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Resumo

As mídias sociais online (blogs, redes sociais) são ferramentas de comunicação cada
vez mais presentes e importantes no mundo moderno. Tradicionalmente, as pessoas
encontram informações na Web navegando ou buscando. Com o recente sucesso das
mídias sociais online, as pessoas passaram a receber novas informações através de
conversas com seus amigos. Uma quantidade enorme e diversa de informação é gerada
diariamente por milhões de pessoas em todo o mundo. Por exemplo, através do Twitter
os usuários compartilham e repassam diversas informações; pelo Facebook os usuários
ficam sabendo sobre o que os amigos fizeram no último fim de semana; e pelo Foursquare
descobrem onde estiveram recentemente. O grande volume de dados, a diversidade de
informação, a dinâmica dos sistemas, e a necessidade de informações em tempo real
levam a grandes desafios para se processar e analisar os dados gerados pelos usuários.
Entretanto, um melhor entendimento sobre o processo de difusão de informação nas
mídias sociais online é necessário, não apenas para os usuários, mas também para
empresas e pesquisadores. Exploração de propagandas, melhor organização de conteúdo
e criação de novas ferramentas são exemplos de benefícios possíveis através de um
melhor estudo do problema. Neste trabalho propomos o MIOSphere, um sistema para
monitoramento, em tempo real, da propagação de informação por importantes mídias
sociais online. Além disso, foi feita uma ampla caracterização da propagação de URLs
no Twitter, analisando não somente a propagação interna, mas também como URLs
geradas em outras mídias sociais (vídeos do YouTube, por exemplo) se propagam no
Twitter.

Palavras-chave: mídias sociais online, difusão de informacão, boca-a-boca, monitora-
mento.
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Abstract

Online Social Media services (blogs, social networks) are important communication
tools in the modern world. Traditionally, people find information in the Web by brows-
ing or searching. With the recent success of Online Social Media, people started to
receive information from conversations with their friends. A huge and diverse amount
of information is generated everyday by millions of people all over the world. As an
example, on Twitter users share and forward various information; on Facebook, users
get to know about what their friends did on the last weekend; and on Fourquare users
discover where their friends visited recently. The huge volume of data, the diversity
of information, the dynamic of the systems, and the need for real-time information
leads to big challenges while processing and analyzing the user generated data from
Online Social Media services. However, a better understanding about the information
diffusion process in Online Social Media services is necessary, not only for users, but
also for companies and researchers. Advertising, better content organization, and cre-
ation of new tools are examples of possible benefits from a better understanding of the
problem. In this work we propose MIOSphere, a system to monitor, in real-time, the
diffusion of information through popular Online Social Media services. Furthermore,
a wide characterization of the diffusion of URLs on Twitter was done, analyzing not
only the internal diffusion, but also how URLs generated in external services (YouTube
videos, for example) diffuses on Twitter.

Keywords: online social media, information diffusion, word-of-mouth, monitoring.
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Chapter 1

Introduction

Recently, Online Social Media (OSM) services (i.e., blogs, social networks) have
emerged as a popular way of discovering information on the World Wide Web. In
contrast to traditional methods of content discovery such as browsing or searching, con-
tent sharing in OSM services occurs via conversations between users, which is known
as word-of-mouth. For instance, users share links with personal recommendations like
“Check out this great photo of the concert last night!”

While such word-of-mouth based content discovery existed long before in the
form of emails and web forums, OSM services have made this phenomenon extremely
popular and globally reaching. In fact, today social networking sites are known to be
a major driver of traffic to many Web sites [Campbell, 2009]. For certain Web sites,
Facebook and Twitter drive, respectively, 44% and 29% of the traffic [Schonfeld, 2010].
These OSM sites are sharing tens of millions of Web links every day, and the amount
of information exchanged by word-of-mouth in OSM services is expected to grow over
time [Rao, 2010].

With users having accounts in different OSM services, there is a tendency to
exchange information across OSM services [Broxton et al., 2010]. Users usually post
URLs on Twitter and Facebook to announce to their friends about a new blog post or a
new uploaded video (on YouTube). Studying the dynamics and characteristics of this
information diffusion process across OSM services is important for various reasons, like
help marketers to explore the rich environment for advertisement purposes, as well as
help social media providers to improve their systems and develop tools to facilitate the
information exchange across networks.

1
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1.1 Context

Recently, researchers contributed significantly in understanding several aspects of
OSM services, including diffusion of information. Blogs [Leskovec et al., 2007b],
YouTube [Cha et al., 2007], Facebook [Nazir et al., 2008], and Digg [Szabo and Huber-
man, 2010] are some of the OSM services which have been extensively studied. Most of
these studies are focused in only one OSM service or in one specific aspect of interest,
like understanding temporal and topological patterns, or the interplay between the so-
cial network structure and the information flow. Some researchers developed tools to
visualize and analyze the diffusion of information in OSM services, but these tools are
usually based on only one OSM service or in some specific memes 1 related to specific
themes (for example, politics and rumors) [Leskovec et al., 2009; Truthy, 2012].

Popular OSM services (e.g., Facebook and Twitter) are characterized by a highly
dynamic environment, with a huge volume of traffic generated everyday by the sharing
of several types of content (i.e., photos, videos, news), as well as by the increasing
interest of users in real-time information. Each unit of information (a meme, like
URLs or keywords) has a different life cycle in these environments. For instance, while
the majority of the Web links (URLs) are unpopular, a few of them became extremely
popular, shared by millions of users. Moreover, some URLs attract interest at a single
period in time and die quickly, while others are periodic and attract interest of users for
a long period. A recent blog post showed that, on average, the time that a URL receive
half of its clicks on Twitter is only 2.8 hours, and on Facebook is only 3.2 hours [Bit.ly,
2011].

1.2 Purpose

Service providers usually do not give users a good manner to track how the information
they have shared is diffused among other users and services. Developing a system
to track the diffusion of information in and across OSM services is certainly useful,
not only for users, but also for companies and researchers. In this work, we propose
MIOSphere, a system to Monitor Information in the Online Social Media Sphere (i.e.,
blogosphere, social networks, content sharing systems). MIOSphere uses a distributed
approach with a master controlling several slave machines to monitor the memes (i.e.,
URLs and users), as showed in Figure 1.1. The master is responsible for controlling and
organizing the whole process. When slaves request information to track, the master

1A meme is an element of a culture or system of behavior passed from one individual to another
by imitation or other non-genetic means, taken from http://oxforddictionaries.com/
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selects which memes should be collected at that time, in order to optimize the usage
of resources.

1 

http://www.example.com/ 

Memes 
Online Social Media 

Master Database 

Slave 

Slave 

Figure 1.1. High level view of MIOSphere’s architecture

As a proof of concept, a prototype which monitors the diffusion of URLs in and
across popular OSM services (Twitter, Facebook, and Google+) was implemented.

1.3 Solution

Before developing MIOSphere, a wide characterization about the diffusion of URLs in
and across OSM services was done. Two publications in important venues emerged
from this initial step [Rodrigues et al., 2011; Jain et al., 2011]. The findings from these
research efforts were extremely important for the development of MIOSphere, as will be
highlighted during this dissertation. In both works the diffusion of URLs on Twitter
were analyzed, but with different goals. In Rodrigues et al. [2011] the focus was to
study how users discover content through word-of-mouth on Twitter and what are the
characteristics of the propagation cascades, while in Jain et al. [2011], the focus was to
understand how URLs from an external OSM service (YouTube videos, for example)
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diffuses on Twitter and how is the relationship between the OSM services involved.
Both works and the relevant findings for the development of MIOSphere are detailed
in Chapters 4 and 5.

After this characterization step, MIOSphere was developed. Based on some find-
ings discussed in Chapters 4 and 5, the architecture of the system was proposed. Any
Web crawler has several limitations (bandwidth, overload of traffic in the downloaded
Web servers, etc), so choosing the most important URLs to visit at a given time is
extremely important for achieving a good performance, especially if the goal is a real-
time system in a highly dynamic environment [Cho et al., 1998]. As a tool to help
in the development of MIOSphere’s architecture, a trace-driven simulator was imple-
mented and used, which was useful to understand the behavior of the parameters and
how the performance of the system was affected. After running the simulations, a real
prototype was implemented 2 to validate the proposed architecture. This development
step is detailed in Chapter 6.

1.4 Organization

This dissertation is organized as follows. Chapter 2 explains some basic concepts and
the terminology used. Chapter 3 presents the literature review. In Chapters 4 and 5, a
wide characterization about the diffusion of URLs in OSM services is showed. Then, in
Chapter 6, MIOSphere’s architecture is explained in details. Finally, this dissertation
is concluded in Chapter 7.

2MIOSphere prototype is available on http://miosphere.speed.dcc.ufmg.br/

http://miosphere.speed.dcc.ufmg.br/


Chapter 2

Basics of Online Social Media and
Definitions

In this chapter, a discussion about some basic aspects of Online Social Media and an
explanation of the terminology used in this dissertation is given.

2.1 Online Social Media Sphere

Several definitions for Online Social Media (OSM) can be found on the Web [Guide,
2012; Econsultancy, 2012]: (1) “Media is an instrument on communication, like a news-
paper or a radio, so social media would be a social instrument of communication.” (2)
“Social media essentially is a category of online media where people are talking, par-
ticipating, sharing, networking, and bookmarking online.” (3) “A category of sites
that is based on user participation and user-generated content. They include social
networking sites like LinkedIn, Facebook, or My Space, social bookmarking sites like
Del.icio.us, social news sites like Digg or Simpy, and other sites that are centered on
user interaction.” (4) “ Digital word of mouth.” (5) “A term used to describe a variety
of Web-based platforms, applications and technologies that enable people to socially
interact with one another online.”

We refer to the entire environment around Online Social Media as Online Social
Media Sphere. Users, providers, technologies, applications, and services, for example,
are all components of the Online Social Media Sphere. Among the services, there
are social networking sites like Facebook and Google+; blogs and micro-blogging ser-
vices like Blogger, Tumblr and Twitter; video, photo and music sharing services like
YouTube, Flickr, and Last.fm; and geo-location services like Foursquare. Each of these
Web applications are referred as OSM services.

5
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2.1.1 Cross-Pollination of Information

Information is exchanged among users inside an OSM service and between different
OSM services. A basic unit of information is defined as a meme. A video on YouTube
and a tweet on Twitter are the examples of memes. Memes can be divided into two
categories: foreign and local. All posted URLs embedding meme belonging to another
OSM service are defined as a foreign meme. URLs embedding YouTube videos or
Flickr photos, when shared on Twitter, are examples of foreign memes. All other types
of memes generated and diffused within one OSM service are local memes. Hashtags
(term starting with # to represent the topic of the tweet, e.g., #BestDad) and mentions
(internal link to another user in the form of @username) are examples of local memes
on Twitter. Figure 2.1 illustrates the dynamics of exchange of memes from one OSM
service to another one. OSM service where a foreign meme originates is termed as
source OSM, and the OSM service in which the foreign meme diffuses is termed as
diffusion OSM. Users create a meme in a source OSM, embed the meme in a URL and
diffuse it on the diffusion OSM.

Figure 2.1. Dynamics of exchange of information in the Online Social Media
Sphere

The information diffusion process across OSM services is analogous to a process
in biology, termed as Cross-Pollination. In this process, pollen is delivered to a flower
from a different plant, with the plants being different in their genesis [Darwin, 1900].
Following the same analogy, we term the information diffusion process across OSM
services as Cross-Pollination. A unit of information is analogous to pollen, and different
OSM services are analogous to plants having different genesis. A network formed by
users who participate in Cross-Pollination and content produced in the network is
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termed as Cross-Pollinated network.

