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Abstract

Probabilistic Model Checking (PMC) is a formal verification technique used for the
specification and analysis of stochastic systems. It allows the exhaustive and automatic
exploration of a system state space, checking whether it respects a set of properties. It
can provide valuable insight, complementary to other approaches, such as simulations.

PMC can be applied directly to biological systems which present stochastic
behavior, including transmembrane ionic transport systems. These systems are
responsible for transporting ions across the cell membrane, for example, the
sodium-potassium-pump, which participates in several biological processes, such as
heart muscle contraction. They can be affected by different diseases, syndromes and
toxins.

This dissertation proposes the use of PMC to model and analyze the interactions
of a toxin called palytoxin (PTX) with the sodium-potassium-pump. This toxin
completely disrupts the behavior of the pump.

We have built four models, each one focused on a different aspect of the system.
Using a parametric study we have investigated different scenarios, such as diseases
which decrease the concentration of cell energy (ATP) or fatal exposures to PTX.

These models suggested different behaviors, such as that high concentrations of
ATP and potassium inhibit PTX action, while sodium enhances it. Individuals with
ATP depletion, such as in brain disorders, may be more susceptible to the toxin, and
the known inhibitory effect of potassium on PTX action has been observed.

On the other hand, electrolyte disturbances (for example, diabetes insipidus)
could make an individual more susceptible to the toxin. Since PTX is found in
an environment with a high concentration of sodium, this does not seem to be a
coincidence.

We have also enhanced the kinetic model, which is used for describing the
system reactions, with probabilities, creating a heat map. The map reveals unexpected
situations, such as a frequent reaction between unlikely pump states, which suggests
that either these states are temporary; or there is an unknown state between those
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two.
Since electrolyte levels in the blood can be manipulated up to a certain degree,

while the ATP concentration simply can not be stimulated directly, the study of their
role and capability to change the behavior of our models is even more important.
This type of analysis can provide a better understanding of how cell transport systems
behave, being complementary to other approaches such as simulations, and can lead
to the discovery and development of drugs.

Palavras-chave: Probabilistic Model Checking, Systems Biology, Ion Channels and
Ionic Pumps, Blockers and Openers.
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Resumo Estendido

Verificação de modelos probabilísticos (do inglês Probabilistic Model Checking, ou
PMC) é uma técnica que tem sido amplamente utilizada para especificação e análise de
sistemas que apresentam características não-determinística, estocásticas e dinâmicas.
Essa técnica pode ser diretamente aplicada a sistemas biológicos que apresentam essas
características, onde eventos tais como reações químicas ocorrem simultaneamente,
disparando outros eventos, e geralmente de forma aleatória. PMC consiste em verificar
de forma exaustiva e automática se um sistema modelado formalmente respeita um
conjunto de propriedades lógicas descritas em lógicas probabilísticas. Nessa dissertação,
é proposto o uso de PMC para modelar e analisar a influência de toxinas tais como
a palitoxina em sistemas de transporte transmembrânico de íons, estruturas celulares
responsáveis por transportar íons através da membrana plasmática, cujo funcionamento
perfeito é necessário para a saúde de um indivíduo, caso contrário o mesmo pode ser
colocado em risco, e doenças podem se apresentar.

Introdução

Nesse capítulo é apresentada a motivação dessa dissertação, cujo objetivo é entender
melhor o comportamento de sistemas biológicos tais como a bomba de sódio e potássio
e sua interações com toxinas como a palitoxina através de modelos formais. Esses
sistemas biológicos são estudados utilizando experimentos laboratoriais. No entanto,
o sucesso desses experimentos é comprometido por uma série de fatores, desde falha
humana na execução dos mesmos, até falha dos equipamentos ou substâncias mal
preparadas. Portanto, o uso de abordagens alternativas tais como modelos matemáticos
e métodos computacionais poderia reduzir esses custos e auxiliar o biológo em sua
pesquisa. Dessa forma, apresentamos a área de biologia sistêmica, que consiste na
criação de modelos e técnicas com o propósito de entender melhor sistemas biológicos.
Ao final do capítulo também é apresentada a organização da dissertação e as principais
contribuições acadêmicas que surgiram da mesma.
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Modelagem Matemática

Nesse capítulo apresentamos a modelagem matemática de sistemas biológicos, que
pode ser classificada de acordo com o comportamento do modelo (determinístico
ou estocástico) e o tipo de seus valores ou dados (discreto ou contínuo). Essa
modelagem matemática é apresentada para servir de base no entendimento dos modelos
computacionais, e em quais situações eles são adequados. Processos estocásticos
também são brevemente discutidos, tais como cadeias de Markov, onde é explicada
sua necessidade dependendo das condições do sistema, por exemplo, uma baixa
concentração de ligantes. Em seguida, são apresentados formalimos pertinentes aos
próprios sistemas biológicos e que devem ser incorporados na modelagem, tais como a
química discreta para obter o número de elementos a partir de sua concentração, e a
lei da ação de massas, para reações que envolvem mais de um ligante individual.

Modelos Computacionais

Nesse capítulo apresentamos alguns exemplos de modelos computacionais. De forma
similar a modelagem matemática, modelos computacionais podem ser classificados de
diversas formas, por exemplo, o comportamento do modelo, que pode ser previsível
ou aleatório, ou seus dados, que podem ser discretos ou contínuos. Essas duas
classificações combinam-se em quatro diferentes tipos de abordagens para modelagem
computacional, cada um apropriado para uma situação ou sistema sendo modelado.
Alguns exemplos de modelos computacional também são discutidos, por exemplo,
um sistema que apresenta comportamento estocástico e dados discretos pode ser
eficientemente modelado como um modelo booleano probabilístico.

Verificação de Modelos

Nesse capítulo apresentamos a verificação de modelos, uma técnica utilizada para
modelar e analisar sistemas, verificando se os mesmos respeitam um conjunto de
propriedades. A verificação simbólica de modelos é apresentada, assim como seus
conceitos e assuntos relacionados, tais como a representação de modelos através
da estrutura de Kripke, e a estrutura de dados diagramas de decisão binária. As
propriedades a serem verificadas são especificadas utilizando tipos especiais de lógica,
as lógicas temporais, que também são apresentadas. Utilizando essas lógicas, é possível
especificar diferentes tipos de propriedades, tais como “se uma mensagem é enviada,
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essa mensagem eventualmente é recebida”, ou “um sistema distribuído nunca entra em
deadlock”.

A verificação de modelos probabilísticos também é apresentada, uma extensão
da técnica anterior para permitir a modelagem e análise de sistemas estocásticos.
Diferentes estruturas são necessárias, como os diagramas de decisão binária com
múltiplos terminais, e as lógicas probabilísticas. Alguns dos verificadores de modelos,
as ferramentas que implementam essas técnicas, são examinados, como é o caso do
PRISM, utilizado na construção e verificação dos nossos modelos.

Sistemas de Transporte Transmembrânico de Íons

Nesse capítulo descrevemos sistemas de transporte de íons transmembrânico (canais e
bombas iônicas), estruturas celulares que são responsáveis por transportar íons entre os
meios externo e interno da célula. Canais iônicos transportam os íons de forma passiva,
ou seja, em favor de seus gradientes de concentração (da mais alta para a mais baixa
concentração). Bombas iônicas, por outro lado, transportam os íons de forma ativa,
contra seus gradientes de concentração. Também apresentamos doenças, síndromes
e toxinas que bloqueiam ou abrem esses sistemas, modificando seu comportamento
normal e comprometendo a saúde da célula. Por exemplo, a toxina palitoxina se liga
a bomba de sódio e potássio, abrindo a mesma, o que permite o movimento de íons de
forma descontrolada.

Trabalhos Relacionados

Nesse capítulo apresentamos os trabalhos relacionados a essa dissertação, no que
diz respeito a estudos experimentais e computacionais de sistemas de transporte
transmembrânico de íons [Artigas and Gadsby, 2002]. Abordagens computacionais
podem ser alternativas eficientes e econômicas para experimentos laboratoriais, por
exemplo, utilizando simulações com equações diferenciais ordinárias para representar
o comportamento de uma bomba acoplada com uma toxina [Rodrigues et al.,
2008b]. Também apresentamos abordagens formais para estudar sistemas biológicos
em geral [Kwiatkowska et al., 2008].
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Análise Formal das Interações da Bomba de Sódio e

Potássio com a Palitoxina

Nesse capítulo apresentamos a modelagem e análise formal de modelos eletrofisiológicos.
Nosso estudo de caso é a bomba de sódio e potássio e suas interações com a toxina
palitoxina, que abre a bomba e compromete diversos processos biológicos. Nós
construímos quatro modelos diferentes, seguindo os resultados experimentais de Artigas
e Gadsby, e os resultados com simulações de Rodrigues e colaboradores. Cada modelo
explora um aspecto diferente do nosso estudo de caso, tal como as reações relacionadas
a energia celular e o efeito inibitório do potássio sobre a ação da palitoxina. Nossos
modelos foram construídos utilizando o verificador de modelos probabilísticos PRISM.

Discussão e Resultados

Nesse capítulo apresentamos os resultados obtidos nessa dissertação. Nós construímos
quatro modelos formais das interações entre a toxina palitoxina (PTX) e a bomba de
sódio e potássio utilizando uma abordagem de verificação de modelos probabilísticos
através do verificador de modelos PRISM. Essa toxina perturba o comportamento
da bomba, comprometendo diversos processos biológicos. Cada modelo foca em um
aspecto do sistema. Por exemplo, nosso primeiro modelo foca no papel da energia
celular, enquanto que o segundo modelo cobre as reações relacionadas ao sódio e
potássio.

Depois disso nós realizamos um estudo paramétrico das dimensões dos nossos
modelos, que permitem a investigação de condições extremas, tais como doenças que
aumentam as concentrações de ligantes ou exposições fatais a PTX. Nós utilizamos
propriedades quantitativas para quantificar cada aspecto do modelo, tais como as
probabilidades de estados e reações

Cada modelo forneceu sugestões para o comportamento do sistema, tais como
altas concentrações de ATP inibem a ação da PTX, o sódio aumenta a ação da PTX,
e o potássio inibe a ação da PTX. Nós também quantificamos a corrente induzida pela
troca de íons através da equação de fluxo Goldman-Hodgkin-Katz (GHK). O modelo
completo reforçou nossos resultados anteriores.
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Contribuições Adicionais

Nesse capítulo apresentamos as contribuições adicionais dessa dissertação, tais
como a ferramenta dot2heatmap, que ajuda a produzir mapas de calor de grafos
descritos na linguagem DOT utilizandos resultados obtidos através de PMC. Também
apresentamos a ferramenta MCHelper, uma implementação inicial de um ambiente
de apoio a verificação de modelos, que ajuda a gerenciar e tratar as informações e
resultados produzidos através de PMC. Finalmente, também mostramos a ferramenta
PrismRecipes, que ajuda a escrever modelos e propriedades do PRISM, que
frequentemente apresentam certas regularidades e repetições.

