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Abstract

Ranking is an essential feature of many applications: from web search to product rec-

ommendation systems and online advertising, results have to be ordered based on their

estimated relevance with respect to a query or based on a user profile or personal

preferences. Ranking is especially important in Web Information Retrieval where a

simple query can return hundreds of thousands or millions of documents, but the user

will probably only scan the first few results. Learning to Rank (L2R) algorithms use

Machine Learning (ML) techniques to provide better rankings than those obtained by

classic Information Retrieval models, such as BM25. L2R algorithms need a labeled

training set to generate a ranking model that can be later used to rank new query

results. These training sets are very costly and laborious to produce, requiring human

annotators to assess the relevance or order of the documents in relation to a query. Ac-

tive learning algorithms are able to reduce the labeling effort by selectively sampling

an unlabeled set and choosing data instances that maximize a learning function’s effec-

tiveness. In this work we propose a novel associative rule-based active learning method

that can be used to actively select document instances from an unlabeled set without

the need of having an initial seed training set. Used alone, this method provides very

small and yet effective training sets. Although effective, this method is not easily ex-

tended to select more instances if necessary. Thus, another contribution of this work is

a round-based second stage selection method can be used to select more instances for

labeling as needed. This second stage method initially uses the small sets selected by

the first method to train a committee of distinct L2R algorithms. It then progresses

iteratively in rounds selecting, for each query, those documents that the committee

members most disagree about in ranking. Together, these complementary methods are

very powerful and flexible making the resulting combined method applicable to many

real-world scenarios. We test our methods with various benchmarking datasets and

compare them to several baselines to show that they achieve very competitive results

using only a small portion of the original training sets. For instance, in half of the

datasets tested, while selecting less than 5% of the original training sets, the proposed
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combined method achieves results that are better than state-of-the-art L2R algorithms

trained on the complete training sets and that also surpass a strong active learning for

L2R baseline method.
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Resumo

A ordenação de resultados é uma funcionalidade essencial de muitos sistemas: desde

máquinas de busca na Web, passando por sistemas de recomendação de produtos e pro-

paganda virtual, resultados devem ser ordenados de acordo com sua relevância para

a busca efetuada ou baseado em preferências do usuário ou em seu perfil. Essa or-

denação é especialmente importante para sistemas de busca na Web, uma vez que uma

simples pesquisa pode retornar centenas de milhares ou milhões de documentos, mas

o usuário provavelmente irá visualizar apenas alguns poucos no topo da lista. Algorit-

mos que aprendem a ordenar (Learning to Rank - L2R) usam técnicas de aprendizado

de máquina para produzir ordenações melhores do que aquelas obtidas por mode-

los clássicos de Recuperação de Informação, como o BM25, por exemplo. Métodos

L2R necessitam de um conjunto de treino rotulado para poderem gerar um modelo

de ordenação que pode depois ser utilizado para ordenar os resultados de novas bus-

cas. Esses conjuntos de treino são dif́ıceis e caros de produzir, pois é necessário que

especialistas humanos avaliem os documentos retornados, indicando se são ou não rele-

vantes ou então provendo uma ordem parcial ou total desses documentos de acordo com

sua relevância para a busca. Algoritmos de aprendizado ativo podem reduzir o custo

desse processo de análise de relevância, selecionando de um conjunto não-rotulado de

instâncias que têm o potencial de acelerar o aprendizado do algoritmo de L2R, maxi-

mizando a eficácia do modelo aprendido. Nessa dissertação, propomos um novo método

de aprendizado ativo baseado em regras de associação que pode ser usado para sele-

cionar documentos de um conjunto não-rotulado sem a necessidade de um conjunto

inicial de treino. Esse método seleciona conjuntos de treino pequenos e efetivos. En-

tretanto, não é simples estender esse método para selecionar mais documentos caso isso

seja necessário. Portanto, outra contribuição desse trabalho é um método iterativo de

seleção de documentos que pode ser usado para selecionar mais instâncias para serem

rotuladas. Nesse segundo estágio, inicialmente usamos os documentos selecionados

pelo primeiro método para treinar um comitê de algoritmos L2R distintos. Depois,

o método progride iterativamente selecionando, para cada busca, aqueles documentos
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cuja ordem mais varia entre as ordens propostas pelos membros do comitê. Usados em

conjunto, esses dois métodos são poderosos e flex́ıveis, podendo ser aplicados em vários

cenários reais. Testamos os métodos propostos utilizando vários conjuntos de teste da

coleção LETOR e mostramos que eles obtém resultados competitivos selecionando uma

pequena fração dos conjuntos de treino originais. Em metade dos conjuntos de teste

avaliados, selecionando menos de 5% dos treinos originais, a combinação dos métodos

obtém resultados melhores do que aqueles obtidos por algoritmos L2R do estado-da-arte

utilizando os treinos completos. Também mostramos que a combinação dos métodos

é melhor do que um algoritmo de aprendizado ativo para L2R recentemente proposto

na literatura.
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Chapter 1

Introduction

We live in The Age of Information. The advent and impressive growth of the Web has

brought about a deluge of information that is increasingly accessible through networked

devices anytime, anywhere. Individuals, companies, government and other institutions

are publishing and consuming an enormous amount of information on a daily basis.

The distributed nature of this publishing process and the ease-of-use of its underlying

technologies and protocols has allowed the Web to develop and grow as fast as it

does but has also made harder the problem of efficiently and effectively searching

and accessing relevant information. The development and adoption of the Web as an

information sharing platform has spurred new research and technology to help dealing

with the challenge of sieving through the data to quench our information needs. As

a consequence, the field of Information Retrieval has seen major new developments in

the last two decades.

Information Retrieval, or IR, concerns the technologies and methods for retrieving

from a collection of information items those that satisfy an information need expressed

by a user. A Web search engine, for instance, uses IR techniques to index and make

available for search a portion of the information items accessible through the Web.

These information items are usually web pages containing text, but they can also be

images, videos or other structured or semi-structured data. The plain size of the Web

poses enormous practical challenges on the design, implementation and operation of

a web search system. Not only the size of such “collection” is of the order of tens

of billions of documents, but a good part of its content is constantly changing: new

content is being added and old content being updated or removed.

An essential function of an IR system is to be able to rank the results returned for

an user query in such a way as to maximize the chance that the most relevant documents

for the query appear at the top of the ranked list. In fact, the concept of ranking is at
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2 Chapter 1. Introduction

the core of some of the classic IR methods that we will briefly describe in Chapter 2. In

the last ten years or so, there has been growing interest in applying Machine Learning

(ML) techniques to the ranking problem. ML techniques have been successfully applied

to many difficult problems in the past. We are particularly interested in supervised

learning where past evaluations of the relevance of documents ranked by some IR

system (what we call training data) is used to train a ranking system so that the

resulting learned model or function can be used to better rank documents returned by

new queries.

These Learning to Rank (L2R) methods have shown to be very effective, providing

better rankings than the classic IR approaches. But in order to be able to use a L2R

method one needs to have training data: query-document data instances that are

annotated by human assessors indicating whether they are relevant to the query. In

supervised learning, these are known as the labeled examples from which the learning

algorithm can derive a function or model that can be later used to rank documents

returned as result to a new query.

1 Context and Motivation

Learning to Rank algorithms rely on labeled or ordered training sets to build ranking

models that are used to rank results at query time. To create these training sets, human

annotators must somehow evaluate the documents returned by a set of queries. This

can be done by experts that analyze each document in turn, or by users of an IR system

through some sort of Relevance Feedback (RF) mechanism such as clickthrough data

(see, for instance, Joachims [2002] and Radlinski and Joachims [2007]). Depending

on what type of rank learning algorithm is used, it may be necessary to provide a

binary relevance judgment (i.e. relevant, not relevant), a relevance level (e.g., somewhat

relevant, very relevant, extremely relevant), a pairwise ordering (e.g. document di is

more relevant than document dj or di � dj) or a complete or partial ordering of the

documents returned by a query (e.g. di � dj � [...] � dk). These different relevance

judgment types correlate to the three main approaches used by L2R methods; namely

pointwise, pairwise and listwise.

Quality training data is necessary for learning to rank algorithms to be effective.

Yet, it is expensive to produce any amount of it. Active learning techniques have been

proposed to help dealing with the labeling effort problem. The motivation behind

active learning is that it may be possible to achieve highly effective learning functions

by carefully selecting and labeling instances that are “informative” to the learning



2. Contributions 3

algorithm. Using active learning, we can reduce the cost of producing training sets for

rank learning algorithms and even improve the effectiveness of the learned functions by

avoiding adding “noisy” instances to the training sets. Furthermore, human annotators

can spend more time analyzing the relevance of each selected instance, producing better

training data.

In a typical active learning scenario, data instances are selected from an unlabeled

set one at a time and labeled by a human expert. Every time a new sample is selected

and labeled, a new learning model is produced and the active learning algorithm again

chooses a new instance from the unlabeled set. This process can be repeated as long

as necessary, until the labeling budget is exhausted or until the learned model achieves

a some predefined quality or property. The product of an active learning method is

a small and yet highly effective training set that can be used by supervised learning

algorithms to rank new user queries.

2 Contributions

In this work we propose two new active learning techniques for L2R. The first, detailed

in Chapter 4, uses on-demand associative rules to sample an unlabeled set, selecting

document instances based on a simple diversity principle. This technique is highly effec-

tive, obtaining very good results and selecting extremely small training sets. Although

effective, this method is not easily extended to select more instances if necessary. If,

after using ARLR, there’s still labeling budget available or for some other reason it is

possible or desirable to select and label more instances, an extension of the method is

necessary. In Chapter 5 we propose a round-based second stage procedure based on

a Query-By-Committee (QBC) process that allows for the selection and labeling of as

many instances as desired or possible, given the available resources.

These two techniques complement each other. Using them, it is possible to build

a learning to rank training set from scratch and use it to effectively rank results from

new queries. The proposed methods are practical and easily applicable in a real-world

scenario where no previous training data is available.

In summary, the main contributions of this work are:

• An Active Rule-based Learning to Rank (ARLR) method that can be used to

actively select document instances from an unlabeled set without the need of

having an initial seed training set. This work has been published in Silva et al.

[2011]. Used alone, ARLR provides very small and yet effective training sets with

the advantage that it naturally stops selecting instances. This characteristic may
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be useful in certain real-world situations where all that is needed is a small

training set to bootstrap the learning process.

• A round-based second stage selection method (QBC) that can be used to se-

lect more instances for labeling as necessary. This second stage method initially

uses the small sets selected by ARLR to train a committee of distinct L2R algo-

rithms. It then progresses iteratively in rounds selecting, for each query, those

documents that the committee members most disagree about in ranking. To-

gether, these complementary methods are very powerful and flexible making the

resulting combined method applicable to many real-world scenarios.

3 Document Organization

Before discussing the novel active learning techniques presented in this work, we briefly

introduce some key concepts related to Ranking, Learning to Rank and Active Learn-

ing. This is done in order to familiarize the reader with some of the concepts that

will later be relied upon when presenting and analyzing the proposed active learning

methods. The reader may choose to skip some of the material in the second and third

chapters.

Chapter 2 starts with a general description of the ranking problem and a quick

primer on the classic ranking models. We then lay out a general framework for eval-

uating a ranking algorithm and explain some of the most common metrics used to

evaluate ranking quality. We also discuss Learning to Rank, detailing a simplified L2R

framework and glossing over the three main categories of learning to rank methods.

We then describe the LEarning TO Rank (LETOR) benchmarking datasets that we

use in the experimental evaluation of the methods proposed in this work. This Chap-

ter also provides an overview of the Rule-based Learning to Rank (RLR) supervised

method proposed by Veloso et al. [2008], from which we derived the idea of the active

learning method we call ARLR. Finally, we give a brief description of two well known

supervised L2R algorithms that are used in the QBC strategy described in Chapter 5.

In Chapter 3 we start by further discussing the motivation behind active learning

and then briefly describe some of the active learning strategies that have been developed

by ML researchers over the years. We then present a review of active learning methods

designed specifically for learning to rank. Finally, we describe in some detail one of

these methods which we later use as an active learning to rank baseline.

In Chapter 4 we present a novel Active Rule-based Learning to Rank (ARLR)

method. The chapter starts by explaining how we derive a diversity-based active
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learning strategy from RLR. We then present the results obtained by extensive exper-

imentation of ARLR on the LETOR 3.0 datasets, and discuss some practical aspects

and extensions of the method. We compare the results with several baselines (both

active learning methods and supervised methods), showing that ARLR obtains very

competitive results selecting extremely small training sets.

Chapter 5 proposes a two-stage hybrid active learning approach where ARLR is

used to select small initial training sets that are then used by a round-based Query-

By-Committee (QBC) active method to expand the selection as needed or desired.

This novel method is not only very effective, but also very flexible and practical. We

again describe the extensive experimentation performed using this new technique and

analyze the results in depth, proposing some variations and improvements.

Finally, in Chapter 6 we summarize the main aspects of this work and trace some

of the future directions that can be pursued based on what we have learned from the

current work.





Chapter 2

Ranking and Learning to Rank

1 Ranking

1.1 Introduction

Ranking is an essential feature of many applications: from web search to product

recommendation systems and online advertising, results have to be ordered based on

their estimated relevance with respect to a query or based on a user profile or personal

preferences. Ranking is especially important in Web Information Retrieval where a

simple query can return hundreds of thousands or millions of results, but the user will

probably only scan the first few results (according to Granka et al. [2004], usually only

the first six or seven results). Thus ranking the results to a query in such a manner as

to effectively put the most relevant items on the top of the list is of utmost importance.

Ranking may be the the most visible part of an Information Retrieval system

(especially if it fails to actually put very relevant results in the first few positions),

but it is not the only one. An IR system must first index the collection of documents

in such a way as to make the process of retrieving the relevant documents efficient

and effective. For web search engines, this task can be daunting, since it must first

collect or crawl the Web, storing what amounts to be almost a copy of it before the

indexing process can take place. The indexing process is done so as to create a logical

view of the documents in the collection that allows for the actual process of retrieving

results for a query to be efficient and effective. Figure 2.1 shows a simplified diagram

of this process. The collected documents are indexed by the IR system, generating

the “Logical View”. A user poses a query to the IR system, which uses the logical

view to find the documents relevant to the query. The IR system can then process the

documents that were retrieved (generating, for instance, text snippets to be presented

7
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Logical

View
Collection
Document

IR
System

User

Figure 2.1. Ranking Framework

in the result interface) and gather pointers so as to be able to retrieve the actual

documents that the user decides to view. There are many other processes that are not

shown in the figure. In Web IR systems, the process of collecting the documents and

generating their logical views is never ending: the system is constantly crawling for

new pages or updating already indexed documents. The query process itself is usually

much more complex, with some sort of query expansion mechanism modifying the user

query to improve its retrieval efficiency. For our purposes, this simple diagram will

suffice. In Section 3 we will expand the diagram showing how a Learning to Rank

system relates to this simple framework.

Before that, in the next section, we briefly describe some of the most well known

IR models so the reader may understand how the indexing process works and how

it relates to the actual retrieval and ranking of query results. As we will see in Sec-

tion 3, learning to rank systems are usually used to re-rank some of the results that

were retrieved (and possibly ranked) by the underlying IR system. We also briefly

describe an evaluation framework for ranking quality in Section 2, presenting some

of the most common metrics used to evaluate the quality of ranking (and learning to

rank) algorithms. Readers already familiar with the field of IR can skip the next two

sections.

1.2 Classic Ranking Models for IR

Ranking is an integral part of most Information Retrieval systems. In fact, according to

Baeza-Yates and Ribeiro-Neto [2011], “[t]he fundamental premises that form the basis

of a ranking algorithm determine the IR model”. That is, we design and implement IR

systems with the ranking problem in mind. In that work, the authors identify three

groups of classic IR Models, namely Boolean, Vector and Probabilistic. Let’s first

define some basic concepts in order to give a brief primer on the main models.
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Given a collection of documents, we call D the set composed of logical views

or representations of the documents in the collection. These logical views are usually

composed of some representation of index terms or keywords; that is, each document

is described by a set of index terms. An index term can be a word or a group of

consecutive words. All index terms in the collection form the set V = {k1, ..., kt}, of

distinct terms called the vocabulary V (of size t) of the collection. These concepts allow

us to represent a document dj or a query qi as patterns that indicate, for example, which

index terms appear in that specific document or query. A pattern dj = (1, 0, ..., 0) as

representation of document dj could mean that this particular document contains the

index term k1 and no other. The same could be said of a query qi represented by the

same pattern. What this logical view of documents (or queries) gives us is the ability

to represent the collection as a matrix of documents vs. index terms. The values that

appear at each position in the matrix can be a simple boolean value (as in the example

above) or some more informative number such as the frequency of the term in the

document.

The first classic model, the Boolean Model, uses a formulation similar to the

example above, where each document is represented by a pattern indicating the pres-

ence or absence of each term of the vocabulary. Queries are composed of index terms

connected by the boolean operators and, or and not. By rewriting the query into

a disjunctive form it is simple to retrieve all the documents which conform to the

query. That is, the documents considered relevant to the query. Incidentally, the

Boolean Model does not provide a ranking function; it only allows for the retrieval of

all relevant documents without any measure of how relevant they are. This limits its

applicability in many real-world scenarios, especially with large collections where the

number of relevant documents returned by a query can be large.

Instead of only storing the information of whether a term appears or not in a

document (or query), we can store some other value indicating a weight wi,j for each

term ki in relation to a document dj. In this scenario, the document representation

becomes dj = {w1,j, ..., wt,j} and, in the same fashion, a query is represented as ql =

{w1,l, ..., wt,l}. These weights can be defined in many different ways but the central

concept is the same: not all terms have equal importance. A widely used term weighting

scheme is known as TF-IDF (Term Frequency - Inverse Document Frequency). The

term frequency (TF) measures how often a term appears in a document. The rationale

behind it being that terms that appear many times in a document are important to

describe the key topics of that document. A common formulation used for the TF of

a term ki appearing in a document dj is TFi,j = 1 + log fi,j where fi,j is the number of

times the term ki appears in document dj. If a term kl is not present in the document
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dj, then TFl,j = 0. The IDF, on the other hand, tries to “weight” in the fact that

some terms are much more frequent than others in the collection and, thus, their

informational value varies. Terms that appear in many documents are less valuable for

distinguishing one document from another. A common formulation of the IDF is as

follows:

IDFi = log
N

ni
(2.1)

Where N is the total number of documents in the collection and ni is the number

of documents containing the term ki.

Thus, if we choose to use the TF-IDF as the weight wi,j associated to the pair

(ki, dj), then one possible definition would be:

wi,j = (1 + log fi,j)× log
N

ni
(2.2)

We say “possible definition” because there are many variations of TF, IDF and

TF-IDF proposed in the literature.

Another classic IR model, the Vector Model, uses document and query repre-

sentations based on weights to allow for partial matching and to provide an intrinsic

ranking scheme. Using weights for document and query terms, it is possible to compute

a degree of similarity between each document and a query. By sorting the retrieved

documents using this degree of similarity, the model provides ranked lists of docu-

ments as responses to user queries. In the vector model, the index term weights of

both documents and queries are represented as unit vectors of a t-dimensional space:
~dj = (w1,j, ..., wt,j) and ~q = (w1,q, ..., wt,q). The degree of similarity of a document dj in

relation to a query q is defined as the correlation of the vectors ~dj and ~q. The cosine

of the angle between these two vectors can be used as a measure of this correlation:

sim(dj, q) =
~dj • ~q
|~dj| × |~q|

=

∑t
i wi,j × wi,q√∑t

i w
2
i,j ×

√∑t
i w

2
i,q

(2.3)

Since wi,j ≥ 0 and wi,q ≥ 0, then 0 ≤ sim(dj, q) ≤ 1. Therefore, not only the

vector model allows for partial matching between the query and a document (i.e. not

all query terms must appear in a retrieved document), but it also provides a ranked

list of documents, if we order the retrieved items in decreasing order of sim(dj, q).

Besides using the TF-IDF as the term weights, the vector model also incorporates

document length normalization (through the term |~dj|), which is important since very

long documents will not only have more terms, but also more instances of these terms.
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The final group of classic IR models use a probabilistic ranking principle. The

general idea behind this class of IR models is that the querying process specifies the

properties on an ideal answer set R that should contain all documents relevant to the

query and no other. The problem is that the query per se is not enough to provide

an accurate description of this ideal answer set. The model tries to estimate the

probability that, given a user query q, the user will find a document dj interesting or

relevant. The model could use an initial guess or estimate of these characteristics and

then iteratively improve them using the user’s feedback on the relevance of the retrieved

documents. This is cumbersome and rarely done. By simplifying the requirements and

assuming that initially it is not feasible to estimate the set R, the equation for ranking

computation in the probabilistic model becomes

sim(dj, q) ∼
∑

ki∈q∧ki∈dj

log

(
N − ni + 0.5

ni + 0.5

)
(2.4)

The above formula is known as BM1. While there is an IDF component present,

neither TF weights nor document length normalization are present in the equation

above. These elements were eventually added to the BM15 (TF) and BM11 (document

length normalization) which were combined to form the BM25 ranking formula:

BM25(dj, q) =
m∑
i=1

IDFi × TFi,j × (k1 + 1)

TFi,j + k1 ×
(

1− b+ b× len(dj)

avg dlen

) (2.5)

where len(dj) is the length in words of document dj, avg dlen is the average

document length in the collection and k1 and b are free parameters that allow the

formula to be tuned to a given collection. The BM25 model is widely used and, if

correctly tuned, yields very good results in general collections.

2 Measuring Ranking Quality

There are many other IR models that were proposed throughout the years and that

we do not discuss here. Several are variations and extensions of the basic models

discussed above. When a new model or variation is developed, it is important to be

able to evaluate it and analyze how it fares compared to the already established models.

