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“Keep your thoughts positive
because your thoughts become

YOUR WORDS.
Keep your words positive

because your words become
YOUR BEHAVIOUR.

Keep your behaviour positive
because your behaviour becomes

YOUR HABITS.
Keep your habits positive

because your habits become
YOUR VALUES.

Keep your values positive
because your values become

YOUR DESTINY.”
(Mahatma Gandhi)
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Resumo

A crescente acessibilidade às mídias sociais atrelada à facilidade de uso dos serviços
de compartilhamento têm propiciado a geração voluntária de um grande volume de
dados pessoais nesses ambientes. As informações compartilhadas, que variam de fotos
do cotidiano a associações profissionais, podem ser exploradas para os mais diversos
fins. Ao mesmo tempo em que esses dados criam oportunidades para os usuários for-
talecerem seus laços nas redes sociais, eles também favorecem o desenvolvimento de
mecanismos personalizados e estratégias de recomendação mais eficientes. Entretanto,
esses mesmos dados podem ser manipulados de forma maliciosa e indesejada para
promover marketing viral ou acessar informações confidenciais sobre os usuários. A
violação de privacidade ocorre frequentemente devido ao desconhecimento e descuido
das pessoas em relação àquilo que divulgam e tornam público. Com o aumento de
serviços baseados em localização, um aspecto adicional é incluído ao dado referente
à informação geográfica, o que torna a discussão sobre privacidade ainda mais inci-
siva, visto que tais dados podem colocar em risco a integridade física dos usuários,
permitindo que eles sejam rastreados. Neste trabalho, analisamos uma das mais pop-
ulares redes sociais baseadas em localização, o Foursquare, com o intuito de investigar
como os seus membros exploram os recursos públicos do sistema (especificamente os
atributos que possuem informação geográfica associada). A caracterização do compor-
tamento humano no Foursquare consiste de um estudo que agrega cerca de 13 milhões
de usuários e visa observar o potencial dos atributos geográficos do sistema em agir
como fontes de vazamento de informação. Nesse contexto, propomos variados modelos
de inferência na tentativa de revelar a localização da residência dos usuários a partir
de dados geográficos publicamente disponibilizados. Apesar dos modelos serem genéri-
cos e poderem gerar inferências em diferentes níveis espaciais, focamos nas inferências
mais refinadas, nas granularidades de cidade e de coordenada geográfica, que, se bem
sucedidas, representam riscos maiores à privacidade individual. Nossa avaliação ex-
perimental indica que os modelos propostos são capazes de inferir facilmente a cidade
onde os usuários moram com uma precisão de cerca de 78% dentro de um raio de 50

xv



quilômetros. Num grau ainda mais fino, acertamos a localização exata da casa dos
usuários no nível de coordenada geográfica com aproximadamente 60% de acurácia em
um raio de 5 quilômetros.

Palavras-chave: privacidade, inferência, redes sociais, foursquare, residência, locali-
zação.
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Abstract

The increasing access to social media, associated to the ease of use of sharing ser-
vices, have fostered the voluntary generation of a large amount of personal data in
these environments. The shared information, which vary from photos of everyday life
to professional associations, can be exploited for various purposes. While these data
provide opportunities for users to strengthen their ties in social networks, they also
favour the development of personalised mechanisms and more efficient recommenda-
tion strategies. However, the same data can also be manipulated to promote malicious
and unwanted viral marketing or access sensitive information about users. The privacy
breach frequently occurs due to unawareness and carelessness of people about making
information publicly available. With the rise of the location-based services, an addi-
tional aspect is added to the data related to geographic information, which makes the
discussion about privacy even more incisive, since such data can endanger the physical
safety of users, allowing them to be tracked. In this dissertation, we explore one of
the most popular location-based social networks, Foursquare, aiming at investigating
how its members exploit public system resources (specifically the attributes that are
associated to geographic information). The characterisation of human behaviour in
Foursquare consists of a study which aggregates about 13 million users and aims to
observe the potential of geographic attributes in the system to act as sources of infor-
mation leakage. In this context, we propose various inference models in an attempt
to reveal the home location of users through their geographic data publicly available.
Although the models are generic, being able to produce inferences at various scales, we
focus on finer-grained inferences at the city and geographic coordinate levels that, if
successful, represent greater risks to individual privacy. Our experimental evaluation
indicates that the proposed models can easily infer the city where users live with an
accuracy of about 78% within a radius of 50 kilometres. At an even finer scale, we
correctly infer the coordinates of the users’ home with approximately 60% accuracy
within a 5 kilometres radius.
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Chapter 1

Introduction

The human history has always given evidence that human nature demands the creation
of ties among people. In fact, life in society already means that the socialisation is
expectable and needed. It is almost impossible to deny this instinct, once people live
in contact with groups in the most varied environments such as at home with a family,
in the work place with colleagues, or even in the bus with other passersby. Thus people
end up establishing new relationships and eventually increasing their social network.
Even in the Age of Technology, human nature remains in the virtual world finding
alternative ways of communication and interaction, through Online Social Networks
(OSNs).

Initially OSNs were designed to link close friends, but gradually new systems
arose with different purposes, attracting users with different needs and reasons to sign
up to this kind of system. Facebook 1, Twitter 2, LinkedIn 3 and Pinterest 4 are cur-
rently the most popular applications amongst Internet users [Alexa, 2013] allowing
them to connect to a huge network of people spread throughout the world and to share
an infinity of personal information, including photos, topics of interest, age, relation-
ship status, and address. Due to the great popularity of these systems, becoming a
member is a matter of time motivated by several reasons, including the efficient way to
communicate and relate with others on an unprecedented rate, the possibility to share
content in large scale, the opportunity of self-promotion, commercial interests, as well
as the simple intent of socialisation [Tang et al., 2010].

1www.facebook.com
2www.twitter.com
3www.linkedin.com
4www.pinterest.com

1
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1.1 Context

Due to the rapid growth in the use of smart devices equipped with Global Positioning
System (GPS) receivers, location-based services (LBS) have become prevalent, raising
the interest of the research community. Similarly, they have also motivated the creation
of the Location-Based Social Networks (LBSNs) [Zheng, 2011], which are specialised
systems in creating new means for online interaction based mostly on the geographic lo-
cation of their registered users. LBSNs allow users to associate geographic information
with the content they share, a feature that is being embedded also in OSNs.

Out of the various existing LBSNs, such as Yelp 5, Google Latitude 6 and In-
stagram 7, Foursquare 8 is currently among the most popular ones. 9 Its overall goal
revolves around location sharing while users accumulate special awards for visiting
specific places registered in the system. Such appeal encourages users to voluntarily
make more personal information publicly available, such as their favourite places to
visit, mobility patterns and behavioural habits. The availability of such data in the
Web supports the design of several mechanisms and solutions that are of interest to
the user, such as the development of personalisation mechanisms and tools to locate
nearby friends according to the current user location [Berjani and Strufe, 2011], as well
as urban planning models [Cranshaw et al., 2012], and more effective recommendation
and advertisement strategies [Ye et al., 2010].

Meanwhile, improving the users’ experience in the system and with the surround-
ing community through services and features which demand the disclosure of location
information raises user exposure to a varied audience, possibly spread in many differ-
ent systems. This overexposure potentially touches privacy concerns, creating oppor-
tunities for unauthorised usage of personal data [Ruiz Vicente et al., 2011]. Privacy
attacks may occur in different fronts, as through the access of personal data [Fried-
land et al., 2011], or even via social network, due to information leakage provided by
friends [Sadilek et al., 2012; Pesce et al., 2012]. These violations are typically result
of privacy breaches which offer ways to gather user information from different sources
unveiling sensitive data which, in turn, may contain revealing information such as the
exact location and time of where and when a photo was taken.

Privacy breaches on LBSNs may favor positive and negative uses of personal

5www.yelp.com
6www.google.com/latitude
7www.instagram.com
8www.foursquare.com
9The Foursquare community is estimated to include over 30 million people worldwide, according

to the last census in January of 2013 (https://foursquare.com/about/).

https://foursquare.com/about/
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data. At the point of view of police officers, criminals and suspect individuals could be
investigated through the data disclosed on these kind of system, while overprotective
parentes could take advantage of the availability of their kids’ location information to
track them being aware of where they have been and when. On the other hand, privacy
violations may harm users making them more vulnerable to the action of robbers and
kidnappers who previously observed a user habit to act in the most convenient time.

1.2 Motivation / Purpose

Social networking sites, in particular LBSNs, provide a range of increasingly more
sophisticated security and privacy settings, aiming to empower their members as man-
agers of their own exposition. Nevertheless, these settings are often confusing, unknown
to all users, difficult to be applied, and often inefficient in controlling each possible sink-
hole of information leakage [Gundecha et al., 2011]. Thereby, users also need to strike
the right balance between concealment and disclosure in an attempt to meet their indi-
vidual privacy requirements goals [Quercia et al., 2012]. Combining such scenario with
the Web’s tendency to “never forget” [Friedland et al., 2011], which can make shared
data live forever, privacy violations may cause irreversible damage.

The diversity of user-supplied content – text, location, and photos – shared in
a fast pace across systems creates a cloud of information about individuals. Taken
together, the pieces of information disclosed on the Web can reveal a quite comprehen-
sive picture of a person in ways that are hard to intuitively grasp, even if individually
none of these pieces may be worrisome on their own [Friedland et al., 2011]. Therefore,
users are constantly threatened by the potential of their own data in unveiling private
information by the creation of inference chains formed with data correlation, friends
that may reveal user data in their profiles, or simply by public attributes that are, by
nature, not protected. This leakage of information can certainly tell much more about
individuals than they are really aware of revealing.

Some studies have shown that the increasing amount of user data in online sys-
tems makes users more vulnerable to privacy violations. Through the analysis of
historic data [Lieberman and Lin, 2009], textual messages [Mao et al., 2011], friend
attributes [Gundecha et al., 2011], or user behaviour [Quercia et al., 2012], researchers
are able to reveal an impressive range of sensitive information, allowing explicit data to
unveil implicit information. Mao et al. [2011] have argued that it is possible to define
if a Twitter user is under the influence of alcohol while tweeting only looking at the
textual content and the time when the tweet was published. Also, Gundecha et al.
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[2011] proved that a single vulnerable user can place all his friends at risk since he may
be a source of information leakage, thus we can say that a user’s privacy protection
goes beyond his privacy settings and becomes a social networking problem. Privacy
attacks are potentially more harmful in LBSNs in which the geographic aspect of the
data can be explored. The analysis of location data permits the discovery of mobil-
ity patterns [Cheng et al., 2011b] and behavioural habits [Noulas et al., 2011]. Going
further, the collation of geographic attributes may enable inferences about where a
user lives. Once again, this kind of discovery is possible through user-generated data
publicly available, such as the vocabulary in textual content [Cheng et al., 2010], friend
characteristics [Davis Jr. et al., 2011], and the user’s own traits [Mahmud et al., 2012].

Still, online privacy research in LBSNs clearly has not been sufficiently addressed
in order to help developers to create safer systems or to alert users about protecting
themselves properly from unexpected harm. This discussion has so far ignored an area
that is poised to open up a new category of powerful privacy attacks based on global
inferences resulting from automated content analysis, enabling cross-site correlation of
personal information. The risks and implications of these attacks can also extrapolate
the boundaries of the virtual world, making users physically vulnerable to robbery and
kidnapping.

1.3 Objectives

In a world where confidentiality is something required in employment agreements that
keep the company’s information in secret from the public, finding a user’s home location
seems to be a much more invasive privacy breach, especially when it is uncovered by
public data. In this context, the present dissertation aims to bring up a large-scale
study on inferring the location of user homes in Foursquare through publicly available
attributes.

Therefore, we guide a study that consists of three main steps. First, collecting the
public information provided by users, building a dataset containing data on millions of
users. Second, perform a basic characterisation of data that are potentially relevant in
revealing private user information, in particular, the home location. Finally, we propose
and evaluate alternative models that, based on data that are shared with everyone in
the system, infer the user home location.

The inference assessment was conducted for different levels, from coarser granu-
larities such as country and state to finer-grained approaches, restricted by the borders
of a city or by the precision of geographic coordinates. We focus on the two more
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refined inference levels which represent more serious privacy violations, since they are
closer to revealing the exact location of the user residence.

1.4 Contributions

Since LBSNs are an emerging kind of system in the web, studies in this field are
considered innovative and relevant. The novelty is due to the fact that a large amount
of data produced by their users is associated to geographic information – something new
compared to the data shared in the original OSNs. Thereby, exploring the locational
aspect of users’ content is valuable in the sense that it can be used for various purposes.
Thus, knowing where a user lives, for instance, may provide improvements in various
research areas, ranging from the development of models for human occupation in a
city to the creation of more efficient strategies for recommendation and personalised
advertisement systems – as reviewed in Chapter 2.

Our first efforts in inferring user home city (and also state and country) were
presented in the Workshop on Location-Based Social Networks (LBSN’12) held in con-
junction with the 2012 ACM International Joint Conference on Pervasive and Ubiq-
uitous Computing (UbiComp’12 ) [Pontes et al., 2012b]. Then, an extension of this
preliminary study was published in the Workshop of Privacy in Social Media (Pin-
SoDa’12 ) in conjunction with the 2012 IEEE International Conference on Data Mining
(ICDM’12) [Pontes et al., 2012a], in which we improve our last models to perform a
finer-grained inference in the level of geographic coordinate of the user’s residence. In
both studies, we consider the same Foursquare dataset of millions of users and our
inferences are applied in a global scale, not restrict to a specific region or country.

Given these considerations, the main contributions of this dissertation are: (1)
the use of a large dataset containing data on millions of users of one of the currently
most popular LBSNs – Foursquare; (2) the investigation of privacy breaches and in-
formation leakage; (3) the proposal of several models to infer the home location of
a user exploring different system features and inference techniques; (4) and finally,
the analysis of varied inference granularities from country to the exact user residence
(represented by geographic coordinates). As part of this study, we intend to provide
valuable insights about user behaviour, and an assessment on to which extent publicly
available features can be exploited to uncover private user information, to drive future
system designs and optimisations towards maintaining a fair and acceptable balance
between the users’ exposure and the quality of location-aware services.
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1.5 Organisation

This dissertation is organised as follows. Chapter 2 presents the literature review,
which includes studies on LBSNs and a discussion about privacy in online social net-
working systems. Chapter 3 explains some basic concepts and the terminology used
in Foursquare, as well as a description of the crawling process and details about the
dataset collected. A wide characterisation about the main features of the system is
showed in the same Chapter. In Chapters 4 and 5, the proposed inference models are
addressed, first with a thorough explanation about the methodology applied, and then
the whole set of experiments, followed by discussion of results achieved. Finally, this
dissertation is concluded in Chapter 6.



Chapter 2

Literature Review

User behaviour and information diffusion in online systems is a very active and rele-
vant research area, with a rich set of studies. Since location-aware services and social
networks are getting even more popular, there is a great interest in analysing how users
explore the new resources available in such systems and which kind of information they
are geographically tagging (topic discussed in Section 2.1). This increasing amount of
user information on the web relights the investigation of contrasting uses of such data:
for good faith purposes – as the creation of new recommendation strategies and more
effective personalisation mechanisms (covered in Section 2.2), and for suspect purposes
– as opportunistic actions (e.g., the development of methods capable of tracing users
or to infer sensitive information through publicly available data) facilitated through
privacy breaches caused by high exposure on the system (in Section 2.3). In this con-
text, this Chapter is concluded with a deep discussion about an important privacy
concern related with location: the home location inference. The state-of-the-art infer-
ence models (tackled in Section 2.4) are presented with an emphasis on the techniques
and features used to reveal where a user lives.

2.1 Location-Based Social Networks – LBSNs

Sharing the current location or some other geotagged information like photos, status
and videos associated with some specific place is the new tendency among users in
the LBSNs. These systems provide services which allow users to associate location
information to the shared data, creating a map of places where they have left some
virtual footprints. Therewith, some questions arise: Why do users share their own
location in social networks? and What can researchers do with the increasing amount
of geographic-tagged information available?

7



8 Chapter 2. Literature Review

In an attempt to understand the reasons why users share their location, Tang et al.
[2010] proposed a study which discusses the purpose and social-driven aspects of shar-
ing. Some location sharing applications like Reno [Iachello et al., 2005], WatchMe [Mar-
masse et al., 2004] and the Whereabouts Clock [Brown et al., 2007] are all motivated
by scenarios which have a more utilitarian perspective – purpose-driven. Thus, the
requests for a user location focus on pragmatic issues, including activities such as
planning a meeting, checking for availability, coordinating transportation routes and
estimating traffic delays. Hence, users detain the power to decide whether to share, for
which reason, with whom, and in which level of precision. These applications are in
distinct contrast from current LBSNs that support location sharing within social net-
works. Foursquare, Loopt 1, Yelp 2, and Locaccino 3 are some examples of social-driven
systems which emphasise the “social factor” of sharing related to more subjective as-
pects. This is also confirmed by Lindqvist et al. [2011], which justifies that users might
announce their current location not because someone needs to know but because it is a
way of fun, boosts self-presentation, signalises friends’ availability and sustains the so-
cial capital within one’s network. Thereby, we see a clear shift in location sharing from
the one-to-one approach to the current LBSNs’ approach (one-to-many or one-to-all),
where members can share location with a much wider and more diverse audience.

