SPIAL: UMA FERRAMENTA DE APOIO AO
APRENDIZADO DE MELHORIA DE PROCESSOS

DE SOFTWARE

DANIELA CRISTINA CASCINI KUPSCH

SPIAL: UMA FERRAMENTA DE APOIO AO
APRENDIZADO DE MELHORIA DE PROCESSOS

DE SOFTWARE

Tese apresentada ao Programa de Pos-
-Graduacgao em Ciéncia da Computagao do
Instituto de Ciéncias Exatas da Universi-
dade Federal de Minas Gerais como requi-
sito parcial para a obtencao do grau de
Doutor em Ciéncia da Computagao.

ORIENTADOR: RODOLFO SERGIO FERREIRA DE RESENDE

Belo Horizonte

Setembro de 2012

DANIELA CRISTINA CASCINI KUPSCH

SPIAL: A TOOL FOR SOFTWARE PROCESS
IMPROVEMENT TRAINING

Thesis presented to the Graduate Program
in Computer Science of the Federal Univer-
sity of Minas Gerais in partial fulfillment of
the requirements for the degree of Doctor
in Computer Science.

ADVISOR: RODOLFO SERGIO FERREIRA DE RESENDE

Belo Horizonte

September 2012

(© 2012, Daniela Cristina Cascini Kupsch.
Todos os direitos reservados.

Kupsch, Daniela Cristina Cascini.

K96s SPIAL: Uma Ferramenta de Apoio ao Aprendizado de
Melhoria de Processos de Software / Daniela Cristina
Cascini Kupsch. — Belo Horizonte, 2012.

xxi, 201 f. : il. ; 29 cm.

Tese (doutorado) — Universidade Federal de Minas
Gerais — Departamento de Ciéncia da Computagao.

Orientador: Rodolfo Sérgio Ferreira de Resende.

1. Computacao - Teses. 2. Engenharia de software -
Teses. 3. Simulacao (Computadores digitais) - Teses.
I. Orientador. II. Titulo.

CDU 519.6*32(043)

UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIENCIAS EXATAS B
PROGRAMA DE POS-GRADUAGCAO EM CIENCIA DA COMPUTACAO

FOLHA DE APROVACAO

SPIAL: uma ferramenta de apoio ao aprendizado de melhoria de processos de
software

DANIELA CRISTINA CASCINI KUPSCH

Tese defendida e aprovada pela banca examinadora constituida pelos Senhores:

/ 4, ~ :
Z .-L«// {/ / CLeee ‘,C(' .
PROF. RODOLFO SERGIO FERREIRA DE RESENDE - Orientador
Departamento de Ciéncia da Computagio - UFMG

QQD;AAV\ C'/Duv: VF/\N -"\M/“-/\,Q’\
PROFA. CLAUDIA MARIA LIMA WERNER
Centro de Tecnologia - UFRJ

PROF. CLARINDO ISAiAS P. DA SILVA E PADUA
Departamento de Ciéncia da Computagio - UFMG

& duondy M Feguiuudi
PROF. EDUARDO MAGNO LAGES FIGUEIREDO
Departamento de Ciéncia da Computagio - ICEx - UFMG

) ‘"JV WAL v’\/&t\/\/‘:/ \!v "
PROFA. FLAVIA MARIA SANTORO
Departamento de Informatica Aplicada - UNIRIO

PROF. JOSE LUIS BRAGA
Departamento de Informatica - UFV

Belo Horizonte, 17 de setembro de 2012.

Acknowledgments

First of all, I would like to thank my supervisor, Rodolfo. He provided me excellent
guidance in all these years, ensuring the quality of this thesis. Rodolfo always had
confidence in my work, pushing me up further into my research. I always enjoyed our
discussion about different topics of our lives. Rodolfo explained to me how the scientific
community works and I really appreciate. Many thanks for all his knowledge, attention
and patience.

Studying and living in Amsterdam was a completely new experience to me. I
consider myself lucky in living in such a lovely city. Many thanks to Hans van Vliet
who generously accepted my request to study at Vrije University. Also thanks to all
colleagues who made me feel like home, Rahul Premarj, Antony Tang, Viktor Clerc,
Christina Mantelli, Maryam Razavian, Adam Vanya, Qing Gu, and Patricia Lago.

I was very fortunate to work with highly qualified people: Rodrigo who imple-
mented the FASENG framework, Soraia who helped me with the literature review,
and Vitor who was always helpful with hints and feedback about my research. I am
very grateful for their help. Also many thanks to the people who helped me with
the Systematic Literature Review. The list is extensive and also the range of their
contribution.

I would like to thank my sweet husband who encouraged me with his love and
patience. Once and again, he had to put up with me. Without his support I doubt I
could finish this research. Thank you Amore, Ich liebe dich! My lovely daughter, Lisa,
who is always in a good mood. Also many thanks to my father, mother, father-in-law,
mother-in-law who supported me during all these years. I love you all.

Lastly, I would like to thank all my friends and colleagues. These last few years
would not have been as fun and enjoyable without you. A very special thanks to Kelly

and Claudia who helped me out with Lisa.

1X

Resumo

Software é um artefato complexo e seu desenvolvimento é ainda mais complexo. Nos
iltimos anos, a complexidade do software aumentou significativamente. Atualmente,
software estd em todas as partes e o papel desempenhado por ele é mais importante
do que nunca. A sua influéncia na sociedade e na economia tornou-se inquestionavel.
Contudo, os mercados exigem reducao de custos e do prazo necessario para a sua
producao. Essa combinacao de complexidade e restricoes do mercado pode impactar
significativamente na qualidade final do produto.

Uma forma de minimizar os possiveis problemas na qualidade do produto é me-
lhorar a preparacao da for¢a de trabalho e isto leva em consideracao o aprendizado de
Engenharia de Software. Atualmente, os cursos de Engenharia de Software raramente
abordam a pratica de determinados conhecimentos. Normalmente, um curso consiste
de aulas teoricas e do desenvolvimento de um projeto de software de pequeno porte.
Entretanto, as metodologias utilizadas tanto nas aulas quanto nos projetos falham em
prover um conhecimento mais abrangente dos processos de desenvolvimento de soft-
ware necessarios para a aplicacao em um ambiente industrial, em particular, os que
nao estao diretamente relacionados aos processos de software.

Com o objetivo de proporcionar aos alunos uma experiéncia mais realista dos pro-
cessos de desenvolvimento de software, dentro do ambiente académico, nés utilizamos
a simulacao. A simulacao pode ser uma ferramenta efetiva para a melhoria do apren-
dizado e entendimento de assuntos complexos. Em particular, nés acreditamos que um
ambiente de simulacao de processos de software traz para a Engenharia de Software
os mesmos beneficios da sua utilizacdo em outros dominios como, por exemplo, na
aerondutica com os simuladores de voos. Ao se utilizar um simulador, as dificuldades
podem ser planejadas e experimentadas, sem grandes riscos.

O objetivo deste trabalho é melhorar o aprendizado de Engenharia de Software,
utilizando uma simulacao estruturada que permite replicar a realidade de uma orga-
nizacao, o que, na maioria das vezes, nao é possivel apresentar para os estudantes

durante um projeto de uma disciplina. Nosso trabalho aborda como um jogo de simu-

x1

lacao de Engenharia de Software, especificamente, um jogo de simulagao de Melhoria
de Processos de Software, ensina as melhores praticas de Engenharia de Software para
os estudantes de um curso introdutério de Engenharia de Software. A fim de inves-
tigar este assunto, nos desenhamos e desenvolvemos SPIAL, um jogo de simulacao
grafico, interativo e personalizavel. A avaliacao deste jogo foi realizada através de um
experimento piloto e uma inspecao utilizando o método de Inspecao Semiotica. Os
aspectos educacionais abordados no experimento incluem a capacidade dos alunos em
compreender, lembrar e aplicar conceitos de Engenharia de Software no contexto de
uma iniciativa de Melhoria de Processos de Software baseada no CMMI.

Nossa avaliacao sugere que SPTAL é uma metodologia complementar e util para o
ensino de Melhoria de Processos de Software e de conceitos de Engenharia de Software.
Na opiniao dos estudantes, o jogo é agradavel. Eles relataram que se divertiram ao
jogar. Com o objetivo de tornar a experiéncia mais educacionalmente efetiva, algumas
pesquisas futuras, identificadas durante as avaliagoes, incluem a incorporagao no jogo
de outros fenoémenos de Melhoria de Processos de Software e a melhoria do desenho da

interface.

Palavras-chave: Processos de Software, Jogos de Simulagao, Melhoria de Processos

de Software.

xii

Abstract

Software is a complex artifact and its development is even more complex. Comparing
with the past, this complexity has increased enormously. Today software is spread out
everywhere and its role is more important than ever. The economic importance of
software and the society dependence on it is unquestionable. In this scenario, markets
require reduced costs and short time of software production. This combination of
complexity and market restrictions can cause a great amount of problems in the quality

of the final product.

One way to minimize these problems is to improve the work force preparation and
this leads to the basic Software Engineering education. Currently, Software Engineer-
ing courses do not support students into the practice of some skills. Typically, a course
consists of theoretical lectures and a small software development project. However, the
methodologies based on such lectures and projects fail to provide a broad knowledge of
software development processes necessary to their application in an industrial environ-
ment, in particular, the ones not directly related to Software Engineering processes.

In order to provide students with a more realistic experience of software develop-
ment processes within the academic environment, we use simulation. Simulation can
be an effective tool for enhancing learning and understanding of complex subjects. In
particular, we believe that a simulation environment for Software Engineering processes
can bring the same benefits observed in other domains, like airlines training. By using
a simulator, difficulties can be planned and experienced without great risks.

Therefore, the aim of this research is to improve the Software Engineering educa-
tion in dealing with the complexity of providing to students experiences that resemble
more closely those in industry. We present how a Software Engineering simulation
game, specifically, a Software Process Improvement simulation game, can teach best
practices of Software Engineering to students. In order to investigate this subject,
we designed and developed SPIAL, a graphical, interactive, customizable, simulation
game and evaluated it through a pilot experiment and an inspection using the Semi-

otic Inspection Method. The educational aspects addressed in the experiment included

xlil

the capability of students to understand, remember and apply Software Engineering
concepts in the context of a CMMI software process improvement initiative.

Our evaluation suggests that SPTAL is a useful complementary approach to teach-
ing SPI and Software Engineering concepts. Students found it quite enjoyable and
they had fun during the game play. In order to make the experience more education-
ally effective, future researches have been identified during the evaluations, such as

incorporating other SPI phenomena and enhancing the interface design.

Keywords: Software Process, Simulation Game, Software Process Improvement.

Xiv

List of Figures

2.1 Input-Process-Outcome game model (extracted from Garris et al. [2002]). .
3.1 SimSE main interface. 0oL oL

4.1 SLR steps. o o
4.2 Research methodology. oo
4.3 Data analysis method. oo
4.4 Analysis methodology. oo
4.5 Data collection method. oo
4.6 Distribution of organization’s size.
4.7 Geographical distribution of organizations.
4.8 Businessmodel.o
4.9 Approaches used by each study.
4.10 System Context Processes. L.
4.11 Software Specific Processes. L.
4.12 Distribution of the improvement percentage across measurements.

4.13 Distribution of the number of improvement percentages in each category. .

5.1 Educational simulation games design (adapted from Martin [2000]).
5.2 FASENG structural elements.
5.3 SPIAL introductory screen.
5.4 SPIAL Graphical User Interface.
5.5 Stakeholders communication.o
5.6 SPIAL Analysis Tab sheet.
5.7 Status information.o
5.8 Communication details between simulation engine and simulator.
5.9 Destroyer hierarchy and interfaces.
5.10 Trigger hierarchy and interfaces.

5.11 Rules hierarchy and interfaces.

XV

20

5.12 First SPTAL Prototype. 109

5.13 Average score results for each knowledge level. 122
5.14 Results on Dep.6 Appropriateness (n=11). 123
5.15 Results on Dep.7 Enjoyable (n=11).. 123
5.16 Results on Dep.7 Fun (n=11). 123
5.17 Results on Dep.8 subjective learning perspective (n=11). 124
D.1 Defects detected after process improvement per month. 194

Xvi

List of Tables

2.1

2.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1

5.2
9.3
5.4
9.5
0.6

Al

C.1
C.2
C.3
C4

Terminology related to Capability and Maturity Levels (extracted from

[CMMI, 2010]). o 14
Computer-based Simulation Games. 24
Research questions and motivations. 42
Inclusion and exclusion criteria. Lo 45
Quality assessment criteria. 47
Distribution of studies by source. 0. 50
Data analysis method according to the organization size. 53
Reasons for launching an SPI initiative. 69
SPI measurements. 71
Quality of data collection and analysis. 74

Cognitive levels of the revised version of the Bloom’s Taxonomy (adapted

from Gresse von Wangenheim et al. [2009]). 115
Experimental Variables. oL 116
Schedule of the experiment. L0 118
Overview of participants’ personal characteristics. 120
Descriptive Analysis (Dep.3, Dep.4 and Dep.5 variables). 121
Descriptive Analysis (Dep.1, Dep.2, Dep.6, Dep.7 and Dep.8 variables). . . 121
Software Engineering Games. 168
Data extraction categories. Lo 178
Selected primary studies. 179
Quality scores. 183
Comparison of related SLRs. L. 184

Xvil

Contents

Acknowledgments ix
Resumo xi
Abstract xiii
List of Figures XV
List of Tables xvii
1 Introduction 1
1.1 Research Questions 4

1.2 Approach 5

1.3 Scope 6
1.4 Contributions 7

1.5 Thesis Outline 8

2 Background 11
2.1 Software Process 11
2.2 Software Process Improvement 12
2.3 Software Process Simulation Model (SPSM) 14
2.4 Simulation Games 16
2.4.1 Simulation Games Design 18

2.4.2 Literature Review of Software Engineering Simulation Games . 20

2.5 Conclusion 25

3 Semiotic Analysis 27
3.1 Backgroundo 28

3.2 Analyzing the Designers’ Message 31
3.3 Communicability Evaluation 34

Xix

3.4 Triangulation L 35

3.5 Conclusion 36
SPI Initiatives and Results 39
4.1 Backgroundo 40
4.2 Research Method 41
4.2.1 Research Questions 41
422 CaseStudy Roleso 42
4.2.3 Data Sources 43
4.2.4 Search Criteria 43
4.2.5 Study Selection L 44
4.2.6 Quality Assessment 46
4.2.7 Data Extraction and Synthesis. 47
4.3 Literature Analysis 48
4.3.1 Methodological Quality 48
4.3.2 Quantitative Analysis. 49
4.3.3 Qualitative Analysis Lo 56
4.4 DIScussion 68
4.4.1 Research Questions 68
4.4.2 Guidance for Reporting SPI Initiatives 73
4.5 Related Worko 75
4.6 Limitations 7
4.6.1 Construct Validity 78
4.6.2 Reliability 79
4.6.3 Internal Validity 79
4.6.4 External Validity 80
4.7 Conclusion 80
SPIAL 83
5.1 Backgroundo 84
5.2 SPIAL Goals 85
5.3 Early Decisions 87
54 FASENG 88
5.4.1 Simulation Model o 92
5.4.2 Simulation Engine o oL 98
5.4.3 Simulator 103
5.5 Evaluation 105

XX

5.5.1 Semiotic Analysiso
5.5.2 Pilot Experiment oo
5.5.3 Discussion
5.6 SPIAL x Software Engineering Simulation Games

5.7 Conclusion

6 Conclusion
6.1 Research Achievements
6.2 Lessons Learned

6.3 Future Work
Bibliography
A Software Engineering Simulation Games
B Software Engineering Rules

C Systematic Literature Review - Software Process Improvement

D Questionnaires used for Validating SPIAL

poel

131
131
133
134

137

167

171

177

187

Chapter 1

Introduction

The creation of complex software products that satisfy the constraints of quality, cost
and schedule requires the collaboration of many software engineers whose preparation
lies primarily in Computer Science departments and their Software Engineering courses
[Colomo-Palacios et al., 2012|. Typically, Software Engineering courses provide an in-
troductory view of Software Engineering principles and techniques [Ludi and Collofello,
2001]. These courses rarely provide an opportunity to explain in details the practices
and techniques related, for example, to project management, quality assurance, and
client’s requirements understanding. Therefore, there is a gap between learning by
studying (at school) and learning by doing (at work) in this area [Moreno et al., 2012;
Aasheim et al., 2010]. This gap is typical of academic courses with time and size
constraints on course projects [Ludi and Collofello, 2001].

For a software engineer preparation, the Software Engineering project should
bring together not just basic Software Engineering principles, but also knowledge ac-
quired in other areas [Claypool and Claypool, 2005; Barzilay et al., 2009] such as Project
Management and Human-Computer Interaction. In particular, universities need to pro-
vide to their Software Engineering students not only technology-related skills but also
a basic understanding of typical phenomena occurring in industrial software projects.
In addition, more emphasis is needed on interdisciplinary culture and communication
skills due to the very nature of software applications.

The lack of student’s preparation for dealing with real-world Software Engineer-
ing projects has been recognized by industry [McMillan and Rajaprabhakaran, 1999;
Conn, 2002; Callahan and Pedigo, 2002; Aasheim et al., 2010], and in response to it,
the academic community has created some practices that bring the student closer to
what happens in non-academic software development organizations. These practices

include, for example, requiring students to apply software quality engineering concepts

1

2 CHAPTER 1. INTRODUCTION

in an industry representative project [Huffman Hayes, 2002|, executing programs that
resemble the medical residency programs [Sampaio et al., 2005] and using simulation
games [Connolly et al., 2007].

Most Software Engineering courses include a group or team project to provide
undergraduate students with an opportunity to practice the concepts learned from
the text books and lectures. For many Computer Science programs, this is the first
opportunity that students have to work together |[Coppit and Haddox-Schatz, 2005
and gain experience in some techniques of Software Engineering. The team project
emphasizes the importance of the tools, processes, communication, teamwork and other
techniques for software development |Olsen, 2008]. Typically, the project assignment
takes the entire semester to complete. However, due to time and resources constraints
this is not enough for students to experience many phenomena that occur in real-world
software development processes |[Navarro, 2006].

Specifically, the Software Engineering course at the Department of Computer
Science at Federal University of Minas Gerais, Brazil, is taught in one semester (60 hour
class). This course is designed to cover the fundamentals of Software Engineering theory
and practice in an undergraduate program. The course adopts team-based projects,
four to six members per team, as an approach to provide undergraduate students with
hands-on learning experience. Each team is responsible for the complete specification
of a small software application. The students follow the Praxis [Paula Filho, 2006,
2007, 2009| process that prescribes the use of UML for the models and Java as the
programming language, using test-driven techniques [Paula Filho, 2006].

After analyzing the defects found in artifacts produced by students in the team-
based project and interviewing instructors |Peixoto et al., 2010b], we observed that
there is an undesirable gap between what is taught in the classroom and what the
students have to do in the team project. As an introductory course, it is not possible
to provide to the students all the details needed for an adequate software development.
However, it seems that even some important points were not made explicit. Some
qualitative impressions collected from the instructors and confirmed by the students

through a survey were:

e Students have difficulties making the connection between the course-provided

material (models together with the code framework) and the lectures.

e Students focus on technical artifacts and usually do not take into account the

managerial ones.

e Even if they are required, students usually do not inspect their artifacts. Many

times, they filled the defect report artifact with unreal data. This can be observed

because of inconsistencies among artifacts.

One would expect that complying with the prescribed process, as learned in class,
is a natural behavior. In spite of that, we observed the opposite. Students usually do
not follow the process during the team project development. They first elaborate the
technical artifacts and then they complete the baseline with the managerial artifacts.
At the end, only a few students that finish the course really understand the way
and the benefits of conducting a process driven software development. Although this
study was not replicated in other universities, we observed that there is a lack in the
preparation of the students in general, mainly regarding bridging the gap between
Software Engineering course and the industrial software development environment. In
this context, some Software Engineering Education researchers argue that one feasible
way to provide students with a real experience of software development processes within
the academic environment is through simulation [Mandl-Striegnitz, 2001; Carrington
et al., 2005; Navarro, 2006]. This is more effective as supplementary to traditional
approaches rather than a stand-alone technique [Mandl-Striegnitz, 2001; Carrington
et al., 2005].

Therefore, our goal is to overcome the problems identified above and contribute
to Software Engineering Education improvement, using a simulation game. This simu-
lation game allows students to practice some Software Engineering skills in a more

realistic environment. Specifically, students will be able to:

e Practice concepts related to technical and managerial processes of software de-

velopment.

e Reinforce the concepts learned in class, mainly, the Software Engineering lessons,
carrying out a Software Process Improvement (SPI) initiative (considering, for
example, that requirements deficiencies are the prime source of project failures
[Glass, 1998]). Specifically, the simulation rewards correct decisions (appropriate

Software Engineering practices) and penalize unjustifiable ones.
e Follow the stages of a software development process in an organization.

e Learn some of the events that can occur during a Software Process Improvement

project (e.g. resistance to change, high-level management commitment).

e Observe possible results of improvement actions taken during development (e.g.

the reduction of defects after performing the Requirement Engineering activities).

4 CHAPTER 1. INTRODUCTION

e Analyze the effects of following an immature software development process (e.g.
more restricted process visibility, higher number of defects). Therefore, reinfor-

cing the possible advantages of having a defined process.

1.1 Research Questions

The complexity of teaching a more realistic experience of software development pro-
cesses and the applicability of simulators as a complementary educational tool are two
premises that constitute the basis for this research.

In an industrial environment, the software development process is extremely com-
plex by its nature, in which “human interactions are complicated and never very crisp
and clean in their effects, but they matter more than other aspect of the work” [De-
Marco and Lister, 1999]. Since software development is defined by a collection of certain
and uncertain factors of diverse types that most of time negatively affects the results,
teaching this subject is also intrinsically complex [Zhang, 2008|.

Despite the related software complexity and uncertainty, few attempts have been
made to teach an experience closer to what happens in non-academic software de-
velopment organizations through simulations. In these initiatives, simulations were
recommended to be used as a complementary component to the Software Engineer-
ing course [Carrington et al., 2005; Mandl-Striegnitz, 2001]. In this way, the students
acquire the needed background and better learn the lessons that the simulations are
designed to teach.

Given these premises, we developed a simulation game called SPIAL (Software
Process Improvement Animated Learning Environment) and since the beginning of
SPIAL development we elaborated three related research questions. The sequence
of these three research questions guided the specification, development and tests of
SPIAL. SPIAL is a graphical and interactive game-based simulation environment for
Software Process Improvement. It is a useful approach for teaching or reinforcing the

Software Engineering concepts to students. The research questions are:

e RQ 1: Can students learn Software Engineering concepts or reinforce them using

SPIAL?

Our main goal is to determine if students can learn certain Software Engineering
lessons from such SPI simulator. A fundamental part of our work is to evaluate
SPIAL in conjunction with actual courses. Therefore, we carried out an exper-
iment with undergraduate Software Engineering students to verify this research

question. In addition, a specialist evaluated SPIAL communicability perspective.

1.2. APPROACH 5

e RQ 2: What characteristics are required for SPTAL to be capable of supporting

the learning process?

We investigated existing Software Engineering simulation games and we carried
out a systematic literature review in order to identify the concepts and require-
ments to be covered by an SPI simulator. Answering this question can also
provide insights into the design of simulation games in general. Moreover, after
carrying out the experiment, we validated whether or not these characteristics

are actually employed by students.

e RQ 3: How can such a simulator be incorporated into Software Engineering

courses?

SPIAL was designed to be used in conjunction with Software Engineering courses.
We provided some guidance to students and instructors of these courses. The
appropriateness of this guidance was evaluated through an inspection method,
informal evaluation by instructors and through the experiment. The experiment
also gave us some insights about the effort required from the students in order

to figure out how to play the game.

1.2 Approach

The following steps were conducted: 1) an exploratory case study 2) systematic liter-

ature reviews 3) semiotic analysis 4) methodology development and 5) validation.

1. Exploratory case study: we investigated the problems incurred by students
during the team project development. Our investigation and its main results
were published in the context of an Engineering Education conference [Peixoto
et al., 2010b]. The most striking observation is the difficulty that students have
to bridge the gap between the theoretical lectures and the team project, and the
limited range of skills that they apply during the project development.

2. Systematic literature reviews: we identified and compared the main Software
Engineering simulation games. Based on this analysis, we defined the essential
design aspects for the development of our simulator. Our investigation and its
main results were published in the context of a Software Engineering Education
conference |Peixoto et al., 2011]. We also investigated the real benefits of an SPI

initiative in software development organizations.

6 CHAPTER 1. INTRODUCTION

3. Semiotic analysis: we investigated the communicability weaknesses and
strengths of a specific Software Engineering simulation game. Although the eval-
uation is restricted to one system, the results can be used as representative of
a large category of related systems. Our investigation and its main results were
published in the context of a Human Computer Interaction conference [Peixoto
et al., 2010c].

4. Methodology development: we built a graphical and interactive simulation
game for Software Process Improvement. The design issues and simulation game
characteristics were published in the context of an Engineering Education con-
ference [Peixoto et al., 2012a,b].

5. Validation: we evaluated SPIAL in a Software Engineering course. In addi-
tion, an inspection using the Semiotic Inspection Method was conducted by a

specialist.

1.3 Scope

The research object of this work is a Software Engineering educational simulation game
(defined in Section 2.4). Specifically, an SPI simulation game used as a complementary
approach in an introductory Software Engineering course.

The scope of this research includes the simulation game design, process model
definition (to be simulated), with its inputs and output variables, and the selection
of the simulation approach, which is presented in Chapter 5. SPIAL’s scope covers
both a development project and an improvement project (pilot project). In SPIAL,
the player acts as a manager of an SPI group. We adopted a subset of the Software
Engineering knowledge area and a specific SPI reference model, CMMI-DEV version
1.3 [CMMI, 2010], to be modeled in the game. CMMI was chosen because it is the
most widely known SPI reference model. The Software Engineering concepts that are
taught in SPTAL were extracted from a CMMI report and also encompass 57 Software
Engineering rules (Appendix B). In the first version, the player influences the improve-
ment project and development project making improvements on some process areas:
Configuration Management, Measurement and Analysis, Organizational Process Def-
inition, Organizational Training, Project Planning, Project Monitoring and Control,
Requirements Development, Requirements Management, Technical Solution, Valida-
tion and Verification. Particularly, we also selected project development aspects to be

modeled at SPIAL as, for example, Waterfall development process with its artifacts,

1.4. CONTRIBUTIONS 7

control measures (e.g. defects, cost, time-to-market, productivity, budget, and time
used) and interaction with team members.

It was not our purpose to cover all the SPI and Software Engineering body of
knowledge or CMMI-DEV reference model. As presented throughout the text, the
most appropriate simulation model and SPI aspects modeled depend directly on the
educational objectives. We also did not focus on technical knowledge of the develop-
ment process, for example, specific modeling language, or a specific development tool.
In addition, we considered SPI activities able to produce effects observable during the
time of one project.

Finally, a variety of simulation approaches and languages was applied to simulate
software processes [Kellner and Madachy, 1999|. Since in software projects some phe-
nomena are best modeled by continuous mechanisms while others are best modeled by
discrete ones, we applied a hybrid simulation approach. It is beyond the scope of our
research the adaptation of other approaches, such as qualitative and semi-quantitative

software process modeling [Zhang and Kitchenham, 2006].

1.4 Contributions

The main contributions of this research lie in the development and validation process
that underpinned this simulation game creation, as well as the design and application
of a simulation game in Software Engineering education. This process, which has a
strong focus on interaction aspects, can provide some insights for simulation game
developers.

The main achievements resulting from SPIAL development can be summarized

as follows:
1. Theoretical aspects:

e Description of the main characteristics that make the adoption of simulation
games successful. This information was consolidated in Possa [2011] and
Peixoto et al. [2012b].

e Specification of an SPI simulation game with:

— definition of roles, activities, and results;
— definition of a simulation model;

— definition of a reusable framework.

e [dentification and characterization of the actual results of SPI initiatives.

8 CHAPTER 1. INTRODUCTION

e Identification of the issues and challenges during the design of SPIAL
[Peixoto et al., 2012a].

2. Practical aspects:

e Development of a set of components which can be reused in the development

of new Software Engineering simulation games.
e Integration of a specific SPI simulation model with the reusable components.

e Development of the simulation game itself, along with its SPI simulation

model.
3. Empirical aspects:

e Communicability evaluation of SPIAL conducted by a specialist.

e Practical evaluation of SPTAL carried out by students through a pilot ex-

periment.

In sum, the innovation introduced consists of an SPI simulation game that ad-
dresses some issues of Software Engineering education, by allowing students to practice

some Software Engineering skills.

1.5 Thesis Outline

Chapters 2, 3 and 4 provide the essential concepts related to the research, i.e. soft-
ware process improvement, software process simulation, simulation games, and semiotic
evaluation. Chapter 5 presents the core information for the simulation game design,
development and validation, addressing the adoption of the proposed approach in Soft-

ware Engineering practice. The details of each chapter are:

e Chapter 2 provides important concepts related to the research, i.e. software pro-
cess, software process improvement, software process simulation and simulation

games.

e Chapter 3 describes the communicability aspects of one specific simulation game,
presenting how it can be improved. The focus is on one essential issue, the
feedback [Mory, 2003|, and the resulting considerations go beyond the analyzed

simulation game.

1.5. THESIS OUTLINE 9

e Chapter 4 describes a systematic literature review of software process improve-
ment. The results present an analysis of the actual results of SPI initiatives. The
underlying trends are also discussed. This chapter is based in one article of ours

and we maintain certain aspects of the article such as the itemized contributions.

e Chapter 5 presents the modeling approach, the design decisions and the evalua-

tion of the simulation game.

e Chapter 6 summarizes SPIAL development approach and evaluation. It ends at

highlighting the contributions and suggesting future research.

Chapter 2

Background

This chapter presents the main research subjects of this work and it is structured as

follows:

e Sections 2.1, 2.2 and 2.3 depict brief definitions of software process, software

process improvement, and software process simulation model.

e Section 2.4 presents the analysis of design aspects related to Software Engineering

educational simulation games.

e Section 2.5 concludes this chapter.

2.1 Software Process

Software process consists of a set of partially ordered activities intended to produce
or enhance software products, or to provide services [Sommerville, 2011; Feiler and
Humphrey, 1992|. Software process may be an undocumented ad hoc process or it may
be a standardized and documented process used by various teams.

We can identify at least four process activities that are essential to Software

Engineering [Sommerville, 2011]:

1. Software specification: Definition of software functionality and constraints.

2. Software design and implementation: Production of software that meets the spec-

ification.

3. Software validation: Validation of software to ensure that it does what the cus-

tomer wants.

11

12 CHAPTER 2. BACKGROUND

4. Software evolution: Evolution of software to meet changing customer needs.

Besides the process activities, process descriptions may include other fundamental
constructs that are frequently mentioned [Feiler and Humphrey, 1992; Curtis et al.,
1992]:

e Actor: An agent (human or machine) who performs a process activity.
e Role: Functional responsibility of the actors involved in the process.
e Artifact: Product created or modified by the execution of software activities.

The process is seen as the glue that ties people, technology, and procedures
coherently together [O'Regan, 2011]. Software processes are important in Software
Engineering, not only to provide consistence on the development activities, but also to

capture past experiences to be used by others.

2.2 Software Process Improvement

Software process improvement (SPI) is the term used to refer to systematically
improving software development processes in order to improve product quality and
business value. Since the foundation of the Software Engineering Institute (SEI) at
Carnegie Mellon University and the publishing of Watts Humphrey’s book [Humphrey,
1989], a deeper understanding and a growing number of researches were reported in
the so called Software Process Improvement area. A set of models and standards has
been developed, such as CMM [Paulk et al., 1993, 1995], more recently CMMI |Chrissis
et al., 2006, and ISO/TEC-TR-15504 [2008|.

According to Sommerville [2011], SPI usually involves three main sub-processes,

and we will refer to them as SPI initiative:

1. Process measurement: Attributes of the current project or the product are mea-

sured.

2. Process assessment: The status of the processes currently used by the organiza-

tion is analyzed, and process weakness and bottlenecks are identified.

3. Process changes: Process changes that have been identified during the assessment

are deployed.

2.2. SOFTWARE PROCESS IMPROVEMENT 13

In our study, the group of specialists who facilitate the definition, maintenance,
and improvement of the process used by an organization is referred to as SPI group.

This group performs the following functions:

e lead development and implementation of the improvement actions;

define and improve software practices;

analyze process data;

e assess periodically the software processes; and

plan training.

Learning, primarily, happens within projects through feedback cycles that identify
weaknesses, initiate and implement new efforts, as the corresponding projects evolve
and deliver their results [Aaen et al., 2007] !. One success factor of process improvement
is to have at least one software development project involved from the start of the
improvement initiative in order to apply the new processes [Calvo-Manzano Villalon
et al., 2002; Kauppinen et al., 2004|. The development project is called pilot project
and it allows the identification of advantages and disadvantages of the change, before
the organization-wide implementation [Kauppinen et al., 2004].

As mentioned in Chapter 1, CMMI is arguably the most famous SPI reference
model. More specifically the Capability Maturity Model Integration for Development,
version 1.3 (CMMI-DEV, v1.3) [CMMI, 2010] was chosen to be the base of SPIAL.
CMMI-DEV is a reference model that covers activities for developing both products and
services. Organizations from many industries use this reference model. Besides CMMI-
DEV, there are two other models: CMMI for Services and CMMI for Acquisition. In
this work we use the term CMMI to refer to CMMI-DEV. A detailed description of
how CMMI is captured in SPIAL is presented in Chapter 5.

CMMI defines 22 process areas. Fach process area consists of a set of goals
and these must be implemented by a set of related practices in order to satisfy the
process area. Levels in CMMI describe an evolutionary path recommended for an
organization to improve the processes it uses. CMMI supports two paths (or defines
two forms of representation) using levels. One path, continuous, enables a selection
of processes (or group of process areas) by organizations in order to incrementally

improve them. The other path, staged, enables the improvement of a set of related

'Here we are using the term "feedback" in the context of the cited work. In Section 2.4.1, we
consider Informative Feedback and Performance Feedback according to the work of Malone [1980]. In
Chapter 3, we describe a semiotic analysis considering these two types of feedback.

14 CHAPTER 2. BACKGROUND

processes by incrementally addressing successive sets of process areas [CMMI, 2010].
With the continuous representation capability levels can be achieved and with the
staged representation maturity levels. Table 2.1 shows some of the terminology
related to the two types of paths used in CMMI. The Capability levels are labeled
or numbered from 0 to 3 and the Maturity levels are numbered from 1 to 5. We do
not discuss here the complete relationship between capability and maturity levels in
CMMI, but in a simplified way, mainly for the first levels, the process areas contained
in maturity level i specify that their capability must be at least at level i. Conversely
if all the process areas of a certain maturity level i are assessed as being at capability

level i then it is possible to say that the organization is at maturity level i.

Table 2.1. Terminology related to Capability and Maturity Levels (extracted
from [CMMI, 2010]).

Level Continuous Representation Staged Representation Maturity
Capability Levels Model

Level 0 Incomplete -

Level 1 Performed Initial

Level 2 Managed Managed

Level 3 Defined Defined

Level 4 - Quantitatively Managed

Level 5 - Optimizing

2.3 Software Process Simulation Model (SPSM)

A model is a simplified representation of a real or conceptual complex system [Kellner
and Madachy, 1999]. Modeling means capturing and abstracting significant features
and characteristics of the system. A simulation model is a computerized model
which represents some dynamic features or phenomenon of the systems it represents
[Kellner and Madachy, 1999; Raffo and Wakeland, 2008]. Simulations are used when
the complexity of the system being modeled is beyond what static models or other
techniques can usefully represent. Simulation model typically involves a set of assump-
tions concerning the operation of the system [Banks et al., 2009]. It is used to exercise
the system model with given inputs to see its pattern of behavior. The applications
of simulation are vast [Banks et al., 2009], for example, to analyze the complexity of
a mail transportation network, or to balance the operating room and post-anesthesia
resources. This is a viable alternative when the costs, risks or logistics of manipulating

real systems are prohibitive [Kellner and Madachy, 1999].

2.3. SOFTWARE PROCESS SIMULATION MODEL (SPSM) 15

According to Zhang et al. [2008], Software Process Simulation Modeling
(SPSM) was introduced in the Software Engineering field by Abdel-Hamid and Mad-
nick [1991]. Since then, it has gained increasing interest among academic researchers
and practitioners alike as an approach for [Kellner and Madachy, 1999|: strategic man-
agement, planning, control and operational management, process improvement, tech-
nology adoption, understanding, training and learning. As example of its application
in the Software Engineering field, specifically in the process improvement area, Christie
[1999| presented how a software process simulation can support CMM in all five ma-
turity levels. In a more recent work, Raffo and Wakeland [2008| presented a detailed
report about how process simulation modeling has been implemented within indus-
try and government organizations to improve their processes and achieve higher levels
of process maturity. Via many examples, their work showed how process simulation
supports CMMI Process Areas from maturity level 2 through level 5 and how some
simulation results can be useful in determining financial performance measurements
such as Return on Investment and Net Present Value. Raffo et al. [1999] showed that
simulation can provide quantitative assessment of the risk and uncertainty associated
with process change and support quantitative prediction of project level performance
in terms of effort, staffing, schedule and quality. We have used process simulation to
forecast the impact of applying a specific process improvement practice before each
inspection in a software development organization [Peixoto et al., 2010a].

According to Banks et al. [2009], simulation models can be classified as static or
dynamic, deterministic or stochastic and discrete or continuous. A static simulation
model represents systems at a particular point of time and dynamic simulation rep-
resents systems as they change over time. A deterministic simulation model does not
contain random variables, as it happens in a stochastic simulation model. The essential
difference between discrete and continuous is how the simulation time is advanced. In
discrete simulation the state variable changes only at discrete set of points in time, nor-
mally when an event occurs. Dynamic simulation does not constrain time in terms of
the events’ occurrence and advances time with a constant delta, as in System Dynamics
[Madachy, 2008].

The most widely used techniques in SPSM are System Dynamics and Discrete-
event simulation as a representative for dynamic and discrete simulation categories,
respectively. As presented by Zhang et al. [2008], from 1998 to 2007, 49% of the SPSM
researches apply the System Dynamics paradigm and 31% Discrete-event simulation.

A comparison of the relative strengths and weaknesses between the two are pro-
vided in Martin and Raffo [2000] and Kellner and Madachy [1999]. The Discrete-event

model is efficient when the process is viewed as a sequence of activities. It is often used

16 CHAPTER 2. BACKGROUND

to represent entities with unique values for attributes (e.g. error rates or the impact
of different programmer capabilities), where values can be constant or sampled from a
distribution [Martin and Raffo, 2000]. The process of changing the attributes’ values
is an essential characteristic of a discrete model. This model can also represent queues
and the interdependence that occurs between activities in a project. Continuously
changing variables cannot be modeled accurately; because they can only change their
values at the event times [Kellner and Madachy, 1999] which can take days or weeks.
On the other hand, the System Dynamics models represent the system as 'flows’ (e.g.
error generation rate) that accumulate in various ’levels’ (e.g. the current number of
errors). The flows can be dynamic functions or the consequence of other variables.
As the time advance, in small spaced increments, the levels and the flows rates are
changed [Martin and Raffo, 2000]. Its focus is not on specific individuals or events, but
on patterns of behavior and on average individuals in a population [Madachy, 2008]|. It
accurately captures the effects of feedback [Kellner and Madachy, 1999], but it does not
provide an explicit mechanism to represent sequence or to represent individual entities

with their attributes, neither allows modeling uncertainty in an easy way [Martin and
Raffo, 2000].

The different aspects of software development projects need both mechanisms in
order to be suitably simulated. The duration and effort of activities are rarely predicted
without some uncertainty, and the size of artifacts or programmers experience may
differ. In addition, the dynamics of a project may vary over time, for example, the
schedule pressures and programmer’s fatigue. As discussed in Section 5.4, SPTAL uses
a framework which provides both types of simulation. It represents the activities of a

software development organization and also its dynamic environment.

2.4 Simulation Games

Over the past years it was observed a movement towards more active and experientially
based learning [Madachy, 2008], especially using simulations and games. Simulation-
based learning approaches are concerned with aspects of the real world [Garris et al.,
2002] that could not be possible to present to the students in a course project. Im-
portant features of simulations are related to their rules and strategies, they usually
represent some real-world system, and they have low cost errors compared to real-world
situations, avoiding serious consequences of mistakes [Crookall and Saunders, 1989]. By
contrast, games usually do not intend to represent real-world systems. They also have

rules and strategies, and generally when we lose, the cost of error can be high but may

2.4. SIMULATION GAMES 17

be contained within the game world [Crookall and Saunders, 1989]. Thus, simulations
and games can be considered similar in some aspects. In addition, simulations can
contain game features as proposed by Garris et al. [2002]: fantasy, sensory stimuli,
rules/goals, challenge, mystery, and control. According to von Wangenheim and Shull
[2009], games can be classified into four types: board games (e.g. Risk Management
board game |Taran, 2007|), card games (e.g. Problems and Programmers [Baker et al.,
2003]), quiz games (e.g. Lecture Quiz [Wang et al., 2008]), and simulation games (e.g.
SimSE [Navarro, 2006]). In this section, our focus is on Software Engineering simula-
tion games (referred to as simulation games), which are simulation tools with some

game features.

In the Software Engineering field, we observed that it is very difficult to train
students in the real situation of a software development organization, due to the very
nature of software applications and the great diversity of organizational cultures. There
are different ways that Software Engineering games can be incorporated in a university
course. For example, games can be used instead of traditional exercises or in addition
to them, they can be used within lectures to improve the participation and motivation
of students, or they can be exercises by themselves (e.g. a task is given to the students
to develop a simple computer game [Claypool and Claypool, 2005|). Unfortunately,
there is no agreement regarding the main game aspects that support learning, the
process for engaging learners and the type of learning results [Garris et al., 2002|. This

is essentially related to the difficulty of designing an effective educational game system.

The design process is at the heart of the simulations and games development
[Martin, 2000]. Despite the design process importance for attaining students’ learning,
we have noticed that it is not receiving much attention in the literature. One important
step during the simulation game design is to take into account a chain of events: what
will happen, what effect an event will have, and how this supports the learning process.
During the design process, the designers? must take into account several aspects in order

to design a simulation game that supports learning and motivates students.

In order to identify the differences among the Software Engineering simulation
games, we discuss the main design decision involved in their development. The de-
sign issues addressed are related more to the interactional aspects of interface design
than to architectural design or other kind of design concerns, which would be difficult
to evaluate without additional information about the simulation game development.
In the Human Computer Interaction context, system designers communicate to sys-

tem users the essence of their design vision, through various types of interface signs

2Tn this research designers should be interpreted as whoever speaks for the design team.

18 CHAPTER 2. BACKGROUND

(e.g. explanations, messages, buttons, menus, and interaction results) [de Souza, 2005],
[de Souza et al., 2010]. We evaluate and compare signs used by designers to facilitate
and enhance the interaction. It is not our purpose to state that one simulation game
is better than other, but to show explicitly some important characteristics that each
simulation game has related to its interaction design.

The results of the next section were presented at the 24th IEEE-CS Conference

on Software Engineering Education and Training [Peixoto et al., 2011].

2.4.1 Simulation Games Design

The primary concern of simulation game design is to elaborate a system that is con-
gruent with the learning goals. Designers must tell users what they mean by the
simulation game they have created, and players are expected to understand how to
play the simulation game and respond to it. Similarly to programs in other domains,
the communication [de Souza, 2005] occurs through the interface, basically by the use
of messages encoded in words, graphics, behavior, online help, and explanations.

Peters et al. [1998] propose three principles of simulation and game design: reduc-
tion (selection of elements from the real world), abstraction (simplified representation
of the elements) and symbolization (elements and relations are represented into a new
symbolic system, with several aspects, e.g. roles, and rules). Their work emphasizes
the necessity of fidelity in the representation of real situations in games and simu-
lations, where ideas are iteratively mapped between the conceptual content and the
game process. Fripp [1993] proposes a more specific guideline for the design process
that is very useful for evaluating important aspects of the simulations and games. In
his work, he creates a design verification list that includes purpose, reality /complexity,
timeline, feedback, decisions, participants, and roles. Moreover, Gredler [2004] pro-
poses four important characteristics of simulations that are: (1) an "adequate" model
of the complex real-world situation (the "adequate" is regarding fidelity and validity
aspects); (2) a defined role for each player, with responsibilities and constraints; (3) an
environment that allows players to carry out different strategies; and (4) feedback for
players actions in the form of changes in the problem or situation.

Game design is an iterative process that involves dealing with event’s effects
and learning objectives [Martin, 2000|. Garris et al. [2002]| described an input-process-
outcome game model (Figure 2.1). In this model, the game cycle starts with the design
of an instructional program that supports some features of the game, this triggers a
cycle that include user judgment and reactions. The reactions lead to behaviors that

result in system feedback on performance in the game context. Finally, the learn-

2.4. SIMULATION GAMES 19

ing outcomes are checked through a careful debriefing session |Peters and Vissers,
2004]. So, the design should take into account all these steps, mainly engaging stu-
dents not to leave the loop judgment-behavior-feedback. In addition, they proposed
some game characteristics that were classified in six broad dimensions or categories:
fantasy, rules/goals, sensory stimuli, challenge, mystery, and control.

The assessment of simulation games is an extensive activity that we decided to
pursue as a research on its own and it is out of the scope of this research to carry
out user tests or empirical experiments. Based on the examination of some important
design characteristics collected from the literature, we decided to discuss the following

aspects of the Software Engineering simulation games:

e Clear Goals and Rules: The simulation game should have specific rules that
govern the playing context, which ultimately describe the goal structure of the
game. Clear objectives are important to engage students and to motivate them
[Garris et al., 2002]. Omne important aspect is that clear, specific goals allow
players to see discrepancies related to their final target, allowing their reduction.

This triggers player’s attention, more effort, and consequently motivation.

e Feedback: Feedback is a critical component of the judgment-behavior feedback
cycle, proposed by Garris et al. [2002] (see Figure 2.1). Because it permits play-
ers to interpret the software, it also supports players’ decisions about interactive
goals and provides information for novice players during the learning process. We
identify characteristics in the simulation games related to two kinds of feedbacks:
informative feedback and performance feedback [Malone, 1980|. Informative feed-
back presents enough information to maintain players interested in the simulation
game or to maintain their curiosity, based on the information presented. Perfor-
mance feedback shows the players’ performance according to the established goal,

i.e. how close they are to the objectives.

e Virtual world: The simulation game is a case study of a particular reality where
players play roles of characters in a particular situation following a set of rules and
interacting with other characters. The settings, players’ role, players’ educational
profile and the learning objectives are important design aspects related to the

virtual world where the game occurs.

e Adaptability: It plays an important role in the quality of the educational sys-
tems, allowing the learning environment to be adapted according to different
levels of initial knowledge, different learning styles, and different expectations

and objectives [Moreno-Ger et al., 2008|. This can be achieved basically in two

20 CHAPTER 2. BACKGROUND

ways: one is by gradually increasing the complexity in the course of the game
and the other is by providing different simulation models (related to the learning

goal).

e Game features: As simulation games, it is important to incorporate some fea-
tures that do not exist in the real world, for example score or fantasy, mainly to

enhance the learning process.

User

Instructional Context
Judgments

Debriefing .
Learning

— " Outcomes

II\ System User J

/ '\ Feedback Behavior /
Game Characteristics \ !

Figure 2.1. Input-Process-Outcome game model (extracted from Garris et al.
[2002]).

2.4.2 Literature Review of Software Engineering Simulation

Games

This section reports a literature review [Kitchenham, 2004; Kitchenham and Charters,
2007] aimed at extending and refining an existing secondary study (i.e. a study based
on previously published research) that surveyed Software Engineering simulations and
games in the time period from 1st January 1990 to 30th June 2008 [von Wangenheim
and Shull, 2009]. The original secondary study performed its search process considering
a set of seven journals and conferences, searching for simulations and games applied
in Software Engineering education. In this section we presented only the main points
of the systematic literature review protocol employed in this study. An example of a
protocol is presented in Chapter 4.

Our review goal is more specific, we identify computer-based simulation games
used for teaching Software Engineering topics having results published in the period
of ten years (from 1st January 1999 to 30th December 2009). We did not find articles
published before this period.

2.4. SIMULATION GAMES 21

The high-level question of our research is:

How the design characteristics (described above) are promoted in the Software
Engineering computer-based simulation games?

