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Abstract

XML streams have become a relevant research topic due to the widespread use of appli-
cations such as online news, RSS feeds, and dissemination systems. Such streams must
be processed rapidly and without retention. Retaining streams could cause data loss
due to the large data traffic in continuous processing. This context becomes more com-
plex when thousands of queries must be evaluated simultaneously. Different approaches
explore simultaneous multiple query processing. However, they are based on structured
languages such as XPath and XQuery, which require knowledge of their syntax and the
data structure to formulate queries. Keyword-based language is a usual approach to
submit queries informally, because they require minimal or no schema knowledge to
formulate queries. Some approaches focus on improving search performance, but only
in archived XML documents. More recent techniques have focused on keyword-based
search algorithms for XML streams, but they only run one query at a time. Most of the
keyword-based algorithms consider the lowest common ancestor (LCA) semantics. The
most popular LCA-based algorithms use the smallest LCA (SLCA) and the exclusive
LCA (ELCA) semantics. Particularly, ELCA handles the ambiguity that might exist
in an XML document since the same content can occur at different levels, such as key-
words that correspond to XML labels occurring in different schema elements. Thus,
ELCA is considered one of the most effective semantics because it returns a larger
number of results. However, previous approaches do not support the major challenges
in the new stream application scenarios. These challenges involve (i) the efficient pro-
cessing of thousands of user queries over XML streams and (ii) the relief of users from
knowing the source schemas when accessing ambiguous or heterogeneous data sources.
To address these challenges, in this thesis, we propose new algorithms for processing
multiple keyword queries over XML streams. The algorithms explore stream process-
ing properties based on the LCA semantics and provide optimized methods to improve
the overall performance. In addition, we propose strategies for ranking query results
over XML streams. A comprehensive set of experiments thoroughly evaluates several
aspects related to performance, scalability and accuracy of our algorithms, showing
that our algorithms are efficient alternatives to search services over XML streams.
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Resumo

Fluxos de dados XMLtornaram-se um relevante tema de pesquisa devido ao uso ge-
neralizado de aplicações Web em tempo real, tais como notícias on-line e RSS feeds.
Esses fluxos devem ser processados rapidamente e sem retenção. Aplicações sobre
fluxos XML tornam-se complexas quando milhares de consultas devem ser processadas
simultaneamente. Diferentes abordagens exploram o processamento simultâneo de con-
sultas sobre fluxos XML. No entanto, elas são baseadas em linguagens estruturadas, tais
como XPath e XQuery. Essas linguagens exigem conhecimento de suas sintaxes e do
esquema de dados envolvido para a formulação de consultas. Palavras-chave são uma
alternativa informal para submeter consultas a aplicações sobre fluxos XML, pois re-
querem conhecimento mínimo do esquema de dados. Abordagens existentes, baseadas
em palavras-chave, se concentram em melhorar o desempenho do processamento de
consultas, mas geralmente envolvem documentos XML arquivados e estruturas auxi-
liares, tais como índices. Abordagens mais recentes concentram-se em algoritmos para
palavras-chave sobre fluxos XML ou processam uma única consulta por vez. A maioria
dos algoritmos para processamento de consultas baseadas em palavras-chave considera
a semântica do menor ancestral comum (LCA - Lowest Common Ancestor). Especi-
ficamente, o nó LCA de dois nós em uma árvore XML é o ancestral desses nós mais
distante da raiz. Os algoritmos LCA mais populares são baseados nas semânticas SLCA
(Smallest LCA) e ELCA (Exclusive LCA). ELCA lida com a ambiguidade que pode ex-
istir em um documento XML pois uma palavra-chave pode ocorrer em diferentes níveis.
As abordagens anteriores não suportam os grandes desafios para os novos cenários das
aplicações sobre fluxos XML que são: (i) o processamento eficiente de milhares de
consultas e (ii) desconhecimento os esquemas de dados envolvidos. Por isso, propomos
novos algoritmos de processamento de múltiplas consultas baseadas em palavras-chave
sobre fluxos XML. Os algoritmos exploram propriedades do processamento de fluxos e
utilizam técnicas para melhorar o desempenho do processamento. Além disso, propo-
mos estratégias para o ranking dos resultados. Experimentos abrangentes avaliam
desempenho, escalabilidade e acurácia dos algoritmos e mostram que os mesmos são
alternativas eficientes para serviços de consulta sobre fluxos XML.

xvii





List of Figures

1.1 XML document example: books, theirs chapters e authors. . . . . . . . . . . . . . . 4
1.2 Proposed algorithms and their characteristics. . . . . . . . . . . . . . . . 8

2.1 Example of XML document: a book with two chapters. . . . . . . . . . . . . . . . 14

3.1 Tree representation of an XML document. . . . . . . . . . . . . . . . . . . 23
3.2 Configuration example of BStream query_bitmap. . . . . . . . . . . . . . . 27
3.3 Configuration example of BStream query_index. . . . . . . . . . . . . . . . 28
3.4 Parsing stack states when processing queries q1 and q6 against the document

in Figure 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Configuration example of MKStream query_bitmap. . . . . . . . . . . . . . 33
3.6 Configuration example of MKStream query_index. . . . . . . . . . . . . . . 33
3.7 Examples of MKStream query_bitmap and query_index instances . . . . . 34
3.8 Examples of MKStream query_group_index and query_group . . . . . . . . 34
3.9 Example of MKStream auxiliary_index. . . . . . . . . . . . . . . . . . . . . 35
3.10 Stack instances when MKStream processes queries q1 and q6 against the

XML document in Figure 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.11 Varying the number of queries: time (left) and memory spent (right) for

each algorithm in each dataset. . . . . . . . . . . . . . . . . . . . . . . . . 43
3.12 Time spent by KStream, CKStream and MKStream processing time when

varying the number of queries. . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.13 BStream, CKStream and MKStream memory usage when varying the num-

ber of queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.14 Varying the number of structural terms: time (left) and memory spent

(right) for each algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.15 Time spent by the algorithm functions when varying the number of queries. 49
3.16 CKStream and MKStream memory usage for 50,000 queries up to 3 labels. 50
3.17 Queries with 2, 4 and 6 terms: processing time for the ICDE dataset. . . . 51

xix



3.18 Queries with 2, 4 and 6 terms: processing time for ISFDB dataset. . . . . . 52
3.19 Queries with 2, 4 and 6 terms: proc. time for SIGMOD dataset. . . . . . . 53
3.20 Queries with 2, 4 and 6 terms: memory used for the ICDE dataset. . . . . 54
3.21 Queries with 2, 4 and 6 terms: memory used for ISFDB dataset. . . . . . . 55
3.22 Queries with 2, 4 and 6 terms: memory used for SIGMOD dataset. . . . . 55
3.23 Varying the Number of Terms for up to 50,000 queries: response time (left)

and memory usage (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Tree representation of an XML document. . . . . . . . . . . . . . . . . . . 58
4.2 First performance experiment: response time (left) and memory usage

(right) for MKStream (5 stacks) and SLCAStream in the three datasets. . 67
4.3 Second performance experiment: response time (left) and memory usage

(right) for MKStream (5 stacks) and SLCAStream in the three datasets. . 68
4.4 Third performance experiment: response time for MKStream (5 stacks)

(left) and SLCAStream (right) algorithms in the three datasets. . . . . . . 69
4.5 Third performance experiment: memory usage for MKStream (5 stacks)

(left) and SLCAStream (right) algorithms in the three datasets. . . . . . . 70

5.1 First performance experiment: response time (left) and memory usage
(right) for ELCABStream and ELCAStream in the three datasets. . . . . . 84

5.2 Second performance experiment: response time (left) and memory usage
(right) for ELCABStream and ELCAStream in the three datasets. . . . . . 85

5.3 Third performance experiment: response times for ELCABStream (left)
and ELCAStream (right) algorithms in the three datasets. . . . . . . . . . 86

5.4 Third performance experiment: memory usage for ELCABStream (left) and
ELCAStream (right) algorithms in the three datasets. . . . . . . . . . . . . 87

6.1 Mean query time per document size . . . . . . . . . . . . . . . . . . . . . . 99
6.2 XML document with six books and two students . . . . . . . . . . . . . . . . . . 101
6.3 XML document with six books and three students . . . . . . . . . . . . . . . . . . 104

7.1 Preliminary results for SLCAStream and ELCAStream when using simul-
taneous multiple parsing stacks. . . . . . . . . . . . . . . . . . . . . . . . . 111

xx



List of Tables

1.1 Proposed algorithms for efficient processing multiple keyword-based. . . . . 7

3.1 Examples of keyword-based queries. . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Details of the datasets used for the experiments. . . . . . . . . . . . . . . . 41

4.1 Details of the datasets used for the experiments. . . . . . . . . . . . . . . . 65

6.1 Details of the XMARK dataset used in our accuracy experiments. . . . . . 90
6.2 Average precision and recall for both algorithms. . . . . . . . . . . . . . . . 93
6.3 Mean Normalized DCG per Document . . . . . . . . . . . . . . . . . . . . 98

xxi





List of Algorithms

1 General Multi-Query Procedure. . . . . . . . . . . . . . . . . . . . . . . 24
2 BStream.Start Callback Function . . . . . . . . . . . . . . . . . . . . . . 29
3 BStream.Text Callback Function . . . . . . . . . . . . . . . . . . . . . . 30
4 BStream.End Callback Function . . . . . . . . . . . . . . . . . . . . . . 30
5 MKStream.Start Callback Function . . . . . . . . . . . . . . . . . . . . 37
6 MKStream.Text Callback Function . . . . . . . . . . . . . . . . . . . . . 38
7 MKStream.End Callback Function . . . . . . . . . . . . . . . . . . . . . 39
8 SLCAStream.Start Callback Function . . . . . . . . . . . . . . . . . . . 61
9 SLCAStream.Text Callback Function. . . . . . . . . . . . . . . . . . . . 62
10 SLCAStream.End Callback Function . . . . . . . . . . . . . . . . . . . . 63
11 ELCABStream.Start Callback Function . . . . . . . . . . . . . . . . . . 76
12 ELCABStream.Text Callback Function . . . . . . . . . . . . . . . . . . . 77
13 ELCABStream.End Callback Function . . . . . . . . . . . . . . . . . . . 78
14 ELCAStream.Start Callback Function . . . . . . . . . . . . . . . . . . . 79
15 ELCAStream.Text Callback Function. . . . . . . . . . . . . . . . . . . . 80
16 ELCAStream.End Callback Function. . . . . . . . . . . . . . . . . . . . . 81
17 General Single Query Procedure. . . . . . . . . . . . . . . . . . . . . . 95
18 LCARank.Start Callback Function. . . . . . . . . . . . . . . . . . . . . . 95
19 LCARank.Text Callback Funtion . . . . . . . . . . . . . . . . . . . . . . 96
20 LCARank.End Callback Function. . . . . . . . . . . . . . . . . . . . . . 97

xxiii





Contents

Acknowledgments xi

Abstract xv

Resumo xvii

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Data Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Query Evaluation Algorithms . . . . . . . . . . . . . . . . . . . 6
1.3.2 Stream Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Accuracy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Querying XML Documents Using Keywords 13
2.1 Algorithms for Keyword-based Query Processing . . . . . . . . . . . . . 13

2.1.1 Querying Stored XML Documents . . . . . . . . . . . . . . . . . 14
2.1.2 Querying XML Streams . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Processing Multiple Queries over XML Streams . . . . . . . . . . . . . 17
2.3 Ranking Query Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 SLCA Algorithms Based on Bitmaps 21
3.1 SLCA semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 A Simple Keyword-based Query Language . . . . . . . . . . . . . . . . 22
3.3 Processing Multiple Queries . . . . . . . . . . . . . . . . . . . . . . . . 24

xxv



3.3.1 General Multi-Query Procedure . . . . . . . . . . . . . . . . . . 24
3.3.2 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Proposed Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.1 BStream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.2 MKStream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 An SLCA Algorithm based on Stream Processing Properties 57
4.1 SLCA Stream Processing Properties . . . . . . . . . . . . . . . . . . . . 57
4.2 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 SLCAStream . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 ELCA Algorithms 71
5.1 ELCA Stream Processing Properties . . . . . . . . . . . . . . . . . . . 71
5.2 Proposed Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Using Inverted Lists to Identify ELCA Nodes . . . . . . . . . . 74
5.2.3 ELCABStream . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.4 ELCAStream . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Accuracy Evaluation and Ranking Strategies 89
6.1 SCLA and ELCA Accuracy Evaluation . . . . . . . . . . . . . . . . . . 90
6.2 Ranking Algorithms and Strategies . . . . . . . . . . . . . . . . . . . . 93

6.2.1 LCARank Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.2 SLCARank Strategy . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.3 StreamRank Strategy . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Conclusions and Future Work 109

xxvi



Bibliography 113

xxvii





Chapter 1

Introduction

XML has become the most successful and ubiquitous technology for data exchange on
the Web [Wilde and Glushko, 2008]. This fact is corroborated by more than 7,000 sci-
entific papers on XML available in DBLP1 (early 2012), which address several aspects
related to the XML technology. A recent trend on XML research has focused on XML
streams [Wu and Theodoratos, 2012]. XML streams are characterized by data encap-
sulated in XML documents transmitted sequentially between origin and destination.
XML streams have become a relevant research topic due to the widespread use of appli-
cations, such as online news, RSS (Really Simple Syndication) feeds and dissemination
systems. These applications are increasing as Web users focus on them rather than on
archived information. Such streams must be processed rapidly and without retention.
Retaining streams could cause data loss or delay due to the continuous data traffic.

XML stream applications involve content search and filtering services based
on queries. These applications become more complex when thousands of queries
must be processed simultaneously. Moreover, XML stream applications process
heterogeneous data sources with different schemas. Therefore, these applications
must depend on simple query languages such as those based on keywords. Re-
cent work has focused on efficient algorithms for processing keyword-based queries
over XML streams [Barros et al., 2010, Hummel et al., 2011, Vagena and Moro, 2008,
Wu and Theodoratos, 2012]. Once keyword-based queries over XML streams can be
efficiently processed, a natural further step is to present the results to the user ordered
by their relevance. Thus, another emerging research topic is related to dynamically
ranking XML nodes returned by keyword-based queries.

In this thesis, we propose new algorithms for processing multiple keyword queries
over XML streams. The algorithms explore stream processing properties based on tra-

1http://www.informatik.uni-trier.de/˜ley/db/
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2 Chapter 1. Introduction

ditional keyword-based querying semantics and provide optimized methods to improve
the overall performance. In addition, we propose strategies for ranking query results. A
comprehensive set of experiments thoroughly evaluates several aspects related to per-
formance, scalability and accuracy of our algorithms, showing that they are efficient
alternatives to search services over XML streams.

Specifically, the first chapter of this thesis is organized as follows. Section 1.1
characterizes the data stream environment and introduces some typical applications.
Section 1.2 presents the motivations of the thesis and Section 1.3 summarizes its major
contributions. Finally, Section 1.4 describes the thesis organization.

1.1 Data Streams

Data streams are defined as encapsulated data flowing from source to destination with-
out retention. They flow online and there is no control over the sequence of incoming
data. Once an element of a data stream has been processed, it is discarded. It can not
be recovered or archived, unless explicitly stored in memory, which is typically small
relative to the size of the data stream [Babcock et al., 2002].

Several applications are based on data streams. Data streams are commonly
generated when monitoring sensors in very complex equipments and installations
such as airplanes and weather stations [Babcock et al., 2002]. Specifically, sensor
monitoring applications use a large number of sensors distributed in the physical
world which generate data streams that need to be grouped, monitored and ana-
lyzed [Carney et al., 2002, Madden and Franklin, 2002].

Another class of data stream applications is related to network traffic manage-
ment systems. For example, the backbone network of an Internet Service Provider
(ISP) monitors a variety of continuous data streams that may be characterized as
unpredictable, arriving at a high rate and including both packet traces and network
performance measurements [Duffield and Grossglauser, 2001]. Specifically, in ISP envi-
ronments, providers connect millions of residential and business customers and involve
several process tasks, such as filtering packets, traffic limitation and network perfor-
mance analyses [Cortes et al., 2000].

Other applications that process large amounts of data streams, most of them
XML streams, are Web social networks. In such an environment, millions of users
share interests, opinions, likes and recent news. All this information provides an in-
stantaneous snapshot of those networks that allows, for instance, the evaluation of
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social and market trends [Bigonha et al., 2012]. Facebook has just reached 1 billion2

users and more than 70 language translations. Twitter reached 200 million tweets in
multiple languages. Moreover, Facebook generates more daily traffic than any site in
the world, except Google [McCafferty, 2011]. RSS feeds are another type of applica-
tion that also involve large data stream usage. RSS is an XML feed format to publish
frequently updated entities such as news headlines and blogs. RSS popularity has
stimulated new XML stream applications, such as the RSS Watchdog system, which is
capable of clustering news and monitoring instant events over multiple real and online
news XML streams [Hu and Chou, 2009].

Recently, some distributed computing frameworks, such as System S
[Gedik et al., 2008] and Watershed [Ramos et al., 2011], have been designed to pro-
cess large data streams online and in real-time. System S, now called InfoSphere
Streams, is a large-scale, high performance computing platform developed at IBM un-
der the data stream paradigm. It can execute a large number of jobs in the form of
data-flow graphs described in its special stream-application language SPADE (Stream
Processing Application Declarative Engine) [Gedik et al., 2008]. Watershed is a dis-
tributed computing framework designed to support the analysis, online and real-time,
of very large data streams. Data are obtained from streams by the its processing com-
ponents and transformed, into other streams, thus creating large flows of information
[Ramos et al., 2011].

All aforementioned applications depict the increasing and intense usage of data
streams, emerging research topics, for instance, related to performance and accuracy
of search services.

1.2 Motivation

Most query processing strategies on XML streams use structured query
languages such as XPath3 e XQuery4 [Chan et al., 2002, Chen et al., 2006,
Gou and Chirkova, 2007a, Green et al., 2004, Gupta and Suciu, 2003, Li et al., 2008,
Olteanu, 2007, Onizuka, 2010, Ramanan, 2009, Schmidt et al., 2001]. However, inter-
esting issues remain to be solved. One of those was identified by Vagena and Moro
[2008] as semantic search over XML streams, i.e., keyword-based search over XML
streams. This issue is motivated by three main problems raised when using structured
XML query languages on stream environments: (i) these languages require knowledge

2http://www.businessweek.com/articles/2012-10-04/facebook-the-making-of-1-billion-users
3http://www.w3.org/TR/xpath/
4http://www.w3.org/TR/xquery/
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Figure 1.1. XML document example: books, theirs chapters e authors.

of the data structure to formulate meaningful queries; (ii) Web XML documents have
large amounts of plain text, which makes it hard for processing value-based predicates
with exact semantics; and (iii) these two problems are aggravated when we consider
the Web scale, a distributed system with different data sources, since multiple data
sources require structured query rewriting.

Keyword-based languages provide a traditional approach to submit
queries informally, as they require minimal or no schema knowledge to formu-
late queries [Barros et al., 2010, Hummel et al., 2011, Vagena and Moro, 2008,
Xu and Papakonstantinou, 2005, Xu and Papakonstantinou, 2008, Zhou et al., 2010].
Some proposed approaches focus on improving search performance, but only in
archived XML documents [Xu and Papakonstantinou, 2008, Zhou et al., 2010]. More
recent approaches have focused on keyword-based search algorithms for XML
Streams [Hummel et al., 2011, Vagena and Moro, 2008]. However, these approaches
only consider a specific search semantics or work with a single processing strategy
based on bitmaps.

Most keyword-based algorithms consider the lowest common ances-
tor (LCA) semantics [Hummel et al., 2011, Xu and Papakonstantinou, 2005,
Vagena and Moro, 2008, Xu and Papakonstantinou, 2008, Zhou et al., 2010]. Specif-
ically, the LCA of two nodes u and v in an XML tree is the common ancestor of
u and v located farthest from the root. For example, consider the keyword-based
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query q={author, title} and the XML document in Figure 1.1, which represents
bibliographic data. In this figure, book2 is an LCA result for query q, because it is the
lowest ancestor for nodes author3 and title4 that match the keywords author and title.
Similarly, chapter5, book8 and chapter11 are also LCA nodes for q.

The most popular LCA-based algorithms use the smallest LCA (SLCA) and the
exclusive LCA (ELCA) semantics. According to the SLCA semantics, an SLCA node
has no LCA descendants. Thus, an SLCA node is the smallest lowest common ancestor
node for a query. For example, consider again the XML document in Figure 1.1 and
the query q={author, title}. Only chapter5 and chapter11 are SLCA because they
satisfy q and have no LCA descendants for q. The nodes chapter5 and chapter11

are also ELCA because they have exclusive occurrences for the q keywords. Likewise
book2 and book8 are also ELCA results for query q. Specifically, the ELCA semantics
addresses the ambiguity that might exist in XML data. The same content can occur at
different levels, such as keywords corresponding to XML labels occurring in different
schema elements [Bao et al., 2009]. Thus, ELCA is considered one of the most effective
semantics because it returns a larger number of results [Zhou et al., 2010]. Chapter 3
formally defines the LCA and SLCA semantics while Chapter 5 defines the ELCA
semantics.

XML streams must be processed rapidly and without retention. Retaining
streams can cause data loss due to a large data traffic being continuously processed.
This scenario becomes more complex when thousands of queries must be processed
against a large number of documents flowing on the Web. Processing individually each
query against each incoming document is an inefficient or unfeasible approach. If we
evaluate individually each query per document, we need to locally store all incoming
documents. This approach is inefficient since a same document must be repeatedly
parsed, thus consuming a large storage space. Even creating an index to speed up
the evaluation of queries, such an index would require local storage space. An ideal
solution would be to simultaneously process multiple queries over one single transversal
of each document on the stream. Different approaches explore simultaneous multiple
query processing. However, they are based on structured languages such as XPath and
SQL [Lee and Lee, 2009, Moro et al., 2007, Park et al., 2009], which require knowledge
of their syntax as well as of the underlying data schemas to properly formulate queries.
Recent approaches have focused on keyword-based algorithms for searching over XML
Streams, but running one query at a time [Barros et al., 2010, Vagena and Moro, 2008].
To the best of our knowledge, Hummel et al. [2011] have been the first to address the
problem of processing multiple keyword-based queries over XML streams. However,
they only consider the specific LCA-based search semantics.
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Once keyword-based queries over XML streams can be efficiently processed,
a natural further step is to present the results to the user ordered by their rel-
evance. Thus, another emerging research topic is related to dynamically ranking
XML nodes returned by keyword-based queries. Currently, keyword-based search
algorithms that provide ranked results use storage structures, such as inverted
lists or indexes [Bao et al., 2009, Cohen et al., 2003, Guo et al., 2003, Li et al., 2010,
Liu and Chen, 2008, Zhou et al., 2010]. Hence, these algorithms are unsuitable for the
stream environment under consideration.

