
CONTROLANDO O ESCOPO DE INSTÂNCIAS

EM HASKELL

MARCO TÚLIO GONTIJO E SILVA

CONTROLANDO O ESCOPO DE INSTÂNCIAS

EM HASKELL

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Carlos Camarão

Belo Horizonte

Novembro de 2012

MARCO TÚLIO GONTIJO E SILVA

CONTROLLING THE SCOPE OF INSTANCES IN

HASKELL

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Carlos Camarão

Belo Horizonte

November 2012

c© 2012, Marco Túlio Gontijo e Silva.
Todos os direitos reservados.

Gontijo e Silva, Marco Túlio
G641c Controlling the scope of instances in Haskell / Marco

Túlio Gontijo e Silva. — Belo Horizonte, 2012
xxiv, 46 f. : il. ; 29cm

Dissertação (mestrado) — Federal University of
Minas Gerais

Orientador: Carlos Camarão

1. Type class instances. 2. Modules. 3. Haskell.
I. Título.

CDU 519.6*33(043)

I dedicate this work to my wife, Ifé.

ix

Acknowledgments

I would like to thank everyone that, in some way, contributed to the development of this
dissertation. Firstly, I would like to thank the Postgraduate program of the Computer
Science Department of UFMG for the oportunity to study and develop my Masters
research and this dissertation. I would also like to thank CAPES for the financial
support, and Zunnit, UFOP and UNIFOR-MG for letting me work while I was doing
my Masters.

I want to thank my parents and my whole family for the support and incentive
on my education. I also would like to thank my wife, Priscila, for understanding when
I had to study and work on my dissertation and for the incentive and love. I thank
also my friend Rafael, who has been a safe haven for me on the whirlwind of life,
and someone to discuss from the more practical to the more theoretical and technical
aspects of this work.

In a more direct manner, I would like to thank all the teachers from the Computer
Science Department that led me here, through the undergraduate course and now in
the Masters. In special, my advisor Carlos Camarão, who was always receptive, patient
and understanding. I thank him for the incentive and for the suggestions and ideas
that were always very interesting and helpful. Finally, I would like to thank some
persons that contributed to the dissertation with suggestions of improvements. They
are Lucília Camarão, Gláuber Cabral, Atze Dijkstra and Fernando Pereira.

xi

“Eu quase que nada não sei. Mas desconfio de muita coisa.”
(Riobaldo)

xiii

Resumo

O sistema de módulos de Haskell objetiva a simplicidade e possui a notável vantagem
de ser fácil de aprender e usar. Entretanto, instâncias de classes de tipo em Haskell
são sempre exportadas e importadas entre módulos. Isso quebra a uniformidade e
simplicidade do sistema de módulos e introduz problemas práticos. Instâncias criadas
em módulos diferentes podem conflitar umas com as outras e podem fazer com que seja
impossível importar dois módulos que contenham definições de uma mesma instância se
essa instância for utilizada. Isso faz com que seja muito incoveniente a definição de duas
instâncias diferentes da mesma classe de tipos para o mesmo tipo em diferentes módulos
de um mesmo programa. A definição de instâncias em módulos onde nem o tipo nem
a classe de tipos são definidos se tornou uma má prática, e essas instâncias foram
chamadas de instâncias órfãs. Somente esse tipo de instância pode causar conflitos já
que, se instâncias forem definidas apenas no mesmo módulo do tipo ou da classe de
tipos, só poderá existir uma instância para cada par de classe e tipo.

Nessa dissertação nós apresentamos e discutimos uma solução para esses proble-
mas que simplesmente permite que haja controle sobre a importação e exportação de
instâncias entre módulos, por meio de uma pequena alteração na linguagem. A solução
é apresentada em duas versões. A versão final, mais consistente, não é compatível com
Haskell, isto é, programas que funcionam em Haskell podem deixar de funcionar com
essa alteração. A versão intermediária traz os benefícios da proposta, é compatível
com Haskell, mas é um pouco menos consistente. Para evitar que o programador pre-
cise escrever nomes de instâncias muito longos nas listas de controle de importação e
exportação de módulos, propomos outra pequena alteração na linguagem, que torna
possível dar nomes mais curtos a instâncias.

Também mostramos como a especificação formal do sistema de módulos precisa
ser adaptada para lidar com nossa proposta. Como a especificação formal não tratava
instâncias, primeiro adaptamos essa especificação para tratar instâncias e, em seguida,
mostramos como nossa proposta é especificada formalmente.

xv

Palavras-chave: Instâncias de classes de tipo, Módulos, Haskell.

xvi

Abstract

The Haskell module system aims for simplicity and has a notable advantage of being
easy to learn and use. However, type class instances in Haskell are always exported
and imported between modules. This breaches uniformity and simplicity of the module
system and introduces practical problems. Instances created in different modules can
conflict with each other, and can make it impossible to import two modules that
contain the same instance definitions if this instance is used. Because of this, it is very
incovenient to define two distinct instances of the same type class for the same type
in a program. The definition of instances in modules where neither the data type nor
the type class are defined, called orphan instances, became a bad practice. Only these
instances can cause conflicts since, if instances are defined in the same module of the
type or of the type class, only one instance can possibly exist for each pair of class and
type.

In this dissertation we present and discuss a solution to these problems that
simply allows control over importation and exportation of instances between modules,
through a small change in the language. The solution is presented in two versions. The
final version, more consistent, is not compatible with Haskell, that is, Haskell programs
may not work with this change. The intermediate version, on the other hand, brings the
benefits of the proposal while being compatible with Haskell, but it is less consistent.
In order to avoid very long names for instances in module importation and exportation
control lists, we propose another small change in the language to make it possible to
give shorter names to instances.

We also show how a formal specification of the module system must be adapted
to include our proposal. As the formal specification didn’t handle instances in general,
we first adapt this specification to handle instances, and then show how our proposal
can be formally specified.

Palavras-chave: Type class instances, Modules, Haskell.

xvii

List of Figures

1.1 Definition of class Eq from the Haskell Prelude. 2
1.2 Bool data type as defined in the Haskell Prelude. 2
1.3 Instance of type class Eq for type Bool. 2
1.4 A simple module declaration. 4
1.5 Abstract data types implemented through the module system. 4
1.6 A module with an empty export list. 4
1.7 Basic import clause. 5
1.8 Import clause with import list. 5
1.9 Disambiguation using import lists. 5
1.10 Disambiguation using the keyword hiding. 5
1.11 Disambiguation using the module name. 6
1.12 Renaming of modules using the keyword as. 6
1.13 Qualified import to avoid conflicting names. 7

2.1 Module T. 10
2.2 Module D. 10
2.3 Module I1. 10
2.4 Module I2. 11
2.5 Main module of the example of orphan instances. 11
2.6 Import chain for the example of orphan instances. 11
2.7 Example of the usage of newtype to create a new instance. 12
2.8 Function addNumber using type classes. 13
2.9 Function addNumber using functions as parameters. 13
2.10 Generic map using a type class and an associated data type. 16

3.1 New syntax for the export clause. 18
3.2 New syntax for the import clause. 18
3.3 Second version of Module I1, using the proposed extension. 22

xix

3.4 Second version of the Main module, using the proposed extension. 22
3.5 Module Definition, used in the example of unexpected behavior that arises

from misuse of local instances. 24
3.6 Main module of the example of unexpected behavior that arises from misuse

of local instances. 24

4.1 Original code for the call of writeIface. 28
4.2 New code for the call of writeIface. 28
4.3 The code of the function filterEl. 28
4.4 The original code of the function readIface. 29
4.5 The new code of the function readIface. 29
4.6 The new code of the function readIface. 30
4.7 The original code of the instance check. 30
4.8 The new code of the instance check which does not allow more than one

instance of the same class for the same type. 30
4.9 Function filterIl on the intermediate version. 31
4.10 Function filterInstancesIl on the intermediate version. 32
4.11 Function filterIl on the final version. 32
4.12 Function doFilterIl on the final version. 33
4.13 Function filterInstancesIl on the final version. 33
4.14 Function filterEl filtering instances. 33
4.15 Function filterInstancesEl. 34

5.1 Auxiliary functions for filtering instances in the module system. 37
5.2 Function exports as in [Diatchki et al., 2002, Section 5.2]. 39
5.3 New function exports. 39
5.4 The function incoming as it is on [Diatchki et al., 2002, Section 5.3], for

reference. 39
5.5 The new incoming function that also deals with instances. 39

6.1 Example of scoped instance extracted from [Dijkstra et al., 2007, Section 6]. 42

xx

List of Tables

3.1 The semantics translation from the intermediate syntax to the final. 20

xxi

Contents

Acknowledgments xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Type classes . 1
1.2 Modules . 3
1.3 Objectives of this dissertation . 6
1.4 Contributions . 7
1.5 Outline of this work . 8

2 Background 9
2.1 Defining special purpose instances . 9
2.2 Orphan instances . 14

2.2.1 Real world cases . 15
2.3 Conclusion . 16

3 Solution 17
3.1 Final alternative . 18
3.2 Intermediate alternative . 20
3.3 Instance names . 21
3.4 Instance scope . 21
3.5 Problems and Solutions . 23
3.6 Conclusion . 26

xxiii

4 Implementation 27
4.1 Export and import lists . 28
4.2 Conflicting instances . 29
4.3 Intermediate version . 31
4.4 Final version . 31
4.5 Testing . 34
4.6 Conclusion . 35

5 Extending the Module System specification 37
5.1 Haskell and the intermediate alternative 38
5.2 The final alternative . 40

6 Related work 41

7 Conclusion 43
7.1 Contributions . 43
7.2 Future work . 44

Bibliography 45

xxiv

Chapter 1

Introduction

Modern programming languages are using more flexible type systems in order to accept
a larger set of programs. The goal of these type systems is to reject less programs
that would work correctly but that would not be accepted by more restrictive type
systems. One of the techniques to achieve this flexibility is to promote code reuse by
supporting polymorphism, which allows the same code to be used with distinct data
types. There are different approaches to polymorphism, one of them being ad-hoc,
or constrained, polymorphism [Wadler and Blott, 1989], which supports code that use
overloaded names (or symbols) and reuse of such code for all data types for which a
definition of the overloaded names have been given.

