
DIVERGÊNCIA EM GPU: ANÁLISES E

ALOCAÇÃO DE REGISTRADORES

DIOGO N. SAMPAIO

DIVERGÊNCIA EM GPU: ANÁLISES E

ALOCAÇÃO DE REGISTRADORES

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Fernando Magno Quintão Pereira

Belo Horizonte

Março de 2013

DIOGO N. SAMPAIO

GPU DIVERGENCE: ANALYSIS AND REGISTER

ALLOCATTION

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Fernando Magno Quintão Pereira

Belo Horizonte

March 2013

© 2013, Diogo N. Sampaio.
Todos os direitos reservados.

Sampaio, Diogo N.
S192d GPU divergence: analysis and register allocattion /

Diogo N. Sampaio. — Belo Horizonte, 2013
xviii, 73 f. : il. ; 29cm

Dissertação (mestrado) — Federal University of
Minas Gerais

Orientador: Fernando Magno Quintão Pereira

1. Compilers. 2. GPGPU. 3. Static Analysis.
4. Divergence. 5. Register Allocation.
6. Rematerialization. I. Título.

CDU 519.6*33 (043)

Resumo

Uma nova tendência no mercado de computadores é usar unidades de processamento
gráfico (GPUs) 1 para acelerar tarefas paralelas por dados. Esse crescente interesse re-
novou a atenção dada ao modelo de execução Single Instruction Multiple Data (SIMD).
Máquinas SIMD fornecem uma tremenda capacidade computacional aos desenvolve-
dores, mas programá-las de forma eficiente ainda é um desafio, particularmente devido
a perdas de performance causadas por divergências de memória e de fluxo. Esses fenô-
menos são consequências de dados divergentes. Dados divergentes são variáveis com
mesmo nome mas valores diferentes entre as unidades de processamento. A fim de li-
dar com os fenômenos de divergências, esta dissertação introduz uma nova ferramenta
de análise de código, a qual chamamos Análise de Divergência com Restrições Afins.
Desenvolvedores de programas e compiladores podem servir-se das informações de di-
vergência com dois propósitos diferentes. Primeiro, podem melhorar a qualidade de
programas gerados para máquinas que possuem instruções vetoriais, mesmo que essas
sejam incapazes de lidar com divergências de fluxo. Segundo, podem otimizar progra-
mas criados para placas gráficas. Para exemplificar esse último, apresentamos uma
otimização para alocadores de registradores que, usando das informações geradas pelas
análises de divergências, melhora a utilização da hierarquia de memória das placas grá-
ficas. Testados sobre conhecidos benchmarks, os alocadores de registradores otimizados
produzem código que é, em média, 29.70% mais rápido do que o código gerado por
alocadores de registradores convencionais.

Palavras-chave: Linguagem de Programação, Compiladores, GPGPU, Analise Es-
tática, Divergências, Alocação de Registradores, Rematerialização, SIMT, SIMD.

1Do inglês Graphics Processing Units

ix

Abstract

The use of graphics processing units (GPUs) for accelerating Data Parallel workloads is
the new trend on the computing market. This growing interest brought renewed atten-
tion to the Single Instruction Multiple Data (SIMD) execution model. SIMD machines
give application developers tremendous computational power; however, programming
them is stil challenging. In particular, developers must deal with memory and control
flow divergences. These phenomena stem from a condition that we call data divergence,
which occurs whenever processing elements (PEs) that run in lockstep see the same
variable name holding different values. To deal with divergences this work introduces
a new code analysis, called Divergence Analysis with Affine Constraints. Application
developers and compilers can benefit from the information generated by this analysis
with two different objectives. First, to improve code generate to machines that have
vector instructions but cannot handle control divergence. Second, to optimize GPU
code. To illustrate the last one, we present register allocators that relly on diver-
gence information to better use GPU memory hierarchy. These optimized allocators
produced GPU code that is 29.70% faster than the code produced by a conventional
allocator when tested on a suite of well-known benchmarks.

Keywords: Programming Languages, Compilers, GPGPU, Static Analysis, Diver-
gence, Register Allocation, Rematerialization, SIMT, SIMD.

xi

List of Figures

1.1 Google Trends chart: CUDA and OpenCL popularity over time 6
1.2 GPU and CPU performance over time . 7
1.3 GPU and CPU performance on FEKO . 8
1.4 GPU and CPU design comparison . 8

2.1 Two kernels written in C for CUDA . 15
2.2 Divergence analyses comparison . 20

3.1 Variables dependency . 23
3.2 Simple divergence analysis propagation . 23
3.3 Affine analysis propagation . 25
3.4 Execution trace of a µ-Simd program . 31
3.5 Program in GSA form . 32
3.6 Constraint system used to solve the simple divergence analysis 34
3.7 Dependence graph created for the example program 35
3.8 Constraint system used to solve the divergence analysis with affine con-

straints of degree one . 38
3.9 Variables classified by the divergence analysis with affine constraints 39
3.10 Higher degree polynomial improves the analysis precision 41

4.1 The register allocation problem for the kernel avgSquare in Figure 2.1 . . 46
4.2 Traditional register allocation, with spilled values placed in local memory . 47
4.3 Using faster memory for spills . 48
4.4 Register allocation with variable sharing. 49

5.1 Divergence analyses execution time comparison chart 53
5.2 Affine analysis linear time growth . 54
5.3 Variables distribution defined by affine analysis 55
5.4 Variables affine classification per kernel . 56

xiii

5.5 Chart comparing number of divergent variables reported 57
5.6 Kernels speedup per register allocator . 59
5.7 Spill code distribution based on spilled variables abstract state 60
5.8 Spill code affine state distribution per kernel 61

xiv

List of Tables

3.1 The syntax of µ-Simd instructions . 27
3.2 Elements that constitute the state of a µ-Simd program 27
3.3 The auxiliary functions used in the definition of µ-Simd 28
3.4 The semantics of µ-Simd: control flow operations 29
3.5 The operational semantics of µ-Simd: data and arithmetic operations . . . 30
3.6 Operation semantics in the affine analysis 37

xv

Contents

Resumo ix

Abstract xi

List of Figures xiii

List of Tables xv

1 Introduction 5
1.1 How important GPUs are becoming . 5
1.2 Divergence . 7
1.3 The problem of divergence . 9
1.4 Our contribution . 9

2 Related work 13
2.1 Divergence . 13
2.2 Divergence Optimizations . 16

2.2.1 Optimizing divergent control flow 16
2.2.2 Optimizing memory accesses . 17
2.2.3 Reducing redundant work . 18

2.3 Divergence Analyses . 18
2.3.1 Chapter conclusion . 19

3 Divergence Analyses 21
3.1 Overview . 21
3.2 The Core Language . 26
3.3 Gated Static Single Assignment Form 31
3.4 The Simple Divergence Analysis . 33
3.5 Divergence Analysis with Affine Constraints 36

xvii

3.6 Chapter conclusion . 41

4 Divergence Aware Register Allocation 43
4.1 GPU memory hierarchy . 44
4.2 Adapting a Traditional Register Allocator to be Divergence Aware . . . 47

4.2.1 Handling multiple warps . 49
4.3 Chapter conclusion . 50

5 Experiments 51
5.1 Tests . 51

5.1.1 Hardware . 51
5.2 Benchmarks . 51
5.3 Results . 52
5.4 Chapter conclusion . 62

6 Conclusion 63
6.1 Limitations . 64
6.2 Future work . 65
6.3 Final thoughts . 66

Bibliography 67

xviii

CONTENTS 1

Glossary
GPU Graphics Processing Unit: Is a hardware accelerator. The first

GPUs were built with specific purpose to accelerate the process of
representing lines and arcs in bitmaps, to be displayed on the mon-
itor. With time, GPUs incorporated hardware implementations of
functions used to rasterize three dimensional scenarios. Later on,
this accelerator turned to be massively parallel accelerators, capable
of generic processing.

CUDA Compute Unified Device Architecture: Is a parallel comput-
ing platform and programming model created by NVIDIA and im-
plemented to the graphics processing units (GPUs) that they pro-
duce.

PTX Parallel Thread Execution: Is a pseudo-assembly language used
in Nvidia’s CUDA programming environment. The nvcc compiler
translates code written in CUDA, a C-like language, into PTX, and
the graphics driver contains a compiler which translates the PTX
into a binary code which can be run on the processing cores.

Code hoisting Compiler optimizations techniques that reduce amount of instruc-
tions by moving duplicated instructions on different execution paths
to a single instructions on a common path.

kernel Function that executes in the GPU.
thread block Is a set of threads, defined by the programmer, at a kernel call. A

thread block executes in one SM, sharing its resources, such as cache
memory and register file, equally among all threads of the block.

SM Stream Multiprocessor: A SIMD processor. It executes threads
of a thread block in warps.

warp A group of GPU threads that execute on lock-step.
threads Execution lines in the same kernel. GPU threads share global and

shared memory, and have different mappings for the register file
and local memory.

Acknowledgement

Many thanks to Sylvain Collange, Bruno Coutinho and Gregory Diamos for helping in
the implementation of this work, to my adviser, Fernando Pereira, for being a source
of inspiration and knowledge, and to my family, for the unconditional support and so
much more that I can’t describe in words.

3

Chapter 1

Introduction

A new trend in the computer market is to use GPUs as accelerators for general purpose
applications. This raising popularity stems from the fact that GPUs are massively par-
allel. However GPUs impose new programming challenges onto application developers.
These challenges are due, mostly to control and memory divergences. We present an
new compiler analysis that identify divergence hazards and can help developers and
automatic optimizations to generate faster GPU code. Our analysis can also assist the
translation of GPU designed applications to vector instructions on conventional CPUs,
that cannot handle divergence hazards.

1.1 How important GPUs are becoming

Increasing programmability and low hardware cost are boosting the use of GPUs as a
tool to accelerate general purpose applications. This trend can be especially observed
on the academic environment, as demonstrated in Google Trends1 and TOP 500 super-
computers. The chart 1.1, taken from Google Trends, illustrates the rising popularity
of CUDA2 (see NVIDIA [2012]) and OpenCL3 (see Khronos [2011]) languages among
the Computer Science community. TOP 500 supercomputers, an organization that of-
ten ranks the 500 most powerful supercomputers on the world, demonstrates that by
November 2012 (see TOP500 [2012]), 53 of these supercomputers use GPUs accelera-
tors, where three of them are among the five most power efficient (Mflops / watt) and

1http://www.google.com/trends/
2Compute Unified Device Architecture: a parallel computing platform and programming model

created by NVIDIA
3Open Computing Language: Open standard framework for writing programs that execute across

heterogeneous platforms

5

6 Chapter 1. Introduction

04/08 04/09 04/10 04/11 04/12

CUDA OpenCL

Figure 1.1. Google Trends chart: CUDA and OpenCL popularity over time

two among the ten most powerful.

This trend will continue, as academia and industry work on improving GPUs hardware
and software. Efficient GPU algorithms were presented to solve problems as diverse as
sorting (Cederman and Tsigas [2010]), gene sequencing (Sandes and de Melo [2010]),
IP routing (Mu et al. [2010]) and program analysis (Prabhu et al. [2011]). Performance
tests exposed by Ryoo et al. [2008] demonstrate that some programs can run over 100
times faster on GPUs than their CPU equivalent. Upcoming hardware will closely
integrate GPUs and CPUs, as demonstrated by Boudier and Sellers [2011] and new
models of heterogeneous hardware are being introduced (Lee et al. [2011]; Saha et al.
[2009]).

GPUs are attractive because these processors are massively parallel and high through-
put oriented. To illustrate GPUs characteristics, we are going to use NVIDIA’s GeForce
GTX-580 GPU series, a domestic high-end GPU. A GTX-580 has 512 processing el-
ements (PEs) that can be simultaneously used by up to 24,576 threads. It delivers,
approximately, up to 1500 Gflops4 in single precision, much higher than the 62 Gflops

4Gflop: 109 floating-point operations per second

1.2. Divergence 7

Figure 1.2. Chart taken from Nvidia’s CUDA C Programming Guide that shows
GPU and CPU peak performance over time

of a CPU at the same price range and release date. The chart 1.2 compares GPU
to CPU theoretical computational power over time and 1.3 illustrates how domestic
GPUs can outperform server CPUs when solving the same problem using FEKO5 , a
parallel library for electromagnetic simulation.

Compared to a regular CPU, a GPU chip devotes much more transistors to PEs and
much fewer transistors to cache memory and flow control, as illustrated by figure 1.4.
To reduce dramatically their control hardware, GPUs adopt a more restrictive pro-
gramming model, and not every parallel application can benefit from this parallelism.
These processors organize threads in groups that execute in lock-step, called warps.

1.2 Divergence

To understand the rules that govern threads in a warp, we can imagine that each
warp has simultaneous access to many PEs, but uses only one instruction fetcher. As
an example, the GTX-580 has 16 independent cores, called Streaming Multiprocessors
(SM). Each SM can run 48 warps of 32 threads each, thus, each warp might execute 32
instances of the same instruction simultaneously. Regular applications, such as Data
parallel algorithms studied by Hillis and Steele [1986], fare very well in GPUs, as we

5See http://www.feko.info/ for more details

8 Chapter 1. Introduction

Figure 1.3. GPU and CPU performance on FEKO

Control Cache memory ALU

CPU GPU

Figure 1.4. GPU and CPU design comparison

have the same operation being independently performed on different chunks of data.
However, divergence may happen in less regular applications.

Definition 1 (Data divergence). Data divergence happens whenever the same variable
name is mapped to different values by different threads. In this case we say that the
variable is divergent, otherwise we call it uniform.

As we will see in chapter 2, a thread identifier (Tid) for instance, a special variable that
gives each thread a unique number, is inherently divergent.

1.3. The problem of divergence 9

1.3 The problem of divergence

Data divergences are responsible for two phenomena that can compromise performance:
memory and control flow divergence. Control flow divergence happens when threads
in a warp follow different paths after processing the same branch instruction. If the
branching condition is data divergent, then it might be true to some threads, and false
to others. The code from both paths, following the branch instruction, is serialized.
Given that each warp has access to only one instruction at a time some threads have
to wait idly, while others execute. As pointed out by Zhang et al. [2011], in a worse
case scenario, control flow divergence can reduce hardware utilization down to 3, 125%

on a GTX-580, when only one among all 32 threads of a warp is active.

Memory divergence, a term coined by Meng et al. [2010], happens whenever a load or
store instruction targeting data divergent addresses causes threads in a warp to access
memory positions with bad locality. Usually each thread request a different memory
position upon a input data access. Such event request that a huge amount of data
to travel between memory and the GPU. To deal with these events GPUs rely on a
very large memory communication bandwidth, being able to transfer a huge amount
of data at once. However, the data requested need to be congruent to be transferred
at once. If the memory access requested by a single instruction is apart by more than
the memory communication bandwidth, more than one memory access is required to
deliver the requested data of a single instruction. If each thread access a data that is
very distant apart from each other, a single instruction could generate many memory
transfers. Such events have been shown by Lashgar and Baniasadi [2011] to have even
more performance impact than control flow divergence.

Optimizing an application to avoid divergence is problematic for two reasons. First,
some parallel algorithms are intrinsically divergent; thus, threads will naturally disagree
on the outcome of branches. Second, identifying divergences burdens the application
developer with a tedious task, which requires a deep understanding of code that might
be large and complex.

1.4 Our contribution

Our main goal is to provide compilers with techniques that allow them to understand
and to improve divergent code. To meet such objective in Section 3.4 we present a
static program analysis that identifies data divergence. We then expand this analysis,
discussing, in Section 3.5, a more advanced algorithm that distinguishes divergent and

10 Chapter 1. Introduction

affine variables, e.g. variables that are affine expressions of thread identifiers. The two
analyses discussed here rely on the classic notion of Gated Static Single Assignment
form (see Ottenstein et al. [1990]; Tu and Padua [1995]), which we revise in Section 3.3.
We formalize our algorithms by proving their correctness with regard to µ-Simd, a core
language that we describe in Section 3.2.

The divergence analysis is important in different ways. Firstly, it helps the compiler to
optimize the translation of Single Instruction Multiple Threads (SIMT6, see Patterson
and Hennessy [2012]; Garland and Kirk [2010]; Nickolls and Dally [2010]; Habermaier
and Knapp [2012]) languages to ordinary CPUs. We call SIMT languages those pro-
gramming languages, such as C for CUDA and OpenCL, that are equipped with ab-
stractions to handle divergence. Currently there exist many proposals (Diamos et al.
[2010]; Karrenberg and Hack [2011]; Stratton et al. [2010]) to compile such languages
to ordinary CPUs and they all face similar difficulties. Vector operations found in
traditional architectures, such as the x86’s SSE extension, do not support control flow
divergence natively. Different than GPUs, where each data is processed by a different
thread, that can be deactivated upon a control flow divergence, these instructions are
executed by a single thread, that do the same operation on all data of a vector. If
different data on a single vector need to be submitted to different instructions, these
vector need to be reorganized on vector that all elements need to be submitted to the
same treatment. Such problems have been efficiently addressed by Kerr et al. [2012],
but still requires extra computation at thread frontier to recalculate active threads.
This burden can be safely removed from the uniform, e.g., non-divergent, branches
that we identify. Furthermore, the divergence analysis provides insights about memory
access patterns, as demonstrated by Jang et al. [2010]. In particular, a uniform address
means that all threads access the same location in memory, whereas an affine address
means that consecutive threads access adjacent or regularly-spaced memory locations.
This information is critical to generate efficient code for vector instruction sets that do
not support fast memory gather and scatter (see Diamos et al. [2010]).

