
ESPECIALIZAÇÃO ESPECULATIVA DE

VALORES BASEADA EM PARÂMETROS

IGOR RAFAEL DE ASSIS COSTA

ESPECIALIZAÇÃO ESPECULATIVA DE

VALORES BASEADA EM PARÂMETROS

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Fernando Magno Quintão Pereira

Belo Horizonte

Março de 2013

IGOR RAFAEL DE ASSIS COSTA

PARAMETER-BASED SPECULATIVE VALUE

SPECIALIZATION

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Fernando Magno Quintão Pereira

Belo Horizonte

March 2013

c© 2013, Igor Rafael de Assis Costa.
Todos os direitos reservados.

Costa, Igor Rafael de Assis

C837e Especialização especulativa de valores baseada em
parâmetros / Igor Rafael de Assis Costa. — Belo
Horizonte, 2013

xx, 65 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais. Departamento de Ciência da
Computação.

Orientador: Fernando Magno Quintão Pereira

1. Computação - Teses. 2. Linguagens de
Programação (Computadores) - Teses. 3. Compiladores
(Computadores) - Teses. I. Orientador. II. Título.

CDU 519.6*33 (043)

Acknowledgments

Ao meu orientador, Fernando Magno Quintão Pereira, por seus ensinamentos, críticas
e sugestões que muito me ajudaram no desenvolvimento do meu trabalho. Eu tenho
grande admiração pela sua dedicação e pelo seu apoio incondicional aos seus alunos.
Espero trilhar o mesmo caminho quando trabalhar com meus alunos. Gostaria de
agradecer também, ao Péricles e Henrique, que trabalharam comigo neste projeto com
muito empenho e dedicação.

Aos meus pais, Geraldo e Rosa, e à minha irmã, Natália, pelo amor, apoio, incen-
tivo e compreensão dedicados ao longo de toda minha jornada. À minha família, cujas
reuniões sempre renovam minhas energias. À Júlia, pelo carinho e apoio incondicional,
que desde o início do segundo tempo esteve sempre ao meu lado.

Aos amigos do LLP, Cristiano, Eliseu, Leo, João, Raphael, entre tantos outros,
pelo excelente ambiente de trabalho. E também aos vizinhos do NPDI, pelos almoços
e cafés mais que divertidos. Aos amigos da UFMG Informática Júnior, Pedro, Victor,
Rafael, Felipe, Lucas, e tantos outros, pelo incentivo e inspiração em tantos projetos
que resultaram nos caminhos que atualmente sigo. Aos demais amigos do DCC e
da UFMG, cujas conversas e discussões valeram cada minuto: Guilherme, Débora,
Cláudio, Thiago, Aline, Victor, Luciana, Rafael, Pedro, Fábio, Samuel, Raphaela,
e tantos outros. E não menos importantes, os amigos de outros tempos: Wagner,
Raphaela, Douglas, Giovanni, Rafael, Thiago, Daniel, Luiz, entre tantos outros.

Agradeço também aos órgãos de fomento, CNPq e CAPES, pela minha bolsa, a
qual me propiciou dedicação integral à pesquisa.

ix

Resumo

JavaScript emerge atualmente como uma das mais importantes linguagens de pro-
gramação no desenvolvimento da interface com o usuário de aplicações Web. Desse
modo, é essencial que os navegadores de Internet sejam capazes de executar programas
JavaScript eficientemente. Entretanto, a natureza dinâmica dessa linguagem torna
a eficiência de sua execução um desafio. Compiladores dinâmicos aparentam ser a
ferramenta mais escolhida por desenvolvedores para lidar com tais desafios. Neste
trabalho nós propomos uma técnica de especialização de valores especulativa baseada
em parâmetros de função como uma estratégia para melhorar a qualidade do código
produzido dinamicamente. Através de observação empírica, descobrimos que aproxi-
madamente 60% das funções JavaScript encontradas nos 100 sítios web mais populares
são chamadas apenas uma vez, ou são chamadas sempre com os mesmo parâmetros.
Baseado nessa observação, neste trabalho nós adaptamos diferentes otimizações clás-
sicas de código para especializar código a partir dos valores atuais dos parâmetros de
uma função. As técnicas propostas foram implementadas no IonMonkey, um compi-
lador JIT para JavaScript de qualidade industrial desenvolvido pela fundação Mozilla.
Por meio de experimentos executados em três coleções populares de testes, SunSpider,
V8 e Kraken, foram alcançados ganhos de desempenho apesar da natureza especula-
tiva da técnica proposta. Por exemplo, combinando algumas das diferentes otimizações
propostas, obtivemos ganhos de 5.38% no tempo de execução na coleção SunSpider,
além de reduzir o tamanho do código nativo produzido em 16.72%.

xi

Abstract

JavaScript emerges today as one of the most important programming languages for the
development of client-side web applications. Therefore, it is essential that browsers be
able to execute JavaScript programs efficiently. However, the dynamic nature of this
programming language makes it very challenging to achieve this much needed efficiency.
The just-in-time compiler seems to be the current weapon of choice that developers use
to face these challenges. In this work we propose Parameter-based Speculative Value
Specialization as a way to improve the quality of the code produced by JIT engines.
We have empirically observed that almost 60% of the JavaScript functions found in
the world’s 100 most popular websites are called only once, or are called with the
same parameters. Capitalizing on this observation, we adapt several classic compiler
optimizations to specialize code based on the run-time values of function’s actual pa-
rameters. We have implemented the techniques proposed in this work in IonMonkey,
an industrial quality JavaScript JIT compiler developed in the Mozilla Foundation.
Our experiments, run across three popular JavaScript benchmarks, SunSpider, V8 and
Kraken, show that, in spite of its highly speculative nature, our optimization pays for
itself. As an example, we have been able to speedup the V8 benchmark by 4.83%, and
to reduce the size of its native code by 18.84%.

xiii

List of Figures

2.1 How our work compares to the literature related to code specialization and
speculation. 11

3.1 Histogram showing the percentage of JavaScript functions that are called n
times . 23

3.2 Histogram showing the percentage of JavaScript functions that are called
with n different sets of arguments . 24

3.3 Invocation histograms for three different benchmark suites 25
3.4 Invocation histograms for three different benchmark suites 26
3.5 The most common types of parameters used in benchmarks and in actual

webpages. 28
3.6 The life cycle of a JavaScript program in the SpiderMonkey/IonMonkey

execution environment. 29
3.7 (a) The JavaScript program that we will use as a running example. (b) The

control flow graph of the function map. 32
3.8 The result of our parameter specialization applied onto the program in

Figure 3.7. 33
3.9 The result of applying constant propagation on the program in Figure 3.8. 34
3.10 The result of applying loop inversion on the program seen in Figure 3.9. . 35
3.11 The result of applying dead-code elimination on the program seen in Fig-

ure 3.10. 36
3.12 The result of eliminating array bounds checks from the program shown in

Figure 3.11. 37
3.13 The result of inlining the inc function in the code presented by Figure 3.12. 38

4.1 Size of generated code for SunSpider 1.0 48
4.2 Size of generated code for V8 version 6 . 49
4.3 Size of generated code for Kraken 1.1 . 50

xv

List of Tables

3.1 Function Behavior Analysis Statistics . 27

4.1 Run time speedup for the SunSpider benchmark 43
4.2 Run time speedup for the SunSpider benchmark (part 2) 44
4.3 Run time speedup for the V8 version 6 benchmark 45
4.4 Run time speedup for the V8 version 6 benchmark (part 2) 45
4.5 Run time speedup for the Kraken benchmark 46
4.6 Run time speedup for the Kraken benchmark (part2) 47
4.7 Code Size Reduction . 47
4.8 Compilation overhead of different setups of our specialization engine 50
4.9 Percentage of additional recompilations . 51
4.10 Number of deoptimizations . 52

xvii

Contents

Acknowledgments ix

Resumo xi

Abstract xiii

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Context . 1
1.2 Contributions . 2
1.3 Results . 3
1.4 Outline . 4

2 Related Work 5
2.1 JavaScript . 5
2.2 Just-in-time compilation . 7

2.2.1 Trace-based Just-in-Time Compilation 7
2.2.2 Method-based Just-in-Time Compilation 9

2.3 Code Specialization and Partial Evaluation 10
2.3.1 Control-flow Specialization . 12
2.3.2 Data Specialization . 13
2.3.3 Type Specialization . 13
2.3.4 Value Range Specialization . 14
2.3.5 Value Specialization . 15
2.3.6 Input-centric compilation . 18

2.4 Discussion . 19

xix

3 Parameter-based Value Specialization 21
3.1 Motivation . 21

3.1.1 Methodology . 21
3.1.2 Function call behavior . 22
3.1.3 The types of the parameters . 27

3.2 Parameter Based Speculative Value Specialization 28
3.2.1 The Anatomy of a MIR program 30
3.2.2 Parameter Specialization . 31

3.3 Revisiting Classic Optimizations . 31
3.3.1 Constant Propagation . 31
3.3.2 Loop Inversion . 35
3.3.3 Dead-Code Elimination . 36
3.3.4 Array Bounds Check Elimination 37
3.3.5 Function Inlining . 38
3.3.6 Other Optimizations . 38

3.4 Discussion . 39

4 Experiments 41
4.1 Benchmarks . 41
4.2 Evaluation . 42

4.2.1 Run time impact . 42
4.2.2 Size of Generated Code . 46
4.2.3 Compilation Overhead . 48
4.2.4 Recompilations . 49
4.2.5 Partial Specialization . 51
4.2.6 Specialization policy . 52

4.3 Discussion . 53

5 Final Remarks 55
5.1 Future Work . 55
5.2 Conclusion . 55

Bibliography 57

xx

Chapter 1

Introduction

This dissertation is the result of two years of research on Just-in-Time compilation.
Our findings are summarized in the five chapters that constitute this dissertation. In
the first chapter we explain our motivations, goals and main contributions.

1.1 Context

Dynamic languages provide the ideal scenario for prototyping and developing new
applications. In a world where new technologic startups are born every day, fast devel-
opment is crucial to achieve its market as soon as possible. Rapid development cycles
demand, from programming languages, features that allow ease of development, deploy-
ment, and portability which can be facilitated by high level of abstraction. Thereby,
dynamic languages are being used to reduce development costs (Ousterhout 1998) and
achieve flexibility in specific domains, like data processing (Meijer and Drayton 2005).
JavaScript, Python and Ruby are successful examples of dynamic languages. They
achieved high expressiveness and low learning curve (Gal et al. 2009) in a world of
uncertainties and instability of software features.

JavaScript is presently the most important programming language used in client-
side development of web applications (Godwin-Jones 2010). If in the past only very
simple programs would be written in this language, like simple scripts used for creating
menus on a web page or form validation, today the reality is different. JavaScript
is ubiquitously employed into complex applications that consist of many thousands
of lines of code. It is used to build applications as complex as Google’s Gmail and
Facebook, which are used by millions of users. Other applications, notably in the
domain of image processing and gaming, are also becoming more commonplace due
to the ease of software distribution. Furthermore, JavaScript, in addition to being

1

2 Chapter 1. Introduction

used directly by developers, is the target intermediate representation of frameworks
such as Google Web Toolkit. Thus, it fills the role of an assembly language of the
Internet. Given that every browser of notice has a way to run JavaScript programs, it
is not surprising that industry and academia put considerable effort in the creation of
efficient execution environments for this programming language.

However, executing JavaScript programs efficiently is not an easy task because
it is a very dynamic programming language. JavaScript is dynamically typed: the
types of variables and expressions may vary at run-time, forcing the compiler to emit
generic code that can handle all potential type combinations. It also provides an eval

function that can load and run strings as code. JavaScript programs tend to use
the heap heavily, so the efficient management of the memory allocation is crucial to
avoid performance degradation over time. This dynamic nature makes it very difficult
for a static compiler to predict how a JavaScript program will behave at run-time. In
addition to these difficulties, JavaScript programs are usually distributed in source code
format, to ensure portability across different computer architectures. Thus, compilation
time generally has an impact on the user experience. Today, the just-in-time compiler
seems to be the tool of choice of engineers to face all these challenges.

A just-in-time compiler either compiles a JavaScript function immediately before
it is invoked, as Google’s V8 does, or while it is being interpreted, as Mozilla’s Trace-
Monkey did. The advent of the so called Browser War between main software com-
panies has boosted significantly the quality of these just-in-time compilers. In recent
years we have seen the deployment of very efficient trace compilers (Chang et al. 2009,
Gal et al. 2009, Mehrara and Mahlke 2011) and type specializers for JavaScript (Hack-
ett and Guo 2012). New optimizations have been proposed to speedup JavaScript
programs (Guo and Palsberg 2011, Sol et al. 2011), and old techniques (Chambers and
Ungar 1989) have been reused in state-of-the-art browsers such as Google Chrome.
Nevertheless, we believe that the landscape of current just-in-time techniques still of-
fers room for improvement, and our opinion is that much can be done to improve
run-time value specialization.

1.2 Contributions

We have observed empirically that almost 60% of all the JavaScript functions in popular
websites are either called only once, or are always called with the same parameters,
as we show in Section 3.1. Similar numbers can be extended to typical benchmarks,
such as V8 (Google Inc. 2012), SunSpider (Apple Inc. 2012a) and Kraken (Mozilla

1.3. Results 3

Foundation 2012b). Grounded by this observation, in this work we propose to use
the run-time values of the actual parameters of a function to specialize the code that
we generate for it. In Section 3.3 we revisit a small collection of classic compiler
optimizations under the light of the approach that this work proposes. As we show in
the rest of this work, some of these optimizations, such as constant propagation and
dead-code elimination, perform very well once the values of the parameters are known.
This knowledge is an asset that no static compiler can use, and, to the best of our
knowledge, no just-in-time compiler currently uses.

Summarizing the contributions of this work we have:

• Behavioral analysis for JavaScript functions of the 100 most popular websites:
we analyze the characteristics of function calls and their parameters, including
their types;

• Open-source code for all optimizations implemented on IonMonkey (Mozilla
Foundation 2012e): all the code developed is available in a public repository
on the web http://code.google.com/p/jit-value-specialization;

• Evaluation of the Parameter-based Speculative Value Specialization approach in
a industrial compiler of a dynamic language: we analyze the impact on run-time,
code size and compilation overhead for widely used benchmarks.

The results of this research generated the following publications:

• Parameter Based Constant Propagation (SBLP 2012): this paper was a prelimi-
nary study of the technique that was only able to support artificial benchmarks
(Alves et al. 2012);

• Just-in-Time Value Specialization (CGO 2013): this paper covers most of the
work, pushing the implementation and evaluation far beyond the previous pub-
lication (Costa et al. 2013).

1.3 Results

We have implemented the ideas discussed in this work in IonMonkey, a JavaScript
JIT compiler that runs on top of the SpiderMonkey interpreter used in the Firefox
browser. As we explain in Chapter 4, we have tested our implementation on three
popular JavaScript benchmarks: V8, SunSpider and Kraken. We evaluate two polcies
to parameter specialization: to specialize a function only one time and to specialize

http://code.google.com/p/jit-value-specialization

4 Chapter 1. Introduction

a function two times. In the first, we only specialize functions that are called with
at most one different parameter set. If a function that we have specialized is invoked
more than once with different parameters, then we discard its binaries, and fall back
into IonMonkey’s traditional compilation mode. In the second approache, we give one
more chance to specialize a function, when some of its parameters remains the same.
Even though we might have to recompile a function, our experiments in the SunSpider
benchmark suite show that our approach pays for itself. We speedup SunSpider 1.0
by 2.73%. In some cases, as in SunSpider’s access-nsieve.js, we have been able
to achieve a speedup of 38%. We have improved run times in other benchmarks as
well: we have observed a 4.8% speedup in V8 version 6, and 1.25% in Kraken 1.1. This
approach also achieves code size reduction by 16.72%, 18.84% and 15.94%, respectively
in SunSpider, V8 and Kraken. For real web applications, like www.google.com and
www.facebook.com we obtained 11.04% and 13.3% of code size reduction, respectively.
Also the compilation overhead is almost zero, except for a few tests were the compilation
time was increased by 3% and one case by 32%. We emphasize that we are comparing
our research quality implementation with Mozilla’s industrial quality implementation
of IonMonkey.

1.4 Outline

The remainder of this dissertation is organized as follows. Chapter 2 describes impor-
tant concepts related to this work and contextualize the Speculative Value Specializa-
tion in the Code Specialization scenario. Chapter 3 gives the motivation behind this
work through behavioral analysis of real world JavaScript programs. It also explains
how the parameter specialization can be done in the JIT compiler and how classic
compiler optimizations can benefit from this specialization. Chapter 4 shows the ex-
periments results that validate the feasibility of our approach, considering not only run
time speedups but different forms of overhead. Chapter 4 validates, by means of an
empirical evaluation, the feasibility of our approach. In that chapter we analyze the
runtime, the size of the code that we generate and the compilation overhead that our
techniques impose. Finally, Chapter 5 presents a conclusion and some discussion about
this work, as well as an outlook on future work.

www.google.com
www.facebook.com

Chapter 2

Related Work

In this chapter we present a short introduction about the central topics related to
this dissertation, which includes Dynamic Languages, Just-in-time(JIT) Compilation
and Code Specialization. We start by explaining why some of the characteristics of
JavaScript pose a challenge to efficient code generation. Then we present an overview
and a comparison of two different JIT approaches: method-based JIT and trace-based
JIT. We close this chapter by providing a taxonomy of different code specialization
techniques. This taxonomy lets us explain precisely how our contribution is related to
previous literature.