In this context, several recent studies have focused on investigating geographic
user information to understand aspects related to human mobility [Cheng et al., 2011b;
Cho et al., 2011; Sadilek et al., 2012], user behaviour patterns [Noulas et al., 2011; Vas-
concelos et al., 2012], cross-cultural peculiarities in the usage of online systems [Magno
et al., 2012], places modelling through geotagged photos [Crandall and Snavely, 2012],
city dynamics [Silva et al., 2012b] and urban development [Cranshaw et al., 2012], and
natural event detection [Sakaki et al., 2010]. These studies consider users to be like web
sensors [Silva et al., 2012a; Pozdnoukhov and Kaiser, 2011; Lathia et al., 2012] that
are potentially social indicators of topics associated with particular places and times.
Observing users’ visits to different places, Cheng et al. [2011b] have shown that the
movements performed by users follow simple reproducible patterns explained by social
status, in addition to geographic and economic factors. Also, Cho et al. [2011] have
proposed a human mobility model based on a combination of periodic short-ranged
movements both geographically and temporally limited, and seemingly random jumps
(due to long distance travels) highly influenced by user friendships. Noulas et al. [2011]
and Vasconcelos et al. [2012] have focused on Foursquare, analysing the dynamics of

1www.loopt.com
2www.yelp.com
3www.locaccino.com
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collective user activity and uncovering distinct behaviour profiles, while Magno et al.
[2012] have addressed Google+, showing the various usage patterns of the services
available across different cultures. In particular, the usage of geographic tags in photos
is explored by Crandall and Snavely [2012], who leverage such information to identify
famous places and regions (highly photographed) and create 3D versions of landmarks.
They also have observed that when two people are photographed at about the same
place and time on five distinct occasions, they have nearly 60% of chances of being
friends. Finally, Cranshaw et al. [2012] have proposed an online system able to por-
trait the rhythm of human steps, in near real time, throughout different parts of a city.
This kind of monitoring also motivated Sakaki et al. [2010] to create mechanisms to
detect earthquake promptly, to broadcast timely notifications.

The study proposed in this dissertation explores the Foursquare LBSN. We anal-
yse the geographic and temporal aspects of user activity in the system through publicly
available personal attributes. Such analysis of our dataset provides a proper under-
standing about how users behave in the system, in terms of how (and whether) they use
these attributes, giving enough subsidies for us to propose and develop home location
inference models – described in Chapter 4.

2.2 Location-Aware Recommendation Services

Making recommendations or offering suggestions to users in order to increase their de-
gree of engagement is a very common practice for websites. Moreover, the phenomenal
participation of users in OSNs, and specially in LBSNs, has given a tremendous hope
for designing a new type of user experience based on both the social and the spatial as-
pects. While traditional recommenders provide default and generic results to everyone,
social network-aware and location-aware systems can bring forth more targeted recom-
mendations based on information gathered from friends and places visited [Vögele and
Schlieder, 2003]. Particularly for users whose activity is little to none in a system (cold
starters), social recommendations are notably interesting, since they enhance the input
data for a recommender with more information, increasing the chances to achieve an
appropriate and effective suggestion. Also, considering the location associated with the
available data can be useful to drive the suggestions towards a geographically limited
space where a user will probably move.

The task of recommending places has been tackled by some authors. For in-
stance, Berjani and Strufe [2011] have proposed personalised recommendations of places
in the extinct LBSN Gowalla, exploiting collaborative filtering techniques and the num-
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ber of times a user has visited specific places. Ye et al. [2010] have also developed a
recommender based on the social and spatial ties among users and their visited locations
– they argue that friends share more common locations than non-friends, and nearby
friends tend to share more commonly visited locations. Knowing this, Quercia and
Capra [2009] have recommended friends using short-range technologies (e.g., bluetooth)
on mobile phones based on social network theories of “geographic proximity” and “link
prediction”. Furthermore, complementarily, Cheng et al. [2011a] have found that traffic
patterns revealed through Foursquare history of visits to places can identify semanti-
cally related locations, thus favouring the creation of a traffic-driven location clustering
algorithm to group semantically related locations with high confidence, which, in turn,
may be naturally incorporated into location-based recommenders. Other types of rec-
ommendation are also possible, as the suggestion of social events proposed by Quercia
et al. [2010]. Authors agree that there is a clear relationship between preferences for
social events and geography and it also contributes to the recommendation of users to
events. Saez-Trumper et al. [2012] show that individuals tend to go to a venue not only
because they like it but also because they are close by.

Since this dissertation intends to present different ways to infer the real home lo-
cation of users in Foursquare, we can say that the result offered by our proposed models
may help researchers and system developers to improve the current recommendation
strategies in this LBSN. Knowing the location where a user lives, whether at city level
or at finer-grained granularities, favours the systems to perform nearby suggestions
discarding misplaced options such as recommendations for places located too far from
the user’s home location.

2.3 Privacy in Online Systems

Improving the user experience in online systems with sophisticated location sharing
services and more accurate and personalised recommendations comes at a cost – it raises
several concerns about privacy related issues. This occurs due to the rapid increase
in the amount of personal and sensitive user information publicly available through a
diverse range of social networks with different purposes, which is contributing to open
privacy breaches and letting users even more exposed [Mao et al., 2011; Krishnamurthy
and Wills, 2008]. Some researchers have shown how users face their own exposition
in such systems, and which strategies or tricks they resort to an attempt to manage
the visibility of their profiles, avoiding to be vulnerable to privacy violations. More
sophisticated studies addressed the use of inferences applied in general data through the
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collation of a set of public user attributes in a system to uncover private information.
Recently, due to the amazing popularity of the LBSNs, studies which involve privacy
related with the disclosure of some geographic information have also become a topic of
interest for the research community [Wagner et al., 2010; Fusco et al., 2011].

Barkhuus and Dey [2003], as well as Gross and Acquisti [2005], have studied how
users deal with privacy concerns in online systems. They observed that frequently there
is not much concern regarding this topic, since users are more interested in the quality
of the services offered in these environments than in protecting their data. In this
context, and also due to the complexity of expressing privacy preferences on various
applications [Benisch, 2011], only a small minority of users makes some effort to change
the highly invasive privacy settings. Moreover, Li and Chen [2010] have shown that
there are correlations among the user’s vulnerability and his personal characteristics,
which include factors like age, gender, friendships, mobility patterns, and others.

Although many users do not seem to worry about their high exposition in the
system, Choudhury et al. [2010] agree that, many times, users are not aware of the
risks involved. One of the main threats to user privacy is derived from inferences,
which consist in combining pieces of explicit information in attempt to generate new
conclusions, sometimes not so evident, which can reveal implicit and sensitive data and
make users more vulnerable. It is known, for instance, that individual preferences can
be deduced from friends which in general share similar preferences, as revised by Gun-
decha et al. [2011] and Li and Chen [2010]. Likewise, Mislove et al. [2010] and Zheleva
and Getoor [2009] claim that user homophily does influence the information diffusion
in social networks, suggesting that people with common characteristics and similar
tastes are more likely to become friends, and therefore end up creating dense and ho-
mogeneous communities. Thus, this scenario where similar users are clearly grouped
is quite favourable for the successful application of the inferences. Pesce et al. [2012]
have demonstrated, in particular, that a simple tagged photo could reveal private user
attributes that are extremely sensitive. Conclusively, users see themselves in a blind
alley, since their efforts against information leakage may be insufficient to keep them
protected. Indeed, Lam et al. [2008] and He et al. [2006] have shown that users are fre-
quently unaware of information leaks through social relationships, which characterise
involuntary violations.

The increasing number of users who are joining LBSNs has also attracted re-
searchers towards the risks associated with privacy breaching in this kind of system. An-
navaram et al. [2008] have created an application to guarantee privacy preservation of
shared locations, whereas Ruiz Vicente et al. [2011] have punctuated scenarios which
may result in problems for users when sharing location. Closely related to what this dis-
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sertation proposes, Jin et al. [2012] have provided an analysis of user activity involving
residential venues in Foursquare, aiming to identify system vulnerabilities and privacy
risks. Although the numerous concerns associated with location sharing, Barkhuus
and Dey [2003] have shown that users are often more worried about services that trace
locations (location-tracking) than the ones that only request instant location (position-
aware). Also, Lindqvist et al. [2011] have observed that only a small minority of users
change their privacy settings and the ones who are concerned with privacy usually opt
not to share their current location, omitting this data from their profiles.

In this dissertation, we discuss privacy-related issues regarding the geographic
attributes present in Foursquare. Our study was carried out with a view to provide
valuable insights to drive future systems designs and optimisations towards maintaining
a fair and acceptable balance between the users’ exposure and the quality of the services
in LBSNs.

2.4 Home Location Inference Strategies

The literature has various studies on whether it is possible to infer a user’s home
location from various features (or attributes) with some geographical information as-
sociated. Backstrom et al. [2010] have measured the relationship between spatial and
social proximity among Facebook users observing that the probability of a friendship
drops monotonically as a function of distance – a finding that motivated the authors
to introduce an algorithm based on a maximum likelihood approach to predict the
location of an individual. Similarly, Davis Jr. et al. [2011] have also proposed a model
for inferring the location of Twitter users assuming that reciprocal relationships in that
system usually consists of people who are likely to be geographically close. The lack
of geographic-based features on Twitter has fostered the design of inference models
based on the tweet textual content. Cheng et al. [2010] have created a model based on
the common vocabulary of users from the same geographical region, while Hecht et al.
[2011] and Mahmud et al. [2012] have used machine learning strategies to infer the lo-
cation where users live by only looking at what they tweet. Likewise, a recent study on
Twitter demonstrated that distinct sets of relevant keywords may be associated with
different locations [Ikawa et al., 2012], thus favouring guesses about the location of a
tweet based only on the set of words it contains.

Other efforts have targeted more sophisticated and challenging models that com-
bine many aspects present in a system to derive a user’s location. Focusing, once again,
on Twitter, Li et al. [2012] have integrated signals observed from both social network
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(friends) and user-centric data (tweets) into a unified probabilistic framework to profile
the users’ home location. Similarly, Sadilek et al. [2012] have also explored patterns in
friendship formation, but here in conjunction with the content of people’s tweets and
their reported locations, showing that the combination of all these predictors result
in a stronger and more accurate inference model. Finally, Lieberman and Lin [2009]
have suggested that a wealth of information about contributors on Wikipedia 4 can be
gleaned from edit histories, revealing that it is often possible to associate contributors
with relatively small geographic regions, usually corresponding to where they were born
or where they presently live.

As in these previous studies, this dissertation aims at proposing models to infer
user home location. However, unlike them, we here focus on one of the most popular
LBSNs, Foursquare. To our knowledge, no previous work has addressed this problem
in this social network before. Our proposed models are based only on publicly available
attributes which are specific of Foursquare, namely mayorships, tips and likes (detailed
in Chapter 3). Basically, all these attributes are related with web pages that represent
real places registered in the system: mayorships are titles given to the most frequent
visitor of a place, tips are comments left by users about their previous experiences and
opinions about the place, while likes are a sign of approval marked in a previously
posted tip. These three types of information are locatable, since they are associated
with the location (geographic coordinates) of the place to which they refer. Note that
although various similar efforts [Hecht et al., 2011; Ikawa et al., 2012; Mahmud et al.,
2012] have mostly explored the textual content of attributes, we here consider the
location associated with attributes, proposing inference models that use them either in
isolation or jointly. The techniques explored here – Majority Voting Scheme and the
machine learning K-Nearest Neighbour algorithm – have also been adopted by some
previous studies [Davis Jr. et al., 2011; Hecht et al., 2011]. However, we here apply
these techniques to a dataset of millions of Foursquare users, providing inferences at a
global scale, as opposed to previous efforts [Cheng et al., 2010; Backstrom et al., 2010;
Sadilek et al., 2012] that restrict their inferences to a specific region.

4www.wikipedia.org





Chapter 3

Foursquare Dataset

In this Chapter, we review the main elements and features of the LBSN Foursquare
(Section 3.1) providing a description about some basic aspects of the system and also
the terminology used throughout this dissertation. We also detail our crawling method-
ology (Section 3.2) and present some properties of the dataset used in our experimental
evaluation (Section 3.3). Then, we characterise our Foursquare dataset in terms of the
main user attributes, which are publicly available through the system’s API and are
geographically-referenced. Our goal is to assess how users can use these attributes,
which are the basic input to our home location inference models, presented in Chap-
ter 4. First, we standardise the location information associated with these attributes
and analyse the quality of the data in terms of the level of spatial granularity (Sec-
tion 3.4). Then, in Section 3.5, we characterise those attributes assessing their usage
around the world. We also perform a spatial and temporal analysis of the data to un-
cover human mobility patterns and common behaviours. These results are discussed in
Sections 3.6 and 3.7 respectively. And finally, we summarise our findings in Section 3.8.

3.1 Foursquare: Key Elements and Features

Foursquare, currently one of the largest and most popular LBSNs, was launched in
early 2009 providing support to members location sharing with friends through check
ins. Check ins are only performed on devices equipped with GPS or other service
reported location, in which a user may select a location from a list of places or he
may create a page for his actual location, named venue. Thus, venues are places of a
wide variety of categories, such as restaurants, airports or residences, that represent
real (physical) locations previously registered in the system. Examples are Taj Mahal
(Agra, India) and Paradiso Restaurant (Belo Horizonte, Brazil). Foursquare has a

15
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playful aspect that gives incentives to users who share more locations. Thus, the larger
the number of check ins a user does, the more incentives she may earn to continue
sharing. As incentives, Foursquare offers, for instance, badges and mayorships. Badges
are like medals earned if a user checks ins at specific venues or achieves some predefined
number of check ins. Mayorships, in turn, are titles given to the most frequent visitor of
a given venue in the last 60 days. Venue mayors are often granted rewards, promotions,
discounts or even courtesies by business and marketing managers who own the venue.
Although Foursquare was initially created with the primary intention of promoting
a game between users competing for check ins as well as badges and mayorships, it
also includes attributes (tips and likes) that favour the recommendation of places
among users. Tips are comments posted by users on specific venues which reflect their
experiences and opinions about some aspect of visited places (e.g., the quality of service
or availability of parking space in a restaurant or even instructions about how to find
the place). Users can also keep track of previously posted tips, marking them as “like”
to signal their agreement with the content of a tip.

Users in Foursquare can be categorised as standard user, celebrity or brand page. 1

Standard users are common members, celebrities are standard users who achieved more
than 1,000 friends 2 and brand pages represent companies or shops. The main difference
among them is the type of social relationship they can have: friendship and/or relation
of following and being followed. Thus, while celebrities can have both friends and
followers, brand pages can have just followers and standard users can have only friends.

In the context of this dissertation, our focus is on publicly available attributes
associated to some location information. Thus, for each user in our dataset, we consider
the history of mayorships, tips and likes, all related with a venue, which in turn has
necessarily a public geographic position declared in its Foursquare web page. Likewise,
we also consider the user friends list, since they are associated with a home location,
represented as a public and optional field in their profile page. Check ins are not
considered, since they are a necessarily private attribute.

Note that mayorships, tips and likes are publicly available in Foursquare, and
they are also broadcast to friends, appearing in their news feed. Figure 3.1 illustrates a
system snapshot showing that the lists of mayorships, tips and friends (circled in red)
are presented in the front page of a user profile – likes, on the other hand, only appear
in feeds. Although optional, user home location is a public attribute and also appears
in the profile page (next to the profile photo). Note that we cannot visualise the history

1http://aboutfoursquare.com/user-type-comparison/
2http://aboutfoursquare.com/foursquare-converts-most-popular-users-to-celebrity-

accounts/

http://aboutfoursquare.com/user-type-comparison/
http://aboutfoursquare.com/foursquare-converts-most-popular-users-to-celebrity-
accounts/
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Figure 3.1. Snapshot of the Profile Page of a Foursquare User.

of check ins since it is a private information only visible by the user’s friends, who also
receive notifications about their friends’ visits to venues.

3.2 Crawling Methodology

Our study is based on a large dataset crawled using Foursquare API from August
to October 2011. We collected user profile data including home city, list of friends,
mayorships, tips, likes, and total number of check ins. We also collected information
associated with the venues visited by each user (i.e., venues linked to tips, likes and
mayorships of the user), such as their location, category and total number of check
ins and unique visitors. Recall that check ins were not collected, since they are not
publicly available in the system, thus a private attribute.

