
APRENDIZADO ATIVO EM MODO BATCH

ORDENADO

THIAGO NUNES COELHO CARDOSO

APRENDIZADO ATIVO EM MODO BATCH

ORDENADO

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Marcos André Gonçalves
Coorientadora: Mirella Moura Moro

Belo Horizonte, Minas Gerais

04 de julho de 2012

THIAGO NUNES COELHO CARDOSO

RANKED BATCH-MODE ACTIVE LEARNING

Dissertation presented to the Graduate
Program in Computer Science of the Uni-
versidade Federal de Minas Gerais - Depar-
tamento de Ciência da Computação in par-
tial fulfillment of the requirements for the
degree of Master in Computer Science.

Advisor: Marcos André Gonçalves
Co-advisor: Mirella Moura Moro

Belo Horizonte, Minas Gerais

July 4, 2012

c© 2012, Thiago Nunes Coelho Cardoso.
Todos os direitos reservados.

Cardoso, Thiago Nunes Coelho
C268a Aprendizado Ativo em Modo Batch Ordenado /

Thiago Nunes Coelho Cardoso. — Belo Horizonte,
Minas Gerais, 2012

xiv, 71 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais - Departamento de Ciência da
Computação

Orientador: Marcos André Gonçalves

Coorientadora: Mirella Moura Moro

1. Computação - Teses. 2. Inteligência Artificial -
Teses. 3. Aprendizado do Computador - Teses.
I. Orientador. II. Coorientadora. III. Título.

CDU 519.6*82(043)

Acknowledgments

Initially I would like to thank my advisor Marcos and my co-advisor Mirella for the
assistance, support and guidance. I would like to thank Professor Adriano Velloso for
the insightful meetings and opinions.

I would like to show my gratitude to Daniel Galinkin, a great friend and fellow
student during the Master’s degree. Thanks to people at Zahpee for being great friends
and partners. Thanks to the lab geeks Thiago Salles, Vitor Oliveira and Daniel Hasan
for the never ending Machine Learning discussions. And to my friends Flávio, Renato
and André for their patience in my absence.

I would like to thank Roberto and Mariza for assisting me along this path and
Carolina for being a partner in work and life. Finally, I would like to thank my
family: Márcio, Flor, Bruno, Lucas and Izabela, for the love, support and for being so
comprehensive.

vi

“Ancora Imparo”
(Michelangelo)

vii

Resumo

Com a enorme quantidade de informação gerada todos os dias na Internet, fica cada vez
mais difícil, se não impossível, processar e administrar manualmente esses dados. Como
uma maneira de contornar este problema, algoritmos de Aprendizado de Máquina vêm
sendo cada vez mais utilizados nos mais distintos domínios. Um tipo de algoritmo
de aprendizado, o Aprendizado Ativo, surgiu como uma maneira de otimizar a fase de
treinamento de alguns desses métodos, com a premissa de que os algoritmos são capazes
de obter melhores resultados utilizando menos treinamento caso possam escolher quais
instâncias devem ser rotuladas. Essa é um premissa especialmente interessante em
cenários em que o dado não rotulado é abundante e existe um custo, não desprezível,
associado ao processo de rotular uma determinada instância. Em sua forma original,
uma instância é rotulada e utilizada pelo algoritmo a cada iteração, o que impossi-
bilita o uso de vários oráculos em paralelo. Para resolver este problema, surgiram os
métodos de Aprendizado Ativo em Modo Batch, que são capazes de selecionar mais
de uma instância a cada iteração. Apesar de estes métodos resolverem o problema dos
múltiplos oráculos, ainda existe uma dependência de se executar o algoritmo a cada
batch analisado. Com o crescimento do uso desses métodos em ambientes corporativos,
surgiu a necessidade de se evitar iterações constantes e, consequentemente, o tempo
ocioso de analistas contratados, que esperam por um novo batch. Nesta dissertação, o
problema de Aprendizado Ativo em Modo Batch Ordenado é descrito propiciando um
relaxamento do método tradicional em Batch. Ao selecionar uma lista ordenada de
instâncias é possível gerar uma lista com um número arbitrário de documentos a serem
rotulados. Dessa maneira, as iterações do algoritmo podem ser espaçadas conforme a
necessidade do usuário. Tal fato possibilita que uma lista de instâncias suficientemente
grande (para um dia completo de trabalho do analista) possa ser gerada fora do horário
comercial. Além da definição formal deste problema, uma solução é apresentada, uti-
lizando um framework que constrói a lista iterativamente ponderando a utilidade da
instância para o classificador (incerteza) e a diversidade trazida ao modelo em relação
as instâncias já selecionadas. A avaliação experimental demonstra que o uso do Batch

viii

Ordenado provê uma redução do número de execuções do algoritmo, mantendo a qual-
idade das instâncias selecionadas. Em alguns casos, utilizando somente o conteúdo não
rotulado disponível, os resultados obtidos são melhores que os obtidos utilizando méto-
dos tradicionais. Em outras palavras, uma lista ordenada de instâncias, gerada a partir
do conteúdo não analisado, foi responsável por um processo de rotulação com resulta-
dos estatisticamente melhores ou iguais ao de algoritmos tradicionais de aprendizado
ativo mas sem suas limitações.

ix

Abstract

With the large amount of information generated every day on the internet, it is getting
harder, if not impossible, to manually administrate and process such data. In order
to overcome this problem, Machine Learning algorithms are becoming widely used in
different domains. The Active Learning field arose as a way to optimize the training
phase of some machine learning methods. The main idea is that algorithms can achieve
better results with smaller training sets if they are allowed to select which instances
should be labeled. This assumption is specially interesting in scenarios in which un-
labeled data is abundant and there is a cost, not negligible, associated with instance
labeling. In its original form, one instance is labeled and incorporated by the Active
Learning algorithm at each iteration, thus making it impossible to use multiple oracles
in parallel. In order to solve this problem, Batch-Mode Active Learning methods arose
by being able to select more than one instance at each iteration. Although this meth-
ods allow the use of multiple oracles, it is still necessary to run the algorithm at each
annotated batch. With the increasing use of these methods in business environments,
it is important to reduce the necessity of constant iterations, and consequently, the
analysts’ idle time when waiting for a new batch to be created. In this dissertation,
the Ranked Batch-Mode Active Learning problem is described. It relaxes traditional
Batch-Mode Active Learning methods by generating a query that is an ordered list of
instances, thus allowing batches to be of arbitrarily large sizes. In this way, the algo-
rithm iterations can be spaced according to the user needs. This characteristics allow
that a sufficiently large instance list (for a full work day) be generated outside working
hours, then avoiding frequent stops for batch construction. In addition to the formal
definition of this problem, one solution is presented that consists of a framework which
iteratively builds the instance list by weighting the instance utility for the classifier
(uncertainty) and the diversity brought to the model regarding already labeled and
selected instances. The experimental evaluation shows that the Ranked Batch allows
the reduction of the algorithm executions while maintaining the quality of the selected
instances. In some cases, using only unlabeled data, the results obtained are better to

x

the ones of traditional methods. In other words, an ordered list of instances, generated
using unlabeled data, was able to guide a labeling process with results statistically
better or equal to traditional active learning algorithms without their limitations.

xi

List of Figures

2.1 Ternary heatmap illustrating the weight given by each uncertainty measure
in a problem with three classes . 9

2.2 Query by Committee sampling example with two classes and committee of
size three . 10

2.3 Example of scenario in which uncertainty sampling would select a poor query 14
2.4 Membership Query Synthesis Overview . 15
2.5 Membership Query Synthesis applied to handwritten character recognition 16
2.6 Stream-Based Selective Sampling Overview 17
2.7 Pool-Based Sampling Overview . 18
2.8 Batch-Mode Active Learning Overview . 19

3.1 Ranked Batch-Mode Active Learning overview 24
3.2 Overview of Ranked Batch-Mode Active Learning Framework 25
3.3 Detailed overview of Ranked Batch-Mode Active Learning Framework . . . 25
3.4 Knn classifier example . 28
3.5 Rocchio classifier example . 30

4.1 UCI Datasets’ instances by class . 39
4.2 Experimental setup overview . 40
4.3 Venn diagram of TP c, FP c and FN c . 42
4.4 Area Under the Curve . 43
4.5 Uncertainty estimator quality for the glass dataset 45
4.6 Comparison of the wdbc dataset result when using different similarity functions 50
4.7 MacF1 comparison of the proposed heuristic for initial selection versus

starting with one random instance . 55
4.8 MacF1 comparison of the proposed heuristic for initial selection versus

starting with 20% of random instances . 56

xii

4.9 MacF1 comparison of the proposed heuristic for initial selection versus
starting with a random instance. One instance is labeled and used to up-
dated models at each iteration. 58

4.10 MacF1 results for ranking generated without training data 59
4.11 MacF1 results for ranking generated with training data 61
4.12 Comparison between the proposed method’s generated ranking without la-

beled data and the uncertainty sample strategy with one label provided at
each iteration . 64

4.13 Comparison between the proposed method’s generated ranking and the un-
certainty sample strategy . 65

4.14 Comparison between the proposed method’s generated ranking and the
Batch-Mode Active Learning strategy . 67

4.15 Comparison between the proposed method’s generated ranking and the
Batch-Mode Active Learning strategy . 69

xiii

List of Tables

4.1 UCI Datasets’ characteristics. 39
4.2 Mean Squared Errors of uncertainty estimators 45
4.3 AUC-MacF1 of different uncertainty estimators 46
4.4 APSNR for different similarity metrics in each dataset 48
4.5 AUC-MacF1 of different similarity functions 48
4.6 Correlation between APSNR and AUC-MacF1 49
4.7 Impact of each factor obtained by the factorial design 53
4.8 Comparison between the proposed heuristic for initial selection versus choos-

ing one random instance . 54
4.9 Comparison between the proposed heuristic for initial selection (one in-

stance selected) versus choosing a set of random instances 56
4.10 Comparison between the proposed heuristic for initial selection versus choos-

ing a random instance with one instance being labeled per iteration 57
4.11 Resultant ranking quality when no training is provided Knn Cosine 59
4.12 Resultant ranking quality when training is provided Knn Cosine 61
4.13 Comparison between the proposed method (no labels provided) and the

uncertainty sample strategy . 63
4.14 Comparison between the proposed method and the uncertainty sample

strategy . 65
4.15 Comparison between the proposed method, with no labeled data provided,

and a batch-mode active learning strategy with the model iteratively up-
dated with labeled instances . 67

4.16 Comparison between the proposed method and a batch-mode active learning
strategy . 68

xiv

Contents

Acknowledgments vi

Resumo viii

Abstract x

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 Main Contributions . 3
1.2 Text Organization . 4

2 Active Learning 5
2.1 Machine Learning Basics . 5

2.1.1 Classification Problem . 5
2.1.2 When Labels Are Costly to Obtain 7

2.2 Query Strategy . 7
2.2.1 Uncertainty Sampling . 8
2.2.2 Query By Committee . 10
2.2.3 Expected Error Reduction . 11
2.2.4 Variance Reduction . 12
2.2.5 Density Weighted Methods . 13

2.3 Active Learning Scenarios . 15
2.3.1 Membership Query Synthesis 15
2.3.2 Stream-Based Selective Sampling 16
2.3.3 Pool-Based Sampling . 18
2.3.4 Batch-Mode Active Learning . 19

xv

2.4 Concluding Remarks . 21

3 Ranked Batch-Mode Active Learning 22
3.1 Problem Definition . 22
3.2 Overview . 24
3.3 Uncertainty Estimation . 27

3.3.1 Classifiers . 27
3.3.2 Uncertainty Score . 31

3.4 Instance Ranking . 32
3.4.1 Similarity Functions . 34

3.5 Cold Start . 35
3.6 Concluding Remarks . 37

4 Experiments 38
4.1 Datasets . 38
4.2 Experiment Setup . 39
4.3 Evaluation Metrics . 40
4.4 Evaluation of uncertainty estimation and similarity function 44

4.4.1 Uncertainty estimator . 44
4.4.2 Similarity function . 47
4.4.3 Impact of each component . 50

4.5 Evaluation of the Initial Selection . 53
4.5.1 One Random Instance as Initial Selection 54
4.5.2 20% of the Unlabeled Instances as Initial Selection 55
4.5.3 Impact of the Instance Selection Strategy Throughout the Ranking 56

4.6 Rank Quality Evaluation . 58
4.6.1 Ranking Without Training Data 58
4.6.2 Ranking With Training Data 60

4.7 Traditional Active Learning Scenarios 62
4.7.1 Pool-Based Sampling Comparison 62
4.7.2 Pool-Based Batch-Mode Sampling Comparison 66

4.8 Concluding Remarks . 69

5 Conclusion 72
5.1 Contributions . 72
5.2 Future Work . 73

Bibliography 75

xvi

Chapter 1

Introduction

Machine Learning algorithms have become increasingly popular for a number of rea-
sons. In particular, the volume of data generated every day is huge and impracticable
to be manually read and processed by human analysts. For example, Twitter, a popu-
lar micro-blogging tool in which users are allowed to post short messages (with up to
140 characters), may produce up to thousands posts per second1. In days of popular
events, e.g. in the MTV Video Music Awards, the number of posts-per-second can be
as high as 8,686. Analyzing such big volume of data is impractical without automated
systems.

One category of Machine Learning algorithms consists of supervised algorithms,
that is, algorithms that are able to execute specific tasks (e.g. document classification)
given that a training set containing labeled examples is provided. These algorithms
are also called learners because they are able to increase their performance on the
task execution as new training examples are provided. However labeling the training
examples can be an expensive task because of the expert knowledge necessary and
the time-consuming nature of the process. Moreover, some applications may need a
substantial number of labeled instances in order to achieve an acceptable error rate.
Finally, some applications may also need constant training data to cope with changes
on patterns of use.

In order to reduce the effort of creating such training set, a new sub-field of
Machine Learning arose: Active Learning. This type of algorithm is able to select
and present to the analyst (considered as an oracle) instances that should be labeled
first. This group of instances is called a query since it requires “answers” (i.e, labels)
from the oracle2. After labeling, these instances are incorporated into the training

1http://yearinreview.twitter.com/en/tps.html
2Note that this notion of query is very different from the one commonly used in Information

1

1. Introduction 2

set with an expectation of rapidly increasing the classifier model quality. In general,
traditional Active Learning algorithms query one instance at a time in order to update
the classification model. Such a limitation can make the manual labeling routine very
daunting and inadequate in scenarios with multiple experts working simultaneously
in the same dataset or when the query construction is an expensive process implying
in a long waiting time. For instance, creating a labeled set using a crowdsourcing
service like Amazon Mechanical Turk3 is impratical with such limitations. Since these
services allow users to create labeling tasks that are outsourced to a large group of
freelance workers, querying one instance at a time would not take advantage of this
highly parallel environment.

To alleviate the aforementioned problems, a Batch-Mode Active Learning algo-
rithm can be used. Such class of algorithms can query multiple instances at once that,
then, can be independently labeled in parallel. Although this solves the problem of
using multiple analysts, the algorithm still has to execute frequently, thus making the
analysts idle once per iteration. This happens because after the batch is labeled and
incorporated in the training set, a new query must be constructed. Increasing the
queried batch size can reduce the idle time since more instances are labeled at each it-
eration. However this may come at the cost of labeling instances in an ineffective order.
This happens because instances inside a batch are usually not ordered. In other words,
selecting an arbitrarily large number of instances can lead to a sampling strategy close
to the random one.

To overcome these issues we introduce the Ranked Batch-Mode Active Learning
problem. The main idea is to relax some of the aforementioned limitations, such that,
the query is a ranked list instead of an unordered set. This problem is more connected
to real world scenarios, in which it is very common to have analysts paid hourly to build
a training set for a given problem, or there is a limited budget and we want to maximize
the gains with this budget. This new approach allows the algorithm to generate an
arbitrarily long query, thus making its execution less frequent. For example, a ranked
query containing every available instance could be generated outside working hours.
This would allow hired analysts to label instances for a full day without having the
necessity to wait for the learner update and query construction.

In addition to the definition of this new problem, we also propose a method for
ranking an arbitrarly large set of unlabeled instances in descending order of informa-
tiveness, that is, the order in which they should be labeled by the oracle. After one or
more instances are labeled, the acquired knowledge can be incorporated by the method

Retrieval and similar fields.
3https://www.mturk.com/

1. Introduction 3

and used to generate a new, more accurate, ranking of the (still) unlabeled instances.
In summary, each iteration of the method happens in three phases: Uncertainty

Estimation, Ranking Construction and Labeling by Oracle. In the Uncertainty Esti-
mation step, a score is assigned to each candidate instance given by the confidence of
a classifier, trained with the available labeled data, in the prediction. This score is
responsible for ranking higher instances in which the classifier is least confident. The
second step, Ranking Construction is where the ranking itself is built. Instances are
selected based on the previously calculated uncertainty scores and on a similarity score
that represents the new knowledge that will be brought to the classifier if a given in-
stance is selected. By weighting these two factors, it is possible to prioritize diversity
in the first iterations and uncertainty in the later ones, based on the intuition that
one should start by having a macro vision of the instance space and should end having
a refined vision of the class boundary regions. The resultant query, differently from
other Active Learning methods, is a ranking of instances in the order they should be
labeled by the oracle. Finally the ranking is presented for Labeling by the Oracle that
annotates one or more instances. This knowledge can then be used to update the model
and this process can re-start.

We evaluated our method using datasets from the UCI Machine Learning repos-
itory, belonging to different domains. Our experimental results demonstrate that the
proposed method is able to select instances in a better way than random selection,
with results comparable to traditional Active Learning algorithms. In other words, the
proposed method can be a drop-in replacement for traditional methods without their
limitations. Our framework is able to achieve the same accuracy of these methods
with only one ranking built, that is, the initial ranking generated without any labeled
data had similar performance to traditional models iteratively updated with labeled
instances.

1.1 Main Contributions

The main contributions of this work are summarized as follows.

The introduction of a new problem: Ranked Batch-Mode Active Learning
This formulation relaxes the traditional Batch-Mode Active Learning by querying
a ranked list of instances.

The proposal of a framework for solving the proposed problem This new
method constructs a ranked query even when no labeled data is provided. We

1. Introduction 4

conducted an experimental evaluation using datasets of different domains from
the UCI Machine Learning repository.

An analysis of the framework components We conducted a 2kr factorial design
experiment and evaluated the impact of each of the framework’s main components
on the final result.

1.2 Text Organization

This work is organized as follows. Chapter 2 overviews the Active Learning field as well
as some directly related work. Chapter 3 introduces the Ranked Batch-Mode Active
Learning problem and presents our method for solving it. Chapter 4 presents the
experimental evaluation and discusses the main results. Finally, Chapter 5 concludes
this dissertation, reviewing our main contributions and proposing future work.

Chapter 2

Active Learning

2.1 Machine Learning Basics

This section presents an overview of the Active Learning problem. Specifically it con-
tains distilled core ideas, methods and applications, as well as notational conventions,
which will be used throughout this work.

2.1.1 Classification Problem

Computer programs that are able to improve their performance at some task through
experience are said to be learners. As presented in Mitchell [1997]:

Definition 1 A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance at tasks in T , as
measured by P , improves with experience E.

In the Classification Problem, the experience E is the training data provided
which consists of multi-attribute records (features) along with a special variable called
class. The class is a categorical attribute belonging to a finite set. The provided data
is then used to construct a model that relates given features to the class variable (task
T). Afterwards this model can be used to predict the class of test instances in which
the features are provided and the classes are unknown.