To this end, we need and evaluation framework that can be used to set up experiments

that will allow us to compare different models. We also need measures or metrics to

estimate how good the ranking produced by one method is compared to the other

methods. Finally, it is useful to have benchmarking collections so that researchers can
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easily share results: with these collections, we can use published results as baselines to

evaluate new systems and models without having to implement each model proposed in

the past. In this section we describe a basic evaluation framework for ranking systems,

provide definitions of some common ranking metrics and briefly discuss benchmarking

datasets (we describe some L2R benchmarking datasets in Section 4).

2.1 Evaluation Framework

In order to be able to evaluate a ranking algorithm’s effectiveness we need to have a

well defined process; a benchmarking procedure that allows us to assess how good a

ranking model is as compared to other models. This procedure could be as follows:

• Produce or collect a number of queries to form a test set. The queries can

be selected randomly from a query log or chosen as representatives of types of

queries.

• For each query q:

– Retrieve a number of documents associated with the query using some re-

trieval technique. This could be done using a classic IR method such as

the vector model or BM25. It could be done using one’s own IR or ranking

method or a combination of various methods.

– Judge the relevance of each retrieved document in relation to the query. The

relevance judgment needs to be performed by human assessment.

– Use two or more ranking algorithms to rank the documents

– Using the relevance judgment associated with each document to measure

how well each ranking method performs for the current query q.

• Use an average measurement on all queries to evaluate the performance of each

ranking method in comparison to the other (or others).

For the time being, let’s assume that the relevance judgment can be binary (e.g.

0 = not relevant, 1 = relevant) or picked from a discrete set of possibilities (e.g. 0 =

not relevant, 1 = somewhat relevant, 2 = relevant, 3 = very relevant). In section 3,

we will see that there are other ways of defining the relevance, according to the type

of learning to rank algorithm used.

To be able to use the described procedure, we need to have metrics to measure

the ranking quality of each query and to measure the average quality of the rankings

of all queries. Some of the most used ranking metrics are described below.
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2.2 Common Metrics

In this section we describe some common metrics used to evaluate the quality of a

ranking method. These are the metrics that we will later use to evaluate our proposed

methods. They were chosen simply because they are widely used and some of the

published results that we will later compare to our own have used one or more of these

metrics.

Precision, Recall and P@k

Two very common metrics in IR are Precision and Recall. Precision is the proportion

of the retrieved documents that are considered relevant. If the set of the relevant

documents is R and the set of documents returned by the retrieval function is A, then

Precision =
| R ∩ A |
| A |

(2.6)

Recall is the fraction of the relevant documents that was returned by the retrieval

function:

Recall =
| R ∩ A |
| R |

(2.7)

For web search ranking or ranking of very large collections, these metrics are hard to

estimate, since we do not usually know how many documents are relevant to a query.

Furthermore, is such situations, there are usually a large number of results (i.e. the set

A is large), but a user is unlikely to browse through more that 10 or 20 results. Instead

of calculating the overall precision, we can measure the average precision when 5, 10

or 20 documents have been seen. Thus, it is common to evaluate each query’s ranking

using the precision at the top k positions (typically P@5, P@10 and P@20):

P@k(qi) =
# of relevant documents in the top k positions

k
(2.8)

Mean Average Precision (MAP)

To evaluate the overall quality of a ranking method, it is easier to use a single value

summarizing the precision obtained for all queries. The Mean Average Precision gives

us the mean of the Average Precision (AP) for each of the m queries evaluated. The

AP for each query is defined as:

AP (qi) =

∑n
k=1 P@k(qi)× lk

#of relevant documents
(2.9)



14 Chapter 2. Ranking and Learning to Rank

Where n is the total number of documents associated with query qi and lk is 1 if the

document at the kth position in the ranking is relevant or 0 if it is not relevant. With

the AP for each query, we can calculate the MAP for all m queries:

MAP =
1

m

m∑
i=1

AP (qi) (2.10)

Mean Reciprocal Rank (MRR)

In certain cases, we are interested only in the first correct answer to a query. For

instance, in web search engines, certain queries are “navigational”: the user is looking

for a specific web page and, thus, interested in one particular relevant result. In such

situations, we want a measure that favors results where the first relevant answer is

higher in the resulting ranking. For a set of queries Q = {q1, ..., qm}, we define ranki

as the position of the first relevant document returned for a query qi ∈ Q, then the

MRR of the rankings of the documents returned by the queries in Q is given by:

MRR =
1

m

m∑
i=1

1

ranki
(2.11)

Normalized Discounted Cumulative Gain (NDCG)

The previously described metrics work only for binary judgments (i.e. 0 = relevant, 1

= not relevant). If the document assessment is done using levels of relevance (e.g. 0 =

not relevant, 1 = somewhat relevant, 2 = relevant, 3 = very relevant), then a ranking

with some “very relevant” documents at the top may be better than another ranking

with more “somewhat relevant” documents at the top. Another drawback is that the

metrics presented do not differentiate between a relevant document at the very top of

the ranking and another at the very bottom. To address these issues, the Discounted

Cumulative Gain (DCG@k(qi)) for a query qi is a metric that uses cumulative gain

vectors to allow for multiple relevance levels (i.e. 0, 1, 2, etc.) and a discount factor

that reduces the impact of the gain as it moves up in the ranking. The DCG of a query

qi at position k is given by

DCG@k(qi) =
k∑
r=1

2lr − 1

log(r + 1)
(2.12)

Where lr is the relevance level for the document at position r in the ranking. To be

able to compare the DCG of several queries, we need to normalize it using the ideal
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DCG for that query (at the specified position k). The ideal DCG, or IDCG, is obtained

by ordering the documents returned for a query in descending order of relevance, thus

obtaining the maximum DCG possible up to the selected position k.

NDCG@k(qi) =
DCG@k(qi)

IDCG@k(qi)
(2.13)

The NDCG@k for all queries can be averaged to obtain a single measure of the quality

of a ranking function

NDCG@k =
1

m

m∑
i=1

NDCG@k(qi) (2.14)

Like with precision, the NDCG is usually measured at positions 5, 10 or 20 (i.e.

NDCG@5, NDCG@10, NDCG@20).

2.3 Benchmarking Datasets

Another important element of the Evaluation Framework is the availability of bench-

marking datasets. A newly proposed ranking model can then be tested using a well

known benchmarking dataset and the results obtained (using various metrics, includ-

ing some of those described above) can be compared to the published results of other

research groups to gauge the quality of the new method. Well established models such

as BM25 or the vector model can be run using these datasets, providing a common

baseline for comparison. To this end, the Text REtrieval Conferences1 (TREC) were

established in the early nineties. The conference is held yearly and is dedicated to ex-

perimentation with large test collections. Research groups participate in the conference

and run experiments comparing their retrieval systems. TREC publishes several docu-

ment and web collections of different sizes and purposes that can be used by researchers

to evaluate their IR methods.

As we will see in Section 4, there is a collection of benchmarking datasets designed

specifically for learning to rank (which we use in all the experiments presented in this

work). It is not published by TREC, but it uses TREC collections to produce datasets

specifically designed for learning to rank methods.

1http://trec.nist.gov
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3 Learning to Rank

Although the classic approaches to ranking that we discussed in section 1.2 usually

yield very good results, ranking remains a very difficult task. A ranking algorithm

is supposed to predict which documents the user who posed the query will consider

relevant. Two users with the same information need may find different documents

relevant (or not relevant) or pose very different queries. Queries may be ill formed or

too short, yielding too many or too few results. As a consequence, an IR system should

implement an algorithm that tries to rank documents in such a way as to approximate

the opinion of relevance of a large fraction of its users and that are obtained through

the variety of queries posed to the system.

Some of the classic methods described in the previous section can be tuned to

improve their performance in specific document collections; parameters k1 and b in the

BM25 equation (2.5), for instance, can be adjusted to better fit a certain collection.

Tuning these parameters is usually done experimentally using a validation set, where

part of the collection is used to evaluate different parameter values. But it is far from

simple to achieve good tuning by experimentation alone. Machine Learning algorithms

can be used to automate the parameter tuning process, as proposed, for example,

by Almeida et al. [2007]. Although parameter tuning is one of the applications of

ML in Information Retrieval, ML techniques can be directly applied to the ranking

problem itself, yielding very good results. ML methods applied to ranking are known

as Learning to Rank (or L2R, for short).

L2R usually involves the use of supervised learning techniques where a ranking

model or function is derived from training data containing documents returned for a

query and ranked by a human assessor. This ranking model can then be used to rank

documents for a new query (i.e. not yet seen) posed by a user. A L2R system is typically

used to enhance an existing IR system; its function is not to retrieve documents from

the collection, but to reorder the list of documents returned by the IR system as a

response to a user query. Figure 2.2 shows a simplified diagram describing how a L2R

method relates to an existing IR infrastructure. The diagram contains two distinct

phases of the L2R process:

1. Training data gathering: To be able to build a L2R model, the learning system

needs to have training data available. To gather the training data, queries are

posed to the IR system, which returns ranked lists of documents satisfying the

queries (e.g. using a classic IR ranking model). Human assessors then evaluate

the top k documents indicating, for instance, which ones are relevant to the query
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Figure 2.2. Learning to Rank Framework

(this process is called “labeling”). The labeled documents are then inserted into

the training data set. The training data, like the logical view of the documents

used by the IR system, is a representation of document entities, as we will see

below. This first phase is performed once or from time to time (i.e. offline). Once

there is training data available the learning system can create a L2R model that

can be used to rank documents returned by new queries (there is a whole process

of evaluating and fine-tuning the L2R model that does not appear in the diagram

but that we will analyze in detail throughout this work).

2. Ranking document lists returned by user queries: Once we have an effec-

tive learned model in place, the ranking system can rank new document lists. As

in the classic IR framework, a user poses a query to the system, which uses the

logical view to obtain the documents that are relevant to the query. The doc-

uments of this list are then passed by the IR system to the ranking system (in

the same “format” or representation used for the training data) which ranks the

documents, returning this reordered list back to the IR system to be processed

and presented to the user.

The training data, similarly to the “logical view” used by the IR system, is a

representation of data instances. Instead of using weights to associate index terms

(i.e. the vocabulary) with documents, it uses feature vectors reflecting the relevance of

documents to queries. These features are numerical properties of the query-document

pairs, such as the TF-IDF of query terms or the BM25 score of a document for a given
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query. Document-only features can also be used, such as the HITS or PageRank scores

of a web page (see section 4 for examples of features used in the LETOR 3.0 web

datasets). Just like in any supervised learning task, the idea is to “teach” the learning

algorithm the relationship between the feature values and the label/ranking so that the

learned model produced from the training data may be used to predict the relevance

or ranking of documents in relation to a new query posed by the user. Observe that a

data instance in L2R is always a feature vector of a document in relation to a query.

That is, the same actual document can appear several times in the training data but

with very different feature values if it was returned by more than one query. For our

purposes, these are different instances even if they are related to the same document

in the collection. Throughout this work we interchangeably use the terms instance,

sample, example and document to refer to a query-document feature vector.

Liu [2009] identifies three categories of learning to rank algorithms: pointwise,

pairwise and listwise. These categories have different input, output and hypothesis

spaces, and employ different loss functions. Here we briefly describe each category

with emphasis in the input and output spaces which directly affect how the training

data is produced. For a comprehensive analysis of these categories, see Liu [2009].

Pointwise

Pointwise L2R algorithms consider each document independently of each other. That

is, the input space contains the feature vector of each single document. The output

space of pointwise methods is a relevance degree or relevance level. This means that for

this type of methods, the label provided by the human assessor is a discrete relevance

level; it could be binary (i.e. 0 = not relevant, 1 = relevant), or contain several levels

(e.g. 0 = not relevant, 1 = somewhat relevant, 2 = relevant, 3 = very relevant). In this

scenario, the L2R algorithm may use, for instance, classification or regression to predict

the relevance level of documents returned by new queries. A scoring function is used

to output a score for each document, allowing for the easy ranking of the documents.

The association rule-based algorithm used as the basis for our active learning method

and presented in section 5 is an example of a pointwise L2R method.

Pairwise

Pairwise methods use pairs of documents to learn pairwise preferences. That is, instead

of considering each document separately, these methods look at the relative relevance

of two documents; e.g. document di is more relevant than document dj (or di � dj).

Thus, the input space contains pairs of document feature vectors, while the output
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space contains a pairwise preference indicating the order of relevance of the documents

in the pair (e.g {1, -1} for the pair di, dj). Ideally, the labeling process should provide

assessment pairs indicating the relative relevance of all document pairs. This makes

the human assessment process more laborious, as we will see in Chapter 3, Section 1.

It is possible to use relevance levels (binary or otherwise) to create pairwise labels by

defining the label as yi,j = 2 × I{li�lj} − 1, where I{A} is an indicator function that

returns 1 if A is true and 0 otherwise. Notice that in this case only comparisons

between documents with different relevance levels yield useful results. Similarly, if

the judgment is given as a total order πl (see the listwise approach below), we can

define yi,j = 2× Iπl(i)<πl(j) − 1. Two well known instances of the pairwise method are

SVMRank and RankBoost as we shall see in Section 6.

Listwise

In the listwise approach, the input space contains all documents associated with a

query. The output space can take two forms (depending on the listwise algorithm’s

formulation): of ranked lists or permutations of documents (i.e. a total order of the

documents); or relevance levels similarly to the pointwise approach. In the former case,

the labels are given as a total order (i.e. a ranking of the documents of a query) πl and

the ground truth is defined as πy = πl. If the training data contains relevance degree

labels, it is possible to derive πy by using an equivalent permutation set of the form

Ωy = {πy|u < v, if lπ−1
y (u) � lπ−1

y (v)}. Similarly, if the labels are pairwise preferences, we

can use Ωy = {πy|u < v, if lπ−1
y (u),π−1

y (v) = 1}. One advantage of using a listwise method

with πy as the ground truth label is that the output space used in the learning process

is exactly the output space of the ranking task.

4 Benchmarking Datasets for L2R

With the advent of many learning to rank techniques, it becomes important to be able

to compare the different methods proposed by researchers. The task can be made much

easier if the proposed methods are tested against common benchmarking datasets. A

widely known collection of datasets specifically tailored for L2R is the LEarning TO

Rank (LETOR) collection2.

As we will see in Chapters 4 and 5, we did extensive experimentation using the

Learning to Rank (LETOR) benchmark datasets version 3.0. Here we briefly discuss

the main characteristics of these datasets.

2 http://research.microsoft.com/en-us/um/beijing/projects/letor/
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Table 2.1. LETOR 3.0 Web Datasets’ Characteristics

# Qry # Qry TR TR Size TS Size D/qry R% R/Q

TD2003 50 30 29,434 9,812 981 1.52 14.98

TD2004 75 45 44,487 14,829 988 2.92 28.92

NP2003 150 90 89,194 29,731 991 0.10 1.01

NP2004 75 45 44,300 14,767 984 0.17 1.64

HP2003 150 90 88,563 29,521 984 0.12 1.22

HP2004 75 45 44,645 14,882 992 0.13 1.25

LETOR 3.0 is composed of 6 web datasets plus the OHSUMED corpus. The

web datasets contain labeled instances selected from web pages obtained from a 2002

crawl of the .gov TLD. These collections are separated in three search tasks: topic

distillation (TD), homepage finding (HP) and named page finding (NP) and contain 2

sets each (namely, TREC 2003 and 2004). The TD datasets are basically comprised of

“informational” queries, i.e., queries whose target are documents containing informa-

tion about a specific topic, theme or entity. The HP and NP datasets are focused on

“navigational” queries whose target is usually a single specific Web page.

These collections contain instances represented by 64 features for the top 1,000

documents returned for a specific set of queries using the BM25 model (see Qin et al.

[2010b] for a detailed description of how these datasets were created). These datasets

use a binary relevance judgment indicating whether a document is or is not relevant to

a given query. We evaluate our method on all the largest, more diverse, LETOR 3.0

web datasets (namely, TD2003, TD2004, HP2003, HP2004, NP2003 and NP2004). In

all experiments we have used the query-based normalized versions as suggested by the

producers of the LETOR benchmarking datasets. We also use 5-fold cross validation

for all results reported as well as the evaluation script provided in the LETOR package

to generate the final MAP and NDCG metrics.

Table 2.1 summarizes the characteristics of each dataset. The “# Qry” column

contains the total number of queries in the dataset (i.e. in each fold we have this many

queries in the training, validation and test sets combined). “# Qry TR” indicates how

many queries are there in the training set in each fold. “TR Size” and “TS Size” show

the number of instances in the training and test sets, respectively. “D/qry” shows the

number of documents per query, the “R%” column indicates the percentage of relevant

documents in the dataset and the “R/Q” show the average of relevant documents per

query for the whole dataset. “TR Size”, “TS Size” and “D/qry” are averages accross

the 5 folds.
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Features

The 64 features appearing in the LETOR 3.0 web datasets are either related to the

query+document or to the document alone. In the former group we have, for instance,

the TF of the body, anchor, title, URL and the whole document (features 1 to 5).

There’s also features for the IDF and the TF-IDF (6 to 15). Then there are features

with values for classic IR models such as BM25 (21 to 25) and several for various

language models as proposed by Zhai and Lafferty [2004] (26 to 40 and 62 to 64).

There are also sitemap (Qin et al. [2005]) and hyperlink (Shakery and Zhai [2003])

based propagation features (41, 42 and 43 to 48, respectively). Features related to the

document alone include various document lengths (body, title, URL, etc.; 16 to 20)

and web related features (49 to 60), containing values such as the number of inlinks

and outlinks (56, 57), the length of the page’s URL (59), the number of child pages

(60), PageRank (Page et al. [1999]) and HITS (Kleinberg [1999]).

5 Learning to Rank Using Association Rules: RLR

Recently, a new pointwise learning to rank method was proposed by Veloso et al. [2008].

This Rule-based Learning to Rank algorithm (that we henceforth refer to as RLR) is

a supervised method that derives association rules from the training data at query

time (i.e. on-demand). We used their method as a basis to develop the active learning

algorithm we present in Chapter 4. RLR is very effective as can be seen in the results

presented in Veloso et al. [2008] for some of the LETOR 2.0 datasets. We also discuss

the results obtained by RLR on the LETOR 3.0 datasets in Chapter 4, Section 3

(see tables 4.1 and 4.2) and use them as a baseline to evaluate our active method’s

effectiveness. In this section we briefly describe RLR. The reader is encouraged to read

the aforementioned work for a more detailed description.

5.1 Rule-based Learning to Rank

For the purpose of describing RLR, the task of learning to rank is defined as follows.

We have as input the training data (referred to as D), which consists of a set of records

of the form < q, d, r >, where q is a query, d is a document (represented as a list of

m feature-values or {f1, f2, . . . , fm}), and r is the relevance of d to q. Features include

BM25, Page Rank, and many other document and query-document properties. The

relevance of a document draws its values from a discrete set of possibilities {r0, r1, . . .,
rk} (e.g. 0: not relevant, 1: somewhat relevant, 2: very relevant). The training data
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is used to build functions relating features of the documents to their corresponding

relevance. The test set (referred to as T ) consists of records < q, d, ? > for which

only the query q and the document d are known, while the relevance of d to q is

unknown. Ranking functions obtained from D are used to estimate the relevance of

such documents to the corresponding queries.

Ranking functions exploit the relationship between document features and rel-

evance levels. This relationship may be represented by association rules. We denote

as R a rule-set composed of rules of the form {fj ∧ . . . ∧ fl
θ−→ ri}. These rules can

contain any mixture of the available features in the antecedent and a relevance level in

the consequent. The strength of the association between antecedent and consequent

is measured by a statistic, θ, which is known as confidence (see Agrawal et al. [1993])

and is simply the conditional probability of the consequent given the antecedent. RLR

extracts rules from D on a demand-driven basis and then combine these rules in order

to estimate the relevance of each document in T .

5.2 Demand-Driven Rule Extraction

The search space for rules is huge, and thus, computational cost restrictions must be

imposed during rule extraction. Typically, a minimum support threshold (σmin) is

employed in order to select frequent rules (i.e., rules occurring at least σmin times in

D) from which the ranking function is produced. This strategy, although simple, has

some problems. If σmin is set too low, a large number of rules will be extracted from

D, and often most of these rules are useless for estimating the relevance of documents

in T (a rule {X −→ ri} is only useful to estimate the relevance of document d ∈ T
if the set of features X ⊆ d, otherwise the rule is meaningless to d). On the other

hand, if σmin is set too high, some important rules will not be included in R, causing

problems if some documents in T contain rare features (i.e., features occurring less

than σmin times in D). Usually, there is no optimal value for σmin, that is, there is no

single value that ensures that only useful rules are included in R, while at the same

time important rules are not missed. The method to be proposed next deals with this

problem by extracting rules on a demand-driven basis.

Demand-driven rule extraction is delayed until a set of documents is retrieved for

a given query in T . Then, each individual document d in T is used as a filter to remove

irrelevant features and examples from D. This process produces a projected training

data, Dd, which is obtained after removing all feature-values not present in d. Then, a

specific rule-set, Rd extracted from Dd, is produced for each document d in T .
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Lemma 1: All rules extracted from Dd (i.e., Rd) are useful to estimate r.

Proof: Since all examples in Dd contain only feature-values that are present in d, the

existence of a rule {X −→ ri} ∈ Rd, such that X * d, is impossible. �

Theorem 1: The number of rules extracted from D depends solely on the number of

features in Dd, no matter the value of σmin.