Basically, our crawling strategy relies on a set of worker processes and a master
process. The design of our crawler exploited the fact that each user in Foursquare
receives a unique and sequential numeric identifier (ID). Thus, given (an estimate of)
the largest ID assigned to a user in the system, the master process randomly selects
an ID according to a uniform distribution in the range of IDs, and gives it to the next
idle worker. We chose to perform a random selection of IDs, as opposed to sequentially
selecting each possible value, to minimise the chance of bias towards older user accounts
(which, we conjecture, have smaller IDs). The worker then sends a request to the
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Foursquare API to gather information about the corresponding user.

We send HTTP GET requests to the pages of specific users identified by their
IDs (we tried increasing values, starting with 0) to verify their existence. The largest
ID for which we did get a response corresponding to a valid webpage was 20 million.
Although we experimented with many IDs greater than that value, in all those cases,
the response was Not Found. Therefore, we speculate that, at the time of our crawling,
20 million was about the largest user ID in Foursquare. We thus set this value as an
estimate of the largest ID in the system and used it as input to our crawler.

3.3 Dataset Overview

# Users 13,570,060
# Venues 15,898,484
# Mayorships 15,149,981
# Tips 10,618,411
# Likes 9,989,325
# Users with some activity 4,140,434
# Users with some friend 6,973,727

Table 3.1. Summary of Statistics about our Foursquare Dataset.

Table 3.1 provides some statistics about our Foursquare dataset. Our entire data
consists of 13,570,060 users, which we believe represent a large fraction of the total
user population of the system by the time it was crawled. 3 It also includes 15,898,484
venues, which are in turn associated to users’ attributes, namely mayorships, tips and
likes. Although Foursquare was fairly new during the crawling process, the amount
of data collected about the user activity in the system, represented by his attributes,
was noticeably significant since, in total, we collected 35,757,717 attributes, including
mayorships, tips and likes. In summary, 30.5% of the entire user population in our
dataset have some activity (in terms of the collected features) in the system, with
2,873,883 unique users having at least one mayorship and 2,396,013 and 1,802,997 with
some tip and like, respectively. We also looked into the user’s list of friends and found
that 51.4% of users are not isolated and have a social network.

3The overall number of registered users varied from 10 million in June 2011 (https://
foursquare.com/infographics/10million) to 15 million in December of the same year (http:
//www.socialmedianews.com.au/foursquare-reaches-15-million-users/).

https://foursquare.com/infographics/10million
https://foursquare.com/infographics/10million
http://www.socialmedianews.com.au/foursquare-reaches-15-million-users/
http://www.socialmedianews.com.au/foursquare-reaches-15-million-users/
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3.4 Geographically Referenced Information

The attributes considered in the proposed home location inference models are all
geographically-referenced and publicly available in Foursquare. These attributes – de-
scribed in detail in Section 3.1 – are the home city field, related to the location where a
user lives, and the list of mayorships, tips and likes which, in turn, are associated with
the location of specific venues in the system. 4 Recall that the information supplied as
the home location of users and venues are both free-form, which means that they are
open text fields whose validity is not enforced by the system. Indeed, they may carry
noise and invalid locations.

The user’s home city, in particular, is limited to 100 characters and is not required
to be filled. It is expected that users provide the name of the city where they live,
although the system provides neither a rule to guarantee it nor any automatic tool
to help users fill out the field (e.g., a predefined list of cities from which the user
could choose one). Thus, users are free to provide this location information at various
granularities, ranging from specific addresses, to city, state and country names, or even
regions of the planet (e.g., “North Pole”). We also observed some home city fields filled
with emails, phrases, or even numbers in our dataset. Similarly, the location associated
with a venue, and thus, indirectly, with mayorships, tips and likes of that particular
venue, is also an open text field. Unlike the user home city, the address and the city
of a venue must be filled at the moment of the creation of the venue page. Moreover,
it is necessary to set a pin in a map to update the venue’s location, in which a pin is
essentially a point in geographic coordinates. 5 However, once again, users may choose
to provide invalid addresses and city names, or mark arbitrary locations in the map.

To standardise and filter location names of users and venues, we used the Yahoo!
PlaceFinder geocoding API. 6 The tool was used to perform disambiguation, that is, to
uniquely identify a city despite the existence of multiple name variations (e.g., NY, New
York City, etc). It was also used to verify whether some locations provided by users
are actually valid. For example some users claim to live in imaginary or non-locatable
places such as “around”, “everywhere”, or even “at Justin Bieber’s heart” [Hecht et al.,
2011]. The use of the Yahoo! PlaceFinder tool allowed us to identify and disregard
those non-valid places.

4Check ins and Badges are private attributes, and thus, it is not possible to access the geographic
location associated with them.

5The availability of location information in the form of coordinates opens an opportunity for more
specific inferences regarding user home location, such as the inference of the user residence location,
as discussed in Section 4.3.

6http://developer.yahoo.com/geo/placefinder/

http://developer.yahoo.com/geo/placefinder/
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Statistics User Home City Venue Home City
# in dataset 13,570,060 (100.00%) 15,898,484 (100.00%)
# valid unambiguous GI 12,939,569 (95.35%) 8,815,177 (55.45%)
# valid ambiguous GI 359,543 (2.65%) 2,868,636 (18.04%)
# non-GI 244,233 (1.80%) 4,214,671 (26.51%)
# empty entries 26,715 (0.20%) 0 (0.00%)

Table 3.2. Availability of Geographic Information (GI).

Basically, for a given query (text), the tool either returns some geographic data, in
case the query consists of a valid location, or an error, otherwise. For queries consisting
of valid locations, the tool’s response depends on the quality indicator of the query,
which, in turn, is an integer value between 0 - 99 that represents the finest spatial
granularity (e.g., street, city, state, country) that matched the corresponding location
information provided in the query. For instance, for the query “Belo Horizonte”, Yahoo!
PlaceFinder would provide the query’s quality (equal to 40, indicating that it is at the
city level), the corresponding default geographic coordinates (the pair of latitude and
longitude: -19.945360, -43.932678), a standardised city name (“belo horizonte”, in this
case) as well as the state and country names (“minas gerais” and “brazil”).

Table 3.2 provides the distribution of the geographic information (GI) of all con-
sidered attributes in the dataset. We present the total number of users and venues in
the dataset, as well as the percentages of those users and venues that correspond to
valid geographic information (real location), non-geographic information (e.g., emails,
phrases) and no information declared (empty entries). The valid geographic informa-
tion can be unambiguous or ambiguous. Ambiguous information correspond to location
names that, though identified as valid, can refer to multiple places. One example is
“Springfield” which is the name of ten different cities in the United States. In those
cases, Yahoo! PlaceFinder is unable to decide which one is correct. Observe that tips,
likes and mayorships were grouped as venue attributes, while user attributes correspond
only to the home city field.

Note that, perhaps surprisingly, the vast majority of the Foursquare users in our
dataset (98% of a total of 13,570,060) do provide valid place names as home loca-
tions, with only a tiny fraction leaving it blank (0.2%) or filling it with non-geographic
information (1.8%). Moreover, 11.6 million venues have valid associated locations, al-
though a substantial fraction of all venues have non-valid locations (26.51%). This
large fraction of non-valid venue locations comes as a surprise, particularly considering
that, unlike the user home city field, the venue location information is a mandatory
attribute. Since ambiguous locations do not represent a unique place in the globe, we
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decided to disregard users and venues with ambiguous geographic information as home
city, which correspond to 2.65% and 18.04% of all users and venues, respectively, in
our dataset.

Quality # Users # Venues
Continent 107 (0.0008%) 61 (0.0007%)
Country 602,932 (4.66%) 294,596 (3.34%)
State 390,224 (3.02%) 93,513 (1.06%)
County 251,383 (1.94%) 276,097 (3.13%)
City 10,354,058 (80.02%) 6,937,523 (78.70%)
Neighbourhood 981,139 (7.58%) 1,060,124 (12.03%)
Area of Interest 27,307 (0.21%) 47,896 (0.54%)
Street 326,751 (2.53%) 95,543 (1.08%)
Point of Interest 5,607 (0.04%) 9,792 (0.11%)
Geographic Coordinate 61 (0.0005%) 32 (0.0004%)

Table 3.3. Quality of the Valid and Unambiguous Geographic Information.

Next, we analyse the quality indicator of the valid (and unambiguous) geographic
information available in the dataset. In Table 3.3, we present the distributions of the
home location of users and venues across ten different quality levels, ranging from conti-
nent to specific geographic coordinates. It is clear that the vast majority of Foursquare
users and venues have location information at the city level or at finer granularities.
However, over 1.2 million users provide home location information at coarser granular-
ities (often at country level) letting inferences at finer-grained levels even more invasive
in revealing sensitive information. Thus, in sum, for our inferences we consider loca-
tions in the level of city or in finer granularities. Since each location is modelled for
our inferences as a triple with the corresponding names of its city, state and country,
11,522,201 users and 8,127,790 venues are part of our experimental analysis.

Although we check the validity of the geographic information associated to the
public user attributes, in this study we do not verify the veracity of the information.
This means that fake attributes may exist in our dataset. Since the task to detect
these attributes is not trivial, we do not apply any filter to remove them.

3.5 Attribute Characterisation

We here focus on the usage of the publicly available attributes present in our dataset.
For each considered user, we analyse his home city field, the history of mayorships,
tips, likes, and list of friends. Our goal is to assess the potential of exploiting these
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attributes for inference purposes in terms of the fraction of users we would cover as
well as how those users and locations are spread around the world.
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Figure 3.2. Cumulative Distribution of the Location-based Attributes per User
(log scale in the x-axis).

Considering the entire dataset (without any filtering), we observe that almost 4.2
million users, or around 30% of all users in our dataset, have at least one mayorship,
tip or like. Out of these, around 1 million have only mayorships, 670 thousand have
only tips and 367 thousand have only likes, whereas 890 thousand users have all three
attributes. Beyond that, almost 7 million users (about 51% of the total number of users
in the dataset) have at least one friend in the system, being around 47% of them with
some activity represented by the attributes mentioned (mayorships, tips and likes).
Thus, exploiting all these attributes to infer a user home city is promising as the
required information is available in a large fraction of the whole dataset. Moreover, as
shown in Figure 3.2 and consistent with previous analyses of Foursquare [Noulas et al.,
2011; Vasconcelos et al., 2012], the distributions of the numbers of these attributes per
user are very skewed, with a heavy tail, implying that few users have many mayorships
(tips, likes or friends) while the vast majority have only one mayorship (tip, like or
friend). Indeed, for users that have one mayorship (tip, like or friend), we find that
69% (59%, 56% and 83%) of the users have 2 or more mayorships (tips, likes and
friends).

Figure 3.3 shows the distributions of numbers of mayorships, tips, likes and users
per city 7, considering only cities with at least one instance of the attribute – in total,

7To compute the numbers of mayorships, tips and likes per city, we considered all venues located
in each city and counted all the elements (mayorships, tips and likes) of those venues. Similarly, to
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Figure 3.3. Cumulative Distribution of the Location-based Attributes per City
(log scale in the x-axis).

our dataset includes references to 100,629 different cities around the world. For such
analysis, we only considered those attributes which are associated with real locations –
validated by the process described in Section 3.4. As shown, the distributions are also
very skewed, with a few cities having as many as 100 mayorships, tips, likes or users.

We now discuss the distribution of cities with users and venues around the world.
Furthermore, we also show in distinct maps the cities with venues where users have
mayorships, tips and likes. Once again, we only consider users and attributes associ-
ated with real cities as location (validated by Yahoo! PlaceFinder). Figures 3.4 and 3.5
show these distributions in maps of the globe 8, with each point representing a city. 9

As the maps show, Foursquare users and venues are spread all over the world, including
remote places such as Svalbard, an archipelago in the Arctic Ocean, with coordinates
(78.218590,15.648750). Moreover, all five maps are very similar, with most incidences
of points in America, Europe and Southeast Asia. The distribution of venues, in
Figure 3.4(a), aggregates the highest number of distinct cities (82,248) among all dis-
tributions, showing that there are cities which host venues, but have no user registered
in the system (since users comprise less cities, 76,918 in total – Figure 3.4(b)). We
also observe that the distribution of mayorships, shown in Figure 3.5(a), is denser,
with a total number of unique cities (75,169) much larger than in the distributions

compute the number of users per city, we counted the amount of all users with home location in each
city.

8The maps were plotted using the Basemap package from Python’s library (http://matplotlib.
org/basemap/users/geography.html)

9The Antarctica continent was omitted because there was no point on it.

http://matplotlib.org/basemap/users/geography.html
http://matplotlib.org/basemap/users/geography.html
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(a) Venues.

(b) Users.

Figure 3.4. Global Distribution of Users and Venues Location across Cities.
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(a) Mayorships.

(b) Tips.

(c) Likes.

Figure 3.5. Global Distribution of the Location-based Attributes across Cities.
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of tips and likes, which cover a total of 51,394 and 29,092 unique cities, respectively.
The somewhat sparser map built from tips (Figure 3.5(b)) indicates that there are
many cities, particularly in Canada, Australia, central Asia and Africa, where, despite
the existence of venues and mayors, users do not post tips. The distribution of likes,
shown in Figure 3.5(c), reveals an even sparser map, with most activity concentrated
in touristic or developed areas, such as USA, western Europe and southeast Asia. We
note that a similar map was produced for check ins in [Cheng et al., 2011b]. Even
though both datasets were collected at different times, we find that their main areas
of concentration do overlap.

We found that the cities with the largest numbers of mayorships tend also to
have large numbers of tips and likes, although some interesting differences are worth
noting. For instance, mayorships are more concentrated in Southeast Asia, in cities
like Jakarta, Bandung and Singapore, which are the top three cities in number of
mayorships, jointly having more than 500 thousand mayorships. Tips, in turn, are
concentrated in different locations around the Earth: the top three cities in number
of tips are New York, Jakarta and São Paulo, with a total of about 600 thousand
tips. Likes, on the other hand, tend to be concentrated in venues in the United States,
in cities like New York, Chicago and San Francisco, which jointly received around 1
million likes. Just as these attributes, users are also spread through the globe, being
New York the city with the greatest concentration of members, around 1.3 million
users – which is nearly three times more users than the second city with more users in
the rank (Jakarta). Somewhat unexpected, New York is not the city which hosts the
highest number of venues, being the fifth in the rank after three asian cities (Jakarta,
Bandung, Singapore) and São Paulo.

Next, we analyse the correlation between the numbers of mayorships, tips, likes,
users, and venues per city. To that end, we use the Spearman’s correlation coefficient
ρ [Zwillinger and Kokoska, 2000]. In statistics, it is a nonparametric measure of statis-
tical dependence between two variables. It assesses how well the relationship between
two variables can be described using a monotonic function. Thus, the ρ coefficient
varies between -1 and +1, with 0 implying no correlation and correlations of -1 or +1
implying an exact linear relationship. Positive correlations imply that as x increases, so
does y, while negative correlations imply that as x increases, y decreases. Such correla-
tion is defined as the Pearson correlation coefficient between the ranked variables. For
a sample of size n, the n raw scores are converted to ranks, and ρ is computed accord-
ing to the Equation 3.1. We observed that there is a very strongly positive correlation
between the number of mayorships and the number of venues across cities (ρ = 0.96).
Similarly, the correlation is also high between the number of tips and likes in relation
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to the number of venues (ρ = 0.85 and ρ = 0.80). Furthermore, the correlations among
mayorships, tips and likes are between ρ = 0.79 and ρ = 0.85. In contrast, the number
of users across cities presents a slightly weaker (though still reasonably strong) posi-
tive correlation (0.64 ≤ ρ ≤ 0.68) with the quantities of the other attributes, pointing
out that the most active users in the system do not necessarily live in the cities that
aggregate the most popular and touristic venues in the world.

ρ =

∑
i(xi − x)(yi − y)√∑

i(xi − x)2
∑

i(yi − y)2
(3.1)

We also observe that most words extracted from tips in our dataset are adjectives
or are related to food, services and generic places where one can eat or drink, as shown
in Figure 3.6. We note that, although other studies [Cheng et al., 2011b] have exploited
textual features to analyse user location, we here chose not to exploit the tip’s content
as they are often targeted towards more generic topics such as food and service quality.

Figure 3.6. Tag Cloud of the Words Present in Tips.

3.6 Spatial Analysis

In this Section, we perform a spatial analysis of user activity in terms of tips and likes
aiming at investigating how far users “move” between consecutive tips/likes. To that
end, we make use of the venue location where the tip (or like) was left – to identify the
geographic coordinate of the location considered, and the timestamp associated with
tips and likes – to rank them into consecutive events in time. 10

10Mayorships are not considered in this analysis since they are not associated with a timestamp.
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Figure 3.7. Cumulative Distribution of Displacements Between Consecutive
Tips/Likes Posted per User.