Considering the current XML stream applications scenario, we identify the fol-
lowing major challenges:

1. Efficient processing of thousands of user queries over XML streams. The goal
is to addresses the problem of processing multiple queries over XML streams by
developing news algorithms that reduce response time and save memory.

2. Freedom from knowing the source schemas to fully access ambiguous or hetero-
geneous data sources. The goal is to adopt semantics that relieve users from
knowing structured query languages and the source schemas when accessing am-
biguous or heterogeneous data sources.

3. Relevance ranking of query results over XML streams. The goal is to propose
efficient and accurate strategies for ranking query results over XML streams.

1.3 Contributions

To address the previous challenges, this thesis presents several contributions which are
summarized in the following subsections.

1.3.1 Query Evaluation Algorithms

To address the first two challenges, we have proposed five LCA-based algorithms for ef-
ficiently processing multiple keyword-based queries over XML streams. Three of them
(BStream and MKStream for SLCA, and ELCABStream for ELCA) use traditional
bitmaps for processing queries over data streams. The other two algorithms incorpo-
rate unexplored LCA stream processing properties, one based on the SLCA semantics
(SLCAStream) and the other on the ELCA semantics (ELCAStream). In addition, our
algorithms also rely on parsing stacks and query indexes specially designed to allow
simultaneous matching of terms from different queries. Specifically, they can work with
single or multiple parsing stacks.
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Table 1.1 presents the characteristics of the five proposed algorithms considering
the following aspects: (i) the adopted semantics, (ii) the strategy employed for query
evaluation and (iii) the processing mode (single or multiple stack).

BStream is the first algorithm and extends the SLCA-based algorithm proposed
by Vagena and Moro [2008], which evaluates a single query per execution. BStream
evaluates all submitted queries simultaneously by representing their terms in a sin-
gle bitmap. MKStream extends BStream since it represents all query terms in a
single compact bitmap, without query term repetition. Moreover, MKStream simul-
taneously uses multiple parsing stacks, thereby improving performance compared to
existing SLCA algorithms [Barros et al., 2012a]. SLCAStream extends BStream by
relying on LCA stream processing properties as a new approach for query evaluation
instead of the traditional bitmap strategy [Barros et al., 2010, Hummel et al., 2011,
Vagena and Moro, 2008, Zhou et al., 2010]. Thus, SLCAStream incorporates opti-
mization strategies that improves its overall performance with respect to MKStream.

Regarding the ELCA semantics, ELCABStream is a basic ELCA-based imple-
mentation obtained from MKStream. However, it uses a single bitmap and a single
parsing stack for query evaluation. ELCAStream enhances ELCABStream by using
LCA stream processing properties for query evaluation instead of the traditional bitmap
strategy. It also uses a single parsing stack for query evaluation.

Figure 1.2 summarizes the characteristics of the proposed algorithm. We con-
ducted extensive experiments to analyze their performance and scalability. The results
show that each new algorithm improves its predecessor in both performance and mem-
ory usage. Specifically, SLCAStream and ELCAStream are our main contributions and
the most efficient alternatives for processing multiple keyword-based queries over XML
streams according to their respective semantics [Barros et al., 2012b].

Algorithm

Algorithm Query Processing
Semantics Evaluation Strategy Mode

SLCA ELCA Bitmap
LCA Stream

Single MultipleProcessing
Properties Stack Stack

1 BStream X X X
2 MKStream X X X
3 SLCAStream X X X
4 ELCABStream X X X
5 ELCAStream X X X

Table 1.1. Proposed algorithms for efficient processing multiple keyword-based.
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Figure 1.2. Proposed algorithms and their characteristics.

1.3.2 Stream Ranking

To address the third challenge presented in Section 1.3, we proposed the LCARank algo-
rithm [Barros et al., 2010] and the SLCARank and StreamRank heuristics. LCARank
provides a simple, efficient and effective strategy for ranking XML nodes. It combines
the XRANK and SLCA stream search algorithms proposed by Vagena and Moro [2008]
and prioritizes SLCA nodes as results, since XRANK includes SLCA and other LCA
results. XRANK stream algorithm is a stream version for the keyword-based query
algorithm proposed by Guo et al. [2003], which adheres to the LCA semantics and
includes SLCA nodes. The original XRANK only addresses stored XML documents.

Considering that LCARank is a simple ranking algorithm, it is important to
propose a fine-grained ranking heuristic for improving its results. Thus, we also
propose the SLCARank heuristic and discuss its functioning for future implementa-
tion. The LCARank algorithm and the SLCARank heuristic focus on ranking XML
nodes returned by a keyword query against a single XML document. They can be



1.4. Thesis Organization 9

used on large XML streams, such as scientific data stored on large XML repositories
[Green et al., 2004]. However, both algorithms would be more useful when applied to
multiple query results obtained from a set of streams defined by a time slot or specific
number of documents [Li et al., 2007, Singh et al., 2008, Sourlas et al., 2009]. Thus,
for this specific scenario, we also proposed the StreamRank heuristic.

1.3.3 Accuracy Evaluation

To address the third challenge presented in Section 1.3, we evaluated the accuracy of
the algorithms in terms of recall and precision.

First, we evaluated the accuracy of the SLCA and ELCA semantics, which are
both adopted in our proposed algorithms. This evaluation showed that ELCA seman-
tics significantly improves SLCA semantics [Barros et al., 2012b].

The second accuracy evaluation considered our LCARank algorithm, a simple,
but effective ranking strategy for keyword-based query results over XML streams. As
LCARank delivers SLCA results first and subsequently non-SLCA ones, we were inter-
ested in showing how this simple ranking strategy improves ranking when compared to
the original XRANK algorithm. Therefore, we conducted a second evaluation which
experimentally demonstrated that LCARank is a simple, effictive ranking strategy.

Both accuracy evaluations used keyword-based queries adapted from XPath
queries specified for the XPathMark benchmark [Franceschet, 2005]. We considered
XPath queries in order to provide a baseline for a consistent accuracy evaluation con-
cerning recall and precision.

1.4 Thesis Organization

The remaining chapters of this thesis are organized as follows:

• Chapter 2 – Querying XML Documents Using Keywords. In this chapter,
we review related work, emphasizing how this thesis contributes to the state-of-
the-art. It is organized in three parts. First, we present algorithms for processing
single keyword-based queries over XML documents, then algorithms for process-
ing multiple keyword-based queries over XML documents and, finally, algorithms
for ranking query results from XML documents.

• Chapter 3 – SLCA Algorithms Based on Bitmaps. In this chapter, we
present the two SLCA-based algorithms we proposed for processing multiple
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keyword-based queries over XML streams. First, we introduce the SLCA se-
mantics and the keyword-based query language we adopted. Then, we present
the two algorithms we proposed that are based on traditional bitmaps, BStream
and MKStream. Finally, we describe our experimental evaluation in which we
compare the two algorithms with the current state-of-the-art algorithms proposed
by Hummel et al. [2011]. Our experimental results show that MKStream reaches
better memory and response time balance when compared to Hummel et al.’s
algorithms [Barros et al., 2012a].

• Chapter 4 – SLCA Algorithms Based on LCA Stream Processing Prop-
erties. In this chapter, we present a third SLCA-based algorithm, SLCAStream,
for processing multiple keyword-based queries over XML streams. Unlike the
previous SLCA algorithms, SLCAStream is based on unexplored LCA stream
processing properties. Based on throughly experimental evaluation, we compared
SLCAStream with MKStream in terms of response time and memory usage. Our
evaluation results show that SLCAStream is faster and provides a better perfor-
mance memory than MKStream [Barros et al., 2012b].

• Chapter 5 – ELCA Algorithms based on LCA Stream Processing
Properties. In this chapter, we present our two ELCA-based algorithms, EL-
CABStream and ELCAStream, for processing multiple keyword-based queries
over XML streams. These algorithms are also based on further LCA stream
processing properties for query evaluation. Based on throughly experimental
evaluation, we compared ELCABStream with ELCAStream in terms or re-
sponse time and memory usage. Our evaluation results show that ELCAS-
tream is slightly faster and provides a better performance memory than EL-
CABStream [Barros et al., 2012b].

• Chapter 6 – Ranking Algorithms and Accuracy Evaluation. In this
chapter, we present an accuracy evaluation of the SLCA and ELCA semantics,
by comparing the results provided by SLCAStream and ELCAStream algorithms.
For this comparison, we used as a baseline, results provided by an XPath bench-
mark. In addition, we also present the algorithm LCARank [Barros et al., 2010]
and the heuristics SLCARank and StreamRank as ranking strategies. Finally,
we present a performance and accuracy evaluation of the LCARank algorithm,
which provides an initial ranking strategy for keyword-based query results over
XML streams.
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• Chapter 7 – Conclusions and Future Work. In this concluding chapter, we
review our contributions by summarizing our proposed algorithms and ranking
strategies, then this chapter concludes the thesis, presenting its challenges and
contributions. Finally, we discuss future work, focusing on open or new issues
related to improving keyword-based query processing and ranking strategies over
XML streams.





Chapter 2

Querying XML Documents Using
Keywords

This chapter reviews the main related work on querying XML documents using key-
words. The addressed work was grouped into three main topics which guide this thesis.
Specifically, Section 2.1 addresses algorithms for XML query processing over stored
XML documents and streams, Section 2.2 algorithms for processing multiple queries
over XML and Section 2.3 algorithms for ranking results of keyword-based queries pro-
cessed over XML documents. In each section, we emphasize how this thesis contributes
to the state-of-the-art.

2.1 Algorithms for Keyword-based Query

Processing

Algorithms for keyword-based queries are divided into two groups. The first refers to
algorithms for processing queries on stored XML documents and the second to algo-
rithms for processing queries on XML streams. The first group considers stored XML
documents and auxiliary structures to process them, such as inverted lists, indexes
and hash tables. The second group considers XML document streams and avoids us-
ing auxiliary structures since XML streams flow continuously without retention. In
the stream environment, retentions can cause data loss due to the large data volume
involved, thus the use of any kind of auxiliary structure impacts query processing.

13
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Figure 2.1. Example of XML document: a book with two chapters.

2.1.1 Querying Stored XML Documents

Algorithms for processing queries based on keywords employ heuristics that de-
cide whether a node1 satisfies a user query. Most consider stored XML doc-
uments, i.e., documents are permanently stored and indexed. Usually, the
best answers to XML queries are sets of nodes containing the user query
terms [Termehchy and Winslett, 2009]. After applying some heuristic, search al-
gorithms return the XML document fragments that satisfy the queries. In
this context, most heuristics employ the LCA (Lowest Common Ancestor) se-
mantics [Liu and Chen, 2008, Liu and Chen, 2011, Sun et al., 2007, Tian et al., 2011,
Vagena et al., 2007a, Xu and Papakonstantinou, 2008, Zhou et al., 2010]. Current
work based on the LCA semantic focuses on accuracy and performance improvements.
However, they are based on stored XML documents and their auxiliary structures, such
as indexes and inverted lists. Some of them are presented next.

Xu and Papakonstantinou [2008] propose the algorithm Indexed Stack, which
improves the XRANK algorithm [Guo et al., 2003] performance. Indexed Stack uses a
keyword index that points to the nodes containing the keywords. According to Zhou
et al. [2010], the original XRANK algorithm adopts the ELCA semantics.

Liu and Chen [2008] propose MaxMatch, an algorithm that reduces the size of
original results based on the SLCA semantics. Specifically, MaxMatch prunes the
sibling subtrees, considered less relevant for SLCA results, because they match fewer
query terms. For example, consider the XML document in Figure 2.1. Unlike the

1Nodes in XML documents are elements or attributes.
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example in Figure 1.1, the document in Figure 2.1 has two chapters in node book2. For
the query q={Mike,XML}, original SLCA-based algorithms return the entire subtree
rooted by node book2, while MaxMatch prunes the ancestor node chapter8 from the
book2 subtree. MaxMatch prunes the node chapter8 because it only satisfies the query
keyword Mike, thus being chapter8 less relevant than its sibling node chapter5, which
satisfies all q keywords. To prune less relevant sibling descendants, MaxMatch uses
inverted lists and B-tree indexes.

Zhou et al. [2010] present the algorithm HashCount that adopts the ELCA (Ex-
clusive Lowest Common Ancestor) semantics. ELCA is based on the LCA semantics.
According to the ELCA semantics, the result of a keyword query q is the set of nodes
containing at least one occurrence of all its query keywords either in their child or
descendant nodes, after excluding the keyword occurrences in the subtrees containing
at least one occurrence of all query keywords. For example, consider the keyword-
based query q={Mike,XML} and the XML document in Figure 1.1. Nodes book2
and chapter5 are ELCA since q keywords occur in book2 and chapter5 descendants.
Although, book2 also contains q keyword occurrences under chapter5, it is an ELCA
result because it contains exclusive occurrences for the keywords Mike and XML in
its descendants author3 and title4 respectively.

Specifically, HashCount records the number of keyword occurrences in an XML
node and its descendants to determine whether a node is ELCA. Specifically, it
counts the number of keyword occurrences in an ELCA candidate node and its de-
scendants, and compares this number with the number of child node keyword oc-
currences. If the candidate node has its own query keyword occurrences, it is an
ELCA node. HashCount considers the query q={k1, k2, · · · , ki} and defines the func-
tion Cn(k1, k2, · · · , ki)=(c1, c2, · · · , ci) which returns cj as the number of kj keyword
occurrences in node n or its descendants, being 1 ≤ j ≤ i. For example, con-
sidering the XML document in Figure 1.1 and the query q={Mike,XML}, then
Cbook2(Mike,XML)=(2, 2), because the keywords Mike and XML occur twice in the
subtree rooted by book2. For node chapter5, Cchapter5(Mike,XML)=(1, 1). According
to HashCount, book2 is an ELCA node as Cbook2 is greater than Cchapter5 for all q key-
words. To evaluate ELCA candidates, HashCount uses a hash structure, which stores
the number of keyword occurrences for each node in an XML document. This hash
structure involves only stored XML documents, thus it does not consider incoming
XML documents such as in stream environments.

All aforementioned algorithms only work on stored XML documents and
rely on auxiliary structures, such as indexes and inverted lists, to perform ap-
propriately. The algorithms presented by Liu and Chen [2011] confirm recent
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research efforts to improve the performance of LCA-based algorithms and cor-
roborate LCA as the usual semantics for keyword-based queries on XML appli-
cations [Liu and Chen, 2008, Liu and Chen, 2011, Sun et al., 2007, Tian et al., 2011,
Vagena et al., 2007a, Xu and Papakonstantinou, 2008, Zhou et al., 2010]. Our pro-
posed algorithms differ from those because they work on the XML stream environment,
which has been little explored. In this environment, building auxiliary structures for
XML document streams is unfeasible. Finally, for more information on querying XML
stored documents, we refer the reader to [Gou and Chirkova, 2007b] for XPath and
XQuery processing and [Liu and Chen, 2011] for keyword-based search.

2.1.2 Querying XML Streams

Several works propose algorithms for query processing over XML streams and,
most of them, are based on the XPath language2 [Wu and Theodoratos, 2012].
These algorithms are usually based on automata or stack structures and
are designed to improve performance and memory usage [Chen et al., 2006,
Onizuka, 2010, Peng and Chawathe, 2005, Ramanan, 2009]. However, there are few
works that address keyword-based queries [Barros et al., 2010, Hummel et al., 2011,
Vagena and Moro, 2008]. As this thesis is related to keyword-based queries over XML
streams, we only describe works related to this subject.

Vagena and Moro [2008] have proposed two algorithms for keyword-based query
processing over XML streams. Both are based on original versions of the algo-
rithms XRANK [Guo et al., 2003] and SLCA [Xu and Papakonstantinou, 2005]. How-
ever, that work presents no performance or accuracy evaluation of the proposed algo-
rithms. Barros et al. [2010] provide this evaluation as well as introduce an algorithm,
LCARank, that combines the two algorithms proposed by Vagena and Moro [2008] to
establish a simple ranking strategy.

More recently, Hummel et al. [2011] have proposed two algorithms, KStream
and CKStream, which are multiple query versions of the single query SCLA algorithm
proposed by Vagena and Moro [2008]. KStream and CKStream are discussed in Sec-
tion 2.2 since they are the first algorithms proposed in literature for processing multiple
keyword-based queries.

Except these two, all aforementioned algorithms only process one query per XML
stream. However, KStream and CKStream only consider the SLCA semantics. Their
adaption to other semantics, such as ELCA, is unfeasible. The algorithms proposed in
this thesis, on the other hand, besides processing multiple queries, significantly improv-

2http://www.w3.org/TR/xpath/
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ing KStream and CKStream response time and memory consumption, also consider the
SLCA and ELCA semantic. We adopted ELCA in our algorithms because it improves
SLCA accuracy as shown in Chapter 6.

2.2 Processing Multiple Queries over XML Streams

Distinct approaches have been proposed to process queries over XML streams.
Among them, some evaluate multiple XPath queries over XML streams
[Altinel and Franklin, 2000, Chan et al., 2002, Diao et al., 2002, Min et al., 2007,
Moro et al., 2007, Onizuka, 2010, Vagena et al., 2007b]. These approaches use non-
deterministic finite automata (NFA) or compressed data structures of candidate XML
nodes to evaluate multiple queries. They focus on improving performance and memory
usage.

Other algorithms approach the problem of processing multiple queries processing
over XML streams from a different view point [Lee and Lee, 2009, Park et al., 2009].
Lee and Lee [2009] propose XP-table, a system that transforms multiple XPath queries
into a specific data structure used for matching incoming XML streams. The XP-table
structure is designed to minimize the run-time workload of continuous query processing.
Part et al. [2009] present M-COPE (Multiple Continuous Query Processing Engine), a
scalable query processing engine that efficiently evaluates multiple continuous SQL-like
queries. Thus, in both cases, the authors disregard keyword-based queries.

To the best of our knowledge, Hummel et al. [2011] have been the first to ad-
dress the problem of multiple keyword-based queries over XML streams. However,
their KStream and CKStream algorithms only consider the SLCA semantic and their
adaptation to ELCA is unfeasible. CKStream implements a parsing stack whose en-
tries are associated with visited nodes during document transversing. Each stack entry
contains a single and compact bitmap that represents the distinct terms for all queries.
When an opened node matches a query term, the corresponding bit is set to true in
the entry bitmap. Upon closing a node, if the bits associated with a query are com-
plete, it means the node matches the query being processed. KStream and CKStream
follow a similar approach, thus they have similar performance. However, CKStream
improves KStream memory consumption. Therefore, in this thesis, we use CKStream
as our main SCLA baseline algorithm. As we shall see, our algorithms process multiple
keyword-based queries over XML streams according to both SLCA and ELCA semantic
and significantly improve CKStream response time and memory consumption.

When compared to the aforementioned algorithms, the contributions of our work
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to the state-of-the-art are two-fold. First, our new algorithms explore both SLCA and
ELCA semantics when processing keyword queries over XML streams, thus, relieving
users from knowing the source schemas. Second, they allow simultaneous processing
of thousands of keyword queries over XML streams while saving both memory and
processing time.

2.3 Ranking Query Results

Ranking results when processing keyword-based queris over XML stream is another
important issue addressed by this thesis. Current work addressing this issue proposes
strategies for returning the most relevant XML nodes for keyword-based queries con-
sidering a single XML document [Bao et al., 2009, Bao et al., 2010, Cohen et al., 2003,
Guo et al., 2003, Li et al., 2010, Tian et al., 2011]. Such strategies, however, are to-
tally based on stored XML documents and auxiliary structures, such as indexes and
inverted lists. They are briefly described as follows.

Guo et al. [2003] have included a ranking strategy in their XRANK algorithm for
LCA results obtained when processing keyword-based queries. They adapt the well-
known PageRank algorithm [Brin and Page, 1998] for XML documents. PageRank
establishes the ranking of Web documents by means of their hyperlinks. This ranking
reflects the probability of a document being visited randomly or from hyperlinks. In
an XML document context, these probabilities are adjusted to relationships between
XML document nodes3 and consider XML data structures. However, establishing
relationships between nodes in an XML document is not a usual practice according to
Laender et al. [2009]. In addition, the XRANK strategy for ranking XML node results
relies on stored indexes, which are unfeasible for XML streams.

The XSearch algorithm [Cohen et al., 2006] adopts an LCA semantics variation
and establishes a simple ranking strategy for result nodes. This strategy combines the
TF-IDF similarity scheme, the size of the XML document tree and the relationship
among the XML document nodes. However, this algorithm only processes a single
document and relies on stored indexes for establishing relationships between nodes.
Moreover, this strategy requires a previous knowledge of the XML document structure,
thereby limiting its applicability.

Bao et al. [2009] describe the search engine XReal which extends the TF-IDF
similarity scheme to rank XML fragments returned by a keyword-based query over a
single stored XML document. XReal tries to identify if a keyword-based query term

3Relationships between XML nodes are established by XML attributes ID and IDREF.
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is an XML label or XML content. Furthermore, this algorithm attempts to resolve
possible ambiguities since keywords may occur in the document schema or in element
contents. Combining guidelines for node type identification, ambiguity resolution and
statistics of underlying XML data, the authors present a novel XML TF*IDF ranking
strategy to rank individual matches of all possible search intentions. Bao et al. [2010]
provide an interactive search strategy based on XReal by allowing users to select their
desired search targets from a list of XReal suggestions. This strategy provides more
precise results and learn how users perceive involved XML schemas.

Li et al. [2010] have proposed a heuristic for suggesting XML keyword query
results. The method employs a ranking function using the correlation between the
possible results and query keywords. This correlation is based on different types of
statistical information, such as XML content and XML structure distributions, and
uses a new data structure called XSketch. The heuristic implements the proposed
method in a keyword search engine prototype called XBridge. Again, XBridge uses
stored structures such as inverted lists and indexes to access statistical information.
As mentioned before, these structures are unfeasible in XML stream environments.

Ranking strategies surveyed by Tian et al. [2011] and all aforementioned algo-
rithms reinforce the great interest in improving result accuracy obtained by algorithms
for keyword-based query processing. However, these algorithms only process stored
XML documents and use stored auxiliary data structures. Such structures are unfeasi-
ble in XML stream environments. In contrast, this thesis presents the first strategies to
rank results obtained by processing keyword-based queries over XML streams. Specif-
ically, in Chapter 6, we present an algorithm, LCARank [Barros et al., 2010], that
combines the SLCA and XRANK algorithms proposed by Vagena and Moro [2008] to
establish a simple ranking strategy. XRANK includes SCLA nodes between other result
nodes. However, SLCA nodes are the lowest result nodes, which means their descendant
nodes are closer and, therefore, more meaningfully related. Thus, LCARank returns
SLCA nodes first followed by other results. Chapter 6 presents LCARank in detail.
It also presents the ranking strategies SLCARank and StreamRank. SLCARank is a
fine-grained ranking strategy for a single document in an XML stream, thus improving
LCARank, while StreamRank ranks results obtained from a set of XML documents.