Proof: If an arbitrary document d ∈ T contains at most l features then any rule

matching d can have at most l feature-values in its antecedent. That is, for any rule

{X −→ ri}, such that X ⊆ d, |X | ≤ l. Consequently, for σmin ≈ 0, the number of

possible rules matching d is k × (l +
(
l
2

)
+ . . . +

(
l
l

)
) = O(2l), where k is the number

of distinct relevances. Thus, the number of rules extracted for all documents in T is

O(|T | × 2l). �

5.3 Relevance Estimation

In order to estimate the relevance of a document d, it is necessary to combine all rules

in Rd. Our strategy is to interpret Rd as a poll, in which each rule {X θ−→ ri} ∈ Rd is

a vote given by a set of features X for relevance level ri. Votes have different weights,

depending on the strength of the association they represent (i.e., θ). The weighted

votes for relevance level ri are summed and then averaged (by the total number of

rules in Rd that predict relevance level ri), forming the score associated with relevance

ri for document d, as shown in Equation 2.15 (where θ(X → ri) is the value θ assumes

for rule {X −→ ri} and Rri
d is the set of rules derived for document d that predict

relevance level ri):

s(d, ri) =

∑
θ(X −→ ri)

| Rri
d |

, where X ⊆ d (2.15)

Therefore, for a document d, the score associated with relevance ri is given by

the average θ values of the rules in Rd predicting ri. The likelihood of d having a

relevance level ri is obtained by normalizing the scores, as expressed by p̂(ri|d), shown

in Equation 2.16:

p̂(ri|d) =
s(d, ri)
k∑
j=0

s(d, rj)

(2.16)
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Algorithm 1 Rule-based Learning to Rank (RLR)

Require: The training data D, test set T , and σmin (≈ 0)
Ensure: rank(d)

1: for all pair (d, q) ∈ T do
2: Dd ⇐ D projected according to d
3: Rd ⇐ rules extracted from Dd | σ ≥ σmin
4: for all i | 0 ≤ i ≤ k do

5: s(d, ri)⇐

∑
θ(X −→ ri)

|Rri
d |

6: end for
7: rank(d)⇐0
8: for all i | 0 ≤ i ≤ k do
9: rank(d)⇐ rank(d) + ri × p̂(ri|d)

10: end for
11: end for

Finally, the relevance of document d is estimated by a linear combination of the

likelihoods associated with each relevance level, as expressed by the ranking function

rank(d), which is shown in Equation 2.17:

rank(d) =
k∑
i=0

(
ri × p̂(ri|d)

)
(2.17)

The value of rank(d) is an estimate of the true relevance of document d (i.e.,

r) using p̂(ri|d). This estimate ranges from r0 to rk, where r0 is the lowest relevance

and rk is the highest one. Relevance estimates are used to produce ranked lists of

documents. All steps of RLR are depicted in Algorithm 1.

6 Other Supervised Learning to Rank Algorithms

Over the years, many different L2R algorithms have been proposed. Most of the

pointwise methods have been derived and adapted from established classification or

regression algorithms. This is the case of RLR, which is based on classification ML

techniques presented in Veloso and Meira, Jr. [2011]. Another example of a pointwise

method based on classification is McRank, introduced by Li et al. [2007]. Ordinal

regression methods have also been proposed, such as the perceptron-based PRanking

(see Crammer and Singer [2001]) or the SVM-based method proposed by Shashua and

Levin [2003].

Two very famous pairwise methods, SVMRank and RankBoost, are detailed be-

low. Other pairwise methods use neural networks and gradient descent optimization to
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minimize pairwise loss functions, such as the cross entropy loss for RankNet (Burges

et al. [2005]) and the fidelity loss for FRank (Tsai et al. [2007]).

Given the characteristics of the input space used by the listwise approach to

L2R (i.e. the use of total or partial ordering permutations), several algorithms in this

category try to directly optimize ranking metrics such as MAP or NDCG. But since

these metrics, being position based, are non-continuous and non-differentiable (see

Robertson and Zaragoza [2007]; Xu et al. [2008]), some methods choose to optimize

approximations of these metrics. This is the case with SoftRank (Taylor et al. [2008])

and AppRank (see Qin et al. [2010a]). Other algorithms try to optimize restricted or

bounded IR measures, such as SVMMap (Yue et al. [2007]) and PermuRank (Xu et al.

[2008]). Finally, some methods use optimization techniques that are able to optimize

complex objectives which is the case of AdaRank (Xu and Li [2007]), for instance.

In the following sections we briefly describe SVMRank and RankBoost. These

are the algorithms that we use in the Query-By-Committee (QBC) strategy delineated

in Chapter 5 (along with RLR), and we believe the reader may benefit from a quick

overview of the inner workings of these methods.

6.1 SVMRank

Joachims [2002] proposed a very interesting method called SVMRank that uses web

search clickthrough data to train an SVM-based L2R algorithm. Joachims arguments

that user clicks on query results provide a relative relevance judgment that can be

modeled as a pairwise label. That is, given a query q, the ranking presented as a result

to this query r and the list of the documents that the user clicked c (i.e. a triplet

(q, r, c)), we can generate a set of pairwise judgments and train an SVM using them.

Let’s say that, presented with a list of documents retrieved as a response to a query,

the user clicked on documents 1, 3 and 7. The fact that document 2 was skipped

(i.e. not clicked) is an indication that the user found documents 3 and 7 to be more

relevant than document 2 (assuming the user scans the ranked list from top to bottom

and that the content snippets are equally informative). Although we cannot say how

relevant document 3 is on an absolute scale, we can say that document 3 is, in this

user’s assessment, more relevant to q than document 2 (i.e. d3 � d2, where d3, d2 ∈ r).
Similarly, we can infer, from this particular ranking, that document 7 is more relevant

to the query then documents 6, 5, 4 and 2 (d7 � d6, d7 � d5, d7 � d4, d7 � d2).

Instead of trying to minimize training error, as is commonly done in classification,

Joachims proposes maximizing the Kendall’s τ value of the rankings generated by the

learned function and the ground truth rankings of the training set. Let’s call f(q) the
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learned function, rf(qi) the ranking obtained by using the function on the documents

of query qi and r∗i the optimal ordering for this query. Given these two rankings and

the m documents associated to query qi:

τ(rf(qi), r
∗
i ) =

P −Q
P +Q

= 1− 2Q(
m
2

) (2.18)

where P is the number of concordant pairs in the rankings and Q is the number of

discordant pairs. Notice that τ(rf(qi), r
∗
i ) = 1 if the rankings are identical and -1 if

they are completely different. Also notice that P + Q =
(
m
2

)
, yielding the alternative

formulation to the right.

Given n queries and their corresponding target rankings (q1, r
∗
1), ..., (qn, r

∗
n), the

learner must select a ranking function f from a family of ranking functions F that

maximizes the empirical τ :

τ(f) =
1

n

n∑
i=1

τ(rf(qi), r
∗
i ) (2.19)

Each document d returned by a query q is represented as a feature vector ~x of

values correlating the query and the document (similar to the features used in the

LETOR web datasets and discussed in Section 4). Consider the class of linear ranking

functions f(~x) = 〈~w, ~x〉 that satisfies ~xi � ~xj ⇔ 〈~w, ~xi〉 > 〈~w, ~xj〉 where ~w is the

weight vector adjusted by learning. In Figure 2.3 we see a two-dimensional example of

how a weight vectors determine the ordering of four points. The points are ordered by

their projection onto ~w or, equivalently, by their signed distance to a hyperplane with

normal vector ~w. Thus, vector ~w1, orders the points as 1, 2, 3, 4 whilst ~w2 determines

an order of 2, 3, 1, 4.

Instead of maximizing Equation 2.19 directly, it is equivalent to minimize the

number Q of discordant pairs in 2.18. For the class of ranking functions f(~x) this is

equivalent to finding a weight vector ~w so that the maximum number of the following

inequalities is fulfilled:

∀(~xi, ~xj) ∈ r∗1 : 〈~w, ~xi〉 > 〈~w, ~xj〉
...

∀(~xi, ~xj) ∈ r∗n : 〈~w, ~xi〉 > 〈~w, ~xj〉
(2.20)

Unfortunately, this problem is NP-hard. Instead, Joachims uses the soft-margin

SVM model proposed by Vapnik [1995] as an approximate solution to the problem of
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Figure 2.3. SVMRank: two-dimensional example of how two possible weight
vectors order four documents

finding f , formulating it as a quadratic optimization problem:

min
~w

1

2
‖ ~w ‖2 +C

∑
ξijk (2.21)

subject to:

∀(~xi, ~xj) ∈ r∗1 : 〈~w, ~xi〉 ≥ 〈~w, ~xj〉+ 1− ξij1, ξij1 ≥ 0

...

∀(~xi, ~xj) ∈ r∗n : 〈~w, ~xi〉 ≥ 〈~w, ~xj〉+ 1− ξijn, ξijn ≥ 0

(2.22)

where C is a parameter that allows trading off margin size for training error. Geomet-

rically, the SVM margin δ is the distance between the closest two projections as seen

if Figure 2.3.

By using the pairwise comparisons provided by the clickthrough data as a training

set, SVMRank is able to find the ~w∗ that minimizes 2.21 given the constraints 2.22.

After that, this model (i.e. ~w∗) can be used to rank documents for a new query q by

sorting them by their value 〈~w∗, ~xk〉.

6.2 RankBoost

Another pairwise method proposed by Freund et al. [2003] is RankBoost. Based on the

well-know classification method AdaBoost (developed by Freund and Schapire [1997])

RankBoost uses a boosting approach to ranking. The essential idea of boosting meth-

ods is to combine the results of what are called weak learners into a single accurate (or

“strong”) learned function. This is done in a round-based fashion where at each round

the same weak learner is used but the input to the weak learner is modified by increas-
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ing the weight or importance of hard to determine pairwise preferences. Thus, as the

rounds progress, more importance is given to correctly learning the pairwise preference

on the pairs whose relative ranking is hardest to determine. In other words, pairs that

are difficult to rank are “boosted” by increasing weights while correctly ranked pairs

have their weights reduced at each round.

More formally, given the training set of document instances X, each document

x ∈ X is composed of feature-values as before. A feedback function Φ can be used

on all pairs of instances to provide the pairwise preference. Thus, Φ(xi, xj) returns 1

if xi � xj, -1 if xi ≺ xj or 0 if there is no preference (e.g. for relevance degrees, xi

and xj have the same relevance label). The goal of the learner is to output a function

H : X → R such that xi � xj ⇔ H(xi) > H(xj). To achieve this goal, the learner uses

a distribution D that is updated at each round by the weak learner. This distribution

is defined as:

D(xi, xj) = c×max{0,Φ(xi, xj)} (2.23)

This is done in order to eliminate the redundant information provided by negative

values of Φ (i.e. if Φ(xi, xj) = −1, then this information is already present in the

opposite pair Φ(xj, xi) = 1 and thus it is set to zero). c is a positive constant chosen

so that ∑
xi,xj

D(xi, xj) = 1 (2.24)

Rankboost defines crucial pairs as those pairs where Φ(xi, xj) > 0. These are the

pairs whose weights are updated at each round (i.e. “boosted” if they are incorrectly

ordered by the weak learner and reduced if correctly ordered). Thus the algorithm is

designed to find an H with a small number of crucial pair misorderings on the training

set or, in other words, to minimize the pairwise ranking loss.

At each round t, the algorithm passes a distribution Dt to the weak learner so

that it can produce a weak hypothesis of the form ht : X → R. The distribution is

updated at each round by doing:

Dt+1(xi, xj) =
Dt(xi, xj) exp(αt(ht(xi)− ht(xj)))

Zt
(2.25)

where Zt is a normalization factor chosen so that Dt+1 will be a distribution and α ∈ R
is a parameter chosen at each round (more on Zt and α below).

We can run the algorithm for as many rounds as desired. Once it is finished, it

outputs the final hypothesis as a weighted sum of the weak hypotheses produced at
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each round:

H(x) =
T∑
t=1

αt × ht(x) (2.26)

In order to produce a combined hypothesis with low ranking loss, at each round

αt should be chosen and the weak learner should build ht so as to minimize

Zt =
∑
xi,xj

Dt(xi, xj) exp(αt(ht(xi)− ht(xj))) (2.27)

Freund et al. [2003] provides three example methods on how to approximate this min-

imization problem efficiently. We do not delve into the details of these methods here.

The reader is encouraged to consult the aforementioned work for the details.

The Weak Learner

RankBoost treats the weak learner as a black box. Different weak learners can be

implemented and used, although they should take into consideration Equation 2.27

when building ht. One possible learner for the ranking problem is:

h(x) =


1 if fxi > θ

0 if fxi ≤ θ

sdef if fxi = 0

(2.28)

where fxi is the value of the ith feature of document x, and 0 ≤ sdef ≤ 1 is a default

value assigned to h(x) if, for some x, the feature value for the ith feature is null (or

zero, assuming that feature-values are normalized and zero indicates a null value such

as is the case with the query level normalized LETOR datasets). Here (at each round),

the weak learner must use the distribution D passed on to it and the labels provided

by Φ(xi, xj) to determine which feature fi will be used and what are the best values for

θ and sdef in order to learn the weak hypothesis h(x). Freund et al. [2003] details an

efficient algorithm for the weak learner above that also approximately minimizes 2.27.

7 Summary

Ranking is an essential functionality of many systems. Although classic Information

Retrieval models and systems have been designed to provide ranked results, in the

last decade Machine Learning techniques have been successfully applied to the ranking
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problem. In practice, learning to rank systems are used to enhance an IR system by

re-ranking the results returned to the user according to a learned model or function.

In this chapter we have seen how this L2R framework fits into the general picture

of an IR system and how we can evaluate the quality of new ranking methods, be

them classic IR models or ML-based. We have also described in some detail three very

different L2R methods: RLR, SVMRank and RankBoost. These descriptions will be

useful when we introduce a novel rule-based active learning technique in Chapter 4 and

then proceed to expand our method using a QBC strategy in Chapter 5.



Chapter 3

Active Learning

1 The Labeling Effort

To be able to build a learning to rank model it is necessary to provide the learning

algorithm with training data. That is, query-document pairs represented as feature

vectors and labeled by human assessors. As we have seen in the last chapter, a super-

vised learning to rank method uses the training data to produce a model that is later

used for ranking new queries (in the case of RLR, there is no model, but the training

data is used to rank a new query on demand). Obtaining the training data is usually a

labor-intensive task, with several human assessors reviewing the documents retrieved

by the IR system for the specified training building queries.

In many cases, the labeling task requires the assessors to decide whether a given

document is or is not relevant to the query (i.e. {0, 1}). A common extension is to

use relevance levels, indicating if a document is more or less relevant to the query

(e.g. {0, 1, 2, 3}). In either case, it is straightforward to use the training data obtained

through the assessment process to train pointwise L2R algorithms. As we have pointed

out, it is also possible to modify relevance labels for use with a pairwise algorithm by

defining the label as yi,j = 2 × I{li�lj} − 1. But this transformation is not ideal. The

resulting pairwise comparisons are only useful when the compared documents have dif-

ferent relevance levels. The number of instance pairs is, in the worst case, quadratic to

the number of documents and depends on the number of relevant documents obtained

for the query. Thus the difference in the number of pairs between queries can be very

large, which could lead to a L2R model dominated by the queries with large numbers

of document pairs. Cao et al. [2006] analyses this problem in the context of SVM

ranking and proposes query-level normalization on the pairwise loss function in order

to minimize this effect.

31
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The same holds true for the listwise methods which expect the ground truth

to be given as the total order of the documents. It is possible to convert relevance

level judgments using an equivalent permutation set. But the resulting permutations

obtained may not be the ground truth permutations, since we cannot determine the

order of documents with the same relevance level.

Ideally, the assessment strategy should reflect the type of learning algorithm

used and provide labels that maximize the method’s effectiveness. This makes the

assessment process even harder than it already is, since pairwise labeling and total

or partial relevance ordering are more difficult to perform. Independently of how the

training data is constructed, it is costly and laborious to produce any amount of it.

Although in this work we perform experimentation using binary relevance

datasets (and, therefore, we assume that the human assessment of selected instances

is also binary), the active learning techniques presented here could be easily extended

to allow for pairwise or partial ordering relevance assessments.

2 Reducing the Labeling Effort: Active Learning

Active learning techniques for L2R have been proposed to help deal with the labeling

effort problem (see, for instance, Silva et al. [2011]; Cai et al. [2011]; Donmez and Car-

bonell [2009, 2008]; Long et al. [2010]; Radlinski and Joachims [2007]; Yu [2005]). The

motivation behind active learning is that it may be possible to achieve highly effective

learning functions by carefully selecting and labeling instances that are “informative”

to the learning algorithm. Using active learning, we can reduce the cost of producing

training sets for rank learning algorithms and even improve the effectiveness of the

learned functions by avoiding adding “noisy” instances to the training sets. Further-

more, human annotators can spend more time analyzing the relevance of each actively

selected instance, possibly producing better training data (see Geng et al. [2011] for

techniques on assessing the quality of training data for L2R).

In a typical active learning scenario, data instances are selected from an unlabeled

set one at a time and labeled by a human expert. Every time a new sample is selected

and labeled, a new learning model is produced and the active learning algorithm again

chooses a new instance from the unlabeled set. This process is repeated as long as

necessary or until the labeling budget is exhausted. After enough instances have been

selected and labeled, we can use the selected set as a training set for a learning to rank

system.

Figure 3.1 shows the relationship of an active learning system to the other compo-
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Figure 3.1. Active Learning Framework

nents of an IR/L2R framework. Similarly to the L2R framework described in the last

chapter, we first pose a series of sample queries to the IR system, obtaining the lists of

documents associated to these queries. We then process these documents, producing

an unlabeled set containing the feature-based representation of the query-document

instances. The Active Learning System selects documents from this unlabeled set, and

presents them to the Human Assessor for relevance evaluation. These labeled samples

are put into the training set which the Active Learning System uses to update it’s

own learning model (not shown in the picture) and proceed selecting more unlabeled

samples for labeling. This is repeated as long as necessary (we will later discuss how

we can decide when to stop labeling). Once we have enough training data, we can use

it to train the L2R System, producing a model that can later be used by the Ranking

System to rank the results for a user query, as described in the last chapter.

Observe that although in the “typical” scenario the active learning system se-

lects only one sample per round, it is also possible to select instances in batches and

then label them all at once, updating the model and repeating the process. Guo and

Schuurmans [2008], for instance, propose a batch-oriented active learning method for

classification. The method proposed by Donmez and Carbonell [2008] (which we use
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as a baseline and will discuss at length in Section 4.2 and in Chapter 5) also selects

several documents at each round as does the method we propose in Chapter 5.

3 Active Learning Strategies

The purpose of an active learning method is to select instances that will be very

“informative” to the supervised learning algorithm that will later use the selected

training set.

Several works propose active learning methods for classification tasks (see, for in-

stance, Donmez et al. [2007]; Mccallum [1998]; Nguyen and Smeulders [2004]; Schohn

and Cohn [2000]; Tong and Koller [2002]). While classification functions output a dis-

tinct class for each data item, ranking functions must produce partial orders of items

either through some scoring function, pairwise ordering or listwise ordering of the items.

Most active sampling methods for classification try to directly minimize the classifica-

tion error, but this approach is not straightforward to extend to the ranking problem

since, as noted by Liu [2009], position-based measures such as MAP and NDCG are

usually non-continuous and non-differentiable. Additionally, in most supervised learn-

ing settings, samples can be treated as independent of each other which is not the case

for L2R where each sample represents a document relative to a query. Thus, in L2R,

instances are conditionally independent given a query (see Long et al. [2010]).

Despite the differences between classification and L2R, active learning methods

proposed in both fields have common general outlines or strategies. In some methods,

the most ambiguous, or those instances for which the learner is most uncertain about,

are selected (see, for instance, Lewis and Gale [1994]; Tian and Lease [2011]). This

approach is simple and straightforward, specially for probabilistic learners in classifica-

tion. By obtaining the label of a sample lying close to the boundary between one class

and another the classifier can better discriminate instances of each class. For a binary

probabilistic classifier, this approach amounts to choosing the instances whose poste-

rior probability of being positive is nearest 0.5. For multiple class problems, margin

sampling (see Scheffer et al. [2001]) or entropy (see Settles and Craven [2008]) based

strategies may be used.

In other settings, a query-by-committee (QBC) strategy is employed where com-

peting learners vote on the label of the candidate samples and those about which they

most disagree are chosen (Cai et al. [2011]; Seung et al. [1992]). The idea behind QBC-

based active methods is that of minimizing the version space (or the set of hypotheses

consistent with the current labeled training data), thus making the search for a good
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hypothesis easier. See Chapter 5 for more information on QBC strategies.

Some algorithms select the samples that would cause the greatest change to the

currently learned function (for example, Donmez and Carbonell [2008]; Settles et al.

[2008]). This is the case of the active method for L2R proposed by Donmez and

Carbonell [2008] which we detail in Section 4.2. The intuition behind this strategy is

that in an active learning scenario, we usually start with a very simple and incomplete

learning model and that by incorporating into the training set those samples that (we

estimate) will change the model the most, we can accelerate the model’s evolution

towards an effective hypothesis.

Other methods select instances that would lead to the minimal expected future

error or, similarly, optimize some other metric such as precision or recall (for instance,

Donmez and Carbonell [2009]; Settles [2009]). These approaches can be computation-

ally expensive as they usually involve not only the future error estimation, but also

the retraining of the learned model for each possible label of the instances considered

(although, in some cases, it is possible to incrementally update the model, this is also

possibly expensive). Some other approaches, such as Long et al. [2010], minimize the

loss function indirectly by minimizing the output variance.

4 Related Work

4.1 Active Learning for Learning to Rank

Some researchers have recently proposed active learning schemes for L2R based on the

optimization of approximations of position-based measures. The authors of Long et al.