The primary studies used in this review were obtained from searching databases

of peer-reviewed Software Engineering research that met two criteria:

e The database contains peer-reviewed Software Engineering journals articles and

conference proceedings.

e The database was used in other Software Engineering systematic reviews.

The resulting list of databases that we searched was: ACM Digital Library, Sage
Simulation&Gaming, IEEEXplore, ScienceDirect, SpringerLink and Wiley Interscience
database.

We submitted the search string "software engineering" and ("simulation" or
"game") on these databases 3. The searches resulted in a large number of candi-
date papers: 2583 articles. We used inclusion/exclusion criteria to narrow the search
to relevant papers by applying the following steps: reading the title to eliminate ir-
relevant papers, reading the abstract and keywords to eliminate additional irrelevant
papers and reading the remainder of the paper and including only those that address
the research question. As we were specifically interested in computer-based simulation
games, we excluded the ones not based on computer simulation games such as card
games (e.g. Problems and Programmers [Baker et al., 2003]) and Software Engineering
tutorial programs that are not actual interactive simulation games (e.g. OSS [Sharp
and Hall, 2000]). Using this approach, the initial results were filtered down to 16 papers
(Table 2.2). Prior to conducting the systematic research, we were aware of the number
of papers that are relevant (by our research interests and also by the previous literature
review). As an indicator of completeness of the review, we found, among others, all

papers detected in the previous literature review [von Wangenheim and Shull, 2009].

2.4.2.1 Results

Based on the search results and on the inclusion and exclusion criteria, a set of
computer-based simulation games was selected. A brief description about the selected

simulation games is depicted in Table 2.2 and their design characteristics are presented

3We experimented other search strings in order to verify that we have chosen suitable ones: "soft-
ware process" and ("simulation" or "game"), "software engineering process" and ("simulation" or
"game"), "software engineering simulation game", "software engineering simulation", "software engi-

neering game"

22 CHAPTER 2. BACKGROUND

in Appendix A. After the selection and data extraction, each simulation game was
evaluated showing its main characteristics and differences regarding the design, as de-
scribed below. When we conducted our evaluation, we not only read the articles, but
we also played the simulation games (the ones available). The results provided a rich
set of simulation games descriptions that can be used for selection and development of
new applications.

Clear Goals and Rules: Basically, we can divide the simulation games in two
groups: those that the final goal is to develop a software project within a certain set
of constraints, and their rules are based on the Software Engineering lessons: SESAM,
SimSE, SimJavaSP, MO-SEProcess; and those that the final goals and rules are spe-
cific to each simulation game (e.g. to manage a project): The Incredible Manager,
SimVBSE, qGame and TREG. One important design aspect that was followed by all
simulation games was the clear specification of the goal. So, at the beginning of each
game, the players can understand their objectives and manage to achieve them. On the
other hand, this is not true for the rules. The Software Engineering rules are not clear
to the players in all games. These rules correspond to an important learning process,
where players become skilled in anticipating and correcting the effects of choosing the
incorrect actions. If the players learn these rules, they would eventually be in a posi-
tion to achieve a good score and understanding the dynamics of a Software Engineering
team.

Feedback: In the simulation games evaluated, the designers adopted a "trial and
error strategy, since the signs are limited in their message communication, mainly the
signs presented at the interface. This is an expected aspect in simulation games, but
in some cases the miscommunication gets in the way of the player’s learning process.
For example, if players do not read the manual they could not understand the purpose
of some tool (e.g. Explanatory Tool, a tool that shows the rules and measures used
in the game) or find a specific functionality (e.g. how to generate branches), and it
is a well-known fact that players rarely read manuals before playing. Designers are
challenged to find a balance between the information displayed in the interface and
the information provided through other media (e.g. manual, tutorials, and so on), in a
way that the game is still inviting and challenging. Regarding the type and the instant
of the feedback, some simulation games present the performance feedback only at the
end. The consequence of this is that good results are normally obtained only after
several game plays. In contrast, there exist informative feedbacks that are presented
throughout the whole game varying in signs used by designers: bubbles, graphics,
tables, animated elements and so on. Only two simulation games provide a detailed

feedback at the end, thus allowing the analysis of the game score and the results: SimSE

2.4. SIMULATION GAMES 23

and SESAM. The importance of this technique has been emphasized in the previous
literature review [von Wangenheim and Shull, 2009]. The collaboration and feedback
among players is a key feature presented only in Second Life simulation games, where
it can enhance teamwork skills and team member participation. Finally, the use of
game-like elements to represent certain characteristics of the real world (e.g. fatigue)
can improve engagement and motivation

Virtual World: As specified in the design characteristic "Clear Goals and
Rules", the first group of simulation games has the educational goal to teach Soft-
ware Engineering process to students. Typically, they present a metaphor of a physi-
cal software development organization with doors, walls, furniture and employees. In
this virtual organization, the player assumes a project manager role that manages the
team, assigns tasks, purchases tools or hardware, and monitors the project, within
a reduced time frame. The other group has the goal to teach a specific subject of
Software Engineering, like Value-Based Software Engineering [Jain and Boehm, 2006].
The simulation game world should be tightly coupled with the aims and objectives
of the educational context, which is a close representation of the real-world system.
An important question that the designers should address is: what is the appropriate
balance in a particular teaching context between the real and virtual world.

Adaptability: Among all simulation games that we found, only three support
different simulation models: SESAM, SimSE and The Incredible Manager; and only
one allows different levels of difficulty: qGame. This restricted number is due to the
complexity of design and interaction of the learning environment, when we consider
the adaptability characteristic. Besides the need to adapt to meet the special needs of
each student [Moreno-Ger et al., 2008|, the simulation games also need to attend all
stakeholders’ expectations regarding their educational objectives (both students and
instructors). In addition, there is the cost of building an adaptable simulation game
and the cost of changing its simulation model. The modification of the simulation
model is, in most case, not a trivial task, even with a friendly interface. Therefore, the
designers should first investigate the educational context of their simulation game to
decide which strategy they will follow (to include or not this facility). This includes
investigating who are the learners, what are the learning aims, what level of study the
students have, their experiences and competencies, the subject taught, and how the
simulation game will fit into the existing course.

Game features: After the simulation games evaluation, we found some essen-
tial game features that can enhance motivation and in consequence the effectiveness of
learning. These features are presented in the whole group of the evaluated tools, which

are: not too easy nor too difficult life-like challenges (e.g. constraints on budget, de-

24

CHAPTER 2. BACKGROUND

fects, and time); interaction; a mechanism that provides feedback from the other team

members (e.g. dialogue); graphical representation; and some indication of performance

(e.g. score). Not all games presented random events, but this is also an important

feature to enhance challenge and in consequence motivation.

Table 2.2. Computer-based Simulation Games.

Name Description Ref

SESAM SESAM (Software Engineering Simulation by Animated [Ludewig et al.,
Models) is a single-player simulation game. The goal is to 1992; Drappa and
complete a project, where costs and schedule are established Ludewig, 2000]
during a planning phase and approved by stakeholders.

SimSE SimSE is an educational game based on Software Engineering [Navarro, 2006;
simulation environment. SimSE is a single-player simulation Navarro and
game in which the player takes the role of a project manager van der Hoek,
of a team of developers. The player goal is to develop a soft- 2002, 2005a,b,
ware project within a certain set of constraints (e.g. budget, 2007, 2009]
schedule, and number of defects).

The In- The Incredible Manager is a single-player simulation game [Barros et al.,

credible that allows a trainee to act as a project manager, being re- 2002, 2006|

Manager sponsible for planning, executing, and controlling a software
project. The simulation game focuses on project manage-
ment rather than on software process.

SimJavaSP SimJavaSP is a web-based single-player simulation game [Shaw and Der-
where the student act as a project manager, developing a moudy, 2005|
software project within the required time and budget, and
acceptable quality.

MO- MO-SEProcess (Multiplayer Ounline Software Engineering [Ye et al., 2007]

SEProcess Process) is a multiplayer online Software Engineering pro-
cess game based on SimSE. It is a collaborative simulation
game developed in Second Life.

SimVBSE SimVBSE is a single-player simulation game specifically de- [Jain and Boehm,
signed to teach students the theory of Value-Based Software 2006|
Engineering.

qGame qGame is a web-based single-player Software Engineering [Knauss et al.,
game that shows the problems resultant from the require- 2008|
ment flow during the project development (misunderstand-
ings or wrong assumptions).

TREG TREG (Training in Requirements Engineering Game) is a [Vega et al.,
multiplayer online Requirement Engineering game developed 2009b,a)

in Second Life. It is a collaborative game developed to train
students in requirement elicitation.

2.5. CONCLUSION 25

2.4.2.2 Discussion

An assessment of the simulation games using the characteristics described above reveals
that, although they are, in some cases, developed with different aims (e.g. SimSE x
SimVBSE), they have a considerable number of common aspects, for example, "trial
and error" strategy, the required basic knowledge which includes at least the meaning
of each action to be selected or activity to be assigned to the employees, goals, rules,
player’s role and some game features. They also have different aspects mainly regarding
the feedback instant and type, and the adaptability characteristics.

Other conclusion can be draw when comparing the elements used for interaction.
We observed a clear evolution in these elements. In the beginning, textual messages,
and typed commands were predominant. In the more recent works, we observed collab-
orative simulation games applying more elaborated interfaces (e.g. Second Life style
APIs). This is possible because, in the present time, there are powerful creation tools
available that facilitate the simulation game development. Moreover, players are more
demanding for elaborated interfaces.

Another outcome is that a few simulation games considered individual perfor-
mance assessment. This was not limited to only the final score presentation, but also
to the functionality that allows the evaluation of the students’ mistakes, e.g. Explana-
tory Tool [Ludewig et al., 1992; Navarro and van der Hoek, 2005a]. This assessment is
mainly centered on the rules which are the base of the performance calculation.

Finally, we believe that if designers take into account some of these aspects, the
results will be more satisfactory regarding the simulation game interaction and the

learning process.

2.5 Conclusion

This chapter introduced the concepts employed in this thesis, i.e. software process, soft-
ware process improvement, software process simulation model and simulation games.
The simulation games mentioned in this chapter have been identified through a
systematic literature review. In this review we observed that, well-designed simula-
tion games are challenging and interesting for players, requiring the use of particular
knowledge or skills. Five design characteristics that are important in meeting this
requirement were examined in the domain of Software Engineering simulation games:
clear goals and rules, feedback, virtual world, adaptability and game features. This
leads to important observation of common aspects and differences among available

educational simulation games: SESAM, SimSE, The Incredible Manager, SimJavaSP,

26 CHAPTER 2. BACKGROUND

MO-SEProcess, SimVBSE, qGame, and TREG. Regarding the limitations of this study,
one could argue that our discussion is subjective and was not validated through em-
pirical experiments or user tests. Although this is a valid criticism, we verified our
conclusions playing the games, when they were available. Furthermore, we cannot a
priori assume that all the results of a study generalize beyond the specific educational
environment. But we believe that many considerations can be applied to the whole
educational simulation game field.

The next chapter introduces the semiotic analysis concepts that focus on how a
software designer communicates with a user through the software’s interface. In this
research context, the semiotic analysis is an important instrument for the communica-
bility evaluation of the simulation game interface. In addition, Chapter 3 extends the

research carried out in this chapter, specifically, presenting a more detailed discussion

about feedback.

Chapter 3

Semiotic Analysis

This chapter shows how semiotic concepts can be used in the analysis and generation of
simulation game knowledge through the application of the Semiotic Inspection Method
(SIM), a Semiotic Engineering evaluation method. It also emphasizes the importance
of a communicability aspect and presents how it can be improved. The focus is on feed-
back?®, an essential issue which motivates players and supports their learning process.
The resulting considerations go beyond the analyzed simulation game and most of them
were confirmed by the literature review. We extend the previous analysis carried out
by the literature review (Section 2.4) and we present a more detailed discussion about
the feedback, its implications during the design and some guidance for new simula-
tion game developments. The results guided SPTAL requirements definition (Chapter
5), reinforcing the importance of feedback to the learning process. This research was
presented at 25th Annual ACM Symposium on Applied Computing |[Peixoto et al.,
2010c].

This chapter is structured as follows:

Section 3.1 introduces semiotic concepts that are useful for our final assessments.

Section 3.2 shows the core three steps of the method. Each step focuses on a

single class of signs: metalinguistic, static, and dynamic.

Section 3.3 presents a final evaluation of the inspected simulation game.

Section 3.4 discusses the validity of the findings considering the evidence obtained

with other procedures.

4Here we use "feedback" with a broader meaning, we also consider feedback mechanisms as dis-
cussed in the work of de Souza [2005]. Specifically, we consider "feedback" referring to the interaction
mechanisms of the simulation game (e.g. help system or informative messages) and also "feedback"
that supports the learning process.

27

28 CHAPTER 3. SEMIOTIC ANALYSIS

e Section 3.5 concludes this chapter.

3.1 Background

Simulation games are more enjoyable and fun when they provide sufficient challenge for
the player [Malone, 1980]. Games should engage student’s interest and should be usable
to permit results that are more clear-cut and enjoyable. Therefore, important aspects
of the games must be evaluated, in particular its communicability. Communicability
is a concept proposed by Semiotic Engineering Theory |[de Souza, 2005] and is defined
as "the property of software that efficiently and effectively conveys to the users its
underlying design intent and interactive principles" [de Souza, 2005; Prates et al.,
2000].

There are two distinct methods to evaluate the communicability of an interface:
Semiotic Inspection Method (SIM) |[de Souza, 2005; de Souza and Leitao, 2009; de Souza
et al., 2006, 2010] and Communicability Evaluation Method (CEM) [de Souza, 2005;
Prates et al., 2000]. Both are qualitative and interpretative methods. The use of
CEM requires expensive experiments since it requires specialists to observe users in
a tightly controlled environment. In our work we decided to use SIM since it is an
inspection method and not so expensive. Nevertheless, it provides results comparable
to CEM. As described by de Souza et al. [2010], SIM has a technical and a scientific
application. Technical application of SIM focuses on how a method can improve and
inform interaction design in the context of a specific system development; whereas
scientific application focuses on how a method can broaden the knowledge of Human
Computer Interaction (HCI). In our work, we performed a scientific application of
SIM in order to evaluate the communicability of a Software Engineering educational
simulation game, specifically regarding its feedback. As a result, we identified feedback
aspects and issues relevant not only to the evaluated system, but also for simulation
games used in educational contexts in general.

SIM has been proposed within the Semiotic Engineering theoretical framework
[de Souza, 2005]. Semiotic Engineering perceives HCI as a designer to user metacom-
munication. That is, a twofold communicative process, because the designer to user
communication is achieved through user-system communication.

The system’s interface is a complete and complex message sent from designers to
users [de Souza, 2005]. This message is formed by signs. According to Peirce, signs
are anything that stand for something (else) in someone’s perspective [Peirce, 1992].

The message conveys to users the designers’ understanding of whom the users are,

3.1. BACKGROUND 29

what problems they want or need to solve and how to interact with the system in
order to achieve their goals. This designer-to-user communication is indirect, since
users understand the intended message as they interact with the interface. When users
do not understand aspects of this message, a communication breakdown takes place
|[de Souza, 2005].

Semiotic Engineering theory classifies the signs in an interactive system into three
classes: metalinguistic, static and dynamic [de Souza et al., 2006, 2010|. Metalinguistic
signs refer to other interface signs. They are instructions, tips, online help, error and
informative messages, warnings and system documentation. They are signs that the
designer uses to explicitly communicate to users the meanings encoded in the systems
and how they can be used. Static signs express and mean the system’s state, they are
motionless and persistent when no interaction is taking place. They can be perceived
(and interpreted) in snapshots of the system’s interface before or after interaction oc-
curs. For instance, buttons, text areas and check boxes at a given moment. Dynamic
signs express and mean the system behavior. Their representations unfold and trans-
form themselves in response to an interactive turn. For example, if we click on the
search button the behavior will present the results of a search. This behavior is a
dynamic sign.

The SIM examines the designer’s metacommunication that users are exposed to
as they interact. The goal is to identify communication breakdowns that may take place
during the user-system interaction and to reconstruct the designers’ metamessage being
conveyed by the system. To do so the evaluator analyzes the message being transmitted
by signs at each level: metalinguistic, static and dynamic.

This method is carried out in five distinct steps [de Souza and Leitao, 2009;
de Souza et al., 2006, 2010]: (1) an inspection of metalinguistic signs; (2) an inspection
of static interface signs; (3) an inspection of dynamic interaction signs; (4) a contrastive
comparison of designer-to-user metacommunications identified in steps (1), (2), (3);
and, finally, (5) a conclusive appreciation of the quality of the overall designer-to-user
metacommunication. At the end of steps (1), (2) and (3), the evaluator reconstructs
the metamessage being conveyed by signs at that level, filling out the template of the
designer to user communication. The evaluator also identifies potential communica-
bility problems that may take place at that level. In step (4) the evaluator contrasts
the metamessage generated in the previous steps and checks for inconsistencies or am-
biguities among them. It is not expected that the messages generated by each sign

level to be identical®, but they should be consistent. Finally, in step (5), the inspec-

5Signs at each level have distinct expressive possibilities. For instance, natural text used at the
help system (metalinguistic sign) and an icon at the toolbar (static sign) usually do not express the

30 CHAPTER 3. SEMIOTIC ANALYSIS

tor reconstructs a unified metacommunication message, judging the costs and benefits
of communicative strategies identified in previous steps and generates the evaluation

report.

Like other methods, SIM requires a preparation step. In this step, the evaluator
defines the purpose of the inspection, does an informal inspection in order to define
the focus of the evaluation, navigates through the system and finally elaborates the
inspection scenarios. If the method is being applied scientifically, this step should also
produce a clear statement of the research goal and an examination of how it could be
achieved by using SIM [de Souza et al., 2010].

The scientific application of SIM helps researchers in diagnosing the system’s
problematic situations and it also provides theoretical concepts that support the for-
mulation of problems as research questions [de Souza and Leitao, 2009; de Souza et al.,
2010]. In a scientific context, SIM also includes a final triangulation step to validate the
results [de Souza et al., 2010]. The validation step corresponds to a triangulation of re-
sults against evidences obtained with other methods or procedures. The triangulation
can be carried out with empirical evidences provided by endogenous and exogenous
sources. The endogenous triangulation is obtained with reference to different aspects
of the same system or systems in the same domain. In this triangulation, the evalua-
tors search for interpretations that are consistent with their analysis. The exogenous

triangulation is carried out with reference to systems in other domains.

The scientific application of SIM is recent and it was firstly applied to inves-
tigate the feedback of a system. In this study [de Souza et al., 2010], the research
question addressed was: "how the system’s feedback is communicated to users during
interaction". The case studies were carried out with a simple editor of cascading style
sheets (Simple CSS) and Google Groups. The results of the Simple CSS study were
endogenously triangulated with findings of Web material (FAQ, users’ opinions, etc)
about CSS editors of the same kind and exogenously triangulated with an analysis
of system’s feedback to users’ actions in creating and configuring a group in Google
Groups. The results presented in de Souza et al. [2010| show that it is possible to
achieve a more powerful metacommunication using different sign types (namely icons,
indices and symbols) that simultaneously and consistently mean the same feedback.
One important value of this scientific application of SIM is to associate feedback issues

with end-users specification, designing and programming tasks.

Feedback is a critical element during interaction, because it allows players to

interpret the software and the designers’ message. In an educational game, it provides

same content equally well.

3.2. ANALYZING THE DESIGNERS’ MESSAGE 31

information for novice players during the learning process as well as supporting players’
decisions throughout the game [Navarro, 2006]. Thus, the results presented in de Souza
et al. [2010] and the importance of simulation games to educational contexts [Navarro,

2006] has motivated our investigation of feedback issues specific to this context.

It is also important to briefly present some semiotic concepts that will be used in
our analysis. Namely, a semiotic classification of signs types [de Souza, 2005; Peirce,
1992| - icons, indices and symbols, and the semiotic phenomenological categories: first-
ness, secondness and thirdness. Icons are signs where representation evokes the first-
ness of its referent. A phenomenon of the first category brings up a unary quality
experience of sensing the referent. So when we represent a cow with its picture, we
evoke the visual experience we have when encountering cows in general. Indices are
signs where the representation brings out the secondness of its referent. When we take
a smoke as a representation of fire, this evokes a certain kind of association (smoke
indicates fire). The idea of secondness presents some casual association between con-
cepts. Finally, symbols are signs which representation evokes the thirdness of its
representation. Symbols result from a regulating convention that relates them to their

"TMW conventionally refers

referent by virtue of an established meaning. For example,
to a registered trademark.

In order to investigate feedback issues on educational games, a Software Engi-
neering simulation game, SimSE [Navarro, 2006], was chosen and SIM was scientifically
applied to this system. SimSE was chosen because it is a free tool and, according to its
authors, it is an enjoyable educational game and relatively easy to play. The goal of this
analysis is to identify, in a broader context, feedback issues on educational simulation

games.

3.2 Analyzing the Designers’ Message

The analysis of the metalinguistic signs allows us to identify important elements
used in the designers’ discourse. The metalinguistic signs are used to provide a better
understanding of the static and dynamic signs, and the intended relation among them.
To analyze the metalinguistic signs the downloading site, manual, dialogs, messages and
tutorials were inspected in regard to what they conveyed about the system’s feedback
(focus of investigation). The gist of what SimSE’s designers intend to communicate
to players focusing on feedback through metalinguistic signs can be summarized in 5
messages, where 'we’ means 'we, the designers’ and you’ means ’you, user, or in this

case, the player’:

32

(a)

(b)

CHAPTER 3. SEMIOTIC ANALYSIS

If 'you” want more information about the functionalities of the game, 'you’ should

search in the Players Manuals. Since, there is no online help or tooltips available.

"You’ can see some informative feedback through speech bubbles over the employ-
ees’ head. These bubbles convey important information about the effects of the

actions and also provide some guidance.

"You’ can see some informative feedback of the employees and the resources (arti-
facts, customers, employees, projects and tools). Employees’ information appears
in the ’current activities’ area. The status of the resources appears on the bottom

table (Figure 3.1) or in a pop-up window.
"You’ can only see 'your’ performance feedback (score) at the end of the game.

"You’ can learn how to improve 'your’ score reading the rules used in the game
through the Explanatory Tool. This tool allows ’you’ to generate graphs of various

attributes and discover insights of the rules underlying the game.

Figure 3.1. SimSE main interface.

During the analysis of the static signs (step 2), important signs were identified at

the main interface of the game. We can organize the content expressed in the messages

as.

(a)

(b)

"We’ simulate an office environment, and "you’ can notice that 'you’ are in an office

with doors, walls, furniture and employees (avatars).

"We’ provide, as in real offices, information about the current status of the resources

and the employees on tables.

3.2. ANALYZING THE DESIGNERS’ MESSAGE 33

(c) "We’ provide some important information related to the simulation. At the main
interface, 'we’ provide information and action related to the simulation time as
seen on the lower right corner. In the Explanatory Tool, accessed through the

Analyze menu item, ’you’ can generate graphs and evaluate the rules of the game.

(d) "We’ consider that 'you’ will be able to infer that ’i’ stands for a short narrative
about the goal of the game and that 'R’ stands for simulation Reset, as appears
on the left side of the SimSE logo.

Static signs focus on the presentation of the metaphor of a physical office and
beyond that some restricted functionality related to the simulation time control (next
event, advance clock, time elapsed).

The analysis of dynamic signs yields more interesting and informative results
for our evaluation. With this analysis, it is possible to evaluate the dynamic aspects of
the game and it is also possible to see the effects of some of the simulation parameters
on the attributes. The gist of what SimSE’s designers intend to communicate to players

focusing on feedback through dynamic signs can be summarized in:

(a) "We’ use a metaphor of a physical office to determine the interaction ’you’ may

have with the game.

(b) "We’ consider that "you’ have some knowledge about Software Engineering, because

of the signs 'we’ used (e.g. the name of the activities: 'create the system test plan’).

(c¢) "We’ provide four important feedback mechanisms: the tables, the activity list, the
bubbles over the employees head and the Explanatory Tool. The tables present in-
formation about the resources and employees. The activity list presents the actions
that the employees are performing. The activities executed by each employee are
also presented at the bubbles over their heads. The Explanatory Tool is accessed

through the Analyze menu item.

(d) "You’ can interact with the project team directly on the main interface. The
employees are static avatars that communicate through pop-up bubbles. They have
the same appearance throughout the game, independently of what happens and

they remain at the interface, unless they are fired (only then do they disappear).

(e) During the game 'you’ can see information related to the results of ’your’ actions
(e.g. employees’ mood and energy). "Your’ score can only be seen at the end of

the game.

34 CHAPTER 3. SEMIOTIC ANALYSIS

(f) "We’ would like ’you’ to play the game immediately after reading the project goal,
using a ’trial and error’ strategy (exploratory interaction), since 'we’ do not direct

'you’ towards any other information.

In the communication described in ’¢’, the avatars overhead bubbles can confuse
the players when acting as a project manager. When they assign more than one activity
to the employees, the order of execution is not represented. And the message presented

by the employees, sometimes just lists the current activity they are performing.

3.3 Communicability Evaluation

During the metalinguistic and static evaluation, we observed that the designers clearly
stated that the players will play the role of a project manager. However, it is not
communicated that the players must have basic knowledge of Software Engineering and
this can affect their interest and motivation. Therefore, the knowledge level required
to play the game should be clearly stated to the players, whatever it is.

In relation to feedback, the tool should support students in acquiring a more
complete and consistent knowledge [Malone, 1980]. The informative feedback shows
some status of the project, but the player can get confused with what actions would
have a positive or a negative impact. If players do not read the manual they will
not understand the goal of the Explanatory Tool that shows the rules of the game
and it would be safe to assume that players rarely read manuals before playing. One
improvement would be to allow students to access their performance indicators before
the end of the game, or bring to the game a virtual consultant that could give hints
(for example as a virtual software quality manager) to act as a wizard.

The informative feedback, such as the number of defects in an artifact and the
money spent, is given to the player during a game session. But the players learn
about their performance only at the end of the game. So, it may take several game
plays to understand the impact of decisions on the overall performance and obtain
good results. The performance feedback should be previously presented in the way
to enhance challenge and to minimize self-esteem damage. This is in accordance with
some learning theories used in the game [Navarro, 2006]| as: Discovery Learning and
Learning through Failure (which also reinforces the designer ’trial and error’ strategy)
and Constructivism (that reinforces the previous needed knowledge of the players).
Otherwise, as discussed above, the game could fail to be enjoyable after a while.

At a closer examination, the problem is more complex. This game does not

represent some signs of firstness that would be more effective to communicate and, in

3.4. TRIANGULATION 35

consequence, give direct feedback to the players. For example, when the energy of the
employees reduces, they could gradually disappear from the interface, or if they were
moody they could look different (for example, with a tired face). In all, some of these
characteristics should be incorporated in this simulation to turn it into a more game-like
tool. The feedback represented by secondness can also be improved if the cause-effect
relations are better represented. We observed that the consequences of some actions
are not directly represented in the elements and the player can get confused. One
example is when an employee goes on a break, he/she does not disappear from the
interface. Another point of confusion is the definition of the order of execution of
some tasks assigned to an employee. The player, as project manager, should be able
to change (or at least see) the priority of the tasks, when a project is not going well,
but this is not supported by the game. Regarding thirdness, the designer uses some
known signification systems to communicate with users. For example, the names of
the activities are those conventionally used for tasks in software development process.
This indicates the need for players to have previous knowledge of these signification
systems, since the meaning of used signs is not available at the interface. However,
the student who does not know any of these concepts could be frustrated with this
software. Other important symbolic signs are the rules of the game. The rules can
foster an important learning process, where players become skilled in anticipating the
effects of choosing an action. If the players learned these rules, they would eventually
be in a position to achieve a good score and understand the dynamics of a Software
Engineering team. Therefore they should be well communicated to players within the

context of the game, which does not happen in SimSE.

3.4 Triangulation

To validate our conclusion about the feedback communication in SimSE, a triangulation
with empirical evidence provided by endogenous sources was performed. We found
concrete evidence that players have missed the informative and performance feedback
and that the prerequisites for playing the game are not clear [Navarro, 2006|.

Evidence 1: "I still don’t really understand what the score is based on."” and
"I'm not really sure exactly what the scoring criteria are.”

These are comments from students that do not use the Explanatory Tool and,
for them, it was not possible to understand the rules that led to a certain score.

Evidence 2: "Rules were a major help. The rules are really helpful-even if

someone doesn’t know anything about Software Engineering I think rules can teach you

36 CHAPTER 3. SEMIOTIC ANALYSIS

how to play the game." and "SimSE’s explanatory tool is a useful resource for helping
players understand their score, but its value lays primarily in its rule descriptions.”

Students that used the Explanatory Tool think that rules can be useful in learning
how to play the game and understanding the score. But, yet it is not possible to know
how the score is calculated.

Evidence 3: "[SimSE is| a good way of putting concepts into practice.” and "It
didn’t help so much compared to what I already know."

These comments show that the player should have some knowledge of Software
Engineering to play the game.

An important result, that reinforces the first scientific application of SIM
|[de Souza et al., 2010], is that the consistent use of icons, indices and symbols that refer
to the same feedback (redundancy) may improve the designer to user metacommuni-
cation. A comparison among the results of SimSE and those of Google Groups and
Simple CSS (described in [de Souza et al., 2010]) reveals that the three evaluations have
much in common. The first characteristic is the importance of the perceptible change
of the iconic representation of the elements after the changing of their attributes (e.g.
the employees’ visual appearance). Another important characteristic is the correct vi-
sual effect of the indices (for example, after being fired the employee would disappear
from the interface). In addition, an explicit and consistent symbolic representation of
partial results and strategies used to calculate them could improve the feedback, con-
sidering that only through the use of icons and indices it would be virtually impossible

to communicate such aspects.

3.5 Conclusion

This chapter presented the steps using SIM and the analysis of feedback in an ed-
ucational simulation game. The goal was to identify issues regarding efficient and
effective communicability conveyed through the game’s feedback which can help the
development of new simulation games.

The analysis was performed with the aim of checking issues on how SimSE deals
with feedback. In this analysis we observed that designers of SimSE focused on the in-
formative feedback and use of 'trial and error’ strategy. Dynamic signs are privileged in
designer-to-user communication and convey most aspects of the whole message. How-
ever, it seems that designers should explore other playability characteristics [Desurvire
et al., 2004] in the game, such as varying the levels of difficulty. This would require

much more elaborated signs, and it would probably provide players a more productive

3.5. CONCLUSION 37

experience.

We identified that some important aspects should be observed during the design
of educational simulation games. These aspects were taken into consideration during
SPIAL design:

e Designers should represent some signs of firstness that would give direct feedback
to players. In some situations, this feedback can be more effective to the learning
process than using tips or on-line helps. For example, in SimSE, the modification

of the avatars’ state after some action (they disappear, move or look different).

e Secondness signs that can communicate cause-effect relations are also important,

since players can quickly visualize the results of the selected actions.

e Designers should use thirdness signs, since rules and strategies are conventions
defined by designers and cannot be fully communicated through firstness and

secondness signs.

e The designers should provide an efficient and effective way to present the rules
used in the game and their relation to the players’ performance. In educational
games, this would support the learning process, and players could become skilled

in anticipating the effects of an action and correcting them when necessary.

e [t is important to have both informative and performance feedback during the

whole game. This provides challenge for the players motivating them.

The next chapter investigates the SPI domain through a comprehensive system-
atic literature review over the decade from 1999 to 2009. SPI is a fundamental concept

used for SPIAL creation and it is discussed in its own chapter.

Chapter 4

SPI Initiatives and Results

Through a systematic literature review, this chapter provides a view of the SPI area,
which served as a guide for us in our investigations, and also provides information to
managers, researchers and practitioners about SPI efforts. The high-level goal of this

study is to:
Identify and characterize the actual results of SPI initiatives.

In SPIAL context, the results of this study provided the bases for the simulation
model and requirements definition (Chapter 5). Mainly, helped us during the model
calibration, measures and process areas definition.

This chapter is structured as follows:

e Section 4.1 presents the main contributions achieved with the systematic litera-

ture review.

e Section 4.2 details the phases carried out during the literature review: planning,

conducting and reporting the review.
e Section 4.3 describes the main qualitative and quantitative findings.
e Section 4.4 discusses the review questions and the SPI reporting directives.
e Section 4.5 presents the related works.
e Section 4.6 shows the limitations of this review.

e Section 4.7 concludes this chapter.

39

40 CHAPTER 4. SPI INITIATIVES AND RESULTS

4.1 Background

There are previous reviews of the SPI body of literature [Miiller et al., 2010; Unterkalm-
steiner et al., 2012; Pino et al., 2008; Sulayman and Mendes, 2009; Staples and Niazi,
2008], but these reviews do not include all the results of our analysis such as, for ex-
ample, the evaluation of improvement percentages values and the SPI categories. We
applied a formalized and repeatable review process [Kitchenham and Charters, 2007
and after following this process, we selected and analyzed 91 studies.

SPI is intended to enhance the software development process. Despite the ex-
pected SPI focus being on the process, it is also customary to have initiatives that
call themselves “SPI initiatives” but whose scope is not the process (i.e. related to the
definition or management of the process). The first contribution is to illustrate the
fact that most of the SPI studies in reality do not focus on process aspects. Instead,
they focus on the SPI impacts or results, e.g. the main common reason for launching
SPI efforts is the reduction of the defect rates detected during development and after
delivery.

Despite warnings from some authors, part of the software development community
counter-intuitively believes that the results from SPI initiatives will be “dramatic” or
“surprising”. By “dramatic” we mean “powers of ten” increases in productivity or quality.
Our second contribution is to confirm that SPI initiatives do not bring “dramatic”
changes. In this aspect our contribution is in agreement with Frederick P. Brooks
when he says: “There is inherently no silver bullet” |Brooks, 1987|, and also with
Robert L. Glass: “most software tool and technique improvements account for about a
5 to 35 percent increase in productivity and quality” [Glass, 2002|. The improvement
percentage distribution of the different measurements is discussed in Section 4.4 and
they reinforce the fact that there are no “dramatic” changes.

During the analysis, we were able to identify that SPI initiatives could be arranged
in categories or “equivalence classes” considering aspects that are similar amongst them.
We refer to these equivalence classes as “patterns”. The goal of identifying these pat-
terns is to enable a discussion referring to the category of improvement rather than the
individual initiatives. These patterns provide concrete descriptions of actions, mea-
surements and lessons learned for specific situations. Our third contribution is the
identification of SPI patterns intended to ease the sharing of SPI knowledge.

In addition, we were also able to identify some shortcomings of many an SPI
report. Therefore, we decided to compile some suggestions of how SPI results should
be reported. Our fourth contribution is the compilation of guidelines for SPI reporting

based on weaknesses observed in the selected studies.

4.2. RESEARCH METHOD 41

Our last contribution consists of a set of numerical observations that can be

succinctly summarized as follows:

1. A considerable number of the studies’ data originated from interviews, obser-
vations or questionnaires (50%) revealing that most of the organizations have

difficulties to measure and analyze quantitatively their improvements.

2. Among the SPI Initiatives, requirement engineering processes stand out (20%)

and most of these initiatives have only a qualitative evaluation.
3. Large organizations represent the major part of SPI reports (38%).

4. CMM/CMMI and IDEAL |[McFeeley, 1996] are the most frequently used im-
provement models (34%) and process improvement implementation guide (9%),

respectively.

5. The major part of the SPI research originates in Scandinavia (26%) and in the
rest of Europe (37%), followed by America (17%), Asia (9%) and Oceania (4%).

4.2 Research Method

A Systematic Literature Review (SLR) consists of three main phases: planning, con-
ducting and reporting the review [Kitchenham, 2004|. In this section we summarize the
review protocol that was produced during the planning phase. This protocol was con-
structed based on established methods for carrying out systematic literature reviews
|[Kitchenham and Charters, 2007; Kitchenham, 2004]|. This review protocol consists
of the description of the following stages: research questions specification, case study
roles definition, electronic databases selection, search string definition, study selection,

quality assessment, and data extraction and synthesis.

4.2.1 Research Questions

The main goal of this study is to investigate the actual SPI results described in the
literature and the data that support their value. To address this research aim, we

defined a set of research questions. The high-level research question of this study is:
What are the realities of SPI initiatives?

This research question was then refined into four groups of questions shown in

Table 4.1, which guided the literature review.

42 CHAPTER 4. SPI INITIATIVES AND RESULTS

Table 4.1. Research questions and motivations.

Research question

Motivation

Which are the most common reasons for organizations to
implement SPI initiatives? (e.g. improve process visibil-
ity, increase profit or enlarge market share)

One relevant step for the analysis of these studies is to
first identify the motivation for SPI initiatives. This is
important to establish the connection among reasons,
measurements and the analyses carried out by organi-
zations.

Which reference/assessment models the organizations
adopted? (e.g. CMMI, ISO/IEC 15504, ad hoc)

The analysis of the models, standards and approaches
are essential to understand how organizations carry out
their SPI initiatives, what steps they follow, and how the
results are evaluated.

What are the main aspects that are measured in SPI
initiatives? (e.g. productivity, quality, ROI or market
share)

This question provides an underpinning aspect to evalu-
ate the “order of magnitudes” of the improvements.

What are the lessons learned with the SPI initiatives?

What are the main problems? What are the main prob-
lems during the different phases of a cycle? What are the
main problems during the different cycles? What are the
usual solutions?

These questions are essential to categorize improvements
and bind problems and solutions in a contextualized set-
ting.

4.2.2 Case Study Roles

We assigned specific roles to the team members in order to perform the systematic

review as follows:

e SLR supervisors: They are responsible for providing the resources to the SLR

Research Team, reviewing the protocol and the final results. They also ensure

that the Research Team collects the required information.

e SLR Team Leader (TL): TL is responsible for constructing the SLR Protocol

document.

e SLR Research Team (RT) member: RT member is responsible for executing

the SLR process (identification of the primary studies and data extraction) and

documenting the results.
The team was as follows:

e SLR supervisors: Three professors;

e SLR Team Leader: The author of this thesis;

e SLR Research Team members: The research team involved several students with

a core group of three students.

4.2. RESEARCH METHOD 43

4.2.3 Data Sources

The primary studies of this SLR were obtained from searching electronic databases
that met the following criteria: (i) The databases contain peer reviewed Software
Engineering journal papers and conference proceedings; (ii) the databases have a search
engine with an advanced search mechanism that allowed keyword searches; (iii) the
databases provide the access to full text documents; and (iv) the databases were used
in other Software Engineering systematic reviews.

The resulting list of databases that we searched was:

ACM Digital Library (http://portal.acm.org/)

[EEEXplore (http://www.ieeexplore.ieee.org))

Wiley InterScience (http://www3.interscience.wiley.com/cgi-bin/home)

Elsevier ScienceDirect (http://www.sciencedirect.com/)

SpringerLink (http://www.springerlink.com/)

The search results were manually organized with a tool called Mendeley®. This
tool provides a combination of a desktop and a website that allowed the sharing of
information among the RT members. It also supports the automatic extraction of
document details (e.g. authors, title, and journal name) from the searched databases
into the tool database, which saved a lot of manual typing. During the stages of this
SLR, each team member had access to the work done by his colleagues, facilitating the

verification.

4.2.4 Search Criteria

Search keywords are very important for the quality of the retrieved results, so they
must be chosen carefully. In our study, these keywords were based on a technique
called PICO (Population, Intervention, Comparison and Outcomes) [Kitchenham and
Charters, 2007|. The first Search String (SS) derived from the research questions that
includes the keywords identified from the PICO criteria was: software AND “process
improvement” AND empirical (SS1).

In order to validate the SS1 we conducted a pilot project in two steps. Since we
were expecting to retrieve articles that were not related to our target (false-positives),

our concern was related to false-negatives, i.e. articles related to our target but not

Shttp://www.mendeley.com /

44 CHAPTER 4. SPI INITIATIVES AND RESULTS

retrieved with the search strings. In the first step, we carried out a manual search in two
journals: Journal of Systems and Software and Information and Software Technology
from 2005 to 2009, and compared these results with the automatic search results. In
the second step, we evaluated the SS1 and three other search strings: software AND
“process improvement” (SS2), “software process improvement” AND empirical (SS3),
“software process improvement” (SS4). Our goal was to make sure that we have chosen
an appropriate search string. We compared the results of automatic search among
these search strings. Since valid studies [Damian et al., 2002] and [Kautz et al., 2000]
were not found by the SS1, SS3 and SS4, we decided to use a broaden string SS2 that
probably would not eliminate papers that are essential to our research. So, our search

string is:
software AND “process improvement”

We considered publications’ date ranging from 1999 to 2009. In an area where
there were so many radical changes in a few years (e.g. agile methodologies), we did
not want to go back too many years in our search in order to avoid factors that have
been relevant before but are not relevant anymore. Therefore, our SLR dates back to
1999.

4.2.5 Study Selection

By following the steps prescribed by Kitchenham and Charters [2007], we established a
multistage process consisting of four steps with different review processes as described

below.

e First step: The goal of this step is to remove duplicate and irrelevant papers. It
was carried out evaluating only the title of the papers. For each database, two RT
members were assigned. The TL coordinated the allocation of each researcher.
One RT member was responsible for the separation of the papers (included and
excluded ones) based on the title selection criteria. Another RT member was
responsible for the inspection of the excluded list of papers, more specifically,

this RT member verified if some paper was eliminated incorrectly.

e Second step: The goal of this step is to eliminate papers for which the abstract
has no relationship with any of the research questions. The papers were assigned
at random to one RT member by the TL. Another RT member was responsible
for the inspection of the excluded list of papers, more specifically, the RT member

verified if some paper was eliminated incorrectly.

4.2. RESEARCH METHOD 45

e Third step: The goal of this step is to eliminate papers by scanning through the
full text in order to check whether the inclusion or exclusion criteria were met.
Two RT members were assigned to each paper. All disagreements were discussed

and if it persisted the TL or the supervisors were contacted to give an opinion.

e Fourth step: The goal of this step is to exclude remaining duplicated works
and analyze the papers thoroughly in order to extract data from the ones that
met the inclusion criteria. In this stage, a full text analysis was performed on 91
papers and the quality of the studies was further assessed. Two RT members were
assigned to each paper. All disagreements were discussed and if they persisted

the TL or the supervisors were contacted to give an opinion.

The inclusion and exclusion criteria shown in Table 4.2 were used to narrow the
search to relevant papers. Papers that address SPI initiatives and present explicit

results of their deployment were included.

Table 4.2. Inclusion and exclusion criteria.

Criterion Description

Inclusion Papers mainly focused on SPI initiatives which contain explicit results of the process
improvement, i.e. the improvement was implemented and the results were described.
Publications/reports for which only an abstract or a PowerPoint slide show are avail-
able.

Short papers, editorials, posters, position papers, introductions of keynote, workshop,
mini-tracks, special issues, or tutorials.

Studies that are based only on expert opinion, i.e. it is merely a “lessons learned”
report based on expert opinion (it is not a research paper).

Studies presented in languages other than English.

Studies not related to any of the research questions.

Studies whose findings are unclear or ambiguous (i.e. results are not supported by
any evidence).

Studies external to Software Engineering field.

Duplicated studies of the same work. When there is more than one study related
to the same work, we included the most complete version and excluded all the other
ones.

Studies containing unsupported claims or frequently referring to existing work without
providing citations.

Studies that present tool evaluation, methodology experimentation or process imple-
mentation in an organization without an SPI focus.

Studies that describe an SPI initiative with no practical application in an organiza-
tion.

Studies that focus on an evaluation of an SPI assessment method /standard and there
is not enough description of the improvement initiative (e.g. only the assessed CMMI
Level before and after the improvement).

Studies that do not describe explicit results of the improvement initiative.

Exclusion

Figure 4.1 depicts the SLR steps and the number of papers identified at each one.

46 CHAPTER 4. SPI INITIATIVES AND RESULTS

Initial search

Exclusion

n=7770 based on titles

Step I — — — — — — — — Exclusion based
P on abstracts
Exclusion based
on a quick scan
xclusion based on
Stepl— —— —— — - — full text & Exclusion
of duplicated studies

Figure 4.1. SLR steps.

4.2.6 Quality Assessment

During a systematic review, it is crucial to assess the quality of the studies in order to
minimize bias and maximize internal and external validity [Kitchenham and Charters,
2007]. We created our quality assessment form based on checklists and guidelines from
three other works [Dybéa and Dingsgyr, 2008; Host and Runeson, 2007; Runeson and
Host, 2009].

Two RT members assessed independently each of the 91 papers that remained
after step four, following the 11 quality assessment criteria. Table 4.3 presents a sum-
mary of the quality assessment criteria applied in this SLR. These criteria, similarly
to the ones in Dyba and Dingsgyr [2008], cover four aspects of quality that are critical

when examining research papers.

e Reporting: It is related to the quality of reporting the goals, context, and purpose
of the SPI initiative. (Questions 1-3)

e Rigor: It is related to the appropriateness of the approach applied to study the
SPI initiative. (Questions 4-7)

e Credibility: It is related to the assessment of the confidence in the study’s
methodology for ensuring that the results were valid and meaningful. (Ques-
tions 8-10)

e Relevance: It is related to the use of the SPI findings by the software industry

and the research community. (Question 11)

These 11 criteria provide a measurement that guides the interpretation of stud-

ies’ findings and determines the value of their contribution to this SLR. The scoring

4.2. RESEARCH METHOD 47
Table 4.3. Quality assessment criteria.
Number| Question Issue
1 Is there a clear statement of the aims of the research? Reporting
2 Is there an adequate description of the context in which the | Reporting
research was carried out?
3 Is it clear the purpose of the SPI initiative? Reporting
4 Was the study research design appropriate to address the aims | Rigor
of the research?
5 Were threats to validity analyses addressed in a systematic way? | Rigor
6 Does the paper make explicitly a mention to the possibility of | Rigor
bias?
7 Were the study cases appropriate for the study? Rigor
8 Were the data collection procedures sufficient for the purpose | Credibility
(data sources, collection, storage, validation)?
9 Were the analysis procedures sufficient for the purpose? Credibility
10 Are the findings (positive and negative) presented? Credibility
11 Are the results useful for another organizations or researchers? | Relevance
procedure consists of a three scale criterion: Yes (1), Partially (0.5) or No (0). We

defined this scale because sometimes a simple Yes/No answer may be misleading. It
is not a good practice to include study quality and reporting quality scores in a single
metric [Kitchenham and Charters, 2007]. We adopted the weight of one to the report-
ing questions (1-3) and 1.5 to the other questions (4-11). Again, all disagreements were

resolved by discussions that included all RT members, TL and supervisors.

4.2.7 Data Extraction and Synthesis

The data extraction form was used to ensure the consistency and accuracy of the
information. The form contains fields derived from the research questions and from
publication data. We first piloted the extraction process on the ACM Digital Library
database. All three members of the RT reviewed the papers and extracted the re-
quired data. Then, in a consensus meeting, the RT members discussed the findings
and the improvements to be incorporated into the form. In this meeting, they ana-
lyzed the extracted information making sure that the inconsistencies and doubts were
solved. This step was to ensure that all RT members have the same interpretation
regarding the extracted data and no additional information was required. In other two
databases, Wiley InterScience and Elsevier ScienceDirect, two RT members reviewed
the papers and extracted the required data. They also met in a consensus meeting
to solve doubts or inconsistencies. For the IEEEXplore and SpringerLink databases,
one RT member reviewed all papers and extracted data. Then, the other researcher
independently reviewed and extracted data from a sample of the papers. This latter

stage is consistent with the process followed by other systematic reviews [Walia and

48 CHAPTER 4. SPI INITIATIVES AND RESULTS

Carver, 2009; Williams and Carver, 2010].

For each paper we collected data that were grouped into four categories:

e Publication-related data: digital library, title, year, source (e.g. journal or con-

ference proceedings).

e Research-related data: research methodology (e.g. case study, case study and
action research), analysis method (e.g. content analysis, statistics, grounded
theory), data analysis (qualitative, quantitative, or both), data collection (e.g.
interview, questionnaire, documentations, or observations). We followed the same
terminology used in other works [Runeson and Host, 2009; Prikladnicki and Audy,
2010; Oates, 2006].

e Organization-related data: number of organizations involved in the study, busi-
ness model (Distributed or Internal), context, size, number of employees, and
geography. The size of organization was classified according to a European guide
[Commission, 2005]. The Distributed business model involves companies that
work in global context and Internal encompasses companies where they do not

have any relationship with other divisions in another country.

e SPI-related data: motivation, reference model or standard, implementation ap-
proach, list of problems, qualitative measurements, quantitative measurements,
main topic of the SPI initiative, SPI project duration, list of proposed solutions,

main lessons learned, benefits, and success and failures factors.