Secondly, in order to more precisely identify divergence, a common strategy is to use
instrumentation based profilers. Coutinho et al. [2010] has done so, however, this
approach may slowdown the target program by factors of over 1500 times! Our di-
vergence analysis reduces the amount of branches that the profiler must instrument;
hence, decreasing its overhead.

Thirdly, the divergence analysis improves the static performance prediction techniques

6This term was created by NVIDIA to describe their GPU execution model

1.4. Our contribution 11

used in SIMT architectures (see Baghsorkhi et al. [2010]; Zhang and Owens [2011]).
For instance, Samadi et al. [2012] used adaptive compilers that target GPUs.

Finally, our analysis also helps the compiler to produce more efficient code to SIMD
hardware. There exists a recent number of divergence aware code optimizations, such
as Coutinho et al. [2011] branch fusion, and Zhang et al. [2011] thread reallocation
strategy. We augment this family of techniques with a divergence aware register alloca-
tor. As shown in Chapter 4, we use divergence information to decide the best location
of variables that have been spilled during register allocation. Our affine analysis is
specially useful to this end, because it enables us to perform Rematerialization (see
Briggs et al. [1992]) of values among SIMD processing elements. Rematerialization is
a compiler optimization which saves time by recomputing a value instead of loading
it from memory. It is typically tightly integrated with register allocation, where it is
used as an alternative to spilling registers to memory.

All the algorithms that we describe are publicly available in the Ocelot compiler7

(Diamos et al. [2010]). Our implementation in the Ocelot compiler consists of over
10,000 lines of open source code. Ocelot optimizes PTX code, the intermediate program
representation used by NVIDIA’s GPUs. We have compiled all the 177 CUDA kernels8

from 46 applications taken from the Rodinia (Che et al. [2009]) and the NVIDIA SDK
benchmarks. The experimental results given in Section 5 show that our implementation
of the divergence analysis runs in linear time on the number of variables in the source
program. The basic divergence analysis proves that about one half of the program
variables, on average, are uniform. The affine constraints from Section 3.5 increase
this number by 4%, and – more important – they indicate that about one fourth of the
divergent variables are affine functions of some thread identifier. Finally, our divergence
aware register allocator is effective: by rematerializing affine values, or moving uniform
values to the GPU’s shared memory, we have been able to speedup the code produced
by Ocelot’s original allocator by almost 30%.

As a result of this research the following papers were published:

• Spill Code Placement for SIMD Machines
Best paper award
Sampaio, D. N., Gedeon, E., Pereira, F. M. Q., Collange, S.
16th Brazilian Symposium, SBLP 2012, Natal, Brazil, September 23-28, 2012
Programming Languages, pp 12-26, Springer Berlin Heidelberg.

7Available at http://code.google.com/p/gpuocelot/
8A kernel is a special program function because it executes on the GPU

12 Chapter 1. Introduction

• Divergence Analysis with Affine Constraints
Sampaio, D. N., Martins, R., Collange, S., Pereira, F. M. Q.
24th International Symposium on Computer Architecture and High
Performance Computing, New York City, USA
SBAC-PAD 2012, pp 67-74.

Chapter 2

Related work

Although General Purpose GPU (GPGPU) programming is a recent technology, it is
rapidly becoming popular, especially on the scientific community. A substantial body
of work has been published about program optimizations that target GPUs specifi-
cally. The objective of this chapter is to discuss the literature that has been produced
about compiler optimizations for GPUs. Therefore we further detail divergences via
an example (Section 2.1), give notations on divergence optimizations (Section 2.2) and
compare our divergence analysis against previous work.

2.1 Divergence

GPUs run in the so called SIMT execution model. The SIMT model combines MIMD,
SPMD and SIMD semantics, but divergence is relevant only at the SIMD level. This
semantics combination works as follows:

• Each GPU might have one or more cores (SM), that follow Flynn’s Multiple
Instruction Multiple Data (MIMD) model (see Flynn [1972]), that is, each SM
can be assigned to execute code from a different kernel and SMs executing code
from the same kernel are not synchronized.

• Threads from the same kernel are grouped in Thread Blocks. Each Thread Block
is assigned to a SM. Each Thread Block is divided in fixed sets of threads called
warps. Each warp in a Thread Block follows Darema’s Single Program Multiple
Data (SPMD) execution model (Darema et al. [1988]), that is, within a Thread
Block all warps execute the same kernel but are scaled asynchronously.

13

14 Chapter 2. Related work

• Threads inside the same warp execute in lock-step, fitting Flynn’s SIMD ma-
chines, that is, all threads of a warp execute simultaneously the same instruction.

We will use two artificial programs in Figure 2.1 to explain the notion of divergence.
These functions, normally called kernels, are written in C for CUDA and run on graph-
ics processing units. We will assume that these programs are executed by a number
of threads, or PEs, according to the SIMD semantics. All the PEs see the same set
of variable names; however, each one maps this environment onto a different address
space. Furthermore, each PE has a particular set of identifiers. In C for CUDA this
set includes the index of the thread in three different dimensions, e.g., threadIdx.x,
threadIdx.y and threadIdx.z. We will denote this unique thread identifier by Tid.

Each thread uses its Tid to find the data that it must process. Thus, in the kernel
avgSquare each thread Tid is in charge of adding the elements of the Tid-th column of
m. Once leaving the loop, this thread will store the column average in v[Tid]. This is a
divergent memory access: each thread will access a different memory address. However,
modern GPUs can perform these accesses very efficiently, because they have good
locality. In this example, addresses used by successive threads are contiguous (Ryoo
et al. [2008]; Yang et al. [2010]). Control flow divergence will not happen in avgSquare.
That is, each thread will loop the same number of times. Consequently, upon leaving
the loop, every thread sees the same value at its image of variable d. Thus, we call this
variable uniform.

Kernel sumTriangle presents a very different behavior. This rather contrived function
sums up the columns in the superior triangle of matrix m; however, only the odd lines
of a column contribute to the sum. In this case, the threads perform different amounts
of work: the threads that has Tid = n will visit n+1 cells of m. After a thread leaves the
loop, it must wait for the others. Processing resumes once all of them synchronize at
line 12. At this point, each thread sees a different value stored at its image of variable d,
which has been incremented Tid + 1 times. Hence, we say that d is a divergent variable
outside the loop. Inside the loop, d is uniform, because every active thread sees the
same value stored at that location. Thus, all the threads active inside the loop take
the same path at the branch in line 7. Therefore, a precise divergence analysis must
split the live range of d into a divergent and a uniform part.

2.1. Divergence 15

1 __global__ void avgSquare(float* m, float* v, int c) {
2 if (Tid < c) {

3 int d = 0;
4 float sum = 0.0F;
5 int N = Tid + c * c;

6 for (int i = Tid; i < N; i += c) {

7 sum += m[i];
8 d += 1;
9 }
10 v[tid] = sum / d;
11 }
12}

1 __global__ void sumTriangle(float* m, float* v, int c) {
2 if (Tid < c) {

3 int d = 0;
4 float sum = 0.0F;
5 int L = (Tid + 1) * c;

6 for (int i = Tid; i < L; i += c) {

7 if (d % 2) {
8 sum += m[i];
9 }
10 d += 1;
11 }
12 v[d-1] = sum;
13 }
14}

c

0 1 2 3 4 5 6 7 8 9 10Tid =

m =

∀ Tid , d = 10

0 1 2 3 4 5 6 7 8 9 10Tid =

• • • • • • • • •

• • • • • • •

• • • • •

• • •

•

d-1 = 0 1 2 3 4 5 6 7 8 9 10

m =
•

•

•

•

•

Figure 2.1. The gray lines on the right show the parts of matrix m processed by
each thread. Following usual coding practices we represent the matrix in a linear
format. Dots mark the cells that add up to the sum in line 8 of sumTriangle.

16 Chapter 2. Related work

2.2 Divergence Optimizations

We call divergence optimizations the code transformation techniques that use the re-
sults of divergence analysis to generate better programs. Some of these optimizations
deal with memory divergences; however, methods dealing exclusively with control flow
divergence are the most common in the literature. As an example, the PTX program-
ming manual1 recommends replacing ordinary branch instructions (bra) proved to be
non-divergent by special instructions (bra.uni), which are supposed to divert control
to the same place for every active thread. Other examples of control flow divergence
optimizations include branch distribution, branch fusion, branch splitting, loop collaps-
ing, iteration delaying and thread reallocation. At run-time divergence control flow can
be reduced with a more complex hardware as demonstrated in large warps and two-level
warp scheduling and SIMD re-convergence at thread frontiers.

2.2.1 Optimizing divergent control flow

A common method to optimize divergent control flow is to minimize the amount of
work done in divergent paths, such as branch distribution and branch fusion.

Branch distribution (Han and Abdelrahman [2011]) is a form of code hoisting2 that
works both at the Prolog and at the epilogue of a branch. This optimization merges
code from potentially divergent paths to outside the branch. Branch fusion (Coutinho
et al. [2011]), a generalization of Branch distribution, joins chains of common instruc-
tions present in two divergent paths if the additional execution costs of regenerating
the same divergence is lower than the potential gain.

A number of compiler optimizations try to rearrange loops in order to mitigate the
impact of divergence. Carrillo et al. [2009] proposed branch splitting, a way to divide a
parallelizable loop enclosing a multi-path branch into multiple loops, each containing
only one branch. Lee et al. [2009] designed loop collapsing, a compiler technique that
reduces divergence inside loops when compiling OpenMP programs into C for CUDA.
Han and Abdelrahman [2011] generalized Lee’s approach proposing iteration delaying,
a method that regroups loop iterations, executing those that take the same branch
direction together.

Thread reallocation is a technique that applies on settings that combine the SIMD and
1PTX programming manual, 2008-10-17, SP-03483-001_v1.3, ISA 1.3
2 techniques known as code hoisting tend to diminish the number of instructions of a program by

unifying duplicated instructions on different control flow paths into a unique instruction in a common
path

2.2. Divergence Optimizations 17

the SPMD semantics, like the modern GPUs. This optimization consists in regrouping
divergent threads among warps, so that only one or just a few warps will contain
divergent threads. Their main idea is that divergence occur based on input values, so
they sort the input vectors applying the same modification over the threadIdx. It has
been implemented at the software level by Zhang et al. [2010, 2011], and simulated at
the hardware level by Fung et al. [2007]. However, this optimization must be used with
moderation, as shown by Lashgar and Baniasadi [2011], unrestrained thread regrouping
could lead to memory divergence.

At the hardware level, Narasiman et al. [2011] propose in Improving GPU performance
via large warps and two-level warp scheduling warps with number of threads multiple
of number of PEs in a Stream Multiprocessor by a factor n. A inner warp scheduler
is capable of selecting for each PE, one among n threads, always preferring an active.
Such mechanism can reduce the number of inactive threads selected for execution, but
it also can lead to memory divergence.

Most GPUs only converge execution of divergent threads at the post-dominator block
of divergent branches. Diamos et al. [2011] in SIMD re-convergence at thread frontiers
minimize the amount of time that threads remain inactive by using a hardware capable
of identifying blocks before the post dominator, called thread frontiers, where some
threads of a warp might resume execution. The active threads set is recalculated at
these points comparing the current PC against the PC of inactive threads.

2.2.2 Optimizing memory accesses

The compiler related literature describes optimizations that try to change memory
access patterns in such a way to improve address locality. Recently, some of these
techniques were adapted to mitigate the impact of memory divergence in modern GPUs.

Yang et al. [2010] and Pharr and Mark [2012] describe a suite of loop transformations
to coalesce data accesses. Memory coalescing consists in the dynamic aggregation of
contiguous locations into a single data access. Leissa et al. [2012] discuss several data
layouts that improve memory locality in the SIMD execution model.

Rogers et al. [2012] propose in Cache-Conscious Wavefront Scheduling a novel warp
scheduler that uses a scoreboard based on the warp memory access pattern and data
stored in cache, being able to maximize L1 data cache reuse among warps of a thread
block, archiving a 24% performance gain over the previous state of the art warp sched-
uler.

18 Chapter 2. Related work

2.2.3 Reducing redundant work

The literature describes a few optimizations that use data divergence information to
reduce the amount of work that the SIMD processing elements do. For instance,
Collange et al. [2010] introduces work unification. This compiler technique leaves to
only one thread the task of computing uniform values; hence, reducing memory accesses
and hardware occupancy. Some computer architectures, such as Intel MIC3 and AMD
GCN4, combine scalar and SIMD processing units. Although we are not aware of
any work that tries to assign computations to the different units based on divergence
information, we speculate that this is another natural application of the analysis that
we present.

2.3 Divergence Analyses

Several algorithms have been proposed to find uniform variables. The first technique
that we are aware of is the barrier inference of Aiken and Gay [1998]. This method,
designed for SPMD machines, finds a conservative set of uniform5 variables via static
analysis. However, because it is tied to the SPMD model, Aiken and Gay’s algorithm
can only report uniform variables at global synchronization points.

The recent interest on graphics processing units has given a renewed impulse to this
type of analysis, in particular with a focus on SIMD machines. For instance, Stratton
et al. [2010] variance analysis, and Karrenberg and Hack [2011] vectorization analysis
distinguish uniform and divergent variables. However, these analyses are tools used
in the compilation of SPMD programs to CPUs with explicit SIMD instructions, and
both compilers generate specific instructions to manage divergence at run-time. On
the other hand, we focus on architectures in which divergence are managed implicitly
by the hardware. A naive application of Stratton’s and Karrenberg’s approach in our
static context may yield false negatives due to control dependency, although they work
well in the dynamic scenario for which they were designed. For instance, Karrenberg’s
select and loop-blending functions are similar to the γ and η functions that we discuss
in Section 3.3. However, select and blend are concrete instructions emitted during code
generation, whereas our GSA functions are abstractions used statically.

Coutinho et al. [2011] proposed a divergence analysis that works in programs in the
Gated Static Single Assignment (GSA) format (see Ottenstein et al. [1990]; Tu and

3See Many Integrated Core Architecture at http://www.intel.com. Last visit: Jan. 13
4See Understanding AMD’s Roadmap at http://www.anandtech.com/. Last visit: Jan. 13
5Aiken and Gay would call these variables single-valued

2.3. Divergence Analyses 19

Padua [1995]). Thus, Coutinho et al.’s analysis is precise enough to find out that vari-
able d is uniform inside the loop in the kernel sumTriangle, and divergent outside.
Nevertheless, their version is over-conservative because it does not consider affine re-
lations between variables. For instance, in the kernel avgSquare, variables i and L

are functions of Tid. However, if we inspect the execution trace of this program, then
we will notice that the comparison i < L has always the same value for every thread.
This fact happens because both variables are functions of two affine expressions of Tid,
whose combination cancel the Tid factor out, e.g.: L = Tid + c1 and i = Tid + c2; thus,
L− i = (1− 1)Tid + (c1 − c2). Therefore, a more precise divergence analysis requires
some way to take affine relations between variables into consideration.

Figure 2.2 summarizes this discussion comparing the results produced by these different
variations of the divergence analysis when applied on the kernels in Figure 2.1. We call
Data Dep. a divergence analysis that takes data dependency into consideration, but not
control dependency. In this case, a variable is uniform if it is initialized with constants
or broadcast values, or, recursively, if it is a function of only uniform variables. This
analysis would, incorrectly, flag variable d in avgSquare, as uniform. Notice that,
because this analysis use the GSA intermediate representation, they distinguish the
live ranges of variable d inside (din) and outside (dout) the loops. The analysis that we
present in Section 3.5 improves on the analysis that we discuss in Section 3.4 because
it considers affine relations between variables. Thus, it can report that the loop in
avgSquare is non-divergent, by noticing that the comparison i < N has always the
same value for every thread. This fact happens because both variables are functions
of two affine expressions of Tid, whose combination cancel the Tid factor out, e.g.:
N = Tid + c1 and i = Tid + c2; thus, N − i = (1− 1)Tid + (c1 − c2).

2.3.1 Chapter conclusion

This chapter provided some context on which the reader can situate himself. It defined
divergence data, and showed this kind of data can degrade the performance of a GPU,
via flow and memory divergences. It described possible optimizations that can ben-
efit from the information of divergence analysis as motivation for our new technique,
comparing its results against previously proposed techniques. As we will explain in
the rest of this dissertation, our divergence analysis is more powerful than the previous
approaches, because it relies on a more complex lattice. The immediate result is that
we are able to use it to build a register allocator that would not be possible using only
the results of the other techniques that have been designed before ours. In the next
chapter we formalize our notion of divergence analysis with affine constraints.