2.1 JavaScript

JavaScript is usually defined as an object-oriented language. However it employs a dif-
ferent object system based on the SELF language (Chambers and Ungar 1989), named
prototype-based object system. This model does not define traditional object-oriented
classes. Instead, it defines each object as a set of properties, which are a mutable map
from strings to values. It uses prototypes instead of classes for implementing object
inheritance. Each object has a special property that links objects through a chain,
named prototype. This property can hold a reference to another object whose behavior
is embedded into the current object. This means that each property lookup can result
in searching not only the current object, but each parent linked through the prototype
chain until the property is found. This model is very flexible but also the source of
many optimization constraints.

One of these constraints is about the behavior of an object that can be modified
dynamically through the change of its prototype property. In JavaScript, all functions
are also objects which contains a prototype property referencing an empty object.

5

6 Chapter 2. Related Work

These functions can be used as constructors that clone the actual object into another
object through the use of the keyword new. Naively, we can consider that each object
has a unique shape, which restricts the possibilities of sharing an object shape to other
similar objects. Some modern JavaScript engines may assume that an object shape
remains stable through the program execution, and this assumption enables some JIT
optimizations when creating new objects of a similar shape. However, as pointed by
Richards et al. (2010), an object prototype hierarchy may not be invariant throughout
the program execution. This emphasizes the need for a flexible and adaptive type
inferencer, like the one proposed by Hackett and Guo (2012).

Some previous work have tried to use type inference as a way to generate fast
code for dynamically-typed languages, such as JavaScript. Historically, these languages
have run much slower than traditional statically-typed programming languages. For
instance, the type of variables and expressions may change at run-time. Compilers for
statically typed languages rely on stable type information to generate efficient machine
code. However, this is not the reality for compilers that face dynamic typing. When
exact type information is not available, the compiler needs to generate generalized
machine code that can deal with all potential type combinations. This generalization
often results in code that is slower than the code that a compiler could produce to
a statically typed programming language. Therefore, type inference algorithms have
a high impact over the performance of these languages. Although some of the type
inference techniques seen in the compilation of statically typed languages compilation
can be applied in the dynamic scenario, they imply in a prohibitive latency for a highly
interactive user sessions in a web page. Recently, JavaScript was subject to intense
research for type inference improvements (Anderson et al. 2005, Hackett and Guo 2012,
Jensen et al. 2009, Thiemann 2005).

JavaScript, like other dynamic languages, was traditionally interpreted. Well-
known examples of JavaScript interpreters are: Mozilla SpiderMonkey (Mozilla Foun-
dation 2012d) and Rhino (Mozilla Foundation 2012c), Apple/Webkit SquirrelFish
(Garen 2008), Microsoft JScript (Microsoft Corp. 2009). Mozilla developed two dif-
ferent engines for JavaScript: SpiderMonkey, implemented in C++, and Rhino, im-
plemented in Java. Also, SpiderMonkey was the first JavaScript engine developed,
written in 10 days by Brendan Eich (Eich 2011). They were all born as pure inter-
preters, at a time when webpages were much simpler than today. However, in the last
years, the industry is putting much effort to develop efficient Just-in-time compilers
to break the limitations of interpretation. Today there are many successful JavaScript
JIT engines available, including Mozilla’s JaegerMonkey and IonMonkey, Google’s V8,
Apple’s Nitro and Microsoft’s Chakra (Niyogi 2010).

2.2. Just-in-time compilation 7

2.2 Just-in-time compilation

Just-in-time compilers are part of the programming language’s folklore since the early
60’s. Influenced by the towering work of McCarthy (1960), the father of Lisp, a mul-
titude of JIT compilers have been designed and implemented. These compilers have
been fundamental to the success of languages such as Smalltalk (Deutsch and Schiffman
1984), Self (Chambers and Ungar 1989), Python (Rigo 2004), Java (Ishizaki et al. 1999),
and many others. Part of this success is related with its benefits over traditional com-
pilers, since there are more information available at run-time about a program. Some
of this information can be very expensive or even impossible to obtain via traditional
static analysis. In this section we will focus on the strategies that JIT compilers use to
specialize code at run-time. For a comprehensive survey on just-in-time compilation,
we recommend the work of Aycock (2003).

2.2.1 Trace-based Just-in-Time Compilation

The idea behind running specialized code sequences (traces) for frequently executed
(hot) code regions seems to have first appeared in the Dynamo binary rewriting system
(Bala et al. 2000). It aims to improve the performance of a instruction stream as it
executes on a processor. Dynamo relies on run-time information to find the hot paths
of a program and optimize its machine code. It was built to compile only single traces,
despite linking them whenever possible. Dynamo was designed to be used both for
dynamically generated streams and for the streams generated from the execution of a
statically compiled native binary. It introduced native code tracing to perform profile-
guided optimizations online, where the profile target was only the current execution.
It also introduced the use of loop headers as candidates for hot traces. Dynamo has
been a reference for almost all trace compilers that came after it.

Since the rise of Dynamo, many trace-based JIT compilers have been developed,
like HotpathVM (Gal et al. 2006), YETI (Zaleski et al. 2007) and Maxpath (Bebenita
et al. 2010b) for Java, PyPy (Bolz et al. 2009) for Python, SPUR (Bebenita et al. 2010a)
and TraceMonkey (Gal et al. 2009) for JavaScript, LuaJIT (Yermolovich et al. 2009)
for Lua, and Tamarin-Tracing (Chang et al. 2009) for ActionScript. All these trace
compilers rely on the same core idea. They identify hot code regions, usually straight
line sequences inside the target program. Yet, entire methods, or parts of a method can
also be compiled. This is the approach that YETI adopts. Maxpath is an example of
trace-based JIT that was designed to work without an interpreter. In this case, it uses
a fast and non-optimizing baseline compiler to generate instrumented code that will

8 Chapter 2. Related Work

trigger the compilation of a hot trace. Trace-based compilers historically have treated
mostly native code and typed languages, like Java, and therefore have focused less on
type specialization and more on other optimizations. For dynamic typed languages, like
JavaScript and Python, type specialization plays an important role in the optimization
of the generated traces.

TraceMonkey (Mozilla Foundation 2012a) was the first JIT built by Mozilla to
improve the JavaScript performance on the Firefox web browser. It was a trace-based
JavaScript engine, developed to remove some of the inefficiencies associated with the
interpretation of dynamic typing (Gal et al. 2009). TraceMonkey works at the gran-
ularity of individual loops, thus suiting well the needs of computing intensive web
applications. It uses a mixed-mode execution approach: all programs are initially
interpreted, and as the program runs, a profiler identifies frequently executed (hot)
bytecode sequences. This hot bytecode is recorded, optimized and them compiled to
native code. This native code will be executed for the next time the control-flow of
the program reaches the loop header. As long as these sequences, called traces, remain
type-stable, execution remains in the type-specialized machine code. This stability is
controlled through a specific value-type mapping for each trace, which will be checked
at run-time in a speculative approach.

This speculative nature of trace compilation implies the need to insert run-time
checks into a trace code, in order to assert that all assumptions made during the
compilation still hold. In many trace-based compilers, like TraceMonkey, these checks
are called guard instructions. Each guard instruction consists of a group of instructions
that performs a test and a conditional exit of the trace. These tests trigger events if
there are changes in the expected execution flow. A typical change is caused by an else
block that is taken after a few iterations in which the ‘then’ part of the conditional was
taken. Other events that trigger side exits are changes in the types inferred dynamically.
Each trace exit leads to an small piece of code called side exit. The code in these side
exits restore the interpreter’s state. A side exit may also lead to the compilation of
another trace, that follows an unvisited code path inside the hot loop. According to
Gal et al. (2009), those side exits are heavily biased to not be taken, when types do
not vary and a single control-flow is dominant.

However, guard instructions do not contribute to the computations of the original
program and can be a significant fraction of total executed instructions. According to
Mehrara and Mahlke (2011), the overhead caused by the execution of code only related
to guards range from 22% to 42% of the total executed instructions, when analyzing
well known benchmarks such as SunSpider and V8. Mehrara and Mahlke propose an
execution strategy to reduce this overhead using a multi-threaded dynamically decou-

2.2. Just-in-time compilation 9

pled execution framework called ParaGuard. The authors claim that, across the 39
benchmarks studied, the ParaGuard technique achieves an average of 15% speedup
over the original tracing technique. This speculative approach is more aggressive than
traditional parallelization proposals like Ha et al. (2009), which presents a concurrent
trace-based JIT that performs the compilation from LIR to native code as a background
thread. The speedup achieved by this technique has average of 6% and a maximum
of 25% speedup on the SunSpider benchmark suite. Although these two approaches
are different ways to parallelize the execution, they are orthogonal and can be applied
simultaneously.

Despite all recent effort to improve the performance of TraceMonkey, its devel-
opment is now discontinued, and Mozilla’s effort has shifted to the improvement of
JaegerMonkey (Mozilla Foundation 2012f) and subsequently to the development of
IonMonkey. TraceMonkey is no longer part of Mozilla’s Firefox code since Firefox
11 (Nethercote 2012).

2.2.2 Method-based Just-in-Time Compilation

Method-based Just-in-Time Compilation works using methods and functions as the
unit of compilation, instead of using only hot paths of the control-flow graph. This is
considered the traditional approach to JIT compilation, not only for dynamic languages
but for static ones too. This approach has some benefits over Trace-based compilation,
like a possible larger optimization window, which is in this case the whole method.
Some proposals, like Inoue et al. (2011), have tried to overcome this limitation. The
work of Inoue et al. can span the scope of some methods through the use of nested
trace trees. Even so, recursive function calls can be a hard issue to solve. Another
advantage, when using method-based approaches within interpreters, is the reduction
in the number of synchronizations points. They appear only at method call boundaries.
However, method-based JITs have higher memory usage during compilation and opti-
mization steps. They may also compile cold code regions that will never be executed.
Therefore, trace compilation may be more suitable for resource-constrained devices,
such as embedded environments.

Hybrid approaches that combines the best of method-based and trace-based JIT
have also been evaluated for Java (Inoue et al. 2011). The authors propose a shared
infrastructure between these two compilers: libraries, optimization passes, code gener-
ators, garbage collector. However, some optimizations can not be shared. For instance,
Guo and Palsberg (2011) proved that some backward data-flow optimizations such as
dead store elimination are not sound on trace compilation. Inoue et al. implemented

10 Chapter 2. Related Work

their trace-based JIT over the IBM J9/TR JVM and method-JIT, and despite being
very limited (it is not integrated with a profiler) it generates code as fast as the baseline
method-based compiler, only 8% slower on average. The Dalvik VM, the Android’s
Virtual Machine, was also proposed to be a hybrid compiler (Cheng and Buzbee 2010),
using a Trace-JIT when running on battery and a Method-JIT in background while
charging.

2.3 Code Specialization and Partial Evaluation

Specialization refers to the translation of a general function into a more limited version
of it. For instance, a two-argument function can be transformed into a one-argument
function by fixing one of its inputs to a particular value. However, if we consider a
program text, rather than mathematical functions, we have what is called program
specialization or partial evaluation (Jones et al. 1993). This process is performed by
an algorithm usually called partial evaluator. Given a program and some information
about its input values, a residual or specialized program is generated. If the specialized
program is executed on the remaining input it will produce the same result of the
execution of the original program on the complete input.

Code Specialization can be classified in various dimensions, regarding aspects
like when it is applied or which part of code is affected. However, there is not a
uniform taxonomy that is adopted among different research groups. For instance,
code specialization can be done either at compile-time or run-time (Consel and Noël
1996), although this classification can appear with the names static and dynamic (code)
specialization, respectively, in more recent works (Grant et al. 2000, Shankar et al. 2005,
Suganuma et al. 2005, Zhang et al. 2007). In some works, like Canal et al. (2004), the
term Value Specialization appears as an alias to Profile-guided Value Specialization.
Value Specialization itself also appears with the name Value-based Code Specialization
(Calder et al. 1999). As far as we now, there are no unified proposal to a more consistent
and systematic classification system to code specialization.

Figure 2.1 is our attempt to bring some order to the code specialization litera-
ture. We have compiled this figure from descriptions found in several papers. Notably,
we borrow Duesterwald (2005)’s suggestion to separate control-flow from data special-
ization. Although the present work only deals with speculative value specialization
without a profiler, in the next sections we describe the other approaches listed in
the tree. In this way, we hope to give the reader a good understanding on how this
work compares to the existing literature. For instance, Duesterwald classifies code

2.3. Code Specialization and Partial Evaluation 11

Code Specialization

Data

Control

Mehrara et al. (2011)
Gal et al. (2009)
Duesterwald (2005)
Bala et al. (1999)
Hölzle et al. (1991)

Value

Speculative

Profile-guided

Type

Hackett and Guo (2012)
Chang et al. (2011)
Chevalier-Boisvert et al. (2010)
Gal et al. (2009)
Rigo (2004)
Almási and Padua (2002)

Range

Sol et al. (2011)
Canal et al. (2004)
Bodík et al. (2000)

Template

Bolz et al. (2010)
Consel and Noël (1996)
Auslander et al. (1996)
Engler et al (1994)
Keppel et al. (1993)
Keppel et al. (1991)

Hardware

Zhang et al. (2007)
Zhang et al. (2005)

Software

Muth et al. (2000)
Calder et al. (1999)
Calder et al. (1997)

This work

Figure 2.1: How our work compares to the literature related to code specialization and
speculation.

specialization techniques in two main categories: control-flow specialization and data
specialization. In the control-flow specialization group, we have optimizations that rely
on the assumption that some paths in the program code will be traversed more often
than others. On the other hand, data specialization is based on particular properties
that hold for a certain data. Code specialization can also be done using a speculative
approach. In this case, the compiler assumes that a particular property holds for a
certain code or data and specializes it for that property.

12 Chapter 2. Related Work

2.3.1 Control-flow Specialization

Control-flow Specialization happens whenever the compiler assumes that a path will
be often taken, and generates better code for that path. According to Duesterwald
(2005), control specialization can be implicitly supported by trace selection, which can
produce a new code layout, in the cache, specialized to the actual execution behavior.
Partial procedure inlining (Duesterwald 2005), indirect branch linking (Duesterwald
2005), polymorphic inline caches (Hölzle et al. 1991) and code sinking (Bala et al.
1999) are all examples of Control-flow Specialization.

TraceMonkey was built on top of two different specialization techniques: control-
flow specialization and type specialization (Gal et al. 2009). On the control-flow special-
ization side, the code is incrementally generated from the lazily discovered alternative
paths of nested loops. TraceMonkey speculatively chooses a main path for a hot loop,
and compiles it. All alternative paths are guarded and if one is taken the trace exe-
cution will stop, returning the execution to the SpiderMonkey interpreter through a
side exit synchronization code. Whenever a side exit becomes hot, the trace compiler
is triggered to compile the new trace for this branch. In the next executions, this trace
will be called instead of returning control to the interpreter.

2.3.1.1 Speculative Control-flow Specialization

An example of control speculation, more specifically an example of Speculative Control-
flow Specialization, has been recently proposed by Mehrara and Mahlke (2011) in the
context of trace compilers. The authors propose that the main flow of a program’s
trace is executed by the main thread speculatively ahead, delegating to a second thread
the task of executing the run-time checks. Whenever such event is detected, the two
threads synchronize, the state of the interpreter is recovered, and execution falls back
into interpretation mode. During the speculative execution, the execution of the main
thread is sandboxed to make sure that no execution failures happen until all checks have
been validated. The increase of performance are more evident in multicore systems with
under-utilized cores, where the main and guard threads can execute concurrently. The
control-flow is specialized in the sense that all side exits associated with the run-time
checks are removed from the main execution flow.

Code sinking is also a Speculative Control-flow Specialization optimization. Ac-
cording to Bala et al. (1999), it is the symmetric counterpart to code hoisting for partial
redundancy elimination. Its objective is to move instructions from the main execution
path into fragment exits to reduce the number of instructions executed on the expected
path. The speculative nature of this optimization is due to instructions that may be

2.3. Code Specialization and Partial Evaluation 13

only partially dead, but can be sunk1 to outside the main path. This partially dead
instructions define registers that are not read on the main path, but even so may not
be removed since a subsequent fragment exit may use them. Bala et al. states that
code sinking can be optimal as long as no compensation block must be created to hold
such instructions at fragment exits. Otherwise it may lead to misprediction penalties.