2.2 Modeling Information Cascades

Below, a description of the model of URL propagation is provided.

2.2.1 Hierarchical Tree Model

Information propagation paths are built based on Krackhardt’s hierarchical tree
model [Hanneman and Riddle, 2005]. A hierarchical tree is a directed graph where
all nodes are connected and all but one node, namely the root, have in-degree of one.
This means that all nodes in the graph (except for the root) have a single parent.
Hence, an edge from node A to node B is added to the tree only when B is not already
a part of the tree. An edge from node A to node B means that a piece of information
was passed from A to B. While each hierarchical tree has a single root, there may be
multiple users who independently share the same URL. In this case, the propagation
pattern of a single URL will contain multiple trees and form a forest.

While we assume there is only a single parent for any intermediate nodes, in
real life there may be more than one source that passed the same piece of information
to a given user. On Twitter, for example, more than 80% of the users who received
an information from multiple sources cite their last source [Rodrigues et al., 2011].
This pattern might be attributed to the timeline interface of Twitter, which works as
a stream, showing the last 200 tweets to the user, chronologically ordered. Facebook
and Google+ also provide users a timeline interface. Hence, it is assumed that each
user received a URL from the most recent source. This model is different from that
proposed by Sun et al. [2009], where all friends who joined the same group on Facebook
within the last 24 hours were considered as valid sources.

There are two major ways to reconstruct information propagation paths. One
approach is to rely solely on explicit evidences about who passed the information to
whom. On Twitter, a retweet typically contains the original tweet content by someone
else along with a “RT @username” or “via @username” text that cites the person who
posted the tweet. Citation sometimes extends to the intermediary persons who also
retweeted the same message. Other popular OSM services also have similar explicit
evidences, like the “share” button on Facebook. Identifying information propagation
based on explicitly links has been a popular approach in previous work [Kwak et al.,
2010; Yang et al., 2010]. Another approach is to consider implicit evidences as well.
As opposed to the former approach, implicit URL propagation occurs when a user A
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publishes a URL after receiving it from a user B, but user A does not explicitly cite
user B. In this case, we have to infer that the information passed from user B to user
A. Both approaches were used in this dissertation.

Following the definitions proposed in Wang et al. [2011], all users in the root of
a hierarchical tree are called initiators. These users are the ones who independently
shared URLs. All other nodes who participated in URL propagation are called spread-
ers. Initiators and spreaders make up the hierarchical tree. Users who simply received
a URL but did not forward it to others are called receivers. Later when we refer to
the hierarchical tree structure, we do not include these users. For convenience, we
collectively call all three types of users who potentially read the URL as its audience.
Figure 2.2 depicts this relationship.

Figure 2.2. Modeling information cascades terminology



Chapter 3

Literature Review

Information diffusion in OSM is a very active research area, with a rich set of work.
There are several theoretical research work which attempt to model some aspects of the
diffusion, and a lot of characterizations focused on a diversity of aspects and services.
There are also proposals of tools and algorithms exploring information diffusion in
OSM.

3.1 Information Diffusion in OSM Services

A rich set of theoretical work explains the interplay between the social network struc-
ture and information flow. Granovetter [1978] proposed a linear threshold model, where
someone will adopt an innovation only if a large enough proportion of his neighbors have
previously adopted the same innovation. Dodds and Watts [2005] studied this model
in the field of disease spreading in an epidemiological setting. Watts [2002] proposed a
mathematical model of global cascades based on sparse Erdős-Rényi random networks
and found that global-scale cascade could occur even with few early adopters. Watts
examined the conditions for when such cascade happens under homogenous thresholds
of user susceptibility. Karsai et al. [2010] followed the time evolution of information
propagation in small-word networks and showed that the slowing down of spreading
is found to be caused mainly by weight-topology correlations and the bursty activity
patterns of individuals. Steeg et al. [2011] analyzed information cascades on Digg and
concluded that the highly clustered structure of the Digg network limits the final size
of cascades observed, as most people who are aware of a story have been exposed to
it via multiple friends. Cha et al. [2012] studied information cascades on Flickr and
found that popular photos do not spread as quickly as one might expect, but show a
steady linear growth of popularity over several years. They concluded that burstiness

9
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of user login times and content aging can explain how the small-world network’s ability
to spread information quickly and widely is affected.

Another set of work contributed significantly in understanding several aspects of
OSM services, including diffusion of information. Sun et al. [2009] found long chains
by studying cascades on Facebook pages, and also showed that these diffusion chains
on Facebook are typically started by a substantial number of users. Gomez Rodriguez
et al. [2010] investigated the problem of tracing paths of diffusion and influence and
proposed an algorithm to decide a near-optimal set of directed edges that will maximize
influence propagation. Ghosh and Lerman [2010] compared a number of influence met-
rics over Digg data and suggested that a centrality-based measure is the best predictor
of influence. Scellato et al. [2011] studied how geographic information extracted from
social cascades can be exploited to improve caching of multimedia files in a Content
Delivery Network (CDN). Their evaluation showed that cache hits can be improved
with respect to cache policies without geographic and social information. Wang et al.
[2011] found that social and organizational context significantly impacts to whom and
how fast people forward information. Bakshy et al. [2009] studied content propagation
in the context of the social network existent in Second Life, a multi-player virtual game.
By examining cascade trees they find that the social network plays a significant role in
the adoption of content.

Blogging and micro-blogging networks are shown to have temporal and topolog-
ical patterns which largely exhibit power-law behavior [Leskovec et al., 2007b; Galuba
et al., 2010; Kwak et al., 2010]. Krishnamurthy et al. [2008] presented a detailed char-
acterization of Twitter, and De Choudhury et al. [2010] analyzed how user similarities
(homophily) along various attributes can affect the information diffusion process on
Twitter. Liben-Nowell and Kleinberg [2008] reconstructed the propagation of massively
circulated Internet chain letters and showed that their diffusion proceeds in a narrow
but very deep-like pattern.

3.2 Information Diffusion Across OSM Services

A number of researchers have presented data-driven analysis and measured patterns
of information spreading across OSM services. Gruhl et al. [2004] studied the diffusion
of information in the blogosphere based on the use of keywords in blog posts. They
presented a pattern of information propagation within blogs using the theory of infec-
tious diseases to model the flow. Adar and Adamic [2005] further extended the idea
of applying epidemiological models to describe the information flow and relied on the
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explicit use of URLs between blogs to track the flow of information. Cha et al. [2009]
analyzed the blogging network structure and information diffusion patterns within the
network. Broxton et al. [2010] analyzed the diffusion of viral video popularity in OSM,
but focused only on how the popularity of a video varies with its introduction in OSM.
They concluded that viral videos gain popularity faster on OSM than through any other
referring source or itself (e.g., search engines, etc), and that viral video popularity on
Twitter is at a higher rate than in any other OSM website, but without analyzing the
underlying network structure affecting the higher rate.

Recently, Archambault and Grudin [2012] conducted annual surveys of social
networking at Microsoft between 2008 and 2011 to understand how these sites were used
and whether they were considered to be useful for organizational communication and
information-gathering. Growth in use and acceptance was not uniform, with differences
based on some aspects like gender and age. Tang et al. [2012] developed a framework for
classifying the type of social relationships by learning across heterogeneous networks.

Most of these studies of information diffusion on OSM are focused in one specific
aspect of the diffusion and in only one OSM service. In contrast to these works,
our study unveils different aspects of word-of-mouth information, such as not only of
the shape of cascades, but also the impact of publishers and subscribers of content.
This dissertation also explores some aspects related with the exchange of information
between different OSM services, which was mostly explored before on the blogosphere.

3.3 Tools and Applications for OSM Services

Some tools and applications have been developed recently by some group of re-
searchers. Leskovec et al. [2009] developed a framework for tracking short, distinctive
phrases that travel relatively intact through online media. They observed a typical lag
of around 2.5 hours between the peaks of attention to a phrase in the news media com-
pared to blogs. Truthy is a system to analyze and visualize the diffusion of information
on Twitter, developed by Indiana University Center for Complex Networks & Systems
Research [Truthy, 2012]. Marcus et al. [2012] presented two systems for querying and
extracting structure from Twitter-embedded data. In contrast to these tools, the focus
of MIOSphere is to collect and analyze the diffusion of information in multiple OSM
services.
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3.4 Information Retrieval

During the development of MIOSphere architecture, a set of work from Information
Retrieval were studied. Modern Web search engines have billions of pages indexed, and
they have to keep information fresh, especially for the most clicked pages. In order
to crawl efficiently, search engines have to schedule the most important URLs to visit
at a given moment, in a problem similar to our case. There are several proposals of
algorithms in the literature for scheduling URLs for search engines. Cho et al. [1998]
defined several importance metrics, ordering schemes, and performance evaluation mea-
sures for this problem, and showed that a crawler with a good ordering scheme can
obtain important pages significantly faster than one without. Sharma and Dixit [2008]
proposed an algorithm for building an effective incremental Web crawler. Gomes and
Silva [2006] modeled the persistence of Web data through the measurement of URL
and content persistence across several snapshots of a national community Web, col-
lected for 3 years. They found that the lifetimes of URLs and contents are modeled by
logarithmic functions. Olston and Pandey [2008] characterized the longevity of infor-
mation found on the Web, via both empirical measurements and a generative model
that coincides with these measurements. They also developed new re-crawl scheduling
policies that take longevity into account.



Chapter 4

On Word-of-Mouth Based
Discovery of the Web

In this chapter we present an analysis about how URLs diffuse internally among Twit-
ter users by word-of-mouth. The set of analysis discussed here were also published
in Rodrigues et al. [2011].

4.1 Methodology

Twitter is a prime example of an OSM service where users discover Web content through
word-of-mouth. In this part of the characterization, we used the Twitter dataset gath-
ered in Cha et al. [2010] and studied the properties of word-of-mouth based Web
discovery.

Twitter is an ideal medium for these studies for several reasons. First, the core
functionality provided by Twitter, tweeting, is centered around the idea of spread-
ing information. Second, Twitter provides additional mechanisms like retweet (act of
forwarding other people’s tweet), which enable users to propagate information across
multiple hops in the network. Third, thanks to URL shortening services, sharing URLs
has become a common practice in Twitter.

4.1.1 The Twitter Dataset

Data collection utilized the official Application Programming Interface (API) of Twit-
ter and took over a month using 58 servers in Germany [Cha et al., 2010]. These
servers were white listed by Twitter so that they can send API requests rapidly. The
data comprises the following three types of information: profiles of 54,981,152 users,

13
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1,963,263,821 directed follower links among these users, and all 1,755,925,520 public
tweets that were ever posted by the collected users. The oldest tweet in this dataset is
from March 2006, when the Twitter service was publicly launched. The dataset does
not include any tweet information about a user who had set his account private (8%
of all users). Moreover, this dataset is near-complete because user IDs were sequen-
tially queried from all possible ranges (0–80 million) at the time of data collection in
September 2009. Therefore, it provides a unique opportunity to examine the largest
word-of-mouth based URL propagation event in Twitter.

A Twitter user might follow another user to receive his tweets, forming a social
network of interest. The node in-degree and out-degree distributions measured on
this network are heavy-tailed, and the network topology is similar to those of other
OSM services like Facebook. They can be fit well with a Power-Law distribution with
exponents 2.19 for in-degree and 2.57 for out-degree (R2=0.05–0.09%). While a very
small fraction of users have an extremely large number of neighbors, the majority of
users have only a few neighbors; 99% of users have no more than 20 in- or out-degree
neighbors. The most popular users include public figures like Barack Obama, celebrities
like Oprah Winfrey, as well as media sources like BBC. A social link in Twitter is
directional. Unlike other OSM services, the Twitter network exhibits extremely low
reciprocity; only 23% of all links are bidirectional, which means that high in-degree
nodes are not necessarily high out-degree nodes.