Chapter 3

SLCA Algorithms Based on
Bitmaps

This chapter presents our first two proposed SLCA-based algorithms, which are based
on traditional bitmap structures. It is organized as follows. Section 3.1 formal-
izes the SLCA semantics. Section 3.2 presents a simple keyword-based query lan-
guage adopted by the proposed algorithms. Section 3.3 provides an overview of our
multi-query procedure as well as the data structures. Section 3.4 presents the algo-
rithms BStream and MKStream, both based on traditional bitmap structures. Finally,
Section 3.5 presents an experimental evaluation of our two algorithms in which we
compare them with state-of-the-art algorithms in terms of response time and memory
usage.

3.1 SLCA semantics

In this section, we formalize the SLCA semantics. First, however, we overview the
lowest common ancestor (LCA) semantics.

Definition 1. Given an XML document d and a subset v1, v2, . . . , vm of nodes from d

that satisfy a set of query terms t1, t2, . . . tn, the Lowest Common Ancestor (LCA) of
those nodes is a node e that is their common ancestor located farthest from the root of
d.

As an example, consider the XML document d in Figure 1.1 and the query
q = {Mike, XML}. The returned LCA nodes for query q are book2 and chapter5

because they match the keywords Mike and XML in their leaf nodes. How-
ever, book2 contains chapter5, which means that they represent a same match for

21
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query q. Thus, to avoid this kind of problem, the SLCA semantics has been intro-
duced [Xu and Papakonstantinou, 2005]. Definition 2 below formalizes this semantics.

Definition 2. Given a set of LCA nodes returned as the result of a query q on an
XML document d, the corresponding SLCA nodes are the LCA nodes that contain no
other LCA node as descendant.

Thus, for the previous LCA example, the SLCA node is chapter5, whose leaf
nodes match both keyword Mike and XML, and there is no other LCA node as its
descendant. On the other hand, book2 is a non SLCA node. Despite being an LCA
node for q, it does not qualify as an SLCA node because it includes chapter5 as its
LCA descendant. Notice that the SLCA semantics defines a subset of LCA nodes that
include no LCA descendants. The intuition behind the SLCA semantics is that smaller
result subtrees contain closer related nodes.

3.2 A Simple Keyword-based Query Language

Several algorithms for processing keyword-based queries over XML data allow to search
for keyword in a label, in a node text or in both. Following Cohen et al. [2003] and
Vagena and Moro [2008], we opted for providing better control while requiring minimal
(or no) schema knowledge to formulate a query. Thus, we assume a simple keyword-
based query language, with a syntax borrowed from them and defined as follows.

A keyword-based query q over an XML document stream is a list of query terms
(also denoted search terms) 〈t1, . . . , tm〉. Each query term is of the form: `::k, `::, ::k,
or k, where ` is an element label and k a keyword. Terms that involve element labels
are called structural terms. A node n within a document d satisfies a query term of
the form:

• `::k, if n’s label is equal to ` and its textual content contains the keyword k ;

• `::, if n’s label is equal to `;

• ::k, if the textual content of n contains the keyword k ;

• k, if n’s label is equal to k or its textual content contains the keyword k.

As an example, consider the following query specifications:
sa: New comedies starring Lewis
sb: New comedies having “Lewis” in their title
sc: New movies in color format by director named “Color”
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Query Formulation Specification
q1 Actor ::Lewis Genre::Comedy sa
q2 Actor ::Lewis Comedy sa
q3 Lewis Genre::Comedy sa, sb
q4 Lewis Comedy sa, sb
q5 Title::Lewis Genre::Comedy sb
q6 Title::Lewis Comedy sb
q7 Color :: Director ::Color sc

Table 3.1. Examples of keyword-based queries.

The queries in Table 3.1 illustrate different scenarios regarding the user’s knowl-
edge about the XML labels. In queries q1 and q5 the user knows the labels and employs
query terms of the form `::k, where each keyword k is qualified with a node label `.
In queries q2, q3 and q6 the user knows only some labels whereas in query q4 the user
has no knowledge at all (no labels are used) about the XML labels. Notice that q3
and q4 are ambiguous, i.e., they may represent both requirements sa and sb. This is
an inherent collateral effect of using keyword-based queries. Also notice that in query
q7, the term Color :: is an example of a pure structural condition where XML subtrees
must contain an element with label Color.

As an example, consider the XML document represented in Figure 3.1, which
contains movie data. Consider also the query q1={Actor ::Lewis, Genre::Comedy}. The
SCLA result for q1 is the node Movie2 since it is the smallest subtree that contains all
query keywords.

Figure 3.1. Tree representation of an XML document.
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Algorithm 1 General Multi-Query Procedure.
Procedure MultiQuery
Input: A stream D of XML documents

1. let Q = q1, . . . , qn be a set of queries from users’ profiles
2. while D is not empty do
3. get a new document dj from D
4. S.clear() {initialize the stack}
5. 〈r1, . . . , rn〉 := SAX_Parsed(dj,〈q1, . . . , qn, 〉,S)
6. return r1, . . . , rn
7. end while

3.3 Processing Multiple Queries

Querying over XML streams follows a paradigm that is different from traditional
database systems: the query engine matches queries against streams of documents,
instead of stored data. Therefore, approaches that rely on indexed data and use tradi-
tional query optimization techniques do not apply.

In this section, we present an overview of our multi-query procedure for keyword-
based queries as well as of the data structures used. Note that even though it is not
possible to index the documents (which arrive as a stream), the queries are known
beforehand (i.e., from users’ profiles), thus allowing their indexing.

3.3.1 General Multi-Query Procedure

Algorithm 1 describes our general multi-query procedure. We consider that a set
of queries Q are processed against a stream D of documents. Upon its arrival, each
document dj in D is individually processed (Lines 3 to 6). The results found within
this document are collected and returned (Lines 5 and 6). This is accomplished at the
same time for all queries qi and results are individually collected in each ri. A result
includes the resulting node of dj, if any.

Each document dj in D is processed by a SAX parser, which generates five types
of event for a document: startDocument(), startElement(tag), characters(text), endEle-
ment(tag) and endDocument(). Our algorithms then work by means of SAX Callback
Functions1 for those events. The parser is called to action in Line 5 of the procedure
described by Algorithm 1.

1http://www.saxproject.org
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3.3.2 Data Structures

3.3.2.1 Parsing Stack

As the SAX parser traverses the document in an in-order fashion, each visited node is
associated with an entry in a stack S, called the Parsing Stack. Each entry is popped
from the stack when its corresponding node and all its descendants have been visited.

To support the recursive processing of a document, each entry in the parsing
stack handles the following information:

• The label of the element corresponding to the entry;

• A bitmap called CAN_BE_SLCA, which contains one bit for each query qi being
evaluated (this bitmap keeps track of which queries can still match the corresponding
node as an SLCA result);

• A set used_queries containing the IDs of the queries whose terms include keywords
present in the element (or its descendants), either as labels or within text values;

• Which keywords from these queries have occurred in the corresponding document
node and its descendants (as explained later, the algorithms handle this information
in different ways with specific time and space trade-offs).

Notice that, without loss of generality, we assume that labels have a unique
meaning within a same element type in each document. For instance, in one single
document, the label Actor is always used to represent a movie actor.

3.3.2.2 Query Index

During the traversal of a document, it is necessary to look for keywords that occur
in text elements or labels. As we expect to process a large number of queries, our
algorithms rely on query indexes in order to avoid looking up each query individually.
Such a multi-query processing idea is commonly used in document filtering methods
[Chen et. al, 2008, Diao et al., 2004, Vagena et al., 2007b]. In our case, the indexing
structures are adaptations of inverted lists in which each index entry represents a query
term and refers to queries in which this term occurs. Specifically, the query indexes
store keywords occurring in query terms referring to both values and labels. Moreover,
for each term, the indexes hold references to queries that use it, making a distinction
between structural (label) and non-structural (value) query terms.

Notice that, as it happens with any typical inverted list, query indexes are gener-
ated beforehand from the set of queries posed by users specifying their needs. Tackling
new submitted queries requires the query indexes to be rebuilt. This is a rather simple
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task that does not require any effort from users or developers. Moreover, it is reason-
able to expect that the set of queries posed by users is stable, while documents keep
arriving through streams.

3.4 Proposed Algorithms

The two algorithms proposed in this section run as SAX callback functions on the
general procedure described in Section 3.3.1. Both algorithms are based on bitmaps,
whose bits correspond to query terms. During the XML node transversal, query term
occurrences are recorded by setting their corresponding bits. When bits corresponding
to terms of a query are complete, the algorithms evaluate if the node being processed
satisfies the SLCA definition. The algorithms represent the query terms by distinct
bitmap configuration, which makes difference in terms of response time and memory
usage as described next.

BStream is the first algorithm, which is a multi-query version of the SLCA al-
gorithm for searching over XML document streams proposed by Vagena and Moro
[2008]. BStream is a straightforward implementation of Vagena and Moro’s SLCA
algorithm and its bitmap configuration individually represents each query term. More-
over, BStream uses a single parsing stack and is the basis for the second algorithm,
called MKStream. MKStream also uses bitmaps for query evaluation. However, it
compacts the bitmap representation within the parsing stack, optimizing space con-
sumption. In addition, MKStream significantly improves BStream response time by
separating all queries in different stacks whose queries are evaluated as necessary. At
node closing, MKStream pops specific stacks, whose query lists are smaller than that
evaluated by BStream, which holds the entire query list. Moreover, MKStream outper-
forms the two state-of-the-art algorithms for processing multiple keyword-based queries
over XML streams, KStream and CKStream [Hummel et al., 2011], as we shall see in
our experimental evaluation.

3.4.1 BStream

In the following subsections, we describe our first two SLCA-based algorithms. As
mentioned, BStream is a simple alternative for processing multiple keyword queries
since it is a straightforward implementation of Vagena and Moro SLCA algorithm.
Its data structures and callback functions serve as a basis for MKStream and other
algorithms. Therefore, they are described next.
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3.4.1.1 Data Structures

BStream uses a bitmap to store information about which terms (labels or keywords)
from each query occur in an XML node. This bitmap, query_bitmap, is kept in the
stack entry of each XML node. Each one of its bits is associated with one search term
from each query qi, where qi ∈ Q, the set of submitted queries. When a node matches
any query term, its corresponding bit receives true. If the bitmap corresponding to a
query is complete, the bitmap node or its descendants match all query terms. Figure
3.2 presents the query_bitmap for all queries in Table 3.1. In this figure, each cell qi,j
refers to the j-th term of query qi. Notice that the size of the query_bitmap is equal
to the total number of terms in all queries.
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Figure 3.2. Configuration example of BStream query_bitmap.

Additionally, BStream uses a query index to identify which queries match the
node terms (label or keyword) being processed. It adds these queries to the set
used_queries, included in each stack entry. Thus, when BStream finishes a node, it
pops the respective stack entry and evaluates only the queries in the set used_queries
instead of the entire set of submitted queries. This index is implemented using an in-
verted list in which each index entry represents a distinct keyword. Each of these index
entries is associated with two lists: one corresponding to occurrences in labels and the
other to occurrences in values. Figure 3.3 presents the query_index configuration for
queries in Table 3.1.

3.4.1.2 Callback Functions

Initially, BStream.Start (Algorithm 2) creates a new stack entry for the node being
processed (Line 2). For this entry, the CAN_BE_SLCA bitmap and all query bitmaps
are initialized. While CAN_BE_SLCA bits are set to true (Line 4), bits in query
bitmaps are set to false (Line 7). Then, BStream.Start stores in the set QL the queries
that contain the label in j (Line 10). After that, for each query in set QL (Line 11
to 20), BStream.Start sets to true the corresponding bits whose query terms are of
the form ` or `:: (Line 16) and adds all queries in QL to the set used_queries in the
current stack entry (Line 21). Finally, BStream.Start pushes entry sn into the stack S
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Figure 3.3. Configuration example of BStream query_index.

(Line 22). As mentioned before, BStream.End will only evaluate the set of queries in
QL, instead of the whole set of submitted queries.

BStream.Text identifies and sets to true the bits in query_bitmap corresponding
to terms of the form `::k, ::k and k, which represent the combination of labels and
text tokens. Initially, it tokenizes the node content and stores the resulting tokens
in K (Line 2). BStream.Text also gets the reference to the stack top entry (Line 3),
which corresponds to the XML node whose content is being processed. For each token,
BStream.Text retrieves the queries whose terms contain the token (Line 5) and stores
them in the set used_queries (Line 6). For these queries, the function sets to true the
bits that correspond to terms of the form `::k, ::k and k (Lines 10 to 15).

Finally, BStream.End evaluates which nodes or its descendants match the sub-
mitted queries. It first pops the stack top entry corresponding to the node being closed
(Line 1) and retrieves the queries from the set used_queries for being evaluated (Line 3).
For each query, this function verifies if its corresponding bit in CAN_BE_SLCA is true
(Line 4). If so, the current node is eligible to be a smallest lowest common ancestor
(SLCA) for the current query. In addition, the function verifies if the corresponding
entry in query_bitmap is complete (Lines 7 and 8). If so, the query terms occur in the
current node or in its descendants. Thus, this node is an SLCA result for the query
(Line 9). However, its parent node tn is no longer eligible to be an SLCA result for the
query (Line 10), since the current node is the lowest result. The parent node becomes
then the new stack top entry after the current node is popped out (Line 2). As the



3.4. Proposed Algorithms 29

Algorithm 2 BStream.Start Callback Function
Callback Function BStream.Start
Input: The parsing stack S
Input: set of queries Q
Input: The XML node e being processed

1. j := label(e)
2. sn.label := j {create and initialize a new stack entry}
3. for all q ∈ Q do
4. sn.CAN_BE_SLCA[q]:= true
5. i := q.first_bit_position {first bit position in sn.query_bitmap for q}
6. n := q.#terms {number of query terms in q}
7. sn.query_bitmap:= [i, i+1, . . ., i+n-1] := false
8. end for
9. {get queries that contain the label in j}

10. QL := query_index[j].labelOcurrences
11. for all q ∈ QL do
12. {for queries in QL, set bits corresponding to terms of the form ` and `::}
13. i := q.first_bit_position
14. for all term in q.terms do
15. if term = j or term = j‖“::” then
16. sn.query_bitmap[i] := true
17. end if
18. i:=i+1{corresponding bit position for the next query term in q}
19. end for
20. end for
21. sn.used_queries.add(QL)
22. S.push(sn) {push the stack entry sn into stack S}

current node bitmap records which query terms occur in the node or in its descendants,
BStream.End copies the true bits to the parent node bitmap_map (Line 14). More-
over, BStream.End propagates to the parent node those queries that can no longer
be SLCA results (Line 15), since the current CAN_BE_SLCA bitmap records which
queries became SLCA results in the current node or in its descendants. Finally, the
function adds all queries from the set sn.used_queries sn to the set tn.used_queries tn
(Line 16) since these queries can be satisfied when closing the parent node.

3.4.1.3 Example

We now discuss a very simple example to illustrate how BStream works. Con-
sider the XML document represented in Figure 3.1. For simplicity, we show
how BStream processes this document against only two queries from Table 3.1:
q1 (Actor::Lewis Genre::Comedy) and q6 (Title::Lewis Comedy). Also consider the
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Algorithm 3 BStream.Text Callback Function
Callback Function BStream.Text
Input: The parsing stacks S1, . . ., S|Q|
Input: The XML node e being processed

1. j := label(e)
2. K := set of tokens in node e
3. sn := *S.top {sn points to the top entry in the stack S }
4. for all k ∈ K do
5. QL := query_index[k].keywordOcurrences
6. sn.used_queries.add(QL)
7. for q ∈ QL do
8. i := q.first_bit_position
9. {for queries in QL, set bits corresponding to terms of the form k, `::k, ::k}

10. for all term in q.terms do
11. if term = k or term = j‖“::”‖k or “::”‖k then
12. sn.query_bitmap[i] := true
13. end if
14. i:=i+1{bit position corresponding to next query term}
15. end for
16. end for
17. end for

Algorithm 4 BStream.End Callback Function
Callback Function BStream.End
Input: The set of queries Q
Input: The parsing stacks S1, . . ., S|Q|
Input: The XML node e that is ending

1. sn := pop(S) {pops the top entry in the stack S to sn}
2. tn := *S.top {tn points to the top entry in the stack S}
3. for q ∈ sn.used_queries do
4. if sn.CAN_BE_SLCA[q] then
5. i := q.first_bit_position {first bit position in sn.query_bitmap for q}
6. n := q.#terms {number of query terms in q}
7. COMPLETE := sn.query_bitmap[i] and . . . and sn.query_bitmap[i+n-1]
8. if COMPLETE then
9. q.results := q.results ∪ sn

10. tn.CAN_BE_SLCA[q]:= false
11. end if
12. end if
13. end for
14. tn.query_bitmap:=tn.query_bitmap or sn.query_bitmap
15. tn.CAN_BE_SLCA := tn.CAN_BE_SLCA and sn.CAN_BE_SLCA
16. tn.used_queries.add(sn.used_queries)
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Figure 3.4. Parsing stack states when processing queries q1 and q6 against the
document in Figure 3.1.

query index presented in Figure 3.3, but without the other queries. Figure 3.4 shows
distinct states of the parsing stack when processing queries q1 and q6 against the doc-
ument in Figure 3.1. When BStream.Text opens the node Actor4, it pushes a new
stack entry. By using the query index, it also identifies that q1 contains the term
Actor::Lewis. Thus, it sets to true the corresponding bit in the top query_bitmap and
adds q1 to the set used_queries. Figure 3.4(a) presents the stack state after opening the
node Actor4. This figure also includes the entries corresponding to the nodes Actors3,
Movie2 and Movies1, which were previously pushed into the stack. As these nodes
do not satisfy any of the query terms, their corresponding bitmaps remain as initial-
ized. Then, BStream.End closes node Actor4 and pops out its corresponding stack
entry. The query_bitmap entry is incomplete for query q1. So this query remains un-
solved even though the corresponding node satisfies the SLCA semantics. Additionally,
BStream.End copies the current true bits to the new top query_bitmap, which corre-
sponds to node Actors3. It also adds q1 to the set used_queries in the new top entry,
since this entry may satisfy q1 when closing node Actors3. Moreover, BStream.End
applies an and operation over the bitmaps CAN_BE_SLCA from the popped and the
new top entries. Notice that this operation causes no impact on the new top entry.
Figure 3.4(b) presents the stack state after closing node Actor4. Notice that Figure 3.4
ignores the stack states of node Actor5, because it does not satisfy any of the query
terms and causes no effect on the current stack states.

Similarly to Actor4, when BStream.End closes node Actors3, it updates the new
top entry, which corresponds to node Movie2. This update operation involves the
following data structures: query_bitmap, used_queries and CAN_BE_SLCA. Figure
3.4(c) illustrates this operation. When BStream.Start function opens node Genre6,
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it pushes a new stack entry and identifies that both q1 and q6 contain the terms
Genre::Comedy and Comedy respectively. Thus, it sets the corresponding bits to true
in the query_bitmap entry and adds q1 and q6 to set used_queries. Figure 3.4(d) presents
the stack state after opening nodeGenre6. AtGenre6 closing step, BStream.End copies
the popped out entry true bits to the new top entry query_bitmap, which corresponds
to node Movie2. It also adds q6 to the new top entry used_queries set for evaluation
when closing node Movie2. Figure 3.4(e) presents the next stack state after closing
node Genre6. Similarly to node Actor5, in Figure 3.4(e), the algorithm ignores the
Title7 node processing since it does not satisfy any of the query terms. Finally, Figure
3.4(f) presents the stack state after closing node Movie2. Notice that this node is a
result for query q1 because it satisfies the SLCA semantics and the q1 bitmap is com-
plete. However, node Movie2 does not satisfy q6 because its corresponding bitmap is
incomplete. BStream.End also copies the popped out entry true bits to the new top
entry, which corresponds to node Movies1. In addition, it adds q1 and q6 to the new
top entry used_queries set. However, as expressed by the CAN_BE_SLCA bitmap,
node Movies1 is no longer eligible to be an SLCA result for q1 since its descendant is
already an SLCA result.

3.4.2 MKStream

MKStream reduces BStream space usage by compacting the query index and the
bitmap representation within the parsing stack. MKStream also improves BStream
performance by evaluating fewer queries than BStream. Specifically, it separates all
queries into different stacks which are evaluated as necessary. Thus, each stack has
fewer queries for evaluation, improving the overall response time significantly. Its data
structures, callback functions and examples are presented next.

3.4.2.1 Data Structures

Unlike BStream, MKStream avoids redundant information on search terms occurring in
more than one query. In BStream, we use N bits to represent the same search term in
N different queries. On the other hand, MKStream uses only one bit for each distinct
search term in all queries. Thus, each stack entry includes a different configuration for
query_bitmap, in which a bit is associated with each distinct query term. Figure 3.5
illustrates the query_bitmap version used by MKStream when processing the queries
in Table 3.1. As a consequence, in the query_index the entry corresponding to a
term t needs only to store the position of the bit corresponding to this term in the
query_bitmap, as illustrated in Figure 3.6.
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Figure 3.6. Configuration example of MKStream query_index.

MKStream design aims to reduce the number of pushing and popping stack op-
erations and the number of query evaluations, thus improving response time and space
consumption. To reduce pushing operations, a node is pushed into a parsing stack only
if its label or keywords occur in some query. To reduce popping operations, entries in
the stacks are popped only if they correspond to the node being closing. Furthermore,
MKStream can process multiple parsing stacks simultaneously. Therefore all queries
can be distributed into different stacks, which means controlling a smaller number
of queries if compared to a single parsing stack. By working with multiples stacks,
MKStream can process only the stacks whose top entries correspond to a node being
processed. Since not all parsing stacks are processed at each node, MKStream reduces
the number or query evaluations because each parsing stack controls a subset of queries.
Thus, MKStream improves performance compared with BStream, which uses only one
parsing stack and pushes and pops all processed XML nodes.

MKStream separates the initial set of queries into G query groups, G being a
user defined parameter. Each query group is controlled by a parsing stack. Thus, for
G query groups, MKStream handles G parsing stacks. The number of queries for each
query group is up to d|Q|/Ge, being Q the set of queries.

As each MKStream parsing stack controls its own query group, the corresponding
query_bitmap represents a specific set of query terms. For example, considering the
queries in Table 3.1 and G=2, i.e., two query groups, the first parsing stack controls
queries q1, q2, q3 and q4, and the second one queries q5, q6 and q7. Figures 3.7.a
and 3.7.b illustrate the corresponding query_bitmap structures. As each query group
uses a specific query_bitmap, it requires a specific query_index. Considering the
query_bitmap instances in Figures 3.7.a and 3.7.b, the corresponding query_index
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Figure 3.7. Examples of MKStream query_bitmap and query_index instances

Figure 3.8. Examples of MKStream query_group_index and query_group

instances are presented in Figures 3.7.c and 3.7.d.

