
APRENDIZAGEM EFICIENTE DE

CLASSIFICADORES SEQUENCIAIS EM

PADRÕES LONGOS

GESSÉ SILVA FERREIRA DE DAFÉ

APRENDIZAGEM EFICIENTE DE

CLASSIFICADORES SEQUENCIAIS EM

PADRÕES LONGOS

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da
Universidade Federal de Minas Gerais como
requisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Adriano Alonso Veloso

Belo Horizonte

Janeiro de 2013

GESSÉ SILVA FERREIRA DE DAFÉ

LEARNING SEQUENTIAL CLASSIFIERS IN

LONG-RANGE PATTERNS EFFICIENTLY

Dissertation presented to the Graduate
Program in Computer Science of the
Federal University of Minas Gerais in
partial fulfillment of the requirements for
the degree of Master in Computer Science.

Advisor: Adriano Alonso Veloso

Belo Horizonte

January 2013

c© 2013, Gessé Silva Ferreira de Dafé.
Todos os direitos reservados.

Dafé, Gessé Silva Ferreira de.

D124a Aprendizagem eficiente de classificadores sequenciais
em padrões longos / Gessé Silva Ferreira de Dafé. —
Belo Horizonte, 2013

xxiv, 43 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais. Departamento de Ciência da
Computação.

Orientador: Adriano Alonso Veloso

1. Computação - Teses. 2. Mineração de Dados
(Computação) – Teses. I. Orientador. II. Título.

CDU 519.6*72 (043)

I dedicate this work to my parents, as they have dedicated their whole lives to love
and educate me, over any other priority.

ix

Acknowledgments

First, my utmost gratitude to God, my refuge and comfort in difficult moments of my
life, source of all love, peace and hope that the human heart can feel.

In second place, I am thankful to those who I love most in this world: my parents,
Magda and Darcy, who always did their best to lead me to the path of happiness and
to whom I owe everything that I am. I also thank my beloved sister, Sara, for the
encouragement words, and for the unconditional love and care on which I can always
count.

Undoubtedly, I owe my deepest gratitude to my advisor, Adriano Veloso, from
who I have never heard a discouraging word or a reprimand. By contrast, he has always
been more than a mentor in this journey: he was a partner and a friend. I also thank
Wagner Meira Jr. and Mohammed Zaki, for the immeasurable collaboration to this
work.

Last but not least, I thank my great friends/advisers/squires Gisnálbert and
Paulo Afonso, always present, always available to support me in whatever I needed...
and I thank all my friends, whose hands are always ready to help, in hard times, or to
propose a toast, in moments of success!

Thank you all!

xi

“O correr da vida embrulha tudo. A vida é assim: esquenta e esfria, aperta e daí
afrouxa, sossega e depois desinquieta. O que ela quer da gente é coragem.”

(João Guimarães Rosa)

xiii

Resumo

Muitas aplicações, tais como extração de informação, detecção de intrusão e
reconhecimento de enovelamento de proteínas, podem ser expressas como uma
sequência de eventos (ao invés de um conjunto não-ordenado de atributos), ou seja,
existe uma relação de ordem entre os elementos que compõem cada instância presente
nos dados. Essas aplicações podem ser modeladas como problemas de classificação e,
nesse caso, o classificador precisa ser construído de forma a ser capaz de capturar
tais relações e usá-las como fonte de informação. As principais abordagens para
esse problema incluem: (i) a aprendizagem de Modelos Ocultos de Markov, (ii) a
exploracão de sequências frequentes extraídas dos dados e (iii) o cálculo de string
kernels para Máquinas de Vetores de Suporte (SVMs). Essas abordagens, entretanto,
são computacionalmente difíceis e a alta dimensionalidade, típica dos dados sequenciais,
representa sérios desafios à viabilidade de tais métodos, em especial se os dados possuem
dependências longas (i.e., padrões longos são necessários para modelar os dados).
Neste trabalho apresentamos algorítmos que geram classificadores sequenciais de alta
eficiência através da exploração dos conceitos de adjacência ou proximidade entre os
elementos de uma sequência, a fim de aprimorar a acurácia ou garantir, juntamente
com a limitação dinâmica dos tamanhos das sequências enumeradas, um custo de
aprendizagem de O(n

√
n), onde n é a dimensão (número de atributos) da instância a

ser classificada. Nossos algorítmos baseiam-se na enumeração sob demanda de padrões
(aproximadamente) contíguos presentes nos dados de treino, usando um método flexível
e leve de casamento de padrões e uma estratégia inovadora de enumeração que
chamamos desilhuetas de padrões, que fazem com que nossos classificadores sejam
rápidos porém robustos mesmo em dados ruidosos. Nossos resultados empíricos,
obtidos sobre conjuntos de dados reais, mostram que, na maioria dos casos, nossos
calssificadores são mais rápidos que as soluções existentes (em alguns casos, ordens de
grandeza mais rápidos) e proporcionam ganhos significativos de acurácia.

xv

Abstract

Many applications, such as information extraction, intrusion detection and protein fold
recognition, can be expressed as sequences of events or elements (rather than unordered
sets of features), that is, there is an order dependence among the elements composing
each data instance. These applications may be modeled as classification problems,
and in this case the classifier must be built using sequential interactions among the
elements, so that the ordering relationship among them is properly captured. Dominant
approaches to this problem include: (i) learning Hidden Markov Models, (ii) exploiting
frequent sequences extracted from the data and (iii) computing string kernels for
Support Vector Machines. Such approaches, however, are computationally hard, and
the typically high-dimensional nature of sequential data poses serious challenges to their
feasibility, especially if the data shows long range dependencies (i.e., long patterns are
necessary in order to model the data). In this paper we introduce algorithms that build
highly effective sequential classifiers by exploiting adjacency or proximity information,
either to improve classification accuracy or to ensure O(n

√
n) learning cost, where n is

the dimension (number of features) comprising a given test instance. Our algorithms
are based on enumerating (approximately) contiguous sequences from the training data
on a demand-driven basis, exploiting a lightweight and flexible sequence matching
function and an innovative sequence enumeration strategy called pattern silhouettes,
which make our classifiers fast but also robust even in noisy data. Our empirical results
on actual datasets show that, in most of the cases, our classifiers are faster than existing
solutions (sometimes orders of magnitude faster), also providing significant accuracy
improvements in most of the evaluated cases.

xvii

List of Figures

3.1 Sliding Window Sequence Enumeration . 17
3.2 Trade-off between accuracy, time (ms) and sequence length limitation

strategy. Datasets employed (in order): Dilma Rousseff, Felipe Melo,
Author Name, Protein Fold, Protein Family, Intrusion, Spelling and Web
Log. 19

3.3 Pattern Silhouette Enumeration . 21
3.4 Behavior of ψ and Ψ functions. 23

xix

List of Tables

2.1 Total Number of Patterns in a Single Test Instance 9

4.1 Results in Sentiment Analysis Task - Dilma Rousseff Dataset 28
4.2 Results in Sentiment Analysis Task - Felipe Melo Dataset 29
4.3 Results in Author Name Disambiguation Task 30
4.4 Results in Protein Fold Recognition Task 31
4.5 Results in Protein Family Recognition Task 32
4.6 Results in Intrusion Detection Task . 33
4.7 Results in Spelling Correction Task . 33
4.8 Results in Web Log Analysis Task . 33
4.9 Accuracy analysis: SC-SC vs. AC-SC . 34

xxi

Contents

Acknowledgments xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

1 Introduction 1

2 Preliminaries 5
2.1 Basic Concepts . 6

2.1.1 Simple Patterns . 6
2.1.2 Sequential Patterns . 6
2.1.3 N -Grams . 7

2.2 Related Work . 8
2.2.1 Associative Classification . 8
2.2.2 Demand-Driven Associative Classification 8
2.2.3 Approaches based on Sequential Patterns 9
2.2.4 Approaches based on Hidden Markov Models 11
2.2.5 Approaches based on String Kernels for Support Vector Machines 12

2.3 Motivation . 13
2.4 Objectives . 13

3 Learning Demand-Driven Sequential Classifiers 15
3.1 Learning Strictly-Contiguous Sequential Classifiers 16

3.1.1 Learning Sequential Classifiers by Accessing Similarity Between
Instances . 18

xxiii

4 Experimental Evaluation 25
4.1 Application Scenarios . 25
4.2 Baselines . 27
4.3 Results . 27

4.3.1 Reproducibility . 34

5 Conclusions and Future Work 35

Bibliography 37

xxiv

Chapter 1

Introduction

Machine Learning is the term used to define a wide research area whose interest is to
develop techniques that allow machines to discover, with some degree of autonomy,
solutions to computational problems which cannot be solved (or are very difficult to
solve) by direct implementation. A machine learning process is said to be supervised
when it is based on programming the machine to solve a problem by learning with
examples of similar problems solutions. If these solutions assume predetermined values,
we call that process Classification. In a classification problem, each sample provided
to the machine comprises an input, representing an instance of the problem, and an
output, representing the solution related to that instance. An input may be composed
of one or more attributes and each possible output value is said to be a Class.

Classification algorithms usually interpret each training example as an unordered
set of features. In many applications, however, a training example is represented as a
sequence of events or elements, and, therefore, there is an explicit ordering relationship
among these elements. This is commonly observed in application scenarios such as
information extraction, trajectory prediction and protein fold recognition [Han et al.,
2004, 2005; Lodhi et al., 2009; Silva et al., 2011]. In such cases, it may be advantageous
to interpret examples as sequences of elements, since the order relation may contain
relevant (or even necessary) information about the meaning of data. Just to illustrate
this intuition, the following fictitious sentences have opposite meanings, despite being
composed of the same words. There is no difference between them except the order in
which words happen:

“Netanyahu does not want the war, he wants the peace agreement.”
“Netanyahu wants the war, he does not want the peace agreement.”