4.1.2 URLs in Tweets

A URL is treated as a clean piece of information that spreads in Twitter. The number
of tweets containing URLs has increased rapidly over the years, as shown in Figure 4.1.
Since 2009, on average 22.5% of tweets contain URLs, and as of September of 2009 more
than 30% of tweets contain URLs. This is equivalent to sharing 1.3 million distinct
URLs per day in 2009. The URL usage is even higher in retweeets: 47%. Interestingly,
the number of retweets grew abruptly after July of 2008. This is because retweeting
became a convention between users around this time [Boyd et al., 2010].

In analyzing the Web links within tweets, it was found that the majority of the
URLs (nearly 75%) were from URL shortening services (e.g., bit.ly), which substantially
shorten the length of any Web link. Hence we had to take into account several possible
confounding factors such as when multiple short URLs refer to the same long URL or
when the short URLs are recycled after not being used for some time (e.g., when there
is no human visitor for 120 days, some URL shortening services allow a short URL
to point to a new content). Therefore, a large pool of URLs over several short time
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Figure 4.1. Usage of URLs on tweets over time

periods (so that these URLs refer to identical content) was picked, and then resolved
all the short URLs to the long URLs for data analysis in this paper.

Table 4.1 displays the summary of datasets we analyzed. Each week period
contains several million distinct URLs. Because the samples are from a one week period,
certain URLs were already in the process of word-of-mouth propagation. Hence, the
entire tweet dataset was scanned to find all tweets that contain the URLs in Table 4.1
and additionally considered them in our analysis. We made sure that none of the added
URLs were recycled. For a better readability, only results for Dataset 2 in Table 4.1 is
presented. All the conclusions hold for Dataset 1 as well.

Period Distinct URLs Tweets Retweets Users
Dataset 1 Jan 1, 2009 – Jan 7, 2009 1,239,445 6,028,030 295,665 995,311
Dataset 2 Apr 1, 2009 – Apr 7,2009 4,628,095 17,381,969 1,178,244 2,040,932

Table 4.1. Statistics of the two Twitter datasets analyzed

4.2 Which Content is Popular?

In this section is examined which URL shortening services are widely used in Twitter,
which Web domains these short URLs point to, and what kinds of content is popular
in word-of-mouth discovery of the Web.
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4.2.1 URL Shortening Services

URL shortening services make it easy for Internet users to share Web addresses by
providing a short equivalent [Antoniades et al., 2011]. For example, a Web link http:

//topics.nytimes.com/top/news/business/companies/twitter/ can be shortened
to http://nyti.ms/1VKbrC by a commercial service Bit.ly [Bit.ly, 2012a], which will
redirect any request access to the original NYTimes website. URL shortening services
allow otherwise long Web addresses to be referred to in various OSM services like
Twitter that often impose character limit in tweets and comments. There are hundreds
of commercial URL shortening services. Hence, the same Web address can have several
short alternatives in services like tinyURL [tinyURL, 2012] and Ow.ly [Ow.ly, 2012].

In order to identify whether a given Web address is a short or long URL, a
heuristic approach was taken. A Python script was written to resolve a URL in a
tweet by sending a Web access request to that URL and comparing the domain of the
original URL with that of the resolved URL. If the two domain names were different,
the URL in the tweet is considered to be a short URL, otherwise, it is considered it a
long URL.

A total of 30 URL shortening services were in use from 2006 to summer 2009 in
Twitter. Table 4.2 displays the top 10 services and their share of tweets. Usage of the
top two services (tinyurl.com and bit.ly) make up more than 90% of the total usage.
Between January to April of 2009, we find that bit.ly doubled its presence. The 3rd
ranked service (is.gd) also continued to gain presence in Twitter.

Rank Web Domain Dataset 2 Dataset 1
1 tinyurl.com 4,398,940 (68.2%) 1,883,032 (81.4%)
2 bit.ly 1,530,613 (23.7%) 262,171 (11.3%)
3 is.gd 493,124 (7.6%) 142,497 (6.2%)
4 snipurl.com 27,146 (0.4%) 24,606 (1.1%)
5 hugeurl.com 1,578 (0.0%) 841 (0.0%)
6 ur1.ca 1,116 (0.0%) 451 (0.0%)
7 xrl.in 361 (0.0%) 250 (0.0%)
8 u.nu 282 (0.0%) 139 (0.0%)
9 simurl.com 216 (0.0%) 6 (0.0%)
10 doiop.com 101 (0.0%) 90 (0.0%)

Table 4.2. Top 10 URL shortening services in 2009

http://topics.nytimes.com/top/news/business/companies/twitter/
http://topics.nytimes.com/top/news/business/companies/twitter/
http://nyti.ms/1VKbrC
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4.2.2 Popularly Linked Web Domains

Next, we checked whether URLs popularly shared on Twitter come from major Web
domains in the Internet (such as nytimes.com or google.com). The motivation of this
analysis is to verify a widely held belief that word-of-mouth can help popularize niche or
esoteric information from domains that are not otherwise very popular. The translated
long URLs were used for this analysis and the rest of this work, and the URLs were
grouped based on their domain names.

In total, there were 4,638,095 long URLs that came from 429,551 distinct Web
domains. The top 20% of the Web domains accounted for 95% of these URLs. We
ranked the domains based on the number of distinct URLs that belong to the domain
as well as the total size of the audience reached by URLs belonging to the domain.
Experiments using both ranking methods had similar results. We compared the list of
top domains in the resulting rankings with the list of top ranked domains in the general
Web published by Alexa [Alexa.com, 2012]. Table 4.3 displays the top 5 domains based
on the number of URLs, their description, the fraction of all URLs that belong to the
domain, and their rank from alexa.com.

Rank Top list Description URLs Alexa rank
1 twitpic.com photo sharing 8.5% 103
2 blip.fm music sharing 3.0% 6,736
3 youtube.com video sharing 2.1% 3
4 plurk.com social journal 2.1% 1,146
5 tumblr.com blog 1.4% 100

Table 4.3. Top 5 domains in Twitter (April, 2009)

The most popular domain, twitpic.com, accounted for 8.5% of all URLs in the
tweet data. The coverage of the other top domains quickly drops with decreasing
rank. The Alexa ranking shows that the top 5 domains are quite different from the
top list in the Web. Only youtube.com is within the top 10 sites from alexa.com. The
top 5 list in Alexa includes major search engines (Google) and portals (Yahoo, Live).
We also found that Twitter users often share user-generated content, as seen in the
table. Twitter users share photos (twitpic.com), videos (youtube.com), blog articles
(techcrunch.com), as well as participate and promote social events (abolishslavery.com
and earthday.net).

Figure 4.2 shows the fraction of top K domains that also appear in the top
K domain list from alexa.com for various values of K. The bar plot also shows a
comparison to the top URLs identified by the size of the audience reached within
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Twitter (including initiators, spreaders, and receivers). The overlap is minimal; fewer
than 30% of the top K domains in Twitter overlap with that of the general Web, for
all ranges of K=100,· · ·,1000. This finding suggests that as word-of-mouth becomes a
dominant source of discovering information, a different set of domains might become
popular in the Web in the near future.

 0

 10

 20

 30

 40

 50

 100  200  300  400  500  600  700  800  900  1000

O
ve

rla
p 

w
ith

 A
le

xa
.c

om
 (

%
)

K (the top-k domains in Twitter)

# URLs
audience

Figure 4.2. Popular domains in Twitter and Alexa rank

A recent work characterizing the usage of short URLs on Twitter also presented an
analysis comparing the popularity of domains on Twitter and on the general Web [An-
toniades et al., 2011]. Although the authors of that work considered only the domains
pointed by short URLs, which differs from our analysis, they also found that the most
popular domains shared on Twitter differs significantly from the general Web case.

4.2.3 Popular Individual URLs

Next we focus on popularity of individual URLs within domains. Of particular interest
to us is the hypothesis that word-of-mouth gives all URLs and content a chance to be-
come popular, independent of popularity of the domain it comes from. The hypothesis
is rooted in the observation that anyone could identify an interesting URL and start
a viral propagation of the URL, independent of the reputation or popularity of the
domain where it is published.

To verify this hypothesis, the size of the audience reached by individual URLs
within each domain was computed. Figure 4.3 plots the minimum, the average, and the
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maximum size of the audience for individual URLs within each domain. Given the large
number of domains (over 400,000 of them) we ranked the domains based on number
of URLs, grouped them into bins of 5,000 consecutively ranked domains and plotted
one data point for each bin. It is striking to observe that URLs from some unpopular
domains beyond the rank of 300,000 reached an audience that is comparable to the
size of the audience reached by URLs from the most popular domains. On average,
URLs in the top 5,000 domains reached 49,053 users, while URLs from the bottom
5,000 domains reached 1,107 users. Although URLs from top domains reached a 44
times larger audience than those from bottom domains, there do exist individual URLs
from bottom domains that reach as large as audience as the most popular URL from
the top domains.
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Figure 4.3. Audience size across the domain ranks

Thus, word-of-mouth does offer a chance for all content to become popular, inde-
pendent of the domain it is published in. Previous work on book and DVD recommen-
dations showed that viral marketing is effective for niche products compared to mass
marketing [Leskovec et al., 2007a]. Our analysis suggests a similar trend.

4.2.4 Content Types

With millions of URLs published per day on Twitter, several different types of contents
are shared. A natural question that arises from this observation is whether the type of
content affects the word-of-mouth propagation dynamics.
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In order to identify the content type, several interest categories based on Open
Directory Project (DMOZ) were selected, which is a human-edited directory of the
Web [Project, 2012]. DMOZ’s content classification relies on the fact that a domain
name has a hierarchical structure. So, a domain name of a Web address could poten-
tially be used to identify the specific content category, given the list of predefined clas-
sifications for many Web domains as in the DMOZ service. For example, nytimes.com
is classified in the news category; last.fm is classified as the music category.

Among various categories DMOZ supports, 5 categories of interest were picked:
photo sharing, videos, music, news, and applications, and downloaded the list of Web
domains in each of these categories. In total, the DMOZ listing contained 343 domains
across all five categories. For the application category, the list of applications that are
widely used within Twitter were selected, such as tweetdeck.com and wefollow.com.1

Table 4.4 displays the share of each topical category in Dataset 2. Matching the
domains of the URLs in Dataset 2 with the domains listed in these five categories in
DMOZ, we were able to successfully categorize 17.6% of websites, although a much
larger fraction of users (43.7%) were covered. The most popular category is photo
sharing, which has 458,662 URLs, posted by 271,138 users on 735,137 tweets. The
average audience reached by each photo’s URL is 436 users. The second most popular
category is music, followed by videos, news and applications.

Category URLs Users Tweets Audience
Photos 458,662 (9.7%) 271,138 (13.3%) 735,137 (4.0%) 436
Music 181,676 (3.8%) 46,483 (2.3%) 338,654 (1.8%) 316
Videos 123,412 (2.6%) 261,081 (12.8%) 509,975 (2.8%) 877
News 58,467 (1.2%) 113,667 (5.6%) 305,911 (1.7%) 2,492
Applications 15,223 (0.3%) 198,499 (9.7%) 370,047 (2.0%) 3,285

Table 4.4. Summary Information of Categories of URLs

While photo sharing seems a dominant activity in Twitter as opposed to news
or application sharing, the set of most popular individual URLs are from a diverse set
of topical categories as shown in Table 4.5. The most popular URL was the social
application, wefollow.com, which reached an audience of 28 million (i.e., nearly half of
the entire Twitter network).