2.3.2 Data Specialization

Data specialization happens whenever the compiler assumes that a certain data has
a particular property, or is likely to have this property. In this paper, we distinguish
three categories of data specialization: type, range and value-based. A compiler does
type specialization if it assumes that the target data has a given type, and generates
code customized to that type. Range specialization happens whenever the compiler
assumes or infers a range of values to the data. Finally, value specialization, which we
do in this paper, happens if the compiler assumes that the target data has a specific
value.

2.3.3 Type Specialization

There is a large body of work related to run-time type specialization. The core idea
is simple: once the compiler proves that a value belongs into a certain type, it uses
this type directly, instead of resorting to costly boxing and unboxing operations. Due
to the speculative nature of these optimizations, guards are inserted throughout the
binary code, so that, in case the type of a variable changes, the execution environment
can adapt accordingly. Rigo (2004) provides an extensive description about this form
of specialization, in the context of Psyco, a JIT compiler for Python. Almási and
Padua (2002) describe a complete compilation framework for Matlab that does type
specialization. They assume that the type of the input values passed to a function will
not change; hence, they generate binaries customized to these types. Also in the Matlab
world, yet more recently, Chevalier-Boisvert et al. (2010) have used type specialization
to better handle arrays and matrices.

In another front, the researchers from the Mozilla Foundation have proposed
several different ways to use type information to improve JavaScript code (Chang
et al. 2011, Gal et al. 2009, Hackett and Guo 2012). Gal et al. (2009)’s TraceMonkey
provides a cheap inter-procedural type specialization that performs several type-based
optimizations, such as converting floating point numbers to integers, and sparse objects

1The verb “sink” is used in the compiler literature to describe the operation of moving code to
side paths inside a main program path.

14 Chapter 2. Related Work

to dense vectors. For instance, the first optimization is done in a speculative way as
soon as a variable assumes an integer value at the trace entry. If the variable type
do not remains stable, it is necessary to widen its type to a double. Once identified
as type instable, this variable is marked to avoid future speculative failures. Type
specialization seems to be, in fact, one of the key players in the Firefox side of the
browser war, as Hackett and Guo (2012) have recently demonstrated.

2.3.4 Value Range Specialization

Value Range Specialization is in the middle of the Data Specialization spectrum. Type
Specialization narrows the possible values of a variable to a specific type. On the other
hand, Value Specialization restricts a variable to only one value. In its turn, Value
Range Specialization may assign a range of values to a variable and specialize a region
of code to that specific range. Conceived by Canal et al. (2004) and based on Value
Range Propagation, it is a compile-time optimization composed by three steps. The
first identifies candidates for specialization. The second computes their ranges using
profiling information. The third and last step, is the specialization process, which
duplicates a code region and inserts tests to dynamically select the region that will be
executed: either the specialized or the non-specialized one.

The typical example of range specialization are the specializers that target ranges
of integer values. Perhaps the most influential work in this direction has been Bodík
et al. (2000)’s ABCD algorithm. This algorithm eliminates array bounds checks on
demand, and is tailored to just-in-time compilation. Bodík et al.’s algorithm relies on
the “less-than" lattice Logozzo and Fähndrich (2008) to infer that some array indices
are always within correct boundaries. Another work that does range specialization
in JIT compilers is Sol et al. (2011)’s algorithm to eliminate integer overflow checks.
This algorithm has been implemented in TraceMonkey, and has been shown to be very
effective to remove these overflow tests. Sol et al.’s algorithm uses information only
known at run-time to estimate intervals for the variables in the program. From these
intervals it decides which arithmetic operations are always safe. Potentially unsafe
operations need to be guarded, in such a way that, in face of an overflow, the 32-bit
integer types can be replaced by types able to represent larger numbers.

The profitability of the specialization may be considered to reduce the number
of candidates to be profiled. That is the case in the proposal of Canal et al.. Be-
fore applying the code specialization, they evaluate the benefits in expected energy
savings and only then the profitable candidates are specialized. The profitability is
computed through a set of mathematical formulas that take into account the cost and

2.3. Code Specialization and Partial Evaluation 15

the number of each generated instruction (branches, adds, comparisons, etc). Although
Value Range Propagation is used in high-level code transformation, Value Range Spe-
cialization was thought to be more CPU specific, despite being compiler independent.
Value Range Propagation achieved 6% of energy savings on average, and Value Range
Specialization achieved 15% on average for SpecInt95 (Canal et al. 2004).

2.3.5 Value Specialization

Value Specialization, or Value-based Code Specialization, customizes the code accord-
ing to specific run-time values of selected specialization variables. If the target value
cannot be determined before the program runs, then it may be necessary to insert
a run-time test to guard the specialized code over the possible instability of this
value (Duesterwald 2005). This is the case of Profile-guided Value Specialization and
Template-based Value Specialization. According to Zhang et al. (2005), Value Special-
ization is typically applied to procedures, which may be cloned or transformed to its
typical input values that will be treated as constants. Value Specialization can also
be considered as a special case of Value Range Specialization, whenever the minimum
and maximal values of a range are the same. Shankar et al. (2005) lists certain classes
of programs, such as interpreters, raytracers and database query executors, in which a
few values are consistently used due to the execution behavior. Value Specialization,
in some of these cases, can result in speedups up to 5x (Grant et al. 1999).

2.3.5.1 Template-based Value Specialization

Template-based Value Specialization combines compile-time and run-time specializa-
tion in a two-phased optimization strategy, partitioned into preprocessing and process-
ing steps. The first is responsible to build, at compile-time, the templates that will
be specialized later. The second specialize these templates according to the run-time
values observed. Template-based Specialization, until the work of Consel and Noël
(1996), has always been done manually (Keppel et al. 1991), where the user defines
code templates or parameterized code fragments (Engler and Proebsting 1994), either
with the use of a low level language or with program annotations (Auslander et al.
1996).

Keppel et al. (1993) have done an extensive study that compares traditional and
a template-based compilation, demonstrating that the latter can be very competitive.
The authors have studied several value specific optimizations, which rely on input
variables that have constant values in certain program’s regions and are used to improve
the code generation. Keppel et al. analyze the trade-off between compile-time and run-

16 Chapter 2. Related Work

time, in the sense that the more input data to specialize the longer latency to start
the execution of a program and more efficiently the specialized version will run. The
benefits of such specializations can only be seized if these values remain stable enough
that the optimized code is executed repeatedly. The authors have shown that these
optimizations can save memory references, improve register allocation and help in dead
code elimination.

The automatic generation of templates for further specialization, proposed by
Consel and Noël (1996), improves the manual approach in many ways, such as port-
ability and robustness. In the preprocessing phase, instead of manually defining code
templates, the user only needs to declare a list of program invariants. Then, at compile-
time, the program is analyzed to classify the variables, as either static (known) or
dynamic (unknown), and to determine the program transformations to be performed.
The templates are automatically generated at source-level, where the former group of
variables define the overall structure of the template, whereas the variables in the latter
determine the parts of this structure that must be completed dynamically. Consel and
Noël presents some preliminary experiments, using variations of the printf function,
where the specialized code runs 5 times faster then the non-specialized version. Noel
et al. improves the latter work in specializing C programs and show a more complete
evaluation of the proposed technique, which achieves speedups of up to 10 times.

The main difference between template-based compilation and the approach that
we advocate in this work is that we do not require the pre-compilation phase in which
templates are built. Using program annotations, Auslander et al. (1996) can dynami-
cally compile regions of C programs using the knowledge that some of the variables will
be invariant. They use a combination of constant propagation and constant folding to
amplify the number of constants for the compiled region. Our approach is similar in
the way that constant propagation and constant folding play an important role in the
optimization. However, in our work, the invariant values are determined at run-time
without any use of annotations.

The work of Bolz et al. (2010) is also close to ours. The authors propose to use
just-in-time partial evaluation to speed up Prolog programs. Conceptually, Bolz et al.’s
approach differs from ours in two main ways. First, we transform programs by using
classic compiler optimizations, whereas Bolz et al. use standard partial evaluation.
Second, similar to the template-based approach, Bolz et al. rely on a pre-compilation
phase, in which they create hooks that the partial evaluator uses to manipulate the
program. Thus, whereas we do not require a pre-compilation phase, Bolz et al. pre-
process the program before running it.

2.3. Code Specialization and Partial Evaluation 17

2.3.5.2 Profile-guided Value Specialization

This kind of Value Specialization combines a profiler component to decide which values
will be specialized in a speculative approach. This approach aims to fully automate
the identification process of semi-invariant values, instead of relying on program an-
notations like many works on Template-based Value Specialization. Motivated by the
Value Prediction technique (Gabbay and Mendelson 1996), Calder et al. (1997) have
proposed a Value Profiler component able to determine if a value is invariant over
the program execution. This component is also able to determine what are the most
common values that each instruction can result. According to Calder et al., a Value
Profiler component may be used in many optimization contexts, like code generation,
adaptive execution and code specialization.

Calder et al. (1999) uses the profiler component to guide code specialization, an
approach that these authors have dubbed Value-based Code Specialization. Using value
profile information over SPEC 95, they were able to achieve 21% of speedup on some
C programs that have high invariance on some group of values. The authors claimed
that without profiling information, straight forward compiler code specialization cannot
identify many of the performance bottlenecks of the considered programs. The code
specialization done by Calder et al. was performed manually, since the focus of their
work was in the analysis of value profiling. However, this is not a limitation inherent
to this technique as showed by the work of Muth et al. (2000).

Value-profile-guided Code Specialization is another name used to refer to Profile-
guided Value Specialization. Muth et al. (2000) defines it as a three-step process and
also expands the profiling to expressions other than values. This process start with
the identification of program points where specialization will be profitable. Once this
identification is done, the value and expression profiles are built to specialize code. The
work of Muth et al. describes a complete benefit analysis to guide the identification
step of which value or expression to profile, in order to reduce time and space overhead.
The profiler component used was based on the work of Calder et al. (1997), in spite of
the fact that it does not profile memory locations. However, code specialization is done
automatically instead of manually like Calder et al. (1999). This technique achieved
3.9% of speedup on SPEC 95, but with overheads of 44% for profiling and 87% for
specialization, on average.

One advantage of pure Speculative Value Specialization, without a profiler, is
that it does not incur in high overheads like these. Such technique relies on heuristics
that determine when the code should be specialized. However, imprecisions in these
heuristics may increase the number of recompilations, as we show in Chapter 4. On the

18 Chapter 2. Related Work

Profile-guided Value Specialization side, the use of a dedicated hardware can alleviate
this problem without implying software overhead. Zhang et al. (2005) have empirically
evaluated this approach, obtaining a 20% speedup in a small suite of benchmarks.
However, the profiler component proposed is only available in a simulated environment
and is not present on real processors.

2.3.5.3 Speculative Value Specialization

Speculative Value Specialization, until now and as far as we know, was only applied with
the use of a profiler component. In hardware, it can be used to improve conventional
trace cache architectures (Zhang et al. 2007). Zhang et al. have obtained a speedup of
17% over conventional hardware value prediction, mostly due to the reduction in the
length of dependence chains. This speedup has allowed them to improve value locality.
The technique that they presented uses semi-invariant load values detected at run-
time to dynamically specialize the program’s code. This approach relies on a profiler
component implemented in hardware to detect semi-invariant loads. This strategy is
inherently speculative, as these semi-invariant loads may change over time, in which
case the system will need to recover from mispredictions.

Our first attempt to implement Speculative Value Specialization without a profiler
component is described in Alves et al. (2012). That endeavor was a very limited
study: the engine execution was aborted if a specialized function was called more
than once. In that work we also only implemented Constant Propagation, besides
Parameter Specialization. Thus, we could only test our ideas in an artificial set of
benchmarks. Nevertheless, this preliminary study has provided the groundwork to
a more robust and functional implementation (Costa et al. 2013), as well as a more
complete evaluation. The present work summarizes all these contributions and provides
complementary analysis to the presented results.

2.3.6 Input-centric compilation

Input-centric compilation is a general code generation method similar to Value Range
Specialization. The first work in this line has been proposed by Canal et al. (2004).
Canal et al. generate multiple code regions for the same program, each of them special-
ized for a particular range of input values. Dynamic tests decide, at run-time, which
version of the program is the most appropriate to deal with a given input. A similar
work has been developed by Tian et al. (2010, 2011). In this model, the compiler gen-
erates the best possible code for a certain universe of possible inputs. Machine learning
might be used to determine which strategy the compiler should adopt to produce code.

2.4. Discussion 19

A recent example of input-oriented compilation is the work of Samadi et al. (2012). The
authors generate programs containing distinct sub-programs to handle different kinds
of inputs. Run-time characteristics of the particular input determine which routine
will be activated. The input aware compiler has the advantage of being more general
than our approach, because it generates code that works on different inputs. Our code
only works with certain values. However, the optimizations that we can perform are
more extensive: we trade generality for over-specialization.

2.4 Discussion

A great body of research about Speculative Value Specialization relies on profiling to
identify profitable code to specialize. A profiler component can reduce the number of
mispredictions through an invariance analysis of values to be specialized. However,
the overhead of such analysis can limit their use in some environments, like embedded
systems and Just-in-Time compilation for Web or mobile devices. Such environments
can have strict limits to memory used or user response time. This overhead can be
reduced through the use of a specialized hardware, as proposed by (Zhang et al. 2007).
However, this hardware is only available through simulated environments. In that
context, Speculative Value Specialization without the use of a profiler may present a
better trade-off between compiler analysis time and user experience latency. This is
the opportunity seized in this dissertation, where this concept is applied to improve
the performance of JavaScript on the Web.

Chapter 3

Parameter-based Value
Specialization

This chapter explains what is Parameter-based Value Specialization and how it works.
The first part of this chapter presents the empiric study that motivated this work. We
start describing the methodology used in the experiments. Then we present an analysis
of the function call behavior of real world JavaScript programs. The second part of
the chapter describes parameter specialization and how it works on an industrial JIT
compiler. The third, and last part, revisits classic optimizations highlighting how they
can benefit from parameter specialization.

3.1 Motivation

3.1.1 Methodology

This work was motivated by the empiric observation that most JavaScript functions
are called only once, or are always called with the same arguments. We rely on the
methodology used by Richards et al. (2010) to build the experiments presented in this
chapter. As Richards et al. has pointed out, the most popular benchmarks may not
represent correctly the behavior of real JavaScript programs. Therefore, we analyze the
behavior of popular websites and compare them with the behavior of the JavaScript
benchmarks available. The list of websites used in all experiments was retrieved from
the Alexa index (Alexa Internet Inc 2010). The benchmarks analyzed were: SunSpider,
Kraken and V8. All experiments were done using a modified version of Mozilla Firefox
browser, instrumented to collect the necessary information for each experiment.

21

22 Chapter 3. Parameter-based Value Specialization

Richards et al. (2010) instrumented the Webkit (Apple Inc. 2012b) web browser
to collect JavaScript execution traces of 103 different real-world web sites. To mimic
a typical user interaction several traces were recorded during the navigation of each of
these sites, and they were averaged in the metrics. The analysis developed by Richards
et al., performed offline, combines both the recorded traces and source code static
metrics. The trace recording contains a mixture of interpreter operations, like reads
and calls, and browser events, like garbage collection and eval invocations where the
evaluated string is also recorded. Some static analysis were done using the Rhino
JavaScript compiler (Mozilla Foundation 2012c), such as the code size metrics. One
important result obtained by Richards et al. is about the call site dynamism which
the analysis reveals as being highly monomorphic: 81% of call sites always invokes the
same method. This is an important result, because it justifies the speculative inlining
of methods.

In this work, we focus on the JavaScript behavior related with function calls. For
each script, we collect information about all function calls invoked during the execution.
We log the following information about each function called: length in bytecodes, name
(including script name and line number of the function definition) and the value plus
type of actual arguments. To achieve meaningful results from the real websites, our
script imitates a typical user session as much as possible. We simulate this mock
user session using the jQuery (jQuery Foundation 2012) API to build a script, which
collects all links and buttons of a webpage and randomly executes them to simulate
mouse events. Keyboard interaction was achieved by collecting all input fields of the
current webpage, and filling them with random strings. We have manually navigated
through some of these webpages, to certify that our robot produces results that are
similar to those that would be obtained by a human being.