1

2 Chapter 1. Introduction

Algorithms that produce classifiers from sequential data (i.e., sequential
classifiers) may rely on (i) building generative classifiers by learning Hidden Markov
Models [Rabiner, 1989], (ii) transforming the original feature space into another one
in which each transformed feature corresponds to a frequent sub-sequence of elements
in the original space [Tseng and Lee, 2005], (iii) combining frequent pattern mining
and Hidden Markov Model approaches [Zaki et al., 2010] and (iv) computing string
kernels for Support Vector Machines [Lodhi et al., 2002]. These algorithms, however,
may suffer from non-negligible shortcomings, possibly preventing them to capture long
range sequential dependencies in the data, provide fast learning times or deal with
noisy sequential data. Furthermore, such algorithms are often devised for a specific
learning task [Agrawal and Srikant, 1995; Eddy, 1998], or depend on a non-trivial set
of parameters [Zaki et al., 2010] (e.g., minimum support, maximum sequence length
and maximum gap).

In this thesis we propose general purpose sequential classification algorithms
that exploit the proximity among elements within the training examples in order to
learn sequential classifiers that are efficient both in terms of classification accuracy
and learning time. Proximity information is used as a pruning strategy to determine
only related co-occurrence patterns, and in addition being time efficient. The proposed
algorithms also yield improvements in terms of classification effectiveness, showing that
sequences composed of contiguous (or adjacent) elements may be discriminative enough
to produce highly effective sequential classifiers. By dynamically bounding the length
of these sequences so that the corresponding classifier captures not only short, but also
long range dependencies in the data, we show that contiguous sequential classifiers
can be learned in O(n

√
n) time, where n is the number of elements within a test

instance. A drawback, however, is that contiguous sequential classifiers may become
excessively restrictive, since no violation in the ordering relationship among elements is
allowed while extracting the sequences. As a result, the classifier is usually composed
of very few sequences, being not sufficiently expressive or very sensitive to noise,
compromising classification effectiveness. To overcome this limitation we relax the
sequence enumeration process in order to extract approximately contiguous sequences.
We formulate a lightweight matching function which compares a test instance with
the relevant examples in dataset and measures the similarity betwen them. The
similarity is based on how much contiguous matching features they have in common.
Violations in the contiguity of the sequences (i.e., mismatches) are allowed and properly
penalized. Relevant examples are extracted from the dataset in a demand-driven basis,
by indexing what we call pattern silhouettes. As a result, sequential classifiers become

3

more expressive, but are still efficiently learned in O(n
√
n).

To validate our claims and to evaluate the effectiveness of the proposed
algorithms, we performed a systematic set of experiments using real sequential data
obtained from a variety of application scenarios such as information extraction,
protein fold recognition, intrusion detection, spelling correction, among others. The
results show that our proposed algorithms provide, in most of the cases, significant
improvements in terms of execution time, without putting classification accuracy at
risk when compared against state-of-the-art solutions. In fact, in most of the cases,
our proposed algorithms are able to improve classification accuracy as well.

The rest of this thesis is organized as follows. In Chapter 2 we cover some basic
concepts and then discuss existing approaches that are closely related to our work. In
Chapter 3 we provide an in-depth description of our proposed method. In Chapter
4 we present and discuss our experiments and results. Finally, in Chapter 5 we offer
conclusions and possible directions for future work.

Chapter 2

Preliminaries

In a single-label 1 classification problem, each example provided to the machine
comprises an input (a set of features) and an output (a class). To make the machine
learn and therefore be able to infer the class to which a given unforeseen input belongs,
it needs to find, among the existing examples, a suitable function that can map inputs
to outputs. A classification algorithm aims to find such a function (or a set of functions)
that represents, as general and accurately as possible, the relationship between inputs
and outputs contained in a set of examples. However, the search space for this
mapping function is potentially unlimited. Randomly searching mapping functions
is not practicable: it is essential to narrow it down.

According to the strategy used to narrow down the search space of mapping
functions, classification algorithms can be grouped into different categories. The most
popular categories include: algorithms based on distance metrics - known as KNNs
(K-Nearest Neighbors) [Cover and Hart, 1967; Weinberger and Saul, 2009], algorithms
based on decision trees [Quinlan, 1979, 1993; Breiman et al., 1984], techniques based
on hyperplanes for discrimination of examples (Support Vector Machines) [Cortes
and Vapnik, 1995; Chang and Lin, 2011a], models based on perceptrons [Rosenblatt,
1958; Hopfield, 1982; Kohonen, 1982], statistical models [Domingos and Pazzani, 1997;
Friedman et al., 1997] and algorithms that exploit association rules between attributes
and classes [Li et al., 2001a; Han et al., 2000; Veloso et al., 2006].

The algorithms we propose in this work has their origins in associative
classification, so they rely on several concepts related to pattern mining. In this chapter
we present definitions and concepts that will help the reader to better understand the

1There is also the multi-label classification problem, where more than one class is predicted for a
same test instance. Our work focuses in single-lable prediction, although it can also be applied in a
multi-label scenario.

5

6 Chapter 2. Preliminaries

context of this work. First, we present definitions related to pattern mining, next we
discuss algorithms that use those strategies and finally we present the works that are
most closely related to our proposal.

2.1 Basic Concepts

In data mining and associative classification tasks, different strategies of pattern
enumeration can be used to extract information from data. In this section, we present
those strategies which comprise the background to better understand our work.

2.1.1 Simple Patterns

In data mining, the extraction of association rules is a popular method to discover
interesting relationships between the attributes that compose a database. In simple
terms, association rules represent a relationship having the form A → B, whose
semantics can be interpreted as “when A occurs, B also occurs”. Among the possible
ways to model A (antecedent) and B (consequent), the simplest way is the concept of
itemset or simple patterns. Given a set of attributes I = {i1, i2, ..., im}, where m > 0,
a itemset is any non-empty subset of I. Being D a database comprising a collection of
instances, where each instance has the form I = {i1, i2, ..., im}, a given itemset is said
to be frequent if it is a subset of, at least, k% of the instances in D. In this case, k is
a predefined value, called minimal support.

Because of its exponential computational complexity, the enumeration of simple
patterns has gained notoriety since the publication of the Apriori algorithm [Agrawal
et al., 1994], which proposed the concept of minimal support and the anti-monotonic
property of patterns frequency to achieve a viable computational cost in mining
association rules.

2.1.2 Sequential Patterns

Originally used to detect purchase patterns of consumers in large retail companies
[Agrawal and Srikant, 1995], sequential patterns are subject of great scientific interest
since the mid-90s, being applied in various fields since then [Guralnik and Haigh,
2002; Ezeife and Lu, 2005; Kim et al., 2008; Shie et al., 2011]. When used to solve
problems whose data modeling enables the concept of order, sequential patterns are
able to improve the quality of association rules and reduce the computational cost of

2.1. Basic Concepts 7

this process [Agrawal and Srikant, 1995; Srikant and Agrawal, 1996; Li et al., 2001b;
Zaki, 2001; Pei et al., 2004].

To understand the concept of sequential patterns, we first need to address the
concept of sequence. If I = {i1, i2, ..., im} is a set of items, we call event a non-empty
and unordered subset of I, represented by the notation e = {i1, i2, ...ik}. Finally,
a sequence s is an ordered list of events, which can be represented by the notation
s = e1 → e2 → ...→ en, where the symbol→ represents a relationship whose semantics
can be defined as “occurs after”. A sequence containing k items is called k-sequence,
where k =

∑
i

|ei|.

Another important concept is the notion of sub-sequence. A sequence s is said
to be a sub-sequence of another sequence r when two assumptions are met: (1) all the
events in s are contained in r or are subsets of events in r; (2) the order in which the
events occur in r is unchanged in s. When s is a sub-sequence of r, we can say that r
contains s.

A database D, from which sequences can be mined, is a collection of input
sequences, each one having an unique identifier sId. The events of these sequences
are also uniquely identified by singular identifiers called eId. If s is a sequence in D,
we say that the support of s, denoted by σ(s,D), is the total number of sequences in D
that contain s. If this number is higher than a certain threshold (minimum support),
we say that s is a frequent sequence. Finally, given a database and a predefined
minimum support, the problem known as mining frequent sequential patterns is to
find all frequent sequences contained within such database.

2.1.3 N-Grams

Patterns known as n-grams have been used for decades and with notorious success in
various applications in Computer Science. In particular, n-grams are widely used
in domains related to language and information retrieval. Tasks such as spelling
correction [Riseman and Hanson, 1974], document categorization [Damashek et al.,
1995] and extraction of opinions [Pak and Paroubek, 2010] are examples of problems
where n-grams can be successfully applied. The formal definition of a n-gram is quite
simple: given a list of items I = {i1, i2, ..., im}, whose order is well known, we call
n-gram any sub-list S ⊆ I such that |S| = n. In applications involving information
retrieval, n-grams of size 2 (bigrams) and 3 (trigrams) are widely reported as providing
better results than longer n-grams [Pedersen, 2001; Dave et al., 2003; Halácsy et al.,
2007].

8 Chapter 2. Preliminaries

2.2 Related Work

In this section we mention works that are related with our proposal. We start by
talking about associative classifiers, which are the origins of our algorithms. Next we
go deeper on the question of dealing with sequential data, which is the main target
of our work. Next, w present an overview of the most relevant and closely related
methods to address this question.