Let C be the finite set of all possible classes, and D a training set consisting
of instances di = (xi, ci), where xi is a vector containing the corresponding value for
each feature, and ci ∈ C is a categorical attribute indicating its class. The main goal
of a classification algorithm is to construct a mapping function f : D → C that is a
good approximation of the real mapping function g : DU → C, being DU the instance

5

2. Active Learning 6

universe, in order to predict the unknown classes of instances, ti = (xi), of the test set
T .

As stated by Definition 1, in order to improve the task execution quality, it is
necessary to provide more experience to the algorithm (increasing the training set with
new instances). The amount of training that should be provided to a learning algorithm
is the focus of different machine learning theory studies and can vary based on: the
application (different problems can have different class boundaries), the algorithm and
the quality of the training set (e.g. presence/absence of noise, disagreement between
multiple annotators).

The Machine Learning Theory field provides a framework [Mitchell, 1997] to
calculate a lower bound for the size m of a randomly drawn D given: δ, which is the
complement of the probability that the learner will be able to learn a model hypothesis
that is approximately correct; a ε, which represents the upper bound for the expected
error; and the algorithm’s Vapnik-Chervonenkis dimension (VC) [Blumer et al., 1989].
This is defined in Equation 2.1.

m ≥ 1

ε

(
4 log2

(
2

δ

)
+ 8× VCexample × log2

(
13

ε

))
(2.1)

Given ε, δ and V C, this framework allows us to estimate the number of training
instances for a classification application. For example, consider a Neural Network
that is being used for classifying images as a young corn or a weed (classes) in order
to automate herbicide spraying in agricultural fields [Yang et al., 2000]. If a simple
Perceptron with 10,000 units (one unit per pixel, 100x100 images) in the input layer is
used, the VC dimension, as presented in [Sontag, 1998] is V Cexample = input_units+1 =

10, 001. Let m be the number of training instances needed for a ε = 0.5 and δ = 0.5,
then the sample complexity of this example can be given by Equation 2.2.

m ≥ 1

ε

(
4 log2

(
2

δ

)
+ 8× VCexample × log2

(
13

ε

))

m ≥ 8 log2(4) + 16× 10, 001× log2(26)

m ≥ 752, 162 (2.2)

As Equation 2.2 shows, the number of training instances needed to achieve a good
classifier can be large. The difficulty of obtaining these labels can vary according to the
domain. It can be as easy as retrieving user data or it can require expert knowledge,
being an expensive task.

2. Active Learning 7

2.1.2 When Labels Are Costly to Obtain

There are domains in which labeled data come at little or no cost. For example, in spam
classification the user provides labels that are used to improve the spam filter usually
by clicking the “Spam” or “Not Spam” buttons1. Other scenarios include ratings for
movies [Bennett and Lanning, 2007] (used in new movies recommendation); assigning
priority to emails [Aberdeen and Slater, 2010] (used to improve the quality of the
priority inbox system); “Like”2 and “+1”3 social markers (used in recommendation).

On the other hand, there are other scenarios in which such labeling task can be
difficult, time-consuming or expensive. Examples include:

Speech recognition: Accurate transcription of speech utterance at phonetic level is
extremely time-consuming (taking 400 times longer than the utterance duration)
and requires linguistic expertise. Transcription at word level is still time consum-
ing, requiring about ten times longer than the audio duration. [Zhu, 2005].

Hypothesis generation and experimentation: The process of labeling a given in-
stance can be a biological experiment [King et al., 2004], which implies in time
and money costs.

Information extraction: Highlighting entities (e.g. person and organization names)
and relations (e.g. person works for given entity) in documents can take more
than 30 minutes, even for a simple newswire story [Settles et al., 2008]. Other
fields may require experts.

Classification and filtering: A training set consisting of annotated documents (e.g.
articles, web pages) or other kinds of media (e.g. images) can be a slow, te-
dious and even redundant task. There are fields in which additional expertise is
required, for example, in medical image categorization [Lehmann et al., 2005].

Active learning systems aim to overcome this labeling bottleneck as explained in
the following sections.

1What happens when I click the “Spam” or “Not Spam” button for an email I received? http:
//help.yahoo.com/l/pt-pt/yahoo/mail/ymail/abuse/abuse-59.html

2Facebook’s like button: http://developers.facebook.com/docs/reference/plugins/like/
3Google’s +1 button: http://www.google.com/+1/button/

http://help.yahoo.com/l/pt-pt/yahoo/mail/ymail/abuse/abuse-59.html
http://help.yahoo.com/l/pt-pt/yahoo/mail/ymail/abuse/abuse-59.html
http://developers.facebook.com/docs/reference/plugins/like/
http://www.google.com/+1/button/

2. Active Learning 8

2.2 Query Strategy

Active Learning is the sub-field of Machine Learning in which the learning algorithm is
responsible for querying data that should be annotated by an oracle, such as a human
analyst or an experiment. This labeled set is then used in the model construction.

The main idea is that, by querying instances, the algorithm will be able to learn
better classification models with fewer examples, thus reducing labeling costs. In this
way Active Learning systems are well-motivated in different Machine Learning prob-
lems in which data may be abundant and easily obtained whereas annotated data is
expensive to obtain.

In order to Active Learning to fulfill its objective of learning a good classification
model with few examples, it is necessary to choose the most informative queries, that
is, the instances that, when labeled, will better improve the classification model. In
this section an overview of different strategies for measuring the informativeness is
presented.

2.2.1 Uncertainty Sampling

Uncertainty sampling [Lewis and Gale, 1994] is a simple and vastly used query selection
framework. The main idea is to query instances in which the learner is least certain
about its prediction. This is usually accomplished by using the probabilities that are
output by the classifier. For example, in a binary problem, the learner will select
instances predicted with probability close to 0.5.

For multiclass problems, there are multiple ways of using this probabilities. The
trivial way of selecting one instance in the multiclass scenario is by querying the instance
in which a prediction is made with the smallest confidence. Let pt(ci) be the probability
of instance t belonging to class ci and cPREDICTED the class with biggest probability.
Then q, the queried instance, can be selected by Equation 2.3.

q = argmax
t

1.0− pt(cPREDICTED) (2.3)

One problem of this strategy is that it only considers the probability of the
predicted class, thus, ignoring the remaining distribution. Despite this limitation, such
a strategy is widely used in extraction tasks [Culotta and McCallum, 2005] given that
the probability of the most likely label sequence can be efficiently computed.

There are two main methods that consider probabilities of classes other than the
predicted one: the margin sampling and the entropy sampling. In the margin sampling
[Schapire et al., 1998], the objective is to select instances in which the margin between

2. Active Learning 9

(a) Least confident (b) Margin (c) Entropy

Figure 2.1: Ternary heatmap illustrating the weight given by each uncertainty measure
in a problem with three classes

the first and second most probable classes is narrow. The intuition is that instances
with a big difference in these two probabilities are easily distinguishable by the learner,
whereas instances in which these probabilities are close (usually) lay near the class
boundaries. Given that cFIRST is the class with biggest probability and cSECOND the
second most probable class, then the margin sampling can be defined by Equation 2.4.

q = argmax
t

pt(cFIRST)− pt(cSECOND) (2.4)

This alleviates the problem of losing probabilities information, but important in-
formation can still be discarded in datasets with many classes. The entropy sampling
[Shannon, 1948] is one way of considering all probabilities output by the learner. It is
widely used in different problem domains [Jain and Kapoor, 2009] like object recog-
nition [Holub et al., 2008], parser acquisition [Hwa, 2001], image classification [Joshi
et al., 2009] and others. The idea is to measure how many options, or uncertainty, exist
within the outcome of a probability distribution. The highest entropy value is achieved
when every component has the same value, that is, every class has equal probability.
Equation 2.5 presents the entropy sampling strategy.

q = argmax
t

∑
i

−pt(ci) ∗ log(pt(ci)) (2.5)

Figure 2.1 presents an example of a dataset with three classes and the weight
associated by each uncertainty measure to an instance given the probabilities output
by the learner. As expected, in all plots, the center is the point where the most
informative instance lies, because this is where the probability distribution is most
uniform (p1 ≈ p2 ≈ p3). The entropy measure, differently from the other two, does
not favor instances in which only one class is highly unlikely (region near the triangle

2. Active Learning 10

1

2

Figure 2.2: Query by Committee sampling example with two classes and committee of
size three

sides). This happens because the entropy considers all probability values, prioritizing
instances that have a non-zero probability of belonging to each class.

In this work, this is the query framework that will be used, given the simple
model and the low computational cost.

2.2.2 Query By Committee

The query-by-committee [Seung et al., 1992] sampling consists of maintaining a com-
mittee of models that represents competing hypotheses regarding the instance space.
The queried instance is the one that the models most disagree. The idea is that by
choosing instances in which the models disagree, the learner aims to discard the biggest
number of hypotheses, regardless of the instance label. This can be seen as a simpli-
fication of the hypothesis space search proposed by Angluin [1988], in which just a
subset of hypotheses (represented by the committee) is maintained.

Figure 2.2 shows an example of the query-by-committee sampling strategy in a
binary problem. The hypothesis of each classifier is represented by a class boundary
line. Unlabeled instances are depicted as numbered starts. The star number 1 is
classified as a triangle by all hypothesis, differently from star 2 that is predicted as
circle by one hypothesis. In this scenario, star number 2 is selected for labeling due to
the disagreement in the committee.

The committee can be constructed in different ways according to the classifier
used. Seung et al. [1992] sample a committee of random hypotheses. In generative
model classes, different models can be created by sampling a given probability dis-
tribution [McCallum and Nigam, 1998; Dagan and Engelson, 1995]. Other methods
use ensemble techniques like bagging, boosting [Abe and Mamitsuka, 1998] or stacking
[Purpura et al., 2008]. Finally, the committee can also be generated by partitioning the

2. Active Learning 11

feature space [Muslea et al., 2000] or by creating artificial data [Melville and Mooney,
2004, 2003].

The measure of the committee disagreement is also a research topic and, besides
the simple vote count, two other approaches are used. The first one is vote entropy
[Dagan and Engelson, 1995] that can be seen as a generalization of the entropy uncer-
tainty sampling. Let V (ci) be the number of votes cast by the committee to class ci,
and B the size of the committee. Then, the vote entropy is defined by Equation 2.6.

q = argmax
t

|C|∑
i

−V (ci)

B
∗ log V (ci)

B
(2.6)

The other disagreement metric is the Kullback-Leibler (KL) divergence to the
mean [McCallum and Nigam, 1998]. The main idea is to calculate the average of
the KL between each committee member distribution and the “consensus” distribution
(average probability), that is, the resultant distribution after combining the whole
committee. Let Pb(ci) be the probability of instance t belonging to class ci given the
model b, PB(ci) be the probability of instance t belonging to class ci given the consensus
(average probability). Then the KL disagreement metric is defined by Equations 2.7
and 2.8.

q = argmax
t

1

B

B∑
b

D(Pb||PB) (2.7)

D(Pb||PB) =
|C|∑
i

Pb(ci) log
Pb(ci)

PB(ci)
(2.8)

2.2.3 Expected Error Reduction

The Expected Error Reduction query framework aims to select instances in which
the generalization error (error in the test set) is more likely to be reduced. This
is accomplished by estimating the expected error of a model trained with D and a
selected instance i of the unlabeled set U . The instance with smallest expected error,
or risk, is then queried.

Since the true label of the instances in U are not known, the expected error is
approximated by calculating the expectation over all possible labels. There are different
ways of computing this error, each one with its special meaning. Let P (ci|t) be the
probability of instance t belonging to class ci in the model trained using D; Ptcj (ci|t)
be the analogous probability with model trained with D and instance t belonging to
class cj; and cPREDICTED be the predicted class for a given instance. Then Equation

2. Active Learning 12

2.9 presents the Expected Error Reduction framework for the 0/1-loss function, and
Equation 2.10 presents this query strategy for the log-loss error function.

q = argmin
t

|C|∑
i

P (ci|t)

(
U∑
u

1− Ptci (cPREDICTED|u)

)
(2.9)

q = argmin
t

|C|∑
i

P (ci|t)

 U∑
u

|C|∑
j

Ptci (cj|u)× logPtci (cj|u)

 (2.10)

The 0/1-loss equation can be seen as a minimization of the total number of
incorrect predictions, whereas the log-loss equation can be seen as a minimization of
the expected entropy.

2.2.4 Variance Reduction

It is usually expensive to directly minimize the expectation of a loss function. However,
it is possible to reduce the generalization error indirectly by minimizing the output
variance. Consider a regression problem in which the objective is to minimize a squared-
loss error. The learner’s expected future error for a given instance can be decomposed
as in Equation 2.11 [Geman et al., 1992].

ET = E[(y − E[y|x])2]+
(ED[f(x)]− E[y|x])2+
ED[(f(x)− ED[f(x)])2]

(2.11)

where ED is the expectation over the labeled set D, E is the expectation over the
conditional density, that is, P (y|x), and ET is the expectation over both. f(x) is the
model prediction for an instance x and y indicates its true label.

The first term of the decomposition is called noise, and represents the error that
is conditioned to the training set. The second term is the bias and represents the
difference between the model constructed with D and the distribution that actually
generates y from x. The third term, variance, captures the variability of the model
under resampling data sets of fixed size. Minimizing error can then be achieved by
minimizing bias, variance or both [Schein and Ungar, 2007].

In [Cohn et al., 1994, 1996] a statistical analysis of the variance estimation is
presented. The authors show that it is possible to calculate this value in closed-form
for neural networks, Gaussian mixture models and locally-weighted linear regression.
In the context of neural networks the output variance for an instance x can be approx-

2. Active Learning 13

imated by Equation 2.12 [MacKay, 1992].

σ2 ≈
[
∂f(x)

∂θ

]T [
∂2

∂θ2
Sθ(D)

]−1 [
∂f(x)

∂θ

]
≈ ∇xTF−1∇x (2.12)

where Sθ(D) is the squared error of the current model, with parameters θ, on the
labeled set D. The first and third terms represents the gradient of the model’s predicted
output. The second term is the inverse of a covariance matrix representing a second-
order expansion of the objective function with respect to θ, written in shorthand as F.
This is also known as Fisher Information Matrix, or I(θ), and represents the amount of
information that an observable random variableX (instance) carries about an unknown
parameter θ (classifier parameters) upon which the probability of X depends. In this
way, to minimize the variance an active learner should select data that maximizes its
Fisher Information (or minimizes the inverse thereof).

When the model have K parameters the Fisher Information Matrix takes the
form of a K ×K covariance matrix. Therefore its minimization is not straightforward
and can happen in different ways:

A-optimality: minimizes the trace of the inverse information matrix.

D-optimality: minimizes the determinant of the inverse information matrix.

E-optimality: minimizes the maximum eigenvalue of the inverse information matrix.

A-optimal designs aim to reduce the average variance of parameter estimates and
are the most common choice in Active Learning. Other way to build queries using
Fisher Information Matrix consists in using the Fisher information ratio. Let IU(θ) be
the Fisher information matrix of the unlabeled pool, and Iq(θ) the fisher information
matrix of a given query q, then the fisher information ratio [Zhang and Oles, 2000] can
be defined by Equation 2.13.

q = argmin
q

tr(IU(θ)Iq(θ)
−1) (2.13)

Querying the set that minimizes this ratio is analogous to minimizing the future
output variance once q has been labeled. Thus, reducing the generalization error (with
respect to U . [Schein and Ungar, 2007] and [Zhang and Oles, 2000] used this strategy
for text classification using a logistic regression algorithm. Hoi et al. [2006a] used this
concept in Batch-Mode Active Learning as is further explained in Section 2.3.4.

2. Active Learning 14

1

2

Figure 2.3: Example of scenario in which uncertainty sampling would select a poor
query

2.2.5 Density Weighted Methods

Techniques that minimize the estimated error or the variance consider the entire input
space when choosing queries. Thus, these strategies are less prone to selecting outliers,
that is, instances that lies in sparsely populated regions of the instance space.

Figure 2.3 represents a binary classification problem. The line represents the class
boundary estimated by a given classifier. Unlabeled instances are represented by stars.
An uncertainty sampling strategy would select instance 2 for labeling since it lies on
the classification boundary, although this instance is not a good representative of the
data. In a qualitative analysis, selecting instance 1 would lead to better results since
it is in a denser region. By utilizing the unlabeled pool when choosing the query, the
error reduction and variance estimation techniques implicitly avoid this problem. For
other query strategies the input distribution can be modeled explicitly.

In [McCallum and Nigam, 1998], a density-weighted query by committee approach
is used. The density is estimated by calculating the average distance of one instance to
all other instances. Similarly, Settles and Craven [2008] presents an information density
framework to help selecting instances that are not only informative, but also good
representatives of the underlying distribution. Let φ(q) represent the informativeness of
q according to a given query strategy, for example, uncertainty sampling, and sim(a, b)

be the similarity between instances a and b. Then the density framework can be defined
by Equation 2.14.

q = argmax
q

φ(q)×

(
1

|U|

U∑
u

sim(q, u)

)β

(2.14)

In this framework the density is calculated by the average similarity between a

2. Active Learning 15

candidate instance and the unlabeled instances. The parameter β is used to control
the importance of the density term. Variations of this strategy computes the similarity
between the instance and its computed cluster.

In [Fujii et al., 1998], instances that are queried are similar to the unlabeled set
and dissimilar to the already labeled set. The main idea is to obtain instances that are
ambiguous to a great number of unlabeled instances and, at the same time, different
from the already obtained knowledge.

In [Nguyen and Smeulders, 2004], the unlabeled data is clustered and highly
populated clusters’ instances are prioritized. Similarly, in [Shen and Zhai, 2005] selected
instances belong to different clusters. Xu et al. [2007] explicitly calculates a density
function by measuring the J-Divergence [Lin, 1991] between instances.

2.3 Active Learning Scenarios

There are three main settings for active learning application. In the Membership
Query Synthesis the learner may request label for an instance in the unlabeled set or
a synthesized query within the application domain (Section 2.3.1). In Stream-based
Selective Sampling unlabeled data is drawn one at a time, in a sequential way and
the learner should decide whether or not to query the given instance (Section 2.3.2.
The last setting is the Pool-Based Sampling in which a large pool of unlabeled data
is obtained at once (Section 2.3.3). One variation of the Pool-Based Sampling is known
as Batch-Mode Active Learning (Section 2.3.4), which is the setting more similar to
the one discussed in this dissertation.

2.3.1 Membership Query Synthesis

Firstly, [Angluin, 1988, 2004] studied the problem of using different kinds of queries in
order to learn an unknown concept. In a membership query, the learner asks whether
a particular domain element belongs, or not, to the unknown concept. In this way,
the learner is able to query instances that are not present in the input space, that
is, instances that are synthesized de novo (i.e. from the beginning). One advantage
of membership queries is the theoretical guarantees on the bounds on the number of
examples that need to be asked.

Figure 2.4 provides an overview of the Membership Query Synthesis strategy.
The model generates queries, based on the data source universal set, that are then
presented to the oracle for labeling. The knowledge from the annotated instance is
incorporated, and the learner can repeat the process.

2. Active Learning 16

Model generates
a query de novoData Source

query is labeled
by an oracle

Figure 2.4: Membership Query Synthesis Overview

7 5
Figure 2.5: Membership Query Synthesis applied to handwritten character recognition

This methodology was successfully applied to different problems. In [Cohn et al.,
1996] queries are generated from the input space in order to train a locally weighted
regression algorithm. The objective is to learn to predict the position of a two-degree-
of-freedom robot arm given both joint angles. The proposed method is able to reduce
significantly the Mean Squared Error in comparison to a random sampling strategy.