The data categories along with a description are presented in Table C.1 and the
list of studies in Table C.2 (Appendix C). We synthesized the data by identifying recur-
rent themes emanating from the case studies reported in each paper. These identified
themes gave us the patterns described in the next section. This pattern coding clus-
ters related case studies’ data into smaller number of sets, allowing a more integrated

schema for analyzing the results.

4.3 Literature Analysis

4.3.1 Methodological Quality

As mentioned in Section 4.2.6, we evaluated each of the primary studies according
to 11 quality criteria (Table 4.3). The quality criteria were employed in our study to

investigate systematic differences between studies. Each study was rated independently

4.3. LITERATURE ANALYSIS 49

by two RT members. After checking if they had any discrepancies, the final score was
defined.

The studies ranged from very well organized studies in the SPI field, to very
concise ones where, in most cases, essential information for our analysis was missing.
We were not interested in stating that one SPI study is better or worse than other.
Instead, we focused on a set of issues that contribute to the quality of our research.

Almost all studies have some form of context description in which the research
was conducted, presenting the positive and negative findings of their SPI initiative. The
objectives of the research and the purpose of the SPI initiative were also described in
some way in many of the studies. For 44 of 91 studies (48%), the chosen research design
was not explained. As many as 70 of the 91 primary studies (77%) did not address
the threats to validity. As many as 38 (42%) and 55 studies (60%), respectively, did
not describe their data collection and data analysis procedures. Only 13 studies (14%)
explicitly recognized the possibility of research bias. In ten studies (11%), the aims of
the research were not properly described.

Therefore, we observed that the bias and validity were not adequately addressed;
and the data collection, data analysis and research method were often not well ex-
plained. Three studies got a full score on the quality assessment (15 points) [Napier
et al., 2009; Borjesson and Mathiassen, 2004; Anda et al., 2006] and 44 studies got
a score less than 60% (nine points). The lowest number was 3.25 (see Table C.3,
Appendix C).

4.3.2 Quantitative Analysis

In this section, we discuss the primary studies selected for an in-depth analysis. This
analysis was divided into four categories of information: publication, research, organi-
zation and SPI. Most of the papers were case studies reporting SPI initiatives in large
and small enterprises.

An important remark is that 45% of the papers present only qualitative data to
support their process improvement results. A possible reason is that many of these
organizations are not mature enough to have suitable quantitative data available from
their practices. In addition, they were not able to set measurable goals for their process
improvement effort, neither they were able to link their process improvement initiative
with their business goals. We believe that an important reason for this lack of infor-
mation is the one stated by van Solingen [2004]: “One frequent argument in software
practice is that measuring SPI’s benefits is impossible, or at least difficult”. To solve

this problem, van Solingen proposed some pragmatic solutions on how to calculate

50 CHAPTER 4. SPI INITIATIVES AND RESULTS

cost, benefits and the ROI (Return On Investment) of an SPI initiative.

A considerable amount of papers did not report the organization-related data or
the research-related data. This information may be important for other organizations
or researchers interested in a specific study. The report communicates the findings of
the study and it is the main source for evaluating its quality. Guidance for reporting

case studies can be found in Runeson and Hést [2009].

4.3.2.1 Publication-related Data

The systematic review considered a period of 10 years (1999 to 2009). In total, we
found 7770 papers as presented in Table 4.4.

Table 4.4. Distribution of studies by source.

Digital Library Number of | Relevant Selected stud-
papers studies ies

IEEEXplore 3508 (45%) 47 (43%) 37 (41%)

ACM 935 (12%) 7 (6%) 6 (7%)

Wiley Inter- | 450 (6%) 19 (17%) 19 (21%)

Science

Elsevier 987 (13%) 5 (5%) 4 (4%)

SpringerLink 1890 (24%) 32 (29%) 25 (27%)

Total 7770 110 91

After applying the exclusion criteria to the discovered papers, there were 110 rele-
vant studies. Finally, identical studies found in several sources were removed, resulting

in 91 different selected studies.

4.3.2.2 Research-related Data

The papers were classified according to the research methodology (Figure 4.2), data
analysis (Figure 4.3 and Table 4.5), data collection (Figure 4.5) and analysis methodol-
ogy (Figure 4.4). A large percentage of the studies (61%) used case study as a research
methodology, with data collection using interviews (41%), and performing qualitative
data analysis (45%). We did not find information regarding the analysis methodol-
ogy in 75% of the studies, 14% of the studies applied Statistics, 4% Grounded Theory
and 7% different types of analysis. This indicates that there is a demand for a more
thorough guidance for the SPI analysis. From the 91 studies, 50 (55%) presented quan-
titative data, however in 11 of them [Salo and Abrahamsson, 2007; Larndorfer et al.,
2009; Redzic and Baik, 2006; Freimut et al., 2005; Kikuchi and Kikuno, 2001; Nelson
et al., 2001; Calio et al., 2000; Karlstrom et al., 2005; Bibi et al., 2010; Moe et al.,

2005; Motoyama, 2006| there was not enough information to make a comparison of the

4.3. LITERATURE ANALYSIS 51

improvement gains. These 50 publications refer mostly to large organizations (22, 44%)
compared to Medium (5, 10%), Small (10, 20%), and Very Small (1, 2%). Surprisingly,
12 (24%) studies do not provide information about the size of the organization. This
is an important information to be taken into account in an SPI initiative and should
be considered when reporting it.

Multimethod
{Action

Experienc
Report
21%

Figure 4.2. Research methodology.

Qualitative
45%

Quanftitative
18%

Figure 4.3. Data analysis method.

Ground theory

Statistics
14%

Other
7%

Figure 4.4. Analysis methodology.

52 CHAPTER 4. SPI INITIATIVES AND RESULTS

Studies
L
&,
-
: Pl
b
“ I -
-
=]
(3
i
=

£ =]
5 o e &
a3 e é\
2] >
& & & ‘},59 & & e
\"~‘ & & & & & &
& Sl o’ o et
(8]
@&‘h & Q\EP
& ¢

Figure 4.5. Data collection method.

4.3.2.3 Organization-related Data

We present the main results based on the organization description found in each study.
We classified the organizations’ size according to a European guide [Commission, 2005]
where very small organizations are enterprises with fewer than 10 employees, small en-
terprises are organizations which have between 10 and 49, medium enterprises between
50 and 249, and large enterprises have 250 or more employees. Figure 4.6 presents the
distribution according to the size classification and Figure 4.7 the geographical distri-
bution of these companies. Figure 4.8 shows the distribution of organizations according
to their business model. The organizations’ descriptions provide the context for our
comparative analysis and pattern definition. Most of the studies encompass large or-
ganizations from Scandinavia and Europe, applying qualitative data analysis. Observe
that despite the fact that we have 91 studies, the total number of organizations is 123

(Table 4.5) since one study can report more than one organization.

Verysmall
3%

Unknown
25%

Medium
G

Large
38%

Figure 4.6. Distribution of organization’s size.

4.3. LITERATURE ANALYSIS 53

Not Defined

Cceania

a5 America

Eurocpe
37%

Figure 4.7. Geographical distribution of organizations.

Could be not Distributed
identified 6%

Internal
B54%

Figure 4.8. Business model.

Table 4.5. Data analysis method according to the organization size.

Organization Size | Qualitative | Quantitative | Both | Total
Very small 7 0 1 8
Small 16 2 8 26
Medium 6 1 4 11
Large 21 6 20 47
Unknown 17 7 7 31
Total 67 16 40 123

4.3.2.4 SPl-related Data

We analyze the main results of the SPI initiatives described in the primary studies. In
this section we focus on the model /standards and the improved process areas. In the
next section we present a detailed description of five process improvement patterns.
Different types of models and standards can be used by organizations in an im-
provement initiative. This may include models that guide the improvement, methods
to assess the process or organization (capability or maturity), and process reference

models. In the analyzed SPI initiatives, the most widely used models are the ones

54 CHAPTER 4. SPI INITIATIVES AND RESULTS

from SEI. CMM and CMMI have been used by 34% of the improvement efforts stud-
ies. CMM represents 23% of the reported studies and CMMI 11%. IDEAL was used
in 9% of the studies to guide improvement. Figure 4.9 shows the distribution. It is
important to underline that in most of the cases the reference models were used in

order to improve the process, not to obtain a certification, i.e. the certification was not

&
&

Figure 4.9. Approaches used by each study.

the primary goal.

Studies

I I I i :
i
o &' R R T . P P
& % & d? & S o2 d &
&t &L o o gﬁ

We searched for the information about the targeted processes in the studies.
Typically, the studies did not identify the process areas to be improved using CMMI or
other well-known models. Instead, they simply describe the process improvement areas
in an unstructured text. We decided to map these processes areas from the textual
descriptions to the process areas categorized in the ISO/IEC 12207:2008 [ISO/IEC-TR-
12207, 2008|. This international standard groups the process areas in system context
and software specific processes. The number of process areas derived from the studies
descriptions in each group is presented in Figures 4.10 and 4.11.

The literature does not provide guidance on how to count the processes areas in
an integrated context. When one study has more than one organization and the identi-
fied improvement process area is the same, we counted as one occurrence of the process
area. For instance, Study S30 conveys three case studies of different organizations all
of them related to Requirement Engineering and the corresponding processes areas in
the ISO/IEC 12207:2008 were counted once not three times. In this specific case, the
requirement engineering process improvement were interpreted as three process areas
of this international standard categorization: Software Requirements Analysis Process,
Stakeholder Requirements Definition Process, and System Requirements Analysis Pro-

Cess.

4.3. LITERATURE ANALYSIS 55

In very small organizations, 75% (6 of 8) of the improved process areas are about
Software Implementation Process, Software Maintenance process, Project Processes,
System Requirements Analysis Process, Stakeholder Requirements Definition Process,
and Software Requirements Analysis Process. In small organizations 58% (33 of 57)
of the improvements are about Software Implementation Process, Software Documen-
tation Management Process, Project Processes, System Requirements Analysis Pro-
cess, Stakeholder Requirements Definition Process, and Software Requirements Anal-
ysis Process. In medium organizations 48% (12 of 25) are about System Requirements
Analysis Process, Stakeholder Requirements Definition Process, and Software Require-
ments Analysis Process. Finally, in large organizations 54% (37 of 69) are about Soft-
ware Review Process, Quality Management process, System Requirements Analysis
Process, Stakeholder Requirements Definition Process, Software Requirements Analy-
sis Process, Project Process, and Life Cycle Management Process.

Besides the fact that the organizations’ maturity in most of the studies is not
explicit, we can infer from the analysis of the improved processes areas that large
companies are in a better position compared to small and very small companies. In
general, large companies have a defined process and some measurement methods. Only
large and medium companies provide studies about the improvement of high maturity
process (CMMI Level 4 and 5). A considerable amount of process definition and
documentation process improvement initiatives are described in the context of small

companies.

Softwars Mzintenznce Process [2
System Requirements Anzlysis Process [11
Stzkeholder Regquirements Definition Process _ 17
Mezsurement Process (NN 7
Configurstion Mansg=ment Procsss _ 5
Risk Manzgement Process [=
Froject Asszszmentznd Comtrol Process [12
Project Plznning Proczz: [1:
Project Processes _ g
Ouslity Mznzgemant Process [=
Humazn Resource Mansgement Process _ 4
Infrastructure Mznzgement Proczs: [3
Lifz Cycle Modzl Mznzgemant Process | |/
Supply Process | 2

0 5 10 15 20

Qccurrences

Figure 4.10. System Context Processes.

56 CHAPTER 4. SPI INITIATIVES AND RESULTS

Softwsre Problem Resalution Process
Software Review Process

Software Validstion Process

Software Verificstion Process

Softwsre Quslity Assurance Process
Software Configuration Management Process
Software Documentation Manzsgement Process
Software Quazlificstion Testing Process
Software Integstion Process

Softwars Construction Process

Software Detailed Design Process

Software Architectural Design Process
Software Requirem ants Anzlysis Frocess

Software Implementstion Process

0 5 10 15 0

Cccurrenoes

Figure 4.11. Software Specific Processes.

4.3.3 Qualitative Analysis

Defining the improvement steps of an SPI initiative requires an in-depth understanding
of the processes to be improved, the organizational context and the people involved
in the change. In order to share the knowledge of SPI initiatives we categorized these
studies as patterns. These patterns were derived from the literature and they consist
of a generalization of the usual elements of SPI initiatives carried out by organizations.
It is by no means a comprehensive list of pattern sources. Indeed, emphasis is placed
on the most recurrent aspects found during the literature analysis.

Software patterns became popular after the book of the “Gang of Four” [Gamma
et al., 1995]. This book shows 23 design patterns with a fixed structure and a consis-
tent representation and formatting. Various other researches have contributed to the
enhancement of design patterns. Patterns are also popular in other areas, for example,
the software and business process patterns [Stgrrle, 2001; Penker and Eriksson, 2000].

In the SPI context, patterns have been first presented by Appleton [1997] to
overcome typical difficulties of SPI efforts. In Blanco et al. [2001], the authors present
a consolidated view of business goals and the corresponding improved process area
for a group of organizations that shared the same context. The patterns correspond
to solutions (improved process areas) which address the goal. In another work, the

authors present a more detailed description of software inspection patterns that can

4.3. LITERATURE ANALYSIS 57

help the improvement of the software inspection process [Harjumaa, 2005; Harjumaa
et al., 2004]. These patterns come from the literature and they are intended to be a
well-defined list of actions that are easy to understand and follow.

We were not able to conduct a very strict aggregation of research results, e.g.
through meta-analysis or meta-ethnography [Barnett-Page and Thomas, 2009]. How-
ever, it is not our ultimate goal to compare specific techniques. In our case, more
general concepts are more relevant to analyze than detailed implementation issues. We

followed the subjective steps below in order to identify our patterns:

1. We identified common SPI initiatives in groups of “potential” patterns. By com-
mon, we mean SPI initiatives that address the same process area, in a similar

organizational context.

2. For each group of “potential” patterns found in Step 1, we evaluated the prob-
lems and solutions adopted by those initiatives, evaluating if they had some
similarities. Studies with too much diversity, for example, Project Processes

improvements, were not included.

3. Whenever there were similarities in the group as mentioned in Step 2, we selected

it as a pattern.

4. Studies in a group not having a suitable description of the initiative were excluded
from the group. For example, a study describing two initiatives and with a
complete description of only one of them, was considered only in the pattern for

which it has a complete description.

In this section, we present the five identified patterns. Each pattern is described

using the following template, derived from our research questions:
e An Overview of the pattern.
e The Studies that derived the pattern.
e The Context that describes the organizations’ common characteristics.

e The Symptoms that present a set of usual problems and difficulties, which have

been encountered before the start of the improvement initiative.

e The SPI motivation that presents the organizations’ customary targets with the
SPI initiative.

58 CHAPTER 4. SPI INITIATIVES AND RESULTS

e The Solution that lists the common strategies adopted by organizations to solve

the problems.

e The FEvaluation that describes, in general, how the organizations evaluate the

Initiative.

e The Lessons Learned that lists the consolidate lessons learned from the improve-

ment actions.

The SPI initiatives that were not so extensively reported in the literature or did
not present similarities with others will have their characteristics discussed in the next

section.

4.3.3.1 Patterns

1. Software Process Guidance

e Overview: The new defined processes needed to be effectively guided or
else only little improvement would be possible [Chrissis et al., 2006]. This
guidance happened through printed process handbooks, but now organiza-
tions are shifting towards Electronic Process Guides (EPG) [Scott et al.,
2002]. An EPG offers several advantages over a printed process handbook,
including easy access over the web for the most up-to-date version of the pro-
cess, navigation and search facilities [Kurniawati and Jeffery, 2006]. Several
EPGs are now widely available such as RMC (Rational Method Composer)
" EPF (Eclipse Process Framework) ®, and Spearmint [Becker-Kornstaedt
et al., 1999]. Using one of these technologies the process guide can be created

for different processes and sub-processes.

e Studies: [Scott et al., 2002; Valtanen et al., 2009; von Wangenheim et al.,
2006; Tuffley et al., 2004; Moe et al., 2005]

e Context: This pattern was typically employed by immature and small or-
ganizations that had an ad hoc approach to development, usually never
followed a defined development process, and the resources for process im-

provement are limited.

e Symptoms: The assessments carried out in the studies corresponding to

this pattern present the respective organizations as having a lack of internal

Thttp://www-01.ibm.com /software /awdtools /rmc/
8http:/ /www.eclipse.org/epf/

4.3. LITERATURE ANALYSIS 59

procedures and a critical dependence on key resources. In some cases, even

the existing procedures were not adequately documented.

e SPI motivation: Establishing a set of policies and procedures was the core
motivation of the organizations in these studies. In addition, the study
S57 |Tuffley et al., 2004] presented other secondary, but not less important
non-process aspects, like improve efficiency within the organization, improve
productivity, reduce development time and remove the dependence on key

resources.

e Solution: The organizations used process standards like ISO/IEC 12207 or
some other methodology to document and then personalize all phases of the
development process. During this step, most of the organizations adopted
an EPG tool in order to support the documentation activity of their process
and to provide the usage feedback. Only the study S57 [Tuffley et al., 2004]

did not specify the technology used to document the process.

e Evaluation: The measurements include the results of surveys that evaluate
the EPG tool and the documented process. Furthermore, tool usage data
was collected like the number of page hits versus time and time spent per
week per person. Since the organizations have no historical data, they were
not able to evaluate the quality of the documentation or to present some
comparison. The results show that the most accessed features of the EPG
tools were templates, checklists and examples. This is probably because
they deal directly with the tangible outputs of projects. However, some
usage trends were also observed, for example, the declining usage of the
EPG caused by process learning and by access of templates or checklists

from other sources (e.g. file server).

e Lessons Learned: The usage of the EPG tool brought about many more ben-
efits than detriments. The organizations learned that the changes should be
as small as possible in the first iterations in order to not produce a “too
heavy” process difficult to be used. The perceived usefulness is an essen-
tial aspect to current and future usage [Moe et al., 2005]. One proposal to
increase the use and benefit of an EPG is to involve all process perform-
ers in creating the process documentation [von Wangenheim et al., 2006].
In conclusion, the compatibility, ease of use, organization support and par-
ticipation were the key determinants for a successful process guidance SPI

initiative.

CHAPTER 4. SPI INITIATIVES AND RESULTS

2. Defect Prevention Techniques

e Overview: Defect prevention in the CMM and Causal Analysis and Resolu-
tion in the CMMI are focused on identifying the root cause of defects and
preventing them from recurring. Actions are expected at a project level as
well as at the organization level. One example of simple, low-cost approach
for systematically improving the quality of software is Defect Causal Analy-
sis developed by IBM [Card, 1998]. The principle of DCA is to collect defect
reports, find frequent types of defects, discuss them with local developers,

and let them suggest improved procedures.

e Studies: [Casey and Richardson, 2004; Moritz, 2009; Li et al., 2006; Lauesen
and Vinter, 2001]

e Context: This process improvement initiative was presented by medium
and large companies which defined objective goals, for instance, as delivery
quality of 0.2 defects per KLOC [Li et al., 2006]. Two of these companies
followed CMM or CMMI model to guide their process improvement [Casey
and Richardson, 2004; Li et al., 2006], rather than to achieve a specific CMM
or CMMI maturity level. A succinct description of the development process
is presented in these studies. In study S10 [Casey and Richardson, 2004], the
organization conducted a CMM-based process assessment of some selected

process areas.

e Symptoms: The organizations observed recurrent defects detected during
the development or after delivery by customers. Examples of defects include
already well-known problems of Software Engineering: incorrect bug fixes
and missing requirements. In study S22 [Moritz, 2009]|, after the analysis
of the defects detected by customers, the organization found that approxi-
mately 55% of defects were introduced by bug-fixes and not by new features
in code. In study S69 |Lauesen and Vinter, 2001|, the first major source
of defects was missing requirements and the second one was mistaken tacit

requirements (wrong solution to the requirements).

e SPI motivation: The organizations presented business related motivation,
for example, increase profitability [Casey and Richardson, 2004], better lev-
els of quality to customers [Moritz, 2009; Li et al., 2006; Lauesen and Vinter,
2001] and development of new businesses [Casey and Richardson, 2004]. One
process-related motivation was the improvement of the system test process

[Moritz, 2009].

4.3. LITERATURE ANALYSIS 61

e Solution: The solution followed by the organizations was basically the one
described in the Causal Analysis and Resolution process area of CMMI:
analysis of defect data, classification of the defects and analysis of causes,
establishment of some cost-effective prevention technique (as checklists),

training, and evaluation of effects.

e Evaluation: The organizations knew correct measurement procedures, there-
fore the studies were able to provide quantitative measurements in order to
verify the improvement results. The number of defects detected before and
after the improvement was the main measurement used by organizations to
evaluate the SPI initiatives (both defects detected during development and
by customers). Other measurements include the cost savings and the re-
duction in the project delay (time-to-market). The organizations presented
an expressive reduction in the number of defects varying from 35% in study
S22 |[Moritz, 2009] to 86% in study S26 |Li et al., 2006] and 70% in study
S69 [Lauesen and Vinter, 2001|. Study S26 [Li et al., 2006] makes a compar-
ison of the results against the business goal, and the results consisted of a
reduction of 88% in the number of defects per KLOC as well as a reduction
of 12 times (in days) of the delay to deliver the product. Considering these
results, the SPI initiative provided expressive benefits to organizations. But
in only one study it was possible to compare the effects of these changes
with business goals. However, identifying and preventing recurrent errors
have an expressive impact on quality (in terms of defects). Besides the fact
we could not identify the amount of investment in the studies, we considered

it relatively small for this type of process improvement.

e Lessons Learned: As defects were reduced and traced back to the source,
better software is produced. This allows preventive and effective actions to
be taken to stop systematic errors [Casey and Richardson, 2004]. Selecting
the best techniques involves many factors, some of them quantifiable, others
more subjective. One way to evaluate this technique is to look at the saved

rework [Lauesen and Vinter, 2001].
3. Requirement Engineering Process

e Overview: Requirement Engineering (RE) involves the elicitation, defini-
tion, analysis and management of requirements. It is often cited as one of
the most important and difficult phases of software development [Brooks,

1987|. Improvements to requirements activities can produce benefits such as

62

CHAPTER 4. SPI INITIATIVES AND RESULTS

improving quality and preventing defects throughout software development.
In our case, it comprises the Requirement Management process area of Level
2 CMMI and Requirement Definition process area of Level 3 CMMI.

Studies: [Damian and Chisan, 2006; Holmberg et al., 2009; Kauppinen et al.,
2004; Napier et al., 2009; Nikula and Sajaniemi, 2005; Kéaéridinen et al.,
2004; Higgins et al., 2002; Schmid et al., 2000; Calio et al., 2000; Sommerville
and Ransom, 2005; Borjesson and Mathiassen, 2004; Schneider, 2000]

Context: This group represents the largest number of SPI initiatives de-
scribed in the literature, with at least one article published every year. It
shows that this is still a core subject in many SPI initiatives, mainly consid-
ering that studies of immature organizations focus on this type of initiative.
The context consists of a quite broad range of organizations including very
small, small, medium and large organizations. Most of them presented low
performance capability with respect to Requirement Engineering (RE) pro-
cesses, without an RE process documentation or with a documentation dif-
ferent from the practice (i.e. not appropriate for the organization) [Damian
and Chisan, 2006; Kauppinen et al., 2004; Napier et al., 2009; Nikula and Sa-
janiemi, 2005; Sommerville and Ransom, 2005] and with a high dependence
on individuals. Most of these organizations did not follow a reference model

for their improvement. REAIMS ° was selected by three organizations and

CMM by one.

Symptoms: We can observe two different organizations groups included
in this pattern: one group represents immature organizations (Level 1
REAIMS or CMM), which did not have a defined RE process or with a
documentation different from the practice (not appropriate for the organi-
zation)(Group 1) [Damian and Chisan, 2006; Kauppinen et al., 2004; Napier
et al., 2009; Nikula and Sajaniemi, 2005; Sommerville and Ransom, 2005|,
the other group had an RE process but it still needed some adjustments
(Group 2) |[Holmberg et al., 2009; K&aridinen et al., 2004; Higgins et al.,
2002; Schmid et al., 2000; Calio et al., 2000; Borjesson and Mathiassen,
2004; Schneider, 2000]. Group 1 includes almost all small and very small or-
ganizations of this pattern, one medium and two large organizations. None
of the Group 1 organizations had a complete and documented RE process;

they typically suffered from significant requirements creep, schedule and cost

9Requirements Engineering Adaptation and IMprovement for Safety and dependability [Sawyer
et al., 1997]

4.3. LITERATURE ANALYSIS 63

overruns. They had difficulties in prioritizing task and pricing based on re-
quirements documentation. On the other hand, SPI initiatives of Group
2 focused on specific problems of the Requirement Engineering process,
for example, insufficient tool support |[Holmberg et al., 2009; Kééridinen
et al., 2004; Borjesson and Mathiassen, 2004], difficulty to trace information
[Schmid et al., 2000] or not well-founded methodological approach for the

requirement analysis [Calio et al., 2000].

e SPI motivation: The main motivation in this case is to define an RE pro-
cess or to improve a specific activity. Other important reasons to improve
the RE process include: reduce development time and effort, provide to the
clients high quality business software products and services, increase profes-
sional skills, improve documents quality, and quickly and easily determine

requirements.

e Solution: The solution followed by Group 1 includes the usage of models like
REAIMS and CMM (4 of 5 studies, 80%) to guide the RE process definition.
In Group 2 the solution was specific to each situation, but we can highlight
that some articles [Holmberg et al., 2009; Kééridinen et al., 2004; Higgins
et al., 2002; Calio et al., 2000; Borjesson and Mathiassen, 2004| describe
an implementation or use of a tool support (e.g. RequisitePro or Rational
Rose), while others [Schmid et al., 2000; Schneider, 2000] mainly present the

improvement of a specific requirement activity.

e Evaluation: In group 1, most of the data consist of the evaluation of the ma-
turity before and after the RE process improvement. In study S3 [Damian
and Chisan, 2006], quantitative data includes reduction of the number of
user product defects (45% fewer) and improvement of estimation accuracy
(55% better). In the other group, the measurements include savings (|Holm-
berg et al., 2009]), time-to-market (reduction of the slip in approx. 50%

[Higgins et al., 2002]), effort distribution and tool measurements.

e Lessons Learned: The lessons learned are mixed with the success factors
in these initiatives. The important aspects are motivation, commitment,
enthusiasm of personnel, involvement of senior engineers, close collabora-
tion between software and process engineers, adoption of an evolutionary
approach, and training. One important observation about the tools usage
is presented in study S34 [Higgins et al., 2002]: “Tools are essential for

managing requirements on an individual basis”, however “it is ineffective to

CHAPTER 4. SPI INITIATIVES AND RESULTS

introduce a requirements management tool without a process, but on the

other hand it is difficult to introduce a process without tools.”
4. Measurement

e Overview: Successful organizations implement measurement as part of their
daily activities. Measurement provides the means to make informed deci-
sions, that impact organizations’ business and performance results. It is
the main component to maintain an organization in a competitive place in
a constantly changing environment. One sign of its growing importance is
that Software Measurement has evolved into a basic practice in the Software

Engineering area, as evidenced by the inclusion in Level 2 of the CMMI.

The improvement of a measurement process provides a more accurate de-
scription of the current status of the process and products, therefore im-
proving the visibility and the ability to assess (measure) the processes. Such
visibility enables stakeholders to identify processes’ performance deficiencies

and to take actions to improve then.

e Studies: [Iversen and Mathiassen, 2003; Larndorfer et al., 2009; Becker et al.,
2006; Coman et al., 2009; Frederiksen and Mathiassen, 2004]

e Context: This process improvement initiative is presented by three large
organizations |[Iversen and Mathiassen, 2003; Larndorfer et al., 2009; Fred-
eriksen and Mathiassen, 2004|, one small organization [Coman et al., 2009|
and one with unknown size |[Becker et al., 2006]. The models used are GQM,
IDEAL and CMM. The process context was scarcely presented in these stud-
ies. The study S77 [Frederiksen and Mathiassen, 2004| was the only one that
described how the measurement process operates in the organization, mak-

ing pre and post comparisons of the measurement program.

e Symptoms: The organizations already collected some of their project data,
however they reported a lack of standards; metrics were not used to make
informed decisions about future initiatives; some metrics and measurements
definitions were not clear; data interpretation was not trivial, requiring more
elaborated insights; and there was no managerial response based on the

metrics collected.

e SPI motivation: The primary objective of the organization in study S77
[Frederiksen and Mathiassen, 2004] was to increase quality and productiv-
ity. Therefore, it did not state the process-related reasons (if we ignore the

alleged to improve in order to improve) for the process change as in the

4.3. LITERATURE ANALYSIS 65

other studies, e.g. increase process transparency |Larndorfer et al., 2009|
and make the process measurable [Iversen and Mathiassen, 2003; Larndor-
fer et al., 2009; Coman et al., 2009]. Other reasons to implement metrics
program consist of the achievement of CMM maturity Level 3 [Becker et al.,
2006|, improvement of the estimation accuracy |Larndorfer et al., 2009], en-
hance the ability to plan |Larndorfer et al., 2009|, stay competitive, and
provide more accurate information to all stakeholders |Larndorfer et al.,
2009; Coman et al., 2009].

e Solution: The solution consists of the definition of activities to be carried
out during the measurement program and the establishment of the infra-
structure to support them. For instance, creation of the organizational
repository for software development artifacts, usage of a tool to automate
the collection, representation of the project quantitative data in a standard

way, and providing support to the process analysis.

e Evaluation: The evaluation was mainly conducted through interviews and
observations of the measurement results, i.e. mainly through qualitative
data. The study S77 |Frederiksen and Mathiassen, 2004] was the only one
that make a pre-post comparison of the program costs, showing a reduction
of 57%. The other quantitative data provided by study S27 [Becker et al.,
2006] consisted of secondary effects of the measurement program, for exam-
ple, increasing defect removal efficiency from 82 to 93% and reducing the

delivered defects density per function point from 0,21 to 0,15.

e Lessons Learned: Across the set of studies, we identified common themes

that contributed to the projects’ success, such as the following;:

— Establish a project: It is recommended to setting solid objectives and
plans for the measurement program [Iversen and Mathiassen, 2003].

— Commitment: It is essential to involve all stakeholders from the very
beginning in the process improvement initiative to gain support from
them |Larndorfer et al., 2009; Frederiksen and Mathiassen, 2004]. This
can be done by ensuring data privacy, giving developers the access to
information collected, giving the full control over their data, and taking
into account developers’ suggestions [Coman et al., 2009]. It is impor-
tant that those who report the data feel safe that data will not in any
way be used against them [Iversen and Mathiassen, 2003].

— Facilitate debate: Establishing a clear organization-wide terminology

leading to understandable measurements [Larndorfer et al., 2009]. It

66

CHAPTER 4. SPI INITIATIVES AND RESULTS

is vital that the development organization be given the opportunity to
provide feedback on the quality and relevance of the metrics program
[Iversen and Mathiassen, 2003; Coman et al., 2009].

— Start simple: Simple measurements are better than complex ones.
Therefore, focus should be on a few simple and high-quality measure-
ments that are frequently consulted, rather than to produce an excessive
variety of metrics that no one uses [Iversen and Mathiassen, 2003; Larn-

dorfer et al., 2009].
— Publish widely: It is important that all stakeholders have access to

the data, as well as informing about the importance of the data they
provided and showing the results obtained from the measurement pro-
cess [Iversen and Mathiassen, 2003; Coman et al., 2009].

— Use the data: Measurements should be useful in everyday activities
[Coman et al., 2009|. “If the data are not used to gain insight and as a
basis for making corrective actions the metrics program will soon degen-
erate into a bureaucratic procedure that merely adds to the overhead
of developing software without contributing to the continuous improve-

ment of the software operation.” [Iversen and Mathiassen, 2003|

— Verify the program: The measurement data should be sufficiently
accurate to support fruitful discussions [Iversen and Mathiassen, 2003].
Broad discussions serve to both critically evaluate the metrics program
and as an important element in understanding the data and results.
Numbers are not absolute truths, therefore it is vital that the data and
their quality are discussed among those involved in and affected by the

metrics program [Iversen and Mathiassen, 2003; Coman et al., 2009].
5. Quantitatively Managed Process

e Overview: Quantitatively managed process comprehends the concepts de-
picted in CMMI Level 4. In this pattern the processes are controlled using
statistical or other quantitative techniques. The organization establishes
quantitative objectives for quality and process performance, applying them
as criteria in managing the process. The final goal is to produce desired

results and achieve customer satisfaction.

e Studies: [Zhao et al., 2008; Redzic and Baik, 2006; Li, 2007; Gou et al.,
2008; Russ et al., 2008; Murugappan and Keeni, 2003; Card et al., 2008]

4.3. LITERATURE ANALYSIS 67

e Context: This type of process improvement initiative is presented by
medium and large companies that followed CMM/CMMI [Gou et al., 2008;
Murugappan and Keeni, 2003; Card et al., 2008] or Six Sigma |[Zhao et al.,
2008; Redzic and Baik, 2006; Russ et al., 2008; Murugappan and Keeni, 2003|
and DMAIC [Zhao et al., 2008; Redzic and Baik, 2006; Russ et al., 2008|
as a guide to the process improvement implementation. While the studies
S83 [Murugappan and Keeni, 2003] and S85 [Card et al., 2008| describe the
process improvement steps of the organizations to high-maturity practices,
other studies provide a very short description of their current organizational
development processes [Redzic and Baik, 2006; Gou et al., 2008; Russ et al.,
2008| or did not describe them [Zhao et al., 2008; Li, 2007].

e Symptoms: Almost all studies report problems related to the defect rates
detected during development or after delivery: poor reviews efficiency [Russ
et al., 2008; Murugappan and Keeni, 2003], systematic errors detected by
customers [Zhao et al., 2008; Redzic and Baik, 2006], instable processes [Li,
2007, and undefined control points [Gou et al., 2008]. One study |[Russ

et al., 2008] focuses also on the inefficiency of knowledge retrieval.

e SPI motivation: The main motivations consist of achieving a maturity level
of CMMI [Redzic and Baik, 2006; Li, 2007; Card et al., 2008|, applying Six
Sigma [Murugappan and Keeni, 2003|, reducing the number of defects [Zhao
et al., 2008; Redzic and Baik, 2006; Russ et al., 2008] and increasing retrieve
effectiveness |[Russ et al., 2008|.

e Solution: The common solution is to apply the DMAIC |Zhao et al., 2008;
Redzic and Baik, 2006; Russ et al., 2008] methodology to define problems,
measure the aspects of the process, analyze the data, optimize the current
process and control the process to avoid deviations from the target. The
control is implemented through statistical techniques |[Zhao et al., 2008;
Redzic and Baik, 2006; Li, 2007; Russ et al., 2008; Murugappan and Keeni,
2003; Card et al., 2008|.

e Evaluation: The studies collected a wide diversity of measurements such as
cost, time-to-market, estimation accuracy, process quality, product defects,
effort, knowledge retrieve efficiency and ROI, executing statistical analysis.
The percentage of improvement includes a diversity of values from reducing
failure costs in 80% [Murugappan and Keeni, 2003|, increasing knowledge
retrieval in 37% [Russ et al., 2008| and reducing defects density in approx.
99% [Card et al., 2008].

68 CHAPTER 4. SPI INITIATIVES AND RESULTS

e Lessons Learned: The application of the statistical techniques improves de-
cision making by making the results more objective, visible, repeatable and
bounded [Card et al., 2008]. However, the quality of data is often not ade-

quate to establish any firm conclusion [Russ et al., 2008].

4.4 Discussion

4.4.1 Research Questions

This section discusses what results of the SPI initiatives say about our research ques-

tion:
“What are the realities of SPI initiatives?”

We summarize and discuss important findings considering the main and the re-

fined research questions.

#1 Which are the most common reasons for organizations to implement SPI

Initiatives?

We had extracted text sentences containing information describing the motiva-
tion behind the launching of an SPI initiative. Then we classified these sentences in
categories as shown in Table 4.6. Some of these categories were based on process char-
acteristics [Staples and Niazi, 2008; Sommerville, 2011] and others on product quality
attributes [ISO/IEC-TR-9126, 2001|. Even though this is a non-process related issue,
reduction of defect rates is the main motivation for SPI initiatives. Evaluating the pat-
terns, we also observed that, when not considering the circular SPI reasoning [Staples
and Niazi, 2008], most of the patterns also did not present process-related reasons. The
only pattern that presents more process related reasons is “Software Process Guidance”
(the one involving process documentation). These motivations are consistent with the
measurements that organizations used to verify and communicate their results (Table
4.7). Staples and Niazi [Staples and Niazi, 2008] also observed that the main moti-
vations for adopting CMM-based SPI approaches are the product quality and project
performance such as productivity, developing time and cost. Unfortunately, not all
studies stated the organization business goals and needs of the respective SPI initia-
tive. Indeed, a key success factor for SPI consists of a clearly defined initiative oriented

by strategic business needs [Dybéa, 2005].

#2 Which reference/assessment models the organizations adopted?

4.4. DISCUSSION 69
Table 4.6. Reasons for launching an SPI initiative.
Group Motivation Description Frequency
Unclear Not stated A not defined reason. 2
Defects Reduce the number of defects detected after delivery. 16
Service Qual- | Improve the effectiveness of service delivered to the customer. 2
Product ity
Reusability Improve the capability to use again specific functionalities. 2
Usability Increase the capability of the software product to be understood, | 2
learned, used and attractive to the user.
Maintainability| Improve the capability to modify the software. 2
Development Improve the quality during development (e.g. reduce the number | 14
quality of defect).
Time-to- Reduce the time needed to deliver the product. 12
Project market
Costs Reduce the costs required to deliver the product. 10
Estimation Reduce estimation errors. 6
Accuracy
Productivity Increase the team performance. 5
Effort Reduce the effort required to develop the software. 5
CommunicabilifyImprove the capacity of communication among the team mem- | 3
bers.
Customer sat- | Increase the satisfaction in relation to the organization and the | 9
Organizatio isfaction products.
Market share Enlarge market share. 5
Competitiveness Increase the ability and performance of the organization in a | 3
given market.
Profit Increase the profit margin. 2
Process Im- | Improve or define a specific process (“circular’ reasoning). 35
provement
p . Conformance | Satisfy models (CMM, CMMI), standards (ISO 9000, ISO 9001) | 21
rocess -
or other specific frameworks.
Consistency Increase process consistency in different groups of the organiza- | 8
tion.
Measurability | Develop the ability to measure the process. 3
Documentation| Create a process documentation guidance. 3
Visibility Improve the transparency of development process status. 2
People Motivation Increase individ}lals’ enthusiasm, . 3
Knowledge Increase professional and organizational knowledge. 2
Others Other reasons | Other reasons that were not classified in one item above, e.g. | 7

improve knowledge retrieval and tool consistency, and reduce
integration delay.

The CMM/CMMI were the most reported reference model adopted by organi-

zations. They were reported in 31 studies, applied by organizations of all around the

world, including eight studies in America, seven in Europe, six in Asia, two in Oceania
and two in Scandinavia. The ISO 9001 and ISO 15504 standards were adopted by three

organizations in America, three in Europe, one in Scandinavia and one in Australia.

These results show that the application of the SEI models and ISO standards are not
restricted to some location, e.g. CMM/CMMI in North America, and ISO standards

in Europe.

#3 What are the main aspects that are measured in SPI initiatives?

70 CHAPTER 4. SPI INITIATIVES AND RESULTS

In the studies, a restricted number of measurements was selected to monitor
the results of the change. Table 4.7 depicts the main measurements performed in
the quantitative case studies. This table shows that quality, translated as number of
defects, is the most measured attribute, followed by effort and cost. In most of the
cases, the side effects of the improvement in other measurements were not considered.
Thus, the focus on a restricted measurement set may obfuscate the actual effects of the
SPI in the organization’s measurements. The restricted number of measurements can
be interpreted in several ways. It can be interpreted, for example, that the companies
are not willing to provide information that could be used by competitors, but for
this specific case we noticed that the studies would use, in general, an indication of
“information withheld”. Our interpretation is that the companies have difficulties to
measure and analyze quantitatively their improvement.

During our analyses, we observed that it was not possible to make a more accurate
comparison among the studies due to the diversity of contexts of the SPI initiatives,
the different measurement units, and the lack of the information about the amount
of investments and benefits assigned to the SPI initiatives. In order to check the
improvement percentage, we arbitrarily aggregated them in categories: less than 5%,
between 5 and 35%, between 36 and 50 %, between 51% and 70%, between 71% and
99% and 100%. The measurements used in the studies are depicted according to their
category in Figures 4.12 and 4.13, except for the categories “Others”, “Tool measures”,
“Savings”, “ROI” and “Profit”. These last categories are not depicted due to the fact that
they are not commonly used in SPI evaluations. The category “Others” are a mixture
of items. The category “Tool measures” have dissimilar measures such as access rate
and storage volume. Typically, the studies of category “Savings” provides only the
amount of money accrued from the improvement. The category “ROI” provides the
ratio of investments and only study S39 provides the improvement percentage of the
“Profit” category.

We observed that the Process quality and Product defects measurements have
higher improvement percentages (greater than 71%) (Figure 4.12). The frequency of
these measurements and their positive benefits indicates that they are widely used to
improve visibility of the SPI results to the practitioners and managers. Only in four
studies we observed improvements of 100%, one in Productivity [Sutherland et al., 2008],
two in Process quality |Rautiainen et al., 2003; Kenni, 2000|, and one in Estimation
accuracy |Rautiainen et al., 2003|. Although the studies used some measurements,
there are doubts about their validity. Considering, for example, the Process quality
and Product defects, some studies compared only the number of defects that have not
been normalized by the size or LOC (lines of code) [Becker et al., 2008; Karlstrém and

4.4. DISCUSSION 71
Table 4.7. SPI measurements.
Measurement Description Studies Frequency
Product Represent the number of defects detected | S3,S7, S15, 516, S19, S22, 526, S28, | 21
defects after delivery. S29, S32, S36, S39, S45, S46, S47,
S58, S65, S71, S72, S85, and S90.
Process qual- | Indicate the quality of the development | S5, S7,S19, 523, 524, 526, S35, S48, | 18
ity process, including the number of defects | S61, S65, S69, S71, S72, S78, S82,
and the effectiveness of quality activities | S86, S89, and S91.
(test, review) in detecting defects.
Effort Represent the effort to perform an activity. | S4, S5, S16, S24, S40, S45, S47, S48, | 16
S55, S56, S58, S65, ST72, S78, S82,
S91
Cost Depict the monetary resources needed to | S5, S7,S24, S29, S36, S46, S56, S77, | 11
complete the software development. S83, S85, and S90.
Estimation Consist of the difference between the | S3, S15, S28, S46, S49, S65, S71, | 9
accuracy planned and the real value. S83, and S91.
Time-to- Represent the length of time that the soft- | S2,S7, S26, S34, S46, S54, S71, S83, | 9
market ware product takes to be available to cus- | and S90.
tomers.
Customer sat- | Represent the customer satisfaction in re- | S6, S7, S39, S46, S65, and S90. 6
isfaction lation to the organization and the prod-
ucts.
Productivity Indicate a measurement of the technical ef- | S5, S7, S24, S29, and S&9. 5
ficiency of the development team.
Savings Describe the amount of money that | S9, S22, S55, S61, and S83. 5
is saved during the development cycle,
through for example, reducing recurrent
defects.
Tool measures | Include operation measurements of a par- | S1, S18, S67, S70, and S78. 5
ticular tool (which cannot be mapped on
the previous measurements), e.g. number
of requirements mapped into a tool, num-
ber of access to some information stored in
a tool.
ROI Represent the SPI’s Return On Investment | S1, S7, S12, and S72. 4
(ROI). It is calculated by dividing a finan-
cial representation of the benefits by a fi-
nancial representation of the cost.
Profit Represent the different between the pur- | S7, S39, and S89. 3
chase price of the software product and the
development costs.
Others Group all other measurements that are not | S2, S6, S7, S32, S47, S54, S56, S71, | 10

part of any of the above measurements and
that are presented as a result of the SPI
initiative (e.g. number of change requests,
the degree of parallelism during develop-
ment, and number of documents).

S78, and S83.

72 CHAPTER 4. SPI INITIATIVES AND RESULTS

30

25 7

20 +

= 100%

15 7

W 71-59%
W51-70%
10 4
W 36-50%
m5-35%
57 I - 0-43%
o .
O
Q 1&{- 0‘ <

= E}'

& &

& {\ 5 & 4 1@5‘
& & Q‘o bo(,

& & <° < @é?p ods‘
& @""L

Figure 4.12. Distribution of the improvement percentage across measurements.

30

25

20
15
10
5
i) _

5-35% 36-50% 51-70% 71-55% 100%

#Measurements

Figure 4.13. Distribution of the number of improvement percentages in each
category.

Runeson, 2005] and they do not discuss the defect severity [Harter et al., 2011]. In
addition, it was not possible to assign the improvement solely to the process changes
[Sutherland et al., 2008] or the comparison occurs between projects that may not be
considered similar. Finally, as presented in Section 4.3.1, most of the studies did not
analyze possible biases and threats occurred during SPI initiatives, e.g. changes in the

organization or team size.

4.4. DISCUSSION 73

#4 What are the lessons learned with the SPI initiatives? What are the main
problems? What are the main problems during the different phases of a cycle? What

are the main problems during the different cycles? What are the usual solutions?

This information is particular to the SPI initiative and organization context.
As we have seen in the previous section, we were not able to generalize all the SPI
problems, solutions and lessons learned. Therefore, we focused on a set of five patterns
that are recurrent in the studies.

At closer examination of the results, it is possible to observe that, with exception
of a few SPI studies [Kééridinen et al., 2004], most of them reported successful initia-
tives. However, this issue is considerably more complex. A success or failure in SPI
initiatives depends on the viewpoint of the practitioners involved in the improvement.
The same process improvement can be a success from one viewpoint and a complete
failure from another [Johansen and Pries-Heje, 2007|. Thus, different perspectives
should be taken into account when evaluating the results. The majority of the studies
analyzed the process improvements considering only one viewpoint. This indicates a
shortcoming in the applied methodology. In addition, as we discussed in question #3,
the SPI studies have an inclination to present only a restricted number of positive
measurements, not considering important implicit relations. This confirms again the

difficulty of the companies to measure and analyze quantitatively their improvement.

4.4.2 Guidance for Reporting SPI Initiatives

With respect to research papers addressed by this SLR, a relatively large number of
studies did not report in a clear and defined way the business motivations, context,
data collection and analysis of the SPI initiatives. There are many guidelines [Host and
Runeson, 2007; Runeson and Hést, 2009; Shull et al., 2008; Kitchenham et al., 1995,
2002] for conducting and reporting Software Engineering empirical research. However,
we were not able to find general guidelines for reporting SPI initiatives. We decided to
reinforce some important aspects that are not well represented in these papers, which
we believe can be useful in future researches.

SPI motivations should have a business orientation: One ultimate target
of any change program is to be in accordance with the business needs [Beer et al.,
1990]. Studies indicate that an SPI program driven by business needs has a strong
chance of success (e.g. |[Dyba, 2005; Brodman and Johnson, 1995|) (as discussed in
Section 4.4.1). Therefore, this is an important information that should be collected

during the goals definition. In the analyzed papers, even in mature organizations, very

74 CHAPTER 4. SPI INITIATIVES AND RESULTS

few studies provided such information.

The context should be clear and defined: In order to reuse and draw valid
conclusions of SPI studies it is important to define the context where the initiatives
happen. In our analysis, nine studies (10%) did not describe the context and 32 (35%)
described partially the context where the SPI was carried out. Petersen and Wohlin
[Petersen and Wohlin, 2009] structure the context for empirical industrial studies, pro-
viding a checklist to aid researchers during the selection of the context information.
Besides the six different context facets proposed by them (product, processes, practices
and techniques, people, organization and market), in the SPI case, it is also important
to provide information about the pilot project where the change will be carried out,
such as estimates of productivity, cost and schedule, making, therefore, comparisons
feasible.