Although this analysis about the different content types shared on Twitter is
an interesting aspect of our study, we note that our methodology has some limita-
tions. First, we were able to categorize only 17.6% of the URLs, which might not

1http://www.dmoz.org/Computers/Internet/On_the_Web/Online_Communities/
Social_Networking/Twitter/

http://www.dmoz.org/Computers/Internet/On_the_Web/Online_Communities/Social_Networking/Twitter/
http://www.dmoz.org/Computers/Internet/On_the_Web/Online_Communities/Social_Networking/Twitter/
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Rank URL domain Audience Description
1 wefollow.com 28M Social application that suggests list of users

to follow
2 facebook.com 14M Social network (warning page)

3 abolishslavery.org 4.5M Social organization dedicated to combating
human traffic (initial page)

4 twitpic.com 4.5M Photo sharing (photo published by famous
actor Ashton Kutcher)

5 youtube.com 4.5M Video sharing (popular comedy video with
title “David After Dentist”)

6 tweetvalue.com 4.3M Application that measures the value of a
Twitter account (initial page)

7 techcrunch.com 3.6M Blog (article with rumors about Google in
talks to buy Twitter)

8 earthday.net 3.3M Social organization dedicated to the Earth’s
natural environment (initial page)

9 twibes.com 3M Application to find people with similar interests
on Twitter (initial page)

10 latenightwithjimmyfallon.com 2.4M TV Show from NBC (initial page)

Table 4.5. Top 10 URLs domains in terms of the audience size reached by the
most popular URL

be representative. Second, DMOZ is often criticized for its lacks of representativeness
and transparency [Goodman, 2012], but it is not easy to categorize content to begin
with, and we manually checked the list of Web domains in each category we used from
DMOZ. Moreover, our main interest in the URL categorization is at understanding
the similarities and differences between the propagation of different content types on
Twitter. We are not trying to say that Twitter users share more photos than videos or
news, for example.

4.3 The Shape of Word-of-mouth

This section presents an analysis of the size and shape of word-of-mouth based URL
propagation patterns in Twitter.

4.3.1 How Large is the Largest Word-of-mouth?

The skew in popularity across different URLs is examined here. Figure 4.4 shows
the size distribution of spreaders and audience for URL propagations in Twitter. An
average URL was spread by three users and gained an audience of 843 users through
word-of-mouth. In contrast, the most popular URL engaged 426,820 spreaders and
reached an audience of 28 million users, which is more than half of the entire Twitter
network at that time. The power of word-of-mouth extends beyond the few most
popular URLs. Each of the 100 most popular URLs reached an audience of more than
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1 million users and 15% of the URLs reached an audience of over 1000 users.
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Figure 4.4. The size of word-of-mouth

The difference between the number of spreaders and the size of the audience is
nearly two orders of magnitude, for popular URLs as well as niche URLs that have
only a few spreaders. This demonstrates the potential of word-of-mouth in reaching a
large audience. As opposed to a typical Web page that is viewed by individual visitors,
content shared in word-of-mouth fashion is collaboratively shared by other visitors who
liked it and can reach a much larger audience.

Both distributions for spreaders and audience exhibit power-law behavior (a
straight line waist in a log-log plot). The best fit power-law exponents of these distribu-
tions y = cx−α were α = 1.71 for spreaders, and α = 1.98 for audience, indicating that
the skew in popularity among the most popular and the least popular URL became
slightly more severe due to audience.

4.3.2 The Role of Initiators

Users were classified into three types based on their position within a cascade: initia-
tors, spreaders, and receivers (Figure 2.2). Initiators are at the root of each cascade
tree and share URLs to others independently in Twitter. The role of initiators in par-
ticular was investigated, and the following questions are asked: To what extent can
initiators alone reach a large audience (without the help of spreaders)? How many
initiators share the same URL? Is having multiple initiators essential for yielding a
large cascade?
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In Twitter, nearly 90% of all URLs are introduced only by initiators without
involving any spreaders. URLs that were propagated further by spreaders went multiple
hops in the Twitter social graph and gained a 3.5 times larger audience than those
spread by initiators. This implies that while initiators’ role is dominant and that most
URLs propagate only 1-hop in the network, multi-hop propagation by spreaders can
extend the readership of URLs by a significant amount.

Next, the relationship between the number of initiators and cascade size is in-
vestigated. In order to focus on URLs with multiple initiators, only URLs with at
least two participants (i.e., initiators or spreaders) were selected for this analysis. URL
cascades were grouped into three types: small (1,10), medium [100,1000), and large
[1000,∞). Figure 4.5 shows the number of initiators per URL for the three types of
cascades. The plot shows the 5th percentile, median, average, and 95th percentile val-
ues. The number of initiators is orders of magnitude larger over the cascade size. The
median number of initiators is 2, 114, and 792 for small, medium, and large cascades,
respectively. Furthermore, very few URLs (0.2%) had more than 100 initiators who
independently shared the same URL. While certain large cascades only involved a sin-
gle initiator, the plot indicates that the number of initiators does affect the size of the
cascade for most URLs — larger cascades likely involve more users who independently
share the URL.
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Figure 4.5. The number of initiators per URL

While there seems to be a relationship between the number of initiators and
cascade size in general, it is not clear whether all of the initiators contributed equally
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in obtaining audience, or whether a few major initiators played a significant role.
Figure 4.6 investigates the fraction of the largest sub-tree for each URL over cascade
size. The plot shows much variability, shown by the wider range of the 5th and 95th
percentiles. Nonetheless, the median and the average data points show a clear trend.
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Figure 4.6. Roles of initiators by the largest subtree

For small cascades, the fraction of total audience reached in the largest sub-
tree (i.e., by a single major initiator) is nearly 50%. For larger cascades, however,
the fraction of the largest sub-tree is marginal (10-20%). This implies that a single
initiator’s role is likely to be limited in these cases and that popular content usually
propagates through several different propagation trees. In fact, there exists a strong
positive correlation between the number of initiators and the total size of the audience
(Pearson’s correlation ρ=0.7171 [Wikipedia, 2012]).

On Digg, a social news aggregator that allows users to submit links to and vote
on news stories, a story of general interest usually spreads from many independent seed
sites, while a story that is interesting to a narrow community usually spreads within
that community only [Lerman and Galstyan, 2008]. This observation might also be
true in the case of URLs propagated in Twitter, but we left the investigation for future
work.

4.3.3 The Shape of Word-of-mouth

Having investigated the size of URL cascades, we next examine the overall shape of
URL propagations. The maximum hop count from root to any of the leaf nodes is
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referred as the height of the tree. The width of the tree is defined as the maximum
number of nodes that are located at any given height level. For instance, a two-node
cascade graph has height of 2. Because a single URL propagation may have multiple
tree structures, we consider only the largest propagation tree for each URL and examine
its width and height.

Figure 4.7 shows the distributions of height and width for all URLs. Nearly 0.1%
of the trees had width larger than 20, while only 0.005% of the URLs had height larger
than 20. This suggests that cascade trees in Twitter are wider than they are deep.
In fact, the maximum observed width of any propagation tree was 38,418, while the
maximum observed height was 147 — a difference of two orders of magnitude.
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Figure 4.7. Height and width distributions

Figure 4.8 shows the relationship between the width and height level, as the 10th,
50th (median), and 90th percentile width over every height level. Trees were grouped
based on their size (according to the number of spreaders). Small trees with fewer
than 100 spreaders tend to have a very narrow shape of width 1 or 2 throughout the
height level. Larger trees with more than 100 spreaders were widest at low heights and
the width decreased slowly towards the leaf nodes. Interestingly, the median width
remained near 10 even at heights above 80. Visualization revealed that these large
trees occasionally included bursts at all height levels, i.e., the branch out factor is
suddenly large at particular spreaders. The visualization also revealed not one but
multiple such bursts for every popular URL.

Finally, Figure 4.9 shows the size of a typical cascade for the five different types
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Figure 4.8. Cascade size distributions

of URLs: photos, music, videos, news and applications. Several interesting differences
were observed across content types. Videos propagations likely involve a larger cascade
tree; more than 30% of videos URLs involved at least two participating users who
shared the URL. News and applications propagation also involved multiple users (28%
and 23%, respectively), while photos and music were mostly shared by a single initiator
(90% and 97%, respectively). This observation indicates that the type of content affects
the potential of the eventual cascade size. The probability of involving 10 or more users
in spreading is around 10% for news, applications and videos, while it is only 1% for
photos and music.

4.4 Content Distribution

So far, several key characteristics of word-of-mouth based URL propagation in Twitter
were investigated. The observed propagation patterns have direct implications on
systems, especially on content distribution and caching strategies. In this section,
some of these observations are revisited. Geo-location information of users was used
to examine how far word-of-mouth content travels around the globe.

For this analysis, the location of users who post and receive tweets needs to be
known. The location information written in user profiles of Twitter is in free text
form and often contains invalid location like “Mars" making it difficult to automate
the process. Invalid locations were filtered out and plausible locations of users were
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Figure 4.9. Size per content type

inferred by using the Google Geocoding API [API, 2012], which converts addresses
or city names written in free text form into geographic coordinates of latitude and
longitude. In total, the location of 1,096,804 users was identified. In the remainder
of this section, only the network and the URL propagation patterns among these one
million users were considered.

4.4.1 Content Producers and Consumers

Physical proximity between content producers and consumers in Twitter is first inves-
tigated. Here, a content producer represents a user who posts a URL independently
of others (i.e., root nodes in any cascade tree) and a content consumer represents all
other nodes in a cascade tree. Figure 4.10 shows the distribution of physical distance
between any two users in the word-of-mouth URL propagation. Physical distance is
computed based on the latitude and longitude information of two users. The distance
is in units of 10km, representing a local community. The graph shows the probability
distribution function for each distance d, which is the physical distance among all user
pairs (u, v), where either (1) user u explicitly retweeted the URL that another user v
shared or (2) user u follows another user v and shared the same URL after v posted it
on Twitter. If either of these two conditions holds, we say that there is a propagation
link from user u to user v.

For comparison purposes, Figure 4.10 also shows the distance distribution for two
users who have a (unidirectional) follow link between them. We call this a friendship
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Figure 4.10. Physical distance of Twitter friendship links and URL propagation
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link. The friendship links represent the full potential of content distribution through
word-of-mouth (i.e., when every follower actively reads or consumes the URL she re-
ceives from others).

A significant correlation between the content propagation probability and physi-
cal proximity of users is observed. That is, users within a short geographical distance
(e.g., 10 km) have a higher probability of posting the same URL than those users who
are physically located farther apart. The current OSM services infrastructures could
exploit this physical proximity between content producers and consumers. Moreover, a
significant correlation between the friendship and physical proximity is also observed.
This is expected as users tend to interact more with other users who are physically
nearby. Liben-Nowell et al. [2005] previously found a strong correlation between friend-
ship and geographic location among LiveJournal users.

Interestingly, the correlation between the content propagation probability and
physical proximity of users is slightly higher than that observed for having a friendship
link. This might be explained by the fact that Twitter users follow not only their
friends, but also media companies and celebrities, as well as distant users that post
content that is valuable to them. However, when it comes to retweeting other users’
messages, Twitter users chose tweets posted by those geographically nearby.