Conclusões

Nesse capítulo apresentamos nossas conclusões a respeito da dissertação, e também
indicamos possíveis trabalhos futuros nessa linha de pesquisa.

Nós modelamos e analisamos as interações da toxina Palitoxina (PTX) com a
bomba de sódio e potássio. Essa toxina compromete o funcionamento correto da
bomba, que participa de diversos processos biológicos importantes, tais como controle
do volume celular e contração do músculo cardíaco. Nós construímos quatro modelos,
seguindo os trabalhos de Artigas e Gadsby, e Rodrigues e colaboradores. Cada modelo
se concentra em um aspecto do modelo completo, por exemplo, um modelo analisa o
papel da energia celular (ATP), enquanto outro modelo foca nos íons sódio e potássio.

Nossos modelos sugerem que altas concentrações de ATP ou potássio podem
inibir a ação da PTX, enquanto que altas concentrações de sódio aumentam a ação da
PTX. Também fomos capazes de mensurar a corrente induzida pelos íons utilizando a
equação de Goldman-Hodgkin-Katiz (GHK), assim como construir mapas de calor ao
associar probabilidades aos estados e reações do modelo cinético. Esses mapas de calor
revelaram situações inusitadas, tais como reações prováveis entre estados improváveis,
o que sugere que os estados são temporários ou existe um estado desconhecido.

Indicamos como trabalhos futuros: a validação experimental dos nossos
resultados; a expansão do modelo para novos estados e reações; a exploração sistemática
de outros cenários; a adaptação do modelo para outras toxinas ou mesmo fármacos; uma
análise aproximada dos modelos utilizando outras técnicas de verificação formal, o que
ajudaria em análises macroscópicas; uma abordagem hierárquica que integrasse outras
abordagens, tais como simulações matemáticas; uma abordagem mista ou híbrida que
alternasse entre diferentes tipos de comportamento, por exemplo, entre determinístico
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e estocástico; e, finalmente, modelar outros sistemas biológicos tais como vias de
sinalização celular.
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Chapter 1

Introduction

1.1 Challenges of Laboratory Experimentation

Biological systems and processes such as cell division, wine fermentation or DNA
replication have been extensively investigated in order to discover their basic elements,
as well as the interaction between those, which are responsible for characteristics and
functions exhibited by life. It is desirable to discover the mechanisms created by nature,
explain why some individuals show certain features, and find treatments or even cure
for diseases in human beings such as cancer and AIDS.

Research of biological systems involves their investigation through laboratory
experiments or tests, which depend on several factors for success. Experiments use
different equipments – going from a simple microscope to next generation sequencing;
techniques, compounds, such as enzymes, antibodies and solutions; and human
resources. Each of these factors contributes (or even compromises) to achieve the
expected results.

Experiments are expensive, demanding financial resources for the acquisiton of
infrastructure and remuneration of personnel. Moreover, they demand time, and often
they must be repeated several times in order to confirm a result. The execution of an
experiment can be long depending on the technique. For example, the evolution of an
inflammatory process in a biological model may require periodic sampling from 4 to 72
hours.

Besides the financial cost, trials may also present errors due to several reasons.
Defects can occur in equipments due to the time of use or manufacturing error.
Techniques can be poorly executed, and are prone to human error or inexperience of its
practitioners. Substances used in the investigation may have problems, for example, a
solution prepared incorrectly which is outside the desired concentration, or a perishable
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antibody which was not stored at the adequate temperature.

A considerable amount of trials must be performed to verify a hypothesis about
a biological system and not draw conclusions based on false positives. One sample
which confirms the hypothesis is not enough, since other samples might refute it. It is
also desirable to perform a wide study and observe the behavior of the system under
different conditions, which increases the number of experiments.

All these reasons – costs, time, possible errors, necessary redundancy and human
resources – make the task of biologists even more challenging. Therefore, it is essential
to find alternatives which can help biologists in their daily effort.

1.2 Systems Biology

Systems biology is an emergent and interdisciplinary research field which investigates,
through computational and numerical methods, the interactions between biological
models, such as kinetic models, metabolic networks and cell signalling pathways [Alon,
2006]. Some of these methods include deterministic and stochastic simulations, and
model checking. It is necessary to study the interaction of these biological elements,
because sometimes when they are analyzed separately, they do not indicate properties
which occur during their interaction – it is the case of chemical reactions such as the
hydrolysis of the water molecule in hydrogen and oxygen ions through the application
of an electric current.

Methods from systems biology can help a biologist in the investigation of his
biological models, exploring them in an exhaustive and systematic way, searching for
test suggestions and experimentally neglected behaviors. Suppose that a biologist can
perform several distinct experiments, however, he does not have resources to perform
them all, and must prioritize one over another. A computational approach could obtain
preliminary and discriminant results. The reduction in the number of experiments has
as a consequence the reduction of costs, both financial and the time which would be
spent performing all the experiments.

Moreover, the model could be adjusted to simulate possible scenarios difficult
to obtain experimentally, such as an increased concentration of a ligand, or even its
removal. The increased concentration is particularly useful to determine, for example,
the toxicity of a drug, as well as its lethal dosage. The removal of a ligand allows the
evaluation of the true mechanisms of interaction of present drugs, without interaction
or interference of the removed drug.

Cost reduction is particularly important in research and development of drugs



1.2. Systems Biology 3

because the costs of that industry grow every year. Currently it costs on average US$4
billion dollars to research, develop and bring a new drug to the market [DiMasi and
Grabowski, 2012]. In a previous study, this value was US$ 802 million dollars [DiMasi
et al., 2003] – in about 9 years, the costs increased nearly 5 times. Table 1.1 shows
the current costs of the development process of a new drug for several international
pharmaceutical industries.

Company
Drugs Research Cost Total Research Cost

Approved per Drug (US$Mil) 1997-2011 (US$Mil)
AstraZeneca 5 11.790,93 58.955

GlaxoSmithKline 10 8.170,81 81.708
Sanofi 8 7.909,26 63,274

Roche Holding AG 11 7.803,77 85.841
Pfizer Inc. 14 7.727,03 108.178

Johnson & Johnson 15 5.885,65 88.285
Eli Lilly & Co. 11 4.577,04 50.347

Abbott Laboratories 8 4.496,21 35.970
Merck & Co Inc 16 4.209,99 67.360

Bristol-Myers Squibb Co. 11 4.152,26 45.675
Novartis AG 21 3.983,13 83.646
Amgen Inc. 9 3.692,14 33.229

Table 1.1: Research costs to develop a new drug for different pharmaceutical industries.
Source: InnoThink Center For Research In Biomedical Innovation; Thomson Reuters
Fundamentals via FactSet Research Systems.

Besides the cost, a considerable period of time is also necessary – between 12 and
15 years for a drug to go from a research laboratory to the patient, and in average
only five of 5000 drugs advance to clinical trials. Only one of these five drugs will be
approved for usage. If computational approaches were more used, it would be possible
to reduce the number of failed drugs which advance to the final stages of clinical trials.
Figure 1.1 shows a summary of the process and the stages necessary for the drug
approval [Nash, 2008].

It must be understood that is not that simple – the adoption of computational
approaches also incurs in costs – computational infrastructure and formation and
remuneration of interdisciplinary human resources. However, that is a reality which is
closer each day. Partnerships between departments of distinct natures are increasingly
common, as well as the creation of research centers and graduate courses on topics such
as bioinformatics, computational biology and systems biology [Calvert et al., 2010].



4 Chapter 1. Introduction

Figure 1.1: The stages of drug discovery process – going from pre-discovery which
starts with 5 to 10 thousand compounds, passing through clinical trials, and finally
reaching the approval of FDA (Food and Drug Administration), the United States
drug regulatory agency [Nash, 2008].

1.3 Probabilistic Model Checking

Probabilistic model checking (PMC) is a formal verification technique to model and
analyze stochastic systems, checking if they respect a set of given properties [Parker,
2002; Kwiatkowska et al., 2011]. It automatic and exhaustively explores a formal model,
visiting the complete state space, which allows the detection of rare events [Clarke et al.,
1999].

PMC has been successfully used in engineering applications, such as circuit
designs and communication protocols. For example, one might check if two circuits
are equivalent, a new wireless protocol is fair, a flight control system does crash or
a message sent leads to its receival. The properties are specified using special types
of logics, such as temporal, probabilistic and reward-based logics, which allow the
reasoning over the sequence, probability and quantification of events, respectively.

This technique could be used in a systems biology study, by modeling biological
systems which present probabilistic behavior. Stochastic biology systems are common,
for example, in small and non-uniform environments, chemical reactions might or not
occur, depending on a probability distribution.

The use of PMC in systems biology offers several advantages, being
complementary to other computational approaches. For example, since the search
is exhaustive, erratic behaviors can be observed. Also, deterministic and stochastic
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simulations, which are often used in systems biology, might not observe some rare
event due to local minima, being limited by the number of iterations and other
factors [Calvert et al., 2010]. In this dissertation we have used the PRISM model
checking tool, which exhaustively checks if a stochastic model respects a set of
probabilistic properties.

1.4 Palytoxin Interactions with the

Sodium-Potassium-Pump

In the plasma membrane of all animal cells there are structures called transmembrane
ionic transport systems, which are responsible for exchanging ions between the external
and internal sides of the cell. One of these systems is the sodium-potassium-pump,
which exchanges three internal sodium ions for two external potassium ions [Aidley
and Stanfield, 1996].

The internal concentrations of sodium and potassium ions must be kept low and
high, respectively, while the external concentrations are the opposite. However, the ions
tend to move from a high concentration environment to a low one, therefore the pump
moves ions against their concentration gradient. This ion movement costs cell energy,
through the hydrolyzation of Adenosine Triphosphate (ATP). The pump plays a major
role on several biological processes, such as cellular volume control and heart muscle
contraction, therefore maintaining the appropriate concentration levels is essential for
the health of an organism [Hille, 2001].

The pump can be affected by diseases, syndromes and toxins. One of these toxins
is palytoxin (PTX), which opens the pump, disrupting its behavior. The control of ion
movement is lost, compromising important biological processes. If untreated, it could
lead to death [Artigas and Gadsby, 2002].