The overall SPI initiative description should be reported: In order to
reuse or adapt the SPI experience to different contexts, we judge it essential that
researches describe the following items: the improved process area, the duration of
the SPI initiative, the investments in the improved process, the problems detected
before and during the execution, the proposed solutions, the applied reference model
(e.g. CMM or ISO), the improvement guides (e.g. IDEAL), the assessment methods
(e.g. SCAMPI), the measurements, lessons learned and a comparison between the
costs and benefits (e.g. ROI). Since measurement is a central point in evaluating the
SPI program, we will discuss it again in the next item. With the exception of the
investment information and the analysis of costs and benefits, most of these items were
presented, to some extent, in the studies.

The data collection and analysis should be clearly reported: When we
evaluated the studies, a considerable number either did not present or presented insuf-

ficient information about the data collection and analysis (Table 4.8).

Table 4.8. Quality of data collection and analysis.

Not stated | Insufficient information
Data collection | 38 (42%) 25 (27%)
Data analysis 55 (60%) 12 (13%)

Since the measurement is considered an important step to evaluate, communicate
and assist the ongoing change [Dyba, 2005], a better definition, collection and analysis
will permit a deeper understanding of the studied phenomena. Therefore, it will be
possible to make more elaborate comparisons and analyses. Another problematic aspect

is the quality of the raw data used to support the findings. One way to reduce the

4.5. RELATED WORK 75

effects of poor data quality is to execute data triangulation. The analysis of multiple
data sources (triangulation) will help the data interpretation [Dyba, 2005]. Finally,
the analysis of the results from different viewpoints is essential to make more general
conclusions about the SPI success or failure rates [Johansen and Pries-Heje, 2007].

The validity of the study must be analyzed: The validity denotes to what
extent we can trust on the results, since they can be biased by the researches’ point
of view [Dyba, 2005]. The studies have serious limitations in terms of validity and
credibility of their findings. Very few analyzed the bias (13 studies, 14%) or addressed
the threats to validity (21 studies, 23%). This problem has also been detected by other
SPI studies |Unterkalmsteiner et al., 2012; Staples and Niazi, 2008|.

4.5 Related Work

Researchers are aware of the importance and the challenges involved in the literature
search. They have conducted SLRs in order to gain a comprehensive view of the avail-
able evidence in the SPI field, as well as in different disciplines of Software Engineering.
Table C.4 (Appendix C) summarizes a comparison among five SLRs that we identified
in the SPI area.

In the work of Unterkalmsteiner et al. [2012], the goal is to identify and charac-
terize the evaluation and measurement strategies used to assess the impact of different
SPI initiatives. The “pre-post comparison” (i.e. the before and after SPI implemen-
tation comparison) was the most common evaluation strategy used to assess the SPI
initiatives. They also found that CMM is the most reported framework and the process
quality is the most measured attribute. Their results support the findings of insuffi-
cient evaluation of potential confounding factors in SPI studies. As for the selection
of primary studies, our work covered 1999-2009, a different set of the 1991-2008 time
frame considered in their work. In addition, the difference between the search strings
and research questions emphasizes the distinct scope of their study and ours. When
comparing their selection with ours we found 23 in 110 overlapping articles. Recall
that despite a final counting of 91 studies our search identified 110 relevant studies as
mentioned in Section 4.3.2.1. Besides these distinctions, we found some similar results
mainly regarding the measurements used, frameworks’ type and the common problems
found in these types of reports: incomplete context descriptions and lack of the threats
of validity and bias analysis.

Pino et al. [2008] provided a literature review of SPI in small and medium soft-

ware enterprises. Among the usual search databases, they also included grey literature

76 CHAPTER 4. SPI INITIATIVES AND RESULTS

(Proceedings of the First International Research Workshop for Process Improvement
in Small Settings). Since, we used the same guide to classify organizations’ size [Com-
mission, 2005|, we can say that our work has a broader scope. “Project management”
is the most improved process area and, again, CMM is the most used reference model
in these companies. When comparing their selection with ours, including the papers
that we considered identical (110 papers in total), we found 17 overlapping articles.

Sulayman and Mendes [2009] identified existing SPI models and techniques used
by small and medium Web companies. They identified four studies, including one
master thesis. The results did not suggest any specific model or technique to measure
the results of the SPI in Web companies.

In Miiller et al. [2010], the authors evaluated the SPI publications with a main em-
phasis on organizational change. They use Gareth Morgan’s organizational metaphors
Morgan [1996] as analytical approach: machine, organism, brain, culture, political sys-
tem, psychic prison, flux and transformation and instrument of donation. The results
reveal that the main SPI contributions are from Scandinavia (34%) and the Americas
(32%). A large percentage of organizations (83%) was viewed as organisms, machines,
flux and transformation, or brains. The other metaphors (political system, psychic
prison, and culture) are more scarcely represented or not represented at all (instrument
of domination). As many as 76% of the articles were mainly descriptive in nature, us-
ing theory to drive their empirical investigation as evidence (56%). In this work, they
excluded articles that did not deal with organizational change. We identified only nine
articles identified in their work.

Staples and Niazi [2008] investigated the motivations most frequently reported by
organizations for adopting CMM-based SPI. They observed that companies are more
concerned with product quality and productivity. We also observed the product quality
trend when we evaluate the motivations for carrying out SPI initiatives. Staples and
Niazi stated that this is an important reason for SPI implementation, but it is not
the main reason for implementing SPI. According to them, two examples of common
process reasons are to make a process more visible and measurable.

Other studies present an analysis of the SPI field, although they either were not
conducted as a systematic review or they had no focus on the analysis of the SPI re-
sults. For example, Rainer and Hall [2001] analyzed 39 SPI publications that appear
to be frequently cited by others. Two main issues emerged from their research were the
organizational stability (staff stability and re-organizations of the corporate division)
and process performers expertise. They conjecture that organizational stability pro-
vides a stable environment where it is possible to perform the process and to develop

expertise. In another study, Niazi |[Niazi, 2006] examined the impact of the SPI on the

4.6. LIMITATIONS 77

organizations’ capability and what is missing in current SPI approaches. Through a
literature review, he observed that SPI can help organizations in reducing their cost,
improving time-to-market, productivity and customer satisfaction. In addition, little
attention has been paid to the implementation of the SPI standards and models. In
Hansen et al. [Hansen et al., 2004], the authors classified 322 representative SPI con-
tributions according to their primary goal whether they are prescriptive, descriptive or
reflective. According to them, the field is dominated by CMM approach and are biased
towards prescriptive contributions. Finally, a considerable number of studies evaluate
the success and failures factors for conducting an SPI initiative [Dybéa, 2005; Rainer
and Hall, 2002, 2003; Wilson et al., 2001; Baddoo and Hall, 2002a,b, 2003; Niazi et al.,
2005].

Although interesting results have been addressed by these studies, there are three
other main issues that differentiate our study from them: (1) The focus of our work
is on bringing insights into the current state of SPI Body of Knowledge; (2) We have
a more comprehensive focus, considering the analysis of the SPI results; and (3) We
perform a systematic review, allowing us to answer our questions with a certain level

of confidence.

4.6 Limitations

The use of systematic procedures itself helps to avoid problems with the selection and
analysis of the studies. Even though this SLR has been supported by a pre-defined
study protocol and conducted in a systematic way and under the guidance of experts,
it has some limitations. We will discuss these limitations considering four aspects
[Kitchenham, 2004]:

e Construct Validity: to what extent the selected studies represent what we aim

to investigate;

e Reliability: to what extent the data collection and analysis were conducted in a

way that it can be repeated by other researchers with the same results;

e Internal Validity: to what extent the design and conduction of the study is likely

to prevent systematic errors; and

e External Validity: to what extent the effects observed in the study can be gen-

eralized.

78 CHAPTER 4. SPI INITIATIVES AND RESULTS

4.6.1 Construct Validity

Terminology and its validation. We discuss the (i) choice of terminology and
(ii) verification of relevant studies selection [Engstrom et al., 2010]. Since the search
for primary studies is based on the search string, each SLR is likely to miss relevant
studies if this string is not properly chosen. In order to minimize this threat, we
applied the following steps: (1) derive and validate a specific search string; and (2)
derive, validate and compare other search strings. In the first step, we derived the
search string “software process improvement” AND empirical (henceforth SS1), using
the PICO structure. We carried out a manual search through all studies published
from 2005 to 2009 in two specific journals, i.e. Journal of Information and Software
Technology and Journal of Systems and Software. Then, we conducted a search aiming
at verifying if the manually selected studies were retrieved. Only one study was not
found by the search string SS1. However, after evaluating it, we decided that this study
was not relevant to our research and therefore the search string was considered satis-
factory. Next, in the second step, we validated the search string SS1 in ACM Digital
Library and IEEEXplore in the period of 1999 and 2009 and compared the results with
three other search strings, namely: software AND “process improvement”(henceforth
SS2); “software process improvement” AND empirical (henceforth SS3); and “software
process improvement” (henceforth SS4). Then, one valid result [Kautz et al., 2000] was
not found by SS1 and SS3 and another valid result [Damian et al., 2002] was not found
by the search string SS4. Thus, we decided to use a broad string SS2 that may include
a considerable number of false-positive papers, but probably will not eliminate papers

that are essential to our research (See Section 4.2.4).

Completeness. Our research is limited to the databases mentioned in Section
4.2.3. In other words, we cannot claim that we include all relevant studies to our
research question. However, the database choice considered our knowledge of important
venues. As far as we know, the chosen databases have the most relevant publications.
Therefore, despite the fact that we are not able to guarantee completeness, we believe

that the selected studies represent a good coverage.

Grey literature. Besides database limitations, we excluded all grey literature
(e.g. technical reports, some workshop reports, and work in progress) that may present
SPI results. The main reason is that we were not able to devise a good solution for
assessing the quality of grey literature and therefore we decided to leave the evaluation
of these studies as future research. We believe that excluding these studies did not
impact the overall results obtained as they normally do not present significant SPI

results.

4.6. LIMITATIONS 79

To sum up, we expect that the countermeasures taken to minimize threats to
Construct Validity were enough to maximize the number and quality of relevant studies

in our research.

4.6.2 Reliability

Some countermeasures were taken to reduce the threats to Reliability. Since we followed
Kitchenham’s [Kitchenham, 2004| procedures (i.e. we defined a research question, the
selection process, inclusion/exclusion criteria and quality criteria), we believe that the
reliability threats were minimized. However, adoption of systematic procedures in itself
does not guarantee reliability. Therefore, we will discuss Reliability in terms of classi-
fication and analysis of studies (i.e. inclusion/exclusion criteria and data extraction)
and review conduction.

Classification and analysis of studies. The way in which classification and
analysis of the studies are done in SLRs is a threat to reliability. Mainly because they
are based on the reviewer’s knowledge and experience. The steps one and two of this
study suffer from this threat due to the fact that the titles and abstracts do not always
have the most relevant information (i.e. relevant information is sometimes omitted)
[Budgen et al., 2008] and steps three and four are subject to the perception of the
reviewers. In order to minimize this threat, in all stages of this study at least two
reviewers were involved, and in case of disagreement the reviewers discussed to reach
a CONSensus.

Review conduction. The reliability of this study was improved by the fact that
the first author participated in all the steps and review sections, either as a reviewer
or as supporter in the decisions of inclusion, exclusion and quality criteria. The partic-
ipation of the first author and also the supervisors ensured a series of countermeasures
related to possible threats.

We expect that, since we reported all the procedures taken and limitations, this

research has high reliability and can be replicated by other researchers.

4.6.3 Internal Validity

We will discuss Internal Validity in terms of the member’s roles, reviewers bias,
publication bias, and pattern description. In our study, as mentioned in Section
4.2.2, we defined specific roles to each member. Important roles include the super-
visors and the TL who were responsible to review how the study had been conducted

and guarantee that the reviewers were correctly following the established procedures.

80 CHAPTER 4. SPI INITIATIVES AND RESULTS

This participation helps controlling bias in the results. Reviewer bias is another
potential threat to Internal Validity as the extracted data has a qualitative nature.
In order to mitigate this threat, the quality attributes were grouped in patterns to
facilitate their further classification and comparison. The publication bias refers to
the probability of publication of more positive results than negative ones [Kitchenham
and Charters, 2007]. While we cannot fully exclude the possibility of this threat, we
reduced it to the extent possible as we followed a formal search strategy (described
in the protocol) to find the entire population of publications including the “negative”
results. The patterns description uses natural language, which is not adequately
precise. However, our patterns are abstraction of real-life problems, so we decided to
use natural language to represent them. Mainly because we do not concentrated in

many details, where pattern descriptions can become impractical.

4.6.4 External Validity

The results of this SLR were considered with respect to specific studies in the SPI
domain. Therefore, the conclusions and classifications were valid only in this given
context. The results of our current study were drawn from qualitative analysis and
can serve as a starting point for future researches. Additional studies can be analyzed

accordingly.

4.7 Conclusion

Overall, this chapter provided an up-to-date view of the SPI area, showing common
characteristics and results of the SPI initiatives.

We identified 91 studies that describe how process improvement initiatives were
implemented, and what their results are. As we stated in the beginning of this section,
we were originally expecting that most of the studies would focus on process aspects.
As discussed in Section 4.4, among all the stated reasons for launching SPT efforts, 56%
is about product, project, organization and people and, when we do not consider the
circular SPI reasoning, only 20% has some process discussion. So most SPI studies do
not focus on processes.

As discussed in Section 4.4, and summarized in Figures 4.12 and 4.13, in most
cases the improvement percentage observed is less than 70%. The studies reporting
100% improvement are special cases, where it was either not possible to assign the
improvement solely to the process changes, or the adopted practices do not allow

measurement comparisons. This shows that there are no “dramatic” results associated

4.7. CONCLUSION 81

with SPI efforts. If the studies had followed more rigorous reporting guidelines, then we
would be able to synthesize more helpful information for researchers and practitioners.
For the time being, we were only able to rebut the anecdotal evidence of “dramatic”
improvements.

In Section 4.3.3, we arranged SPI initiatives in patterns reflecting studies consid-
ering similar aspects. These patterns enable improvement category discussions, rather
than the individual initiatives. We identified five SPI initiative patterns in our study
selection. During our study we were able to take advantage of the categories during
some of the meetings. However, as discussed, these patterns are specific for our study
selection and future work should investigate their usefulness and coverage for other
study selections.

We also identified some weaknesses of the SPI reports, discussed in Section 4.4.2.
From that, we compiled guidelines as to how SPI results should be reported.

Overall, SLRs with higher value to industry and academia will be possible if
organizations follow more disciplined SPI procedures with the correspondent reflection
in the studies.

This chapter concludes the discussion of the most important concepts related to
SPIAL. The next chapter will present how these concepts were considered in SPTAL

specification, design and validation.

Chapter 5

SPIAL

In this chapter, we discuss the design, development and evaluation of SPIAL (Software
Process Improvement Animated Learning Environment), our SPI simulation game.
SPIAL is a graphical and interactive simulation game, which emphasizes SPI con-
cepts. Despite its focus on SPI, it is a teaching tool that reinforces and introduces
Software Engineering concepts to students. The aim of SPTAL is to improve Software
Engineering education in dealing with the complexity of what happens in selected con-
texts of software development organizations. Using SPTAL, we evaluated the potential
of an SPI simulation game in enabling students to learn some of the best practices of
Software Engineering.

We adopted an incremental and iterative approach, where each step involves
different knowledge, allowing us to point out a set of important aspects that should be
taken into account during the development. These aspects can guide new developers
and instructors in the design and selection of educational simulation games. We also
discuss the issues and challenges associated with the creation process of a Software
Engineering simulation game. These results correspond to the work presented in the
42nd Frontiers in Education Conference [Peixoto et al., 2012a,b].

This chapter is structured as follows:

e Section 5.1 presents a brief overview of SPTAL.
e Section 5.2 details SPIAL goals, in order to identify and clarify the objectives.

e Section 5.3 discusses the identified SPIAL requirements. These requirements
were based on: (i) other Software Engineering simulation games; (ii) SPI litera-
ture review (measures, SPI patterns, motivators and de-motivators factors); (iii)

communicability evaluation (feedback aspects); and (iv) CMMI technical report.

83

84 CHAPTER 5. SPIAL

Section 5.4 depicts FASENG, a framework for development of Software Engineer-

ing simulation games.

Section 5.5 presents SPIAL evaluations from two viewpoints: specialist and

player.

Section 5.6 provides an overview of the differences among SPIAL and other simu-

lation games.

Section 5.7 concludes this chapter.

5.1 Background

The objective of a course is not just to cover a certain set of topics, it involves educating
students, facilitating students’ learning and thinking [Svinick and Mckeachie, 2011].
The instructor should understand that while learning objectives help the instructor to
identify elements that will contribute to an effective learning environment, a wide range
of influences that are students dependent exists, all affecting the student’s learning
experience, such as: student’s ability to comprehend a specific content, student’s ability
to apply that knowledge, student’s attainment of critical thinking skills necessary to
effectively utilize the knowledge, student’s past experience, and attitude about learning
as well as their expectations. All these influences impact the learning environment and
the individual student’s ability to make use of the learning process.

Simulation games are an appropriate complementary approach to the traditional
educational techniques. Students’ preparation can be improved by allowing them to
practice, through a simulator, activities that are infeasible to practice during a Software
Engineering course, due to restrictions of time and resources. Simulation games there-
fore should be available for all courses. However, the creation of a simulation game is
not a straightforward activity. The primary purpose of educational simulation games
development is to match the learning objectives tightly with a suitable solution [Mar-
tin, 2000]. The design and development is an iterative process, involving a number of
different skills and addresses different viewpoints. During this process, designers select
the conceptual content to be addressed, model the real world processes, and employ
suitable game-like elements to represent these processes and concepts. The final goal
is to create an environment that can motivate and engage students. These steps are
illustrated in Figure 5.1 and a detailed description of SPTAL development is presented

in the next sections.

5.2. SPIAL GoALS 85

Virtual world

Game-like elements

Conceptual Content »
Iterative

Virtual world Processes

mapping and

ih)

Design the game

Translate game experiences

iy

validation

Real world

Figure 5.1. Educational simulation games design (adapted from Martin [2000]).

Most of the simulation games have as their goal to develop a software project
within a certain set of constraints, and their rules are based on Software Engineering
lessons (e.g. SimSE [Navarro, 2006], SESAM [Drappa and Ludewig, 2000], SimJavaSP
[Shaw and Dermoudy, 2005], and MO-SEProcess |Ye et al., 2007]). Typically, they
present a metaphor of a software development office, where the player assumes a project
manager role. The experimental evaluations of using these tools have shown a restricted
number of new concepts that students have learned after playing them [Navarro, 2006;
Gresse von Wangenheim et al., 2009]. This can be a result of a not straightforward
performance feedback that is presented to the students, or the way that the virtual
world was designed. In order to address these aspects, we changed the context from
Project Management to SPI and we integrated feedback during the whole simulation

game playing.

5.2 SPIAL Goals

Identifying and clarifying objectives is of major importance for avoiding misunder-
standings, for evaluating designing and for enhancing knowledge |Tchounikine, 2001].
We defined the SPIAL highest level objectives, i.e. conceptual level objectives, and
their implementation, from the instructor and player viewpoint, i.e. the educational
objectives of teaching and learning. In our case, teaching consists of the instructional
process that gives students knowledge and learning is the process of acquiring a piece

of domain knowledge, skill or some competency [Tchounikine, 2001].

Below, we present the educational objectives in SPTAL context:

86

CHAPTER 5. SPIAL

e Teaching Objectives: Considering the instructor perspective, the objectives of a

simulation game can be leading students to engage themselves in organizational
issues of the software process, explore new perspectives, make them challenge
their current knowledge, ask questions and make discoveries [Tchounikine, 2001].
Particularly, in the simulation game environment, the goal is to support stu-
dents in the identification of interesting issues, definition and testing of solutions,
enhancing motivation, developing positive bases for collaboration and drawing
rational conclusions. In SPIAL context, the main objective is to allow students
to practice Software Engineering area concepts, through an SPI initiative simula-
tion game. This simulation game development is based on investments in CMMI
process areas. CMMI conveys the Software Engineering concepts represented in
SPIAL. CMMI was chosen because it is the most worldwide famous SPI refer-
ence model. In this way, SPTAL addresses issues of SPI and Software Engineering,

allowing students to discover and practice concepts.

A more concrete objective corresponds to the development and application of
educational tools as simulations in order to provide more realistic experiences.
This enable learners to reach an end product of learning. In SPIAL context, it
consists of the development and personalization of an SPI interactive simulation

game according to the teaching objectives.

Learning Objectives: The learning objectives include the problems evaluation
and the proposition of solutions, i.e. the application of knowledge in a concrete
situation. Knowledge of how to play SPTAL is accumulated through observation
and active participation in the gaming process. Players evaluate process improve-
ment problems and propose solutions to them. Strategies in playing computer
games included trial and error, reading instructions, relying on prior knowledge
or experiences, and developing a personal game-playing strategy. Trial and error
was by far the predominant strategy across all game types [Dempsey et al., 2002].
Trial and error is the core strategy envisioned for SPTAL. It involves actions and
reactions to circumstances, consequences, and feedback during the game play.
SPIAL helps students in the construction of knowledge because it allows them to
observe in a systemic way how different conceptual aspects are articulated such

as: requirements, measures, processes, team behavior, and estimates.

Section 5.3 presents a brief description of the SPIAL requirements. SPIAL was

constructed based on FASENG, a Framework for Software Engineering Simulation

Game (Section 5.4). This framework allows instructors to tailor a simulation model

5.3. EARLY DECISIONS 87

according to their course. Both SPIAL and FASENG were created based on the ob-

jectives described above and their requirements have some interplay.

5.3 Early Decisions

SPIAL is a single-player game in which players take on the role of a manager of an SPI
group in a software development organization. The player is given a process improve-
ment task and he/she can interact with other stakeholders (high level management,
project manager, team member, consultant, or customer) represented as Non-Player
Characters (NPC), i.e. a character controlled by the computer. In order to complete
the task, the player can make investments for improving specific process areas of a
software development project (which can be considered a pilot project). A good in-
vestment strategy will result in improvement of process areas and a larger budget for
further investments. SPIAL incorporates some of the concepts defined in CMMI. In
the first SPTAL version, we considered an organization with maturity levels 1, 2 and 3
(incomplete), with capability levels of process areas varying between 0 and 3.

The player can visualize project estimations, indications of process areas capa-
bility level and decide in which process area to invest. During project execution, the
player can visualize the effects of his/her selections on the outcomes (productivity, de-
fect, cost, and time-to-market measures) and if needed, change his/her investments.
The occurrence of events follows some probability distribution, for example, the soft-
ware development team can have resistance to adopt the changes, and the player can
overcome it with specific actions, such as promoting training. The final outcome is a
score that represents how close the results are to the initial proposed target. During the
game, the non-player characters communicate the effects of the player’s actions through
bubbles over their heads, for example, "Since there is dependency among process areas
some of your investments may not be effective", or "Poor investment decisions result
in a reduction of business value, and a reduction in the number of investment points."

For illustrative purpose, we elaborate the following initial scenario, which is a
narrative description of what the user (in our case, the player) performs and experiences
as he/she tries to make use of the application [Carrol, 1997]:

You are a student of a Software Engineering course and you already know some
concepts of Software Engineering. Now, you want to learn more about Software En-
gineering, with emphasis in software process improvement using a simulation game.
You need an intuitive game to help you learn how software process improvement works

in the industry, the software process improvement techniques and the best practices of

88 CHAPTER 5. SPIAL

Software Engineering [motivation]. In this game, you will play as a manager of an
SPI group [player role] and your responsibility is the coordination of a process im-
provement in a specific project. You need to analyze the current situation of the project
and select in which process areas to invest. The type of improvement that is required
[improvement task| will be stated at the beginning of the game and it can include,
for example, reduce defects, improve the productivity and/or reduce costs [goal]. After
making investments, you can verify their effect on the process area capability level (sta-
tus column) and on the defect, productivity, cost or time-to-market measures. Right
wnvestments will increase the budget of investment points and wrong investment will
decrease it. Other possible functionalities are: you can stop your game, you can see the
Software Engineering rules applied in the game and you can receive information from
the team. During the whole game you can see your performance and some tips about

the available functionalities. At the end you receive a final score.

5.4 FASENG

The knowledge of Software Engineering simulation games and their common require-
ments, and the lack of support to simulation games development led us to the decision to
create our own framework, FASENG (Framework for Software Engineering Simulation
Games). FASENG is composed of three components 1° (simulation model, simulator,
and simulation engine) that can be reused in new simulation games creation (see Figure
5.2). These components can also be found in other Software Engineering simulation
games |[Drappa and Ludewig, 2000; Dantas et al., 2004b|, however, in our case, they can
be reused in new developments. The separation of concerns among these components
reflects one of our goals which is to design components that can also be reused in the
development of other simulation games.

The creation of the simulation framework started with the identification of com-
mon requirements found in the Software Engineering simulation games, with the aim

to evaluate the following aspects:

1. Characteristics that promote the application of the learning theories associated

with Constructivism |[Possa, 2011].
2. Design decisions adopted to deploy each identified characteristic.

We evaluated the Software Engineering simulation games found in the SLR de-

scribed in Section 2.4. The identified characteristics were organized as a catalog of

10We use the term "components" to refer to the structural elements of FASENG.

5.4. FASENG 89

tikeswingjar £]

N
I
I
I

Simulation Engine &)| Simulator &

==fila==
simulation-model xmil

Figure 5.2. FASENG structural elements.

requirements, similar to the one used by Hoffmann et al. [2004]. They are important

for the following roles:

e Instructors who adopt a simulation game as a complementary approach to the
traditional educational methods. These requirements can assist them during the

simulation game selection process.

e Designers who need to know which requirements are more effective for the

learning process and the way they are implemented.

e Players who play the game to complement their knowledge in specific Software

Engineering subjects.

The requirements are presented in the following and a detailed description of
them can be found in Possa’s dissertation [Possa, 2011| .

REQ1 - A simulation game should give support to the transfer of learn-
ing: It is important for players to understand the lessons of a simulation game and
develop their own mental model [Alessi and Trollip, 2001|. In consequence, they will
be able to transfer this knowledge to a real situation. Transfer of learning happens
when the knowledge, skills, or information is transferred from one situation to another
[Alessi and Trollip, 2001]. A good transfer of learning occurs when the performance in

real situation is improved [Alessi and Trollip, 2001].

HPpossa’s dissertation describes his work related to simulation games requirements. After his master
research, he also worked with the design and implementation of FASENG.

90 CHAPTER 5. SPIAL

Two common characteristics were found in the evaluated simulation games that
can enhance the transfer of learning. The first one is the players’ active role during the
whole game, e.g. as a project manager, they can hire or fire employees [von Wangen-
heim and Shull, 2009]. The second one is to allocate players to a hypothetical work or
to a problematic situation, where they need to develop solutions. The most common
scenario in the evaluated simulation games is students acting as project managers in a
project with time, quality and budget constraints.

REQ2 - A simulation game should be interactive: One of the most ben-
eficial aspects of simulation games is their ability to engage learners in meaningful
activities through various forms of interactivity [Alessi and Trollip, 2001|. These in-
clude actions such as: making choices and decisions, manipulating objects, reacting
to events, and collecting information [Alessi and Trollip, 2001]. Interactivity gives
the player a sense of control over the game, improving motivation during the learning
process.

The interactivity characteristic is presented in all the analyzed games with dif-
ferent levels of implementation. For example, SimSE implements all the actions listed
above, in contrast, in qGame, players can only make choices.

REQ3 - A simulation game should reflect the complexity of the prob-
lems found in the real world: Besides simplifying the environment, it is important
to support learners working in complex situations [Alessi and Trollip, 2001|. Fast and
flexible simulations allow repeated experiences and different situations can be intro-
duced and practiced [Alessi and Trollip, 2001]. The goal is that players act in specific
roles, solve the problems, and observe the effects of their decisions. Simulation games
can take different paths depending on the players’ actions and reactions. Therefore,
a simulation is a case study involving a specific reality where players play roles with
responsibilities and restrictions.

All the simulation games implementation fully satisfied this requirement. For
instance, the task allocation follows some of the complex aspects of the real world such
as the allocated person should have the abilities required for the corresponding task.

REQ4 - A simulation game should facilitate the reflection about the
learning subject: Some studies have shown that students who are encouraged to
reflect on what they are doing, learn better both the declarative and procedural types
of tasks [Upchurch and Sims-Knight, 1999]. Therefore, active reflection on experiences
during activities carried out in a Software Engineering course (e.g. team project)
promotes the acquisition of more meaningful and persistent learning [Upchurch and
Sims-Knight, 1999].

In a simulation game, one example of an element with great potential for reflec-

5.4. FASENG 91

tion support is the revisiting session, which is generally referred to as the debriefing
session |Peters and Vissers, 2004]. In this session, it is possible to analyze the de-
cisions taken during the game, draw conclusions and make the connection with the
real-life situation. Unfortunately, none of the assessed simulation games provided any
guidance for carrying out the debriefing sessions. Another element that can promote
partial reflection is the explanatory tool or a feedback mechanism, allowing individual
performance assessment.

REQ5 - A simulation game should support teamwork skills develop-
ment: [t is well-known that computer science students need to learn communication
and collaboration skills [Lingard and Berry, 2002]. Although many programs today
make team projects fundamental elements of their curricula, students receive almost
no orientation about how to work effectively in a team |Lingard and Berry, 2002]. One
way to meet this requirement is to build multiplayer simulation games. In these games,
players can collaborate among themselves, allowing students to develop teamwork skills
(e.g. MO-SEProcess). In contrast, single-player simulation games, where players can
interact with other Non-Player Characters (NPC), i.e. a character controlled by the
computer, can address partially the teamwork skill (e.g. qGame, SESAM, SimJavaSP,
SimSE, The Incredible Manager, TREG, and SimVBSE). These games have some re-
strictions in representing real work situations, as communication breakdowns and con-
flicts between team members.

REQ6 - A simulation game should support different learning environ-
ments: The learning process may vary among students. Some students may learn
better by watching and listening, others by reading, and others by doing and moving
or using a hands-on environment |Zapalska and Brozik, 2006|. Adaptation of the learn-
ing environments can assist students with different learning styles, different levels of
initial knowledge and different expectations and objectives [Moreno-Ger et al., 2008].
Adaptation can be static, for example, increasing the complexity in the course of the
game, allowing students to choose different simulation models, or instructors to change
the simulation model. Adaptation can be dynamic, for example, if players have some
difficulties during the simulation game, a hint can be presented to them or the difficulty
level of a task can be decreased gradually [Hunicke, 2005]. Among all simulation games
that we found, no one presented dynamic adaptation features. Three of them support
different simulation models: SESAM, SimSE and The Incredible Manager; and only
qGame has different levels of difficulty.

In the first version of this framework, we developed components that support
requirements REQ1, REQ2, and REQ3, and partially requirements REQ4, REQ5, and
REQ6.

92 CHAPTER 5. SPIAL

The first configurable component is the simulation model that can be used to

represent:

e The structure of the software process, activities, interactions and artifacts;

e The system behavior and the factors that influence the environment to be simu-
lated;

e The initial scenario of the game, i.e. the initial state of the project to be simu-
lated.

The second component is the simulator which takes as input the model and in-
terprets it, covering its equations iteratively. The simulator’s final target is to calculate
the behavior of each element.

The last component is the simulation engine, which the player interacts, receiv-
ing visual feedback from the simulation results and through which the player changes

the model parameters. The next sections describe in detail each of these components.

5.4.1 Simulation Model

The simulation model represents aspects of the world to be simulated (REQ3). Its
definition is represented as an XML file. The applicability of a simulation model
depends on the model builder’s ability to capture these aspects [Dantas et al., 2004a).
In essence, the Software Engineering processes are difficult to model, mainly because
their intrinsic characteristics, mostly involving human behavior, such as, non-linear
relation of cause and effect, feedback cycles, dynamic behavior and socio-cultural issues

that can affect them.

5.4.1.1 Configuration file

In the XML file, instructors can tailor a simulation model according to their course
(REQG6). This model allows the representation of an active role to players (REQ1),
reaction to events (REQ2), feedback (REQ4) and different participants to actions (REQ
5). We used some modeling constructs similar to those defined by SimSE [Navarro,

2006]. These elements are shown below followed by a corresponding XML excerpt.

e Object types: The object types define the templates for all the objects. The
object type consists of a name, a Boolean value indicating whether a log will be
generated for each object and a set of attributes. For each attribute, its name,

type (Integer, String, Double, Boolean, and List), and two Boolean values can

5.4.

FASENG 93

be defined. The Boolean values indicate the visibility of the object (i) during
the game and (ii) at the end of the game. Unlike SimSE, there is no object type

creation restriction.

<type name="ImprovementProject" log = "false" >

<attribute name="InvestmentPoints" type="integer" visible = "true" visible-
end="true" />

< /type>

Initial state: The initial state contains a set of objects that are active at the
beginning of the simulation. Each object is an instantiation of a given object

type, containing initial values for their attributes.

<object name="IProject" type="Improvement Project">
<attribute-value name ="InvestmentPoints" >500< /attribute-value>

< /object>

Analysis: The analysis represents types of rules that are created specifically to
provide some performance feedback to the players. It contains the name of the

analysis and a reference to their implementation.

<analysis-result >
<analysis-result name="Improvement Analysis" class="br.ufmg.dcc.engsoft.
spial.analysisrule. RulelmprovementAnalysis" />

< /analysis-result>

In the example above, we used Java reflection that allows an executing Java

program to manipulate the respective Java class having its name.

Actions: The actions represent a set of activities presented in the simulated
process, for example, give training to the team or invest in some process area.
Each action has a name, description, one or more rules, one or more participants,
a trigger and one or more destroyers. Triggers, rules, and destroyers behavior
is implemented in Java language. The advantage of this approach is a greater

power of expression.
<action name="investment" description="Investing in Process Areas" >

Participant(s): The participant restricts the types of objects that can par-

ticipate in the action, as well as their minimum and maximum amount.

94

CHAPTER 5. SPIAL

<participant name ="ProcArea" type="Process Area" minimum-

occurrence="1" maximum-occurrence="2"/>

Trigger: The trigger represents a condition to start the execution of an
action. There are three distinct types [Navarro, 2006]: autonomous, player, and
random. Autonomous triggers causes the action to begin automatically, without
player interaction. Player triggers start actions when players carried out some
operation, for example, selection of the invest operation or a menu item that
appears on the right-click into the status panel. Random triggers specifies the
likelihood of the action to be executed. Triggers can cause the end of the game

and the calculation of a score; this is represented by the game-ending parameter.

<trigger name="investmentTrigger" type="player" user-
operation= "Invest" description="Investment in Process Area"
class="br.ufmg.dcc.engsoft.spial.trigger. TrigerPlayerInvestiment" game-

ending="false" />

Rule(s): Rules specify the effects of the execution of an action. They modify
the objects attributes that participated in the action. Each rule identifies the
time of its execution, which can be: trigger, destroyer, or continuous. Trigger
rules will be executed at the time the action is triggered. Destroyer rules will be
executed when the action is destroyed. Continuous rules, on the other hand, will
be fired every clock tick, representing continuous behaviors of the model. Rules
also specify the order they will be executed through the "priority" parameter.
<rule name="investmentRule" description="Investment made
in some process area' timing="trigger" priority="3"

class="br.ufmg.dcc.engsoft.spial.rule.RuleDiscreteInvest" />

Destroyer(s): Opposite to the triggers, destroyers represent a condition to
ending the execution of an action. It has four types: three like the triggers
(autonomous, random, or player), and an additional one: timed. The timed

destroyer specifies the duration of an action (time-to-live).

<destroyer name="investmentDestroyer" type="timed" time-to-live = "3"
class="br.ufmg.dcc.engsoft.spial.destroyer.DestroyerTimedStandard" game-

ending="false" />

5.4. FASENG 95

5.4.1.2 Mathematical Framework

Several techniques can be applied for the construction of a model. The SPIAL simu-
lation model was inspired by the mathematical model proposed by Birkhélzer et al.
[2004, 2005b,a]. The aim of their model is to provide an environment where users,
acting as a top-level manager, can interactively change the investments in the level
of a software development organization, improving their understanding of the SPI re-
sults. It was developed following a top-down approach, considering 15 process areas of
CMMI as states, and deriving 27 business measures from the company strategic goals
(in their study at Siemens) |Dickmann et al., 2007|. The inputs are the investments
that the user can make in each process area and the outcomes are the real value of
the business measures. The simulation model concentrates on the organizational level
abstracting the specific aspects of software production process, which are combined in
generic concepts.

The items, listed below, described the motivation to apply this mathematical

framework:

e The original framework represents the overall direct and indirect effects of an SPI

initiative. These effects can be very difficult to estimate and predict;

e The original framework integrates business measures that can be used as perfor-

mance and informative feedback during the whole simulation game; and

e [t seems that the original framework can be adapted to other SPI reference mod-
els, since the prerequisite to apply it is to have a simulation model with process

areas characterized by capability levels.

We promoted some changes that turned the model more suitable to an educational

environment. The reasons to adapt this model are:

e Besides the organizational-level, we simulate aspects of the project-level improve-
ments, abstracting specific issues that have been extensively exploited by other

Software Engineering simulation games (e.g. the project planning task).

e This model has ten configurable parameters that constitute a considerable burden
in populating the model with adequate values for them [Birkholzer et al., 2005a).
In its original application, these values were estimated by experts and turned out
to be a tedious work. This could be a de-motivation factor for instructors and

we tried to avoid this problem reducing the number of configurable parameters.

96 CHAPTER 5. SPIAL

e We included Software Engineering rules and SPI motivators and de-motivators

factors into the simulation model.

e We did not include advanced concepts in the initial version of SPTAL. It provides

an easier way for the students to evaluate the causes and effects of their choices.

The SPIAL mathematical framework for such a model is a linear, time-discrete,
state-space model (these categories are discussed by Pearson [1999]; Kitagawa and

Gersch [1996]):

T = f(#,)
Jerr = h(Tpr1) (5.1)
teN,7eR", Ze R" € RP

Where t denotes the discrete time between each player interaction, #, =
(14, ..., 2n) denotes the n-tuple of the internal state variables, z; = (214, ..., Zmt)
denotes the m-tuple of input variables, 44 = (y14,...,¥p:) the p-tuple of the output
variables, f and h denote functions that relate subsequent states.

In this model, the internal state variables represent the capability levels of the
key process areas of CMMI (e.g. Requirements management and Technical solution)
and the output variables correspond to measures that should be used by players to
evaluate process improvement results. These SPI results are discussed in Section 4.4.1
and two examples are productivity and cost.

The dynamic behavior of the model is described by the following equations:

Titra, = level(yie - (L+pig)),i=1,...,n (5.2)
Pis =) BT+ D Yy e (5.3)
J J
with

ri.+1 itarg>c-d;
level(arg) = < x4y if arg < ¢; - d;

x;s — 1 if a process area stays without investments for 100 clock ticks

di = a; - g

5.4. FASENG 97

o = 2t P
> Hi

In equations 5.2 and 5.3 the term p; ; consists of the feedback from the other states.
In SPTAL, 11 process areas are mapped with their dependencies (prerequisites processes
areas) and impacts according to CMMI. For example, the process area Project Moni-
toring and Control (PMC) depends on process area Project Planning (PP), therefore,
if PP is at capability level 0, investments in process area PMC will be quite ineffec-
tive. In the same way, improvements in process area Measurement and Analysis (MA)
impacts positively on process area PMC, i.e., with higher capability levels of MA will
ease the improvement of PMC. The effects of improvements can only be observed after
a delay d; period. We modeled the delay as a term affected by the motivators and
de-motivators factors for SPI [Niazi et al., 2006; Baddoo and Hall, 2003|, «;, and by a
predefined delay for each process area ¢;. In a; equation, the pu; term represents the
impact of a factor and p; term is the probability of its occurrence. For values of o;

lower than zero, the state can react fast on changes unlike values greater than 0.

The level(.) function represents the capability level of each process area (from
0 to 3). Investments greater than the basic cost of improvement needed during the
improvement time ¢ + d;, will increase the process area capability level. We also mod-
eled a decrease of the capability level, after a predetermined simulation time without
investments. In equation 5.3, f;; and ~;; serve as weights for the influence (dependence

and impact) of the j-th process area on the i-th process area.

The actual value of each measure (the output) is calculated as a linear mathe-

matical function with parameter the weighted sum of the internal states.

Yir = mat(z 8- xjy) (5.4)
J
where d; denotes the weight of each process area on the measure value, which
was derived from the Software Engineering rules. One mat(.) function was defined for

each measure.

The player operates with a budget A; of investments points, which is characterized

by the equation below:

m

p
A = A+ Z 0; - 241 — Z Zit (5.5)
i=1

=1

98 CHAPTER 5. SPIAL

Investment points are the amount necessary to maintain (or improve) a capability
level of a process area. The budget of investment points consists of the previous balance,
A;, the previous investment, z;,, and the weighted sum of the internal states, x; ;1.
Therefore, making right investments will increase the budget of investment points and

wrong investment will decrease this budget.

5.4.1.3 Rules

Initially, we collected 123 Software Engineering rules from text books and other Soft-
ware Engineering simulation games. These rules are used to teach the best practices
of Software Engineering to students, rewarding or penalizing their actions. This set
includes rules that are imprecise (do not specify values) and rules beyond the Software
Engineering area, including a wider range of business processes. From this set, we se-
lected the ones related to the SPTAL process areas, resulting in 57 Software Engineering

rules (see Appendix B). Three examples of rules are:

e Requirements deficiencies are the prime source of project failures. |Glass, 1998|

e FErrors are most frequent during the requirements and design activities and are
the more expensive the later they are removed. [Boehm et al., 1975; Endres and

Rombach, 2003|

o A combination of different V & V methods outperforms any single method alone.
[Hetzel, 1976|

For each specific rule, we mapped the process area and measures related to it. The
result was used to calibrate the d; parameter of the y;, equation. Since most of these
rules are quite imprecise, they do not allow the direct application into the simulation
model. Therefore, we incorporated rules by experimenting them with different values
and we selected the values that are most suitable for representing in an educational

environment.

5.4.2 Simulation Engine

The simulation engine is a component with which the player interacts, receiving visual
feedback from the simulation results and through which the player changes the model
parameters. This component uses the MVC (Model-View-Control) design pattern,

which allows the separation of domain logic from the user interface. TikeSwing!?

12TikeSwing is a framework for Java Swing development providing high-level MVC architecture.

5.4. FASENG 99

was used in the implementation of this design pattern. During the tailoring phase,
instructors can change the interface according to their needs, without worrying about
other aspects of the application (model and control). Since the Software Engineering
simulation games can have different scopes, we did not restrict the interface design to
fixed graphical elements.

When SPIAL begins execution, the player is presented with a description of the
simulation game. This description includes the required knowledge to play the game,
the game task, the player’s role, the description of the software development company;,
the goals, how much time and money the player has, the final score calculation and

some guidance to play the game (see Figure 5.3).

B spiaL X

Welcome to SPIAL!

SPIAL is a simulation game intended to be used in a Software Engineering discipline.

This game requires that you have basic knowledge of process improvement models, in particular
the CMMI model.

Your task as a manager of a Software Process Improvement (SPI) group in a organization is

to analyze the current situation of the process and propose improvements. In this game, you
have two types of projects: the Improvement Project and the Development Project.

You influence the Improvement Project and Development Project making improvements on

the selected process areas.

The INITIAL budget available for the Improvement Project, referred as "Investment Points" is 500.
iAs you play and depending on your actions, your Investment Points can increase or decrease as
time passes (this happens at discrete "clock ticks"). However, you should keep checking

your stakeholders’ info. They have the tendency to introduce positive and negative factors

to the Improvement Project.

The Development Project has a budget of $350,000, and you have 1,300 clock ticks to make changes
in its process. Investments in process areas ¢an result in improvements in the project measures,

like defects and costs. The organization in this simulation game is quite immature (CMMI Level 1).
The Development Project does not follow a defined process and the measurement results (past
projects) until this date were very unsatisfactory. Therefore the high level management

stated that the company’s business goal is to improve the whole processes in the way that

the project measures have a positive improvement of 10%.

You receive during the whole simulation feedbacks of the improvements that you have made
showing the expected measures values and the obtained values. At the end, a medium value
of the process areas capability level is presented. Based on these values, afinal score

of 10 points will be calculated.

Notes:

- You can check the historical events and an improvement analysis each clock tick.
- You can have access to all measures used to verify the project status.

Good luck!

4]

| Start | | Exit

Figure 5.3. SPIAL introductory screen.

100 CHAPTER 5. SPIAL

The game tab sheet (see Figure 5.4) displays the software process improvement
project, the stakeholders of the software development company and some project in-
formation. The SPI project consists of 11 CMMI process areas in which players can
distribute their investments points. The amount invested in each process area is reg-
istered in the TotalAllocated column of the Process Areas table. The Status column
provides some feedback about the progress of the capability level of each process area.
The stakeholders "communicate" with the player through speech bubbles over their
heads (see Figure 5.5), providing valuable information that players can use during the
game. The information consists of random events (de-motivator and motivator fac-
tors) that can occur during the improvement project and affects its deployment, some
guidance and feedback to the player during the game. For example, the consultant
could notify the player about wrong choice of investments: "Since there is dependency
among process areas, some of your investments may not be effective". The project
information area is a tabular view of the development project: budget, money spent,
allotted time, time used, artifacts, measures and the status of each development phase.
The time control mechanism, located in the lower right corner of the interface, is based
on clock ticks. This mechanism allows the player to drive the simulation. The player
can access the Info and Restart buttons in the lower right corner. The Info button

shows the starting description again. The Restart button restarts the game.

r ™
2 SPIAL L o]
Game | Analysis
Software Process Improvement Project SR PR I R 2R
High Level Management Project Manager Team Member
Investment Points 500 ‘ Invest | ‘ Clear |
6‘ =
| 7
Configuration Management 0 Requirements Development 0 “ '
. o] i |
Measurement and Analysis 0 Requirements Management 0 Consultant Customer P
Organizational Process Definition |0 Technical Solution 0
Organizational Training 0 Validation 0 s
Project Planning 0 Verification 0 !E
o | oy
Project Monitoring and Control 0
Project Project Info ||
Process Areas Invested Arfacts
Process Areas Total Allocated Status I
anﬂguratiuﬂ Management 0 -
Measurement and Analysis 0 Process =
QOrganizational Process Definition 0 —
Organizational Training 0 = =
Project Monitaring and Control 0 I
i Requirements Development 0
Requirements Management 0 | Play
= Exit

Figure 5.4. SPIAL Graphical User Interface.

The analysis tab sheet (see figure 5.6) was designed with the aim to give players

a better insight of the correctness of their decisions, specifically providing graphical

5.4. FASENG 101

Consultant

Customer

Figure 5.5. Stakeholders communication.

information about the measures, the description of the rules used in the game, infor-
mation about the achievement or not their improvement targets and the final score.

All events occurring during the game are recorded in the Fvents log table.

BTN e N T
r Game | Analysis

Graphs Improvement Analysis

Measure ‘Defe(:l "| | Generate Graph

View Rules

Actions "|

4

Rules: Events Log

Description:

:

Play
Exi

[E— S O |

J

Figure 5.6. SPIAL Analysis Tab sheet.

The scenario described below is an example of how a student may use SPIAL
in completing an SPI task. This example illustrates the Software Engineering rules
presented in a game session and how the players’ decisions can affect their game results.
This scenario is based on a Waterfall development project. The initial narrative is
described in Figure 5.3.

When the game begins, the player takes it through the interface elements and

observes, for example, the gray Status bar, which means no available information about

102 CHAPTER 5. SPIAL

the process area capability level. The player can verify the initial project information,
the percent complete of each artifact (0%), the measures (Defect, Cost, Productivity
and Time-to-market), and which development phase is active. In the analysis tab
sheet, when the player tries to generate a graphical measurement representation, a
message appears warning that the organization is immature and, at that time, it is not
possible to have access to it. Only after improvements, the graphical information will
be available. At this moment, the player can infer that immature organizations have
problems to provide measures to their stakeholders.

The player decides to invest in all process areas an amount of 20 investment
points. When the Play button is pressed, the consultant gives a message that there
are dependency among process areas and some of the investments may not be effective.
After 10 clock ticks, the player observes that the Graphs information are still not avail-
able and the measurements targets have not been achieved. The project information
shows an expressive increase in the number of defects, cost, and time-to-market and
a decrease in productivity. The development phase is Requirements and the team is
working on the requirement artifact. The player decides to check the rules used by
the game, and he/she observes that investments made during the upstream portion of
development process will impact more on the project measures. The player decides to
invest more in process areas of maturity level 2 CMMI, instead of making investments
in every process areas.