MKStream identifies the correct parsing stack for each query by using the global
index query_group_index, whose keys are query terms and entries are query_group
instances. For example, considering G=2 and queries in Table 3.1, Figure 3.8 illus-
trates the query_group_index configuration, whose keys are the corresponding query
terms and whose entries are the query_group instances qg1 and qg2. Each query_group
instance includes the fields stack, query_index, query_list and auxiliary_index.

Specifically, the field stack keeps a parsing stack, whose query_bitmat configura-
tion is specific to query_group. For example, considering the query_group instance qg1,
Figure 3.7.a illustrates its query_bitmap configuration. MKStream also uses a query in-
dex structure, but different from that used by BStream. MKStream query_index stores
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the bit position corresponding to a query term in query_bitmap. For the query_group
instances qg1 and qg2, the query_index fields contain the instances shown in Fig-
ures 3.7.c and 3.7.d, respectively. Each query_group instance also includes the field
query_list, which lists the respective queries. For the query_group instances qg1 and
qg2, for example, their query_list fields in Figure 3.8 list their respective queries.

MKStream also uses an auxiliary indexing structure to speed up the search for
queries that contain a certain query term. This index, called auxiliary_index, is im-
plemented using an inverted list where each index entry represents a query term and
refers to the queries in which this term occurs. Considering the queries in Table 3.1
and a single parsing stack, Figure 3.9 presents the auxiliary_index example. Specifi-
cally, each MKStream query_group contains its own auxiliary_index, which is kept in
the auxiliary_index field, as depicted in Figure 3.8. Each auxiliary_index contains its
own keys and entries, according to the queries in the corresponding query_group. For
simplicity, we omit the auxiliary_index instances in Figure 3.8.
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Figure 3.9. Example of MKStream auxiliary_index.

An important setup step in MKStream is the query grouping. As a basic heuris-
tics, it tries to separate queries in groups whose queries involve common terms. Thus,
when MKStream searches for queries with terms matching the node being processed,
all returned queries are controlled by a single parsing stack belonging to a single
query_group. Therefore, MKStream considers that all queries have been correctly
grouped into G groups with a maximum of d|Q|/Ge queries each.
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This grouping process is performed by a simple procedure. It starts by adding
the first query to the first group. For each of the remaining queries, this procedure
determines the first query group that contains any term of the current query and
adds the query to this group. Otherwise, it inserts the query in a new group, or in
the smallest query group when the number of groups G has already been reached.
This procedure also builds the query_group_index by using the previously obtained
query group. For each query group, it initializes the parsing stack stored in the stack
field and its query_list. Furthermore, the algorithm creates the query_index and the
auxiliary_index.

3.4.2.2 Callback Functions

MKStream.Start, MKStream.Text and MKStream.End functions are described by Al-
gorithms 5, 6 and 7 respectively. They play similar roles than their counterparts in
the previous algorithm, but they push and pop fewer nodes for being processed. The
previous algorithm pushes and pops all nodes and uses a single stack for all queries.

MKStream.Start searches the query_group_index for the current node label in
j and obtains the query groups associated with that label (Line 3). It processes
each query_group by filling its stack up to the node being processed (Lines 6 to 11).
For each node, MKStream.Start sets the query_bitmap (Line 8) and the respective
CAN_BE_SLCA bitmaps (Line 9), and then pushes the node into its stack (Line 10).
It also gets the stack top entry reference and stores it in sn (Line 12). Finally, it adds
the group query list Q to the set used_queries (Line 15) and sets to true the bit position
associated with the label occurrence in the query_bitmap of entry sn (Line 16) .

MKStream.Text process each keyword found in the text query group (Line 2),
filling the stacks up to the node being processed (Lines 7 to 12). These stacks con-
trol queries that include the keyword k (Line 4). For each stack top entry (Line 15),
MKStream.Text adds the corresponding group query list Q to the set used_queries
(Line 16) and sets to true the bit position associated with the current keyword oc-
currence in query_bitmap (Line 17). Similarly to BStream, terms of the form l::k are
handled by MKStream.Text like k terms.

Finally, MKStream.End retrieves all query groups (Line 1) whose stacks will be
processed. To be processed, the stack top entry must correspond to a node being
finished, meaning that the stack height is equal to the height of the node being processed
(Line 3). For each one of these stacks, MKStream.End evaluates if the stack top
entry satisfies any query controlled by the stack (Lines 9 to 17). For this evaluation,
MKStream.End identifies the positions of the bits corresponding to q terms in the
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Algorithm 5 MKStream.Start Callback Function
Callback Function MKStream.Start
Input: query group index query_group_index
Input: The XML node e being processed

1. j := label(e)
2. node_path[e.height] := j
3. groups := query_group_index[j]
4. for all gr ∈ groups do
5. N := number of distinct terms for all queries of the group gr
6. for i := gr.stack.height+1 to e.height do
7. sni.label := node_path[i]
8. sni.query_bitmap[0,. . .,N -1] := false
9. sni.CAN_BE_SLCA[gr.query_list[1], . . . ,gr.query_list[gr.query_list.size()]:=

true
10. gr.stack.push(sni)
11. end for
12. sn := *gr.stack.top()
13. q := gr.query_index[j].asLabel
14. Q := gr.auxiliary_index[j].labelOccurrences
15. sn.used_queries.add(Q)
16. sn.query_bitmap[q] := true
17. end for

current query_bitmap (Line 10) and checks in query_bitmap if the corresponding bits
are complete (Line 11).

3.4.2.3 Example

We now present an example that illustrates how MKStream works. This example
is quite similar to the one from Section 3.4.1.3, as it involves the same queries q1
(Actor::Lewis Genre::Comedy) and q6 (Title::Lewis Comedy) and the same XML
document presented in Figure 3.1. However, it considers two query groups, i.e., G = 2.
Each group uses its own parsing stack, i.e., the first handles query q1 and the second
handles query q6.

By using query_group_index, MKStream.Start opens the Actor4 node and iden-
tifies that Actor4 and its keyword Lewis are associated with the first query group,
i.e., query group g1. Then, differently from BStream.Text, MKStream.Text pushes the
nodes Actor4, Actors3, Movie2 and Movies1 into the first group stack at once. It also
sets to true the bit corresponding to the Actor4::Lewis term on the top query_bitmap
and adds q1 to the used_queries set. Figure 3.10(a) presents the stack instance after
opening node Actor4. Notice that nothing happens to the second query group struc-
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Algorithm 6 MKStream.Text Callback Function
Callback Function MKStream.Text
Input: query group index query_group_index
Input: The XML node e being processed

1. j := label(e)
2. K := set of tokens in node e
3. for all k ∈ K do
4. groups := query_group_index[k]
5. for all gr ∈ groups do
6. N := number of distinct terms for all queries of the group gr
7. for i := gr.stack.height+1 to e.height do
8. sni.label := node_path[i] {create stack entry for node i}
9. sni.query_bitmap[0,. . .,N -1] := false

10. sn.CAN_BE_SLCA[gr.query_list[1],. . .,gr.query_list[gr.query_list.size()]:=
true

11. gr.stack.push(sni)
12. end for
13. q := gr.query_index[k].asKeyword {q gets the position of term k}
14. Q := gr.auxiliary_index[k].KeywordOccurrences
15. sn := *gr.stack.top() {sn points to the top entry in the group stack}
16. sn.used_queries.add(Q)
17. sn.query_bitmap[q] := true
18. end for
19. end for

tures since node Actor4 does not satisfy any of its terms. Next, MKStream.End closes
the Actor4 node and pops out its corresponding stack entry. Notice that it evaluates
only the first query group stack since the stack top entry corresponds to the node being
closed (the stack and the closed node have the same height). However, MKStream.End
discards Actor4 as a q1 result since the current query_bitmap is incomplete for q1. It also
copies the current true bits to the new top query_bitmap, which corresponds to node
Actors3, and updates the set used_queries and the new top bitmap CAN_BE_SLCA.
Figure 3.10(b) presents the stack state after closing node Actor4. Both query groups
skip node Actor5 processing since it does not match any of the q1 or q6 terms. Notice
that the second query group structure remains unchanged.

MKStream.End closes the node Actors3 and updates the new top structures for
both query groups. Figure 3.10(c) illustrates the stack states after closing node Actor4.
MKStream.Text opens the node Genre6 and identifies that q1 and q6 contain the terms
Genre::Comedy and Comedy, respectively. Thus, MKStream.Text sets the correspond-
ing bits to true in both query_bitmap structures and adds q1 and q6 to the corresponding
used_queries sets. Figure 3.10(d) presents the stack states after opening node Genre6.
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Algorithm 7 MKStream.End Callback Function
Callback Function MKStream.End
Input: query group index query_group_index
Input: The XML node e that is ending

1. query_groups := query_group_index.values {gets all query groups}
2. for all group in query_groups do
3. if group.stack.height = e.height then
4. sn := group.stack.pop() {pops the top entry in the stack to sn}
5. tn := *group.stack.top() {tn points to the top entry in the stack}
6. tn.CAN_BE_SLCA:=tn.CAN_BE_SLCA and sn.CAN_BE_SLCA
7. tn.used_queries.add(sn.used_queries)
8. sn.query_bitmap := sn.query_bitmap or tn.query_bitmap
9. for all q ∈ sn.used_queries do

10. let {j1, . . . , jN}) be the positions of the bits corresponding to terms from
query q in query_bitmap of the current query group

11. COMPLETE := sn.query_bitmap[j1] and . . .
and sn.query_bitmap[jN ]

12. if sn.CAN_BE_SLCA[q] and COMPLETE then
13. q.results := q.results ∪ { sn }
14. tn.CAN_BE_SLCA[q]:= false
15. tn.used_queries.remove(q)
16. end if
17. end for
18. end if
19. end for

Notice that MKStream pushes the entriesGenre6,Movie2 andMovies1 into the second
group stack at once. At Genre6 closing, for both query groups, MKStream.End copies
the popped out entry true bits to the new top MKStream.query_bitmap, correspond-
ing to node Movie2. It also updates the used_queries sets and the CAN_BE_SLCA
bitmaps for both query groups. Notice that MKStream.End evaluates both stacks
since their top entries correspond to node Genre6 (the stack top entry and Genre6

have the same height). Figure 3.10(e) presents the stack states after closing Genre6.
Similarly to node Actor5, MKStream.End ignores the query matching for Title7 be-
cause it does not satisfy any of the query terms. Finally, MKStream.End closes node
Movie2, which is a result for q1 since the corresponding query_bitmap in the first
query group is complete. However, q6 is not satisfied because its bitmap is incomplete.
For both query groups, MKStream.End also copies the popped out entry true bits to
the new top entries, which correspond to node Movies1. In addition, it updates the
used_queries sets and the CAN_BE_SLCA bitmaps. As can be seen from the second
CAN_BE_SLCA bitmap, node Movies1 is no longer eligible to be an SLCA result for
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Figure 3.10. Stack instances when MKStream processes queries q1 and q6
against the XML document in Figure 3.1.

q1 since its descendant node (Movie2) is also an SLCA result.

3.5 Experimental Evaluation

In this section, we empirically study the efficiency of the BStream and MKStream
algorithms in terms of processing time and memory space. We also compare them with
the KStream and CKStream algorithms [Hummel et al., 2011], both considered the
state-of-art algorithms for multiple keyword-based query processing under the SLCA
semantics.

The experiments consist in processing streams of XML documents against all
posed queries simultaneously and measuring the time spent and the memory consump-
tion. We performed three different experiments with streams containing documents
from real XML datasets, each one stressing a different aspect of our algorithms. In
the first experiment, we analyze how the algorithms handle an increasing number of
keyword-based queries. In the second experiment, we study the impact of queries that
search for node labels in comparison with queries that only search for keywords on
the node contents. Finally, in the third experiment, we observe the behavior of the
algorithms as the number of search terms in each query increases.

Similarly to BStream and MKStream, KStream and CKStream implement a pars-
ing stack whose entries are bitmaps. These bitmaps are also associated with visited
nodes during document transversal. However, their bitmap configurations are different.
Like BStream, the KStream bitmap represents all query terms individually. However,
it sets simultaneously all bits corresponding to query terms that match the XML docu-
ment being processed while BStream sets separately each one of those bits. CKStream
and MKStream use similar bitmap configurations. However, CKStream uses a single
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parsing stack in which all processed nodes are pushed down while MKStream uses
multiple parsing stacks in which only specific nodes are pushed down.

3.5.1 Setup

All algorithms were implemented using Java and the SAX API from Xerces Java
Parser. The query indexes and other data structures are kept entirely in memory. All
experiments were performed in an Intel Dual Core 2.53 GHz computer with 4 GB of
memory on Mac OS.

Datasets. The experiments employ three distinct datasets. The first, called
ICDE, consists of metadata from papers published in the proceedings of the ICDE
conference, which were extracted from DBLP2. The second one, ISFDB3, consists
of bibliographic data from fiction books available on the ISFDB Web site. The last
one, SIGMODR, contains data from the table of contents of past SIGMOD Record
issues. We organized the data on ICDE papers by year of publication into a stream of
14 different XML documents, from 1995 to 2008. Similarly, in ISFDB, we separated
books published between 2000 and 2009 into a stream of 10 different XML docu-
ments. Finally, we organized SIGMODR into as stream of 18 XML documents, each
containing data from one issue. The average sizes of ICDE, ISFBD and SIGMODR
documents are, respectively, 75 KB, 1.3 MB and 58 KB. Details on the three datasets
are presented in Table 3.2.

Dataset Docs Avg. # Elem. Avg. Avg. Avg.
Height Nodes Objects Size

ICDE 14 2 12 2073 119 75 KB
ISFDB 10 2 11 41637 4110 1.3 MB

SIGMODR 18 7 13 1697 167 58 KB

Table 3.2. Details of the datasets used for the experiments.

As we can see from Table 3.2, according to Barbosa et al. [2006a], the height
of the documents in our datasets is compatible with those of typical XML datasets
found on the Web. SIGMODR has the deepest documents. In ISFDB and ICDE,
most book and paper elements are flat. Regarding the number of distinct elements,
notice that elements that have different full paths from the root node are considered
distinct. ISFDB has the largest XML documents. Hence, it has much more objects

2http://www.informatik.uni-trier.de/˜ley/db/
3http://www.isfdb.org
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and nodes than the other two. Furthermore, although ICDE has, on average, more
nodes than SIGMODR, the latter has more sub-trees that characterize objects.

Queries. We randomly generated sets of queries using data available from
each dataset. For example, using data from ISFDB, the following query could be
generated: “Author ::jose ::saramago Title::blindness”. Depending on the experiment,
we generated different sets of queries by using as parameters the number and the type
of terms to appear in the queries.

Metrics. In order to evaluate the performance of the algorithms, we mea-
sured, for each dataset, the time spent for processing all XML documents on a given
stream. Notice that this excludes the time spent to create the query indexes, which is
done only once by the time the operations start. Similarly, we measure the average
memory usage while processing each XML document. We recall that, as discussed
in Section 3.3.1, each document is individually processed against all queries at once.
Therefore, although we have used several documents per stream to obtain significant
measures, there was no need for varying the number of documents per stream.

3.5.2 Results

3.5.2.1 Varying the Number of Queries

The first experiment aims at analyzing how the algorithms handle an increasing number
of keyword-based queries. Notice that we consider BStream as the baseline since it is
a straightforward multi-query implementation of the SLCA algorithm proposed by
Vagena and Moro [2008], which processes a single query over XML streams.

In this experiment, we submitted up to 50,000 queries, each with up to 4 terms,
which include only query terms as ::k. Queries that search for labels, i.e., queries that
involve structural terms such as `:: or `, are addressed in Section 5.3.2.2. Figure 3.11
presents the comparison of time and memory spent by the algorithms over each of the
datasets.

The time curves show that MKStream outperforms the other algorithms. Specif-
ically, MKStream shows a significant advantage over BStream since BStream matches
the query term occurrences in query_bitmap by scanning individually their correspon-
dent bits, while MKStream avoids or reduces drastically these individual scanning by
using the query_index structure. Moreover, MKStream query_index contributes to this
better performance because it reduces the popping and pushing operations. Fewer
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Figure 3.11. Varying the number of queries: time (left) and memory spent
(right) for each algorithm in each dataset.

stack operations reduce the number of query evaluations, thus improving MKStream
performance.

To evaluate MKStream behavior with more than one query group, this and the
other two experiments consider one and five query groups, processed by one and five
parsing stacks respectively. MKStream experiments with two, three, four and more
than five query groups presented no expressive performance time gain. Therefore, our
experiments do not consider such query group configurations.
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Comparing the three datasets, the time performance in ISFDB is the worse. This
is explained because the documents in this dataset are larger, i.e., there are more nodes
that need to be processed. Also, the performance of the algorithms over the ICDE
dataset is slightly better than their performance over the SIGMODR dataset. This is
due to the number of nodes that satisfy the queries, which is larger in SIGMODR than
in ICDE.

Notice that the BStream is so much slower than MKStream and the other two
algorithms (Figure 3.11 – left), which makes the corresponding curves hard to be dis-
tinguished. The performance evaluation can be better observed in Figure 3.12, which
shows graphs with these curves except for BStream. Figure 3.12 also shows that MK-
Stream performs slightly faster than CKStream in all datasets because MKStream
reduces the number of stack operations and query evaluations. Specifically, MKStream
uses additional stacks, in which the number of queries is smaller than that processed
by CKStream, since it evaluates all queries. For MKStream, the five stack configura-
tion shows a slightly better performance than the single stack configuration when the
number of the processed nodes is very large as illustrated by the ISFDB time curves.

Regarding memory consumption, Figure 3.11 (right) shows that BStream, CK-
Stream and MKStream have similar memory performance and that KStream has the
worst performance. As Figure 3.13 shows, when compared only with CKStream, MK-
Stream saves more memory. This saving is due to MKStream specific features that
avoid unnecessary pushing operations, thereby reducing stack entries. Figure 3.13 also
shows that, for MKStream, more stacks degrades memory performance.

3.5.2.2 Searching with Structural Constraints

The second experiment analyzes the impact of using structural terms in queries. We
generated 50,000 queries with five query terms each and vary the number of structural
query terms from 0 to 3. Figure 3.14 presents the comparison of time and memory spent
by the three algorithms over each dataset. Notice that we do not consider BStream in
this experiment, since, as shown in Section 5.3.2.1, it has a poor time performance in
comparison to the other algorithms.

The results show the significant impact of structural terms in all three algorithms.
Such an impact happens because, usually, structural terms occur more frequently in
XML documents, when compared to non-structural ones. Consequently, the algorithms
have to evaluate more queries, which means that the End callback functions have to
iterate over more queries. Note that this kind of term was present in each of the 50,000
queries to stress the performance of our algorithms. In contrast, the first experiment
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Figure 3.12. Time spent by KStream, CKStream and MKStream processing
time when varying the number of queries.
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Figure 3.13. BStream, CKStream and MKStream memory usage when varying
the number of queries.
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Figure 3.14. Varying the number of structural terms: time (left) and memory
spent (right) for each algorithm.

controls fewer queries because they include only non-structural terms. Since these
queries were randomly generated from all documents, only few XML nodes being pro-
cessed do match some of the query terms. As a consequence, fewer queries are kept in
the parsing stacks, which means fewer query evaluations.

The presence of structural terms in the queries has led to a larger number of
query evaluations in this experiment, thus highlighting the better time and memory
performances of MKStream. Due to a small number of pushing operations, when it
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uses a single stack, MKStream performs similarly to KStream. However, MKStream
is faster when using more than one stack. When using five stacks, response time is
significantly reduced in comparison to KStream and CKStream for all datasets, i.e.,
35% and 54% respectively.

Regarding memory consumption, Figure 3.14 shows that KStream has a decreas-
ing memory usage, since adding more structural terms implies in reducing the total
number of distinct terms and, therefore, the total size of the query indexes. Figure 3.14
also shows an almost constant memory usage by CKStream and MKStream algorithms
when we vary the number of terms, since the number of terms has a small impact on this
resource for both algorithms. However, according to Figure 3.16, MKStream presents
a better memory performance due to a small number of stack pushing operations. Fig-
ure 3.16 does not show graphs for the KStream algorithm since, as show in Figure 3.14,
it presents a much higher memory consumption than the other two. As expected and
similarly to the first experiment, Figure 3.16 shows that MKStream presents a slight
increase in memory consumption when the number of stacks is increased.

Even processing multiple stacks, MKStream processes fewer queries per stack
when compared to KStream and CKStream, which use a single stack. Since not all
parsing stacks are evaluated, fewer queries are evaluated by its End callback function.
Thus, MKStream evaluates far fewer queries than the other two algorithms. Figure 3.15
confirms the impact of using multiple stacks when callback functions involve a larger
number of queries. As specific parsing stacks are processed, fewer queries are evaluated,
thus improving performance. This figure shows the processing time for each callback
function type for 50,000 queries in all datasets. It only shows results for the CKStream
and MKStream algorithms because they consume much less memory. Specifically for
the End callback function, MKStream presents a high processing time gain since its
used_queries sets hold fewer queries to be evaluated. Note that Figure 3.15 also in-
cludes MKStream results for ten stacks which slightly improves processing compared
to MKStream with five stacks. We have also run MKStream with 15 and 20 stacks.
However, there was no performance gain. As a result, this experiment confirms that
MKStream can be customized for a large number of queries, obtaining better results
than the other two algorithms. Figure 3.15 also shows the low impact of the stack
pushing operations on the Start callback function for MKStream, even when a single
stack is used.
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Figure 3.15. Time spent by the algorithm functions when varying the number
of queries.
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Figure 3.16. CKStream and MKStream memory usage for 50,000 queries up to
3 labels.
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Figure 3.17. Queries with 2, 4 and 6 terms: processing time for the ICDE
dataset.

3.5.2.3 Varying the Number of Terms

In this experiment, we aim to verify how MKStream scale with the number of distinct
terms in the queries. This is an important factor in both time and space consumption
while processing keyword-based queries, when compared to KStream and CKStream.
The experiment compares the impact of using queries with two, four and six terms.
We argue that six is a reasonable limit for the number of terms one typically uses when
specifying a query. Similar to the first and second experiments, initially we used up to
50,000 queries. In here, queries use only terms of the form ::k. Figures 3.17, 3.18 and
3.19 present a time comparison for KStream, CKStream and MKStream over the three
datasets. Figures 3.20, 3.21 and 3.22 present a memory consumption comparison over
the same three datasets.

