arcs can be used in a solution. The model can be seen as a telecom-
munication problem where the objective is to minimize delay, a well known quality of
service (QoS) metric in the context of routing problems.

The objective functions of both problems use number of arcs to define w and .
Therefore, a mono-objective problem can also be obtained considering the sum of both
functions. In this case, it is possible to balance the minimization of the maximum path

length of the network and the maximum degree of the vertices in the same model:

min w + x (5.37)
s.t.
d mij<w, Vi€V, (5.38)
JEV
doai<x, Vs teV (5.39)
(i,5)eA
(5.2)-(5.9)

Note that the objective function (5.37) seeks a trade off between average path
length and vulnerability to external attacks, since it minimizes the sum of w and y. All
the complex characteristics emphasized for both models are competing for the optimal
structure. For large and sparse networks, the y variable has a great influence. On
the other hand, for small and dense networks the variable w will predominate in the
network structure.

In the next model, capacities {F;; > 0 : (i,7) € A} are assigned to the use of
each arc in (. The value Fj; limits from above the number of paths that make use of
arc (i,j), in order to connect two vertices in a solution. Assume that a variable « is

associated with the maximum occupation of any arc in the network. The occupation



88 CHAPTER 5. OPTIMAL TOPOLOGY DESIGN OF COMPLEX NETWORKS

of an arc means the fraction of its capacity that is used in a solution.

min « (5.40)
s.t.
Yo> ai<aFy, V(i) € 4 (5.41)
seV teV
0<a<l, (5.42)
(5:2)-(5.9),

The model attempts to balance the flow distribution in the whole network min-
imizing the maximum occupation of an arc. Note that constraints (5.41) guarantee
that the occupation of arc (7, ) is no more than « times its capacity F;;. Solutions to
this model tend to follow a regular structure, where the average path length cannot be
too small since capacity constraints on the use of the arcs are now imposed and the
betweenness is small for majority of the vertices. Another result is that the associated
telecommunication network is likely to show more load balancing and resilience because
the balanced flow distribution allows smaller losses in case of failure.

It may be the case that, under a very tight budget constraint, not all connections
between pairs of vertices of V' can be established. In such cases, it may be interesting
to have a model that maximizes the number of pairs of vertices that actually have a
path connecting them. The next model represents this case. The model uses {6 :
Vs,t € V,s # t} variables to indicate whether or not there will be a directed path

connecting s to t in the solution. The model reads:

min » Y (1 -6 (5.43)

seV teV
s.t.
Z xié =0 Vs, teV,s#t, (5.44)
JEAT
S oafl=0" Vs iteVs#t, (5.45)
€Ay

0 >0, (5.46)
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(5.4)-(5.9).

Note that the right hand side of the convexity constraints (5.44) and (5.45) may
take a zero value. When that happens, no path to the corresponding pair of vertices
will be available in the solution. The objective function (5.43) thus maximizes the
number of pairs of vertices that can be connected. None of the complex metrics is been
considered in this case, but in the context of telecommunications the objective is to

maximize the number of requests accepted.

5.8 Related Work

High computing times involved in LP based Branch-and-bound algorithms (and in
BP as well) preclude their use to solve huge network optimization problems. In such
cases, we must resort to heuristics. Differently from exact approaches, heuristics are
concerned in seeking good solutions, not necessarily the optimal one. They have been
applied in the solution of several practical problems. The progress in that approach gave
rise to a set of metaheuristics [Gonzalez, 2007; Talbi, 2009]. Metaheuristics are based on
stochastic selection and iteratively seek for an improved candidate solution regarding
a given measure of quality. Despite not guaranteeing that an optimal solution will
be found, quite often they are capable of providing near-optimal solutions if properly
implemented. In this section, we present related work in which metaheuristics were
applied in order to create complex network topologies. In the following we present three
models that, have proven their merit for generating networks with complex features
and share the same principle: desired topologies are generated by means of randomized
algorithms. It is important to emphasize that all models were developed independently
and although each approach aimed to create complex topologies, each one formulated

a different starting optimization problem in order to attain that goal.