In this dissertation we have modeled and analyzed the interactions of PTX with
the sodium-potassium-pump using a probabilistic model checking approach. We have
built four models using the PRISM tool, each one focusing on a different aspect of
the system. We have also used a parametric study to investigate different conditions,
such as diseases which decrease the concentration of sodium or fatal exposures of PTX.
Our models have suggested that ATP and potassium inhibit PTX action, while sodium
enhances it. Finally, we have enhanced with probabilities the kinetic models, creating
heat maps, which could be visual tools for biologists.
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1.5 Major Contributions

Some of the work in this dissertation has been published previously in jointly authored
papers. In [Braz et al., 2012b], an initial model for the palytoxin effects on the
sodium-potassium pump was presented. This model includes the cell energy (ATP)
interactions with the system, which suggests that ATP might inhibit PTX action,
as described in Section 8.2. The model description was largely based on the works
of [Artigas and Gadsby, 2002] and [Rodrigues et al., 2008b].

The role of sodium and potassium interactions with the
palytoxin-sodium-potassium pump complex was evaluated in [Braz et al., 2012a]. The
description was once again based on the works of [Artigas, 2003b] and [Rodrigues
et al., 2008a]. This work indicated that sodium enhances the PTX action, which is
particularly interesting since the marine species that produces the toxin is naturally
found in a sodium-rich environment. On the other hand, it suggested that potassium
inhibits PTX action, which could be used to reduce toxin action.

The publications that are not part of this dissertation include [Ferreira et al.,
2012], where the authors have built a mobility model for vehicular networks using
PMC.

1.6 Organization

This dissertation is structured in ten chapters, described below. At the end of each
chapter there is a summary to briefly review its contents.

Chapter 2: Mathematical Modeling. The next chapter reviews the mathematical
formalisms for the description of biological systems and processes. It classifies them
in their behavior, which can be either deterministic or stochastic, and the nature of
their values, which can be discrete or continuous. Stochastic processes are also briefly
described since our models are Markov chains. Biological modeling techniques are
also covered, such as the discrete chemistry to convert concentrations into number of
ligands, the individual approach to model single systems and the law of mass action,
which explains the behavior of solutions.

Chapter 3: Computational Models. This chapter reviews the current literature
of computational methods for the description and analysis of biological systems. These
methods use different combinations of the formalisms discussed in the previous chapter.
For example, Petri nets, which present deterministic behavior and discrete states, and
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stochastic differential equations, which show stochastic behavior and continuous values.

Chapter 4: Model Checking. This chapter presents model checking, a formal,
exhaustive and automatic verification approach which allows verifying if a model
satisfies a set of logic properties. The symbolic model checking is first described,
covering its symbolic representation and temporal logics. Since our models are
stochastic, probabilistic model checking is covered, including its probabilistic and
reward-based logics. Model checkers of Markov chains are reviewed. The PRISM
model checking tool was used in this work, therefore we have included a brief
description of its features.

Chapter 5: Transmembrane Ionic Transport Systems. This chapter describes
ion channels and ionic pumps. These systems are responsible for exchanging ions
across the cell membrane and play a major role in several biological processes,
such as cell volume control and heart muscle contraction. Our case study is the
sodium-potassium pump, which is responsible for exchanging three sodium ions from
the internal side of the cell for two potassium ions from the external side, at the cost of
the cell energy (phosphorylation of an Adenosine Triphosphate molecule). Transport
systems can be blocked (locked in a particular state) or opened (losing ion movement
control) by different compounds such as drugs and toxins. One of these toxins, the
Palytoxin, is further described since it is exposed to the pump in our model in order
to study its effects on the health of the individual.

Chapter 6: Related Work. This chapter covers the related work of this
dissertation. Since it has an interdisciplinary nature – computer science and biology
– the references have been divided in two groups. The first group named Analysis of
Transmembrane Ionic Transport Systems consists of experimental and simulational
techniques. These works were studied in order to better understand ion channels and
ionic pumps under different views. The second group entitled Modeling and Formal
Analysis of Biological Systems consists of works in the model checking area which
analyzed biological systems or stochastic systems in general. Once again, these works
were examined to understand the modeling methodologies and property specification
of biological systems using model checking.

Chapter 7: Formal Analysis of Transmembrane Ionic Transport
Systems. This chapter presents the computational approach to model and
analyze our case study, the sodium-potassium-pump interactions with the palytoxin.
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The approach is the formal verification through probabilistic model checking using the
PRISM model checker. The components of each of our models are described, including
their respective PRISM model codes. First we cover the sodium-potassium-pump
part, then the palytoxin extension.

Chapter 8: Discussion and Results. This chapter presents the results obtained
through our four models – each of the first three models covers one aspect of our case
study, while the complete model is presented lastly. The first model describes the
ATP interactions with the PTX-pump complex. This model does not have sodium or
potassium. The second model covers the sodium and potassium interactions with the
PTX-pump complex, while the third model describes only the potassium interactions.
These two models do not have ATP and the difference between them is that the first
one analyzes the dynamics of both ions, while the second one focuses on the known
inhibitory effect of potassium on palytoxin. Finally, the complete model includes every
aspect of the case study. Our models suggested that ATP and potassium inhibits
PTX action, while sodium enhances it. An increased potassium concentration also
changes the ATP binding site, which could be an explanation for its inhibitory effect.
Finally, we have enhanced the kinetic models with probabilities, creating heat maps,
which could be visual tools for biologists.

Chapter 9: Additional Contributions. This chapter presents other works which
have originated from this dissertation. One of these is the tool called dot2heatmap to
automate the creation of heat maps from kinetic models. Another contribution is the
MCHelper, a support environment for model checking, which helps parsing results and
logs. This tool was jointly developed by the author and João Sales Amaral. Finally,
the tool PrismRecipes is briefly described, which helps writing PRISM models and
properties that often show regularities and repetitions.

Chapter 10: Conclusions This chapter summarizes the main results of this
dissertation, and discusses possible future works.



Chapter 2

Mathematical Modeling

Outline. In this chapter we present a brief background on the mathematical modeling
of biological systems, which can be classified regarding their behavior (deterministic or
stochastic) and the type of its values (discrete or continuous). Stochastic processes are
also covered, explaining their necessity based on the system’s conditions, usually low
concentrations of involved components. Biological systems have their own formalisms
that must be incorporated into the modeling, such as discrete chemistry and the law
of mass action.

2.1 Classification

The mathematical formalism for the description of biological systems and processes can
be characterized under two aspects: the model behavior, which can be deterministic or
stochastic (Figure 2.1) and the type of model values, such as time and measurements,
which can be discrete or continuous (Figure 2.2).

The model behavior can be deterministic, in other words, there are no random
variables which participate in the evolution of the modeled system. Given an initial
condition or input, the model always produces the same result. The next state is
defined by the current state. Deterministic behaviors can be described, for example,
using ordinary differential equations, which can be solved through numerical analysis
approaches, such as the Simplex algorithm and the Newton-Raphson method. Some
examples of deterministic systems include: the game of billiards, a car engine, a factory
production line and computers in general [Filho, 2007].

On the other hand, the model behavior can be stochastic, i.e., there are random
elements in the system which actively participate in its evolution process. The next
state is no longer defined only by the current state, and it is now defined by a probability
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(a) Deterministic behavior. Given a state and
an input character, the deterministic automaton
transits from that state to only another state.

(b) Stochastic behavior. The transition from
one state to another is defined by a probability
distribution.

Figure 2.1: Different types of behaviors for mathematical modeling.

distribution to the next states. The outcome of the model is an estimate of the true
characteristics of the system. Examples of stochastic systems: a coin toss, the body
movement and the human brain.

Values for time, state, space and measurements in general can be discrete, in
other words, belong to a discrete set. For example, the passage of time can be performed
periodically using a fixed time interval between measurements. It is assumed that the
current state of the system does not change during the transition to the next state.
However, this assumption is not appropriate to all models, since it might not observe
a local minima between subsequent measurements, as demonstrated in Figure 2.2a –
the system (dashed trace) does not behave as the model or interpolation (solid trace).

(a) Discrete and periodic measurements of time
T obtain the blue interpolated model. However,
the red trace is the true behavior of the system.

(b) Approximation methods perform several
measurements to obtain the continuous
behavior of the model with the minimum error.

Figure 2.2: Different types of time measurements – discrete or continuous.
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Finally, these values can be continuous. The passage of time, for example,
although in theory it is measured continuously, in practice it is performed in small
discrete time intervals. This is due to the limitations of the approximation method and
the computer itself, which is inherently discrete (floating point representation incurs in
rounding errors). Certain models must be described in a continuous way, otherwise the
results would be incorrect, such as a set of chemical reactions which have distinct rates
(different time intervals for measurements) and depend on the ligand concentrations
(which are continuous). However, in order to reduce the approximation error, several
measurements are necessary, which has an elevated computational cost.

2.2 Stochastic Processes

Biological systems sometimes can not be represented deterministically, for example,
stochastic models described by ordinary differential equations. That is because of
certain assumptions inherent to these forms of modeling. One of these assumptions
is the deterministic behavior itself, which does not consider random fluctuations that
usually do not belong to deterministic systems. In small systems these fluctuations
occur, for example, chemical reactions are random events which may or may not
happen.

Another assumption of deterministic methods is that the model variables are
continuous, for example, a ligand of the model is expressed by its concentration (moles
per liter or mol

L
). That is a simplification, since the biological elements being represented

– molecules, ions, proteins, etc. – are countable, i.e., have a discrete nature.

This assumption is reasonable as long as the number of elements is sufficiently
large. However, if the elements are in the dozens or hundreds, then the discretization
should be considered, as demonstrated by Figure 2.3. In that case, the system
conditions might not be uniform and certain regions of the environment could have
a higher number of elements than others regions.

Systems which present stochastic (or random behavior) could be described by a
stochastic process, which is a set of random variables used to represent the evolution
of the system over time. There are different types of stochastic processes, each one
with its particularities and appropriate to certain purposes. Among them, there are
continuous-time Markov chains.

The Markov chains are particularly interesting because they present the Markov
property, which means that the next state is defined only by the current state and
it is independent of past states. This property makes the approximation of a Markov
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(a) High concentration. (b) Low concentration.

Figure 2.3: Discretization should be considered when the concentrations of involved
elements become sufficiently low, because the system ceases to be uniform. Dividing a
high concentration environment yields two compartments with similar conditions (a),
while this is not necessarily true for low concentrations (b).

chain computationally tractable since it is not necessary to visit all the previous states,
or the system history, in order to define the next state.