We tested if the level of locality changes according to the popularity of content
producers and different content types. The first set of bars in Figure 4.11 shows the
probability that content producers and consumers are located within a distance of
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50 km, which roughly represents a large metropolitan area. In order to separate out
the impact of producer popularity, content producers were grouped into three groups
based on their in-degree. Also, in order to see the representativeness of the results, the
location between all users was randomized by shuffling the location tags of users and
computed the distance between them (shown as ‘random’ in the figure).
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Figure 4.11. Distribution locality across content types

First, we focus on the impact of content producer’s popularity on distribution lo-
cality and examine the first set of bars labeled ‘All’ content type in the x-axis. Overall,
about 24% of the users who propagated content are physically close to very popular
content producers who had more than 1,000 followers, 32% are close to content produc-
ers with between 100 and 1000 followers, and 39% are close to content producers with
less than 100 followers. This result indicates that producers with a small number of
followers tend to incur content propagations to geographically nearby locations. On the
other hand, content producers with a large number of followers tend to be celebrities
or well-known people and incur content propagations across wider areas.

Next, we focus on the impact of content types on distribution locality. Figure 4.11
also shows the result for different types of content (photos, videos, music, news and
applications). Interestingly, the locality for photos is the lowest, while the locality
for music is the highest. News and applications had much stronger local appeal than
photos and videos. Overall, a non-negligible fraction (15-25%) of content propagated
locally. The reasons for why certain content type has more local appeal than the others
are not clear. We leave investigating these reasons as exciting future work.
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Motivated by the overall high content locality at 1-hop users, we look at the dis-
tance a URL travels as it is further propagated by users within 2- and 3-hops away
from the content creator. Figure 4.12 shows the geographical distance related to the
content creator (initiator) as a function of the height level of spreaders on the hierar-
chical trees. Clearly, content tends to spread short distances on the first hops. As soon
as friends-of-friends join the cascade and share the same URL, it reaches users located
in different regions and, consequently, reaches distant locations.
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Figure 4.12. Distance between initiators and spreaders

The observations that social content produced by users with a small number of
followers is usually consumed by users that are located within a small physical dis-
tance of the content creator could be exploited for caching design and content delivery
networks.



Chapter 5

Cross-Pollination of Information in
Online Social Media: a Case Study
on Popular Social Networks

In this chapter we discuss how URLs generated in external OSM services diffuse on
Twitter. The set of analysis discussed here were also published in Jain et al. [2011].

5.1 Methodology

Next, a description of the data collection framework used in this part of the character-
ization and some characteristics of the datasets collected are given.

5.1.1 Data Collection

The data collection framework is composed of two phases (see Figure 5.1). In the first
phase, Twitter Streaming Application Program Interface (API) [Twitter, 2012b] is used
to collect all tweets periodically, using a set of keywords. This step was part of a re-
search project, developed by a Brazilian Research Institute, 1 which tracks information
about important events in several social and traditional media sources, like newspapers,
blogs, and online social networks. 2 After this step, all URLs that appear on the content
of the tweets are filtered. Due to the usage of URL shorteners like bit.ly [Twitter, 2012a],
all shortened URLs are expanded and all tweets with YouTube videos URLs, Flickr
photos URLs, and Foursquare location URLs are filtered. Then, all tweets that contain

1Instituto Nacional de Ciência e Tecnologia para a Web, http://www.inweb.org.br/
2The Observatório da Web Project, http://observatorio.inweb.org.br/
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these types of URLs are inserted into Foreign meme Database (FMDb). In the second
phase, YouTube [YouTube, 2012], Flickr [Flickr, 2012], and Foursquare [Foursquare,
2012] APIs are used to collect information about the foreign memes and their uploaders,
storing the same in Objects Database (ODb).

Figure 5.1. Data collection framework

Out of the most discussed topics on Twitter in 2010 [Twitter, 2010], a dataset for
FIFA World Cup (FWC), a global event, was created. The FWC is an international
football competition contested by the senior men’s national teams of the members of
Fédération Internationale de Football Association (FIFA), the sport’s global governing
body. The event happens every 4 years and in 2010 it took place in South Africa, from
June 11th to July 11th. The FWC event was monitored from June 10th to July 12th,
using 112 keywords (e.g. worldcup, FIFA and southafrica) in 7 different languages (like
Portuguese, English and Spanish). To ensure no data loss, several redundant machines
were used to collect the same data.

5.1.2 Datasets

Table 5.1 presents the descriptive statistics of the datasets used in this part of the
characterization. A total of 34,306 unique videos URLs were shared on Twitter during
the FWC, in a total of 141,118 tweets, posted by 88,231 users. The videos were
uploaded by 26,026 YouTube users. Table 5.1 also presents statistics about Foursquare
and Flickr datasets, which are less popular than YouTube on Twitter, but still have
a representative number of URLs to study. A baseline dataset, which was created
containing only local memes, is used in several analyses to contrast the characteristics
of Cross-Pollinated networks with the characteristics of Twitter itself. In total, the
baseline dataset has more than 29 million tweets, created by 3.5 million users. This
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comparison helps in understanding how the introduction of foreign memes affects the
diffusion OSM.

Source OSM (SOSM) URLs Tweets Twitter Users SOSM Users
YouTube 34,306 141,118 88,231 26,026
Foursquare 14,896 23,252 14,401 -
Flickr 1,719 2,560 1,419 711
Baseline - 29,038,497 3,511,044 -

Table 5.1. Descriptive statistics of the datasets

In order to verify the representativeness of the datasets, all the analysis were
repeated using keywords related to another popular event in 2010 on Twitter — the
Brazilian Presidential Election. 3 This event was especially monitored during the can-
didate’s campaign, which started on July 6th and ended on October 31st, the final
election day. A set of 30 keywords (e.g. dilma, serra and marinasilva) related to the
candidates and their political parties was used to monitor this event. For a better read-
ability, only the results for FWC datasets are presented, but most of the conclusions
hold for the Brazilian Presidential Election datasets as well.

5.2 Cross-Pollination Characteristics

In this section a key question about Cross-Pollination is investigated: What are the
characteristics of Cross-Pollination? We start with some temporal characteristics, and
then we analyze some topological characteristics.

5.2.1 Sharing Activity

An important temporal characteristic of Cross-Pollination is the volume of tweets gen-
erated by foreign memes on a given day during a certain period of time. Figure 5.2
shows the total number of tweets with foreign memes created on each day during the
FWC event. For comparison purposes, the figure also shows the total number of tweets
with local memes created per day (using baseline dataset). During the whole period,
a similar trend is observed, for all datasets analyzed. The trend of volume of tweets
created due to meme (both foreign and local) sharing is relatively uniform and similar
during the whole period, with small peaks occurring on the same days. Hence, foreign
meme sharing activity follows local meme sharing activity, although absolute numbers

3Dilma Rouseff, elected president of Brazil, was the second most cited person on Twitter in 2010.
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differ significantly (around 103 YouTube foreign memes on Twitter and 106 local memes
on baseline dataset).
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Figure 5.2. Foreign and local meme creation over time

5.2.2 User Participation

In order to verify whether users contribute equally in the traffic generated by Cross-
Pollination on Twitter, User Participation (UP) was defined as the average number
of tweets with memes created per day, for each user. Users were divided into bins
according to their UP, and then the percentage of users in each bin is calculated (see
Figure 5.3). Users contribute equally for the traffic generated by Cross-Pollinated
networks; vast majority of users (more than 90%) are in the same bin, with less than
2 tweets with foreign memes created per day. Furthermore, Cross-Pollinated networks
follow the diffusion OSM in this aspect, as the vast majority (more than 70%) of users
from the baseline dataset is on the same bin. The same observation can be done for
Flickr photos and Foursquare locations.

5.2.3 Diffusion Delay

Diffusion delay is defined as the time between the creation of a tweet and its retweet.
Figure 5.4 shows the complementary cumulative distribution function (CCDF) for the
diffusion delay of the three Cross-Pollinated networks studied and the baseline dataset.
On average, 75% of the memes is retweeted in less than 1 hour, and 97% is retweeted
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Figure 5.3. User participation (UP) in meme creation

within a day. Note that YouTube and Flickr memes tend to be retweeted with a
slightly higher delay than Foursquare and local memes. For example, around 50%
of tweets with YouTube and Flickr memes have a delay larger than 1,000 seconds
(around 16 minutes), while 30% of retweets from Foursquare and local memes have
a delay larger than 1,000 seconds. Nature of the content is a reasonable explanation
for this difference. A user can easily read and quickly respond a direct message (local
meme), while a foreign meme becomes an indirect message as the user is expected to
view the content of the URL before forwarding it. In this case, Foursquare memes are
more similar to local memes because they are usually automatically posted messages
which contain the name of the place from where the user “checked in” together with
the URL of the location. “I am at DCC, UFMG http://4sq.com/XyZw” is an example
of this kind of tweet.

We now turn our focus to analyze topological characteristics of Cross-Pollinated
networks.

5.2.4 Information Cascades

Figure 5.5 shows distribution of number of cascades with cascade size. Out of the
cascades formed by foreign memes diffused, most cascades are composed of only one
initiator and one spreader (i.e., of cascade size 2), which is termed as one level of
diffusion. There are only few cascades which have large cascade size, reaching many
users and users’ followers. For foreign memes that were diffused, the level of diffusion

http://4sq.com/XyZw
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Figure 5.4. Diffusion delay of memes

remains to only one user. Local memes have a similar distribution. Number of cascades
follow 90-10 Pareto distribution with 90% cascades with size ≤ 3 and 10% cascades
with size ≥ 3, for both Cross-Pollinated network and baseline.
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Figure 5.5. Distribution of cascades with cascade size.

Table 5.2 shows a comparison of some graph metrics for information cascades
of the three Cross-Pollinated networks in study and the baseline dataset (all numbers
showed are averages). Twitter users are most attracted towards posting and forwarding
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YouTube videos than Flickr photos, Foursquare locations and local memes (highest #
spreaders / meme). Even then, note that average cascade size for YouTube remains
close to the other datasets. A large number of small cascades neutralize larger cascade
sizes. Average in- and out-degree for Cross-Pollinated networks are higher than baseline
and close to each other. Hence, Cross-Pollinated networks behave similarly, irrespective
of the type of foreign meme diffused.

Source OSM D IN OUT PL NCM CS NSM
YouTube 1.06 1.17 1.12 0.37 2.81 2.53 7.08
Flickr 1.11 1.06 1.48 0.43 1.11 2.69 2.97
Foursquare 1.03 1.09 1.06 0.48 1.02 2.13 2.18
Baseline 1.07 0.53 0.53 - 1.00 2.78 2.78

Table 5.2. Information cascade statistics for three Cross-Pollinated networks
and baseline. Legend: D = degree, IN = in-degree, OUT = out-degree, PL =
path length, NCM = # cascades / meme, CS = cascade size, NSM = # spreaders
/ meme

5.3 Relationship Between OSM Services in a

Cross-Pollinated Network

Two important questions related with the relationship between the OSM services in-
volved in a Cross-Pollinated network are answered in this section: (1) Does Cross-
Pollination across OSM services help to increase the audience reached by the infor-
mation diffused? (2) Is popularity of foreign meme on source/diffusion OSM a factor
affecting its popularity on diffusion/source OSM?

The popularity of a video on YouTube is measured by its view count. On Flickr,
the popularity of a photo is also measured by its view count. The popularity of a
location on Foursquare is measured by the number of “check-ins.” On Twitter, the
popularity of a foreign meme is given by the number of tweets with it. We obtained the
popularity ranking of foreign memes in both the source OSM and the diffusion OSM. In
order to compare two rankings, we used the Kendall’s Tau coefficient [Kendall, 1938],
which is a measure of the rank correlation, denoted by τ . A τ of -0.0001 is observed on
the Cross-Pollinated network between YouTube and Twitter, which demonstrates that
the ranking of popularity of videos in both OSM services are independent. In other
words, if a video is popular on YouTube does not mean that it will also be popular on
Twitter, and vice-versa. Interestingly, the same observation was found for Flickr and
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Foursquare datasets, as the τ is -0.0013 and -0.0001, respectively. Hence, popularity
of foreign meme in source OSM does not influence its popularity in diffusion OSM.