As expected, the performance of the algorithms is affected as the number of terms
increases. This effect is even bigger in the ISFDB dataset, whose documents contain
more nodes. Nonetheless, comparing the three algorithms, MKStream scale well with
the number of queries and the number of query terms, even though their space and time
performance have some degradation. Specifically, the growth rates of the 6-term curves



52 Chapter 3. SLCA Algorithms Based on Bitmaps

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  5000  10000  15000  20000  25000  30000  35000  40000

P
ro

ce
ss

in
g
 T

im
e 

(s
ec

s)

Number of queries

ISFDB Stream - KStream Algorithm

2 keywords
4 keywords
6 keywords

 0

 100

 200

 300

 400

 500

 600

 700

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

P
ro

ce
ss

in
g
 T

im
e 

(s
ec

s)

Number of queries

ISFDB Stream - CKStream Algorithm

2 keywords
4 keywords
6 keywords

 0

 100

 200

 300

 400

 500

 600

 700

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

P
ro

ce
ss

in
g
 T

im
e 

(s
ec

s)

Number of queries

ISFDB Stream - MKStream Algorithm (1 stack)

2 keywords
4 keywords
6 keywords

 0

 100

 200

 300

 400

 500

 600

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

P
ro

ce
ss

in
g
 T

im
e 

(s
ec

s)

Number of queries

ISFDB Stream - MKStream Algorithm (5 stacks)

2 keywords
4 keywords
6 keywords

Figure 3.18. Queries with 2, 4 and 6 terms: processing time for ISFDB dataset.

are the worst. However, according to the complexity analysis presented by Barros et
al. [2012a], the response time linearly increases when the number of queries increases.

Notice that KStream degrades processing time significantly when it requires more
space for the Java heap. In this scenario, KStream demands a specific Java heap
memory configuration, especially to finish the KStream experiments for 45,000 and
50.000 queries. As this configuration diverges from the default Java heap size used
in the other experiments, Figures 3.17 to 3.19 only shows BStream time curves up to
40,000 queries.

Regarding memory usage, Figures 3.20, 3.21 and 3.22 confirm the expected be-
havior. MKStream suffers a larger impact than when increasing the number of terms.
However, according to Figure 3.23, which excludes KStream, MKStream presents the
lowest memory consumption because of fewer stack pushing operations. Similar to the
first two experiments, when MKStream increases the number of stacks, its memory
consumption also increases.

For a better comparison of the algorithms, Figure 3.23 presents the processing
time and memory consumption of each algorithm in each dataset for up to 50,000
queries. In this figure, KStream and MKStream perform slightly better than CK-
Stream. Particularly, in the ISFDB dataset, whose documents have more nodes, MK-
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Figure 3.19. Queries with 2, 4 and 6 terms: proc. time for SIGMOD dataset.

Stream performs better than KStream. Specifically, this improvement is higher when
MKStream uses five stacks. For the two other datasets, which have far fewer nodes,
MKStream shows no expressive performance gain by using more than one stack.

3.5.2.4 Remarks

The experiment results indicate that BStream algorithm has a prohibitive processing
time compared with MKStream, regardless of its reasonable memory performance. In
scenarios where few submitted queries are evaluated, MKStream is slightly faster than
the state-of-the-art algorithms and uses less memory than them. In scenarios where
all queries are evaluated, independently from the XML document size, MKStream is
significantly better than the state-of-the-art algorithms.

Barros et al. [2012a] present the complexity analysis for BStream and MKStream
algorithms in detail. Specifically, BStream time complexity is O(N ×Q×T ), being N
the number of nodes in the XML document, Q the number of queries and T the number
of distinct terms that occur in the queries. MKStream time complexity is O(N ×Q),
being N and Q linear factors.

In conclusion, MKStream offers the best compromise between performance and
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Figure 3.20. Queries with 2, 4 and 6 terms: memory used for the ICDE dataset.

memory usage. It is faster than the state-of-the-art algorithms when the number of
evaluated queries increases, independently of the XML document size. Particularly,
MKStream allows adjusting the number of parsing stacks for a better trade-off between
processing time and memory usage.
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Figure 3.21. Queries with 2, 4 and 6 terms: memory used for ISFDB dataset.
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Figure 3.22. Queries with 2, 4 and 6 terms: memory used for SIGMOD dataset.
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Figure 3.23. Varying the Number of Terms for up to 50,000 queries: response
time (left) and memory usage (right).



Chapter 4

An SLCA Algorithm based on
Stream Processing Properties

This chapter presents an SLCA-based algorithm, called SLCAStream, for efficient pro-
cessing of multiple keyword-based queries over XML streams. This algorithm proposes
a new approach to keyword-based query processing which is based on LCA stream pro-
cessing properties. As a consequence, this approach eliminates the traditional bitmap
processing strategy [Barros et al., 2010, Hummel et al., 2011, Vagena and Moro, 2008,
Zhou et al., 2010]. SLCAStream also introduces optimization strategies that improve
its overall performance. This approach and its optimizations allow to improve the al-
gorithm response time and memory consumption when compared to MKStream (our
better algorithm based on the traditional bitmap strategy presented in Chapter 3).

This chapter is organized as follows. Section 4.1 presents the stream processing
properties based on the LCA semantics for SLCA node identification. Section 4.2
presents SLCAStream, its data structures and callback functions. Then, Section 4.3
describes the experiment we conducted, which compares SLCAStream with MKStream,
in terms of response time and memory usage.

4.1 SLCA Stream Processing Properties

In a stream environment, XML documents are usually processed by a SAX parser,
which generates sequential events for each XML tree node visited as described in Sec-
tion 3.3.1. Here, we are particularly interested in the startElement() event. Upon
opening a node, startElement() defines an id to the current node as a sequential num-
ber that corresponds to its processing order when traversing the tree in preorder (see
Figure 4.1).

57
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Figure 4.1. Tree representation of an XML document.

The id values have important properties for the SLCA semantics, as discussed
and exemplified next. The examples are based on the query q={title, author} and
the XML document in Figure 4.1. Although we discuss these properties considering a
single query, they equally apply to multiple queries.

Property 1. Given an XML document d, the id of any node v in d is smaller than the
id of any of its descedants and greater than the id of all its previously processed nodes
(see Figure 4.1).

Property 2. Let v be an SLCA node returned as a result for the query q={t1, . . . , tn}.
Then, idv is less than or equal to the id of its descendant nodes that satisfy a term ti

(1 ≤ i ≤ n) and greater than the idu of the previous SLCA node u that satisfies q.

Property 2 guarantees that if node v satisfies query q, this node or some of its
descendants satisfies all query terms, meaning that its id is less than or equal to the id
of each node that satisfies a query term. Notice that Property 2 also guarantees the
previous u SLCA node has been processed before v since idu is less than idv. Thus, v
satisfies the SLCA semantics. In Figure 4.1, chapter7 satisfies Property 2 since its id is
less than or equal to the ids of its descendants that match query q terms. In addition,
the id of node chapter7 is greater than the id of the previous SLCA node that satisfies
q, which is book2.
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4.2 Proposed Algorithm

In this section, we present SLCAStream, a new algorithm for multiple keyword-based
query processing that implements Property 2 and incorporates optimization techniques
to improve query evaluation performance. This property allows to identify SLCA nodes
based only on their id values, thus avoiding the usual bitmap processing strategy. In
addition, SLCAStream uses a single parsing stack for query evaluation. In what follows,
we describe SLCAStream, including its data structures.

4.2.1 Data Structures

4.2.1.1 Parsing Stack

Like BStream and MKStream, SLCAStream uses a parsing stack S for keeping the
XML nodes open during the SAX parsing. Each entry is popped from the stack when
its corresponding node and all its descendants have been visited. However, in contrast
to BStream and MKStream, by using LCA stream processing properties, SLCAStream
eliminates all data structures that support the bitmap processing strategy, such as
the query and CAN_BE_SLCA bitmaps, both used by BStream and MKStream pars-
ing stacks. Consequently, SLCAStream eliminates all workload related to the bitmap
processing strategy. However, SLCAStream includes a new field matching_terms in
each parsing stack entry. This field is used by the proposed optimization techniques,
thus allowing SLCAStream to evaluate fewer queries than BStream and MKStream,
as described as follows. For SLCAStream, the parsing stack S includes the following
information concerning its final configuration:

• The XML node label;

• A set used_queries containing the queries whose terms match keywords in the node
or any its descendants, either as labels or values;

• a matched_terms field that stores the number of matching query terms on the
node being processed or on its descendants. Upon closing this node, SLCAStream
only evaluates the queries whose number of terms is less than or equal to this
field. This constitutes one of the two optimization techniques that contribute to
improve SLCAStream response time. To better illustrate this, consider the query
q = {title, author} and the XML document in Figure 4.1. At node title3 opening,
the matched_terms is 1 since keyword title was found in title3 as its label. At
title3 closing, the algorithm skips query q evaluation since the node only matches a
single q term (number of q terms is greater than the current matched_terms value).
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Similarly, at author4 closing, the algorithm skips q evaluation. However, the node
book2 has two descendants that partially or totally match q terms. Therefore, its
matched_terms value is 2 (due to title3 and author4). Thus, when closing book2,
since the number of q terms is equal to the current matched_terms value, the al-
gorithm evaluates each q term individually since book2 descendants can have some
repeated term among them also added to matched_terms1. Note that this opti-
mization has no effect on the SLCA semantics since SLCAStream guarantees its
compliance.

4.2.1.2 Query Index

Similar to BStream, SLCAStream also relies on a specific index, called query_index, to
avoid looking up each query individually. In this index, each entry represents a query
term and refers to queries in which this term occurs. Thus, its query_index is used to
look for queries matching text elements or labels.

4.2.1.3 Hash Table

As shown in Section 4.1, by only knowing the nodes that satisfy the query terms, it
is possible to establish if a candidate node is SLCA. For this, during a document
processing, SLCAStream requires a global hash table G to store the ids of query
term occurrences. Its keys represent all distinct query terms and the respective values
correspond to the id of the last query term occurrences. For instance, consider the XML
document in Figure 4.1 and the query q={title, author}. When closing node chapter7,
the id for the last title occurrence is G[title]={8} and for author is G[author]={9}.
Thus, according to Property 2, chapter7 is SLCA for q since its id (7) is less than the
last id occurrences (8, 9) of the q terms and greater than the previous SLCA result
node id (idbook2=2).

4.2.2 SLCAStream

As already mentioned, SLCAStream presents a new strategy for SLCA evaluation which
avoids the usual bitmap processing. SLCAStream is based on the SLCA semantic
Property 3, as presented in Subsection 4.1. In addition, it uses two optimization
techniques to improve time performance and memory consumption, which are described
next.

1We consider there is no term repetition in queries.
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SLCAStream consists of three callback functions, each one corresponding to a
distinct SAX parser event. Function SLCAStream.Start handles starElement events,
SLCAStream.Text handles characters events and SLCAStream.End handles endEle-
ment events. These functions are described by Algorithms 8, 9 and 10 respectively.

Algorithm 8 SLCAStream.Start Callback Function
Callback Function SLCAStream.Start
Input: The parsing stack S
Input: The XML node e being processed
Input: The node identification id for node e

1. ` := label(e)
2. id := id + 1 {next id for the new node}
3. node_path[e.height].id=id
4. if query_index[`] 6= ∅ or query_index[`::] 6= ∅ then
5. sn.id := id
6. sn.height := e.height
7. terms := {`, `::}
8. for all t ∈ terms do
9. Q := query_index[t] {Q get queries of the term t}

10. if Q 6= ∅ then
11. sn.used_queries := sn.used_queries ∪ Q
12. G[t] := id
13. sn.matched_terms = sn.matched_terms + 1
14. end if
15. end for
16. S.push(sn) {create new stack entry}
17. end if

SLCAStream.Start sets label ` to the corresponding label of the node e being
processed (Line 1) and generates the id value for this node (Line 2). SLCAStream.Start
also registers on the node_path array the id value of the current node e (Line 3), which
corresponds to the last node on the path to the root. We use this array for implementing
an optimization technique in the SLCAStream.End function. Next, it checks whether
label ` occurs in some query term (Line 4). If so, SLCAStream.Start initializes the sn
stack entry (Lines 5 and 6), which is pushed to S (Line 16). This entry corresponds to
the node being processed.

Similar to MKStream, SLCAStream reduces stack operations because it pushes
entries to the stack only if necessary. However, SLCAStream further reduces the en-
tries in the parsing stack since it only keeps the nodes requiring evaluation. This is our
first optimization technique which improves response time and memory usage. SLCAS-
tream.Start gets the queries in query_index that contain ` or `:: terms and stores them
in the set Q (Line 9). If Q is not empty, SLCAStream.Start includes them in the
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Algorithm 9 SLCAStream.Text Callback Function.
Callback Function SLCAStream.Text
Input: The parsing stack S
Input: The XML node e being processed
Input: The node identification id for node e

1. ` := label(e)
2. new_stack_entry := false
3. if S.height = e.height then
4. sn := *S.top() {sn pops the top entry in the stack to sn}
5. else
6. sn.id := id
7. sn.height := e.height
8. end if
9. K := set of tokens in node e

10. for all k ∈ K do
11. terms := {k, ::k, `::k} {possible terms containing k}
12. for all t ∈ terms do
13. Q := query_index[t] {Q get queries of the term t}
14. if Q 6= ∅ then
15. new_stack_entry := true
16. G[t] := id
17. sn.used_queries.add(Q)
18. sn.matched_terms = sn.matched_terms + 1
19. end if
20. end for
21. end for
22. if new_stack_entry then
23. S.push(sn) {create new stack entry}
24. end if

used_query set of the sn entry (Line 11). It also adds id to the global hash table G,
marking the corresponding node as a query term occurrence for ` or `:: terms (Line 12).
Finally, it also records in the sn.matching_terms field that the ` or `:: term occurred in
node e (Line 13). Upon closing this node, SLCAStream.End only evaluates the queries
whose number of terms is less than or equal to this field (Line 13). This constitutes
our second optimization technique, which improves response time.

SLCAStream.Text processes tokens found in the text of the node e being pro-
cessed. Differently from SLCAStream.Start, it considers all possible terms containing
text tokens, which are k, ::k, and `::k, being ` the label of node e (Line 11) and k a
text token. Like SLCAStream.Start, SLCAStream.Text only pushes entries down the
stack if necessary. It only pushes node e down the stack if its corresponding entry sn
is not on the stack top. If node e is the top node, sn references it (Line 4). Otherwise,
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Algorithm 10 SLCAStream.End Callback Function
Callback Function SLCAStream.End
Input: The parsing stack S
Input: The XML node e that is ending

1. if S.height = e.height then
2. sn := S.pop() {pops the top entry in the stack to sn}
3. id := sn.id
4. ` := sn.label
5. for all q ∈ sn.used_queries do
6. if sn.matched_terms ≥ q.terms.size() then
7. COMPLETE := true
8. for all t ∈ q.terms do
9. if id < G[t] then

10. COMPLETE:=false
11. break
12. end if
13. end for
14. if COMPLETE then
15. {checks if id is an SLCA result}
16. if id > q.last_result_id then
17. q.results.add(sn)
18. q.last_result_id := id
19. end if
20. end if
21. end if
22. end for
23. tn := *S.top() {tn points to the top entry in the current stack}
24. if (sn.height - tn.height) = 1 then
25. tn.used_queries.add(sn.used_queries)
26. tn.matched_terms = tn.matched_terms + sn.matched_terms
27. else
28. sn.height = sn.height - 1
29. sn.id = node_path[e.height-1].id
30. S.push(sn)
31. end if
32. end if

SLCAStream.Text initializes the stack entry sn (Lines 6 and 7), which is pushed into
S (Line 23) if the possible terms match a query. SLCAStream.Text knows that e is on
the top when the stack height equals S height (Line 3).

SLCAStream.Text pushes only the necessary entries to the stack, i.e., only those
nodes e whose entry sn is not on the stack top. In addition, such nodes must have
queries to be evaluated. Furthermore, SLCAStream.Text inserts the id of a node e in
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the global hash table G for term t if e matches t (Line 16). It also stores the queries
that match e (Line 17) on the top entry sn and updates the number of terms that
match any query (Line 18).

Finally, SLCAStream.End evaluates which nodes or their descendants match the
submitted queries, following the SLCA semantics. For this, it only pops the stack
top entry sn, if sn corresponds to node e (Line 2). After that, SLCAStream.End only
evaluates queries stored in the used_queries set whose number of terms is less than or
equal to the sn.matched_terms value (Line 6). This value corresponds to the number of
occurrences of query terms in e or its descendants. For the current query q, if this value
is less than the number of q terms, it means that e has insufficient contributing nodes
to satisfy q. Otherwise, SLCAStream.End evaluates whether e or its descendants have
occurrences for all q terms (Lines 8 to 13). If e satisfies Q completely, SLCAStream.End
must evaluate whether it is an SLCA node. In addition, according to Property 2, to
be considered SLCA, e must have its id greater than the previous SLCA node id for q
(Line 16). If e is an SLCA node, SLCAStream.End adds it to its result list (Line 17)
and records its id as the last SLCA result id (Line 18). At this point, SLCAStream
parsing stack stores the nodes that require being evaluated up to the root node. Thus,
SLCAStream.End must update the parsing stack correctly. If the new top node tn
is parent of sn (Line 24), SLCAStream.End adds sn queries to tn (Line 25) and also
adds the number of matching terms up to sn (Line 26). If tn is not the parent of sn,
sn is pushed to the stack again (Line 30). In this case, sn becomes the previous node
from e. However, its id and height must be changed. SLCAStream.End decreases sn
height by 1 (Line 28) and updates its id to the previous id (Line 29) by using the
array node_path. This array maintains all nodes on the path from e to the root and
is updated by SLCAStream.Start and SLCAStream.Text functions.

4.3 Experimental Evaluation

Similar to the performance evaluation conducted in Chapter 3, SLCAStream is exper-
imentally evaluated in terms of processing time and memory space. The experiments
compare SLCAStream with MKStream in its five-stack configuration, which outper-
formed the stated-of-the-art algorithms as shown in Chapter 3. Thus, the experiments
confront the LCA stream processing property strategy of SLCAStream with the bitmap
processing strategy of MKStream.

Like in Chapter 3, we performed three experiments with streams containing doc-
uments from real XML datasets, each one focusing on a different aspect. The first
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Avg. Num. of Avg. Avg. Avg.
Dataset Docs Height # Elem. Nodes Objects Size

SIGMODR 18 7 13 1697 167 58 KB
XMARK 3 5 74 10312 5515 280 KB
ISFDB 10 2 11 41637 4110 1.3 MB

Table 4.1. Details of the datasets used for the experiments.

experiment analyzes the impact of increasing the number of pure keyword queries.
The second experiment analyzes the algorithm performance by using structural key-
word queries. The third experiment evaluates SLCAStream scalability by varying the
number of query terms. All experiments also exclude the time spent for creating the
query indexes. For memory usage, we also consider the average memory used during
XML document processing, including the memory used by index structures.

4.3.1 Setup

In this section, we describe the experimental evaluation, its datasets, queries and
metrics. All algorithms used in this evaluation were implemented in Java using the
SAX API from Xerces Java Parser. The query indexes and other data structures were
kept entirely in memory. All experiments were performed in an Intel 1.8 GHz Core i7
computer with 4 GB of memory.

Dataset. Similar to Chapter 3, we also used the SIGMOD and ISFDB datasets but
we replaced the ICDE dataset by XMARK because the ICDE and SIGMOD datasets
have similar sizes. In addition, the accuracy evaluation, presented in this chapter, is
based on the XMARK dataset. Table 4.1 presents the dataset details. According to
this table, XMARK contains more objects than the other two datasets. Note that the
datasets have different sizes.

Queries. We used the same random queries generated from the SIGMOD and
ISFDB datasets for the experimental evaluation in Chapter 3. However, we replaced
the ICDE queries used in that chapter by XMARK queries, which were also randomly
generated according to the three specific experiments.

Metrics. Similar to Chapter 3, we measured, for each dataset and experiment,
the time spent for processing all XML documents on a given stream. We also excluded
the time spent to create the query indexes. Regarding memory consumption, we
measured the average memory usage while processing each XML document.
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4.3.2 Results

4.3.2.1 Varying the Number of Queries

The first experiment aims at analyzing the time response as the number of keyword-
based queries increases. It considers random queries, each one with up to four terms.
Each query term is of the form ::k.

Figure 4.2 (left) compares time spent by SLCAStream and MKStream with five
stacks, over each dataset. The time curves show a clear SLCAStream advantage in the
three datasets due to a more efficient SLCA semantics implementation since it requires
no bitmap, reduces stack operations and evaluates only plausible queries.

Regarding memory consumption, Figure 4.2 (right) shows that SLCAStream
saves more memory when compared with MKStream since it requires no bitmap and
reduces stack memory usage. Although MKStream reduces stack operations and, con-
sequently, memory usage, SLCAStream further reduces memory usage since it only
keeps the nodes requiring evaluation.

4.3.2.2 Searching with Structural Constraints

The second experiment analyzes the impact of using structural terms, such as `::k. The
experiment considers 50,000 queries with 5 query terms each and varies the number of
structural query terms from 0 to 3. Queries containing 1, 2 or 3 structural terms are
always evaluated because at least one of their terms match some of the labels in the
documents. Thus, all 50,000 queries containing 1, 2 or 3 structural terms are evaluated,
representing the worst case scenario.

Notice that MKStream usually processes multiple stacks, thus evaluating fewer
queries than SLCAStream. However, as presented in Figure 4.3 (left), SLCAStream
has a significant performance gain, because it requires no bitmap operations, reduces
further stack operations and evaluates only plausible queries.

Regarding memory usage, Figure 4.3 (right) shows that SLCAStream saves
slightly more memory for the same reasons pointed out in the previous experiment.

4.3.2.3 Varying the Number of Terms

This experiment evaluates the scalability of MKStream (in its five-stack configuration)
and SLCAStream by increasing the number of distinct terms in the queries. It analyzes
the impact of using 2, 4 and 6 terms in queries of the form ::k.

Figure 4.4 presents MKStream (left) and SLCAStream (right) response times.
As expected, increasing the number of terms affects the performance of the algorithms.
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Figure 4.2. First performance experiment: response time (left) and memory
usage (right) for MKStream (5 stacks) and SLCAStream in the three datasets.

However, SLCAStream performs faster than MKStream (left graph) in all datasets due
to its optimization techniques and absence of bitmap processing.

Regarding memory usage, Figure 4.5 (right) shows that SLCAStream uses slightly
less memory. As mentioned in the previous experiment, this memory saving is due to
not using bitmap structures and keeping a reduced number of stack entries.
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Figure 4.3. Second performance experiment: response time (left) and memory
usage (right) for MKStream (5 stacks) and SLCAStream in the three datasets.

4.3.2.4 Remarks

The experiment results indicate that SLCAStream improves response time significantly
when compared with MKStream, since it requires no bitmap operations, further reduces
stack entries and evaluates only plausible queries. For the same reasons, SLCAStream
spends less memory than MKStream.

In conclusion, SLCAStream offers the best compromise between performance and
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Figure 4.4. Third performance experiment: response time for MKStream (5
stacks) (left) and SLCAStream (right) algorithms in the three datasets.

memory usage. Particularly, it uses optimization techniques and explores a new strat-
egy for SLCA evaluation that avoids the usual bitmap processing. These techniques
and the new SLCA evaluation strategy improve SLCAStream overall performance.
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Figure 4.5. Third performance experiment: memory usage for MKStream (5
stacks) (left) and SLCAStream (right) algorithms in the three datasets.