3.1.2 Function call behavior

The histogram in Figure 3.1 shows how many times each different JavaScript function
is called. This histogram clearly delineates a power distribution. In total we have seen
23,002 different JavaScript functions in the 100 visited websites. 48.88% of all these
functions are called only once during the entire browser session. 11.12% of the functions
are called twice. The most invoked functions are from the Kissy UI library, located
at Taobao content delivery network (http://a.tbcdn.cn), and Facebook JavaScript
library (http://static.ak.fbcdn.net), respectively. The first one is called 1,956
times and the second 1,813 times. These numbers show that specializing functions
to the run-time value of their parameters is a reasonable approach in the JavaScript

http://a.tbcdn.cn
http://static.ak.fbcdn.net

3.1. Motivation 23

0 

0.1 

0.2 

0.3 

0.4 

0.5 

1  4  7  10  13  16  19  22  25  28 

Figure 3.1: Histogram showing the percentage of JavaScript functions (Y-axis) that
are called n times (X-axis). Data taken from Alexa’s 100 top websites. The histogram
has 353 entries; however, we only show the first 29. The tail has been combined in
entry 30.

world.
If we consider functions that are always called with the same parameters, then the

distribution is even more concentrated towards 1. The histogram in Figure 3.2 shows
how often a function is called with different parameters. This experiment shows that
59.91% of all the functions are always called with the same parameters. The descent
in this case is impressive, as 8.71% of the functions are called with two different sets of
parameters, and 4.60% are called with three. This distribution is more uniform towards
the tail than the previous one: the most varied function is called with 1,101 different
parameters, the second most varied is called with 827, the third most with 736, etc. If
it is possible to reuse the same specialized function when its parameters are the same,
the histogram in Figure 3.2 shows that the speculation that we advocate in this work
has a 60% hitting rate. We keep a cache of actual parameter values, so that we can
benefit from this regularity. Thus, if the same function is called many times with the
same parameters, then we can still run its specialized version.

We have also built these histograms to popular JavaScript benchmarks. These
results are given in Figure 3.3. The new histograms are more varied than in the
previous analysis. We speculate that this greater diversity happens because we are
considering a universe with much less elements: We have 154 distinct functions in
SunSpider, 186 in Kraken, and 320 in Google’s V8. Nevertheless, we can still observe

24 Chapter 3. Parameter-based Value Specialization

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

1  4  7  10  13  16  19  22  25  28 

Figure 3.2: Histogram showing the percentage of JavaScript functions (Y-axis) that
are called with n different sets of arguments (X-axis). Data taken from Alexa’s 100
top websites. We only show the first 30 entries.

a power law, mainly in SunSpider’s and Kraken’s distribution. 21.43% of SunSpider’s
functions are called only once. This number is only 4.68% in V8, but is 39.79% in
Kraken. The function most often called in SunSpider, md5_ii from the crypto-md5
benchmark, was invoked 2,300 times. In V8 we have observed 3,209 calls of the method
sc_Pair in the earley-boyer benchmark. In Kraken, the most called function is in
stanford-crypto-ccm, an anonymous function invoked 648 times.

If we consider how often each function is invoked with the same parameters,
then we have a more evident power distribution. Figure 3.3 (Bottom) shows these
histograms. We have that 38.96% of the functions are called with the same actual
parameters in SunSpider, 40.62% in V8, and 55.91% in Kraken. At least for V8 we have
a stark contrast with the number of invocations of the same function: only 4.68% of the
functions are called a single time, yet the number of functions invoked with the same
arguments is one order of magnitude larger. In the three collections of benchmarks, the
most called functions are also the most varied ones. In SunSpider, each of the 2,300
calls of the md5_ii function receives different values. In V8 and Kraken, the most
invoked functions were called with 2,641 and 643 different parameter sets, respectively.

The histograms in Figure 3.4 shows a similar analysis of function calls on the
three benchmark suites, but now considering only functions that IonMonkey compiles
during the execution of each suite. Only functions that executes for a long time are
represented in the charts. The charts (b), (d) and (f) only represent functions that have

3.1. Motivation 25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
0

0.04

0.08

0.12

0.16

0.2

0.24

1 135 9 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97101
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
(a) Function calls on SunSpider

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) Function calls with same parameters on Sun-
Spider

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
0

0.04

0.08

0.12

0.16

0.2

0.24

1 135 9 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97101
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(c) Function calls on V8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(d) Function calls with same parameters on V8

1 7 134 10 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(e) Function calls on Kraken

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55
0

0.1

0.2

0.3

0.4

0.5

0.6

(f) Function calls with same parameters on Kraken

Figure 3.3: Invocation histograms for three different benchmark suites. (Left) Fraction
of the number of times that each function is called. (Right) Fraction of the number of
times that each function is called with the same parameters.

26 Chapter 3. Parameter-based Value Specialization

1 1248 400014 206 785 1852 2368 3563 4500 11000 28386
0.00

0.05

0.10

0.15

0.20

0.25

(a) Compiled function calls on SunSpider

1 14 170 6024 52 361 822 1232 1353 1976 2549 4055 5212 7501
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(b) Compiled function calls with same parameters
on SunSpider

1 359910155 636 1437 1900 2855 5821 9713 16398 30118 72793
0.00

0.01

0.01

0.02

0.02

0.03

0.03

(c) Compiled function calls on V8

1 76513 56 105 276 536 1097 1753 2944 7990 19339 92054
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(d) Compiled function calls with same parameters
on V8

1 11 21 499 506 1000 3994 4847 166252918832782327866555666490
0.00

0.05

0.10

0.15

0.20

0.25

0.30

(e) Compiled function calls on Kraken

1 4 17 20 806 1751 2141 3224 4156 4847 7146 327843324865556
0.00

0.05

0.10

0.15

0.20

0.25

(f) Compiled function calls with same parameters
on Kraken

Figure 3.4: Invocation histograms for three different benchmark suites considering
only functions compiled by IonMonkey. (Left) Fraction of the number of times that
each function is called. (Right) Fraction of the number of times that each function is
called with the same parameters.

3.1. Motivation 27

Benchmark Calls ZeroArgs Functions Compiled CompiledZeroArgs

SunSpider-1.0 494907 8.62% 2269 4.14% 0.79%
V8 version 6 9472644 26.86% 1744 9.06% 2.86%
Kraken 1.1 615965 6.49% 116 45.69% 11.20%
Alexa 1348443 8.27% 61435 0.01% 0.00%

Table 3.1: Function Analysis Statistics
(Calls) Number of function calls that have been executed for each benchmark,
(ZeroArgs) Percentage of function calls that do not have arguments,
(Functions) Number of functions analyzed in each benchmark,
(Compiled) Percentage of functions compiled by IonMonkey,
(CompiledZeroArgs) Percentage of functions compiled by IonMonkey that do not have
arguments.

at least one parameter. Table 3.1 presents statistics about the function calls analyzed.
In SunSpider, only 8.62% of the function calls do not have arguments. In Kraken,
this percentage is even smaller, only 6.49% of function calls do not have arguments.
However, in V8 this percentage is more representative (26.86%), which reflects the
histograms (c) and (d) of Figure 3.4. SunSpider and V8, have a similar number of
compiled functions and compiled functions that do not have arguments. In Kraken,
the number of compiled function is 45%. However, the percentage of compiled functions
that do not have arguments represent 11.20% of all functions of this benchmark. For the
Alexa index, almost none (0.01%) of the called functions are compiled by IonMonkey.
The JavaScript functions found in Alexa are quite simple and do not represent intensive
JavaScript webpages found in the wild.

3.1.3 The types of the parameters

We have performed a comparison between the types of the parameters used by functions
called with only one set of arguments in the benchmarks, and in the Alexa top 100
websites. The results of this study are shown in Figure 3.5. Firstly, we observe great
diversity between the benchmarks and the web, and among the benchmarks themselves.
Nevertheless, one fact is evident: the benchmarks use integers much more often than
the JavaScript functions that we found in the wild. 37.5%, 48.72% and 33.03% of
the parameters used by functions in SunSpider, V8 and Kraken are integers. On the
Internet, only 6.36% of the parameters are integers. In this case, objects and strings are
used much more often: 35.57% and 32.95% of the time. Some of the optimizations that
we describe in this work, notably constant propagation, can use integers, doubles and

28 Chapter 3. Parameter-based Value Specialization

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

ar
ray
 

bo
ol 

do
ub
le 

fu
nc
6o
n  int

 
nu
ll 

ob
jec
t 

str
ing
 

un
de
fin
ed
 

WEB  Sunspider 1.0  V8‐v6  Kraken 1.1 

Figure 3.5: The most common types of parameters used in benchmarks and in actual
webpages.

booleans with great benefit: these primitive types allow us to solve some arithmetic
operations at code-generation time. We can do less with objects, arrays and strings:
we can inline some properties from these types, such as the length constant used in
strings. We can also solve some conditional tests, e.g., ==, ===, etc, and we can solve
calls to the typeof operator.

3.2 Parameter Based Speculative Value

Specialization

Our idea is to replace the parameters of a function with the values that they hold
when the function is called. Before explaining how we perform this replacement, we
will briefly review the life cycle of a program executed through a just-in-time compiler.
In this work, we focus on the binaries generated by a particular compiler – IonMonkey
– yet, the same code layout is used in other JIT engines that combine interpretation
with code generation.

Some JavaScript run-time environments, such as Chromium’s V8, compile a func-
tion the first time that it is called. Other run-time systems compile code while this code

3.2. Parameter Based Speculative Value Specialization 29

Parser

Optimizer

Code
Generator

function inc(x) {
 return x + 1;
}

JavaScript source code

mov 0x28(%rsp),%r10
shr $0x2f,%r10
cmp $0x1fff1,%r10d
je 0x1b
jmpq 0x6e
mov 0x28(%rsp),%rax
mov %eax,%ecx
mov $0x7f70b72c,%r11
mov (%r11),%rdx
cmp %rdx,%rsp
jbe 0x78
add $0x1,%ecx
jo 0xab
mov $0xfff88000,%rax
retq

Native code

Bytecodes
00000: getarg 0
00003: one
00004: add
00005: return
00006: stop

LIR
label ()
parameter ([x:1 (arg:0)])
parameter ([x:2 (arg:8)])
start ()
unbox ([i:3]) (v2:r)
checkoverrecursed()t=([i:4])
osipoint ()
addi ([i:5 (!)]) (v3:r), (c)
box ([x:6]) (v5:r)
return () (v6:rcx)

resumepoint 4 2 6
parameter -1 Value
resumepoint 4 2 6
parameter 0 Value
constant undef Undefined
start
unbox parameter4 Int32
resumepoint 4 2 6
checkoverrecursed
constant 0x1 Int32
add unbox10 const14 Int32
return add16

MIR

Interpreter

Compiler

Figure 3.6: The life cycle of a JavaScript program in the SpiderMonkey/IonMonkey
execution environment.

is interpreted. The Mozilla Firefox engine follows the second approach. A JavaScript
function is first interpreted, and then, if a heuristics deems this function worth com-
piling, it is translated to native code. Figure 3.6 illustrates this interplay between
interpreter and just-in-time compiler. Mozilla’s SpiderMonkey engine comes with a
JavaScript interpreter. There exists several JIT compilers that work with this inter-
preter, e.g., TraceMonkey (Gal et al. 2009), JägerMonkey (Hackett and Guo 2012) and
IonMonkey. We will be working with the latter.

The journey of a JavaScript function in the Mozilla’s Virtual Machine starts in
the parser, where the JavaScript code is transformed into bytecodes. These bytecodes
form a stack-based instruction set, which SpiderMonkey interprets. Some JavaScript
functions are either called very often, or contain loops that execute for a long time.
We say that these functions are hot. Whenever the execution environment judges a

30 Chapter 3. Parameter-based Value Specialization

function to be hot, this function is sent to IonMonkey to be translated to native code.
The JavaScript function, while traversing IonMonkey’s compilation pipeline, is

translated into two intermediate representations. The first, the Middle-level Inter-
mediate Representation, or MIR for short, is the baseline format that the compiler
optimizes. MIR instructions are three-address code in the static single assignment
(SSA) form (Cytron et al. 1991). In this representation we have an infinite supply
of virtual registers, also called variables. The main purpose of the MIR format is to
provide the compiler with a simple representation that it can optimize. One of the
optimizations that IonMonkey performs at this level is global value numbering; a task
performed via the algorithm first described by Alpern et al. (1988). It is at this level
that we apply the optimizations that we describe in this section.

The optimized MIR program is converted into another format, before being trans-
lated into native code. This format is called the Low-level Intermediate Representation,
or LIR. Contrary to MIR, LIR contains machine-specific information. MIR’s virtual
registers have been replaced by a finite set of names whose purpose is to help the reg-
ister allocator find locations to store variables. After IonMonkey is done with register
allocation, its code generator produces native binaries. SpiderMonkey diverts its flow
to the address of this stream of binary instructions, and the JavaScript engine moves
to native execution mode.

This native code will be executed until either it legitimately terminates, or some
guard evaluates to false, causing a recompilation. Just-in-time compilers usually spec-
ulate on properties of run-time values in order to produce better code. IonMonkey,
for instance, uses type specialization. JavaScript represents numbers as infinitely large
floating-point values. However, many of these numbers can be represented as simple
integers. If the IonMonkey compiler infers that a numeric variable is an integer, then
this type is used to compile that variable, instead of the more expensive floating-point
type. On the other hand, the type of this variable, initially an integer, might change
during the execution of the JavaScript program. This modification triggers an event
that aborts the execution of the native code, and forces IonMonkey to recompile the
entire function, boxing the variable as a floating-point value.

3.2.1 The Anatomy of a MIR program

Figure 3.7 shows an example of a control flow graph (CFG) that IonMonkey produces.
In the rest of this work we will be using a simplified notation that represents the MIR
instruction set. Contrary to a traditional CFG, the program in Figure 3.7 has two
entry points. The first, which we have labeled function entry point is the path taken

3.3. Revisiting Classic Optimizations 31

whenever the program flow enters the binary function from its beginning. This is the
path taken whenever a function already compiled is invoked. The second entry point,
the on stack replacement (OSR) block, is the path taken by the program flow if the
function is translated into binary during its interpretation. As we have mentioned
before, a function might be compiled once some heuristics in the interpreter judges
that it will run for a long time. In this case, the interpreter must divert the program
flow directly to the point that was being interpreted when the native code became
active. The OSR block marks this point, usually the first instruction of a basic block
that is part of a loop.

The CFG in Figure 3.7 contains several special instructions called resumepoint.
These instructions indicate places where the state of the program must be saved, so that
if it returns to interpretation mode, then the interpreter will not be in an inconsistent
state. Resume points are necessary after function calls, for instance, because they
might have side effects. On the other hand, referentially transparent commands do not
require saving the program state back to the interpreter.

3.2.2 Parameter Specialization

The core optimization that we propose in this work is parameter specialization. This
optimization consists in replacing the arguments passed to a function with the values
associated with these arguments at the time the function is called. Our optimizer
performs this replacement while the MIR control flow graph is built; therefore, it
imposes zero overhead on the compiler. That is, instead of creating a virtual name
for each parameter in the graph, we create a constant with that parameter’s run-time
value. We have immediate access to the value of each parameter, as it is stored in
the interpreter’s stack. There are two types of inputs that we specialize: those in the
function entry block, and those in the OSR block. Figure 3.8 shows the effects of this
optimization in the program first seen in Figure 3.7.

3.3 Revisiting Classic Optimizations

3.3.1 Constant Propagation

The substitution of arguments by constants improves, by itself, the performance of
the binaries that we specialize. However, its use combined with constant propagation
can provide opportunities for other optimizations, such as bound check elimination
and dead code elimination. Constant propagation is, possibly, the most well-known

32 Chapter 3. Parameter-based Value Specialization

Function entry point
L0: resumepoint
 s0 = param[0]
 n0 = param[1]
 f0 = param[2]
 b0 = param[3]
 resumepoint
 i0 = b0

On stack replacement
L1: resumepoint
 s1 = param[0]
 n1 = param[1]
 f1 = param[2]
 i1 = stack[0]
 resumepoint

L2: resumepoint
 s2 =ϕ(s0, s1, s2)
 n2 =ϕ(n0, n1, n2)
 f2 =ϕ(f0, f1, f2)
 i3 =ϕ(i0, i1, i2)
 p = i3 < n2
 brt p, L3

L3: resumepoint
 typebarrier s2
 checkarray s2, i3
 x0 = ld s2, i3
 passarg x0
 passarg f2
 call
 resumepoint
 x1 = getreturn
 typebarrier x1
 typebarrier s2
 checkarray s2, i3
 st s2, i3, x1
 i2 = i3 + 1
 goto L2

L4: resumepoint
 stack[-4] = s2
 ret

function inc(x) {
 return x + 1;
}

function map(s, b, n, f) {
 var i = b;
 while (i < n) {
 s[i] = f(s[i]);
 i++;
 }
 return s;
}

var A = [];
var max = 100;

for (var i = 0; i < max; i++)
 A[i] = i;

print (map(A, 2, max, inc));

(a)

(b)

Figure 3.7: (a) The JavaScript program that we will use as a running example. (b)
The control flow graph of the function map.