20 Chapter 2. Related work

Data Dep. Aiken Karr. Sec. 3.4 Sec. 3.5
c U U U U 0T2id + 0Tid +⊥
m U U U U 0T2id + 0Tid +⊥
v U U U U 0T2id + 0Tid +⊥
i D D ca D 0T2id + Tid +⊥

avgSquare

N D D c D 0T2id + Tid +⊥
din U D D D 0T2id + 0Tid +⊥
dout U D D D 0T2id + 0Tid +⊥
sumTriangle

L D D D D 0T2id +⊥Tid +⊥
din U D D U 0T2id + 0Tid +⊥
dout U D D D ⊥T2id +⊥Tid +⊥

Figure 2.2. We use U for uniform and D for Divergent variables. Karrenberg’s
analysis can mark variables in the format 1× Tid + c, c ∈ N as consecutive (c) or
consecutive aligned (ca)

Chapter 3

Divergence Analyses

In this chapter we describe two divergence analyses. We start by giving in Section 3.1 an
informal overview on the basics of divergence analysis. We describe how our technique
of using affinity with the Tid augments the precision compared to a simple implementa-
tion. In Section 3.4 we formalize a simple and fast implementation. This initial analysis
helps us to formalize the second algorithm, presented in Section 3.5, a slower, yet more
precise technique because it can track affine relations between program variables, an
extra information vital to our novel register allocator. Our affine divergence aware
register allocator uses the GPU’s memory hierarchy in a better way when compared to
previous register allocators. This better usage comes out of the fact that our allocator
decreases the amount of memory used when affine variables are selected for spilling. It
does so by trading memory space by extra computations, which we perform as value
rematerialization. We formalize our divergence analysis by describing how it operates
on a toy SIMD model, which we explain in Section 3.2. Our analysis requires the com-
piler to convert the target program to a format called Gated Static Single Assignment
form. We describe this format in Section 3.3.

3.1 Overview

Divergence Analyses, in the GPU context, are compiler static analyses that classify
variables accordingly to, either all threads will see it with the same value or not. As
in the Definition 1, the conservative set of variables classified as uniform variables will
hold variables that, at compile time, are known to contain the same value among all
threads at run-time. The set of divergent variables hold the variables that might contain
different values among threads at run-time.

21

22 Chapter 3. Divergence Analyses

To be able to classify variables as divergent and uniform, divergence analyses rely on:

1. Data divergence origins are known at compile time, and are pre-classified as di-
vergent variables. Divergence origins are:

a) Threads identifiers (Tid): It is known to be a unique value per thread.

b) Atomic operations results: Each thread might receive a different value
after an atomic operation.

c) Local Memory Loads: Local memory has a unique mapping per thread,
so values loaded from it might be different among threads.

2. Divergent variables can only affect variables that dependent on them. There are
two types of dependency among variables:

a) Data dependency.

b) Control dependency.

Variables dependency are represented in a oriented graph. If a variable v is depen-
dent on the variable Tid, then there is an arrow from Tid to v. Data dependency is
easily extracted from the instructions of the program. To every instruction, such as
a = b+ c, the left side (a) is dependent on the right side (b, c). Control dependency
is a little more tricky to be detected, and require a special program representation to be
identified, as described in details in Section 3.3. But a simple definition is, if variable p
controls which value is assigned to a variable v, then v is control dependent on p. The
fluxogram in Figure 3.1 illustrates data and control dependency.

3.1. Overview 23

read p
read b

entry

p?v = b

v = -b...

True

False

Figure 3.1. Variable v is data dependent of variable b and control depen-
dent of variable p.

The simple divergence analysis builds the variable dependency graph and uses a
graph reachability algorithm to detect all variables dependent on divergent variables,
as illustrated in Figure 3.2.

c

d

k

f l

h

s
i

Tid Bid e

1

Bsz

p
c

d

k

f l

h

s
i

Tid Bid e

1

Bsz

p

Figure 3.2. On the left the initial state of the variable dependency graph. On
the right, variables states after graph reachability applied from divergence sources

24 Chapter 3. Divergence Analyses

The divergence analysis with affine constraints is capable do give more details
about the nature of the values that are going to be store in the variables. It uses the
technique to keep variables affinity of degree one to the Tid. That is, all variables have
an abstract state, compound by two elements (a, b) that describe the encountered value
as a× Tid + b. Each of this elements can be assigned three possible values:

• >: The analysis did not process the affinity of the variable.

• c: A constant value that is known at compile time.

• ⊥: At compile time is not possible to define any information about the factor.

Based on these possible element states, all possible abstract states are:

• (>, >): The variable is still not processed by the analysis.

• (0, c): The variable is uniform and will hold a constant value that is known at
compile time.

• (0, ⊥): The variable is uniform, but the value is not known at compile time.

• (c1, c2): The variable is divergent, but we name it as affine because it is possible
to track the affinity with Tid. It is possible to the compiler use the constants c1
and c2 to write instructions that rematerialize the variable value.

• (c1, ⊥): The variable is divergent, but we name it as affine because it is possible
to track the affinity with Tid. It is possible to the compiler use the constant c and
a uniform variable to write instructions that rematerialize the variable value.

• (⊥, ⊥): The variable is divergent or no information about the value at run-time
is known during compilation.

The affine technique rely on a dependency graph that takes into consideration the
operations among variables, and uses different propagation rules to determine the out-
put abstract state based on the input ones. Special GPU variables, such as Tid, results
of atomic instructions, constant values, kernel parameters have their values statically
predefined. All variables that have their abstract state predefined are inserted in the
work-list. For each variable in the work-list we remove it and use propagation rules to
compute the abstract state of all variables that depend on it. Always that the abstract
state of a variable is altered, that variable is included in the work-list. We iterate until

3.1. Overview 25

the work-list is empty and the graph reach a fixed-point. Figure 3.3 demonstrates this
process.

c

d

k

f l

h

s
i

Tid
(1, 0)

Bid e

X

+

d < e

X

=

+

+

1

c < l

+

=

Bsz
(0, ⊥) (0, ⊥) (0, ⊥)

(T, T)

(T, T)

(T, T)

(T, T)

(T, T)

(T, T)

p
(T, T)

(T, T)

(T, T)
(0, 1)

c

d

f l

s
i

Tid
(1, 0)

Bid e

X

+

d < e

X

=

+

+

1

c < l

+

=

Bsz
(0, ⊥) (0, ⊥) (0, ⊥)

(T, T)

(T, T)

(T, T)

(T, T)

p
(T, T)

(T, T)

(T, T)
(0, 1)

k
(0, ⊥)

h
(0, ⊥)

START STEP 2

c

d

f l

h

s
i

Tid
(1, 0)

Bid e

X

+

d < e

X

=

+

1

c < l

+

=

Bsz
(0, ⊥) (0, ⊥) (0, ⊥)

(0, ⊥)

(1, ⊥)

k
(0, ⊥)

(1, ⊥)

(⊥, ⊥)

(1, ⊥)

p
(0, ⊥)

(0, ⊥)

(0, ⊥)
(0, 1)

c

f

s
i

Tid
(1, 0)

Bid e

X

+

d < e

X

=

+

+

1

c < l

+

=

Bsz
(0, ⊥) (0, ⊥) (0, ⊥)

(T, T)

(T, T)

p
(T, T)

(T, T)

(T, T)
(0, 1)

k
(0, ⊥)

h
(0, ⊥)

l
(1, ⊥)

d
(1, ⊥)

STEP 4FIX POINT - STEP 9

+

Figure 3.3. On the top left the initial state of the variable dependency graph.
Blue variables have a undefined abstract state. Especial variables, such as Tid, Bid
and Bsz, constants, such as 1, and function arguments, such as e, have predefined
abstract states. From these variables the state of all others are defined.

Now that we described how both techniques of divergence analysis work, we are going
to prove and formalize its correctness. In Section 3.2 we introduce µ-Simd, a tool

26 Chapter 3. Divergence Analyses

language that describes the rules followed by threads that execute in a same warp.
In Section 3.3 we demonstrate how we transform our program CFG so it can inform
control dependencies. In Section 3.4 we prove the Simple Divergence technique, as it
help us to prove the correctness of our Affine Divergence Analysis in Section 3.5.

3.2 The Core Language

In order to formalize our theory, we adopt the same model of SIMD execution inde-
pendently described by Bougé and Levaire [1992] and Farrell and Kieronska [1996].
We have a number of PEs executing instructions in lock-step, yet subject to partial
execution. In the words of Farrel et al., “All processing elements execute the same
statement at the same time with the internal state of each processing element being ei-
ther active or inactive." [Farrell and Kieronska, 1996, p.40]. The archetype of a SIMD
machine is the ILLIAC IV Computer (see Bouknight et al. [1972]), and there exist
many old programming languages that target this model (Abel et al. [1969]; Bouknight
et al. [1972]; Brockmann and Wanka [1997]; Hoogvorst et al. [1991]; Kung et al. [1982];
Lawrie et al. [1975]; Perrott [1979]). The recent developments in graphics cards brought
new members to this family. The SIMT execution model is currently implemented as
a multi-core SIMD machine – CUDA being a framework that coordinates many SIMD
processors. We formalize the SIMD execution model via a core language that we call
µ-Simd, and whose syntax is given in Table 3.1. We do not reuse the formal semantics
of Bougé et al. or Farrell et al. because they assume high-level languages, whereas our
techniques are better described at the assembly level. Notice that our model will not
fit vector instructions, popularly called SIMD, such as Intel’s MMX and SSE exten-
sions, because they do not support partial execution, rather following the semantics of
Carnegie Mellon’s Vcode (Blelloch and Chatterjee [1990]). An interpreter for µ-Simd,
written in Prolog, plus many example programs, are available in our web-page1.

We define an abstract machine to evaluate µ-Simd programs. The state M of this
machine is determined by a tuple with five elements: (Θ,Σ,Π, P, pc), which we define
in Table 3.2. A processing element is a pair (t, σ), uniquely identified by the natural t,
referred by the special variable Tid. The symbol σ represents the PE’s local memory,
a function that maps variables to integers. The local memory is individual to each
PE; however, these functions have the same domain. Thus, v ∈ σ denotes a vector
of variables, each of them private to a PE. PEs can communicate through a shared
array Σ. We use Θ to designate the set of active PEs. A program P is a map of

1http://divmap.wordpress.com/

3.2. The Core Language 27

Labels ::= l ⊂ N
Constants (C) ::= c ⊂ N
Variables (V) ::= Tid ∪ {v1, v2, . . .}
Operands (V ∪ C) ::= {o1, o2, . . .}
Instructions ::=
– (jump if zero/not zero) | bz/bnz v, l
– (unconditional jump) | jump l
– (store into shared memory) | ↑ vx = v
– (load from shared memory) | v =↓ vx
– (atomic increment) | v

a←− vx + 1
– (binary addition) | v1 = o1 + o2
– (binary multiplication) | v1 = o1 × o2
– (other binary operations) | v1 = o1 ⊕ o2
– (simple copy) | v = o
– (synchronization barrier) | sync
– (halt execution) | stop

Table 3.1. The syntax of µ-Simd instructions

(Local memory) σ ⊂ Var 7→ Z

(Shared vector) Σ ⊂ N 7→ Z

(Active PEs) Θ ⊂ (N× σ)
(Program) P ⊂ Lbl 7→ Inst
(Sync stack) Π ⊂ Lbl ×Θ× Lbl ×Θ×Π

Table 3.2. Elements that constitute the state of a µ-Simd program

labels to instructions. The program counter (pc) is the label of the next instruction to
be executed. The machine contains a synchronization stack Π. Each node of Π is a
tuple (lid,Θdone, lnext,Θtodo) that denotes a point where divergent PEs must synchronize.
These nodes are pushed into the stack when the PEs diverge in the control flow. The
label lid denotes the conditional branch that caused the divergence, Θdone are the PEs
that reached the synchronization point, whereas Θtodo are the PEs waiting to execute.
The label lnext indicates the instruction where Θtodo will resume execution.

The result of executing a µ-Simd abstract machine is a pair (Θ,Σ). Figure 3.2 de-
scribes the big-step semantics of instructions that change the program’s control flow.
A program terminates if P [pc] = stop. The semantics of conditionals is more elabo-
rate. Upon reaching bz v, l we evaluate v in the local memory of each active PE. If
σ(v) = 0 for every PE, then Rule Bf moves the flow to the next instruction, i.e., pc+1.
Similarly, if σ(v) 6= 0 for every PE, then in Rule Bt we jump to the instruction at
P [l]. However, if we get distinct values for different PEs, then the branch is divergent.

28 Chapter 3. Divergence Analyses

split(Θ, v) = (Θ0,Θn) where
Θ0 = {(t, σ) | (t, σ) ∈ Θ and σ[v] = 0}
Θn = {(t, σ) | (t, σ) ∈ Θ and σ[v] 6= 0}

push([],Θn, pc, l) = [(pc, [], l,Θn)]

push((pc′, [], l′,Θ′n) : Π,Θn, pc, l) = Π′ if pc 6= pc′

where Π′ = (pc, [], l,Θn) : (pc′, [], l′,Θ′n) : Π

push((pc, [], l,Θ′n) : Π,Θn, pc, l) = (pc, [], l,Θn ∪Θ′n) : Π

Table 3.3. The auxiliary functions used in the definition of µ-Simd

In this case, in Rule Bd we execute the PEs in the “then" side of the branch, keeping
the other PEs in the sync-stack to execute them later. Stack updating is performed
by the push function in Figure 3.3. Even the non-divergent branch rules update the
synchronization stack, so that, upon reaching a barrier, i.e, a sync instruction, we
do not get stuck trying to pop a node. In Rule Ss, if we arrive at the barrier with
a group Θn of PEs waiting to execute, then we resume their execution at the “else"
branch, keeping the previously active PEs into hold. Finally, if we reach the barrier
without any PE waiting to execute, in Rule Sp we synchronize the “done" PEs with
the current set of active PEs, and resume execution at the next instruction after the
barrier. Notice that, in order to avoid deadlocks, we must assume that a branch and
its corresponding synchronization barrier determine a single-entry-single-exit region in
the program’s CFG [Ferrante et al., 1987, p.329].

Table 3.2 shows the semantics of the rest of µ-Simd’s instructions. A tuple (t, σ,Σ, ι)

denotes the execution of an instruction ι by a PE (t, σ). All the active PEs execute the
same instruction at the same time. We model this phenomenon by showing, in Rule Tl,
that the order in which different PEs process ι is immaterial. Thus, an instruction such
as v = c causes every active PE to assign the integer c to its local variable v. We use
the notation f [a 7→ b] to denote the updating of function f ; that is, λx.x = a ? b : f(x).
The store instruction might lead to a data-race, i.e., two PEs trying to write on the
same location in the shared vector. In this case, the result is undefined due to Rule
Tl. We guarantee atomic updates via v a←− vx + 1, which reads the value at Σ(σ(vx)),
increments it by one, and stores it back. This result is also copied to σ(v), as we see
in Rule At. In Rule Bp we use the symbol ⊗ to evaluate binary operations, such as
addition and multiplication, using the semantics usually seen in arithmetic.