2.2.1 Associative Classification

The associative classification method is based on finding patterns of attribute
co-occurrences among the examples and discover how strongly each pattern is related
to each class. A big challenge in designing associative classifiers resides in its
computational cost: the number of possible patterns in a training set grows linearly
regarding to the number of examples but exponentially with their number of features.
More precisely, a hypothetical full-range classifier C, which investigates all possible
patterns in training, would have to enumerate the following number of patterns:

|C| = |X| ×
n∑

k=1

(
n

k

)
= |X| ∗ 2n (2.1)

where X is a given training set, containing |X| examples and where each example
contains n features. Due to this impeditive cost, an associative classifier which
investigates all possible patterns probably will not be suitable in most real-world
domains. Fortunately, there are strategies which can be used to reduce the number of
patterns to be investigated. Among these strategies is the Demand-Driven Associative
Classification.

2.2.2 Demand-Driven Associative Classification

The LAC algorithm (Lazy Associative Classifier) [Veloso et al., 2006] proposes a set
of strategies aimed at making the process of associative classification efficient. The
main strategy, which gives the name to the algorithm, consists in the fact that the rule
extraction is made on demand: only when an instance is submitted for classification,
the rules applicable to that entry are extracted from the training. Thus, the search
space is filtered, considering only those instances whose attribute set has intersection
with the set of attributes comprising such test. In addition to this strategy, the LAC
algorithm uses pruning mechanisms to limit the number of rules extracted from the
training and thus significantly reduce the computational cost of the task.

2.2. Related Work 9

Table 2.1. Total Number of Patterns in a Single Test Instance

|t| = 5 |t| = 10 |t| = 25 |t| = 50
m = 1 5 10 25 50
m = 2 15 55 325 1,275
m = 3 25 175 2,625 20,875
m = 4 30 385 15,275 251,175
m = 5 31 637 68,405 2,369,935

A pruning mechanism of fundamental importance used by LAC algorithm is the
imposition of a maximum size (number of features) for the rules being extracted.
According to this strategy, the number of features comprising a rule must be
parametrically set. Rules having more features than this threshold are not investigated.
So, for m being the maximum number of features comprising a rule, the total number
P of patterns that must be investigated, in order to classify a single test instance t, is
given by:

P =
m∑
k=1

(
|t|
k

)
(2.2)

We can easy notice that the maximum rule size strategy is not enough to avoid
an impracticable computational cost when dealing with high-dimensional data. In such
cases, the number of feature combinations in a single test instance become excessively
large, unless we constrain m to extremely modest values. Looking at the Table 2.1, we
can have a clearer understanding of the impact of high-dimensionality on computational
cost. The Table shows the number of patterns investigated when classifying a single
test instance t, regarding to its number of features |t| and arbitrary (despite very low)
m values.

Clearly, when we use the algorithm LAC in areas of high dimensionality, we
are forced to apply very low values of m. In other words, we work only with very
short patterns, eventually discarding potentially interesting patterns on behalf of
computational feasibility.

2.2.3 Approaches based on Sequential Patterns

In the mid 90s, there was a strong demand for solutions to problems involving detection
of patterns and extraction of association rules in corporate databases [Agrawal et al.,
1993]. Experts in Data Mining and Machine Learning endeavored to create algorithms
that could make these tasks computationally feasible. An important milestone in this
research area was the Apriori algorithm [Agrawal et al., 1994], which consolidated the

10 Chapter 2. Preliminaries

strategy of incremental pattern mining. This strategy is based on the anti-monotonic
property of patterns frequency: if a set is infrequent, then all its super-sets will also
be.

The problem of enumerating sequences that occur frequently in the data was
first studied by Agrawal and Srikant [1995]. Improved algorithms for finding frequent
sequential patterns were proposed in [Srikant and Agrawal, 1996; Zaki, 2000; Antunes
and Oliveira, 2003]. These algorithms employ constraints such as minimum and
maximum gaps between consecutive elements, allowing for a more flexible enumeration
of sequences (i.e., sequences that occur after some given time interval). The use of
sequential patterns as features for the sake of learning sequential classifiers was initially
proposed in [Lesh et al., 1999], and more recently in [Lin et al., 2009]. As a major
deficiency of these algorithms, it is worth mentioning that they are unable to extract
high-order, long sequential patterns efficiently, therefore capturing only short-range
dependencies in the data.

Algorithms based on the recursive data mining approach, proposed in [Szymanski,
2004], are able to bridge large gaps between consecutive elements in the sequence, but
these algorithms were devised for solving specific tasks, such as intrusion detection and
author identification.

In [Syed et al., 2009] the authors proposed an algorithm which efficiently finds
patterns in labeled sequences, that is then used for classification of sequential data.
In [Bannister, 2007] an algorithm is proposed to learn classifiers from sequential data by
exploiting the algorithmic relationship between association rule mining and sequential
pattern mining. Frequent sequential patterns are mined and then the constrained
adaptive methodology is applied to select patterns to be used for classifying the
outcome. This algorithm, which we call ASC (Associative Sequential Classifier), is a
representative of state-of-the-art solutions for several applications based on sequential
data. We implemented a similar version of this algorithm and used it as one of the
baselines for comparison.

Efficiently capturing long-range dependencies among items and dealing with
sequence violations pose a very challenging problem. Not only methods based on
mining sequential patterns suffer to overcome these issues. Next we discuss solutions
based on learning Hidden Markov Models, which try different strategies to handle this
problem.

2.2. Related Work 11

2.2.4 Approaches based on Hidden Markov Models

Hidden Markov models (HMMs) are probabilistic models of sequential data [Rabiner,
1989]. HMMs can be viewed as stochastic generalizations of finite-state automata, when
both the transitions between states and the generation of output symbols are governed
by probabilistic mechanisms. Specific HMM based approaches have been proposed for
different applications, such as DNA and protein modeling [Durbin et al., 1998; Hughey
and Krogh, 1996], speech recognition [Rabiner, 1989; Sha and Saul, 2006], handwritten
character recognition [Hu et al., 1996], gesture recognition [Müller et al., 2000], among
others.

In order to capture long range sequential dependencies, which is not feasible
with simple (first-order) HMMs, many approaches based on fixed high-order HMMs
have been proposed. In [Kriouile et al., 1990], a first-order HMM, based on Viterbi and
Baum-Welch algorithms [Durbin et al., 1998], is used for state prediction and to directly
train a second-order HMM. The method proposed by [Du Preez, 1998] converts a fixed
high-order HMM to an equivalent first-order model which is used to incrementally
train a high-order HMM. Another fixed-order approach is found in [Law and Chan,
1996], a n-gram-based HMM for language modeling. Although providing an elegant
and sound sequential data modeling methodology, a major drawback in fixed high-order
HMMs is that such models suffer from high state-space complexity, since a k-th order
HMM, with alphabet Σ, can potentially have |Σ|k states. Therefore, estimating the
joint probabilities of each k-th order state is extremely difficult. Furthermore, none of
those techniques are able to capture eventual mismatches in sequences, maybe being
excessively rigid to deal with noisy data.

Other approaches try to efficiently build variable-order HMMs. Mixed order
Markov models were proposed by [Schwardt and Preez, 2000], but, since they rely on
expectation-maximization methods, they are susceptible to local optima. In [Srivatsan
et al., 2005], specific Episode Generating HMMs (EGMs) are built for each frequent
episode (sequence) mined from the data. Besides the huge number of generated
models, only non-overlapping sequences are found and violations in sequences are
not explicitly handled. In [Bicego et al., 2003a], a pruning strategy was proposed
to avoid excessively large number of states in HMMs. In [Wang et al., 2006], a
variable-length HMM (VLHMM) is built upon Markov chains of variable memory
length [Bühlmann and Wyner, 1999], by storing context in a prediction prefix tree.
This method also employs an expectation-maximization strategy for training, so is
prone to local optima. Furthermore it requires the number of states to be given as user
parameter. The similarity-based recognition paradigm was also used in the context

12 Chapter 2. Preliminaries

of HMMs, resulting in significant improvements with respect to standard HMM-based
approaches when applied to clustering, pattern recognition and sequential classification
related tasks [Bicego et al., 2006, 2003b, 2004].

In [Zaki et al., 2010], the authors proposed the VOGUE algorithm, which
addresses the main limitations of HMMs. This algorithm proposes a mixture between
the two approaches: mining sequential patters and learning HMMs. It relies on
a variable gap sequence mining approach, extracting frequent sequential patterns
with different lengths and gaps between elements. The extracted patterns are then
used to build a variable order HMM. The VOGUE algorithm is a representative of
state-of-the-art solutions for several applications based on sequential data, and is used
as one of the baselines for our proposed algorithms.

2.2.5 Approaches based on String Kernels for Support Vector

Machines

The first approaches that used SVMs in sequential data were devised to text
categorization task [Joachims, 1998]. Those approaches were based on transforming
each training sample in a vector of features, where each coordinate usually depicted the
presence or absense of a given word. Stop words removal and stemming were commonly
combined to reduce the data dimensionality. Such strategy was not able to capture
the ordering relationship among the words and thus lost relevant information from the
text.

Later works introduced the concept of stirng kernels that have been used for text
classification [Lodhi et al., 2002] and also for general purposes [Watkins, 1999; Haussler,
1999]. However, the cost of computing each kernel scales quadratically (n ∗ m) in
relation to the size of the input sequences (n andm, respectively), being unfeasibly slow
for applications were sequences are long. Furthermore, they do not handle mismacthes
between sequences, being excessively sensitive to noise.