Another real world application of Membership Query Synthesis is presented in
[King et al., 2004, 2009]. A robot scientist, that is a physically implemented laboratory
automation system, automatically originates a hypothesis (query) to explain observa-
tions, devises experiments to test these hypothesis, physically runs the experiment,
interprets the results and then repeats this cycle. This workflow was applied in the
investigation of genes encoding one kind of enzymes in the yeast Saccharomyces cere-
visiae. The method was responsible for a three-fold decrease in material cost compared
to the naïve strategy of running the least expensive experiment, and a 100-fold cost
decrease compared to randomly generated experiments.

Although Membership Query Synthesis can work very well for applications in
which the oracle is an automated process, when the oracle is a human annotator the
generated queries can be confusing or impossible to be labeled. For example, Lang and
Baum [1992] faced a problem when applying membership query learning for training a
neural network for handwritten characters classification. The characters generated for

2. Active Learning 17

Model decides
whether to query
sampled instance

Query is made and labeled by an oracle

Instance Stream

u i+2u i-2 u i+1u i-1 u i
... ...

Advance streamDiscard

Figure 2.6: Stream-Based Selective Sampling Overview

labeling often were unrecognizable symbols without natural semantic meaning. Figure
2.5 shows possible queries for characters between numbers seven and five.

2.3.2 Stream-Based Selective Sampling

The main idea of Stream-Based Selective Sampling is to filter instances drawn from
the input distribution. In other words, it selects, classifies and trains using only those
instances that show promise of improving the current model [Atlas et al., 1990]. In-
stances are sampled one at a time, then this approach can be called stream-based or
sequential active learning. Although Stream-Based Selective Sampling is similar to
membership learning, in cases of unknown or non-uniform distributions, it is guaran-
teed that queries will be reasonable for human annotators given that they are sampled
from the real input distribution.

Figure 2.6 presents an overview of the Stream-Based Selective Sampling. In-
stances are sampled from an input distribution and presented one at a time. The
learner should then decide whether to query the oracle for the label or to discard the
given instance. The next instance is sampled and the process repeats.

Mitchell [1982] presents a method in which annotated instances are used by the
learner in order to generalize the current best hypothesis that models the data. This
method can be extended to the stream-based scenario by querying the instance that
comes close to matching half of the generalizations currently in the search space. In
this way, annotating this instance will allow to discard approximately half of the pos-
sible generalizations regardless of its label. Keeping this candidate set of hypotheses
(sometimes called a version space) can be intractable for some predictors. Its size
could also grow exponentially with the training set [Haussler, 1989], which motivated
the advent of approximate approaches. In Cohn et al. [1994], an approximation for
neural networks was presented and applied in power system security analysis, showing

2. Active Learning 18

query is labeled
by an oracleModel select best

query
Unlabelled
instances

Figure 2.7: Pool-Based Sampling Overview

improvement compared to random sampling. This method was then extended for an
agnostic setting in [Dasgupta et al., 2008].

The method proposed in [Beygelzimer et al., 2010] uses an oracle that returns
an empirical risk minimizing hypothesis in order to avoid the version space approach.
Queries are made in a safe way, in the sense that the hypothesis will eventually converge
to the same solution as a passive learning algorithm. This method showed substantial
improvement over the passive learner in an intrusion detection dataset.

Dagan and Engelson [1995] used the Query by Committee paradigm [Seung et al.,
1992] in its selective sampling strategy. A group of classifiers are generated from a ran-
dom sample of the training data. Each of these classifiers predict the label of a given
candidate instance, which can be queried by the learner with a probability propor-
tional to the degree of disagreement among the committee members. This method was
successfully applied to part-of-speech tagging.

2.3.3 Pool-Based Sampling

The Pool-Based Sampling assumes that a large collection of unlabeled data can be
gathered at once. The data present in the unlabeled set helps to selectively draw
informative instances from the pool [Lewis and Gale, 1994].

Figure 2.7 presents an overview of the Pool-Based Sampling. An instance belong-
ing to the unlabeled set is chosen by the learner in order to be annotated. After this
instance is labeled by the oracle, this knowledge is incorporated by the learner, a new
query is selected from the unlabeled pool, and the process repeats.

Lewis and Gale [1994] used an uncertainty metric to calculate the value of each
instance in the unlabeled pool. The instance with biggest uncertainty is then selected
for labeling. This method provided a 500-fold reduction on the training size needed to
achieve a specific level of effectiveness in a textual dataset. Other studies were made in
the text classification domain, for example, a query-by-committee strategy is applied
in [McCallum and Nigam, 1998] and an approximation of the version space method
discussed previously is presented for Support Vector Machines [Vapnik, 1995] in [Tong
and Koller, 2002]. This idea was also applied for image retrieval [Tong and Chang,

2. Active Learning 19

batch is labeled by oracles

Model generates a
batch of informative

instances

Unlabelled
instances

i1
i2
...
in

Figure 2.8: Batch-Mode Active Learning Overview

2001].
As aforementioned, Thompson et al. [1999] applied the pool-based scenario in se-

mantic parsing and information extraction. In these domains, the output is structured
and the algorithm exploits such a structure. In the semantic parsing, for example, the
instances that are queried are the ones that were not successfully parsed or parsed
with a low certainty. Settles and Craven [2008] also applied pool-based learning in a
structured scenario, the sequence labeling problem.

2.3.4 Batch-Mode Active Learning

In most Pool-Based Sampling scenarios the querying and labeling process occurs one
instance at a time. This process is not suitable for scenarios in which the model update
is slow or multiple oracles are used in parallel. Batch-Mode Active Learning avoids this
issues by allowing the learner to query instances in groups.

Figure 2.8 presents the typical workflow of a Batch-Mode Active Learning algo-
rithm. First, the learner builds a query set Q containing unlabeled instances. Second,
the oracle labels the presented batch. Finally, the new labeled instances are incorpo-
rated by the learner. A new batch can be generated and the process repeats.

The challenge in the Batch-Mode Active Learning is how to assemble an opti-
mal query set. Selecting the best instances according to a traditional method is not
enough since it fails to consider the overlap between instances. For example, consider
an unlabeled set in which there are five copies of the most informative instance. Con-
structing a batch of size five, only considering this information, would lead to querying
the same instance multiple times. Even though multiple instances were labeled, only
the information of one instance was effectively added to the model.

Brinker [2003] presents a method for incorporating diversity in batches generated
using Support Vector Machines. This is achieved by explicitly weighting the instance
informativeness (closeness to SVM’s decision boundary) with its similarity with in-
stances already selected for the batch. This method could be adapted to be used in

2. Active Learning 20

the scenario discussed in this dissertation. In Section 4.7.2 we present a discussion
about similarities and divergences between this and our method. In [Xu et al., 2007]
instances are selected not only by weighting relevance and similarity but also a density
score. The density, as discussed before, aims to avoid querying documents that lie in
unimportant, sparsely populated regions.

In [Hoi et al., 2006a], the batch is created by selecting the instances that maxi-
mize the Fisher Information of a binary logistic regression algorithm. Let p(x) be the
distribution of all unlabeled examples, and q(x) the distribution of unlabeled instances
that are selected for labeling. Let Ip and Iq denote the Fisher’s Information Matrices
of the classification model for the distribution p(x) and q(x) respectively. Then the
selected query q is the one that minimizes the ratio between Ip(θ) and Iq(θ) as pre-
sented in Equation 2.15. Note that θ represents the model parameters of the logistic
regression given a labeled set D.

q = argmin
q

tr(Iq(θ)−1Ip(θ)). (2.15)

The challenge of using this method is the number of possible queries (q) that is
exponential with the number of unlabeled examples. This is solved by a greedy near-
optimal algorithm [Hoi et al., 2006b] based on the idea of submodular function. Using
this method the instances selected to query q will have three important properties:
1) uncertain to the current classification model, 2) dissimilar to the other selected
examples, and 3) similar to most of the unselected examples.

Similarly, in [Guo and Schuurmans, 2008], the batch is selected as a whole and
not by scoring instances. The batch selection is treated as an optimization problem
that aims to learn a good classifier directly. The best set of instances are selected
in a way that the generated classifier will attain maximum likelihood with already
labeled instances while attaining minimum uncertainty on the unlabeled set. Since it
is intractable to conduct an exhaustive search, an approximation is used.

In [Laws et al., 2011; Haertel et al., 2010], a parallel approach is used for applying
Active Learning to data being annotated using crowd-sourcing. While the oracle is
labeling one query, the learner is able to prepare another batch. In order to reduce
idle time, the query can be constructed using stale data. In our work, the batch is
not constructed in parallel, however a large enough batch can be generated in order to
supply a crowd-sourcing demand.

Xu et al. [2003] used clustering in order do obtain a diverse batch. A Support
Vector Machine is used in order to select an initial set of unlabeled instances that lies
close to the decision boundary. This set is then clustered and the most representative

2. Active Learning 21

(medoid) instance of each cluster is added to the batch.
In [Shi et al., 2012], the Batch-Mode Active Learning setting is expanded to

the networked data scenario. Instances are nodes in a graph that can be related
through edges. In this way a query batch is constructed aiming to select instances
with high uncertainty, high impact (isolated nodes would not have great impact on
unlabeled data) and minimum redundancy (instances in a batch should be distinct).
These characteristics are weighted in a formula and used to construct the query batch
iteratively.

Although the discussed methods allow the use of multiple oracles in parallel, it
is still mandatory to continuously update the model and generate a new batch. In a
corporative scenario, in which analysts are paid hourly to label instances, continuously
updating the model means that analysts’ time is being wasted on waiting. In order to
adequate the algorithm execution to the corporative schedule a novel Active Learning
mode is presented in this dissertation. If instances are queried in the form of an
arbitrarily large ranking of instances, the model could be updated, for example, once
a day, avoiding analysts’ idle time.

Batch-Mode Active Learning methods can be divided into two major groups.
Methods of the first one construct the batch iteratively, that is, instances are selected
one at a time. Methods in the second group construct a batch given its informativeness
as a whole, that is, there are no selections of isolated instances. The first group
is the one that is closer to the scenario proposed in this dissertation, being easily
adaptable for querying a ranking of instances. In this dissertation, a general framework
is proposed for weighting diversity and informativeness of instances in order to build a
query ranking. This framework can be used for adapting some of the discussed methods
to the Ranked Batch-Mode Active Learning scenario. One advantage of our framework
is that the parameter that weights factors is explicitly defined, avoiding the necessity
of tuning its value.

Methods that choose the batch as a whole are not suitable for the proposed
scenario because there is no relative ordering of the instances of the batch. For example,
selecting a batch with size equal to the number of unlabeled instances would return
the unlabeled set as a query. Since there is no pre-defined labeling order, the oracle
would label instances in a random fashion.

2. Active Learning 22

2.4 Concluding Remarks

In this chapter we presented a review on Active Learning, as well as a comparison among
Batch-Mode Active Learning methods. As discussed, Batch-Mode Active Learning
methods are not suitable for generating large batches due to the absence of ordering
within the query. This makes these methods not suitable for scenarios with time and
budget constraints.

In this dissertation, a general framework for solving the Ranked Batch-Mode
Active Learning is proposed and possibilities of using this framework with current
methods is later discussed.

Chapter 3

Ranked Batch-Mode Active
Learning

In this chapter we present the Ranked Batch-Mode Active Learning problem and com-
pare it to the traditional Batch-Mode Active Learning. We also introduce the frame-
work for solving this problem along with its main components.

3.1 Problem Definition

It is usual for enterprises and research groups that employ Machine Learning algorithms
in their workflow, to have a limited budget for content labeling. Using Active Learning
can lead to a better use of the available resources, but this could also imply in analysts’
idle time, while the learner is building the next query.

There are two main problems in the traditional Pool-Based Sampling which com-
plicates its use in corporate scenarios:

• The impossibility to use multiple oracles in parallel. Only one instance
is selected for labeling at each iteration.

• The necessity of executing the algorithm for each instance to be la-
beled. Frequent interruptions for building new queries may compromise the
efficiency of the whole labeling process, mainly when the cost of process is high,
which is usually the case, as many possible candidate instances have to be eval-
uated.

By analyzing the Batch-Mode Active Learning strategy, one can note that it
provides only partial solutions for the aforementioned problems. Since the learner

23

3. Ranked Batch-Mode Active Learning 24

is able to query multiple instances at once, it is possible to use multiple oracles in
parallel. However, an uncontrolled increase of the batch size without any treatment of
the query can lead to poor use of oracle resources. In other words, arbitrarily increasing
the number of queried instances converges to a random strategy given that there is no
relative ordering inside a batch. This is also an issue when reducing the frequency at
which the algorithm is iterated. Although the number of times that the execution has
to be interrupted for building new queries is smaller, compared to traditional Pool-
Based Sampling, it may still be inconveniently frequent. For example, if the batch has
5 instances, the query has to be generated again every 5 new instances. This can be
seen as a tradeoff between the batch quality and its size.

In this context, our work’s goal is to create a workflow of document labeling that
is more suitable for several business models. For doing so, we present a new Active
Learning strategy that generates an ordered batch of instances, in order to make the
labeling task more productive, more suitable for multiple oracles (in parallel) and
more easily adjustable to any budget. As far as we know, this dissertation is the first
formalization of this problem.

The Ranked Batch-Mode Active Learning problem relaxes the Batch-Mode Active
Learning by generating an arbitrarily long list of instances in the order they should be
labeled by the oracle. The oracle chooses the number of instances to label before the
learner model is updated and, if necessary, another query is constructed. With these
characteristics it is possible, for example, to execute the algorithm only once a day,
generating an instance ranking that is sufficient for the analyst to work at her own
pace.

As discussed before, in the Ranked Batch-Mode Active Learning the learner
should query instances not as a batch set, but as a ranked list in descending order
of informativeness. The main idea is that, by labeling instances in the ranking order, it
is possible to obtain classifiers that maximize a given metric like Accuracy or MacroF1
as soon as possible.

In Figure 3.1, we present the workflow of Ranked Batch-Mode Active Learning
problem. Given the set of already labeled instances and the set of unlabeled instances,
the learner generates a ranking containing unlabeled instances in the order that they
should be labeled. The oracle labels one or more instances that are incorporated by
the learner before a new query is constructed. This process repeats while there are
unlabeled instances and available resources (e.g. budget).

More formally, the Ranked Batch-Mode Active Learning problem is given by
Definition 2.

3. Ranked Batch-Mode Active Learning 25

one or more instances are labeled by oracles
in the ranking order

Model generates
ranking of informative

instances

Unlabelled
instances

1. i_23
2. i_48
...
n. i_n

Figure 3.1: Ranked Batch-Mode Active Learning overview

Definition 2 Let D be a training set containing instances di = (xi, ci) where xi is a
vector containing values for each attribute and ci ∈ C a categorical feature indicating
its class. Let U be an unlabeled set consisting of instances ui = (xi), that is, only
the attribute values are known. The Ranked Batch-Mode Active Learning generates a
ranking Q containing instances of U in the order that they should be labeled by the
oracle, aiming to maximize the performance of a given classifier as instances in Q are
labeled.

In this work, the Ranked Batch-Mode Active Learning is solved by ranking in-
stances using a framework that weights the classifier uncertainty in predicting each
instance along with a diversity score. This score is responsible for measuring the dif-
ference of feature values between a given instance and the currently selected training
set. The next sections contain details about our ranking framework.

3.2 Overview

The proposed method aims to give more flexibility to the Batch-Mode Active Learning
scenarios by relaxing the necessity of frequently executing the algorithm. As presented
in Figure 3.2, the technique is employed continuously in three steps.

In the first step, Uncertainty Estimation, a classifier is trained with all labeled
instances and classifies each instance that should be ranked. The confidence of each
classification is then used for associating an uncertainty score with its corresponding
instance. The information obtained in the previous step is then used in the Ranked
Batch Construction stage in which the instances are ranked. The resultant rank is
forwarded to the Labeling by an Oracle. The oracle labels one ore more instances,
in the ranking order, and requests another iteration of the method. The amount of
content that must be labeled is not fixed and can be adjusted. Also, at any time, the
cycle can restart and incorporate the feedback provided.

3. Ranked Batch-Mode Active Learning 26

Uncertainty
Estimation

Instance
Ranking

Labeling
by

Oracle

Figure 3.2: Overview of Ranked Batch-Mode Active Learning Framework

|UUNCERTAINTY| > 0

|UUNCERTAINTY| = 0

Uncertainty
Estimation (a)

Update similarity score
between each instance

in UUNCERTAINTY
and DESTIMATED (b)

Remove selected
instance from
UUNCERTAINTY

and insert it in Q (c)

Labeling by
Oracle (d)

Figure 3.3: Detailed overview of Ranked Batch-Mode Active Learning Framework

Figure 3.3 illustrates this overview. The Uncertainty Estimation step generates
two new sets. The first one is the UUNCERTAINTY which contains all instances in U ,
along with the respective uncertainty scores, that were not yet ranked. The second one
is DESTIMATED that represents instances already in Q or belonging to the labeled set
D at each iteration. During the ranking construction this set represents the expected
training set given that all instances already in Q are annotated. Step (b) consists
in updating the similarity scores of each instance in UUNCERTAINTY with regards to
expected training set DESTIMATED. Given the calculated uncertainty (a) and similarity
(b) scores, the instance that is expected to bring more information is selected in Step
(c). The instance with higher score in Equation 3.1 is selected, inserted in Q and

3. Ranked Batch-Mode Active Learning 27

removed from set UUNCERTAINTY. This process for ranking construction continues until
UUNCERTAINTY is empty or a pre-defined number of instances is selected.

finalScore = α× similarityScore + (1.0− α)× uncertaintyScore. (3.1)

Note that the α parameter is responsible for weighting the impact of each factor
in the final score. The main idea is to use this parameter to prioritize diversity on
the initial iterations (global view of instance space) while, with the increase of the
labeled content, shift the priority to instances in which the classifier is uncertain about.
This is based on the assumption that the higher the uncertainty of the classifier on a
given instance, the more informative this instance is to the classification process. This
happens because instances for which the classifier is not confident usually lie in regions
of class boundaries that are being defined by the process.

Finally, in Step (d) the generated ranking Q is presented to one or more oracles
for labeling. The content labeled is then incorporated in D, removed from U and the
process of ranking construction restarts with the updated sets. This whole process is
detailed in Algorithm 1.

Algorithm 1 Ranked Batch Active Learning algorithm
Procedure RankedBatchActiveLearning
Input: A set with manually labeled instances D
Input: A set with unlabeled instances U

1. UUNCERTAINTY = UncertaintyEstimation(D, U)
2. DESTIMATED = D {DESTIMATED is the set of instances labeled or ranked}
3. Q = EmptyList() {Q is the instance ranking}
4. for u < |U| do
5. s = SelectInstance(DESTIMATED, UUNCERTAINTY)
6. DESTIMATED = DESTIMATED ∪ s
7. UUNCERTAINTY = UUNCERTAINTY − s
8. InsertIntoList(Q, s)
9. u = u+ 1

10. end for
11. L = WaitForOracleLabel(Q) {L is the set of instances labeled in this iteration}
12. D = D ∪ L
13. U = U − L
14. return (D,U)

The uncertainty estimation (line 1) is the process of estimating the informative-
ness of a given instance and is discussed in Section 3.3. As shown in Chapter 2, the
challenge of ranking multiple instances lies in prioritizing informative documents that
present diversity with already selected ones. This is achieved by weighting (line 5) the

3. Ranked Batch-Mode Active Learning 28

uncertainty with a similarity score, which is further discussed in Section 3.4.

3.3 Uncertainty Estimation

At each iteration, an uncertainty score is calculated for each instance in the current
test set U . This score aims to select instances in which a given classifier is not confi-
dent regarding their predictions using the current training set D. In other words, an
uncertainty score is obtained by training a classifier with the current training set D
and processing, for each test instance u ∈ U , its probability of belonging to each known
class. These probabilities are then further processed in order to obtain an uncertainty
score.