[2010], for example, propose a general active learning framework based on expected

loss optimization (ELO). The proposed framework uses function ensembles to select

training examples that minimize a chosen loss function. The authors approach the

unique challenges of active learning in L2R by separating their selection algorithm into

query level and document level parts (what they call Two-stage Active Learning). To

approximate their chosen metric, namely, DCG (Discounted Cumulative Gain), they

use ensembles of learners to produce relevance scores and estimate predictive distribu-

tions for the documents in the active learning set. To produce the ensemble, they use a

bootstrap technique that relies on an initial labeled set. Thus, their technique requires

a initial labeled set to build the ensemble of learners, which needs to be large enough

for the learners in the ensemble to be minimally effective. They test their method using

a large commercial Web search dataset (500K documents) and using initial (labeled)

sets of 2K, 4K and 8K documents.
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An SVM-specific strategy is presented by Donmez and Carbonell [2009]. The

authors rely on the relationship between the area under the ROC curve (AUC) and

the hinge rank loss proposed by Steck [2007] to develop a loss minimization framework

for active learning in ranking. Instead of testing each and every unlabeled sample to

determine the one that has the smallest expected future error, the authors suggest

selecting the examples that have the largest contribution to the estimated current

error. These are potentially the ones that will bring more benefit when labeled for the

functions that will be trained in the next rounds of the method. The proposed selection

criterion is based on the hinge rank loss calculated on a per query basis and depends on

the determination of a rank threshold that estimates the rank position that separates

the lowest ranked relevant element from the highest ranked non-relevant example. The

algorithm starts with a small labeled per query set and proceeds selecting unlabeled

samples that have the highest uncertainty (as defined by the rank threshold). These

samples are then labeled and added to the per query labeled sets and the process is

repeated as many times as desired.

A slightly different approach is proposed by Donmez and Carbonell [2008]. Their

method relies on the estimated risk of the ranking function on the labeled set after

adding a new instance with all possible labels. The authors present results using

this sampling technique with SVMRank and RankBoost. Their method, which also

relies on an initial labeled training set and incrementally adds new samples, achieves

competitive results with around 15% of the original training sets. We have chosen to

implement this method as a baseline because it is elegant and simple and provides very

good results. We describe this method in more detail in the next section.

Some other works apply active learning strategies in association with other tech-

niques such as transfer learning or relevance feedback. Cai et al. [2011], for instance,

propose a method integrating Domain Adaptation and active learning as a way to

reduce labeling costs. They first use a QBC scheme built on a mixture of source-

domain and target domain data to select the most “informative” queries from the

target domain. Then these new labeled sets are used to adjust the importance weights

of source-domain queries for boosting the transfer of prior ranking knowledge. Their

QBC strategy is based on the query-by-bagging concept by Abe and Mamitsuka [1998]

where from the currently labeled set a number of partitions is created by sampling

uniformly with replacement and the same learning algorithm is trained using these

partitions to obtain different models to be used as the committee. Their method per-

forms only query-level selection, meaning that all the documents from the selected

queries have to be labeled. Although their method is not directly comparable to ours

(since it uses rank adaptation on top of active learning), it must be noted that by using
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query-level selection only, the amount of labeled documents grows very fast for datasets

such as those in LETOR 3.0 (which are used to evaluate their method). In contrast,

our work uses an ensemble of learners approach to QBC and does document-level se-

lection (although, as we discuss later, it can be easily extended to use query, document

or query-document level selection), achieving better results using 15% (or less) of the

unlabeled sets than those presented in their work using 100% of the training sets.

Another work leverages active learning using Relevance Feedback (RF). Tian and

Lease [2011] propose a method that iteractively improves the rankings shown to the

user based on the feedback of which link the user clicks at each round. The method uses

a Support Vector Machine (SVM) algorithm to classify the documents into relevant and

not relevant. Their active learning scheme uses two approaches: in the Simple Margin

version, those documents lying closest to the decision hyperplane are considered the

ones the SVM is most uncertain about. They also propose a variation, called Local

Structure, which also takes into account the proximity of the unlabeled instances to

already labeled data. This variation chooses instances close to the decision surface but

also far from already labeled data and close to more unlabeled samples in an attempt

to maximize the diversity of the selected set and improve the algorithm’s learning

curve. They evaluate their method using Robust04 and LETOR 3.0, comparing it to

RF baselines. Their work is not directly comparable to ours, since we aim at providing

a method for a training set creation effort where the human annotators evaluate each

document selected by the system in turn, doing that until the (small) labeling budget

is met.

4.2 The Donmez Method

Here we describe the active learning for rank method proposed by Donmez and Car-

bonell [2008]. Henceforth we refer to this method as “Donmez”.

The method starts with a per query labeled seed set. It progresses in rounds,

selecting a preset number of new documents per query that are then labeled and added

to the training set. The basic idea is to estimate, for each query, what is the capacity

of an unlabeled example to update the current model if it is labeled and added to the

training set. The top k samples (for each query) that have the highest estimated impact

in the current model are selected and labeled. We will see in detail the practical aspects

of the Donmez method in Chapter 5, where we use it as a baseline to compare our own

round-based method against. Here we briefly discuss the theoretical framework of the

method.

The basic idea of Donmez’s method is to estimate the impact that each unlabeled
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sample would have in the current SVMRank model without having to retrain the

model including each unlabeled sample with all the possible labels (which would be

computationally expensive). This general framework is applied to SVMRank in the

following manner.

Given a family of ranking functions F , we want to find a linear function f ∈ F of

the form f(~x) = 〈~w, ~x〉 that satisfies ~xi � ~xj ⇔ 〈~w, ~xi〉 > 〈~w, ~xj〉 where ~w is the weight

vector adjusted by learning and ~x is the feature vector of a query-document instance.

The soft-margin SVM model proposed by Vapnik [1995] is used by Joachims

[2002] to target the problem of finding f formulating it as a quadratic optimization

problem:

min
~w

1

2
‖ ~w ‖2 +C

∑
ξij (3.1)

subject to 〈~w, ~xi〉 ≥ 〈~w, ~xj〉+ 1− ξij, ξij ≥ 0 ∀i, j

where C is a parameter that allows trading off margin size for training error. Donmez

and Carbonell rewrite this optimization in terms of the hinge loss, substituting C for

λ = 1
2C

and obtaining

min
~w

K∑
k=1

[1− zk〈~w, ~x1
k − ~x2

k〉]+ + λ ‖ ~w ‖2 (3.2)

where K is the total number of pairwise comparisons, ~x1
k − ~x2

k is a pairwise difference

vector whose label z is positive (i.e. z = 1) if ~x1
k � ~x2

k and negative (i.e. z = −1)

otherwise and [1− zk〈~w, ~x1
k − ~x2

k〉]+ is the hinge loss.

Now suppose we were to include a sample ~x from the unlabeled set U into our

training set. The total loss of the instance pairs containing ~x would be given by the

function of ~x and ~w D(~x, ~w) =
∑J

j=1[1 − zk〈~w, ~xj − ~x〉]+ where J is the number of

examples already in the training set that have a different label than ~x (remember that

pairwise comparisons using relevance levels are only useful when comparing documents

with different labels). Then the function to be minimized becomes:

min
~w

{
λ ‖ ~w ‖2 +

K∑
k=1

[1− zk〈~w, ~x1
k − ~x2

k〉]+ +D(~x, ~w)

}
(3.3)

Let’s say that ~w∗ is the solution to the optimization problem in 3.2 (i.e. the

weight vector in our current learned model) and that ~̂w is the vector that minimizes

D(~x, ~w). If ~w∗ 6= ~̂w then as the difference ‖ ~w∗ − ~̂w ‖ increases it becomes less likely

that ~w∗ is optimal for Equation 3.3. In other words, the higher this difference, the

more ~w∗ needs to be updated in order to compensate for the loss on the new pairs.
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Let’s write ~̂w in terms of ~w∗ as ~̂w = ~w∗ −∆w. To obtain ~̂w, we need to minimize the

objective function:

min
~w
D(~w, ~x) = min

~w

J∑
j=1

[1− zj〈~w, ~xj − ~x〉]+ (3.4)

The derivative of this equation with respect to a single point ~xj, ∆ ~wj is:

∆ ~wj =

0 if zj〈~w, ~xj − ~x〉 ≥ 1

−zj(~xj − ~x) if zj〈~w, ~xj − ~x〉 < 1
(3.5)

Substituting ~w in Equation 3.5 for the current weight vector ~w∗, we can estimate

how the solution of Equation 3.4 deviates from it. That is, ‖ ~w∗ − ~̂w ‖=‖ ∆~w ‖. Then

we can write the magnitude of the total derivative as a function of ~x and the rank label

y as:

g(~x, y) = ‖ ∆~w ‖ =
∑

j ‖ ∆ ~wj ‖

=
∑J

j=1

0 if zj〈~w∗, ~xj − ~x〉 ≥ 1

‖ −zj(~xj − ~x) ‖ if zj〈~w∗, ~xj − ~x〉 < 1

(3.6)

Thus, g(~x, y) estimates how the current model will change with the addition of

the document ~x with label y. Remember that we are evaluating the documents in the

unlabeled set and, therefore, we do not know the true label y of each instance ~x. But

we can use the current model to estimate the label probabilities P̂ (y|~x) for all y. In

a binary relevance scenario (i.e. y ∈ {0, 1}) we evaluate all unlabeled documents for

each query in turn and choose ~x∗ according to:

~x∗ = argmax
~x∈U

{
P̂ (y = 1|~x)× g(~x, y = 1) + P̂ (y = 0|~x)× g(~x, y = 0)

}
(3.7)

As we will see in more detail in Chapter 5, Donmez’s method actually selects the

top 5 documents for each query at each round. Therefore, in each round we sort all

documents ~x of a query q in descending order of the value obtained using Equation 3.7

and select the top 5 documents to be labeled and added to the training set.

Notice that one of Donmez’s main assumptions is that the documents expected

to change the current model the most will lead to learning the true hypothesis faster.

It is possible that in some rounds the documents selected lead to worse generalization

of the model (i.e. the selected documents are “noisy” to the learning algorithm), but

as more rounds are run (and more documents labeled and added to the training set)

their influence will be mitigated as the labeled set increases in size.
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By using the probabilities of the labels P̂ (y|~x) that the current model predicts for

each instance in the estimation of ~x∗, Donmez’s method also incorporates an element of

uncertainty-based sampling. This is one of the most common active learning strategies

for learners that output class probabilities. Samples that have probabilities closer to

0.5 may be chosen more often if the estimated model correction g(~x, y) is high for either

class or for both. On the other hand, samples where one of the projected classes has

a higher probability and when the estimated model change for the same class is also

high may also be chosen more frequently.

By mingling estimated model change and uncertainty sampling, Donmez method

is very elegant and effective as we will see in Chapter 4 and in Chapter 5.

5 Summary

Active learning methods provide a mechanism to actively select “informative” unla-

beled samples from a pool of instances so as to build an effective training set for

supervised learning algorithms. By allowing the active learning algorithm to select the

samples that have to be labeled, we hope to reduce the considerable cost of labeling

documents. Observe that it is inexpensive to obtain unlabeled samples: all that needs

to be done is to use sample queries (gathered from query logs, for instance) to obtain

documents using the IR system and then generate the query-document features used

by the active learning algorithm. The active learning method then selects instances

from this pool of unlabeled examples and present them to the human assessor to be

labeled.

In this chapter, we have briefly described some of the most common active learn-

ing strategies used in classification and ranking. We also presented some of the active

learning methods that have been proposed for ranking in the last few years, describing

in detail one such method (i.e. “Donmez”) which we will use as a baseline to evaluate

the novel methods we propose in the next two chapters.
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Active Learning to Rank Using

Association Rules

1 Introduction

In this chapter we propose a new active learning technique based on association rules.

Learning to rank using demand-driven association rules has been shown to provide

competitive ranking quality by Veloso et al. [2008]. The method proposed here uses

association rules to actively select documents from an unlabeled set based on how many

inference rules are generated for each document. At each step, a new document is cho-

sen for labeling as the most “dissimilar” with respect to the already selected samples

(but with no need to create a model), with the goal of increasing diversity and repre-

sentativeness. This is performed by choosing from the unlabeled data the document

ui that generates the smallest number of rules when considering a “projection” of the

current selected training set with respect to the features of ui. This projection aims at

removing examples from the current training set that are not useful in producing rules

for ui. The more dissimilar the candidate document, the fewer the rules generated for

it, meaning that few already labeled instances in the projected training set share com-

mon feature-values with the candidate. This process is repeated until the algorithm

converges, which happens when an already selected document is selected again, i.e.,

there is no more information useful for generating rules from any other document in

the unlabeled set.

Despite being very effective in several cases, as demonstrated in our experiments,

our method may sometimes converge too fast, resulting in a very small labeled training

set. We propose a strategy to delay this convergence and increase the size and diversity

41
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of the labeled set which consists in vertically partitioning the features in the unlabeled

set, generating in practice several reduced (in terms of features, not instances) un-

labeled sets, over which our active sampling method can be applied. Once the final

reduced training set is created by the union of the documents selected in each partition,

we apply the supervised on-demand association rule algorithm (RLR) to rank the test

set. One of the key advantages of our method is that it can be directly applied on an

unlabeled set containing the extracted features for the documents in the corpus, with-

out the need for an initial labeled set. Furthermore, once the unlabeled set is generated

(i.e. feature extraction is performed on the corpus) and processed (i.e. discretized and

partitioned), the method can be directly applied without extra parametrization since

it naturally converges while selecting the training samples. This is different from most

previous work where there is no clear stop criterion and the number of iterations has

to be empirically determined.

We compare our method against a number of baselines that use the complete

labeled training set, including some published by the LETOR dataset producers with

many supervised L2R algorithms, and show that it is competitive when compared to

several of them while selecting and using as little as 1.12% and at most 2.28% of

the original training sets (average of 1.63% for all datasets considered). Best results

reported in the literature with other active sampling strategies for L2R reported select-

ing at least 11% of the training set to produce similar competitive results. Moreover,

in most cases our method improved the results of the original on-demand associative

method (by as much as 13%), or produced similar results when compared to using the

whole training set, confirming the hypothesis that active learning methods may be able

to improve the results by reducing the “noise” in the training sets.

2 Active Learning using Association Rules: ARLR

In this section we present a novel algorithm referred to as ARLR (Active Rule-based

Learning to Rank), which relies on an effective selective sampling strategy in order to

deal with the high cost of labeling large amounts of examples. The key idea of ARLR

is that it may provide results as effective (or even better) as RLR by carefully choosing

a much smaller set of training examples from which it learns the ranking functions.

ARLR takes each unlabeled document in turn, obtaining its projection from the current

reduced training set and generating the rules that would be used to rank the document.

After it has the rules for all unlabeled documents, it chooses the one that generated the

fewest rules, obtaining its label and inserting it into the current selected and labeled
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training set. The goal is to label as few instances as possible, while providing equal or

even improved ranking performance.

Sampling Function

Consider a large set of unlabeled documents U = {u1, u2, . . . , un}. The problem we

investigate in this section is how to select a small subset of documents in U , such

that the selected documents carry almost the same information of all documents in U .

These highly informative documents will compose the training data D, and, ideally,

|D| � |U|. Particularly, ARLR exploits the redundancy in feature-space that exists

between different documents in U . That is, many documents in U may share some of

their feature-values, and ARLR uses this fact to perform an effective selective sampling

strategy.

Remember from Chapter 2 that RLR ranks a document d of a new query by

creating a projection Dd of the training set in order to extract a set of association rules

Rd used to estimate d’s relevance. ARLR takes a document ui from the unlabeled set

and also creates a projection of its small labeled set D in order to generate rules for

ranking. But instead of doing this to estimate ui’s relevance, it is interested in how

many rules are generated. Intuitively, if a document ui ∈ U is inserted into D, then

the number of useful rules for documents in U that share feature-values with ui will

possibly increase. In contrast, the number of useful rules for those documents in U that

do not share any feature-value with ui will clearly remain unchanged. Therefore, the

number of rules extracted for each document in U can be used as an approximation of

the amount of redundant information between documents already in D and documents

in U . The sampling function employed by ARLR exploits this key idea, by selecting

documents that contribute primarily with non-redundant information, and these in-

formative documents are those likely to demand the fewer number of rules from D.

More specifically, the sampling function γ(U) returns a document in U according to

Equation 4.1:

γ(U) = {ui such that ∀uj : |Rui
| ≤ |Ruj

|} (4.1)

The document returned by the sampling function is inserted into D, but it also

remains in U . In the next round of ARLR, the sampling function is executed again,

but the number of rules extracted from D for each document in U is likely to change

due to the document recently inserted into D. The intuition behind choosing the

document which demands the fewest rules is that such document should share less

feature-values with documents that were already inserted into D. That is, if only few

rules are extracted for a document ui, then this is evidence that D does not contain
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documents that are similar to ui, and, thus, the information provided by document ui

is not redundant and ui is a highly informative document. This simple heuristic works

in a fine-grained level of feature-values trying to maximize the diversity in the training

set. The extracted rules capture the co-occurrence of feature-values, helping in our

goal of increasing diversity, since in this case, the document which demands the fewest

rules is exactly the one which shares the least possible number of feature-values with

documents already in the training data. In the case of a tie, the algorithm selects the

document based on the size of the projection.

Notice that initially D is empty, and thus ARLR cannot extract any rules from

D. The first document to be labeled and inserted into D is selected from the set of

available documents U . In order to maximize the initial coverage of D, the selected

document is the one that maximizes the size of the projected data in U , that is, it is

the document d for which Ud is the largest. This is the document that shares more

feature-values with the other documents of the collection and can be considered as the

best representative of it. After the first document is selected and labeled, the algorithm

proceeds using the fewest rules heuristic, as described above.

Natural Stop Condition

After selecting the first document and at each posterior round, ARLR executes the

sampling function and a new example is inserted into D. At iteration i, the selected

document is denoted as γi(U), and it is likely to be as dissimilar as possible from the

documents already in D={γi−1(U), γi−2(U), . . . , γ1(U)}. The algorithm keeps inserting

documents into the training data, until the stop criterion is achieved.

Lemma 2: If γi(U) ∈ D then γi(U)=γj(U) ∀j>i.

Proof: If γi(U) ∈ D then the inclusion of γi(U) does not change D. As a result, any

further execution of the sampling function must return the same document returned

by γi(U), and D will never change. �

The algorithm stops when all available documents in U are less informative than

any document already inserted into D. This occurs exactly when ARLR selects a

document which is already inD. According to Lemma 2, when this condition is reached,

ARLR will keep selecting the same document over and over again. At this point, the

training data D contains the most informative documents, and RLR can be applied to

estimate the relevance of documents in T . All steps of ARLR are shown in Algorithm 2.
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Algorithm 2 Active Rule-based Learning to Rank: ARLR

Require: Unlabeled data U , and σmin (≈ 0)
Ensure: The training data D

1: repeat
2: for all document ui ∈ U do
3: Dui

⇐ D projected according to ui
4: Rui

⇐ rules extracted from Dui
| σ ≥ σmin

5: end for
6: if D = ∅ then
7: γi(U)⇐ ui such that ∀uj : |Uui

| ≥ |Uuj
|}

8: else
9: γi(U)⇐ ui such that ∀uj : |Rui

| ≤ |Ruj
|}

10: end if
11: if γi(U) ∈ D then break
12: else append γi(U) to D

3 Experimental Evaluation

3.1 Experimental Setup

As described in Section 3, ARLR, our rule-based active sampling algorithm processes

a given list of unlabeled instances selecting the one that produces the fewest rules.

In this setup, the training set for the selection process is initially empty and grows

one instance at a time as they are selected from the unlabeled set and labeled. The

algorithm eventually converges when it selects an instance it has already selected before.

Once that happens, the selected items can be used as a reduced training set to rank the

test set using RLR (i.e. the supervised rule-based rank-learner). All results presented

here use, therefore, two distinct sets. The original training set is used as the unlabeled

set from which instances are selected by ARLR. The test set is then ranked by the

RLR using the selected and labeled instances as training. Observe that our method

does not use an initial labeled set to learn an initial model. The labeling effort is

restricted to the examples selected by the algorithm directly from the unlabeled set. In

our experiments, the presence of the user who would provide the labels is simulated; we

use instead the original labels available in the collection after a document is selected.

The association rule mining algorithm uses nominal values to generate the infer-

ence rules used in ranking the results or in selecting samples. Therefore it is necessary

to discretize the original LETOR data. Since all our data is unlabeled, we need to use

an unsupervised discretization algorithm. Simple algorithms such as Uniform Range

Discretization (URD) or Uniform Frequency Discretization (UFD) could be used, but

being oversimplistic, they may cause some loss of information. Instead, we use the
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Table 4.1. ARLR without Partitioning MAP Results and Statistics

ARLR RLR BM25 Random G% Sel# Sel% RS% R% R25%

TD2003 0.2032 0.2459 0.1402 0.1181±0.0234 44.94 157 0.53 6.80 1.52 13.22

TD2004 0.1792 0.2463 0.1452 0.1267±0.0163 23.47 141 0.32 7.82 2.92 11.32

NP2003 0.7202 0.6373 0.5346 0.4981±0.0688 34.72 207 0.23 3.04 0.10 25.32

NP2004 0.4993 0.5155 0.2672 0.3695±0.0575 35.15 181 0.41 3.18 0.17 5.76

HP2003 0.6487 0.7083 0.5230 0.5486±0.0493 18.25 218 0.25 3.62 0.12 26.04

HP2004 0.6332 0.5443 0.3712 0.3117±0.0496 70.55 222 0.50 1.68 0.13 4.24

Tree-based Unsupervised Bin Estimator (TUBE) proposed by Schmidberger and Frank

[2005]. TUBE is a greedy non-parametric density estimation algorithm that uses the

log-likelihood measure and a top-down tree building strategy to define varying-length

bins for each attribute in the dataset. The algorithm can automatically determine the

number of bins using cross-validation and the log-likelihood. Since this approach can

lead to too many bins in some cases, we chose to use 10 varying-length bins for all at-

tributes in all datasets (see Section 3.3.1 for an analysis of the discretization process).