3.3. Revisiting Classic Optimizations 33

On stack replacement
L1: resumepoint
 s1 = 0xFF3D8800
 n1 = 100
 f1 = inc
 i1 = 40
 resumepoint

Function entry point
L0: resumepoint
 s0 = 0xFF3D8800
 n0 = 100
 f0 = 0xFF3DE010
 b0 = 2
 resumepoint
 i0 = b0

L2: resumepoint
 s2 =ϕ(s0, s1, s2)
 n2 =ϕ(n0, n1, n2)
 f2 =ϕ(f0, f1, f2)
 i3 =ϕ(i0, i1, i2)
 p = i3 < n2
 brt p, L3

L3: resumepoint
 typebarrier s2
 checkarray s2, i3
 x0 = ld s2, i3
 passarg x0
 passarg f2
 call
 resumepoint
 x1 = getreturn
 typebarrier x1
 typebarrier s2
 checkarray s2, i3
 st s2, i3, x1
 i2 = i3 + 1
 goto L2

L4: resumepoint
 stack[-4] = s2
 ret

Figure 3.8: The result of our parameter specialization applied onto the program in
Figure 3.7.

code optimization, and it is described in virtually every compiler textbook. We have
implemented the algorithm present in Aho et al.’s classic book (Aho et al. 2006, p.633-
635). Each program variable is associated with one element in the lattice ⊥ < c < >,
where c is any constant. We iterate successive applications of a meet operator until we
reach a fixed point. This meet operator is defined as ⊥∧ c = c, ⊥∧> = >, >∧ c = >,
c0 ∧ c1 = c0 if c0 = c1 and c0 ∧ c1 = > otherwise. We have opted for the simplest
possible implementation of constant propagation, to reduce the time overhead that
our optimization imposes on the run-time environment. Thus, contrary to Wegman
and Zadeck (1991) seminal algorithm, we do not extract information from conditional
branches.

Figure 3.9 shows the code that results from the application of constant propaga-
tion on the program seen in Figure 3.8. If all the arguments of an instruction i are
constants, then we can evaluate i at compilation time. If i defines a new variable v,
then we can replace every use of v by the constant that we have just discovered. The

34 Chapter 3. Parameter-based Value Specialization

L3: resumepoint
 typebarrier 0xFF3D8800
 checkarray 0xFF3D8800, i3
 x0 = ld 0xFF3D8800, i3
 passarg x0
 passarg inc
 call
 resumepoint
 x1 = getreturn
 typebarrier x1
 typebarrier 0xFF3D8800
 checkarray 0xFF3D8800, i3
 st 0xFF3D8800, i3, x1
 i2 = i3 + 1
 goto L2

L4: resumepoint
 stack[-4] = 0xFF3D8800
 ret

Function entry point
L0: resumepoint
 s0 = 0xFF3D8800
 n0 = 100
 f0 = inc
 b0 = 2
 resumepoint
 i0 = b0

On stack replacement
L1: resumepoint
 s1 = 0xFF3D8800
 n1 = 100
 f1 = inc
 i1 = 40
 resumepoint

L2: resumepoint
 0xFF3D8800 =ϕ(0xFF3D8800, 0xFF3D8800, 0xFF3D8800)
 100 =ϕ(100, 100, 100)
 inc =ϕ(inc, inc, inc)
 i3 =ϕ(2, 40, i2)
 p = i3 < 100
 brt p, L3

Figure 3.9: The result of applying constant propagation on the program in Figure 3.8.

elimination of an instruction that only operates on constants is called folding. We have
marked the 14 instructions that we have been able to fold in Figure 3.9. We can fold
many JavaScript typical operations. Some of these operations apply only to primitive
types, such as numbers, e.g., addition, subtraction, etc. Others, such as the many com-
parison operators, e.g., ==, !=, ===, !== and the typeof operator, apply on aggregates
too.

JavaScript is a very reflective language, and run-time type inspection is a common
operation, not only at the development level, but also at the code generation level.
As an example, in Figure 3.7 we check if s is an array, before accessing some of its
properties. Our constant propagation allows us to fold away many type guards, which
are ubiquitous in the code that IonMonkey generates. We have folded the two type
guards in block L3. This optimization is safe, as there is no assignment to variable s
in the entire function.

3.3. Revisiting Classic Optimizations 35

L3: resumepoint
 i4 =ϕ(i3, i2)
 checkarray 0xFF3D8800, i4
 x0 = ld 0xFF3D8800, i4
 passarg x0
 passarg inc
 call
 resumepoint
 x1 = getreturn
 typebarrier x1
 checkarray 0xFF3D8800, i4
 st 0xFF3D8800, i4, x1
 i2 = i4 + 1
 p0 = i2 < 100
 brt p0, L3

L4: resumepoint
 stack[-4] = 0xFF3D8800
 ret

Function entry point
L0: resumepoint

L2: resumepoint
 i3 =ϕ(2, 40)
 p0 = 2 >= 100
 brt p0, L4

On stack replacement
L1: resumepoint

Figure 3.10: The result of applying loop inversion on the program seen in Figure 3.9.

3.3.2 Loop Inversion

Loop inversion is a classic compiler optimization that consists in replacing a while
loop by a repeat loop. The main benefit of this transformation is the replacement of
a conditional and an unconditional jump inside a loop with only a conditional loop
at its end. Figure 3.10 shows the result of performing loop inversion in the program
seen in Figure 3.9. Usually loop inversion inserts a wrapping conditional around the
repeat loop, to preserve the semantics of the original program. This conditional, only
traversed once by the program flow, ensures that the body of the repeat loop will not
be executed if the corresponding while loop iterates zero times. Loop inversion does
not directly benefit from the knowledge of run-time values. However, we have observed
that a subsequent dead-code elimination phase can remove the wrapping conditional.
This elimination is possible because our parameter specialization often lets us know
that a loop will be executed at least once.

36 Chapter 3. Parameter-based Value Specialization

L3: resumepoint
 i4 =ϕ(2, 40, i2)
 checkarray 0xFF3D8800, i4
 x0 = ld 0xFF3D8800, i4
 passarg x0
 passarg inc
 call
 resumepoint
 x1 = getreturn
 typebarrier x1
 checkarray 0xFF3D8800, i4
 st 0xFF3D8800, i4, x1
 i2 = i4 + 1
 p0 = i2 < 100
 brt p0, L3

L4: resumepoint
 stack[-4] = 0xFF3D8800
 ret

Function entry point
L0: resumepoint

L2: resumepoint
 i3 =ϕ(2, 40)
 p0 = 2 >= 100
 brt p0, L4

On stack replacement
L1: resumepoint
 goto L3

Figure 3.11: The result of applying dead-code elimination on the program seen in
Figure 3.10.

3.3.3 Dead-Code Elimination

Dead-code elimination removes instructions that we prove that cannot be reached by
the program flow. We run it after constant propagation, in order to give instruc-
tion folding the chance to transform conditional branches into simple boolean values.
Whenever this extensive folding is possible, the outcome of the conditional branch can
be predicted at compile-time; thus, we can safely remove the branch instruction and,
possibly, blocks of unreachable code. Figure 3.11 shows the effects of dead-code elimi-
nation on the program in Figure 3.10. We have removed block L2, because the result
of the comparison inside this block is known at code generation time. Notice that
we keep the function entry block. We only keep this block because we can cache the
binaries that we produce, in case a function is called with the same parameters again.
If a function compiled to native code is called again, then execution must start at the
function entry point.

3.3. Revisiting Classic Optimizations 37

L3: resumepoint
 i4 =ϕ(2, 40, i2)
 checkarray 0xFF3D8800, i4
 x0 = ld 0xFF3D8800, i4
 passarg x0
 passarg inc
 call
 resumepoint
 x1 = getreturn
 typebarrier x1
 checkarray 0xFF3D8800, i4
 st 0xFF3D8800, i4, x1
 i2 = i4 + 1
 p0 = i2 < 100
 brt p0, L3

L4: resumepoint
 stack[-4] = 0xFF3D8800
 ret

On stack replacement
L1: resumepoint
 goto L3

Function entry point
L0: resumepoint

Figure 3.12: The result of eliminating array bounds checks from the program shown in
Figure 3.11.

3.3.4 Array Bounds Check Elimination

JavaScript is a type safe language, which means that any value can only be used
according to the contract specified by its run-time type. As a consequence of this type
safety, array accesses in JavaScript are bounds checked. Accesses outside the bounds of
the array return the undefined constant, which is the only element in the Undefined
data type. Bounds checking an index i is a relatively expensive operation, because,
at the native code level, it requires loading the array length property l, and demands
two conditional tests: i ≥ 0 and i < l. The knowledge of function inputs allows us to
eliminate some simple bounds checks.

To perform this optimization, we need to identify integer variables that control
loops. If these induction variables are bounded by a known value, then we can perform
a trivial kind of range analysis to estimate the minimum and maximum values that
array indices might receive. In order to keep our optimizer simple and efficient, we only
recognize function variables defined by the pattern i0 = exp; i1 = φ(i0, i2); i2 = i1 + c2.
Variables i3 and i4, plus the constant 2, in Figure 3.11(a) follow this pattern. Variable
i2 is initially assigned the constant 2, and i2 < 100 inside the loop; hence, its range is
[2, 99]. Moreover, i4 = φ(2, i2); thus, its range is also [2, 99]. Therefore, any access of
array s2, e.g., reference 0xFF3D8800 in the figure, indexed by i4 is safe, as s2’s length is
100. Figure 3.12 shows the result of eliminating the bounds checks from the program
in Figure 3.11.

38 Chapter 3. Parameter-based Value Specialization

L3: resumepoint
 i4 =ϕ(2, 40, i2)
 x0 = ld 0xFF3D8800, i4
 t0 = x0
 t1 = t0 + 1
 resumepoint
 x1 = t0
 typebarrier x1
 st 0xFF3D8800, i4, x1
 i2 = i4 + 1
 p0 = i2 < 100
 brt p0, L3

L4: resumepoint
 stack[-4] = 0xFF3D8800
 ret

On stack replacement
L1: resumepoint
 goto L3

Function entry point
L0: resumepoint

Figure 3.13: The result of inlining the inc function in the code presented by Figure 3.12.

3.3.5 Function Inlining

JavaScript supports closures; therefore, it is possible to pass a function as an argument
to another one. We inline functions passed as arguments, whenever possible. Fig-
ure 3.13 shows the result of replacing the call to function inc, seen in Figure 3.12, by
its body. IonMonkey already performs function inlining; however, it does it much later
than we do. IonMonkey’s inliner is profile-guided. Once a function is called 10,240
times, it decides to inline it. Closures are not immediately inlined, as they are passed
as formal parameters to a function that can be called with many different actual pa-
rameters. Furthermore, inlining closures requires guards: if the host function is called
again, this time with a different closure, recompilation must take place. Our aggressive
approach to inlining avoids all this burden. We inline a closure as soon as we compile
the host function, and we do not use guards. In case the function is called again, our
entire code will be discarded; hence, these guards would not be necessary.

3.3.6 Other Optimizations

There are many classic compiler optimizations that we have not considered in this
work, either due to the lack of time, or due to technological limitations in the current
implementation of IonMonkey. Two of these optimizations that we plan to investigate
in the future are loop unrolling and integer overflow check elimination. We speculate
that loop unrolling can be very effective in our scenario, as we can use the simple
analysis of Section 3.3.4 to find out how many times most of the loops will iterate.

3.4. Discussion 39

3.4 Discussion

This chapter presented our optimization and how it can be used to enhance many
classic optimizations, which may have inexpressive results when applied on dynamic
languages. In this chapter we have also observed that many JavaScript functions are
called most of the time with the same parameters. This is the key observation that
motivates our work. Although popular JavaScript benchmarks often do not represent
well the behavior of real world scripts (Richards et al. 2010), the Figure 3.3 shows that
they could be used to evaluate the proposed optimization, as presented in the next
chapter.

Chapter 4

Experiments

In this chapter we present an evaluation of the Parameter-based Speculative Value
Specialization over popular benchmarks and a few real world web pages. We start by
presenting run time results for different combinations of the optimizations described
in Section 3.3 for SunSpider, V8 and Kraken. Then we analyse the overhead of our
optimization regarding the size of generated code, the compilation overhead and the
number of recompilations. All experiments that we describe in this chapter were per-
formed on a Quad-Core Intel i5 processor with 3.3GHz of clock and 8GB of RAM
running Ubuntu 12.04.1 32-bits. The IonMonkey version that we are using as baseline
was obtained from the Mozilla repository1 on August 3rd, 2012.

4.1 Benchmarks

Timing JavaScript applications in actual webpages is not trivial, because too many
factors, mostly related to I/O operations, have an impact on the run time of these
programs. Therefore, we chose to use three well know benchmarks: SunSpider, Kraken
and V8 in our experiments. The advantage of the benchmarks is that we can measure
their execution time reliably. The disadvantage is that, as pointed by Richards et al.
(2010), benchmarks might not reflect the true nature of the JavaScript applications
found in the wild. The data that we shown in Section 3.1 is a testimony of this fact.
On one hand, Figure 3.5 shows that real world applications tend to use instances of
object more often than instances of simpler types. The optimizations in Section 3.3
work better in the latter case. On the other hand, Figures 3.1, 3.2 and 3.3 seem to
imply that functions tend to be called with the same parameters more often in the wild,
then in benchmarks. To mitigate these inconsistencies, we will also use the benchmarks

1http://hg.mozilla.org/projects/ionmonkey

41

http://hg.mozilla.org/projects/ionmonkey

42 Chapter 4. Experiments

available in Richards et al. (2011)’s repository. These programs have been extracted
from actual webpages, such as Google or Facebook, and provide a more faithful picture
of JavaScript applications that we are likely to find in the wild. Even though it is hard
to measure run time in these benchmarks with high confidence, we can use them to
measure code size reduction and number of recompilations very reliably.

4.2 Evaluation

In this section we present the evaluation of the Speculative Value Specialization pro-
posed in this work. We show the run time impact on the benchmarks considered and
analyze the size of generated code, the overhead in compilation, and the impact on the
number of compilations.

4.2.1 Run time impact

Tables 4.1 and 4.2 show the impact of our specialization in the run time on the SunSpi-
der benchmark. Tables 4.3 and 4.4 show the run time impact on the V8 benchmark.
And finally, Tables 4.5 and 4.6 show the run time impact on the Kraken benchmark.
Each benchmark was executed 100 times, to reduce the imprecision of this experiment.
For each test we present the execution time and standard deviation for different com-
binations of the optimizations that we have implemented (Section 3.3). The execution
time measured in a test includes interpretation, compilation and native execution. Pa-

rameterSpec is the parameter specialization that we have described in Section 3.2.2,
augmented with the automatic inlining of functions passed as parameters.

We have run constant propagation without parameter specialization, as we show
in the third column of the speedup tables, observing a run time slowdown of 0.88%
in SunSpider, 0.5% in V8 and 0.08% in Kraken. Without parameter specialization,
constant propagation has little room to improve the code, as IonMonkey’s global value
numbering already eliminates most of the constants in the scripts. On the other hand,
the combination of parameter specialization, constant propagation and dead-code elim-
ination has produced one of our best results. Some optimizations enable others. As
an example, in string-unpack-code, loop inversion has improved the effectiveness of
IonMonkey’s invariant code motion, yielding a 29% speedup. Our implementation of
array bounds check elimination did not give us a substantial speedup in any bench-
mark. We are using a simple approach, i.e., we only eliminate checks from arrays
indexed by induction variables. Moreover, the alias analysis that ensures the correct-
ness of this optimization is currently implemented in IonMonkey in a very simple way.