Different estimators can arise from different combinations of classifiers and un-
certainty measures. The parts that comprise the Uncertainty Estimator are discussed
next: the classifier in Section 3.3.1 and the generator of the uncertainty score in Section
3.3.2.

3.3.1 Classifiers

The classifier is the core of the uncertainty estimator. It is expected to provide the
probabilities of a given instance belonging to each known class. A classifier that is a
good fit is the one that outputs probabilities that are close to the real hit rate. That
is, if the classifier outputs a given class with 80% confidence, then it is expected that
it will be correct approximately 80% of the times.

In this work, three different classifiers were considered as the core of the uncer-
tainty estimator: K-Nearest Neighbors (Knn), Gaussian Naïve Bayes (NbGauss) and
Rocchio. They were chosen based on the execution speed and the possibility to work
with real-valued attributes without the necessity of discretizing its values1. This way
we avoid the impact of discretization in the obtained results. Each of these classifiers
are explained next.

Knn

k -nearest neighbors (or simply, Knn) is a type of instance based learning (or lazy
learning) algorithm in which the classification model is approximated locally, that is,
the decision boundary is defined considering each training document independently
[Cover and Hart, 1967]. The main calculations of the Knn algorithm is deferred until

1Other classifiers that could work well in our problem (such as decision trees) require complex
discretizations which may not work properly in scenarios with no or only a few labeled instances.

3. Ranked Batch-Mode Active Learning 29

?

Figure 3.4: Knn classifier example

a test instance is provided. The document with unknown label is then assigned to the
majority class among those of its k neighbors.

Figure 3.4 presents an example of classification with k = 3. This example is a
two-dimensional binary classification problem, that is, the instances are mapped to a
two-dimensional plane and there are two classes in C: triangles and circles. Given an
unknown instance (star) its nearest neighbors are fetched and its class is predicted as
triangle.

The knn classifier can output the number of neighbors that were responsible for
a given class selection, but the uncertainty estimator needs probabilities for each class.
Obtaining the necessary probabilities is a matter of dividing the number of neighbors by
the k parameters. In the previous example, the probability of the class being predicted
as triangle is the number of nearest neighbors that are triangle divided by the total
number of neighbors, p = 2/3 = 0.66.

In order to select the nearest neighbors, it is necessary to set the k parameter
and use a similarity function that is meaningful to the specific domain. Throughout
this work, the Euclidean2 is the similarity function for the knn uncertainty estimator
and the k value is set to 10. This parameter is set to a fixed value and not defined in a
cross-validation process because of the small size of the evaluated datasets. Evaluating
the impact of the k parameter in the uncertainty estimation is beyond the scope of this
work and instructions for choosing a good value are presented in Section 4.4.1.

The Knn algorithm for predicting a class of a test instance is given by Algorithm
2.

Gaussian Naïve Bayes

The Naïve Bayes classifier is a simple probabilistic classifier that applies the Bayes’
theorem [Bayes and Price, 1763] for estimating the probability of an instance belonging
to a given class, that is, P (c|t) being c a given known class and t a document with

2The Euclidean similarity function in discussed in Section 3.4.1

3. Ranked Batch-Mode Active Learning 30

Algorithm 2 K-nearest neighbors prediction
Procedure KnnPredict
Input: A set with manually labeled instances D
Input: A test instance t with unknown label
Input: The number k of nearest neighbors that should be considered

1. sim = EuclideanSimilarity(D, t) {compute similarity between t and every instance
in D}

2. sim = SortDescending(sim)
3. c, count = CountClassFirstKInstances(sim, k) {determine the most frequent class

and its count among top-k instances}
4. p = count / k {calculate confidence in prediction}
5. return c, p

unknown class. With the Bayes’ theorem, this probability is rewritten as Equation 3.2.

P (c|t) = P (c)× P (t|c)
P (t)

(3.2)

In order to reduce the complexity of the P (t|c) calculation, the different features
(fi) of t are assumed to be independent, resulting in Equation 3.3.

P (t|c) = P (f0, f1, . . . , fn|c) = P (f0|c)× P (f1|c)× . . .× P (fn|c) (3.3)

This is a rather strong assumption that does not always hold true, thus the name
“naïve”. Although, in practice, this classifier presents good results [Zhang, 2004].

The estimation of P (fi|c) can vary in different implementations of the algorithm.
In this work, each feature is considered to have a normal distribution with mean (µ)
and variance (σ) estimated from the training set [John and Langley, 1995]. Equation
3.4 presents the final estimation formula for P (fi|c).

P (fi|c) =
1

σi ×
√
2π
× exp

(
−(fi − µi)2

2σi

)
(3.4)

The class that is assigned to t is the one with biggest probability P (c|t). Because
the comparison between probabilities defines the class, and the denominator is constant
for a given instance (P (t)), such denominator can be ignored. Note that this version
of the Naïve Bayes classifier assumes that features are normally distributed, which can
hinder the performance of the algorithm if the dataset does not hold this assumption.

3. Ranked Batch-Mode Active Learning 31

?

Figure 3.5: Rocchio classifier example

Rocchio

Finally, Rocchio is a relevance feedback process that allows a user query to be modified
given its feedback and it aims to provide results that better approximate his interests.
This algorithm was later adapted to the classification scenario by Hull [1994].

This classifier uses all information of class membership provided in D to sum-
marize each known class. This summarization happens in the form of a class centroid
that can be, for example, an average of the instance vectors. The prediction process is
accomplished by assigning to the test instance the same class of the closest centroid.
In order to measure the similarity between a given centroid and an instance, similar to
the Knn classifier, it is necessary to use a similarity function. Because of its popularity,
the Euclidean distance is used throughout this work.

Figure 3.5 illustrates the Rocchio execution. The example is a binary problem:
two centroids are calculated, each being the average position of the instances belonging
to its class. The centroids are represented by a dark circle and a dark triangle. Given
an instance with unknown class, represented by the star, the algorithm compares the
distance between the instance and each centroid. The class of the closest centroid is
then assigned, in this case, triangle.

In order to provide the necessary probabilities, the similarity to a centroid can be
divided by the sum of similarities with all centroids. This way, the perfect probability
is achieved when the instance is in the same position of a given centroid, sharing no
similarities with other ones.

The Rocchio training procedure used in this dissertation is defined by Algorithm
3. After this model is constructed, an instance with unknown label can be predicted
by using Algorithm 4.

3. Ranked Batch-Mode Active Learning 32

Algorithm 3 Rocchio training procedure
Procedure RocchioTrain
Input: A set with manually labeled instances D

1. {compute the average position of instances for each class}
2. centroids = CalculateCentroids(D)
3. return centroids

Algorithm 4 Rocchio classification
Procedure RocchioPredict
Input: Centroids of each known class
Input: A test instance t with unknown label

1. bestSim = 0.0
2. bestClass = −1
3. simSum = 0.0
4. for all c ∈ centroids do
5. sim = EuclideanSimilarity(c, t)
6. simSum = simSum+ sim
7. if sim > bestSim then
8. bestSim = sim
9. bestClass = c

10. end if
11. end for
12. p = bestSim/simSum {calculate confidence in prediction}
13. return c, p

3.3.2 Uncertainty Score

After the probabilities are output by the chosen classifier, they must be converted to
an uncertainty score. In this dissertation the Least Confident uncertainty score is used.

This uncertainty score aims to prioritize instances in which the class is predicted
with a small confidence. In other words, this score is given by 1.0 minus the probability
of the predicted class. Let pci be the probability of an instance belonging to class ci,
then the Smallest Probability score can be formally described by Equation 3.5.

s = 1.0−max
i
pci (3.5)

This is the chosen method for generating the uncertainty score due to three
characteristics as follows.

Simplicity: It is straightforward to interpret the metric result, making it easier to
identify trends and explain results.

Datasets with different number of classes: Each dataset used in the experimen-

3. Ranked Batch-Mode Active Learning 33

tal evaluation has a different number of classes. It is easier to compare results
across datasets when the metric has a similar behavior independent of the num-
ber of classes. Entropy, for instance, sums up a probability component for each
class available in the dataset.

Minimization of classification error: This metric prefers instances that would
help the model to better discriminate among specific classes.

3.4 Instance Ranking

After the Uncertainty Estimation step, the uncertainty score of every instance in U is
calculated. This information can then be used in the Instance Ranking phase which
is the core of the proposed framework. Instances are iteratively selected until the
construction of the ranking Q is finished. In order to choose the most informative
instance at each step, two criteria are considered: the uncertainty score of classifying
the instance given the current labeled set (D) and the similarity score between the
instance and the current estimated training set (DESTIMATED).

The similarity score between an instance and DESTIMATED is calculated as being
equal to 1.0 minus the highest similarity between the provided document and an in-
stance belonging to the augmented training set. The main idea is to give high scores
to instances that do not share much similarity with already labeled documents. In
this way, this score prioritizes instances that will help explore unknown parts of the
instance space. This method for computing the similarity between an instance and a
given set is described by Algorithm 5.

Algorithm 5 Set Similarity
Procedure SetSimilarity
Input: A set with instances S
Input: An instance i to be evaluated

1. biggestSim = 0.0
2. for all s ∈ S do
3. sim = SimilarityFunction(i, s)
4. if sim > biggestSim then
5. biggestSim = sim
6. end if
7. end for
8. return (1.0− biggestSim)

The SimilarityFunction used by Algorithm 5 can be any function able to map a

3. Ranked Batch-Mode Active Learning 34

pair of entities from the instance domain (I) to a real number v : 0 ≤ v ≤ 1. It repre-
sents the resemblance between the instances and must hold the following properties:

1. f : I × I −→ R+

2. Non-negativity: ∀x, y ∈ I, f(x, y) ≥ 0

3. Maximality: ∀x, y ∈ I, f(x, x) ≥ f(x, y)

4. Symmetry: ∀x, y ∈ I, f(x, y) = f(y, x)

Four similarity functions are used in this dissertation: Chebyshev, Cosine, Eu-
clidean and Manhattan. Some of these metrics are actually distance metrics, thus
adapted versions were used in order to hold the discussed requirements. The functions
used throughout this work are further discussed in Section 3.4.1.

Every time a new instance is added to Q, every document in UUNCERTAINTY must
have its rank calculated. Such a rank is a real value that is a weighting between the
uncertainty score and current DESTIMATED similarity. The weighting, represented by
the α parameter, is used for changing the primary focus of the method according to
the amount of labeled instances available. This idea comes from the intuition that
when few instances are labeled, it is better to explore the unknown instance space
whereas when a larger training set is available, the uncertainty estimation increases its
importance providing better choices.

Algorithm 6 Select Instance
Procedure SelectInstance
Input: The set DESTIMATED that represents D ∪Q
Input: The set UUNCERTAINTY of unlabeled instances, not in Q, tagged with uncer-

tainty score
Input: Current α parameter

1. bestScore = −1.0
2. bestInstance = nil
3. for all u ∈ UUNCERTAINTY do
4. sim = SetSimilarity(DESTIMATED, u)
5. uncertaintyScore = UncertaintyScore(u)
6. score = α× similarity + (1.0− α)× uncertaintyScore
7. if score > bestScore then
8. bestScore = score
9. bestInstance = u

10. end if
11. end for
12. return bestInstance

3. Ranked Batch-Mode Active Learning 35

In Algorithm 6, the α parameter is dynamically set based on the training and test
set sizes. This way, it is possible to shift the instance prioritization from diversity to
uncertainty. More formally, α is set as being the ratio between the training set size and
the total available instances, as defined in Equation 3.6. This parameter is updated
every time new labeled content is provided by the oracle.

α =
|U|

|D|+ |U|
(3.6)

3.4.1 Similarity Functions

The Similarity Function along with the Uncertainty Estimator are the main components
of the proposed framework. Different similarity functions are used in this dissertation:
Chebyshev, Cosine, Euclidean and Manhattan. Note that the similarity function, as
stated before, can vary given the problem domain. For example, in text classification,
the Tf-Idf Cosine similarity [Baeza-Yates and Ribeiro-Neto, 2011] may be the best
choice.

Chebyshev

The Chebyshev distance is the metric defined in a vector space in which the distance
between two vectors is the greatest of their differences along any coordinate dimension.
In order to obtain a similarity metric with the properties discussed in Section 3.4
the complement of the normalized distance must be used. Let mi be the maximum
difference possible in feature i in a dataset. pi is the value of feature i in vector p and
qi the value of feature i in vector q. Then the Chebyshev similarity function is defined
by Equation 3.7.

ChebyshevSim(p, q) = 1.0−max
i

|pi − qi|
mi

(3.7)

Cosine

The Cosine similarity measures the cosine of the angle between two vectors. Since
the resultant value can be negative, the function was adapted in order to provide only
values between 0 and 1. Let pi be the value of feature i in vector p and qi the value of

3. Ranked Batch-Mode Active Learning 36

feature i in vector q. Then the Cosine similarity function is defined by Equation 3.8.

CosineSim(p, q) =
|p.q|

‖ p ‖‖ q ‖
=

|
∑
i

pi × qi|√∑
i

p2i ×
√∑

i

q2i

(3.8)

Euclidean

The Euclidean distance is defined as the length of the line segment connecting two
points in the Euclidean n-space. Since this is a distance metric it must be adapted to
comply with the properties discussed in Section 3.4. The complement of the normalized
distance is used as a similarity function. Let pi be the value of feature i in vector p, qi
the value of feature i in vector q and m the greatest Euclidean distance between two
vectors of the dataset. Then the Euclidean similarity function is defined by Equation
3.9.

EuclideanSim(p, q) = 1.0−

√∑
i

(pi − qi)2

m
(3.9)

Manhattan

The Manhattan distance is the sum of the absolute difference of coordinates. Since
this is a distance metric it should be adapted to be used as a similarity function. The
complement of the normalized metric is used. Let pi be the value of feature i in vector
p, qi the value of feature i in vector q and m the greatest Manhattan distance possible
in the dataset. Then the Manhatttan similarity function is defined by Equation 3.10.

ManhattanSim(p, q) = 1.0−

∑
i

|pi − qi|

m
(3.10)

3.5 Cold Start

When there is no training data available, that is, D = ∅, there is no way to assign
uncertainty scores to instances in U . Since the uncertainty score is undefined in this
scenario, a special treatment is necessary. The problem of running the Active Learning
algorithm without prior labeled information is known as the Cold Start problem.

The first instance that is selected by the algorithm play an important role not
only in the first ranking constructed but also in all subsequent generated rankings.

3. Ranked Batch-Mode Active Learning 37

This happens because the first selected instance can influence the direction taken by
the learner in the exploration of the instance space. A bad initial selection can make
the learner ignore certain regions of the instance space or, in extreme cases, completely
overlook certain classes.

Consider one class composed of sub-concepts or clusters, as in a dataset compris-
ing published articles of different domains. For example, for the "Computer Science"
class there are different sub-groups like artificial intelligence, databases and image pro-
cessing that have different vocabularies. The missed cluster effect [Schütze et al., 2006]
is defined as the problem faced by the Active Learning algorithm when it knows only
some sub-concepts of the class, becoming overly confident about the class boundary.
As a result, the algorithm focuses on exploring a given area of the instance space at
the expense of missing others. This problem can become even worse, with the learner
completely overlooking certain classes. This special case of the missed cluster effect is
called missed class effect and it is further described by Tomanek et al. [2009].

When the training set is empty, our framework assigns the same score to every
instance in UUNCERTAINTY since the similarity score is 1 (there are no instances in
DESTIMATED) and there is no uncertainty score (D is empty). This means that, in this
setting, the initial instance would be randomly chosen. In order to make a better initial
selection (that will hopefully steer the classifier search into a better region) a simple
heuristic is used. The instance selected when D = ∅ is the one that has the highest
average similarity with instances in U . The intuition is: the instance that shares more
similarities with the dataset will help the learner to explore unexpected regions, given
that in the first iterations of the algorithm the diversity is prioritized over uncertainty.
Algorithm 7 presents the method used for choosing the initial seed when no initial
training is provided.

In Chapter 4 the presented heuristic for selecting the first instance of the query
when no training is provided is evaluated and compared to a random strategy.

3.6 Concluding Remarks

In this Chapter we introduced a new problem: Ranked Batch-Mode Active Learning
which aims to relax some of the Batch-Mode Active Learning assumptions: 1) the
batch size can be indefinitely large since the query is presented not as an unordered
batch but as an instance ranking organized in the order that should be labeled by
an oracle; 2) the oracle may also choose when to update the learner’s model, making
its execution less frequent. The main objective is to allow the use of Active Learning

3. Ranked Batch-Mode Active Learning 38

Algorithm 7 Seed selection
Procedure ChooseSeed
Input: The set of unlabeled instances U

1. bestAverageSim = −1.0
2. bestInstance = nil
3. for all u1 ∈ U do
4. averageSim = 0.0
5. for all u2 ∈ U do
6. if u1 6= u2 then
7. sim = SimilarityFunction(u1, u2)
8. averageSim = averageSim+ sim
9. end if

10. end for
11. averageSim = averageSim/(|U| − 1)
12. if averageSim > bestAverageSim then
13. bestAverageSim = averageSim
14. bestInstance = u1
15. end if
16. end for
17. return bestInstance

methods in real world scenarios in which analysts cannot wait for multiple executions
of the algorithm in order to annotate unlabeled instances.

The proposed method works by building the query one instance at a time. The
appended instance is the one that has a good uncertainty score and brings diversity
to the group of already selected or labeled instances. By weighting these factors, it is
possible to prioritize diversity on the first iterations and uncertainty in the later ones,
which is consistent with the intuition that one should start by having a macro vision
of the instance space and should end having a refined vision of the class boundaries
regions.

Two main components of the proposed method were also presented: the uncer-
tainty score is calculated given the output of a core classifier, and the diversity score
is calculated given a similarity function. There are different combinations of both and
it is crucial to choose one that is meaningful to the dataset domain.

Finally, the cold start problem was presented as well as a workaround, in which
the first instance is selected by a heuristic that is expected to provide a good initial
direction for the instance space search.

Chapter 4

Experiments

This chapter presents the experimental validation of the proposed method along with
studies regarding Uncertainty Estimators, Similarity Functions and the strategy used
to tackle the cold start

The datasets used in the experimental evaluation are described in Section 4.1.
The evaluation process is described in Section 4.2 along with the utilized metrics. An
evaluation of Uncertainty Estimators and Similarity Functions is presented in Section
4.4. This section also presents an initial discussion about how to choose these com-
ponents along with the impact of each factor calculated by a factorial experimental
design. Section 4.5 presents a discussion on the proposed strategy for solving the cold
start problem. The instance ranking generated by the proposed method is compared
to a random ranking strategy in Section 4.6. Section 4.7 presents a comparison be-
tween the proposed method and traditional Active Learning algorithms, including a
Pool-Based Active Learning and a Batch-Mode Active Learning method.