After some clock ticks, the status bars change their colors (see Figure 5.7). There
are some process areas where the improvement started (green) and other where noth-
ing happened (red). It is also possible to have access to the graphical measurements
representation, however the measures did not reach their targets. When the High Level
Management communicates that the team is resistant to the change and the consul-
tant gives a recommendation to make corrective actions (to give training or to give
feedback of the improvement results), the player decides to invest 20 investment points
in giving feedback (menu item that appears on the right-click into the Software De-
velopment Project panel), this avoided the occurrence of the negative factors during
a period of time and reduced the delay of the improvement deployment. The player
decides to invest more in the CMMI level 2 process areas and on the Requirements
Development process area, since the current development phase is Requirements. The
consultant gives a message that the strategy is suitable, the investment points start
to increase, and all measures achieved the target. Then, the player decides to wait
until the beginning of the next development phase (Design). Since the player stayed
a long time without making investments, the process area capability level decreases,

the investment points stop increasing and start decreasing. Thus, the project targets

5.4. FASENG 103

were not reached again. After 239 clock ticks, the game scenario is similar to the initial
scenario, the only difference is that the player has a different amount of investment
points (234) to invest. The player decides to check with the project managers some
guidance about the improvement (menu item that appears on the right-click into the
Software Development Project panel). After investing 150 points in a meeting, the
process activities that can be improved were shown to the player. Then, the player
can infer in which process areas to invest and their dependencies. In each development
phase, investments in one area will be more effective than in other. After changing the
negative scenario to a positive one, the player learns to not let process areas without
investments for a long period of time. Then, the player decides to invest more in pro-
cess areas of level 2, than in process area of level 3, except for the current development

phase.
TS . o . oaEaeT

Game | Analysis

Software Process Improvement Project Bl B

High Level Management Project Manager Team Member
Investment Points 171 ‘ Invest | ‘ Clear |
Configuration Management 0 Reguirements Development I
Measurement and Analysis 0 Reguirements Management Consultant

‘Organizational Process Definition |0 Technical Solution

‘Organizational Training 0 Validation
Project Planning 0 Verification
Project Monitoring and Control 0

Project DevelopmentPhase

Requirements Active

Design Inactive
Process Areas Invested Artfacts Implementation Inactive L
[Process Areas Total Allocated Status | Test Inactive
|CanﬂgurationManagemem 0] I——
Measurement and Analysis 50(I ‘ Process =
Organizational Process Definition 20| I
Organizational Training 20| I =
Projact Planning 50| E— Time Elapsed |55 [©)
Project Monitoring and Control 50| I
Requirements Development 20(I
Requirements Management 50| I Play

Exit

Figure 5.7. Status information.

Whether the player maintains the strategy of constant investments, respecting
the dependency and trying to avoid the negative factors (that increases the investment
cost and delay the improvement deployment), probably he/she will get a good final

score (close to 10).

5.4.3 Simulator

A great number of simulators are either continuous or discrete. Since in software
development project simulation both mechanisms are needed, we decided for a hybrid

approach [Donzelli and Tazeolla, 2001] in which:

104 CHAPTER 5. SPIAL

e At a higher level of abstraction, the structure of the software process, activities,

interactions and artifacts are best modeled by a discrete event approach;

e At a lower level of abstraction, the behavior of the activities and the factors that

influence the simulated project are best modeled by a continuous approach.

In the simulator component, aspects of discrete events are used to represent indi-
vidual objects (e.g. process areas, and artifacts), actions ("give training or mentoring",
"make an investment"), conditions of triggers and destroyers, and the rules executed
at the start or at the end of an action. The continuous characteristics are represented
through continuous rules, which are performed at each step of the simulation, whether
the actions that define them are currently active.

The simulator runs in a loop. For each time step, it looks whether the conditions
of triggers and destroyers were satisfied, executes continuous rules, generates log, and
gives feedback to the players. If triggers or destroyers conditions are satisfied, the
rules associated to the actions are checked. Continuous rules are fired every clock tick,
whether their respective action is active. The log is generated for the object types
defined in the configuration file. The calculations of performance feedback are defined
by the instructor. In our prototype, at each time step, the simulator verifies whether
the player reached the target values for the measures and presented to it an evaluation.
The detailed communication between the simulation engine and the simulator is shown

in Figure 5.8, using a simplified UML diagram.

Simulation Engine S]] AL """~ Simulator &]
estroyerimpl IDestroyer

Triggerimpl ITrigger

S

Rulelmpl IRuile

Figure 5.8. Communication details between simulation engine and simulator.

As we discussed above, the basic elements for the construction of SPIAL simula-
tion models are basically the same used for the construction SimSE simulation models.
The main difference between SPIAL and SimSE is that while the models are compiled

5.5. EVALUATION 105

in SimSE, generating a new game for each model, the SPTAL models are interpreted
by the simulator. The advantage of interpreting the model instead of compiling it is
that the tests of the model becomes simpler, since the changes in the model is quickly
viewed when running the simulator again. A disadvantage is that the execution of the
simulation is slower since it is necessary to "translate" during run-time the modeling
elements (e.g. actions, conditions, and rules).

The simulator has several component interfaces, representing the start (triggers)
and end (destroyers) conditions for each action, as well as rules to be executed. Since
there are several types of triggers, rules, and destroyers, a hierarchy of interfaces was
created in the simulator component. For each condition or rule to be created in the
simulator engine, an interface of the simulator should be implemented in a Java class.
Then the rule class must be referenced in the XML file of the simulation model. When
the simulator encounters this class name in the simulation model, it learns which class
should be instantiated. The simulator was designed to handle the simulation model,
defined externally in an XML file, and to generate the internal representation of it.

Figures 5.9, 5.10, 5.11 show the class hierarchy and interfaces use to implement
destroyer, triggers and rules, respectively. In each step of the simulator, the destroyer,
triggers and associated rules are performed. The abstract classes provide some interface

methods implementation.

5.5 Evaluation

In this section we present the SPIAL evaluations carried out to answer the research
questions RQ 1 and RQ3:

e RQ 1: Can students learn Software Engineering concepts or reinforce them using
SPIAL?

e RQ 2: What characteristics are required for SPIAL to be capable of supporting

the learning process?

e RQ 3: How can such a simulator be incorporated into Software Engineering

courses?

The second research question was addressed by the analysis of other simulations
games, the semiotic analysis, and the SLR that helped in the identification of SPI
central issues (e.g. measures, results, motivator and de-motivators factors). The first

question can be further broken down into specific questions:

106

CHAPTER 5. SPIAL

ra]

Simulator
<<intefface>>
IDestroyer Kb === == ===c--mmeo e _______._ !
K%
|
‘
<<interface>= <<interface>> <<interface=> _“imE”a“E” AbstractDestroyer
IAutonomousDestroyer P stroy Jestroyer ITimedDestroyer e

& 5 %

I AuronmnusDa.slmyerMskact ” Playuﬂesn:ayerMsﬁ'aci I ! RandomDestroyerAbstract II I Iﬁneﬂ)u;’oyanbskact I
L d L 1 L I |

AN FAS A T

. |

Simulation engine

AutonomousDestroyerimpl | | PlayerDestroyerimp! | | Randombestroyerimp! | [TimedDestroyerimpi |
L 1§ L 1 | L 1 L]

Figure 5.9. Destroyer hierarchy and interfaces.

1. What is the perception of the students about SPIAL? (e.g., it is enjoyable) What

are its strengths and weaknesses? How well does SPTAL design is appropriate for

their purpose?

These characteristics are indirectly related to the learning, showing how effective
is the educational environment. These questions provide a subjective evaluation

of the simulation game, helping to identify flaws in the game design.

Is there any difficulty to play SPIAL?

This question highlights how much guidance will be necessary before starting to

play SPTAL and some suggestions for further improvements.

Can students actually learn software process concepts from using SPTAL, consid-

ering effects on the remembering, understanding and applying level?

It is critical to determine if the game achieves the central goal of our research.
We expect a positive learning effect on the capability of students to remember
and understand software process concepts, specifically SPI concepts, and on the

capability to apply the acquired knowledge.

5.5. EVALUATION 107

|

Simulator

<<interface>>
ITrigger === =—=——ECCCEEER
'
<<interface=> ;
lAutonomous Trigger <<interface>> <<intarface>> AbstractTrigger
IPlayer Trigger IRandomTrigger ‘T

® T

%3

MMPW"WSTﬂ?BUMSWBCfI I PlayerTriggerAbstract | | RandomTrigger Abstract
1 | L 1 L 1

LA 11.\

&l \ \
Simulation engine

Autonomous Triggerimpl | PlayerTriggerimpl | | RandomTriggerimpl
E L 1 L 1

Figure 5.10. Trigger hierarchy and interfaces.

We evaluated SPITAL from two viewpoints: specialist and player. From the spe-
cialist’s viewpoint, the Semiotic Inspection Method was conducted and communicabil-
ity breakdowns were identified and adjusted. From the player’s viewpoint, we evaluated
the game carrying out a pilot experiment with undergraduate students. The core goal
of all these evaluations is to verify the effectiveness of using this game as an educational
tool. SPTAL is evaluated as an additional instrument to the Software Engineering class

rather than a substitute to any teaching method.

Most of the simulation games were evaluated at some extent regarding their
impact on Software Engineering education. One of the most extensive evaluations
has been carried out by SimSE [Navarro, 2006]. The SimSE evaluation included a
pilot experiment, an in-class study, a formal experiment comparing SimSE with other
teaching methods (readings and lecture) and an observational study. These evaluations

gave a comprehensive picture of the effectiveness of SimSE as an educational tool.

SESAM has been evaluated through a case study and an experiment [Drappa
and Ludewig, 2000]. The goal was to investigate the learning effectiveness of using
such a simulation model for educating Computer Science students in Software Engi-
neering knowledge and Project Management abilities. Both in the case study and in

the experiment, pre-test and post-test design were used to compare the scores.

108 CHAPTER 5. SPIAL

|
Simulator
<<interface>> =<gnum==
IRule |~~~ "~~~ 2 RuleType

& i

i

: CONTINUOUS

] TRIGGER,

' DESTROYER
AbstractRule

AN

Simulation engine

ContinuousRulelmpl TriggerRulelmpl DestroyerRulelmpl

Figure 5.11. Rules hierarchy and interfaces.

Another study consists of a set of experiments carried out by Pfahl [2001] and
Pfahl et al. [2004]. The goal was to evaluate the learning effectiveness of using a pro-
cess simulation model for educating Computer Science students in Software Project
Management. The experiment included pre-test and post-test which compared the ap-
plication of a System Dynamics simulation model by the experimental group and CO-
COMO model [Boehm et al., 2000] by the control group. The results of each empirical
study indicate that students using the simulation model gain a better understanding

about typical behavior patterns of software development projects.

A study carried out by Gresse von Wangenheim et al. [2009] tried to demonstrate
the learning effect of a software measurement game prototype with graduate students
using pre-test and post-test experimental design. At the end of this study, the authors
could not statistically demonstrate the effectiveness of this game. However, subjective
evaluation indicate the potential of this game to support education. Results as those
can also be observed in other related research. For example, in the context of SESAM
and also with SimSE an effective learning effect could not be observed. One cause
for this problem is the difficulty in making comprehensive evaluations in the educa-

tional domain |[Gresse von Wangenheim et al., 2009]. Other reasons include multiple

5.5. EVALUATION 109

interacting factors that make almost impossible to isolate the effects of an educational
technique, and the difficulty to track the real learning effect and to get statistically
significant results [Navarro and van der Hoek, 2007; Gresse von Wangenheim et al.,
2009; Almstrum et al., 1996].

5.5.1 Semiotic Analysis

An inspector 3

conducted the first evaluation of SPIAL, carrying out the technical
application of SIM. Like other inspection methods, SIM has a preparation step preced-
ing its core analytical steps [de Souza et al., 2010]. The inspector reads the support
material (introductory screen) and navigates through the game (see Figure 5.12). In

this case, the inspector scenario is a student playing SPTAL.

r ™
| %) SPIAL [EEEE S
— O e—— e B eee— . se—
- Analysis
Stakeholders
Software Process Improvement Project
High Level Management Project Manager Team Member
Investment Points 500
CX)
’f =5 i o
'
Consultant Customer
Process Area | Investment
=
=
L -
Clean ‘ ‘ Confirm | | Exclude Project Project Info Value

b

Artifacts

Process Areas Invested

| Process Areas Investment | Total Invested
|Cnnﬂguration Management
Measurement and Analysis

‘ Process

K

Or Process Definition
Organizational Training

Project Planning

Project Monitoring and Control
Requirements Development
Requirements Management

Time Elapsed 0

olololo|alo|s|o

ololololololele
@
2
=
i

Play

Figure 5.12. First SPIAL Prototype.

After preparation, come the core steps of the method. The first step consists of
the analysis of metaliguistic signs. This is achieved when the inspector finishes the
examination of all these types of signs encountered while running various interactive
possibilities [de Souza et al., 2010]. The main evidence obtained in this phase is the
introductory screen with the game description. The inspector pointed out that there
is no online help function. If players click on "Info" (button) they will be told about

the same game description as in the introductory screen. Very few tool tips explain

13Soraia de Souza Reis, a master student of DCC/UFMG who is a specialist in the Semiotic
Inspection Method, conducted this evaluation.

110 CHAPTER 5. SPIAL

the meaning of the buttons that the player can click on. Since there are no interac-
tive mistakes at this level, the analysis is quickly finished, and produces the following
metacommunication message:

[Here is my understanding of who you are,| You are a student of a Software
Engineering discipline. You are interested in learning more about SPI. You have basic
knowledge of CMMI [what I've learned you want or need to do, in which preferred
ways, and why| You need an intuitive game that you can monitor at the same time an
improvement and a development project. You want to improve process and control the
changes observing their effects on the project measures. You need some feedback during
the game to verify the improvement effects. [This is the system that I have therefore
designed for you, and this is the way you can or should use it in order to fulfill a range
of purposes that fall within this vision| You play a simulation game in the role of a
manager of an SPI group. You can interact with some stakeholders who can introduce
positive and negative factors to the improvement. You have 500 investment points to
wnwvest in the improvement project and, depending on your actions, this improvement
points can increase or decrease. The organization is CMMI level 1. You have 1300 clock
ticks to make the needed changes. The development project has a budget of $350.000.
During the whole game you receive feedbacks about the improvements and measures. At
the end, you can see your score in a 10 points scale. You can also have access to a log
of events and the rules used in this game.

The inspector suggested the following improvements to the game description at

the introductory screen:
1. A better explanation of how the project measures are affected.
2. A description explaining the investments points.
3. The list of stakeholders.
4. The characterization of the player as an employee of the organization.
5. A better description of the improvements’ target.

We make the suggested changes with exception of number three, which can be verified
at the main game interface.

The analysis of static signs was achieved when the inspector finishes the exam-
ination of all static signs encountered while playing the game. The inputs of this step
are all interface elements appearing on the screens. At the end of core step 2, the meta-
communication schema was filled out in the following way: text within brackets from

the previous schema has been omitted; message portions that are not communicated

5.5. EVALUATION 111

with static signs are crossed out; and bold text represents content that was introduced
with static signs.

You are interested in

learning more about SPI. You have basic knowledge of CMMI. You meed an intu-
itive game that you can monitor at the same time an improvement and a development
project. You want to improve process and control the changes observing their effects

on the project measures. You need some feedback during the game to verify the im-

provement effects.
group- You can interact with seme five stakeholders who can introduce positive and
negative factors to the improvement. You have 500 investment points to invest in
11 CMMI process areas the—improv

i—h%—ﬁ%ﬁ%ﬁ%ﬁ@%&—p@%—&ﬂﬁ—%b%&&%%d@%ﬁﬁe You should select the process

area to be improved from a ComboBox list and define the amount of invest-

ment points for each area. The table below the investment area informs you
about the planned investments that you have made. In order to confirm the
investment, you should click on "Confirm" button. You also have the op-
tions: exclude or clean the planned investments. The table "Process Areas
Invested"” allows you to monitor the amount invested. In the "Investment”
column you can see your last investment and in the "Status"”" column you
can observe the improvement of each specific process area. Fhe-organization—+s
ECMMHevel+ You can control the development project accessing the project,
artifacts, measures and process information. You have 1300 clock ticks to make
the needed changes. The development project has a budget of $350.000. You start
the game clicking on the "Play" button. You can reset the game or exit
from it. During the whole game you receive feedbacks about the improvements and
measures. The analysis tab sheet allows you to monitor the improvement.
You can generate graphs and you can analyze the impact of your actions
through the Improvement Analysis table. At the end you can see your score in
a 10 points scale. You can also have access to a log of events and the rules used in this
game.

The inspector suggested the following improvements to the game interface:

1. The table "Process Areas Invested" can be simplified. The meaning of the "In-
vestment" column is not clear. In addition, the "Status" column can be repre-

sented using more advanced design elements or in a textual form.

2. The action of monitoring artifacts during the game was not clear. Therefore, this

information can be removed.

112 CHAPTER 5. SPIAL

We changed the table "Process Areas Invested" (see Figure 5.4). Regarding
the artifact information, we believe that this information is important to monitor the
project evolution.

The analysis of dynamic signs is achieved when the inspector finishes the ex-
amination of all dynamic signs encountered while playing the game. The input for this
step is all interactions supported by the interface elements. Since there is very little
guidance, the inspector explores the interface to find out what the game does, and the
educational benefits that it can bring to students. The inspector observed that the
whole game features are only conveyed through dynamic signs. The metacommuni-
cation schema filled out at the end of this step is the following (bold text represents
added content that is only communicated with dynamic signs).

You are - student of -« -Software -Fngineering discipline. You arc interested in
learning more about SPI. You have basic knowledge of CMMI. You need an intu-
itiwe game that you can monitor at the same time an improvement and a development
project. You want to improve process and control the changes observing their effects on
the project measures. You need some feedback during the game to verify the improve-

ment effects.

can interact with seme five stakeholders who can introduce positive and negative factors
to the improvement through bubbles over their heads. You have 500 investment
points to invest in 11 CMMI process areas the—mprovement-project, and depending on
your actions this improvement points can increase or decrease. You should select the
process area to be improved from a ComboBox list and define the amount of investment
points for each area. The table below the investment area informs you about the planned
investments that you have made. In order to confirm the investment, you should click
on "Confirm" button. You also have the options: exclude or clean the planned invest-
ments. The table "Process Areas Invested" allows you to monitor the amount invested.

In the "Investment” column you can see your last investment and in the "Status” col-

area Yyou can observe
if the capability level of the process area is low (red bar), increasing (green
bar) or decreasing (orange bar). The—organization—is—CMMIAevel 4+ You can
control the development project accessing the project, artifacts, measures and process
information. You have 1300 clock ticks to make the needed changes. The development
project has a budget of $350.000. You start the game clicking on the "Play" button.
You can reset the game or exit from it. During the whole game you receive feedbacks
about the improvements and measures. The analysis tab sheet allows you to monitor
the improvement. You can generate graphs, showing the current and estimated

value, and you can analyze the impact of your actions through the Improvement Anal-

5.5. EVALUATION 113

ysis table. You can verify at each moment whether you achieve the measures
target. At the end you can see your score in a 10 points scale. You can also have
access to a log of events and the rules used in this game.

In this step, the inspector pointed out the following issues about the game:

1. There is no guidance on how to invest the points. The player can invest 1, 10,

50 or 100 points in each process area.

2. It is tiresome to choose each process area and the investments points during the

whole game.
3. The column "Investment" in the "Process Areas Invested" table is not clear.

4. Tt is difficult to understand the underlying behavior of the game. Some investment

did not produce any change.

5. The total time needed in the simulation is not visible to the player. You need to

access the project information.

6. Only after a period of time it was possible to observe the measure information in

the analysis tab. The graph information could be placed in the game tab.

7. The rules information could be better expressed in the game (not only in the

analysis tab).

Related to items 1, 4 and 7, the "Consultant" will present a message related
to the game behavior, specifically, about the dependency among process areas, the
amount of investment points, some Software Engineering and game rules. Regarding
the interface design, we changed the interface to ease the investment procedure. We
also removed column "Investment" in the "Process Areas Invested" table. However,
we did not change the time information on purpose, because players should navigate
through the project information (see Figure 5.4).

In the final steps conducted by inspector, an unified analysis was produced, high-
lighting the main communicability breakdowns. The analysis shows that getting the
whole message from this game is the result of trial and error interaction. A number
of feedback information were presented during the whole game, such as measurement
charts and improvement analyses, and important aspects to understand the core be-
havior were missing, such as the reason why sometimes investments do not produce
any improvement. In addition, some interface improvements can be done to allow a
better interaction, moving elements from the analysis tab to the main tab. We pro-

duce a new game version, with the modifications discussed above, which provides more

114 CHAPTER 5. SPIAL

guidance to players. A more elaborated interface design was let as a future work, we
only make small changes in order to release, as soon as possible, a new game version

to the experimental activities.

5.5.2 Pilot Experiment

In this first experiment, our aim was to gain a better understanding of the SPIAL
effectiveness as an educational tool. Specifically, we observed students’ understanding,
remembering and application of Software Engineering concepts in the context of CMMI
based SPI initiatives using SPTAL. In addition, we verified the adequacy of SPTAL in

terms of its design, content, duration and student’s engagement.

5.5.2.1 Context

The experiment was conducted with students enrolled in their final year of under-
graduate studies. This experiment happened in the context of a Software Engineering
course. The Software Engineering course at the Department of Computer Science at
Federal University of Minas Gerais, Brazil, is taught in one semester (60 hour class).
This course is designed to cover the fundamentals of Software Engineering theory and
practice at an introductory level. The students follow Praxis [Paula Filho, 2009], a
model-driven process that prescribes the use of UML for the models and Java as the
programming language, using test-driven development techniques.

While the discipline was running, students were asked if they would be interested
in participating in an experiment related to SPI issues, involving a simulation game.
Students are expected to have a basic understanding of Software Engineering concepts,

mainly the development process and the CMMI framework.

5.5.2.2 Research Questions

Our research questions are:

1. What is the perception of the students about SPIAL? (e.g., it is enjoyable) What
are its strengths and weaknesses? How well does SPTAL design is appropriate for

their purpose?
2. Is there any difficulty to play SPTAL?

3. Can students actually learn software process concepts from using SPIAL, consid-

ering effects on the remembering, understanding and applying level?

5.5. EVALUATION 115

4. How can such a simulator be incorporated into Software Engineering courses?

The first and the second research questions evaluate practical aspects of SPIAL,
such as time spent, and subjective students’ perceptions, such as motivation and en-
gagement. This can inform about the adoption of SPTAL into a Software Engineering
course (fourth research question). We used a questionnaire in order to collect the

reaction of the players about these aspects.

As in the Gresse von Wangenheim et al. [2009] work, our third research ques-
tion is derived from knowledge levels of the revised version of Bloom’s taxonomy of
educational objectives (remembering, understanding, applying, analyzing, evaluating
and creating) [Anderson and Krathwohl, 2001]. However, we have chosen only three
levels from Bloom’s taxonomy: remembering, understanding, and applying (see Table

5.1). These three levels represent what knowledge may be reasonably learned during

an undergraduate education [SE2004, 2004].

Table 5.1.

Cognitive levels of the revised version of the Bloom’s Taxonomy
(adapted from Gresse von Wangenheim et al. [2009]).

Levels

Questions

Learning Outcome

Remembering

Can students RECALL information?

Recall Software Engineering con-
cepts presented in the CMMI
framework: process areas, capac-
ity levels, etc.

Name the steps of the improve-
ment process and business mea-
sures.

Understanding

Can students EXPLAIN ideas?

Identify important SPI aspects
based on a problem description.
Determine the effects of the im-
provement approaches on the
business measures.

Applying

Can students USE a procedure?

Identify problematic areas in a
software development company.
Construct improvement initia-
tives based on the identified prob-
lems.

Select adequate process areas to
be improved and the measures.

116

5.5.2.3 Experimental design

CHAPTER 5. SPIAL

We recruited 12 undergraduate computer science students to participate in this pilot

experiment (one student gave up, leaving us with 11 students). Students had a previous

training about CMMI and basic Software Engineering concepts in the undergraduate

course. Since this experiment were conducted during the beginning of the semester,

we decided to give a brief training session in order to reinforce these concepts. This

training session took 30 minutes. Then each student took a background and a pre-test

questionnaire, before playing SPIAL, and a post-test, after playing it.

1. Experimental Variables: During the experiment, data for a list of variables

were collected. Table 5.2 lists all experimental variables, including three variables

that represent potentially disturbing factors.

Table 5.2. Experimental Variables.

List of Variable

Data Collection

Variables

Dep.1 Interest
Dep.2 Competency

Dep.3 Knowledge on the remembering

level

Dep.4 Knowledge on the understanding

level

Dep.5 Knowledge on the application

level
Dep.6 Engagement
Dep.7 Appropriateness

Dep.8 Learning Perspective

Pre-test and Post test
Pre-test and Post test
Pre-test and Post test

Pre-test and Post test
Pre-test and Post test
Post-Test

Post-Test
Post-Test

Disturbing factors

DiF.1 Personal background

DiF.2 Additional study

DiF.3 Material evaluation (personal

perception)

Background Question-
naire

Background Question-
naire

Post-Test

Variables:

e Dep.1 Interest in SPI issues. Questions about personal interest in learning

more about SPI.

e Dep.2 Competency of students in SPI. Question about personal evaluation

of SPI knowledge.

5.5. EVALUATION 117

e Dep. 3 Knowledge on the remembering level. Questions about typical SPI

knowledge learned in class or during the game.

e Dep.4 Knowledge on the understanding level. Questions about typical char-
acteristics of SPI initiatives. Some of these questions were based on empirical
findings and lessons learned that we collected from the literature. In this

case, students need to infer the meanings and explain the ideas.

e Dep.5 Knowledge on the application level. Questions about the execution
of an SPI initiative. Students were asked to propose an SPI initiative based

on an organizational context.

e Dep.6 Engagement. Questions that evaluate whether students had fun and

enjoyed the game.

e Dep.7 Appropriateness. Questions that evaluate the students’ perceptions
about the appropriateness of the game. These were organized in eight di-
mensions |Gresse von Wangenheim et al., 2009|: duration, difficulty, content
relevancy, correctness, sufficiency, sequence, teaching method, and adoption

in a Software Engineering course.

e Dep.8 Learning Perspective. Questions about the student’s learning percep-

tion.

Disturbing Factors: The value of three potentially disturbing factors DiF.1,
DiF.2, and DiF.3 are also considered in the questionnaires that all subjects have
to fill in.

e DiF.1 Personal background in terms of practical and training experience.

e DiF.2 Additional study time spent besides lectures and preferred learning

style.

e DiF.3 Questions on personal judgment of the training session (subjective

evaluation).

2. Experimental Procedure: We run the experiment with students coursing a
last year discipline of a four-year Computer Science program. As part of their
participation, the students earned educational credits in an extra-credit exercise.

The experiment was conducted following the schedule presented in Table 5.3.

After a short presentation of the experiment’s goals and the main concepts that
are prerequisites to this game (CMMI levels and basic Software Engineering con-

cepts), the participants were asked to answer a background questionnaire about

118

CHAPTER 5. SPIAL

Table 5.3. Schedule of the experiment.

Content Duration

Introduction to the experiment and theoretical overview 30 min
Personal characteristics and background knowledge 10 min
Pre-test 40 min
Game Play 40 min
Post-Test 40 min
Game evaluation 20 min
Material evaluation 5 min

their personal experience. Questions include information about their professional
experience and previous training. Then, a pre-test was conducted to establish a
baseline for comparison. The pre-test was composed of 16 questions: 6 on the
remembering level, 8 on the understanding level, and 2 on the application level.
Following the pre-test, the students play the game. After having concluded the
game, a post-test questionnaire was filled by them. This questionnaire has the
same questions of the pre-test. In addition, students were asked to make sub-
jective evaluation of the game, including assessment of its learning effects and
strengths and weakness. Finally, they evaluated the training session by answer-

ing six questions.

Assessment: The learning outcome was assessed by questionnaires with multiple
choice and open questions. These questions were carefully selected to cover both
concepts presented in the Software Engineering course and those that were only
presented in SPIAL. They allowed gaining an overall understanding of how well
the game enables students to remember specific knowledge taught and how well
students can infer knowledge that was not taught in their course. We followed
the principles proposed by Kitchenham et al. [2002] and we adapted some of
the questions based on the Lethbridge work [Lethbridge, 1998|, and on other
important studies [Gresse von Wangenheim et al., 2009; Navarro, 2006; Pfahl,
2001]. In the close questions, we ensured that each value on the scale has a
well-defined meaning, and that the high and low values are true extremes. The

questionnaires are presented in Appendix D.
Data Collection Procedure: We treated the raw data in order to carry out
data analysis.

Variables: The value for variable Dep.1 is derived from five questions on the

students’ interest in SPI issues, applying a five-point Likert-type scale |Likert,

5.5. EVALUATION 119

1932|. The answers are mapped to a value range R = [0,1], where "fully disagree"
is encoded as "0", "disagree" as "0.25", "undecided" as "0.5", "agree" as "0.75",

and "fully agree" as "1".

The value for variable Dep.2 is derived from one question about the students’
CMMI knowledge. Similarly to variable Dep.1, the answers are mapped to a
value range R = [0,1].

The values for variables Dep.3, Dep.4 and Dep.5 are average scores derived
from 13 questions on multiple-choice style and three open questions. The an-
swers to these questions were evaluated according to their correctness. Thus,
for multiple-choice style questions, having a binary scale with correct answers
encoded as "1", and incorrect answers encoded as "0", and a value range R=|0,

1] for open questions.

The value for variable Dep.6 is derived from eight questions on students’ opinion
about the game. The answers are mapped to a value range R = [0, 1], where a

"strong negative" is encoded as "0", a "weak negative" as "0.25", undecided as

"0.5", "positive" as "0.75", and a "strong positive" as "1".

The value for variable Dep.7 is derived from two questions on students’ opinion
about the game engagement. The answers are mapped to a value range R = [0,
1], like the variable Dep.6.

The value for variable Dep.8 is derived from three questions on students’ opinion
about the learning perspective. The answers are mapped to a value range R =
[0, 1], like the variable Dep.6.

5.5.2.4 Results

In this first experiment, our aim was to have an overall understanding of the game.
For this purpose, we asked all the students to play the game and answer the questions.

In total, 12 students participated in this experiment and 11 participants com-
pleted it. Table 5.4 summarizes the students’ personal characteristics.

We used descriptive statistics to analyze the questions. The aim was to identify
central tendencies and dispersion on the variables. For variables Dep.3, Dep.4 and
Dep.5 we analyze the mean, median and standard deviation. For variables Dep.1,
Dep.2, Dep.6, Dep.7 and Dep.8 we calculate the median and interquartile range, as
they are measured on ordinal scales. Tables 5.5 and 5.6 show the raw data collected

during pre-test and post-test for these variables.

120

CHAPTER 5. SPIAL

Table 5.4. Overview of participants’ personal characteristics.

Personal characteristics

Number of participants
Gender
Male
Female
Average age
Academic formation
Bachelor in Computer Science
Bachelor in Information Systems
Bachelor in Electric Engineering
Bachelor in Airspace Engineering
Professional certification
First Software Engineering course
Work load
Full-time student
Working 20 hours
Working 30 hours
Working 40 hours
Current professional position
Software developer
Complementary training
Project Management
Readings
of Books
0
1-2
of Papers
0
1-2
3-5
CMMI acronym
Right answer
Don’t know

Learned CMMI and Software Engineering concepts

Yes
No

Preferred learning style (multiple options possible)

Reading of text books
Classroom lectures

Group work

Web-based training modules

11
11

22 years

— O = =N~

— M =~

S Ot

(G200 RN eI N |

5.5. EVALUATION 121

Table 5.5. Descriptive Analysis (Dep.3, Dep.4 and Dep.5 variables).

Dep.3 Dep.4 Dep.b

Pre-Test

Mean 0,37 0,28 0,14
Median 0,33 0,22 0,14
Standard Dev. 0,21 0,29 0,04
Post-test

Mean 0,37 0,35 0,53
Median 0,28 0,33 0,53
Standard Dev. 0,20 0,28 0,12

Table 5.6. Descriptive Analysis (Dep.1, Dep.2, Dep.6, Dep.7 and Dep.8 vari-

ables).
Dep.1 Dep.2 Dep.6 Dep.7 Dep.8

Pre-Test
Median 0,81 0,31 - - -
Interquartile 0,24 - - - -
range
Post-test
Median 0,86 0,39 0,70 0,80 0,47
Interquartile 0,15 - 0,22 - 0,23
range

In general, the interest in SPT improved between the pre and the post-test (Dep.1).
The answers indicate that students considered important the SPI knowledge both in
academic and in professional life. An interesting observation is that, after playing
the game, students evaluated with high scores the importance of learning SPI in an
undergraduate program (Dep.1.1 and 1.2).

The subjective auto-evaluation of the student’s measured competency (Dep.2)
showed that they evaluated their competency with higher values in the post-test than
in the pre-test, suggesting that they have learned something after playing SPIAL.

Considering the descriptive statistics, we cannot identify a significant difference
between the pre and post-test regarding the central tendency of measured knowledge
on the remembering level (Dep.3) and on the understanding level (Dep.4). Only very
few students presented a small improvement (see Figure 5.13). In terms of measured

gain in software process knowledge, students improved somewhat in the applying level

122 CHAPTER 5. SPIAL

Dep.5. This could be partially due to the fact that, playing SPIAL, students have a

practical idea of what happens in a process improvement program.

Average Results for each Knowledge Level

0,6

0,5

0,4

M Pre-test
0,3

M Post-test
0,2

0,1

Remembering Understanding Applying

Figure 5.13. Average score results for each knowledge level.

On average, students found SPIAL quite enjoyable and they had fun during the
game play (Dep.7). They also felt that the game duration was appropriate and it was
relatively easy to play (Dep.6). They agreed about adopting SPIAL in a Software
Engineering course as a complementary approach. The students considered the game
content relevant to their learning. They relatively thought that SPIAL reflects aspects
of a real Software Process initiative. They observed that this game was sufficient when
considering its purpose and it had a satisfactory play sequence. All students agreed
that a traditional Software Engineering class with SPTAL will be better than without
it. They moderately learned new concepts and practical application of an SPI program
in an organization. They felt that SPIAL was more successful in reinforcing concepts
taught in Software Engineering course than teaching new concepts (Dep.8). Figures
5.14, 5.15, 5.16 and 5.17 present the results of each evaluated game aspect.

In open-ended questions, students pointed out their positive feelings about
SPIAL: "Enjoyable and challenging. I like to play it." | "It was easy to play when
you know what you are doing", and "The game emphasizes where the player should
invest in different stages of the project. This is a concept that would be hardly fixed
without some kind of practical activity". Concerning the favorite aspects, the most
cited one was the feedback and the way it was presented (four citations), followed by
the investments in process areas (two citations) and the events (one citation).

Although these positive responses, it was clear from this experiment that some
aspects of the game needed to be improved. The confusing and least favorites aspects
pointed out by the students are related to the underlining game behavior. This problem

has been previously detected during the semiotic inspection method, but the corrections

5.5. EVALUATION

Appropriateness Results

]

B

7
”]
=
_g 5
=2
=
- 4
]
* 3

2

1

a

Content Teachi
Duration Difficulty neEn Correctness | Sufficiency | Sequence Eaching Adoption
relevance method

W Fair 2 3 1 a a a a a
= Undecided 2 1 3 5 o] 2 a a
M Good 3 7 5] 5 B 4 4
M Excelent 4 a 2 a 6 1 7 7

Figure 5.14. Results on Dep.6 Appropriateness (n=11).

#of students

#of students

Enjoyable Results

5
4
3
2
1
L

Undecided Liked Liked a lot

Figure 5.15. Results on Dep.7 Enjoyable (n=11).

Fun Results

Little fun Undecided Fun Lots of fun

Figure 5.16. Results on Dep.7 Fun (n=11).

123

124 CHAPTER 5. SPIAL

Learning Perspective Results

#of students
w

1

a
New SE Concepts Practical Application of 5PI Reinforce SE Concepts

M Became vaguely familiar 1 a

m Learned the basics

M Became functional

M Learnedalot

o |w|w |

ok
Ewm W | e

M Learnedin depth

Figure 5.17. Results on Dep.8 subjective learning perspective (n=11).

were not sufficient. For instance, some students did not know how to overcome the
negative feedback originated from some of the stakeholders, other did not understand
the results of the process area investments and were in doubt about their investment
strategy. Other issues that students were unhappy consist of technical aspects, such as
the lack of the stakeholder information in the event log tab and the short duration of
the messages that appear over the employees’ head.

Since we wanted to guarantee anonymity to the students, we were not able to
correlate the game scores with the data collected with the background questionnaire.
We observed that most of the students (seven, 64%) played the game until they got the
maximum score (10 points). At the first time, almost all of them got scores close to
zero. We believe that the contributing factor for the low score was the lack of a suitable
investment strategy. The students played over and over again in order to master the
game and discover the process areas investment strategy. This is the reason why some
students suggested guidance, mainly at the beginning of the game.

When we analyze the influencing factor DiF. 3, students evaluated the training
session as useful, providing important information for the game play (CMMI levels and

basic Software Engineering concepts).

5.5.2.5 Threats to Validity

The experiment study design applied in this research may cause a number of problems,
reducing the validity of the results. An important issue is the lack of a control group

as a basis to make a comparison and record differences. In this first attempt, we opted

5.5. EVALUATION 125

to conduct an informal experiment in order to have an overall understanding of the
students’ reactions who played SPIAL. Our purpose was to make an initial judgment
about its effectiveness as an educational tool. Since the experiment was run with a
very small set of participants, we considered this situation a possible way to conducted
SPIAL evaluation.

The experiment was conducted by one instructor who was responsible for the
training sessions. This instructor also reviewed the answers and collected the data.
This was done in order to reduce any bias during the tests review.

The questionnaire design is another important issue to be considered. Although
students’ knowledge was assessed by pre and post questionnaires, it was not possible
to infer significant results. This was due to the fact that the questionnaires contain
knowledge not only covered by the game. In addition, a maturation effect can have been
caused, since both questionnaires have the same set of questions. We tried to minimize
this effect by not giving any feedback before the post-test. We also administrated it in
a different day of the pre-test. However, the repetition of the tests may have caused
a loss of motivation, reducing the students’ performance. Another important aspect
is the number of questions. The tests score can be considered a limited measure to
represent the learning effect due to the fact that it has been resulted from a relative
small set of questions.

The very small sample size also represents a threat. As this is a pilot study to
gain initial insights on the learning effectiveness of the educational game, we accepted
these weak results as a first game evaluation attempt.

Due to the academic environment where the experiment happened, the number of
subjects involved and their gender (only males), a generalization of the results may be
done with caution. It can be expected that the results are at an extent representative
for this class of subjects.

Although the tests were limited and may not be representative for a complete SPI
initiative, we carefully prepare the tests based on a large collected empirical experience
from the literature that covers, as much as possible, some important issues of a software
process improvement program. A point that should be emphasized is that the research
at its current stage is exploratory of nature and it is just a first step of a series of
experiments that might yield more general results in the future.

Another threat is that aspects of the game evaluation were captured through
subjective measures. To counteract this threat to validity, the questionnaires were de-
veloped based on existing similar studies [Gresse von Wangenheim et al., 2009; Navarro,
2006; Pfahl, 2001|. In addition, students might not be able to provide valuable feedback

on the correctness, relevancy and completeness of the game. However, we did not ana-

126 CHAPTER 5. SPIAL

lyze these characteristics only based on the students’ opinion. During the development,
experts performed informal reviews.

Finally, the application knowledge might not take place since we considered that
students were quite immature to use a particular topic being taught. We confirmed
this observation when we evaluated the disturbing factors. Four students work part-
time in a company (DiF. 1), only one student participated in a complementary training
(Project Management training)(DiF.1), three students have read additional material
(DiF.2) and no student has a certification (DiF.1). However, the game play reduced
drastically the effects of this threat (see Table 5.5, Dep.5).

5.5.3 Discussion

The obtained results are a first indication that SPIAL can be beneficial to reinforce
and teach new Software Engineering concepts. Considering the subjective evaluations,
students mentioned having fun during the game play. They expressed that playing the
game was an enjoyable experience. Opportunities for improvement include the repre-
sentation of other phenomena into the simulation game, improvement of the feedback
and some interface design aspects.

To summarize, our first pilot experience revealed the following lessons:

e SPIAL seems to have the potential to be a complementary tool in an introduc-
tory Software Engineering course. Students who played SPIAL said that it is a
reasonably educational tool, they were able to learn and reinforce Software Engi-
neering concepts. In addition, they recommended its adoption in an introductory

Software Engineering course.

e SPIAL needs additional guidance in order to make the experience potentially more
educationally effective. The main complaint was the lack of guidance, resulting
in disagreements about the underlining game behavior. It is clear that more help

is needed in order to make the experience more positive.

e The longer students play SPIAL, the more the score increases. Students only
learn the investment strategy after playing continually the game. They attempt
a few incorrect strategies before discovering a correct one. Thus, an important
factor in using SPIAL effectively consists of the number of times that students

play it.

e SPIAL’s feedback mechanisms are an useful resource for helping players under-

stand software process improvement concepts. The feedback gives to the players

5.6. SPIAL X SOFTWARE ENGINEERING SIMULATION GAMES 127

deeper insights into the correct and incorrect actions that they might have done

during the game. This motivates players, supporting their learning process.

e SPIAL’s feedback mechanism allowed students to achieve the maximum score.
The students’ scores on the game were quite high. Besides all the complains, this
seems to suggest that the majority of students were able to learn most of the

underlining game concepts.

5.6 SPIAL x Software Engineering Simulation

Games

We can identify four essential differences between SPIAL and the existing Software

Engineering educational simulation games:

e Feedback and Software Engineering concepts: most of the simulation
games have the final goal to develop a software project within a certain set
of constraints, and their rules are based on the Software Engineering practices.
Typically, they present a metaphor of a software development office, where the
player assumes a project manager role. The experimental results of using these
tools have shown a restricted number of new concepts that students have learned
after playing them. This can be a result of a not straightforward performance
feedback that was presented to the students or the way that the virtual world
was designed. In order to address these two aspects, we changed the context of
our simulation game and we integrated the feedback during the whole game. In
SimSE, for example, the performance feedback, presented through the Explana-
tory tool is an additional functionality that it is not integrated into the simulation
environment. As presented in Chapter 3, we observed that students usually do
not access this functionality. Since introductory Software Engineering courses
typically present the best practices of Software Engineering superficially, we be-
lieve that the students will not only reinforce with SPIAL the concepts learned at
the class but also will learn new concepts when playing it, which are important

to understand the way that an organization works.

e Evaluating the interaction: As mentioned in Section 2.4, one aspect for a suc-
cessful simulation game is that its interface design should take into account some
basic elements to support learning and motivate students (e.g. feedback, clear

goals, and game features). The existing simulation games have not been evalu-

128 CHAPTER 5. SPIAL

ated considering its interface design. In our case, we conducted communicability

evaluation in order to improve SPIAL interface design.

e Verifying the results: There are relatively few studies in the Software Engi-
neering simulation game area that have been extensively verified through exper-
iments. For example, SimSE has been verified through in-class and out-of-class
experiments with the aim to assess it as an educational tool. Besides the com-
municability evaluation, we carried out a pilot experiment with undergraduate

students of a Computer Science Software Engineering course.

e Developing an adaptable game: We know that an essential feature of a
simulation game is to be easily configurable since there are many models of dif-
ferent processes, different process improvement frameworks, students with differ-
ent learning styles and levels of initial knowledge, and instructors with different
expectations and objectives. In the first version of SPIAL, we designed a con-
figurable simulation system in order to allow distinct definitions of simulation
models. In addition, we developed core simulation components needed to sup-

port the creation of other simulation games.

5.7 Conclusion

This section presented SPIAL, our SPI simulation game. SPIAL was developed using
a reusable framework, which allows its adjustment to distinct learning environments.
This can assist students with different learning styles, different levels of initial knowl-
edge and instructors with different expectations and objectives.

We evaluated SPTAL from two viewpoints: specialist and player.

An inspection using the Semiotic Inspection Method was conducted by a specialist
and communicability breakdowns were identified. According to the specialist, despite
feedbacks given during the whole game, such as measurement charts and improvement
analyses, important aspects to understand the core behavior were missing, such as the
reason why sometimes investments do not produce any improvement.

We evaluated the game carrying out a pilot experiment with undergraduate stu-
dents of a Computer Science Software Engineering course as players. We selected (i)
questions to evaluate whether students enjoyed the game; (ii) questions that evaluate
the students’ perceptions about the appropriateness of the game; these were organized
in eight dimensions: duration, difficulty, content relevancy, correctness, sufficiency, se-

quence, teaching method, and adoption in a Software Engineering course; and (iii)

5.7. CONCLUSION 129

questions about the learning perspective. The first two categories of question are in-
directly related to the learning, showing how effective is the educational environment.
On average, students found the game quite enjoyable and they had fun during the
game play. They also felt that the game duration is appropriate and it is relatively
easy to play. They agreed about adopting this game in a Software Engineering course
as a complementary approach. They moderately learned new concepts; however, they
felt this game more successful in reinforcing concepts taught in Software Engineering
course than teaching new concepts.

We observed that some learning theories, such as Learning through Reflection,
Elaboration Theory and Aptitude Treatment Interaction, were not appropriately ad-
dressed by the analyzed simulation games [Possa, 2011]. The identified requirements
and the corresponding framework, FASENG, can support designers of new simulation
games to address important learning theories during the initial development phases.

When we analyzed the questions posed at the beginning of this section, the eval-

uation results provided the following answers:

1. What is the perception of the students about SPIAL? (e.g. it is enjoy-
able) What are its strengths and weaknesses? How well does SPIAL
design is appropriate for their purpose? Students enjoyed and had fun
playing SPTAL. Students felt that it is a reasonable tool for learning Software
Engineering concepts. They also felt that the game duration was appropriate
and it was relatively easy to play. The students considered the game content
relevant to their learning. One positive aspect is the feedback presented during
the whole game. Enhancements are needed to teach some SPI behavior embod-
ied in the simulation model. In addition, it is required a more useful graphical

mechanism and more accessible rules description.

2. Is there any difficulty to play SPIAL? One difficult aspect of SPIAL is
to understand its basic behavior in the first attempt, such as, the increasing or

decreasing effects on the investment points, and in which process area to invest.

3. Can students actually learn software process concepts from using
SPIAL, considering effects on the remembering, understanding and
applying level? Students who played SPIAL seemed to capture the concepts
represented in the simulation model. However, evaluating the results we cannot
identify a significant difference between the pre and post-test. Thus, the learning

effect could not be confirmed through this kind of evaluation.

130 CHAPTER 5. SPIAL

4. How can such a simulator be incorporated into Software Engineering
courses? Students agreed about adopting SPIAL in a Software Engineering
course as a complementary approach. It is needed a proper amount of guidance

and instruction of use to fulfill its educational potential.

These evaluations indicate the potential of SPTAL to support education. In addi-
tion, it provides first insights on the strengths and weaknesses, which will guide further
studies. Besides answering our research questions, this experiment exposed issues that
needed to be addressed in other studies, such as the improvement of the game interface
and the better representation of SPI initiatives.

Regarding the limitations of FASENG, one could argue that we did not identify all
requirements that can be traced back to the described learning theories. Although this
is a valid criticism, we believe that for the evaluated Software Engineering simulation
games they are appropriate, mainly considering an initial development of a reusable
framework. A broad validation mechanism should be carried out. For example we need
to create validation mechanisms to verify requirements from different stakeholders’
viewpoints (students, instructors, and other developers).

We cannot a priori assume that the results of this study generalize beyond the
specific environment of Software Engineering simulation games. We identified require-
ments exclusively from simulation games of the Software Engineering field. However,
we believe that many considerations can be applied to the whole educational simulation
game field.

As a future work, we plan to address important issues detected during the first
evaluations, mainly incorporating other phenomena that happen in the real world. This
will make the simulation experience resembles more closely those in industry. We will
also carry out additional experiments in order to assess other aspects of SPIAL, as for

example its relationship with the instructor.

Chapter 6

Conclusion

The focus of this thesis is on Software Engineering simulation games to support un-
dergraduate students of introductory Software Engineering courses.