4.2. Evaluation 43

ParameterSpec • • • • •
ConstantPropg • • •
LoopInversion •
DeadCodeElim • •
BoundCheckElim

– SunSpider 1.0 (http://www.webkit.org/perf/sunspider/sunspider.html) –
3d-cube 2 ± 0.2 -2 ± 0.1 0 ± 0.2 2 ± 0.2 2 ± 0.2 0 ± 0.2
3d-morph 3 ± 0.8 0 ± 0.8 2 ± 1.0 3 ± 0.8 3 ± 0.7 2 ± 0.8
3d-raytrace -2 ± 0.2 -1 ± 0.2 -3 ± 0.2 -3 ± 0.2 -2 ± 0.2 -3 ± 0.2
access-binary-trees 3 ± 0.1 0 ± 0.2 3 ± 0.2 3 ± 0.2 3 ± 0.2 3 ± 0.1
access-fannkuch 13 ± 0.2 -2 ± 0.2 22 ± 0.2 12 ± 0.2 9 ± 0.2 24 ± 0.2
access-nbody -11 ± 0.2 -1 ± 0.2 -12 ± 0.2 -11 ± 0.2 -11 ± 0.2 -12 ± 0.2
access-nsieve 33 ± 0.3 0 ± 0.2 37 ± 0.2 34 ± 0.2 33 ± 0.2 35 ± 0.2
bitops-3bit-bits-in-byte 3 ± 0.2 -2 ± 0.2 2 ± 0.2 3 ± 0.2 3 ± 0.2 3 ± 0.2
bitops-bits-in-byte 1 ± 0.4 -1 ± 0.4 7 ± 0.4 15 ± 0.4 3 ± 0.4 4 ± 2.9
bitops-bitwise-and 0 ± 0.3 0 ± 0.4 0 ± 0.3 0 ± 0.4 0 ± 0.3 0 ± 0.4
bitops-nsieve-bits -5 ± 0.2 -2 ± 0.2 -2 ± 0.2 -1 ± 0.2 -5 ± 0.2 -1 ± 0.2
controlflow-recursive 11 ± 0.7 -1 ± 0.7 10 ± 0.7 11 ± 0.7 11 ± 0.7 11 ± 0.7
crypto-aes 4 ± 1.0 -2 ± 1.0 2 ± 1.0 3 ± 1.0 4 ± 1.0 2 ± 1.0
crypto-md5 6 ± 0.3 0 ± 0.2 6 ± 0.3 6 ± 0.3 6 ± 0.3 6 ± 0.3
crypto-sha1 4 ± 0.2 -2 ± 0.2 2 ± 0.2 3 ± 0.2 4 ± 0.2 1 ± 0.2
date-format-tofte 0 ± 0.2 0 ± 0.2 0 ± 0.2 0 ± 0.2 0 ± 0.2 0 ± 0.2
date-format-xparb 1 ± 0.2 0 ± 0.2 0 ± 0.2 1 ± 0.2 0 ± 0.2 2 ± 0.2
math-cordic -4 ± 0.5 -1 ± 0.5 -4 ± 0.6 -2 ± 0.6 -3 ± 0.6 -4 ± 0.6
math-partial-sums 1 ± 0.3 0 ± 0.2 0 ± 0.2 1 ± 0.2 1 ± 0.2 0 ± 0.2
math-spectral-norm -3 ± 0.2 -2 ± 0.2 -5 ± 0.2 -4 ± 0.2 -3 ± 0.2 -6 ± 0.2
regexp-dna -2 ± 0.2 0 ± 0.2 1 ± 0.2 -1 ± 0.2 1 ± 0.2 -2 ± 0.2
string-base64 0 ± 0.2 -1 ± 0.2 0 ± 0.2 0 ± 0.2 0 ± 0.2 1 ± 0.2
string-fasta 5 ± 0.2 -1 ± 0.2 3 ± 0.2 3 ± 0.2 2 ± 0.2 3 ± 0.2
string-tagcloud -6 ± 0.2 0 ± 0.2 -6 ± 0.2 -6 ± 0.2 -7 ± 0.2 -7 ± 0.2
string-unpack-code 0 ± 0.2 -1 ± 0.2 1 ± 0.2 0 ± 0.2 29 ± 0.2 -2 ± 0.2
string-validate-input -12 ± 0.5 -1 ± 0.2 -12 ± 0.4 -12 ± 0.4 -12 ± 0.4 -12 ± 0.6
Average 1.73 -0.88 2.08 2.31 2.73 1.85

Table 4.1: Run time speedup for the SunSpider benchmark. Percentage of speedup for
different combinations of: parameter specialization (Section 3.2.2), constant propaga-
tion (Section 3.3.1), loop inversion (Section 3.3.2), dead code elimination (Section 3.3.3)
and array bounds check elimination (Section 3.3.4).

44 Chapter 4. Experiments

ParameterSpec • • • • •
ConstantPropg • • • • •
LoopInversion • •
DeadCodeElim • •
BoundCheckElim • • •

– SunSpider 1.0 (http://www.webkit.org/perf/sunspider/sunspider.html) –
3d-cube 2 ± 0.2 0 ± 0.2 0 ± 0.2 0 ± 0.2 0 ± 0.2 0 ± 0.1
3d-morph 3 ± 0.8 2 ± 0.8 2 ± 0.8 2 ± 0.7 2 ± 0.7 2 ± 0.7
3d-raytrace -2 ± 0.2 -3 ± 0.2 -3 ± 0.2 -3 ± 0.2 -2 ± 0.2 -3 ± 0.2
access-binary-trees 3 ± 0.1 3 ± 0.1 3 ± 0.3 3 ± 0.2 3 ± 0.2 3 ± 0.2
access-fannkuch 13 ± 0.2 24 ± 0.2 22 ± 0.2 17 ± 0.2 24 ± 0.2 19 ± 0.2
access-nbody -11 ± 0.2 -12 ± 0.2 -12 ± 0.2 -12 ± 0.2 -12 ± 0.2 -13 ± 0.2
access-nsieve 33 ± 0.3 35 ± 0.2 37 ± 0.2 38 ± 0.2 36 ± 0.3 36 ± 0.3
bitops-3bit-bits-in-byte 3 ± 0.2 3 ± 0.2 3 ± 0.2 3 ± 0.2 3 ± 0.2 1 ± 0.2
bitops-bits-in-byte 1 ± 0.4 4 ± 2.9 5 ± 0.4 1 ± 0.5 5 ± 0.4 -16 ± 0.4
bitops-bitwise-and 0 ± 0.3 0 ± 0.4 0 ± 0.3 0 ± 0.3 0 ± 0.4 0 ± 0.3
bitops-nsieve-bits -5 ± 0.2 -1 ± 0.2 -5 ± 0.2 2 ± 0.2 -6 ± 0.2 -1 ± 0.2
controlflow-recursive 11 ± 0.7 11 ± 0.7 9 ± 0.7 9 ± 0.7 10 ± 0.7 11 ± 0.7
crypto-aes 4 ± 1.0 2 ± 1.0 2 ± 1.0 2 ± 1.0 2 ± 1.0 1 ± 1.0
crypto-md5 6 ± 0.3 6 ± 0.3 6 ± 0.3 6 ± 0.3 6 ± 0.3 5 ± 0.4
crypto-sha1 4 ± 0.2 1 ± 0.2 2 ± 0.2 2 ± 0.2 1 ± 0.2 1 ± 0.2
date-format-tofte 0 ± 0.2 0 ± 0.2 0 ± 0.2 0 ± 0.2 0 ± 0.6 0 ± 0.2
date-format-xparb 1 ± 0.2 2 ± 0.2 -1 ± 0.2 -2 ± 0.2 1 ± 0.2 0 ± 0.2
math-cordic -4 ± 0.5 -4 ± 0.6 -3 ± 0.6 -3 ± 0.7 -1 ± 0.6 -4 ± 0.5
math-partial-sums 1 ± 0.3 0 ± 0.2 0 ± 0.3 0 ± 0.3 0 ± 0.2 0 ± 0.2
math-spectral-norm -3 ± 0.2 -6 ± 0.2 -6 ± 0.2 -6 ± 0.2 -6 ± 0.2 -6 ± 0.2
regexp-dna -2 ± 0.2 -2 ± 0.2 -5 ± 0.2 -1 ± 0.2 -4 ± 0.2 -3 ± 0.2
string-base64 0 ± 0.2 1 ± 0.2 0 ± 0.2 0 ± 0.1 1 ± 0.2 1 ± 0.2
string-fasta 5 ± 0.2 3 ± 0.2 4 ± 0.2 0 ± 0.2 4 ± 0.4 0 ± 0.2
string-tagcloud -6 ± 0.2 -7 ± 0.2 -6 ± 0.2 -7 ± 0.2 -6 ± 0.2 -6 ± 0.2
string-unpack-code 0 ± 0.2 -2 ± 0.2 1 ± 0.2 29 ± 0.3 -1 ± 0.2 29 ± 0.2
string-validate-input -12 ± 0.5 -12 ± 0.6 -12 ± 0.5 -13 ± 0.4 -12 ± 0.5 -13 ± 0.3
Average 1.73 -0.88 1.65 2.58 1.85 1.69

Table 4.2: Run time speedup for the SunSpider benchmark (part 2). Percentage of
speedup for different combinations of: parameter specialization (Section 3.2.2), con-
stant propagation (Section 3.3.1), loop inversion (Section 3.3.2), dead code elimination
(Section 3.3.3) and array bounds check elimination (Section 3.3.4).

4.2. Evaluation 45

ParameterSpec • • • • •
ConstantPropg • • •
LoopInversion •
DeadCodeElim • •
BoundCheckElim

– V8 version 6 (http://v8.googlecode.com/svn/data/benchmarks/v6/run.html) –
deltablue 5 ± 0.6 -1 ± 0.8 7 ± 0.6 5 ± 0.6 6 ± 0.6 5 ± 0.6
earley-boyer 5 ± 0.2 0 ± 0.2 5 ± 0.1 6 ± 0.2 5 ± 0.2 7 ± 0.1
raytrace 12 ± 0.2 -1 ± 0.2 11 ± 0.2 12 ± 0.2 12 ± 0.3 12 ± 0.2
regexp 1 ± 0.2 0 ± 0.2 0 ± 0.2 0 ± 0.2 1 ± 0.2 1 ± 0.2
richards 2 ± 0.1 -1 ± 0.1 3 ± 0.1 4 ± 0.1 -11 ± 0.1 5 ± 0.1
splay -1 ± 0.5 0 ± 0.6 -1 ± 0.6 -1 ± 0.5 -1 ± 0.5 -1 ± 0.5
Average 4.00 -0.50 4.17 4.33 2.00 4.83

Table 4.3: Run time speedup for the V8 version 6 benchmark. Percentage of speedup for
different combinations of: parameter specialization (Section 3.2.2), constant propaga-
tion (Section 3.3.1), loop inversion (Section 3.3.2), dead code elimination (Section 3.3.3)
and array bounds check elimination (Section 3.3.4).

ParameterSpec • • • • •
ConstantPropg • • • • •
LoopInversion • •
DeadCodeElim • •
BoundCheckElim • • •

– V8 version 6 (http://v8.googlecode.com/svn/data/benchmarks/v6/run.html) –
deltablue 5 ± 0.6 -1 ± 0.8 6 ± 0.6 6 ± 0.5 5 ± 0.5 4 ± 0.5
earley-boyer 5 ± 0.2 0 ± 0.2 5 ± 0.2 3 ± 0.2 7 ± 0.1 6 ± 0.2
raytrace 12 ± 0.2 -1 ± 0.2 11 ± 0.2 10 ± 0.3 11 ± 0.2 13 ± 0.2
regexp 1 ± 0.2 0 ± 0.2 0 ± 0.2 1 ± 0.2 1 ± 0.2 1 ± 0.2
richards 2 ± 0.1 -1 ± 0.1 3 ± 0.1 -11 ± 0.1 5 ± 0.1 -7 ± 0.1
splay -1 ± 0.5 0 ± 0.6 -1 ± 0.5 -2 ± 0.5 -1 ± 0.5 -2 ± 0.6
Average 4.00 -0.50 4.00 1.17 4.67 2.50

Table 4.4: Run time speedup for the V8 version 6 benchmark (part 2). Percentage of
speedup for different combinations of: parameter specialization (Section 3.2.2), con-
stant propagation (Section 3.3.1), loop inversion (Section 3.3.2), dead code elimination
(Section 3.3.3) and array bounds check elimination (Section 3.3.4).

46 Chapter 4. Experiments

ParameterSpec • • • • •
ConstantPropg • • •
LoopInversion •
DeadCodeElim • •
BoundCheckElim

– Kraken 1.1 (http://krakenbenchmark.mozilla.org) –
ai-astar 0 ± 0.3 0 ± 0.2 0 ± 0.3 0 ± 0.2 0 ± 0.3 0 ± 0.3
audio-beat-detection 0 ± 0.3 0 ± 0.3 0 ± 0.3 0 ± 0.3 0 ± 0.3 0 ± 0.3
audio-dft 1 ± 0.5 0 ± 0.4 1 ± 0.5 1 ± 0.5 2 ± 0.5 1 ± 0.5
audio-fft 4 ± 1.1 -1 ± 0.4 3 ± 0.3 4 ± 1.1 4 ± 1.2 4 ± 1.2
audio-oscillator 0 ± 0.2 0 ± 0.2 0 ± 0.2 0 ± 0.2 0 ± 0.2 0 ± 0.2
imaging-darkroom 0 ± 1.1 0 ± 0.8 0 ± 1.1 0 ± 1.1 1 ± 0.9 0 ± 0.9
imaging-gaussian-blur 1 ± 2.0 0 ± 2.1 2 ± 4.3 2 ± 2.0 3 ± 2.1 1 ± 3.7
json-parse-financial 0 ± 0.9 0 ± 0.9 0 ± 0.8 0 ± 0.8 0 ± 0.9 0 ± 0.8
json-stringify-tinderbox 0 ± 0.4 0 ± 0.5 1 ± 0.4 0 ± 0.5 1 ± 0.4 0 ± 0.5
stanford-crypto-aes 2 ± 0.7 0 ± 0.7 2 ± 0.7 2 ± 0.7 3 ± 0.6 2 ± 0.6
stanford-crypto-pbkdf2 1 ± 0.5 0 ± 0.5 1 ± 0.5 1 ± 0.5 1 ± 0.5 1 ± 0.4
stanford-crypto-sha256 0 ± 0.4 0 ± 0.4 -1 ± 0.4 0 ± 0.4 0 ± 0.3 0 ± 0.4
Average 0.75 -0.08 0.75 0.83 1.25 0.75

Table 4.5: Run time speedup for the Kraken benchmark. Percentage of speedup for dif-
ferent combinations of: parameter specialization (Section 3.2.2), constant propagation
(Section 3.3.1), loop inversion (Section 3.3.2), dead code elimination (Section 3.3.3)
and array bounds check elimination (Section 3.3.4).

Thus, if there exists any store instruction in the script being compiled, the elimination
of bounds check instructions is considered unsafe and is not performed. If we run all
our optimizations together, we do not obtain the best speedups. This happens because
these optimizations are not cumulative: DeadCodeElim and BoundCheckElim

may, for instance, eliminate the same code.

4.2.2 Size of Generated Code

One of the benefits of our optimizations is code size reduction, which results from
the combination of parameter specialization with dead code elimination. Figures 4.1,
4.2 and 4.3 presents the size of the machine code generated for functions of our three
benchmarks with and without our approach. Notice that, due to recompilations, the
same function may be translated in different ways. In this analysis, we consider only the
smallest version that each compilation mode generates for each function. On average,
we are able to reduce the size of the functions in SunSpider by 16.72%. This reduction,
for V8 and Kraken, is 18.84% and 15.94%.

4.2. Evaluation 47

ParameterSpec • • • • •
ConstantPropg • • • • •
LoopInversion • •
DeadCodeElim • •
BoundCheckElim • • •

– Kraken 1.1 (http://krakenbenchmark.mozilla.org) –
ai-astar 0 ± 0.3 0 ± 0.2 0 ± 0.3 0 ± 0.2 0 ± 0.3 0 ± 0.3
audio-beat-detection 0 ± 0.3 0 ± 0.3 0 ± 0.3 0 ± 0.3 0 ± 0.3 0 ± 0.3
audio-dft 1 ± 0.5 0 ± 0.4 1 ± 0.5 0 ± 0.5 -2 ± 0.5 -1 ± 0.5
audio-fft 4 ± 1.1 -1 ± 0.4 3 ± 1.2 4 ± 0.4 4 ± 1.2 5 ± 0.5
audio-oscillator 0 ± 0.2 0 ± 0.2 0 ± 0.2 0 ± 0.3 0 ± 0.3 0 ± 0.2
imaging-darkroom 0 ± 1.1 0 ± 0.8 0 ± 1.1 0 ± 1.1 0 ± 0.8 0 ± 1.0
imaging-gaussian-blur 1 ± 2.0 0 ± 2.1 2 ± 2.1 1 ± 3.7 1 ± 4.4 1 ± 2.1
json-parse-financial 0 ± 0.9 0 ± 0.9 0 ± 0.7 0 ± 0.7 0 ± 0.7 0 ± 0.8
json-stringify-tinderbox 0 ± 0.4 0 ± 0.5 0 ± 0.4 1 ± 0.6 0 ± 0.5 0 ± 0.5
stanford-crypto-aes 2 ± 0.7 0 ± 0.7 2 ± 0.6 2 ± 0.6 2 ± 0.7 3 ± 0.7
stanford-crypto-pbkdf2 1 ± 0.5 0 ± 0.5 1 ± 0.5 1 ± 0.4 1 ± 0.5 1 ± 0.5
stanford-crypto-sha256 0 ± 0.4 0 ± 0.4 -1 ± 0.3 -1 ± 0.3 0 ± 0.3 0 ± 0.3
Average 0.75 -0.08 0.67 0.67 0.50 0.75

Table 4.6: Run time speedup for the Kraken benchmark (part2). Percentage of speedup
for different combinations of: parameter specialization (Section 3.2.2), constant prop-
agation (Section 3.3.1), loop inversion (Section 3.3.2), dead code elimination (Sec-
tion 3.3.3) and array bounds check elimination (Section 3.3.4).