4.1 Datasets

Datasets from different domains are used in order to assess the performance of the pro-
posed framework. The chosen datasets were selected from the UCI Machine Learning
Repository [Frank and Asuncion, 2010] because of its variety of domains and for being
well known by the Machine Learning community. These datasets were chosen based on
the diversity of applications and on the class and feature values. More specifically, the
classes are categorical attributes and the datasets share the same feature domain (real
numbers) in order to allow the use and comparison of the same Uncertainty Estimators
and Similarity Functions. Table 4.1 details these datasets while Figure 4.11 shows the

1Note that the scales on the y-axis are different for each dataset

39

4. Experiments 40

ecoli − Instances by Class

Class

In
st

an
ce

s

0

20

40

60

80

100

120

140

0 2 4 6

glass − Instances by Class

Class

In
st

an
ce

s

0

10

20

30

40

50

60

70

0 1 2 3 4 5

iris − Instances by Class

Class

In
st

an
ce

s

0

10

20

30

40

50

0.0 0.5 1.0 1.5 2.0

wdbc − Instances by Class

Class

In
st

an
ce

s

0

50

100

150

200

250

300

350

0.0 0.5 1.0

wine − Instances by Class

Class

In
st

an
ce

s

0

10

20

30

40

50

60

70

0.0 0.5 1.0 1.5 2.0

yeast − Instances by Class

Class

In
st

an
ce

s

0

100

200

300

400

0 2 4 6 8

Figure 4.1: UCI Datasets’ instances by class

number of instances in each class for all selected datasets. Note that the class distri-
bution in some datasets are very skewed. For example in the ecoli dataset, there are
two classes (6 and 7) that have only two instances each. Furthermore, the majority of
the datasets have less than six hundred instances. These characteristics impact on the
way that experiments are conducted as we further explain in Section 4.2.

Table 4.1: UCI Datasets’ characteristics.

Dataset Description # classes # features # instances

ecoli Protein site localization 8 7 336

glass Glass type identification 6 9 214

iris Iris plants identification 3 4 150

wdbc Breast cancer diagnosis 2 30 569

wine Wine recognition 3 13 178

yeast Protein site localization 10 8 1484

4.2 Experiment Setup

For assessing the quality of the output ranking, the datasets were randomly split in
half multiple times. Each split pair is then used in the following way. The first set is

4. Experiments 41

Unlabelled
Set

Ranked
Instances

Test
Set

Q1 Q1UQ2 Q1UQ2U...UQn

Active Learning
Simulation

Ranking
Evaluation

Figure 4.2: Experimental setup overview

the unlabeled set (U) that contains the instances to be ranked or selected. In some
of the executed experiments, a few instances were labeled as a seed. In this case,
these instances were extracted from this same set. The other set is the test one (T),
containing instances to be used only in the evaluation. Given that the used data is split
at random, in order to guarantee statistical validity, 40 different splits are generated
for each dataset, and the results are presented along with confidence intervals with
95% of confidence level.

Figure 4.2 presents an overview of the general execution of one split. The un-
labeled data is fed to an Active Learning algorithm. This algorithm selects which
instances should be queried and retrieves their classes. After running one or more
times, it returns an instance list with the instances originally in U ranked in the order
that labels should be obtained. This ranking is then evaluated by measuring the qual-
ity of classifying T using increasing portions of the ranked list. The final result of the
execution is a chart of classification quality versus the number of instances in Q used
for training.

In this work, a Knn classifier is used for evaluating each portion of the generated
ranking. The k parameter is selected by a cross-validation on the current portion of the
ranking being used as train. This was the chosen classifier, among the ones we tested,
due to performance issues and mainly its good effectiveness in the evaluated datasets.
Note that this classifier is used in the Ranking evaluation and it is independent of the
one used in the Uncertainty Estimator.

Before presenting the actual experiments and results, an overview of the adopted
metrics is presented in Section 4.3.

4.3 Evaluation Metrics

Let Q@x be the set containing the first x instances of Q. For each list of size x
the quality of the classification is estimated using T . This is measured by training

4. Experiments 42

a classifier with the set Q@x and classifying the set T . The resultant classification
is evaluated by calculating its Accuracy and MacroF1. In this work the classification
algorithm used for the evaluation is the KNN algorithm [Cover and Hart, 1967] with
k defined by a cross-validation [Kohavi, 1995] on the set Q@x. This algorithm is used
because of its good results and efficiency on the used datasets.

Accuracy

The accuracy measures the ratio of instances in T that were correctly predicted by the
classification algorithm. Equation 4.1 presents the accuracy formula in the Machine
Learning domain.

accuracy =
ncorrect

|T |
(4.1)

where ncorrect is the number of instances in T correctly predicted by the used classifier.
This metric represents how good (in general) the classification is, but it can lead to
false conclusions when used in datasets with skewed class distribution. For example,
considering a two class dataset with 99 instances of class c0 and one instance of class c1.
If the classifier predicts the whole set as belonging to class c0 the resultant accuracy
will be 0.99. Although this is a very good value, the problem objective may be to
correctly identify instances of class c1. In this situation the Accuracy is not a good
indicator of the quality. One way to weight every class equally, despite its size, is by
using the MacF1 metric, described next.

MacF1

Some Information Retrieval ranking measures [Baeza-Yates and Ribeiro-Neto, 2011]
were adapted to the Machine Learning context. In this work, specifically, precision,
recall and F1 are used. In the multi-class classification problem, these metrics are
defined for each class in C. Let TP c be the true positive ratio of a given class c, that is,
the number of instances predicted as, and really being, from class c; FP c be the false
positive ratio, that is, the number of instances erroneously predicted as being from
class c; and FN c be the false negative count, in other words, the number of instances
belonging to class c that are incorrectly predicted as belonging to another class. This
sets are illustrated by Figure 4.3.

Precision is defined as the ratio of instances correctly predicted as belonging to

4. Experiments 43

Test Set

Instances
predicted
as class

c

Instances
really

from class
c

Instances
correctly

classified as
c

TPcFPc FNc

Figure 4.3: Venn diagram of TP c, FP c and FN c

class c by all instances predicted as being of class c, as defined in Equation 4.2.

precisionc =
TP c

TP c + FP c

(4.2)

Recall is defined as the ratio of instances belonging to class c that are correctly
predicted as being from class c, as defined in Equation 4.3.

recall c =
TP c

TP c + FN c

(4.3)

In order to summarize the precision and recall values, the metric F1 can be used.
F1 is defined as the harmonic mean between precision and recall, as in Equation 4.4

F1 c =
2× precisionc × recall c
precisionc + recall c

(4.4)

All these metrics are defined for a binary problem (problem with two classes) or
for one class in a multi-class problem. In order to summarize the F1 scores in a single
number, the MacF1 is defined as the average of F1 s as Equation 4.5.

MacF1 =

∑
c∈C F1 c
|C|

(4.5)

The MacF1 gives equal weight to every class, that is, differently from the accu-
racy, misclassification of uncommon classes do heavily impact the final result. In this
way, accuracy and MacF1 can be seen as complementary metrics.

Area Under the Curve

The accuracy and MacF1 equations provide a way to measure the classification quality
for a given train Q@x and test T . It is necessary in our case, though, to measure the
overall quality of a ranking. That is, in order to make the method evaluation easier, a
quality metric must be associated with the whole ranking Q.

4. Experiments 44

Figure 4.4: Area Under the Curve

A typical result of evaluating Q can be seen in Figure 4.4. One way to obtain
a single number for the execution is to measure the area under the metric curve (the
colored area). This method is used for obtaining a single number from other types of
curves [Bradley, 1997] and captures the idea of having a high value for a given metric
in different parts of the curve. Since the measurements are discrete, the area is the
sum of the trapezoids between each two points. Algorithm 8 is used for calculating the
Area Under the Curve (AUC).

Algorithm 8 Area Under the Curve
Procedure AreaUnderCurve
Input: The vector x containing the ratio of the ranking used in each metric (x-axis)
Input: The vector y containing the metric result of each measure (y-axis)
Input: The number of observations n

1. auc = 0.0
2. i = 1
3. for i < n do
4. base1 = y[i− 1]
5. base2 = y[i]
6. h = x[i]− x[i− 1]

7. trapezoidArea =
base1+ base2

2
× h

8. auc = auc+ trapezoidArea
9. end for

10. return auc

Sometimes the interest is in investigating only the beginning of the curve. In such

4. Experiments 45

cases, the metric used is the AUC@x, i.e. the AUC metric calculated only considering
the first x% of Q.

4.4 Evaluation of uncertainty estimation and

similarity function

The uncertainty estimator and the similarity function greatly impact the result of
the proposed framework. These components should be adapted for specific problem
domains and possible complexity constraints. In this section, we present how to choose
good components for a given problem and analyze the impact of such a choice.

4.4.1 Uncertainty estimator

A good uncertainty estimator should provide a probability for each prediction that is
close to the real probability of being correct. That is, if the estimator predicts a given
class ci with probability pi, then this instance has a real probability, close to pi, of
belonging to class ci.

One way to visualize the probabilities of a given estimator is by plotting the
ratio of correct predictions for each estimated probability. This estimator can then be
evaluated by comparing this plot with the one of a perfect estimator. The probabilities
output by the classifier are real-valued, then they can be separated in bins. In this
work, three estimators are compared by the mean squared error (MSE) across each
bin. The MSE is defined in Equation 4.6.

MSE =

n−1∑
b=0

(e(b)− p(b))2

n
(4.6)

where b is a bin with at least one prediction, n is the total number of bins with
predictions, e(b) is the correct predictions ratio of the estimator for bin b, and p(b) is
the correct predictions ratio of the perfect model for bin b. This way, the larger the
difference from the perfect model, the larger is the MSE value.

In order to compare the uncertainty estimators, the training set was split multiple
times in new training and a validation sets. The new training set is used to train a
given estimator, and the validation set is used to calculate the correct predictions ratio.
The test set is used in order to verify the relation between the calculated MSE and the
result of the proposed method execution.

4. Experiments 46

Knn10 − Uncertainty Estimator Quality

Probability

C
or

re
ct

 P
re

di
ct

io
ns

 R
at

io

0.0

0.2

0.4

0.6

0.8

(0
.1

−
0.

0]

(0
.2

−
0.

1]

(0
.3

−
0.

2]

(0
.4

−
0.

3]

(0
.5

−
0.

4]

(0
.6

−
0.

5]

(0
.7

−
0.

6]

(0
.8

−
0.

7]

(0
.9

−
0.

8]

(1
.0

−
0.

9]

e(b)

Error

Rocchio − Uncertainty Estimator Quality

Probability

C
or

re
ct

 P
re

di
ct

io
ns

 R
at

io

0.0

0.2

0.4

0.6

0.8

(0
.1

−
0.

0]

(0
.2

−
0.

1]

(0
.3

−
0.

2]

(0
.4

−
0.

3]

(0
.5

−
0.

4]

(0
.6

−
0.

5]

(0
.7

−
0.

6]

(0
.8

−
0.

7]

(0
.9

−
0.

8]

(1
.0

−
0.

9]

e(b)

Error

NbGauss − Uncertainty Estimator Quality

Probability

C
or

re
ct

 P
re

di
ct

io
ns

 R
at

io

0.0

0.2

0.4

0.6

0.8

(0
.1

−
0.

0]

(0
.2

−
0.

1]

(0
.3

−
0.

2]

(0
.4

−
0.

3]

(0
.5

−
0.

4]

(0
.6

−
0.

5]

(0
.7

−
0.

6]

(0
.8

−
0.

7]

(0
.9

−
0.

8]

(1
.0

−
0.

9]

e(b)

Error

Figure 4.5: Uncertainty estimator quality for the glass dataset

In this work, three classifiers are compared as uncertainty estimators: the K
Nearest Neighbors using the euclidean distance and the k parameter set to 10 (Knn10);
Rocchio using euclidean distance; and a Gaussian Naïve Bayes (NB Gauss). In a real
world scenario, k can be selected by considering the classifiers trained with different
parameters as different uncertainty estimators.

Figure 4.5 presents one sample of how the MSE is calculated. The bar plot (e(b))
represents the probability that the classifier made a correct prediction, and the Error
is the distance to the perfect model, that is |e(b) − p(b)|. In the dataset glass, the
Knn is the one that gets closer to the ideal model whereas the Rocchio classifier tends
to provide probabilities that are not really meaningful. This qualitative evaluation is
confirmed by the calculated MSE.

Table 4.2: Mean Squared Errors of uncertainty estimators

Dataset Knn10 Rocchio NBGauss

ecoli 0.003184± 0.002294 N 0.371932± 0.001193 0.064247± 0.019010

glass 0.009501± 0.000391 N 0.101414± 0.045563 0.075931± 0.000874

iris 0.012740± 0.004541 0.276062± 0.005645 0.005315± 0.000343 N

wdbc 0.004390± 0.000300 N 0.144769± 0.002631 0.045327± 0.001610

wine 0.014470± 0.000551 N 0.341014± 0.009549 0.023330± 0.012135

yeast 0.007522± 0.000088 N 0.124583± 0.000296 0.038520± 0.001047

Table 4.2 presents the calculatedMSE between the obtained probabilities and the
perfect model as well as the confidence intervals with 95% of confidence. The estimators
that are significantly better are marked with a N. In order to evaluate if the MSE is
a good measure of the estimator quality, the whole method was executed assuming
that the oracle would label one instance between each ranking calculation. That is,

4. Experiments 47

only the first instance of the ranking is used to update the model at each iteration
(ideal scenario). The similarity measure used in this experiment is the euclidean. The
AUC-MacF1 was then calculated using the generated ranking and the test set that
was originally kept apart.

Table 4.3: AUC-MacF1 of different uncertainty estimators

Dataset Knn10 Rocchio NBGauss

ecoli 58.04345± 2.03743 • 54.14583± 1.77268 58.12891± 1.96621 •

glass 46.07579± 1.76127 • 44.24015± 2.34076 • 36.82012± 1.70224

iris 91.05253± 1.17847 N 69.59344± 1.93440 87.14806± 2.25009

wdbc 90.01343± 1.20737 N 87.38219± 1.79822 88.92472± 1.24292

wine 91.00987± 0.80863 • 91.66246± 0.80805 • 91.32646± 0.96706 •

yeast 43.30552± 0.83688 N 30.53398± 1.33456 39.54735± 0.76823

Table 4.3 presents the Area Under the Curve of the MacF1 metric and the 95%
confidence intervals. The estimator with significantly better result is marked with a
N, when more than one algorithm does not show statistical difference, with 95% of
confidence, then the bullet mark (•) is used. As can be seen, the MSE results are
endorsed by the AUC-MacF1, being Knn10 the best uncertainty estimator in most
datasets.

Two datasets, though, are outliers in this experiment. The first one is the iris
dataset, in which the NbGauss provides the smallerMSE but not the best AUC-MacF1.
This may be explained by the fact that, although the NbGauss MSE is systematically
smaller than the Knn10 ’s, these two values are very close. By calculating the ratio
between the biggest and the smallest MSE it is possible to clearly see such a difference.
Equations 4.7 and 4.8 present the ratio for the ecoli and the iris dataset.

MSERatioecoli =
MSENbGauss

MSEKnn10
=

0.064247

0.003184
= 20.178077 (4.7)

MSERatioiris =
MSEKnn10

MSENbGauss
=

0.012740

0.005315
= 2.396989 (4.8)

The other interesting case occurs in the wine dataset. Whereas there are big
differences on the estimators’ MSE s, the resultant AUC-MacF1 s are equivalent with
95% confidence. This can happen in datasets in which the random baseline is strong or
the used metric (e.g. MacF1) stabilizes quickly (with few instances the metric achieves
a stationary point). In the first scenario a bad estimator, that assign scores randomly,

4. Experiments 48

will lead to selections close to the random sampling which may be a good choice given
the dataset. In the second scenario the quick stabilization of the metric shows that
adding more instances of the given dataset will not greatly impact the final result.
If this point is achieved with few instances than the resultant AUC will not be very
different. The latter is the case of the wine dataset. Throughout this work, we use
Knn10 as the uncertainty estimator due to its small average MSE.

4.4.2 Similarity function

The other key component of the proposed method is the similarity function for com-
paring a given instance with the currently ranked instances. A good similarity metric
is the one that returns a high similarity score for instances in the same class and a low
similarity score for instances in different classes. One way to measure the quality of
a given similarity function is by using the Mean Average Precision (MAP) [Manning
et al., 2008] in different datasets.

The Average Precision provides ranking evaluations by calculating the average
of the precision value obtained after retrieving each relevant document. Let R be the
set of relevant documents {d1, d2...dm} and ni the total number of documents retrieved
until document di. Then the Average Precision (AP) is defined by Equation 4.9.

AP =

m∑
i=1

pi

m
(4.9)

where pi is defined by Equation 4.10.

pi =
i

ni
(4.10)

In order to use AP to evaluate similarity metrics, one can consider the ranking
created by ordering the dataset instances in descending order of similarity given a
reference instance (query). Instances belonging to the same class as the query can be
considered relevant. Finally, the MAP is the mean of the AP calculated for each of
the dataset’s instances [Heuser et al., 2007].

Although the MAP provides a way to compute the average quality of the similar-
ity metric for different instances of the dataset, it fails to depict how consistent these
results are across different queries, allowing outliers to impact the final result. A good
similarity function should provide a good MAP value for queries of all classes, thus
a signal-to-noise ratio (SNR = µ/σ) of the AP is used. Let µ(AP) be the mean and
σ(AP) be the standard deviation of the AP values of all queries, then Equation 4.11

4. Experiments 49

presents the formula for the APSNR.

APSNR =
µ(AP)

σ(AP)
=

MAP
σ(AP)

(4.11)

In this work, four similarity metrics are compared: Chebyshev, Cosine, Euclidean
and Manhattan. In this set of experiments, the uncertainty estimator is fixed as the
Knn10, no seed for training is provided (D starts empty), and it is considered that
the oracle labels one instance at each iteration. This labeling process allows the α
parameter to distribute its weight equally between the uncertainty estimator and the
similarity function. This way we can assume that each component has an equivalent
contribution to the final result. The metric is calculated in each train/test split so
averages and confidence intervals can be provided.

Table 4.4: APSNR for different similarity metrics in each dataset

Dataset Chebyshev Cosine Euclidean Manhattan

ecoli 2.88929± 0.05616 3.15848± 0.06074 N 3.10008± 0.06167 3.11050± 0.05862

glass 2.40065± 0.05808 2.50758± 0.05540 2.51330± 0.06029 2.62972± 0.06122 N

iris 5.31531± 0.14527 7.04575± 0.36477 N 5.72698± 0.16771 5.79848± 0.17695

wdbc 4.66559± 0.09158 4.35074± 0.05995 4.91785± 0.08253 N 4.87181± 0.07644

wine 4.66710± 0.14012 2.89081± 0.03390 5.92183± 0.17684 6.26472± 0.17594 N

yeast 2.49917± 0.02408 2.52745± 0.02368 2.56371± 0.02556 2.66894± 0.02665 N

Table 4.4 presents the results of the APSNR for different similarity metrics as
well as the confidence intervals with 95% of confidence. The similarity function with
significantly better APSNR is marked with a N. In order to evaluate the relation between
this quality metric and the method result, the AUC-MacF1 of the generated ranking
was calculated using the test split.

Table 4.5: AUC-MacF1 of different similarity functions

Dataset Chebyshev Cosine Euclidean Manhattan

ecoli 57.272± 2.127 59.265± 2.206 N 58.043± 2.037 57.901± 2.132

glass 45.620± 1.852 • 46.558± 1.444 • 46.075± 1.761 • 46.265± 1.805 •

iris 91.277± 1.195 • 91.569± 1.428 • 91.052± 1.178 • 91.365± 1.179 •

wdbc 92.038± 0.926 94.322± 0.332 N 90.013± 1.207 88.923± 1.317

wine 90.792± 0.901 • 89.311± 1.058 91.009± 0.808 • 91.102± 0.969 •

yeast 42.882± 0.733 • 43.274± 0.825 • 43.305± 0.836 • 42.791± 0.670 •

4. Experiments 50

Table 4.5 presents the Area Under the Curve of the MacF1 metric and the 95%
confidence intervals. The similarity function with significantly better result is marked
with a N, when more than one algorithm does not show statistical difference, with 95%
of confidence, then the bullet mark (•) is used. As can be seen for all datasets, except
wdbc, the similarity metric with greater APSNR is the one with the best AUC-MacF1
or it is not significantly different from the best one with 95% confidence. This indicates
that APSNR can be used for evaluating similarity metrics, although in order for these
results to be conclusive, further experiments are necessary.