Figure 3.4 (left) shows the kernel sumTriangle from Figure 2.1 written in µ-Simd. To

3.2. The Core Language 29

(Sp)
P [pc] = stop

(Θ,Σ, ∅, P, pc)→ (Θ,Σ)

(Bt)

P [pc] = bz v, l
split(Θ, v) = (∅,Θ) push(Π, ∅, pc, l) = Π′

(Θ,Σ,Π′, P, l)→ (Θ′,Σ′)

(Θ,Σ,Π, P, pc)→ (Θ′,Σ′)

(Bf)

P [pc] = bz v, l
split(Θ, v) = (Θ, ∅) push(Π, ∅, pc, l) = Π′

(Θ,Σ,Π′, P, pc + 1)→ (Θ′,Σ′)

(Θ,Σ,Π, P, pc)→ (Θ′,Σ′)

(Bd)

P [pc] = bz v, l
split(Θ, v) = (Θ0,Θn) push(Π,Θn, pc, l) = Π′

(Θ0,Σ,Π
′, P, pc + 1)→ (Θ′,Σ′)

(Θ,Σ,Π, P, pc)→ (Θ′,Σ′)

(Ss)

P [pc] = sync
Θn 6= ∅

(Θn,Σ, (pc
′,Θ0, l, ∅) : Π, P, l)→ (Θ′,Σ′)

(Θ,Σ, (pc′, ∅, l,Θn) : Π, P, pc)→ (Θ′,Σ′)

(Sp)

P [pc] = sync
(Θn,Σ, (_, ∅,_,Θ0) : Π, P, pc + 1)→ (Θ′,Σ′)

(Θ0 ∪Θn,Σ,Π, P, pc)→ (Θ′,Σ′)

(Jp)

P [pc] = jump l
(Θ,Σ,Π, P, l)→ (Θ′,Σ′)

(Θ,Σ,Π, P, pc)→ (Θ′,Σ′)

(It)

P [pc] = ι
ι /∈ {stop, bnz, bz, sync, jump}

(Θ,Σ, ι)→ (Θ′,Σ′) (Θ′,Σ′,Π, pc + 1,Θ′′,Σ′′)

(Θ,Σ,Π, P, pc)→ (Θ′′,Σ′′)

Table 3.4. The semantics of µ-Simd: control flow operations. For conciseness,
when two hypotheses hold we use the topmost one. We do not give evaluation
rules for bnz, because they are similar to those given for bz

30 Chapter 3. Divergence Analyses

(Mm)
Σ(v) = c

Σ ` v = c
(Mt) t, σ ` Tid = t (Mv)

v 6= Tid σ(v) = c

t, σ ` v = c

(Tl)
(t, σ,Σ, ι)→ (σ′,Σ′) (Θ,Σ′, ι)→ (Θ′,Σ”)

({(t, σ)} ∪Θ,Σ, ι)→ ({(t, σ′)} ∪Θ′,Σ”)

(Ct) (t, σ,Σ, v = c)→ (σ \ [v 7→ c],Σ)

(As)
t, σ ` v′ = c

(t, σ,Σ, v = v′)→ (σ \ [v 7→ c],Σ)

(Ld)
t, σ ` vx = cx Σ ` cx = c

(t, σ,Σ, v =↓ vx)→ (σ \ [v 7→ c],Σ)

(St)
t, σ ` vx = cx t, σ ` v = c

(t, σ,Σ, ↑ vx = v)→ (σ,Σ \ [cx 7→ c])

(At)
t, σ ` vx = cx Σ ` cx = c c′ = c+ 1

(t, σ,Σ, v
a←− vx + 1)→ (σ \ [v 7→ c′],Σ \ [cx 7→ c′])

(Bp)
t, σ ` v2 = c2 t, σ ` v3 = c3 c1 = c2 ⊗ c3

(t, σ,Σ, v1 = v2 ⊕ v3)→ (σ \ [v1 7→ c1],Σ)

Table 3.5. The operational semantics of µ-Simd: data and arithmetic operations

keep the figure clean, we only show the label of the first instruction present in each
basic block. This program will be executed by many threads, in lock-step; however,
in this case, threads perform different amounts of work: the PE that has Tid = n will
visit n + 1 cells of the matrix. After a thread leaves the loop, it must wait for the
others. Processing resumes once all of them synchronize at label l15. At this point,
each thread sees a different value stored at σ(d), which has been incremented Tid + 1

times. Figure 3.4 (Right) illustrates divergence via a snapshot of the execution of the
program seen on the left. We assume that our running program contains four threads:
t0, . . . , t3. When visiting the branch at label l6 for the second time, the predicate p
is 0 for thread t0, and 1 for the other PEs. In face of this divergence, t0 is pushed
onto Π, the stack of waiting threads, while the other threads continue executing the
loop. When the branch is visited a third time, a new divergence will happen, this time
causing t1 to be stacked for later execution. This pattern will happen again with thread
t2, although we do not show it in Figure 3.4. Once t3 leaves the loop, all the threads

3.3. Gated Static Single Assignment Form 31

A µ-Simd program cfg

l7: p = d % 2
 bnz p, l11

l15: sync
 x = d − 1
 ↑x = s
 stop

l0: s = 0
 d = 0
 i = tid
 x = tid + 1
 L = c × x

l5: p = i − L
 bz p, l15

l9: x = ↓i
 s = s + x

l11: sync
 d = d + 1
 i = i + c
 jmp l5

Cycle Instruction t0 t1 t2 t3
14 l5 : p = i− L X X X X
15 l6 : bz p, l15 X X X X
16 l7 : p = d % 2 • X X X
17 l8 : bz p, l11 • X X X
18 l9 : x =↓ i • X X X
19 l10 : s = s+ x • X X X
20 l11 : sync • X X X
21 l12 : d = d+ 1 • X X X
22 l13 : i = i+ c • X X X
23 l14 : jmp l5 • X X X
24 l5 : p = i− L • X X X
25 l6 : bz p, l15 • X X X
26 l7 : p = d % 2 • • X X
27 l8 : bz p, l11 • • X X

. . .

44 l5 : bz p, l15 • • • X
45 l15 : sync X X X X
46 l16 : x = d− 1 X X X X

Execution trace. If a thread t executes
an instruction at a cycle j, we mark
the entry (t, j) with the symbol X.
Otherwise, we mark it with the symbol •

Figure 3.4. Execution trace of a µ-Simd program

synchronize via the sync instruction at label l15, and resume lock-step execution.

3.3 Gated Static Single Assignment Form

To better handle control dependency between program variables, we work with µ-
Simd programs in Gated Static Single Assignment form (GSA, see Ottenstein et al.
[1990]; Tu and Padua [1995]). Figure 3.5 shows the program in Figure 3.4 converted
to GSA form. This intermediate program representation differs from the well-known
Static Single Assignment proposed in Cytron et al. [1991] form because it augments
φ-functions with the predicates that control them. The GSA form uses three special
instructions: µ, γ and η functions, defined as follows:

• γ functions represent the joining point of different paths created by an “if-then-
else" branch in the source program. The instruction v = γ(p, o1, o2) denotes
v = o1 if p, and v = o2 if ¬p;

• µ functions, which only exist at loop headers, merge initial and loop-carried

32 Chapter 3. Divergence Analyses

l8: p1 = d1 % 2
 bnz p1, l12

l16: [s4, d3] = η[p0, (s1, d1)]
 x3 = d3 − 1
 ↑x3 = s4
 stop

l0: s0 = 0
 d0 = 0
 i0 = tid
 x0 = tid + 1
 L0 = c × x0

l5: [i1,s1,d1] = µ[(i0, s0 ,d0),(i2, s3, d2)]
 p0 = i1 − L0

 bz p0, l16

l10: x2 = ↓i1
 s2 = s1 + x2

l12: [s3] = γ(p1, s2, s1)
 d2 = d1 + 1
 i2 = i1 + c
 jmp l5

Figure 3.5. The program from Figure 3.4 converted into GSA form

values. The instruction v = µ(o1, o2) represents the assignment v = o1 in the first
iteration of the loop, and v = o2 in the others.

• η functions represent values that leave a loop. The instruction v = η(p, o) denotes
the value of o assigned in the last iteration of the loop controlled by predicate p.

We use the almost linear time algorithm demonstrated by Tu and Padua [1995] to
convert a program into GSA form. According to this algorithm, γ and η functions exist
at the post-dominator of the branch that controls them. A label lp post-dominates
another label l if, and only if, every path from l to the end of the program goes
through lp. Fung et al. [2007] shown that re-converging divergent PEs at the immediate
post-dominator of the divergent branch is nearly optimal with respect to maximizing
hardware utilization. Although Fung et al. discovered situations in which it is better
to do this re-convergence past lp, they are very rare. Thus, we assume that each γ or
η function encodes an implicit synchronization barrier, and omit the sync instruction
from labels where any of these functions is present. These special functions are placed
at the beginning of basic blocks. We use Appel’s parallel copy semantics (see Appel
[1998]) to evaluate these functions, and we denote these parallel copies using Hack’s

3.4. The Simple Divergence Analysis 33

matrix notation described in Hack and Goos [2006]. For instance, the µ assignment at
l5, in Figure 3.5 denotes two parallel copies: either we perform [i1, s1, d1] = (i0, s0, d0),
in case we are entering the loop for the first time, or we do [i1, s1, d1] = (i2, s3, d2)

otherwise.

We work on GSA-form programs because this intermediate representation allows us to
transform control dependency into data dependency when calculating uniform variables.
Given a program P , a variable v ∈ P is data dependent on a variable u ∈ P if either
P contains some assignment instruction P [l] that defines v and uses u, or v is data
dependent on some variable w that is data dependent on u. For instance, the instruction
p0 = i1 − L0 in Figure 3.5 causes p0 to be data dependent on i1 and L0. On the other
hand, a variable v is control dependent on u if u controls a branch whose outcome
determines the value of v. For instance, in Figure 3.4, s is assigned at l10 if, and
only if, the branch at l8 is taken. This last event depends on the predicate p; hence,
we say that s is control dependent on p. In the GSA-form program of Figure 3.5,
we have that variable s has been replaced by several new variables si, 0 ≤ i ≤ 4.
We model the old control dependence from s to p by the γ assignment at l12. The
instruction [s3] = γ(p1, s2, s1) tells that s3 is data dependent on s1, s2 and p1, the
predicate controlling the branch at l9.

3.4 The Simple Divergence Analysis

The simple divergence analysis reports if a variable v is uniform or divergent. We
say that a variable is uniform if, at compile time, it is know that all threads will see
the same value for this variable at run-time. A uniform variable meets the condition
in Definition 2. If, at compile time, it is not possible to define if the values seen by
all threads for a variable are the same, this variable is called a divergent variable.
For example, loading data from different memory positions into a same variable name
might not cause a data divergence, but that is not possible to define at compile time. In
cases like this the analysis is conservative and classifies these variables as divergent. In
order to find statically a conservative approximation of the set of uniform variables in
a program we solve the constraint system in Figure 3.6. In Figure 3.6 we let JvK denote
the abstract state associated to variable v. This abstract state can be an element of
the lattice > < U < D. This lattice is equipped with a meet operator ∧, such that
a ∧ a = a, a ∧ > = > ∧ a = a, a ∈ {U,D}, and U ∧D = D ∧ U = D. In Figure 3.6 we
use o1 ⊕ o2 for any binary operator, including addition and multiplication. Similarly,
we use ⊕o for any unary operator, including loads.

34 Chapter 3. Divergence Analyses

v = c× Tid [TidD] JvK = D v = ⊕o [AsgD] JvK = JoK

v
a←− vx + c [AtmD] JvK = D v = c [CntD] JvK = U

v = γ[p, o1, o2] [GamD]
JpK = U

JvK = Jo1K ∧ Jo2K
v = η[p, o] [EtaD]

JpK = U

JvK = JoK

v = o1 ⊕ o2 [GbzD] JvK = Jo1K ∧ Jo2K

v = γ[p, o1, o2] or v = η[p, o] [PdvD]
JpK = D

JvK = D

v = µ[o1, . . . , on] [RmuD] JvK = Jo1K ∧ Jo2K ∧ . . . ∧ JonK

Figure 3.6. Constraint system used to solve the simple divergence analysis

Definition 2 (Uniform variable). A variable v ∈ P is uniform if, and only if, for any
state (Θ,Σ,Π, P, pc), and any σi, σj ∈ Θ, we have that i, σi ` v = c and j, σj ` v = c.

Sparse Implementation. If we see the inference rules in Figure 3.6 as transfer func-
tions, then we can bind them directly to the nodes of the source program’s dependence
graph. Furthermore, none of these transfer functions is an identity function, as a quick
inspection of the rules in Figure 3.8 reveals. Therefore, our analysis admits a sparse
implementation, as defined by Choi et al. Choi et al. [1991]. In the words of Choi et al.,
sparse data-flow analyses are convenient in terms of space and time because (i) useless
information is not represented, and (ii) information is forwarded directly to where it is
needed. Because the lattice used in Figure 3.6 has height two, that constraint system
can be solved in two iterations of a unification-based algorithm. Moreover, if we ini-
tialize every variable’s abstract state to U , then the analysis admits a straightforward
solution based on graph reachability. As we see from the constraints, a variable v is
divergent if either it (i) is assigned a factor of Tid, as in Rule TidD; or (ii) it is defined
by an atomic instruction, as in Rule AtmD; or (iii) it is the left-hand side of an instruc-
tion that uses a divergent variable. From this observation, we let a data dependence
graph G that represents a program P be defined as follows: for each variable v ∈ P , let
nv be a vertex of G, and if P contains an instruction that defines variable v, and uses
variable u, then we add an edge from nu to nv. To find the divergent variables of P , we
start from ntid, plus the nodes that represent variables defined by atomic instructions,
and mark every variable that is reachable from this set of nodes.

3.4. The Simple Divergence Analysis 35

d0

d1

d2

µ

+

η

d3p0

L0

i1 −

c x0

tid +

i0

i2

0

×

µ

+

1

p1

Figure 3.7. The dependence graph created for the program in Figure 3.5.
We only show the program slice (Weiser [1981]) that creates variables p1 and d3.
Divergent variables are colored gray.

Moving on with our example, Figure 3.7 shows the data dependence graph created
for the program in Figure 3.5. Surprisingly, we notice that the instruction bnz p1, l12
cannot cause a divergence, even though the predicate p1 is data dependent on variable
d1, which is created inside a divergent loop. Indeed, variable d1 is not divergent,
although the variable p0 that controls the loop is. We prove the non-divergence of d1
by induction on the number of loop iterations. In the first iteration, every thread sees
d1 = d0 = 0. In subsequent iterations we have that d1 = d2. Assuming that at the n-th
iteration every thread still in the loop sees the same value of d1, then, the assignment
d2 = d1 + 1 concludes the induction step. Nevertheless, variable d is divergent outside
the loop. In this case, we have that d is renamed to d3 by the η-function at l16. This η-
function is data-dependent on p0, which is divergent. That is, once the PEs synchronize
at l16, they might have re-defined d1 a different number of times. Although this fact
cannot cause a divergence inside the loop, divergence might still happen outside it.

Theorem 1. Let P be a µ-Simd program, and v ∈ P . If JvK = U , then v is uniform.

Proof. The proof is a structural induction on the constraint rules used to derive
JvK = U :

• Rule CntD: by Rule Ct, in Table 3.2, we have that σi(v) = c for every i.

36 Chapter 3. Divergence Analyses

• Rule AsgD: if JoK = U , then by induction we have that σi(o) = c for every i. By
Rule As in Table 3.2 we have that σi(v) = σi(o) for every i.

• Rule GbzD: if Jo1K = U and Jo2K = U , by induction we have σi(o1) = c1 and
σi(o2) = c2 for every i. By Rule Bp in Table 3.2 we have that σi(v) = c1 ⊕ c2 for
every i.

• Rule GamD: if JpK = U , then by induction we have that σi(p) = c for every i.
By Rules Bt or Bf in Table 3.2 we have that all the PEs branch to the same
direction. Thus, by the definition of γ-function, v will be assigned the same value
oi for every thread. We then apply the induction hypothesis on oi.

• Rule EtaD: similar to the proof for Rule GamD.

3.5 Divergence Analysis with Affine Constraints

The previous analysis is not precise enough to point that the loop in the kernel
avgSquare (Figure 2.1) is non-divergent. In this section we fix that omission by equip-
ping the simple divergence analysis with the capacity to associate affine constraints
with variables. Let C be the lattice formed by the set of integers Z augmented with a
top element > and a bottom element ⊥, plus a meet operator ∧. Given {c1, c2} ⊂ Z,
Figure 3.6 defines the meet operator, and the abstract semantics of µ-Simd’s multipli-
cation and addition. Notice that in Figure 3.6 we do not consider >×a, for any a ∈ C.
This is safe because

1. we are working only with strict programs, i.e., programs in SSA form in which
every variable is defined before being used,

2. we process the instructions in a pre-order traversal of the program’s dominance
tree,

3. in a SSA form program, the definition of a variable always dominates every use
of it (see Budimlic et al. [2002]).

4. upon definition, as we shall see in Figure 3.8, every variable receives an abstract
value different from >.

3.5. Divergence Analysis with Affine Constraints 37

∧ > c1 ⊥
> > c1 ⊥
c2 c2 c1 ∧ c2 ⊥
⊥ ⊥ ⊥ ⊥

× 0 c1 ⊥
0 0 0 0

c2 0 c1 × c2 ⊥
⊥ 0 ⊥ ⊥

+ c1 ⊥
c2 c1 + c2 ⊥
⊥ ⊥ ⊥

Table 3.6. Abstract semantics of the meet multiplication and addition operators
used in the divergence analysis with affine constraints. We let ci ∈ Z

We let c1∧c2 = ⊥ if c1 6= c2, and c∧c = c otherwise. Similarly, we let c∧⊥ = ⊥∧c = ⊥.
Notice that C is the lattice normally used in constant propagation; hence, for a proof
of monotonicity, see [Aho et al., 2006, p.633-635]. We define A as the product lattice
C × C. If (a1, a2) are elements of A, we represent them using the notation a1Tid + a2.
We define the meet operator of A as follows:

(a1Tid + a2) ∧ (a′1Tid + a′2) = (a1 ∧ a′1)Tid + (a2 ∧ a′2)

We let the constraint variable JvK = a1Tid + a2 denote the abstract state associated
with variable v. We determine the set of divergent variables in a µ-Simd program P

via the constraint system seen in Figure 3.8. Initially we let JvK = (>,>) for every v
defined in the text of P , and JcK = (0, c) for each c ∈ Z.

Because our underlying lattice has height two, and we are using a product lattice with
two sets, the propagation of control flow information is guaranteed by Nielson et al.
[1999] to terminate in at most five iterations. Each iteration is linear on the size of
the dependence graph, which might be quadratic on the number of program variables,
if we allow γ and µ functions to have any number of parameters. Nevertheless, we
show in Chapter 5 that our analysis is linear in practice. As an example, Figure 3.9
illustrates the application of the new analysis on the dependence graph first seen in
Figure 3.7. Each node has been augmented with its abstract state, i.e., the results of
the divergence analysis with affine constraints. This abstract state tells if the variable
is uniform or not, as we prove in Theorem 2. Furthermore, if the PEs see v as the
same affine function of their thread identifiers, e.g., v = c1Tid + c2, c1, c2 ∈ Z, then we
say that v is affine.

Theorem 2. If JvK = 0Tid + a, a ∈ C, then v is uniform.