Another interesting aspect to analyze is whether the diffusion of foreign memes
in the diffusion OSM helps in increasing the traffic (popularity of memes) in the source
OSM. Although our datasets do not have information about how many clicks each
URL received on Twitter, some URL shorteners provide APIs with statistics of access
to their links. One of the most popular services is bit.ly, which provides an API [Bit.ly,
2012b]. This API was used to analyze how many clicks each meme shortened in a bit.ly
URL received from Twitter. In order to do this analysis, data for all bit.ly URLs of
our dataset was collected, and then checked how many clicks they received from the
referrer twitter.com. In total, there are 13,158 videos from YouTube dataset (38.4%
of total) and 1,719 photos from Flickr dataset (38.2% of total) shortened with bit.ly.
Foursquare dataset was not considered as we had only 37 bit.ly URLs, which is not
representative. 4

We then analyze the fraction of views 5 that each foreign meme (videos and
photos) received from Twitter. We observe low fractions of views from Twitter, for
many foreign memes tweeted. About 97% of the videos received no more than 1% of
their views from Twitter, and almost 59% of the photos received no more than 1%
of their views from Twitter. Twitter does not seem to be effective in increasing the
popularity of foreign meme on the source OSM. By including only clicks from bit.ly
URLs, we have a lower bound of the fraction of views that came from Twitter. There
can be various other sources contributing to number of views for a foreign meme which
we did not analyze here.

From the above analysis, it is observed that popularity of information on one
OSM does not imply / affect its popularity on other OSM, and vice versa.

4Foursquare has its own URL shortener 4sq.com, which might be the reason for a small number
of bit.ly URLs in our dataset.

5We consider that each click on the URL represents one view in the source OSM.



Chapter 6

Developing a System to Monitor
Information in Online Social Media

In this chapter we explain the architecture proposed for MIOSphere, a system to mon-
itor information in the Online Social Media Sphere. MIOSphere was developed to
monitor the diffusion of URLs in OSM services, but it can be easily extended to mon-
itor any meme.

6.1 Lessons Learned

In the characterization work (Chapters 4 and 5) several findings were crucial for the
development of MIOSphere. The most important lessons learned are described below:

1. All contents have a chance to become popular.

• At some point in time, all memes should be scheduled to be searched. It
is not easy to predict which URL will become popular, as it is not uncom-
mon to see extremely popular URLs from unpopular domains, or posted by
unpopular initiators.

2. Large cascades are rare, but they are extremely large when they occur.

• Large cascades should receive priority when scheduled to be searched. Al-
though the volume of URLs posted per day is extremely large, the fraction
of popular URLs is small, so it is important to detect and give priority to
the most popular URLs in order to avoid losing information about them.

39
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3. A single initiator’s role is likely limited, and popular content usually propagates
through several different propagation trees.

• There is a strong correlation between the total size of the audience and the
number of initiators, which means that the most popular URLs are posted
by several independent users in the social graph. Moreover, the relative size
of the largest propagation tree is marginal. So, a priori, it does not seem to
be helpful to always prioritize URLs initially posted by popular users.

4. The vast majority of tweets with URLs are retweeted in less than 1 hour.

• On average, 75% of the tweets with URLs are retweeted in less than 1 hour,
and 97% are retweeted within a day. As most part of the URLs is unpopular,
and most part of the retweets occurs within a day, the system can detect
when a URL stopped to being posted.

5. The relationship between OSM services is weak.

• The crawler can run separated for each OSM service monitored. The dif-
fusion follows the characteristics of the diffusion OSM only, so it is better
to run a separated crawler for each OSM service, setting up parameters
according to the characteristics of the OSM service.

Another set of lessons were not used in MIOSphere but might be useful to inves-
tigate as future work:

1. Cascade trees on Twitter are likely shallow and wide.

• A visualization revealed that the large cascade trees occasionally included
bursts at all height levels, i.e., the branch out factor is suddenly large at
particular spreaders. Identifying the important spreaders in the cascade,
and the height level might be useful to predict when a given URL is about
to explode in popularity.

2. The type of content affects the potential of the eventual cascade size.

• News, applications, and videos have a higher probability of involving 10 or
more users in spreading than photos and music. Identifying the content of
a URL might help to predict and adopt different policies while scheduling.

3. Content is diffused locally, specially at initial hops.
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• There is a higher probability of users within a short geographical distance
(e.g., 10 km) posting the same URL than those users who are physically
located farther apart. Moreover, content tends to spread short distances only
on the first hops. As soon as friends-of-friends join the cascade and share the
same URL, it reaches users located in different regions and, consequently,
reaches distant locations. Exploring this content locality might be useful for
a distributed crawler.

4. Content published by celebrities or well-known people have a higher chance of
propagating across wider areas.

• Initiators with a small number of followers tend to incur content propaga-
tions to geographically nearby locations. On the other hand, initiators with
a large number of followers tend to be celebrities or well-known people and
incur content propagations across wider areas. Identifying and categorizing
users might help in scheduling in a distributed crawler.

Next, we propose and explain the architecture used in MIOSphere, where the
influence of these lessons will be clear.

6.2 Architecture

A typical Web crawler is composed by three main components: a scheduler to main-
tain a queue of URLs to be visited, a downloader to download the Web pages visited,
and a storage to index and return information about the Web pages to the sched-
uler [Baeza-Yates and Ribeiro-Neto, 2011]. MIOSphere is a focused Web crawler, so
this architecture was chosen for it (see Figure 6.1). The scheduler is responsible for
choosing which URLs should be collected at a given time, based on a importance metric
calculated for each URL. The downloader is responsible for downloading information
about the monitored URLs. The storage is responsible for storing the collected data.

MIOSphere has a distributed architecture composed by one master and several
slave machines. The master is responsible for controlling the whole process, while the
slaves just receive URLs from the master and search for new posts with them in the
OSM services monitored. The workflow of the system is explained below (steps of
Figure 6.1):

1. The scheduler requests URLs available to collect from the storage
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Figure 6.1. MIOSphere’s architecture and workflow

2. The scheduler order the URLs received according to their importance metric,
adding them into a buffer

3. When requested by a slave, URLs from the buffer are sent to be collected

4. The slave receives the URLs to collect

5. The downloader collects information about the URLs using the OSM service
Application Programming Interface (API)

6. The slave saves the information collected in the storage

7. The slave sends back to the scheduler statistics about the collected data

8. The scheduler receives information about the collected URLs

9. The scheduler updates the importance metric (see Section 6.2.1.2) of each URL
collected and save it on the storage

The master is constantly checking if there is some free space in the buffer, re-
questing more URLs from the storage if necessary, and then the cycle starts again on
step 1.
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In Chapter 5 it was learned that the relationship between the OSM services is
weak. Based on this observation, MIOSphere runs separately for each OSM service
monitored, but sharing the storage component.

6.2.1 Scheduler

The scheduler is the most important component of MIOSphere’s architecture, for sev-
eral reasons. First, millions of URLs are shared everyday by OSM users, and most
of them are unpopular, i.e., the popular ones should receive a priority to avoid losing
information about them. Second, there are several limitations in any crawling process,
like the bandwidth available and the politeness to avoid overloading Web servers. For
instance, most OSM APIs impose limits the number of requests made in a given time
window. Third, the system must keep updated information about the URLs moni-
tored, i.e., it must have a good scheduling policy to optimize the usage of resources.
A bad scheduling policy, for example, can frequently lose requests by always selecting
unpopular URLs or URLs which already have updated information. In summary, the
scheduler is like the brain of MIOSphere, and has a strong impact on the system’s
performance.

6.2.1.1 Scheduling Policies

A scheduling policy determines the rules and internal organization of the scheduler to
select which URLs should be collected at a given point in time. MIOsphere’s scheduler
is organized intoMultiple Priority Queues (MPQ). In this organization, the URLs being
monitored are divided into multiple priority queues according to their importance at
a given time. MIOSphere has a priority queue for new URLs, which just entered in
the system, and a set of queues dividing the URLs by their popularity. When getting
URLs from the storage to insert into the buffer, the scheduler will get a number of
URLs from each priority queue.

Using queues is a good approach to the problem as it is assured that all URLs
will be selected at some point in time. Dividing the URLs according to their popularity
is also a good policy because popular URLs will be selected more frequently, as their
priority queue will be smaller. On the other hand, popular URLs might be quickly
selected due to the smaller priority queue and bring a problem. MIOSphere may lose
a request if it quickly selects a given URL, as the interval between two consecutive
requests might not be enough to find new posts with that URL. A parameter with a
minimum amount of time to wait in a priority queue was set up to avoid this problem.
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The scheduler also has a policy to reduce the number of URLs being monitored.
When there are no new posts with a given URL for a given period of time, the scheduler
considers that URL as dead, removing it from the priority queues. In Chapter 4 we
found that most URLs are unpopular (90% have only 1 tweet) and quickly retweeted
(75% of the retweets occur in less than 1 hour), so keeping these URLs in the priority
queues would just result in loss of resources, i.e., requests without any new result, space
in the queue, and bandwidth. A parameter to set up the period of time without new
posts to consider a URL as dead was created for this purpose.

6.2.1.2 Importance Metric

In order to divide the URLs into the multiple priority queues, the scheduler calculates
an importance metric for each monitored URL. The importance metric IMu,t of a URL
u is the number of results found for u in a sliding time window with duration t. In
other words, the importance metric of a URL is the number of new posts collected with
it in the last hour, for example.

The size of the sliding time window is a parameter of MIOSphere, which enables
the system to handle with the dynamics of each OSM service. Moreover, most URLs
call attention of users at a limited period of time, so using a sliding time window to
consider the popularity of the URLs avoids giving priority to URLs that were popular
in the past but are already forgotten by users.

6.2.2 Algorithm

MIOSphere’s algorithm is explained here. Algorithm 1 is the algorithm of the master,
and Algorithm 2 is the algorithm of the slaves. Both are easy to understand, as they
follow the workflow presented on Figure 6.1.

6.2.2.1 Master

The master stays in a loop waiting for requests from the slaves and scheduling
the URLs to send for each slave to collect. The buffer is initialized in the beginning of
Algorithm 1. The master checks if the buffer has free space, and then reads m URLs
from all priority queues, sort then in decreasing order based on their importance metric
and insert into the buffer (lines 4-9). If the master receives a request from a slave, it
will send n URLs from the buffer to the slave collect (lines 11-12). When the slave
sends back to the master some statistics about the collected data, the scheduler will



6.2. Architecture 45

Algorithm 1 MIOSphere Algorithm - Master
1: buffer ⇐ empty
2: while True do
3: {Copy new URLs from storage, sort and add into the buffer}
4: if buffer.size() < k∗buffer.maxsize() then
5: {threshold k is a fraction where 0 < k ≤ 1}
6: list_urls = read(m,all_queues) {Read m URLs, from all queues}
7: sorted_list = reorder_queue(list_urls) {Sort URLs based on their importance

metric}
8: enqueue(buffer,list_urls) {Insert URLs on buffer}
9: end if
10: {Slave is requesting URLs to collect}
11: if request(slave) then
12: send(dequeue(buffer,n)) {Send the next n URLs in buffer to slave collect}
13: end if
14: {Slave is sending statistics about collected URLs}
15: if receive(slave,stats) then
16: for all URL u collected do
17: i = update_importance_metric(u,stats)
18: save(u,i,appropriated_queue) {Insert u in appropriated queue based on u’s

updated importance metric i}
19: end for
20: end if
21: end while

receive and update the importance metric for each URL collected, inserting the URLs
back in the appropriated priority queue (lines 15-20).