This last chapter is structured as follows:

e Section 6.1 summarizes the research achievements.
e Section 6.2 presents the lessons learned during SPTAL development.

e Section 6.3 outlines possible future works.

6.1 Research Achievements

The main achievement of this research lies in the design, application and validation
of SPTAL, an SPI simulation game. The novelty of this work is twofold. Firstly, it
presents an SPI simulator, along with its simulation model and reusable framework.
Secondly, it depicts the steps needed to create the simulation game, which includes the
analysis of Human-Computer Interactions issues and SPI literature.

This research provided results on theoretical, practical and empirical level. The

specific achievements can be summarized as follows:

e Identification of students’ mistakes: We investigated the common problems
incurred by students in a Software Engineering course. The most striking ob-
servations are the difficulty that students have to bridge the gap between the
theoretical lectures and the team project, the limited range of skills that they
apply during the project development, and, usually, they do not follow the pre-

scribed software development process during the team project development. They

131

132

CHAPTER 6. CONCLUSION

first elaborate the technical artifacts and then they complete the baseline with

the managerial artifacts.

Analysis of other simulation games: We identified and compared eight Soft-
ware Engineering simulation games. Based on this analysis, we defined the essen-
tial design aspects for the development of our simulator. The assessment of these
simulation games revealed that, although they are, in some cases, developed with
different aims, they have a considerable number of common aspects, for example,
"trial and error" strategy, goals, rules and some game features. They also have
different features mainly regarding when the feedback is available, the type of

feedback, and the adaptability characteristics.

Investigation of the SPI and Software Engineering domains: We inves-
tigated the domain of our simulation game. Since a simulation game should
reflect what happens in the real world, we analyzed the main results reported by
organizations in research papers regarding their SPI initiatives. Through a sys-
tematic literature review, we gained an up-to-date view of the SPI area, allowing
us to identify and characterize the actual results of SPI initiatives. In addition,
we collected 123 Software Engineering rules from text books and other Software
Engineering simulation games. This set includes rules that are dependent on
values that vary from one situation to another and rules beyond the Software
Engineering area, including a wider range of business processes. From this set,
we selected the ones related to the SPIAL process areas, resulting in 57 Software
Engineering rules. These rules are used to teach the best practices of Software

Engineering to students, rewarding or penalizing their actions.

Development of SPTAL: Based on the steps previously carried out, we iden-
tified important requirements for our simulation game, which were used in the
definition of the SPTAL behavior. We also evaluated the available components
for simulation games development. Since we did not find components that were
generic enough to be reused, we decided to develop our own framework, named
FASENG. FASENG was developed based on a set of selected requirements related

to the application of learning theories.

Evaluation of SPITAL: Finally, we evaluated SPIAL from two viewpoints: spe-
cialist and player. An inspection using the Semiotic Inspection Method was
conducted by a specialist and communicability breakdowns were identified. We

evaluated the game carrying out a pilot experiment with undergraduate students

6.2. LESSONS LEARNED 133

of a Computer Science Software Engineering course as players. On average, stu-
dents found the game quite enjoyable and they had fun during the game play.
They agreed about adopting this game in a Software Engineering course as a

complementary approach.

6.2 Lessons Learned

Another important result corresponds to a set of issues that emerged during the simu-
lation game design and development. These issues can guide new developers and in-

structors in the design and selection of educational simulation games. It was identified:

e The importance of having a core theoretical reference model, in order to assist
the simulation model definition and validation. During the preparation of exper-
iments, this model can assist in the questions definition. In our case, we used the
latest version of the CMMI model, which guided the definition and validation of

the mathematical framework represented in our simulation model.

e The considerable effort needed to deal with rules in general and Software En-
gineering related rules in particular. The use of rules is a complex and wide

area.

e The importance of concepts definition scope to be covered by the simulation
game. This should be done according to the students’ needs and the instructors’

teaching objectives.

e The influence of the virtual world processes addressed by the simulation game
on the students’ learning. It is interesting to include activities that trace back

concepts, processes and game-like elements during the design step.

e The considerable effort needed to calibrate the simulation. In the Software En-
gineering area, it is difficult to find enough data in the literature (or with ap-
propriate quality level). Beyond the instructor, we can appeal, for example, to
specialists to help in the model calibration. However, we need to verify whether
the results approximate the real world and whether they are suitable for an ed-

ucational environment.

e The game-like elements assist the students’ learning process, enhancing challenge
and motivation. The designer needs to select which concepts and processes will

be represented as game-like elements.

134

CHAPTER 6. CONCLUSION

6.3 Future Work

The SPIAL evaluations have highlighted important aspects that can be improved.

Possible future work includes:

. Incorporating other phenomena that happen in the real world: More SPI phe-

nomena need to be identified, in order to make the simulation closer to the SPI

initiatives in software development organizations.

Developing supporting tools: New tools should be developed in order to sup-
port tasks related to the configuration and maintenance of a simulation game
such as SPTAL. Examples are simulation model tailoring and configuration files

management.

Creating guidelines: During FASENG development, we identified three roles:
simulation game developer (who adapts the interface and creates the Java
classes), simulation model designer (who specifies the behavior), and developer
(who creates the XML file). In particular, it will be interesting to create a guide-

line for each of these roles.

Improving interface design: Interface deficiencies brought forth during the evalu-
ations will be addressed. Graphics enhancement will make SPIAL more engaging,

for example, adding animations.

Developing other simulation models: The modeling of other SPI reference models

will permit to check the strength and adaptability of our environment.

Conducting more evaluations: Additional experiments and evaluations need to
be conducted in order to verify SPTAL potential as a complementary educational
method, including validations with different roles (e.g. professor, developers). For
instance, control experiment and usability test with students, and observational
experiment with developers. In addition, experiments and evaluations need to be
conducted to verify how FASENG requirements are related to the requirements

of other simulation games.

Designing debriefing sessions: Debriefing sessions allow checking how the player’s
performance was close to the expected performance and what is needed to bridge
this gap. It is important to propose a process for planning, designing and con-

ducting debriefing sessions after a SPIAL game section.

6.3.

10.

11.

FUTURE WORK 135

Enhancing the investments possibilities: It will be interesting to include the possi-
bility of investments in the process areas of an organization, or in specific/generic

practices of a process area.

Generating development process guidelines: It will be worthwhile to investigate
alternative development process fitting the specific needs of simulation games,

including usability activities and communicability evaluations.

Enhancing and validating the educational support: Educational related processes
(e.g. grading process) should be added and assessed in order enhance SPIAL
usability. SPIAL interface with trainers should also be enhanced and validated.

Evaluating motivational models: Different models for game play motivations have
been proposed [Garris et al., 2002]. As part of our early decisions, we did not
consider directly the questions of motivation. An interesting future work is the
evaluation of different motivation perspectives which will enhance the learning

process.

Bibliography

Aaen, 1., Borjesson, A., and Mathiassen, L. (2007). SPI agility: How to navigate

improvement projects. Software Process: Improvement and Practice, 12(3):267-281.

Aasheim, C. L., Li, L., and Williams, S. (2010). Knowledge and Skills Requirements
for Entry-Level Information Technology Workers: A Comparison of Industry and
Academia. Journal of Information Systems Education, 20(3):349-356.

Abdel-Hamid, T. and Madnick, S. E. (1991). Software Project Dynamics: An Integrated
Approach. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Alessi, S. M. and Trollip, S. R. (2001). Multimedia for Learning: Methods and Devel-
opment. Third Edition. Allay and Bacon, Needham Heights, Massachusetts, USA.

Allison, I. and Merali, Y. (2007). Software process improvement as emergent change:

A structurational analysis. Information and Software Technology, 49(6):668—681.

Almstrum, V. L., Dale, N., Berglund, A., Granger, M., Little, J. C., Miller, D. M.,
Petre, M., Schragger, P., and Springsteel, F. (1996). Evaluation: turning technology
from toy to tool: Report of the working group on evaluation. In Proceedings of the
1st Conference on Integrating Technology into Computer Science Education, [ITICSE
'96, pages 201-217, Barcelona, Spain.

Anda, B., Hansen, K., Gullesen, I., and Thorsen, H. (2006). Experiences from intro-
ducing UML-based development in a large safety-critical project. Empirical Software
Engineering, 11:555-581.

Anderson, L. W. and Krathwohl, D. R. ((eds) 2001). A tazonomy for Learning, Teach-
ing, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives.

Longman, New York.

Appleton, B. (1997). Patterns for Conducting Process Improvement. In PloP’97 Con-
ference, Illinois, USA.

137

138 BIBLIOGRAPHY

Armbrust, O., Ebell, J., Hammerschall, U., Miinch, J., and Thoma, D. (2008). Experi-
ences and results from tailoring and deploying a large process standard in a company.
Software Process: Improvement and Practice, 13(4):301-309.

Auvinen, J., Back, R., Heidenberg, J., Hirkman, P., and Milovanov, L. (2006). Soft-
ware Process Improvement with Agile Practices in a Large Telecom Company. In
Proceedings of the 7th International Conference on Product Focused Software Process
Improvement, PROFES’06, pages 79-93, Amsterdam, The Netherlands.

Baddoo, N. and Hall, T. (2002a). Motivators of Software Process Improvement: An

analysis of practitioners’ views. Journal of Systems and Software, 62(2):85-96.

Baddoo, N. and Hall, T. (2002b). Software Process Improvement Motivators: An
Analysis using Multidimensional Scaling. Empirical Software Engineering, 7:93-114.

Baddoo, N. and Hall, T. (2003). De-motivators for software process improvement: an

analysis of practitioners’ views. Journal of Systems and Software, 66(1):23-33.

Baker, A., Navarro, E., and van der Hoek, A. (2003). Problems and Programmers:
An Educational Software Engineering Card Game. In Proceedings of the 25th In-

ternational Conference on Software Engineering, pages 614-619, Portland, Oregon,
USA.

Balla, K., Bemelmans, T., Kusters, R., and Trienekens, J. (2001). Quality through
Managed Improvement and Measurement (QMIM): Towards a Phased Development
and Implementation of a Quality Management System for a Software Company.
Software Quality Journal, 9:177-193.

Banks, J., Carson II, J. S., Nelson, B. L., and Nicol, D. M. (2009). Discrete-Event
Simulation (5th ed.). Prentice-Hall.

Barnett-Page, E. and Thomas, J. (2009). Methods for the synthesis of qualitative
research: a critical review. BMC Medical Research Methodology, 9(59).

Barros, M. d. O., Dantas, A. R., Veronese, G. O., and Werner, C. M. L. (2006). Model-
driven game development: experience and model enhancements in software project

management education. Software Process: Improvement and Practice, 11(4):411—
421.

Barros, M. d. O., Werner, C. M. L., and Travassos, G. H. (2002). A system dynam-
ics metamodel for software process modeling. Software Process: Improvement and

Practice, 7(3-4):161-172.

BIBLIOGRAPHY 139

Barzilay, O., Hazzan, O., and Yehudai, A. (2009). A Multidimensional Software Engi-
neering Course. [EEE Transactions on Education, 52(3):413-424.

Basili, V. and Perricone, B. T. (1993). Software errors and complexity: an empirical
investigation. In Shepperd, M., editor, Software Engineering Metrics, pages 168-183.
McGraw-Hill, Inc.

Batista, J. and Figueiredo, A. D. D. (2000). SPI in a very small team: a case with
CMM. Software Process: Improvement and Practice, 5(4):243-250.

Becker, A. L., Prikladnicki, R., and Audy, J. L. N. (2008). Strategic alignment of
software process improvement programs using QFD. In Proceedings of the 1st In-

ternational Workshop on Business Impact of Process Improvements, BiPi’08, pages
9-14, Leipzig, Germany. ACM.

Becker, K., Ruiz, D. D., Cunha, V. S.; Novello, T. C., and Souza, F. V. (2006).
SPDW: A Software Development Process Performance Data Warehousing Environ-
ment. In Proceedings of the 30th Annual IEEE/NASA Software Engineering Work-
shop, SEW’06, pages 107118, Columbia, Maryland.

Becker-Kornstaedt, U., Hamann, D., Kempkens, R., R6, P., Verlage, M., Webby, R.,
and Zettel, J. (1999). Support for the Process Engineer: The Spearmint Approach
to Software Process Definition and Process Guidance. In Proceedings of the 11th
Conference on Advanced Information Systems Engineering, CAIiSE’99, pages 119—
133, Heidelberg, Germany. Springer Berlin / Heidelberg.

Beer, M., Eisenstat, R. A., and Spector, B. A. (1990). Why Change Programs Don’t
Produce Change. Harvard Business Review, 68(6).

Bibi, S., Stamelos, 1., Gerolimos, G., and Kollias, V. (2010). BBN based approach for
improving the software development process of an SME - a case study. Journal of

Software Maintenance and Evolution: Research and Practice, 22(2).

Birkholzer, T., Dantas, L., Dickmann, C., and Vaupel, J. (2004). Interactive Simulation
of Software Producing Organization’s Operations based on Concepts of CMMI and
Balanced Scorecards. In Proceedings of the 5th International Workshop on Software
Process Simulation and Modeling, ProSim’04, pages 123-132, Edinburgh.

Birkholzer, T., Dickmann, C., Vaupel, J., and Dantas, L. (2005a). An interactive
software management simulator based on the CMMI framework. Software Process:
Improvement and Practice, 10(3):327-340.

140 BIBLIOGRAPHY

Birkholzer, T., Dickmann, C., Vaupel, J., and Stubenrauch, J. (2005b). Towards
an Interactive Simulator for Software Process Management under Uncertainty. In
Proceedings of the 6th International Workshop on Software Process Simulation and
Modeling, ProSim’05, pages 169-174, St. Louis, Missouri, USA.

Biro, M., Ivanyos, J., and Messnarz, R. (2000). Pioneering process improvement ex-

periment in Hungary. Software Process: Improvement and Practice, 5(4):213-229.

Blanco, M., Gutierrez, P., and Satriani, G. (2001). SPI Patterns: Learning from
Experience. IEEE Software, 18(3):28-35.

Boehm, B. and Basili, V. R. (2001). Software Defect Reduction Top 10 List. Computer,
34:135-137.

Boehm, B. W. (1981). Software Engineering Economics. Upper Saddle River,
NJ:Prentice Hall, Inc.

Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B. K., Horowitz, E.,
Madachy, R., Reifer, D., and Steece, B. (2000). Software Cost Estimation with
Cocomo II. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition.

Boehm, B. W., McClean, R. K., and Urfrig, D. B. (1975). Some experience with au-
tomated aids to the design of large-scale reliable software. In Proceedings of the
International Conference on Reliable Software, pages 105-113, Los Angeles, Califor-
nia. ACM.

Booch, G. (1991). Object oriented design with applications. Benjamin-Cummings Pub-
lishing Co., Inc., Redwood City, CA, USA.

Borjesson, A., Martinsson, F., and Timmeras, M. (2005). Crossing the Chasm in
Software Process Improvement. In Baskerville, R., Mathiassen, L., Pries-Heje, J.,
and DeGross, J., editors, Business Agility and Information Technology Diffusion,
volume 180 of IFIP International Federation for Information Processing, pages 111-

128. Springer Boston.

Borjesson, A. and Mathiassen, L. (2004). Organisational Dynamics in the Software
Process Improvement: The Agility Challenge. In Fitzgerald, B., and Wynn, E.,
editors, IT Innovation for Adaptability and Competitiveness, volume 141 of IFIP

International Federation for Information Processing, pages 135-156. Springer Boston.

BIBLIOGRAPHY 141

Brodman, J. G. and Johnson, D. L. (1995). Return on Investment (ROI) from Software
Process Improvement as Measured by US Industry. Software Process: Improvement

and Practice, pages 35-47.

Brooks, Jr., F. P. (1987). No Silver Bullet Essence and Accidents of Software Engi-
neering. Computer, 20:10-19.

Budgen, D., Kitchenham, B. A., Charters, S. M., Turner, M., Brereton, P., and
Linkman, S. G. (2008). Presenting software engineering results using structured

abstracts: a randomised experiment. Empirical Software Engineering, 13:435-468.

Calio, A., Autiero, M., and Bux, G. (2000). Software process improvement by object
technology (ESSI PIE 27785 - SPOT). In Proceedings of the 22nd International Con-
ference on Software engineering, ICSE’00, pages 641-647, Limerick, Ireland. ACM.

Callahan, D. and Pedigo, B. (2002). Educating experienced IT professionals by ad-
dressing industry’s needs. IEEE Software, 19(5):57-62.

Calvo-Manzano Villalon, J. A., Cuevas Agustin, G., San Feliu Gilabert, T., De Ames-
cua Seco, A., Garcia Sanchez, L., and Pérez Cota, M. (2002). Experiences in the

Application of Software Process Improvement in SMES. Software Quality Control,
10(3):261-273.

Card, D. (1998). Learning from our mistakes with defect causal analysis. IEEE Soft-
ware, 15(1):56-63.

Card, D., Domzalski, K., and Davies, G. (2008). Making Statistics Part of Decision
Making in an Engineering Organization. IEEE Software, 25(3):37-47.

Carrington, D., Baker, A., and van der Hoek, A. (2005). It’s All in the Game: Teaching
Software Process Concepts. In Proceedings of the 35th ASEE/IEEE Frontiers in
Education Conference, FIE’05, page F4G, Indianapolis, Indiana.

Carrol, J. M. (1997). Scenario-Based Design. In Helander, M. G. , Laundauer, T.
K., and Prabhu, P. V. , editors, Handbook of Human-Computer Interaction Second,

completely revised edition. Eslevier Science BV.

Casey, V. and Richardson, I. (2004). A practical application of the IDEAL model.
Software Process: Improvement and Practice, 9(3):123-132.

Cattaneo, F., Fuggetta, A., and Sciuto, D. (2001). Pursuing coherence in software
process assessment and improvement. Software Process: Improvement and Practice,

6(1):3-22.

142 BIBLIOGRAPHY

Chrissis, M. B., Konrad, M., and Shrum, S. (2006). CMMI: Guidelines for Process In-
tegration and Product Improvement, 2nd edition. SEI Series in Software Engineering.

Addison-Wesley, EUA.

Christie, A. M. (1999). Simulation in support of CMM-based process improvement.
Journal of Systems and Software, 46(2-3):107-112.

Claypool, K. and Claypool, M. (2005). Teaching Software Engineering Through Game
Design. In Proceedings of the 10th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, ITiCSE 05, pages 123-127, Caparica,
Portugal. ACM.

CMMI (2010). CMMI ®for Development, Version 1.3. Technical Report CMU /SEI-
2010-TR~033, Software Engineering Institute.

Cobb, R. and Mills, H. (1990). Engineering software under statistical quality control.
IEEE Software, 7(6):45-54.

Cole, A. (1995). Runaway Projects-Cause and Effects. Software World (UK), 26(3).

Colomo-Palacios, R., Casado-Lumbreras, C., Soto-Acosta, P., Garcia-Penalvo, F. J.,
and Tovar-Caro, E. (2012). Competence gaps in software personnel: A multi-

organizational study. Computers in Human Behavior, page To appear.

Coman, I. D., Sillitti, A., and Succi, G. (2009). A Case-Study on using an Automated
In-process Software Engineering Measurement and Analysis System in an Indus-
trial Environment. In Proceedings of the 31st International Conference on Software
Engineering, ICSE’09, pages 89-99, Vancouver, British Columbia, Canada. IEEE
Computer Society.

Commission, E. (2005). The new SME definition: User guide and model declaration.
http : //ec.europa.eu/enterprise/policies/sme/ files/sme_de finition

/sme_user guide en.pdf. |Online; accessed 17th August 2011].

Conn, R. (2002). Developing Software Engineers at the C-130J Software Factory. IEEE
Software, 19:25-29.

Connolly, T. M., Stansfield, M., and Hainey, T. (2007). An application of games-based
learning within software engineering. British Journal of Educational Technology,

38(3):416-428.

BIBLIOGRAPHY 143

Conradi, R. and Dingsrgyr, T. (2000). Software Experience Bases: A Consolidated
Evaluation and Status Report. In Proceedings of the Second International Conference
on Product Focused Software Process Improvement, PROFES’00, pages 391-406,
Oulu, Finland.

Coppit, D. and Haddox-Schatz, J. M. (2005). Large Team Projects in Software Engi-
neering Courses. In Proceedings of the 36th SIGCSE Technical Symposium on Com-
puter Science Education, SIGCSE ’05, pages 137-141, St. Louis, Missouri, USA.
ACM.

Crookall, D. and Saunders, D. (1989). Towards an integration of communication and
simulation. In Crookall, D., and Saunders, D., editors, Communication and Simu-
lation: From Two Fields to One Theme, pages 3—32. Multilingual Matters Ltd.

Curtis, B., Kellner, M. 1., and Over, J. (1992). Process modeling. Communications of
the ACM, 35(9):75-90.

Curtis, B., Krasner, H., and Iscoe, N. (1988). A Field Study of the Software Design
Process for Large Systems. Communications of the ACM, 31(11):1268-1287.

Dahl, O.-J. and Nygaard, K. (2002). Software Pioneers. chapter Class and subclass
declarations, pages 91-107. Springer-Verlag New York, Inc.

Damian, D. and Chisan, J. (2006). An Empirical Study of the Complex Relationships
between Requirements Engineering Processes and Other Processes that Lead to Pay-

offs in Productivity, Quality, and Risk Management. IEEE Transactions on Software
Engineering, 32(7):433-453.

Damian, D., Zowghi, D., Vaidyanathasamy, L., and Pal, Y. (2002). An Industrial Ex-
perience in Process Improvement: An Early Assessment at the Australian Center for
Unisys Software. In Proceedings of the 2002 International Symposium on Empirical

Software Engineering, pages 111-123, Nara, Japan. IEEE Computer Society.

Dangle, K., Larsen, P., Shaw, M., and Zelkowitz, M. (2005). Software Process Im-
provement in Small Organizations: A Case Study. IEEFE Software, 22(6):68-75.

Dantas, A. R., Barros, M. d. O., and Werner, C. M. L. (2004a). Treinamento Experi-
mental com Jogos de Simulagao para Gerentes de Projeto de Software. In Simpdsio
Brasileiro de Engenharia de Software, SBES 2004, pages 23-38, Brasilia, Brasil.

144 BIBLIOGRAPHY

Dantas, A. R., Barros, M. O., and Werner, C. M. L. (2004b). A Simulation-Based
Game for Project Management Experiential Learning. In Proceedings of 16th the In-

ternational Conference on Software Engineering and Knowledge Engineering, SEKE
2004, pages 19-24, Banff, Anbert, Canada.

Davis, A. M. (1993). Software Requirements: Objects, Functions, and States. Engle-
wood Cliffs, NJ: Prentice-Hall.

Dawson, R. (2000). Twenty Dirty Tricks to Train Software Engineers. In Proceedings
of the 22nd International Conference on Software Engineering, ICSE 00, pages 209—
218, Limerick, Ireland. ACM.

de Souza, C. S. (2005). The Semiotic Engineering of Human-Computer Interaction.
The MIT Press.

de Souza, C. S., Leitao, C. F., Prates, R. O., Amélia Bim, S., and da Silva, E. J. (2010).
Can inspection methods generate valid new knowledge in HCI? The case of semiotic

inspection. International Journal of Human-Computer Studies, 68:22—40.

de Souza, C. S., Leitao, C. F., Prates, R. O., and da Silva, E. J. (2006). The Semi-
otic Inspection Method. In Proceedings of the VII Brazilian Symposium on Human
Factors in Computing Systems, IHC 06, pages 148-157, Natal, Brazil. ACM.

de Souza, C. S. and Leitao, C. F. (2009). Semiotic Engineering Methods for Scientific
Research in HCI. Synthesis Lectures on Human-Centered Informatics, 2(1):1-122.

DeMarco, T. and Lister, T. (1999). Peopleware: Productive Projects and Teams. Dorset

House.

Dempsey, J. V., Haynes, L. L., Lucassen, B. A., and Casey, M. S. (2002). Forty Simple
Computer Games and What They Could Mean to Educators. Simulation & Gaming,
33(2):157-168.

Desurvire, H., Caplan, M., and Toth, J. A. (2004). Using heuristics to evaluate the
playability of games. In CHI ’04 Extended Abstracts on Human Factors in Computing
Systems, CHI ’04, pages 15091512, Vienna, Austria. ACM.

Dickmann, C., Klein, H., Birkholzer, T., Fietz, W., Vaupel, J., and Meyer, L. (2007).
Deriving a Valid Process Simulation from Real World Experiences. In Proceedings
of the 2007 International Conference on Software Process, ICSP’07, pages 272282,
Minneapolis, MN, USA. Springer-Verlag.

BIBLIOGRAPHY 145

Dijkstra, E. (1969). Notes on Structured Programming. Technical report EWD 249,

Eindhoven Technical University.

Dingsgyr, T., Hanssen, G. K., Dyba, T., Anker, G., and Nygaard, J. (2006). Devel-
oping Software with Scrum in a Small Cross-Organizational Project. In Richardson,
L., Runeson, P., and Messnarz, R., editors, European Systems € Software Process
Improvement and Innovation, volume 4257 of EuroSPI’06, pages 515, Joensuu, Fin-

land. Springer Berlin / Heidelberg.

Donzelli, P. and Iazeolla, G. (2001). Hybrid Simulation Modelling of the Software
Process. Journal of Systems and Software, 59(3):227-235.

Drappa, A. and Ludewig, J. (2000). Simulation in Software Engineering Training. In
Proceedings of the 22nd International Conference on Software Engineering, ICSE’00,
pages 199208, Limerick, Ireland.

Dybéa, T. and Dingsgyr, T. (2008). Strength of Evidence in Systematic Reviews in
Software Engineering. In Proceedings of the Second ACM-IEEFE International Sym-
posium on Empirical Software Engineering and Measurement, ESEM’08, pages 178—
187, Kaiserslautern, Germany. ACM.

Dyba, T. (2005). An Empirical Investigation of the Key Factors for Success in Software
Process Improvement. IEEE Transactions on Software Engineering, 31(5):410-424.

Dybéa, T. and Dingsgyr, T. (2008). Empirical studies of agile software development: A
systematic review. Information and Software Technology, 50(9-10):833-859.

Ebert, C., Liedtke, T., and Baisch, E. (1999). Improving reliability of large software
systems. Annals of Software Engineering, 8:3-51.

Ebert, C., Parro, C. H., Suttels, R., and Kolarczyk, H. (2001). Improving Validation
Activities in a Global Software Development. In Proceedings of the 23rd International
Conference on Software Engineering, ICSE’01, pages 545-554, Toronto, Ontario,
Canada. IEEE Computer Society.

Ebner, G. and Kaindl, H. (2002). Tracing all Around in Reengineering. IEEE Software,
19(3):70-77.

Elliott, M., Dawson, R., and Edwards, J. (2009). An evolutionary cultural-change
approach to successful software process improvement. Software Quality Journal,

17:189-202.

146 BIBLIOGRAPHY

Endres, A. and Rombach, D. (2003). A Handbook of Software and System Engineering:

Empirical Observations, Laws and Theories. Addison Wesley.
Engineering, S. (1969). Software Engineering. Brussels: NATO Science Committee.

Engstrom, E., Runeson, P., and Skoglund, M. (2010). A systematic review on regression

test selection techniques. Information and Software Technology, 52:14-30.

Fagan, M. E. (1986). Advances in software inspections. IEEE Transactions on Software
Engineering, 12(7):744-751.

Feiler, P. and Humphrey, W. (1992). Software Process Development and Enactment:
Concepts and Definitions. Technical Report CMU/SEI-92-TR-004, Software Engi-

neering Institute.

Ferreiro Ferreira, A. 1., Santos, G., Cerqueira, R., Montoni, M., Barreto, A., Rocha,
A. R., Barreto, A. O. S., and Silva Filho, R. C. (2008). ROI of software process
improvement at BL informatica: SPIdex is really worth it. Software Process: Im-
provement and Practice, 13(4):311-318.

Frederiksen, H. and Mathiassen, L. (2004). Assessing Improvements of Software Metrics
Practices. In Fitzgerald, B., and Wynn, E., editors, IT Innovation for Adaptability
and Competitiveness, volume 141 of IFIP International Federation for Information

Processing, pages 93-115. Springer Boston.

Freimut, B., Denger, C., and Ketterer, M. (2005). An Industrial Case Study of Imple-
menting and Validating Defect Classification for Process Improvement and Quality

Management. In 11th IEEE International Symposium on Software Metrics, pages
10-19, Como, Italy.

Fripp, J. (1993). Learning through Simulations: A Guide to the Design and Use of

Stmulations in Business and Education. McGraw-Hill.

Galinac, T. and Car, v. (2007). Software Verification Process Improvement Proposal
Using Six Sigma. In Miinch, J., and Abrahamsson, P., editors, Proceedings of the Sth
International Conference on Product Focused Software Process Improvement, volume

4589 of PROFES’07, pages 51-64, Riga, Latvia. Springer Berlin / Heidelberg.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, Massachusetts, USA.

BIBLIOGRAPHY 147

Garris, R., Ahlers, R., and Driskell, J. E. (2002). Games, Motivation, and Learning:
A Research and Practice Model. Simulation € Gaming, 33(4):441-467.

Glass, R. L. (1982). Requirements Tracing. In Modern Programming Practices. Engle-
wood Cliffs, NJ: Prentice-Hall.

Glass, R. L. (1992). Building Quality Software. Prentice-Hall, Inc.

Glass, R. L. (1998). Software Runaways: Lessons Learned from Massive Software
Project Failures. NL: Prentice Hall.

Glass, R. L. (1999). The Realities of Software Technology Payoffs. Communications
of the ACM, 42:74-79.

Glass, R. L. (2001). Frequently Forgotten Fundamental Facts about Software Engi-
neering. IEEE Software, 18(3):110-112.

Glass, R. L. (2002). Software Engineering: Facts and Fallacies. Addison-Wesley
Longman Publishing Co., Inc., Boston, Massachusetts, USA.

Glass, R. L. (2003). Facts and Fallacies of Software Engineering. Addison-Wesley.

Gou, L., Wang, Q., Yuan, J., Yang, Y., Li, M., and Jiang, N. (2008). Quantitatively
Managing Defects for Iterative Projects: An Industrial Experience Report in China.
In Wang, Q., Pfahl, D., Raffo, D., editors, Proceedings of the 2008 International
Conference on Software Process, volume 5007 of ICSP’08, pages 369-380, Leipzig,
Germany. Springer Berlin / Heidelberg.

Gredler, M. E. (2004). Games and Simulations and their Relationships to Learning. In
Jonassen, D. H., editor, Handbook of Research on Educational Communications and
Technology, Chapter 21, pages 571-581. Mahwah, NJ: Lawrence Erlbaum Associates.

Gresse von Wangenheim, C., Thiry, M., and Kochanski, D. (2009). Empirical evaluation
of an educational game on software measurement. Empirical Software Engineering,
14:418-452.

Guerrero, F. and Eterovic, Y. (2004). Adopting the SW-CMM in a small IT organiza-
tion. IEEE Software, 21(4):29-35.

Hansen, B., Rose, J., and Tjgrnehgj, G. (2004). Prescription, description, reflection:
the shape of the software process improvement field. International Journal of Infor-
mation Management, 24(6):457-472.

148 BIBLIOGRAPHY

Harjumaa, L. (2005). A pattern approach to software inspection process improvement.
Software Process: Improvement and Practice, 10(4):455-465.

Harjumaa, L., Tervonen, I., and Vuorio, P. (2004). Improving Software Inspection
Process with Patterns. In Proceedings of the Fourth International Conference on
Quality Software, QSIC’04, pages 118-125, Braunschweig, Germany. IEEE Computer
Society.

Harter, D., Kemerer, C., and Slaughter, S. (2011). Does Software Process Improvement
Reduce the Severity of Defects? A Longitudinal Field Study. IEEE Transactions on
Software Engineering, page 1.

Hetzel, W. C. (1976). An experimental analysis of program verification methods. PhD
thesis, The University of North Carolina at Chapel Hill.

Higgins, S., de Laat, M., Gieles, P., and Geurts, E. (2002). Managing product re-
quirements for medical IT products. In IEEE Joint International Conference on

Requirements Engineering, pages 341-349, Essen, Germany.

Hoffmann, M., Kuhn, N.; Weber, M., and Bittner, M. (2004). Requirements for re-
quirements management tools. In Proceedings of the 12th IEEE International Re-

quirements Engineering Conference, pages 301-308, Kyoto, Japan.

Hollenbach, C. and Smith, D. (2002). A portrait of a CMMI level 4 effort. Systems
Engineering, 5(1):52-61.

Holmberg, L., Nilsson, A., Holmstrom Olsson, H., and Bérjesson Sandberg, A. (2009).
Appreciative inquiry in software process improvement. Software Process: Improve-
ment and Practice, 14(2):107-125.

Host, M. and Runeson, P. (2007). Checklists for Software Engineering Case Study
Research. In Proceedings of the First International Symposium on Empirical Soft-
ware Engineering and Measurement, ESEM’07, pages 479-481, Madrid, Spain. IEEE
Computer Society.

Houston, D. (2006). An experience in facilitating process improvement with an inte-
gration problem reporting process simulation. Software Process: Improvement and
Practice, 11(4):361-371.

Huffman Hayes, J. (2002). Energizing Software Engineering Education through Real-
World Projects as Experimental Studies. In Proceedings of the 15th Conference

BIBLIOGRAPHY 149

on Software Engineering FEducation and Training, CSEE&T 2002, pages 192-206,
Covington, Kentucky, USA.

Humphrey, W. S. (1989). Managing the Software Process. Addison-Wesley Longman
Publishing Co., Inc., Boston, Massachusetts, USA.

Humphrey, W. S. (1996). Using A Defined and Measured Personal Software Process.
IEEE Software, 13(3):77-88.

Hunicke, R. (2005). The Case for Dynamic Difficulty Adjustment in Games. In Proceed-
ings of the 2005 ACM SIGCHI International Conference on Advances in Computer
Entertainment Technology, ACE 05, pages 429-433, Valencia, Spain. ACM.

Ikeda, K. and Akamatsu, Y. (2004). Starting SPI from Software Configuration Man-
agement: A Fast Approach for an Organization to Realize the Benefits of SPI. In
Bomarius, F., and lida, H., editors, Proceedings of the 5th International Conference
on Product Focused Software Process Improvement, volume 3009 of PROFES’04,
pages 92-104, Kansai Science City, Japan. Springer Berlin / Heidelberg.

ISO/IEC-TR-12207 (2008). Systems and software engineering - Software life cycle pro-
cesses. International Standard 12207, International Organization for Standardization

and International Electrotechnical Commission.

ISO/IEC-TR~15504 (2008). ISO/IEC 15504 family: Information technology - process
assessment (15504-1 to 15504-7). International Standard 15504-1, 15504-2, 15504-3,
15504-4, 15504-5, 15504-6, 15504-7, International Organization for Standardization

and International Electrotechnical Commission.

ISO/IEC-TR-9126 (2001). Software Quality Characteristics. International Standard
9126, International Organization for Standardization and International Electrotech-

nical Commission.

Iversen, J. and Mathiassen, L. (2003). Cultivation and engineering of a software metrics

program. Information Systems Journal, 13(1):3-19.

Jain, A. and Boehm, B. (2006). SimVBSE: Developing a Game for Value-Based Soft-
ware Engineering. In Proceedings of the 19th Conference on Software Engineering

Education and Training, pages 103 —114, Oahu, Hawaii.

Jester, M., Krasner, H., and Perry, D. (2006). Software Process Definition Improve-

ment: An Industry Report. In Proceedings of the 32nd Furomicro Conference on

150 BIBLIOGRAPHY

Software Engineering and Advanced Applications, SEAA’06, pages 206-215, Cav-
tat/Dubrovnik, Croatia.

Johansen, J. and Pries-Heje, J. (2007). Success with improvement - requires the right
roles to be enacted - in symbiosis. Software Process: Improvement and Practice,
12(6):529-539.

Jones, C. (1996). Applied Software Measurement: Assuring Productivity and Quality.
McGraw-Hill.

Kaéaridinen, J., Koskela, J., Abrahamsson, P., and Takalo, J. (2004). Improving Re-
quirements Management in Extreme Programming with Tool Support - An Improve-
ment Attempt that Failed. In Proceedings of the 30th Furomicro Conference on
Software Engineering and Advanced Applications, SEAA’04, pages 342—-351, Rennes,

France.

Karlstrom, D. and Runeson, P. (2005). Combining Agile Methods with Stage-Gate
Project Management. IEEE Software, 22(3):43-49.

Karlstrom, D., Runeson, P.; and Nordén, S. (2005). A minimal test practice framework
for emerging software organizations. Software Testing, Verification and Reliability,
15(3):145-166.

Kauppinen, M., Vartiainen, M., Kontio, J., Kujala, S., and Sulonen, R. (2004). Im-
plementing requirements engineering processes throughout organizations: success
factors and challenges. Information and Software Technology, 46(14):937-953.

Kautz, K., Hansen, H. W., and Thaysen, K. (2000). Applying and adjusting a software
process improvement model in practice: the use of the IDEAL model in a small
software enterprise. In Proceedings of the 22nd International Conference on Software

Engineering, ICSE’00, pages 626-633, Limerick, Ireland. ACM.

Kellner, M. I. and Madachy, Raymond J.and Raffo, D. M. (1999). Software process
simulation modeling: Why? What? How? Journal of Systems and Software, 46(2-
3):91-105.

Kenni, G. (2000). The evolution of quality processes at Tata Consultancy Services.
IEEE Software, 17(4):79-88.

Kikuchi, N. and Kikuno, T. (2001). Improving the Testing Process by Program Static
Analysis. In Fighth Asia-Pacific Software Engineering Conference, APSEC 2001,
pages 195-201, Macau, China.

BIBLIOGRAPHY 151

Kilpi, T. (2000). Managing the Software Process in the Middle of Rapid Growth: A
Metrics Based Experiment Report from Nokia. In Wangler, B., and Bergman, L.,
editors, Proceedings of the 12th International Conference on Advanced Information
Systems Engineering, volume 1789 of CAiSE’00, pages 498-508, Stockholm, Sweden.
Springer Berlin / Heidelberg.

Kitagawa, G. and Gersch, W. (1996). Smoothness Priors Analysis of Time Series.
Lecture Notes in Statistics. Springer Springer-Verlag.

Kitchenham, B. (2004). Procedures for Performing Systematic Reviews. Technical
Report TR /SE-0401, Software Engineering Group, Department of Computer Science,

Keele University.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing Systematic Litera-
ture Reviews in Software Engineering, Version 2.3. Technical Report EBSE 2007-01,
Software Engineering Group, School of Computer Science and Mathematics, Keele

University and Department of Computer Science University of Durham.

Kitchenham, B., Pickard, L., and Pfleeger, S. L. (1995). Case Studies for Method and
Tool Evaluation. IEEE Software, 12:52-62.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., Emam,
K. E., and Rosenberg, J. (2002). Preliminary Guidelines for Empirical Research in
Software Engineering. IEEFE Transactions on Software Engineering, 28:721-734.

Knauss, E., Schneider, K., and Stapel, K. (2008). A Game for Taking Requirements
Engineering More Seriously. In First International Workshop on Multimedia Re-
quirements Engineering, pages 22-26, Barcelona, Catalunya, Spain. IEEE Computer
Society.

Krikhaar, R. and Mermans, M. (2007). Software Development Improvement with
SFIM. In Miinch, J., and Abrahamsson, P., editors, Proceedings of the Sth In-
ternational Conference on Product Focused Software Process Improvement, volume

4589 of PROFES’07, pages 65-80, Riga, Latvia. Springer Berlin / Heidelberg.

Kukkanen, J., Vakevainen, K., Kauppinen, M., and Uusitalo, E. (2009). Applying a
Systematic Approach to Link Requirements and Testing: A Case Study. In 16th
Asia-Pacific Software Engineering Conference, APSEC’09, pages 482-488, Penang,
Malaysia.

152 BIBLIOGRAPHY

Kurniawati, F. and Jeffery, R. (2006). The use and effects of an electronic process
guide and experience repository: a longitudinal study. Information and Software

Technology, 48(7):566-577.

Laredo, J. and Ranjan, R. (2008). Continuous Improvement through Iterative Devel-
opment in a Multi-Geography. In IEEFE International Conference on Global Software
Engineering, ICGSE 2008, pages 232-236, Bangalore, India.

Larndorfer, S., Ramler, R., and Buchwiser, C. (2009). Experiences and Results from
Establishing a Software Cockpit at BMD Systemhaus. In Proceedings of the 35th Eu-
romicro Conference on Software Engineering and Advanced Applications, SEAA’09,
pages 188-194, Patras, Greece.

Lauesen, S. and Vinter, O. (2001). Preventing Requirement Defects: An Experiment

in Process Improvement. Requirements Engineering, 6:37-50.

Lethbridge, T. C. (1998). A Survey of the Relevance of Computer Science and Software
Engineering Education. In Proceedings of the 11th Conference on Software Engineer-
ing Education and Training, pages 56—66, Atlanta, Georgia, USA. IEEE Computer
Society.

Leung, H. K. N. and Yuen, T. C. F. (2001). A process framework for small projects.
Software Process: Improvement and Practice, 6(2):67-83.

Levary, R. R. and Lin, C. Y. (1991). Modelling the software development process using
an expert simulation system having fuzzy logic. Software: Practice and Experience,
21(2):133-148.

Li, M. (2007). TRISO-Model: A New Approach to Integrated Software Process Assess-
ment and Improvement. Software Process: Improvement and Practice, 12(5):387—
398.

Li, M., Xiaoyuan, H., and Sontakke, A. (2006). Defect Prevention: A General Frame-
work and Its Application. In Sizth International Conference on Quality Software,
QSIC 2006, pages 281-286, Beijing, China.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology,
22.

Lingard, R. and Berry, E. (2002). Teaching teamwork skills in software engineering

based on an understanding of factors affecting group performance. In 32nd Annual

BIBLIOGRAPHY 153

Frontiers in Education, volume 3, pages S3G—1—- S3G—6 vol.3, Boston, Massachusetts,
USA.

Ludewig, J., Bassler, T., Deininger, M., Schneider, K., and Schwille, J. (1992). SESAM-
simulating software projects. In Proceedings of the Fourth International Conference

on Software Engineering and Knowledge Engineering, pages 608-615, Capri, Italy.

Ludi, S. and Collofello, J. (2001). An Analysis of the Gap Between the Knowledge and
Skills Learned in Academic Software Engineering Course Projects and those Required
in Real Projects. In Proceedings of the 31st ASEE/IEEE Frontiers in Education Con-
ference, FIE'01, pages T2D-8-T2D-11vol.1, Reno, Nevada. IEEE Computer Society.

Madachy, R. J. (2008). Software Process Dynamics. Wiley-IEEE Press.

Malheiros, V., Paim, F. R., and Mendonga, M. (2009). Continuous process improve-
ment at a large software organization. Software Process: Improvement and Practice,
14(2):65-83.

Malone, T. W. (1980). What Makes Things Fun to Learn? Heuristics for Designing
Instructional Computer Games. In Proceedings of the 3rd ACM SIGSMALL Sym-
posium. and the First SIGPC Symposium on Small Systems, SIGSMALL 80, pages
162-169, Palo Alto, California, United States. ACM.

Mandl-Striegnitz, P. (2001). How to successfully use software project simulation for
educating software project managers. In Proceedings of the 31st ASEE/IEEE Fron-
tiers in Education Conference, volume 1 of FIE ’01, pages T2D-19-24 vol.1, Reno,

Nevada.

Martin, A. (2000). The Design and Evolution of a Simulation/Game for Teaching
Information Systems Development. Simulation € Gaming, 31:445—-463.

Martin, R. H. and Raffo, D. (2000). A model of the software development process using
both continuous and discrete models. Software Process: Improvement and Practice,
5(2-3):147-157.

Mays, R. G., Jones, C. L., Holloway, G. J., and Studinski, D. P. (1990). Experiences
with Defect Prevention. IBM Systems Journal, 29(1):4-32.

McCaffery, F., Burton, J., and Richardson, I. (2009). Improving Software Risk Man-
agement in a Medical Device Company. In Proceedings of the 31st International
Conference on Software Engineering, ICSE’09, pages 152-162, Vancouver, British

Columbia, Canada.

154 BIBLIOGRAPHY

McFeeley, B. (1996). IDEAL: A User’s Guide for Software Process Improvement. Soft-

ware Engineering Institute, Pennsylvania, USA.

McGarry, F. and Decker, B. (2002). Attaining Level 5 in CMM Process Maturity.
IEEE Software, 19(6):87-96.

McGraw, G. (2006). Software Security. Addison-Wesley.

McMillan, W. W. and Rajaprabhakaran, S. (1999). What Leading Practitioners Say
Should Be Emphasized in Students’ Software Engineering Projects. In Proceedings
of the 12th Conference on Software Engineering Education and Training, CSEET99,
pages 177-185, New Orleans, Louisiana. IEEE Computer Society.

Metzker, E. and Offergeld, M. (2001). An Interdisciplinary Approach for Successfully
Integrating Human-Centered Design Methods into Development Processes Practiced
by Industrial Software Development Organizations. In Little, M., and Nigay, L.,
editors, Proceedings of the Sth IFIP International Conference on Engineering for
Human-Computer Interaction, volume 2254 of EHCI 01, pages 19-33, Toronto,
Canada. Springer Berlin / Heidelberg.

Moe, N., Dingsrgyr, T., Nilsen, K., and Villmones, N. (2005). Project Web and Elec-
tronic Process Guide as Software Process Improvement. In Richardson, I., Abra-
hamsson, P., and Messnarz, R., editors, European Systems € Software Process Im-
provement and Innovation, volume 3792 of EuroSPI'05, pages 175-186, Budapest,
Hungary. Springer Berlin / Heidelberg.

Momoh, J. and Ruhe, G. (2006). Release planning process improvement - an industrial

case study. Software Process: Improvement and Practice, 11(3):295-307.

Moreno, A. M., Sanchez-Segura, M.-1., Medina-Dominguez, F., and Carvajal, L. (2012).
Balancing software engineering education and industrial needs. Journal of Systems
and Software, 85(7):1607-1620.

Moreno-Ger, P., Burgos, D., Martinez-Ortiz, 1., Sierra, J. L., and Ferndndez-Manjon,
B. (2008). Educational game design for online education. Journal Computers in
Human Behavior, 24:2530-2540.

Morgan, G. (1996). Images of Organization. SAGE Publications, California.

Morisio, M. (2000). Applying the PSP in industry. IEEE Software, 17(6):90-95.

BIBLIOGRAPHY 155

Moritz, E. (2009). Case study: How analysis of customer found defects can be used by
system test to improve quality. In Proceedings of the 31st International Conference
on Software Engineering, ICSE’09, pages 123-129, Vancouver, British Columbia,

Canada.

Mory, E. H. (2003). Feedback Research Revisited. In Jonassen, D. H., editor, Handbook
of Research on Educational Communications and Technology, pages 745-783.

Motoyama, T. (2006). Improving Software Development through Three Stages. IEEE
Software, 23(5):81-87.

Miiller, S. D., Mathiassen, L., and Balshgj, H. H. (2010). Software Process Improvement
as organizational change: A metaphorical analysis of the literature. Journal of
Systems and Software, 83:2128-2146.

Murugappan, M. and Keeni, G. (2003). Blending CMM and Six Sigma to meet business
goals. IEEE Software, 20(2):42-48.

Napier, N. P., Mathiassen, L., and Johnson, R. D. (2009). Combining Perceptions and
Prescriptions in Requirements Engineering Process Assessment: An Industrial Case
Study. IEEE Transactions on Software Engineering, 35(5):593-606.

NASA (1990). Manager’s Handbook for Software Development. NASA-Goddard.

Navarro, E. and van der Hoek, A. (2009). Multi-site evaluation of SImSE. In Proceedings
of the 40th ACM Technical Symposium on Computer Science Education, SIGCSE 09,
pages 326-330, Chattanooga, TN, USA. ACM.

Navarro, E. O. (2006). SimSE: A Software Engineering Simulation Environment for
Software Process Education. PhD thesis, Donald Bren School of Information and

Computer Sciences, University of California, Irvine.

Navarro, E. O. and van der Hoek, A. (2002). Towards game-based simulation as a
method of teaching software engineering. In Proceedings of the 32nd ASEE/IEEE
Frontiers in Education Conference, volume 3, pages S2G—13 vol.3, Boston, Mas-
sachusetts, USA.

Navarro, E. O. and van der Hoek, A. (2005a). Design and Evaluation of an Educational
Software Process Simulation Environment and Associated Model. In Proceedings of
the 18th Conference on Software Engineering Education and Training, pages 25-32,
Ottawa, Canada. IEEE Computer Society.