5.8.1 Small World Optimization Algorithm

In order to achieve an efficient communication system in which the information among
entities should be exchanged as fast as possible, one aims to minimize the average
path length, taking into account that it is wasteful to wire everything to everything
else. An optimization model based on simulated annealing |Kirkpatrick et al., 1983|
is proposed for that purpose by Mathias and Gopal [2001]. The idea is to investigate

whether the emergence of small world topologies could arise as a tradeoff between
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maximal connectivity (small path length) and minimal wiring (physical distance as a
goal criterion).

The input k-regular graph is composed by vertices symmetrically placed along
a ring, similar to the WS model. The size of the graph, as well as the total number
of edges is fixed. Given a weighting factor p € [0, 1], the procedure minimizes the
function O = uL + (1 — p)W, where L and W respectively denote the normalized
average path length among all pairs of vertices and the normalized wiring cost (which
corresponds to the FEuclidean distance between pairs of vertices). The characteristic
path length L is normalized by L(0) (which is the path length in the corresponding
k-regular network); W (which is a physical distance measure) is normalized by the
total wiring cost that results when the edges at each vertex are the longest possible,
namely, when each vertex is connected to its diametrically opposite vertex, and to the
vertices surrounding it.

By weighting two goals into the objective function the optimization of either one
or the other will result in two extremes. At p = 0, when the optimization lies on
minimizing the cost of wiring edges, a regular network emerges with a uniform degree
and a high average path length (L ~ n). On the other hand, at © = 1, when only
the average path length is minimized, the resulting network is random (L ~ logn).
At intermediate values of pu, the emergence of hub vertices is observed, due to the
contribution of L to the objective function. Moreover, due to the contribution of W,
hubs tend to be formed by connections to the closest vertices. Also, in order to reduce
the path length, hubs may appear connected. Thus, opposite to the WS model, in
which the average path length decreases by the presence of long range shortcuts, the
reduction here is due to a small fraction of significant hub vertices.

Analyzing metrics as average path length, clustering coefficient and wiring cost
and comparing them to the metrics from WS model, the following became apparent:
(¢) in both models L shows a sharp drop related to the small word behavior, such that
the drop caused by hub formation is much sharper; (ii) the drop observed in C'C' in
the WS model is not valid for the optimized network, since hub formation keeps the
CC at values higher than those for regular networks; (7ii) the minimal wiring objective
makes a clearly difference between the two models, as for larger values of ;1 the amount
of wiring in the WS model is much greater than in the optimization model.

Mathias and Gopal [2001] conclude that the optimized networks are more clus-
tered than corresponding regular networks, and have a smaller average degree of sep-
aration than their corresponding random graphs. Besides, small world topologies that
arise from optimization consumes less wiring than their WS counterparts, being useful

when wiring is expensive.
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5.8.2 Scale Free Optimization Algorithm

An evolutionary algorithm for optimized network design is presented by Cancho and
Sole [2001], combining into the objective function, the minimization of the graph den-
sity and the average path length. These objectives include two relevant aspects of
network performance: the cost of physical links and the communication speed among
entities. Observing that most complex networks are extremely sparse and exhibit the
so-called small world phenomenon, a minimization procedure based on these two cri-
teria was expected to lead to small world and hub formation features.

The proposed procedure consists in optimizing an energy function defined as
E(¢) = ¢d+ (1 — ¢)p, where 0 < ¢,d,p < 1. ¢ is a parameter controlling the linear
combination of d (average path length) and p (density), which are normalized accord-
ingly. The minimization of F(¢) involves the simultaneous minimization of distance
and number of links (which is associated with cost).

The algorithm proposed by Cancho and Sole [2001] works with discrete time
intervals. Starting at time ¢ = 0, the network is set up with a density p(0) following a
Poisson distribution of degrees (connectedness is enforced). At time ¢ > 0, the graph
is modified by randomly changing the state of some pairs of vertices. For instance,
with probability v, each a;; can switch from 0 to 1 or vice-versa. The new adjacency
matrix is accepted if E(¢,t + 1) < E(¢,t). Otherwise, a different set of changes is
tested. The algorithm stops when the modifications applied are not accepted a given
number of times in sequence. This number is a parameter of the algorithm, set up by
the designers.