6.2.2.2 Slaves

Algorithm 2 MIOSphere Algorithm - Slaves
1: while True do
2: info ⇐ empty
3: list_urls = request(master) {Request URLs to collect from the master}
4: for all URL u in list_urls do
5: buffer = download(u) {Collect information about u}
6: stats = calculate_stats(buffer) {Calculate some popularity statistics of u}
7: enqueue(info,(u,stats))
8: save(u,info) {Save collected information on storage}
9: end for
10: {Send information about collected URLs to master}
11: send(master,info)
12: end while
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The slave stays in a loop requesting URLs to collect. A queue (info) is initialized
to save information about the collected data, on line 2 of Algorithm 2. The slave sends
a request for the master and waits for URLs to collect (line 3). Then, the slave users
the OSM service API to search for new posts with each URL received, calculates some
popularity statistics about the data collected and save in the storage (lines 4-9). After
collecting all URLs, the slave sends to the master the statistics about the collected
data (line 11).

6.3 Simulations

As a tool to help in the development of MIOSphere, a trace-driven simulator was im-
plemented to test several hypotheses and scheduling policies. A trace-driven simulator
users a time-ordered record of events from a real system, i.e., a trace, as its input [Jain,
1991]. In this section we explain details about the simulator and analyze some results
to show how the performance of the system varies with several configurations of its
parameters.

The simulator was written in Python [Language, 2012] and uses the same archi-
tecture proposed and explained in Section 6.2, except that it does not run in parallel.
The simulator works in cycles, simulating the action of the master and each slave.
Several architectures, scheduling policies and parameters were experienced during the
development until reach the final version proposed for MIOSphere.

6.3.1 Traces

Traces from different periods were created from the Twitter dataset gathered in Cha
et al. [2010], the same dataset used in the characterization presented in Chapter 4.
The traces are composed of all tweets posted with URLs in a period of time. Table 6.1
shows some statistics about the traces.

Period URLs Tweets
Trace A Feb 15, 2009 — Feb 21, 2009 2,489,153 3,289,856
Trace B Mar 1, 2009 — Mar 7, 2009 3,096,624 4,187,365
Trace C Mar 16, 2009 — Mar 30, 2009 8,254,440 11,658,592
Trace D Apr 1, 2009 — Apr 15, 2009 10,005,374 14,082,999

Table 6.1. Statistics of the traces utilized in the simulations

Note that for a better evaluation of the system, we created traces from different
periods with different durations.
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6.3.2 Assumptions

In any simulation process is necessary to do some assumptions. In this work, the
duration of each cycle is considered as 1 second. All tweets are collected correctly, i.e.,
the API and the network will not fail. In other words, all tweets the simulator fails
to collect is due to not scheduling the URLs appropriately. The time taken to collect
each URL is assumed to be 1 cycle.

Before starting the simulations, the first URL in the sample is set to post time
0. The post time of the other tweets with URLs is the number of seconds after time 0.
A URL will start to being tracked when the current cycle in the simulation is greater
than or equal to the post time of the first tweet with it. For example, if a URL u was
first tweeted on time 10, only after cycle 10 u will be available to be collected.

6.3.3 Evaluation Metrics

Some metrics were defined to evaluate the performance of the simulated system:

• Tweet Coverage (TC): the percentage of all tweets with the monitored URLs
which were collected

• URL Coverage (UC): the percentage of URLs that have at least one tweet
collected

• URL Precision (UP ): the percentage of URLs that have all tweets collected

• Correlation (CORR): the Pearson’s correlation coefficient between the total
number of tweets and the total number of tweets collected for each URL

Note that most of the proposed metrics are similar to popular evaluation met-
rics for Information Retrieval algorithms — precision and coverage [Baeza-Yates and
Ribeiro-Neto, 2011]. TC captures what fraction of the total available data the system
was able to collect. UC and UP capture what fraction of the URLs the system was able
to collect partially and completely, respectively. CORR is used to evaluate whether
MIOSphere was able to collect more data from the most popular URLs. The higher
CORR is, the best the performance is, but CORR must be analyzed as a complement
of the other evaluation metrics. For instance, consider a scenario A where TC = 10%
and CORR = 1.0, and a scenario B where TC = 90% and CORR = 0.8. In this case,
the performance of B is much better than A, as it was able to collect much more tweets
with a high CORR.
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6.3.4 Parameters

The simulator has several parameters to adapt the system for the dynamics and char-
acteristics of each OSM service monitored. Most parameters are part of MIOSphere’s
architecture, and a small part is specific of the simulator.

The parameters are divided into two groups: fixed and variable. The fixed set of
parameters is composed by those parameters which do not have their valued changed
during the simulations. Most fixed parameters are dependent of the resources available
and cannot be changed in a real implementation. Other fixed parameters are assump-
tions we had to make and some parameters not related with the scheduler. On the
other hand, the variable set of parameters is composed by those parameters which have
their value changed during the simulations. All of them are related with the scheduler
policies which we want to evaluate. A description of the fixed and variable parameters
is provided below:

• Fixed:

– Number of URLs to each slave collect (NUSC): the number of URLs
to send for each slave collect

– Maximum number of results (MNR): the maximum number of tweets
returned when requesting data

– Maximum number of requests (MNRQ): the maximum number of
requests each slave can make during a given period of time

– Period MNRQ (PMNRQ): the period of time to consider MNRQ

– Time to collect data (TCD): the amount of time that each slave takes
to collect data, given in number of cycles of the simulator

– Buffer size (BS): the size of the buffer component, given in number of
URLs to store

– Minimum free space buffer (MFSB): the minimum amount of free
space in the buffer in order to fill it with new URLs from the database

– Number of slaves (NS): the number of slaves to collect data

• Variable:

– Importance sliding window size (ISWS): the period of time to consider
in the calculus of the importance metric

– Dead threshold (DT ): the amount of time to consider a URL as dead
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– Waiting time queue (WTQ): the minimum period of time each URL has
to wait in the priority queue before being sent to the buffer

– Number of priority queues (NPQ): the number of priority queues used

– Priority queues thresholds (PQT ): thresholds to divide URLs in the
priority queues

All time periods are in seconds. MNR = 2, 000,MNRQ = 350, and PMNRQ =

3, 600 were adjusted according to the limits imposed by the official Twitter API. TCD
is the number of cycles taken to collect, fixed at 1 cycle in the simulations. MFSB

was fixed at 4,000 and BS was fixed at 5,000. NS was fixed at 100, and NUSC was
fixed at 25.

6.3.5 Analysis

A simple design is the experimental design chosen to perform and analyze the simula-
tions. In this experimental design, we start with a typical configuration of parameters
and vary one parameter at a time to evaluate how that parameter affects the perfor-
mance [Jain, 1991].

We are aware that, this simple design does not make the best use of the effort
spent and it is not statistically efficient, but the goal of the simulator is just to help in
the development of MIOSphere, as we do not need to download the data from the Web
for each scheduler policy we want to test. Moreover, the simple design enables us to
analyze changes in the performance due to the variation of one independent parameter.

6.3.5.1 Dead Threshold (DT )

The DT parameter is the time to consider a URL as dead, i.e., when there are no new
tweets with that URL for a determined period of time. DT is varied from 6 hours
(21,600 seconds) to 7 days (604,800 seconds), while the other variable parameters are
fixed at the following values: WTQ = 3, 600, ISWS = 3, 600, NPQ = 2, PQT = [100].
Table 6.2 shows the results, which are averages from all the traces.

Small variations were observed for different DT values (the same is true for each
trace separately). Note that the best results were achieved when DT = 86, 400, i.e., if
we remove from the priority queues URLs which were not tweeted for 24 hours. This
result is not surprising as the vast majority of the URLs have only a few tweets (see
Chapter 4). Furthermore, a recent blog post showed that, on Twitter, a URL receives
half of its clicks in only 2.8 hours, on average [Bit.ly, 2011]. Note that using a higher
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DT TC UC UP CORR
21,600 78.4 84.2 82.1 0.7893
43,200 79.5 84.0 82.4 0.8112
86,400 79.7 83.5 82.2 0.8154
259,200 78.0 82.3 81.0 0.8097
604,800 77.6 82.1 80.7 0.8055

Table 6.2. Dead Threshold results (average of all datasets)

DT value is not good as the queues will have more URLs possibly already forgotten
by users (the performance starts to decrease after DT = 86, 400).

For comparison purposes, a baseline approach where the scheduler simply stores
all URLs monitored in a single queue was implemented. Table 6.3 shows the results.

DT TC UC UP CORR
21,600 79.1 84.7 82.8 0.5590
43,200 78.7 83.0 81.5 0.5558
86,400 75.3 78.4 77.5 0.5514
259,200 66.8 69.1 68.5 0.4469
604,800 61.2 62.7 62.2 0.4421

Table 6.3. Dead Threshold results (average of all datasets) for the baseline
scheduler policy

In the baseline approach, we observe a decreasing tendency in the performance as
DT values are increased. Using high DT values, a large number of already dead URLs
will be kept on the queue, which is unnecessary and waists requests, space, bandwidth,
and time.

Comparing TC, UC, and UP values in tables 6.2 and 6.3, note that, surprisingly,
the baseline approach achieves a good performance with DT = 21, 600. However,
when comparing CORR values, we note that the performance of MPQ is much better.
Figure 6.2 shows a scatter plot between the number of tweets collected and the total
number of tweets, for all URLs taken from Trace D with DT = 86, 400 for the MPQ
Scheduler (left), and DT = 21, 600 for the Baseline approach (right). The same pattern
is observed for traces A, B and C as well.

In some scenarios the baseline approach could collect more URLs than MPQ
scheduling policy (UC slightly larger), but losing more tweets from the most popular
URLs (see Figure 6.2). As the goal of MIOSphere is to track the diffusion of URLs,
losing more information from the most diffused URLs is not a good scenario.

Another interesting point to note is that the performance of the MPQ scheduling
policy is much better than the baseline with higher DT values. Waiting more time
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Figure 6.2. Number of tweets collected versus total number of tweets, for each
URL of Trace D, using MPQ (left) and the baseline scheduling (right).

before considering a URL as dead may be good to avoid killing URLs that have a “cold
start”, i.e., take more time to start being tweeted after the first tweet, or those URLs
that diffuse slowly.

6.3.5.2 Waiting Time Queue (WTQ)

Waiting some time before scheduling a URL to search for new posts might be interesting
for the system’s performance because users might take some time to diffuse a URL and
the OSM service API might also take some time to process it. The purpose of WTQ

parameter is to avoid scheduling the most popular URLs quickly, as the high priority
queues are usually small. In order to verify this, WTQ was varied from 1 minute (60
seconds) to 12 hours (43,200 seconds). The other variable parameters were fixed at the
following values: DT = 259, 200, ISWS = 3, 600, NPQ = 2, PQT = [100]. Table 6.4
shows the results, which are averages from all traces. All the conclusions hold for all
traces individually.

WTQ TC UC UP CORR
60 76.9 81.9 80.6 0.5979
1,800 77.7 82.2 80.8 0.7936
3,600 78.0 82.3 81.0 0.8097
21,600 76.7 80.5 79.4 0.6987
43,200 75.6 79.0 78.0 0.6600

Table 6.4. Waiting Time Queue results (average of all datasets)

The best performance was achieved with WTQ = 3, 600 seconds (1 hour). Small
WTQ values are not efficient because a URL might be quickly selected by the scheduler,
without having time to be tweeted by more users. Large WTQ values are also not
efficient because the URLs might take a long time to be selected by the scheduler,
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which may result in losing posts with them (Twitter API only returns a maximum of
2,000 results of tweets which are less than 7 days old).