Chapter 5

ELCA Algorithms

This chapter presents the algorithms ELCABStream and ELCAStream for process-
ing multiple keyword-based queries over XML streams. Both are based on the ELCA
(Exclusive LCA) semantics [Guo et al., 2003]. ELCABStream is a basic ELCA imple-
mentation obtained from MKStream. However, it uses a single bitmap and a single
parsing stack for query evaluation. ELCAStream enhances ELCABStream by using
LCA stream processing properties instead of bitmaps for query evaluation. This chap-
ter also compares both algorithms though an experimental evaluation concerning re-
sponse time and memory usage.

This chapter is organized as follows. Section 5.1 presents the stream process-
ing properties based on the LCA semantics that identify ELCA results without using
traditional bitmaps. Section 5.2 presents the algorithms ELCABStream and ELCAS-
tream, their data structures and callback functions. Then, Section 5.3 presents the
experimental evaluation which compares both algorithms and two baselines in terms
of response time and memory usage.

5.1 ELCA Stream Processing Properties

In Section 4.1, we defined the SLCA semantics by means of LCA stream processing
properties. Likewise, the ELCA semantics can also be defined by similar properties.
Next, we define the ELCA semantics and its corresponding stream processing prop-
erties. Although we discuss these properties considering a single query, they equally
apply to multiple queries.

Definition 3. Given a set of LCA nodes returned as the result of a query q on an
XML document d, the corresponding ELCA nodes are those LCA nodes that contain,

71
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directly or indirectly, at least one occurrence of each query term as their own node, i.e.,
all LCA descendent nodes that also match the query terms are disconsidered.

As an example, consider the subtree rooted at node book5 in the XML document
in Figure 4.1 and the query q={title, author}. The LCA nodes for query q are chapter7
and book5 since their descendant labels match the keywords title and author. Following
this LCA example, the ELCA nodes are chapter7, which satisfies both query terms and
has no descendants, and book5, which, excluding its LCA descendant subtree chapter7,
also satisfies the query terms. Notice that chapter7 is also SLCA because it contains
no LCA descendants. Node Bib1, on the other hand, is not an ELCA node because it
does not contain any occurrence of the query terms as its own nodes.

In practice, the ELCA semantics subsumes SLCA, which means that it includes as
part of a query result all SLCA nodes that match the query terms. Thus, we start iden-
tifying ELCA nodes by identifying SLCA nodes, which are also LCA nodes. Notice that
only ELCA handles the ambiguity that might exist among keywords [Bao et al., 2009].
As a consequence, ELCA is more comprehensive than SLCA, thus producing more
query results. This makes ELCA a more appropriate semantics than SLCA when
querying an XML document that contains the same content at different levels. For
example, in Figure 4.1, title occurs as book child and chapter child.

Property 3. Let q be a query consisting of the set of terms {t1, t2, . . . , tn} and IdList[ti]
(ti ∈ q) be the id list of nodes where ti occurs in LCA descendants of node v. For each
term ti, if there is at least one node u, where u is a v descendant or equal to v, that
satisfies ti and idu does not occur in IdList[ti], then v is an ELCA node.

According to Property 3, v is an ELCA node for a query q if it has at least
one occurrence of each query term, excluding all query term occurrences of its LCA
descendants. As an ELCA node, v has LCA descendants that are SLCA nodes. Notice
that idv is less than or equal to idu and less than idp, where idp ∈ IdList[ti] (ti ∈ q). As
an example of Property 3, consider v=book5. When closing this node, its descendants
that satisfy the query terms are respectively title6 and author10. Notice that these two
nodes do not occur in node chapter7, which is an LCA descendant of book5. Thus,
book5 is an ELCA node.

5.2 Proposed Algorithms

The ELCABStream and ELCAStream algorithms evaluate multiple keyword-based
queries over XML streams and are completely based on Property 3. In other words,
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both algorithms consider a node v an ELCA result if v has at least one occurrence for
each query term, excluding term occurrences that contribute to its LCA descendant
nodes.

As already mentioned, SLCA nodes are also ELCA nodes. Thus, ELCABStream
and ELCAStream begin an ELCA node evaluation by processing SLCA nodes. Specif-
ically, they identify part of the ELCA nodes by using SLCA processing strategies. The
remaining ELCA nodes are identified by applying the ELCA stream processing prop-
erties (e.g., Property 3). Thus, both algorithms use SLCA processing strategies and
ELCA stream processing properties.

Specifically, ELCABStream extends MKStream. However, it uses only a single
parsing stack, while MKStream may use multiple stacks. Since ELCABStream uses
a bitmap processing strategy, we consider it as a baseline for the ELCA semantics.
On the other hand, ELCAStream extends SLCAStream by applying the ELCA stream
processing properties, which avoids using bitmap processing strategies. In addition, it
incorporates SLCAStream optimization techniques.

5.2.1 Data Structures

5.2.1.1 Parsing Stack

Like other algorithms, ELCABStream and ELCAStream use a parsing stack S for
keeping the XML nodes open during the SAX parser. Each entry is popped from the
stack when its corresponding node and all its descendants have been visited. However,
in contrast to ELCABStream, ELCAStream eliminates the query_bitmap used by the
parsing stack S since it evaluates SLCA semantics based on LCA stream processing
properties. ELCAStream also eliminates the bitmap CAN_BE_SLCA used by ELCAB-
Stream. Thus, in ELCAStream, each S entry keeps the same information contained in
the SLCAStream parsing stack, presented in Section 4.2.1.1. This information includes
the XML node label and the used_queries set. ELCAStream, however, also includes
the matched_terms field, which is used in one of two optimization techniques.

5.2.1.2 Query Index

Like MKStream, in ELCABStream the query_index structure stores the position of the
bit corresponding to query terms in query_bitmap. ELCABStream also uses the index
auxiliary_index to speed up the search for queries that contain a certain query term.
Similar to MKStream, the auxiliary_index in ELCABStream is implemented using an
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inverted list where each index entry represents a query term and refers to the queries
in which this term occurs.

Similar to BStream, ELCAStream uses its query_index only to look for queries
matching text elements or labels since this avoids the use of bitmaps. In this index,
each entry represents a query term and refers to queries in which this term occurs.

5.2.1.3 Inverted Lists

As shown in Section 5.1, by knowing only the nodes where the query terms occur, it is
possible to establish if a candidate node is ELCA. For this, ELCABStream and ELCAS-
tream require inverted lists on query term occurrences during a document processing.
Specifically, they use two types of inverted list. The first one is the global inverted
list G. Its entries represent the query terms that match the processed nodes and its
values correspond to the id of such nodes. For instance, consider the XML document in
Figure 4.1 and the query q={title, author}. When processing the node title8, the title
inverted list is G[title]={3, 6, 8} and the author inverted list is G[author]={4}. Notice
that ELCABStream and ELCAStream replace the hash table G used by SLCAStream
(see Section 4.2.1.3) by the inverted list G, since ELCA evaluation requires all ids that
correspond to nodes that satisfy query term occurrences, not only the last ones.

The second type of inverted list is built for each query q={t1, t2, . . . , tn}, where
q ∈ Q, being Q the set of all queries. The q inverted list entries represent the q
terms t1, t2, . . . , tn and its values correspond to node ids that match q up to the node
being processed that contributes to an LCA result. Following our example, after clos-
ing chapter7, the q inverted list for title is q[title]={3, 8} since these values corre-
spond respectively to nodes that contribute to book2 and chapter7 SLCA results, which
are also LCA results for q. When closing chapter7, the q inverted list for author is
q[author]={4, 9}. Similarly, considering the author term, these values correspond to
nodes that contribute to book2 and chapter7 SLCA results, which are also LCA results
for q.

5.2.2 Using Inverted Lists to Identify ELCA Nodes

For most ELCA node evaluations, Property 3 can be directly assessed by using the
global and query term inverted lists. However, we can start evaluating an ELCA
node by using a faster and more practical strategy, i.e., by starting with SLCA nodes,
which are also ELCA nodes. For this reason, ELCABStream and ELCAStream use
the SLCA evaluation strategies of MKStream and SLCAStream respectively. Before
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presenting ELCABStream and ELCAStream, we describe how they use the inverted
lists to evaluate ELCA nodes.

The inverted lists keep the node id values in ascendent order as they are added
to them. Such a feature provides an essential property for evaluating ELCA nodes.
Using the global inverted list G and applying Property 1 (see Section 4.1) it is possible
to identify the node occurrences for a term t that are descendant nodes of the v node
being closed (all descendant nodes have already been closed). Thus, a search in G[t]
inverted list for id values greater than or equal to v’s id results in id values of nodes
containing the term t. For instance, consider the document in Figure 4.1 and the query
q={title, author}. When closing book5 (id=5), a search for title occurrences in G[title]
results in the set of nodes {6, 8}. Likewise, a search for author occurrences in G[author]
results in the set of nodes {9, 10}.

The q inverted list makes possible to identify the LCA contributing nodes for
term t, which are descendant nodes of the v node being closed. For instance, when
closing book5, a search for title in the q inverted list returns the set of nodes {8} and
for author, the set of nodes {9}.

Finally, by comparing the results, we conclude that book5 is an ELCA node since
{6} and {10} satisfy q and they do not occur as LCA contributing nodes of book5
descendants.

5.2.3 ELCABStream

The ELCABStream algorithm consists of three callback functions, each one related to
a distinct event. Function ELCABStream.Start handles starElement events, ELCAB-
Stream.Text handles characters events and ELCABStream.End handles endElement
events. These functions are described by Algorithms 11, 12 and 13 respectively.

Initially, ELCABStream.Start generates the id value for node e (Line 1) and sets
the label (Line 2) and id of the new stack entry sn (Line 3), which corresponds to node
e. After that, the function sets CAN_BE_SLCA (Line 5) and query_bitmap (Line 8)
for all queries and pushes the entry sn into S (Line 9). ELCABStream.Start obtains
the queries that contain ` or `:: terms in auxiliary_index (Line 12). It also adds id to
the global inverted list G, recording the e node id as a query term occurrence for ` or
`:: terms (Line 14). ELCABStream.Start also sets to true the bit at position i that
corresponds to ` or `:: terms in query_bitmap (Line 16). Finally, all queries containing
` or `:: terms are added to the used_queries set (Line 17) for evaluation at node e
closing.

ELCABStream.Text processes tokens found in the text of node e. Its points
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Algorithm 11 ELCABStream.Start Callback Function
Callback Function ELCABStream.Start
Input: The parsing stack S
Input: The XML node e being processed
Input: The node identification id for node e

1. id := id + 1 {next id for the new node}
2. ` := label(e)
3. sn.id := id
4. for all qi ∈ queries being processed do
5. sn.CAN_BE_SLCA[qi]:= true
6. end for
7. N := number of distinct terms in all queries being processed
8. sn.query_bitmap[0, . . . , N-1] := false
9. S.push(sn) {create new stack entry}

10. terms := {`, `::}
11. for all t ∈ terms do
12. Q := auxilary_index[t] {Q get queries of the term t}
13. if Q 6= ∅ then
14. G[t].add(id) {G is a hash table for the last node id that satisfies t}
15. i := query_index[t].asLabel {i gets the position of term j}
16. sn.query_bitmap[i] := true
17. sn.used_queries.add(Q)
18. end if
19. end for

to S top entry, whose bitmap query_bitmap will record the token occurrences in the
corresponding query term bits (Line 2). Henceforth, this callback function proceeds
similarly to ELCABStream.Start. However, it considers all possible terms, k, ::k, `::k,
containing text tokens, being ` the e node label (Line 5).

Finally, function ELCABStream.End evaluates which nodes or their descendants
match the queries. This function pops the stack top entry corresponding to the node
being closed (Line 1). As ELCABStream.End performs some operations on the new
stack entry tn, it creates a reference to it (Line 2). ELCABStream.End also retrieves the
queries from the used_queries set for ELCA evaluation (Line 3). For each query q, this
function verifies if the corresponding query bits in query_bitmap are complete (Line 6).
If complete, ELCABStream.End also evaluates if Endsn can be SLCA for q (Line 7). If
so, this node is a q result (Line 8). The SLCA node sn is also ELCA and LCA. Thereby,
ELCABStream.End adds to the inverted lists q all node id values that match q terms,
thus contributing to the result sn (Lines 9 to 11). In addition, ELCABStream.End
defines the sn ancestor (previous entry in the parsing stack S) as a non-SLCA node
of q (Line 12). If the sn entry bitmap is complete for q but it is a non-SLCA node, it
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Algorithm 12 ELCABStream.Text Callback Function
Callback Function ELCABStream.Text
Input: The parsing stack S
Input: The XML node e being processed

1. ` := label(e)
2. sn := *S.top() {sn points to the top entry in the stack}
3. K := set of tokens in node e
4. for all k ∈ text do
5. terms := {k, ::k, `::k}
6. for all t ∈ terms do
7. Q := auxiliary_index[t] {Q get queries of the term t}
8. if Q 6= ∅ then
9. G[t].add(sn.id) {G is a hash table for the last node id that satisfies t}

10. i := query_index[t] {i gets the position of term t in the bitmap}
11. sn.query_bitmap[i] := true
12. sn.used_queries.add(Q)
13. end if
14. end for
15. end for

can be ELCA. Thus, ELCABStream.End verifies if sn has its own contributors for all
q terms (Lines 16 to 24). Specifically, ELCABStream.End creates temporary, empty
id inverted lists (IdList) for the q terms (Line 15). These lists records the id values in
G greater than or equal to sn.id (Line 17). Additionally, ELCABStream.End removes
from id lists all ids of LCA contributing nodes which are sn descendants. That means
removing from these lists all id values greater than or equal to sn.id for the q terms1.
If any id is empty, node sn is a non-ELCA. At the end, the id list contains a new q

LCA contributor, which are added to its q inverted lists (Line 22). If all id lists have
values, sn is an ELCA node (Line 26). In addition, ELCABStream.End defines the sn
ancestor as a non-SLCA of q (Line 27). Finally, ELCABStream.End adds all queries
from the sn used_queries set to the tn used_queries set (Line 32).

As ELCABStream.End uses bitmap structures for SLCA evaluations, it also prop-
agates the true bits to the tn entry, which is an sn ancestor. It propagates these bits
using an or operation between tn and sn bitmaps (Line 33). Moreover, it propagates
sn CAN_BE_SLCA bitmap to tn CAN_BE_SLCA bitmap since non-SLCA nodes in
sn also are non-SLCA nodes in tn. It propagates these bits by using an or operation
between tn and sn bitmaps (Line 34).

1Searching for id values is easily done by binary searches as all inverted lists are naturally ordered.
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Algorithm 13 ELCABStream.End Callback Function
Callback Function ELCABStream.End
Input: The parsing stack S and The XML node e that is ending

1. sn := S.pop() {pops the top entry in the stack to sn}
2. tn := *S.top() {tn points to the top entry in the stack}
3. for all q ∈ sn.used_queries do
4. let {j1, . . . , jN}) be the positions of the bits corresponding to terms from query

q in query_bitmap
5. COMPLETE := sn.query_bitmap[j1] and . . .and sn.query_bitmap[jN ]
6. if COMPLETE then
7. if sn.CAN_BE_SLCA[q] then
8. q.results.add(sn)
9. for all t ∈ q.terms do

10. q[t].add({id1, . . ., idk}), where idi (1 ≤ i ≤ k) ∈ G[t] and idi ≥ sn.id
11. end for
12. tn.CAN_BE_SLCA[q]:= false
13. else
14. can_be_ELCA := true
15. IdList[ q.terms[1], . . ., q.terms[q.terms.size()] ] := ∅
16. for all t ∈ q.terms do
17. IdList[t].add({id1,. . .,idk}), where idi (1 ≤ i ≤ k) ∈ G[t] and idi ≥ sn.id
18. IdList[t].remove({id1,. . .,idk}), where idi (1 ≤ i ≤ k) ∈ q[t] and idi ≥

sn.id
19. if IdList[t] = ∅ then
20. can_be_ELCA := false
21. else
22. q[t].add(IdList[t])
23. end if
24. end for
25. if can_be_ELCA then
26. q.results.add(sn)
27. tn.CAN_BE_SLCA[q]:= false
28. end if
29. end if
30. end if
31. end for
32. tn.used_queries.add(sn.used_queries)
33. tn.query_bitmap := tn.query_bitmap or tn.query_bitmap
34. tn.CAN_BE_SLCA:=tn.CAN_BE_SLCA and sn.CAN_BE_SLCA

5.2.4 ELCAStream

As mentioned before, ELCAStream is based on LCA stream processing properties for
query evaluation. In addition, ELCAStream includes the two optimization techniques
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Algorithm 14 ELCAStream.Start Callback Function
Callback Function ELCAStream.Start
Input: The parsing stack S
Input: The XML node e being processed
Input: The node identification id for node e

1. ` := label(e)
2. id := id + 1 {next id for the new node}
3. node_path[e.height].id=id
4. if query_index[`] 6= ∅ or query_index[`::] 6= ∅ then
5. sn.id := id
6. sn.height := e.height
7. terms := {`, `::}
8. for all t ∈ terms do
9. Q := query_index[t] {Q get queries of the term t}

10. if Q 6= ∅ then
11. sn.used_queries := sn.used_queries ∪ Q
12. G[t].add(id)
13. sn.matched_terms = sn.matched_terms + 1
14. end if
15. end for
16. S.push(sn) {create new stack entry}
17. end if

used by SLCAStream, which pushes entries to the stack only if necessary and only
evaluates plausible queries.

Similar to ELCABStream, ELCAStream consists of three callback functions, each
one corresponding to a distinct event. ELCAStream.Start and ELCAStream.Text func-
tions are equivalent to their counterparts SLCAStream.Start and SLCAStream.Text
respectively. However, they replace hash tables by inverted lists for correct ELCA eval-
uation. Specifically, ELCAStream.Start replaces the hash table in SLCAStream.Start
(Line 12 in Algorithm 8) by the global inverted list G (Line 12 in Algorithm 14).
Similarly, ELCAStream.Text replaces the hash table in SLCAStream.Text (Line 16 in
Algorithm 9) by the global inverted list G (Line 16 in Algorithm 15).

In contrast to ELCABStream, ELCAStream uses the matched_terms field to
evaluate plausible queries. Therefore, their functions ELCAStream.Start and ELCAS-
tream.Text include operations to update this field. Specifically, in Algorithm 14 (EL-
CAStream.Start) and Algorithm 15 (ELCAStream.Text), these operations are per-
formed in Lines 13 and 18, respectively.

Algorithm 16 describes the function ELCAStream.End, which pops up the stack
top entry sn, if sn corresponds to the node e being processed (Line 2) and evaluates
the queries stored in the used_queries set whose number of terms are less than or equal
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Algorithm 15 ELCAStream.Text Callback Function.
Callback Function ELCAStream.Text
Input: The parsing stack S
Input: The XML node e being processed
Input: The node identification id for node e

1. ` := label(e)
2. new_stack_entry := false
3. if S.height = e.height then
4. sn := *S.top() {sn pops the top entry in the stack to sn}
5. else
6. sn.id := id
7. sn.height := e.height
8. end if
9. K := set of tokens in node e

10. for all k ∈ K do
11. terms := {k, ::k, `::k} {possible terms containing k}
12. for all t ∈ terms do
13. Q := query_index[t] {Q get queries of the term t}
14. if Q 6= ∅ then
15. new_stack_entry := true
16. G[t].add(id)
17. sn.used_queries.add(Q)
18. sn.matched_terms = sn.matched_terms + 1
19. end if
20. end for
21. end for
22. if new_stack_entry then
23. S.push(sn) {create new stack entry}
24. end if

to sn.matched_terms value (Line 5). After this, ELCAStream.End tests if e or some
of its descendants have occurrences for all q terms (Lines 7 to 12). If e satisfies q
completely, ELCAStream.End tests if it is an SLCA node (Line 14). As an SLCA
node, e is also ELCA and LCA. Therefore, ELCAStream.End adds the id of e to the
result list (Line 15) and records it as the last SLCA result (Line 16). It also stores all
LCA contributors of e in the q inverted list (Line 18). Like ELCABStream.End, if e is
a non-SLCA node, ELCAStream.End verifies if it is an ELCA node (Lines 20 to 27).
This consists in finding at least one node that satisfies each query term t in e or one
of its descendants, excluding descendant nodes of e that contribute to LCA results of
q (Line 23)2. For each term t, ELCAStream.End searches for all nodes in the subtree
rooted by e that satisfies t (Line 17 in Algorithm 13) and that are not LCA contributing

2Repetition of the Lines 16 to 24 from ELCABStream.End.
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Algorithm 16 ELCAStream.End Callback Function.
Callback Function ELCAStream.End
Input: The parsing stack S and the XML node e that is ending

1. if S.height = e.height then
2. sn := S.pop() {pops the top entry in the stack to sn}
3. id := sn.id
4. for all q ∈ sn.used_queries do
5. if sn.matched_terms ≥ q.terms.size() then
6. COMPLETE := true
7. for all t ∈ q.terms do
8. if id < last(G[t]) then
9. COMPLETE:=false

10. break
11. end if
12. end for
13. if COMPLETE then
14. if id > q.last_result_id then
15. q.results := q.results ∪ { sn }
16. q.last_result_id := id
17. for all t ∈ q.terms do
18. q[t].add({id1, . . ., idk}), where idi (1 ≤ i ≤ k) ∈ G[t] and idi ≥ sn.id
19. end for
20. else
21. can_be_ELCA := true
22. IdList[ q.terms[1], . . ., q.terms[q.terms.size()] ] := ∅
23. {Repeat lines 16 to 24 from ELCABStream.End}
24. if can_be_ELCA then
25. q.results.add(sn)
26. end if
27. end if
28. end if
29. end if
30. end for
31. tn := *top(S) {tn points to the top entry in the stack}
32. if (sn.height - tn.height) = 1 then
33. tn.matched_terms = tn.matched_terms + sn.matched_terms
34. tn.used_queries = top.used_queries ∪ sn.used_queries
35. else
36. sn.height = sn.height - 1
37. sn.id = node_path[e.height-1].id
38. S.push(sn)
39. end if
40. end if
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nodes for t (Line 18 in Algorithm 13). If the search result is empty, e is not an ELCA
node for q (Line 20 in Algorithm 13). In addition, ELCAStream.End stores the result
nodes in the inverted list q[t] since they constitute new LCA contributing nodes for
t (Line 22 in Algorithm 13). If e is an ELCA node, ELCAStream.End adds it to the
result list (Line 25).

Finally, ELCAStream.End must update the parsing stack correctly. If the new
top node tn is parent of sn (Line 32), ELCAStream.End adds the number of matching
terms up to sn (Line 33) and also adds sn queries to tn (Line 34). If tn is not the parent
of sn, sn is pushed to the stack again (Line 38). In this case, sn becomes the previous
node from of e. However, its id and height must be changed. ELCAStream.End
decreases sn height by 1 (Line 36) and updates its id to the previous id by using the
array node_path (Line 37). This array maintains all nodes on the path from e to the
root and is updated by ELCAStream.Start and ELCAStream.Text functions.