These systems can also be described by random functions which receive as
input different parameters and produce as output random variables, following certain
probability distributions, such as the Gaussian or Bernoulli distributions. However, it
is challenging to identify the distribution and parameters which fit the model behavior.

Some examples of modeling which use stochastic processes include stock market
(investors making random choices), fluctuations in exchange rates (dynamic and
chaotic economic factors) and medical data such as electrocardiography (EKG),
electroencephalography (EEG), blood pressure or temperature (noise and fluctuations).

2.3 Biological Systems

Biological systems have their own traditional formalisms that must be incorporated
into the modeling. The discrete chemistry obtains the number of involved elements
(molecules, ions, proteins, etc.) from their concentrations. The individual approach
is used to represent individual biological structures and their interactions. The law
of mass action is used to describe chemical reactions where their unique involved
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elements have more than one quantity (for example, two ions).

2.3.1 Discrete Chemistry

The components of our models are molecules (for example, Adenosine Triphosphate, or
ATP), ions (sodium or potassium) and the sodium-potassium-pump itself (also known
as the Na+/K+-ATPase). Each of these components can interact with each other
through several chemical reactions, such as two potassium ions binding to the pump.

Molecules and ions are incredibly small, and they are counted using the mole
unit. One mole is equivalent to the Avogadro constant (NA), or approximately 6.022 ×
1023 units per mol. For example, one mole of ATP is 6.022 × 1023 molecules of ATP.

However, these components are often quantified using concentrations, which is
a continuous measure. This concentration is called molar concentration or molarity,
representing the moles per liter or mol

L
. This is also denoted as Molar or M.

For example, the concentration of ATP is 5 mM (miliMolar) under normal
physiological conditions. Instead of concentrations, our models have to use discrete
variables to represent each of the molecules, for example, three sodium ions outside
the cell and two potassium ions inside the cell. Therefore, we must convert the initial
concentration of molecules and ions from molarity (M) to their corresponding number
of molecules.

The concentration of ligands (molecules and ions) given in molarity ([X]) can be
converted into quantities of ligands (#X) using the following biological definition:

#X = [X] × V ×NA (2.1)

where V is the cell volume and NA is the Avogadro constant (6.022 × 1023 mol−1).

Each reaction of our model has an associated rate, which determines its frequency
and likeliness to happen. These rates are also called stochastic rates, because there is
some probability per unit time that the reaction will happen. For example, a phosphate
molecule binding to the pump happens 1.90 times per second (or 1.90 s−1), while the
pump closing its door to the outside and opening its door to the inside of the cell
happens 100 times per second (1.00 × 102 s−1).

These stochastic reaction rates have been obtained after several experimental
procedures and they are from [Rodrigues et al., 2008b,a, 2009a,b]. The concentration
of a ligand such as ATP is denoted in brackets, for example, [ATP]i, while the i indicates
that it is the intracellular concentration. Another example is [Na+]o for the extracellular
sodium concentration. The ligands concentrations (for example, [ATP]i = 0.005 M,
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[P]i = 0.00495 M and [ADP]i = 0.00006 M) are from [Chapman et al., 1983]. The cell
volume is from [Hernández and Chifflet, 2000].

2.3.2 Individual Approach

The authors of [Calder et al., 2010] present a computational modeling approach using
formal verification with the PRISM model checker. They view their model – signaling
pathways – as a distributed system, associating concurrent computational processes
with each of the proteins in the pathway. In other words, the proteins are processes
and the reactions are transitions.

They treat these components as populations, in order to capture the behavior of a
whole set of ligands. Processes interact, or communicate with each other synchronously,
by participating in reactions which build up and break down proteins. A producer can
participate in a reaction when there is enough species for a reaction, a consumer can
participate when it is ready to be replenished. A reaction occurs only when all the
producers and consumers are ready to participate.

They view the protein species as a process, rather than each molecule as a
process. This corresponds to a population type model (rather than an individuals
type model). In traditional population models, species are represented as molar
concentrations. In their approach, concentrations can vary in granularity; the coarsest
possible discretisation being two values (representing, for example, enough and not
enough, or high and low). Time is the only continuous variable, all others are discrete.

In this work, we use their modeling approach, therefore, our ligands are viewed as
processes, and transitions connect the system states. However, we use the individual
approach instead of the populational approach. This means that each of the ligands
is modeled individually, for example, using discrete variables, which store the current
number of a particular type of ligand.

2.3.3 Law of Mass Action

The law of mass action is a mathematical model that explains and predicts behaviors
of solutions in dynamic equilibrium, such as the concentration gradients of sodium and
potassium ions, as well as their interactions with the sodium-potassium-pump. This
law states that a reaction rate is proportional to the concentration of its reagents.
Therefore, we must take into account the reagent concentrations when defining a
reaction rate. Considering the discrete chemistry conversion previously discussed and
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an ATP molecule binding to the pump:

ATPi + E1
rp′1⇀ ATPhigh ∼ E1 (2.2)

The final rate rp1 is given as follows:

rp1 = rp′1 × #(E1) ×#(ATPi) (2.3)

The reaction rate is also multiplied by the current concentration of the involved ligand
to the power of the number of ligands. For example, a reaction which involves three
sodium ions would have to be multiplied by ([Na+]i)3. We have used the construct
pow(x,y) from PRISM to represent the law of mass action. For example, a reaction
involving three sodium ions would have a transition rate multiplied by pow(naIn,3).

Summary. In this chapter we have presented the mathematical modeling of biological
systems, which can be classified regarding their behavior (deterministic or stochastic)
and the type of its values (discrete or continuous). Stochastic processes have also
been covered, such as Markov chains, explaining their necessity based on the system’s
conditions, for example, low concentration of involved components). Biological systems
have their own formalisms that must be incorporated into the modeling, such as discrete
chemistry and the law of mass action, which have also been presented.





Chapter 3

Computational Models

Outline. In this chapter we present some examples of computational models, which
are useful tools to describe and reason over the behavior of a system. Similarly to
mathematical models, computational models can be classified in various ways, for
example, the behavior of the model, which can be predictable or ruled by chance, or
the data, which can be discrete or continuous. These two classifications combine in
four different types of computational modeling approaches, summarized in Table 3.1,
each one suitable for a situation or system being modeled. Some examples of these
computational models are discussed with greater detail below, for example, a system
which presents stochastic behavior and discrete data can be effectively modeled as a
probabilistic boolean model.

Behavior
Data

Discrete Continuous
Deterministic Boolean Models Ordinary Differential Equations

Petri Nets Partial Differential Equations
Stochastic Master Equation Approximations of Master Equation

Probabilistic Boolean Models Dynamical Bayesian Models

Table 3.1: Different types of computational models, classified by its behavior
(deterministic or stochastic) and data (discrete or continuous).

3.1 Deterministic and Discrete

Deterministic and discrete models are suited for systems which present well-defined and
predictable outcomes and the number of elements is finite. Examples of these models

17
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are boolean models and Petri nets. There are several systems which present these
characteristics, such as a cell signaling pathways and gene regulatory networks.

(a) Boolean model for a cell signaling
pathway. Rules define the transitions between
finite states. Circuits are built by linking
components through their interfaces or
connections. Adapted from [Chaves et al.,
2009].

(b) Petri net representing a chemical reaction.
The number of tokens represents the number
of molecules available. It takes two molecules
of H2 and one of O2 to produce two of H2O.
Adapted from [Murata, 1989].

Figure 3.1: Deterministic and discrete models.

Boolean models (Figure 3.1a) use predicate logic to describe the structure of
the system being modeled (e.g. one state leads to another state) and check certain
conditions (e.g. the model is never in two states). Variables assume values from
a finite number of states, which can be two states, such as the true or false from
boolean logic, or a set of states, for example, identifiers representing the stage that
the cell is in a biological process such as cell division. Logic or predicate rules use
boolean operators such as conjunction, disjunction and negation, and define the allowed
transitions between states. Logic circuits are built to link each component of the model
through their inputs and outputs. The Figure 3.1a presents a boolean model for the
cell signaling pathway of the apoptosis – the cell death [Chaves et al., 2009].

A Petri net (Figure 3.1b) defines the structure of a distributed system as a directed
graph. This graph consists of different types of nodes – position nodes, transition nodes
and arc nodes connecting position nodes with transition ones. Each position node can
store resources called tokens, which are processed by transition nodes. The Figure 3.1b
presents a Petri net modeling a simple chemical reaction (adapted from [Heiner and
Sriram, 2010]). The number of tokens represents the number of molecules available. It
takes two molecules of H2 and one of O2 to produce two of H2O [Murata, 1989].
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3.2 Deterministic and Continuous

Systems which present deterministic outcomes and continuous data can be effectively
modeled using deterministic and continuous models. Continuous values appear in,
for example, concentrations of elements or rates of transitions. The representation
of continuous values usually takes a single floating point variable, which although is
cheaper than discrete approaches which represent elements individually, it comes with
the price of representation and approximation errors.

Computers are discrete in nature, and extreme values such as an incredibly small
number can be wrongly represented with a rounding error. Also, most of the continuous
models are based on approximation methods, which means that eventually the method
must stop in order to return its computation, for example, due to a limit of its iterations
or a convergence value (i.e. new iterations are not changing the current result). This
in turn could also lead to approximation errors.

Examples of these models are ordinary differential equations and partial
differential equations. These models are appropriate to quantitatively analyze large
systems where uniformity is observed for the presence of elements (i.e. elements are
evenly distributed) and interactions between them.

Differential equations are ordinary if its functions are of only one variable
(Equation 3.1). Otherwise, they are partial (Equation 3.2). Both types can be solved
by techniques such as the Laplace and Fourier transforms, and the methods of finite
elements, Euler and Runge-Kutta [Boyce, 2008].

d

dx
x2 = 2x (3.1)

∂

∂x
x2y = 2xy (3.2)

3.3 Stochastic and Discrete

Stochastic and discrete models are appropriate for small models which are random in
nature and do not present uniformity in the presence of elements or their interactions.
Examples of these models are theMaster Equation, probabilistic boolean models
and discrete Bayesian models.

Master equations are used to describe the system evolution over time. The system
is in exactly one state of a finite set of states at a given time. The transitions between
states are probabilistic. The equations are a set of first order differential equations for
the fluctuation or rate over time of the probability for the system to be in each one of
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the different states.