Note that if the volume of data is huge the WTQ will not affect the performance,
as the priority queues will be larger and a URL will take more time to reach the first
positions in the queue. WTQ is effective in the beginning of the simulations, when the
queues are empty.

6.3.5.3 Importance Sliding Window Size (ISWS)

The purpose of the ISWS parameter is to capture the dynamics of the OSM service
monitored. In Section 6.2.1.2, the importance metric (IMu,t) of a URL u was defined as
the number of results found for u in a sliding time window with duration t. ISWS is the
duration t, which was varied from 1 hour (3,600 seconds) to 7 days (604,800 seconds).
The other variable parameters were fixed at the following values: DT = 259, 200,
WTQ = 3, 600, NPQ = 2, PQT = [100]. Table 6.5 shows the results, which are
averages from all traces. All the conclusions hold for all traces individually.

ISWS TC UC UP CORR
3,600 78.0 82.3 81.0 0.8097
43,200 77.9 82.3 81.0 0.6153
86,400 78.0 82.3 81.0 0.8040
259,200 78.0 82.2 80.9 0.8087
604,800 78.0 82.1 80.8 0.8012

Table 6.5. Importance Sliding Window Size results (average of all datasets)

The performance is not significantly affected when ISWS is varied. The reason
is that most part of the URLs are unpopular (90% have only 1 tweet) and are quickly
retweeted (75% in less than 1 hour). Based on this observation, a real implementation
could calculate the importance metric of a URL by simply considering the number of
results returned in the last attempt to collect posts with it. This is good for a real-time
system because the calculus is straightforward, without any additional memory or CPU
usage.

We believe ISWS may be useful to handle with the dynamics of other OSM
services with different diffusion patterns, but testing this hypotheses was left for future
work.
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6.3.5.4 Number of Priority Queues (NPQ) and Priority Queues Thresholds
(PQT )

Finally, we analyzed the performance of the scheduler varying the number of priority
queues and the thresholds to separate the URLs. The other variable parameters were
fixed at the following values: DT = 259, 200, WTQ = 3, 600, ISWS = 3, 600. Ta-
ble 6.6 shows the results, which are averages from all traces. All the conclusions hold
for all traces individually.

NPQ [PQT] TC UC UP CORR
3 [1] 74.5 79.1 77.9 0.6073
3 [10] 77.9 82.2 80.9 0.8031
3 [100] 78.0 82.3 81.0 0.8097
3 [1,000] 78.0 82.3 81.0 0.8094
4 [1;10] 74.4 79.2 77.9 0.6034
4 [10;100] 77.4 82.2 80.9 0.6226
4 [100;1,000] 78.0 82.3 81.0 0.8041
5 [1;10;100] 74.4 79.2 77.9 0.6042
5 [1;100;1,000] 74.5 79.1 77.9 0.6078
5 [10;100;1,000] 77.8 82.3 80.9 0.6226

Table 6.6. Number of Priority Queues and Priority Queues Thresholds results
(average of all datasets)

The performance is significantly affected when different thresholds are used to
divide URLs into the priority queues, specially separating the most unpopular URLs.
We learned from the characterization part of the work that large cascades are rare but
extremely large when they occur (see Chapters 4 and 5). Separating the unpopular
URLs from those which have been shared a few times makes a significant difference in
the performance. Creating several priority queues is just dividing the popular URLs.
However, we note that this result might be different for different OSM services or memes
with a different popularity distribution. Testing this hypothesis is left for future work.

6.3.6 Discussion

Huge variations were not observed in the performance of the system, which may be
due to the skewed popularity distribution of the Twitter traces utilized. However, we
believe that MIOSphere is efficient and robust, for several reasons. Scalability is reached
by using a distributed architecture with several machines collecting data in parallel.
Robustness is reached by using a rich set of parameters to adapt the system for the
characteristics of each OSM service. Efficiency is reached by dynamically separating
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the most discussed URLS from the unpopular ones, as well as by cleaning the dead
URLs from the scheduler queue.

MIOSphere’s architecture needs to be tested under different conditions, i.e., for
different memes with different popularity distributions and propagation patterns. In
general, we believe the performance achieved by MIOSphere on Twitter was satisfactory
for a first step (average of almost 80% of all possible tweets collected using only 100
clients).

6.4 Prototype

In order to validate and test the proposed architecture, we implemented a prototype
to track the diffusion of URLs on popular OSM services (Twitter, Facebook, and
Google+). A set of seed user accounts, which usually post several URLs per day,
was created to feed MIOSphere with URLs to track. This set of seed user accounts is
composed by the top 100 Twitter accounts (based on number of followers) from the top
10 categories (Celebrity, Music, Socialmedia, Entrepreneur, News, Blogger, Tech, Tv,
Actor, Comedy) of the Web application wefollow.com [WeFollow, 2012], which suggest
Twitter user accounts to follow. In total, 696 unique users were selected.

We also created a heuristic to find the correspondent accounts on Google+. In
this heuristic, the first result returned by Google+ search engine using the Twitter
username as the query was selected. Then, we manually checked if the accounts were
from the same real person or company. 274 Google+ users were identified.

MIOSphere’s prototype is written in Python, uses MySQL [MySQL, 2012] server
for the database, and Django [Django, 2012] with Apache [Apache, 2012] for the
Web application. The prototype uses the proposed architecture and has a central-
ized master coordinating several slaves to collect data. MIOSphere is available at
http://miosphere.speed.dcc.ufmg.br/.

Figures 6.3, 6.4, 6.5, and 6.6 presents some snapshots of the prototype.

MIOSphere’s prototype has to deal with many challenges to work properly. For
instance, (1) MIOSphere deals with the presence of short URLs, resolving them; (2)
MIOSphere detects when a client has been blocked by the OSM service API; (3) when
the network is unavailable; (4) and when a client is not working; (5) MIOSphere also
recovers from a previous run which has been killed (loss of energy, for example); and
(6) a communication protocol between the server and the clients was developed. Most
of these things were not considered in the simulations.

http://miosphere.speed.dcc.ufmg.br/
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Figure 6.3. Snapshot of MIOSphere’s interface: Home page

Figure 6.4. Snapshot of MIOSphere’s interface: most popular URLs monitored
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Figure 6.5. Snapshot of MIOSphere’s interface: detail about the diffusion of a
URL
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Figure 6.6. Snapshot of MIOSphere’s interface: about the project page

6.4.1 Collected Data

The prototype is running since March 26, 2012 using 15 machines at Universidade
Federal de Minas Gerais. After 7 weeks running (May 7, 2012), the 970 seed accounts
(see Section 6.4) posted 673,463 URLs (original URLs and their aliases, i.e., the short
and resolved links). In total, 5,108,239 posts with these URLs were collected in all the
3 OSM services monitored. A total of 4,966,557 posts are from Twitter, 115,712 are
from Google,+ and 25,970 posts are from Facebook. Manual inspection on the most
shared URLs revealed that most of them as posted in more than one OSM service,
but usually most part of the posts are from a single service. All the top 10 URLs are
more popular on Twitter, and usually most part of the posts are retweets. Moreover,
different propagation patterns were observed. Some URLs have a huge peak of posts
in one day and then quickly decreases, while others are periodic with a similar number
of posts in several days. Figure 6.7 shows the number of posts collected per day for
the top 5 URLs monitored by MIOSphere.
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Figure 6.7. Top 5 shared URLs collected by MIOSphere
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The most shared URL monitored in the period is http://t.co/zHFGT8Yk, which
was posted 31,194 times (31,189 on Twitter, 1 on Facebook, and 4 on Google+). This
URL corresponds to the iTunes page which is selling the song “Boyfriend”, from the pop
singer “Justin Bieber”. The second most shared URL is http://t.co/XfMnJsat, which
points to a Japanese Web page and looks like a news portal. http://t.co/5LLFr9mw
is the third most shared URL and links to a YouTube video advertising a DVD from
the band “One Direction”. The fourth and fifth most popular URLs, http://t.co/
XfMnJsat and http://t.co/5LLFr9mw, respectively, are also related to music. The
fourth points to a video clip of a new song of the pop singer “Justin Bieber”, the same
song of the most shared URL monitored. The fifth URL links to a live streaming of a
radio station, which might explain the pattern of around 400 tweets every day.

This manual inspection give us an evidence to generalize the finding that the
relationship between OSM services is weak (see Section 6.1), as we are tracking URLs
created in 2 source OSMs and diffused into 3 diffusion OSMs, but we let a better
analysis on this topic as a suggestion for future work.

http://t.co/zHFGT8Yk
http://t.co/XfMnJsat
http://t.co/5LLFr9mw
http://t.co/XfMnJsat
http://t.co/XfMnJsat
http://t.co/5LLFr9mw




Chapter 7

Conclusions and Future Work

In this dissertation we presented MIOSphere, a system to monitor the diffusion of
information through Online Social Media services. A real prototype was implemented
to show that the proposed system works not only in theory. Moreover, several aspects
of the diffusion of URLs through popular OSM services were presented, a crucial step
for the development of MIOSphere.

7.1 Main Contributions

There are two main contributions of this dissertation: (1) several interesting findings on
the wide characterization about the diffusion of URLs, and (2) a scalable and efficient
solution for monitoring information in OSM services.

Some of the main findings presented in this dissertation are: (a) Word-of-mouth
can be used to spread a single URL to a large audience, in some cases several mil-
lion users; (b) Popular URLs spread through multiple disjoint propagation trees; (c)
Domains of URLs popularly spread by word-of-mouth tend to be different from those
popularly accessed in the general Web. Independently of the domain, all URLs have a
chance to become popular; (d) There is a significant correlation between propagation
and physical proximity; (e) Cross-Pollinated networks follow temporal and topological
characteristics of the diffusion OSM; (f) Popularity of a meme on source OSM does
not imply its popularity on diffusion OSM.

The most important contribution of this work is the architecture of a scalable
system to track, in real-time, the diffusion of memes in several OSM services. One
crucial aspect for the performance of such kind of a system is to choose which memes
should be downloaded at each time, especially if the resources are limited and the
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number of memes to track is huge. With a good scheduling scheme, the amount of
data collected can be significantly increased.

7.2 Future Work

There are several directions towards this work can evolve. Many suggestions were
already given all over this dissertation. As expected for a first approach to the problem,
there are several possible improvements to be done in the architecture. In Section 6.1
we discussed some lessons learned from the characterizations that could be explored.
Combining techniques like RSS and streaming with the proposed may worth studying.
Several aspects of the diffusion of information in OSM services can be exploited, like
determining the topological structure of initiators that will speed up the propagation
of content; modeling the propagation of content; and improving the ranking of actual
search engines for real-time content based on the spread patterns of word-of-mouth
propagation of URLs. Developing such kind of tools would have an important impact
in the commercial world, such as advertising and political campaigns, as well as for
Web users in general.

7.3 Limitations

Although the work done in this dissertation was wide and near-complete, it has some
limitations. First of all, most of the studies are based on Twitter datasets. In the
literature exists other characterization works on different OSM services which show
similar characteristics, but there are some differences. MIOSphere is supposed to run
separated for each OSM service, with a different configuration of parameters to handle
well with the dynamics and characteristics of each service. Another limitation is the
lack of similar works to compare the performance achieved. As a consequence, we do
not know whether we can improve our performance or not, and we might still be far
from the optimal solution for the problem.
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