Other approaches try to overcome the strict matching disadivantages by
employing mismatch-tolerant comparison techniques for building more flexible kernels.
However, as these methods aim at computing similarity for all pairs of sequences in
a particular feature space, they face a serious computational challenge. To narrow
down the cost of this task, these techniques typically restrict the length and expressive
power of the subsequences used as features, by indexing subsequences that they call
k-mers, where k is a subsequence length and usually a reasonable small number. An
example of these approches can be found in Spectrum-k Kernel [Leslie et al., 2002],
which implicitly compares k-mers, where k is a parameter of the model. Starting from

2.3. Motivation 13

the same essence, the Mismatch Kernel [Leslie et al., 2004] generalizes the Spectrum-k
Kernel by allowing mismatches to accomodate mutations. The maximum number of
consecutive mismatches is limited parametrically by the user. The Sparse Spatial
Sample Kernel (SSSK) [Kuksa et al., 2008] generalizes the Mismatch Kernel by
sampling the sequences at different resolutions and comparing the resulting spectra.
Mismatches are handled by probes, whose number, lengths and distances are given as
model parameters.

2.3 Motivation

All aforementioned strategies suffer to extract information from long-range and possibly
noisy sequences. The hypothesis that motivates this work is the intuition that, in many
real-world applications, the information contained in the ordering relationship between
the features comprising samples is enough to allow a drastic pruning in the pattern
search space and thus leading to faster execution times without putting accuracy at risk.
We also claim that it is possible build light-weight mechanisms for partial matching
patterns, which can be used to deal with noisy data, improving accuracy without
making the computational cost impracticable, in contrast with other approaches.

2.4 Objectives

The main objective of this work is to build algorithms that confirm our claims. The
second but no less important, is to evaluate the performance of the proposed algorithms
in different domains, identifying the situations in which they can lead to gains in
accuracy and time.

Chapter 3

Learning Demand-Driven
Sequential Classifiers

The problem of learning sequential classifiers can be formally stated as follows:

Given a training set D composed of d groups of sequences D =

{D1, D2, . . . , Dd} such that all sequences that belong to the same
group Di have the same class label yi, learn a classifier C which
maps an arbitrary sequence to the most likely class label.

This formulation is sufficiently general to be applied to a wide variety of
application scenarios where sequential data exists [Syed et al., 2009]. We modify
this formulation in order to make explicit the notion of learning classifiers on a
demand-driven basis, that is, a specific classifier is built for each test instance.

Given a training set D composed of d groups of sequences D =

{D1, D2, . . . , Dd} and a test set T , learn a classifier Ct, which is
a function mapping sequence t to the most likely class label, for
all sequences t ∈ T .

Next we discuss classification algorithms that learn sequential classifiers
under this formulation. We start with a very simple algorithm, called SC-SC
(Strictly-Contiguous Sequential Classifier), which learns sequential classifiers based
on contiguous sequences, that is, sequences composed only of adjacent elements.
Although simple, the SC-SC algorithm is very effective, mainly because it is able
to enumerate sequences without relying on minimum support thresholds, being thus
able to exploit longer and highly discriminative sequences. Then, we introduce a

15

16 Chapter 3. Learning Demand-Driven Sequential Classifiers

more sophisticated algorithm, called AC-SC (Approximately-Contiguous Sequential
Classifier), which learns classifiers by allowing the inclusion of approximate sequences,
that is, approximate matches with the test instance are allowed. A similarity function
is used to assess the amount of contiguity that exists between the test instance and the
enumerated sequences, making AC-SC specially suited for dealing with noisy data.

3.1 Learning Strictly-Contiguous Sequential

Classifiers

In this section we describe the SC-SC algorithm which benefits from the explicit
ordering among elements to drastically reduce the number of sequences that need
to be enumerated, improving learning time while increasing learning effectiveness. A
very simple way to preserve the ordering relationship among elements and to reduce
learning time is to perform contiguous matching, as defined next.

Definition 1. [Contiguous Matching] A sequence X is said to contiguously match
instance t ∈ T (which is given as a sequence of n elements {a1 → a2 → . . .→ an}), if
X = {ai → ai+1 → . . . → ai+k}, provided that k ≥ 0 and ∀ pair (ai, ai+1) ∈ X, ai+1

immediately follows ai in instance t.

The strategy for enumerating strictly contiguous sequences may be seen as an
iterative sliding-window process in which the window size is increased after each
iteration. More specifically, given a test instance t ∈ T such that t = {a1 → a2 → . . .→
an}, the sequence enumeration process starts by enumerating singleton elements that
are in t. In the second iteration, the window size increases and sequences composed of
pairs of consecutive elements are enumerated. The process iterates enumerating ever
increasing contiguous sub-sequences of instance t. Figure 3.1 shows the enumeration
process given an arbitrary test instance.

Enumerating Contiguous Patterns

As easily noticed, the number of sequences that contiguously match an arbitrary
instance t ∈ T is given by an arithmetic progression which clearly grows quadratically
with the number of elements within t (i.e., n). Therefore, the cardinality of Ct (i.e.,
the classifier built for instance t) is given by Equation 3.1:

|Ct| =
n∑

k=1

n− k + 1 =
n∑

k=1

k =
n2 + n

2
= O(n2) (3.1)

3.1. Learning Strictly-Contiguous Sequential Classifiers 17

Figure 3.1. Sliding Window Sequence Enumeration

In practice however, given a test instance t ∈ T , there is no need for an exhaustive
enumeration of all contiguous sequences in t: classification accuracy and sequence
length are not linearly related [Malik and Kender, 2008]. In fact, classification accuracy
typically increases slowly (and eventually stabilizes) as the sequences composing the
classifier become longer [Tseng and Lee, 2005]. Therefore, we may bound the length
of the sequences to be enumerated, so that no sequence with more than m features is
enumerated from D. We employ a variable limitation strategy, skipping subsequences
with more than

√
n. This ensures O(n

√
n) learning cost with respect to the number

of elements in t (i.e., n), as can be seen in equation Equation 3.2.

√
n =⇒ |Ct| = (n) + (n− 1) + (n− 2) + ...+ (n−

√
n) = O(n

√
n) (3.2)

Other variable limits could also be used. Figure 3.2 shows the trade-off between
accuracy, time and sequence length, for the SC-SC algorithm, in each dataset used in
our evaluations. Limitation strategies evaluated include linear functions (n

10
, n

2
and

n), logarithmic functions (log2n and log10n) and the square root function. As noticed,
better balanced results are reached for

√
n and log2(n). We adopt the first strategy since

it is less restrictive and is expected to be more expressive in datasets predominantly
comprised of small sequences. More details about the employed datasets are given in

18 Chapter 3. Learning Demand-Driven Sequential Classifiers

Section 4.1.

Calculating Class Membership

For each sequence X ∈ Ct, we calculate θ(X → yi), which is the conditional probability
of X being associated with class label yi (i.e., the probability of X being in Di). Such
sequences are viewed as weighted votes, where the weight depends on the θ value
associated with the corresponding sequence. Weighted votes for label yi are averaged,
giving a score for label yi with regard to instance t, as shown in Equation 3.3:

w(t, yi) =
∑ θ(X → yi)

|Cyi
t |

(3.3)

where Cyi
t are those sequences in Ct that are associated with class label yi. Finally,

the scores are normalized, as expressed by the scoring function p̂(yi|t), shown in
Equation 3.4. The scoring function estimates the likelihood of label yi being the correct
label for instance t ∈ T .

p̂(yi|t) =
w(t, yi)

n∑
j=0

w(t, yj)

(3.4)

Despite being computationally efficient, the SC-SC algorithm may produce
sequential classifiers that are excessively restrictive, since no violation in the ordering
relationship among elements is allowed while enumerating sequences. A single
mismatch between a test instance and a training example causes the rejection of
several (potentially relevant) sequences. As a result, the classifier will be probably very
sensitive to noise and be composed of very few sequences, compromising classification
accuracy. Fortunately, these disadvantages can be avoided by relaxing the sequence
enumeration process without sacrificing learning time, as discussed in the following.

3.1.1 Learning Sequential Classifiers by Accessing Similarity

Between Instances

In contrast to strictly-contiguous sequential classifiers, approximately-contiguous
sequential classifiers are lenient with mismatches when enumerating sequences. We
propose a classification algorithm for learning approximately-contiguous sequential
classifiers, which relies on assessing the similarity between sequences. This similarity
is calculated for each pair (x, t) such that x ∈ D and t ∈ T . The proposed AC-SC
algorithm works in three main steps as described next.

3.1. Learning Strictly-Contiguous Sequential Classifiers 19

Figure 3.2. Trade-off between accuracy, time (ms) and sequence length
limitation strategy. Datasets employed (in order): Dilma Rousseff, Felipe Melo,
Author Name, Protein Fold, Protein Family, Intrusion, Spelling and Web Log.

20 Chapter 3. Learning Demand-Driven Sequential Classifiers

Pre-Indexing Pattern Silhouettes

Scanning the entire training set D searching for approximate sequences every time an
instance t ∈ T is given to classification is obviously unfeasible. Since we are interested
in dealing with approximately-contiguous matching, which we define next, optimizing
sequence enumeration by pre-indexing sequence occurrences in D is not an option.
The challenge here is to narrow down the search space for sequences, by investigating
only training examples x ∈ D that have the same shape of the test instance being
classified. The way we propose to solve this problem is pre-indexing what we call
Pattern Silhouettes, which can be seen as a kind of hash function designed to tell
which training examples may be similar to a given test instance.

Definition 2 − [Pattern Silhouettes and Approximate Matching] Let t = {a1 → a2 →
. . .→ an} denote an arbitrary test instance in T . We call Pattern Silhouette any triple
of form s = (al, ar, k), with 1 ≤ l ≤ r, k > 0, where al and ar are elements in t and
k is the length of the sub-sequence ranging from al to ar. A sequence X is said to
approximately match instance t ∈ T , if X and t shares at least one pattern silhouette.