156 BIBLIOGRAPHY

Navarro, E. O. and van der Hoek, A. (2005b). Software process modeling for an
educational software engineering simulation game. Software Process: Improvement

and Practice, 10(3):311-325.

Navarro, E. O. and van der Hoek, A. (2007). Comprehensive Evaluation of an Edu-
cational Software Engineering Simulation Environment. In Proceedings of the 20th
Conference on Software Engineering Education and Training, pages 195-202, Dublin,

Ireland.

Nelson, K., Buche, M., and Nelson, H. (2001). Structural change and change advocacy:
a study in becoming a software engineering organization. In Proceedings of the 34th
Annual Hawaii International Conference on System Sciences, page 9 pp., Maui,
Hawaii, USA.

Niazi, M. (2006). Software Process Improvement: A Road to Success. In Miinch, J., and
Vierimaa, M., editors, Product-Focused Software Process Improvement, volume 4034
of Lecture Notes in Computer Science, pages 395401, Amsterdam, The Netherlands.
Springer Berlin / Heidelberg.

Niazi, M., Wilson, D., and Zowghi, D. (2005). A maturity model for the implementa-
tion of software process improvement: an empirical study. Journal of Systems and
Software, 74(2):155-172.

Niazi, M., Wilson, D., and Zowghi, D. (2006). Critical success factors for software
process improvement implementation: an empirical study. Software Process: Im-
provement and Practice, 11(2):193-211.

Nikitina, N. and Kajko-Mattsson, M. (2009). Historical Perspective of Two Process
Transitions. In Proceedings of the Fourth International Conference on Software En-
gineering Advances, ICSEA’09, pages 289-298, Porto, Portugal.

Nikula, U. and Sajaniemi, J. (2005). Tackling the Complexity of Requirements Engi-
neering Process Improvement by Partitioning the Improvement Task. In Proceedings
of the 2005 Australian Conference on Software Engineering, ASWEC’05, pages 48—
57, Brisbane, Australia.

Oates, B. J. (2006). Research Information Systems and Computing. SAGE Publica-

tions.

O’Hara, F. (2000). European Experiences with Software Process Improvement. In
Proceedings of the 22nd International Conference on Software Engineering, ICSE’00,
pages 635640, Limerick, Ireland. ACM.

BIBLIOGRAPHY 157

Olsen, A. L. (2008). A service learning project for a software engineering course.

Journal of Computing Sciences in Colleges, 24:130-136.
O’Regan, G. (2011). Introduction to Software Process Improvement. Springer, London.

Otoya, S. and Cerpa, N. (1999). An experience: A small software company attempting
to improve its process. In Proceedings of the Ninth International Workshop Software
Technology and Engineering Practice, STEP 99, pages 153-160, Pittsburgh, PA,
USA.

Paula Filho, W. P. (2006). A Software Process for Time-constrained Course Projects. In
Proceedings of the 28th International Conference on Software Engineering, ICSE’06,
pages 707710, Shanghai, China. ACM.

Paula Filho, W. P. (2007). Using Model-Driven Development in Time-Constrained
Course Projects. In Proceedings of the 20th Conference on Software Engineering

Education and Training, pages 133-140, Dublin, Ireland. IEEE Computer Society.

Paula Filho, W. P. (2009). Praxis 3.0. http://www.dcc.ufmg.br/ wilson/praxis/.
"|Online; accessed 10 March 2009]".

Paulk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V. (1993). Capability Ma-
turity Model, Version 1.1. Technical report CMU /SEI-93-TR, Software Engineering

Institute.

Paulk, M. C., Weber, C. V., Curtis, B., and Chrissis, M. B. (1995). The Capability
Maturity Model: Guidelines for Improving the Software Process. Addison-Wesley

Professional.
Pearson, R. K. (1999). Discrete-Time Dynamic Models. Oxford.

Peirce, C. S. (1992). The FEssential Peirce (Vols. I and II). Indiana University Press,
Bloomington, Edited by Nathan Houser and Christian Kloesel edition.

Peixoto, D. C. C., Batista, V. A., Resende, R. F., and Padua, C. I. P. S. (2010a).
How to Welcome Software Process Improvement and Avoid Resistance to Change.
In Proceeding of the International Conference on Software Process, volume 6195 of
ICSP’10, pages 138-149, Paderborn, Germany. Springer Berlin / Heidelberg.

Peixoto, D. C. C., Batista, V. A., Resende, R. F., and Padua, C. I. P. S. (2010b).
Learning from Students’ Mistakes in Software Engineering courses. In Proceedings
of the 40th ASEE/IEEE Frontiers in Education Conference, FIE'10, pages F1J-1-
F1J-6, Northern Virginia / Washington, D.C.

http://www.dcc.ufmg.br/~wilson/praxis/

158 BIBLIOGRAPHY

Peixoto, D. C. C., Possa, R. M., Resende, R. F., and Padua, C. I. P. S. (2012a).
Challenges and Issues in the Development of a Software Engineering Simulation
Game. In Proceedings of the 42nd ASEE/IEEE Frontiers in Education Conference,
FIE'12, pages — To appear, Seattle, Washington.

Peixoto, D. C. C., Possa, R. M., Resende, R. F., and Padua, C. I. P. S. (2012b).
FASENG: A Framework for Development of Software Engineering Simulation Games.
In Proceedings of the 42nd ASEE/IEEE Frontiers in Education Conference, FIE’12,
pages — To appear, Seattle, Washington.

Peixoto, D. C. C., Possas, R. M., Resende, R. F., and Padua, C. I. P. S. (2011).
An Overview of the Main Design Characteristics of Simulation Games in Software
Engineering Education. In Proceedings of the 24th Conference on Software Engineer-
ing Education and Training, CSEET’11, pages 101-110, Waikiki, Honolulu, Hawaii.
IEEE.

Peixoto, D. C. C., Prates, R. O., and Resende, R. F. (2010c). Semiotic Inspection
Method in the Context of Educational Simulation Games. In Proceedings of the
2010 ACM Symposium on Applied Computing, SAC 10, pages 1207-1212, Sierre,
Switzerland. ACM.

Penker, M. and Eriksson, H.-E. (2000). Business Modeling With UML: Business Pat-
terns at Work. John Wiley.

Peters, V., Vissers, G., and Heijne, G. (1998). The Validity of Games. Simulation &
Gaming, 29(1):20-30.

Peters, V. A. M. and Vissers, G. A. N. (2004). A Simple Classification Model for
Debriefing Simulation Games. Simulation € Gaming, 35:70-84.

Petersen, K. and Wohlin, C. (2009). Context in Industrial Software Engineering Re-
search. In Proceedings of the 2009 3rd International Symposium on Empirical Soft-
ware Engineering and Measurement, ESEM’09, pages 401-404, Lake Buena Vista,
Florida, USA. IEEE Computer Society.

Pfahl, D. (2001). An Integrated Approach to Simulation-Based Learning in Sup-
port of Strategic and Project Management in Software Organizations. PhD thesis,

Fraunhofer-Institute for Experimental Software Engineering - Kaiserslautern.

Pfahl, D., Laitenberger, O., Ruhe, G., Dorsch, J., and Krivobokova, T. (2004). Evalu-

ating the learning effectiveness of using simulations in software project management

BIBLIOGRAPHY 159

education: results from a twice replicated experiment. Information and Software
Technology, 46(2):127-147.

Pinheiro, C., Maurer, F., and Sillito, J. (2009). Improving Quality, One Process Change
at a Time. In Proceedings of the 31st International Conference on Software Engi-

neering, ICSE’09, pages 81-90, Vancouver, British Columbia, Canada.

Pino, F., Garcia, F., and Piattini, M. (2008). Software process improvement in small
and medium software enterprises: a systematic review. Software Quality Journal,
16:237-261.

Pino, F. J., Garcia, F., and Piattini, M. (2009). An Integrated Framework to Guide
Software Process Improvement in Small Organizations. In FEuropean Systems &

Software Process Improvement and Innovation, volume 42 of EuroSPI 2009, pages
213-224, Madrid, Spain. Springer Berlin / Heidelberg.

Pitterman, B. (2000). Telcordia Technologies: The Journey to High Maturity. IEEE
Software, 17(4):89-96.

Possa, R. M. (2011). Um Estudo sobre os Requisitos de Jogos de Simulagao usados no
Ensino de Engenharia de Software. Master’s thesis, Universidade Federal de Minas

Gerais, Brazil.

Prates, R. O., de Souza, C. S., and Barbosa, S. D. J. (2000). Methods and Tools: A
Method for Evaluating the Communicability of User Interfaces. Interactions, 7:31—

38.
Pressman, R. S. (1992). Software Project Management: Q and A. Cutter IT Journal.

Prikladnicki, R. and Audy, J. L. N. (2010). Process models in the practice of dis-
tributed software development: A systematic review of the literature. Information
and Software Technology, 52:779-791.

Raffo, D. M., Vandeville, J. V., and Martin, R. H. (1999). Software Process Simulation
to Achieve Higher CMM Levels. Journal of Systems and Software, 46(2-3):163-172.

Raffo, D. M. and Wakeland, W. (2008). Moving Up the CMMI Capability and Ma-
turity Levels Using Simulation. Technical Report CMU /SEI-2008-TR~002, Software

Engineering Institute.

Rainer, A. and Hall, T. (2001). An analysis of some ‘core studies’ of software process

improvement. Software Process: Improvement and Practice, 6(4):169-187.

160 BIBLIOGRAPHY

Rainer, A. and Hall, T. (2002). Key success factors for implementing software process

improvement: a maturity-based analysis. Journal of Systems and Software, 62(2):71-

84.

Rainer, A. and Hall, T. (2003). A quantitative and qualitative analysis of factors

affecting software processes. Journal of Systems and Software, 66(1):7-21.

Rautiainen, K., Vuornos, L., and Lassenius, C. (2003). An experience in combining
flexibility and control in a small company’s software product development process.
In International Symposium on Empirical Software Engineering, ISESE 2003, pages
28-37, Rome, Italy.

Redzic, C. and Baik, J. (2006). Six Sigma Approach in Software Quality Improvement.
In Proceedings of the Fourth International Conference on Software Engineering Re-

search, Management and Applications, pages 396-406, Seattle, Washington, USA.

Runeson, P. and Host, M. (2009). Guidelines for conducting and reporting case study

research in software engineering. Empirical Software Engineering, 14:131-164.

Russ, R., Sperling, D., Rometsch, F., and Louis, P. (2008). Applying Six Sigma
in the Field of Software Engineering. In Dumke, R., Braungarten, R., Biiren,
G., Abran, A., and Cuadrado-Gallego, J., editors, Proceedings of the Interna-
tional Conferences on Software Process and Product Measurement, volume 5338 of
IWSM /Metrikon/Mensura ’08, pages 36-47, Nara, Japan. Springer Berlin / Heidel-
berg.

Salo, O. and Abrahamsson, P. (2007). An iterative improvement process for agile

software development. Software Process: Improvement and Practice, 12(1):81-100.

Sampaio, A., Albuquerque, C., Vasconcelos, J., Cruz, L., Figueiredo, L., and Caval-
cante, S. (2005). Software Test Program: A Software Residency Experience. In
Proceeding of the 27th International Conference on Software Engineering, ICSE’05,
pages 611-612, St. Louis, Missouri, USA.

Sawyer, P., Sommerville, 1., and Viller, S. (1997). Requirements Process Im-
provement through the Phased Introduction of Good Practice. Technical Report
CSEG/17/1997, Cooperative Systems Engineering Group.

Schmid, K., Becker-Kornstaedt, U., Kanuber, P., and Bernauer, F. (2000). Introducing
a Software Modeling Concept in a Medium-Sized Company. In Proceedings of the
22nd International Conference on Software Engineering, ICSE’00, pages 558-567,

Limerick, Ireland.

BIBLIOGRAPHY 161

Schneider, K. (2000). Active Probes Synergy in Experience-Based Process Improve-
ment. In Bomarius, F., and Oivo, M., editors, Proceedings of the Second Interna-
tional Conference on Product Focused Software Process Improvement, volume 1840
of PROFES’00, pages 433-619, Oulu, Finland. Springer Berlin / Heidelberg.

Scott, L., Carvalho, L., Jeffery, R., D’Ambra, J., and Becker-Kornstaedt, U. (2002).
Understanding the use of an electronic process guide. Information and Software
Technology, 44(10):601-616.

SE2004 (2004). Software Engineering 2004: Curriculum Guidelines for Undergrad-
uate Degree Programs in Software Engineering. The Joint Task Force on Com-
puting Curricula IEEE Computer Society, Association for Computing Machin-
ery. http://sites.computer.org/ccse/SE2004Volume.pdf. "[Online; accessed 12
September 2011]".

Sharp, H. and Hall, P. (2000). An Interactive Multimedia Software House Simula-
tion for Postgraduate Software Engineers. In Proceedings of the 22nd International

Conference on Software Engineering, pages 688691, Limerick, Ireland.

Shaw, K. and Dermoudy, J. (2005). Engendering an Empathy for Software Engineer-
ing. In Proceedings of the 7th Australasian conference on Computing education -
Volume 42, ACE ’05, pages 135-144, Darlinghurst, Australia, Australia. Australian

Computer Society, Inc.

Shull, F., Singer, J., and Sjoberg, D. 1. K. (2008). Guide to Advanced Empirical

Software Engineering. Springer-Verlag, London.

Sommerville, I. (2011). Software Engineering (9th ed). Addison-Wesley Longman
Publishing Co., Inc., Boston, Massachusetts, USA.

Sommerville, I. and Ransom, J. (2005). An Empirical Study of Industrial Requirements
Engineering Process Assessment and Improvement. ACM Transactions on Software
Engineering and Methodology, 14:85—-117.

Staples, M. and Niazi, M. (2008). Systematic review of organizational motivations for
adopting CMM-based SPI. Information and Software Technology, 50(7-8):605-620.

Stlalhane, T. (2006). Implementing an ISO 9001 Certified Process. In Richardson,
L., Runeson, P., and Messnarz, R., editors, European Systems € Software Process

Improvement and Innovation, volume 4257 of EuroSPI’06, pages 1627, Joensuu,
Finland.

http://sites.computer.org/ccse/SE2004Volume.pdf

162 BIBLIOGRAPHY

Sterrle, H. (2001). Describing Process Patterns with UML. In Ambriola, V., editor,
Software Process Technology, volume 2077 of Lecture Notes in Computer Science,

pages 173-181. Springer Berlin / Heidelberg.

Sulayman, M. and Mendes, E. (2009). A Systematic Literature Review of Software
Process Improvement in Small and Medium Web Companies. In Slezak, D., Kim,
T., Kiumi, A., Jiang, T., Verner, J., and Abrahdo, S., editors, Advances in Software
Engineering, volume 59 of Communications in Computer and Information Science,

pages 1-8. Springer Berlin / Heidelberg.

Sutherland, J., Ruseng Jakobsen, C., and Johnson, K. (2008). Scrum and CMMI
Level 5: The Magic Potion for Code Warriors. In Proceedings of the 41st Annual

Hawaii International Conference on System Sciences, page 466, Waikoloa, Big Island,
Hawaii, USA.

Svinick, M. and Mckeachie, W. J. (2011). McKeachie’s Teaching Tips: Strategies,
Research, and Theory for College and University Teachers, 15th Edition. Wadsworth

Cengage Learning.

Taran, G. (2007). Using Games in Software Engineering Education to Teach Risk Man-
agement. In Proceedings of the 20th Conference on Software Engineering Education
and Training, CSEET ’07, pages 211-220, Dublin, Ireland.

Tchounikine, P. (2001). Computer Science and FEducational Software Design: A
Resource for Multidisciplinary Work in Technology Enhanced Learning. Springer-
Verlag.

Tosun, A., Bener, A., and Turhan, B. (2009). Implementation of a Software Quality
Improvement Project in an SME: A Before and After Comparison. In Proceedings of

the 85th Euromicro Conference on Software Engineering and Advanced Applications,
SEAA’09, pages 203209, Patras, Greece.

Tuffley, A., Grove, B., and McNair, G. (2004). SPICE for Small Organisations. Software
Process: Improvement and Practice, 9(1):23-31.

Tvedt, J. (1996). An Extensible Model for Evaluating the Impact of Process Improve-

ments on Software Development Cycle Time. PhD thesis, Arizona State University.

Unterkalmsteiner, M., Gorschek, T., Islam, A., Cheng, C., Permadi, R., and Feldt, R.
(2012). Evaluation and Measurement of Software Process Improvement - A System-
atic Literature Review. IEEE Transactions on Software Engineering, 38(2):398-424.

BIBLIOGRAPHY 163

Upchurch, R. and Sims-Knight, J. (1999). Reflective essays in software engineering.
In Proceedings of the 29th Annual ASEE/IEEE Frontiers in Education Conference,
volume 3, pages 13A6/13 —13A6/19 vol.3, San Juan, Puerto Rico.

Valtanen, A., Ahonen, J. J., and Savolainen, P. (2009). Improving the Product Doc-
umentation Process of a Small Software Company. In Aalst, W., Mylopoulos, J.,
Rosemann, M., Shaw, M. J., Szyperski, C., Bomarius, F., Oivo, M., Jaring, P.,
and Abrahamsson, P., editors, Proceedings of the 10th International Conference on
Product Focused Software Process Improvement, volume 32 of PROFES’09, pages
303-316, Oulu, Finland. Springer Berlin Heidelberg.

van Genuchten, M. (1991). Why is Software Late? An Empirical Study of Reasons
for Delay in Software Development. IEEE Transactions on Software Engineering,

17:582-590.

van Latum, F. and van Uijtregt, A. (2000). Product Driven Process Improvement PRO-
FES Experiences at Dréager. In Bomarius, F., and Owo, M., editors, Proceedings of
the Second International Conference on Product Focused Software Process Improve-
ment, volume 1840 of PROFES’00, pages 7-37, Oulu, Finland. Springer Berlin /
Heidelberg.

van Solingen, R. (2004). Measuring the ROI of Software Process Improvement. IEEE
Software, 21(3):32-38.

van Solingen, R., Kusters, R. J., Trienekens, J. J. M., and van Uijtregt, A. (1999).
Product-focused software process improvement (P-SPI): concepts and their applica-
tion. Quality and Reliability Engineering International, 15(6):475-483.

Vega, K. C., Fuks, H., and de Carvalho, G. R. (2009a). Training in Requirements by
Collaboration: Branching Stories in Second Life. In Simpdsio Brasilerio de Sistemas

Colaborativos, pages 116-122, Fortaleza, Ceara, Brazil. IEEE Computer Society.

Vega, K. C., Pereira, A., de Carvalho, G. R., Raposo, A., and Fuks, H. (2009b).
Prototyping Games for Training and Education in Second Life: Time2Play and
TREG. In Brazilian Symposium on Games and Digital Entertainment, pages 1-8,
Rio de Janeiro, Brazil. IEEE Computer Society.

Vokéac, M. and Jensen, O. (2004). Using a Reference Application with Design Patterns
to Produce Industrial Software. In Bomarius, F., and lida, H., editors, Proceedings of

the 5th International Conference on Product Focused Software Process Improvement,

164 BIBLIOGRAPHY

volume 3009 of PROFES’04, pages 333-347, Kansai Science City, Japan. Springer
Berlin / Heidelberg.

von Wangenheim, C. and Shull, F. (2009). To Game or Not to Game? IEEE Software,
26(2):92-94.

von Wangenheim, C. G., Weber, S., Hauck, J. C. R., and Trentin, G. (2006). Ex-
periences on establishing software processes in small companies. Information and
Software Technology, 48(9):890-900.

Walia, G. S. and Carver, J. C. (2009). A systematic literature review to identify and
classify software requirement errors. Information and Software Technology, 51:1087—
11009.

Wang, A. L., Ofsdahl, T., and Mgrch-Storstein, O. K. (2008). An Evaluation of a
Mobile Game Concept for Lectures. In Proceeding of the 21st Conference on Software

Engineering Education and Training, pages 197-204, Charleston, South Carolina,
USA. IEEE Computer Society.

Weller, E. F. (1993). Lessons from Three Years of Inspection Data. IEEE Software,
10(5):38-45.

Westerheim, H. and Hanssen, G. (2005). The Introduction and Use of a Tailored
Unified Process - A Case Study. In Proceedings of the 31st Euromicro Conference on
Software Engineering and Advanced Applications, SEAA’05, pages 196-203, Porto,
Portugal.

Williams, B. J. and Carver, J. C. (2010). Characterizing software architecture changes:

A systematic review. Information and Software Technology, 52:31-51.

Wilson, D. N., Hall, T., and Baddoo, N. (2001). A framework for evaluation and
prediction of software process improvement success. Journal of Systems and Software,

59(2):135-142.

Ye, E., Liu, C., and Polack-Wahl, J. (2007). Enhancing software engineering educa-
tion using teaching aids in 3-D online virtual worlds. In Proceedings of the 37th
ASEE/IEEE Frontiers in FEducation Conference, FIE *07, pages T1E-8-T1E-13,

Milwaukee, Wisconsin.

Zapalska, A. and Brozik, D. (2006). Learning Styles and Online Education. Campus-
Wide Information Systems, 23(5):325-335.

BIBLIOGRAPHY 165

Zhang, H. (2008). Qualitative & Semi-Quantitative Modelling and Simulation of the
Software Engineering Processes. PhD thesis, The University of New South Wales,
Sydney, Australia.

Zhang, H. and Kitchenham, B. (2006). Semi-quantitative Simulation Modeling of
Software Engineering Process. In Wang, Q., Pfahl, D., Raffo, D., and Wernick,
P., editors, Software Process Change, 3966 volume of Lecture Notes in Computer

Science, pages 242-253. Springer Berlin / Heidelberg,.

Zhang, H., Kitchenham, B., and Pfahl, D. (2008). Reflections on 10 Years of Software
Process Simulation Modeling: A Systematic Review. In International Conference on
Software Process, volume 5007 of ICSP 2008, pages 345-356, Vancouver, Canada.
Springer Berlin / Heidelberg.

Zhao, X., He, Z., Gui, F., and Zhang, S. (2008). Research on the Application of Six
Sigma in Software Process Improvement. In International Conference on Intelligent
Information Hiding and Multimedia Signal Processing, ITHMSP’08, pages 937940,
Harbin, China.

Appendix A

Software Engineering Simulation

Games

167

APPENDIX A. SOFTWARE ENGINEERING SIMULATION GAMES

168

‘(Kouowr
pue awr)) Ystuy $9dInosor j09foxd
oY) ueym spuo owes oyJ, -owes
oY) Jo pue oy} e pojuesard jou
SI 9100 -oNJO[RIP PAJOLIISOI purR
‘suorydiiosep seako[dwe ‘(aurr) pue
198pNQ UOo SIUTRIISUOD) SOSUS[RYD

‘Surulsep
pue Suipod Ul
1I0]J 9[qeISPISUOD
®)M paSueyd oq
ued aul] AI0)s pue
Q0RLISIUI I9STL ‘S[

‘sjuepnjs 0} juowedeurw jooford
oea], :[eoY) ‘juewedeurw 300foxd
oIem}jos Ul poulel) ag O} podu
Jey) sjyuepniyg :sioke(q -posfoxd
oY)} [0Iju0d pur 9nodoxe ‘ue[d 03
speau oym JIoeury 309[01g :9[01

‘(Aeuowr pue auIl}) $92INOS
-01 POsT PU® POJRIIIISS 9} SMOYS ouIes
o) ‘a100s [euy e Jurjuesaid jo peejsuy
‘ssoxdoxd o[mpoyos pue owl} oy} pur
‘ssoq o) woyy syurejduwrod swos ‘(Aued
-wod 9y} 9ArI[sevko[dwe uaym) ySIu
01 Aep oy) woiy Surdueyd oy} ‘(o[pr
10 poairy ‘omred) seadordwe oY) woOIf
sogessowl Jo sodA} 901y} ‘A}IAIIO0R YORD
moqe uorjewtojur sseigoid yInoiyy

‘uorye[nored ssergord

o[npoyds pue S1S0D
0} Ppoje[pl aIe S9Ny
‘sIeployee)s oyl Aq
posoxdde pue oseyd
Sumuuerd oyjy Suumnp

poysiqe)se oIe am
-paYos pue S3S0D JISYM

Iageur]y 9[q

oMI[-oJI] ‘AjiarioRIoqul ‘sorydelr) -powr uoljenwilg s, IeAe[J -eojo Auedwo)) :3uryjeg pepraoid sI oeqpes] oaljeuriojul oy, 9ooloxd e ojo[dwio)) -Tperoul oY,
*(synsax 198pnq pue ‘o[npayos
‘s309Jop JO Ioquunu ‘ssousjo[durod
jonpoid -3'9) sjurelrjsuod pauyop
9y} uo peseq ‘o[eos sjutod QT e ut “PozZImuo)sno
pouyep SI 91 pue owed oY) JO PUS 9] OS[B URD SHUSW ‘syuepng)s 09 sseoold SurIeoursd ‘oures oy} Jo puo *SUOSS] FULIGRUISUG]
oy} e pojuosord ST 9100G "9I00S -9 90RJIUI -UG 9IeM)JOS UDe9], :[eOr) 'Sjuep oY) Je pojuasald st o0100g ‘soypeordde oremjjog UO paseq
pue ‘peseq OO[D ‘SjUOAd WOpURI Y], ‘90RJIOIUTI -NYS SULIOAUISUY] oIeM)JOS SI0 JUSIPIP oIo[dxoe pue ‘sseoord arem)jos — ore sa[ny -’ (s10959p
‘(peoy ,seodojduro oY) 19a0 so[q [eoryderd e Suisn -Ae[d (sserSoxd oyj Iojiuowr pue OY) pUR SUOSSO] 9Y) PURISIOPUN ‘Soye) JO I9qUINU ‘O[NPAYDS
-qnq) sengorerp ‘suonrduosep s99 ‘s10jonajsul oY) Aq ‘s[00} oseyoind ‘wred) oY) ofeurwW -STW 9} 1091100 0} sd[PYy YoIym ‘[oo], ‘198pnq ‘$9) sjurerss
-fordwe ‘(owry pue s300Jop ‘4o8pnq peymwods oq ued ‘syse) ulisse) 10oloxd oY) o[puey 01 AIojeue[dxF oY) pue ‘peay sodkojdwrd -UOD JO 4OS UIRLIND
uo sjure1jsuod '8'9) sofuo[eyd ssedoid oIem)JOs SpedU oym IoFeurwl 10901 :9[OI 9Y) ISAO SO[qQN(‘)SI] AIAIIOR UR ‘so[qe) ® urgarm 100(foxd
oMI[-oJI] ‘AjiarjoeIoqul ‘sotydelr) oy} pue suossor] s, IoAe[J ‘eo1jo Auedwoy) :3uijjeg oIe yoeqpesj opiaold jey) syuewInIisu] aremijos ' dooad(] fqSuIg
*(998pnq pue
QUI[PeoP 9Y} JO JOPUIWDI B PUR SIOWIOY)
-SND WOIJ OBQPAd] ‘SHULWNIOP O3 JO
'sonfea pouue[d pue [eal o) A1renb) pue oY) 9e pue owred oY) 3ul
uoemiaq uostredurod e pue 309foid ‘sjuepng)s -Inp pajuesald sI ¥orqpas) eouruLIofIod
91[} JO MIIAIDAO UR YIIM ‘UOIJEN[RAD ‘o8en8ue] Sut 01 ssooord Surneeurduf oIemijog owog ‘jueds Asuow pue oW} dY) pur *'SUOSS9 SuLIeaUISUY
I9WO)SND ® JO ULIOJ 9} UI ST 9100G -[oPOW Poseq-d[Nl [DBYJ, :[ROY) 'SJUOPNIS JULIGOUIS ‘SHUOWINDOP dY) JO 9ZIS ‘S)09Jop JO Iaq oIem)}jo§ UO paseq ole
91008 pue ‘peseq 20> ‘(seSes ogweds e Suisn -uj aremijog :IoAe[d ‘(sserSorxd -wmu oY) :USAIdS UMW oY) Je sdfes semy -A)renb ojqejdsd
-sow [enjxoq) songorerp ‘suoriduds ‘s1070nIjsul oY) Aq O} IOJIUOW pPUR WIRd) 97} 9SeURUI -SOUW)X99 JO SISISU0D oeqpos] -ofend -oe yjypm pue ‘103pnq
-op soafojdwe ‘(owury pue syoojop peymoeds oq uwed ‘syse) uSisse) 10oloxd oY) o[puey 01 -UE[[RINJRU PIJOLIISAI © Ul SPURUWIOD pue owl} pormbar
903pnq uo sjureI)suod) soSuo[eyo sseooid oremijos spoou oym tofeuewr 109(o1g :9[01 odA) ysnwt sioe[J ‘Teorydeid pue [eny oyl uiyym j09foxd
oMI[-oJI] ‘Ajtarporiequr ‘sotyderar) oy} pur suosse| s JIake[d -o0o1jo Aurdwio)) :Suryjeg -X9) :9oejIejul Jo sodA) om) oIe 819y, oIemijos e do[eas(] INVSHS
soInjes,| owrer) Aniqeidepy PIIOAA [BNIIIA Moeqpoao SOy pue Ss[eON) aure N

‘sourer) SUIIOLUISUS] 2Iem)jos *T'V O[qelL

169

‘oLreu

-90S TD®O I93je SUOIJOR SHUSPNIS
JO 0RqPO9J pPUR SJUSWISSISS® HOIN{)
'SOOPIA pojeWITUR pUR ‘soSUS[[RYD
oMI[-oJ1] ‘Ajtargoriequr ‘sorydern)
B

-payos o1} pue ‘s)09Jop JO Iaquunu
oy ‘ssoudjoidwod jonpoad oy} uo
poseq paje[nofed st 9] "o[ess sjutod
00T ® Ul pauyep SI 31 pue swes oY)
Jo pue o) je pojusesard ST 29100G
"2100s pue ‘paseq }oo[d ‘(N ‘1eyd)
son3orerp ‘suorjdriosop seafojduie
‘soSuaeyd oNI[-9JI] ‘AIAIjORISIUL
‘ooua)sistod JULOWIUOIIAUS ‘AjTUnu
-wod [e10s ‘Adeipswrual ‘sorydern)

A€ ‘9Jr] Puoddg Ul PHIOA [enITIA

‘(KAouowr pue awry) ysruy
seoanosar jo0foxd oY) uweym spue
owres 9y, -ouwed oY)} JO pus |y}
Je 9I00S ® SI 9I0Y} JI 9)RN[RAD J0U
pmoo am ‘orjgqnd jou sem suwres uory
-e[NUWIS 9() 9OUIS ‘SIUSAD WOPURI
pue ‘(soSessowr [enjxoq) ongo[eip
‘suorydrosep seafordwe ‘(awr) pue
198pNQ UO SJUIRIISUOD) SOJUS[[RYD
oMI[-oJI] ‘Ajtarporiequr ‘sorydern)

‘perroddns joN

‘porroddns joN

‘perroddns joN

‘Uo13eONPd
oIeM1JOS JO P[OY OY) Ul paseq onfea
jo sordmurid oyj oo10vIlJ :[ROY)
‘SULIOQUISUY 91eM)JOS PIsB-oN[eA
UIeS] 0} JUBM OY[M SJUSPNIS FULIGSU
-18uf] orem)jog :IoAe[d IoSeurwr
10901 :9[01 s, 10k ‘uoljezIuel
-10 JuawdoleAep aIemijos :8urjeg

'syuapn)s 09 ssed01d Jurresu
-13uf] 9IeM)JOG YORS], :[ROY) SHUSP
-njs SuLIL_UISUSG] 8IeM)JoS :Ioke[d
‘wo)sAs oremijos e dofeasp 01
s1ofe[d I9Yj0 YIM SO)RIOQR[[OD
oUyM IOQUIOW IR} ISDUISUS OIem
-1JO0g 901 s, IoAR[d *se[oIqNd
X1s yym oo1go Auedwo)) :3uryjeg

‘SyuOpN)S
0} sseooixd SulLaUISUY SIem)jos
ora], :[ROY) ‘Sjuepnj)s SurIeauIsuUy
arem)jog :sioke[q ‘(sse18oid oyy
I0jTUOW pUR ‘OIeMpPIR] pUR oIem
-)jos eseypind ‘owir) jo[[e ‘syse)
uSisse) goofoxd oyy o[puey oy
spoou oym IoGeuew }oofo1g :9[01
s, 1he[d -eoyjo Auedwo)) :Suijjeg

'S9O10TD 1191} UO paseq
sjuepnIs 9y} O} S[qe[leAR SBM JRY[} UOT}
-do yoee Jo sossoueom pue SYISULIIS
oY) sSNOSIp 1eY) s110dol Y3noiy) papra
-01d sI yoeqpas) soueuLIojrad a1} ‘orreu
-90S [[ore SUIMO[[O] "9AI39a[qo pue uor)
-duosop e jm pojussard SI OLIRUSDS
yoey *(So[qeLIeA [OIIUOD }9IIP PUE 4231
-Ipul) sonjea sa[qeLIeA JusIejip apiaoid
UOoTYMm ‘SWIO0I JUSISJIP oIe 919y} ‘Moeq
-Po9J OAIJeULIOJUI oY) JUIpIeIY 1S9
-I9)UT 9)eIpaWIWI JO $309[qNs pue SoAT)}
-09[qo Iey) puejsiopun 0} sjULPNIS
oy Surdey 10J S[eLIO)N) pue SO9PIA
porewrtue owos sopraoid ewreS oy,

‘owred
oY} Jo pud 8y} je ueAld st (00T Pu®
U9oM19() 91008 wres) y (Ayrenb pue
‘omtry ‘edoos) ssexdoid 1oy 01 paje|
-1 oRe(qPo9J SAT)RULIONUT Sopraold oured
oy T, "(JNI - 8esso[\ juessu] ‘yeyo) oJr]
puooeg ur papraoid suesw uUOIjRITUNUI
-WI0D STMOLIRA UYSNOIY) IoY)0 [ord YIm
10eIqUI Ued siaoke[d ‘oured oty Suun(y

‘(suoryoe
Juswedeuewt 109fo1d o1} sseooe Ieferd
oY) mofe 03) [eued [o1uod 309loid
97} YHM UOIJRUIqUIOD Ul SYIom (ues)
quowdoreaap 911 [01ju00 09) [oued (01}
-uod siodofessp otJ, ‘s[eued [0IjU0D
omy sey roferd oyJ, (JNYSHS 01 Ie|
-Twals) o9eSSOW $)X9) oI SIUIAD 9T,
"U9IDS UTew oY) Je pajussaid st 30aloxd
9} INOQeR UOI}RWLIOJUl 9UWIOG ‘SIUSU
-oAow soofo[due 9y} OAISSqO URD
sjuepnis oy J, ‘YOe(poO9d] [BNIXO] puR
[eorydel8 jo X1 e sey 9deJILUI OYJ,

'S[OIJU0D pue
siojowrered owWOS JO
anfea oy} aSueyd ey}
SO[NI $100]j0 PUR 9SNed
sepnpour 9] ‘senyea
Arewrtid s1op[oyeye)s
[BO1)1ID-SS900NS [[B SOy
-s1yes jey) wnuqrmbe
um-uim e Surdjruept
pue ‘SUOT)eIoPISUOD
sonyea SIop[oyeye)s
Suisn 10sfoxd oYy jo
spoodse juolepIp pue
sgo-epel} o3 Jnoqe
Suruosear oA[oAUl jRYY
SOLIRUODS JUSIOJIP UO
poseq SUOISIOAP ORIy

*SUOSSI[SuLIeauISUY

oIem)jog U0 poseq
are so[ny ‘Ky1renb
pue owr} poaxmbar
oy} urgym 909foxd
aremjpos e dofeasg

‘uorye[nored

Ayrenb pue ‘9s00 ‘owrny
0} poje[pl ore sa[NY

“Ky1renb s1qeydesoe
M pue “98pnq
pue ewr) paimbal
oy uryym yoefoxd
aremjjos e dofess(g

dSAULS

SS9001JHS
O

dSear[uls

SaInjeq,] ourer)

Ayiqeydepy

PIOM TENHIA

PRAPIRT

So[NY pue s[eoy)

ureN

APPENDIX A. SOFTWARE ENGINEERING SIMULATION GAMES

170

‘mo1309[as oy1oads e Jo seouanbasuod
9] SMOUS RUWITUIYOR]\ 9SBD SIYJ Ul
{sTomsue JUSLI OU oIe 9I9Y] ‘SIOY)O
ul ng "SUoI}de[es YSLI 9y} 0}
Suriejol requnu e juesaid seseyd
owiog ‘owl} JuUrewsl 9y} pue
‘Opeul JUOUIISOAUT ‘USSOyD Apeal[e
(spuarpar8ur) seseyd jo roquinu :jo
S)SISUOD pue owesd o[oym oy} Jul
-Inp pojussaid ST 9100G 91098
pue ‘paseq o ‘(seSessouwr [enj
-x99) songorerp ‘suorjduiossp si1o
-ployayels ‘(pemor[oj aq o9 syred
JUSISYIP) soSuL[[eyd ONI[-OJI ‘A3t
-ATj0RIOMUI ‘90ud)sIsIod JUOUWUOIIA
-uo ‘AjTunumuImiod [RI100s ‘Aderpoun
-wt ‘sorydern) (g ‘(uorsioa rokerd

"TOI}RIOQR[[0D UO Paseq
oure8 uorjyenuis e gursn senbru
-0} Surwourduy juswelnb
-0y yoea], :eor) ‘(doysiyiom
o} Jno SUIAIIed I0J SJUaIpall
-ur JYSLI 973 9S00YD) I109RII[I0R]
doyssyIop\ :9[01 S, I0AR[J ‘UOI}
-e}I0I[o juowaIMbal ur paurery
oq 01} juem oym srorddns arem
-1JOS IO SI9SN ‘SISWO)SNO ‘Suap

‘owred s[oym a9y} Surmnp uoryedoijred sosureI)
o1} ,SMO[[0],, ¥orqpes} eoueuriojiad oy, ‘yyed
oymads e Juisooys jo sodouenbosuod oyj Jul
-moys ‘suorjeniyrs doysyiom dsrpewra[qoid suIos
P10291 07 (SOOPIA PojRWIIUR) DWIUIYIDJ pUR
¢ (onbruyoo) pue ‘UOISSTW ‘W) ‘JUSUIISIAUL
‘01005 ureur) oured oY} JO S9I0DS AY) [0IIUOD 0}
(Lerdsig-dn-speel) (qNH ‘wey) apms oy (199

doyssyiom
sjuowaambar [NJssed
-ons e Surygsiiduwoooe
I0] sjualpeilur I
0} puodsariod se[ny
‘pomoro] oq o031 yjred
JUSISIP ® 0) ooulel)
oy} soye) JuUOTpPaI3UI
U0 JO UOIII9[eS YT,
‘syjuewreanbar SurzAy
-eue pue Sureyjed
10} Aem 9AI)RIOQR[[OD
e ‘sonbruyoey doys
-YIom 9Jnoqge uIes] o)
sjuaIpeI3ul AIessodou
oy} 108 gsnur oourel)

-y e Aerd 0} 9[qe J0U SIoM oM ‘porrod -njg isivAe[J ‘UOIIRIIOIE JUOW -OeIRY)) IoAR[J UON) DAN JO osn oy ySnoiyy oyj ‘woor rtoydejrowr
Inq) 9JI7] Puoddg Ul PLIOA\ [enjiip -dns j0N -eambar 10] doysyiop) :8urjeg sesUreI) O} USAIS SI OB(PES] SAIJRULIOJU] UWLYDIL] oY) Juls() OHAYL
*(s9100s 989q BT}
yym Sursjued ' pue 9100s s 1oke[d) uorypoduod
10J 2100S ® [[om sk pajussald ore sjuswalinb
"9100s oY} -91 9} O} Poje[al SAINSBOW 9UWIOS ‘PUd oY} 1Y *(souo
WOI} PaIdNPap SI (SoInjesa) pajuem ‘10he[d oy 01 pajuasaid osfe st owry oy], “(pod ySuI oY) Suryds[[od pue
-un *89) sjueweImbol oremijos pue ‘u8Isep ‘uoreoyroads) s1oeJIjIe OJUT PozZI[e sjuswRIMbox Suoam
9s[e] JO JIequINU oYJ, ‘PAISAIEP -LI9YeW 9¢ URD sjuswIaINbal 9soy], ‘s1op[oy Sulprosr) sjusurarrnbar
sjuowdIMbal IOWOISND 1091100 JO “peSuerpd oq ‘syuepniys 01 Juowrdo(ea -9)BIS 9] WO POIOA[[00 SJUSOWRINDOI SUOIM POISAOISID A[1091100UT
a8ejueoiad oY) UO Paskq PaR[MO[ed JOUURD S[@POW -9p 8I1BM)JOS 9} SULIND SHUdW pue JYSH JO JOQUINU 91} 9D PUR sFeq [ejUeW puB A[}0d91I00 9I00S
SI 11 pu® UOIJRN[RAD IOWOISNO ® SI purR S[eAd] -exmbal jo moy oY) 01 peje[oy} Suowre MO sjuewWdIMNbal oY) AJIIOA UBD 0} MOY O} paje[el aIe
9100G '9100S pue ‘(9s0[10 U9110310] oY} ‘IoAomOl -o1 swe[qoid oy} yYoea], :[eor) IoAe[d oy, ‘sjuewarmbor Suoim pue ySu oY) sy ‘syuewaImbar
aq ued juowaImbor ® “89) sjuows AJMOIPIP JO ‘sjuepnjys SULIOLUISUY SIeM)JOS USOMID(] SoySINSUISIp I0[0d oY, ‘(pesy o[ox Jo Ajenb oqejdeooe
-[o wopuel ‘paseq OO0 ‘(owil) pue S[PAS] JUAID] :IoAe[d ‘1o8euewr 100(01g we9) 9y} I0A0 sa[qqnq) sSeq Tejuowt ul reed UM pue owir) paxmnbar
$100JOp UO S)UTRIJSUOD) soSua[[eyd -JIp 991y} :B[01 S TeAR]d ‘uwonjeziuedio -de jey) s[[eq paio[od Jo loydejow ' se sjuew oY) ulyyum o9foxd
oMI[-oJi] ‘Ajraryorroqur ‘soryderr) sjueserd 11 Juowdopessp aremyjog :Surjeg -oanbar o) sjueseld yoeqpes) oAljRULIOUI 9], oIemjjos & doead(] aurenb
SoInyes,] owen Lnqedepy PHOM TenHIA SoeqpoR,] se[ny pue s[eop oureN

Appendix B

Software Engineering Rules

1. Requirements deficiencies are the prime source of project failures [Glass, 1998;

Endres and Rombach, 2003].

2. Errors are most frequent during the requirements and design activities and are
the more expensive the later they are removed [Boehm et al., 1975; Endres and
Rombach, 2003].

3. A combination of different V & V methods outperforms any single method alone
[Hetzel, 1976; Endres and Rombach, 2003].

4. Quality entails productivity [Jones, 1996; Cobb and Mills, 1990; Endres and Rom-
bach, 2003].

5. Error prevention is better than error removal [Mays et al., 1990; Endres and

Rombach, 2003|.

6. Smaller changes have a higher error density than large ones [Basili and Perricone,

1993; Endres and Rombach, 2003].

7. One of the two most common causes of runaway projects is unstable requirements

[Cole, 1995; van Genuchten, 1991; Glass, 2003].

8. One of the two most common causes of runaway projects is poor estimation [van
Genuchten, 1991; Cole, 1995; Glass, 2003|.

9. Software estimates are rarely adjusted as the project proceeds. Thus those es-

timates done at the wrong time by the wrong people are usually not corrected

[NASA, 1990; Glass, 2003].

171

172

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

APPENDIX B. SOFTWARE ENGINEERING RULES

When moving from requirements to design, there is an explosion of "derived
requirements" (the requirements for a particular design solution) caused by the
complexity of the solution process. The list of these design requirements is often
50 times longer than the list of original requirements [Glass, 1982; Ebner and
Kaindl, 2002; Glass, 2003|.

Error removal is the most time-consuming phase of the life cycle |Glass, 1992,
2003].

It is nearly impossible to do a good job of error removal without tools. Debuggers

are commonly used, but others, such as coverage analyzers, are not [Glass, 2003].

Rigorous inspections can remove up to 90 percent of errors from a software prod-
uct before the first test case is run [Glass, 2003, 1999].

Mature processes and personal discipline enhance planning, increase productivity,
and reduce errors [Humphrey, 1989, 1996; Endres and Rombach, 2003].

Two factors that affect productivity are work force experience level and level of
project familiarity due to learning-curve effect [Abdel-Hamid and Madnick, 1991,
Navarro, 2006|.

Getting the most out of employees can be done by utilizing experts, employee
training, skills assessment and job matching, and reducing turnover. Getting the
most out of employees leads to increased productivity, which leads to decreased
cycle time |Tvedt, 1996; Navarro, 2006].

The training of new employees is usually done by the "old-timers," which results
in a reduced level of productivity on the "old-timer’s" part. Specifically, on the
average, each new employee consumes in training overhead 20% of an experienced
employee’s time for the duration of the training or assimilation period [Abdel-
Hamid and Madnick, 1991; Navarro, 2006].

The average assimilation delay, the period of time it takes for a new employee to
become fully productive, is 80 days [Abdel-Hamid and Madnick, 1991; Navarro,
2006.

Communication and coordination breakdown is a major phenomenon that greatly

reduces software productivity and quality [Curtis et al., 1988; Navarro, 2006].

Matching the tasks to the skills and motivation of the people available increases
productivity [Boehm, 1981; Navarro, 2006].

21.

22.

23.

24.

25.

26.

27.

28.

29.

173

Employee motivation is the strongest influence of productivity [Boehm, 1981;
Navarro, 2006].

Management complexity can be reduced by using project management planning
tools and methods. Reducing management complexity reduces product complex-

ity, which increases productivity |Tvedt, 1996; Navarro, 2006].

Motivation is increased through monetary incentives (profit sharing, pay for per-
formance, merit pay, work measurement with incentives, and morale measure-
ment), creating a positive frame of mind at work (employee involvement in well-
ness programs and creating fun at work), encouraging a feeling of commitment
and responsibility (worker participation in decision-making, getting employees to
think like owners, self-managing work teams, commitment to productivity break-
throughs, and providing an environment with more freedom and less restrictions),
and increasing schedule pressure (using visible milestones and setting individual
goals.) Increased motivation leads to increased productivity which reduces cycle
time [Tvedt, 1996; Navarro, 2006].

Productivity is increased by increasing motivation, improving the work environ-
ment, getting the best people for the job, improving the process, and maximizing
reuse |Tvedt, 1996; Navarro, 2006].

Nine ways to reduce cycle time are: increase productivity, reduce rework, maxi-
mize software reuse, reduce product complexity, eliminate or simplify tasks, max-
imize task concurrency, reduce undiscovered work, reduce risk, and use process

models aimed at cycle time reduction |Tvedt, 1996; Navarro, 2006].

Software inspections find a high percentage of errors early in the development
life cycle [Tvedt, 1996; Navarro, 2006].

The use of inspections can lead to defect prevention, because developers get
early feedback with respect to the types of mistakes they are making |[Tvedt,
1996; Navarro, 2006].

Inspections should be thought of as part of the development process, and time
must be set aside accordingly. Once this is done, inspections can have a significant
improvement in the development organization’s ability to meet internal schedules
[Tvedt, 1996; Navarro, 2006].

Proper use of inspections can even shorten life cycle [Tvedt, 1996; Navarro, 2006].

174

30

31.

32.

33.

34.

35.

36.

37.

38.

39.

APPENDIX B. SOFTWARE ENGINEERING RULES

Participants in the inspection team get a high degree of product knowledge, which
leads to higher productivity [Tvedt, 1996; Navarro, 2006].

Rework is usually due to customer requirements, product flaws, and communi-
cation breakdown between project members. Improving the process to reduce
rework can be done by using prototyping and evolutionary development and by
using formal specification methods, modern programming practices, and inspec-

tions. Reducing rework increases productivity [Tvedt, 1996; Navarro, 2006].

Decisions made in the upstream portion of the software development process
(requirements and design) impact productivity, quality, and costs throughout
the life cycle more than the other portions [Curtis et al., 1988; Navarro, 2006].

Fluctuating and conflicting requirements is a major phenomenon that greatly

reduces software productivity and quality [Curtis et al., 1988; Navarro, 2006].