ṗ(x; t) = −p(x; t)
M∑
µ=1

aµ(x) +
M∑
µ=1

p(x− sµ; t)au(x− sµ) (3.3)

The Equation 3.3 presents the master chemical equation to estimate the
probability of the system being in state x at time t. There are N distinct species
identified by {S1, . . . , SN}. The state space is described by an integer vector x =

(x1, . . . , xn)T , where xi is the population of species Si. There are M reactions
Rµ : µ ∈ {1, 2, . . . ,M} which cause transitions defined by the stoichiometry matrix
S = [s1 s2 · · · sM ]. The probability that Rµ is the next reaction which will happen in
the next dt time units is given by aµ(x)dt.

(a) Probabilistic boolean model. Discrete states
are linked by probabilistic transitions. Adapted
from [Laubenbacher and Jarrah, 2009].

(b) Bayesian networks. This graphical
model exploits the causal relationship between
variables and their independence. Adapted
from [Bayesia, 2013].

Figure 3.2: Deterministic and discrete models.

Probabilistic boolean models are similar to boolean models, previously discussed
in the Deterministic and Discrete section. The states still are discrete boolean
vectors for the values of each variable. The difference is that there is a probability
distribution associated with every rule (Figure 3.2a), instead of a deterministic
transition [Laubenbacher and Jarrah, 2009].
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Figure 3.3: Dynamic Bayesian networks. This is an extension to bayesian networks,
which allows reasoning over time. Adapted from [Next Generation Pharmaceutical,
2013].

Another example of discrete and stochastic model is the Bayesian network.
This type of model is a graphical one (e.g. graph-based) which exploit the causal
relationships between variables and their independence (Figure 3.2b). The advantage
is that instead of explicitly representing the full joint probability distribution table
(every combination of events), it is possible to represent only smaller ones, based on
the dependence of variables. In order to reason over time using Bayesian networks, one
has to extend to dynamic ones (Figure 3.3) [Bayesia, 2013].

3.4 Stochastic and Continuous

Finally, stochastic and continuous models are suited for large and random systems,
where there is uniformity. Examples of these models are the approximations of the
Master Equation and dynamic Bayesian models.

The Fokker-Planck equation is an approximations of the Master Equation which
describes the time evolution of a continuous probability distribution. It is often used
in the study of particle positioning and diffusion [Risken, 1984]. Another approach is
the use of Stochastic Differential Equations (SDE), which are differential equaitons in
which one or more of the terms is a stochastic process.

Dynamic Bayesian models, previously described, can also be used as continuous
and stochastic models. In order to do so, one has to discretize the variables, or use
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probability density functions, such as the Gaussian distribution. Another approach
is the use of soft thresholds, using probit and logit distributions [Next Generation
Pharmaceutical, 2013].

Summary. In this chapter we have presented some examples of computational models.
Similarly to mathematical models, computational models can be classified in various
ways, for example, the behavior of the model, which can be predictable or ruled by
chance, or the data, which can be discrete or continuous. These two classifications
combine in four different types of computational modeling approaches, each one suitable
for a situation or system being modeled. Some examples of these computational models
have also been discussed, for example, a system which presents stochastic behavior and
discrete data can be effectively modeled as a probabilistic boolean model.



Chapter 4

Model Checking

Outline. In this chapter we present some of the background on model checking that is
relevant to this dissertation. We introduce symbolic model checking, Kripke structures,
Binary Decision Diagrams and its temporal logics, Computational Tree Logic (CTL and
CTL*) and Linear Time Temporal Logic (LTL). We also describe probabilistic model
checking, and its probabilistic logics, Probabilistic Computational Tree Logic (PCTL),
Continuous Stochastic Logic (CSL) and reward-based extensions. Finally, we consider
the model checkers of Markov chains, including the PRISM model checking tool, and
outline the PRISM modeling language and property specification.

4.1 Introduction

The model checking technique is a formal verification procedure to automatic and
exhaustively check if a given model of a system respects a given specification.

The systems usually modeled are hardware and software ones, such as the
correction of circuit designs (such as logical and arithmetic units, processor pipelines)
and critical software (such as aircraft, spacecraft, and elevators), respectively. However,
other applications such as reliability of communication protocols, and more recently
biological systems.

The specification is often given in special types of logics, such as temporal
and probabilistic logics, which allow specifying properties about the sequence and
probability of certain events, respectively. The specification often contains safety
requirements such as the absence of deadlocks and critical states that can cause the
system to crash.

The first section presents the symbolic version of model checking, along with its
related concepts such as binary decision diagrams and temporal logics. This section is

23
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largely based on [Clarke et al., 1999] and [Song, 2004].

The probabilistic version called probabilistic model checking (PMC) is described
in the following section, including its special representation using multi-terminal binary
decision diagrams and more appropriate probabilistic logics. This section is largely
based on [Parker, 2002] and [Crepalde, 2011].

PMC is used in this dissertation using the PRISM model checker to study a
biological model of the sodium-potassium-pump and its interactions with the toxin
palytoxin. Therefore, we have included an additional discussion on other available
PMC tools, as well as a brief description of PRISM and its modeling and property
languages.

4.2 Symbolic Model Checking

This technique was first proposed independently by Edmund. M. Clarke and Ernest.
A. Emerson [Emerson and Clarke, 1980; Clarke and Emerson, 1982; Clarke et al., 1986]
and by Jean P. Queille and Joseph Sifakis [Queille and Sifakis, 1982]. In 2007, Clarke,
Emerson and Sifakis shared the Turing Award for their contribution on founding the
field of model checking.

The systems are modeled in a finite state machine, described in a precise high level
modeling language, and properties are specified in temporal logics. Given a modelM , a
set of initial states S0 and a property φ, the verification algorithm automatically checks
if the models respects the property φ. This is performed by exhaustively exploring the
transitions between states, checking the specified properties.

These are other methods such as tests and simulations to analyze and check
systems. However, the model checking technique offers several advantages. First, it is
completely automatic: after modeling the system and specifying the desired properties,
the model checker performs the analysis without human interaction.

Furthermore, model checking guarantees that the model respects the specified
properties since the state space is completely searched. This allows the detection of
even small errors which might pass unnoticed by other techniques such as emulation,
simulation and tests. Finally, if the model does not respect some given property, the
model checker usually produces a counter-example, which is useful to understand and
correct the error.

However, there is no free lunch. This exhaustive exploration of the model state
space causes the classical model checking problem of the state space explosion. The
number of states grows exponentially with the number of variables. For example, the
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composition of N variables of size k each yields kN states. This is an active research
topic, and several efforts have been made to reduce the state space. The first and
one of the most important contributions has been made in [McMillan, 1992], which
proposed using Binary Decision Diagrams (BDDs), originally created by [Bryant, 1986],
to symbolically represent the transition relations between states.

This implicit representation encodes each state as the attribution of boolean
values to the system variables. Therefore, the transitions can be expressed as boolean
formulas in terms of two sets of variables, one set encoding the previous state and
another set encoding the current state. This avoids the explicit construction of graphs
of system states, which provided a more compact description of the model, increasing
the size of models from 105 to 1020 states.

Furthermore, several improvements have been made to cope with the state
space explosion, allowing the verification of systems with 10120 states, such as Partial
Order Reduction [Godefroid et al., 1996], Symmetry Reduction [Clarke et al., 1998],
Compositional Reasoning [Berezin et al., 1998], Statistical or Approximate Model
Checking [Younes, 2005; Clarke et al., 2008] and Bisimulation Minimisation [C. Dehnert
and Parker, 2013].

4.2.1 Kripke Structure

The representation used in symbolic model checking to capture the behavior of a system
is a directed state transition graph called Kripke structure. It is a variation of a
non-deterministic finite state machine whose states or nodes represent the reachable
states of the system and whose edges represent allowed transitions between states.

Atomic propositions of the model are boolean expressions over the variables,
constants and other symbols of model. These propositions assume the value of
either true or false. Atomic propositions are self contained and do not include other
propositions.

Let AP be the set of atomic propositions. A Kripke structure M over AP is a
4-tuple M = 〈S, I, R, L〉, as defined by [Clarke et al., 1999], where:

• S is a finite set of states.

• I ⊆ S is the set of initial states.

• R ⊆ (S × S) is a transition relation that must be total, i.e., for each state s ∈ S,
there is a state s′ ∈ S such that R(s, s′).
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• L : S → 2AP is a function that labels each state with the set of atomic
propositions which are true in that state.

A path in a Kripke structure M from a state s0 is a an infinite sequence of states
π = s0s1s2... such that s0 = s and the relation R(si, si+1) holds for all i ≥ 0.

The Figure 4.1 shows a graphical representation of a Kripke structure for a model
and a computational path in its structure. The components of M which define the
Kripke structure are:

• S : {S0, S1}

• I : {S0}

• R : {(S0, S1), (S1, S0), (S1, S1)}

• L(S0) = {A,B}, L(S1) = {A,¬B}

AB A¬B

(a) Generic Kripke
structure with two states.

AB A¬BA¬B A¬B

(b) A computational path in the Kripke structure.

Figure 4.1: A Kripke structure and a computational path in it.

4.2.2 First Order Representations

As described by Clarke et al. [1999], a Kripke structure can be represented through
boolean functions, which employ logical operators such as negation (¬), disjunction
(∨), conjunction (∧) and implication ( =⇒ ).

Let V = {v1, · · · , vn} be the finite set of system variables and D =

{D1, · · · , Dn} be the finite set of domains of these variables, such as Di represents the
set of possible values for vi. A system state is the evaluation of all system variables
at a specific instant in time.

For example, suppose a system with three boolean system variables (a three bit
counter), i.e., let V = {v1, v2, v3} and D1 = D2 = D3 = {0, 1}. There are eight possible
system states (23 = 8), such as (v1 = 0, v2 = 0, v3 = 0), (v1 = 0, v2 = 0, v3 = 1)

and (v1 = 0, v2 = 1, v3 = 1). Their respective representations as boolean functions
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are (¬v1 ∧ ¬v2 ∧ ¬v3), (¬v1 ∧ ¬v2 ∧ v3) and (¬v1 ∧ v2 ∧ v3), where vi is an 1-valued
variable (or true) and ¬vi is a 0-valued variabled (or false). These representations are
symbolic, therefore the name symbolic model checking.

The transitions between system states must also be represented as boolean
functions. In order to do that, a second set of system variables is created to represent
the system variables in the next (future) state. Therefore, V is the set of system
variables in the current state, and V ′ is the set of system variables in the next (future)
state. For each v ∈ V , a variable v′ ∈ V ′ for the next state is created. A transition
can be viewed as an ordered pair for the evaluation of system variables in V and V ′,
which can be represented as a conjunction of boolean functions.