Depending on how density and path length are weighted into the objective func-
tion, four main types of networks can be found: (a) exponential networks, (b) scale free
networks, (c) star networks and (d) dense networks. Analyzing some basic properties
such as density, clustering coefficient and path length as a function of ¢ along with
another measure defined as degree entropy, the authors identified four different phases,
separated by three sharp transitions at ¢ ~ 0.25, ¢35 ~ 0.80 and ¢35 ~ 0.95. Examin-
ing the degree distributions achieved by the procedure, it is possible to note that the
transitions are easily explained since from (a) to (b) hub formation emerges, from (b)
to (c) a hub competition leads to a central vertex and finally a dense graph (d) results
when a progressive increase in the average degree of non-central vertices occurs and a
sudden loss of the central vertex.

The results in [Cancho and Sole, 2001] suggest that preferential attachment net-
works (scale free) might emerge at the boundary between random attachment networks

(a) and forced attachment (all vertices linked to a central vertex) networks (c). Ex-
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ponential like networks appear when the path length is minimized under high density
weight. When linking cost substantially decreases, the reduction of vertex-vertex dis-

tance is enforced heading to a complete graph for high values of ¢.

5.8.3 Small World Topologies using GRASP

The problem of generating a small world topology treated in [Souza et al., 2008] consists
in turning a regular graph into a small world graph with the principle of adding new
edges to it (such as the addition model presented in section 5.3.3), minimizing its
average path length. Instead of the probability p used in the stochastic model from
the literature, the authors make use of an additional parameter B called budget, which
defines the number of shortcuts (edges) that may be included in the graph. Therefore,
the input parameters are the original regular graph and the budget value.

A GRASP approach is adopted for solving the studied problem. GRASP (Greedy
Randomized Adaptive Search Procedure) is an iterative method for solving optimiza-
tion problems proposed by Feo and ResendeFeo and Resende [1995], composed by two
phases: a construction phase, in which a solution is built from scratch; and a refinement
phase (local search), in which a local optima solution is reached. The best solution
found during the GRASP iterations is returned as the result of the algorithm.

In the particular application considered here, at each iteration of the construction
phase, a new solution is created by adding to the graph as many edges that can be
fitted with the budget. A higher priority is given to edges offering best benefit (low cost
and high impact in reducing the average shortest path length of the graph). However, a
portion of randomness is also included in order to avoid a purely greedy behavior that
allows the procedure to be applied repeatedly, in a multi-start scheme. The refinement
phase, which is applied only to the best solution found in the construction phase, works
as follows. For each edge in the current solution, we attempt to replace it by an edge
that if included in the solution does not violate the budget and decreases the average
shortest path length. Note that the evaluation of the benefit of the movement (the
operation of replacing one edge by another) is very time consuming. That is the reason
why in the proposed implementation of GRASP, the local search is applied only to the
best solution, and not to all solutions provided by GRASP at the end of its first phase.

In Table 5.5, we show how the network obtained by the application of GRASP
compares to the optimal one, in terms of their average path length. Optimal networks
were obtained by means of the Branch-and-bound algorithm based on the Arc-Flow
Formulation (named here LP BB) proposed in section 5.4.2 with an additional con-

straint set that forces every edge initially included in the regular graph to be included
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in the final solution as well. In doing so, the quality of the solution provided by GRASP
can be compared to the optimal one.

For each value of B in our test bed, we report in Table 5.5, how much the
solutions provided by GRASP and LP BB improve the average path length of the
solution provided by the stochastic model from section 5.3.3. For example, for B = 25,
the average shortest path length of the optimal solution is 7.7% inferior than the average

shortest path length of the solution obtained by the stochastic model.

Table 5.5. Path Length Improvement

B n =15 B n =30
GRASP LP BB GRASP LP BB

1 3.2% 3.2% 3 8.1% 8.5%
4 8% 9% 25 7.2% 7.7%
5 1.1% 2.2% 38 2.9% 3.5%
6 4.4% 71% 64 0% 0.6%
10 6.9% 6.9% 107 0% 0.6%
19 1.2% 1.2% 148 0% 0%
60 0% 0% 240 0% 0%

As one could expect, graphs generated by the optimization approaches present
better values of the average path length (indicated by the improvement values) com-
pared to the stochastic method, except when the budget value B is very high (in
such cases, all approaches provided solutions with identical average path length). This
means that using the same number of additional links, the optimization approaches are
capable of finding small world networks with a smaller average path length, increasing

the efficiency of the whole network.

5.9 Conclusion and Future Work

In this chapter, we presented different alternatives to design complex communication
networks. Besides the stochastic methods from the literature, we focused on how
optimization techniques both based on exact solution methods as well as in heuristics
may be applied to generate complex communication networks. The main difference
between both approaches concerns in the scalability provided by them.