Specification mistakes often occur when designers do not have sufficient appli-
cation knowledge to interpret the customer’s intentions from the requirements
document [Curtis et al., 1988; Navarro, 2006].

Sticking with a too-tight schedule increases cost due to a large work force [Abdel-

Hamid and Madnick, 1991; Navarro, 2006].

As schedule pressure increases, quality assurance activities (especially walk-
throughs and inspections) are often relaxed or suspended altogether [Abdel-
Hamid and Madnick, 1991; Navarro, 2006].

In the absence of schedule pressure, a full-time employee allocates, on average,
60% of his working hours to the project (the rest is slack time: reading mail,
personal activities, non-project related company business, etc.) [Abdel-Hamid
and Madnick, 1991; Navarro, 2006].

Under schedule pressure, people tend to increase their percentage of working
hours spent on the project by as much as 100%, due to spending less time on
off-project activities, such as personal business and non-project communication,
and /or working overtime [Abdel-Hamid and Madnick, 1991; Navarro, 2006].

The three "resource-type" variables that have the greatest impact on program-
mer productivity are the availability of programming tools, the availability of
programming practices, and programmer experience [Abdel-Hamid and Madnick,

1991; Navarro, 2006].

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

ol.

02.

175

The two "task-type" variables that have the greatest impact on programmer
productivity are the programming language and the quality of external docu-

mentation [Abdel-Hamid and Madnick, 1991; Navarro, 2006].

Changing requirements are inevitable. Anticipating change with open architec-
tures, adaptable designs, and flexible planning can help to mediate some of the
ill effects of these changes [Dawson, 2000; Navarro, 2006|

Extreme time pressure leads to decreased productivity [Drappa and Ludewig,
2000; Navarro, 2006].

The earlier problems are discovered, the less the overall cost will be [Drappa and

Ludewig, 2000; Navarro, 2006].

The more errors a document from a previous phase contains, the more errors will

be passed on to the next document [Drappa and Ludewig, 2000; Navarro, 2006].

Extreme time pressure leads to a faster rate at which errors are made, which
leads to a further delay in the completion date |Levary and Lin, 1991; Navarro,
2006].

The more bugs you find, the more buggy the rest of your program will likely be
[McGraw, 2006; Navarro, 2006].

Tests reveal errors in the code. The better a test is prepared for, the higher

amount of detected errors [Sommerville, 2011; Navarro, 2006].

Inspection is the most cost-effective measure of finding problems in software [Som-
merville, 2011; Navarro, 2006].

The error detection effectiveness of reviews depends greatly on the qualifications
and preparations of the reviewers and the completeness and correctness of the

documents used as a reference [Weller, 1993; Navarro, 2006].

Most cost estimates tend to be too low [Glass, 1998, 2001; Endres and Rombach,
2003].

Object-oriented designs reduce errors and encourage reuse.[Booch, 1991; Endres

and Rombach, 2003].

Well-structured programs have fewer errors and are easier to maintain [Dijkstra,

1969; Endres and Rombach, 2003].

176 APPENDIX B. SOFTWARE ENGINEERING RULES

53. Software reuse reduces cycle time and increases productivity and quality [Engi-
neering, 1969; Endres and Rombach, 2003|.

54. Object-oriented programming reduces errors and encourages reuse [Dahl and Ny-
gaard, 2002; Endres and Rombach, 2003].

55. Inspections significantly increase productivity, quality and project stability [Fa-
gan, 1986; Endres and Rombach, 2003|.

56. Requirements errors are the most expensive to fix when found during production
but the cheapest to fix early in development [Davis, 1993; Boehm and Basili,
2001; Glass, 2003|.

57. Most software estimates are performed at the beginning of the life cycle. This
makes sense until we realize that estimates are obtained before the requirements
are defined and thus before the problem is understood. Estimation, therefore,

usually occurs at the wrong time [Pressman, 1992; Glass, 2003|.

Appendix C

Systematic Literature Review -

Software Process Improvement

177

APPENDIX C. SYSTEMATIC LITERATURE REVIEW - SOFTWARE PROCESS

178 IMPROVEMENT
Table C.1. Data extraction categories.
Attribute Description
Number of organizations The number of organizations or departments in
the study.

Organization-related data

Business Model

Business model involved in a global or local soft-
ware development organization.

Context

Primary function of the organization.

Size

“Very Small” (<10 technical staff); “Small” (10 to
49 technical staff); “Medium” (50 to 249 technical
stafl); “Large” (>249 technical staff); “Unknown”.

Number of employees

The number of employees (or software develop-
ers) in the organization or department. When
the Number of organization is greater than 1, this
value should be specified for each organization.

Geography

The location where the investigations have been
conducted.

Research-related data

Research method

The approach used in the research.

Data collection

How the data was collected.

Data analysis

How the data was analyzed.

Analysis method

Type of analysis carried out on the data.

SPI-related data

Motivation

The reasons for the SPI initiative.

Reference model/standard

Models or standards used as reference for the pro-
cess improvement.

SPI implementation approach/model

Approaches or models that support the SPT im-
plementation.

List of problems detected

The description of the main problems.

Qualitative measurements

The qualitative measurements used in SPT initia-
tives.

Quantitative measurements

The quantitative measurements used in SPT initia-
tives. The values identified before and after the
SPI initiative should be documented (if available).

Main topic area of the SPI program

The process that were improved, according to
ISO/IEC 12207.

SPI project duration

The duration of the improvement initiative.

List of proposed solutions

The list of usual solutions.

Main lessons learned

Lessons learned with the SPI program.

Success/Failure factors

List of success and failure factors of the SPI ini-
tiative.

Benefits The benefits for the organization with the SPI ini-
tiative.
Note Note Any other important information for this research.

Table C.2. Selected primary studies.

179

Study Digital Library Title Year Source Reference

1D

S1 Elsevier Understanding the use of an electronic 2002 Information and Soft- Scott et al.
process guide ware Technology [2002]

S2 IEEEXplore Historical Perspective of Two Process 2009 International Con- Nikitina
Transitions ference on Software and Kajko-

Engineering Advances Mattsson
[2009]

S3 IEEEXplore An Empirical Study of the Complex 2006 IEEE Transactions on Damian and
Relationships between Requirements Software Engineering Chisan [2006]
Engineering Processes and Other Pro-
cesses that Lead to Payoffs in Produc-
tivity, Quality, and Risk Management

S4 Wiley Inter- An Iterative Improvement Process for 2007 Software Process: Im- Salo and

Science Agile Software Development provement and Prac- Abrahams-
tice son [2007]

S5 IEEEXplore Improving validation activities in a 2001 ICSE Ebert et al.
global software development [2001]

S6 Wiley Inter- Cultivation and engineering of a soft- 2003 Information Systems Iversen and

Science ware metrics program Journal Mathiassen
[2003]
S7 Wiley Inter- ROI of Software Process Improvement 2008 Software Process: Im- Ferreiro Fer-
Science at BL Informatica: SPIdex is Really provement and Prac- reira et al.
Worth it tice [2008]

S8 SpringerLink An Integrated Framework to Guide 2009 EuroSPI Pino et al
Software Process Improvement in [2009]

Small Organizations

S9 Wiley Inter- Appreciative Inquiry in Software Pro- 2009 Software Process: Im- Holmberg

Science cess Improvement provement and Prac- et al. [2009]
tice

S10 Wiley Inter- A Practical Application of the IDEAL 2004 Software Process: Im- Casey and

Science Model provement and Prac- Richardson
tice [2004]

S11 SpringerLink Improving the Product Documenta- 2009 International Con- Valtanen
tion Process of a Small Software Com- ference on Product et al. [2009]
pany Focused Software

Process Improvement

S12 Elsevier Software process improvement as 2007 Information and Soft- Allison and
emergent change: A structurational ware Technology Merali [2007]
analysis

S13 Elsevier Implementing requirements engineer- 2004 Information and Soft- Kauppinen
ing processes throughout organiza- ware Technology et al. [2004]
tions: success factors and challenges

S14 Elsevier Experiences on establishing software 2006 Information and Soft- von Wangen-
processes in small companies. ware Technology heim et al.

[2006]

S15 IEEEXplore An Experience in Combining Flexibil- 2003 International Sym- Rautiainen
ity and Control in a Small Company’s posium on Empirical et al. [2003]
Software Product Development Pro- Software Engineering
cess

S16 IEEEXplore Implementation of a Software Quality 2009 Euromicro Conference Tosun et al.
Improvement Project in an SME: A on Software Engineer- [2009]
Before and After Comparison ing and Advanced Ap-

plications

S17 IEEEXplore Applying a Systematic Approach to 2009 Asia-Pacific Software Kukkanen
Link Requirements and Testing: A Engineering Confer- et al. [2009]
Case Study ence

S18 IEEEXplore Experiences and Results from Estab- 2009 Euromicro Conference Larndorfer
lishing a Software Cockpit at BMD on Software Engineer- et al. [2009]
Systemhaus ing and Advanced Ap-

plications

S19 IEEEXplore Improving quality, one process change 2009 ICSE Pinheiro
at a time et al. [2009]

S20 IEEEXplore Combining Perceptions and Prescrip- 2009 IEEE Transactions on Napier et al.
tions in Requirements Engineering Software Engineering [2009]
Process Assessment: An Industrial
Case Study

S21 IEEEXplore Improving software Risk Management 2009 ICSE McCaffery
in a Medical Device Company et al. [2009]

S22 IEEEXplore Case Study: How Analysis of Cus- 2009 ICSE Moritz [2009]

tomer Found Defects Can Be Used by
System Test to Improve Quality

APPENDIX C. SYSTEMATIC LITERATURE REVIEW - SOFTWARE PROCESS

180 IMPROVEMENT

Study Digital Library Title Year Source Reference

1D

S23 IEEEXplore Research on the Application of Six 2008 International Confer- Zhao et al.
Sigma in Software Process Improve- ence on Intelligent [2008]
ment Information Hiding

and Multimedia Signal
Processing

S24 IEEEXplore Scrum and CMMI Level 5: The Magic 2008 Annual Hawaii Inter- Sutherland

Potion for Code Warriors national Conference on et al. [2008]
System Sciences

S25 IEEEXplore Continuous Improvement through It- 2008 IEEE International Laredo and
erative Development in a Multi- Conference on Global Ranjan
Geography Software Engineering [2008]

S26 IEEEXplore Defect Prevention: A General Frame- 2006 International Con- Li et al
work and Its Application ference on Quality [2006]

Software

S27 IEEEXplore SPDW: A Software Development Pro- 2006 IEEE/NASA Software Becker et al.
cess Performance Data Warehousing Engineering Workshop [2006]
Environment

S28 IEEEXplore Six Sigma Approach in Software Qual- 2006 International Con- Redzic and
ity Improvement ference on Software Baik [2006]

Engineering Research,
Management and
Applications

S29 IEEEXplore Software Process Definition Improve- 2006 Euromicro Conference Jester et al.
ment: An Industry Report on Software Engineer- [2006]

ing and Advanced Ap-
plications

S30 IEEEXplore Tackling the Complexity of Require- 2005 Australian Software Nikula and
ments Engineering Process Improve- Engineering Confer- Sajaniemi
ment by Partitioning the Improvement ence [2005]

Task

S31 IEEEXplore The Introduction and Use of a Tailored 2005 Euromicro Conference Westerheim

Unified Process - A Case Study on Software Engineer- and Hanssen
ing and Advanced Ap- [2005]
plications

S32 IEEEXplore An Industrial Case Study of Imple- 2005 International Software Freimut et al.
menting and Validating Defect Classi- Metrics Symposium [2005]
fication for Process Improvement and
Quality Management

S33 IEEEXplore Improving Requirements Management 2004 Euromicro Conference Kéaridinen
in Extreme Programming with Tool on Software Engineer- et al. [2004]
Support - an Improvement Attempt ing and Advanced Ap-
that Failed plications

S34 IEEEXplore Managing Product Requirements for 2002 IEEE Joint Inter- Higgins et al.
Medical IT Products national ~ Conference [2002]

on Requirements
Engineering

S35 IEEEXplore Improving the Testing Process by Pro- 2001 Asia-Pacific Software Kikuchi

gram Static Analysis Engineering Confer- and Kikuno
ence [2001]

S36 IEEEXplore Structural change and change advo- 2001 Hawaii International Nelson et al.
cacy: a study in becoming a software Conference on System [2001]
engineering organization Sciences

S37 ACM Introducing a software modeling con- 2000 ICSE Schmid et al.
cept in a medium-sized company [2000]

S38 IEEEXplore An Experience: A Small Software 1999 International Work- Otoya and
Company Attempting to Improve its shop Software Technol- Cerpa [1999]
Process ogy and Engineering

Practice

S39 ACM Strategic alignment of software process 2008 International workshop Becker et al.
improvement programs using QFD on Business impact of [2008]

process improvements

S40 ACM Software process improvement by ob- 2000 ICSE Calido et al.
ject technology (ESSI PIE 27785 - [2000]
SPOT)

S41 IEEEXplore A case-study on using an Automated 2009 ICSE Coman et al.
In-process Software Engineering Mea- [2009]
surement and Analysis system in an in-
dustrial environment

S42 ACM Applying and adjusting a software pro- 2000 ICSE Kautz et al
cess improvement model in practice: [2000]

the use of the IDEAL model in a small
software enterprise

181

Study Digital Library Title Year Source Reference

ID

S43 ACM European experiences with software 2000 ICSE O’Hara
process improvement [2000]

S44 ACM An empirical study of industrial re- 2005 Transactions on Soft- Sommerville
quirements engineering process assess- ware Engineering and Ransom
ment and improvement and Methodology [2005]

(TOSEM)
S45 Wiley Inter- A minimal test practice framework for 2005 Software Testing, Veri- Karlstrom
Science emerging software organizations fication and Reliability et al. [2005]
S46 Wiley Inter- A Portrait of a CMMI Level 4 Effort 2002 Systems Engineering Hollenbach
Science and Smith
[2002]
S47 Wiley Inter- A Process Framework for Small 2001 Software Process: Im- Leung and
Science Projects provement and Prac- Yuen [2001]
tice
S48 Wiley Inter- An Experience in Facilitating Pro- 2006 Software Process: Im- Houston
Science cess Improvement with an Integration provement and Prac- [2006]
Problem Reporting Process Simulation tice
S49 Wiley Inter- BBN Based Approach for Improving 2009 Software Process: Im- Bibi et al.
Science the Software Development Process of provement and Prac- [2010]
an SME - A Case Study tice
S50 Wiley Inter- Continuous Process Improvement at a 2009 Software Process: Im- Malheiros
Science Large Software Organization provement and Prac- et al. [2009]
tice
S51 Wiley Inter- Experiences and Results from Tailor- 2008 Software Process: Im- Armbrust
Science ing and Deploying a Large Process provement and Prac- et al. [2008]
Standard in a Company tice
S52 Wiley Inter- Pioneering Process Improvement Ex- 2000 Software Process: Im- Bir6 et al.
Science periment in Hungary provement and Prac- [2000]
tice
S53 Wiley Inter- Product-focused software process im- 1999 Quality and Reliabil- van Solingen
Science provement (P-SPI): concepts and their ity Engineering Inter- et al. [1999]
application national

S54 Wiley Inter- Pursuing coherence in software process 2001 Software Process: Im- Cattaneo

Science assessment and improvement provement and Prac- et al. [2001]
tice

S55 Wiley Inter- Release planning process improvement 2006 Software Process: Im- Momoh and

Science - an industrial case study provement and Prac- Ruhe [2006]
tice

S56 Wiley Inter- SPIin a Very Small Team: a Case with 2000 Software Process: Im- Batista and

Science CMM provement and Prac- Figueiredo
tice [2000]
S57 Wiley Inter- SPICE For Small Organisations 2004 Software Process: Im- Tuffley et al.
Science provement and Prac- [2004]
tice
S58 Wiley Inter- TRISO-Model: A New Approach to 2007 Software Process: Im- Li [2007]
Science Integrated Software Process Assess- provement and Prac-
ment and Improvement tice

S59 SpringerLink Using a Reference Application with 2004 International Con- Vokac and
Design Patterns to Produce Industrial ference on Product Jensen [2004]
Software Focused Software

Process Improvement

S60 SpringerLink Starting SPI from Software Configura- 2004 International Con- Ikeda and
tion Management: A Fast Approach ference on Product Akamatsu
for an Organization to Realize the Ben- Focused Software [2004]
efits of SPI Process Improvement

S61 SpringerLink Software Verification Process Improve- 2007 International Con- Galinac and
ment Proposal Using Six Sigma ference on Product Car [2007]

Focused Software
Process Improvement

S62 SpringerLink Software Process Improvement with 2006 International Con- Auvinen
Agile Practices in a Large Telecom ference on Product et al. [2006]
Company Focused Software

Process Improvement

S63 SpringerLink Software Experience Bases: A Consol- 2000 International Con- Conradi and

idated Evaluation and Status Report ference on Product Dingsrgyr
Focused Software [2000]
Process Improvement

S64 SpringerLink Software Development Improvement 2007 International Con- Krikhaar and

with SFIM ference on Product Mermans
Focused Software [2007]

Process Improvement

APPENDIX C. SYSTEMATIC LITERATURE REVIEW - SOFTWARE PROCESS

182 IMPROVEMENT

Study Digital Library Title Year Source Reference

1D

S65 SpringerLink Quantitatively Managing Defects for 2008 International Con- Gou et al
Iterative Projects: An Industrial Ex- ference on Software [2008]
perience Report in China process

S66 SpringerLink Quality through Managed Improve- 2001 Software Quality Jour- Balla et al.
ment and Measurement (QMIM): To- nal [2001]
wards a Phased Development and Im-
plementation of a Quality Manage-
ment System for a Software Company

S67 SpringerLink Project Web and Electronic Process 2005 EuroSPI Moe et al
Guide as Software Process Improve- [2005]
ment

S68 SpringerLink Product Driven Process Improvement 2000 International Con- van Latum
PROFES Experiences at Drager ference on Product and van

Focused Software Uijtregt
Process Improvement [2000]

S69 SpringerLink Preventing Requirement Defects: An 2001 Requirement Engineer- Lauesen and
Experiment in Process Improvement ing Vinter [2001]

S70 SpringerLink Organisational Dynamics in the Soft- 2004 IFIP International Borjesson
ware Process Improvement: The Federation for Infor- and Mathi-
Agility Challenge mation Processing assen [2004]

S71 SpringerLink Managing the Software Process in the 2000 International Con- Kilpi [2000]
Middle of Rapid Growth: A Metrics ference on Advanced
Based Experiment Report from Nokia Information Systems

Engineering

S72 SpringerLink Improving reliability of large software 1999 Annals of Software En- Ebert et al.
systems gineering [1999]

S73 SpringerLink Implementing an ISO 9001 Certified 2006 EuroSPI Stlalhane
Process [2006]

S74 SpringerLink Experiences from introducing UML- 2006 Empirical Software En- Anda et al.
based development in a large safety- gineering [2006]
critical project

S75 SpringerLink Developing Software with Scrum in a 2006 EuroSPI Dingsgyr
Small Cross-Organizational Project et al. [2006]

S76 SpringerLink Crossing the Chasm in Software Pro- 2005 IFIP International = Borjesson
cess Improvement Federation for Infor- et al. [2005]

mation Processing

ST SpringerLink Assessing Improvements of Software 2004 IFIP International Frederiksen
Metrics Practices Federation for Infor- and Mathi-

mation Processing assen [2004]

S78 SpringerLink Applying Six Sigma in the Field of 2008 International Con- Russ et al

Software Engineering ferences on Software [2008]
Process and Product
Measurement

S79 SpringerLink An Interdisciplinary Approach for Suc- 2001 IFIP International =~ Metzker and
cessfully Integrating Human-Centered Conference on Engi- Offergeld
Design Methods into Development neering for Human- [2001]
Processes Practiced by Industrial Soft- Computer Interaction
ware Development Organizations

S80 SpringerLink An evolutionary cultural-change ap- 2009 Software Quality Jour- Elliott et al.
proach to successful software process nal [2009]
improvement

S81 SpringerLink Active Probes Synergy in Experience- 2000 International Con- Schneider
Based Process Improvement ference on Product [2000]

Focused Software
Process Improvement

S82 IEEEXplore Improving Software Development 2006 IEEE Software Motoyama
through Three Stages [2006]

S83 IEEEXplore Blending CMM and Six Sigma to meet 2003 IEEE Software Murugappan
business goals and Keeni

[2003]

S84 IEEEXplore Applying the PSP in industry 2000 IEEE Software Morisio

[2000]

S85 IEEEXplore Making Statistics Part of Decision 2008 IEEE Software Card et al.
Making in an Engineering Organiza- [2008]
tion

S86 IEEEXplore Combining agile methods with stage- 2005 IEEE Software Karlstrom
gate project management and Runeson

[2005]
S87 IEEEXplore Software process improvement in small 2005 IEEE Software Dangle et al.

organizations: a case study

[2005]

183

Study Digital Library Title Year Source Reference
ID
S88 IEEEXplore Adopting the SW-CMM in a small IT 2004 IEEE Software Guerrero
organization and Eterovic
[2004]
S89 IEEEXplore Attaining Level 5 in CMM process ma- 2002 IEEE Software McGarry and
turity Decker [2002]
S90 IEEEXplore Telcordia Technologies: the journey to 2000 IEEE Software Pitterman
high maturity [2000]
S91 IEEEXplore The evolution of quality processes at 2000 IEEE Software Kenni [2000]
Tata Consultancy Services
Table C.3. Quality scores.
Score Study ID Frequency
<5 S2, S18, S23, S33, S42, S59, S73, S81, | 10
S90, and S91.
5 < | S5, S7, S10, S11, S14, S17, S19, S21, | 49
and < 10 | S24, S25, S26, S27, S29, S30, S31,
S32, S34, S35, S37, S38, S39, S40,
S41, S43, S46, S48, S50, S51, S52,
S53, Sh4, S55, S5H7, S58, S60, S64,
S66, S71, S72, S78, S79, S80, S82,
S83, S84, S86, S87, S88, and S89.
10 < | S1, S3, S4, S6, S8, S9, S12, S13, S15, | 29
and < 15 | S16, S22, S28, S36, S44, S45, S47,
S49, S56, S61, S62, S63, S65, S67,
S68, S69, S75, S76, S77, and S85.
15 S20, S70, and S74. 3

APPENDIX C. SYSTEMATIC LITERATURE REVIEW - SOFTWARE PROCESS

IMPROVEMENT

184

(uoryeoyrsserd sessoooxd $00g:L02¢T DHI/OSI
oY) 0} Surprodoe) sseoord JuewaSeue]y 399(01d,, oY) st sseoord pasorduar jsour oy J,

‘speau o1} 0} waY} ursnlpe ‘sppowr juswosoxd
-wt 3uIIsIxe Jo asn oY) Ypm Suofe ‘uorjejuswe[duul jyuetrasordwr jo Ajurorrd oy pue
100fo1d Juewerordwr ue Jo 9OURPING Y UO POSNOO] 110fe juswsoxdwl o) JO % T/

[8002
“Ie 19 our| ma1Aal o1ye
9002 -aysAs e :sostrdioy
‘quetasoiduur Surpn$ 10y ppowt ayy se (%0g) TVHAL ;Apnjs ased e uo yrod YoIeN -Ud OIBM)JOS WINIPOU
pue potjouwt juawssesse ssaoord e se (%9¢) F0SGST DHI/OSI ‘[Ppow 90ua9)e1 ssooord | -o1 pue SHINS UO Y10 SNOOJ yorym ‘ast | - 966T pue [fews ut justrosold
e se (9%Gg) ININD oIe sHINS oY) ul s[ppowr juswesordwr pasn A[juenboyy gsowr oy, | -Xo [dS Surureouod soyoeordde jeypy | Arenuep Gy | -wr ssedoid oremjjog
‘soruedWOD WNIPOUWT 9IoMm () PUR [[BUS AToA 9Iom
%ee ‘sorurduiod [[RWS 919M 1I0S juauIroAroxduIl oY) UT PoA[oAUT soturduIod oY) JO 9, LF
ST SHINS Ul syI0pe [JS Jo @o130e1d o1 JO 99®)s JUSIIND o1],
/So1391e11s
"YIS SIY3 ul papiaoid sem SI0}O€] PUNOJUOD PAYIJUSPI | UOIIRN[BAS PAYIJUSPI Y} O} UOIje[dI
JOo 9SI] ¥ 's1030®] Surpunojuod [erjusjod 9y} ISPISUOD JOU Op SI[OIHIR JY) JO JSO]N | Ul SI0oe] JUIPUNOJUOD oY) I8 JRYA\
10z
“Te 1o IouId)SWIeNId)
-uf)] Mmooy eInjers
jsearyeijiul IdS peyhy ST OljewWdANSAS Y -
‘oanyoedsiad 309l01,, o4y ur A[3sowr pejonpuod a1em JSd pPue 70SST DHI/OSI ‘TININD | -U9pI o421 Yiim pajeroosse £oy) oIe juo) Juowrorordwl] $S900I
‘ININD PUT, “%G YNm uorjeziueSio pue 1onpoid ‘4o9loid,, pue %0g Yim Jonpold | -Xo jeym 0} pue UOIen[ess ayj ul pasn 8002 aIemM)jog JO JUIWSINS
pue j00lo1g,, Aq pemoro} ‘%99 yym ALjuofew oyy sjyueseader saroedsiod jooford, | o1e seanoedsiod juswinseswr jeyp\ | 03 1661 QYT | -BOIN pue uonjen[RAy
"SOIPNIS 91 JO 94QT UT J93IRUI-0)-0WIL], PUR SOIPNIS Y} JO
%1 ul (3500 pue 1opH) 1500 Aq Pamo[[o] ‘SeIpnis oY) JO %79 Ul 9JN]LI})e PaINSRIUI JSoATyRIIUT S oY} Surjen
jsowr o) sem (seqnqrije Ayenb oyo pue L)eng) 1onpoi ‘Aient) sseoord) Aen) | -[eas 1oj sorrjour pajriodol oy oxe ey
"[OIJUOD SS9D0IJ [BI1ISIIR)S pue AoAIns
29 uostreduIod 150 J-91,, ‘SISATeue [ed11s19e)s :opnpourl sy ‘sioded pajoadsur a1y Jo JSOATYRIYTUT [JS 9)BN[RAD 0} Pasn
%67 ul paridde uostredwoy) 150J-01,, 9Y) SI £399RI)S UOI}BN[RAD UOUIWIOD ISOW Y], | oIt so1393e1)s uoryenyead Jo sod£y yeypn
S9IpIIS
ToMsuy SUOT)SON{) OIeISOY poriog # SN

"SYS pojerel Jo uostredwo)) *§°0D) 9[qe],

185

800¢
“JUSWIUOIIAUS JIOM 10 ‘uorjesrjour ‘Ayfiqedes sesfojdwe a1y ‘1zelN pue m_wﬁwﬁm_
aaoxduwr 0} 1opl1o ul 31 pejdope A[prel suorjyeziuesio pue ‘1S peseq-NJND Surydope poy 1dS Poaseq-ININD
I0J UOSBAI UOWIWIOD AI9A ® J0U Sem siowojsnd Suikjsipeg - (Lyanonpoid pue ‘4sod -1oads Sunydope 10J suoljeA
quowdoreasp ‘euury juswrdo[easp '3'9) eoueuriolred 109foxd pue Ajrenb jonpoid 1ey) JSoAIYRINIUT S Paseq-ININD poturad -Ijowr [euoljezIueIIo
anordur 0} Afurewr [JS poseq-INJND pojdope suoljeziue3io ey} MOYS S)Nsal oY, | U0 IIequo suorjeziuedio op Ayp\ | owrg ou €7 | Jo moraar orjeuwra)sLg
‘uorjua)ye
90180s poAtedal Auo sey (sonrod pue ‘uosud omyoAsd ‘eoururwIop ‘9Inimd jo joeduur [oT0Z ‘TR 10 TOTMIN]
ayy) stoydejowr 10130 9y} ‘)seljuod u] ‘sioydejowt urelq pue ‘UOIJRULIOJSURI) PUR XN[J aInjerdl] oy} Jo SIsh
‘wIsTueSIO ‘QuIyoRU YSNOIY) POMOIA UM [JS Ul 98uryd [euoIjeZIue3Io OJul sHIIsul Jpaysiqnd pue pay -[eue [eouoydejewr Yy
quejIoduWll SISO 9INYRID[JUSIIND OY, "SIOINJLIJUOD UTRUW O} 9I€ SIOYDIRSsal Uedl | pojussold o3po[mous SIY) SI MOy pue -10ads :o8ueyd [euorjeziues
-IoWy pU® URIARUIPURIG PUR ‘S9OUSIpNR dIWopede pur Ieuolinoeid yloq sjodie) A[pje | o3ueyd [RUOIIRZIURSIO Se [JS UO JI9f potrad -10 se juewesoxduuy
-txdoadde 91 ‘eo1p0e1d pue AI1097) Y)0q Ul POPUNOIS ATULIY ST O[O M B S 9INJRISI[O, | -JO 9INjeIo)I] oY) Op soaljoadsiod jeypy | owry ou T, | sseooig oremijog
‘yoroadde josrewr-o)-3omb,; e ;poresny
Suisn ‘synsax oMb puewep sAemie £o1) {paseq-ysSlI 9q 01 PUS) JOU OP SAIF9JRIIS IO} | -SOAUL SOIPNIS) I10] UOIJRZIURTIO GO\
{souI[peop 1JI0US [HIM pUR SJUTRIISUOD 193pnq Y31} Iopun ojerodo sorueduwrod 9soy], | WNIPOW IO [[RUIS B S9INIIISUOD JRYAA
;soo130r1d pUuR SOTIAIOR justmeAsoIdul
ssoooxd aremijos ensind jer) suoryeziu
‘setuedwIon (AN WINIPOW pUeR [[eWS I0J S[o | -B3I0 oA\ WNIPoW PuUR [[RWS JO SOI}
-powt JuswRINSLaW OYIoads 9] 0] JURAS[9I RIRD POpIaoad S9Ipnis pPajod[as oY) JO dSUON | -SLIejoeteyd juejroduwil oyl oIe IeYA\
[600¢g ‘sopusly pue
uewkeng| ssrueduwod
jsorueduwlon oA\ WNIPOW pue poy (oM WINIPOW PUR [[RUWS
[[eWS I0J aInsesw 0} apew A[[eoyoads -100ds ur jusweAoxdwr SS90
‘Tepowt oy1oads Aue puy jou pip Loy} ‘soruedwiod yuewrdo | wesq oARY jJeY) SEpPOW jJusmerold poturad -01d 9IeMIJOS JO MOIADI
-[oA9p oA\ WINIpaW pue [[RWS JO [JS 912 0} oyads oIom SoIpnjs oY} JO aUOU 90Ulg | -wl ssedold oremijos Aue oIoy)} oIy | owiI) ou ¥ | eInjerot] oryewra)sAs y
*90UR[[90Xd [euoljeIodo jpoanseowt
[[eIoA0 pue spiepue)s [jm oouerdwoo ‘owr) juowdo(ossp poonpal ‘Ajaronpoid ul | Sureq SI $s900NS MOY pu®R SUOI)RZIURIIO
9SEBAIOUI ‘UOI}ORJSIYeS JULI[D pue ured} juomrdo[easp popnpour sorueduIod qopp winipawl | juewdo[oAdp oA\ WNIPaUI pue [[ews
pue [[eWS 10J SS900NS JO SIUSUIDINSLOW O], ‘SOIPNIS INOJ [[@ Ul POSn Ud(] 9ARY ey} | O} [NJsseoons alom sonbrutyooy/spppouwr
senbruyos) oY) sI1om jueUIeINSBOW 2y juswedeuru sseooid pue sisA(eue 309foid 9s0g | juewesorduwl sse00id oIeMIJOS YOIYAN
jsuoryeziue3io
juowrdo[oAdp oA\ WNIpeW pue [[ews
‘Topowr TyHJI 942 dsn 01 Aouspuo) uoijs ' pamoys pue | £q pordde ore senbruyoeq/sfepowr
TININD/ININD Aq peouanpur yorordde oAT)RIoN UR Pasn S[opow [JS Po1sed3sns oy [y | juowesordwr sseooid oremijos UDTYAN
S9IpIIS
Iomsuy SUOI}SaN{) YoIeasoy potieg # oL,

Appendix D

Questionnaires used for Validating
SPIAL

DiF. 1 - Influencing Factors - Background question-
naire (Before Pre-test)

Start time:

Name (optional):
Gender : O male O female

Age:

English level: O Basic
O Intermediate
O Advanced

University Education:

Course: O Bachelor in Computer Science
O Bachelor in Information Systems
O Bachelor in Electric Engineering
O Specialization in Software Engineering

O Other (specify):

187

188 APPENDIX D. QUESTIONNAIRES USED FOR VALIDATING SPIAL

Is your first Software Engineering course? O yes O no
Practical Software Engineer Experience:

Do you have any Professional certification?
[0 MPS.BR - Brazilian Model for Software Process Improvement
O CMMI
O PMP - Project Management Professional
O Other (specify):
0 No

Full-time student? O yes O no

If you answered NO (answer the questions below):

Position:

(e.g. trainee, project manager, software quality member, software developer, software analyst)

Team:

(Process, Requirement Engineering, Implementation, Test, Usability, Quality, Administration)

Roles:

(Requirements Analyst, Software Architect, Designer, Integrator, Implementer, Test Designer)

(Tester, Project Manager, Process Engineer, Quality Analyst, Configuration Manager)

How many hours do you work per week: h/week

Did you take any other complementary Software Engineering training (for exam-
ple, a project management training)?

O yes O no

If YES, subject taught:

Duration: hours

DiF. 2 - Software Process Improvement literature

189

How many items containing information about Software Process Improvement
have you read?
Books: O 00O 1-2 0O 3-5 O more than 5
Papers: O 00O 1-2 O 3-5 O more than 5
Other items (specify): ——— O 00 1-2 O 3-5 O more than 5

What does the acronym CMMI stand for (in Software Engineering)?
O Constructive Maturity Model Interactive
O Capability Measurement Model Integration
O Capability Maturity Model Integration
O Co-operative Maturity Model Interactive
O I don’t know

Have you already learned the basic concepts of the CMMI and Software Engi-
neering (e.g. disciplines)?

O yes O no

DiF. 2 - Learning Style <more than one answer is possible> (adapted
from Pfahl [2001])
What is your preferred learning style?
O reading of text books (with exercises)
O classroom lectures (with exercises)
O group work (interaction with peers and instructor)
O web-based training modules (with computer interaction / including

examples and exercises)
End time:
Pre-Test /Post-Test
Start time:

Name(optional):

Dep. 1 - Interest in Software Process Improvement (adapted from
Pfahl [2001])

190 APPENDIX D. QUESTIONNAIRES USED FOR VALIDATING SPIAL

Below you will find a number of opposing adjectives on both sides of each
line. You can react to the statements by checking the appropriate number as
the next example:
disagree @ 1 O 2 O 3 O 4 O b agree
Scale: 1:fully disagree 2:disagree 3:undecided 4:agree 5:fully agree

I consider it very important for computer science students to know as much as

possible about Software Process Improvement:

disagree O 1 O 2 O3 O4 O 5 agree

I would like to get more information on Software Process Improvement in my

Software Engineering lectures at the university:

disagree O 1 O 2 O3 O 4 O 5 agree

I would like to participate in a seminar (either at university or in the form of a

training course) about Software Process Improvement:

disagree O 1 O 2 O3 O4 O 5 agree

I consider it very important for Software Engineers to know as much as possible

about Software Process Improvement:

disagree O 1 O 2 O3 O4 O 5 agree

I would like to learn more about the Software Process Improvement:

disagree O 1 O 2 O3 O4 O 5 agree

Dep. 2 - Software Process Improvement Competency <exactly ONE
answer per question> (adapted from [Gresse von Wangenheim et al., 2009])
What is your knowledge about CMMI:
O I know nothing
O I have a vague notion
O I know the basics

O I can apply the concepts in practice with assistance (identify problems
and propose solutions)

O I can apply the concepts in practice without assistance (identify
problems and propose solutions)

191

Dep. 3 - Knowledge on the remembering level
1- List three metrics that can be used to monitor a Software Process Improvement

initiative.

2- Which CMMI representation allows the organization to choose different process
areas to be improved with different progress rate:
O Single process
O Continuous
O Staged
O Multi-level

3- The CMMI has FIVE maturity levels. Which one is NOT a maturity level:
O Incomplete: processes are not performed or are partially performed.
O Managed: processes are planned and executed in accordance with policy.
O Defined: processes are well characterized and understood.
O Optimizing: processes are continually improved based on an quantitative
understanding.

O Initial: processes are ad hoc.

4- What are typical improvement initiatives carried out by immature organiza-
tions (more than one answer can be selected):
O Establish Performance Baselines and Models
Quantitatively Manage the Project
Manage Requirements

O

O

[Develop a Project Plan

[0 Determine Causes of Defects
OJ

Track and Control Change

5- With respect to the structure of CMMI, check the CORRECT answer.

192 APPENDIX D. QUESTIONNAIRES USED FOR VALIDATING SPIAL

O The maturity levels consist of a predefined set of process areas, which
have specific and generic goals. The sequence of levels in order are: initial, optimized
and quantitatively managed.

O In the maturity level 2, projects establish their processes by tailoring the
set of organizational standard processes following the tailoring organizational instruc-
tions.

O In the maturity level 4, subprocesses are selected to be controlled using
predominantly qualitative methods and techniques.

O A maturity level is a defined evolutionary plateau for organizational

process improvement. It provides the way to characterize organization’s performance.

6- Which steps are essential (in the correct sequence) to the execution of a Soft-

ware Process Improvement initiative:

O Define business goals, derive and select improvements, change process,
measure the results, communicate results.

O Define business goals, implement actions, communicate results, derive
and select new improvement, give feedback.

O Define project specific goals, derive and select improvements, communi-
cate results, change process, measure the results.

O Define project specific goals, measure process, give feedback, change

process, implement actions, communicate results.

Dep. 4 - Knowledge on the understanding level
1- Assume you are responsible for a process improvement in a small software
organization. Assume you don’t have any additional information about the project
that the company is starting to develop. You already noted that the company has not
defined internal procedures (ad-hoc process) and there is a critical dependence on key
resources. Due to new customer requirements, the reliability level of the software has
to be "very high" (i.e. without major defects). Without changing the project planning,
which process you would invest first in order to achieve the increased reliability level?
O Organizational Process Performance
O Organizational Process Definition
Measurement and Analysis
Technical Solution

Causal Analysis and Resolution

O O O O

all areas (above) should be intensified equally

193

2- If the problems identified above persist. What should be a suitable explana-
tion?
O The previous experience was suitable.
O The team presented resistance to change.
O The involved people were the process performers.

O The key resources cooperated with the initiative.

3- Which rule does NOT apply during an SPI initiative:

O Inspection is the most cost-effective measure of finding problems in soft-
ware.

O Errors are most frequent during the requirements and design activities
and are the more expensive the later they are removed.

O Problems in requirements is a major phenomenon that greatly reduces
software productivity and quality.

O Investments in Measurement and Analysis depends on the capability
level of other process areas.

O Mature process and personal discipline enhance planning, increase

productivity and reduce errors.

4- Assume you are working in a high level maturity organization, and the top
level management decided as business goal to increase profitability and provide better
level of quality to customers. The organization observed recurrent defects detected
during the development and after delivery. Example of defects included incorrect bug
fixes and missing requirements. All managers are engaged in the improvement effort,
which is in agreement with the organization’s business goals. The investment in which
area will result in a reduction of recurrent defects:

O Measurement and Analysis

O Technical Solution
Requirement Management
Defect Causal Analysis

Process and Product Quality Assurance

O O O O

Configuration Management

5- After investing heavily in the Requirement Management and Requirement De-
velopment Processes area (CMMI Level 2 and 3) before the beginning of a development
project, which of the patterns presented below described the typical defect variation

on this development project most appropriate (sum of defects detected):

194 APPENDIX D. QUESTIONNAIRES USED FOR VALIDATING SPIAL

O Figure 1 O Figure 2 O Figure 3 O Figure 4

Figurel Figure 2
"
ag 7
v w 60
.
E g
20 ;:
i 2 3 4 3 2 4 3
Maonth Maonth
Figure3 Figure 4
ao ag
£ £ &0
& -
:, £
20 20
1 2 3 4 3 1 2 = 3
Kaonth Konth

Figure D.1. Defects detected after process improvement per month.

6- In the same scenario described in question 5, which improvement percentage
can most appropriately describe the typical defect reduction:
O 5-35%
O 0-5%
O greater than 100% less than 200%
O greater than 1000%

7- Which de-motivators factor (improvement difficulties) is NOT essential to a
process improvement initiative?
O Resistance to change
O Imposition
O Budget constraints
O Time pressure/constraints

O Lack of commercial pressures

195

8- Assume you are working in a high level maturity organization, and the top
level management decided as business goal to reduce the number of defects in order
to control the processes, and achieve the quality and process performance objectives.

Which area should be invested in order to allow the achievement of business goal:
Measurement and Analysis

Technical Solution

Quantitative Project Management

Organizational Innovation and Deployment

Process and Product Quality Assurance

O O O O O O

Configuration Management

Dep. 5 - Knowledge on the application level

1 - You have just been named the manager of the Software Engineering process
group of an established software development company. In this company, it is already
collected some of the project data. However, the data does not follow a standard, some
metrics were not used to make informed decisions, the interpretation of the metrics
was not trivial and there is no managerial responses based on the metrics collected.
Now, the senior management wants to observe trends on the quality and productivity.
What would be an adequate process improvement program in this context?

Objective:

Process areas to invest:

Measures to evaluate the program:

196 APPENDIX D. QUESTIONNAIRES USED FOR VALIDATING SPIAL

2 - You have just been named the responsible for the process improvement of a
small software development company. This company has a lack of internal procedures
and a critical dependence on key resources. Even the existing procedures were not
adequately documented. What would be an adequate process improvement program

in this context?

Objective:

Process areas to invest:

Measures to evaluate the program:

End time:

197

Game-play subjective evaluation:

Start time:

Below you will find a number of opposing adjectives on both sides of each
line. You can react to the statements by checking the appropriate number as
the next example:
dislike @ 1 O 2 O3 O 4 O 5 liked
Scale: 1:disliked 2:liked little 3:undecided 4:liked 5:liked a lot

Engagement (adapted from [Gresse von Wangenheim et al., 2009])
How enjoyable is playing this game?
disike O1 O2 O3 04 O5 lked

Do you have fun during the game play?
boring O 1 O 2 O3 O4 O 5 lotsoffun

Appropriateness (adapted from [Gresse von Wangenheim et al., 2009])

Below you will find a number of opposing adjectives on both sides of each
line. You can react to the statements by checking the appropriate number as
the next example:
unsatisfactory @ 1 O 2 O 3 O 4 O 5 excellent
Scale: 1:Unsatisfactory 2:fair 3:undecided 4:good 5: excellent

What do you think about the game duration?
Unsatisfactory O 1 O 2 O3 O 4 O 5 excellent

If you select unsatisfactory or fair, please specify the problem (game lasts too

long or too short) and Why?

198 APPENDIX D. QUESTIONNAIRES USED FOR VALIDATING SPIAL

What is your opinion about the difficulty of the game:
Unsatisfactory O 1 O 2 O3 O 4 O 5 excellent

What do you think about the content?
Unsatisfactory O 1 O 2 O3 O 4 O 5 excellent

Do you think that the game reflects aspects of a real Software Process Improve-
ment initiative?

Unsatisfactory O 1 O 2 O3 O 4 O 5 excellent

Is the game sufficient for its purpose?

Unsatisfactory O 1 O 2 O3 O 4 O 5 excellent

Is the play sequence satisfactory?

Unsatisfactory O 1 O 2 O3 O 4 O 5 excellent

Is this game an adequate complementary teaching method?

Unsatisfactory O 1 O 2 O3 O 4 O 5 excellent

What is your opinion about adopting this game in a Software Engineering class?

Unsatisfactory O 1 O 2 O3 O 4 O 5 excellent
Do you think a class using this game will be better than a traditional class
(without this game)?

O yes O no

Learning Perspective (adapted from [Lethbridge, 1998])

Below you will find a number of opposing adjectives on both sides of each
line. You can react to the statements by checking the appropriate number as
the next example:
learning nothing @ 0 O 1 O 2 O3 O 4 O 5 learning in depth
Scale: 0:Learned nothing at all 1:Became vaguely familiar 2:Learned the

basics 3:Became functional (moderate working knowledge) 4:Learned a lot

5: Learned in depth; became expert (learned almost everything)

199

How much did you learn about new Software Engineering concepts (including
CMMI, SPI measures) playing this game?
Learned nothingatall O 0 O 1 O 2 O3 O4 O 5 Learnedin

depth; became expert (learned almost everything)

How much did you learn about the practical application of an SPI program in an
organization?
Learned nothingatall O 0 O 1 O 2 O3 O 4 O 5 Learned in

depth; became expert (learned almost everything)

How useful has this game been to you to reinforce Software Engineering concepts

that were presented in class?

Scale: 0 Completely useless 1 Almost never useful 2 Occasionally useful

3 Moderately useful 4 Very useful 5 Essential

Completely useless O 0 O 1 O 2 O3 O4 O 5 Essential

Open questions (adapted from [Navarro, 2006])

List and explain your most favorite aspects found in the game?

List and explain your least favorite aspects found in the game?

200 APPENDIX D. QUESTIONNAIRES USED FOR VALIDATING SPIAL

Is there anything confusing about the game? Please, list the confusing parts.

What changes do you suggest to improve the game?

What was your score?

End time:

DiF. 3 - Influencing Factors(adapted from [Pfahl, 2001])

Below you will find a number of opposing adjectives on both sides of each
line. You can react to the statements by checking the appropriate number as
the next example:
useless @ 1 O 2 O3 O 4 O 5 useful
Scale: 1:Very useless 2:Useless 3:Undecided 4:Useful 5: Very useful

I consider the explanations/information provided by the instructor in general?

useless O 1 O 2 O3 O4 O 5 wuseful

201

boring O 1 O 2 O3 O4 O 5 interesting
difficult O 1 O 2 O3 O4 O 5 easy
confusing O 1 O 2 O3 O4 O5H clear

I would like to make the following comment(s)/ suggestion(s):

Did you have enough time to complete the whole test?

O yes O no

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Questions
	1.2 Approach
	1.3 Scope
	1.4 Contributions
	1.5 Thesis Outline

	2 Background
	2.1 Software Process
	2.2 Software Process Improvement
	2.3 Software Process Simulation Model (SPSM)
	2.4 Simulation Games
	2.4.1 Simulation Games Design
	2.4.2 Literature Review of Software Engineering Simulation Games

	2.5 Conclusion

	3 Semiotic Analysis
	3.1 Background
	3.2 Analyzing the Designers' Message
	3.3 Communicability Evaluation
	3.4 Triangulation
	3.5 Conclusion

	4 SPI Initiatives and Results
	4.1 Background
	4.2 Research Method
	4.2.1 Research Questions
	4.2.2 Case Study Roles
	4.2.3 Data Sources
	4.2.4 Search Criteria
	4.2.5 Study Selection
	4.2.6 Quality Assessment
	4.2.7 Data Extraction and Synthesis

	4.3 Literature Analysis
	4.3.1 Methodological Quality
	4.3.2 Quantitative Analysis
	4.3.3 Qualitative Analysis

	4.4 Discussion
	4.4.1 Research Questions
	4.4.2 Guidance for Reporting SPI Initiatives

	4.5 Related Work
	4.6 Limitations
	4.6.1 Construct Validity
	4.6.2 Reliability
	4.6.3 Internal Validity
	4.6.4 External Validity

	4.7 Conclusion

	5 SPIAL
	5.1 Background
	5.2 SPIAL Goals
	5.3 Early Decisions
	5.4 FASENG
	5.4.1 Simulation Model
	5.4.2 Simulation Engine
	5.4.3 Simulator

	5.5 Evaluation
	5.5.1 Semiotic Analysis
	5.5.2 Pilot Experiment
	5.5.3 Discussion

	5.6 SPIAL x Software Engineering Simulation Games
	5.7 Conclusion

	6 Conclusion
	6.1 Research Achievements
	6.2 Lessons Learned
	6.3 Future Work

	Bibliography
	A Software Engineering Simulation Games
	B Software Engineering Rules
	C Systematic Literature Review - Software Process Improvement
	D Questionnaires used for Validating SPIAL