If JvK = cTid + a, a ∈ C, c ∈ Z, c 6= 0, then v is affine.

38 Chapter 3. Divergence Analyses

v = c× Tid [TidA] JvK = cTid + 0 v = v′ [AsgA] JvK = Jv′K

v
a←− vx + c [AtmA] JvK = ⊥Tid +⊥ v = c [CntA] JvK = 0Tid + c

v = ⊕o [GuzA]
JoK = 0Tid + a

JvK = 0Tid + (⊕a) v = ⊕o [GunA]
JoK = a1Tid + a2 a1 6= 0

JvK = ⊥Tid +⊥

v =↓ vx [LduA]
JvxK = 0Tid + a

JvK = 0Tid +⊥ v =↓ vx [LddA]
JvxK = a1Tid + a2, a1 6= 0

JvK = ⊥Tid +⊥

v = γ[p, o1, o2] [GamA]
JpK = 0Tid + a

JvK = Jo1K ∧ Jo2K
v = η[p, o] [EtaA]

JpK = 0Tid + a

JvK = JoK

v = o1 + o2 [SumA]
Jo1K = a1Tid + a′1 Jo2K = a2Tid + a′2

JvK = (a1 + a2)Tid + (a′1 + a′2)

v = o1 × o2 [MlvA]
Jo1K = a1Tid + a′1 Jo2K = a2Tid + a′2 a1, a2 6= 0

JvK = ⊥Tid +⊥

v = o1 × o2 [MlcA]
Jo1K = a1Tid + a′1 Jo2K = a2Tid + a′2 a1 × a2 = 0

JvK = (a1 × a′2 + a′1 × a2)Tid + (a′1 × a′2)

v = o1 ⊕ o2 [GbzA]
Jo1K = 0Tid + a′1 Jo2K = 0Tid + a′2

JvK = 0Tid + (a′1 ⊕ a′2)

v = o1 ⊕ o2 [GbnA]
Jo1K = a1Tid + a′1 Jo2K = a2Tid + a′2 a1, a2 6= 0

JvK = ⊥Tid +⊥

v = γ[p, o1, o2] or v = η[p, o] [PdvA]
JpK = aTid + a′, a 6= 0

JvK = ⊥Tid +⊥

v = µ[o1, . . . , on] [RmuA] JvK = Jo1K ∧ Jo2K ∧ . . . ∧ JonK

Figure 3.8. Constraint system used to solve the divergence analysis with affine
constraints of degree one

Proof. The proof is by structural induction on the rules in Figure 3.8. We will show a
few cases:

• CntA: a variable initialized with a constant is uniform, given Rule Ct in Ta-
ble 3.2. Rule CntA assigns the coefficient zero to the abstract state of this
variable.

• SumA: if the hypothesis holds by induction, then we have four cases to consider.
(i) If v1 and v2 are uniform, then Jv1K = 0Tid + a1, and Jv2K = 0Tid + a2, where
a1, a2 ∈ C. Thus, JvK = (0 + 0)Tid + (a1 + a2). By hypothesis, a1 and a2 have the
same value for every processing element, and so do a1 + a2. (ii) If v1 and v2 are
affine, then we have Jv1K = c1Tid + a1, and Jv2K = c2Tid + a2, where c1, c2 ∈ Z and
a1, a2 ∈ C. Thus, JvK = (c1 + c2)Tid + (a1 + a2), and the result holds for the same

3.5. Divergence Analysis with Affine Constraints 39

d0

d1

d2

µ

+

η

d3p0

L0

i1 −

c x0

tid +

i0

i2

0

×

µ

+

1

(0, 0)

(0, 1)

(1, 0)

(1, ⊥)

(1, ⊥)

(0, ⊥)

(1, 0)

(1, 1)

(⊥, ⊥)

(⊥, ⊥) (⊥, ⊥)

(0, 0)

(0, ⊥)

(0, ⊥)

p1 (0, ⊥)

Figure 3.9. Results of the divergence analysis with affine constraints for the
program slice first seen in Figure 3.7

reasons as in (i). (iii) It is possible that c1 = −c2; thus, c1 + c2 = 0. Because v1
and v2 are affine, each variable is made off a factor of Tid plus a constant parcel
a for every PE. The sum of these constant parcels, e.g., a1 + a2 is still constant
for every PE; hence, v is uniform. (iv) Finally, if one of the operands of the sum
is divergent, then v will be divergent, given our abstract sum operator defined in
Figure 3.6. These four cases abide by the semantics of addition, if we replace ⊕
by + in Rule Bp of Table 3.2.

• EtaA: we know that p is uniform; hence, by either Rule Bt or Bf in Tablea 3.2,
PEs reach the end of the loop at the same time. If o is uniform, it has the same
value for every PE at the end of the loop. If it is affine, it has the same Tid
coefficient at that moment. Thus, v is either uniform or affine, by Rule As from
Tablea 3.2.

• GamA: by hypothesis we know that JvK = 0Tid + a. Thus, by induction we
know that p is uniform. A branch on a uniform variable leads all the threads
on the same path, due to either Rule Bt or Bf in Tablea 3.2. There are then
three cases to consider, depending on Jo1Kand Jo2K. (i) If Jo1K = 0Tid + c1 and
Jo2K = 0Tid + c2, then by induction these two variables are uniform, and their
meet is also uniform. (ii) If Jo1K = cTid+c1 and Jo2K = cTid+c1, then by induction

40 Chapter 3. Divergence Analyses

these two variables are affine, with the same coefficient of Tid. Their meet is also
affine with a Tid coefficient equal to c. (iii) Otherwise, we conservatively assign
JvK the ⊥ coefficient as defined by the ∧ operator.

The other rules are similar.

The divergence analysis with affine constraints subsumes the simple divergence analysis
of Section 3.4, as Corollary 1 shows.

Corollary 1. If the simple divergence analysis says that variable v is uniform, then
the divergence analysis with affine constraints says that v is uniform.

Proof. Because both analyses use the same intermediate representation, they work on
the same program dependence graph. In Section 3.4’s analysis, v is uniform if it is a
function of only uniform variables, e.g., v = f(v1, . . . , vn), and every vi, 1 ≤ i ≤ n is
uniform. From Theorem 1, we know that if JviK = 0Tid + ci for every i, 1 ≤ i ≤ n, then
v is uniform.

Is there a case for higher-degree polynomials? Our analysis, as well as con-
stant propagation, are special cases of a more extensive framework which we call
the divergence analysis with polynomial constraints. In the general case, we let
JviK = anTnid + an−1Tn−1id + . . . + a1Tid + a0, where ai ∈ C, 1 ≤ i ≤ n. Addition and
multiplication of polynomials follow the usual algebraic rules. The rules in Figure 3.8
use polynomials of degree one. Constant propagation uses polynomials of degree zero.

There are situations in which polynomials of degree two let us find more affine variables.
The extra precision comes out of Theorem 3. Consider, for instance, the program in
Figure 3.10, which assigns to each processing element the task of initializing the rows
of a matrix m with one’s. The degree-one divergence analysis would conclude that
variables i0, i1 and i2 are divergent. However, the degree-two analysis finds that the
highest coefficient of any of these variables is zero; thus flagging them as affine functions
of Tid. In our benchmarks the degree-2 analysis marked 39 more variables, out of almost
10,000, as affine, when compared to the degree-1 analysis. We did not try higher level
as the gains for a second degree level where minimal.

Theorem 3. If JvK = 0T2id + a1Tid + a0, a1, a0 ∈ C, then v is affine function of Tid.

This proof is also a structural induction on the extended constraint rules for polynomials
of degree two. We omit it, because it is very similar to the proof of Theorem 2.

3.6. Chapter conclusion 41

void s(int* m, int n) {
 int i0 = n * tid, k = (tid + 1) * n;
 while (i1 = γ(i0, i2); i1 < k) {
 m[i1] = 1;
 i2 = i1 + 1;
 }
}

(a1, a0) (a2, a1, a0)

n (0,⊥) (0, 0,⊥)

i0 (⊥, 0) (0,⊥, 0)

i1 (⊥,⊥) (0,⊥,⊥)

i2 (⊥,⊥) (0,⊥,⊥)

k (⊥,⊥) (0,⊥,⊥)

Figure 3.10. An example where a higher degree polynomial improves the
precision of the simple affine analysis

3.6 Chapter conclusion

In this chapter we formalized divergence analysis with affine constraints, explaining how
it tracks variables relations to the Tid. To pave the path that leads to our divergence
analysis, we had to explain the notion of data and control dependence and how GSA
helps to transform control dependence into data dependence. We also proved that our
divergence analysis is correct based on the µ-Simd language.

We also demonstrated that previously proposed divergence analysis were capable to
classify variables only as uniform and divergent, as our Divergence Analysis with Affine
Constraints (Section 3.5) is capable to classify variables as: constant, uniform, constant
affine, affine and divergent. Constant and uniform variables hold the same value in all
threads. Although variables classified as constant affine and affine are know to hold
different values among the threads, at compile time is known a recipe, to recalculate
these variables bases on the Tid. At last, no information is known, at compile time, of
run-time values kept by divergent variables.

We will present in Chapter 4 a compiler optimization that uses information generated
by divergence analyses to write better GPU code and in Chapter 5 comparisons between
the results archived by such optimizations.

Chapter 4

Divergence Aware Register
Allocation

"Because of the central role that register allocation plays, both in speeding up the code
and in making other optimizations useful, it is one of the most important - if not the
most important - of the optimizations."

Hennessy and Patterson [2006][Appendix B; pg. 26]

Register allocation is the compiler task of finding storage to program variables. Differ-
ent from programming to a CPU, where the programmer only sees one type of memory
and the hardware is responsible to handle the cache memory, GPUs give different mem-
ory mappings to the programmer, each with different time access or visibility among
threads. Finding an optimal register allocation is a very hard task; thus, many com-
pilers resort to heuristics to deal with it. A very popular heuristics, in this case, is
graph coloring (see Chaitin [1982]; Hennessy and Patterson [2006]). In this Chapter
we introduce the divergence aware register allocator. This register allocator is able
to spill variables into different memories of the GPU, depending on the divergence
classification these spilled values.

Our optimizations rely on increasing data sharing among threads of the same warp,
making it possible to replace slow access to off-chip memory by the fast access of
the shared memory faster memory, held on-chip and shared among threads of a SM.
The GPU L1 cache memory and shared memory use the same structure and therefore
have the same access time. Lashgar and Baniasadi [2011] showed that a high cache

43

44 Chapter 4. Divergence Aware Register Allocation

miss rate due a memory access with bad locality can have more performance effect
than control divergence due the discrepancy of on-chip and off-chip memory access
time. Rogers et al. [2012] introduced a warp scheduler that takes into consideration
data stored in the cache memory to decide which warp to execute. His scheduler
obtained a 27% performance gain over the previous state of the art warp scheduler,
demonstrating the impact of better GPU cache memory usage. It also demonstrated
that a theoretical GPU with 8MB of cache per SM could boost the Instructions per
Clock of cache sensitive applications by factor up to 34 times, when compared to a
cache of 32KB, a cache size found in many real-world GPUs. Rogers et al. [2012]
work focus on maximizing re-usage of data stored on L1 cache among warps, as our
optimization propose to reduce the amount of cache used by a warp, as shared memory
access are not cached and we would use only one memory position to store common
values.

On this chapter we will give further details on GPUs memory hierarchy on Section 4.1,
and how conventional register allocator behave when GPU variables are spilled. Section
4.2 demonstrates how to adapt conventional register allocator to become divergence
aware. This allocator generates code that suits better the needs of the GPU memory
hierarchy.

4.1 GPU memory hierarchy

Similar to traditional register allocation, we are interested in finding storage area to
the values produced during program execution. However, in the context of graphics
processing units, we have different types of memory to consider:

• Registers: these are the fastest storage regions. A traditional GPU might have
a very large number of registers, for instance, one streaming multiprocessor (SM)
of a GTX 580 GPU has 32,768 registers. However, running 1,536 threads at the
same time, this SM can afford at most 20 registers to each thread in order to
achieve maximum hardware occupancy.

• Shared memory: this fast memory is addressable by each thread in flight, and
usually is used as a scratchpad cache. It must be used carefully, to avoid common
parallel hazards, such as data races. Henceforth we will assume that accessing
data in the shared memory is less than 3 times slower than in registers.

4.1. GPU memory hierarchy 45

• Local memory: this off-chip memory is private to each thread. Modern GPUs
provide a cache to the local memory, which is as fast as the shared memory. We
will assume that a cache miss is 100 times more expensive than a hit.

• Global memory: this memory is shared among all the threads in execution,
and is located in the same chip area as the local memory. The global memory
is also cached. We shall assume that it has the same access times as the local
memory.

As we have seen, the local and the global memories might benefit from a cache, which
uses the same access machinery as the shared memory. Usually this cache is small:
the GTX 580 has 64KB of fast memory, out of which 48KB are given to the shared
memory by default, and only 16KB are used as a cache. This cache area must be
further divided between global and local memories.

Given this hardware configuration, we see that the register allocator has the opportu-
nity to keep a single image per warp of any spilled value that is uniform. This opti-
mization is very beneficial in terms of time. According to Ryoo et al. [2008], the shared
memory has approximately the same latency as an on-chip register access, whereas a
non-cached access to the local memory is 200-300 times slower. A divergence aware
register allocator has a second advantage: it tends to improve memory locality. The
GPU’s cache space is severely limited, as it has to be partitioned among the massive
number of threads running concurrently. In fact, the capacity of the cache might be
much lower than the capacity of the register file itself (see Nickolls and Dally [2010]).
When moving non-divergent variables to the shared memory, we only need to store one
instance per warp, rather than one instance per thread. Thus, the divergence aware
register allocator may provide up to a 32-fold improvement in cache locality.

Figure 4.1 shows the instance of the register allocation problem that we obtain from the
kernel avgSquare in Figure 2.1. There are many ways to model register allocation. We
use an approach called linear scan (see Poletto and Sarkar [1999]). Thus, we linearize
the control flow graph of the program, finding an arbitrary ordering of basic blocks, in
such a way that each live range is seen as an interval. We use bars to represent the
live ranges of the variables. The live range of a variable is the collection of program
points where that variable is alive. A variable v is alive at a program point p if v is
used at a program point p′ that is reachable from p on the control flow graph, and v
is not redefined along this path. The colors of the bars represent the abstract state of
the variables, as determined by the divergence analysis.

46 Chapter 4. Divergence Aware Register Allocation

c m v

d
s

t0

N

i

t1

t2

t3

t4

: (0×Tid + c) : (c×Tid + ⊥) : (⊥×Tid + ⊥)

if i < N jp L12

d = 0

s = 0.0F

t0 = c * c

N = tid + t0

i = tid

t3 = s / d

t4 = tid*4

st.global t3 [v+t4]

L0

L1

L2

L3

L4

L5

L6 t1 = i * 4

ld.global [m+t1] t2

s = t2 + s

d = d + 1

i = i + c

jp L5

L7

L14

L13

L12

L8

L9

L10

L11

Figure 4.1. The register allocation problem for the kernel avgSquare in Fig-
ure 2.1

Current register allocators for graphics processing units place spilled values in the local
memory. Figure 4.2 illustrates this approach. In this example, we assume a warp with
two PEs, each one having access to three registers. Given this configuration, variables
s, d and N had to be spilled. Thus, each of these variables receive a slot in local
memory. The spilled data must be replicated once for each processing element, as each
of them has a private local memory area. Accessing data from the local memory is an
expensive operation, because this region is off-chip. To mitigate this problem, modern
GPUs provide a cache to the local and to the global memories. However, because the
number of threads using the cache is large – in the order of thousands – and the cache
itself is small, e.g., 16KBs, cache misses are common. In the next section we show
that it is possible to improve this situation considerably, by taking the results of the
divergence analysis into consideration.