In C++ this kind of polymorphism is achieved by means of overloading function
names [Stroustrup, 1997, Section 7.4]. From the compiler perspective, two functions
with the same name but with different types as the parameter are considered two
different functions. When there are more than one option of function to call for a
specific type, or for a polymorphic symbol, like numerals, the compiler applies a set of
rules to decide between them. In order to avoid the need to understand the context
to define which of the functions with the same name were called, “return types are not
considered in overloading resolution” [Stroustrup, 1997, Section 7.4.1].

1.1 Type classes

Haskell is a programming language that is nowadays used in academic research specially
to study and experiment with topics related to type systems and type inference, and is
also being used in commercial applications1. Type classes are a language mechanism

1http://industry.haskell.org/

1

http://industry.haskell.org/

2 Chapter 1. Introduction

Figure 1.1. Definition of class Eq from the Haskell Prelude.

class Eq a where
(==), (/=) :: a -> a -> Bool

x == y = not (x /= y)
x /= y = not (x == y)

Figure 1.2. Bool data type as defined in the Haskell Prelude.

data Bool = False | True

Figure 1.3. Instance of type class Eq for type Bool.

instance Eq Bool where
True == True = True
False == False = True
_ == _ = False

that was introduced in Haskell for supporting ad-hoc polymorphism [Hall et al., 1996].
A type class specifies a set of overloaded names together with type annotations for
them. For instance, the names defined for class Eq, from the Haskell Prelude are given
in Figure 1.1. All mentions to the Haskell Prelude in this dissertation are a reference
to the definition of the Prelude given on the Haskell Report [Marlow, 2010]. As can be
seen in this figure, the definition of the class can contain a standard implementation of
some methods, and this implementation can be based on other methods of the same
class.

An implementation of a type class for a data type, called an instance of the type
class, provides definitions for all overloaded names of that type class. As an example, a
possible definition of an instance of Eq for Bool is shown in Figure 1.3. The definition
of the data type Bool, from the Haskell Prelude [Marlow, 2010] is shown in Figure 1.2.

A type class declaration defines overloaded names, also called class members, with
corresponding types, and an instance declaration gives a value for each class member,
referred to as a member value, sometimes also referred to in the literature as a “member
function”.

1.2. Modules 3

The standard semantics of Haskell is based on the application of so-called dictio-
naries to overloaded names [Wadler and Blott, 1989; M. Jones, 1994; Hall et al., 1996].
A dictionary is a tuple that corresponds to an instance declaration, and contains val-
ues that correspond to the definitions given in the instance declaration for each class
member. A dictionary of a superclass contains also a pointer to a dictionary of each of
its subclasses [M. Jones, 1994; Hall et al., 1996; Faxén, 2002]. The dictionary-passing
semantics is fully based on the syntax of constrained types, which is not changed in
any way by our proposal.

1.2 Modules

A module system of a programming language is intended to provide support for a mod-
ular construction of software systems. In some languages the module system provides a
type-safe abstraction mechanism, where definitions can be parameterized so that mod-
ules can be instantiated for different kinds of entities. This is the case for example of
Standard ML [Milner et al., 1988].

A module system can also merely allow a program to be divided into parts that
can be compiled separately, such as in Java [Arnold et al., 2006] or Scala [Odersky
et al., 2012]. In some other languages, the module system provides a mechanism to
control the visibility of globally defined names, either to hide implementation-specific
details or to access parts that would otherwise be out of scope. This is the case for
example of Haskell [Marlow, 2010, Chapter 5].

The Haskell module system aims for simplicity [Hudak et al., 2007, Section 8.2]
and has the notable advantage of being easy to learn and use. Declaring a module is
as simple as shown in Figure 1.4. The system provides control over exported entities
through export lists, which is used to construct abstract data types. Only the entities
named on the list, and all type class instances, are exported from the module. In
the module of Figure 1.5, the constructor of the data type is not exported, and the
type content can only be accessed through the exported functions. This provides a
way of supporting abstract types in the language. If the export list is absent, all
entities defined in the module will be exported, as in Figure 1.4. The export list can be
empty. In this case, only type class instances defined in the module are exported. For
instance, in Figure 1.6, only instance Num Char is exported. foo can only be used
inside Module M3.

Importing a module is as simple as defining a module. The basic import clause
is shown in Figure 1.7. The names of the modules follow a hierarchy to provide a

4 Chapter 1. Introduction

Figure 1.4. A simple module declaration.

module M1 where

Figure 1.5. Abstract data types implemented through the module system.

module M2 (IncInt, zero, inc) where

newtype IncInt = CIncInt Integer

zero :: IncInt
zero = IncInt 0

inc :: IncInt -> IncInt
inc (IncInt i) = IncInt $ succ i

Figure 1.6. A module with an empty export list.

module M3 () where

foo :: Int
foo = 3

instance Num Char where
// ...

better organization of modules. This hierarchy is not strictly defined in a global sense.
Imports can also have an import list, which controls which entities exported by the
module are being imported. Import lists are very important for avoiding name conflicts
in a module. Only entities mentioned in the import list, and all type class instances,
are imported. In the example of Figure 1.8, IncInt and zero are imported, but not
inc, defined in Module M2, Figure 1.5.

To avoid name conflicts, it is possible to create an import list. For instance,
name empty is defined in both modules Data.Set and Data.Map. So, if only empty

from Set is used in a module, and other functions from Module Data.Map are used,
but not empty, it is possible, using import lists, not to import empty from Data.Map.
This is shown in Figure 1.9. If the number of names not to be imported is bigger

1.2. Modules 5

Figure 1.7. Basic import clause.

import Data.Char

Figure 1.8. Import clause with import list.

import M2 (IncInt, zero)

Figure 1.9. Disambiguation using import lists.

import Data.Set
import Data.Map (singleton, insert)

emptySet :: Set a
emptySet = empty

than the number of names to be imported from one module, the keyword hiding can
be used to specify which names not to import. An example is shown in Figure 1.10.
However, it may be the case that both empty’s are used in a module. A way to solve
this kind of conflict is to prefix the name of an imported entity with the module name.
If both modules are imported, empty from one module can be distinguished from that
of another module by prefixing the name with the module name, as shown in Figure
1.11.

Module names can get quite big. For instance, package vector, which is part
of the default distribution of the most used Haskell compiler, the Glasgow Haskell
Compiler, has a module called Data.Vector.Fusion.Stream.Monadic.Safe. To avoid

Figure 1.10. Disambiguation using the keyword hiding.

import Data.Set
import Data.Map hiding (empty)

emptySet :: Set a
emptySet = empty

6 Chapter 1. Introduction

Figure 1.11. Disambiguation using the module name.

import Data.Set
import Data.Map

emptySet :: Set a
emptySet = Data.Set.empty

emptyMap :: Map a b
emptyMap = Data.Map.empty

Figure 1.12. Renaming of modules using the keyword as.

import Data.Set as S
import Data.Map as M

emptySet :: Set a
emptySet = S.empty

emptyMap :: Map a b
emptyMap = M.empty

such big names on each usage of a symbol, modules can be renamed using the keyword
as. Figure 1.12 shows an example of such renaming.

In Figures 1.11 and 1.12, all occurrences of empty must be prefixed with the
module name. Sometimes, a module has a lot of uses of one of the conflicting names,
and very few uses of the others. In addition, it may happen that this is the case for
a lot of names in the module. In this case, a qualified import is a good option. An
example is shown in Figure 1.13. Notice that module name of Data.Set is not needed
in the use of empty. The combination of qualified imports with renaming with keyword
as is a very common pattern.

1.3 Objectives of this dissertation

The simplicity of the module system is partly hindered by the special treatment given to
the scope of instances, for which there is no control on exportation and importation. As
defined in the Modules chapter of the Haskell 2010 Report [Marlow, 2010, Section 5.4],

1.4. Contributions 7

Figure 1.13. Qualified import to avoid conflicting names.

import Data.Set
import qualified Data.Map

emptySet :: Set a
emptySet = empty

emptyMap :: Map a b
emptyMap = Data.Map.empty

a type class “instance declaration is in scope if and only if a chain of import declarations
leads to the module containing the instance declaration”.

Because of this, it is not possible for a module to import two modules such that
each one defines an instance of the same type class to the same data type, if the
importing module, or any module that imports it, uses the instance. This happens
both if the definitions are different or the same in the different modules. This is
a serious restriction. The aim is, as in all type system restrictions, to prevent the
programmer from making mistakes. However, even though this design decision protects
the programmer from incurring in some mistakes, it can disallow reasonable and correct
code. Furthermore, many instances generally become part of the scope of modules
without ever being used. This puts a burden on compiler writers, which have to
consider smart ways of controlling the size of the scope of modules.