We analyse the displacement between two venues visited in sequence by the user,
as indicated by consecutive tips and/or likes of the user. For this analysis, we consider
only users with at least two activities, provided that the venues associated with these
activities have valid locations – validated by the procedure detailed in Section 3.4, with
quality of city level or finer granularities. Our dataset contains almost 1.5 million users
in this group. For these users, we computed the displacements between consecutive
tips/likes by taking the difference between the geographic coordinates of the associated
venues. We summarise user activity computing the minimum, median, average and
maximum displacement per user. Figure 3.7 shows the distributions of these measures
for all analysed users.

Around 37% of the users have average and maximum displacements of 0 kilome-
tres, indicating very short distances (within a few meters). Moreover, 90% of the users
have minimum displacements of up to 40 kilometres, which could be characterised as
within the metropolitan area of a large city. Also, 70% of the users have an average
displacement of at most 150 kilometres, possibly the distance between neighbouring
cities. However, there are exceptions. Note that about 10% of the users have a maxi-
mum displacement of at least 6,000 kilometres. 11

Thus, overall, consecutive tips/likes of a user are often posted at places near each
other. Such finding motivates the use of tips and likes in the proposed inference models
as these attributes tend to be concentrated in specific regions. Although the exceptions

11Note that the maximum displacement between two points in the Earth is the distance between
antipodes (two diametrically opposed points) that is about 20,000 kilometres.
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represented by huge displacements beyond 6,000 kilometres (a possibly indication of a
travel), on average, the majority of user displacements consist of short distances.

3.7 Temporal Analysis

Here, we perform a temporal analysis of user activity in terms of tips and likes aiming
to analyse how often users leave tips/likes. To that end, we again make use of the
timestamp associated with each tip and like to identify consecutive events in time and
measure the interval between such events.
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Figure 3.8. Cumulative Distribution of Time Interval Between Consecutive
Tips/Likes Posted per User.

We start by analysing the time interval between consecutive activities (be it a tip
or a like) of the same user. Thus, we consider only users with at least two activities,
covering a total of 1,959,644 users. Once again, we summarise user activity by the
minimum, median, average and maximum inter-activity times. Figure 3.8 shows the
cumulative distributions of these four measures computed for all considered users. We
note that the distribution of minimum inter-activity times is very skewed towards
short periods of time, with almost 50% of the users posting consecutive tips/likes 1
hour apart. However, on average, median and maximum, users do tend to experience
very long periods of time between consecutive tips and likes. For instance, around 50%
of the users have an average inter-activity time of at least 450 hours, whereas around
80% of the users have a maximum inter-activity time above 167 hours (roughly a week).

Finally, we analyse how often users return to the same venue for tipping or mark-
ing tips as like. That is, we analyse the returning times, defined as the time interval
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Figure 3.9. Distribution of Returning Times.

between consecutive tips/likes posted at the same venue by the same user. This anal-
ysis is focused on 813,606 users, who have at least two tips/likes in the same venue,
and cover more than 3 million returns. We here choose to show the distribution of
all measured returning times, as opposed to summarising them per user first, so as to
compare our results against previous findings of check in patterns [Cheng et al., 2011b].
Figure 3.9 shows the distribution, focusing on returning times under 360 hours, which
account for 69.7% of all measured observations. The curve shows clear daily patterns
with returning times often being multiples of 24 hours, which is very similar to the
distribution of returning times computed based on check ins [Cheng et al., 2011b]. We
note, however, that 50% of the measured returning times are within 1 hour, which can-
not be seen in the Figure as its y-axis is truncated at 1% so that the rest of the curve
could be distinguished. Moreover, out of these observations, 90% of them are at most
10 minutes. Thus, returning times, in general, tend to be very short. If we analyse
the behaviour per user, we note that most users have very short minimum returning
times, which is below 1 hour for 62% of the users. However, consistently with results
in Figure 3.8, on average, median and maximum, users do tend to experience longer
returning times. For instance, 52% of the users have average returning times of at least
168 hours.

3.8 Summary of this Chapter

In this Chapter, we introduced the main attributes in Foursquare, detailing the crawling
methodology and the amount of data collected. We also presented a characterisation of
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Foursquare users in relation to their publicly available attributes in the system, namely
home city field, history of mayorships, tips and likes, as well as list of friends. Since
our focus is on the location information associated with attributes to build models to
infer a user’s home location, we evaluate the validity and the quality of the locations
declared for users and venues. Our findings show that:

• the vast majority of users provide valid locations in the home city field (98% of
our dataset);

• despite the large fraction of non-geographic locations associated with venues
(27%), about 73% of them are associated with valid geographic locations;

• 90% and 92% of user and venue locations, respectively, are in the level of city or
in finer granularities.

We also characterised user activity in the system, showing that mayorships, tips,
likes as well as friends are promising sources of information about a user’s home location
as:

• 30% of the users in our dataset have some activity;

• almost 7 million users in our dataset have a non-empty list of friends;

• there are friends, mayorships, tips and likes spread all over the world, thus infer-
ences using such attributes may be performed at a global scale (not limited to a
specific region).

Finally, the study of the patterns followed by users in terms of their attributes
can tell much about one’s behaviour whereas common observations reflect relevant
insights to the development and analysis of home location inference models. Our main
conclusions in this direction are:

• users tend to post tips and likes in a limited region, exhibiting short distances
among displacements between consecutive attributes. This spatial locality might
imply that these attributes are somewhat related with the location where the
user lives;

• in general, users are not very active in the system considering tips and likes,
as the time interval between consecutive tips (or likes) posted by the same user
tends to be very long (in the order of weeks).





Chapter 4

Home Location Inference Models

In this Chapter, we start by presenting our problem statement in Section 4.1. In
Sections 4.2 and 4.3, we describe the techniques used to make inferences at the city
and geographic coordinate levels, respectively. Then, in Section 4.4, we discuss the
methodology adopted in our study, focusing on how we defined our ground truth and
the metrics used to evaluate the proposed inference models.

4.1 Problem Statement

Location sharing can be exploited for several new services, such as targeted recommen-
dation and advertisement, as well as to improve existing services (e.g., personalised
search). Our focus here is on the implications of location sharing as to privacy vio-
lation. Our main goal, in this dissertation, is to investigate whether it is possible to
infer, with reasonable accuracy, the home location of Foursquare users using only pub-
licly available attributes. Since Foursquare is in essence a LBSN, several features in
the system have embedded geographic information, creating opportunities to explore
the spatial aspect associated with each member. In this sense, we aim to aggregate
every single piece of location information associated with a user (notably information
associated with her lists of mayorships, tips, likes and friends) in an attempt to show
the potential of the shared data in revealing virtual footprints, which in turn can guide
us to where a user actually lives in the physical world. Moreover, we intend to exploit
only publicly available user attributes to show to which extent such inferences can be
made by anyone (as opposed to a friend of the user in the system).

The key assumption behind this study is that users tend to have mayorships,
tips and likes in venues at the same location (e.g., city) where they live, and they also
are likely to have friends living nearby. At first, one might think that the mayorship

33
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locations are perhaps the strongest pieces of evidence about a user’s home location,
as the former represent places the user possibly goes very often. Recall that a user
only becomes a mayor if she is the most frequent visitor of a venue in the last 60
days. However, tips may also reveal places where a user has been, since when posting
tips users are often sharing experiences. 1 Along the same lines, likes may also provide
some evidence about a user’s home location, although perhaps not as strong as tips and
mayorships. Our conjecture is that users often mark as liked tips about physical places
where they have been to or intend to go soon. We note however that, despite being
intuitive and supported by some of our characterisation findings, the aforementioned
assumption is not guaranteed to hold for all users. As discussed in Section 3.6, 10%
of the users in our dataset have a maximum displacement of at least 6,000 kilometres
between consecutive tips and likes. Finally, as many studies claim, users tend to
maintain friendships with people who live near them [Davis Jr. et al., 2011; Backstrom
et al., 2010], and thus the home locations of friends are promising sources of evidence
with regard to where a user actually lives.

We thus propose several home location inference models, distinguished by the
considered attributes (mayorships, tips, likes and friends) and the employed technique
(Majority Voting Scheme and K-Nearest Neighbour – both described in Section 4.2).
Our inferences are made at different granularities, ranging from the country where
a user lives up to the exact geographic coordinate of her residence. Motivated by
the privacy implications of this kind of inference, we have focused our efforts on the
finest location granularities, namely city and geographic coordinates, as finding the
home location of a user in such granularities may represent a major concern when
compared, for instance, with the discovery of the country where someone lives. We
note that inference results for less specific geographic levels (country and state) are
provided in [Pontes et al., 2012b]. Similarly, results for other applications – Google+
and Twitter – exploiting different attributes are discussed in [Pontes et al., 2012a].

4.2 Inference Models at the City Level

We here propose different models to infer the home city of Foursquare users in at-
tempt to explore the potential of distinct attributes in revealing where a user lives,
as well as to investigate which strategy is more effective to gather all the information
available. In our approaches, we make use of the city of venues where a user has may-

1Although users may post tips at unknown venues to, for instance, inquire about driving directions,
operation time, or parking conditions, we believe that this does not occur very often and may possibly
signalise an intention for a future visit.
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orships, tips, likes, and the cities where the user’s friends live, as indicated in their
home city attribute. We first propose a simple Majority Voting Scheme, explained in
Section 4.2.1. Next, we introduce a more sophisticated method that is based on the K
Nearest Neighbours algorithm, which is described in Section 4.2.2.

4.2.1 The Majority Voting Scheme

One of the simplest way of aggregating items to decide one to choose consists in count-
ing votes and taking the majority [David and Jon, 2010]. We refer to this approach as
majority voting scheme (MVS). MVS is an efficient strategy that can be very demo-
cratic. Not coincidentally, many people adopt such strategy to make decisions as in
political elections, or while selecting which place to go with friends, or even to decide
which team deserve to win a championship. In all these scenarios, all options eligible
to receive votes are considered equal, with no priority or privilege in the dispute to
win votes. Thus, in sum, the MVS consists of three major components: the electable
– which are able to be elected, the votes – which count points in favour of some of the
electable, and the winner – represented by the majority of the votes.

In the context of this dissertation, we apply this strategy to infer the user home
location. To that end, we initially select a set of user attributes, which can be the list
of mayorships, tips, likes, or friends. We then take all the unique cities to which these
attributes are related, being these locations the electable candidates for the user home
location. Next, we get the votes, which are here represented by the location associated
to each user attribute (e.g., the city of the venue where a tip was posted). Finally,
we count the votes, and if only one majority is achieved, we have a winner, which
is the city where the user has more attributes and which will be set as his inferred
home location. We call such approach MVS and it includes 15 distinct models which
differ in terms of the attributes used for the inference. We take into account models
that exploit single attributes (here referred as Mayorship, Tip, Like and Friend), as
well as all possible combinations of them (namely, Mayorship+Tip, Mayorship+Like,
Mayorship+Friend, Tip+Like, Tip+Friend, Like+Friend, Mayorship+Tip+Like, May-
orship+Tip+Friend, Mayorship+Like+Friend, Tip+Like+Friend and All, the latter
representing the combination of all four attributes). We build combined models aim-
ing at assessing the potential of each attribute to improve the overall accuracy of the
single-attribute models and to increase the number of users covered in the inference.
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4.2.1.1 MVS Limitations

Note that the MVS has two clear limitations: the lack of enough votes and the possi-
bility of ties (multiple winners). Inferences for users with too few attributes (e.g., just
a few mayorships) might be based on weak evidence, and thus, are more susceptible to
errors. On the other hand, the MVS may lead to tied results with multiple locations,
and therefore a winner must be picked through some other criteria.

In an attempt to overcome these limitations, we have proposed variations for
the MVS approach. To avoid lack of evidence for the inference, we have suggested
the Filtered_MVS approach, which implies in applying MVS only for active users
regarding the attributes considered in each model. By active users we mean users that
have at least a minimum number of attributes (evidence) exploited by the model. This
minimum is determined by the parameter min_evidence (e.g., min_evidence equal
to 5 for the Tip model means that only users with at least 5 tips are considered
in the inference). Since Foursquare was relatively new at the time our dataset was
collected, many users do not have many pieces of evidence (e.g., many mayorships,
tips, likes and friends) to be explored. Thus, we focus only on more active users 2,
conjecturing that they might reflect the behaviour of a larger user population in the
near future, as Foursquare continues to grow in popularity. We also explore another
parameter, proposed by Davis Jr. et al. [2011], to avoid elections based on weak
evidence, including a parameter (min_votes), which is the minimum number of votes
for an electable location to be set as inferred home location of a user. The assumption
here is that locations elected with a small number of votes do not represent reliable
inferences.

We have also treated the cases whenMVS faces a tie when deciding which location
would be set as the user inferred home city. Since only the majority rule is not enough
to solve the problem of multiple winners, we have introduced an iterative approach,
the Iterative_MVS , to try to reduce the number of winners to only one location. It
works as follows. We take the winner locations as the new electable locations; then,
as previously explained, the attributes that can be found at one of these locations
add votes to them. For the attributes which are not located in any of the electable
locations, we calculate the distance between the attribute’s location (e.g., the city of
the venue where a like was posted) and the electable locations, the smallest distance
will define the electable location for which the vote of that attribute will be assigned.

2This was motivated by the study conducted in [Sadilek et al., 2012], where the authors proposed
a probabilistic model of human mobility for Twitter users based on a large sample of highly active
users with more than 100 GPS-tagged tweets. That study shows that prediction accuracy degrades
gracefully as the amount of data available is limited.
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Observe that this process can have many iterations, since a new election may result in
a new tie. There may also be intractable impasses in which it is not possible to reduce
the number of winners to one. In summary, the assumption behind this strategy is that
in face of a tie, for instance between two locations, we believe that probably the most
likely location to be set as the user inferred home location is the one which present a
denser cluster of attributes located nearby.

Figure 4.1. Successful Example of Iterative_MVS Approach to
Solve Ties among Locations.

Figure 4.1 illustrates how the Iterative_MVS works showing a situation where
a user have six attributes associated with four locations: Belo Horizonte, New Delhi,
Ouro Preto and Tiradentes. Applying the original majority voting strategy (exem-
plified by the first iteration), we see that there is a tie between two locations, Belo
Horizonte and New Delhi, with two votes each. Thus, in face of this tie we apply a
second iteration (based on our Iterative_MVS approach) to try to choose the location
(Belo Horizonte or New Delhi) which contains more attributes nearby. Note that the
majority of the remaining attributes are located in the same state as Belo Horizonte,
thus Ouro Preto and Tiradentes count votes to Belo Horizonte since they are closer to
it in comparison to New Delhi. In this case, Belo Horizonte, and not New Delhi, is
chosen as the user home city. For this approach, one parameter is considered – α, which
represents the maximum distance (in kilometres) between an attribute’s location and
an electable location such that attribute’s vote is accounted for (e.g., if α = 100Km,
an attribute will only be considered as a vote for an electable location in the inference
if its location is at most 100km away from it). The example of Figure 4.1 considers
alpha to be unlimited. The reason why we include such parameter is to avoid that an
attribute located very far from all electable locations accounts votes to one of them,
eventually adding noise to the inference – for example, in a tie between New York and
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Hong Kong, an attribute in Abu Dhabi would not be useful in this election as it is
thousands of kilometres far from both electable locations.

We refer to the basic MVS approach, which does not deal with neither weak
evidence nor ties as Original_MVS so as to more clearly distinguish it from the Fil-
tered_MVS and Iterative_MVS approaches.

4.2.2 The K-Nearest Neighbour Approach

The K-Nearest Neighbour (KNN) is a machine learning classification algorithm that is
based on lazy learning, in which the classification model is only approximated locally
and all computation is deferred until classification. Basically, each object is represented
by a vector containing the values of attributes associated with it. The vector of the
target object that we want to classify is compared to all other objects with some
similarity (or distance) function to ultimately determine to which class or category
that object will be assigned. The K objects which achieve the highest values for the
similarity function are considered to be the closest neighbours of the target object and
will be responsible to define its class. The classification takes into account the majority
of the neighbours’ classes, thus the target object is assigned to the most common class
amongst its K nearest neighbours [Manning et al., 2008].

In light of our present focus, we propose the following KNN based approach to
infer the home location of Foursquare users. Basically, we apply inferences considering
two different approaches: global (Global_KNN ) and local (Local_KNN ). Given a
user for whom we want to infer the home location (the target user), the Global_KNN
approach takes all users of our dataset to serve as neighbours while applying the tech-
nique. In contrast, the Local_KNN takes only the target user’s friends into account.
These approaches were motivated by the location prediction methods proposed by Li
et al. [2012] for Twitter. Authors have developed two models which consider the so-
cial network to infer a user’s location based on different scopes: a more restricted with
fewer users as predictors (local), and a broader one with comparatively more predictors
(global).