4.2. Adapting a Traditional Register Allocator to be Divergence
Aware 47

Program

r0 r1 r2 r0 r1 r2 0 1 2 0 1 2 0 1 2

L0 d = 0 c m v

L1 st.local d [1] d d c m v

L2 s = 0.0F d d d d c m v

L3 st.local s [0] d s d s d d c m v

L4 ld.global [0] c d s d s s d s d c m v

L5 t0 = c * c d s c d s c s d s d c m v

L6 N = tid + t0 t0 s c t0 s c s d s d c m v

L7 st.local N [2] t0 s N t0 s N s d s d c m v

L8 i = tid t0 s N t0 s N s d N s d N c m v

L9 ld.local [2] N i s N i s N s d N s d N c m v

L10 if i < N jp L24 i s N i s N s d N s d N c m v

L11 t1 = i * 4 i s N i s N s d N s d N c m v

L12 ld.global [1] m i s t1 i s t1 s d N s d N c m v

L13 ld.global [m+t1] t2 i m t1 i m t1 s d N s d N c m v

L14 ld.local [0] s i m t2 i m t2 s d N s d N c m v

L15 s = t2 + s i s t2 i s t2 s d N s d N c m v

L16 st.local s [0] i s t2 i s t2 s d N s d N c m v

L17 ld.local [1] d i s t2 i s t2 s d N s d N c m v

L18 d = d + 1 i s d i s d s d N s d N c m v

L19 st.local d [1] i s d i s d s d N s d N c m v

L20 ld.global [0] c i s d i s d s d N s d N c m v

L21 i = i + c i s c i s c s d N s d N c m v

L22 jp L9 i s c i s c s d N s d N c m v

L23 ld.local [1] d i s c i s c s d N s d N c m v

L24 t3 = s / d i s d i s d s d N s d N c m v

L25 t4 = tid*4 t3 s d t3 s d s d N s d N c m v

L26 ld.global [2] v t3 t4 d t3 t4 d s d N s d N c m v
L27 st.global t3 [v+t4] t3 t4 v t3 t4 v s d N s d N c m v

globalregister file

PE0 PE1 PE0 PE1

local

Figure 4.2. Traditional register allocation, with spilled values placed in local
memory

4.2 Adapting a Traditional Register Allocator to be

Divergence Aware

To accommodate the notion of local memory in µ-Simd, we augment its syntax with
two instructions to manipulate this memory. An instruction such as v =⇓ vx denotes
a load of the value stored at local memory address vx into v. The instruction ⇑ vx = v

represents a store of v into the local memory address vx. The table in Figure 4.2 shows
how we replace loads and stores to the local memory by more efficient instructions. The
figure describes a re-writing system: we replace loads-to and stores-from local memory

48 Chapter 4. Divergence Aware Register Allocation

JvK Load sequence Store sequence

(i) (0, c) v = c ∅

(ii) (0,⊥) v =↓ vx ↑ vx = v

(iii) (c1, c2) v = c1Tid + c2 ∅

(iv) (c,⊥) t =↓ vx; v = cTid + t t = vx − cTid; ↑ vx = v

Rewriting rules that replace loads (v =⇓ vx) and stores (⇑ vx = v) to local memory with
faster instructions. The arrows ↑, ↓ represent accesses to shared memory.

Figure 4.3. Using faster memory for spills

by the sequences in the table, whenever the variable has the abstract state in the second
column. In addition to moving uniform values to shared memory, we propose a form
of Briggs’s style rematerialization Briggs et al. [1992] that suits SIMD machines. The
lattice that we use in Figure 3.8 is equivalent to the lattice used by Briggs et al. in
their rematerialization algorithm. Thus, we can naturally perform rematerialization
for an uniform variable which has statically known-values, i.e., JvxK = (0Tid, c), as in
line (i) of Figure 4.2 or JvxK = (c1Tid, c2), as in line (iii). For the other uniform or
affine variables we can move the location of values from the local memory to the shared
memory, as we show in lines (ii) and (iv).

Figure 4.4 shows the code that we generate for the program in Figure 4.1. The most
apparent departure from the allocation given in Figure 4.2 is the fact that we have
moved to shared memory some information that was originally placed in local memory.
Variable d has been shared among different threads. Notice how the stores at labels
L1 and L19 in Figure 4.2 have been replaced by stores to shared memory in labels L1
and L20 of Figure 4.4. Similar changes happened to the instructions that load d from
local memory in Figure 4.2. Variable N has also been shared; however, contrary to
d, N is not uniform, but affine. If the spilled variable v is an affine expression of the
thread identifier, then its abstract state is given by JvK = cTid+x, where c is a constant
known statically, and x is only known at execution time. In order to implement variable
sharing in this case, we must extract x, the unknown part of v, and store it in shared
memory. Whenever necessary to reload v, we must get back from shared memory its
dynamic component x, and then rebuild v’s value from the thread identifier and x. In
line L7 we have stored N’s dynamic component. In lines L9 and L10 we rebuild the value
of N, an action that re-writes the load from local memory seen at line L9 of Figure 4.2.

4.2. Adapting a Traditional Register Allocator to be Divergence
Aware 49

Program

PE0 PE1

r0 r1 r2 r0 r1 r2 0 0 0 1 0 1 2

L0 d = 0 c m v

L1 st.shared d [0] d d c m v

L2 s = 0.0F d d d c m v

L3 st.local s [0] d s d s d c m v

L4 ld.global [0] c d s d s s s d c m v

L5 t0 = c * c d s c d s c s s d c m v

L6 N = tid + t0 t0 s c t0 s c s s d c m v

L7 st.shared t0 [1] t0 s N t0 s N s s d c m v

L8 i = tid t0 s N t0 s N s s d t0 c m v

L9 ld.shared [1] t0 i s N i s N s s d t0 c m v

L10 N = tid + t0 i s t0 i s t0 s s d t0 c m v

L11 if i < N jp L24 i s N i s N s s d t0 c m v

L12 t1 = i * 4 i s N i s N s s d t0 c m v

L13 ld.global [1] m i s t1 i s t1 s s d t0 c m v

L14 ld.global [m+t1] t2 i m t1 i m t1 s s d t0 c m v

L15 ld.local [0] s i m t2 i m t2 s s d t0 c m v

L16 s = t2 + s i s t2 i s t2 s s d t0 c m v

L17 st.local s [0] i s t2 i s t2 s s d t0 c m v

L18 ld.shared [0] d i s t2 i s t2 s s d t0 c m v

L19 d = d + 1 i s d i s d s s d t0 c m v

L20 st.shared d [0] i s d i s d s s d t0 c m v

L21 ld.global [0] c i s d i s d s s d t0 c m v

L22 i = i + c i s c i s c s s d t0 c m v

L23 jp L9 i s c i s c s s d t0 c m v

L24 ld.shared [0] d i s c i s c s s d t0 c m v

L25 t3 = s / d i s d i s d s s d t0 c m v

L26 t4 = tid*4 t3 s d t3 s d s s d t0 c m v

L27 ld.global [2] v t3 t4 d t3 t4 d s s d t0 c m v
L28 st.global t3 [v+t4] t3 t4 v t3 t4 v s s d t0 c m v

global

PE0 PE1

register file local shared

Figure 4.4. Register allocation with variable sharing.

4.2.1 Handling multiple warps

Graphics processing units are not exclusively SIMD machines. Rather, they combine
into a single card many SIMD units, or warps. Our divergence analysis finds uniform
variables per warp. Therefore, in order to implement the divergence aware register
allocator, we must partition the shared memory among all the warps that might run
simultaneously. The main advantage of this partitioning is that we do not need to
synchronize accesses to the shared memory among different warps. On the other hand,
the register allocator requires more space in the shared memory. That is, if the allocator
finds out that a given program demands N bytes to accommodate the spilled values,
and the target GPU runs up to M warps simultaneously, then this allocator will need

50 Chapter 4. Divergence Aware Register Allocation

M ×N bytes in shared memory.

We have presented possible optimizations to the register allocation process based
ondata divergence information. In the next chapter we will present experimental results
comparing our optimizations to a standard register allocator and in chapter 6 we will
discuss some implementations limitations and how our analysis and optimizations can
be improved.

4.3 Chapter conclusion

This chapter demonstrated the process of register allocation, that selects storage for
program variables. A traditional GPU register allocator stores into the local memory
variables that do not fit on registers. The local memory has a very high access latency
and each thread has its own local memory mapping, so one memory position is used for
each thread.

Divergence aware register allocators use divergence analysis to better use GPUs memory
hierarchy. Whenever a variable is not divergent they can be stored in the shared
memory, that is much faster than the local memory. When store in local memory
a variable only uses one memory position is used for all threads in a warp.

The next chapter will expose experimental results that prove that divergence aware
register allocator can generate better code to GPUs than a conventional register allo-
cator.

Chapter 5

Experiments

In this chapter we show empirically that, in the context of a GPU, a divergent aware
register allocator produces code that outperforms the code produced by a traditional
register allocator. In Section 5.1 we describe the hardware and applications used in our
experiments, in Section 5.2 we describe the programs used in our tests and in Section
5.3 we evaluate our ideas in terms of the run-time of the code that we produce, the
time that our analysis takes to run, and the precision of this analysis.

5.1 Tests

5.1.1 Hardware

We have implemented our divergence analysis plus the divergence aware register allo-
cator on top of the Ocelot open source compiler, revision 1560 of November/2011. We
run Ocelot on a quad-core AMD Phenom II 925 processor. Each core has a 2.8GHz
CPU clock. This CPU also hosts the GPU that we use to run the kernels: a NVIDIA
GTX 570 (Fermi) graphics processing unit.

5.2 Benchmarks

We have successfully tested our divergence analysis in all the 177 different CUDA
kernels that we took from the Rodinia (see Che et al. [2009]) and NVIDIA SDK 3.1
benchmark suites. These benchmarks give us 31,487 PTX instructions. We chose to
report numbers to the 40 kernels with the longest running times that our divergence
aware register allocator produces. The 40 slowest kernels give us over 7,000 PTX

51

52 Chapter 5. Experiments

instructions and 9,000 variables – in the GSA-form programs – to analyze. We have
more variables than instructions because of the definitions produced by the η, γ and µ
functions used to create the GSA intermediate program representation.

5.3 Results

Run-time of the divergence analysis with affine constraints: Figure 5.1 com-
pares the run-time of the two divergence analyses seen in Sections 3.4 and 3.5. On the
average, the divergence analysis with affine constraints of degree two is 1.39x slower,
even though its lattice of abstract values has height 9, and the lattice used in the sim-
ple analysis has height two. The affine analysis of Section 3.5 took 58.6 msecs to go
over all the 177 kernels. We measure time in CPU ticks, as given by the rdtsc x86
instruction. We have plotted the number of variables per program, considering the 40
chosen kernels only. There is a strong correlation between run-time and number of
variables: the coefficient of determination for the simple analysis is 0.957, and for the
affine analysis is 0.936. These correlations indicate that in practice both analyses are
linear on the number of variables in the target program. Figure 5.2 demonstrates how
the our analysis execution time is linear with the number of variables in a kernel, by
demonstrating that the averate time spent per kernel variable is almost constant.

5.3.
R

esu
lt

s
53

10

100

1000

10000

100000
Kernel X [Kernel Size and Analyse time]

Affine analysis
Time in 10 x μsec

Simple analysis
Time in 10 x μsec

Number of
Instructions

Number of
Variables

0

1

2

3

4

5

6

7

8

9
Analysis time comparison

Affine analysis time / Simple analysis time

Figure 5.1. Points in the X-axis are kernels, sorted by the number of vari-
ables they contain. Top: Time, in microseconds, to run the divergent analyses
compared with the number of variables and instructions per kernel in GSA-form.
Bottom: Analyses execution time ratio, given affine analysis over time of simple
analysis.

54
C

h
a
pt

er
5.

E
x
per

im
en

t
s

0

100

200

300

400

500

600

700
Affine analysis execution time compared to number of variables in each kernel

Number of variables per each kernel

Time to run Affine Analysis (μsec)

Average time per variable (0.01 μsec)
(Analysis time X 100) / Number of variables

Figure 5.2. The affine analysis execution time grows linearly with the number
of variables on the kernel. The two biggest kernels have their variable count and
execution time out of the chart, but the ratio of analysis time per number of
variables remains low.

5.3. Results 55

Precision of the divergence analysis with affine constraints: Figure 5.5 com-
pares the precision of the simple divergent analysis from Section 3.4, and the analysis
with affine constraints from Section 3.5. The simple analysis reports that 63.78% of the
variables are divergent, while the affine analysis gives 58.81%. However, whereas the
simple divergence analysis only marks a variable as uniform or not, the affine analysis
can find that a non-trivial proportion of the divergent variables are affine functions of
some thread identifier. Figure 5.3: Variables distribution among abstract states in-
ferred by the divergence analysis with affine constraints of degree two for all analyzed
kernels. In that figure, we let a2T2id + a1Tid + a0 = (a2, a1, a0). Even though we report
that 58.81% of the variables are divergent, i.e., have a1 6= 0, 24.84% of them are affine
functions of some thread identifier.

(⊥, ⊥, ⊥)
4697

(0, ⊥, ⊥)
59

(0, c, ⊥)
791

(0, c, c)
217

(0, 0, ⊥)
3729

(0, 0, c)
308

(⊥, ⊥, ⊥)
4697

(0, ⊥, ⊥)
59

(0, c, ⊥)
791

(0, c, c)
217

(0, 0, ⊥)
3729

(0, 0, c)
308

0 1000 2000 3000 4000 5000
Number of variables

Variables distribution among affine states of degree 2
Number of variables per state

infered by the affine analysis of degree 2

Figure 5.3. Variables count by abstract state set, as inferred by the divergence
analysis with affine constraints of degree two.

Comparing different degrees of polynomials: An important question is: which
polynomial degree to use in the divergence analysis with affine constraints? We have
found that the affine analysis of degree two adds negligible improvement over the anal-
ysis of degree one. The latter misses 39 uniform variables that the former captures

56 Chapter 5. Experiments

in almost 10,000 variables. We have not found any situation in which higher degrees
would improve on the second-degree analysis. Given that the run-time difference be-
tween the first and second degree analyses is insignificant, we have adopted the latter
as the default in our implementation. Figure 5.4 shows the variables distribution per
affine state on each of the analyzed kernels.

13
7

12
13

17
11

8
18

9
39

13
18
19

19
19

12
14

14
35

15
22

34
24

34
95

44
97

100
21
21

67
39

108
67

36
35

85
115

60
71
71

50
53
82
84

265
182

1948
4235

0
6

5
16

2
5

1
3

1
0

15
3
3

4
4

8
9

18
13

27
3

4
5

10
0

4
0
0

6
8

12
7

0
17

6
12

38
8

14
1
1

132
132

1
1

37
51

475
1128

0
0

0
0

0
1

0
1

0
0

9
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
0

0
0

0
0

0
0

0
0

0
0

0
0
0

4
4

0
0

0
0

36
55

0
4

3
0

10
14

24
12

28
0

3
20
20

24
24

28
29

24
9

17
34

24
55

50
0

48
0
0

74
73

26
61

0
31

90
106

36
103

156
161
165

63
63

267
272

393
765

1170
4579

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

rodinia1.0 - nw - maximum
sdk3.1 - vectorAdd - VecAdd

rodinia1.0 - bfs - Kernel2
rodinia1.0 - cfd - cuda_initialize_variables

sdk3.1 - transposeNew - copy1
sdk3.1 - transpose - transpose_naive

sdk3.1 - dct8x8 - CUDAkernelQuantizationShort
sdk3.1 - transposeNew - transposeNaive

sdk3.1 - dct8x8 - CUDAkernelQuantizationFloat
rodinia1.0 - leukocyte - heaviside

rodinia1.0 - kmeans - invert_mapping
sdk3.1 - transposeNew - transposeFineGrained

sdk3.1 - transposeNew - transposeCoarseGrained
sdk3.1 - transposeNew - transposeCoalesced

sdk3.1 - transposeNew - transposeNoBankConflicts
sdk3.1 - transpose - transpose

rodinia1.0 - bfs - Kernel
rodinia1.0 - cfd - cuda_compute_step_factor

sdk3.1 - clock - timedReduction
rodinia1.0 - cfd - cuda_time_step

sdk3.1 - transposeNew - copySharedMem
sdk3.1 - transposeNew - transposeDiagonal

rodinia1.0 - backprop - bpnn_adjust_weights_cuda
sdk3.1 - MersenneTwister - BoxMullerGPU

sdk3.1 - dct8x8 - CUDAsubroutineInplaceDCTvector
rodinia1.0 - backprop - bpnn_layerforward_CUDA

sdk3.1 - dct8x8 - CUDAsubroutineInplaceIDCTvector
sdk3.1 - dct8x8 - CUDAshortInplaceIDCT

sdk3.1 - dct8x8 - CUDAkernel1DCT
sdk3.1 - dct8x8 - CUDAkernel1IDCT
rodinia1.0 - kmeans - kmeansPoint

rodinia1.0 - srad - srad_cuda_2
sdk3.1 - dct8x8 - CUDAshortInplaceDCT
sdk3.1 - SobolQRNG - sobolGPU_kernel

sdk3.1 - matrixMul - matrixMul
sdk3.1 - MersenneTwister - RandomGPU

sdk3.1 - scalarProd - scalarProdGPU
rodinia1.0 - hotspot - calculate_temp

rodinia1.0 - srad - srad_cuda_1
sdk3.1 - dct8x8 - CUDAkernel2DCT

sdk3.1 - dct8x8 - CUDAkernel2IDCT
rodinia1.0 - nw - needle_cuda_shared_1
rodinia1.0 - nw - needle_cuda_shared_2

sdk3.1 - dct8x8 - CUDAkernelShortIDCT
sdk3.1 - dct8x8 - CUDAkernelShortDCT
rodinia1.0 - leukocyte - IMGVF_kernel
rodinia1.0 - cfd - cuda_compute_flux

rodinia1.0 - heartwall - kernel
TOTAL

Percentual of variables per state.
Labels with number of variables.

Kernel variables distribution among affine states
Using second degree affinity equations

(0, 0, ?) (0, c, ?)
(0, B, ?) (B, ?, ?)

Figure 5.4. Variables affine classification per kernel. Vertical bars name kernels,
horizontal bar distribution among affine states, up to 100%.