5.3 Experimental Evaluation

5.3.1 Setup

In this section, we describe the experimental evaluation and its datasets, queries and
metrics. In this evaluation, all algorithms were implemented in Java using the SAX
API from Xerces Java Parser. The query indexes and other data structures were kept
entirely in memory. In this evaluation, all experiments were performed in an Intel 1.8
GHz Core i7 computer with 4 GB of memory.

Dataset. Similar to SLCAStream, ELCABStream and ELCAStream are eval-
uated in terms of processing time and memory space. Like in Section 4.3, the
experiments consist of processing XML document streams against a set of multiple
queries over the SIGMOD, XMARK and ISFDB datasets. The average size of these
datasets are 58 KB, 280 KB and 1.3 MB, respectively. Notice that these datasets have
different orders of magnitude. Table 4.1 presents details of these three datasets. As
already mentioned, according to this table, SIGMODR has the deepest documents.
ISFDB has flat documents, while its dataset has the largest XML documents. XMARK
contains more objects than the other two datasets. We considered each different XML
node path as an object.

Queries. We used the same random queries generated from SIGMOD, XMARK and
ISFDB datasets for the experimental evaluation described in Chapter 4.
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Metrics. Similar to Chapter 4, we measured, for each dataset and experiment,
the time spent for processing all XML documents on a given stream. We also excluded
the time spent to create the query indexes. Regarding memory consumption, we
measured the average memory usage while processing each XML document.

Performance Evaluation. Similar to the SLCAStream experiments (Section 4.3),
we performed three experiments with streams containing documents from real XML
datasets, each experiment focusing on a different aspect. The first experiment analyzes
the impact of increasing the number of queries. These queries include only pure
keywords. The second experiment analyzes how structural terms impact the results of
keyword-based queries. The third experiment evaluates how our algorithms scale with
the number of distinct terms in the queries. All experiments exclude the time spent
for creating the query indexes, which occurs before query processing starts. When
measuring memory usage, we considered the average memory used while processing
each XML document, including memory used by all index structures.

5.3.2 Results

5.3.2.1 Varying the Number of Queries

This first experiment aims at analyzing the time response with an increasing number
of keyword-based queries. It considers random queries, each one with up to four terms.
Each query term is of the form ::k.

Figure 5.1 (left) compares the time spent by ELCABStream and ELCAStream
over each dataset. The time curves show a clear advantage of ELCAStream over
ELCABStream on the three datasets, since it requires no bitmap and stack operations,
and evaluates only plausible queries.

Regarding memory consumption, Figure 5.1 (right) shows that ELCAStream
saves lightly more memory when compared to ELCABStream, since it requires no
bitmap and reduces stack memory usage.

5.3.2.2 Searching with Structural Constraints

The second experiment analyzes the impact of using structural terms, such as `::k. The
experiment considers 50, 000 queries with 5 query terms each and varies the number of
structural query terms from 0 to 3.



84 Chapter 5. ELCA Algorithms

 0

 1

 2

 3

 4

 5

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

P
ro

ce
ss

in
g
 T

im
e 

(s
ec

s)

Number of queries

Sigmod Stream 

ELCABStream
ELCAStream

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10000  20000  30000  40000  50000

M
em

o
ry

 u
sa

g
e 

(M
b
y
te

s)

Number of queries

SIGMOD Stream 

ELCABStream
ELCAStream

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

P
ro

ce
ss

in
g
 T

im
e 

(s
ec

s)

Number of queries

XMARK Stream 

ELCABStream
ELCAStream

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10000  20000  30000  40000  50000

M
em

o
ry

 u
sa

g
e 

(M
b
y
te

s)

Number of queries

XMARK Stream 

ELCABStream
ELCAStream

 0

 50

 100

 150

 200

 250

 300

 350

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

P
ro

ce
ss

in
g
 T

im
e 

(s
ec

s)

Number of queries

ISFDB Stream 

ELCABStream
ELCAStream

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10000  20000  30000  40000  50000

M
em

o
ry

 U
sa

g
e 

(M
b
y
te

s)

Number of Queries

ISFDB Stream

ELCABStream
ELCAStream

Figure 5.1. First performance experiment: response time (left) and memory
usage (right) for ELCABStream and ELCAStream in the three datasets.

Figure 5.2 (left) compares the time spent by ELCABStream and ELCAStream
over each dataset. These results also show a clear advantage of ELCAStream for the
same reasons pointed out in the previous experiment. In addition, this figure shows
that our algorithms perform worst in the ISFDB due to the large number of nodes
processed. Figure 5.2 (left) also shows a performance degradation when the number of
the structural terms increases. In this experiment, structural query terms are present
in each of the 50,000 queries to stress the algorithms’ performance, thus representing
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the worst scenario.

Regarding memory usage, Figure 5.2 (right) shows that SLCAStream saves
slightly more memory for the same reasons pointed out in the previous experiment.
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Figure 5.2. Second performance experiment: response time (left) and memory
usage (right) for ELCABStream and ELCAStream in the three datasets.
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Figure 5.3. Third performance experiment: response times for ELCABStream
(left) and ELCAStream (right) algorithms in the three datasets.

5.3.2.3 Varying the Number of Terms

This third experiment evaluates the scalability of our algorithms by increasing the
number of distinct terms in the queries. It analyzes the impact of using 2, 4 and 6

terms in queries of the form ::k. Figure 5.3 presents the results for ELCABStream and
ELCAStream on the left and right graphs respectively. As expected, increasing the
number of terms affects the performance of the algorithms. However, ELCAStream
is slightly better than its baseline, due to its optimization techniques and avoiding
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Figure 5.4. Third performance experiment: memory usage for ELCABStream
(left) and ELCAStream (right) algorithms in the three datasets.

bitmap processing.

Regarding memory usage, Figure 5.4 shows that ELCAStream has a performance
similar to ELCABStream. However, it consumes slightly less memory for not using
bitmap structures. Although ELCABStream and ELCAStream use inverted lists for
processing queries, which could significantly increase memory consumption when com-
pared to SLCAStream, we notice that this consumption is less than expected. Thus,
its implementation is feasible and causes no relevant impact in performance.
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5.3.2.4 Remarks

The experiment results indicate that ELCAStream improves ELCABStream response
time since it requires no bitmap operations, further reduces stack entries and evalu-
ates only plausible queries. However, the performance gains are relatively small since
ELCABStream and ELCAStream work with inverted lists, which consume most of the
processing time. Regarding memory, ELCAStream spends less memory than ELCAB-
Stream. Although ELCABStream and ELCAStream use inverted lists for processing
the queries, their implementations are feasible and cause no relevant impact in perfor-
mance. In conclusion, ELCAStream offers the best compromise between performance
and memory usage. Particularly, it uses optimization techniques and explores a new
approach for ELCA evaluation, avoiding the usual bitmap processing strategy, thus
improving its overall performance.



Chapter 6

Accuracy Evaluation and Ranking
Strategies

This chapter presents an accuracy evaluation concerning recall and precision of the
SLCA and ELCA semantics, both adopted by our algorithms for processing multiple
keyword-based queries. It also presents the algorithm LCARank and the strategies
SLCARank and StreamRank for ranking keyword-based query results. LCARank im-
plements a simple ranking strategy [Barros et al., 2010]. SLCARank is a fine-grained
ranking strategy. LCARank and SLCARank focus on ranking XML nodes returned
by a keyword query submitted against a single XML document. On the other hand,
the StreamRank strategy aims at ranking multiple query results obtained from a set
of streams defined by a time slot or specific number of documents.

Tian et al. [2011] reinforce the great interest in improving the result accuracy
of keyword-based query processing algorithms. However, these algorithms only pro-
cess stored XML documents and use stored auxiliary data structures. LCARank and
SLCARank are the first strategies to rank results when processing keyword-based
queries over XML streams and consider that users require the relevant nodes first.
Likewise, StreamRank considers that users require the most relevant nodes first for
a set of XML documents which comprise a sliding window, defined by a time slot or
specific number of documents.

This chapter is organized as follows. Section 6.1 presents the SLCA and ELCA
accuracy evaluation. Section 6.2 presents the LCARank algorithm and its accuracy
and performance evaluations. In addition, it presents the SLCARank and StreamRank
ranking strategies including its functioning and some examples.

89
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Avg. Num. of Avg. Num. Avg. Num.
Dataset Docs Avg. Height # Elem. Avg. Nodes Avg. Objects
XMARK 3 5 74 10312 5515

Table 6.1. Details of the XMARK dataset used in our accuracy experiments.

6.1 SCLA and ELCA Accuracy Evaluation

Our proposed algorithms are based on the SLCA and ELCA semantics, which are
the most popular LCA-based semantics. Specifically, SLCA returns the lowest
subtrees that satisfy all query terms. ELCA not only returns the lowest subtrees
but also addresses the ambiguity that might exist in XML data since the same
content can occur at different levels. Specifically, in this section we are interested
in evaluating the accuracy of both semantics in terms of recall and precision. We
evaluated the SLCA and ELCA semantics by comparing the results provided by
the SLCAStream and ELCAStream algorithms over the same XMARK dataset
that was used in the performance experiments of Chapters 4 and 5. This accuracy
evaluation was performed in an Intel 1.8 GHz Core i7 computer with 4 GB of memory.

Dataset. The XMARK dataset used in our accuracy evaluation has important
characteristics for our purposes, since its documents, which contain data about
auctions, present several elements and deep XML trees as showed in Table 6.1. The
average size of the documents in this XMARK dataset is 280 KB.

Queries. We used 15 keyword-based queries adapted from XPath queries spec-
ified for the XPathMark benchmark [Franceschet, 2005]. We considered XPath queries
in order to be able to provide a baseline for a consistent accuracy evaluation in terms
of recall and precision. In our context, given the result of a query, precision measures
the percentage of the resulting nodes that are relevant, whereas recall measures
the percentage of the relevant nodes that are present in the result. The following
list describes these 15 XPath queries and shows their corresponding keyword-based
versions according to the query language introduced in Chapter 3:

Q1: All items
XPath: /site/regions/*/item
Keywords: regions:: item::

Q2: Keywords in annotations of closed auctions
XPath: /site/closed_auctions/closed_auction/annotation/
description/parlist/listitem/text/keyword
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Keywords: list item:: text:: keyword::

Q3: All keywords
XPath: //keyword
Keywords: keyword::

Q4: Keywords in a paragraph item
XPath: /descendant-or-self::listitem/descendant-or-self::keyword
Keywords: listitem:: keyword::

Q5: Paragraph items containing a keyword
XPath: //keyword/ancestor::listitem
Keywords: keyword:: listitem::

Q6: Mails containing a keyword
XPath: //keyword/ancestor-or-self::mail
Keywords: keyword:: mail::

Q7: North or South American items
XPath: /site/regions/namerica/item | /site/regions/samerica/item
Keywords: namerica:: item:: samerica::

Q8: People having address and either phone or homepage
XPath: /site/people/person[address and (phone or homepage)]
Keywords: address:: phone:: homepage::

Q9: Initial and last bidder of all open auctions
XPath: /site/open_auctions/open_auction/bidder[position()=1 and position()=last()]
Keywords: bidder::

Q10: Items whose description contains ‘gold’
XPath: /site/regions/*/item[contains(description,‘gold’)]
Keywords: item:: description::gold

Q11: Mails sent on the 10th
XPath:/site/regions/*/item/mailbox/mail[substring-before(date,‘/’)=‘10’]
Keywords: mail:: date::10

Q12: Mails sent in 1998
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XPath:
/site/regions/*/item/mailbox/mail[substring-after(substring-after(date,‘/’),‘/’)=‘1998’]
Keywords: mail:: date::1998

Q13: Items with descriptions longer than 1000 characters
XPath: /site/regions/*/item[string-length(normalize-space(string(description)))>1000]
Keywords: item:: description::

Q14: People with both an email and a homepage
XPath: /site/people/person[boolean(emailaddress) = true() and not(boolean(homepage))
= false()]
Keywords: person:: emailaddress::

Q15: Person address longer than 30 characters
XPath: /site/people/person[string-
length(translate(concat(address/street,address/city,address/country, address/zipcode),"
","")) > 30]
Keywords: person:: address:: street:: city::

Results. Our evaluation used the set of nodes returned by the SAX parser for the
XPath queries to determine the relevance of the nodes returned for the keyword queries.
Thus, for calculating precision, if the nodes returned by SLCAStream and ELCAStream
were present in the set of relevant nodes or in the set of their ancestors, we considered
them relevant nodes. If a relevant node is a descendant of, or one of the nodes returned
by our algorithms, we considered the returned nodes for calculating recall. Table
6.2 presents precision and recall average figures for both algorithms considering each
processed query.

Looking at the results, several queries present low precision. This is mainly due
to the fact that some XPath queries can not be translated to our keyword-based query
language with exactly the same semantics. For example, queries Q9 and Q13 are very
selective (“Initial and last bidder of all open auctions” and “Items with descriptions
longer than 1000 characters”). Thus, when expressed in XPath they return few nodes.
On the other hand, their respective keyword versions are unable to express the same
restrictions and, therefore, return many more nodes. ELCAStream slightly improves
precision for queries Q2, Q4, Q5, Q6 and Q8. The terms (labels or keywords) in these
queries occur simultaneously in different points of the XMARK documents, such as
keyword, listitem, mail and text. Regarding recall, both algorithms returned 100%
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Query SLCAStream ELCAStream SLCAStream ELCAStream
precision precision recall recall

1 1.00 1.00 1.00 1.00
2 0.01 0.02 0.00 1.00
3 1.00 1.00 1.00 1.00
4 0.25 0.29 0.23 1.00
5 0.23 0.28 0.19 0.95
6 0.12 0.19 0.17 1.00
7 1.00 1.00 1.00 1.00
8 0.50 0.56 0.20 1.00
9 0.05 0.05 1.00 1.00
10 0.46 0.46 0.74 0.74
11 0.69 0.69 1.00 1.00
12 1.00 1.00 1.00 1.00
13 0.12 0.12 1.00 1.00
14 0.45 0.45 1.00 1.00
15 0.58 0.58 1.00 1.00

Average 0.46 0.47 0.65 0.93

Table 6.2. Average precision and recall for both algorithms.

of the relevant nodes for almost all queries. This was due to the semantics of these
algorithms that produces result sets that include more nodes than those for the XPath
queries. Queries Q2, Q4, Q5, Q6 and Q8 present a slightly precision gain over ELCAS-
tream. However, they present a significant recall gain when compared to SLCAStream.
This confirms that the ELCA semantics improves precision slightly and recall signifi-
cantly in relation to the SLCA semantics when the dataset involves keywords occurring
simultaneously in different points of the documents. In this experiment, the ELCA se-
mantics improves quality results up to 44% on average, when compared to the SLCA
semantics.

6.2 Ranking Algorithms and Strategies

Our first strategy for ranking keyword-based query results from XML streams is the
LCARank algorithm, which applies to a single XML document [Barros et al., 2010].
LCARank provides a simple, efficient and effective strategy for ranking XML result
nodes obtained by processing a single keyword-based query against a single XML doc-
ument. It combines the XRANK and SLCA search algorithms proposed by Vagena
and Moro [2008], and prioritizes SLCA nodes among other results. Considering that
LCARank is a simple ranking algorithm, it is important to propose a fine-grained rank-
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ing strategy for improving its results. Thus, we also present the SLCARank strategy
and discuss its functioning for future implementation. LCARank and SLCARank fo-
cus on ranking the XML nodes returned by a keyword query against a single XML
document. They can be used in large XML streams, such as scientific data stored
in large XML repositories and documents [Green et al., 2004]. However, both al-
gorithms would be more useful if applied to multiple query results obtained from
a set of streams, each one defined by a time slot or a specific number of docu-
ments [Li et al., 2007, Singh et al., 2008, Sourlas et al., 2009]. Thus, we also propose
the StreamRank strategy, which is applied in this situation.

6.2.1 LCARank Algorithm

As mentioned before, LCARank combines the XRANK and SLCA search algorithms for
XML streams proposed by Vagena and Moro [2008]. Their XRANK stream version is
based on a search algorithm for stored XML documents proposed by Guo et al. [2003],
called XRANK. According to Zhou et al. [2010], the original XRANK algorithm adopts
the ELCA semantics.

According to the XRANK algorithm, SLCA nodes and their ancestors, called
non-SLCA nodes, are among the ELCA result nodes. However, the XRANK algorithm
returns SLCA and non-SLCA results without prioritizing them. Hence, our algorithm
LCARank suggests a simple ranking strategy by combining the XRANK and SLCA
algorithms. This strategy delivers first SLCA nodes followed by non-SLCA ones. No-
tice that, only XRANK, which follows the ELCA semantics, specifically handles the
ambiguity that might exist among XML labels. This ambiguity has been identified
as a semantic problem in XML keyword-based queries [Bao et al., 2009]. Therefore,
by combining the XRANK and SLCA algorithms, we are able to handle any label
ambiguity that might exist in the XML tree. This way, because the SLCA algorithm
returns the smallest XML subtree results that present no keyword ambiguity, they are
returned first. The remaining non-SLCA results, generated exclusively by the XRANK
algorithm, are returned subsequently. This ranking strategy is the basis of LCARank.

In practice, LCARank works with two result lists, one for SLCA nodes and the
other for non-SLCA nodes. When LCARank identifies a result node as being SLCA,
the node must stay in the SLCA result list, otherwise it goes to the non-SLCA result
list. As its final result, LCARank returns the SLCA nodes first and then the non-SLCA
ones.
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Algorithm 17 General Single Query Procedure.
1. {Input: Set of Query Terms q}
2. { Stream of XML documents D}
3. {Output: Set of result XML nodes R}
4. R := ∅ {initialize result set}
5. {process each document d in D}
6. for d ∈ D do
7. S.clear() {initialize node stack}
8. R := R∪SAX_Parse(d, q, S,R) {merge new results with previous ones}
9. end for

10. return Rslca, Rnon_slca

Algorithm 18 LCARank.Start Callback Function.
1. {Input: Accessed Document Node n}
2. { Set of Query Terms q}
3. { Stack Node sn}
4. S.push(sn)
5. sn.label := n.label
6. sn.CAN_BE_SLCA := TRUE
7. sn.term_instances := ∅
8. if ∃ l:: ∈ q : l == n.label then
9. sn.term_instances(l::) := FOUND

10. else if ∃ k ∈ q : k == n.label then
11. sn.term_instances(k) := FOUND
12. end if

6.2.1.1 Callback Functions

The general operation of LCARank is described by Algorithm 17. It evaluates a query
q over a stream of documents D. It uses internally a global node stack S and a data
structure R, which contains two lists, Rslca and Rnon_slca. Each document in D is se-
quentially processed by a SAX parser (Line 8). Like our other proposed algorithms, the
SAX parser triggers the LCARank callback functions. However, LCARank processes
only one query per time over the XML stream. LCARank also adopts the keyword-
based query language presented in Section 3.2.

The callback functions LCARank.Start, LCARank.Text and LCARank.End are
described by Algorithms 18, 19 and 20, respectively. These functions access the global
node stack S, which maintains the opened nodes during the document processing. The
top entry of this stack maintains the most recent node being processed. Thus, each
stack entry corresponds to a node and includes its label and query term bitmap, whose
bits individually map each user query term.
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Algorithm 19 LCARank.Text Callback Funtion
1. {Input: Textual Content text}
2. { Node Stack S}
3. { Set of Query Terms q}
4. for word ∈ tokenize(text) do
5. if ∃ ::k ∈ q : k == word then
6. S.top().term_instances(::k) := FOUND
7. else if ∃ k ∈ q : k == word then
8. S.top().term_instances(k) := FOUND
9. else if ∃ l ::k ∈ q : (l == S.top().label AND k == word) then

10. S.top().term_instances(l::k) := FOUND
11. end if
12. end for

LCARank.Start pushes the current node into the stack (Line 4). It also verifies
if the current node label matches a keyword term of the form k or k:: (Lines 8 to 12).
In this case, the respective query term bit in the bitmap is set to 1 (Line 9 or 11).
For simplicity, we omit the code that handles XML attributes, as the corresponding
process is identical to visiting a leaf node.

LCARank.Text accesses the top node on the stack and verifies if its text tokens
match query terms of the form k, ::k or l::k (Lines 4 to 12). Similarly, the matched
query terms have their respective bits set to 1 in the current bitmap (Lines 6, 8 or 10).

Finally, LCARank.End finishes the current node and removes it from the node
stack (Line 3). If its bitmap has only 1′s, then that node satisfies all query terms and,
therefore, is a resulting SLCA or non-SLCA node (Lines 4 to 11). Otherwise, its 1′s

are copied to the node on the top of the stack, which is the parent of the popped node
from the XML tree (Lines 15 to 19). Function LCARank.End ranks the resulting nodes
by using the two lists Rslca and Rnon_slca which group SLCA results and non-SLCA
results respectively (Lines 5 to 9).

When LCARank.End finds a result node and its SLCA flag (CAN_BE_SLCA) is
set to TRUE (Line 5), this means that this node is an SLCA result (Line 6). According
to the SLCA semantics, its parent is therefore a non-SLCA node. Thus, LCARank.End
sets the SLCA flag of its XML parent node (the next on the stack top) to FALSE
(Line 10). Nodes with an incomplete bitmap and a FALSE SLCA flag have the SLCA
flags of their parent nodes set to FALSE (Lines 12 to 14). Every new visited node is
potentially an SLCA node, thus LCARank.Star always sets the new node’s SLCA flag
to TRUE (Line 6 in Algorithm 18).
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Algorithm 20 LCARank.End Callback Function.
1. {Input: Set of result XML nodes R}
2. {get the top node of the stack, which is being finalized}.
3. sn := s.pop()
4. if sn.term_instances == COMPLETE then
5. if sn.CAN_BE_SLCA == TRUE then
6. Rslca := Rslca∪{rn}
7. else
8. Rno_slca := Rno_slca∪{rn}
9. end if

10. S.top().CAN_BE_SLCA := FALSE
11. else
12. if sn.CAN_BE_SLCA == FALSE then
13. S.top().CAN_BE_SLCA := FALSE
14. end if
15. for tk ∈ sn.term_instances.keys do
16. if sn.term_instances(tk) == FOUND then
17. S.top().term_instances(tk) := FOUND
18. end if
19. end for
20. end if

6.2.1.2 Experiments

To evaluate the efficiency of our ranking strategy, we run the LCARank algorithm for
processing the keyword queries described in Section 6.1. As expected, LCARank im-
proves the original XRANK ranking algorithm as the internal SLCA nodes are always
returned before the non-SLCA ones. To demonstrate this improvement, we calculated
the normalized discounted cumulative gain (DCG) [Järvelin and Kekäläinen, 2002] be-
tween the XRANK and LCARank results, considering the LCARank ranking as ideal.
Particularly, DCG evaluates the ranking for a result list, summing up the document
relevance values in a result list. Each document in the result list has a relevance value
based on its position in the list. The premise behind DCG is that highly relevant
documents appearing lower in a result list should be penalized as the relevance value
is logarithmically reduced with respect to the position of the result. DCG is calcu-
lated using Equation 6.1, where p is a particular ranking position, reli is the relevance
weight for the document in the position p and rel1 is the relevance weight for the first
document.