Table 4.6: Correlation between APSNR and AUC-MacF1

Dataset Pearson correlation

ecoli 0.8138943

glass 0.6403044

iris 0.7364903

wdbc -0.9600043

wine 0.9518166

yeast -0.4169952

Another sign of the relation between the APSNR and the method result is the
Pearson correlation between these two values presented in Table 4.6. The correlation
is held for most datasets. The yeast dataset presents a small negative correlation
mainly because of the similar performance of the different similarity functions. This
can be seen by the close APSNR and AUC-MacF1 values. The wdbc dataset is a clear
outlier and is the other dataset in which the correlation does not hold. This happens
because the dataset has only two classes with boundaries not easily determined by the
similarity functions. Given that no labeled instances are provided as seed, the classifier
does not know the number of classes in the problem. If the similarity function happens
to choose instances of the same class, only one concept will be known, thus hindering
the classification performance. In this scenario, a naïve similarity function can make
a better choice, for example, a random choice would lead to the knowledge of both
classes sooner.

This characteristic can be better visualized in Figure 4.6. In the beginning of the
ranking constructed using the Euclidean similarity (Figure 4.6a), the method fails to
select instances from both classes, thus achieving a constant MacF1 for approximately
10% of the initial labeled set. This start hinders the resultant AUC-MacF1. On the
other hand, the cosine function (Figure 4.6b) is able to discover both classes quicker
leading to better classification models early on.

4. Experiments 51

(a) Euclidean similarity function (b) Cosine similarity function

Figure 4.6: Comparison of the wdbc dataset result when using different similarity
functions

Given the presented results, throughout this work, unless noted otherwise, the
Cosine similarity function will be used due to its small average APSNR.

4.4.3 Impact of each component

One way to evaluate the impact of different components on the final method result
is by executing a 2kr factorial design [Jain, 1991]. In the experimental design, the
outcome of an experiment is called response variable and each variable that affects the
response is called factor or predictor. Each factor can assume different values (levels).

A full factorial design investigates every possible combination between factors
and levels. Given that the number of combinations can be very large, this factorial
design may be expensive. Thus, there is a simplification called 2kr design, in which
each of the k factors has only two levels evaluated. The r stands for the number
of times each experiment in repeated in order to measure experimental errors. This
factorial design is used as a primary investigation of which factors are relevant for a
deeper investigation.

The importance of a factor is represented by the response variation induced by
the different levels. Factors that explain a high percentage of variation are considered
the most relevant. Given that only two factors will be investigated in this work, the
22r factorial design can be summarized as follows.

1. Each factor is associated to a variable (xA and xB) representing the lower and
higher level:

4. Experiments 52

xk =

{
−1 if factor k assumes its lower level,
+1 if factor k assumes its higher level.

2. The response variable y is regressed on xA and xB values using a nonlinear re-
gression model of the form:

y = q0 + qAxA + qBxB + qABxAxB + e

where e is the experimental error and the q’s are the effects of given factor or
factor combination.

3. The effects q0, qA, qB and qAB are determined by expressions called contrasts,
which are linear combinations of average responses yi calculated based on multiple
observations of each possible combination of the variables. Being xAi and xBi

levels of xA and xB respectively, the observation is modeled as:

y = q0 + qAxAi + qBxBi + qABxAixBi

4. Once the effects have been computed, the model can be used to estimate the
response for any given factor values. The difference between the estimate (ŷij)
and measured value (yij) in the jth replication of the ith experiment represents
the experimental error: eij = yij − ŷij. The sum of the squared errors (SSE)
can then be used to estimate the variance of the errors and also the confidence
intervals for the effects:

SSE =
22∑
i=1

r∑
j=1

e2ij

5. The importance of a factor is measured by the proportion of the total variation in
the response that is explained by the factor. In order to calculate this proportion,
it is first, necessary to calculate the total variation of y, or the Total Sum of
Squares (SST):

SST =
∑
i,j

(yij − y)2 = 22rq2A + 22rq2B + 22rq2AB +
∑
i,j

e2ij

4. Experiments 53

where y is the mean of responses from all replications of all experiments. This
expression can then be rewritten, replacing each sum of square block with a
different notation:

SST = SSA+ SSB+ SSAB+ SSE

6. Each of the presented SS (sum of square) represents the variation explained by
a given effect of experimental error. Thus, the fraction of variation explained by
factor k is given by:

k =
SSk
SST

7. Assuming that errors are normally distributed with zero mean, then the variance
of errors can be estimated from the SSE as follows:

s2e =
SSE

22(r − 1)

Finally, the confidence intervals can be obtained by calculating the variance of
each effect as follows:

sq0 = sqA = sqB = sqAB
=

se√
22r

In this work, there are two main components to be investigated: the uncertainty
estimator (xA) and the similarity function (xB). The response variable is the Area
Under the Curve of the MacF1, considering that at each iteration one document is
labeled by the oracle. This way, by the end of the evaluation, the uncertainty and
diversity scores will have been equally weighted throughout the iterations. Since this
is a factorial design with replication, the whole split evaluation is conducted multiple
times, that is, the same splits are evaluated more than once in order to obtain confidence
intervals. This process is used in each dataset.

For the uncertainty estimator, the high level is considered to be the one with
smallest MSE (Section 4.4.1) and the low level is the strategy that assigns a random
score for each instance. The second factor has the high level set as the similarity
function with the highest APSNR (Section 4.4.2) with the low level being, similarly
to the uncertainty estimator, a random strategy that returns a random value for each
instance pair. In this way, it is possible to assess the impact of the proposed components
in the final result in comparison to a naïve strategy that outputs random scores. Given

4. Experiments 54

the small MSE, the high level of the Uncertainty Estimator will be fixed as being the
Knn10 classifier and the high level of the Similarity Function is fixed as the Cosine
one given its APSNR average value.

Considering that the classifier parameters should be calculated at each ranking
size Q@x, the generated rankings were evaluated multiple times in order to calculate
the error in the factorial design. Table 4.7 presents the amount of the variation that is
explained by each factor, being factor A the uncertainty estimator and B the similarity
function.

Table 4.7: Impact of each factor obtained by the factorial design

Dataset amount of variation explained by factor
A B AB Error

ecoli 0.878853 0.009723 0.109178 0.002244

glass 0.638297 0.012280 0.324248 0.025172

iris 0.423167 0.050760 0.288955 0.237115

wdbc 0.906906 0.083146 0.002133 0.007813

wine 0.146364 0.249922 0.598597 0.005115

yeast 0.781665 0.066102 0.151970 0.000261

The factorial experiment results confirm the intuition in the previous experiments.
The final impact of the uncertainty estimator is usually higher than the impact of the
similarity function. This means that it is usually better to invest in improving the es-
timation of the uncertainty. Two datasets show peculiar results: First, the iris dataset
that presents high error because the classification quality, in the ranking evaluation, is
highly dependent of the estimated parameter k. Second, the wine dataset in which a
big part of the final result is explained by a combination of both factors. This happens
because the response variable have similar values regardless of the component used.

4.5 Evaluation of the Initial Selection

The method proposed in this dissertation can be used to generate a full ranking even
when no labeled data is provided. In this scenario, there is no training information for
selecting the first instance to be labeled (the cold start problem presented in Section
3.5). In this work, this problem is overcome by selecting the first instance as the one
that is the best representative of the dataset, that is, the one that has more similarity
with the instances in U . The main idea is that the learner can start by selecting the
“most common” knowledge of the dataset.

4. Experiments 55

In this section, the proposed method for selecting the first instance is compared
to a random strategy. In the random strategy, a group with one or more instances
is randomly selected to compose the beginning of the rank. This is the methodology
normally used in Active Learning, and usually has competitive results because the
learner gets a sample that obeys the probability distribution of the data.

These two methods are compared by calculating the Area Under the Curve of the
first generated rank. That is, the method is executed without any provided label and
the generated rankings are compared. This set of experiments is divided as follows.
Section 4.5.1 compares the quality of a single ranking generated with a random initial
selection versus the proposed heuristic. Section 4.5.2 analyzes a similar scenario, but
the generated ranking is initiated with 20% of random instances. Finally, in Section
4.5.3 the impacts of the random and the heuristic initial selection strategies are studied
when instances are labeled by the oracle and the model is iteratively updated.

4.5.1 One Random Instance as Initial Selection

In this experiment, the proposed heuristic for initial selection is compared to a random
strategy. In the random strategy, the ranking is started with a random instance.
As discussed before, a bad start can hinder the performance of the whole generated
ranking.

Table 4.8: Comparison between the proposed heuristic for initial selection versus choos-
ing one random instance

Dataset AUC-Acc AUC-Acc@20% AUC-MacF1 AUC-MacF1@20%
Random Heuristic Random Heuristic Random Heuristic Random Heuristic

ecoli 79.63 80.26 N 69.54 71.01 • 60.70 61.12 • 48.41 48.66 •

glass 55.70 55.10 • 37.52 35.59 • 47.80 47.13 H 25.14 24.80 •

iris 92.07 92.09 • 85.92 85.87 • 91.79 91.81 • 84.78 84.86 •

wdbc 94.25 94.31 • 90.06 90.31 • 93.83 93.83 • 89.38 89.36 •

wine 93.45 93.22 • 87.02 87.21 • 93.23 93.06 • 85.48 85.82 •

yeast 48.75 48.98 • 42.48 42.91 • 45.71 45.71 • 36.89 36.52 •

average 77.30 77.32 • 68.75 68.81 • 72.17 72.11 • 61.68 61.67 •

N Result statistically better than baseline with 95% confidence
• Result with no statistical difference form baseline with 95% confidence
H Result statistically worse than baseline with 95% confidence

Table 4.8 presents the comparison between the proposed heuristic for selecting
the first instance versus selecting one random instance. Results indicate that there is

4. Experiments 56

(a) glass (b) wine

Figure 4.7: MacF1 comparison of the proposed heuristic for initial selection versus
starting with one random instance

no substantial difference between the strategies. The random strategy has, though,
the advantage of not requiring a big computational cost like the “most common” in-
stance selection method. Such similar results of the discussed strategies can be better
visualized in Figure 4.7. The results for the generated ranking are presented for two
datasets: glass and ecoli. The dark curve represents the proposed heuristic and the
light one represents the ranking started with the random instance. Both curves have
similar behaviors, not being clear, which one leads to better AUC values.

4.5.2 20% of the Unlabeled Instances as Initial Selection

Another discussed strategy for building the beginning of the ranking when no labeled
instances are provided is the random selection of a group of instances. In this ex-
periment the first 20% of the ranking is built by randomly selecting instances of the
unlabeled dataset. This is a small sample of the underlying probability distribution
and a reasonable estimate given the datasets sizes.

Table 4.9 shows the comparison results. Building the first 20% of the ranking
with random instances, as expected, makes the result on the beginning of the ranking
equal to the one of a random ranking. This can be a good strategy in datasets in
which the proposed method fails to build a good initial ranking. For example, in the
glass dataset, the accuracy is improved by the random initial selection (although the
AUC-MacF1 shows no significative improvement).

In general, the heuristic strategy presents results that are statistically equal or
better than the random initial selection. This indicates that the initial selection should

4. Experiments 57

Table 4.9: Comparison between the proposed heuristic for initial selection (one instance
selected) versus choosing a set of random instances

Dataset AUC-Acc AUC-Acc@20% AUC-MacF1 AUC-MacF1@20%
Random Heuristic Random Heuristic Random Heuristic Random Heuristic

ecoli 80.02 80.26 • 70.09 71.01 • 59.58 61.12 N 41.02 48.66 N

glass 57.49 55.10 H 43.06 35.59 H 47.49 47.13 • 27.04 24.80 •

iris 92.25 92.09 • 83.53 85.87 • 91.89 91.81 • 81.68 84.86 N

wdbc 94.45 94.31 • 91.19 90.31 H 93.95 93.83 • 90.16 89.36 •

wine 92.36 93.22 N 80.87 87.21 N 92.06 93.06 N 78.19 85.82 N

yeast 49.06 48.98 • 43.71 42.91 • 43.62 45.71 N 29.55 36.52 N

average 77.60 77.32 • 68.74 68.81 • 71.43 72.11 • 57.94 61.67 •

N Result statistically better than baseline with 95% confidence
• Result with no statistical difference form baseline with 95% confidence
H Result statistically worse than baseline with 95% confidence

be small (for example, one instance), and the proposed method should be used for
constructing the ranking normally.

(a) glass (b) wine

Figure 4.8: MacF1 comparison of the proposed heuristic for initial selection versus
starting with 20% of random instances

Figure 4.8 presents the comparison of strategies for the glass and wine datasets.
As can be seen, the MacF1 curve is worse than the curve presented in Figure 4.7 when
selecting an initial random set.

4. Experiments 58

4.5.3 Impact of the Instance Selection Strategy Throughout

the Ranking

Although the proposed heuristic and random strategy show similar results on the first
generated ranking, it is important to evaluate the impact throughout the ranking. As
discussed before, a bad start can hinder the performance of Active Learning algorithms
in subsequent choices.

In this experiment, the first instance is selected by one of the discussed techniques,
its label is queried and labeled. This information is incorporated by the algorithm and
a new instance is queried. This process is repeated until there is no instance left in U .
The idea is to assess whether the initial choice can lead to different rankings on the
long run.

Table 4.10: Comparison between the proposed heuristic for initial selection versus
choosing a random instance with one instance being labeled per iteration

Dataset AUC-Acc AUC-Acc@20% AUC-MacF1 AUC-MacF1@20%
Random Heuristic Random Heuristic Random Heuristic Random Heuristic

ecoli 79.94 80.22 • 66.59 66.24 • 59.21 59.26 • 38.59 37.26 •

glass 57.10 56.09 H 42.20 40.09 H 47.82 46.55 H 24.38 21.51 H

iris 91.93 92.21 • 79.98 82.13 • 91.28 91.56 • 76.77 78.99 •

wdbc 94.60 94.84 N 89.98 90.71 • 94.10 94.32 N 88.79 89.34 •

wine 88.54 90.40 N 56.29 65.39 N 87.15 89.31 N 46.51 56.76 N

yeast 49.14 49.10 • 43.35 42.87 • 43.60 43.27 • 28.62 27.91 •

average 76.87 77.14 • 63.06 64.57 • 70.52 70.71 • 50.61 51.96 •

N Result statistically better than baseline with 95% confidence
• Result with no statistical difference form baseline with 95% confidence
H Result statistically worse than baseline with 95% confidence

Table 4.10 presents the results for the ranking generated with one instance labeled
per iteration. As can be seen, usually, there is no difference between the two strategies.
The proposed heuristic though was able to achieve a 22% improvement in the AUC-
MacF1@20% on the wine dataset. Although the differences in averages of the different
methods are not statistically significant with 95% confidence, the proposed method
achieves higher averages for every metric. This can be seen as an indicative that the
proposed heuristic leads to better results, but further investigation is needed.

Figure 4.9 presents the comparison between the strategies on the glass and wine
datasets. In the dataset with the worst performance of the heuristic (Figure 4.9a), the
behavior of both curves are very similar. On the other hand, in the wine dataset it

4. Experiments 59

(a) glass (b) wine

Figure 4.9: MacF1 comparison of the proposed heuristic for initial selection versus
starting with a random instance. One instance is labeled and used to updated models
at each iteration.

is easy to see that the proposed heuristic leads to an improvement on the beginning
of the ranking, achieving a better classifier with fewer instances. This is an indicative
that, given the dataset, the additional cost of the heuristic can actually payoff.

Since the proposed heuristic shows a higher average for every metric, it will be
used for choosing the first instance of the ranking when no training set is provided.
Although, in a real world scenario this can be substituted by the random selection
strategy in order to avoid the additional computational cost.

4.6 Rank Quality Evaluation

In this section the quality of the generated ranking is compared to the random selection
strategy. Two different scenarios are studied. First, the full instance ranking is gener-
ated without a provided seed and considering that no label is provided by the oracle
(Section 4.6.1). Second, the proposed framework is used to generate a full ranking
when half instances are provided as seed, but no further instances are fed by the oracle
(Section 4.6.2). Both scenarios capture how the classification quality increases, consid-
ering that only one ranking is generated and no feedback is given to the algorithm. In
other words, the idea is to evaluate the quality of Q given D and U .

4. Experiments 60

4.6.1 Ranking Without Training Data

As previously discussed, one characteristic of the proposed framework is that the whole
set of instances can be ranked even if no seed or labels are provided. In this experiment,
the quality of this generated ranking is compared to the random sampling strategy. Al-
though counter-intuitive, the random sampling strategy can be a strong baseline given
the dataset characteristics [Settles, 2009]. This happens because the random strategy
provides an unbiased sample that obeys the underlying probability distribution.

A ranking Q is generated using the whole unlabeled set U . This ranking is then
used for evaluating the Accuracy and MacF1 of a classifier trained using increasing
portions of Q. The random ranking results are obtained by shuffling the instances in
U . Note that the calculated ranking is generated without using any labeled instance.

Table 4.11: Resultant ranking quality when no training is provided Knn Cosine

Dataset AUC-Acc AUC-Acc@20% AUC-MacF1 AUC-MacF1@20%
Random RBMAL Random RBMAL Random RBMAL Random RBMAL

ecoli 79.56 80.26 N 70.23 71.01 • 57.29 61.12 N 41.29 48.66 N

glass 56.77 55.10 H 43.51 35.59 H 46.52 47.13 • 28.39 24.80 H

iris 91.61 92.09 N 80.08 85.87 N 91.07 91.81 N 77.32 84.86 N

wdbc 94.05 94.31 N 90.06 90.31 • 93.49 93.83 N 88.82 89.36 •

wine 92.09 93.22 N 80.69 87.21 N 91.83 93.06 N 78.17 85.82 N

yeast 48.90 48.98 • 44.30 42.91 H 41.70 45.71 N 28.92 36.52 N

average 77.16 77.32 • 68.14 68.81 • 70.31 72.11 N 57.15 61.67 •

N Result statistically better than baseline with 95% confidence
• Result with no statistical difference form baseline with 95% confidence
H Result statistically worse than baseline with 95% confidence

Table 4.11 presents the summary for each dataset. Four metrics are presented
for each dataset. The first two are the areas under the Accuracy and MacF1 curves.
Usually the objective is to achieve a good classifier with few instances as possible, thus
two other metrics are used consisting of the AUC on the top 20% of the final ranking.

The proposed method presents gains in the AUC-MacF1 and AUC-Accuracy
for most datasets when compared to the random strategy. In the yeast dataset, the
improvement of the AUC-MacF1 comes at the expense of reducing the Accuracy in the
beginning of ranking, although this difference is compensated throughout the ranking.
More precisely, the gain in the AUC-MacF1 is approximately 9.6% whereas the AUC-
Accuracy@20% loss is approximately 3.1%.

4. Experiments 61

(a) glass (b) yeast

Figure 4.10: MacF1 results for ranking generated without training data

The generated ranking has a bad start in the glass dataset which it is not able to
compensate. The rest of the ranking stays a little above the random result, but this
start is enough to hinder the AUC values. The quality of the rest of the ranking can be
assessed by the AUC-MacF1 that is statistically equivalent to the random one. This
hypothesis is endorsed by the resultant chart of MacF1 versus the number of instances
in Q@x. As shown in Figure 4.10a the curve displays the expected behavior.

In the yeast dataset, our method provided significant gains over the random
curve. Figure 4.10b shows the resultant curve in these situations. Note that the
classifiers trained with instances provided in the order of Q not only start with better
quality but also remain with significantly better results throughout the ranking.