5.3. Results 57

0% 10% 20% 30% 40% 50% 60% 70% 80%

sdk3.1 - lineOfSight - computeVisibilities_kernel
sdk3.1 - transpose - transpose_naive

rodinia_1.0 - kmeans - invert_mapping
sdk3.1 - transposeNew - transposeNaive

sdk3.1 - dct8x8 - CUDAkernelQuantizationFloat
sdk3.1 - transposeNew - transposeFineGrained

sdk3.1 - transposeNew - transposeCoarseGrained
sdk3.1 - transposeNew - transposeNoBankConflicts

sdk3.1 - transposeNew - transposeCoalesced
sdk3.1 - recursiveGaussian - d_transpose

sdk3.1 - transpose - transpose
rodinia_1.0 - bfs - Kernel

rodinia_1.0 - cfd - cuda_compute_step_factor
sdk3.1 - transposeNew - copySharedMem

rodinia_1.0 - cfd - cuda_time_step
sdk3.1 - transposeNew - transposeDiagonal

sdk3.1 - lineOfSight - computeAngles_kernel
rodinia_1.0 - backprop - bpnn_adjust_weights_cuda

sdk3.1 - smokeParticles - integrateD
sdk3.1 - MersenneTwister - BoxMullerGPU

rodinia_1.0 - backprop - bpnn_layerforward_CUDA
sdk3.1 - dct8x8 - CUDAkernel1DCT

sdk3.1 - dct8x8 - CUDAkernel1IDCT
rodinia_1.0 - kmeans - kmeansPoint

rodinia_1.0 - srad - srad_cuda_2
sdk3.1 - BlackScholes - BlackScholesGPU

sdk3.1 - matrixMul - matrixMul
sdk3.1 - MersenneTwister - RandomGPU

rodinia_1.0 - hotspot - calculate_temp
rodinia_1.0 - srad - srad_cuda_1

sdk3.1 - dct8x8 - CUDAkernel2DCT
sdk3.1 - dct8x8 - CUDAkernel2IDCT

rodinia_1.0 - nw - needle_cuda_shared_1
rodinia_1.0 - nw - needle_cuda_shared_2

sdk3.1 - dct8x8 - CUDAkernelShortIDCT
sdk3.1 - dct8x8 - CUDAkernelShortDCT

sdk3.1 - recursiveGaussian - d_recursiveGaussian_rgba
sdk3.1 - concurrentKernels - mykernel
rodinia_1.0 - cfd - cuda_compute_flux

rodinia_1.0 - heartwall - kernel

Percentage of divergent variables per kernel

Simple Divergence Analysis

Divergence Analyses with Affine Constraints

Figure 5.5. Percentage of divergent variables reported by our divergence analysis
with affine constraints and the divergence analysis of Coutinho et al. Coutinho
et al. [2011]. Kernels are sorted by the number of variables, as seen in Figure 5.1.

58 Chapter 5. Experiments

Register allocation: Figure 5.6 compares three execution time per kernel different
implementations of divergence aware register allocators. We use, as a baseline, the
linear scan register allocator Poletto and Sarkar [1999] that is publicly available in the
Ocelot distribution. All the other allocators are implemented as re-written patterns
that change the spill code inserted by linear scan according to the rules in Figure 4.2.
All the four allocators use the same policy to assign variables to registers and to
compute spilling costs. The divergence aware allocators are: Divergence Allocator:
which moves to shared memory the variables that the simple divergence analysis of
Section 3.4 marks as uniform. This allocator can only use the second rule in Figure 4.2;
Rematerialization Allocator: Which does not use shared memory, but tries to
eliminate stores and replace loads by rematerializations of spilled values that are affine
functions of Tid with known constants. This allocator uses only the first and third rules
in Figure 4.2; Affine Allocator: Which uses all the four rules in Figure 4.2 guided by
the analysis of Section 3.5 with polynomials of degree two.

We report time for each kernel individually. Although kernels run in the GPU, we
measure their run-time in CPU ticks, by synchronizing the start and end of each kernel
call with the CPU, and recompute the time in seconds. We have run each benchmark
15 times and the variance is negligible. We take about one and a half hours to execute
the 40 benchmarks 15 times on our GTX 570 GPU. Linear Scan and Rematerialization
register allocators use nine registers, whereas Divergent and Affine use eight, because
these two allocators must reserve one register to load the base addresses that each
warp receives in shared memory to place spill code. Each kernel has access to 48KB of
shared memory, and 16KB of cache for the local memory. In this experiments we are
reserving the 16KB cache to local memory only, i.e., the kernels have been compiled
with the option -dlcm=cg; thus, loads from global memory are not cached. On the
average, all the divergence aware register allocators improve on Ocelot’s original linear
scan. The code produced by Rematerialization register allocator, which only improves
spilling via rematerialization, is 7.31% faster than the code produced by linear scan.
Divergent register allocator gives a speedup of 12.75%, and Affine register allocator
gives a speedup of 29.70%. These numbers are the geometric mean over the results
reported in Figure 5.6. There are situations when both, Divergent and Affine register
allocators produce code that is slower than the original linear scan algorithm. This
fact happens because (i) the local memory has access to a 16KB cache that is as fast
as shared memory; (ii) loads and stores according to rule four of Figure 4.2 take three
instructions each: a type conversion, a multiply add, and the memory access itself; and
(iii) Divergent and Affine register allocators insert into the kernel some setup code to

5.3. Results 59

delimit the storage area that is given to each warp.

30% 40% 50% 60% 70% 80% 90% 100% 110%

rodinia_1.0 - backprop - bpnn_adjust_weights_cuda

rodinia_1.0 - backprop - bpnn_layerforward_CUDA

rodinia_1.0 - bfs - Kernel

rodinia_1.0 - bfs - Kernel2

rodinia_1.0 - cfd - cuda_compute_flux

rodinia_1.0 - cfd - cuda_compute_step_factor

rodinia_1.0 - cfd - cuda_initialize_variables

rodinia_1.0 - cfd - cuda_time_step

rodinia_1.0 - heartwall - kernel

rodinia_1.0 - hotspot - calculate_temp

rodinia_1.0 - kmeans - invert_mapping

rodinia_1.0 - kmeans - kmeansPoint

rodinia_1.0 - nw - needle_cuda_shared_1

rodinia_1.0 - nw - needle_cuda_shared_2

rodinia_1.0 - srad - srad_cuda_1

rodinia_1.0 - srad - srad_cuda_2

sdk3.1 - BlackScholes - BlackScholesGPU

sdk3.1 - clock - timedReduction

sdk3.1 - concurrentKernels - mykernel

sdk3.1 - dct8x8 - CUDAkernel1DCT

sdk3.1 - dct8x8 - CUDAkernel1IDCT

sdk3.1 - dct8x8 - CUDAkernel2DCT

sdk3.1 - dct8x8 - CUDAkernel2IDCT

sdk3.1 - dct8x8 - CUDAkernelQuantizationFloat

sdk3.1 - dct8x8 - CUDAkernelQuantizationShort

sdk3.1 - dct8x8 - CUDAkernelShortDCT

sdk3.1 - dct8x8 - CUDAkernelShortIDCT

sdk3.1 - lineOfSight - computeAngles_kernel

sdk3.1 - lineOfSight - computeVisibilities_kernel

sdk3.1 - MersenneTwister - BoxMullerGPU

sdk3.1 - MersenneTwister - RandomGPU

sdk3.1 - smokeParticles - integrateD

sdk3.1 - transposeNew - copySharedMem

sdk3.1 - transposeNew - transposeCoalesced

sdk3.1 - transposeNew - transposeCoarseGrained

sdk3.1 - transposeNew - transposeDiagonal

sdk3.1 - transposeNew - transposeFineGrained

sdk3.1 - transposeNew - transposeNaive

sdk3.1 - transposeNew - transposeNoBankConflicts

sdk3.1 - vectorAdd - VecAdd

Geometric Mean

Kernel execution time compared to Linear Scan
Reason (new allocator time / linear scan time)

Lower is better

Kernels execution time comparison

Affine Register Allocator

Divergent Register Allocator

Rematerialization Register Allocator

Figure 5.6. Relative speedup of different register allocators. Every bar is
normalized to the time given by Ocelot’s linear scan register allocator, that is,
bars that are shorter than 100% represent speedups, bar that are larger represent
slowdown.

60 Chapter 5. Experiments

(⊥,⊥)↑
564

(⊥,⊥)↓
1828

(c,⊥)↑
172

(c,⊥)↓
398

(0,⊥)↑
309

(0,⊥)↓
872

(c, c)↓
235

564

1828

172

398

309

872

235

0 500 1000 1500 2000
Number of instructions

Spill code rewriting rules distribution among affine states
Number of rewriting rules generated by the affine register allocator

using the same spill policy of linearscan

Figure 5.7. Distribution of the rewriting rules given in Figure 4.2. We omit the
first coefficient of the tuples, as they are zero.

Figure 5.7 shows how many times each rewriting pattern in Figure 4.2 has been used
during register allocation by Affine register allocator. We use ⇓ and ⇑ to denote loads-
from and stores-to local memory; similarly, ↓ and ↑ represent loads-from and stores-to
shared memory. The tuples (0,⊥), (c1, c2) and (c,⊥) refer to the second, third and
fourth lines of Figure 4.2, respectively. We did not find occasion to rematerialize
constants; thus, the rules in the first line of Figure 4.2 have not been used. An entry
such as (c,⊥) ↓ indicates that 877 loads from local memory have been replaced by
loads from shared memory plus multiply-add instructions, according to the fourth
line, first column of Figure 4.2. As we see in Figure 5.7, Affine register allocator has
been able to replace almost half of all the spill code with faster instruction sequences,
closely following the proportion of abstract states found by the divergence analysis.
Interestingly, many loop limits have the abstract state (0, c1, c2), c1, c2 ∈ Z. These
variables are good spill candidates, as they have long live ranges, and tend to be only
used once in the program code. Both Rematerialization and Affine register allocators
could take benefit from the affine analysis to rematerialize these variables whenever
necessary. Figure 5.8 (iii) shows the proportion of spill code inserted by Affine register
allocator in each benchmark.

5.3. Results 61

4

28

88

29

19

114

2

98

16

19

10

4

29

18

78

0

33

0

0

5

109

20

3

1

1

1

48

61

0

4

118

16

5

11

16

3

5

1

16

793

0

41

9

20

6

16

0

4

12

4

10

0

20

3

300

0

5

6

4

3

16

6

0

6

6

10

43

53

0

6

16

12

5

0

12

10

15

17

12

121

0

0

0

16

10

0

0

0

0

11

7

0

16

2

142

0

0

0

1

0

0

10

0

1

1

1

61

59

0

0

0

0

3

7

0

4

0

5

0

31

0

10

0

6

4

3

3

11

5

3

3

0

6

0

101

0

5

0

0

0

8

5

0

0

0

0

13

14

0

4

3

5

0

0

5

0

0

0

5

0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

rodinia_1.0 - bfs - Kernel
rodinia_1.0 - hotspot - calculate_temp

sdk3.1 - dct8x8 - CUDAkernelShortIDCT
sdk3.1 - smokeParticles - integrateD
sdk3.1 - dct8x8 - CUDAkernel1IDCT

sdk3.1 - recursiveGaussian - d_transpose
sdk3.1 - dct8x8 - CUDAkernelQuantizationFloat

sdk3.1 - dct8x8 - CUDAkernelShortDCT
rodinia_1.0 - backprop - bpnn_layerforward_CUDA

sdk3.1 - dct8x8 - CUDAkernel2IDCT
rodinia_1.0 - backprop - bpnn_adjust_weights_cuda

sdk3.1 - lineOfSight - computeVisibilities_kernel
sdk3.1 - matrixMul - matrixMul

sdk3.1 - lineOfSight - computeAngles_kernel
rodinia_1.0 - heartwall - kernel

rodinia_1.0 - kmeans - invert_mapping
rodinia_1.0 - srad - srad_cuda_2

sdk3.1 - transposeNew - transposeFineGrained
sdk3.1 - transposeNew - transposeCoarseGrained

sdk3.1 - transposeNew - copySharedMem
rodinia_1.0 - srad - srad_cuda_1

sdk3.1 - dct8x8 - CUDAkernel1DCT
sdk3.1 - transposeNew - transposeNaive

sdk3.1 - transposeNew - transposeNoBankConflicts
sdk3.1 - transposeNew - transposeCoalesced

sdk3.1 - transposeNew - transposeDiagonal
rodinia_1.0 - nw - needle_cuda_shared_1
rodinia_1.0 - nw - needle_cuda_shared_2

sdk3.1 - transpose - transpose_naive
sdk3.1 - transpose - transpose

sdk3.1 - dct8x8 - CUDAkernel2DCT
sdk3.1 - recursiveGaussian - d_recursiveGaussian_rgba

rodinia_1.0 - cfd - cuda_compute_step_factor
sdk3.1 - MersenneTwister - BoxMullerGPU

sdk3.1 - concurrentKernels - mykernel
sdk3.1 - MersenneTwister - RandomGPU

rodinia_1.0 - cfd - cuda_time_step
rodinia_1.0 - kmeans - kmeansPoint

sdk3.1 - BlackScholes - BlackScholesGPU
rodinia_1.0 - cfd - cuda_compute_flux

Percentage of static load operations per affine state
for each kernel

Static load operations of each affine state per kernel

(⊥,⊥)↓ (0,⊥)↓
(c,c)↓ (c,⊥)↓

No spills

No spills

Figure 5.8. Distribution of the rewriting rules given in Figure 4.2. We omit the
first coefficient of the tuples, as they are zero.

62 Chapter 5. Experiments

5.4 Chapter conclusion

We demonstrated that our divergence analysis and divergence aware register allocator
improve the state-of-the-art code generators that target GPUs. Although we have
been able to achieve very good performance numbers, our work still offers room for
improvement. In the next chapter we will discuss some limitations of our allocator,
and will provide pointers for future directions for this research.

Chapter 6

Conclusion

The use of GPUs for general purpose computing is still recent and there is still many
possible improvements to make hardware and software more efficient. Our techniques
rely on well-known methods, such as Rematerialization (Briggs et al. [1992]) and con-
stant propagation (Callahan et al. [1986]). We have combined these classic optimiza-
tions to design what is probably the most advanced register allocator available to
GPUs.

Divergence analysis helps developers and compilers to better understand the behavior
of programs that execute on SIMD environments. We discussed two different implemen-
tations of this analysis. The first, seen in Section 3.4, has a simple and very efficient
implementation. The second, seen in Section 3.5, is more elaborated, and provides
better precision.

We demonstrated that divergence aware register allocator can better use GPUs com-
puting power and memory hierarchy in a scenario where not all variables fit in register
and spill code must be added. We limited our tests to a environment with NVIDIA
GPUs, but we believe that these techniques will work in any SIMD-like environment
with shared memory.

As a result of this research the following papers were published:

• Spill Code Placement for SIMD Machines
Best paper award
Sampaio, D. N., Gedeon, E., Pereira, F. M. Q., Collange, S.
16th Brazilian Symposium, SBLP 2012, Natal, Brazil, September 23-28, 2012
Programming Languages, pp 12-26, Springer Berlin Heidelberg.

63

64 Chapter 6. Conclusion

• Divergence Analysis with Affine Constraints
Sampaio, D. N., Martins, R., Collange, S., Pereira, F. M. Q.
24th International Symposium on Computer Architecture and High
Performance Computing, New York City, USA
SBAC-PAD 2012, pp 67-74.

6.1 Limitations

Although our divergence analysis with affine constraints gives a more precise result
than any other known divergence analysis we are aware of, for a SIMT environment,
its precision is still far from optimal, because:

1. It only tracks variable affinity modules the thread.Idx identifier, considering
threadIdx.y and threadIdx.z as uniform variables. Few, or none, of the appli-
cations compiled in our tests use multidimensional thread indexing, however, if
that happens and the x dimension is not a multiple of the number of processing
units in a SM, these 2 variables will diverge inside a warp and our analysis might
classify a divergent variable as uniform. We kept only x affinity relationship due
the fact that most applications do not use multidimensional indexing arrays and
that we do not have access to the y and z dimensions at compile time because
Ocelot works only over ptx, the intermediary code of NVIDIA’s compiler.

2. At the hardware level, a processing element has an identifier inside a warp, the
%laneid (lid) variable. We do not track variables affinity upon this identifier,
and consider it as a divergent variable.

3. The analysis does not take into consideration neither the bounds that types
impose on variables, nor the behavior of instructions in face of exceptional con-
ditions. Behavior modifications are important to understand the instructions
behavior upon abnormal situations, such as overflows. As an example, a multi-
ply instruction of constants could overflow the resulting variable capacity. If the
instruction modifier tells so, only the lower valued bits are kept. This is com-
monly used when generating bit masks. As our analysis do not identify variable
limits it might rematerialize wrong values.

4. Ocelot is limited do read and write ptx code, the intermediary language used
by NVIDIA’s GPUs. In practice, this code is further compiled into GPU binary
code before being loaded, and this JIT compiler may change the code that we

6.2. Future work 65

generate. If that happens, our register allocation may suffer some modifications
before our code makes its way to the hardware.