The AC-SC algorithm first enumerates all eligible pattern silhouettes for each
training example x ∈ D. Then, it constructs an inverted index, which links each
pattern silhouette to all examples in D containing it. This inverted index is used in
further steps. The process of enumerating silhouettes follows the same sliding-window
approach described for enumerating strictly-contiguous sequences.

Projecting the Training Set Using Pattern Silhouettes

When a test instance t ∈ T is given for classification, the AC-SC algorithm filters
training examples x ∈ D approximately matching instance t, in order to learn a
specialized classifier Ct. In this case, an approximate matching example must share
at least one pattern silhouette with instance t. In order to find approximate matching
examples in D, when a test instance t is given, the AC-SC algorithm enumerates all
eligible pattern silhouettes present in t. This processes is illustrated in Figure 3.3.
Therefore, the same sequence length limitation (m =

√
n) is imposed in this process,

which ensures O(n
√
n) learning cost for a given test t containing n features.

For each enumerated silhouette in t, the algorithm filters the training set D in
order to get only examples having that shape. This filtering process is nothing more
than a simple lookup at the inverted index previously constructed. At this point, the

3.1. Learning Strictly-Contiguous Sequential Classifiers 21

Figure 3.3. Pattern Silhouette Enumeration

AC-SC algorithm works using the following information: a test instance t, its pattern
silhouettes (and the position where they occur in t), and all approximately-matching
training examples according to those silhouettes. The algorithm now advances to the
next step.

Calculating Class Membership

Calculating class membership involves assessing how similar are a test instance t

and its approximately-matching examples in D (relatively to a given silhouette).
This process iterates calculating the similarity between each instance t ∈ T and
approximately-matching examples in D, as detailed next.

22 Chapter 3. Learning Demand-Driven Sequential Classifiers

Silhouette Alignment

Given an arbitrary instance t ∈ T , the goal of silhouette alignment is to find, for each
approximately-matching training example x ∈ D, the position in which the target
silhouette s occurs. This is done by traversing the elements in example x, looking
for the first element matching the leftmost element in silhouette s. If element aj ∈ x
matches the leftmost element in s, then we simply check if element aj+k ∈ x also
matches the rightmost element in s, where k is the length of s. If both matches
succeed, we have an alignment between instances t and x, and, since we already know
where the silhouette occurs in t, we can now measure how similar are these instances.
Specifically, we measure the similarity between a pair of instances (t, x) by exploiting
the intuition that there exists valuable information in the proximity among elements
in t and x.

Acessing Similarity Between Instances

We propose a novel similarity metric, which we call Contiguity-Based Similarity
Function, which expresses the similarity between a test instance t and
approximately-matching examples x ∈ D, given a specific pattern silhouette. Such
metric consists in pairwise comparing the elements within t and x, emphasizing
consecutive matches. This metric is formulated as a function with the following
properties: (i) it is monotonically increasing, (ii) it memorizes previous matches,
(iii) consecutive matches make it increase fast, (iv) consecutive mismatches make it
constant, and (v) isolated mismatches only delay its increase. This similarity function
is better defined next.

Definition 3 − [Contiguity-Based Similarity Function] Consider two instances t ∈ T

and x ∈ D, both containing a pattern silhouette s = (l, r, k). Let i denote the starting
position where s occurs in t, and j the starting position where s occurs in x. The
similarity between t and x, regarding to s, is given by Equation 3.5:

Ψ(t, x|s) =
k−1∑
c=0

ψ(ti+c, xj+c) (3.5)

where ψ function is defined as:

ψ(tp, xq) =


2 if tp = xq ∧ p = i

2× dψ(tp−1, xq−1)e if tp = xq ∧ p 6= i
1
4
× ψ(tp−1, xq−1) otherwise

(3.6)

3.1. Learning Strictly-Contiguous Sequential Classifiers 23

The ψ function is a pairwise comparing function, which is applied for each aligned
pair of features from a test and a training instance. When a matching is well succeeded,
it returns a value which is the double of the value returned by the previous matching.
In other words, the longer the chain of previous successful matches, the bigger the value
of the current ψ execution. On the other hand, when a mismatch happens, it returns
just a quarter of the previous value. Expressly, consecutive mismatches make the ψ
function tend fast to zero, but isolated mismatches do not cause such hard impact. The
sum of each pairwise comparisons is accumulated by Ψ function, which will result in a
metrics of similarity between the two instances being compared. As the ψ function is
the core of the algorithm, being executed repeated times for each test instance, it must
be as simple and fast as possible. We decided to build it using power-of-two (bitwise)
operations, for computational efficience. The other steps of the algorithm are unaware
of these operations, so the ψ function, which can be seen as a loss function, could be
given as a parameter to the model, if necessary.

Figure 3.4 illustrates the behavior of ψ and Ψ functions when applied to a
hypothetical pair of instances and a given silhouette of length 18. Zeroes represent
mismatches. We can see the difference in impact between an isolated mismatch (at 6th

position) and consecutive mismatches (from 10th to 14th positions).

Figure 3.4. Behavior of ψ and Ψ functions.

24 Chapter 3. Learning Demand-Driven Sequential Classifiers

Prediction: Multiple pattern silhouettes are investigated while processing an arbitrary
instance t ∈ T . The similarity values between t and each silhouette are grouped
together according to the class label associated with the corresponding training
example. We calculate a score for each class label yi as follows:

w(t, yi) =
∑
k∈St

∑
x∈Dyi

s

Ψ(x, t|s) (3.7)

where St is the set of all pattern silhouettes matching test instance t, and Dyi
s is the

set of all training examples labeled as yi containing a given silhouette s. Finally, these
scores are normalized, as expressed by the prediction function p̂(yi|t), previously shown
in Equation 3.4.

Chapter 4

Experimental Evaluation

In this section we empirically analyze the effectiveness of our proposed algorithms for
the sake of learning sequential classifiers. Similarly to other works [Zaki et al., 2010],
we employ the standard precision as our basic evaluation measure. Our algorithms
were implemented in Java language and executed over OpenJDK 7 platform. Learning
times for all algorithms include the time spent during any pre-processing, training
and testing, and are given in milliseconds, and all experiments were performed on a
Linux-based PC with a Intel core i5 2.4 GHz processor and 4.0 GBytes RAM.

4.1 Application Scenarios

We employ diverse application scenarios in order to evaluate our algorithms under
different aspects of sequential data, such as short- and long-range dependence, and
different levels of noise. Application scenarios used in our experiments, include:

1. Sentiment Analysis: this task aims at determining the attitude that is implicit
in a textual sentence, with respect to some topic or content. The attitude is
usually represented by judgment or evaluation concerning the topic. We used
two datasets in the experiments. Both of them comprise messages posted on
Twitter. The first one is composed of messages concerning the Brazilian Defeat
in the 2010 Soccer World Cup. We collected 3,214 messages in Portuguese
referencing a particular player, Felipe Melo. We annotated the messages in order
to track the sentiment of appreciation for the participation of Felipe Melo. The
dataset contains 8,101 distinct terms, and each message was manually labeled
by three to five human annotators. The second dataset contains messages
concerning the Brazilian presidential election, occurred in 2010. We collected over

25

26 Chapter 4. Experimental Evaluation

62,000 messages regarding candidate Dilma Rousseff during the campaign. These
messages were manually annotated according to their approval or disapproval
contents.

2. Name Disambiguation: given a citation record with ambiguous author names,
determine the correct entity corresponding to that name. The dataset we used
in the experiments is composed of authorship records extracted from the DBLP
digital library. Each record in the dataset comprises co-author names, title and
citations, and is associated with at least one ambiguous author name. There are
2,193 distinct terms in the dataset.

3. Protein Fold Recognition: this task aims at predicting the structure (or fold) of a
protein from its amino acid sequence. The dataset we used in the experiments is
composed of amino-acid sequences collected from the Protein Data Bank archive
(www.pdb.org), which contains experimentally determined structures of proteins.
The dataset contains 694 sequences, each one having up to 967 elements.

4. Protein Family Recognition: given a collection of amino-acid sequences belonging
to different protein families, determine whether a query protein belongs to a
given family or not. The dataset we used in the experiments is composed of
long string of characters, where each character represents an amino-acid from
a set of 20 possible ones. The dataset includes a curated classification of
known protein structures with the secondary structure knowledge embedded
in the dataset [Murzin et al., 1995]. This task has being largely employed
in many applications of biological sequence analysis for finding homologous
proteins [R. Durbin and Mitchison, 1998].

5. Intrusion Detection: given a sequence of UNIX commands performed by an
arbitrary user, determine if the user is a masquerader or authentic one. The
dataset we used in the experiments was collected from Purdue University [Lane
and Brodley, 1999], over varying periods of time, using the (t)csh mechanism.
Each command in the history data together with its arguments is treated as a
single token.

6. Spelling Correction: given a sentence containing commonly confused
words [Golding and Roth, 1996], determine if the target word is correctly or
wrongly spelled. The total number of sentences in our dataset is 2,917 and there
are 12,280 distinct terms.

www.pdb.org

4.2. Baselines 27

7. Web Log Analysis: given a sequence of clicks performed by an arbitrary user,
categorize the user based on his/her navigation behavior. The dataset we used in
the experiments is composed of log files collected at the Department of Computer
Science at the Rensselaer Polytechnic Institute during a period of 3 weeks. Those
files where transformed into sequences of clicks (web navigation history) made
by different users. Each sequence represents a web session of a specific user and
is labeled according to the origin domain of that user. Users coming from “edu”
or “ac” domains are taken as academic and users coming from other domains are
taken as visitors. In all, the dataset contains 16,206 unique Web pages, which
make up the alphabet.

More detailed descriptions of these tasks and datasets are available in [Zaki et al.,
2010; Davis et al., 2012; Silva et al., 2011].