In this dissertation we propose an extension to Haskell that allows programmers to
control when to export and import instances. This makes it possible to create instances
local to a module or visible only in a subset of modules of a program, and removes
problems brought by importation of modules that contain definitions of instances for
the same type.

1.4 Contributions

This dissertation proposes an extension for the Haskell programming language that
solves the problem of orphan instances and enables an easy way to create special
purpose instances. This extension is proposed in two different syntax alternatives.
The first, called intermediate, is backwards compatible but is not very intuitive. The
second, called final, is very simple and intuitive, but is not backwards compatible.

8 Chapter 1. Introduction

1.5 Outline of this work

Chapter 2 illustrates how the absence of control of the visibility of instances makes it
hard or impossible to use instances for a certain type with a special purpose, in Section
2.1, and describes orphan instances, an instance that is defined neither in the module
that defines the type class nor in the module that defines the data type, in Section 2.2.

In Chapter 3 we present our proposal, with two possible alternatives: the final
one, in Section 3.1, and the intermediate one, in Section 3.2. This chapter also presents
a complementary proposal that gives names to instances, in Section 3.3. Some conse-
quences of the control over the scope of instances are discussed in Section 3.4. Problems
that can occur by the adoption of our proposal and possible solutions to them are pre-
sented and discussed in Section 3.5.

The implementation of the proposal is detailed in Section 4.
Chapter 5 describes one way of extending a published formalization of Haskell’s

module system [Diatchki et al., 2002] to handle our proposal. As instances were not
modeled on the original formalization, they are handled at first, and then our proposal
is included.

Chapter 6 describes related work and Chapter 7 concludes the dissertation.

Chapter 2

Background

This chapter illustrates how the absence of control of the visibility of instances makes it
hard or impossible to use instances for a certain type with a special purpose, in Section
2.1, and describes orphan instances, an instance that is defined neither in the module
that defines the type class nor in the module that defines the data type, in Section 2.2.

2.1 Defining special purpose instances

As instances are always exported and imported, all instances defined in a program are
visible at the program’s topmost module, that is, the Main module. If two instances of
the same type class for the same data type are defined in different parts of the program,
they will be visible in at least this Main module. The number of modules in which the
two instances are visible can be though much bigger. In these modules any use of one
of these instances will result in a compilation error. In these modules it is impossible
to use an overloaded function of one of these instances, even if the program explicitly
determines which instance is used. Because of this restriction, although it is possible to
use more than one instance of a type class for a given type in a program, in some cases
this can be rather inconvenient, since the use of an overloaded function for a given type
would not be possible in some parts of the program. In addition, this is not useful,
since each polymorphic function that uses such an instance has to be instantiated and
thus cannot be used as a polymorphic function.

For example, overloaded function g, defined in Figure 2.5 cannot be used in the
Main module. Either g1, defined in Module I1, Figure 2.3, or g2, defined in Module
I2, Figure 2.4, would have to be used. The instantiated version of each polymorphic
function that uses one of the overloaded definitions from the type class has to be
instantiated in the same module that defines the instance. Also, it is not possible to

9

10 Chapter 2. Background

Figure 2.1. Module T.

module T where

class T a where
t :: a

g :: T a => (a, a)
g = (t, t)

Figure 2.2. Module D.

module D where

data D = D

Figure 2.3. Module I1.

module I1 where

import T
import D

instance T D where
t = undefined

g1 :: (D, D)
g1 = g

i1 :: a
i1 = undefined

use any overloaded function defined in Modules I1 or I2. Figure 2.6 gives an overview
of the import chain of the modules involved in this example. These are significant
disadvantages for the use of type classes.

Due to the inconvenience of defining and using more than one instance for a given
type, the programmer will not be able, for example, to sort values of a given type by
using two different techniques, applying an overloaded function sort. More specifically,

2.1. Defining special purpose instances 11

Figure 2.4. Module I2.

module I2 where

import T
import D

instance T D where
t = undefined

g2 :: (D, D)
g2 = g

i2 :: a
i2 = undefined

Figure 2.5. Main module of the example of orphan instances.

import I1
import I2

f :: a -> a -> a
f = undefined

h :: a
h = f i1 i2

Figure 2.6. Import chain for the example of orphan instances.

12 Chapter 2. Background

Figure 2.7. Example of the usage of newtype to create a new instance.

import Data.List

newtype IChar = IChar Char

unbox :: IChar -> Char
unbox (IChar c) = c

instance Eq IChar where
(IChar c1) == (IChar c2) = iEq c1 c2

instance Ord IChar where
compare (IChar c1) (IChar c2) = iCmp c1 c2

iSort :: [String] -> [String]
iSort = map (map unbox) . sort . map (map IChar)

a programmer cannot use case-sensitive ordering to sort a list of strings in a part of a
program and case-insensitive ordering in another.

A general way to work with these problems is to create a new encapsulated data
type, using newtype, and define a different instance for it. The example in Figure 2.7
illustrates this solution. This works, but it is verbose and not efficient. In other words,
it is “too clunky”1. It is a simple solution that can be considered good enough for this
problem, but it does not address the problem of the pollution of the global scope.

A less verbose solution exists, with the definition and use of functions that in-
clude additional parameters instead of methods of type classes. For example, Mod-
ule Data.List defines function sortBy :: (a -> a -> Ordering) -> [a] -> [a],
which sorts the list passed as the second parameter using the comparison function given
by the first parameter. This is a simple and useful solution to each specific problem
such as this one, but it does not scale well. To apply the same idea generally, for all
functions that use a type class method a similar function having an additional param-
eter used instead of the type class method would be necessary. This is not reasonable
since it would add parameters in lots of cases, making the code more complicated. In
addition, it goes against the idea of making code simpler and more reusable by means
of overloading.

1In Lennart Augustsson’s words. http://lukepalmer.wordpress.com/2009/01/25/
a-world-without-orphans/#comment-609

http://lukepalmer.wordpress.com/2009/01/25/a-world-without-orphans/#comment-609
http://lukepalmer.wordpress.com/2009/01/25/a-world-without-orphans/#comment-609

2.1. Defining special purpose instances 13

Figure 2.8. Function addNumber using type classes.

addNumber :: (Ord a, Num a, Show a) => a -> String -> String
addNumber n s

| n < 1000 = s ++ show n
| otherwise = s

Figure 2.9. Function addNumber using functions as parameters.

addNumber
:: (a -> a -> Bool)

-> (Integer -> a)
-> (a -> String)
-> a
-> String
-> String

addNumber lt fi sh n s
| n ‘lt‘ fi 1000 = s ++ sh n
| otherwise = s

For instance, suppose you have a function called addNumber that receives a nu-
meric value, which is represented by type class Num in Haskell. This type class has a
method called fromInteger that is used to convert from a numeric literal to any of
the types that instantiate this class. The function addNumber will receive the numeric
value and a string. If the number is smaller than 1.000, it will concatenate the number
as a string to the given string. Otherwise, it will return the string as it is. The code
for this function is on Figure 2.8.

To generalize this function so that it could be used with another type of ordering
on an specific data type, at least three different functions would have to be passed to
it: one to tell how to compare a value with another, one about how to convert from
Integer to the given type and one to convert the given type to a string. As it can be
seen in Figure 2.9, the code is much harder to read. This is a simple example that will
get much worse with classes that are more complicated. The more generic the code is,
the more functions would have to be passed as a parameter.

14 Chapter 2. Background

2.2 Orphan instances

To define an instance, both the type class and the data type must be in scope. There
are four possibilities for that to happen:

1. the data type and the type class are defined in the same module of the instance;

2. the type class is defined in the same module of the instance, but the data type is
imported;

3. the data type is defined in the same module of the instance, but the type class is
imported;

4. both the data type and the type class are imported by the module that defines
the instance.

Defining two instances of the same type class for the same data type in a module will
create a compilation error. In addition, if an instance is imported and another one is
defined for the same pair of class and type, there will be a compilation error. As the
instances are always exported and imported, so all modules that import the type class
definition and the data type definition, what is necessary to define a new instance, will
also import the already defined instance. Therefore, in Case (1) it is impossible to have
more than one instance without compilation errors.

In Case (2), it is not possible that the imported module containing the data type
will already have an instance for that pair of class and type, because the class is not
yet in scope in that module, since it is defined in the importing module. Similarly
to Case (1), if another module imports the type class, it will necessarily import the
instance, what would make it impossible for it to define a new one. The same happens
with Case (3), where the data type is defined in the same module. In both cases, it is
not possible to have more than one instance for the same pair of class and type.

In Case (4), both the type class and the data type are imported by the module
that defines the instance, so that it is possible that another module will also import
these definitions and create another instance. This is the only case where it is possible
to create two instances of the same pair of class and type. Therefore, when an instance
is defined in a module where the data type or the type class is defined, it is guaranteed
that there will not exist more than one instance for each type class and data type.

As there is no control over the importation and exportation of instances, these
instances are problematic and are called orphan instances. Orphan instances are in-
stances defined in a module that contains neither the definition of the data type nor

2.2. Orphan instances 15

the definition of the type class. Orphan instances thus enable the creation of distinct
instances of a type class for the same data type.

They are especially troublesome when a module defines other functions that are
not related with the instance. For example, if we have a Module T, shown in Figure
2.1, that defines a type class T, a Module D, shown in Figure 2.2, that defines a data
type D, and two Modules I1, show in Figure 2.3, and I2, shown in Figure 2.4, that
define instances of T for D, we would not be able to import both I1 and I2 in the same
module, if this module uses f, or a function overloaded on class T.