For both approaches, all users are modelled by a 3V-dimensional vector, where
V is the number of distinct venues where the target user (i.e., the user whose home
city is being inferred) has some activity. 3 Each position in the vector expresses the
number of mayorships (tips or likes) that the user has in a particular venue. Having all
vectors in hand (from the target user and her neighbours), we calculate the similarity

3Note that the number of unique venues where users have some activity tend to be small. As
shown in Section 3.5, the distributions of mayorships, tips and likes per user are heavy tail, with few
users having lots of attributes but most users having only a few attributes.
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between each neighbour and the target user. Here, we opt to use the cosine measure
as similarity metric, although other metrics could be adopted. The cosine similarity
function (cosine_similarity) between the target user (tuser) and a neighbour (nuser) is
defined in Equation 4.1, where T and N are the 3V-dimensional vectors that represent
tuser and nuser, respectively – being Tv,i and Vv,i references to the v dimension and
the position i of the vectors T and V, respectively. Finally, for the K users with
the highest similarity with the target user (the K nearest neighbours), we apply the
Original_MVS to define the inferred user home location. Note that, Global_KNN and
Local_KNN do not solve ties since we use Original_MVS to infer the target user home
location. However, other approaches (such as Iterative_MVS ) could be used.

cosine_similarity(tuser, nuser) =

∑V
v=1

∑3
i=1 Tv,iNv,i√∑V

v=1

∑3
i=1(Tv,i)

2
√∑V

v=1

∑3
i=1(Nv,i)2

(4.1)

4.2.2.1 KNN Limitations

One limitation of the Local_KNN approach in the context of this dissertation is related
to the eligible users for inferences and candidates for neighbours. Initially, the algorithm
considers all friends of the target user as candidates – recall that the target user is the
one for whom we intend to infer a home location. Thus, mere acquaintances may
participate of the inference and might potentially impact the results negatively. We
thus propose two variations of the Local_KNN approach to try to reduce this impact.

Our assumption behind these variations is that close friends are more likely to
live near the target user’s residence than other people. We here consider a friend as
close to a target user if they have friends in common. Thus, a friend with some friend
in common is a better predictor for inferring the target user’s home city than other
friends.

In the first variation of Local_KNN, we only consider eligible for inference users
that have at least a minimum number of friends with some friend in common with
them. We use the min_friends parameter to determine this threshold. In the second
variation, we only consider as neighbours those friends that have at least a minimum
number of friends in common with the target user. This minimum number of mutual
friends is defined by parameter min_mutual.
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4.3 Inference Models at the Geographic Coordinate

Level

Now we focus on inferring home location at a finer granularity: we aim at inferring
the pair of geographic coordinates (i.e., latitude and longitude) of the residence of a
Foursquare user. To that end, we explore the history of mayorships, tips and likes,
but not friends 4, analysing the single-attribute models (Mayorship, Tip and Like)
and the combined model Mayorship+Tip+Like. As the ground-truth is in the level of
geographic coordinates, only users who are mayors of venues of the Residence category
are considered for inference (i.e., are eligible for inference).

We adopt a two-phase approach to infer the geographic coordinates of a user
residence. First, we apply the majority voting scheme (Original_MVS approach) to
infer the user’s home city. 5 Afterwards, for those attributes that are located in the
inferred city, we compute the coordinates centroid (pair with the mean latitude and
longitude of unweighted points in the space) of the venues to which they are associated.
The assumption is that all the attributes located at the inferred home city are possi-
bly associated with places that are likely to be near the user’s residence. Thus, the
coordinates centroid of these places would be a reasonable estimation of where a user
actually lives taking into account places which are probably within a user’s mobility
area. To evaluate how good our inference is, we plot the cumulative distribution of the
distances between the inferred coordinates and the ones associated with the ground-
truth – which represent the exact location of the user’s home. 6 We discuss how we
obtain the ground truth in the next section.

4.4 Evaluation Methodology

In this Section, we discuss key aspects related to the methodology adopted to evaluate
our proposed inference models. We start by discussing how we defined the ground truth
for inferences and which users are eligible for our proposed models. Then, we introduce
a categorisation of eligible users into three classes and discuss for which of them we are

4Since the friends location is defined as a default coordinate of their home city, we do not consider
friends in our geographic coordinate inference models.

5Although we adopted the Original_MVS approach in the first phase of the home location infer-
ence at the geographic coordinate level, other approaches (such as Filtered_MVS and Iterative_MVS )
could be used.

6In the case of Foursquare users with multiple mayorships in venues of the Residence category, we
decided to report the lowest distance between them and the inferred geographic coordinate.
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able to provide inferences. Finally, we conclude this chapter with a description of our
evaluation metrics to measure the effectiveness of our inference models.

To define the ground truth, we first need to determine the inference granularity.
For inferences at the city level (or coarser granularities, such as country and state), we
take the information provided in the user’s home city field as the location where she
lives. Thus, when inferring home city locations, we consider only users whose home
city attributes contain valid locations at the city level or at a finer granularity – as
validated by Yahoo! PlaceFinder in the process described in Section 3.4. Although
users are free to enter whatever they want in the home city field, we found that the
majority of Foursquare users in our dataset do enter valid locations (see Table 3.2). 7

To provide inferences in a finer degree – as the geographic coordinate level – a more
specific ground truth is needed. We then make use of the location associated with a
venue of the Residence category for which a user is mayor in Foursquare, since such
location is represented with a pin in a world map, thus necessarily having a pair of
coordinates associated. 8 Therefore, only users who are mayors of Residence venues are
considered in the inferences of the home location in the level of geographic coordinate.

In our experimental evaluation, our first step is to select the eligible users, that
is, users who are qualified to participate of the inference process for a specific proposed
model, or, in other words, users who have filled the public attributes exploited by
the model. Users who are not in this group are disregarded since it is impossible to
try to infer something about them applying the considered model. After inferring the
home location, we group users into three classes. Class 0 consists of users who have
their home location inferred through only one piece of evidence, being in this case the
unique alternative to be chosen. Class 1 and Class 2, on the other hand, consist of
users who have multiple pieces of evidence (e.g., a tip and a mayorship, or multiple
tips). However, the proposed models can define one single location for users who fall
into Class 1, but it cannot be done for users in Class 2 since models are unable to
decide which location is the best choice for that specific user. In other words, users
in Class 2 are those for which there are ties among the electable locations. We first
consider the Original_MVS approach, which does not handle users in Class 2, who
are thus considered intractable. Later, we evaluate the Iterative_MVS solution which
tackles tied results, in which case some users originally in Class 2 move to Class 1. In
both cases, only users in classes 0 and 1 are treated by our proposed models.

As part of this study, we evaluate and contrast the proposed models in terms of

7Note that the veracity of this information cannot be confirmed.
8Residence is a venue category related to real homes. Their coordinates are omitted in the venue’s

page, but are accessible via Foursquare API.
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their accuracy, stressing the pros and cons of the different approaches as well as their
main limitations. We assess the accuracy of the inferences carried out for users of both
Class 0 and Class 1, who are called covered users and represent those for which it
was possible to infer a home location. The accuracy corresponds to the percentage of
correctly inferred locations out of all users of each aforementioned class. Moreover, we
also report the overall accuracy of each model, considering all the covered users for the
inference being applied. Basically, an accurate and efficient model has a reasonable
balance between the number of covered users and the inference accuracy. At the same
time we look for a model that can generate inferences for a large fraction of users in
our dataset, we aim to have high percentages of correct inferences. Such a balance is
represented by the product of the number of covered users and the overall accuracy,
which results in the total number of correct inferences.

Home Location Inference Models 

City  
Level 

Geographic Coordinate 
Level 

MVS KNN 

Original_
MVS 

Filtered_
MVS 

Iterative_
MVS 

Global_ 
KNN 

Local_ 
KNN 

min_mutual min_friends min_votes min_evidence 

Figure 4.2. Summarisation of the Home Location Inference Models –
Methods Applied and Levels of Inference.
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For purposes of summarisation, Figure 4.2 presents a diagram that illustrate the
methods applied in this study for the home location inference, as well as the levels of
inference considered in the experimental evaluation. As previously detailed, MVS and
KNN are the methods used. Both of them branch out into adaptations of the original
methods, for the MVS approach the branches are Original_MVS, Filtered_MVS and
Iterative_MVS, while for the KNN approach we have Global_KNN and Local_KNN.
Note that Filtered_MVS and Local_KNN ramify into two more method variations each
with respect to the use of specific parameters. Finally, the inferences are made in the
finer-grained levels of city and geographic coordinates, although coarser granularities
(as state and country) are also possible.





Chapter 5

Experimental Evaluation

This Chapter discusses the experimental evaluation of our proposed models for inferring
the home location for the Foursquare users in our dataset, detailed in Chapter 3. We
present the results of applying location inferences at both the city (Section 5.1) and
geographic coordinate levels (Section 5.2) discussing our main findings when applying
the considered techniques for inferring user home location on Foursquare.

5.1 Inference Results at the City Level

The results of our experimental evaluation of both MVS and KNN based models for
inferring user home city are discussed in Sections 5.1.1 and 5.1.2, respectively. The
purpose of applying different techniques for inferring location is to assess which method
is more effective in terms of both inference accuracy and user coverage, as defined in
Section 4.4.

5.1.1 MVS Inference Models

Recall that, as discussed in Section 4.2.1, we propose several variations of the general
MVS model for inferring the user’s home city. These models differ in terms of the
attributes considered (mayorships, tips, likes and/or friends) and the approach used
(Original_MVS, Filtered_MVS and Iterative_MVS ). In the following, we start by
discussing the set of experiments performed to explore the considered attributes and
assess the impact of key model parameters (Section 5.1.1.1). Next, we present and dis-
cuss our most representative results (Section 5.1.1.2), and summarise our main findings
and conclusions (Section 5.1.1.3).

45
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5.1.1.1 Experimental Setup

For the Original_MVS approach no parameter is required, being the models sub-
ject only to the impact of the attributes considered. Our experiments are performed
exploring all the possible combinations of attributes in 15 different models. Thus, we
propose four single-attribute models which take attributes in isolation (Mayorship, Tip,
Like and Friend), six models that explore pairs of attributes (Mayorship+Tip, Mayor-
ship+Like, Mayorship+Friend, Tip+Like, Tip+Friend and Like+Friend), four models
with combinations of three attributes (Mayorship+Tip+Like, Mayorship+Tip+Friend,
Mayorship+Like+Friend and Tip+Like+Friend), and a final model which combines all
four attributes (referred to as All).

The Filtered_MVS approach, in turn, which was designed with the goal of
avoiding the use of limited evidence in inferences, has two key parameters, namely
min_evidence and min_votes. Recall that min_evidence consists of the minimum
number of attributes a user must have to be eligible for inference (e.g., for the model
Tip+Like, the number of attributes is represented by the number of tips and likes a
user has). Parameter min_votes, on the other hand, expresses the smallest number of
votes allowed for the inference of a user’s home location, being a location elected only
if it achieves at least min_votes. We analyse the impact of each parameter separately
by varying it from 1 to 200, keeping the other parameter fixed at 1 (default value that
implies in no restriction to the inference task). For this analysis, we consider only the
single-attribute models and the All model.

Finally, regarding the Iterative_MVS approach, which was proposed to deal with
ties in the original majority voting scheme, parameter α defines the maximum distance
allowed for a city to be considered when counting votes to break ties. We here exper-
iment with values of α equal to 100 km, 200km as well as unlimited distances (i.e.,
α =∞km). Once again, to study the impact of α on model effectiveness, we consider
only the single-attribute and the All models.

5.1.1.2 Results

The experimental results for the Original_MVS approach are presented in Table 5.1.
For each proposed model, the table shows the number of eligible users for the inference
task (i.e., users who have at least one of the attributes required by the specific model),
the distribution of users across the three previously defined classes, and the model
accuracy (per class and the overall accuracy). Recall that both classes 0 and 1 (users
with one majority defined by a single and multiple pieces of evidence, respectively)
represent the users covered by the inference task, that is, users for which the model
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Table 5.1. Summary of the Results Obtained for the Original_MVS Approach
for Home City Inferences.

Inference Model # Eligible Distribution (%) Accuracy (%)
Class 0 Class 1 Class 2 Class 0 Class 1 Total

Mayorship 1,814,184 40.08 46.55 13.37 49.86 65.05 58.03
Tip 1,589,429 45.62 42.09 12.30 49.83 65.20 57.21
Like 1,194,907 45.76 45.17 9.06 48.25 59.55 53.86
Friend 6,973,727 17.27 61.23 21.50 32.47 58.71 52.93
Mayorship+Tip 2,521,337 35.63 52.27 12.11 49.93 64.07 58.34
Mayorship+Like 2,309,900 35.72 52.35 11.93 49.35 63.05 57.49
Mayorship+Friend 7,013,106 16.79 62.65 20.56 32.87 59.79 54.10
Tip+Like 2,093,119 39.74 49.43 10.83 49.50 62.06 56.46
Tip+Friend 7,082,095 17.16 62.14 20.70 33.95 59.52 53.99
Like+Friend 7,027,402 17.11 62.00 20.89 33.04 58.94 53.34
Mayorship+Tip+Like 2,823,403 33.29 55.55 11.16 49.83 62.74 57.90
Mayorship+Tip+Friend 7,112,548 16.79 63.33 19.88 34.24 60.26 54.81
Mayorship+Like+Friend 7,062,524 16.70 63.22 20.08 33.41 59.84 54.32
Tip+Like+Friend 7,124,687 17.03 62.77 20.21 34.34 59.56 54.18
All 7,153,077 16.69 63.82 19.49 34.61 60.24 54.93

can infer a home city location. Users in Class 2 cannot be covered by the Original_MVS
approach as they represent cases where there are ties in the majority voting. We discuss
the inferences for these users, using the Iterative_MVS approach, later. Note that the
number of correct inferences is derived from the product of the number of covered users
and the model’s overall accuracy.

We start by noting that the number of users who have friends in our dataset
(eligible users for the models which include the friend attribute) is much larger than
the amount of users who have the other attributes (mayorship, tip or like). We also
observe that the vast majority of the eligible users of all Original_MVS models (79%
- 91%) are in classes 0 and 1. Thus, for most users, either they have a single evidence
(17-46%) or they have multiple pieces of evidence indicating a single predominant
city (42-64%), and thus their home city can be inferred by the simple Original_MVS
approach. Not surprisingly, on average, the models produce better accuracies for Class
1 (59-65%) than for Class 0 (32-50%), fact possibly justified by the larger number of
sources of evidence supporting the inference.

Considering the overall accuracy, we find that there are not large differences
across models. Recall that mayorships are obtained for venues where the user often
checks in and thus have a higher probability of being located in the same city where she
lives. Thus, as expected, Mayorship is the best single-attribute model to infer home
city location, although, perhaps surprisingly, Tip is only marginally worse. Friend, in
turn, produces the lowest accuracy among the four attributes when used in isolation,
possibly because the attributes associated with visits to places is more strongly related
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to short geographic distances than the friendship connections. Moreover, the combi-
nation of attributes usually hurts the overall accuracy in comparison with the best
single-attribute model (being Mayorship+Tip the exception), probably because likes
and friends add some noise. However, note that, despite a somewhat lower accuracy,
these combined models actually cover a much larger user population. For instance, the
Like model can only be applied to 1,194,907 users, whereas the All model is applicable
to 7,153,077. Thus, considering the actual number of users for which each model is able
to correctly predict the home city, we find that All is the best model, with 3,163,386
correct inferences.

Our Friend model of the Original_MVS approach is comparable with the model
proposed by Davis Jr. et al. [2011] for Twitter users. We observe that we achieved
better accuracies while inferring the user home location (52.93% against about 40.47%),
although the percentage of intractable users (Class 2 users) is bigger for our approach
(21.5% while in Twitter it is around 8.63%). These findings show that Foursquare users
are probably more connected to friends that live nearby, thus favouring more accurate
inferences for home location. But results may also be justified by the fact that our
dataset is much larger than the Twitter dataset considered in the referred study – we
consider almost 7 million users for inferences while Davis Jr. et al. [2011] consider
24,767.

We now discuss the results of the Filtered_MVS approach, which corresponds
to the use of the Original_MVS approach restricted to only more active users. The
criterion to choose the active users depends on the inference model being analysed
and the value of min_evidence. For example, for the Mayorship+Like model with
min_evidence equal to 10, active users are considered to be those who have at least
10 mayorships and/or likes in total.