ParameterSpec • • • • • • • • •
ConstantPropg • • • • • • •
LoopInversion • • •
DeadCodeElim • • • •
BoundCheckElim • • •

facebook-chrome 10.4 0.0 10.6 10.4 10.1 13.3 10.6 10.2 13.3 12.9
google-firefox 5.3 0.0 5.8 5.3 5.3 11.4 5.8 5.8 11.4 11.4
twitter-webkit 2.4 -0.1 3.4 2.4 2.4 22.1 3.4 3.4 22.1 22.1
yahoo-firefox 6.7 -0.2 6.4 6.7 6.7 42.5 6.4 6.4 42.5 42.5
sunspider-1.0 4.9 0.0 5.9 5.0 4.1 6.4 5.9 4.9 6.4 5.4
v8-v6 5.3 0.0 5.3 5.4 5.0 8.0 5.3 5.0 8.0 7.8
kraken-1.1 6.2 0.0 6.4 6.2 6.1 6.9 6.4 6.4 6.9 6.9

Table 4.7: Code Size Reduction, represented by posite values. Negative values repre-
sents an increase in the code size.

48 Chapter 4. Experiments

Figure 4.1: Size of generated code (log scale), in number of x86 assembly instructions
per function, for SunSpider 1.0. Each point in the X axis is a function in our test suite.
Functions are ordered by the size of the code that IonMonkey produces without our
optimizations.

These numbers translate to real-world applications, as we also show in Ta-
ble 4.7. We have run our techniques on the JavaScript benchmark automatically
built from actual webpages, using Richards et al. (2011)’s tool, obtaining a code-
size reduction of 13.3% for www.facebook.com, 11.4% for www.google.com, 22.1% for
www.twitter.com, and 42.5% for www.yahoo.com. Notice that the JavaScript bench-
marks that Richards et al. extract from an webpage depend on the browser used to
visit that webpage. Thus, Table 4.7 shows, alongside each benchmark, the browser
used to produce it. As expected, Table 4.7 shows that dead-code elimination is essen-
tial for code size reduction. Nevertheless, even without it, parameter specialization is
still able to reduce the size of native binaries. Reduction, in this case, is due to the
elimination of loads and stores necessary to map variables to memory, and the folding
of type guards.

4.2.3 Compilation Overhead

Table 4.8 shows the impact of our optimizations in IonMonkey’s compilation time,
i.e., the time that this engine spends analyzing, optimizing and generating code. Sur-
prisingly, many of our configurations improve IonMonkey’s compilation time. As we

4.2. Evaluation 49

Figure 4.2: Size of generated code (log scale), in number of x86 assembly instructions
per function, for V8 version 6. Each point in the X axis is a function in our test suite.
Functions are ordered by the size of the code that IonMonkey produces without our
optimizations.

have seen in Figures 4.1, 4.2 and 4.3, our optimizations decrease function sizes; thus,
reducing the amount of work performed by the other phases of IonMonkey. Our key
optimization, parameter specialization, has no overhead by construction. Instead of
generating instructions that manipulate memory locations, we do it for constants. Ad-
ditionally, this optimization improves the time of the register allocator, given that it
reduces register pressure substantially.

4.2.4 Recompilations

A function will be recompiled by the JIT engine if an assumption made by the compiler
stops being true or more information about the program becomes available. Recom-
pilations are expensive, because they stop the execution of a function to generate a
new version of it. In IonMonkey’s specific case, recompilations happen, for instance, to
update type information or to perform function inlining. Since the value of arguments
does not change until at least the function is invoked again, we perform our parameter
based specialization even if a function is recompiled. Our approach may increase the
number of recompilations of a function, because, in our case, each function will have

50 Chapter 4. Experiments

Figure 4.3: Size of generated code (log scale), in number of x86 assembly instructions
per function, for Kraken 1.1. Each point in the X axis is a function in our test suite.
Functions are ordered by the size of the code that IonMonkey produces without our
optimizations.

ParameterSpec • • • • • • • • •
ConstantPropg • • • • • • •
LoopInversion • • •
DeadCodeElim • • • •
BoundCheckElim • • •

– (a) Compilation overhead (% arithmetic mean) –
Sunspider 1.0 -7.2 3.6 -4.3 -6.5 -7.3 -4.0 -3.8 -4.5 -3.6 -3.9
V8 version 6 1.5 2.1 4.0 2.6 1.7 3.6 4.3 3.4 3.8 3.4
Kraken 1.1 -3.0 3.0 -0.9 -2.4 -0.7 16.2 -0.5 1.6 16.5 1.4

– (b) Compilation overhead (% geometric mean) –
Sunspider 1.0 -8.7 3.6 -5.8 -8.0 -8.7 -5.5 -5.4 -6.0 -5.1 -5.4
V8 version v6 1.4 2.1 3.9 2.4 1.6 3.5 4.2 3.2 3.7 3.2
Kraken 1.1 -5.1 3.0 -2.9 -4.4 -2.9 5.2 -2.5 -0.5 5.6 -0.5

Table 4.8: Compilation overhead of different setups of our specialization engine. Num-
bers include our extra recompilations. (a) Speedup relative to the baseline implemen-
tation (% arithmetic mean). (b) Speedup relative to the baseline implementation (%
geometric mean). The baseline implementation, in all cases, does not do any value
specialization.

4.2. Evaluation 51

ParameterSpec • • • • • • • • •
ConstantPropg • • • • • • •
LoopInversion • • •
DeadCodeElim • • • •
BoundCheckElim • • •

facebook-chrome 4.9 0 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9
google-firefox 5.0 0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
twitter-webkit 23.1 0 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1
yahoo-firefox 10.0 0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
sunspider-1.0 3.1 0 3.6 3.1 1.3 3.1 3.6 1.8 3.1 1.3
v8-v6 6.3 0 5.8 6.1 5.4 6.1 6.3 5.4 6.1 5.1
kraken-1.1 3.4 0 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4

Table 4.9: Percentage of additional recompilations

to be recompiled whenever its is called for a second time with different arguments.
We have analyzed how often code is recompiled in our three benchmark suites

with and without our run-time value specialization. For SunSpider, the number of
compilations of the same function grows by 3.1% when using parameter specialization.
This number is 6.3% for V8 and 3.4% for Kraken. Notice that these numbers consider
the application of parameter specialization alone. The impact of the other combinations
of optimizations can be seen in Table 4.9. These numbers vary, depending on which
suite of optimizations we use, because they produce different code layouts, and the
number of guarded operations in these different programs is not necessarily the same.
Nevertheless, our approach tends to increase the number of recompilations by a small
factor. Therefore, despite the highly speculative nature of this approach, its drawback,
at least in our benchmarks, is not so big as one could at first expect.

4.2.5 Partial Specialization

A second invocation of a function may change some of these function’s parameters,
but not all of them. Based on this observation, we have implemented a partial imple-
mentation policy, which tries to specialize a function one, and only one, time more.
Our run-time environment, upon first seeing a call f(a0, b0, c0), generates a specialized
version of f to the tuple (a0, b0, c0). Lets call this version fabc. If we observe a second
call of f , this time with the parameter set f(a0, b0, c1), we discard the original special-
ized function, but, instead of falling back to IonMonkey’s traditional code generation,
we generate a function that is tailored to the tuple (a0, b0). Lets call this function fab.
Further calls of f will use fab, as long as the first two arguments remain the same. This

52 Chapter 4. Experiments

Benchmark Comp Spec Partially Deop

facebook-chrome 36 7 0 3
google-firefox 50 12 2 4
twitter-webkit 8 5 1 3
yahoo-firefox 3 1 1 1
SunSpider-1.0 124 56 20 30
V8 version 6 201 41 8 24
Kraken 1.1 74 38 6 21

Table 4.10: (Comp) Number of functions that have been compiled for each benchmark,
(Spec) Number of functions that our heuristics decided to specialize, (Partially) Num-
ber of functions recompiled with partial specialization, (Deop) Number of deoptimized
functions.

leaves the third argument free to change between calls, as it has been compiled gener-
ically. Thus, a call to f(a0, b0, c2) will still use fab, even if c1 6= c2. On the other hand,
if we observe a call such as f(a0, b1, c1), where b0 6= b1, then we discard the customized
code of f , and stop specialization. Table 4.10 shows the proportion of functions that
we can specialize partially. Unfortunately, this heuristics did not produce results bet-
ter than our first implementation, which only specializes once. The speedups that we
produce for SunSpider, V8 and Kraken, using only parameter specialization are 1.63%,
2.33% and 1.72% respectively. Thus, in this case, we have observed gains only in
Kraken, compared to the results seen in Table 4.1. If we use parameter specialization
plus constant propagation, then our speedups are 2.73%, 1.5%, and 1.18%. In this
case, we have observed gains in Sunspider and Kraken, at the expenses of a substantial
loss in V8.

4.2.6 Specialization policy

We cache the arguments of each specialized function. In this way, if a function is
called in sequence with the same arguments, then we reuse the specialized code. We
distinguish successfully specialized and deoptimized functions. The former category rep-
resents the functions that are always called, throughout the entire program execution,
with the same arguments. In this case, we have a win-win condition: we have pro-
duced more efficient code, and did not have to discard it later. If a function is called
again with different arguments, then we discard its specialized code, and recompile it,
this time producing generic code for it. Table 4.10 shows the proportion of functions
that have been deoptimized because they were called with a different set of arguments.

4.3. Discussion 53

On average, we specialize about 30-50% of the functions that IonMonkey compiles.
This is the proportion of functions compiled due to long execution, instead of due to a
large number of invocations. About 50-60% of these functions had to be deoptimized
because they were called a second time with different parameters. Notice that these
numbers are on par with the proportion of functions that are called with the same
parameters, as pointed by Figure 3.3. We could partially specialize about 30-70% of
these functions, given that only part of their arguments have changed.

4.3 Discussion

In this chapter we have discussed an empirical evaluation of our idea: Parameter-based
Speculative Value Specialization. Considering the run-time impact of our approach,
we have been able to speedup our benchmarks for all combinations of the different op-
timizations that we have tested. The highest speedup was achieved in V8 (4.83%) and
the lower in Kraken (0.5%). As expected, the code specialization reduced the size of
generated code for all benchmarks, including those produced by Richards et al. (2011)’s
tool built from real web pages, like Facebook and Google. The compilation overhead
was negative in many cases, a fact that we explain due to the reduction in code size
that comes out of our optimizations. However, as this optimization is speculative, mis-
predictions may occur. Every misprediction causes a function recompilation. Although
the number of recompilations can be small (6.1% in V8) for traditional benchmarks,
in real web pages it can achieve 23.1% (twitter-webkit). The parameter specialization,
by construction, has zero overhead. However, the cache mechanism used to reuse the
specialized function force us to check all the arguments of a given function, every time
this function is called. This run-time ckecks can represent an overhead that severely
impacts the run time of a program. This case happens whenever a function calls a
specialized function inside a loop, an event that often takes place in the Kraken bench-
marks. Therefore, in spite of the exciting results seen in the Section 3.1, there exist
still room for improvements in our implementation.

Chapter 5

Final Remarks

5.1 Future Work

While conducting the research summarized in this dissertation, we have identified sev-
eral opportunities that can be explored in future work. One of them is to re-implement
other classic compiler optimizations such as loop-unrolling and overflow-check elimi-
nation in the context of parameter-based value specialization. Another opportunity
is to experiment our approach with different heuristics of compilation and cache. For
instance, we specialize all functions that IonMonkey compiles. However, some bene-
fit analysis could select only functions that will improve run time performance. We
also cache only one binary per function. Thus, we can specialize only one different
parameter set for the same function. We believe that this approach is the best trade-
off, given the behavior of the JavaScript programs that we have found; however, more
experiments are necessary to confirm this hypothesis.

5.2 Conclusion

The goal of this dissertation was to show that Speculative Value Specialization can im-
prove JavaScript performance without the help of a profiler component, whose overhead
could be prohibitive in certain environments. This work has described such specula-
tive approach as well as a suite of value-based compiler optimizations that we have
used to improve the execution time of an industrial-strength just-in-time JavaScript
compiler. We believe that this work has pushed substantially further the notion of JIT
speculation, as we produce highly-specialized binaries given the input values passed to
a function. Our approach is most profitable when applied on functions that are called

55

56 Chapter 5. Final Remarks

always with the same parameters. We have demonstrated that these calls are very
frequent, be it in well-known benchmarks, be it in actual web pages. We hope that the
code optimization approach that we advocate in this work will open new directions to
compiler research.

Software: our code, plus all the data that we have used in this work is available
at our repository: http://code.google.com/p/jit-value-specialization.

http://code.google.com/p/jit-value-specialization

Bibliography

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley.

Alexa Internet Inc (2010). Alexa top 500 global sites. http://www.alexa.com/

topsites. Last access: november, 2012.

Almási, G. and Padua, D. (2002). Majic: compiling matlab for speed and respon-
siveness. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, PLDI ’02, pages 294--303, New York, NY, USA.
ACM.

Alpern, B., Wegman, M. N., and Zadeck, F. K. (1988). Detecting equality of variables
in programs. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’88, pages 1--11, New York, NY, USA.
ACM.

Alves, P. R. O., de Assis Costa, I. R., Pereira, F. M. Q., and Figueiredo, E. L. (2012).
Parameter based constant propagation. In Simposio Brasileiro de Linguagens de
Programacao. Sociedade Brasileira de Computacao.

Anderson, C., Giannini, P., and Drossopoulou, S. (2005). Towards type inference
for javascript. In Proceedings of the 19th European Conference on Object-Oriented
Programming, ECOOP’05, pages 428--452, Berlin, Heidelberg. Springer-Verlag.

Apple Inc. (2012a). Sunspider javascript benchmark. http://www.webkit.org/perf/
sunspider/sunspider.html. Last access: november, 2012.

Apple Inc. (2012b). The webkit open source project. https://www.webkit.org/. Last
access: november, 2012.

Auslander, J., Philipose, M., Chambers, C., Eggers, S. J., and Bershad, B. N. (1996).
Fast, effective dynamic compilation. In Proceedings of the ACM SIGPLAN 1996

57

http://www.alexa.com/topsites
http://www.alexa.com/topsites
http://www.webkit.org/perf/sunspider/sunspider.html
http://www.webkit.org/perf/sunspider/sunspider.html
https://www.webkit.org/

58 Bibliography

Conference on Programming language design and implementation, PLDI ’96, pages
149--159, New York, NY, USA. ACM.

Aycock, J. (2003). A brief history of just-in-time. ACM Comput. Surv., 35(2):97--113.

Bala, V., Duesterwald, E., and Banerjia, S. (1999). Transparent dynamic optimization:
The design and implementation of dynamo. Technical report, Technical Report HPL-
1999-78, Hewlett-Packard Laboratories.

Bala, V., Duesterwald, E., and Banerjia, S. (2000). Dynamo: a transparent dynamic
optimization system. In Proceedings of the ACM SIGPLAN 2000 Conference on
Programming language design and implementation, PLDI ’00, pages 1--12, New York,
NY, USA. ACM.

Bebenita, M., Brandner, F., Fahndrich, M., Logozzo, F., Schulte, W., Tillmann, N., and
Venter, H. (2010a). SPUR: a trace-based JIT compiler for CIL. In Proceedings of the
ACM International Conference on Object oriented programming systems languages
and applications, OOPSLA ’10, pages 708--725, New York, NY, USA. ACM.

Bebenita, M., Chang, M., Wagner, G., Gal, A., Wimmer, C., and Franz, M. (2010b).
Trace-based compilation in execution environments without interpreters. In Proceed-
ings of the 8th International Conference on the Principles and Practice of Program-
ming in Java, PPPJ ’10, pages 59--68, New York, NY, USA. ACM.

Bodík, R., Gupta, R., and Sarkar, V. (2000). Abcd: eliminating array bounds checks
on demand. In Proceedings of the ACM SIGPLAN 2000 Conference on Programming
language design and implementation, PLDI ’00, pages 321--333, New York, NY, USA.
ACM.

Bolz, C. F., Cuni, A., Fijalkowski, M., and Rigo, A. (2009). Tracing the meta-level:
Pypy’s tracing jit compiler. In Proceedings of the 4th workshop on the Implemen-
tation, Compilation, Optimization of Object-Oriented Languages and Programming
Systems, ICOOOLPS ’09, pages 18--25, New York, NY, USA. ACM.

Bolz, C. F., Leuschel, M., and Rigo, A. (2010). Towards just-in-time partial evalua-
tion of prolog. In Proceedings of the 19th International Conference on Logic-Based
Program Synthesis and Transformation, LOPSTR’09, pages 158--172, Berlin, Hei-
delberg. Springer-Verlag.

Calder, B., Feller, P., and Eustace, A. (1997). Value profiling. In Proceedings of the
30th annual ACM/IEEE international symposium on Microarchitecture, MICRO 30,
pages 259--269, Washington, DC, USA. IEEE Computer Society.

Bibliography 59

Calder, B., Feller, P., Eustace, A., et al. (1999). Value profiling and optimization.
Journal of Instruction Level Parallelism, 1(1):1--6.

Canal, R., González, A., and Smith, J. E. (2004). Software-controlled operand-gating.
In Proceedings of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization, CGO ’04, pages 125--, Washington, DC,
USA. IEEE Computer Society.