Let f be the boolean function for the current system state s and f ′ be the
boolean function for the next (future) system state s′, then the transition from state
s to state s′ is represented by the conjunction of both boolean functions, therefore,
f ∧ f ′. For example, the transition from a state where (v1 = 0, v2 = 0, v3 = 0)

to a state where (v1 = 0, v2 = 0, v3 = 1) is represented by the boolean function
(¬v1 ∧ ¬v2 ∧ ¬v3) ∧ (¬v′1 ∧ ¬v′2 ∧ v′3), as shown in Figure 4.2.

CurrentState

v1 = 0

v2 = 0

v3 = 0

(¬v1 ∧ ¬v2 ∧ ¬v3) ∧ (¬v′1 ∧ ¬v′2 ∧ v′3)

NextState

v′1 = 0

v′2 = 0

v′3 = 1

Figure 4.2: The symbolic representation of a transition.

Boolean functions can represent a set of states and a set of transitions. If
f1, f2, . . . fn represent all the transitions of a Kripke structure, the boolean function for
the set of all transitions is described by the disjunction of all fi, i.e., fR = f1∨f2∨· · ·∨fn.
The same reasoning is used to make the set of all system states of a Kripke structure.

The coupling of several transitions into a simple boolean function, which simplifies
the process of graph traversal, is inherent to the representation of boolean functions as
BDDs, covered in the next section. This is one of the main reasons for the efficiency
of BDDs in symbolic model checking algorithms.
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Furthermore, the set of atomic propositions AP must be described in order to
create specifications for the system. An atomic proposition is an expression of the form
v = d, where v ∈ V and d ∈ D. A proposition v = d will be true in a system state s,
if the boolean function of s becomes true when v assumes the value d.

In order to illustrate first order representations, a symbolic representation of a
Kripke structure is presented in Figure 4.1. In this example, let V = {A,B} and
DA = DB = {0, 1} for the model. Furthermore, it is necessary to create two variables
V ′ = {A′, B′} to represent future states. The symbolic representations of the system
states s0 and s1 are given by the boolean functions A ∧ B, and A ∧ ¬B, respectively.
Finally, the transition from state s0 to state s1 is given by R(s0, s1) ≡ A∧B∧A′∧¬B′.

The boolean function which represents the complete transition relation of the
model is composed of three disjunctions, representing the number of transitions of the
Kripke structure:

(A ∧B ∧ A′ ∧ ¬B′) ∨ (A ∧ ¬B ∧ A′ ∧B′) ∨ (A ∧ ¬B ∧ A′ ∧ ¬B′)

In this example, the labeling function L contains the following mappings: L(s0) =

{A = 1, B = 1} and L(s1) = {A = 1, B = 0}. As A = 1 and B = 1 ∈ L(s0), when A
and B assume, respectively, the values 1 and 1 in system state s0, the boolean function
which represents this state (A ∧B) becomes true.

Although previous definitions have considered only a boolean domain D = {0, 1}
for all variables, it is possible to use other domains such as integer values by simply
encoding each element to a boolean domain. The encoding is performed by using j
bits to encode the domain Di of each variable vi as a binary number and represent vi
as j boolean variables.

For example, suppose that the variables vi assume integer values in the domain
D = {0, 1, 2, 3, 4, 5, 6, 7}, then only three bits are necessary to encode each variable vi.
Therefore, the atomic proposition (v1 = 2) can be represented by the conjunction of
three new boolean variables (¬v1.1 ∧ v1.2 ∧ ¬v1.3), where each one corresponds to a bit
of the binary codification of the integer value of 2 (010). Finally, the boolean function
(v1 = 2)∧ (v2 = 3)∧ (v3 = 4) would be represented in a binary domain as shown below:

(¬v1.1 ∧ v1.2 ∧ ¬v1.3) ∧ (¬v2.1 ∧ v2.2 ∧ v2.3) ∧ (v3.1 ∧ ¬v3.2 ∧ ¬v3.3)
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4.2.3 Binary Decision Diagrams

A data structure called Binary Decision Diagram (BDD) is used to represent boolean
functions in a compact, efficient and canonical form, as first described in [Bryant,
1986]. A BDD is compact because it discards redundant information; efficient because
it allows rapid graph traversal; and canonical because it is easy to check if two boolean
functions are equivalent.

This data structure is often used in symbolic model checking to represent
finite states systems, although there are other representations, such as explicit-state
representation (all variables are always represented) and conjunctive normal form (a
conjunction of disjunctions).
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Figure 4.3: A binary decision tree for the boolean function (a ∧ b) ∨ (c ∧ d).

BDDs represent boolean functions as a special type of binary decision trees,
which is a directed tree with two types of vertices: terminal and non-terminal vertices
(shortened as terminal and non-terminal, respectively). In a binary decision tree, a
non-terminal vertex v is labeled with a boolean variable, given by var(v), which has
two successors: zero(v), when var(v) = 0, and one(v), when var(v) = 1. A terminal
vertex v assumes only the value zero or one (simply zero- or one-terminal, respectively),
given by function value(v). The tree edges are labeled with the value zero or one.

The Figure 4.3 shows an example of a binary decision tree for the boolean function
(a ∧ b) ∨ (c ∧ d). A path in the tree starts at the root vertex and the choice between
zero(v) and one(v) directs to a terminal that represents the function evaluation. In the
example, the variable evaluation (a = 1, b = 0, c = 1, d = 0) leads to a zero-terminal,
which means that the boolean function is false for that assignment, while a different
assignment leading to a one-terminal means that the function is true.

The binary decision trees can have a lot of redundant information. For example, in
the Figure 4.3 there are eight subtrees whose roots are labeled with a boolean function
d. However, only three of them are unique: in the first unique subtree, assigning any
value to the variable d leads to a zero-terminal. On the other hand, in the second
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unique subtree, assignment any value to d leads to a one-terminal. Finally, in the third
unique subtree, the assignment of zero to d leads to a zero-terminal, while assigning
one to d leads to a one-terminal.

Therefore, a BDD is obtained by merging identical subtrees and eliminating nodes
with repeated information. The resulting structure is a directed acyclic graph (DAG)
called BDD which, unlike trees, allow shared vertices and substructures. It is worth to
emphasize the canonical aspect of BDDs, which means that two functions are equal if,
and only if, their associated BDDs are isomorphic1.

[Bryant, 1986] first showed how to obtain a canonical representation of boolean
functions by imposing two restrictions on BDDs. Foremost, the variables must appear
in the BDD in the same order along the path from its root to a terminal. Secondly,
isomorphic subtrees or vertices should not exist in the BDD.

The first restriction is satisfied by fixing an order for the variables which label
the vertices of the BDD (var1 < var2 < · · · < varn). This means that if a vertex u
precedes a non-terminal v (starting from the BDD root), then the variable which labels
the vertex u precedes the variable which labels v in the order (var(u) < var(v)).

The second restriction is satisfied by repeatedly applying three rules of
transformation that do not change the function represented by the BDD:

1. Remove duplicated terminals: keep only two terminals, one zero-terminal and
another one-terminal. Redirect all input edges from the removed terminals to
these two unique terminals;

2. Remove duplicated non-terminals: if two non-terminals u and v are labeled with
the same variable (var(u) = var(v)) and have the same successors (zero(u) =

zero(v) ∧ one(u) = one(v)), remove the vertex v and redirect its input edges to
the vertex u;

3. Remove redundant children: if a non-terminal v has zero(v) = one(v), then
remove v and redirect all of its input vertices to zero(v).

The canonical form of the BDD, obtained by imposing these two restrictions, is
called Ordered Binary Decision Diagram (OBDD). The Figure 4.4 shows the OBDD
for the binary decision tree of 4.3, considering the variable order a < b < c < d.

Although BDDs have several advantages, it has its own disadvantages. The
main one is the order of the variables which appear in the boolean function being
represented. Depending on it, the BDD can be heavily compressed or completely

1Two BDDs are isomorphic if there is an injective function h that maps terminals and non-terminal
from a BDD to the other.
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Figure 4.4: A reduced binary decision diagram.

redundant. However, the problem of choosing the variable ordering which minimizes
the BDD size is co-NP-complete [Bryant, 1986].

There are heuristics to approximate this problem, such as the one presented
by [Bollig and Wegener, 1996], whom also briefly reviews several other heuristics based
on local search and simulated annealing. Nonetheless, variable orderings are often
found empirically since one can expect that it is related to the semantics of the model.

Another issue with BDDs is the space complexity. Since BDDs are essentially
an exhaustive representation of the model, in the worst case it is exponential to the
number of variables of the boolean function [Bryant, 1986].

4.2.4 Temporal Logic

There are several different types and flavors of logics, from the classical and first
mathematical formalism created by George Boole, and named after him, the boolean
algebra, to other non-orthodox logics, such as the more modern modal logic, the
epismetic logic, or the logic of knowledge. These logics are appropriate to different
types of systems.

However, reactive and parallel systems present additional challenges on their
reasoning. They often can not be understood from its current state, demanding the
analysis of a sequence of events. For example, one simple reactive system such as an
alternating bit communication protocol can be reasoned only using temporal properties,
such as “if a message is sent, it is eventually received”. The message can be received
in the next time unit, or in the next ten time units. Therefore, to reason about such
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systems we need to be able to state temporal properties.
One could describe and reason logical propositions in terms of time and the

sequence of events, which is called temporal logic and its applied to model checking,
where the behavior of the system being modeled is represented as a state-transition
graph such as the BDD reasoning on the time evolution of the model.

There are several temporal logics, such as the Computation Tree Logic (CTL and
CTL*) and Linear Time Logic (LTL). Each logic has its own set of logical operators.
The main difference between LTL and CTL, is that in LTL the reasoning is on an
infinite computational path, while in CTL the reasoning on a tree of infinite paths
starting at a root node s0. The CTL* is a superset of CTL and LTL.

Temporal logics (TL) borrow quantifiers from predicate logic (or first-order logic),
such as for all (∀) and exists (∃), naming them path quantifiers, which allow reasoning
on the computational tree created from unfolding the Kripke structure (Figure 4.5).
They also introduce temporal operators, which allow reasoning on the sequence of
states. TL can also use logical operators from boolean algebra, such as negation (¬),
disjunction (∨), conjunction (∧) and implication ( =⇒ ).

(a) A Kripke structure. (b) An infinite computational tree.

Figure 4.5: Unfolding a Kripke structure in an infinite computational tree.