We start by analysing the impact on the inferences of parameters min_evidence
and min_votes separately, showing results for the single-attribute and All models. Our
aim is to evaluate how each parameter affects user coverage and overall accuracy of each
model. Figure 5.1 shows the user coverage in number of users (Figure 5.1(a), with the y-
axis in logarithm scale) and the overall accuracy in percentage (Figure 5.1(b), with the
y-axis in the 50% to 80% range) achieved with each Filtered_MVS model for various
values ofmin_evidence whilemin_votes is fixed at 1. We can see that asmin_evidence
increases, the model becomes more restrictive and fewer users are eligible for inference,
since users with less evidence than the stipulated by such parameter are excluded.
This indirectly impacts the user coverage by each model which decreases by 20.7% (All
model) to 52% (Tip model) when min_evidence increases to 2, for example. Visibly,
the losses are particularly significant for the Mayorship, Tip and Like models, although
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Figure 5.1. Impact of the Parameter min_evidence (min_votes = 1).

in numbers the Friend and All model suffer more with more users disregarded of the
inference. In contrast, model accuracy tends to improve as min_evidence increases:
the gains reach 14% for min_evidence equal to 2. Except for the Mayorship model,
the largest overall accuracies (above 60% for all models) are achieved for min_evidence
equal to 50, with gains over the corresponding Original_MVS models reaching 21.7%
(for the Tip Model). For larger values of min_evidence, accuracies show an inverse
tendency, diverging as the inferences become more restrictive. This is possibly be-
cause the excess of sources of evidence (mayorships, tips, likes or friends) may reveal
a compulsive behaviour of users (like celebrities, brands or travellers) that have such
attributes spread in places all over the world. As consequence the number of votes per
candidate city tends to be small, and thus elections tend to be based on few votes to
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define the inferred home city of the user.
The parameter min_evidence is also explored by authors in [Davis Jr. et al.,

2011], although they associate it to another parameter that also limits the maximum
number of friends, to avoid providing inferences for very popular users (those who have
a large social network, celebrity-like users). Thus, comparing our Friend model with
the referred study for min_evidence equal to 20, we observe that we achieve gains in
accuracy of 17.7% while Davis Jr. et al. [2011] reach gains of 10% in comparison to
the simple MVS strategy. In both scenarios, just few users (about 5% of all eligible)
fall in Class 2 and, thus, are considered intractable.
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Figure 5.2. Impact of the Parameter min_votes (min_evidence = min_votes).

We turn our attention now to the min_votes parameter. Figure 5.2 shows the
impact of varying this parameter on user coverage (in number of users) and overall
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Table 5.2. Summary of the Results Obtained for the Iterative_MVS Approach
for Home City Inference (varying the parameter α).

Attributes # Covered Users Total Accuracy (%)
α=100Km α=200Km α=∞Km α=100Km α=200Km α=∞Km

Mayorship 1,587,572 1,588,648 1,591,979 57.75 57.73 57.68
Tip 1,406,388 1,407,471 1,411,236 56.97 56.95 56.87
Like 1,094,336 1,094,973 1,098,099 53.65 53.63 53.53
Friend 5,684,134 5,697,343 5,732,271 51.97 51.91 51.73
All 5,971,388 5,984,306 6,019,011 53.97 53.91 53.74

accuracy (in percentage). Note that by varying min_votes, we are indirectly varying
min_evidence, which has to be assigned the same value since in order to achieve a
certain number of votes, at least the same number of sources of evidence is needed.
Similar findings are observed, although the impact on both user coverage (Figure 5.2(a),
with the y-axis in logarithm scale) and overall model accuracy (Figure 5.2(b), with the
y-axis in the 50% to 90% range) is even stronger. If we increase min_votes from 1 to 2,
overall accuracy improves by as much as 14% (Tip model), but this comes at the cost
of a reduction of 52% in the user coverage. For min_votes set at 20 all models present
accuracies above 70%, despite of the greater reductions in coverage (87.0-98.8%). Note
that for values of min_votes larger than 100, the improvements in model accuracy are
less evident, while some approaches (Tip and Like) experience accuracy losses. Such
losses are possibly justified by the presence of users with lots of tips or likes (much
more than the value of min_votes) in venues of different places all over the world,
thus presenting many locations with a large number of votes. Once tips and likes may
not represent physical visits to places, users are able to have a great amount of these
attributes in various spread locations. In sum, we observe that the best approach is
to set both min_evidence and min_votes equal to the same value as choosing larger
values of min_evidence imply in even more restrictive models (in terms of covered
users). We here choose min_evidence (and min_votes) equal to 5 as it reaches a good
tradeoff between model accuracy and user coverage.

Once again, the results achieved for Filtered_MVS are comparable to numbers
reported in [Davis Jr. et al., 2011]. Unlike the inferences in Twitter, our Friend model
for Foursquare users shows great improvements in relation to Original_MVS approach.
Our gains in accuracy reach 34.7% for min_votes set to 10 whereas Davis Jr. et al.
[2011] achieve 12.5%. However, despite such gains, this parameter provides reductions
in user coverage, and inferences are made only for about 22% of all eligible users for both
systems, thus Class 2 is inflated in 71.8% and 75.8% in comparison with the original
majority voting strategies for both Foursquare and Twitter inferences, respectively.

Finally, we discuss the results of the Iterative_MVS approach, for values of α
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equal to 100Km, 200Km and unlimited (α = ∞Km). Results are shown in Table 5.2.
Note that results are the same as those for Original_MVS (shown in Table 5.1), with
respect to users in Class 0. The differences occur for users in classes 1 and 2. The
latter are simply disregarded of the inference task when the Original_MVS models are
used, but are considered by the Iterative_MVS method. The use of the Iterative_MVS
approach may eventually lead to a single location as inferred home city for those users,
thus impacting Class 1. As shown in Table 5.1, when the Original_MVS approach is
applied, the fraction of users that fall into Class 2 is relatively small, ranging from 9%
to 22% from all eligible users. The Iterative_MVS approach is able to provide infer-
ences to some of these users, while the others remain uncovered as the Iterative_MVS
approach is not able to break the ties. This may happen either because the tie is
between all locations associated to a user’s attributes (and thus there is no new vote
to be accounted for), or due to new ties caused by the iterative strategy (e.g., votes
equally distributed among electable locations). Indeed, we find that, for unlimited α,
the fraction of users in Class 2 for which an inference can be made varies from 8%
(Mayorship) to 19% (All). Obviously, this fraction decreases as we reduce α. In any
case, in comparison with the Original_MVS approach, Iterative_MVS leads to an
increase in the user coverage by as much as 4.72% (Friend model). In absolute terms,
this implies in 258,233 more inferences. Moreover, even though model accuracy suffers
a slight decrease (up to 2.27% reduction for the Friend model with unlimited α), we
find that the number of correct inferences increases by as much as 67,704 (2.34%).

5.1.1.3 Discussion

Our experimental evaluation of the use of the MVS-based models for inferring user
home city in Foursquare presented satisfactory results. The inferences performed with
the Original_MVS models pointed out mayorships as the best public attribute in
revealing a user’s home location: the single-attribute model obtained 58.03% of overall
accuracy. Friends, on the other hand, stood out as the attribute that contributed
the most for user coverage, since almost 7 million users in our dataset have friends.
Since our goal is to achieve a good tradeoff between user coverage and overall accuracy,
combining all attributes into the All model definitely leads to the best solution: the
Original_MVS approach was able to produce 3,163,386 correct inferences.

Given that Foursquare was a relatively new social network by the time our dataset
was crawled, we conjecture that some of our inference errors may have occurred due
to inferences based on weak evidence. The distribution of the number of attributes
(mayorships, tips, likes and friends) per user, presented in Figure 3.2 (Section 3.5),
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supports this argument, showing that a large share of users considered in our analysis
has few friends and low activity in the system. Having that in mind, we applied the
Filtered_MVS approach for the active users in the system (those who have at least
a minimum number of attributes) finding that such constraint can improve model
accuracy. We found that with min_evidence equal to 5 all models achieve an overall
accuracy of around 60% (an improvement of 9-15% over Original_MVS ), and the
maximum accuracies are achieved for min_evidence equal to 50. This strategy also
revealed another important source of error of our inferences related to the elections of
locations using only a few votes. Thus, imposing restrictions on the minimum number
of votes further improves model accuracy, but at the cost of large reductions in user
coverage. Thus we here propose to set both min_votes and min_evidence equal to 5,
as this value leads to a good tradeoff between both accuracy and user coverage for all
models.

In an attempt to treat those users whose inferences were initially considered in-
tractable by the Original_MVS approach, we applied the Iterative_MVS approach.
Although the models’ overall accuracies remain almost the same compared to the Orig-
inal_MVS, the number of users for whom we could make inferences increases. For the
All model and with no limitation on parameter α, we could infer a location for 260,108
users that used to be disregarded of the inference (27% of such inferences were correct).
We observed that the parameter α has little impact on the results, being the accura-
cies for these new inferences pretty much the same for different values of α. In sum,
considering the All model with unlimited α, the Iterative_MVS approach produced
an additional 70,948 correct inferences (2.24% improvement), compared to the same
model using the Original_MVS approach.

Finally, to further analyse the inference errors produced by our models, we com-
puted for each incorrect inference the spatial distance between the inferred city and
the declared user home city. Figure 5.3 shows the distributions of these distances
for the best isolated model in terms of overall accuracy, the Mayorship model, for
each approach: Original_MVS, Filtered_MVS with the parameters min_evidence and
min_votes set to 5, and Iterative_MVS with unlimited α. Observe that the inner graph
is a zoom of the outer graph. We found that all three approaches lead to very similar
results, particular Original_MVS and Iterative_MVS. We see that around 49% of the
distances for all approaches are under 50 kilometres, which is a reasonable distance
between neighbouring (in conurbations) cities and metropolitan areas. Thus, combin-
ing these results with the correct inferences produced by the corresponding models, we
find that, using the Mayorship model, we can correctly infer the city of around 78.6%
(85.9% and 78.4%) of the users considered by the Original_MVS (Filtered_MVS and
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Figure 5.3. Cumulative Distribution of the Distances Between the Declared
and the Inferred User Home City for the Mayorship model.

Iterative_MVS ) approach within 50 kilometres of distance.

5.1.2 KNN Inference Models

In this Section we discuss the results for the two KNN-based models proposed to infer
the user’s home city – the Global_KNN and the Local_KNN approaches, presented
in Section 4.2.2. We describe the set of experiments conducted to evaluate both ap-
proaches in Section 5.1.2.1 whereas the results for the experimental evaluation are
discussed in Section 5.1.2.2. We conclude this section discussing the possible errors
and findings (Section 5.1.2.3).

5.1.2.1 Experimental Setup

Parameter K is intrinsic to the KNN technique since it determines the neighbourhood
size. In our home city inference, parameter K represents the number of neighbours
selected. Thus, users with a neighbourhood of size smaller than K are not part of the
inferences. Defining K to reach the best results for a specific application is not trivial.
Thus we experiment with values of K varying from 1 to 100, and assess their impact
on inferences results of both approaches, Global_KNN and Local_KNN.

Recall that, as discussed in Section 4.2.2, we proposed two variations of Lo-
cal_KNN that restrict the users eligible for inference and the friends that can be
considered as neighbours based on the number of friends they have in common. These
variations are defined by parameters min_friends, representing the minimum number
of friends with at least one friend in common that a user must have to be eligible for
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inference, min_mutual, which defines the minimum number of friends in common with
the target user a friend must have to be considered neighbour. We evaluate the impact
of these restrictions on the performance of Local_KNN by varying both parameters
from 1 to 20.

Recall that a user is represented by a 3V-dimensional vector, as discussed in
Section 4.2.2, where V is the number of distinct venues where the user target of the
inference has some activity. Each position in this vector contains the number of mayor-
ships (tips or likes) that the user has in one of these venues. These values are normalised
by taking the logarithm of all values plus one and then dividing them by the maxi-
mum logarithm of the corresponding activity (mayorship, tip or like). For example, the
numbers of mayorships in different venues are normalised by first taking the logarithm
of the number of mayorships plus one and then dividing them by the logarithm of the
largest number of mayorships the user has in any venue plus one (note that we sum
one to the logarithm to avoid log 0, which is not defined).

5.1.2.2 Results

Note that, considering the user representation adopted, both approaches, particularly
Global_KNN, may require a lot of memory space to represent the target user and her
neighbours, particularly when the target user has activities in a large number of venues.
Indeed, memory consumption grows linearly with the product of the number of venues
V and the number of neighbour candidates. To support our argument, Figure 5.4
presents the cumulative distribution of the number of candidates for neighbours of both
approaches, Global_KNN and Local_KNN, whereas Figure 5.5 shows the cumulative
distribution of the number of unique venues where users have some activity (mayorship,
tip and/or like). Note the logarithmic scale in the x-axis and that the inner graphs
provide a zoom of the distribution curves. Although the distributions are all very
skewed, with a large fraction of users having no more than 100 candidates for neighbours
(for 96% and 73% of users for local and global approaches, respectively) or associated
to fewer than 7 unique venues (around 80% of users), a small fraction of users have
very large values for both amounts (up to 300,692 neighbours and 5,762 venues per
user), resulting in a product of the number of venues and the number of candidates
that reaches the order of hundreds of billions. Ultimately, this implies in very large
memory requirements, which indirectly makes the time required for performing the
inference too long. Thus, due to practical reasons, we choose to disregard the 0.7%
users with largest memory demands.

Inference results for Global_KNN and Local_KNN approaches are presented in
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Figure 5.4. Cumulative Distribution of the Number of Candidates for
Neighbours for both Local_KNN and Global_KNN Approaches.
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Figure 5.5. Cumulative Distribution of the Number of Users per Venue and
Venues per Users.

Table 5.3. Results of the Global_KNN Approach for Home City Inference.

K value # Eligible Distribution (%)
Class 0 Class 1 Class 2

1 2,201,874 100.00 0.00 0.00
2 1,957,296 0.00 36.47 63.53
3 1,807,532 0.00 60.61 39.39
4 1,699,322 0.00 72.13 27.87
5 1,615,677 0.00 78.69 21.31
10 1,356,421 0.00 89.70 10.30
20 1,099,294 0.00 94.63 5.37
50 782,976 0.00 97.65 2.35
100 579,616 0.00 98.77 1.23
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Table 5.4. Results of the Local_KNN Approach for Home City Inference.

K value # Eligible Distribution (%)
Class 0 Class 1 Class 2

1 2,626,047 100.00 0.00 0.00
2 2,492,320 0.00 30.06 69.94
3 2,363,316 0.00 52.89 47.11
4 2,237,508 0.00 65.58 34.42
5 2,116,596 0.00 73.30 26.70
10 1,613,324 0.00 86.48 13.52
20 994,759 0.00 93.11 6.89
50 330,511 0.00 97.15 2.85
100 90,674 0.00 98.15 1.85

Tables 5.3 and 5.4, respectively. We show, for varied values of K, the number of eligible
users for the inferences as well as the distributions of users among the three classes.
Recall that, similar to the Original_MVS, we do not treat tied results (i.e., users in
Class 2) with the KNN based approaches, although a strategy similar to Iterative_MVS
could be applied. The eligible users for both approaches need to have some activity in
the system (some mayorship, tip or like). For Global_KNN, eligible users also need to
have users with activities in common venues, whereas for Local_KNN the requirement
is to have at least one friend in the system. Note that for K equal to 1, all users have
a single source of evidence (one neighbour) to be used in the inference task, that is,
all users are in Class 0. As we can see the number of users eligible for inference by
the local approach is larger than those eligible for the Global_KNN approach. This
basically implies that there are users in our dataset with activities in venues that no
other user has explored. This observation is illustrated in Figure 5.5, which also shows
the cumulative distribution of the number of users per venue in our dataset. We clearly
observe that the majority of the venues (76.4%) have activities of only one user, and
only 3% of them have mayorships, tips and/or likes of more than 8 users. Note also that
the number of eligible users decreases as K increases. However, the fraction of users
that are not covered by the inference (Class 2) decreases significantly as K increases,
reaching only 1.23% and 1.85% of all eligible users for K equal to 100, for Global_KNN
and Local_KNN respectively.