The results shown in tables 4.1 and 4.2 were obtained using TUBE to discretize each

feature from the training set into 10 bins. After the bins were determined using the

training sets in each fold, the test sets were discretized using the same bins. All results

presented use 5-fold cross-validation on the query-normal version of the datasets.

3.2 Results

Table 4.1 presents the results for this initial setup. The first column, “ARLR”, shows

the MAP obtained using only the samples selected from the unlabeled set. The number

of selected samples appears in the “Sel#” column (for the total number of instances in

the unlabeled set, see the “TR Size” column of Table 2.1). The “Sel%” column indicates

the percentage of the unlabeled set that the selected examples represent. The “RS%”

column shows the proportion of relevant samples in the selected set while the “R%”

field shows the proportion of relevant documents in the full training set. “R25%” shows

the proportion of relevant samples selected by the BM25 baseline described below.

As a reference result, the “RLR” column contains the MAP obtained by the RLR

algorithm using the complete training set and supervised discretization. We show this

result for comparison, since it uses the very effective supervised discretization method

proposed by Fayyad and Irani [1993] and provides a target to measure our hypothesis of

noise reduction. The baselines appear on the 3rd and 4th columns: “BM25” shows the

resulting MAP from running RLR with the same amount of samples selected by ARLR

as training but selected using the value of the BM25 attribute in descending order (i.e.
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instances with the highest BM25 were used); “Random” shows the MAP obtained by

randomly selecting the same amount of samples selected by ARLR and using these as

the training set for supervised RLR ranking. Finally, the “G%” column indicates the

gain obtained by ARLR over the best value from the BM25 and Random baselines. The

Random baseline was produced by randomly sampling the same amount of instances

selected by ARLR at least 20 times for each fold and averaging the resulting MAPs.

We present the mean obtained from all runs and all folds as well as the confidence

interval for a confidence level of 95%. The RLR with BM25 baseline tries to select

more interesting instances by using the BM25 attribute value as a measure of instance

quality.

From Table 4.1 we can see that the method converges very fast, selecting from 0.23

to 0.53% of the instances in the unlabeled set. Compared to the baselines, it performs

very well as can be seen on the “G%” column. ARLR even beats the RLR reference

result in NP2003 and HP2004. Notice also that ARLR tends to select a much higher

proportion of relevant instances than present in the original sets (RS% vs. R%). These

datasets have an extremely reduced amount of relevant instances and ARLR seems to

single them out based on the “fewer rules” heuristic. On the other hand, the BM25-

based selection obtains an even higher proportion of relevant documents, showing the

power of this classic IR measure. But from the BM25 results we can see that it is not

only a matter of using many relevant instances, but also about the overall “quality”

of the instances used. Our rule-based selection method does choose many relevant

instances, but it does so based on the rules created from all attributes.

These initial results are promising, but the algorithm is converging too fast in

some collections for the selected samples to have sufficient representativeness and di-

versity. Next we propose a simple and yet effective strategy to delay the convergence.

3.2.1 Increasing Sample Diversity

The approach described above has two potential issues: first, it may take some time

to run on datasets with too many features, since the active sampling algorithm’s com-

plexity depends on the number of features and the size of the unlabeled set. Second,

as we can see in Table 4.1, the number of instances selected using this method is very

small, ranging from 0.23 to 0.53% of the unlabeled set size. There’s no doubt that the

selected samples are very informative, since the results obtained by ARLR are usually

reasonably better than the baselines. Nonetheless, the resulting training dataset may

still be too small to provide, in some collections, the minimum diversity of examples

for the supervised algorithm to reach a performance comparable to that obtained using
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the complete training set (i.e. column “RLR” in Table 4.1). By delaying convergence

and increasing the number of sampled instances we can perhaps improve the diversity

of the selected set.

We propose partitioning the unlabeled set into vertical sections containing sub-

sets of the features1. Each of these partitions contain all unlabeled instances, but only

a group of each instance’s features. The active sampling algorithm can then be run on

each partition, selecting instances based on distinct feature sets. This simple strategy

increases the number of selected instances, since for each partition the algorithm will

choose those that are most informative given the features in that partition. It may also

improve the diversity of the samples, as they are selected based on distinct characteris-

tics. To apply this strategy, we need to determine how to separate the features into the

partitions and how many partitions should be used. The features need to be divided in

such a way as to allow the algorithm to select informative samples regardless of which

feature set is used. However, features have diverse informational values, with some

being more informative to the rank learning algorithm than others. Ideally, we want

to distribute the most informative features through all partitions in order to maximize

the quality and variety of the instances selected by ARLR from each partition.

There are many ways to estimate which features provide more information. We

chose to estimate the χ2 value of each feature. Since we do not have relevance infor-

mation, we cannot calculate the χ2 in relation to the label. What we do instead is

to calculate the χ2 of each feature in relation to the others (i.e. how well one feature

performs in predicting another feature’s value). Thus, for m features, we produce a

matrix containing in line i the m − 1 features ranked in descending order of their χ2

value in relation to the ith feature. We then combine the m rankings by scoring each

feature according to its positions in all rankings. If a feature appears at the first posi-

tion in a ranking we add 1 to its score, otherwise, we add 1/log(10× j) where j is the

feature’s position in that ranking. Then we order the features in descending order of

score, obtaining the final ranking.

With this ranked list of features, we can now vertically partition the unlabeled set

by spreading the features into the partitions in the ranked order. Thus, given the ranked

list of m features F = {f1, f2, ..., fm}, and a set of n partitions P = {U1,U2, ...,Un}, we

place feature f1 (the one in the first position of the χ2 ranking) in partition U1 then f2

in U2, eventually reaching partition Un and starting over by placing the next feature, fi

into U1 and fi+1 into U2 and so on. We now run ARLR using each Uk set as input, and

obtaining n sets of selected documents Dk. We then obtain the original set of features

1Another strategy would be to select documents per query, but this would entail a large number
of actively selected samples, thus hurting our goal of significantly reducing the labelling effort.
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Algorithm 3 ARLR with Partitioning

Require: Unlabeled data U , Ranked list of features F , Number of partitions n = |P|
Ensure: The training data D

1: for all i | 0 ≤ i < |F| do
2: j ⇐ i mod n
3: Uj+1 ⇐ projection of U with all values for fi+1

4: end for
5: for all k | 1 ≤ k ≤ |P| do
6: Dk ⇐ ARLR(Uk, σmin)
7: end for
8: for all k | 1 ≤ k ≤ |P| do
9: D ⇐ D ∪ {dj ∈ U|∃di ∈ Dk, i = j}

10: end for

for all selected documents from U and run RLR using this new set as training. A brief

description of this version of ARLR with Partitions is shown in Algorithm 3.

The next step is to determine how many partitions to use. If very few partitions

are used, then the increase in document diversity and the number of selected instances

may be small, yielding only marginal gains. If we use too many partitions, then the

informational value of each document is diluted and ARLR will select many instances

that are not informative as a whole, but only when considered in the context of the

reduced feature set (i.e. the partition from which it was selected). Thus it is important

to determine how many partitions to use to obtain good diversity while selecting infor-

mative samples. We performed preliminary tests using 2 collections (see Section 3.3.2

for a more detailed analysis of the effect of partitioning on the results), and decided to

set the number of features per partition to be from around 8 to 12. Using 5 partitions

for all datasets, we have around 12 features per set for LETOR 3.0. For datasets with

more features, more partitions should be used.

Table 4.2 presents the results for ARLR. All results were produced by splitting

the unlabeled sets in 5 partitions, selecting instances from the partitions, creating a new

labeled training set comprised of all the selected samples with all features and running

RLR on the test set with 5-fold cross validation. Again we compare the resulting

MAPs with two baselines: BM25 and Random. The baselines were ran again, since

the number of documents selected has changed for all datasets. Notice that the results

for “RLR” are the same as in Table 4.1, since it uses the complete training set.

As we can see, ARLR with partitions selects from 4 to 5 times the amount of

instances selected by ARLR without partitioning although the percentages relative to

the unlabeled set (column “Sel%”) remain very low. These percentages now vary from

1.12% (NP2003) to 2.28% (TD2003). Not only the size of the selected set increased,
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Table 4.2. ARLR with 5 Partitions MAP Results and Statistics

ARLR RLR BM25 Random G% Sel# Sel% RS% R% R25%

TD2003 0.2728 0.2459 0.2104 0.1573±0.0198 27.84 670 2.28 4.40 1.52 7.70

TD2004 0.2185 0.2463 0.1818 0.1707±0.0112 10.37 593 1.33 5.72 2.92 6.00

NP2003 0.6960 0.6373 0.6321 0.5573±0.0423 10.09 995 1.12 2.42 0.10 7.28

NP2004 0.5499 0.5155 0.4064 0.4038±0.0580 35.29 860 1.94 1.80 0.17 2.16

HP2003 0.7411 0.7083 0.6487 0.5825±0.0460 14.25 1091 1.23 2.00 0.12 6.90

HP2004 0.6168 0.5443 0.3685 0.3718±0.0479 65.89 855 1.91 1.68 0.13 1.74

but there may be more diversity in the selected set as instances were chosen based

on different feature groups. As a consequence, the MAP for ARLR with partitioning

is better for 4 datasets. The improvement over ARLR without partitioning was 32%

for TD2003, 22% for TD2004, 14% for HP2003 and 10% for NP2004. For NP2003

and HP2004, there was a small reduction of around 3%. The proportion of relevant

instances selected is also lower for both ARLR and the BM25 baseline. Our method is

not only still better than the baselines but also beats RLR using the full training sets

on all datasets except TD2004. This is an indication that there is some noise reduction

in the active selection process. With only 2% of the original training set it is possible

to obtain better results than using the full training set with a supervised method such

as RLR.

By vertically partitioning the unlabeled set we are able to increase the number of

the samples selected by ARLR. From now on, any reference we make to “ARLR” relates

to the full method, including 10 bin discretization and 5 partitions (for the LETOR 3.0

datasets). In the following section, we study in more depth the discretization process

which greatly influences the effectiveness of the method. Then, in section 3.3.2 we also

analyze the partitioning process at length to better understand how it affects ARLR.

3.3 Analysis

3.3.1 Discretization

RLR and ARLR derive rules with nominal feature-values in the antecedent and rele-

vance levels in the consequent. For these rules to be applicable to documents in the

test set (i.e. at query time) real-valued features need to be discretized into a finite

set of values that correspond to the discrete values used in the training set. Thus, the

discretization process consists in dividing the full value interval for each feature into

bins (or several intervals) so that real numbers can be mapped onto nominal values

(i.e. each bin).
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When using supervised algorithms such as RLR, the labeled training set can be

used to discretize both the training and the test sets using knowledge of the label to

determine the bins for each feature in such a way as to provide good label coherence.

One of the most well known supervised discretization algorithms, proposed by Fayyad

and Irani [1993], uses a class entropy measure to recursively partition a feature’s value

range into bins. It uses the Minimum Description Length Principle (MDLP) to decide

when to stop partitioning a given range. We cannot use a supervised discretization

method in our active learning setup, since we are sampling from an unlabeled set and

we need the data discretized before we can sample and label the selected instances.

Furthermore, the training sets selected by ARLR are too small to provide enough

feature-values for a supervised discretization method to be effective after we have

labeled the selected instances (and before we proceed to use RLR to rank the test set

using the selected sets as training). We are, therefore, bound to use an unsupervised

discretization method to prepare the data for instance selection by ARLR and, at query

time, RLR to obtain the actual ranking.

The discretization method used to produce the results presented in Tables 4.1

and 4.2 was the Tree-based Unsupervised Bin Estimator (TUBE) proposed by Schmid-

berger and Frank [2005]. TUBE is a non-parametric density estimation method that

relies on the log-likelihood and cross-validation to build a density estimation tree in

a top-down fashion. For each range, the algorithm finds the locally optimal binary

split (i.e. the one that maximizes the likelihood) and repeats the process recursively

in all subranges until the stopping criterion is met or a user-specified number of bins

is reached. If we allow the algorithm to determine the number of bins, the stopping

criterion (i.e. the final number of cuts) is determined by using a 10-fold cross-validation

process where the average log-likelihood over the test folds is computed for all trees

with 1 up to N − 1 cut points and the number of splits that yield the maximum value

is chosen. The cross-validation process runs first to determine the final number of cuts

for a given attribute and then the algorithm runs one more time to determine the

final bins for that feature. If we allow TUBE to automatically determine the number

of bins using the stopping criterion explained above, most attributes end up having

dozens or even hundreds of bins. With so many bins, ARLR will select a very large

number of instances, defeating our objective of keeping the selected sets small. This

happens because as the number of distinct feature-values increases (e.g. more bins per

feature), instances become more distinct from each other (e.g. some attribute values

that fell within the same bin will not do so when more bins are used). In other words,

as we increase the number of bins used to discretize the features, the instances become

more diverse and ARLR selects more instances, since it is built to select samples based
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Figure 4.1. % Selected samples vs. # of Bins (left) and MAP vs. # of Bins
(right)

on how distinct they are from those already selected. Therefore, in all experiments

described in section 3.2 we have used 10 bins to discretize the datasets using TUBE.

We can see the effect of varying the number of bins on the graph at the left of

Figure 4.1. It shows the percentage of instances selected from the unlabeled sets as

we use more bins to discretize the datasets. Observe that there is an almost linear

correlation between the number of bins and the proportion of selected samples. As

the number of bins increases, sample diversity also increases and ARLR selects more

instances as a consequence.

To the right of Figure 4.1, we can see a plot of the MAP obtained for each dataset

as we vary the number of bins (and, consequently, the number of selected samples).

For most datasets, the resulting MAP does not vary much as we discretize using more

than 8 bins (except for NP2004 and HP2004, where the MAP varies more widely).

This indicates that the sets selected by ARLR are almost equally representative of the

original unlabeled sets as we increase the number of bins, allowing RLR to effectively

rank the test sets. With more bins, there is more variety, and ARLR selects more

instances; but this variety and bigger selected sets do not translate into better results,

since it is artificially created by the discretization process.

From these results we can see that allowing TUBE to automatically determine

the number of bins would be a mistake, since too many instances would be selected

without any improvement to the ranking quality. Therefore, we have decided to use 10

bins to discretize all attributes in the datasets in the experiments described in section

3.2 above.

To better understand the quality of TUBE discretization, we ran some tests to
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Table 4.3. MAP for RLR using the complete sets with different discretizations

Fayyad TUBE URD UFD

TD2003 0.2459 0.2622 0.2272 0.2179

TD2004 0.2463 0.2338 0.1855 0.2306

NP2003 0.6373 0.6343 0.6788 0.6328

NP2004 0.5155 0.5743 0.5554 0.5226

HP2003 0.7083 0.6998 0.6613 0.7370

HP2004 0.5443 0.5519 0.4797 0.6229

Avg. 0.4829 0.4927 0.4647 0.4940

compare different discretization methods. We wanted to know how TUBE fares against

other unsupervised discretization algorithms and against the widely used supervised

method by Fayyad and Irani. Two very simple unsupervised discretization methods are

Uniform Range Discretization (URD) and Uniform Frequency Discretization (UFD).

In the former, each attribute’s range is divided in equal-width bins, where the number

k of bins is a user provided parameter. In the latter, the k bins are defined so that

each variable-sized bin contains approximately the same number of data points. To

be able to evaluate the quality of TUBE independently of ARLR, we ran a supervised

ranking test using these discretization algorithms. That is, we discretized each dataset

using these four methods and then used RLR to rank the test sets using the complete

training sets. For the unsupervised methods, the training set is discretized first and

then the test set is discretized using the same bins defined for the training set. The

supervised Fayyad method automatically detects the number of bins for each attribute.

For the unsupervised methods, we have used 10 bins for all attributes and datasets.

Table 4.3 shows the MAP obtained using RLR on the complete datasets using

each discretization technique in turn. Results in bold indicate the best result for

that dataset. As we can see, TUBE fares very well, beating all other methods in

two datasets (TD2003 and NP2004). Compared to Fayyad, TUBE is also better on

HP2004 and comes very close in NP2003 and HP2003. The quality of URD and UFD

discretizations vary more widely being very good in some cases but doing poorly in

others. Although UFD obtains the highest average for all datasets (0.4940), TUBE is a

very close second (0.4927) providing better results on the more difficult informational

datasets (TD2003 and TD2004). TUBE seems to be a very good choice for our active

selection method, since we are assuming that we do not have any training set and that

we want to build one from scratch. In such a setup, it is not easy to evaluate several

discretization methods beforehand. TUBE seems to provide good results for datasets

with very diverse characteristics such as the HPs and TDs.
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Figure 4.2. % of instances selected per partition as we vary the number of
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3.3.2 Partitioning

Another key element of ARLR is the partitioning of features used to delay the algo-

rithm’s convergence and possibly increase sample diversity. As explained in section

3.2, we partition the dataset vertically, creating subsets or partitions that contain all

unlabeled instances but only a group of the features. All features are ranked based on

their χ2 measure in relation to one another and then spread on the partitions uniformly.

ARLR is then used to select instances from each of these partitions in turn and then

all selected samples are gathered in a new training set that contains all features. As we

have seen, this process allows ARLR to select more instances than if no partitioning

is used. It possibly also increases the diversity of the selected samples since they are

chosen based on distinct feature sets. In other words, the instances are selected for

their distinctiveness within each feature group, which may increase diversity overall.

The partitioning process involves a trade-off. As we increase the number of parti-

tions, less features are put into each partition which potentially allows for more diver-

sity in the final selected set; but less features per partition also means less information

about each instance based on which ARLR must select samples. As the number of

features per partition reduces, the overall quality of the instances selected by ARLR

may be affected, which in turn may reduce the quality of the final selected set. To

better understand the effects of partitioning, we show some results from experiments

using TD2003 and TD2004 (the other datasets have similar results and are omitted for

simplicity).

We can see this effect in figures 4.2 and 4.3. Figure 4.2 shows the amount of

instances selected per partition (as a percentage of the full unlabeled set) as the number

of partitions increase and, thus, the number of features per partition decreases. As we
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use more partitions, less instances are selected per partition, since there are less features

for ARLR to generate rules from. To the left of Figure 4.3, we see the proportion

of samples selected from all partitions as more partitions are used. As we use more

partitions, we increase the final size of the selected set until it reaches a point where the

total number of selected samples starts decreasing (at around 21 partitions for TD2003

and 23 for TD2004: at this point, each partition has around 3 features). Eventually,

only one feature is used per partition (at 59 partitions for TD2003, which has 5 empty

features, and 64 partitions for TD2004), and the total number of selected samples drops

to almost the original number obtained by using ARLR with no partitioning (i.e. using

only one partition; see table 4.1).

On the graph to the right of Figure 4.3, we see a plot of the MAP of the ranking

produced by RLR using the training sets produced by ARLR as we vary the number of

partitions. The MAP for both datasets peak at 5 partitions (12 features per partition)

and then varies considerably, going slowly down and finally dipping to its minimum

at the maximum number of partitions. At the end of the run, where each partition

contains only one feature, ARLR selects more samples than at the beginning (i.e. 1

partition containing all features), but the MAP obtained is lower there, indicating that

the few samples selected using all features are more informative than the set selected

based only on one feature. The effect of the information loss that occurs when a very

small number of features is used to select samples can also be seen in the jagged line

of the MAP for both datasets from 21 partitions on. From 21 to around 33 partitions,

each partition has 2 or 3 features. From 33 to the end, each partition has either 2

features or 1 feature. The variation of the MAP indicates that some combinations
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of features are more valuable than others: as we split the features in different ways

- reducing the number of partitions with 2 features and increasing the number of

partitions with only 1 feature -, sometimes we get one or more groups of features that

allow ARLR to select more informative samples, increasing the final MAP. On the next

round, using more partitions, these combinations change and the resulting MAP again

drops. Eventually, almost all partitions contain only one feature and there are almost

no useful combinations, making the MAP drop steadily and sharply.

From these results, we can see that we need to provide ARLR with enough features

to be able to uniformly select informative samples from each partition. If we have

too many features per partition, then the selected set may be too small, but if we

have too few features per partition, then ARLR may select informative samples from

some partitions but not from others. Determining the number of partitions a priori is

difficult, since different datasets will contain different numbers of features and, more

importantly, more or less very informative features. But from these experiments we

can see that the resulting MAP is relatively stable when using from 3 to 13 features per

partition (i.e. 5 to 20 partitions for the LETOR 3.0 datasets). This relative stability

is a direct consequence of the ranking of features, since by using it we try to make

sure that very informative features are balanced across the partitions; that is, each

partition contains one or more “good” features which allows ARLR to select quality

samples from all partitions.

3.3.3 Using the selected samples with other L2R methods

Once the instances are actively selected by ARLR, it is possible to use other supervised

learning algorithms to rank the test sets. Of course, different algorithms will find

the instances selected by ARLR more or less “informative”. Active learning methods

currently proposed in the literature are inherently algorithm-specific as illustrated by

the SVM-specific techniques discussed in Section 4 of Chapter 3. For instance, the

approach proposed in Yu [2005] selects, at each round, the samples that minimize the

support vector margin. What if we run an SVM ranking algorithm using the selected

instances as training2?