4.2 Baselines

We employ diverse baselines in our comparison analysis: (i) a k-order HMM [Galassi
et al., 2007; Pitkow and Pirolli, 1999; Saul and Jordan, 1999; Deshpande and Karypis,
2004] as the representative of traditional solutions to model sequential data, (ii)
the ASC algorithm [Bannister, 2007], as the representative of the state-of-the-art
algorithms devised to tasks related to information extraction and protein fold
recognition, (iii) the VOGUE algorithm [Zaki et al., 2010], as the representative of
the state-of-the-art algorithms devised to tasks such as intrusion detection, spelling
correction, and Web log analysis, (iv) the HMMER algorithm [Eddy, 1998], as a
representative of the state-of-the-art algorithms devised to protein family recognition
tasks, (v) the String Kernel for LIBSVM [Chang and Lin, 2011b], as the representative
of popular mismatch-tolerant string kernel solutions available and (vi) the LAC
algorithm, as the representative state-of-the-art demand-driven associative classifiers.

4.3 Results

The learning task in all application scenarios is the same, and it consists in correctly
predicting the class label associated with test instances. We conducted ten-fold cross
validation, and the results reported for each evaluated algorithm correspond to the
average of the ten trials. Statistical significance tests were performed using a 2-sided
paired t-test with p−value< 0.05. Best results, including statistical ties, are shown in

28 Chapter 4. Experimental Evaluation

bold. SVM models were built with hyperparameters found with a grid search approach.
The computation time of the grid search task was not considered in the results.

Tables 4.1 and 4.2 show accuracy numbers and the corresponding execution times
for datasets concerning sentiment analysis. Table 4.3 shows accuracy and time results
obtained in author name disambiguation task. Finally, Table 4.4 shows accuracy
and time in protein fold recognition task. For these datasets, we used LAC, String
Kernel and ASC algorithms as baselines. We performed an extensive evaluation
by analyzing different parameter configurations, namely maximum sequence length,
minimum support, and maximum gap size. In most cases, lower minimum support
values yield best accuracy figures, but this usually increases learning time, as expected.
In many cases, accuracy numbers tend to increase when larger gaps are allowed, but
again, this also increases learning time.

Algorithm Max. Sequence Min. Support Max. Gap Time Accuracy
LAC 1 - - 18,487 0.781

2 - - 343,155 0.912
3 - - 2,531,995 0.930
4 - - 9,989,354 0.935

String Kernel - - - 10,598,900 0.854
SC-SC

√
n - - 144,838 0.906

AC-SC
√
n - - 185,785 0.921

Table 4.1. Results in Sentiment Analysis Task - Dilma Rousseff Dataset

The length of the enumerated sequences is important for the sake of improving
classification accuracy, but the cost of exploring longer sequences may become
impracticable, in especial when combined with the gap strategy. In summary, higher
accuracy figures are usually achieved by exploiting parameter configurations that lead
to higher learning times. This is clearly observed, even in domains where short patterns
(having 2 to 3 features) are expected to provide good results, as in sentiment analysis
and author name disambiguation, which are related to language and text information
retrieval. Our proposed algorithms, in most cases, offer either the fastest learning
times or the highest accuracy numbers. More specifically, the SC-SC algorithm was
the second fastest one in all evaluated cases, behind only of the LAC algorithm when
limited to single-feature patterns, which is always less precise. Generally speaking, we
can state that AC-SC algorithm offers the same (or a very similar) accuracy numbers
when compared with LAC algorithm. However, such LAC results are obtained, in
most cases, with higher pattern sizes, which make its execution much slower than all

4.3. Results 29

Algorithm Max. Seq. Length Min. Support Max. Gap Time Accuracy
ASC 1 0.00100 1 8,047 0.924

1 0.00500 1 7,247 0.925
1 0.01000 1 7,280 0.925
2 0.00100 1 8,892 0.926
2 0.00100 2 9,645 0.926
2 0.00100 3 10,238 0.926
2 0.00500 1 7,934 0.925
2 0.00500 2 8,524 0.926
2 0.00500 3 8,526 0.926
2 0.01000 1 7,684 0.925
2 0.01000 2 7,672 0.925
2 0.01000 3 7,853 0.926
3 0.00100 1 9,520 0.926
3 0.00100 2 12,631 0.928
3 0.00100 3 15,606 0.929
3 0.00500 1 8,077 0.925
3 0.00500 2 8,860 0.926
3 0.00500 3 9,670 0.925
3 0.01000 1 7,809 0.925
3 0.01000 2 8,419 0.926
3 0.01000 3 9,657 0.926
4 0.00100 1 13,940 0.926
4 0.00100 2 17,293 0.929
4 0.00100 3 32,712 0.929
4 0.00500 1 8,666 0.924
4 0.00500 2 10,506 0.926
4 0.00500 3 17,939 0.925
4 0.01000 1 13,489 0.925
4 0.01000 2 9,687 0.926
4 0.01000 3 21,188 0.926

LAC 1 - - 750 0.927
2 - - 2,637 0.927
3 - - 14,400 0.930
4 - - 57,815 0.928

String Kernel - - - 4,709 0.938
SC-SC

√
n - - 1,794 0.927

AC-SC
√
n - - 4,881 0.927

Table 4.2. Results in Sentiment Analysis Task - Felipe Melo Dataset

30 Chapter 4. Experimental Evaluation

Algorithm Max. Seq. Length Min. Support Max. Gap Time Accuracy
ASC 1 0.00100 1 565 0.815

1 0.00500 1 558 0.798
1 0.01000 1 484 0.823
2 0.00100 1 992 0.931
2 0.00100 2 1,207 0.978
2 0.00100 3 1,583 0.969
2 0.00500 1 1,053 0.939
2 0.00500 2 1,367 0.972
2 0.00500 3 1,490 0.968
2 0.01000 1 564 0.972
2 0.01000 2 742 0.966
2 0.01000 3 755 0.977
3 0.00100 1 1,329 0.971
3 0.00100 2 2,652 0.967
3 0.00100 3 4,623 0.959
3 0.00500 1 1,330 0.970
3 0.00500 2 2,723 0.967
3 0.00500 3 4,676 0.963
3 0.01000 1 742 0.986
3 0.01000 2 1,020 0.975
3 0.01000 3 1,441 0.962
4 0.00100 1 1,823 0.973
4 0.00100 2 6,295 0.967
4 0.00100 3 15,917 0.955
4 0.00500 1 1,903 0.977
4 0.00500 2 6,268 0.969
4 0.00500 3 15,278 0.937
4 0.01000 1 768 0.982
4 0.01000 2 1,627 0.976
4 0.01000 3 2,914 0.962

LAC 1 - - 47 0.777
2 - - 62 0.923
3 - - 187 0.955
4 - - 702 0.942

String Kernel - - - 5,605 0.903
SC-SC

√
n - - 92 0.953

AC-SC
√
n - - 248 0.983

Table 4.3. Results in Author Name Disambiguation Task

4.3. Results 31

Algorithm Max. Seq. Length Min. Support Max. Gap Time Accuracy
ASC 1 0.00100 1 28,745 0.046

1 0.00500 1 21,294 0.043
1 0.01000 1 19,489 0.046
2 0.00000 1 69,864 0.328
2 0.00000 2 364,959 0.334
2 0.00100 1 54,896 0.301
2 0.00100 2 64,629 0.308
2 0.00100 3 74,983 0.311
2 0.00500 1 33,515 0.299
2 0.00500 2 38,892 0.298
2 0.00500 3 47,003 0.319
2 0.01000 1 22,894 0.049
2 0.01000 2 23,345 0.051
2 0.01000 3 23,501 0.072
3 0.00000 1 250,840 0.335
3 0.00000 2 696,949 0.345
3 0.00100 1 72,328 0.301
3 0.00100 2 143,993 0.309
3 0.00100 3 269,732 0.292
3 0.00500 1 33,104 0.297
3 0.00500 2 38,731 0.325
3 0.00500 3 44,226 0.329
3 0.01000 1 22,947 0.050
3 0.01000 2 23,444 0.055
3 0.01000 3 24,668 0.074
4 0.00100 1 100,952 0.318
4 0.00100 2 388,748 0.294
4 0.00100 3 1,146,505 0.261
4 0.00500 1 33,263 0.313
4 0.00500 2 40,466 0.334
4 0.00500 3 44,458 0.325
4 0.01000 1 23,362 0.049
4 0.01000 2 23,254 0.050
4 0.01000 3 23,624 0.071

LAC 1 - - 8,816 0.046
2 - - 37,220 0.300
3 - - 3,511,546 0.343

String Kernel - - - 15,100 0.373
SC-SC

√
n − − 8,758 0.311

AC-SC
√
n − − 78,409 0.347

Table 4.4. Results in Protein Fold Recognition Task

32 Chapter 4. Experimental Evaluation

other approaches. A similar analysis can be done when comparing AC-SC with ASC
algorithm: the similar accuracy results come with larger patterns and gaps, which
produces slower executions. We can conclude that AC-SC algorithm compensates its
smaller number of investigated patterns by exploring longer sequences and, specially,
by executing a less rigid pattern matching, due to its ability to exploit approximate
sequences. This conclusion becomes clearer when we compare those results with SC-SC
results, which, in most of cases, can not achieve the same accuracy, despite exploring
the same sequence lengths. The ASC algorithm, unfortunately, could not be applied
in the first sentiment analysis dataset (presidential election). Its high-dimensionality,
combined with the large alphabet size, makes ASC consume unpracticalble amounts of
memory. When comparing AC-SC with the string kernel approach, our algorithm
achieve better or similar accuracy results in sentiment analysis and author name
disambiguation tasks, being musch faster in two datasets and slightly slower in one
of them (Felipe Melo sentiment analysis). Protein fold recognition poses a very hard
task for all algorithms. No one could reach even 40% in accuracy. String kernel
technique had the highest accuracy of all and the best execution time, followed by
AC-SC algorithm in two perspectives.