DCGp = rel1 +

p∑
i=2

reli
log2 i

(6.1)



98 Chapter 6. Accuracy Evaluation and Ranking Strategies

Document Size (MB) Mean XRANK nDCG
0.12 0.98
0.21 0.95
0.47 0.96
0.91 0.96
1.89 0.97

Table 6.3. Mean Normalized DCG per Document

The comparison between the XRANK and LCARank results is clearly interpreted
if we use the normalized DGC, which is done assuming one of the algorithms as the one
that produces the ideal results. In this case, LCARank is that algorithm, since it returns
the smaller subtrees first. For a specific query, the normalized discounted cumulative
gain (nDCG) is calculated using Equation 6.2, where IDCGp is the LCARank DCG,
given as the ideal one.

nDCGp =
DCGp

IDCGp

(6.2)

In our context, we adapted the DCG metric to consider retrieved nodes from a
single XML document instead from a document list. For each query, we calculated its
DCG based on the retrieved nodes from a single XML document. As relevance weights
we used 1.0 for SLCA nodes, 0.5 for non-SCLA nodes and zero for irrelevant nodes.
Even if XRANK returned an SCLA node as a non-SLCA one, its relevance weight was
set to 1.0 in order to keep the results fair.

Table 6.3 presents the mean normalized DCG for the XRANK algorithm consid-
ering five XMARK documents, being three of them the some used in the first accuracy
study presented in Section 6.1. We included two more XMARK documents to provide
more data for our analysis. For all documents and regardless of their sizes, XRANK
accuracy is inferior to LCARank accuracy, considered in this experiment as the algo-
rithm that provides the ideal results, which means that LCARank DCG is equal to 1.0.
Thus, these results demonstrate that LCARank, despite its simple strategy, improves
the raking when compared to the original XRANK algorithm.

We also evaluate the LCARank performance. To do so, we compared its mean
elapsed time with that of the XRANK and SLCA algorithms. We processed the 15
keyword-based queries presented in Section 6.1 against the XMARK dataset and mea-
sured the mean elapsed time for each document. Notice that, for this experiment, the
XMARK dataset includes two additional documents that are larger than the ones used
in Section 6.1. Figure 6.1 presents the respective mean elapsed times, which involve
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Figure 6.1. Mean query time per document size

the parsing and matching processes. The results show that the XRANK, SLCA and
LCARank algorithms have similar response time, however only LCARank implements a
ranking strategy. These results are acceptable considering that typical XML streaming
applications manipulate small documents [Lenkov, 2003].

6.2.2 SLCARank Strategy

In this section, we propose a new SLCA ranking strategy, called SLCARank, which
prioritizes the shortest SLCA nodes in the query result. In the following, we describe
this strategy and discuss some examples.

6.2.2.1 Strategy Functioning

LCARank improves the original XRANK algorithm ranking since its internal SLCA
nodes always are returned before the non-SLCA nodes. However, its SLCA nodes are
returned without applying any ranking strategy. Therefore, we propose the SLCARank
strategy, a more fine-grained ranking strategy for SLCA nodes that are internally
returned by the LCARank algorithm. Basically, this strategy prioritizes the shortest
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subtrees in the result sets. Thus, the tallest nodes occupy the last positions in the
ranked result sets.

Our proposed ranking strategy is based on the TF-IDF term weighting
scheme [Salton and Buckley, 1988], borrowed from information retrieval. This ap-
proach normally relies on inverted lists built on the a whole set of documents. However,
when searching over streams, these indexing structures do not exist. The absence of
inverted lists prevent the use of IDF (Inverted Document Frequency) terms. These
terms inversely correlate a keyword frequency in the document with its frequency in
the whole set of documents. We adapted the TD-IDF scheme by considering a single
document instead of a set of documents. Initially, we use Equations 6.3 and 6.5 to
evaluate the ranking score for each returned SCLA node.

Score(r, q) =
k∑

i=1

weight(ti, r)

dist(r, ni)
(6.3)

weight(ti, r) = (1 + log fti,r) ∗ log
(
|V |
|Vti |

)
(6.4)

dist(r, ni) = hni
− hr + 1 (6.5)

In Equation 6.3, q is the set of term queries {t1, t2, t3, . . . , tk}, where k is the
number of query terms and r is an SLCA result node for q. As a ranking criterion, the
nodes with the highest ranking score are returned first. In Equation 6.4, fti,r is the
frequency of the query term ti in the node r, |V | is the number of nodes in the XML
document and |Vti | is the number of nodes that contain the term ti as their children
or descendants. The expression (1 + log fti,r) represents the TF component in the TF-
IDF scheme and log( |V |

|Vti
|) represents the IDF component. Equation 6.5 determines the

distance between the SLCA node r and the node ni, where the query term ti occurs.
Specifically, this distance is hni

− hr + 1, where hni
is the height of ni and hr is the

height of r in document tree. We add 1 to avoid zero, when hni
= hr.

6.2.2.2 Examples

In this subsection, we show the SLCARank effectiveness using two examples. The first
is the simplest one and refers to keywords occurring just once in the XML nodes. The
second shows that SLCARank also works well when a single query term occurs more
than once in a node or when all query terms occur in a single node.
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Figure 6.2. XML document with six books and two students

Example 1. Suppose a user submits the query q = {1980, art} to be processed by
LCARank against the XML document in Figure 6.2. The result will be the SLCA
nodes books&2, student&22 and student&25, in this order. However, student&22 and
student&25 subtrees are shorter than books&2. As shortest subtrees involve more signif-
icant results, student&22 and student&25 are returned first by the SLCARank strategy.

The keyword 1980 occurs once in each student node in Figure 6.2. Following
Equation 6.3, we have weight(1980,student)

dist(student,born)
= 0.20 for nodes student&22 and student&25 as

they have the same structure and similar content as shown in Figure 6.2. The Equation
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6.6 shows how this value is calculated.

weight(1980, student)

dist(student, born)
=

(1 + log f1980,student) ∗ log
(

|V |
|V1980|

)
dist(student, born)

(6.6)

=
(1 + log 1) ∗ log

(
|27|
|11|

)
2

=
(1 + 0) ∗ log 2.46

2

=
1 ∗ 0.39

2

= 0.20

The terms in Equation 6.6 are calculated as follows. The term frequency for key-
word 1980 is f1980,student = 1. The inverted frequency for keyword 1980 is log( |V |

|V1980|),
since the number of nodes in the XML document is |V | = 27 and the number of nodes
or its descendants containing the keyword 1980 is |V1980| = 11. Moreover, the dis-
tance between the student node and the leaf node born is dist(student, born) = 2,
since the keyword 1980 occurs once in the node born, child of student. Specifically,
the node born has hborn = 3 and the node student has hstudent = 2. As a result,
dist(student, born) = hborn − hstudent + 1 = 3− 2 + 1 = 2.

Similarly, we show in Equation 6.7 how the expression weight(art,student)
dist(student,interest)

is calcu-
lated for the keyword art in the node student. This equation considers the distance
between the nodes student and interest, in which the keyword art occurs.

weight(art, student)

dist(student, interest)
=

(1 + log fart,student) ∗ log
(

|V |
|Vart|

)
dist(student, interest)

(6.7)

=
(1 + log 1) ∗ log

(
|27|
|11|

)
2

=
(1 + 0) ∗ log 2.46

2

=
1 ∗ 0.39

2

= 0.20

The terms in Equation 6.7 are calculated as follows. The term frequency for the
keyword art is fart,student = 1, since this keyword occurs once in each node student. The
inverted frequency for the keyword art is log( |V |

|Vart|), where |V | = 27 and |Vart| = 11.
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Moreover, similar to keyword 1980, dist(student, interest) = 2, since the keyword art
occurs once in the node interest, child of student.

Having the values from Equations 6.6 and 6.7, we calculate the ranking score for
each node student using Equation 6.3, since nodes student&22 and student&25 have the
same structure and similar content. Following Equation 6.8, we have:

Score(student, {1980, art}) =
2∑

i=1

weight(ti, student)

dist(student, ni)
(6.8)

=
weight(1980, student)

dist(student, born)
+

weight(art, student)

dist(student, interest)

= 0.20 + 0.20

= 0.40

Example 1 also includes the node books&2 as its result, whose score value is
calculated following Equation 6.9:

Score(books&2, {1980, art}) =
2∑

i=1

weight(ti, books&2)

dist(books&2, ni)
(6.9)

=
weight(1980, books&2)

dist(books&2, year)
+
weight(art, books&2)

dist(books&2, title)

=
(1 + log tf1980,books&2

) ∗ log
(

|V |
|V1980|

)
dist(books&2, year)

+
(1 + log tfart,books&2

) ∗ log
(

|V |
|Vart|

)
dist(books&2, title)

=
(1 + log 2) ∗ log(27

11
)

3
+

(1 + log 2) ∗ log(27
11
)

3

=
2 ∗ (1 + 0.30) ∗ 0.39

3

=
1.0

3

= 0.33

The terms in Equation 6.9 have been calculated as follows. The term frequencies
for keywords 1980 and art are f1980,books&2

= 2 and fart,books&2
= 2 as they occur

two times in node books&2. The number of nodes or theirs descendants containing
each keyword are, respectively, |V1980| = 11 and |Vart| = 11. Finally, the distance
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Figure 6.3. XML document with six books and three students

between node books&2 and the node where the keyword occurs is dist(books, year) = 3

for keyword 1980 and dist(books, title) = 3 for keyword art, as their parent’s nodes
are grandchildren of books&2 node. Specifically, node year has hyear = 3, node title
has htitle = 3 and node books has hbooks&2

= 1. As a result, dist(books&2, born) =

hbooks&2
−hstudent+1 = 3−1+1 = 3. Similarly, dist(books&2, title) is calculated, which

value is also three.
According to the above calculated scores, the nodes student&22 and

student&25 are more relevant than books&2, since Score(student&22, {1980, art}) =

Score(student&25, {1980, art}) = 0.40 is greater than Score(books&2, {1980, art}) =

0.33. Thus, student&22 and student&25 will be ranked higher than books&2, differently
from the original LCARank implementation that first shows the node books&2 followed
by student&25.

Our SLCARank strategy also works well when a query term occurs more than
once in a node or all query keywords occur in a single node. To better illustrate each
case, we discuss next Example 2, which involves the same query q = {art, 1980} and
the XML document presented in Figure 6.3. Contrasting this document with that in
Example 1, we have node student&25 with two occurrences of the keyword art, and the
new node student&28, which includes a node interest, containing both keywords. The
other nodes remain the same.

Example 2. Consider the query q = {art, 1980} and the XML document in Figure



6.2. Ranking Algorithms and Strategies 105

6.3. The expected result according to the SLCARank strategy are the nodes interest&30,
student&25, student&22 and books&2, in this order. Node interest&30 comes first because
it includes both keyword occurrences in a single node and student&25 comes after since
it includes two occurrences of the keyword art. Thus, these two nodes are considered
more relevant than the other ones.

The difference between Examples 1 and 2 is how the term frequency varies for
the keyword art in some nodes. In Example 1, the term frequency fart,student&25

art = 1,
while in Example 2 fart,student&25

art = 2. This difference affects the weight of art in
student&25, as presented in Equation 6.10.

The other terms in Equation 6.10 are described as follows. The number of nodes in
the XML document is |V | = 30, the number of nodes that contain the keyword 1980 is
|V1980| = 14. Similarly, |Vart| = 14. Finally, the value of the distance function for nodes
student&25 and born&26, where the keyword 1980 occurs, is dist(student&25, born&26) =

2. For the keyword art, dist(student&25, interest&27) = 2.

Score(student&25, {1980, art}) =
2∑

i=1

weight(ti, student&25)

dist(student&25, ni)
(6.10)

=
weight(1980, student&25)

dist(student&25, born&26)
+

weight(art, student&25)

dist(student&25, interest&27)

=
(1 + log tf1980,student&25

) ∗ log
(

|V |
|V1980|

)
dist(student&25, born&26)

+
(1 + log tfart,student&25

) ∗ log
(

|V |
|Vart|

)
dist(student&25, interest&27)

=
(1 + log 1) ∗ log(30

14
)

2
+

(1 + log 2) ∗ log(30
14
)

2

=
(1 + 0) ∗ 0.36

2
+

(1 + 0.301) ∗ 0.36
2

=
0.36

2
+

0.47

2

= 0.18 + 0.24

= 0.42

Similarly, we evaluate the ranking score for nodes interest&30, student&22

and books&2, which are, respectively, Score(interest&30, {1980, art}) = 0.73,
Score(student&22, {1980, art}) = 0.36 and Score(books&2, {1980, art}) = 0.32. Ac-
cording to these values, the ranking order, as expected, is interest&30, student&25,
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student&22 and book&2.

The SLCARank strategy involves specific document information, such as the
number of nodes in an XML document, the term frequency in an LCA node, the
distance between LCA and matching nodes for each query keyword, and the number
of nodes containing a query term as its own or in its descendants. We propose to
obtain this information during the XML document traversal by using specific counters
for term occurrences and specific variables to store node heights.

6.2.3 StreamRank Strategy

StreamRank is a ranking strategy applicable to multiple query results obtained from
a set of streams defined by a time slot or a specific number of documents. In what
follows, we describe and discuss an example that presents this strategy.

Our strategy uses the resulting XML subtrees obtained from the SLCAStream
or ELCAStream algorithms. It calculates the TF-IDF similarity between documents
in streams and queries. The similarity between a query q and a document d expresses
the relevance of the document d for query q. The more similar the document d and
the query q are, the greater the relevance of d is. StreamRank strategy is based on
TF-IDF similarity and uses Equations 6.11 to 6.15. An important consideration is that
the TF-IDF similarity is calculated over a set of documents obtained in a time slot or
after a given number of sub-trees arrive. A time slot is defined by a time interval.
Both, this time interval and the number of resulting XML subtrees, are also known as
a stream sliding window [Li et al., 2007, Singh et al., 2008, Sourlas et al., 2009].

Wd,k = 1 + ln (fd,k) (6.11)

Wq,k = ln (1 +
N

fk
) (6.12)

Wq =

√∑
k∈q

W 2
q,k (6.13)

Wd =

√∑
k∈d

W 2
d,k (6.14)

ρ(q, d) =

∑
k∈q∩dWq,k ∗Wd,k

Wq ∗Wd

(6.15)

Equation 6.11 calculates the frequency of a keyword k in the document d, being
fd,k the term frequency (TF - Term Frequency). Equation 6.12 calculates the inverted
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frequency (IDF - Inverse Document Frequency) of keyword k, being N the number
of XML documents in a window and fk the number of documents containing k. The
logarithms in both equations normalize high values of fk and fd,k. Equations 6.13 and
6.14 define the normalization factors used in Equation 6.15 to calculate the TF-IDF
similarity between the document d and the query q, which contains all keywords k.
The relevance of the document d for query q is based on the similarity between d and
q.

In the following, we present an StreamRank example, which considers the query
q = {1980, art} and the XML documents in Figures 6.2 and 6.3.

Example 3. Consider an stream composed of the XML documents in Figures 6.2 and
6.3, which are processed in this order. Now, suppose that the SLCARank algorithm
processes the query q against these two documents. The results are the subtrees from
the first document (Figure 6.2), followed by the resulting subtrees from the second one
(Figure 6.3). However, considering the Equation 6.15, the TF-IDF similarity for the
first document is 0.26 and for the second is 0.30. Thus, the resulting subtrees from the
second document should be delivered first since it is the most relevant one, according
to TF-IDF similarity. Basically, this new order happens because the frequency of the
query q keywords in the second document is larger than in the first one. After returning
result nodes from the second document, StreamRank returns result nodes from the first
document.

The StreamRank ranking strategy involves several issues that should be addressed
in future work. Some of them include: (i) balance between the size of the document
windows and the effectiveness of the relevance ranking strategy adopted, (ii) accuracy
evaluation for ranked results of keyword queries processed over XML streams and (iii)
choice of an appropriate similarity model.





Chapter 7

Conclusions and Future Work

XML streams have become a relevant research topic due to the widespread use of
applications such as online news, RSS feeds and dissemination systems. Such streams
must be processed rapidly and without retention. Retaining streams could cause data
loss due to the large data traffic in continuous processing. This context becomes
more complex when thousands of queries must be processed simultaneously. Different
approaches explore simultaneous multiple query processing. However, they are based
on structured languages such as XPath and SQL, which require knowledge of their
syntax and the data schemas to formulate queries. Keyword-based languages are a
common approach to submit queries informally, because keyword-based queries require
minimal or no schema knowledge to formulate queries.

Recent work on XML querying has focused on efficient algorithms for processing
queries over XML streams [Wu and Theodoratos, 2012]. However, most of the algo-
rithms process one query at a time or consider only queries expressed by structured
languages. Thus, keyword-based query languages are natural alternative on such an en-
vironment, since they are more convenient for users to specify their information needs.
This results in other another emerging research topic which is related to dynamically
ranking XML nodes returned by keyword-based queries.

In this thesis, we addressed the problem of processing multiple keyword-based
queries over XML document streams. We proposed five algorithms for simultaneously
processing several keyword-based queries over XML streams. These new algorithms al-
low multiple users with disparate interests to define their profiles by specifying queries
informally since only minimal data schema knowledge is required. They adopt the two
most used LCA (lowest common ancestor) semantics for keyword-based query process-
ing over XML streams: SLCA (smallest LCA) and ELCA (exclusive LCA). Regarding
performance, we conducted a comprehensive set of experiments to demonstrate their
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behavior regarding memory usage and processing time.
For the SLCA semantics, we proposed three algorithms, each addressing different

issues and processing strategies. BStream is the first algorithm and uses traditional
bitmaps for multiple query processing over streams. BStream is a basic multi-query im-
plementation for one of the first SLCA algorithms for processing single keyword-based
queries over XML streams [Vagena and Moro, 2008]. BStream evaluates all submitted
queries, representing their terms in a single bitmap. MKStream, our second algo-
rithm, extends BStream since it represents all query terms in a single compact bitmap,
without query term repetition. Moreover, MKStream simultaneously uses multiple
parsing stacks. Such strategies allow an overall MKStream performance improvement
when compared to BStream and recent algorithms proposed for multiple keyword-
based query processing over XML streams [Barros et al., 2012a]. SLCAStream, our
third SLCA algorithm, extends BStream by using unexplored LCA stream processing
properties for query evaluation instead of a bitmap strategy. In addition, it incor-
porates optimization strategies that improve overall performance when compared to
MKStream.

For the ELCA semantics, we proposed two algorithms, which are the first ones
in the literature. The first algorithm, ELCABStream, is a basic ELCA-based imple-
mentation obtained from MKStream. However, it uses a single bitmap and a parsing
stack for query evaluation. ELCAStream enhances ELCABStream by using the same
unexplored LCA stream processing properties for query evaluation adopted by SLCAS-
tream [Barros et al., 2012b]. It also uses a single parsing stack for query evaluation and
incorporates optimization strategies that improve overall performance.

SLCAStream and ELCAStream are the latest in their respective semantics and
the most efficient alternatives for processing multiple keyword-based queries over XML
streams. However, both adopt a single parsing stack. Preliminary experiments involv-
ing multiple parsing stacks show that SLCAStream and ELCAStream performances can
be improved. We have just finalized the implementation and response time evaluation of
SLCAStream and ELCAStream extensions, called SLCAStream+ and ELCAStream+,
that are based on multiple parsing stacks. Figure 7.1 presents a significant performance
gain when SLCAStream (left chart) and ELCAStream (right chart) are extended by
adopting multiple parsing stacks. Specifically, results in Figure 7.1 consider 50,000
queries with five terms run on the SIGMOD dataset. Multiple parsing stacks provide
such gains since they allow the distribution of all submitted queries among parsing
stacks which are only evaluated when necessary, thus decreasing the number query
evaluations.

Specifically, the multiple parsing stack approach allows adjusting the number
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Figure 7.1. Preliminary results for SLCAStream and ELCAStream when using
simultaneous multiple parsing stacks.

of parsing stacks for a better trade-off between processing time and memory usage.
Moreover, this approach allows parallel processing via multithreaded and multicore
CPUs [Sodan et al., 2010], resulting in additional performance increase. In a mono
processing environment, multiple parsing stacks requiring evaluation are processed se-
quentially. In multithreaded and multicore environments, all parsing stacks can be
processed simultaneously, each stack being processed by a thread or core.

This thesis also presents an accuracy evaluation for the SLCA and ELCA seman-
tics [Barros et al., 2012b] as well as algorithms and strategies for ranking query results
from XML streams. Regarding the accuracy evaluation, we evaluated the SLCA and
ELCA semantics for precision and recall. Both semantics are adopted in our multiple
keyword-based query processing algorithms. This evaluation has shown that ELCA
semantics improves precision slightly and recall significantly compared to the SLCA
semantics. This occurs when query keywords occur simultaneously in different doc-
ument parts. Basically, this heuristic prioritizes the shortest resulting subtrees and
those with larger query term frequency, followed by other resulting subtrees.

Regarding raking algorithms and heuristics, we proposed the algorithm LCARank
and the heuristics SLCARank and StreamRank. LCARank implements a basic ranking
strategy for keyword-based query results over XML streams. This new strategy com-
bines the XRANK and SLCA algorithms [Barros et al., 2010] and prioritizes SLCA re-
sults among XRANK results, since SLCA returns smaller subtrees. We demonstrated
experimentally that LCARank, despite its simple ranking strategy, improves results
when compared to the original XRANK algorithm. We also proposed the SLCARank
strategy which is a fine-grained ranking strategy compared to LCARank. LCARank
and SLCARank focus on ranking the XML nodes returned by a keyword query sub-
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mited to a single XML document. Finally, we proposed the StreamRank ranking
strategy, which is applicable to multiple query results obtained from a set of streams
defined by a time slot or specific number of documents.

As future work, we plan to implement SLCARank and StreamRank ranking
strategies and evaluate their accuracy. Additionally, we plan to develop a complete
parallel framework for processing multiple queries over XML streams based on our
algorithms and heuristics. We also plan to incorporate our algorithms to Water-
shed [Ramos et al., 2011], a distributed computing framework developed at the UFMG
Department of Computer Science. Currently, this framework only accepts queries writ-
ten in structured query languages. By adopting a keyword-based query language, Wa-
tershed would cover more applications and users since this kind of query language
requires no language syntax knowledge and minimal or no schema knowledge to for-
mulate queries.
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