Table 4.4 shows the MAP resulting from running SVMRank3, proposed by

Joachims [2002] and discussed in Section 6 of Chapter 2, using the examples selected

by ARLR as training sets. The column “ARLR” repeats the results from Table 4.2

for reference. “SVMS” shows the MAP obtained from running SVMRank using the

2One reason to use RankSVM is that it is one of the best performing methods on LETOR 3.0.
3Best parameters were determined using cross-validation on the training sets.
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Table 4.4. MAP for SVM using selected samples, BM25 and Random Baselines

ARLR SVMS SBM25 Random G%

TD2003 0.2728 0.2881 0.1568 0.1417±0.0285 83.74

TD2004 0.2185 0.2009 0.1335 0.1687±0.0145 24.11

NP2003 0.6960 0.6524 0.6587 0.5739±0.0237 -0.95

NP2004 0.5499 0.6098 0.5811 0.5787±0.0329 4.94

HP2003 0.7411 0.7226 0.7090 0.5798±0.0592 1.92

HP2004 0.6168 0.6661 0.6731 0.5406±0.0357 -1.04

samples selected by ARLR (see Table 4.2 for other information such as the number of

instances selected, etc.). Again, we ran two baselines for comparison: “SBM25” con-

tains the results from running SVMRank with the same amount of samples as selected

by ARLR, but picked by their BM25 value. “Random” shows the average of 20 runs

where the instances are randomly selected and includes the confidence interval for a

95% confidence level. “G%” indicates the gain of SVMS over the best baseline (i.e.

either SBM25 or Random).

From the results we can observe that SVMS fares very well on the TD2003,

TD2004 and NP2004 datasets as compared to the baselines. For the other datasets,

it almost ties with the SBM25 baseline. This may be due to the fact that the BM25

method selects a high proportion of relevant instances which are extremely rare in the

original NP and HP datasets (column “R%” of Tables 4.1 and 4.2). This is one of the

difficulties in ranking these datasets and both ARLR and the BM25 selection methods

may help as they tend to select a larger proportion of relevant samples. Though these

results can be improved, they illustrate that our method chooses informative instances

that are useful even for completely different algorithms.

3.3.4 Comparing the results with LETOR baselines

To put ARLR results in perspective, Table 4.5 shows the MAP results for ARLR and

those for four supervised algorithms from the LETOR 3.0 published baselines4 (that

use the full training sets). The producers of the LETOR datasets have published

results containing precision, MAP and NDCG obtained using 12 L2R algorithms on

the LETOR 3.0 datasets (see Qin et al. [2010b]). We chose to show the results for

four algorithms: RankBoost (“RBoost” in Table 4.5), FRank, Regression (“REG”)

and SVMRank (“SVMR”). The first two were selected mainly because, similarly to

our method, they use non-linear ranking functions, so they all lie in the same class of

algorithms, making this a more fair comparison. RankBoost achieves very good results,

4 http://research.microsoft.com/en-us/um/beijing/projects/letor/letor3baseline.aspx
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Table 4.5. MAP for ARLR and LETOR Baselines

ARLR RBoost FRank REG SVMR

TD2003 0.2728 0.2274 0.2031 0.2409 0.2628

TD2004 0.2185 0.2614 0.2388 0.2078 0.2237

NP2003 0.6960 0.7074 0.6640 0.5644 0.6957

NP2004 0.5499 0.5640 0.6008 0.5142 0.6588

HP2003 0.7411 0.7330 0.7095 0.4968 0.7408

HP2004 0.6168 0.6251 0.6817 0.5256 0.6675

Avg. 0.5158 0.5197 0.5163 0.4250 0.5415

beating all other 11 algorithms in 2 of the 6 datasets (TD2004, NP2003). FRank has

average results if compared to the other algorithms, Regression obtains a lower average

then the other algorithms, although it still beats some of the them in some datasets.

We use the results of these three algorithms as high, medium and low watermarks to

show that ARLR obtains competitive results selecting only a very small fraction of each

dataset. We also include the published SVMRank results, since in the next chapter we

propose an extension of our active learning framework using this algorithm.

In Table 4.5, ARLR results that appear in italic are equal or better than one of

the four baselines. Numbers in bold indicate that the result is equal or better that

2 or 3 of the baselines. Finally, the results in bold and italic are equal or better

then all four baselines. We indicate which results from the baselines were matched

or surpassed by showing them in italic. From Table 4.5 we can see that ARLR beats

the chosen supervised baselines in TD2003 and HP2003. It also obtains very good

results for NP2003, beating 2 baselines and almost reaching the performance of the

3rd (RankBoost). Overall, ARLR’s average performance across the 6 datasets is only

1% below RankBoost but using on average 98% less training. SVMRank provides very

robust results on all datasets, obtaining a higher average; still ARLR results are better

in 3 of the datasets. For further performance comparisons, Table 4.6 provides the

NDCG@1, @5 and @10 using the same baseline algorithms and markup scheme.

3.3.5 Comparison with other active learning methods

We implemented the method proposed by Donmez and Carbonell [2008] (and described

in Section 4.2 of Chapter 3) in order to be able to compare our algorithm to another

active learning to rank strategy. We call it “Donmez” for short. The Donmez method is

based on the assumption that those instances that change the current model the most

are more “interesting”. Instead of retraining the learner on each and every unlabeled

sample one by one, Donmez proposes calculations to estimate the change in the current

learner for two algorithms: SVMRank and RankBoost. We implemented the SVMRank
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Table 4.6. NDCG for ARLR and LETOR Baselines: ARLR vs. Rankboost and
FRank (a), ARLR vs. Regression and SVMRank (b)

(a)

ARLR RankBoost FRank

@1 @5 @10 @1 @5 @10 @1 @5 @10

TD2003 0.4600 0.3280 0.3336 0.2800 0.3149 0.3122 0.3000 0.2468 0.2690

TD2004 0.4533 0.3547 0.3332 0.5067 0.3878 0.3504 0.4933 0.3629 0.3331

NP2003 0.5867 0.7850 0.7918 0.6000 0.7818 0.8068 0.5400 0.7595 0.7763

NP2004 0.4133 0.6546 0.6805 0.4267 0.6512 0.6914 0.4800 0.6870 0.7296

HP2003 0.7200 0.7809 0.7982 0.6667 0.8034 0.8171 0.6533 0.7780 0.7970

HP2004 0.5200 0.6981 0.7111 0.5067 0.7211 0.7428 0.6000 0.7486 0.7615

(b)

ARLR Regression SVMRank

@1 @5 @10 @1 @5 @10 @1 @5 @10

TD2003 0.4600 0.3280 0.3336 0.3200 0.2984 0.3263 0.3200 0.3621 0.3461

TD2004 0.4533 0.3547 0.3332 0.3600 0.3257 0.3031 0.4133 0.3240 0.3078

NP2003 0.5867 0.7850 0.7918 0.4467 0.6423 0.6659 0.5800 0.7823 0.8003

NP2004 0.4133 0.6546 0.6805 0.3733 0.6135 0.6536 0.5067 0.7957 0.8062

HP2003 0.7200 0.7809 0.7982 0.4200 0.5463 0.5943 0.6933 0.7954 0.8077

HP2004 0.5200 0.6981 0.7111 0.3867 0.6130 0.6468 0.5733 0.7512 0.7687

variation only. The method starts with an initial labeled set comprised of 15 randomly

picked documents per query, plus exactly one relevant document (this amounts to 1.6%

of the unlabeled sets for all LETOR 3.0 datasets). From then on, the algorithm chooses

5 documents per query per round. Thus, this is a round-based method where 0.5%

of the documents in the unlabeled set are selected at each round. In Donmez and

Carbonell [2008], Donmez presents results for two of the LETOR 2.0 datasets, running

his method for 25 rounds. Since Donmez uses randomly selected instances as its initial

sets, results reported are averages for 10 runs for each fold (50 runs total).

Figure 4.4 shows the results of Donmez’s method compared to ARLR and SVMS

(SVMRank using the instances selected by ARLR as training). Notice that both ARLR

and SVMS use only the very small set selected by ARLR and are shown in the plots

as lines for clarity (both should be only a point in the extreme left of each plot). The

percentage of instances selected at each round for Donmez is shown in the x-axis, while

the percentage used by ARLR and SVMS appear in the key.

Observe that ARLR beats Donmez in all rounds on the three 2003 datasets. In

contrast, Donmez is better in all rounds on NP2004 and HP2004. For TD2004, Don-

mez reaches ARLR’s performance on the 3rd round (when it has selected 3.12% of

the instances in the unlabeled set). SVMS does very well on TD2003 and is slightly

better than Donmez up to the 3rd round on HP2003, but fares worse on the remain-

ing datasets. Overall, ARLR is a strong method, selecting very small training sets



60 Chapter 4. Active Learning to Rank Using Association Rules

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

2 4 6 8 10 12 14

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

% Selected

TD2003

SSARP 2.28%
Donmez

SVMS 2.28%
0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

2 4 6 8 10 12 14

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

% Selected

TD2004

SSARP 1.33%
Donmez

SVMS 1.33%

0.65

0.655

0.66

0.665

0.67

0.675

0.68

0.685

0.69

0.695

0.7

2 4 6 8 10 12 14

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

% Selected

NP2003

SSARP 1.12%
Donmez

SVMS 1.12%

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

2 4 6 8 10 12 14

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

% Selected

NP2004

SSARP 1.94%
Donmez

SVMS 1.94%

0.715

0.72

0.725

0.73

0.735

0.74

0.745

2 4 6 8 10 12 14

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

% Selected

HP2003

SSARP 1.23%
Donmez

SVMS 1.23%

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

2 4 6 8 10 12 14

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

% Selected

HP2004

SSARP 1.91%
Donmez

SVMS 1.91%

Figure 4.4. Comparison of ARLR, SVMS and Donmez: MAP vs. % of samples
selected from unlabeled set for 25 rounds

that provide competitive results when compared to supervised baselines and an active

learning method proposed in the literature.

4 Summary

We have proposed a rule-based active learning method that is practical and effective,

selecting very few documents to be labeled and yet offering competitive results when
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compared to established supervised algorithms using the complete training sets. Since

the method does not depend on an initial labeled set, it can be easily used in real-

life applications where labeling many documents can be prohibitively expensive or

unpractical.

As we have seen, the proposed method obtains results that are better or on the

same level as those obtained by established supervised methods (using the full training

sets) in some datasets (i.e. TD2003, TD2004, HP2003, NP2003) but selecting and

using only a fraction of the original training sets. This is one of the stated goals of

an active learning method: to be able to select a small and yet effective training set,

reducing the cost associated to labeling documents and producing training sets.

Although the proposed method is very effective for some datasets, it does not fare

so well in others (i.e. HP2004, NP2004). By providing a natural stop condition, the

method is very simple to use, since it can be run on a dataset until it stops and only

then we can use cross-validation to evaluate the quality of the selected set. But if the

quality achieved is not the desired one and/or if there’s still labeling budget to spend,

the method does not provide a simple way to select and label more samples. In the

next chapter we propose an extension to the method that overcomes this limitation,

allowing us to expand and improve the selected training set.





Chapter 5

Expanding Selection with

Query-By-Committee

1 Introduction

In this chapter we propose a new hybrid active learning technique that uses association

rules and a query-by-committee (QBC) procedure to obtain from an unlabeled set a

small and yet highly effective training set. This hybrid method combines the best

of two different active learning strategies while trying to overcome their drawbacks.

On one hand, although ARLR produces very reasonable results (i.e., very small and

effective training sets), it does not provide a simple way to select more instances (and

possibly improve the ranking quality), even if there is labeling budget available, since

it stops selecting new instances for labeling when it judges that no other candidate has

useful information to be incorporated into the training set.

By incorporating a QBC procedure we are able to select more instances using a

completely different selection mechanism. On the other hand, traditional QBC strate-

gies use a semi-random initial set, which has to be large enough to work well (otherwise

the performance may be severely hurt, especially in the initial rounds, as shown in the

results section). By using the sets selected by the rule-based active learning to feed

the QBC round-based active learning our method maximizes performance from the

start, allowing for any size of labeling budget to obtain very good results. This is an

important characteristic for an active learning method, since in a real-world scenario

there is no simple way to evaluate the quality of the selected sets: only after the sets

are actually selected and labeled (i.e. after the labeling budget is spent) we can use

cross-validation to evaluate the sets’ quality. If the labeling budget is small, our method

63
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obtains very good results by converging fast to high-quality rankings (as a function of

the size of the selected set). If the budget is bigger or more flexible, our method still

selects a high quality training set. We believe this work is an important contribution

as the method is both practical and effective.

The proposed hybrid method works in two stages: in the first one, ARLR is

used to select a very small initial labeled set. In the second stage, this initial set is

used to train three learning to rank functions. Then each query in the unlabeled set

is ranked using these functions and those documents that have the highest variation

in the distinct rankings produced by these functions are deemed the most discordant

and selected. This second stage - the QBC stage - is repeated iteratively until a target

training size is achieved or the labeling budget met. The concept behind this iterative

process is that the documents for which the rankings vary the most are those that the

rank learning algorithms most disagree about. The degree of disagreement can serve as

an estimate of the informational value of each document to the learning algorithms, as

stated by Seung et al. [1992]. In the QBC stage of our active learning method, we use

three algorithms as our committee: SVMRank, RankBoost and Rule-based Learning

to Rank (RLR).

We compare our method against five baselines: random sampling, the active

method proposed in Donmez and Carbonell [2008], which we call Donmez, a modified

version of Donmez using the first stage training data, the supervised SVMRank results

obtained using the complete training sets and the ARLR active learning results pre-

sented in Silva et al. [2011] and in Chapter 4. Experiments were run using the LETOR

3.0 web datasets and selecting up to 15% of each original training set for comparative

purposes. As we will see in the experiments subsection, our method obtained very

good results selecting as little as 5% of the original unlabeled sets. The results surpass,

in most cases, even state-of-the-art supervised algorithms using the complete training

sets.

2 Stage 1: Active Learning using Association Rules

Stage one of our hybrid method is ARLR as described in the last chapter. That is,

we use ARLR with 5 partitions and 10-bin TUBE discretization, obtaining very small

initial sets (see Table 4.2 for the sizes of the initial labeled sets obtained by ARLR

for each of the datasets). Instead of randomly selecting the initial labeled sets, as is

usually done in QBC-based methods, we choose to use ARLR because, as we have seen,

it selects small but effective sets.
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3 Stage 2: Query-By-Committee

3.1 QBC Active Learning

Stage 1 of our method selects a very small initial set that can be used as a training

set for our QBC iteractive active selection stage. The concept of using a committee

of learners to identify “interesting” data instances is well known (see Baum [1991];

Schapire [1989]; Seung et al. [1992]). The basic idea is to use an ensemble of learners

or models to classify (or rank) an unlabeled set and those data instances that the

diverse models most disagree about are deemed the most “informative” and selected for

labeling. Seung et al. [1992] calls this process “incremental learning” where a training

algorithm is used to produce a committee of 2k learners and a query algorithm selects

a sample that is classified positive by half of the committee and negative by the other

half. They show that, for the Gibbs training algorithm, in the k →∞ limit each query

bisects the version space, maximizing the information gain.

More general methods have been proposed and successfully used such as query-

by-bagging and query-by-boosting (see Abe and Mamitsuka [1998] and Schapire [1989],

respectively). In the bagging approach, different models are produced using the same

learning algorithm trained on partitions created by uniformly sampling the current

labeled set. Boosting uses a more sophisticated, round-based re-sampling method

where the sampling distributions (or instances’ weights) are varied at each round so as

to focus the learned models on the parts of the training data that previous learners did

poorly on. The bagging concept is immediately applicable to active learning, where

the instances selected at each round are those which the diverse models most disagree

about. In an L2R scenario, this measure of disagreement could be, for instance, the

Kendall’s τ rank correlation coefficient or, as proposed in Cai et al. [2011], a vote

entropy (see Dagan and Engelson [1995]) variation adapted for pairwise ranking. These

metrics would allow the measurement of the disagreement of the learners in ranking

each query. This means we would need to select whole queries (i.e. perform query-level

selection), instead of sampling documents from the unlabeled set. This may be fine

for datasets containing few documents per query but doing query-level selection on the

LETOR 3.0 datasets would imply selecting at least 1,000 documents per round.

Our method uses a simpler ensemble approach to QBC where different algorithms

are used to produce diverse rankings at each round. Thus, we train three distinct al-

gorithms using the same training data (the labeled data available at each round) and

rank the remaining of the unlabeled set using these three learners. Then, for each

document of each query, we calculate a simple metric (explained below) to determine
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which documents of that query the three learners most disagree in ranking. At each

round, we select the 5 documents from each query which have the highest value for

the disagreement metric described below. To rank the unlabeled sets, we use three

algorithms in our committee: SVMRank (Joachims [2002]), RankBoost (Freund et al.

[2003]) and Rule-based Learning to Rank (RLR) (Veloso et al. [2008]). These algo-

rithms are trained using the labeled set gathered so far and then used to rank the

remaining instances in the unlabeled set.

We sample 5 documents per query per round simply to be able to compare our

results with our main baseline which was proposed by Donmez and Carbonell [2008]. As

we will see in the results subsection, this works fine for the LETOR 3.0 datasets, which

have few queries and many documents per query. But our method could be easily

adapted to either: a) perform query-level selection for datasets with many queries

and few documents per query; or b) perform first a query-level selection and then a

document level selection in datasets with many queries and many documents per query.

Option b) is probably the most reasonable as selecting all documents of a query, even

in datasets with few documents per query would likely introduce noisy instances into

the selected set, possibly hurting the results. Furthermore, option b) provides greater

flexibility, since we could tune the number of queries selected per round as well as

the number of documents selected per query/round, adapting the number of selected

samples/round to a number compatible to the characteristics of the dataset at hand

and the labeling budget.

3.2 Measuring Rank Disagreement

At each round, the unlabeled documents of each query are ranked by the members of

the committee using models trained on the labeled sets accrued so far. If we were doing

query level selection, as in Cai et al. [2011], we would need to measure the disagreement

of each ranking on the query level. Instead, our method works at the document level:

that is, we want to measure the disagreement among the learners about the ranking of

each document. We aim to select those documents that vary the most in their positions

in each ranking. One simple metric would be to calculate the variance or standard

deviation of each document’s positions. For example, if we have three learners and

document di is ranked in positions 10, 15 and 20 of each ranking, this document would

have a ranking variance of 25 (or σ of 5). The problem of this approach is that it

gives the same importance to documents no matter whether they appear at the top or

at the bottom of the rankings. For instance, document dj appearing in positions 110,

115 and 120 would have the same variance of 25. In L2R we are usually much more
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concerned with the very top of the ranking Granka et al. [2004] and, thus it would

seem preposterous to assign the same value of disagreement to documents di and dj

in the example above. A simple solution is to use the Coefficient of Variation, which

is a normalized measure of dispersion. The CV is defined as σ/µ. Now, documents

far down the rank will need much more varying rankings in order to be selected. For

example, a document dk with rankings 110, 200 and 220 will have almost the same CV

as document di with rankings 10, 15 and 25.

4 Experimental Evaluation

4.1 Experimental Setup

In our active learning scenario, we consider the original training sets of each dataset

as unlabeled sets from which we select instances to be labeled. The label of these

instances is not used until they are selected and we assume that a human annotator

evaluates and labels each selected document. Our method, ARLR-QBC, is run in each

fold of each dataset in the following manner:

First Stage (ARLR): In the first stage, the unlabeled and test sets are

discretized using the Tree-based Unsupervised Bin Estimator (TUBE) proposed in

Schmidberger and Frank [2005]. TUBE is a greedy non-parametric density estimation

algorithm that uses the log-likelihood measure and a top-down tree building strategy

to define varying-length bins for each attribute in the dataset. All sets are discretized

using 10 varying-length bins. Then the unlabeled set is partitioned into 5 vertical

partitions as proposed in Silva et al. [2011] and in Chapter 4. Each partition contains

all unlabeled instances, but only a group of each instance’s features. ARLR is run

on each partition, selecting instances based on distinct feature sets. This process is

done in order to increase the number of selected instances, since for each partition

the algorithm will choose those that are most informative given the features in that

partition. It also improves the diversity of the samples, as they are selected based on

distinct characteristics. The final product of this first stage of the method is a very

small labeled set that we use as an initial training set for stage 2 (the x in the ARLR

x% baseline in the results shows the size of the initial sets selected).

Second Stage (QBC): The first step in stage 2 is to determine the best param-

eters for the algorithms used in the committee. To do that, we split the tiny labeled

sets produced in stage 1 into 5 parts and use 3 of those as training e 2 as test sets.

We then run the algorithms varying the parameters and choose the parameter(s) that

gives us the best MAP. Stage 2 progresses in rounds where, at each round, 5 instances
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are selected per query. This number is used so that we can compare our method with

that presented in Donmez and Carbonell [2008], one of our baselines. At the first

round, we use the labeled set produced in stage 1 to train our 3 supervised algorithms:

SVMRank, RLR and RankBoost. The models produced are used to rank the unlabeled

sets (which, at this point, are the original training sets minus the instances selected

in stage 1). Then, for each query, the rankings are evaluated and the metric described

in subsection 4.1 (CV) is calculated for each document. The 5 documents with the

highest CV value are then selected to be labeled. At the end of the round, 5 times the

number of queries in the unlabeled set need to be labeled by the human annotators (in

TD2004, for instance, 5× 45 = 225 documents are selected per round; for all datasets

the number of documents selected per round represent 0.5% of the unlabeled sets).

Once these documents are labeled, they are inserted into our labeled set and removed

from the unlabeled set. As another round starts, the augmented training sets are used

to train the three committee members and the process described above is repeated.

This procedure can be repeated as many times as desired or until the labeling budget

is exhausted.