Table 4.5 shows accuracy numbers and the corresponding execution times for
the dataset concerning protein family recognition. Next, table 4.6 presents accuracy
and time results for intrusion detection task. The following table, 4.7, shows results
related to the spelling correction application and, finally, table 4.8 contains accuracy
and time numbers for Web log analysis. For these datasets, we used HMM, HMMER,
and VOGUE algorithms as baselines. Finding the best parameters for these algorithms
involved the evaluation of an enormous number of possible configurations, as discussed
in [Zaki et al., 2010].

Table 4.5. Results in Protein Family Recognition Task

Algorithm Max. Sequence Time Accuracy
HMM - 610 0.725

HMMER - 190 0.750
VOGUE - 3,650 0.775
Str. Krn - 224 0.844
SC-SC

√
n 153 0.814

AC-SC
√
n 445 0.840

Again, in almost all cases, our proposed algorithms, SC-SC and AC-SC, offer
either the fastest learning times or the highest accuracy numbers. More specifically,
the SC-SC algorithm was the fastest one in all evaluated cases. Further, for the

4.3. Results 33

Table 4.6. Results in Intrusion Detection Task

Algorithm Max. Sequence Time Accuracy
HMM - 64,930 0.715

VOGUE - 14,420 0.732
Str.Krn. - 161,660 0.487
SC-SC

√
n 3,870 0.767

AC-SC
√
n 73,040 0.791

Table 4.7. Results in Spelling Correction Task

Algorithm Max. Sequence Time Accuracy
HMM - 26,450 0.624

VOGUE - 44,630 0.685
Str. Krn. - 1,602 0.581
SC-SC

√
n 421 0.654

AC-SC
√
n 2,079 0.715

Table 4.8. Results in Web Log Analysis Task

Algorithm Max. Sequence Time Accuracy
HMM - 1,200,720 0.798

VOGUE - 77,590 0.810
Str. Krn. - 269,860 0.835
SC-SC

√
n 2,250 0.842

AC-SC
√
n 3,510 0.841

application concerning Web Log analysis, SC-SC was also the best performer in terms
of classification accuracy, and for the remaining applications, it also provides highly
competitive accuracy figures, being, in most of the cases, higher than the accuracy
numbers achieved by HMMER, HMM, and VOGUE. AC-SC achieves the highest
accuracy in all cases, except in protein family recognition task, were string kernels
had the higher result, despite similar. AC-SC also provides fast execution times in all
cases, when compared with HMMs and VOGUE approaches. When compared with
string kernels, we can see that SVMs approaches execution time floats. In Web log
analysis and intrusion detection tasks, having larger datasets, its computation time
is orders of magnitude higher than SC-SC and AC-SC algorithms. In the other two
smaller datasets the time is in the same order of magnitude, being faster in only one
case (spelling correction task). Yet in intrusion detection, AC-SC is slower than HMM
approach, but its accuracy showed more than 10% of gain.

Table 4.9 compares the cases of classification success and failure for SC-SC and
AC-SC algorithms. As expected, in almost all cases, the AC-SC algorithm enhances the
accuracy in relation to SC-SC, having success in regions were SC-SC fails. Exceptions

34 Chapter 4. Experimental Evaluation

happen only in datasets where both algorithms have the same or very near accuracy
numbers.

Dataset Both Right Both Wrong AC-SC Right SC-SC Right
Dilma Roussef 91.8% 5.9% 1.6% 0.7%
Felipe Melo 91.1% 4.6% 2.1% 2.2%
Author Name 91.3% 0.4% 8.3% 0.0%
Protein Fold 33.3% 61.6% 3.0% 2.0%
Protein Family 78.9% 15.8% 5.3% 0.0%
Intrusion 77.8% 15.6% 4.5% 2.1%
Spelling 62.6% 20.1% 12.3% 5.0%
Web Log 84.3% 14.9% 0.4% 0.4%

Table 4.9. Accuracy analysis: SC-SC vs. AC-SC

4.3.1 Reproducibility

All experiments shown in this section can be directly reproduced. All algorithms used
in our evaluations and all datasets employed are available to the scientific community.
The official LAC algorithm version, is available in the Weka1 central package repository
or can be download from DCC’s Machine Learning software repository2. All other
algorithms, yet in beta version, and all employed datasets, can be found at Gessé
Dafé’s software page3.

1http://www.cs.waikato.ac.nz/ml/weka/
2http://code.google.com/p/machine-learning-dcc-ufmg/
3http://code.google.com/p/gesse-dafe-publications/

Chapter 5

Conclusions and Future Work

This thesis focuses on the important problem of learning classifiers from sequential
data. Such classifiers are used to distinguish between sequences belonging to different
labeled groups. We have introduced new algorithms for learning these classifiers.
Our proposed algorithms produce classifiers composed of long and discriminative
sequences, being able to capture long-range dependencies in the data. The first,
simpler algorithm, exploits proximity information to drastically narrow down the
search space for sequences. More specifically, elements within a sequence must be
contiguous in the sense that no violation in the ordering among elements is allowed.
Sequence enumeration follows a simple sliding window approach, which warrants that
the cardinality of the classifier increases by O(n

√
n) with the length of the test

instances.

The second, more sophisticate algorithm, also exploits feature proximity in order
to narrow down the search space for rules, but in this case violations or disruptions in
the ordering between features within a rule are allowed to happen. We introduce a novel
structure, called pattern silhouettes, in order to warrant effective rule enumeration with
partial contiguous matchings.

To evaluate the effectiveness of our algorithms, we use real data obtained
from applications scenarios such as sentiment analysis, author name disambiguation,
intrusion detection, spelling correction, protein fold and family recognition and Web
log analysis. Our results reveal that the proposed algorithms are highly effective and
efficient, being able to produce accurate results with low computational cost, when
compared against state-of-the-art associative classifiers, general purpose sequential
classifiers and even domain-specific sequential classifiers. In some cases our algorithms
are orders of magnitude faster to achieve the same or even better accuracy.

Future work include investigating other application scenarios where it is

35

36 Chapter 5. Conclusions and Future Work

important to learn sequential classifiers and investigating other approaches of similarity
metrics for patterns partial matching.

Bibliography

Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining association rules between
sets of items in large databases. In SIGMOD Conference, pages 207–216.

Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. In ICDE, pages 3–14.

Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for mining association rules. In
Proc. 20th Int. Conf. Very Large Data Bases, VLDB, volume 1215, pages 487--499.

Antunes, C. and Oliveira, A. (2003). Generalization of pattern-growth methods for
sequential pattern mining with gap constraints. In MLDM, pages 239–251.

Bannister, W. (2007). Associative and sequential classification with adaptive
constrained regression methods. PhD thesis, Tempe, AZ, USA.

Bicego, M., Murino, V., and Figueiredo, M. (2003a). A sequential pruning strategy for
the selection of the number of states in hidden markov models. Pattern Recognition
Letters, 24(9-10):1395–1407.

Bicego, M., Murino, V., and Figueiredo, M. (2003b). Similarity-based clustering of
sequences using hidden markov models. In MLDM, pages 86–95.

Bicego, M., Murino, V., and Figueiredo, M. (2004). Similarity-based classification of
sequences using hidden markov models. Pattern Recognition, 37(12):2281–2291.

Bicego, M., Murino, V., Pelillo, M., and Torsello, A. (2006). Similarity-based pattern
recognition. Pattern Recognition, 39(10):1813–1814.

Breiman, L., Friedman, J., Stone, C., and Olshen, R. (1984). Classification and
regression trees. Chapman & Hall/CRC.

Bühlmann, P. and Wyner, A. (1999). Variable length markov chains. The Annals of
Statistics, 27(2):480--513.

37

38 Bibliography

Chang, C. and Lin, C. (2011a). Libsvm: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):27.

Chang, C.-C. and Lin, C.-J. (2011b). LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,
20(3):273--297.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. Information
Theory, IEEE Transactions on, 13(1):21--27.

Damashek, M. et al. (1995). Gauging similarity with n-grams: Language-independent
categorization of text. Science, 267(5199):843--848.

Dave, K., Lawrence, S., and Pennock, D. M. (2003). Mining the peanut gallery: opinion
extraction and semantic classification of product reviews. In Proceedings of the 12th
international conference on World Wide Web, WWW ’03, pages 519--528, New York,
NY, USA. ACM.

Davis, A., Veloso, A., da Silva, A., Laender, A., and Meira Jr., W. (2012). Named
entity disambiguation in streaming data. In ACL, pages 815–824.

Deshpande, M. and Karypis, G. (2004). Selective markov models for predicting web
page accesses. ACM Trans. Internet Techn., 4(2):163–184.

Domingos, P. and Pazzani, M. (1997). On the optimality of the simple bayesian
classifier under zero-one loss. Machine learning, 29(2):103--130.

Du Preez, J. (1998). Efficient training of high-order hidden markov models using
first-order representations. Computer speech & language, 12(1):23--39.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University
Press.

Eddy, S. (1998). Profile hidden markov models. Bioinformatics, 14(9):755–763.

Ezeife, C. and Lu, Y. (2005). Mining web log sequential patterns with position coded
pre-order linked wap-tree. Data Mining and Knowledge Discovery, 10(1):5--38.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Bibliography 39

Friedman, N., Geiger, D., and Goldszmidt, M. (1997). Bayesian network classifiers.
Machine learning, 29(2):131--163.