6.2 Future work

To solve the problem of incorrectly naming Tid indexes y and z as uniform we propose
a code specialization, where optimal code is generated for each possible case, whenever
these indexes are used. Branch tests must be inserted to decide at run-time which code
to run. The problem with this solution is that the program size can be, in a worst case
scenario, multiplied by 3 (possible cases where both y and z are uniform, divergent
and where y is divergent and z uniform). However, if at compile time we knew all
values uses for block indexes, we can treat each kernel call differently. If we want to
prevent the usage of a shared memory position to store affine values related to these
indexes it is also required to track dependency upon these indexes, what could increase
significantly the analysis run-time and rematerialization cost when a variable depends
on more than one of these indexes. A variable v would now be written as the equation
v = a1x+a2y+a3z+b if we opt for a first degree affinity, and in a worse case scenario a
rematerialization would require 4 shared memory positions and 7 instructions to store
and load.

Although tracking y and z indexes might add many operations, it is not common to
find variables that depend simultaneously upon the Tid and the lid. This is an empirical
observation verified in all benchmarks used in this dissertation. In such case, a variable
v defined as v = a1Tid + a2lid + b will always have either a1 or a2 equal to zero, and
the rematerialization cost would not increase.

To solve the problem of wrong rematerialization values, range analysis (see Cousot and
Cousot [1977]) can be combined with our divergence analysis, and variables type and
behavior modifications can be reproduced by the analysis, what would prevent from
incorrect values defining. This limitation can further improve our analysis, as we can
consider bit shifts and division instructions, as well as analyzing floating point values
instead of integer only.

Finally, to solve the problem of requiring a third party compiler after doing our opti-
mizations we would require to write a compiler back-end that produced binary code
for the GPU, a hard task as the GPU ISAs are proprietary and undocumented.

A possible move that would help on every of these future works would be to use LLVM
instead of Ocelot, as the official GPGPU NVIDIA compiler uses it, and allows some

66 Chapter 6. Conclusion

access to the intermediary code.

6.3 Final thoughts

This dissertation has made important advances in the suite of techniques that compilers
use to generate code for GPUs. We hope that these advances will be even more
important in the coming years, as the popularity of GPUs as an alternative for high
performance computing is likely to continue.

Bibliography

Abel, N. E., Budnik, P. P., Kuck, D. J., Muraoka, Y., Northcote, R. S., andWilhelmson,
R. B. (1969). Tranquil: a language for an array processing computer. In Proceedings
of the May 14-16, 1969, spring joint computer conference, AFIPS ’69 (Spring), pages
57--73, New York, NY, USA. ACM.

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Aiken, A. and Gay, D. (1998). Barrier inference. In Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’98,
pages 342--354, New York, NY, USA. ACM.

Appel, A. W. (1998). Ssa is functional programming. SIGPLAN Not., 33(4):17--20.

Baghsorkhi, S. S., Delahaye, M., Patel, S. J., Gropp, W. D., and Hwu, W.-m. W.
(2010). An adaptive performance modeling tool for gpu architectures. SIGPLAN
Not., 45(5):105--114.

Blelloch, G. and Chatterjee, S. (1990). Vcode: A data-parallel intermediate language.
In In Proceedings of the 3rd Symposium on the Frontiers of Massively Parallel Com-
putation, pages 471--480.

Boudier and Sellers (2011). Memory system on Fusion APUs.

Bougé, L. and Levaire, J.-L. (1992). Control structures for data-parallel simd languages:
semantics and implementation. Future Gener. Comput. Syst., 8(4):363--378.

Bouknight, Denenberg, McIntyre, Randall, Sameh, and Slotnick (1972). The Illiac IV
system. In Proceedings of the IEEE, volume 60, pages 369 – 388. IEEE.

67

68 Bibliography

Briggs, P., Cooper, K. D., and Torczon, L. (1992). Rematerialization. In Feldman,
S. I. and Wexelblat, R. L., editors, PLDI, pages 311–321. ACM.

Brockmann, K. and Wanka, R. (1997). Efficient oblivious parallel sorting on the mas-
par mp-1. In Proceedings of the 30th Hawaii International Conference on System
Sciences: Software Technology and Architecture - Volume 1, HICSS ’97, pages 200--,
Washington, DC, USA. IEEE Computer Society.

Budimlic, Z., Cooper, K. D., Harvey, T. J., Kennedy, K., Oberg, T. S., and Reeves,
S. W. (2002). Fast copy coalescing and live-range identification. SIGPLAN Not.,
37(5):25--32.

Callahan, D., Cooper, K. D., Kennedy, K., and Torczon, L. (1986). Interprocedural
constant propagation. SIGPLAN Not., 21(7):152--161.

Carrillo, S., Siegel, J., and Li, X. (2009). A control-structure splitting optimization for
gpgpu. In Proceedings of the 6th ACM conference on Computing frontiers, CF ’09,
pages 147--150, New York, NY, USA. ACM.

Cederman, D. and Tsigas, P. (2010). Gpu-quicksort: A practical quicksort algorithm
for graphics processors. J. Exp. Algorithmics, 14:4:1.4--4:1.24.

Chaitin, G. J. (1982). Register allocation & spilling via graph coloring. In Proceedings
of the 1982 SIGPLAN symposium on Compiler construction, SIGPLAN ’82, pages
98--105, New York, NY, USA. ACM.

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H., and Skadron, K.
(2009). Rodinia: A benchmark suite for heterogeneous computing. In Proceedings
of the 2009 IEEE International Symposium on Workload Characterization (IISWC),
IISWC ’09, pages 44--54, Washington, DC, USA. IEEE Computer Society.

Choi, J.-D., Cytron, R., and Ferrante, J. (1991). Automatic construction of sparse
data flow evaluation graphs. In Proceedings of the 18th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’91, pages 55--66, New
York, NY, USA. ACM.

Collange, S., Defour, D., and Zhang, Y. (2010). Dynamic detection of uniform and
affine vectors in gpgpu computations. In Proceedings of the 2009 international confer-
ence on Parallel processing, Euro-Par’09, pages 46--55, Berlin, Heidelberg. Springer-
Verlag.

Bibliography 69

Cousot, P. and Cousot, R. (1977). Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In POPL,
pages 238--252. ACM.

Coutinho, B., Sampaio, D., Pereira, F. M. Q., and Meira Jr., W. (2010). Performance
debugging of gpgpu applications with the divergence map. In Proceedings of the 2010
22nd International Symposium on Computer Architecture and High Performance
Computing, SBAC-PAD ’10, pages 33--40, Washington, DC, USA. IEEE Computer
Society.

Coutinho, B., Sampaio, D., Pereira, F. M. Q., and Meira Jr., W. (2011). Divergence
analysis and optimizations. In Proceedings of the 2011 International Conference
on Parallel Architectures and Compilation Techniques, PACT ’11, pages 320--329,
Washington, DC, USA. IEEE Computer Society.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1991). Ef-
ficiently computing static single assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst., 13(4):451--490.

Darema, F., George, D. A., Norton, V. A., and Pfister, G. F. (1988). A single-program-
multiple-data computational model for epex/fortran. Parallel Computing, pages 11–
24.

Diamos, G., Ashbaugh, B., Maiyuran, S., Kerr, A., Wu, H., and Yalamanchili, S.
(2011). Simd re-convergence at thread frontiers. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-44 ’11, pages
477--488, New York, NY, USA. ACM.

Diamos, G. F., Kerr, A. R., Yalamanchili, S., and Clark, N. (2010). Ocelot: a dynamic
optimization framework for bulk-synchronous applications in heterogeneous systems.
In Proceedings of the 19th international conference on Parallel architectures and
compilation techniques, PACT ’10, pages 353--364, New York, NY, USA. ACM.

Farrell, C. A. and Kieronska, D. H. (1996). Formal specification of parallel simd exe-
cution. Theor. Comput. Sci., 169(1):39--65.

Ferrante, J., Ottenstein, K. J., and Warren, J. D. (1987). The program dependence
graph and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319--349.

Flynn, M. J. (1972). Some computer organizations and their effectiveness. IEEE Trans.
Comput., 21(9):948--960.

70 Bibliography

Fung, W. W. L., Sham, I., Yuan, G., and Aamodt, T. M. (2007). Dynamic warp forma-
tion and scheduling for efficient gpu control flow. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 40, pages 407-
-420, Washington, DC, USA. IEEE Computer Society.

Garland, M. and Kirk, D. B. (2010). Understanding throughput-oriented architectures.
Commun. ACM, 53(11):58--66.

Habermaier, A. and Knapp, A. (2012). On the correctness of the simt execution model
of gpus. In ESOP, pages 316–335.

Hack, S. and Goos, G. (2006). Optimal register allocation for ssa-form programs in
polynomial time. Inf. Process. Lett., 98(4):150--155.

Han, T. D. and Abdelrahman, T. S. (2011). Reducing branch divergence in gpu pro-
grams. In Proceedings of the Fourth Workshop on General Purpose Processing on
Graphics Processing Units, GPGPU-4, pages 3:1--3:8, New York, NY, USA. ACM.

Hennessy, J. L. and Patterson, D. A. (2006). Computer Architecture, Fourth Edition:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

Hillis, W. D. and Steele, Jr., G. L. (1986). Data parallel algorithms. Commun. ACM,
29(12):1170--1183.

Hoogvorst, P., Keryell, R., Matherat, P., and Paris, N. (1991). Pomp or how to design
a massively parallel machine with small developments. In PARLE (1), pages 83–100.

Jang, B., Schaa, D., Mistry, P., and Kaeli, D. (2010). Static memory access pattern
analysis on a massively parallel gpu.

Karrenberg, R. and Hack, S. (2011). Whole-function vectorization. In Proceedings
of the 9th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO ’11, pages 141--150, Washington, DC, USA. IEEE Computer
Society.

Kerr, A., Diamos, G., and Yalamanchili, S. (2012). Dynamic compilation of data-
parallel kernels for vector processors. In Proceedings of the Tenth International Sym-
posium on Code Generation and Optimization, CGO ’12, pages 23--32, New York,
NY, USA. ACM.

Khronos, G. (2011). The OpenCL Specification.

Bibliography 71

Kung, S.-Y., Arun, K. S., Gal-Ezer, R. J., and Bhaskar Rao, D. V. (1982). Wavefront
array processor: Language, architecture, and applications. IEEE Trans. Comput.,
31(11):1054--1066.

Lashgar, A. and Baniasadi, A. (2011). Performance in gpu architectures: Potentials and
distances. In 9th Annual Workshop on Duplicating, Deconstructing, and Debunking
(WDDD11), in conjunction with ISCA-38, pages 75--81.

Lawrie, D. H., Layman, T., Baer, D., and Randal, J. M. (1975). Glypnira programming
language for illiac iv. Commun. ACM, 18(3):157--164.

Lee, S., Min, S.-J., and Eigenmann, R. (2009). Openmp to gpgpu: a compiler frame-
work for automatic translation and optimization. SIGPLAN Not., 44(4):101--110.

Lee, Y., Avizienis, R., Bishara, A., Xia, R., Lockhart, D., Batten, C., and Asanović,
K. (2011). Exploring the tradeoffs between programmability and efficiency in data-
parallel accelerators. SIGARCH Comput. Archit. News, 39(3):129--140.

Leissa, R., Hack, S., and Wald, I. (2012). Extending a c-like language for portable
simd programming. SIGPLAN Not., 47(8):65--74.

Meng, J., Tarjan, D., and Skadron, K. (2010). Dynamic warp subdivision for inte-
grated branch and memory divergence tolerance. SIGARCH Comput. Archit. News,
38(3):235--246.

Mu, S., Zhang, X., Zhang, N., Lu, J., Deng, Y. S., and Zhang, S. (2010). Ip routing
processing with graphic processors. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’10, pages 93--98, 3001 Leuven, Belgium,
Belgium. European Design and Automation Association.

Narasiman, V., Shebanow, M., Lee, C. J., Miftakhutdinov, R., Mutlu, O., and Patt,
Y. N. (2011). Improving gpu performance via large warps and two-level warp schedul-
ing. In Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-44 ’11, pages 308--317, New York, NY, USA. ACM.

Nickolls, J. and Dally, W. J. (2010). The gpu computing era. IEEE Micro, 30(2):56--69.

Nielson, F., Nielson, H. R., and Hankin, C. (1999). Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

NVIDIA, C. (2012). NVIDIA CUDA C - Programming Guide.

72 Bibliography

Ottenstein, K. J., Ballance, R. A., and MacCabe, A. B. (1990). The program depen-
dence web: a representation supporting control-, data-, and demand-driven interpre-
tation of imperative languages. SIGPLAN Not., 25(6):257--271.

Patterson, D. A. and Hennessy, J. L. (2012). Computer Organization and Design - The
Hardware / Software Interface (Revised 4th Edition). The Morgan Kaufmann Series
in Computer Architecture and Design. Academic Press.

Perrott, R. H. (1979). A language for array and vector processors. ACM Trans.
Program. Lang. Syst., 1(2):177--195.

Pharr, M. and Mark, W. (2012). ispc: A spmd compiler for high-performance cpu
programming. Proceedings of Innovative Parallel Computing (InPar).

Poletto, M. and Sarkar, V. (1999). Linear scan register allocation. ACM Trans. Pro-
gram. Lang. Syst., 21(5):895--913.

Prabhu, T., Ramalingam, S., Might, M., and Hall, M. (2011). Eigencfa: accelerating
flow analysis with gpus. SIGPLAN Not., 46(1):511--522.

Rogers, T. G., O’Connor, M., and Aamodt, T. M. (2012). Cache-conscious wavefront
scheduling. In Proceedings of the 45th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-45 ’12, New York, NY, USA. ACM.

Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B., and Hwu,
W.-m. W. (2008). Optimization principles and application performance evaluation
of a multithreaded gpu using cuda. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, PPoPP ’08, pages
73--82, New York, NY, USA. ACM.

Saha, B., Zhou, X., Chen, H., Gao, Y., Yan, S., Rajagopalan, M., Fang, J., Zhang, P.,
Ronen, R., and Mendelson, A. (2009). Programming model for a heterogeneous x86
platform. SIGPLAN Not., 44(6):431--440.

Samadi, M., Hormati, A., Mehrara, M., Lee, J., and Mahlke, S. (2012). Adaptive
input-aware compilation for graphics engines. SIGPLAN Not., 47(6):13--22.

Sandes, E. F. O. and de Melo, A. C. M. (2010). Cudalign: using gpu to accelerate the
comparison of megabase genomic sequences. SIGPLAN Not., 45(5):137--146.

Stratton, J. A., Grover, V., Marathe, J., Aarts, B., Murphy, M., Hu, Z., and Hwu,
W.-m. W. (2010). Efficient compilation of fine-grained spmd-threaded programs for

Bibliography 73

multicore cpus. In Proceedings of the 8th annual IEEE/ACM international sympo-
sium on Code generation and optimization, CGO ’10, pages 111--119, New York,
NY, USA. ACM.

TOP500, p. (2012). List november 2012.

Tu, P. and Padua, D. (1995). Efficient building and placing of gating functions. SIG-
PLAN Not., 30(6):47--55.

Weiser, M. (1981). Program slicing. In Proceedings of the 5th international conference
on Software engineering, ICSE ’81, pages 439--449, Piscataway, NJ, USA. IEEE
Press.

Yang, Y., Xiang, P., Kong, J., and Zhou, H. (2010). A gpgpu compiler for memory
optimization and parallelism management. SIGPLAN Not., 45(6):86--97.

Zhang, E. Z., Jiang, Y., Guo, Z., and Shen, X. (2010). Streamlining gpu applications
on the fly: thread divergence elimination through runtime thread-data remapping.
In Proceedings of the 24th ACM International Conference on Supercomputing, ICS
’10, pages 115--126, New York, NY, USA. ACM.

Zhang, E. Z., Jiang, Y., Guo, Z., Tian, K., and Shen, X. (2011). On-the-fly elimination
of dynamic irregularities for gpu computing. SIGARCH Comput. Archit. News,
39(1):369--380.

Zhang, Y. and Owens, J. D. (2011). A quantitative performance analysis model for
gpu architectures. In Proceedings of the 2011 IEEE 17th International Symposium on
High Performance Computer Architecture, HPCA ’11, pages 382--393, Washington,
DC, USA. IEEE Computer Society.

	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 How important GPUs are becoming
	1.2 Divergence
	1.3 The problem of divergence
	1.4 Our contribution

	2 Related work
	2.1 Divergence
	2.2 Divergence Optimizations
	2.2.1 Optimizing divergent control flow
	2.2.2 Optimizing memory accesses
	2.2.3 Reducing redundant work

	2.3 Divergence Analyses
	2.3.1 Chapter conclusion

	3 Divergence Analyses
	3.1 Overview
	3.2 The Core Language
	3.3 Gated Static Single Assignment Form
	3.4 The Simple Divergence Analysis
	3.5 Divergence Analysis with Affine Constraints
	3.6 Chapter conclusion

	4 Divergence Aware Register Allocation
	4.1 GPU memory hierarchy
	4.2 Adapting a Traditional Register Allocator to be Divergence Aware
	4.2.1 Handling multiple warps

	4.3 Chapter conclusion

	5 Experiments
	5.1 Tests
	5.1.1 Hardware

	5.2 Benchmarks
	5.3 Results
	5.4 Chapter conclusion

	6 Conclusion
	6.1 Limitations
	6.2 Future work
	6.3 Final thoughts

	Bibliography