4.2 Baselines

RR-Donmez: Our main baseline, which we call Donmez, is an implementation we did

of the method proposed by Donmez and Carbonell [2008] and described in Chapter 3,

Section 4.2. The Donmez method is based on the assumption that those instances that

change the current model the most are more “interesting”. Instead of retraining the

learner on each and every unlabeled sample one by one, Donmez proposes calculations

to estimate the change in the current learner for two algorithms: SVMRank and Rank-

Boost. We implemented the SVMRank variation only. The method starts with an

initial labeled set comprised of 15 randomly picked documents per query, plus exactly

one relevant document. From then on, the algorithm chooses 5 documents per query

per round. To make the comparison easier, our method also selects 5 documents per

query per round, and we also run our experiments for 25 rounds. Since RR-Donmez

uses randomly selected instances as its initial sets, results reported are averages for 10

runs for each fold (50 runs total).

ARLR-Donmez: In this variation of Donmez’s method the initial set used is

the one selected by ARLR. This baseline is intended to put ARLR-selected sets in

perspective and pitch QBC vs. Donmez.

R-Random: In the random baseline, all instances are randomly selected. The

amount of instances selected is exactly the same as Donmez’s RR method: it starts
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Figure 5.1. TD2003 and TD2004: ARLR-QBC and baselines comparison. MAP
(left) and NDCG @ 10 (right) vs. % of samples selected from unlabeled set

with an initial random set of 16 instances per query (1.6% of each set) and selects

5 random instances per query per round (or 0.5% of each set). Results reported are

averages for 10 runs for each fold (50 runs total).

SVM Full: This is the value obtained by running SVMRank using the complete

training set. We include this baseline as a line in each graph (although it actually uses

100% of the training set) as a reference to put our results and the other baselines in

perspective.

ARLR x%: This line indicates the result obtained by using ARLR to select

instances and RLR to rank the test set (these are the results that appear in Chapter 4,

Table 4.2). The x value indicates the proportion of the original training sets that was

selected by ARLR. Again, we present this result as a line for readability (as this result

should actually be a point in the extreme left of each plot).

4.3 Results

Each round-based plot line is named according to the method used in each stage of

the process. The first stage is the selection of the initial training sets. ARLR is the
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rule-based active sampling algorithm described in Section 3.2. RR (Random with 1

Relevant) is the method used by Donmez that selects 16 random samples with exactly

one relevant. R (Random) selects 16 random samples. In the second stage (round-based

selection) QBC indicates the method described in subsection 4, Donmez designates the

method proposed in Donmez and Carbonell [2008] and Random is a random sampling.

Thus “ARLR-QBC” is the method proposed in this chapter, in which ARLR is used

in the first stage to select the initial training sets and QBC is used to select samples

per query. For all results and baselines, except for “ARLR x%”, after the instances are

selected at each round, SVMRank is used to rank the test set in each fold (using the

currently selected sets as training), producing the final MAP and NDCG@10 metrics.

“ARLR x%” uses instead the RLR supervised ranking method described in Chapter

2, Section 5 and Veloso et al. [2008].

4.3.1 Informational Datasets

Figure 5.1 shows the performance of our method against the chosen baselines on

TD2003 and TD2004. These are the most relevant datasets, since they are built using

the more “general” Topic Distillation queries (in contrast to the more “specific” navi-

gational queries used to build the HP and NP datasets). The plots show on the y-axis

the MAP (left) and NDCG@10 (right) obtained at each round for each method. The

x-axis indicates the percentage of the unlabeled set selected at each of the 25 rounds,

plus the results obtained using only the initial training set (therefore, each plotted line

has 26 points). The ARLR-based lines in the plot start at 2.23% and 1.33% for TD2003

and TD2004, respectively. The size of the initial training sets selected using ARLR

varies for each dataset, since the method naturally converges, as explained before. The

RR and R-based lines always start at 1.6% for all datasets considered.

TD2003 is exceptional in our results, as the ARLR-selected initial set performs

very well in this dataset using both SVMRank and ARLR 2.28%. Using only the initial

dataset (comprised of 2.28% of the unlabeled set) SVMRank obtains a MAP of 0.2881

and ARLR (with RLR) a MAP of 0.2728, passing not only SVMRank using the full

training set (SVM Full), but also (in the case of SVMRank) all supervised baselines

published by the LETOR producers. With such an exceptional initial result, there is

little room for improvement. In fact, although both ARLR-QBC and ARLR-Donmez

do achieve slightly better results in a few rounds (ARLR-QBC on round 4 with MAP

0.2907 and ARLR-Donmez on round 3 with MAP 0.2936), in the remaining rounds the

results obtained go up and down with a slight downward trend (the NDCG@10 results

remain mostly the same, but also jump up and down). Remember that Donmez selects
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Figure 5.2. HP2003, HP2004, NP2003 and NP2004: ARLR-QBC and baselines
comparison. MAP (left) and NDCG @ 10 (right) vs. % of samples selected from
unlabeled set
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the instances that are estimated to change the learned model the most; in this situation

where the set selected by ARLR is already very good, this strategy backfires in some

rounds, changing the model for worse. The same happens with QBC, although this

strategy does not explicitly target model modification. It seems that once a very good

training set is obtained it is hard to select more instances without adding some noise

to it. Although RR-Donmez obtains good results in this dataset, beating SVMRank

Full on both metrics, ARLR-QBC results are still significantly better than RR-Donmez

with 95% confidence level up to the 9th round for the MAP (6.86% selected) and up to

the 6th round for the NDCG@10 (5.34% selected).

TD2004 shows a different picture, with our method also surpassing Donmez-based

baselines in the initial rounds for both metrics, but starting much closer. With this

dataset, our method is significantly better than Donmez’s with 95% confidence level

up until the 6th round (4.37% selected) for both metrics. For this dataset, the Donmez

selection method starting with ARLR-selected sets (ARLR-Donmez) performs roughly

equal to the original method (RR-Donmez). We can see that ARLR does not select

such a good initial set as in the case of TD2003, but QBC selection performs very well

bringing the metrics on par with SVMRank using the complete set (i.e. SVM Full)

when the selection reaches only 4% of the unlabeled set. Also notice that the random

baseline is surpassed by not only our method, but also by all the other baselines in all

datasets.

4.3.2 Navigational Datasets

In Figure 5.2, we can see that our method performs very well in HP2003, NP2004

(MAP) and NP2003 (both metrics) and roughly similar to Donmez on HP2004 or in

all datasets but HP2003, if we consider the NDCG@10. The exception is the NDCG@10

result for HP2003, where Donmez performs exceptionally well. Also notice that RR-

Donmez has a better start than our method in all but HP2003. These datasets have

a particularly low proportion of relevant documents (see Table 2.1). This is natural,

given that these datasets are Named Page (NP) and Home Page (HP) distillations,

i.e., there is usually only one relevant document per query. The RR selection method

used by Donmez always inserts 6% of relevant instances into the initial sets (1 per

query), while ARLR selects a varying proportion of relevant documents. This could

be an explanation to Donmez’s better performance in the initial rounds on the HP

and NP sets, as relevant documents are essential for SVMRank to produce pairwise

comparisons.

It is important to observe that RR is not a practical, but a simulated initial set
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selection method. Donmez’s papers Donmez and Carbonell [2009, 2008] assume that

these initial sets are available without explaining how they are obtained. This may be

the case in certain situations, but if we consider an active learning scenario where it is

necessary to build a training set from scratch (which is what ARLR was designed to

do), then RR is unrealistic and we need to devise a practical method to select a RR-like

initial set. We propose practical variations of RR in the next section and analyze the

results obtained from new experiments.

4.4 Analysis

4.4.1 Making RR “Real”

RR selects 16 instances per query randomly with exactly one being relevant. If we

do not have any labeled instances, we must devise a way to pick instances from the

unlabeled set and label them so that we choose approximately one relevant instance

for each 15 non-relevant labeled. For most datasets, randomly picking instances and

labeling them would be too costly (i.e. we would need to label tens or hundreds of

instances before finding a relevant). We can get much closer to our target if we order

the instances for each query using one or more features that we know have values highly

correlated to relevance. BM25 could be used, for instance, but it is not necessarily the

best feature for all datasets. Let’s assume that, even without having labeled instances,

we have a good idea of which feature to use to maximize the chances of finding at

least one relevant instance for every 16 we label. To approximate RR to reality, we

use a synthetic method and simulate an “oracle” that gives us the best feature to use

to rank the unlabeled set in such a way that we can find a relevant instance as early

as possible. This oracle uses the labeled sets (which are not available in a real-world

scenario) to rank the samples using each feature in turn, calculates the MRR of each

ranking and eventually gives us the feature that produces the highest MRR (remember

from Section 2, Chapter 2, that MRR is designed exactly for this). Now we can order

the documents of each query using this feature’s values and label each instance in the

order they appear in the ranking. If we find a relevant instance before we reach 16

labeled instances, than we can either stop labeling in the ranked order and pick the

remaining instances (up to 16) randomly or keep labeling in the ranked order until we

have 16 labeled instances. If a relevant document is not found in the first 16 samples,

then we label more documents until we reach a set limit, at which point we give up

looking for a relevant instance and move on to the next query.

To evaluate the advantage that Donmez’s RR method has in relation to ARLR,

we implemented two practical variations called RReal and RRealOracle. The differ-
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Figure 5.3. TD2003 and TD2004: Comparing RR, RReal and ARLR initial
selection strategies; MAP (left) and NDCG @ 10 (right) vs. % of samples selected
from unlabeled set

ence between these two initial set selection strategies is that in RReal, if a relevant

sample is found before 16 are labeled then the remaining are randomly chosen, while

in RRealOracle we keep labeling in the ranking order determined by the oracle. In

both methods, if a relevant sample is not found in the first 16 instances, then we keep

labeling until one is found or until we have labeled 50 documents of that query. RReal

is closer to the “ideal” RR, since at least some samples are randomly chosen. The

reason we have chosen to also implement RRealOracle is that we want to gauge the

influence of the “diversity” provided by the randomly sampled instances, since this is

one of the corner stones of ARLR.

First we run Donmez’s second stage selection with RReal to measure how the

ideal RR may be influencing the results. We call this new baseline RReal-Donmez.

Figures 5.3 and 5.4 show the results for this new baseline, comparing them to RR-

Donmez and ARLR-QBC for the informational and navigational datasets, respectively.

The other new result that appear in the plots (ARLR+RReal-QBC) will be explained in

section 4.4.4 below, so just forget about it right now. As we can see in Figure 5.3, RReal-

Donmez produces very similar results as RR-Donmez on the TD datasets. Notice that
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the lines start a little shifted to the right, as RReal selects more documents for the

initial sets as a consequence of not finding a relevant instance in the first 16 results

for some queries. RReal selects 2.12% of the unlabeled set for TD2003 and 1.86% for

TD2004 (RR selects 1.6%). Observe that the y-axis scale has changed in comparison

to Figures 5.1 and 5.2.

Figure 5.4 shows the results obtained using RReal-Donmez on the HP and NP

datasets. RReal-Donmez is clearly worse than RR-Donmez in HP2004 and NP2003.

The results are quite similar for NP2004. In HP2003, although the MAP for the

first rounds are slightly better, the NDCG@10 results are much worse. Observe that,

compared to RReal-Donmez, ARLR-QBC performs better in the initial rounds for all

datasets, with the exception of NP2004.

These results show that RR-Donmez has a small edge over our method in the

initial rounds on the navigational datasets mostly because of the synthetic nature of

RR. RR is not a practical method like ARLR or RReal and it combines two charac-

teristics that seem to be very important to SVMRank: a diverse set of non-relevant

instances picked randomly, coupled with one guaranteed relevant instance per query.

RReal, on the other hand, provides almost one relevant instance per query (for some

queries it does not find a relevant one before hitting 50 labeled samples) but at the

cost of selecting a not-so-diverse set of non relevant examples (since many of them are

labeled in the order obtained by the feature ranking method). RReal also selects more

instances, as we have seen above. ARLR does not explicitly seek to select relevant

instances, although it does tend to select a higher proportion of relevant samples (see

Table 4.2, column RS%, for the proportion of relevant instances selected by ARLR;

column R% shows the percentage for the full dataset). At the same time, ARLR max-

imizes diversity in the selected set which seem to help both SVMRank and QBC. But

SVMRank depends on relevant instances to produce its pairwise training, which may

be an explanation for the not-so-good initial results of ARLR-QBC on the navigational

datasets. In the informational datasets, ARLR does select a higher proportion of rele-

vant instances (although not necessarily one per query) simply because there are more

relevant instances per query. In TD2004 there are on average 29 relevant instances per

query (each query has around 1,000 documents in all datasets), while in the HP and

NP datasets, there is on average only 1.3 relevant documents per query (see Table 2.1,

column R/Q for the average number of relevant instances per query for each dataset).
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Figure 5.4. HP2003, HP2004, NP2003 and NP2004: Comparing RR, RReal
variations and ARLR initial selection strategies; MAP (left) and NDCG @ 10
(right) vs. % of samples selected from unlabeled set



4. Experimental Evaluation 77

ARLR 2.28%
SVM Full

0.18

0.2

0.22

0.24

0.26

0.28

0.3

2 4 6 8 10 12 14

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

% Selected

TD2003

ARLR-QBC
RR-QBC

RRealOracle-QBC
RReal-QBC

ARLR 2.28%
SVM Full

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

2 4 6 8 10 12 14

N
D

C
G

 @
 1

0

% Selected

TD2003

ARLR-QBC
RR-QBC

RRealOracle-QBC
RReal-QBC

ARLR 1.33%
SVM Full

0.19

0.2

0.21

0.22

0.23

0.24

2 4 6 8 10 12 14

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

% Selected

TD2004

ARLR-QBC
RR-QBC

RRealOracle-QBC
RReal-QBC

ARLR 1.33%
SVM Full

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

2 4 6 8 10 12 14

N
D

C
G

 @
 1

0

% Selected

TD2004

ARLR-QBC
RR-QBC

RRealOracle-QBC
RReal-QBC

Figure 5.5. TD2003 and TD2004: Comparing RR, RReal, RRealOracle and
ARLR initial selection strategies with QBC; MAP (left) and NDCG @ 10 (right)
vs. % of samples selected from unlabeled set

Summary

Summing up, the initial selection method used by Donmez (RR) is somewhat unreal-

istic. In an active learning scenario where we have no previous training data, we have

to resort to a method such as RReal, which does not yield the same results as RR,

specially on the navigational datasets. ARLR-QBC fares better than RReal-Donmez

in all datasets with the exception of NP2004 where the results are quite similar.

4.4.2 QBC with different initial selections

To better understand the influence of the initial selection methods on QBC’s perfor-

mance, we ran four new experiments: RR-QBC shows the results of using the “ideal”

RR method with QBC second stage selection, RReal-QBC uses the RReal initial set

selection method described above and RRealOracle-QBC is the variation of RReal

where no instances are randomly selected (i.e. all instances are selected in the or-

der they appear in the oracle-mandated ranking). We also reproduce the results for

ARLR-QBC, SVM Full and ARLR x% to help put these new results in perspective.
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Figure 5.5 shows the results for TD2003 and TD2004 and Figure 5.6 the results for the

navigational datasets.

In TD2003, RReal-QBC does not perform very well, especially in the initial

rounds. RR-QBC starts with a very low MAP and NDCG@10, but quickly picks

up, achieving an overall result similar to ARLR-QBC. Surprisingly, RRealOracle-QBC

obtains very good results from the start. RRealOracle is very different than RReal in

the TD datasets, since by selecting all instances in the oracle-ranked order it actually

selects many more relevant instances (see the next section for details on the selection of

relevant instances by the various methods). The extra relevant instances seem to help

SVMRank, but ARLR-QBC still yields better results, indicating that a combination

of relevant instances and diversity is still the best strategy.

For TD2004, the RR-selected set does slightly better than our method in the

initial rounds, but when we use RReal, this picture changes: RReal gives us a similar

MAP in the initial set (compared to ARLR), but selects more instances (1.86% versus

the 1.33% selected by ARLR - notice how the curves start slightly shifted to the right

of ARLR-QBC). From around 4% (round 5) on, the results are very similar. Here

RRealOracle starts with lower results, but quickly reaches levels similar to ARLR-

QBC (from round 2 on). As we noted above, a greater proportion of relevant instances

does not necessarily translate into a better model for SVMRank. It seems that we

need to strike a balance: SVMRank needs at least one relevant instance per query to

be effective, but the diversity of the non relevant instances also helps.

On the navigational datasets (Figure 5.6), the picture is very similar to TD2004:

RR-QBC starts very well (beating ARLR-QBC in all datasets), but RReal-QBC does

not do so well in the initial rounds (except on NP2004). RRealOracle usually starts

with lower results but quickly picks up. The exceptions are NP2004, HP2003, where

RRealOracle’s results start declining after round 2, and the NDCG@10 results for

NP2003.

Summary

Summarizing, ARLR selects very good initial samples on all datasets, but specially

on the informational ones (TD2003, TD2004). RR is very good on the navigational

datasets, but, as we have discussed, it is not practical. If we use RReal instead, the

results for the first few rounds are not as good as those obtained with RR. Overall,

using an initial selection method that tries to guarantee at least one relevant instance

per query yields good results on the navigational datasets, as SVMRank needs at least

one relevant instance per query to produce the pairwise comparisons necessary to train
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Figure 5.6. HP2003, HP2004, NP2003 and NP2004: Comparing RR, RReal,
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the learned model.

4.4.3 Relevant instances selection

To better understand the differences between these methods and datasets we now look

into how the selection of relevant instances may be affecting the results. There are two

simple metrics that may help us gauge the influence of relevant instances in the results:

the proportion of relevant instances in the selected sets and the fraction of all relevant

instances present in the unlabeled sets that are selected.

In Figure 5.7, the plot on the left shows, for each method, how the proportion

of relevant instances in the selected sets evolve as we run the rounds of the methods.

On the y-axis we have the percentage of relevant instances in the selected sets for each

round (x-axis). The plot to the right shows the fraction these relevant selected samples

represent of the total amount of relevant documents present in the unlabeled sets.

We first notice how the informational (first row of Figure 5.7) and navigational

datasets (second and third rows) differ in these metrics. For the TD datasets, the pro-

portion of relevant samples in the selected set grows in the first few rounds, indicating

that both QBC and Donmez are selecting more relevant instances than non-relevant.

Then the proportion gently slopes down, although by the 25th round it is still higher

(or the same) than in the initial round. Observe from the plot on the right that the ini-

tial relevant samples selected represent a minor proportion (3% to 20%) of all relevant

samples in the sets, so both round-based methods have room to find more relevant

samples. On the HP and NP datasets, on the other hand, all RR-derived methods

select almost all relevant samples available in the initial round (plots on the right:

from 75% to 97%) which means that as the rounds progress the tendency is to select

more non relevant samples, gradually reducing the proportion of relevant documents in

the selected sets (plot to the left). We also notice that ARLR-QBC perform similarly

to the RR-derived methods in the informational datasets, while in the navigational

datasets there is a remarked difference.

Let’s take a more detailed look at the plots for TD2004: we can see that, al-

though RR starts with over 6.5% of relevant instances in the selected set, both RReal

and ARLR perform similarly well (6.1% and 5.8%). These samples represent only

7.5%, 7.2% and 5% of the total number of relevant instances in the unlabeled sets,

respectively. This means that QBC and Donmez have room to increase the proportion

of relevant samples in the selected sets. We can also see that Donmez has a harder

time finding relevant instances. By round 25, from 67% to 69% of all relevant samples

in the unlabeled set have been selected by QBC-based methods, while Donmez reaches
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62%. Also notice that the RRealOracle plots on the left are quite different from the

rest: it selects a higher proportion (almost twice that of RR-based selection) of rele-

vant samples in the initial round since it selects all instances in the oracle-determined

ranking order. The oracle chooses the feature that maximizes the MAP, which means

that, on the TD datasets, usually more than one relevant sample will appear in the

first 16 instances of the ranked list.

Compare that to the plots for HP2003: RR and RReal initial sets start with 6.2%

and 5.2% of relevant instances. This represents 79% and 77% of all relevant samples in

the training sets, respectively. In both cases, this proportion reaches 95% by round 10.

This means both QBC and Donmez are quickly finding the remaining relevant samples,

but they also quickly run out of relevant instances to select. ARLR, on the other hand,

starts with around 2% of relevant samples in the selected set (20% of the total) and

QBC then finds about 70% of all relevant samples by round 6 (by round 25, this number

reaches 80%). Remember that most queries in the navigational datasets have only 1

relevant document; since RR-based selection tries to obtain exactly 1 relevant instance

per query, this means that the initial set contains almost all relevant samples in the

unlabeled set. Although it seems clear that having at least one relevant sample for

each query helps SVMRank, ARLR-QBC is able to select very informative instances

that yield very good results with SVMRank, as we can see in Figures 5.3 and 5.4.

Summary

In short, although ARLR does not select nearly as many relevant instances as the

other methods, the diversity of the selected samples compensate for the lack of rele-

vant instances, even on the navigational datasets. On the navigational datasets, the

RR-based methods select almost all relevant instances available in the unlabeled sets in

the initial round, while ARLR selects much smaller proportions. This difference does

not reflect directly in the results, indicating that ARLR compensates the lack of rele-

vant samples with more diverse non-relevant documents. This conclusion is somehow

corroborated by the better initial results obtained by RR and RReal, in comparison

to RRealOracle, in all datasets with the exception of NP2004 and TD2003. All three

methods select relevant instances for almost all queries, but only RR and RReal also

select some instances randomly.

Furthermore, QBC is very effective at selecting relevant instances when ARLR

is used as the initial selection method, as can be seen in Figure 5.7 on the plots to

the right. It also selects interesting instances, achieving very good results quickly even

when the initial set does not perform so well, as can be seen from the RRealOracle
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results on almost all datasets with the exception of TD2003 and NP2004.