Path quantifiers reason on a computational path, or sequence of states. They
are used to specify that every computational path from the current state respects the
given property. Path quantifiers are shown below. LTL does not support the E path
quantifier, because there is a single computational path.
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• The “For All” path quantifier: A Φ – for every path, Φ is true.

• The “Exists” path quantifier: E Φ – there exists a path where Φ is true.

Temporal operators reason on a sequence of states. They are used to check that
one or more states hold the given property. The Figures below show the computational
paths associated with each property. The black dot represents the state in which the
property φ is true. Only for Figure 4.9, the black and red dots represent when the
properties φ1 and φ2 are true, respectively.

• The “Eventually” operator: F φ – φ is true in a future state (Figure 4.6).

s p ...

Figure 4.6: The “Eventually” operator: F φ.

• The “Globally” operator: G φ – φ is true in all future states (Figure 4.7).

s ...

Figure 4.7: The “Globally” operator: G φ.

• The “Next” operator: X φ – φ is true in the next state (Figure 4.8).

s ...

Figure 4.8: The “Next” operator: X φ.

• The “Until” operator: φ1 U φ2 – φ1 is true until φ2 becomes true (Figure 4.9).

s ...

Figure 4.9: The “Until” operator: φ1 U φ2.

In CTL, temporal operators must be preceded by a path quantifier, for example,
EG φ, which states that exists a path where φ is always true (Figure 4.10d). The most
commonly used CTL operators are shown below (Figure 4.10).

Property AF φ checks if a property φ is eventually observed in all paths starting
at the current state (Figure 4.10a). Property EF φ, shown in Figure 4.10b, checks if
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(a) AF φ – for every path, φ is true in a future
state.

(b) EF φ – there exists a path where φ is
true in a future state.

(c) AG φ – for every path, φ is true in all future
states.

(d) EG φ – there exists a path where φ is
true in all future states.

Figure 4.10: Different types of combinations of temporal operators.

exists a path where the property φ is eventually observed. Property AG φ checks if a
property φ is always observed in all paths starting at the current state (Figure 4.10c).
These properties could be used to check safety aspects of the model, such as situations
which should never occur, for example, “the system never crashes!” (AG !crash).

There are other operators which are not that commonly used, such as weak until
(φ1 W φ2) and past time operators (H, P and S), i.e., events that happened before
the current state. There are several other logics, such as Linear Tree Logic (LTL).
In the next Section we will discuss probabilistic model checking, therefore one needs
appropriate temporal logics, or probabilistic logics.

4.3 Probabilistic Model Checking

Probabilistic Model Checking is a formal, exhaustive and automatic technique for
modeling and analyzing stochastic systems. PMC checks if the model satisfies a set of
properties given in special types of logics.
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A stochastic system M is usually a Markov chain or a Markov decision process
– in fact, our system is a Continuous-time Markov chain (CTMC). This means that
the system satisfies the Markov property, i.e., its behavior depends only on its current
state and not on the whole system history, and each transition between states occurs
in real-time.

Given a property φ expressed as a formula in a probabilistic temporal logic, PMC
attempts to check whether a model of a stochastic system M satisfies the property φ
with a probability greater than or equal to a probability threshold θ ∈ [0, 1].

Tools called models checkers such as PRISM [Kwiatkowska et al., 2011] attempt to
solve this problem. It requires two inputs: a modeling description of the system, which
defines its behavior (for example, through the PRISM language), and a probabilistic
temporal logic specification of a set of desired properties (φ).

The model checker builds a representation of the system M , usually as a
graph-based data structure called Binary Decision Diagrams (BDDs), which can be
used to represent boolean functions. States represent possible configurations, while
transitions are changes from one configuration to another. Probabilities are assigned to
the transitions between states, representing rates of negative exponential distributions.

Let R≥0 be the set of positive reals and AP be a fixed, finite set of atomic
propositions used to label states with properties of interest. A labeled CTMC C is a
tuple (S, s̄, R, L) where:

• S is a finite set of states;

• s̄ ∈ S is the initial state;

• R : S × S → R≥0 is the transition rate matrix, which assigns rates between each
pair of states;

• L : S → 2AP is a labeling function which labels each state s ∈ S the set L(s) of
atomic propositions that are true in the state.

The probability of a transition between states s and s′ being triggered within t

time-units is 1 − e−R(s,s′) · t. The elapsed time in state s, before a transition occurs,
is exponentially distributed with the exit rate given by E(s) =

∑
s′∈S R(s, s′). The

probability of changing from state s to s′ is given by P (s, s′) = R(s,s′)
E(s)

[Parker, 2002].
Finally, the probability of changing from s to s′ in t time units is given by [Clarke
et al., 2008]:
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P (s, s′, t) =
R(s, s′)

E(s)
× (1− e−R(s,s′) · t)

A computational path of a CTMCmodel starting at state s0 is an infinite sequence
π = s0t0s1t1..., where si ∈ S, ti ∈ R≥0 is the time spent at state si and R(si, si+1) > 0

for all i ≥ 0. The Figure 4.11 shows the graph of the CTMC model below:

• S = {S0, S1, S2};

• S0 = {S0};

• R(S0, S1) = λ1, R(S1, S2) = λ2, R(S2, S0) = λ3 and R(S1, S0) = λ4;

• L(S0) = {A,B}, L(S1) = {A,¬B} and L(S2) = {¬A,B}.

Figure 4.11: An example of a CTMC model.

4.3.1 Probabilistic Logics

Properties can be expressed quantitatively as “What is the probability of ATP binding
to the pump?” or qualitatively as “ATP eventually depletes”, offering valuable insight
over the system behavior.

Properties are specified using the Continuous Stochastic Logic
(CSL) [Kwiatkowska et al., 2008], which is based on the Computational Tree
Logic (CTL) and the Probabilistic Computation Tree Logic (PCTL). The syntax of
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CSL formulas is the following:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | PEp[φ] | SEp[φ]

φ ::= X Φ | Φ UI Φ

where a is an atomic proposition, E ∈ {>, <, ≥, ≤}, p ∈ [0, 1] and I is an interval of
R≥0.

There are two types of CSL properties: transient (PEp) and steady-state (SEp).
In this work we are interested in transient or time related properties. A formula PEp [φ]

states that the probability of the formula φ being satisfied from a state respects the
bound Ep. Path formulas use the X (next) and the UI (time-bounded until) operators.
For example, formula XΦ is true if Φ is satisfied in the next state.

This can be applied to check if one state leads to another with a probability p,
for example, state “open-in” is followed by state “open-out” with at least 10% chance:
P≥0.1[“open− in′′ =⇒ X “open− out′′].

4.3.2 Rewards

PRISM also allows including rewards in the model, which are structures used to
quantify states and transitions by associating real values to them. The state rewards
are counted proportionately to the elapsed time in the state, while transition rewards
are counted each time the transition occurs. In PRISM, rewards are described using
the following syntax:

rewards “reward name”

...

endrewards

Each reward is specified using multiple reward commands which follow the syntax
below.

[sync] guard : reward ;

Reward commands describe state rewards and transition rewards, respectively. The
predicate which must be observed is the guard. The sync is a label used to synchronize a
set of commands into a single transition in the system. Finally, reward is an expression,
which can contain variables and constants from the model, and when evaluated it counts
for the reward.
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rewards “E1”

[r1]E1 = 1 : 1 ;

endrewards

Figure 4.12: An example of a state reward.

One example of a state reward is the pump open to the intracellular side (E1, in
our model), described in Figure 4.12. The reward is one, since it is essentially counting
the number of times when that particular reward was observed. The guard is the
condition which must be observed – E1=1, that state must be present. The sync r1

is used to synchronize with another module which defines the rate of that reaction.
Therefore, the cumulative reward represents how many times the pump was open to
the intracellular side.

Reward properties can be applied to states and transitions. For example, “What
is the expected reward for the phosphorylated pump open to the external side of the
cell at time T?”.

This reward can be instantaneous, obtaining its value at the given time through
the property R=?[I=t], or accumulated, calculating its value until the given time, using
the property R=?[C<=t]. In this work, we have used cumulative rewards because they
show the reward history, giving a better intuition on its role on the model, while
instantaneous rewards yield only local information.

One can obtain the probability of a state reward by dividing it to the sum of all
state rewards. The same procedure can be applied to transitions (or chemical reactions,
in our model).

Rewards of paths in a Continuous-time Markov chain are summations of state
rewards along the path and transition rewards for each transition between these states.
State rewards are interpreted as the rate at which rewards are accumulated, essentially
counting them, i.e. if t time units are spent in a state with state-reward r, the
accumulated reward in that state is r × t.

4.4 Model Checkers for Markov Chains

There are several model checkers for each stochastic process. Each tool presents its
own features, some more complete than others, such as the case of PRISM which covers
several distinct types of models. Others implement specific techniques, for example,
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the parametric exploration of PARAM.
Some of the main model checkers for Markov chains, either discrete-time

(DTMC) or continuous-time (CTMC), or even extensions of these types, include:
PRISM [Kwiatkowska et al., 2011]; MRMC [Katoen et al., 2011]; the PEPA Eclipse
plug-in [Tribastone, 2007]; PARAM [Hahn et al., 2010]; INFAMY [Hahn et al., 2009]
and CASPA [Riedl et al., 2008].

The MRMC (Markov Reward Model Checker) uses explicit-state (and
approximate) model checking for DTMCs, CTMCs and CTMDPs (continuous-time
Markov decision processes) with rewards against PC(R)TL (Probabilistic Computation
Reward Tree Logic) and CS(R)L (Continuous Stochastic Reward Logic). It also
supports bisimulation [Katoen et al., 2011].

The PEPA Eclipse Plug-in project supports CSL (Continuous Stochastic Logic)
model checking (plus steady-state/ODE analysis and abstraction techniques) for
the stochastic process algebra PEPA [Tribastone, 2007]. PARAM uses parametric
probabilistic model checking of DTMCs [Hahn et al., 2010]. INFAMY performs model
checking of infinite-state CTMCs [Hahn et al., 2009]. CASPA employs symbolic
(MTBDD-based) model checking of (extended) stochastic labeled transition systems
against Stochastic Propositional Dynamic Logic (SPDL) [Riedl et al., 2008].

4.4.1 PRISM

PRISM supports diferent types of models, properties and simulators [Kwiatkowska
et al., 2011]. It has been largely used in distinct fields, e.g. communication and
media protocols, security and power management systems. We have used PRISM in
this work for several reasons, which include: exact PMC in order to obtain accurate
results; Continuous-time Markov Chain (CTMC) models, suited for our field of study;
rich modeling language that allowed us to build our model; and finally property
specification using Continuous Stochastic Logic (CSL), which is able to express
qualitative and quantitative properties.