In the example, we are more interested in types and visibility control by the
module system than in the body of the presented functions. Therefore, we are using
function undefined, but the problem remains the same if there was a relevant function
body.

Instances defined in I1 and I2 are orphan instances. The problem gets worse
when there is a need to use, in the same module, functions that are not related to
instances, like i1 and i2. It is not possible to use i1 and i2 in the same program
without modifying I1 or I2. Even if i1 and i2 are used in different modules, the Main
module will have to import both of them or a module which imports them. If the Main
module, or some other module where both instances are available, uses f, or a function
overloaded on T, it will not be possible to import I1 and I2 in the same program.
Modifying I1 or I2 is not always possible in practice because they may be part of a
third-party library.

2.2.1 Real world cases

It is worth noticing that the problems enumerated in the last sections are not only
potential problems. They happen in real world uses of the language. For example,
the instance of type class Monad for data type Either is defined neither in the module
where Monad is defined, Control.Monad, nor in the module where Either is defined,
Data.Either. It is defined instead in Module Control.Monad.Error, from package
mtl, and also in Module Control.Monad.Trans.Error, from package transformers2.
If these two modules are directly or indirectly imported by a module, it would not be
possible to use this instance on this module.

Lennart Augustsson presented “a concrete example” of a case where orphan in-
stances would be desirable3. There are libraries from pretty printing data types, with

2This example is on the wiki page at http://www.haskell.org/haskellwiki/Orphan_instance
.

3http://lukepalmer.wordpress.com/2009/01/25/a-world-without-orphans/#comment-601
.

http://www.haskell.org/haskellwiki/Orphan_instance
http://lukepalmer.wordpress.com/2009/01/25/a-world-without-orphans/#comment-601

16 Chapter 2. Background

Figure 2.10. Generic map using a type class and an associated data type.

class Unbox k v where
data Map k v :: *
empty :: Map k v
lookup :: k -> Map k v -> Maybe v
insert :: k -> v -> Map k v -> Map k v

type classes that include “instances for all relevant prelude types”. There are also
packages with a data type for dealing with JSON data. It would be good to write an
instance for pretty printing JSON data in yet another package, since those packages are
unrelated and should not necessarily know about each other and implement instances
about the other. But, if this instance is written in another package, it will be an orphan
instance, which would cause the problems described in Section 2.2.

Johan Tibell proposes a generic map implementation using a type class for the
common map functions and an associated data type for that type class4. The code
proposed is shown in Figure 2.10. This would require an instance for each pair of key
and value of the map. Many instances would have to be generated for the prelude
types, probably using Template Haskell, a mechanism for automatic code generation.
Even so, for library types the user would have to generate the instance. This way, it
would not be possible for the user to generate the instance of the data type defined in
another package without creating an orphan instance.

2.3 Conclusion

Orphan instances are an important problem for which many special treatments are
required by compilers. In addition, creating a special purpose instance is not a very
uncommon situation and it would be good to have a simple, practical and intuitive
way to do it. The next chapter will present a solution to both of these problems.

4http://www.haskell.org/pipermail/glasgow-haskell-users/2010-August/019052.html .

http://www.haskell.org/pipermail/glasgow-haskell-users/2010-August/019052.html

Chapter 3

Solution

We propose that instances should be exportable and importable. It is a natural, simple
proposal that has already been mentioned1, but this work provides a detailed descrip-
tion and discussion, including required changes in the language definition.

The proposal eliminates orphan instances: the fact that a module defines an
instance without defining the related data type or type class does not cause any bad
consequence, since the programmer can choose which instance to use by importing
one module instead of another, and it can still use functions defined in both modules,
by hiding instances in an import clause. The sortBy problem is also solved, because
programmers can change the instance of a type class for a data type in the context
of a module, making it possible to call sort with the desired instance defined in this
module.

We examine two alternative syntaxes for the new language feature: a backwards
compatible one, referred to as intermediate — but not very uniform — and a back-
wards incompatible one, called final, which is more uniform.

If adopted, these alternative proposals should preferably be enabled by compilers
by the use of a compilation flag. There should exist then a different flag for each
proposal.

In both cases, export and import clauses used in The Haskell 2010 Report [Mar-
low, 2010, Sections 5.2 and 5.3] are changed to have a new option, with the header
of an instance declaration [Marlow, 2010, Section 4.3.2]: instance [scontext =>]

qtycls. The option identifies whether an instance should be exported, imported or
hidden. import and export clauses with the new option are defined as in Figures 3.1
and 3.2.

1By Yitzchak Gale on Stack Overflow http://stackoverflow.com/questions/3079537/
orphaned-instances-in-haskell/3079748#3079748 .

17

http://stackoverflow.com/questions/3079537/orphaned-instances-in-haskell/3079748#3079748
http://stackoverflow.com/questions/3079537/orphaned-instances-in-haskell/3079748#3079748

18 Chapter 3. Solution

Figure 3.1. New syntax for the export clause.

export → qvar
| qtycons [(..)|(cname1, ..., cnamen)] (n ≥ 0)
| qtycls [(..)|(var1, ..., varn)] (n ≥ 0)
| module modid
| instance [scontext =>] qtycls

Figure 3.2. New syntax for the import clause.

import → var
| tycon [(..)|(cname1, ..., cnamen)] (n ≥ 0)
| tycls [(..)|(var1, ..., varn)] (n ≥ 0)
| instance [scontext =>] qtycls

3.1 Final alternative

In the final alternative instances are imported and exported just as other entities in
Haskell. There are ten distinct cases where import clauses are affected by the proposal,
presented below by considering the example shown previously in Figure 2.3, similarly
to [Marlow, 2010, Section 5.3.4]:

1. import I1 imports everything from Module I1, including instances, as occurs
currently in Haskell;

2. import I1 () imports nothing, as occurs if this line is commented or absent;

3. import I1 (instance T D) imports only the instance, which would be the same
as import I1 () in Haskell 2010;

4. import I1 hiding (instance T D) imports everything but the instance;

5. import I1 (i1) imports only i1, and not the instance.

6. import qualified I1 makes all definitions accessible in a qualified manner, but
not the instances;

7. import qualified I1 () imports nothing, as occurs if this line is commented
or absent, as in Item (2);

8. import qualified I1 (instance T D) imports only the instance, as in Item
(3);

3.1. Final alternative 19

9. import qualified I1 hiding (instance T D) makes all definitions accessible
in a qualified manner, but not any of the instances, including the one mentioned,
as in Item (6);

10. import qualified I1 (i1) makes only i1 accessible in a qualified manner.

The only instance defined in I1 is instance T D. If there were other instances
to be imported, they should be also included where instance T D is listed.

Usually, qualified imports are done as in Item (6), because there is not much
advantage of restricting the imported entities as in Item (10), if you must specify the
module on each usage. Items (7), (8) and (9) are not very used because they have the
same semantics of other items, which are simpler. They are (2), (3) and (6) respectively.
In Haskell 2010 instances are imported even if the import is qualified. Qualified imports
were described with detail in Section 1.2. This has the undesirable property that the
inclusion of a qualified import in a module can create a compilation error of conflicting
instances. In the final alternative of our proposal, the inclusion of a qualified import
does not import instances. If they should be imported, they must be mentioned in
an import list. This provides the property that the inclusion of a qualified import
in a module will not bring any compilation errors. In addition, it is more consistent
with the way qualified imports work with other entities: they do not affect the general
scope of the importing module, they only create a way to access the entities from the
imported module. If instances were to be imported in qualified imports, as they are in
Haskell 2010, the general scope of the module would be affected.

Similarly, there are four cases of export clauses affected by the proposal:

11. module I1 where exports everything in I1, including the instance, as occurs
currently in Haskell;

12. module I1 () where exports nothing, not even the instance;

13. module I1 (instance T D) where exports only the instance, such as module

I1 () where in Haskell 2010;

14. module I1 (i1) where exports only i1, and not the instance.

This syntax is not backwards compatible because the behavior of a program that
contains a clause given in (2), (5), (7), (10), (12) or (14) is correct in Haskell 2010, but
has a different meaning than the one we are proposing. In Haskell 2010, the instance
is imported or exported but in our proposal, it is not. In our view this language
extension should be incorporated in the language in a second step, after the adoption
of the intermediate alternative, described next.

20 Chapter 3. Solution

Table 3.1. The semantics translation from the intermediate syntax to the final.

Intermediate (or Haskell 2010) Final
2 import I1 () import I1 (instance T D)
5 import I1 (i1) import I1 (i1, instance T D)
7 import qualified I1 () import qualified I1 (instance T D)
10 import qualified I1 (i1) import qualified I1 (i1, instance T D)
12 module I1 () where module I1 (instance T D) where
14 module I1 (i1) where module I1 (i1, instance T D) where

3.2 Intermediate alternative

The intermediate alternative differs from the final alternative, just to be backwards
compatible. In Items (2), (5), (7), (10), (12) and (14) instances are imported or
exported. The only way to avoid an instance from being imported is by using keyword
hiding in an import list. There is no way to avoid an instance from being exported.
In the intermediate alternative, mentions of instances in the import and export lists
are not considered if they are not on the hiding list. Therefore, (13) is valid and has
the same effect as (12), and the same goes for Items (3) and (8).