4.4.4 Extending ARLR with RReal

The RReal results indicate that RR-Donmez obtains an artificial advantage over our

method in the initial rounds for some navigational datasets. Although RReal may

provide better initial results in this type of datasets, substituting ARLR for RReal in

our method usually yields worse results in the first few rounds, especially for the TD

datasets, but also for HP2003 and NP2003 (NDCG@10). The strength of ARLR lies in

selecting very diverse samples and this strategy helps QBC not only in informational

datasets but also in navigational ones such as HP2003. The main advantage of ARLR-

QBC is to provide a practical and simple method to select a small training set from

scratch that yields effective results. But the RR-based methods tend to perform well

in the initial rounds on the navigational datasets. As we have seen in the last section,

having more queries with one relevant instance helps SVMRank in the initial rounds.

Maybe we can improve the results by merging the strengths of ARLR and RReal.

One way of doing that is to run ARLR and label the initial sets; then we can verify for

which queries ARLR did not select at least one relevant sample and run RReal on these

queries, labeling more instances in an attempt to find one relevant document. Observe

that in this case, this RReal variant stops either when a relevant sample is found or

50 new (non relevant) documents have been labeled (i.e. there are no samples selected

randomly). The results for this hybrid initial selection method appear in Figures 5.3

and 5.4 as “ARLR+RReal-QBC”. From the plots we can see that this new method

provides slightly better results in the initial rounds in HP2004 and NP2004 which are

exactly the datasets where RReal-Donmez held a small advantage over ARLR-QBC.

For HP2003 and NP2003 (MAP) the results are roughly the same, while in TD2003 they

are a bit worse. For TD2004 the results are comparable from the 2nd round on. This

comes at the cost of labeling more instances in the initial round. ARLR+RReal selects

2.96% of the unlabeled instances in TD2003, 1.82% in TD2004, 1.70% in HP2003,

2.32% in HP2004, 1.71% in NP2003 and 2.58% in NP2004. It selects more instances

in the initial round than RReal in TD2003, HP2004 and NP2004.

Summary

In summary, it could be a good idea to use a hybrid initial selection method (i.e.

ARLR+RReal) on navigational datasets, specially if the labeling budget is very tight,

since it yields better initial results.
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Figure 5.8. TD2003 and TD2004: Ranking using RLR with the selected sets;
MAP (left) and NDCG @ 10 (right) vs. % of samples selected from unlabeled set

4.5 Using RLR with the selected sets

So far, the results we have presented were obtained by using SVMRank to rank the

test sets after the labeled sets were produced using the various combinations of first

stage selection (i.e. ARLR, RR, RReal) and second stage, round-based methods (i.e.

QBC and Donmez). However, the selected and labeled sets can be used as training by

another supervised learning to rank algorithm to rank the test sets.

Figures 5.8 and 5.9 show the results of using RLR to rank the test set after the

training sets have been selected and labeled. We run RLR with four of the first stage

selection variations and with QBC as the second stage selection method. Namely, we

test ARLR-QBC-RLR, RReal-QBC-RLR, RRealOracle-QBC-RLR and ARLR+RReal-

QBC-RLR using the exact same selected tests as presented above, but with RLR

performing the ranking of the test sets (instead of SVMRank). We also include in the

plots the results for ARLR-QBC, SVM Full and ARLR x% for easier comparison.

The results for the informational datasets (Figure 5.8) show that RLR (i.e.

ARLR-QBC-RLR) performs very well with ARLR-QBC selected instances. Although

it does not surpass SVMRank (i.e. ARLR-QBC) in TD2003 on either metric, it ob-
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Figure 5.9. HP2003, HP2004, NP2003 and NP2004: Ranking using RLR with
the selected sets; MAP (left) and NDCG @ 10 (right) vs. % of samples selected
from unlabeled set
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tains, nonetheless, very good results, beating SVM Full from the initial to the last

round. For TD2004, the MAP results are comparable to ARLR-QBC; the surprise

are the NDCG@10 results which not only beat SVMRank, but also the best super-

vised baseline published by the LETOR producers which is RankBoost with 0.3504

(see Table 5.1). The extra relevant instances selected by ARLR+RReal do not seem

to help on the informational datasets; in fact, although it fairs similarly to ARLR-

QBC-RLR on TD2003, the resulting MAP is significantly worse for TD2004 (although

the NDCG@10 is only slightly lower than ARLR-QBC). For TD2003, RReal and RRe-

alOracle fare similarly, starting with lower results but quickly reaching the same level

as the other methods. On TD2004, RRealOracle achieves impressive results, although

not reaching the level of ARLR-QBC (both metrics). As we can see from the plots, on

TD2003, RLR performs similarly for all selection methods, although RReal and RRe-

alOracle start with lower results in the first few rounds. On TD2004, the picture is very

different with two very different selection methods performing quite well (ARLR and

RRealOracle), specially on the NDCG@10 results, and the other two (ARLR+RReal

and RReal) obtaining lower MAP results.

Figure 5.9 shows the results for the navigational datasets. Here we see a very

different trend, with RLR results for all datasets, except NP2004, starting at or quickly

reaching its peak results in the first few rounds and then slowly descending as more

instances are inserted into the training set. Both ARLR-QBC-RLR and ARLR+RReal-

QBC-RLR obtain very similar results on all datasets, with RReal and RRealOracle

starting with lower results but quickly picking up. On the datasets where ARLR x%

fares very well (i.e. HP2003 and NP2003), the RLR results for the first few rounds

are very good, specially on NP2003 (both metrics), but also on HP2003 (NDCG@10).

On HP2004 and NP2004, although the RLR results never reach the same level of

ARLR-QBC or SVM Full, they do beat ARLR x%, indicating that QBC selection is

very effective for RLR (remember that RLR is one of the committee algorithms). The

best results obtained by RLR were on the initial rounds for NP2003 where it beats all

LETOR supervised baselines with the exception of RankBoost (MAP 0.7074, NDCG

0.8068).

Summary

Summarizing, the selected sets perform well with RLR, specially ARLR-QBC, which

improves the results obtained by RLR with ARLR-only data on all datasets. RLR

seems to be more easily affected by the proportion of relevant instances in the selected

sets as can be seen from the declining results on HP2003, HP2004 and NP2003.
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4.6 Comparing ARLR-QBC to LETOR baselines

In Section 3.3.4 of Chapter 4, we compared ARLR results to some of the published

LETOR baselines. Here we compare the results obtained using ARLR-QBC to those

obtained by the 12 published baseline results.

In TD2003, using only the initial dataset (i.e. round 0), ARLR-QBC obtains a

MAP of 0.2881, surpassing all of the 12 supervised baselines published by the LETOR

producers. ARLR-QBC manages to obtain an even higher MAP at round 4 (0.2908)

and a peak NDCG of 0.3710 at round 5. In TD2004, the MAP for all rounds (with the

exception of rounds 0 and 2) beat 9 of the 12 supervised baselines published by the

LETOR producers and the NDCG (with the exception of rounds 0, 1 and 20), beat 8

out of the 12 baselines. If we consider only the peak results (round 22 for the MAP

and round 6 for the NDCG), then ARLR-QBC beats 11 of the 12 supervised baselines

(loosing only to RankBoost).

In HP2003, ARLR-QBC obtains a MAP of 0.7463 by round 5 (selecting only

3.77% of the unlabeled set), surpassing 5 of these baselines (including SVMRank and

RankBoost). The NDCG results are a little worse, beating only 3 of these baselines

(Regression, SVMMAP and FRank) by round 5 (with a value of 0.8013). The results are

much better for HP2004, where by round 6 (4.95% selected) the MAP obtained (0.7268)

beats all 12 published supervised baselines. The NDCG@10 for round 5 (0.8241) is

better than that for all baselines with the exception of AdaRank-MAP. On NP2003,

although ARLR-QBC never reaches the same performance level of SVM Full, by round

22 (12.14% selected) the MAP of 0.6902 is still better that of 9 of the 12 supervised

baselines. The NDCG fares a little worse, surpassing only 4 of these baselines by round

3. Our method also obtains outstanding results on NP2004 beating all supervised

baselines by round 3 with a MAP of 0.6948 (and reaching a peak of 0.7226 in round

14, which represents a gain of 5.24% over the best baseline, Regression-Reg). The

NDCG@10 obtained at round 3, 0.8205, also surpasses all 12 baselines, achieving a

peak value of 0.8419 in round 17 (a gain of 3.58% over the best baseline, ListNet).

Figure 5.10 shows the comparison of the MAP obtained by ARLR-QBC, ARLR

and three LETOR baselines: SVMRank, RankBoost and FRank. The ARLR-QBC

results shown are the peak values obtained in rounds 0 to 7. As we can see in the Figure,

ARLR-QBC obtains better results than ARLR in all datasets, with the exception of

NP2003. ARLR-QBC also beats the chosen LETOR baselines in TD2003, HP2003,

HP2004 and NP2004. Notice that ARLR-QBC obtains specially good results on the

datasets where ARLR did worse: HP2004 and NP2004.
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Figure 5.10. Comparison of ARLR-QBC, ARLR and three LETOR baselines:
Best MAP obtained in rounds 0 to 7

4.7 Gains obtained over RReal-Donmez and SVMRank

Table 5.1 summarizes the gains obtained by our method compared to RReal-Donmez

and the SVMRank results published by the LETOR producers. We calculate the gains

for each metric separately: MAP (a) and NDCG@10 (b). We also separate the the

calculations into two partitions: the average and maximum gains achieved in rounds

0 to 7 (columns AG7% and MG7%, respectively) and the overall (i.e. considering all

rounds) average and maximum gains (AG% and MG%). The reason for doing this

partitioning is that, although we run our method for 26 rounds, we believe that in

most real-world scenarios only a few rounds should be run. One of the advantages of

an active learning method is exactly to introduce less “noise” into the selected training

sets, thus allowing for the supervised L2R method to obtain better effectiveness. This

insight is corroborated by the gains obtained in all datasets (except NP2003) by our

method over supervised baselines that use the complete training sets (i.e. SVMRank

and the other published LETOR baselines) and by the stable or falling results that we

see in many datasets as the rounds progress. By providing the average and max gains

obtained at the first 8 rounds (0-7) we want to show that our method converges faster

to good results as compared to RReal-Donmez and also that it obtains competitive
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Table 5.1. Gains obtained by ARLR-QBC over RReal-Donmez and SVMRank:
MAP (a) and NDCG@10 (b). Average Gain for rounds 0-7 (AG7%), Max Gain
for rounds 0-7 (MG7%), Average Gain for all rounds (AG%) and Max Gain
for all rounds (MG%). The number in parentheses indicate in which round the
maximum gain was obtained. Values in italic indicate negative gains, values in
bold indicate a gain over 5% and values in italic and bold a gain over 10%

(a)

ARLR-QBC vs. RReal-Donmez ARLR-QBC vs. SVMRank

MAP AG7% MG7% AG% MG% AG7% MG7% AG% MG%

TD2003 10.54 26.32 (0) 3.93 26.32 (0) 5.39 10.65 (4) 2.27 10.65 (4)

TD2004 6.47 11.43 (1) 3.65 11.43 (1) 0.44 3.99 (6) 3.38 6.73 (22)

HP2003 1.69 2.31 (6) 1.55 2.31 (6) -0.37 0.75 (5) 0.44 1.25 (23)

HP2004 0.99 3.71 (0) 2.20 4.30 (19) 4.24 8.88 (6) 5.16 8.88 (6)

NP2003 2.22 3.64 (6) 1.89 3.64 (6) -4.20 -2.53 (6) -2.38 -0.79 (22)

NP2004 -1.80 1.71 (3) -0.69 3.22 (8) 1.49 5.46 (3) 5.24 9.68 (14)

(b)

ARLR-QBC vs. RReal-Donmez ARLR-QBC vs. SVMRank

NDCG AG7% MG7% AG% MG% AG7% MG7% AG% MG%

TD2003 10.39 22.92 (0) 5.68 22.92 (0) 2.42 7.19 (5) 3.47 7.19 (5)

TD2004 6.31 8.93 (1) 2.17 8.93 (1) 4.12 8.34 (6) 4.71 8.34 (6)

HP2003 1.04 1.40 (4) 1.15 1.46 (23) -1.52 -0.78 (5) -0.67 0.26 (23)

HP2004 3.40 5.15 (4) 1.66 5.15 (4) 4.93 7.43 (7) 6.12 7.88 (11)

NP2003 2.73 3.51 (3) 1.48 3.51 (3) -3.67 -2.42 (6) -2.79 -1.71 (22)

NP2004 -1.15 0.93 (7) -0.28 1.49 (12) -0.06 2.26 (7) 2.40 4.43 (17)

results selecting less than 6% of the original training sets when compared to a strong

supervised method using the complete sets (i.e. SVMRank).

Average and Maximum Gains over RReal-Donmez: From Table 5.1 we

can see that ARLR-QBC obtains positive gains over RReal-Donmez on all datasets with

the exception of NP2004. The improvement is more impressive on the informational

datasets, where ARLR-QBC has average results on rounds 0-7 that are over 10% better

than RReal-Donmez on TD2003 (both metrics) and over 6% better on TD2004 (both

metrics). The overall average gains are also good, reaching over 5% for the NDCG

on TD2003. The results for the navigational datasets are more modest, but still quit

reasonable, with the average gain on rounds 0-7 reaching 3.4% on HP2004 (NDCG).

Observe from the MG% column that the maximum gain is very often obtained in the

initial rounds.

Average and Maximum Gains over SVMRank: From the average gain

obtained over SVMRank in the first 8 rounds (column AG7% to the right), we can see

that ARLR-QBC surpasses this strong supervised baseline in 4 out of 6 datasets for

the MAP and half of the datasets for the NDCG@10. This means that our method is
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able to surpass this strong supervised baseline (which uses 100% of the training sets)

while selecting and labeling less than 6% of the original training sets. Moreover, the

overall average gain (AG% to the right) is positive in 5 of the 6 datasets for the MAP

and 4 for the NDCG. The AG reaches over 5% for the MAP on HP2004 and NP2004,

over 6% for the NDCG on HP2004 and over 4% for TD2004.

Paired Student’s t-test

We have also performed a paired difference t-test using the MAP and NDCG differences

for all rounds of our method in comparison to RReal-Donmez’s results. The test shows

that our method is significantly better with 95% confidence level in all datasets but

NP2004 for the NDCG@10 and on 4 datasets for the MAP (the exceptions are NP2003

and NP2004).

5 Summary

The proposed active learning algorithm provides an effective and practical method to

reduce the cost of creating training sets for use with L2R techniques. The method

is practical because, as is shown by the results, it selects very effective training sets

from very diverse datasets and provides consistent quality for small or bigger labeling

budgets. Furthermore, the method does not require the availability of an initial seed

training set. ARLR is used to bootstrap the labeling process and provides the second

stage selection strategy (QBC) an effective initial set. QBC can then be used for as

many rounds as desirable to select more instances.

By using ARLR in conjunction with QBC, we were able to obtain results that are

as good as or better than established supervised baselines but selecting only a small

fraction of the original training sets. If we look back at Tables 4.5 and 5.1 from Chapter

4, we can see that in the datasets where ARLR did not perform so well (i.e. HP2004

and NP2004), ARLR-QBC achieves much better results with just a few rounds. In

HP2004, ARLR-QBC beats the chosen baselines by round 3 (MAP) and by round 2

(NDCG). In NP2004, this happens by round 2 (MAP) and by round 6 (NDCG). In

TD2004, our method does not beat the best baseline (RankBoost), but comes very

close, specially on the NDCG obtained at round 6.

The sets selected by ARLR-QBC also seem to be useful to different L2R algo-

rithms. The results obtained by using the selected sets as training for RLR show that,

although it does not reach SVM Full’s level in some datasets (specially HP2004 and

NP2004), it does improve on ARLR’s results for all datasets, and even beats all pub-
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lished LETOR baselines in some cases (NDCG on TD2004 and NP2003 and MAP on

NP2003).

Observe that although we run our method for 25 rounds (selecting almost 15%

of the original training sets), very good results are obtained in all datasets in the few

initial rounds. On most datasets, 6 or 7 rounds suffice to achieve supervised-level

performance. Thus, by labeling only about 5% of the original training sets we are able

to achieve a high quality and effective ranking function.





Chapter 6

Conclusions

In this work we have proposed two complementary active learning to rank methods

that are both practical and effective. The first one, ARLR, is an associative rule-based

method that tries to maximize the diversity of the actively selected set. Extensive

experimentation using the LETOR 3.0 web datasets showed that this method is very

effective, selecting a very small fraction of the unlabeled set. Despite its effectiveness,

the method is not easily extended to allow for more instances to be selected, even if

there is labeling budget available or if the desired quality level has not been achieved.

To address this shortcoming, we proposed a QBC-based second stage that allows for

as many more instances as desired to be chosen. Together, these methods complement

each other, facilitating a flexible and highly effective active learning method. The

experiments show that this hybrid, two-stage method beats or achieves similar results

as state-of-the-art supervised algorithms that use the complete training sets, whilst

selecting for labeling a fraction of the unlabeled instances.

1 Future Work

Several questions remain to be answered regarding the proposed method and can be

explored in future work.

• We have chosen to run our experiments on six LETOR 3.0 datasets for the simple

reason that there are readily available supervised baselines’ results. Now that we

have shown the effectiveness of the proposed methods against these baselines, it

would be interesting to run some experiments using other L2R datasets such as

93
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the MSLR-WEBxK1 and the Yahoo L2R challenge datasets2.

• One issue that was touched upon in Chapter 5 is the extension of ARLR-QBC

so that it can do both query-level and document-level selection simultaneously.

The LETOR 3.0 web datasets are not very adequate for query-level selection,

since each dataset contains a reduced number of queries (see Table 2.1). Since

ARLR-QBC selects a predefined number of documents per query, it is important

to be able to do query-level selection on datasets that have large numbers of

queries (such as the ones cited above). A simple way of implementing a two-level

selection process would be to first select a number of “interesting” queries using

a procedure similar to the QBC second-stage of our method, but using Kendall’s

τ metric as a measure of how much different ranking algorithms disagree about

how to rank the queries. Then, ARLR-QBC could be used to select interesting

documents from these queries.

• Related to the query-level selection issue described above is the adjustment of

the number of documents selected per query, per round. We have decided to

select 5 documents per query, per round only to make the comparison to Don-

mez’s method easier. As we have seen, this number accrues to selecting 0.5% of

the original datasets per round. It would be interesting to know how changing

this number affects the results. This is even more important when query-level

selection is used, since we need to determine how many queries should be selected

and then how many documents per query. This “batch-mode” active learning is

useful for a practical reason, since a batch of documents can be labeled at each

round, instead of having to label the documents iteratively, one-by-one.

• Another analysis that has not been developed in the current work is how the

selected sets perform with the third algorithm in the committee (namely, Rank-

Boost). As we have seen, ARLR-QBC selects training sets that are effective

for both SVMRank and RLR, although each supervised algorithm fares better

in some datasets than the other. Is this true also for RankBoost? Another re-

lated inquiry is what would be the effect of removing one of the algorithms from

the committee? Similarly, what happens if more algorithms are added to the

committee?

• ARLR can be modified in several ways which we have not tested. For instance, to

further expand the size of selected sets, we could use a semi-supervised approach

1http://research.microsoft.com/en-us/projects/mslr/download.aspx
2http://learningtorankchallenge.yahoo.com/
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and add those unlabeled instances that are classified with high probability by

RLR. In this scenario, the unlabeled set would be classified using the labeled set

selected by ARLR and those instances which are classified as being relevant or

non-relevant with high probability added to the labeled set with the predicted

label.

• Another way to increase the selected sets which we have not investigated thor-

oughly is to use ARLR in a round-based fashion. As we have seen, ARLR nat-

urally stops selecting new instances when it selects a sample that has already

been selected and labeled. Another way to select more instances is to wait for

ARLR to converge and then remove the selected samples from the unlabeled set,

starting a new selection round. From the few tests we performed, this process

tends to quickly converge to the point where only one new sample is selected

per round. Although we did not obtain good results from these tests on the

LETOR datasets, this strategy could be useful in certain situations or datasets.

For instance, a similar approach was successfully used for a classification task

on a set of author name disambiguation datasets. The resulting paper (Ferreira

et al. [2012]) was accepted at the Joint Conference on Digital Libraries 2012 and

is pending publication.

• The partitioning process used in ARLR may also be modified to use a different

criterion in separating the feature groups. We have used the χ2 of each feature

in relation to the others in order to try to identify the features that are similarly

“informative” so we could separate them into different partitions and maximize

each partition’s “quality”. Another more direct route could be to use Principal

Component Analysis (PCA) to determine how “similar” each feature is to others.

Observe that the features used in L2R (such as those described for the LETOR

datasets) usually have a lot of redundancy. For example, feature 21 is the BM25

of the document body, while feature 25 is the BM25 for the whole document

(including title, URL, anchor and body). In general, features like these will

have similar values and should be put into different partitions to minimize intra-

partition redundancy. PCA could prove to be a better method for doing this

separation.

• Another important aspect of ARLR (and RLR) is the discretization of the

datasets, as we have seen. Although TUBE unsupervised discretization obtains

very good results, even compared to a supervised method such as the one by

Fayyad and Irani [1993], other unsupervised methods could be used. There are
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some unsupervised methods proposed in the literature, such as the PCA-based

Mehta et al. [2004] or Ludl and Widmer [2000] which try to discretize values while

preserving the relationship among features. It would be interesting to implement

these methods to verify if it is possible to improve ARLR and RLR results with

better discretization techniques.
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