Chambers, C. and Ungar, D. (1989). Customization: optimizing compiler technology
for self, a dynamically-typed object-oriented programming language. In Proceed-
ings of the ACM SIGPLAN 1989 Conference on Programming language design and
implementation, PLDI ’89, pages 146--160, New York, NY, USA. ACM.

Chang, M., Mathiske, B., Smith, E., Chaudhuri, A., Gal, A., Bebenita, M., Wimmer,
C., and Franz, M. (2011). The impact of optional type information on JIT com-
pilation of dynamically typed languages. In Proceedings of the 7th symposium on
Dynamic languages, DLS ’11, pages 13--24, New York, NY, USA. ACM.

Chang, M., Smith, E., Reitmaier, R., Bebenita, M., Gal, A., Wimmer, C., Eich, B.,
and Franz, M. (2009). Tracing for web 3.0: trace compilation for the next generation
web applications. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS International
Conference on Virtual execution environments, VEE ’09, pages 71--80, New York,
NY, USA. ACM.

Cheng, B. and Buzbee, B. (2010). A jit compiler for android’s dalvik vm. In Google
I/O Developer Conference.

Chevalier-Boisvert, M., Hendren, L. J., and Verbrugge, C. (2010). Optimizing Mat-
lab through Just-In-Time Specialization. In Proceedings of the 19th International
Conference on Compiler Construction, pages 46--65.

Consel, C. and Noël, F. (1996). A general approach for run-time specialization and its
application to c. In Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’96, pages 145--156, New York, NY,
USA. ACM.

Costa, I., Alves, P., Santos, H. N., and Pereira, F. M. Q. (2013). Just-in-time value
specialization. In Proceedings of the 11th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization, CGO ’13, Washington, DC, USA. IEEE
Computer Society.

60 Bibliography

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1991). Ef-
ficiently computing static single assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst., 13(4):451--490.

Deutsch, L. P. and Schiffman, A. M. (1984). Efficient implementation of the smalltalk-
80 system. In Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Prin-
ciples of programming languages, POPL ’84, pages 297--302, New York, NY, USA.
ACM.

Duesterwald, E. (2005). Design and engineering of a dynamic binary optimizer. Pro-
ceedings of the IEEE, 93(2):436–448.

Eich, B. (2011). New javascript engine module owner. https://brendaneich.com/

2011/06/new-javascript-engine-module-owner/. Last access: november, 2012.

Engler, D. R. and Proebsting, T. A. (1994). Dcg: an efficient, retargetable dynamic
code generation system. In Proceedings of the Sixth International Conference on
Architectural support for programming languages and operating systems, ASPLOS-
VI, pages 263--272, New York, NY, USA. ACM.

Gabbay, F. and Mendelson, A. (1996). Speculative execution based on value prediction.
Technion-IIT, Department of Electrical Engineering.

Gal, A., Eich, B., Shaver, M., Anderson, D., Mandelin, D., Haghighat, M. R., Kaplan,
B., Hoare, G., Zbarsky, B., Orendorff, J., Ruderman, J., Smith, E. W., Reitmaier,
R., Bebenita, M., Chang, M., and Franz, M. (2009). Trace-based just-in-time type
specialization for dynamic languages. In Proceedings of the 2009 ACM SIGPLAN
Conference on Programming language design and implementation, PLDI ’09, pages
465--478, New York, NY, USA. ACM.

Gal, A., Probst, C. W., and Franz, M. (2006). Hotpathvm: an effective JIT compiler
for resource-constrained devices. In Proceedings of the 2nd International Conference
on Virtual execution environments, VEE ’06, pages 144--153, New York, NY, USA.
ACM.

Garen, G. (2008). Surfin’ safari: Announcing squirrelfish. https://www.webkit.org/
blog/189/announcing-squirrelfish/. Last access: november, 2012.

Godwin-Jones, R. (2010). Emerging technologies: New developments in WEB browsing
and authoring. Language Learning and Technology, 14:9--15.

https://brendaneich.com/2011/06/new-javascript-engine-module-owner/
https://brendaneich.com/2011/06/new-javascript-engine-module-owner/
https://www.webkit.org/blog/189/announcing-squirrelfish/
https://www.webkit.org/blog/189/announcing-squirrelfish/

Bibliography 61

Google Inc. (2012). V8 benchmark suite - version 6. http://v8.googlecode.com/

svn/data/benchmarks/v6/run.html. Last access: november, 2012.

Grant, B., Mock, M., Philipose, M., Chambers, C., and Eggers, S. J. (2000). Dyc:
an expressive annotation-directed dynamic compiler for c. Theor. Comput. Sci.,
248(1-2):147--199.

Grant, B., Philipose, M., Mock, M., Chambers, C., and Eggers, S. J. (1999). An
evaluation of staged run-time optimizations in dyc. In Proceedings of the ACM
SIGPLAN 1999 Conference on Programming language design and implementation,
PLDI ’99, pages 293--304, New York, NY, USA. ACM.

Guo, S.-y. and Palsberg, J. (2011). The essence of compiling with traces. In Pro-
ceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’11, pages 563--574, New York, NY, USA. ACM.

Ha, J., Haghighat, M., Cong, S., and McKinley, K. (2009). A concurrent trace-based
just-in-time compiler for single-threaded javascript. PESPMA 2009, page 47.

Hackett, B. and Guo, S.-y. (2012). Fast and precise hybrid type inference for javascript.
In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, pages 239--250, New York, NY, USA. ACM.

Hölzle, U., Chambers, C., and Ungar, D. (1991). Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In Proceedings of the European
Conference on Object-Oriented Programming, ECOOP ’91, pages 21--38, London,
UK, UK. Springer-Verlag.

Inoue, H., Hayashizaki, H., Wu, P., and Nakatani, T. (2011). A trace-based java JIT
compiler retrofitted from a method-based compiler. In Proceedings of the 9th Annual
IEEE/ACM International Symposium on Code Generation and Optimization, CGO
’11, pages 246--256, Washington, DC, USA. IEEE Computer Society.

Ishizaki, K., Kawahito, M., Yasue, T., Takeuchi, M., Ogasawara, T., Suganuma, T.,
Onodera, T., Komatsu, H., and Nakatani, T. (1999). Design, implementation, and
evaluation of optimizations in a just-in-time compiler. In Proceedings of the ACM
1999 Conference on Java Grande, JAVA ’99, pages 119--128, New York, NY, USA.
ACM.

Jensen, S. H., Møller, A., and Thiemann, P. (2009). Type analysis for javascript. In
Proceedings of the 16th International Symposium on Static Analysis, SAS ’09, pages
238--255, Berlin, Heidelberg. Springer-Verlag.

http://v8.googlecode.com/svn/data/benchmarks/v6/run.html
http://v8.googlecode.com/svn/data/benchmarks/v6/run.html

62 Bibliography

Jones, N. D., Gomard, C. K., and Sestoft, P. (1993). Partial evaluation and automatic
program generation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

jQuery Foundation (2012). jquery: The write less, do more, javascript library. http:
//jquery.com/. Last access: november, 2012.

Keppel, D., Eggers, S., and Henry, R. (1991). A case for runtime code generation.
Department of Computer Science and Engineering, University of Washington.

Keppel, D., Eggers, S. J., and Henry, R. R. (1993). Evaluating runtime-compiled
value-specific optimizations. Technical report, University of Washington.

Logozzo, F. and Fähndrich, M. (2008). Pentagons: a weakly relational abstract do-
main for the efficient validation of array accesses. In Proceedings of the 2008 ACM
symposium on Applied computing, SAC ’08, pages 184--188, New York, NY, USA.
ACM.

McCarthy, J. (1960). Recursive functions of symbolic expressions and their computa-
tion by machine, part i. Commun. ACM, 3(4):184--195.

Mehrara, M. and Mahlke, S. (2011). Dynamically accelerating client-side web appli-
cations through decoupled execution. In Proceedings of the 9th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO ’11, pages
74--84, Washington, DC, USA. IEEE Computer Society.

Meijer, E. and Drayton, P. (2005). Static Typing Where Possible, Dynamic Typing
When Needed. Workshop on Revival of Dynamic Languages.

Microsoft Corp. (2009). Msdn: Jscript (ecmascript3). http://msdn.microsoft.com/
en-us/library/hbxc2t98%28v=vs.85%29.aspx. Last access: november, 2012.

Mozilla Foundation (2012a). Javascript: Tracemonkey. https://wiki.mozilla.org/
JavaScript:TraceMonkey. Last access: november, 2012.

Mozilla Foundation (2012b). Kraken javascript benchmark. http:

//krakenbenchmark.mozilla.org. Last access: november, 2012.

Mozilla Foundation (2012c). Mozilla developer network: Rhino. https://developer.
mozilla.org/en-US/docs/Rhino. Last access: november, 2012.

Mozilla Foundation (2012d). Mozilla developer network: Spidermonkey. https://

developer.mozilla.org/en/docs/SpiderMonkey. Last access: november, 2012.

http://jquery.com/
http://jquery.com/
http://msdn.microsoft.com/en-us/library/hbxc2t98%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/hbxc2t98%28v=vs.85%29.aspx
https://wiki.mozilla.org/JavaScript:TraceMonkey
https://wiki.mozilla.org/JavaScript:TraceMonkey
http://krakenbenchmark.mozilla.org
http://krakenbenchmark.mozilla.org
https://developer.mozilla.org/en-US/docs/Rhino
https://developer.mozilla.org/en-US/docs/Rhino
https://developer.mozilla.org/en/docs/SpiderMonkey
https://developer.mozilla.org/en/docs/SpiderMonkey

Bibliography 63

Mozilla Foundation (2012e). Mozilla wiki: Ionmonkey. https://wiki.mozilla.org/
IonMonkey. Last access: november, 2012.

Mozilla Foundation (2012f). Mozilla wiki: Jaegermonkey. https://wiki.mozilla.

org/JaegerMonkey. Last access: november, 2012.

Muth, R., Watterson, S. A., and Debray, S. K. (2000). Code specialization based on
value profiles. In Proceedings of the 7th International Symposium on Static Analysis,
SAS ’00, pages 340--359, London, UK, UK. Springer-Verlag.

Nethercote, N. (2012). Spidermonkey is on a diet. http://blog.mozilla.org/

nnethercote/2011/11/01/spidermonkey-is-on-a-diet/. Last access: november,
2012.

Niyogi, S. (2010). Ieblog: The new javascript engine in inter-
net explorer 9. http://blogs.msdn.com/b/ie/archive/2010/03/18/

the-new-javascript-engine-in-internet-explorer-9.aspx. Last access:
november, 2012.

Noel, F., Hornof, L., Consel, C., and Lawall, J. L. (1998). Automatic, template-based
run-time specialization: Implementation and experimental study. In Proceedings of
the 1998 International Conference on Computer Languages, ICCL ’98, pages 132--,
Washington, DC, USA. IEEE Computer Society.

Ousterhout, J. K. (1998). Scripting: Higher-level programming for the 21st century.
Computer, 31(3):23--30.

Richards, G., Gal, A., Eich, B., and Vitek, J. (2011). Automated construction of
javascript benchmarks. In Proceedings of the 2011 ACM International Conference
on Object oriented programming systems languages and applications, OOPSLA ’11,
pages 677--694, New York, NY, USA. ACM.

Richards, G., Lebresne, S., Burg, B., and Vitek, J. (2010). An analysis of the dynamic
behavior of javascript programs. In Proceedings of the 2010 ACM SIGPLAN Confer-
ence on Programming language design and implementation, PLDI ’10, pages 1--12,
New York, NY, USA. ACM.

Rigo, A. (2004). Representation-based just-in-time specialization and the psyco proto-
type for python. In Proceedings of the 2004 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation, PEPM ’04, pages 15--26, New
York, NY, USA. ACM.

https://wiki.mozilla.org/IonMonkey
https://wiki.mozilla.org/IonMonkey
https://wiki.mozilla.org/JaegerMonkey
https://wiki.mozilla.org/JaegerMonkey
http://blog.mozilla.org/nnethercote/2011/11/01/spidermonkey-is-on-a-diet/
http://blog.mozilla.org/nnethercote/2011/11/01/spidermonkey-is-on-a-diet/
http://blogs.msdn.com/b/ie/archive/2010/03/18/the-new-javascript-engine-in-internet-explorer-9.aspx
http://blogs.msdn.com/b/ie/archive/2010/03/18/the-new-javascript-engine-in-internet-explorer-9.aspx

64 Bibliography

Samadi, M., Hormati, A., Mehrara, M., Lee, J., and Mahlke, S. (2012). Adaptive
input-aware compilation for graphics engines. In PLDI, pages 13--22. ACM.

Shankar, A., Sastry, S. S., Bodík, R., and Smith, J. E. (2005). Runtime specialization
with optimistic heap analysis. In Proceedings of the 20th annual ACM SIGPLAN
Conference on Object-oriented programming, systems, languages, and applications,
OOPSLA ’05, pages 327--343, New York, NY, USA. ACM.

Sol, R., Guillon, C., Pereira, F. M. Q. a., and Bigonha, M. A. S. (2011). Dynamic elim-
ination of overflow tests in a trace compiler. In Proceedings of the 20th International
Conference on Compiler construction: part of the joint European conferences on
theory and practice of software, CC’11/ETAPS’11, pages 2--21, Berlin, Heidelberg.
Springer-Verlag.

Suganuma, T., Yasue, T., Kawahito, M., Komatsu, H., and Nakatani, T. (2005). Design
and evaluation of dynamic optimizations for a java just-in-time compiler. ACM
Trans. Program. Lang. Syst., 27(4):732--785.

Thiemann, P. (2005). Towards a type system for analyzing javascript programs. In Pro-
ceedings of the 14th European Conference on Programming Languages and Systems,
ESOP’05, pages 408--422, Berlin, Heidelberg. Springer-Verlag.

Tian, K., Jiang, Y., Zhang, E. Z., and Shen, X. (2010). An input-centric paradigm for
program dynamic optimizations. In OOPSLA, pages 125--139. ACM.

Tian, K., Zhang, E., and Shen, X. (2011). A step towards transparent integration of
input-consciousness into dynamic program optimizations. In OOPSLA, pages 445--
462. ACM.

Wegman, M. N. and Zadeck, F. K. (1991). Constant propagation with conditional
branches. ACM Trans. Program. Lang. Syst., 13(2):181--210.

Yermolovich, A., Wimmer, C., and Franz, M. (2009). Optimization of dynamic lan-
guages using hierarchical layering of virtual machines. In Proceedings of the 5th
symposium on Dynamic languages, DLS ’09, pages 79--88, New York, NY, USA.
ACM.

Zaleski, M., Brown, A. D., and Stoodley, K. (2007). Yeti: a gradually extensible trace
interpreter. In Proceedings of the 3rd International Conference on Virtual execution
environments, VEE ’07, pages 83--93, New York, NY, USA. ACM.

Bibliography 65

Zhang, W., Calder, B., and Tullsen, D. M. (2005). An event-driven multithreaded
dynamic optimization framework. In Proceedings of the 14th International Confer-
ence on Parallel Architectures and Compilation Techniques, PACT ’05, pages 87--98,
Washington, DC, USA. IEEE Computer Society.

Zhang, W., Checkoway, S., Calder, B., and Tullsen, D. (2007). Dynamic code value
specialization using the trace cache fill unit. In Computer Design, 2006. ICCD 2006.
International Conference on, pages 10--16. IEEE.

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Contributions
	1.3 Results
	1.4 Outline

	2 Related Work
	2.1 JavaScript
	2.2 Just-in-time compilation
	2.2.1 Trace-based Just-in-Time Compilation
	2.2.2 Method-based Just-in-Time Compilation

	2.3 Code Specialization and Partial Evaluation
	2.3.1 Control-flow Specialization
	2.3.2 Data Specialization
	2.3.3 Type Specialization
	2.3.4 Value Range Specialization
	2.3.5 Value Specialization
	2.3.6 Input-centric compilation

	2.4 Discussion

	3 Parameter-based Value Specialization
	3.1 Motivation
	3.1.1 Methodology
	3.1.2 Function call behavior
	3.1.3 The types of the parameters

	3.2 Parameter Based Speculative Value Specialization
	3.2.1 The Anatomy of a MIR program
	3.2.2 Parameter Specialization

	3.3 Revisiting Classic Optimizations
	3.3.1 Constant Propagation
	3.3.2 Loop Inversion
	3.3.3 Dead-Code Elimination
	3.3.4 Array Bounds Check Elimination
	3.3.5 Function Inlining
	3.3.6 Other Optimizations

	3.4 Discussion

	4 Experiments
	4.1 Benchmarks
	4.2 Evaluation
	4.2.1 Run time impact
	4.2.2 Size of Generated Code
	4.2.3 Compilation Overhead
	4.2.4 Recompilations
	4.2.5 Partial Specialization
	4.2.6 Specialization policy

	4.3 Discussion

	5 Final Remarks
	5.1 Future Work
	5.2 Conclusion

	Bibliography