The semantics of the intermediate alternative can be expressed using the syntax
of the final alternative. The interpretation of the examples that have their meanings
changed are rewritten in Table 3.1. As the intermediate alternative has a syntax that
is backwards compatible with Haskell 2010, Table 3.1 also shows how Haskell 2010
constructs are mapped to the syntax of the final alternative.

The intermediate alternative has the same advantages of the final alternative, but
it is less uniform and should be used temporarily while programs are adapted to use
the syntax of the final alternative. During this period, using constructions (2), (5), (7),
(10), (12) and (14) should be considered as bad programming practice. These should
be gradually replaced by their final version, as shown in Table 3.1. The final version is
also a valid intermediate syntax program, with the same meaning.

After this period, when the syntax of the final alternative becomes used, the
use of these constructions — that is, (2), (5), (7), (10), (12) and (14) — should be
acceptable, but they will have the semantics defined here, and not the old semantics.

New languages, in order to justify their existence, make claims that fall under
three categories [Markstrum, 2010, p. 1]: “novel features, incremental improvement on
existing features, and desirable language properties”. This work presents a language
extension, which also needs a justification. Our proposal as a whole can be seen as
incremental improvement on existing features, because it is not creating something new,
but it is improving the use of something that already exists. The difference between

3.3. Instance names 21

the intermediate and the final variations brings desirable language properties, which is
uniform behavior for similar constructs.

3.3 Instance names

A complementary syntax that could be added as an extension, and enabled by a com-
piler using yet another compilation flag, is the attribution of names to instances. The
motivation for this is that sometimes instance contexts and types that identify instances
can be quite long and complex. For example, instance (Eq a, Eq b, Eq c, Eq d,

Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k,

Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l,

m, n, o) is defined in the Haskell Prelude. It would be better to create a name for
this instance, like EqTuple15, and use this name in import and export lists.

This, as the rest of the proposal, would syntactically affect only the module
system. The programmer will be able to create a synonym to refer to the instance
in export and export lists. The idea of creating a synonym is similar to the type

construction in Haskell.
Naming of instances can be done using a top-level declaration like in, for example,

inst Inst1 = instance T D. After an instance synonym is declared, it would be
possible to use the introduced name on import and export lists. For instance: import
I1 hiding (Inst1).

Although it has a similar name, the Named Instances proposal [Kahl and Schef-
fczyk, 2001] is very different from ours, because it requires more significant changes
to the language. More details about how our work is related to others is present in
Chapter 6.

3.4 Instance scope

Although the control of the visibility of instances allows control of which entities are
necessary and should actually be in the scope of modules, there are subtle and some-
what unfortunate consequences of such control. The most notable one is that a type
annotation may cause the semantics of the annotated construct to be changed.

To see this, consider the example in Figure 3.3, and two cases. In the first, there
is no type annotation of the type of function i1, or there is an annotation, like i1 ::

T a => a, that does not instantiate the constraint on T. In the other case, the type of
i1 is annotated so as to instantiate the constraint on T, as for example i1 :: D.

22 Chapter 3. Solution

Figure 3.3. Second version of Module I1, using the proposed extension.

module I1 where

import T
import D

inst Inst1 = instance T D

instance T D where
t = undefined

-- i1 :: D
i1 = t

Figure 3.4. Second version of the Main module, using the proposed extension.

import I1 hiding (Inst1)
import I2

f :: D -> b -> b
f = undefined

g :: a
g = f i1 i2

If the Main module, shown in Figure 3.4, did not import Module I2, it would not
be able to instantiate function i1 to D. In the example presented, it will instantiate the
function to D, but using the instance defined in I2. Therefore, the writer of Module
I1 should notice that the instance defined there will not necessarily be visible in the
imported module and, when there is an instance visible, it will not necessarily be the
one defined in Module I1.

Also, the programmer should be aware that if the type annotation is included,
by uncommenting the line in Module I1, the instance defined in Module I1 will be
used, even though it is not visible in the Main module. As already stated, if the line is
commented, the instance defined in I2 will be used.

Some instances may have a context, like instance Eq a => Eq [a]. So, to be
able to use the functions from class Eq on, for instance, [Int], the module will have to

3.5. Problems and Solutions 23

import both instance Eq [a] and instance Eq Int. The importation of instance
Eq [a] does not bring into scope the instances required by the context of this instance.

3.5 Problems and Solutions

Like most changes to an established language, this proposal has its pros and cons.
Considering that “a new language feature is only justifiable if it results in a simplifi-
cation or unification of the original language design, or if the extra expressiveness is
truly useful in practice” [Peyton Jones et al., 1997, p. 1], we judge that this language
feature is justifiable because the extra expressiveness added to Haskell is truly useful
in practice. The main force that pushes research in this field is the desire to have more
well typed programs [Pierce, 2002, p. 3], and this is our motivation.

On the other hand, there are reasons why the proposed mechanism was not
included in the language in the first place. It may be argued that changing the definition
of an instance in a program makes it harder to understand what the code means. This
is only a problem if the changes made are not intuitive in the program context, and this
is not a problem of the language extension per se, but of a possible use of it. In Haskell,
it is already possible to create unintuitive expressions like let 1 + 1 = 3 in 1 + 1,
which redefines a function denoted by (+) in local scope, without properly changing
the related type class or its instances. Therefore, this is not going to be the only case
in the language where basic constructs can have their meaning changed.

Changes to instance definitions can cause potentially unexpected things to hap-
pen. Consider the following example. Suppose that a value of type Set is internally
represented by an ordered structure of its elements, and that is why common opera-
tions, like insert, requires the type to be an instance of Ord. If a value of type Set

Char is defined in a module where the visible instance of Ord Char is the default, and
then used in a module where a case-insensitive instance is visible, the search operation
can give perhaps unexpected results.

In Module Definition, show in Figure 3.5, ’a’ is inserted after ’B’, since in
case-sensitive order it comes later. Suppose iCmp is a comparison function for case-
insensitive values of type Char. The call of member in the Main module shown in Figure
3.6 searches for ’a’ before ’B’, because it uses the case-insensitive ordering, and it
will not find it, returning False. This is arguably not a good thing, but it is caused by
a misuse of a feature. Dealing with it requires programmers to be careful when using
different instances of a type class for the same type in programs.

Also, it is possible to do the same thing in Haskell, if the conflicting instance

24 Chapter 3. Solution

Figure 3.5. Module Definition, used in the example of unexpected behavior that
arises from misuse of local instances.

module Definition where

import Data.Set

s :: Set Char
s = insert ’a’ $ insert ’B’ empty

Figure 3.6. Main module of the example of unexpected behavior that arises from
misuse of local instances.

import Definition hiding (instance Ord Char)
import Prelude hiding (instance Ord Char)

instance Ord Char where
compare = iCmp

m :: Bool
m = member ’a’ s

is not used in the modules that imports the definitions. To avoid using the instance
in this module, each module that defines a different instance can provide a function
that has the same behavior of the overloaded function, but already instantiated for a
given type. For instance, both modules could provide a function insert’, with type
Char -> Set Char -> Set Char, instead of the generic type from insert, which is
a -> Set a -> Set a. The same can be done for member. In this case, the modules
that import the definitions would not have to use the overloaded functions; instead, it
would use only the already instantiated functions. Therefore, no type errors will exist,
and the behavior of the program will be equal to the one presented in the last example,
without using our proposed extension2.

Another issue is related to the fact that the semantics of a function may change
because of the inclusion or not of a type signature.3 Although this is in general un-

2There is an example showing how to do so, with source code, in https://gist.github.com/
3854294 .

3Simon Peyton-Jones states that type annotations should not change the result of a function in
this e-mail: http://www.haskell.org/pipermail/haskell/2001-May/007111.html .

https://gist.github.com/3854294
https://gist.github.com/3854294
http://www.haskell.org/pipermail/haskell/2001-May/007111.html

3.5. Problems and Solutions 25

desirable, in this case, when a type is annotated with a less general type, an instance
is being chosen. The instance to be used should be the one available in the module
where it was chosen, and not in the module where the exported function is used. In the
example with the Module I1, if the type of i1 is annotated as D, the choice of which
function is used is made in Module I1, and thus the instance defined in I1 must surely
be the instance used.

A Haskell module exports functions with defined types, and a type annotation
can change a defined type. If a module exports a function with a type such as, for
example, Num a => a -> a, the insertion of a type annotation can change this type,
for example to Int -> Int. A module that imports this function, and uses it with
type Integer -> Integer will not compile, even if the function definition remains
the same. Thus, a type annotation included in a top level declaration can change the
interface of a module, and it is reasonable that some programs will then stop working.
When the interface of a module changes, because of a change in the type of an exported
function, it is reasonable that the semantics of the exported function can change.

Our proposal makes it possible for a change in type annotations to cause semantic
changes, but only between modules and not inside a module. Such a semantic change
can occur only when the interface of a module changes, by a change in the type of an
exported function. In the example, function i1 with type annotation D is not, in any
way, related to type class T, and should thus not be affected by instances declared in
the importing module. On the other hand, if no type is annotated, or a type that has
a constraint on T is annotated, function i1 will be related to the type class, and its
use can thus be affected by the definition or existence of instances of this type class.
Notice that there exist already other examples of cases of type annotations affecting the
semantics of Haskell programs, related to the use of defaulting rules4 and an “a really
amazing example”5 using polymorphic recursion6. We believe that the advantages of
our proposal outweigh disadvantages related to these issues.