Irrespective of how the optimization models are solved (through heuristics or
exact methods), it can be observed that all optimization techniques have shown that
features such as small path length, high clustering coefficient and power-law degree

distribution can be achieved. It has been shown that the optimization of different
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criteria in the objective function and constraints leads to diverse complex network

topologies.



Chapter 6

Conclusion and Future Work

The final remarks and future work are presented in this chapter. Section 6.1 concludes
the thesis with a summary of accomplished work. Section 6.2 addresses possible future

work to proceed the research on this study.

6.1 Final Remarks

In this thesis, we studied how to apply optimization techniques in the design of com-
munication networks. The first problem investigated, named Resilient Multi-level Hop-
constrained Network Design, concerns designing hierarchical telecommunication net-
works, assuring resilience against random failures and maximum delay guarantees in
the communication. After, we investigated solutions to the Grooming, Routing and
Wavelength Assignment problem with protection and quality of service in WDM op-
tical networks. At last, we addressed to the Optimal Topology Design of Complex
Networks, which consists of designing efficient communication networks based on com-
plex networks features.

Three mathematical formulations were proposed for the Resilient Multi-level Hop-
constrained Network Design problem. Through our computational experiments, it
was shown that the bounds provided by the Arc-Flow Formulation are quite weak,
taking high computational times while solving the problem via a Branch-and-bound
algorithm. The lower bounds provided by the other two formulations are stronger
and their equivalence is demonstrated by a formal mathematical proof. However, a
Branch-and-price algorithm based on the Arc-Path Formulation proved to be more
efficient compared to a traditional Branch-and-Bound algorithm for the Aggregated
Hop-Indexed Formulation. Finally, we conclude that real world networks adapted to

the problem are solvable to optimality by our Branch-and-price approach.

95



96 CHAPTER 6. CONCLUSION AND FUTURE WORK

Two formulations for the Grooming, Routing and Wavelength Assignment prob-
lem with protection and quality of service in WDM optical networks were proposed. It
was shown that exact algorithms developed specifically for the problem by advanced
optimization techniques such as column generation and branch-and-price led to the
solution of real-world networks. Our computational results show that the times re-
quired by the proposed BP algorithm are feasible in all cases studied. Moreover, in
order to deal with larger instances (with a high number of requests), we proposed a
column generation-based heuristic, that finds good solutions within a small compu-
tational time. Finally, we evaluated how protection constraints can provide different
levels of QoS in the network. We conclude that there is a tradeoff between the number
of wavelengths used and the amount of traffic lost in case of failure.

The Optimal Topology Design of Complex Networks was explored through two
basic formulations and some variations. For this problem, the BB algorithm outper-
forms the BP approach. By exploring different objective functions and constraints
based on complex network metrics, we may achieve diverse topologies, related to well
known metrics from engineered networks, such as delay, load balancing, resilience and
robustness.

The main contributions of this thesis project include different mathematical for-
mulations for three interesting network design problems and a Branch-and-price ap-
proach for each of them. Through a comparative analysis, we showed the performance
of different algorithms based on the proposed formulations. We demonstrate that the
proposed Branch-and-price approach outperforms other traditional optimization tools

for two of the problems.

6.2 Future Work

In this section, we describe the next activities that can be developed. Despite its
theoretical importance, an exact approach is limited by the size of instances that can
be tackled in practice. Thereby, this step includes the development of heuristics for all
problems. We expect that good solutions can be reached for instances with at least
one order of magnitude larger. Besides, many other particular aspects can be explored

in all problems. In the following, we describe some future work for each of them.

e RMHND: A pure BP approach was devised to deal with this problem. Some
future directions include the combination of the exact approach with a heuristic,

in order to achieve good integer solutions early. Also, acceleration strategies may
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be added to our column generation algorithm. Improvements in this work can

lead us to solve larger instances for the problem.

¢ GRWA-PQoS: This problem admits many variations. In a future step, features
such as multi-domain, shared protection and dynamic traffic grooming can apply.
The addition of new features can make the problem more practical and closer to

a real scenario.

e OTDP: As the BP approach did not achieve good results for this problem, some
improvements should be taken into account. For example, the addition of cuts

to the problem could help the BP to present a better performance.
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