To evaluate the effectiveness of the proposed approaches, Figure 5.6 shows the
overall accuracy and user coverage (in number of users) for varied values of K, along
with the number of correct inferences. As shown in the figure, both approaches have
similar behaviour with respect to all metrics. Both approaches have very close accuracy
(in Figure 5.6(a)) for values of K up to 10: the lowest accuracy is achieved with K equal
to 1, while the best results are achieved for K equal to 2. For values of K larger than 10,
the two curves diverge, and Local_KNN outperforms Global_KNN. This divergence is
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Figure 5.6. Impact of the Parameter K for Global_KNN and Local_KNN
Approaches.
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also observed for user coverage, in Figure 5.6(b): Local_KNN presents greater values
in comparison with Global_KNN for values of K up to 20, but the relation reverses
for larger values. Once again, this is explained by the distribution of the number
of candidates for neighbours of both approaches, with Local_KNN presenting a high
concentration (90%) in amounts of up to 60 candidates, while Global_KNN has a less
skewed distribution with 37% of users having more than 60 candidates. Note that
user coverage sharply decreases for K from 1 to 2, somewhat explained by the large
percentage of intractable users in this scenario and the fact that, for K equal to 1, all
users are in Class 0 and thus are covered by the inference models. After this point,
another peak is reached for K equal to 5. Finally, Figure 5.6(c) also shows that, in
terms of the total number of correct inferences, Local_KNN outperforms Global_KNN
for K lower than 20, reaching the largest number of correct inferences for K set at 1
and 5. Both approaches have similar performance for K equal to 20, while, for larger
values of K, the global approach becomes the best one. Thus, we choose 5 as an good
value for K, since it establishes a reasonable trade-off between overall accuracy and
user coverage, and produces a large number of correct inferences (764,988 for global
approach and 956,715 for local).

We now investigate the impact on Local_KNN of using as neighbours users
(friends) that have friends in common with the user for whom the inference is made.
We do so by evaluating the impact of parameters min_friends and min_mutual sep-
arately, varying them between 1 and 20, and comparing results against setting both
parameters to 0.

Figure 5.7 shows results for varied values of min_friends and K, keeping
min_mutual equal to zero. Note that the restriction on the number of eligible users
leads to gains in overall accuracy but at the cost of large reductions in user coverage in
comparison with the basic Local_KNN (no restriction). As we can see, as min_friends
increases the model becomes more restrictive, since this parameter imposes a limit on
the minimum number of friends with some mutual friend a user must have to partici-
pate of the inference. Thus, fewer users are eligible for the inferences. As expected, this
causes reductions in user coverage (shown in Figure 5.7(a), with the y-axis in number
of users), despite gains in overall accuracy (Figure 5.7(b), with the y-axis in the 30%
to 100% range). For example, results for min_friends equal to 1 and 2 (overlapped in
both graphs) show gains in accuracy of up to 2.7% for all values of K tested and re-
ductions in user coverage lower than 15%. Also, note that larger values of min_friends
lead to more noticeable impact, with improvements in accuracy of 17% in relation to
the Local_KNN but reduction in user coverage of at most 72%. However, like observed
for the basic Global_KNN and Local_KNN (with no restrictions), K equal to 5 pro-
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Figure 5.7. Impact of the Parameter min_friends (min_mutual = 0).

vides one of the most efficient models with accuracies of 61.9% to 66.31%, although
the big losses in user coverage of up to 63.7% in relation to the local approach (with no
restriction) – specially for larger values of min_friends. We here choose min_friends
equal to 5 as it leads to a reasonable balance between accuracy gains and losses in user
coverage (producing 824,415 correct inferences for K equal to 5).

Regarding parameter min_mutual, Figure 5.8 shows results for various values
while keeping min_friends equal to zero. We observe in Figure 5.8(b) that, similarly
to min_friends, when compared with the basic Local_KNN (no restriction), the pa-
rameter min_mutual has a positive impact on the model accuracy, with gains of up
30%, but a detrimental impact on user coverage, that decreases by as much as 94%, as
shown in Figure 5.8(a). As min_mutual increases, fewer users are able to participate
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Figure 5.8. Impact of the Parameter min_mutual (min_friends = 0).

of the inferences as a few users might meet the minimum number of mutual friends
stipulated by min_mutual. On the other hand, inferences based on such restricted
set of friends leads to more accurate results. Note that the lowest losses occur for
K equal to 2 and the biggest gains appear for K set at 1. Somewhat surprising, the
gains in accuracy oscillate with peaks for K set in 1, 5 and 100. Thus, once again 5
is chosen as a good value for the parameter being analysed as it represents an average
behaviour in comparison to the other values of min_mutual tested (for K equal to 5,
the Local_KNN model with min_mutual set at 5 reaches 437,491 correct inferences).
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5.1.2.3 Discussion

As we observed in the experiments performed for the KNN technique, the Global_KNN
and Local_KNN present very similar results. However, the local approach outperforms
the global one, producing a larger number of correct inferences, especially for K set
to 1 or 5. Moreover, the Global_KNN takes too long to execute and suffers with
space constraints, as users may have up to 300,692 candidates for neighbours against
the maximum of 2,677 candidates observed for Local_KNN. Regarding the parameters
min_friends and min_mutual, we observed that both constrain the Local_KNN ap-
proach, providing a more accurate strategy to select neighbours from the candidates.
For both cases, the assumption is that friends with other friends in common have a
higher chance to live nearby. However, the increase in overall accuracy provided by
such restrictions comes at the cost of large reductions in user coverage. We choose to
set each parameter in 5 as it represents a reasonable balance between both metrics and
yields large numbers of correct inferences.

Comparatively, the KNN based models cover a much smaller number of users in
relation to the MVS based models. This is due to the characteristics required for both
target users and candidates for neighbours. In both Global_KNN and Local_KNN,
eligible users must have some activity (mayorship, tip or like) in the system and need
to have at least K candidates for neighbours. Also, neighbours must present some
activity and have some venue in common with the target user (for the global approach)
or be friends with him (for local). Thus, many users are disregarded of inferences as
they cannot achieve these requirements. Consequently, although KNN models may
achieve greater accuracies, the number of correct inferences provided by MVS models
is much larger (especially for All models, which aggregate all possible attributes into
one model).

5.2 Inference Results at the Geographic Coordinate

Level

In this section we discuss representative results for our inference models at the geo-
graphic coordinate level, which are applied only to users who are mayors of their own
Residential venues. We start by presenting our experimental setup in Section 5.2.1,
and then discuss our results in Section 5.2.2. We summarise our main findings in
Section 5.2.3.
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5.2.1 Experimental Setup

Since only venues have location information available at the geographic coordinate
level, only inferences for users who are mayors of their own homes may be evaluated
in such granularity. In total, there are 832,191 users in our dataset (6.13%) that are
associated to Residential venues through mayorships with valid city names and geo-
graphic coordinates, as validated by Yahoo! PlaceFinder. Our experimental evaluation
of inferences at the geographic coordinate level is performed over these users for four
different models, namely the single-attribute models (Mayorship, Tip, and Like) and
the model that combines all three attributes (Mayorship+Tip+Like). Recall that we
do not exploit the friend attribute in this inference task since the geographic infor-
mation associated with friends are not available at the geographic coordinate level.
To evaluate how good our inferences are, we plot the cumulative distributions of the
distances between the inferred coordinate and the one associated with the user home
(ground truth).

5.2.2 Results

Table 5.5 summarises the results of the inferences at the residence level for the proposed
models. For each model, we show the number of eligible users, which represent users
in our dataset that have the required attributes (mayorships, tips and/or likes) and an
associated ground truth (i.e., valid geographic coordinates associated with a Residence
venue where the user is a mayor). We also show the distribution of users across the
three classes: once again our inferences are performed for users in classes 0 and 1, for
which a single majority location can be defined.

Table 5.5. Summary of the Results Obtained for the Home Inference in the
Geographic Coordinate Level.

Attributes Eligible Distribution (%)
Class 0 Class 1 Class 2

Mayorship 562,922 29.68 56.29 14.04
Tip 467,915 33.24 52.56 14.20
Like 337,653 34.02 55.21 10.76
Mayorship+Tip+Like 695,012 16.58 71.66 11.77

As expected, the model that considers all activities aggregates the largest number
of users (695,012 in total): mayorship is the most common activity among those users,
and likes the least used. Note also that, in comparison with the three single-attribute
models, the fraction of inferences made using the Mayorship+Tip+Like model based
on a single source of evidence (Class 0 users) is much smaller. Moreover, the fraction
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of tied results (Class 2 users), which are not treated by our approach, is only slightly
larger than the smallest one obtained with any considered model, which is obtained
with the Like model. This implies that the Mayorship+Tip+Like model produces the
best results in terms of fraction of covered users. Moreover, note that the numbers of
eligible users for the single-attribute models are much smaller than the number of users
eligible for inference by the Mayorship+Tip+Like. This implies that the combination
of the three attributes is the best solution in terms of the number of covered users
(613,240).
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Figure 5.9. Cumulative Distribution of the Distances Between the Declared
and the Inferred Geographic Coordinates of the User Residence.

Figure 5.9 shows the cumulative distribution of the distances between the declared
and inferred geographic coordinates of the residence for all inferences made – the inner
graph is a zoom in the outer one. Recall that our inferences have two steps: (1) we use
the Original_MVS approach to infer the user home city, and (2) we compute the mean
coordinate of all venues with some activity of the user which are located in the inferred
city. Even though any of the considered models for inferring user home city could have
been adopted in step 1, we here consider only the use of the Original_MVS technique.
Figure 5.9 shows one curve for each single-attribute model as well as one curve for the
Mayorship+Tip+Like model. Although the curves are all very similar, note that the
Like model presents the worst results, producing location inferences that are farther
away from the declared user residence than the other models. Considering the other
three models, we find that around 60% of the inferred locations are within a radius of up
to 5 kilometres of the user residence, while 22-27% of the inferred locations are within
only 1 kilometre of the user residence. Considering the much larger user coverage, we
find that the Mayorship+Tip+Like model is the best considered approach.
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5.2.3 Discussion

Recall that our proposed models are applied for those users who have a ground truth
available in the level of coordinates and have some activity in the system, represented
by mayorships, tips and/or likes. In this sense, the Mayorship+Tip+Like is the model
that covers the largest number of users. In relation to the accuracy of our inferences, we
find that all considered models present similar results, except for the Like model which
is slightly worse. Thus, disregarding the Like model, all other models achieved very
interesting results showing that we are capable of inferring the exact location where a
user lives for around 60% of users within a radius of just 5 kilometres, representing an
area within the same neighbourhood. We believe that the greater distances amongst
the coordinates referred to the user residence and the point inferred by our proposed
models are possibly justified by inferences performed based on a few sources of evidence
(only a few mayorships, tips and/or likes), or also due to the fact that users may have
mayorships, tips or likes in places (venues) far from their residences while traveling,
thus including noise to our inference results.





Chapter 6

Conclusions and Future Work

The availability of geographic information associated with data shared by Foursquare
users raises various concerns about privacy violation. The knowledge of locations re-
lated to a user (where she has been, for example) may facilitate inferences about be-
havioural patterns and habits. Going one step further, gathering all pieces of informa-
tion leaked from publicly available sources may reveal the location where an individual
lives. In this dissertation, we have proposed several models to infer the home location
of Foursquare users exploiting public attributes with embedded geographic informa-
tion. Our goal was to show the potential of each attribute in uncovering the user’s
home location while exploring the effectiveness of different techniques for the inference
task. We considered inferences at both the city level and at the finer granularity of
geographic coordinates.

6.1 Main Contributions

The most valuable contribution of this dissertation is that it is a pioneer study in
trying to infer the user home location in Foursquare only exploiting public available
attributes associated with users. We have proposed several inference models which
differ in terms of the attributes considered and the technique applied. These different
approaches were exploited aiming to investigate the potential of different attributes,
used in isolation or jointly, in revealing sensitive information of a user, as well as to
detect which inference technique would be more accurate for the context of the study
developed in this dissertation.

The proposed models are generic in relation to the spatial degree of the inference,
capable of generating responses for the inferred home location of a user in levels that
vary from country to geographic coordinates. However, since our main motivation here

67
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is about privacy violation, we have focussed our experimental evaluation on the finest
granularities – city and the exact coordinates of the house of a user, as they represent
the most concerning levels of inferences. The effectiveness of the proposed models was
assessed through the analysis of the percentage of correct inferences and user coverage
(i.e., the number of users for whom the model could infer some place as home location).
Our goal was to determine the approach that delivers a good tradeoff between both
metrics.

Our evaluation of the proposed model indicated that the mayorship attribute
is the most accurate in revealing a user’s home location, whereas friends and likes
are the worst, i.e., the vanity of becoming a mayor has a privacy cost. However, the
model that jointly exploits all user attributes is indisputably the best in terms of user
coverage which ultimately leads to the largest number of correct inferences. We have
also found that inferences applied in a select group of active users have more chances to
reach success, showing how our proposed models may perform in Foursquare in a near
future (when the system would accumulate more information about members). For
highly active users, this strategy avoids inferences based on weak evidence, reaching
accuracies of about 72% for the Mayorship model with parameters (min_evidence and
min_votes) equal to 5 for the city-level inference. We also lead to ties in the majority
voting in the Iterative_MVS approach which is the model that provides the highest
number of correct inferences among all models proposed in this dissertation (3,234,334
for All model and α unlimited).

Considering the KNN based models, we find that the Global_KNN is much more
costly than Local_KNN, although they are very similar regarding overall accuracy and
user coverage. Thus, we choose local approach as the best KNN model, which may
become more accurate through the use of parameters min_friends and min_mutual
in spite of the reductions in user coverage. Now, comparing the MVS and KNN based
approaches, we find that the KNN is worse in our context. Besides the fact that KNN-
based models are more costly in terms of execution time, they also cover a smaller
fraction of users. Thus, even with accuracies slightly larger than MVS-based models,
the latter present a larger number of correct inferences – nearly three times more.
Thus, we found that the MVS technique is the most accurate for home inferences in
Foursquare.

Finally, our most refined inferences at the geographic coordinates level revealed
that we are able to uncover the exact location where 60% of users live in a radius of
5Km, which represents a serious concern from the privacy violation perspective.
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6.2 Limitations

Although the study carried out presented a wide comprehensiveness about the system
analysed and the use of the public features provided, it also contains some limitations.
As already discussed in this dissertation, the young age of Foursquare at the time
we crawled our dataset was a complicating factor with respect to the amount of data
we gathered for each user. Since most user accounts we collected were from recently
associated members, our proposed models for inferring the home location of Foursquare
users suffered with inferences based on weak evidence due to lack of information (we
tried to overcome this limitation with the Filtered_MVS models applied for active
users). In the same vein, as only few users are mayors of their own houses, venues of the
Residence category, our inferences in the finest granularity, the geographic coordinate
level, were applied for a reduced set of users of our dataset.

The impossibility of using check ins as an attribute to be exploited by our in-
ference models is an obvious limitation, as check ins are possibly the most explored
Foursquare feature by its users. However, we note that check ins are a private attribute,
visible only to the user’s friends. Thus any privacy breach through check ins might be
more contained, in comparison to the information revealed by tips, mayors, and likes,
which are visible to anyone.

At last, although Foursquare developers are continuously improving the system
to avoid misuse of its functionalities, it is known that fake attributes may exist. Since
the detection of users who fool the system is not trivial, we do not addressed this
problem in our study.

6.3 Future Work

There are several directions which this work can evolve, specially aiming at overcome
the limitations mentioned. Since Foursquare was a recently launched social network
at the time we collected it, we agree that a new collection would provide a wealthier
dataset. Now, Foursquare is more mature and it is likely to present more pieces of
evidence per user, and also a larger number of residential venues – implying in a greater
set of users to apply the most concerning inferences at the geographic coordinate level.

One promising effort is to include new features to the proposed models in attempt
to reach results even more accurate and capable of covering a larger fraction of users.
One possibility is to explore the mobility area of users in Foursquare, an aspect that
can be valuable in revealing the users home location, especially the exact coordinates of
one’s home – an initiative already in progress. Along the same line, another option is to
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explore check ins, as they represent the most typical attribute of Foursquare carrying
a powerful meaning associated with physical visits of users to specific places previously
registered in the system. Check ins may be exported to other social networks, thus we
could crawl this attribute via Twitter. But once again, this implies in other limitations
as it is not guaranteed that the entire user history of check ins would be exported.
Thus, include check ins in our inferences may possibly not improve results.

In a very low level, some new approaches or combined tactics can be tested regard-
ing the methods used for the home location inference. Machine Learning algorithms
as Support Vector Machine – SVM and Weighted Majority Algorithm – WMA, for
instance, are suitable for the problem in focus. Also, new strategies to break ties may
be tried based on characteristics of the social network or of similar users present in the
system; as well as different ways to calculate distances (Euclidean distance, L1 norm)
may be used to compare the accuracy of the results. For the presentation of results,
more intuitive considerations may be taken into account as the size of a city (e.g., infer
that a user lives in a very small town seems to be more accurate/specific than suggest
that she lives in a huge city) – here, the size of a city can be measured through the
number of citizens or by the physical area.

Another direction for future work is the design of inference models to discover
other pieces of information about the users such as their preferences, interests and
tastes. Such inferences along with home location inferences can provide useful sources
of data for target information services such as personalised recommendation and ad-
vertisement. In terms of privacy awareness, the implementation of an application with
all the gathered public information about a user, together with the possible inferences
about him, would certainly increase users’ consciousness about their own exposure and
personal information leakage in the system.