4Described in e-mails http://www.haskell.org/pipermail/haskell/2001-May/007113.html ,
http://www.haskell.org/pipermail/haskell/2001-May/007118.html and http://www.haskell.
org/pipermail/haskell/2001-May/007117.html .

5As mentioned by Simon Peyton-Jones in http://www.haskell.org/pipermail/haskell/
2001-May/007133.html .

6Described by Lennart Augustsson in http://www.haskell.org/pipermail/haskell/
2001-May/007122.html .

http://www.haskell.org/pipermail/haskell/2001-May/007113.html
http://www.haskell.org/pipermail/haskell/2001-May/007118.html
http://www.haskell.org/pipermail/haskell/2001-May/007117.html
http://www.haskell.org/pipermail/haskell/2001-May/007117.html
http://www.haskell.org/pipermail/haskell/2001-May/007133.html
http://www.haskell.org/pipermail/haskell/2001-May/007133.html
http://www.haskell.org/pipermail/haskell/2001-May/007122.html
http://www.haskell.org/pipermail/haskell/2001-May/007122.html

26 Chapter 3. Solution

3.6 Conclusion

The proposal solves in a simple way important problems that are currently present
in Haskell. The simplicity of the implementation of this proposal, shown in the next
chapter, provides yet another reason for integrating this proposal to Haskell.

Chapter 4

Implementation

Usually, a compiler keeps a list of available instances while building a module. This
list is used to check if an instance is available when inferring and checking types, and
to choose which instance to use when generating code. Currently, instance visibility
cannot be controlled, so instances are only included in this list, and there is no need
for compilers to remove any element of this list. The implementation of our proposal
will require removing elements from this list while importing and exporting definitions
from a module.

The creation of dictionaries used to implement type classes is not affected. They
are created in the same place and at the same time as without our proposal. The
number of available dictionaries, on the other hand, can be reduced, since not all
dictionaries defined on imported modules are necessarily available for use on the Main
module. This may lead to an improvement in performance of the generated binary.

Our proposal aims to be simple and require as few changes to the language as
possible. This is noticed when the implementation details are made clear: it is only a
matter of filtering imported or exported instances when requested.

The implementation of the proposal was done in a prototype developed by Ro-
drigo Ribeiro1. This prototype contains the front-end of a Haskell compiler. It does
not generate executable binaries, it only performs the type inference and creates an
interface file for each module, with all defined symbols together with their types. At
the beginning of the work, the prototype did not take import and export lists into
consideration. Therefore, the first step of the work was to make the prototype handle

1The prototype is available at https://github.com/rodrigogribeiro/mptc and our implemen-
tation is available at https://github.com/marcotmarcot/mptc . Our implementation uses an
adapted version of the library haskell-src-exts. The original library can be found at http:
//hackage.haskell.org/package/haskell-src-exts and our adapted version can be found at
https://github.com/marcotmarcot/haskell-src-exts-scoped-instances .

27

https://github.com/rodrigogribeiro/mptc
https://github.com/marcotmarcot/mptc
http://hackage.haskell.org/package/haskell-src-exts
http://hackage.haskell.org/package/haskell-src-exts
https://github.com/marcotmarcot/haskell-src-exts-scoped-instances

28 Chapter 4. Implementation

Figure 4.1. Original code for the call of writeIface.

writeIface dir’ m’ ifaces miface

Figure 4.2. New code for the call of writeIface.

writeIface dir’ m’ ifaces $ filterEl m miface

Figure 4.3. The code of the function filterEl.

filterEl :: Module -> Iface -> Iface
filterEl (Module _ _ _ _ Nothing _ _) i = i
filterEl

(Module _ _ _ _ (Just exps) _ _)
i@(Iface {synonyms = s, classes = c, assumps = a})

= i
{synonyms = doFilterEl exps s,

classes = doFilterEl exps c,
assumps = doFilterEl exps a}

doFilterEl :: ToId a => [ExportSpec] -> [a] -> [a]
doFilterEl exps = filter ((‘elem‘ map esToName exps) . idToName . toId)

import and export lists.

4.1 Export and import lists

Export lists were handled first. The change in the code was done in the function
that writes the interface file with the symbols defined by the module and their types,
called writeIface. The interface that is the input of this function was filtered through
another function, filterEl, which would keep only the entities in the export list, if
it was available. The original source code is shown in Figure 4.1 and the new one in
Figure 4.2. The code for function filterEl is shown in Figure 4.3.

This function is very simple. There are three types of exported entities that are
affected by an export list: type synonyms, stored in list synonyms; type classes, stored
in classes; and types identifiers, stored in assumptions. Each element of these lists

4.2. Conflicting instances 29

Figure 4.4. The original code of the function readIface.

readIface dir i
= do

let v = gen dir (importModule i)
parseInterface v

Figure 4.5. The new code of the function readIface.

readIface dir i
= do

let v = gen dir (importModule i)
filterIl (importSpecs i) <$> parseInterface v

is compared with the export list if it is present. In this case, only the items that are
present in the export list specification are returned by the function. If the export list
is not present, all entities are returned.

The export lists were handled just before writing the interface file. Import lists
are handled, analogously, just after reading the interface file. The results of parsing
the interface file are filtered using the rules of the import list. The original code for
function readIface, which read and parsed the interface file, is shown in Figure 4.4.
The new code for this function is in Figure 4.5.

The parsed results are filtered using function filterIl. Its source code is shown
in Figure 4.6. This function is a little bit more complicated because the import list can
define the imported entities or the entities that should not be imported, when keyword
hiding is used. Similarly to filterEl, it filters the three types of entities affected by
import lists, checks if it is a hiding import or not, and removes the necessary elements.

4.2 Conflicting instances

Conflicting instances are instances of the same type class defined for the same type.
Using such an instance is a compile time error in Haskell, since there is no reasonable
way of deciding which instance to choose, in any such usage. Unfortunately, however,
the prototype front-end performed no test to verify if conflicting instances existed. For
implementing our proposal, we first modified the front-end to make this verification.

To implement this, a change had to be made in the type-checking algorithm to

30 Chapter 4. Implementation

Figure 4.6. The new code of the function readIface.

filterIl :: Maybe (Bool, [ImportSpec]) -> Iface -> Iface
filterIl Nothing i = i
filterIl

(Just (hid, is))
i@(Iface {synonyms = s, classes = c, assumps = a})

= i
{synonyms = doFilterIl hid is s,

classes = doFilterIl hid is c,
assumps = doFilterIl hid is a}

doFilterIl :: ToId a => Bool -> [ImportSpec] -> [a] -> [a]
doFilterIl hid is

= filter ((\x -> any (f x) $ map isToName is) . idToName . toId)
where

f :: Eq a => a -> a -> Bool
f

| hid = (/=)
| otherwise = (==)

Figure 4.7. The original code of the instance check.

foldM (satstep phi p) [[]] delta

Figure 4.8. The new code of the instance check which does not allow more than
one instance of the same class for the same type.

case delta of
[delta_] -> satstep phi p [[]] delta_
[] -> error "No instances found."
_ -> error "More than one instance found."

give an error when more than one instance was found. The original code is shown
in Figure 4.7, and the new code in Figure 4.8. The number of available instances is
verified, and if no instances are found or if there are more than one instance found,
error messages are reported.

4.3. Intermediate version 31

Figure 4.9. Function filterIl on the intermediate version.

filterIl :: Maybe (Bool, [ImportSpec]) -> Iface -> Iface
filterIl Nothing i = i
filterIl

(Just (hid, is))
int@(Iface {synonyms = s, classes = c, assumps = a, instances = i})

= int
{synonyms = doFilterIl hid is s,

classes = doFilterIl hid is c,
assumps = doFilterIl hid is a,
instances = filterInstancesIl hid is i}

4.3 Intermediate version

To implement the intermediate version, the only change needed is in the hiding key-
word of an import list. In function filterIl, instances need to be treated separately.
Function doFilterIl cannot be used, because instances do not have a simple name
like other entities: their identification is composed by the name of the type class and
the name of the data type. Therefore, another function was created to deal with
them, called filterInstancesIl. In the intermediate version, this function checks
if an import list uses keyword hiding and, if so, it filters all instances that are in
such import list. The new code for filterIl is shown in Figure 4.9. The code for
filterInstancesIl is shown in Figure 4.10.

4.4 Final version

The final version requires changes not only in the handling of import lists, as the
intermediate version, but also in the handling of export lists. Besides, changes in
import lists do not only consider instances in import clauses with keyword hiding,
but in all of them. To concentrate the treatment of keyword hiding in only one place,
functions doFilterIl and filterInstancesIl were changed to receive a comparison
function instead of a value indicating if this import clause has or not keyword hiding.
This comparison function is the equality, (==), when there is no hiding keyword, and
the inequality, (/=), when there is. The new code for function filterIl can be seen
in Figure 4.11. The adaptation on doFilterIl and filterInstancesIl was simple,
as can be seen in Figures 4.12 and 4.13.