Finally, without any training data the ranking generated by our method is able
to achieve a statistically significant improvement in the AUC-MacF1 datasets average
while having results no statistically different from the baseline in the other metrics.

4.6.2 Ranking With Training Data

Despite the possibility to generate rankings even when no training data is provided, it is
expected that the query ranking Q increase its quality given the increase of knowledge
contained in D. This experiment aims to compare the ranking generated with the
proposed method with the randomly generated ranking when labeled data is provided.
Specifically, half of the instances are provided with theirs labels (D). This information
is then used to build a ranking, and the result is compared to the random sampling
strategy.

The initial train split is divided once again. Half instances are then used as the set

4. Experiments 62

D, that is, these documents are provided to the algorithm with the respective labels.
The other half of the original training set is used as the unlabeled set U . This set,
similarly to the previous experiment, is ranked without additional labeling. The result
is the ranked batch Q containing half instances of the original train split.

In order to evaluate this ranking, each increasing portion of Q is used in conjunc-
tion with the set D to train the classifier that is evaluated in the test set. The random
baseline is generated by using the same D while shuffling U to generate Q.

Table 4.12: Resultant ranking quality when training is provided Knn Cosine

Dataset AUC-Acc AUC-Acc@20% AUC-MacF1% AUC-MacF1@20%
Random RBMAL Random RBMAL Random RBMAL Random RBMAL

ecoli 82.51 83.24 N 81.39 81.48 • 62.88 64.58 N 60.44 62.54 N

glass 61.69 62.16 • 59.49 60.43 • 53.46 54.12 • 50.13 51.87 N

iris 94.48 94.92 N 93.70 94.01 • 94.38 94.83 N 93.59 93.89 •

wdbc 95.40 95.78 N 94.93 95.47 N 95.02 95.45 N 94.51 95.11 N

wine 94.57 95.13 N 93.94 94.39 • 94.62 95.15 N 94.02 94.40 •

yeast 50.48 50.96 N 49.96 50.25 • 47.14 48.64 N 44.75 46.61 N

average 79.85 80.36 N 78.90 79.33 N 74.58 75.46 N 72.90 74.07 N

N Result statistically better than baseline with 95% confidence
• Result with no statistical difference form baseline with 95% confidence
H Result statistically worse than baseline with 95% confidence

As before table 4.12 presents the results summary for each dataset. Four met-
rics were calculated: AUC-Accuracy, AUC-Accuracy@20%, AUC-MacF1 and AUC-
MacF1@20%.

As the number of labeled instances increase, the random baseline gets harder
to overcome because it provides an unbiased sample of the underlying probability
distribution of the data. The difference between the calculated and the random ranking
also gets narrower because the metrics tend to the values obtained when all available
data is used. As show in Table 4.12, even with these hindrances, the proposed method
is able to achieve statistically significant improvements in almost all datasets. This
is reflected in the average of each metric, that is statistically better than the baseline
with 95% confidence. In the glass dataset, although there is no statistically significant
difference, the calculated method has higher average in all metrics. This indicates that
the proposed method continues to create rankings better than the random selection as
new labels are supplied.

Figure 4.11 shows the average curves for the glass and yeast datasets for the

4. Experiments 63

(a) glass (b) yeast

Figure 4.11: MacF1 results for ranking generated with training data

MacF1. As can be seen, the calculated ranking usually leads to MacF1 results that
are close or better than the random one.

4.7 Traditional Active Learning Scenarios

Considering the presented method is flexible enough for working in traditional Active
Learning scenarios, a deeper study on the behavior of the method is presented in the
following sections. Section 4.7.1 compares our strategy with traditional Active Learning
methods in which one instance is queried and labeled at each iteration. A comparison
with traditional Batch-Mode sampling strategies is presented in Section 4.7.2, in this
set-up methods query k instances at each iteration. In both cases the idea is to simulate
the use of the proposed method in these well known scenarios.

4.7.1 Pool-Based Sampling Comparison

In this section, our method is compared to a traditional Active Learning algorithm.
Two different experiments are executed. First, the proposed method generates a full
instance ranking without any provided label while the baseline method is updated with
labels at each iteration. Second, the proposed method, similarly to the baseline, is fed
with one label at each iteration.

In both sections 4.7.1.1 and 4.7.1.2 the baseline method uses uncertainty sampling
for choosing which instance to query and can be described by Algorithm 9.

The TrainClassifier method builds a Knn10 classifier, which is the same algo-
rithm that composes the proposed method’s uncertainty estimator in this experiment.

4. Experiments 64

Algorithm 9 Uncertainty sampling Active Learning
Procedure TraditionalActiveLearning
Input: The set with manually labeled instances D
Input: The set of unlabeled instances U

1. mostUncertain = 0
2. mostUncertainScore = 0.0
3. classifier = TrainClassifier(D)
4. for all u ∈ U do
5. uncertainty = ClassifierUncertainty(classifier, u)
6. if uncertainty ≥ mostUncertainScore then
7. mostUncertainScore = uncertainty
8. mostUncertain = u
9. end if

10. end for
11. L = WaitForOracleLabel(mostUncertain)
12. D = D + L
13. U = U − L
14. return (D,U)

Considering that the same algorithm is used, it is possible to derive insights about the
impact of adding the diversity and the α parameter to the sampling strategy.

4.7.1.1 Ranking Generated Without Labels

In this experiment, the first ranking generated by the proposed method (without train-
ing data) is compared to the ranking generated by the baseline method considering that
the whole unlabeled set is labeled by an oracle iteratively, one instance at a time.

Table 4.13 presents the results of the baseline and the proposed method. Our
method without any labels provided is capable of ranking instances in a way that the
resultant classifiers are close to the ones trained with the active learning generated rank.
When the beginning of the ranking is considered (AUC-MacF1@20%) the results can
be even better then the baseline. For instance, the glass dataset presents the worst
performance, with 15% decrease in the AUC-MacF1@20% while the ecoli dataset shows
a 15% increase in the same metric.

Note that the baseline model is updated with one additional label at each step,
while the proposed method’s ranking is generated only using the unlabeled set. This
means that with one iteration, without any labeled data, the proposed method is able
to generate a ranking that has competitive results with the baseline, but being much
more effective.

It is clearer to observe the proximity between both ranks by analyzing Figure

4. Experiments 65

Table 4.13: Comparison between the proposed method (no labels provided) and the
uncertainty sample strategy

Dataset AUC-Acc AUC-Acc@20% AUC-MacF1% AUC-MacF1@20%
Baseline RBMAL Baseline RBMAL Baseline RBMAL Baseline RBMAL

ecoli 80.78 80.26 • 70.02 71.01 • 60.93 61.12 • 42.14 48.66 N

glass 57.43 55.10 H 43.02 35.59 H 48.85 47.13 H 29.12 24.80 H

iris 93.06 92.09 H 84.25 85.87 • 92.71 91.81 H 82.40 84.86 •

wdbc 94.84 94.31 H 90.93 90.31 • 94.39 93.83 H 90.01 89.36 •

wine 92.90 93.22 • 82.75 87.21 N 92.64 93.06 • 80.57 85.82 N

yeast 49.40 48.98 • 43.76 42.91 • 46.21 45.71 H 34.88 36.52 N

average 78.06 77.32 • 69.12 68.81 • 72.62 72.11 • 59.85 61.67 •

N Result statistically better than baseline with 95% confidence
• Result with no statistical difference form baseline with 95% confidence
H Result statistically worse than baseline with 95% confidence

(a) ecoli (b) glass

Figure 4.12: Comparison between the proposed method’s generated ranking without
labeled data and the uncertainty sample strategy with one label provided at each
iteration

4.12. Figure 4.12a presents the ecoli dataset and the good initial ranking, while Figure
4.12b shows the generated ranking with worse results. Even on the glass dataset both
curves are close.

4.7.1.2 Ranking Generated Iteratively

In this experiment, the proposed method is used exactly the same way as the baseline
strategy, that is, at each iteration one instance is queried and its label is fed to the

4. Experiments 66

algorithm. The model is updated, and another label is queried until the unlabeled set
is empty. The objective is to assess the quality of the resultant classifiers when the
proposed method is used as a traditional active learning method in which one instance
is queried at a time.

Table 4.14: Comparison between the proposed method and the uncertainty sample
strategy

Dataset AUC-Acc AUC-Acc@20% AUC-MacF1% AUC-MacF1@20%
Baseline RBMAL Baseline RBMAL Baseline RBMAL Baseline RBMAL

ecoli 80.78 80.37 • 70.02 66.74 H 60.93 59.46 H 42.14 38.07 H

glass 57.43 55.91 H 43.02 40.13 • 48.85 46.33 H 29.12 21.77 H

iris 93.06 92.30 • 84.25 82.45 • 92.71 91.69 • 82.40 79.44 •

wdbc 94.84 94.77 • 90.93 90.41 • 94.39 94.24 • 90.01 88.96 •

wine 92.90 90.27 H 82.75 65.76 H 92.64 89.16 H 80.57 57.27 H

yeast 49.40 49.16 • 43.76 42.85 • 46.21 43.28 H 34.88 27.82 H

average 78.06 77.13 • 69.12 64.72 • 72.62 70.69 H 59.85 52.22 •

N Result statistically better than baseline with 95% confidence
• Result with no statistical difference form baseline with 95% confidence
H Result statistically worse than baseline with 95% confidence

Table 4.14 presents the results of the baseline and the proposed method. While
feeding the model with labeled data more frequently leads to an improvement in Ac-
curacy, the performance of the MacF1 is, surprisingly, hindered by the model update.
This can be seen as a bad value choice for the α parameter, because setting it to con-
sider only uncertainty would lead to the same results as the baseline. This happens
because the method was designed to select multiple instances at one, sometimes at the
expense of not making the best selection at one given point. One way to avoid this
problem is to select the α value according not only to the size of the training set but
also to the average speed of labeling, that is, the number of instances labeled by the
oracle at each iteration. With this information, it is possible to adjust the α value
considering that, in this case, the oracle always labels one instance between iterations.

Figure 4.13 presents the results for the proposed method and the baseline. Note
that the curves are more divergent usually when few instances are selected. This
happens because the alpha parameter, when the unlabeled set approaches the end,
starts to prioritize the uncertainty estimation, that is, the selection strategy tends to
be the same of the one used by the baseline.

Additionally, these results can be seen as another indicative of the conclusion

4. Experiments 67

(a) ecoli (b) glass

Figure 4.13: Comparison between the proposed method’s generated ranking and the
uncertainty sample strategy

obtained with the factorial design: having a good uncertainty estimator is fundamental
to achieve a good ranking because, in some circumstances, it can be the upper bound
of the proposed method.

4.7.2 Pool-Based Batch-Mode Sampling Comparison

In this section, the presented method is compared to a Batch-Mode Active Learning
algorithm in two scenarios. First, the proposed method is used to generate a full
instance ranking while the baseline method is updated with its selected batch at each
iteration. Second the proposed method is fed with the same number of instances.

The method used in Sections 4.7.2.1 and 4.7.2.2 is a Batch-Mode Active Learning
method based on Support Vector Machines [Brinker, 2003]. Its main idea is to select
a batch of informative instances that are also diverse. The informativeness is given by
the proximity to the class boundaries (classification hyperplanes), and the similarity
between instances is given by the cosine of the angle of induced hyperplanes. The score
one instance receives to be selected for a given batch b is given by Equation 4.12

si = λ× distance(i) + (1− λ)× batchSimilarity(i, b) (4.12)

This method shares some similarities with the proposed method: the λ parameter
can, for example, be seen as the α value in this work, although the α parameter assumes
pre-determined values and no tuning is needed. The main difference between the two
methods is in the use of λ, α and the use of distinct uncertainty estimators. Although
this method does not return a ranked batch, it could be adapted to do so.

4. Experiments 68

In the following experiments, the λ parameter is fixed at 0.5 because this value
is used throughout the original paper and the authors indicate that the used strategy
is robust with respect to λ.

4.7.2.1 Ranking Generated Without Labels

In this experiment the first ranking generated by the proposed method (without any
labeled data) is compared to the final ranking generated by the baseline method when
labeled data is provided at each iteration.

Table 4.15 presents the comparison results for a batch of size five. Other values for
the batch size were also tested and showed similar results, thus, they are not presented.

Table 4.15: Comparison between the proposed method, with no labeled data provided,
and a batch-mode active learning strategy with the model iteratively updated with
labeled instances

Dataset AUC-Acc AUC-Acc@20% AUC-MacF1 AUC-MacF1@20%
Baseline RBMAL Baseline RBMAL Baseline RBMAL Baseline RBMAL

ecoli 79.71 80.26 • 70.96 71.01 • 57.80 61.12 N 42.09 48.66 N

glass 56.70 55.10 H 41.79 35.59 H 46.41 47.13 • 27.99 24.80 •

iris 92.63 92.09 • 83.80 85.87 • 92.22 91.81 • 81.67 84.86 N

wdbc 94.42 94.31 • 90.96 90.31 • 93.92 93.83 • 89.95 89.36 •

wine 92.58 93.22 N 82.12 87.21 N 92.30 93.06 N 79.62 85.82 N

yeast 48.61 48.98 • 43.74 42.91 • 41.70 45.71 N 29.24 36.52 N

average 77.44 77.32 • 68.89 68.81 • 70.72 72.11 • 58.42 61.67 •

N Result statistically better than baseline with 95% confidence
• Result with no statistical difference form baseline with 95% confidence
H Result statistically worse than baseline with 95% confidence

As can be seen, even with this setup that benefits the baseline, the proposed
method is able to achieve results comparable to the baseline method even when no
labeled data is fed to the method of this dissertation. In different datasets, there is
also an increase of the ranking quality (usually in the MacF1). For example, in the
ecoli dataset there is a 5% increase in the MacF1 result. This implies that it is possible
to avoid a big computational effort maintaining or improving performance.

Figure 4.14 shows two extreme cases. The first one is the glass dataset in which
the generated ranking is statistically worse than the one generated by the baseline.
Note, though, that the proposed method’s ranking is generated with one iteration and
given the necessities, it can be a better approach to lose some accuracy in order to

4. Experiments 69

(a) glass (b) wine

Figure 4.14: Comparison between the proposed method’s generated ranking and the
Batch-Mode Active Learning strategy

avoid iterating at each labeling phase. The second case is the wine dataset in which
results are significantly better than the baseline, being able to provide a head-start.

This is an important result, because it indicates that the proposed method, with
only one iteration, may be able to compete with similar Batch-Mode Active Learning
methods.

4.7.2.2 Ranking Generated Iteratively

In this experiment the objective is to compare the proposed method with the Batch-
Mode Active Learning baseline in a similar scenario, that is, at each iteration five
instances are labeled by the oracle and fed to the algorithms. Both methods, then,
update the respective models and query new batches.

Table 4.16 presents the comparison results for a batch of size five. Other values
were also tested and showed similar results, thus, they are not presented.

The results show that when the model is updated, differently from the uncer-
tainty sampling comparison (Table 4.14), there is a quality increase in the selected
batch. This result indicates that the proposed method can be a drop-in replacement
for traditional Batch-Mode Active Learning methods. For all datasets, the metrics are
either significantly equal or better than the baseline method. Even on the glass dataset,
it is possible to see a statistically significant improvement of 5% in AUC-MacF1 over
the baseline method. For almost all datasets, the proposed method provides a head-
start over the baseline, that is, a performance improvement in the first 20% of the
selected instances, this is reflected by the imporvement in the average that is close to
8%.

4. Experiments 70

Table 4.16: Comparison between the proposed method and a batch-mode active learn-
ing strategy

Dataset AUC-Acc AUC-Acc@20% AUC-MacF1 AUC-MacF1@20%
Baseline RBMAL Baseline RBMAL Baseline RBMAL Baseline RBMAL

ecoli 79.71 80.97 N 70.96 70.82 • 57.80 62.19 N 42.09 49.48 N

glass 56.70 56.86 • 41.79 40.89 • 46.41 48.43 N 27.99 28.78 •

iris 92.63 93.03 • 83.80 87.04 N 92.22 92.79 • 81.67 86.08 N

wdbc 94.42 94.64 • 90.96 90.44 • 93.92 94.18 • 89.95 89.48 •

wine 92.58 93.43 N 82.12 86.84 N 92.30 93.21 N 79.62 85.29 N

yeast 48.61 49.63 N 43.74 44.36 • 41.70 46.96 N 29.24 38.61 N

average 77.44 78.09 N 68.89 70.06 • 70.72 72.96 N 58.42 62.95 N

N Result statistically better than baseline with 95% confidence
• Result with no statistical difference form baseline with 95% confidence
H Result statistically worse than baseline with 95% confidence

(a) glass (b) wine

Figure 4.15: Comparison between the proposed method’s generated ranking and the
Batch-Mode Active Learning strategy

For comparison purposes, Figure 4.15 presents the average curve of MacF1 versus
the size of the ranking used for training of the glass and wine datasets. It is possible
to see that, while the quality on the wine dataset is maintained, there is a significant
improvement in the glass dataset, specially when few instances were selected.

4. Experiments 71

4.8 Concluding Remarks

This Chapter addressed the experimental evaluation of the proposed method for solving
the Ranked Batch-Mode Active Learning problem. The diversity of domains, number
of classes, features and instances enriches the evaluation of the method, making it
possible to observe trends and outliers.

The evaluation process used consisted in splitting the datasets in half-and-half
multiple times. The first half was used as the unlabeled set and, when necessary,
training set, while the other half was used as the test set. Incremental portions of
the generated instance ranking were used as training in a given classifier that had its
quality assessed in the test split. These multiple evaluations were then used to plot a
chart of the classifier quality versus the amount of the ranking used for training. In
order to compare rankings the Area Under the Curve of this plot is calculated. Since
each dataset is split multiple times, it is possible to present confidence intervals and
statistically significant results.

The first batch of experiments aimed to answer three questions: How to choose a
good Uncertainty Estimator? How to choose a good Similarity Function? and Which
one is more important? One method was proposed for choosing the Uncertainty Esti-
mator and one to choose the Similarity Function given the dataset. While the presented
results indicate that the proposed method can be effectively used, further investigation,
with more datasets, is necessary in order to obtain conclusive results. A 2kr factorial
design was used to investigate the impacts of these two components on the final result
and one important conclusion is that, usually, most of the result variation is explained
by the Uncertainty Estimator. This means that it is usually better to invest in choosing
a good estimator in detriment of the Similarity Function.

In Section 3.5 an heuristic for tackling the Cold Start problem was presented.
This strategy was compared to starting the ranking with a random instance. Results
showed that both strategies lead to similar results, although the proposed heuristic can
induce better results of MacF1. The proposed strategy can be used when the objective
is optimizing the MacF1, otherwise the random strategy should be used since it also
implies in the reduction of computational costs.

Finally the method was compared to different ways of choosing instances for
labeling. In the first scenario the proposed method was compared to the random strat-
egy, that is, the oracle labels instances in a random fashion, and annotated instances
doesn’t impact future choices. The method proposed in this dissertation was able to
achieve gains, specially in MacF1 for different datasets, even when no labeled data was
provided. This means that the proposed method even when generating a full ranking

4. Experiments 72

only with the unlabeled set is able to achieve better quality than the random selec-
tion. The second scenario consists in selecting one instance at a time and updating
the model accordingly. In this set of experiments the baseline used is a traditional
Uncertainty Sample strategy. The proposed method was able to achieve results close
to the baseline, but failed in different datasets. Since the Uncertainty Estimators used
in both methods is the same, this is possibly a reflex of the way the α parameter is
updated. One way to circumvent this problem would be to update α based not only
on the size of the training and unlabeled sets but also on the average speed of label-
ing, that is, the number of instances labeled at each iteration. The last scenario is
the typical Batch-Mode Active Learning in which multiple instances are queried and
labeled at each iteration. In this experiment the proposed method was compared to
a Batch-Mode Active Learning method based on Support Vector Machines. The pro-
posed method was able to achieve better results and this is an indicative that it could
be a drop-in replacement for Batch-Mode Active Learning algorithms.