Note that our motivation for the study developed in this dissertation extrapolates
the Foursquare system. There are currently several web and mobile applications, social
networks in particular like Google+ and Instagram, growing at incredible rates and
encouraging huge masses to share everything about themselves and to connect with
even more people in the world. In times when the individual privacy is notably a
major concern, preserved for many though coveted for millions while watching reality
shows or prying a friend’s profile, many questions arise, stimulating us to investigate
possible privacy breaches, sources of information leakage, and opportunities for the
application of inferences.



Bibliography

Alexa (2013). Top global sites. http://www.alexa.com/topsites/global. Accessed:
2013-03-01.

Annavaram, M., Jacobson, Q., and Shen, J. (2008). HangOut: A Privacy Preserving
Social Networking Application. In Proceedings of the International Workshop on
Mobile Device and Urban Sensing, St. Louis, MO, USA. ACM.

Backstrom, L., Sun, E., and Marlow, C. (2010). Find Me If You Can: Improving
Geographical Prediction with Social and Spatial Proximity. In Proceedings of the
19th International Conference on World Wide Web, Raleigh, NC, USA. ACM.

Barkhuus, L. and Dey, A. (2003). Location-Based Services for Mobile Telephony: a
Study of Users’ Privacy Concerns. In Proceedings of the 10th International Confer-
ence on Human-Computer Interaction, Crete, Greece. ACM.

Benisch, M. (2011). Using Expressiveness to Increase Efficiency in Social and Economic
Mechanisms. PhD thesis, Carnegie Mellon University.

Berjani, B. and Strufe, T. (2011). A Recommendation System for Spots in Location-
Based Online Social Networks. In Proceedings of the 4th Workshop on Social Network
Systems, Salzburg, Austria. ACM.

Brown, B., Taylor, A. S., Izadi, S., Sellen, A., Kaye, J. J., and Eardley, R. (2007).
Locating Family Values: a Field Trial of the Whereabouts Clock. In Proceedings
of the 9th International Conference on Ubiquitous Computing, Innsbruck, Austria.
Springer-Verlag.

Cheng, Z., Caverlee, J., Kamath, K. Y., and Lee, K. (2011a). Toward Traffic-Driven
Location-Based Web Search. In Proceedings of the 20th International Conference on
Information and Knowledge Management, Glasgow, Scotland, UK. ACM.

71



72 Bibliography

Cheng, Z., Caverlee, J., and Lee, K. (2010). You are Where You Tweet: a Content-
Based Approach to Geo-Locating Twitter Users. In Proceedings of the 19th In-
ternational Conference on Information and Knowledge Management, Toronto, ON,
Canada. ACM.

Cheng, Z., Caverlee, J., Lee, K., and Sui, D. Z. (2011b). Exploring Millions of Foot-
prints in Location Sharing Services. In Proceedings of the 5th International Confer-
ence on Weblogs and Social Media, Menlo Park, CA, USA. AAAI.

Cho, E., Myers, S. A., and Leskovec, J. (2011). Friendship and Mobility: User Move-
ment in Location-Based Social Networks. In Proceedings of the 17th SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, San Diego, CA,
USA. ACM.

Choudhury, M., Sundaram, H., John, A., Seligmann, D., and Kelliher, A. (2010). “Birds
of a Feather”: Does User Homophily Impact Information Diffusion in Social Media?
CoRR.

Crandall, D. and Snavely, N. (2012). Modeling People and Places with Internet Photo
Collections. Commun. ACM, 55(6):52--60.

Cranshaw, J., Schwartz, R., Hong, J., and Sadeh, N. (2012). The Livehoods Project:
Utilizing Social Media to Understand the Dynamics of a City. In Proceedings of the
6th International Conference on Weblogs and Social Media, Dublin, Ireland. ACM.

David, E. and Jon, K. (2010). Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press, New York, NY, USA.

Davis Jr., C. A., Pappa, G. L., de Oliveira, D. R. R., and de Lima Arcanjo, F. (2011).
Inferring the location of twitter messages based on user relationships. Journal of
Geographic Information System, 15(6):735–751.

Friedland, G., Maier, G., Sommer, R., and Weaver, N. (2011). Sherlock Holmes’ Evil
Twin: On the Impact of Global Inference for Online Privacy. In Proceedings of the
Workshop on New Security Paradigms, Marin County, CA, USA. ACM.

Fusco, S. J., Michael, K., Aloudat, A., and Abbas, R. (2011). Monitoring People using
Location-Based Social Networking and its Negative Impact on Trust: An Exploratory
Contextual Analysis of Five Types of “Friend” Relationships. IEEE International
Symposium on Technology and Society.



Bibliography 73

Gross, R. and Acquisti, A. (2005). Information Revelation and Privacy in Online Social
Networks. In Proceedings of the Workshop on Privacy in the Electronic Society,
Alexandria, VA, USA. ACM.

Gundecha, P., Barbier, G., and Liu, H. (2011). Exploiting Vulnerability to Secure
User Privacy on a Social Networking Site. In Proceedings of the 17th SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Diego, CA,
USA. ACM.

He, J., Chu, W. W., and Liu, Z. V. (2006). Inferring Privacy Information from Social
Networks. In Proceedings of the 4th IEEE International Conference on Intelligence
and Security Informatics, San Diego, CA, USA. Springer-Verlag.

Hecht, B., Hong, L., Suh, B., and Chi, E. H. (2011). Tweets from Justin Bieber’s
Heart: the Dynamics of the Location Field in User Profiles. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC,
Canada. ACM.

Iachello, G., Smith, I., Consolvo, S., Abowd, G. D., Hughes, J., Howard, J., Potter,
F., Scott, J., Sohn, T., Hightower, J., and LaMarca, A. (2005). Control, Deception,
and Communication: Evaluating the Deployment of a Location-Enhanced Messaging
Service. In Proceedings of the 7th International Conference on Ubiquitous Computing,
Tokyo, Japan. Springer-Verlag.

Ikawa, Y., Enoki, M., and Tatsubori, M. (2012). Location Inference using Microblog
Messages. In Proceedings of the 21st International Conference Companion on World
Wide Web, Lyon, France. ACM.

Jin, L., Long, X., and Joshi, J. B. (2012). Towards Understanding Residential Privacy
by Analyzing Users’ Activities in Foursquare. In Proceedings of the Workshop on
Building Analysis Datasets and Gathering Experience Returns for Security, Raleigh,
NC, USA. ACM.

Krishnamurthy, B. and Wills, C. E. (2008). Characterizing Privacy in Online Social
Networks. In Proceedings of the 1st Workshop on Online Social Networks, Seattle,
WA, USA. ACM.

Lam, I.-F., Chen, K.-T., and Chen, L.-J. (2008). Involuntary Information Leakage in
Social Network Services. In Proceedings of the 3rd International Workshop on Se-
curity: Advances in Information and Computer Security, Kagawa, Japan. Springer-
Verlag.



74 Bibliography

Lathia, N., Quercia, D., and Crowcroft, J. (2012). The Hidden Image of the City:
Sensing Community Well-Being from Urban Mobility. In Proceedings of the 10th
International Conference on Pervasive Computing, Newcastle, UK. Springer.

Li, N. and Chen, G. (2010). Sharing Location in Online Social Networks. Network,
IEEE, 24(5):20 –25.

Li, R., Wang, S., Deng, H., Wang, R., and Chang, K. C.-C. (2012). Towards Social
User Profiling: Unified and Discriminative Influence Model for Inferring Home Lo-
cations. In Proceedings of the 18th SIGKDD International Conference on Knowledge
Discovery and Data Mining, Beijing, China. ACM.

Lieberman, M. D. and Lin, J. (2009). You Are Where You Edit: Locating Wikipedia
Contributors through Edit Histories. In Proceedings of the 3rd International Con-
ference on Weblogs and Social Media, San Jose, CA, USA. AAAI.

Lindqvist, J., Cranshaw, J., Wiese, J., Hong, J., and Zimmerman, J. (2011). I’m
the Mayor of My House: Examining why People use Foursquare - a Social-Driven
Location Sharing Application. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, Vancouver, BC, Canada. ACM.

Magno, G., Comarela, G., Saez-Trumper, D., Cha, M., and Almeida, V. (2012). New
Kid on the Block: Exploring the Google+ Social Graph. In Proceedings of the
Conference on Internet Measurement Conference, Boston, MA, USA. ACM.

Mahmud, J., Nichols, J., and Drews, C. (2012). Where Is This Tweet From? Inferring
Home Locations of Twitter Users. In Breslin, J. G., Ellison, N. B., Shanahan, J. G.,
and Tufekci, Z., editors, Proceedings of the 6th International Conference on Weblogs
and Social Media, Dublin, Ireland. AAAI.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information
Retrieval. Cambridge University Press, New York, NY, USA.

Mao, H., Shuai, X., and Kapadia, A. (2011). Loose Tweets: an Analysis of Privacy
Leaks on Twitter. In Proceedings of the 10th Workshop on Privacy in the Electronic
Society, Chicago, IL, USA. ACM.

Marmasse, N., Schmandt, C., and Spectre, D. (2004). WatchMe: Communication
and Awareness Between Members of a Closely-Knit Group. In Proceedings of the 6th
International Conference on Ubiquitous Computing, Nottingham, England. Springer.



Bibliography 75

Mislove, A., Viswanath, B., Gummadi, K. P., and Druschel, P. (2010). You are Who
You Know: Inferring User Profiles in Online Social Networks. In Proceedings of the
3rd International Conference on Web Search and Data Mining, New York, NY, USA.
ACM.

Noulas, A., Scellato, S., Mascolo, C., and Pontil, M. (2011). An Empirical Study of
Geographic User Activity Patterns in Foursquare. In Proceedings of the 5th Interna-
tional Conference on Weblogs and Social Media, Barcelona, Spain. AAAI.

Pesce, J. a. P., Casas, D. L., Rauber, G., and Almeida, V. (2012). Privacy Attacks
in Social Media Using Photo Tagging Networks: a Case Study with Facebook. In
Proceedings of the 1st Workshop on Privacy and Security in Online Social Media,
Lyon, France. ACM.

Pontes, T., Magno, G., Vasconcelos, M., Gupta, A., Almeida, J., Kumaraguru, P.,
and Almeida, V. (2012a). Beware of What You Share: Inferring Home Location
in Social Networks. In Proceedings of the 12th International Conference on Data
Mining Workshops, Brussels, Belgium. IEEE.

Pontes, T., Vasconcelos, M., Almeida, J., Kumaraguru, P., and Almeida, V. (2012b).
We Know Where You Live: Privacy Characterization of Foursquare Behavior. In
Proceedings of the 14th International Conference on Ubiquitous Computing, Pitts-
burgh, PA, USA. ACM.

Pozdnoukhov, A. and Kaiser, C. (2011). Space-time Dynamics of Topics in Streaming
Text. In Proceedings of the 3rd SIGSPATIAL International Workshop on Location-
Based Social Networks, Chicago, IL, USA. ACM.

Quercia, D. and Capra, L. (2009). FriendSensing: Recommending Friends using Mobile
Phones. In Proceedings of the 3rd Conference on Recommender Systems, New York,
NY, USA. ACM.

Quercia, D., Casas, D. B. L., Pesce, J. P., Stillwell, D., Kosinski, M., Almeida, V., and
Crowcroft, J. (2012). Facebook and Privacy: The Balancing Act of Personality, Gen-
der, and Relationship Currency. In Proceedings of the 6th International Conference
on Weblogs and Social Media, Dublin, Ireland. AAAI.

Quercia, D., Lathia, N., Calabrese, F., Di Lorenzo, G., and Crowcroft, J. (2010).
Recommending Social Events from Mobile Phone Location Data. In Proceedings of
the 10th International Conference on Data Mining, Sydney, Australia. IEEE.



76 Bibliography

Ruiz Vicente, C., Freni, D., Bettini, C., and Jensen, C. (2011). Location-Related
Privacy in Geo-Social Networks. Internet Computing, IEEE, 15(3):20 –27.

Sadilek, A., Kautz, H., and Bigham, J. P. (2012). Finding Your Friends and Following
them to Where You Are. In Proceedings of the 5th International Conference on Web
Search and Data Mining, Seattle, WA, USA. ACM.

Saez-Trumper, D., Quercia, D., and Crowcroft, J. (2012). Ads and the City: Consid-
ering Geographic Distance goes a Long Way. In Proceedings of the 6th Conference
on Recommender Systems, Dublin, Ireland. ACM.

Sakaki, T., Okazaki, M., and Matsuo, Y. (2010). Earthquake Shakes Twitter Users:
Real-Time Event Detection by Social Sensors. In Proceedings of the 19th Interna-
tional Conference on World Wide Web, Raleigh, NC, USA. ACM.

Silva, T. H., Vaz de Melo, P. O. S., Almeida, J. M. d., and Loureiro, A. A. F. (2012a).
Uncovering Properties in Participatory Sensor Networks. In Proceedings of the 4th
International Workshop on Hot Topics in Planet-Scale Measurement, Low Wood
Bay, Lake District, UK. ACM.

Silva, T. H., Vaz de Melo, P. O. S., Almeida, J. M. d., and Loureiro, A. A. F. (2012b).
Visualizing the Invisible Image of Cities. In Proceedings of the International Con-
ference on Cyber, Physical and Social Computing, Besancon, France. IEEE.

Tang, K. P., Lin, J., Hong, J. I., Siewiorek, D. P., and Sadeh, N. (2010). Rethinking
Location Sharing: Exploring the Implications of Social-Driven vs. Purpose-Driven
Location Sharing. In Proceedings of the 12th International Conference on Ubiquitous
Computing, Copenhagen, Denmark. ACM.

Vasconcelos, M. A., Ricci, S., Almeida, J., Benevenuto, F., and Almeida, V. (2012).
Tips, Dones and Todos: Uncovering User Profiles in Foursquare. In Proceedings
of the 5th International Conference on Web Search and Data Mining, Seattle, WA,
USA. ACM.

Vögele, T. and Schlieder, C. (2003). Spatially-Aware Information Retrieval with
Graph-Based Qualitative Reference Modelsi. In Proceedings of the 16th International
Florida Artificial Intelligence Research Society Conference, St. Augustine, FL, USA.
AAAI.



Bibliography 77

Wagner, D., Lopez, M., Doria, A., Pavlyshak, I., Kostakos, V., Oakley, I., and
Spiliotopoulos, T. (2010). Hide and Seek: Location Sharing Practices with Social
Media. In Proceedings of the 12th International Conference on Human Computer
Interaction with Mobile Devices and Services, Lisbon, Portugal. ACM.

Ye, M., Yin, P., and Lee, W.-C. (2010). Location Recommendation for Location-Based
Social Networks. In Proceedings of the 18th SIGSPATIAL International Conference
on Advances in Geographic Information Systems, San Jose, CA, USA. ACM.

Zheleva, E. and Getoor, L. (2009). To Join or not to Join: the Illusion of Privacy in
Social Networks with Mixed Public and Private User Profiles. In Proceedings of the
18th International Conference on World Wide Web, Madrid, Spain. ACM.

Zheng, Y. (2011). Location-Based Social Networks: Users. In Zheng, Y. and Zhou, X.,
editors, Computing with Spatial Trajectories, pages 243–276. Springer.

Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables
and Formulae. Chapman & Hall.




	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation / Purpose
	1.3 Objectives
	1.4 Contributions
	1.5 Organisation

	2 Literature Review
	2.1 Location-Based Social Networks – LBSNs
	2.2 Location-Aware Recommendation Services
	2.3 Privacy in Online Systems
	2.4 Home Location Inference Strategies

	3 Foursquare Dataset
	3.1 Foursquare: Key Elements and Features
	3.2 Crawling Methodology
	3.3 Dataset Overview
	3.4 Geographically Referenced Information
	3.5 Attribute Characterisation
	3.6 Spatial Analysis
	3.7 Temporal Analysis
	3.8 Summary of this Chapter

	4 Home Location Inference Models
	4.1 Problem Statement
	4.2 Inference Models at the City Level
	4.2.1 The Majority Voting Scheme
	4.2.2 The K-Nearest Neighbour Approach

	4.3 Inference Models at the Geographic Coordinate Level
	4.4 Evaluation Methodology

	5 Experimental Evaluation
	5.1 Inference Results at the City Level
	5.1.1 MVS Inference Models
	5.1.2 KNN Inference Models

	5.2 Inference Results at the Geographic Coordinate Level
	5.2.1 Experimental Setup
	5.2.2 Results
	5.2.3 Discussion


	6 Conclusions and Future Work
	6.1 Main Contributions
	6.2 Limitations
	6.3 Future Work

	Bibliography