32 Chapter 4. Implementation

Figure 4.10. Function filterInstancesIl on the intermediate version.

filterInstancesIl :: Bool -> [ImportSpec] -> [Inst] -> [Inst]
filterInstancesIl False is = id
filterInstancesIl True is

= filter
((\x -> any ((/=) x) $ mapMaybe importSpecToInstanceSpec is)

. instToInstanceSpec)

importSpecToInstanceSpec :: ImportSpec -> Maybe (Id, Id)
importSpecToInstanceSpec (IInstance n m) = Just (toId n, toId m)
importSpecToInstanceSpec _ = Nothing

instToInstanceSpec :: Inst -> (Id, Id)
instToInstanceSpec (Inst c [t] _) = (c, toId t)
instToInstanceSpec _ = error "instToInstanceSpec _"

Figure 4.11. Function filterIl on the final version.

filterIl :: Maybe (Bool, [ImportSpec]) -> Iface -> Iface
filterIl Nothing i = i
filterIl

(Just (hid, is))
int@(Iface {synonyms = s, classes = c, assumps = a, instances = i})

= int
{synonyms = doFilterIl op is s,

classes = doFilterIl op is c,
assumps = doFilterIl op is a,
instances = filterInstancesIl op is i}

where
op :: Eq a => a -> a -> Bool
op

| hid = (/=)
| otherwise = (==)

4.4. Final version 33

Figure 4.12. Function doFilterIl on the final version.

doFilterIl
:: ToId a => (Name -> Name -> Bool) -> [ImportSpec] -> [a] -> [a]

doFilterIl op is
= filter ((\x -> any (op x) $ mapMaybe isToName is) . idToName . toId)

Figure 4.13. Function filterInstancesIl on the final version.

filterInstancesIl
:: ((Id, Id) -> (Id, Id) -> Bool) -> [ImportSpec] -> [Inst] -> [Inst]

filterInstancesIl op is
= filter

((\x -> any (op x) $ mapMaybe importSpecToInstanceSpec is)
. instToInstanceSpec)

Figure 4.14. Function filterEl filtering instances.

filterEl :: Module -> Iface -> Iface
filterEl (Module _ _ _ _ Nothing _ _) i = i
filterEl

(Module _ _ _ _ (Just exps) _ _)
int@(Iface {synonyms = s, classes = c, assumps = a, instances = i})

= int
{synonyms = doFilterEl exps s,

classes = doFilterEl exps c,
assumps = doFilterEl exps a,
instances = filterInstancesEl exps i}

The implementation of filtering export lists is similar, but simpler because there is
no need to consider cases of keyword hiding. Function filterEl was changed to han-
dle instances also, as done with import lists. The new code for this function is shown in
Figure 4.14. As with import lists, a separate function filters instances, in this case called
filterInstancesEl. The code for this function is similar to filterInstancesIl and
is shown in Figure 4.15.

34 Chapter 4. Implementation

Figure 4.15. Function filterInstancesEl.

filterInstancesEl :: [ExportSpec] -> [Inst] -> [Inst]
filterInstancesEl exps

= filter
$ (‘elem‘ mapMaybe exportSpecToInstanceSpec exps)

. instToInstanceSpec

exportSpecToInstanceSpec :: ExportSpec -> Maybe (Id, Id)
exportSpecToInstanceSpec (EInstance n m) = Just (toId n, toId m)
exportSpecToInstanceSpec _ = Nothing

4.5 Testing

In order to test the implementation, comprehensive test cases were elaborated2, with
two separated tests for import lists, one with the intermediate version and one with
the final. For each of them, 16 cases were created. This number of tests, 16, is a
consequence of the fact that there are 2 imports in each test, each one importing a
module which defines a conflicting instance, and, for each import, there are 4 ways
to import it: (a) without import lists, (b) with an empty import list, (c) with the
import list specifying an imported instance and (d) with the import list hiding an
instance. The file name of each test corresponds to the expected result. If the file
name is prefixed with Overlap, it is expected that the compiler will report an error
of overlapping instances. If the file name is prefixed with NoInstance, it is expected
that the compiler will not find an instance to be used. If the file name is prefixed with
Ok, there are no errors. The suffix of each file is the number of the test. A script was
created that compiles each of these test cases and checks if the output of the compiler
is in accordance with the prefix of the file name.

To test the export list filter, nine cases where considered, because there are only
three types of exportation: (a) no export list, (b) empty export list and (c) an instance
in the export list. The tests for the export list were done in the same way as for import
lists, and the same script was used. For all tests, every result was correct.

2The test cases are available at https://github.com/marcotmarcot/scoped-instances-tests
.

https://github.com/marcotmarcot/scoped-instances-tests

4.6. Conclusion 35

4.6 Conclusion

The implementation is very simple in the prototype, and should not be complicated in
a production compiler, if done by a specialist in the compiler. As the testing coverage
is complete, we have confidence that the proposal achieves its goals of controlling the
scope of instances.

Chapter 5

Extending Haskell’s Module System
Formal specification

The module system of Haskell 98 has been formally specified [Diatchki et al., 2002]
without dealing with type class instances. This chapter presents an extension of this
formalization for dealing with type class instances, including the changes needed in this
formal specification in order to cope with both the intermediate and final alternatives
of our proposal. The work in which the formalization is made does not provide the
complete code of the formalization, but the code is available on the web1.

The code models Name as a wrapper around a String, and it is stated in the work
that type class instances were not considered because it is not possible to refer to them
by a name [Diatchki et al., 2002, Section 3.1]. We propose that names of instances be
written as they occur in export and import clauses (as presented in Figures 3.1 and
3.2). By doing this, there is no need to change data type Name, nor data type Entity

used for describing exported and imported entities.

1http://yav.purely-functional.net/publications/modules98-src-21-Nov-2005.tar.gz.

Figure 5.1. Auxiliary functions for filtering instances in the module system.

isInst :: Entity -> Bool
isInst (Entity { name = n }) = head (words n) == "instance"
isInst _ = False

instances :: (Ord a) => Rel a Entity -> Rel a Entity
instances = restrictRgn isInst

37

http://yav.purely-functional.net/publications/modules98-src-21-Nov-2005.tar.gz

38 Chapter 5. Extending the Module System specification

For the Instance Names extension, presented in Section 3.3, instance names can
also be used to refer to an instance. In this case, the name mentioned in the Entity

data type must be the real name of the instance, and not the synonym. Otherwise,
it will not be possible to tell if the name refers to an instance or not: the auxiliary
function isInst, defined in Figure 5.1, is used to distinguish type class instances from
other entities. Function isInst is used in the same manner as function isCon, defined
in the paper [Diatchki et al., 2002, Section 3.1]. Another auxiliary function that should
be defined is a filter for type class instances, called, say, instances, as in Figure 5.1,
to be used for the changes introduced in our extension of the formalization.

5.1 Haskell and the intermediate alternative

Our proposal can be applied to both Haskell 98 and Haskell 2010, since the language
changes from Haskell 98 to Haskell 2010 do not affect the proposal. The changes needed
to be done in the formalization of the module system for including the way Haskell
deals with type class instances and the way our intermediate proposal deals with it are
the same. The difference is that our proposal provides some syntactic constructs which
are not available in Haskell. From the perspective of the module system specification,
this will mean that some possibilities, like hiding an instance, are not going to happen,
but having the code for it available will not interfere with the result. Because of this,
in this subsection we present the changes needed for both Haskell and our intermediate
proposal.

Only two things need to be changed in the specification: the way exported and
imported entities are obtained. In the case of exported entities, function exports

[Diatchki et al., 2002, Section 5.2] needs to be changed. The old version of the function
is presented in Figure 5.2 and the new version in Figure 5.3. The difference between
them is just that, when an export list is available, as in the Just es case, the instances
are exported with what is specified in the export list. The instances, then, are always
exported, as defined in Haskell 2010 report [Marlow, 2010, Section 5.4].

The other change needed, which is related to imported entities, is in function
mImp. The change deals with a function defined in the where clause of function
incoming. The old and new versions of function incoming are presented respectively
in Figures 5.4 and 5.5. Similarly to the change in the exports function, this change
includes instances in entities that are going to be imported even if they are not in the
import list.

Notice that, in the case of a hiding import such that an instance is in the hiding

5.1. Haskell and the intermediate alternative 39

Figure 5.2. Function exports as in [Diatchki et al., 2002, Section 5.2].

exports :: Module -> Rel QName Entity -> Rel Name Entity
exports mod inscp =

case modExpList mod of
Nothing -> modDefines mod
Just es -> getQualified ‘mapDom‘ unionRels exps

where exps = mExpListEntry inscp ‘map‘ es

Figure 5.3. New function exports.

exports :: Module -> Rel QName Entity -> Rel Name Entity
exports mod inscp =

case modExpList mod of
Nothing -> modDefines mod
Just es -> unionRels

[getQualified ‘mapDom‘ unionRels exps,
instances $ modDefines mod_]

where exps = mExpListEntry inscp ‘map‘ es

Figure 5.4. The function incoming as it is on [Diatchki et al., 2002, Section
5.3], for reference.

incoming
| isHiding = exps ‘minusRel‘ listed
| otherwise = listed

Figure 5.5. The new incoming function that also deals with instances.

incoming
| isHiding = exps ‘minusRel‘ listed
| otherwise = unionRels [listed, instances exps]

40 Chapter 5. Extending the Module System specification

list, in the intermediate alternative the instance will not be imported, as expected,
because instances are only being added in the case where they are not a hiding import.
Also, if the instance is not in the hiding list, it will be imported, because it is included
in exps.

5.2 The final alternative

To specify the final alternative, the consideration about how to use instances by names
is still valid, in order to allow the system to recognize instances, but the rest of the
specification must be kept in the same way as it is, that is, without the changes proposed
in the last subsection. This happens because our proposal makes instances be handled
in the same way as other Haskell entities, so that the specification that worked for
them works also for instances.