The framework for ranking instances presented in this dissertation was able to
provide gains over the random selection even when no labeled data is provided. With
the increase of annotated instances the quality of the ranking increases and lead to
better classifier models. These experiments show that it is possible to relax the initial
assumptions of Batch-Mode Active Learning in a way that the machine suits the man’s
schedule and not otherwise.

Chapter 5

Conclusion

This dissertation introduced and addressed the Ranked Batch-Mode Active Learning.
Motivated by the increasing use of Machine Learning in companies and research groups,
in which analysts are paid hourly to label instances to build a training set, we aim to
assist businesses and researchers by reducing the analysts’ idle time. Specifically, our
method relaxes the necessity of Batch-Mode Active Learning to continuously produce
new batches, by querying an arbitrarily long ranking of instances. This ranking is
achieved by assigning to each instance a score based on its informativeness, and the
similarity between this instance and the already selected ones (in DESTIMATED).

We evaluated our framework using six datasets from different domains. It was
able to select instances better than the random ranking and showed results comparable
to the traditional Active Learning algorithms which are much more inefficient. In fact,
in some cases, even with no training data provided, our method was able to achieve
better performance than the baseline methods.

Concluding this dissertation we present our main contributions and what we plan
to study as future work.

5.1 Contributions

The main contributions of this dissertation include:

Ranked Batch-Mode Active Learning description The problem of Ranked
Batch-Mode Active Learning was introduced in this dissertation. It aims to
make Active Learning algorithms more suitable to use in companies and research
groups. In this way, the algorithm is better suited to the user schedule and not
otherwise.

73

5. Conclusion 74

Framework for generating ranked queries We presented a framework for solving
the Ranked Batch-Mode Active Learning. It generates a query by ranking in-
stances according to its informativeness and dissimilarities with the labeled set.
These metrics are obtained through the use of two main components: the uncer-
tainty estimator and a similarity function. The proposed method was evaluated
and presented results better than random sampling and comparable to traditional
Active Learning methods, in some cases, achieving the same accuracy without
any labeled data.

Metrics for evaluating the framework components One metric for evaluating
each main component of the framework was presented and evaluated. The ex-
perimental results indicate that these metrics can be used to assist in choosing
the Uncertainty Estimator and Similarity Function for a given dataset.

Experimental evaluation of the framework components A 2kr factorial design
was used in order to measure the impact of each component on the final result.
As a general rule the uncertainty estimator is the component that explains most
of the result variation.

5.2 Future Work

Other topics that may generate interesting future work include:

Further study metrics for evaluating components Although this dissertation is
an indicative that the proposed metrics can be used to assess the component
quality, there are datasets in which the general rule may not apply. Further
studies with more datasets is needed in order to obtain a conclusion.

Test new uncertainty estimators As discussed in Chapter 2, there is a wide range
of sampling strategies that can be a drop-in replacement for the uncertainty esti-
mator, for example, error estimation, variance reduction and density estimation.
Since this component is responsible for most of the ranking outcome, we plan to
further experiment with different estimators of informativeness.

Further study the impact of the α parameter The α parameter is used to
weight the impact of each component on the ranking construction. The α values
throughout the ranking should be further studied, including the possibility of up-
dating α according to the oracle speed, that is, the number of analyzed instances
at each iteration.

5. Conclusion 75

Expand the Ranked query to the Stream scenario In the Stream-based selec-
tive sampling (Section 2.3.2) one instance is queried at a time. One way would
be to choose one or more instances from the stream in order to create a ranked
buffer for labeling.

Bibliography

Naoki Abe and Hiroshi Mamitsuka. Query Learning Strategies Using Boosting and
Bagging. In ICML ’98: Proceedings of the Fifteenth International Conference on
Machine Learning, pages 1–9, San Francisco, CA, USA, 1998.

Douglas Aberdeen and Andrew Slater. The learning behind gmail priority in-
box. Production, pages 3–6, 2010. URL http://static.googleusercontent.

com/external_content/untrusted_dlcp/research.google.com/en/en/pubs/

archive/36955.pdf.

Dana Angluin. Queries and Concept Learning. Machine Learning, 2(4):319–342, April
1988.

Dana Angluin. Queries revisited. Theor. Comput. Sci., 313(2):175–194, 2004.

Les Atlas, David Cohn, Richard Ladner, M. A. El-Sharkawi, and R. J. Marks, II.
Training connectionist networks with queries and selective sampling. In Advances in
neural information processing systems, pages 566–573. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1990.

Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2011.

M. Bayes and M. Price. An essay towards solving a problem in the doctrine of chances.
by the late rev. mr. bayes, communicated by mr. price, in a letter to john canton,
m. a. and f. r. s. Philosophical Transactions (1683-1775), 1763.

James Bennett and Stan Lanning. The netflix prize. In KDD Cup and Workshop in
conjunction with KDD, 2007.

Alina Beygelzimer, Daniel Hsu, John Langford, and Tong Zhang. Agnostic active
learning without constraints. In Advances in Neural Information Processing Systems

76

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/en/pubs/archive/36955.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/en/pubs/archive/36955.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/en/pubs/archive/36955.pdf

5. Conclusion 77

23: 24th Annual Conference on Neural Information Processing Systems, pages 199–
207, 2010.

Anselm Blumer, A. Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learn-
ability and the vapnik-chervonenkis dimension. J. ACM, 36:929–965, October 1989.
ISSN 0004-5411.

Andrew P. Bradley. The use of the area under the roc curve in the evaluation of
machine learning algorithms. Pattern Recognition, 30(7):1145 – 1159, 1997.

Klaus Brinker. Incorporating diversity in active learning with support vector machines.
In Proceedings of the 20th International Conference on Machine Learning, pages 59–
66. AAAI Press, 2003.

David Cohn, Les Atlas, and Richard Ladner. Improving Generalization with Active
Learning. Mach. Learn., 15(2):201–221, May 1994.

David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning with
statistical models. J. Artif. Int. Res., 4(1):129–145, March 1996.

T. Cover and P. Hart. Nearest neighbor pattern classification. Information Theory,
IEEE Transactions on, 13(1):21–27, January 1967.

Aron Culotta and Andrew McCallum. Reducing labeling effort for structured prediction
tasks. In Proceedings of the 20th national conference on Artificial intelligence -
Volume 2, AAAI’05, pages 746–751. AAAI Press, 2005.

Ido Dagan and Sean Engelson. Committee-Based Sampling for Training Probabilistic
Classifiers. In Proceedings of the International Conference on Machine Learning,
July 1995.

Sanjoy Dasgupta, Daniel Hsu, and Claire Monteleoni. A general agnostic active learning
algorithm. In International Symposium on Artificial Intelligence and Mathematics,
2008.

A. Frank and A. Asuncion. UCI machine learning repository, 2010. URL http://

archive.ics.uci.edu/ml.

Atsushi Fujii, Takenobu Tokunaga, Kentaro Inui, and Hozumi Tanaka. Selective sam-
pling for example-based word sense disambiguation. Comput. Linguist., 24(4):573–
597, December 1998.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

5. Conclusion 78

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the
bias/variance dilemma. Neural Comput., 4(1):1–58, January 1992.

Yuhong Guo and Dale Schuurmans. Discriminative batch mode active learning. In
Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-
First Annual Conference on Neural Information Processing Systems, 2008.

Robbie Haertel, Paul Felt, Eric Ringger, and Kevin Seppi. Parallel active learning:
eliminating wait time with minimal staleness. In Proceedings of the NAACL HLT
2010 Workshop on Active Learning for Natural Language Processing, pages 33–41.
Association for Computational Linguistics, 2010.

David Haussler. Learning conjunctive concepts in structural domains. Mach. Learn.,
4(1):7–40, 1989.

Carlos A. Heuser, Francisco N. A. Krieser, and Viviane Moreira Orengo. Simeval: a tool
for evaluating the quality of similarity functions. In Tutorials, posters, panels and
industrial contributions at the 26th international conference on Conceptual modeling
- Volume 83, ER ’07, pages 71–76, Darlinghurst, Australia, Australia, 2007.

Steven C. H. Hoi, Rong Jin, and Michael R. Lyu. Large-scale text categorization by
batch mode active learning. In Proceedings of the 15th international conference on
World Wide Web, WWW ’06, pages 633–642, New York, NY, USA, 2006a. ACM.

Steven C. H. Hoi, Rong Jin, Jianke Zhu, and Michael R. Lyu. Batch mode active
learning and its application to medical image classification. In Proceedings of the
23rd international conference on Machine learning, ICML ’06, pages 417–424. ACM,
2006b.

A. Holub, P. Perona, and M. C. Burl. Entropy-based active learning for object recog-
nition. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW ’08.
IEEE Computer Society Conference on, pages 1–8, 2008.

David Hull. Improving text retrieval for the routing problem using latent semantic
indexing. In Proceedings of the 17th annual international ACM SIGIR conference
on Research and development in information retrieval, SIGIR ’94, pages 282–291,
New York, NY, USA, 1994. Springer-Verlag New York, Inc.

Rebecca Hwa. On minimizing training corpus for parser acquisition. In Proceedings of
the Fifth Computational Natural Language Learning Workshop, pages 84–89, 2001.

5. Conclusion 79

Prateek Jain and Ashish Kapoor. Active learning for large multi-class problems. In 2009
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
20-25 June 2009, Miami, Florida, USA, pages 762–769. IEEE, 2009.

R. K. Jain. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley, 1 edition,
April 1991.

George H. John and Pat Langley. Estimating continuous distributions in bayesian
classifiers. In Proceedings of the Eleventh conference on Uncertainty in artificial in-
telligence, UAI’95, pages 338–345, San Francisco, CA, USA, 1995. Morgan Kaufmann
Publishers Inc.

Ajay J. Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos. Multi-class active learning
for image classification. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 2372–2379. IEEE, 2009.

Ross D. King, Kenneth E. Whelan, Ffion M. Jones, Philip G. K. Reiser, Christopher H.
Bryant, Stephen H. Muggleton, Douglas B. Kell, and Stephen G. Oliver. Functional
genomic hypothesis generation and experimentation by a robot scientist. Nature,
427(6971):247–252, January 2004.

Ross D. King, Jem Rowland, Stephen G. Oliver, Michael Young, Wayne Aubrey, Emma
Byrne, Maria Liakata, Magdalena Markham, Pinar Pir, Larisa N. Soldatova, Andrew
Sparkes, Kenneth E. Whelan, and Amanda Clare. The Automation of Science.
Science, 324(5923):85–89, April 2009. ISSN 1095-9203.

Ron Kohavi. A study of Cross-Validation and bootstrap for accuracy estimation and
model selection. In Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence, pages 1137–1145, 1995.

K. J. Lang and E. B. Baum. Query learning can work poorly when a human oracle is
used. 1992.

Florian Laws, Christian Scheible, and Hinrich Schütze. Active learning with amazon
mechanical turk. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 1546–1556. Association for Computational Linguistics,
2011.

Thomas M. Lehmann, Mark O. Guld, Thomas Deselaers, Daniel Keysers, Henning
Schubert, Klaus Spitzer, Hermann Ney, and Berthold B. Wein. Automatic catego-

5. Conclusion 80

rization of medical images for content-based retrieval and data mining. Computerized
Medical Imaging and Graphics, 29(2-3):143–155, 2005.

David D. Lewis andWilliam A. Gale. A sequential algorithm for training text classifiers.
In Proceedings of the 17th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 3–12, New York, NY, USA, 1994.
Springer-Verlag New York, Inc.

Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions
on Information theory, 37:145–151, 1991.

David J. C. MacKay. Information-based objective functions for active data selection.
Neural Comput., 4(4):590–604, July 1992.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduction to
Information Retrieval. Cambridge University Press, New York, NY, USA, 2008.

A. McCallum and K. Nigam. Employing EM in pool-based active learning for text
classification. In Proceedings of ICML-98, 15th International Conference on Machine
Learning, pages 350–358, 1998.

Prem Melville and Raymond J. Mooney. Constructing diverse classifier ensembles
using artificial training examples. In Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, pages 505–510, Acapulco, Mexico, August
2003.

Prem Melville and Raymond J. Mooney. Diverse ensembles for active learning, 2004.

T. M. Mitchell. Machine learning. McGraw Hill, New York, 1997.

Tom M. Mitchell. Generalization as search. Artificial Intelligence, 18(2):203 – 226,
1982.

Ion Muslea, Steven Minton, and Craig A. Knoblock. Selective sampling with redundant
views. In Proceedings of the Seventeenth National Conference on Artificial Intelli-
gence and Twelfth Conference on Innovative Applications of Artificial Intelligence,
pages 621–626, 2000.

Hieu T. Nguyen and Arnold Smeulders. Active learning using pre-clustering. In Pro-
ceedings of the twenty-first international conference on Machine learning, pages 79–.
ACM, 2004.

5. Conclusion 81

Stephen Purpura, Claire Cardie, and Jesse Simons. Active learning for e-rulemaking:
public comment categorization. In Proceedings of the 2008 international conference
on Digital government research, dg.o ’08, pages 234–243, 2008.

Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee S. Lee. Boosting the Margin:
A New Explanation for the Effectiveness of Voting Methods. The Annals of Statistics,
26(5):1651–1686, 1998.

Andrew I. Schein and Lyle H. Ungar. Active learning for logistic regression: an evalu-
ation. Mach. Learn., 68(3):235–265, 2007.

Hinrich Schütze, Emre Velipasaoglu, and Jan O. Pedersen. Performance thresholding in
practical text classification. In Proceedings of the 15th ACM international conference
on Information and knowledge management, CIKM ’06, pages 662–671, New York,
NY, USA, 2006. ACM.

B. Settles, M. Craven, and L. Friedland. Active learning with real annotation costs.
In Proceedings of the NIPS Workshop on Cost-Sensitive Learning, pages 1069–1078,
2008.

Burr Settles. Active learning literature survey. Computer Sciences Technical Report
1648, University of Wisconsin–Madison, 2009.

Burr Settles and Mark Craven. An analysis of active learning strategies for sequence
labeling tasks. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, EMNLP ’08, pages 1070–1079, Stroudsburg, PA, USA, 2008.
Association for Computational Linguistics.

H. Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by committee.
In Proceedings of the Fifth Annual ACM Conference on Computational Learning
Theory, pages 287–294, 1992.

C. E. Shannon. A mathematical theory of communication. Bell system technical jour-
nal, 27, 1948.

Xuehua Shen and ChengXiang Zhai. Active feedback in ad hoc information retrieval.
In Proceedings of the 28th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 59–66. ACM, 2005.

Lixin Shi, Yuhang Zhao, and Jie Tang. Batch mode active learning for networked data.
ACM Trans. Intell. Syst. Technol., 3(2):33:1–33:25, 2012.

5. Conclusion 82

Eduardo D. Sontag. Vc dimension of neural networks. In Neural Networks and Machine
Learning, pages 69–95. Springer, 1998.

Cynthia A. Thompson, Mary E. Califf, and Raymond J. Mooney. Active learning for
natural language parsing and information extraction. In Proc. 16th International
Conf. on Machine Learning, pages 406–414. Morgan Kaufmann, San Francisco, CA,
1999.

Katrin Tomanek, Florian Laws, Udo Hahn, and Hinrich Schütze. On proper unit selec-
tion in active learning: co-selection effects for named entity recognition. In Proceed-
ings of the NAACL HLT 2009 Workshop on Active Learning for Natural Language
Processing, pages 9–17, Stroudsburg, PA, USA, 2009. Association for Computational
Linguistics.

Simon Tong and Edward Chang. Support vector machine active learning for image
retrieval. In Proceedings of the ninth ACM international conference on Multimedia,
MULTIMEDIA ’01, pages 107–118, New York, NY, USA, 2001. ACM.

Simon Tong and Daphne Koller. Support vector machine active learning with applica-
tions to text classification. J. Mach. Learn. Res., 2:45–66, March 2002.

Vladimir N. Vapnik. The nature of statistical learning theory. Springer-Verlag New
York, Inc., New York, NY, USA, 1995.

Zhao Xu, Kai Yu, Volker Tresp, Xiaowei Xu, and Jizhi Wang. Representative sam-
pling for text classification using support vector machines. In Proceedings of the
25th European conference on IR research, pages 393–407, Berlin, Heidelberg, 2003.
Springer-Verlag.

Zuobing Xu, Ram Akella, and Yi Zhang. Incorporating Diversity and Density in
Active Learning for Relevance Feedback. In Giambattista Amati, Claudio Carpineto,
and Giovanni Romano, editors, Advances in Information Retrieval, volume 4425 of
Lecture Notes in Computer Science, chapter 24, pages 246–257. Springer Berlin /
Heidelberg, Berlin, Heidelberg, 2007.

C Yang, S O Prasher, J Landry, H S Ramaswamy, and A Ditommaso. Application of
artificial neural networks in image recognition and classification of crop and weeds.
Canadian Agricultural Engineering, 42(September):147–152, 2000.

Harry Zhang. The Optimality of Naive Bayes. In FLAIRS Conference. AAAI Press,
2004.

5. Conclusion 83

Tong Zhang and Frank J. Oles. A probability analysis on the value of unlabeled data
for classification problems. In 17th International Conference on Machine Learning,
2000.

Xiaojin Zhu. Semi-supervised learning with graphs. PhD thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA, 2005.

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Main Contributions
	1.2 Text Organization

	2 Active Learning
	2.1 Machine Learning Basics
	2.1.1 Classification Problem
	2.1.2 When Labels Are Costly to Obtain

	2.2 Query Strategy
	2.2.1 Uncertainty Sampling
	2.2.2 Query By Committee
	2.2.3 Expected Error Reduction
	2.2.4 Variance Reduction
	2.2.5 Density Weighted Methods

	2.3 Active Learning Scenarios
	2.3.1 Membership Query Synthesis
	2.3.2 Stream-Based Selective Sampling
	2.3.3 Pool-Based Sampling
	2.3.4 Batch-Mode Active Learning

	2.4 Concluding Remarks

	3 Ranked Batch-Mode Active Learning
	3.1 Problem Definition
	3.2 Overview
	3.3 Uncertainty Estimation
	3.3.1 Classifiers
	3.3.2 Uncertainty Score

	3.4 Instance Ranking
	3.4.1 Similarity Functions

	3.5 Cold Start
	3.6 Concluding Remarks

	4 Experiments
	4.1 Datasets
	4.2 Experiment Setup
	4.3 Evaluation Metrics
	4.4 Evaluation of uncertainty estimation and similarity function
	4.4.1 Uncertainty estimator
	4.4.2 Similarity function
	4.4.3 Impact of each component

	4.5 Evaluation of the Initial Selection
	4.5.1 One Random Instance as Initial Selection
	4.5.2 20% of the Unlabeled Instances as Initial Selection
	4.5.3 Impact of the Instance Selection Strategy Throughout the Ranking

	4.6 Rank Quality Evaluation
	4.6.1 Ranking Without Training Data
	4.6.2 Ranking With Training Data

	4.7 Traditional Active Learning Scenarios
	4.7.1 Pool-Based Sampling Comparison
	4.7.2 Pool-Based Batch-Mode Sampling Comparison

	4.8 Concluding Remarks

	5 Conclusion
	5.1 Contributions
	5.2 Future Work

	Bibliography