Galassi, U., Giordana, A., and Saitta, L. (2007). Incremental construction of structured
hidden markov models. In IJCAI, pages 798–803.

Golding, A. and Roth, D. (1996). Applying winnow to context-sensitive spelling
correction. CoRR.

Guralnik, V. and Haigh, K. (2002). Learning models of human behaviour with
sequential patterns. In Proceedings of the AAAI-02 workshop Automation as
Caregiver, pages 24--30.

Halácsy, P., Kornai, A., and Oravecz, C. (2007). Hunpos: an open source trigram
tagger. In Proceedings of the 45th Annual Meeting of the ACL on Interactive
Poster and Demonstration Sessions, pages 209--212. Association for Computational
Linguistics.

Han, H., Giles, C., Zha, H., Li, C., and Tsioutsiouliklis, K. (2004). Two supervised
learning approaches for name disambiguation in author citations. In JCDL, pages
296--305.

Han, H., Zha, H., and Giles, C. (2005). Name disambiguation in author citations using
a k-way spectral clustering method. In JCDL, pages 334--343.

Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate
generation. In ACM SIGMOD Record, volume 29, pages 1--12. ACM.

Haussler, D. (1999). Convolution kernels on discrete structures. Technical report,
Technical report, UC Santa Cruz.

Hopfield, J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the national academy of sciences,
79(8):2554--2558.

Hu, J., Brown, M., and Turin, W. (1996). Hmm based on-line handwriting recognition.
IEEE Trans. Pattern Anal. Mach. Intell., 18(10):1039–1045.

Hughey, R. and Krogh, A. (1996). Hidden markov models for sequence analysis:
extension and analysis of the basic method. Computer Applications in the
Biosciences, 12(2):95–107.

40 Bibliography

Joachims, T. (1998). Text categorization with support vector machines: Learning with
many relevant features. Machine learning: ECML-98, pages 137--142.

Kim, S., Park, S., Won, J., and Kim, S. (2008). Privacy preserving data mining of
sequential patterns for network traffic data. Information Sciences, 178(3):694--713.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.
Biological cybernetics, 43(1):59--69.

Kriouile, A., Mari, J., and Haon, J. (1990). Some improvements in speech recognition
algorithms based on hmm. In ICASSP, pages 545--548.

Kuksa, P., Huang, P.-H., and Pavlovic, V. (2008). A fast, large-scale learning
method for protein sequence classification. In 8th Int. Workshop on Data Mining
in Bioinformatics, pages 29--37.

Lane, T. and Brodley, C. (1999). Temporal sequence learning and data reduction for
anomaly detection. ACM Trans. Inf. Syst. Secur., 2(3):295--331.

Law, H. and Chan, C. (1996). N-th order ergodic multigram hmm for modeling of
languages without marked word boundaries. In COLING, pages 204--209.

Lesh, N., Zaki, M., and Ogihara, M. (1999). Mining features for sequence classification.
In KDD, pages 342–346.

Leslie, C., Eskin, E., and Noble, W. S. (2002). The spectrum kernel: A string kernel for
svm protein classification. In Proceedings of the pacific symposium on biocomputing,
volume 7, pages 566--575. Hawaii, USA.

Leslie, C. S., Eskin, E., Cohen, A., Weston, J., and Noble, W. S. (2004).
Mismatch string kernels for discriminative protein classification. Bioinformatics,
20(4):467--476.

Li, W., Han, J., and Pei, J. (2001a). Cmar: Accurate and efficient classification based
on multiple class-association rules. In Data Mining, 2001. ICDM 2001, Proceedings
IEEE International Conference on, pages 369--376. IEEE.

Li, W., Han, J., and Pei, J. (2001b). CMAR: Accurate and efficient classification based
on multiple class-association rules. In ICDM, pages 369–376.

Lin, M., Hsueh, S., Chen, M., and Hsu, H. (2009). Mining sequential patterns for
image classification in ubiquitous multimedia systems. In IIH-MSP, pages 303–306.

Bibliography 41

Lodhi, H., Muggleton, S., and Sternberg, M. (2009). Multi-class protein fold recognition
using large margin logic based divide and conquer learning. SIGKDD Explorations,
11(2):117–122.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and Watkins, C. (2002).
Text classification using string kernels. JMLR, 2:419--444.

Malik, H. and Kender, J. (2008). Classifying high-dimensional text and web data using
very short patterns. In ICDM, pages 923–928.

Müller, S., Eickeler, S., and Rigoll, G. (2000). Crane gesture recognition using
pseudo 3-d hidden markov models. In FG (Conf. on Automatic Face and Gesture
Recognition), pages 398–402.

Murzin, A., Brenner, S., Hubbard, T., and Chothia, C. (1995). SCOP: a structural
classification of proteins database for the investigation of sequences and structures.
J. Mol. Biol., 247(4):536–540.

Pak, A. and Paroubek, P. (2010). Twitter as a corpus for sentiment analysis and
opinion mining. In Proceedings of LREC, volume 2010.

Pedersen, T. (2001). A decision tree of bigrams is an accurate predictor of word sense. In
Proceedings of the second meeting of the North American Chapter of the Association
for Computational Linguistics on Language technologies, pages 1--8. Association for
Computational Linguistics.

Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., and Hsu,
M. (2004). Mining sequential patterns by pattern-growth: The prefixspan approach.
Knowledge and Data Engineering, IEEE Transactions on, 16(11):1424--1440.

Pitkow, J. and Pirolli, P. (1999). Mining longest repeating subsequences to predict
world wide web surfing. In USENIX Symposium on Internet Technologies and
Systems.

Quinlan, J. (1979). Discovering rules form large collections of examples: a case study.

Quinlan, J. (1993). C4. 5: programs for machine learning, volume 1. Morgan kaufmann.

R. Durbin, S. Eddy, A. K. and Mitchison, G. (1998). Biological Sequence Analysis.
Cambridge University Press.

Rabiner, L. (1989). A tutorial on hidden markov models and selected applications in
speech recognition. Proc. IEEE, 77(2):257–286.

42 Bibliography

Riseman, E. and Hanson, A. (1974). A contextual postprocessing system for error
correction using binary n-grams. Computers, IEEE Transactions on, 100(5):480--493.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386.

Saul, L. and Jordan, M. (1999). Mixed memory markov models: Decomposing complex
stochastic processes as mixtures of simpler ones. Machine Learning, 37(1):75–87.

Schwardt, L. and Preez, J. D. (2000). Efficient mixed-order hidden markov model
inference. In ICSLP, pages 238--241.

Sha, F. and Saul, L. (2006). Large margin hidden markov models for automatic speech
recognition. In NIPS, pages 1249–1256.

Shie, B., Hsiao, H., Tseng, V., and Yu, P. (2011). Mining high utility mobile sequential
patterns in mobile commerce environments. In Database Systems for Advanced
Applications, pages 224--238. Springer.

Silva, I., Gomide, J., Veloso, A., Meira Jr., W., and Ferreira, R. (2011).
Effective sentiment stream analysis with self-augmenting training and demand-driven
projection. In SIGIR, pages 475–484.

Srikant, R. and Agrawal, R. (1996). Mining sequential patterns: Generalizations and
performance improvements. In EDBT, pages 3–17.

Srivatsan, L., Sastry, P., and Unnikrishnan, K. (2005). Discovering frequent episodes
and learning hidden markov models: A formal connection. IEEE Transactions on
Knowledge and Data Engineering, 17:1505–1517.

Syed, Z., Indyk, P., and Guttag, J. (2009). Learning approximate sequential patterns
for classification. Journal of Machine Learning Research, 10:1913–1936.

Szymanski, B. (2004). Recursive data mining for masquerade detection and author
identification. Workshop on Information Assurance, pages 424–431.

Tseng, V. and Lee, C. (2005). Cbs: A new classification method by using sequential
patterns. In SDM.

Veloso, A., Meira, W., and Zaki, M. (2006). Lazy associative classification. In Data
Mining, 2006. ICDM’06. Sixth International Conference on, pages 645--654. IEEE.

Bibliography 43

Wang, Y., Zhou, L., Feng, J., Wang, J., and Liu, Z. (2006). Mining complex time-series
data by learning markovian models. In ICDM, pages 1136--1140.

Watkins, C. (1999). Dynamic alignment kernels. Advances in Neural Information
Processing Systems, pages 39--50.

Weinberger, K. and Saul, L. (2009). Distance metric learning for large margin nearest
neighbor classification. The Journal of Machine Learning Research, 10:207--244.

Zaki, M. (2000). Sequence mining in categorical domains: Incorporating constraints.
In CIKM, pages 422–429.

Zaki, M. (2001). Spade: An efficient algorithm for mining frequent sequences. Machine
Learning, 42(1/2):31–60.

Zaki, M., Carothers, C., and Szymanski, B. (2010). Vogue: A variable order hidden
markov model with duration based on frequent sequence mining. TKDD, 4(1).

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.1.1 Simple Patterns
	2.1.2 Sequential Patterns
	2.1.3 N-Grams

	2.2 Related Work
	2.2.1 Associative Classification
	2.2.2 Demand-Driven Associative Classification
	2.2.3 Approaches based on Sequential Patterns
	2.2.4 Approaches based on Hidden Markov Models
	2.2.5 Approaches based on String Kernels for Support Vector Machines

	2.3 Motivation
	2.4 Objectives

	3 Learning Demand-Driven Sequential Classifiers
	3.1 Learning Strictly-Contiguous Sequential Classifiers
	3.1.1 Learning Sequential Classifiers by Accessing Similarity Between Instances

	4 Experimental Evaluation
	4.1 Application Scenarios
	4.2 Baselines
	4.3 Results
	4.3.1 Reproducibility

	5 Conclusions and Future Work
	Bibliography