Chapter 6

Related work

The work of Named instances [Kahl and Scheffczyk, 2001] solves issues related to those
discussed in our work. In that work a new name must be given for each instance,
and the name must be used to reference the defined instance. This constitutes a very
significant change to the language. Our proposal is simpler, since it requires fewer
changes to the language and is, therefore, more likely to be included and internalized
by Haskell programmers.

Named instances provide more expressivity than our proposal, because it allows
any two different instances of the same type class for the same data type to be used in
the same module. In our proposal, two different instances of the same type class for
the same data type can only be used in two different modules. This can be a problem
because our proposal forces the programmer to split a module in two in this situation,
but we do not believe that the need to write more than one instance per type class and
data type will be common. The burden of creating a new module is, then, not very
severe. Thus, while we lose on expressivity, we gain on simplicity and we think that
this is a good trade-off.

Another related work is that of scoped instances [Dijkstra et al., 2007], which
suggests a language extension for Haskell that allows instances to be defined inside let
clauses. An example is given in Figure 6.1. The proposal suggests choosing the instance
that is in the innermost scope, allowing in this scheme also overlapping instances.
The proposal does not deal though with the problems of visibility of instances across
modules, and thus does not solve the problems of orphan instances nor the problem of
pollution of module scopes.

Dreyer, Harper, Chakravarty and Keller have proposed a more radical change to
Haskell that allows “viewing type classes as a particular mode of use of modules” [Dreyer
et al., 2007]. Their work also identifies drawbacks of the current state of the Haskell’s

41

42 Chapter 6. Related work

Figure 6.1. Example of scoped instance extracted from [Dijkstra et al., 2007,
Section 6].

e2 = let instance Eq Int where
x == y = primEqInt (x ‘mod‘ 2) (y ‘mod‘ 2)

in 3 == 5

type class mechanism — namely, lack of modularity, with consequent inconveniences
for the programmer of having always only one instance of a type class for any type,
and lack of separation from definition of instances to their availability of use. They
also identify a problem of coherence, namely that semantics might differ based on a
decision of overloading resolution made by the type inference algorithm. Their solution
is to require that the scope of instances be confined to the global module level, where
required type annotations identify whether overloading has been resolved and, if not,
the set of permissible instances. In our proposal, as in Haskell, instances are always
at the global module level (our proposal simply allows control of which instances are
imported and exported). Overloading resolution is based on the type of the exported
instance. If overloading is not resolved, the set of permissible instances is the set of
available instances in the importing module.

Type classes hold a strong correlation with Scala implicits [Bruno C. d.
S. Oliveira, 2010], in which a type class declaration in Scala is done by using a trait,
and a type class instance can be obtained by creating an object which implements the
trait. To avoid having to pass the object (which would be the instance in Haskell)
as a parameter in each call of the function, this object can be declared implicit, in
which case it is passed implicitly to functions that expect an object of this type. Even
though most of the times the name of this kind of object is not used, all objects of this
type must have a name, and this name can be imported and exported. The decision
of which implicit to use can be done by passing the name of the object as an explicit
parameter, so that, even in a single module, more than one implicit for the same type
can be used.

Chapter 7

Conclusion

An article presenting this proposal was published in the 2011 edition of the Brazilian
Symposium on Programming Languages [Gontijo and Camarão, 2011].

The Haskell language extension proposed in this work is relatively simple and
gives more freedom to programmers. On the negative side, it can lead to misuses
that may cause programs to become harder to read and to reason about, because
assumptions about, for example, the behavior of functions like sort may not hold if a
non-standard instance of class Ord is used. Also, certain operations rely on the presence
of some instances, and programmers must be aware of that when redefining instances.
Finally, the inclusion of type signatures can change the semantics of a program if
such type signatures cause types of exported functions, and instance selection, to be
modified. Programmers must then be aware of that and be careful when changing the
type of exported entities.

7.1 Contributions

On the positive side, our proposal makes only small changes to the language syntax and
semantics. It gives more control to programmers which may now construct programs
and libraries that are simpler and more readable. The proposal removes the necessity of
the ...By class of functions and well-known and often discussed problems related with
orphan instances. The proposal also makes exportation and importation of instances
more homogeneous with other entities. This is demonstrated by the fact that the
formalization does not need to be changed to deal with instances in our final proposal.

As far as we can see, our proposal does not interfere with other Haskell language
feature, mechanism or known extensions.

43

44 Chapter 7. Conclusion

7.2 Future work

This work has presented both syntactic and semantic details of our proposal. Both
syntax alternatives have been implemented in a prototype. An implementation in the
most used Haskell compiler, GHC, still needs to be done. The inclusion of a good
quality implementation in the main distribution of GHC will allow programmers an
opportunity to use the extension in production code, enabling an evaluation of the
utility of the extension in the real world.

Bibliography

Arnold, K., Gosling, J., and Holmes, D. C. (2006). The Java Programming Language.
Prentice Hall, 4rd edition.

Bruno C. d. S. Oliveira, Adriaan Moors, M. O. (2010). Type classes as objects and
implicits. In OOPSLA, pages 341–360.

Diatchki, I., Jones, M., and Hallgren, T. (2002). A formal specification of the Haskell
98 module system. In Proc. of the 2002 Haskell Workshop.

Dijkstra, A. et al. (2007). Modelling Scoped Instances with Con-
straint Handling Rules. http://www.cs.uu.nl/wiki/bin/viewfile/Ehc/

ModellingScopedInstancesWithConstraintHandlingRules?rev=1.1;filename=

20070406-2213-icfp07-chr-locinst.pdf.

Dreyer, D. et al. (2007). Modular Type Classes. In SIGPLAN Notices, volume 42,
pages 63–70.

Faxén, K. (2002). A static semantics for Haskell. Journal of Functional Programming,
12:295--357.

Gontijo, M. and Camarão, C. (2011). Controlling the scope of instances in Haskell.
In Proceedings of the 2011 Brazilian Symposium on Programming Languages, São
Paulo. Brazilian Computer Society.

Hall, C. V. et al. (1996). Type classes in Haskell. In ACM Transactions on Programming
Languages and Systems, volume 18, pages 109–138.

Hudak, P. et al. (2007). A history of Haskell: Being lazy with class. In HOPL-III:
Proc. 3rd ACM SIGPLAN Conf. History of Programming Languages, pages 1–55,
San Diego, CA, USA. ACM Press.

Kahl, W. and Scheffczyk, J. (2001). Named Instances for Haskell Type Class. Technical
report UU-CS-2001-62, Universiteit Utrecht.

45

http://www.cs.uu.nl/wiki/bin/viewfile/Ehc/ModellingScopedInstancesWithConstraintHandlingRules?rev=1.1;filename=20070406-2213-icfp07-chr-locinst.pdf
http://www.cs.uu.nl/wiki/bin/viewfile/Ehc/ModellingScopedInstancesWithConstraintHandlingRules?rev=1.1;filename=20070406-2213-icfp07-chr-locinst.pdf
http://www.cs.uu.nl/wiki/bin/viewfile/Ehc/ModellingScopedInstancesWithConstraintHandlingRules?rev=1.1;filename=20070406-2213-icfp07-chr-locinst.pdf

46 Bibliography

M. Jones (1994). Qualified Types: Theory and Practice. PhD thesis, Distinguished
Dissertations in Computer Science. Cambridge Univ. Press.

Markstrum, S. (2010). Staking Claims: A History of Programming Language Design
Claims and Evidence (A Positional Work in Progress). In Proc of the Workshop on
Evaluation and Usability of Programming Languages and Tools.

Marlow, S., editor (2010). Haskell 2010: Language Report. http://www.haskell.org/
onlinereport/haskell2010/.

Milner, R., Tofte, M., and Harper, R. (1988). The Definition of Standards ML, version
2. Technical report ECS-LFCS-88-62, Edinburgh University, Computer Science Dept.

Odersky, M., Spoon, L., and Venners, B. (2012). Programming in Scala. Artima, 2nd
edition.

Peyton Jones, S., Jones, M., and Meijer, E. (1997). Type classes: An exploration of
the design space. In Haskell Workshop.

Pierce, B. C. (2002). Types and Programming Languages. The MIT Press.

Stroustrup, B. (1997). The C++ Programming Language. Addison-Wesley, 3rd edition.

Wadler, P. and Blott, S. (1989). How to make ad-hoc polymorphism less ad hoc. In
Proc of the 16th ACM Symposium on Principles of Programming Languages, pages
60–76.

http://www.haskell.org/onlinereport/haskell2010/
http://www.haskell.org/onlinereport/haskell2010/

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Type classes
	1.2 Modules
	1.3 Objectives of this dissertation
	1.4 Contributions
	1.5 Outline of this work

	2 Background
	2.1 Defining special purpose instances
	2.2 Orphan instances
	2.2.1 Real world cases

	2.3 Conclusion

	3 Solution
	3.1 Final alternative
	3.2 Intermediate alternative
	3.3 Instance names
	3.4 Instance scope
	3.5 Problems and Solutions
	3.6 Conclusion

	4 Implementation
	4.1 Export and import lists
	4.2 Conflicting instances
	4.3 Intermediate version
	4.4 Final version
	4.5 Testing
	4.6 Conclusion

	5 Extending the Module System specification
	5.1 Haskell and the intermediate alternative
	5.2 The final alternative

	6 Related work
	7 Conclusion
	7.1 Contributions
	7.2 Future work

	Bibliography