4.4.1.1 Modeling

One way to model the set of chemical reactions described in Figure 4.13 in the PRISM
tool is presented in the Figure 4.14.

A description of a CTMC model in PRISM must begin with the keyword ctmc.
It is composed of modules, which have their states represented by a set of variables
which assume a finite set of values. In the example, there is a module for each ligand
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Reactions:
1. A + B 
 A : B (complex formation)
2. A ⇀ (degradation)

Reaction rates
- complex formation A : B : r1
- complex release A : B : r2
- ligand degradation : r3

Figure 4.13: Example of a chemical reactions system.

in the reactions: m_A, m_B and m_AB. In each module there is a variable which describes
if that ligand is present or not, indicated by 1 or 0, respectively. In this example there
can be a maximum of one molecule for each of the three ligands. Initially, only the
molecules A and B are present.

The module start is responsible for defining the rate constants for each of the
three possible reactions of the system: bind (binding A and B), rel (release of the
molecules in the AB) and deg (degradation of A).

ctmc

const double r1=1;
const double r2=1;
const double r3=0.1;

module m_A
a: [0..1] init 1;
// 0 - degraded or bound, 1 - livre

[bind] a=1 -> 1 : (a’=0);
[rel] a=0 -> 1 : (a’=1);
[deg] a=1 -> 1 : (a’=0);

endmodule

module m_B
b: [0..1] init 1; // 0 - bound, 1 - free
[bind] b=1 -> 1 : (b’=0);
[rel] b=0 -> 1 : (b’=1);

endmodule

module m_AB
ab: [0..1] init 0;
// 0 - complex absent, 1 - complex present
[bind] ab=0 -> 1 : (ab’=1);
[rel] ab=1 -> 1 : (ab’=0);

endmodule

module start
[bind] true -> r1 : true;
[rel] true -> r2 : true;
[deg] true -> r3 : true;

endmodule

Figure 4.14: PRISM model of the chemical reactions systems presented in Figure 4.13.

The behavior of the modules is defined by the transitions between states. These
transitions are defined by commands expressed as [action] g → r : u. This command
indicates that if the predicate g (also known as conditions or guard) is observed (true),
then the system will be updated by u, which is composed of one or more declarations
expressed as x′ = · · · , indicating that the value of x is updated (x′ is the value of
variable x in the next state). The value of the rate at which the update will occur is
defined by r.
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PRISM also allows the synchronization between modules, through labels which
must be in brackets at the start of the synchronized commands. Transitions in different
modules using the same label happen simultaneously. The resulting rate is equals to
the product of the individual command rates of each synchronized module. In the
example, the formation of the complex AB (given by the reaction A + B r1−→ AB) is
represented by the commands labeled with bind. In order for that reaction to occur,
the molecules A and B must be present (each equals to 1) and the complex AB must
be absent (equals to 0). The final rate when this reaction occurs is r1 × 1 × 1 × 1

and it is given by the product of the rates of the four commands labeled with bind.
Similarly, the release of the complex AB, releasing the molecules A and B, is represented
by commands labeled with rel and the degradation of molecule A is represented by
the command labeled with deg.

Furthermore, PRISM allows extending CTMC models with rewards, structures
which allow marking states or transitions with real values which can be used in
quantitative properties. There are two types of rewards: state and transition
rewards. State rewards are accumulated proportionally to the time spent in each
state. Transition rewards are accumulated each time a transition occurs. Rewards
allow estimating the expected time for the occurence of a given event. Each reward
is associated with a name, which is used in the property specification, and uses the
following syntax:

rewards “reward_name”

reward_body

endrewards

where reward_body of a state reward can be expressed as g : v, while a transition
reward can be expressed as [action] g : v. In the state reward case, each PRISM
state which satisfies the predicate g is marked with the real value v. In the transition
reward case, each transition labeled with action, from PRISM states which satisfy the
predicate g, is marked with the value v.

rewards ’time’
true : 1;

endrewards

rewards ’freeA’
a=1 : 1;

endrewards

rewards ’bind’
[bind] true : 1;

endrewards

Figure 4.15: Rewards for the PRISM model of Figure 4.14.

The code of Figure 4.15 presents the definition of three rewards for our example.
From left to right, the first one (named time) associates the value 1 to every system
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state, essentially counting the elapsed time. The second one (freeA) associates the
value 1 only to states at which the molecule A is free (or a = 1). Finally, the reward
bind associates the value 1 to each transition labeled with bind, i.e., every time the
molecule A binds to B.

4.4.1.2 Property Specification

The properties to check CTMC models in PRISM must be specified in the Continuous
Stochastic Logic (CSL), which is a temporal logic based on Computation Tree Logic
(CTL), Probabilistic CTL (PCTL) and reward-based extensions [Kwiatkowska et al.,
2008]. The CSL formulas use the following syntax:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | PEp[φ] | SEp[φ]

φ ::= X Φ | Φ UI Φ

where a is an atomic proposition, p ∈ [0, 1] is a probability and I is an interval of R ≥ 0
(real non-negative numbers) at which the property must be met. The operators ¬ and ∧
are logical ones, while X and U are temporal operators. The symbol E ∈ {>,<,≥,≤}
represents the type of bound which the property must satisfy. For example, if E is >,
the probability of the property must be higher than p.

There are two basic types of CSL properties: transient (PEp) and steady-state
(SEp). Although we have specified a few steady-state properties, this work focused on
transient and reward-based properties, therefore we will describe the semantics of only
transient properties.

The formula PEp[φ] is true in state s if the probability that φ is satisfied by a
path starting at state s matches the bound Ep. Path formulas are built using the
operators X (next) and UI (time-bounded until). The path formula X Φ is true if Φ is
satisfied in the next state, while Φ1 UI Φ2 is true if Φ2 is satisfied at some time unit
in the interval I and in all previous time units Φ1 is satisfied.

Other operators can be created from this minimum set of CSL operators, such
as the G (always) operator. The interval I can be omitted from the operators U and
F, which means that I = [0, ∞). Finally, one can also quantify the probability of a
property φ by using the expression =? instead of the bound Ep (P=? [φ]).

A few examples of transient properties are presented below considering the
PRISM model previously discussed (Figure 4.13).

• P=? [ F[0,T ] ab = 1 ] : the probability of the molecule A binding to B in the
first T time units. This is a FIΦ (eventually) property, where Φ is the atomic
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proposition ab = 1;

• P=? [ ab = 0 U (a = 0 ∧ ab = 0) ] : the probability of the molecule A degrading
before binding to the molecule B. This is a Φ1 UI Φ2 (time-bounded until)
property, where I = [0, ∞) and Φ1 and Φ2 are the atomic propositions ab =
0 and (a = 0 ∧ ab = 0), respectively.

Furthermore, PRISM also allows to check the expected value of model rewards.
Some of the properties of this type which will be used throughout this work have the
forms REr [I = t], REr [ F Φ] and REr [C ≤ t], with r and t ∈ R≥0.

The first property (REr [I = t]) is true, starting from a state s, if the state reward
at the instant t satisfies the bound Er.

The second property (REr [ F Φ]) is true, starting from s, if the accumulated
reward along the path until the point where Φ is true satisfies the limit Er.

Finally, the third property (REr [C ≤ t]) is true, starting at s, if the accumulated
reward along the path at instant t satisfies the bound Er.

Given the definition of a reward, its accumulated value along the path in a CTMC
model is the sum of the state rewards along the path, plus the sum of the transition
rewards between these states, both defined in the body of the same reward structure.
The state reward associated with each state is v × t, where t is the time spent at the
state and v is the state reward associated with the state. If the bound is not specified,
using the expression =? one obtains the expected value of that reward.

A few examples of properties which obtain the reward values for the considered
example are presented below, given the rewards defined in the Figure 4.15.

• R{′freeA′}=? [ C ≤ T ] : the expected time that the molecule A is free (i.e., it is
not associated with the B or has not degraded) during the first T time units;

• R{′bind′}=? [ F ( a = 0 ∧ ab = 0 ) ] : the expected number of times that the
molecule A binds to B before degrading;

• R{′time′}=? [ F ( a = 0 ∧ ab = 0 ) ] : the expected time for the molecule A to
degrade.

4.4.1.3 PMC Implementation

The techniques which are implemented in PRISM to check the properties of CTMC
models with rewards include graph theory algorithms and numerical computation. The
first ones are used on the graph structure which represents the Markov chain specified
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in the tool to determine, for example, the set of reacheable states or to check qualitative
properties. In this case, the algorithms are executed on the BDDs as it happens on the
non-probabilistic version of the model checking technique.

The numerical computation is required to solve a Markov chain and calculate
the probabilities and reward values (quantitative properties). Iterative methods such
as Jacobi and Gauss-Seidel are used to solve systems of linear equations and check
properties such as SEp, PEp [Φ1 U Φ2] and REr [ F Φ]. The iterative method known
as uniformisation is used to calculate rewards and probabilities for properties which
involve a time interval I or a specific time t: PEp [Φ1 UI Φ2], REr [ I = t] and REr
[ C ≤ t]. Further details on these techniques to solve Markov chains can be found
in [Parker, 2002].

Furthermore, to determine the quantitative properties using numerical
computation, PRISM allows the use of three data representations:

1. a generalization of BDDs, known as Multi-terminal BDDs (MTBDDs) to
represent real-valued functions, given that matrices and real vectors are required.
These data structures allows compact representations and efficient manipulation
of big models because they explore their regularities. However, the computation
is often slow;

2. explicit representation, as a sparse matrix, which allows a faster and direct
computation, however, it can not deal with big models;

3. a hybrid approach, which extends the MTBDDs, allowing faster computations
than compared to their original representation. In this case, MTBDDs are used
to represent only the transition matrix, while the solution vectors of the iterative
methods are represented by traditional real-valued vectors.

The adjacency matrix below illustrates the explicit representation of the
transitions of the CTMC model of the Figure 4.17a.

2 5 − −
2 5 − 7
− − − −
− 7 − −


Figure 4.16: The adjacency matrix that explicitly represents the CTMC model.

Consider that the first line and first column of the matrix are 0-indexed. The
entry M(l, c) of the matrix indicates the value of the line l and column c. For example,
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the value of the entry M(0, 0) is 2, while the value of M(1, 3) is 7. The Figure 4.17b
shows an example of a MTBDD which represents the transitions of the CTMC model
of the Figure 4.17a.

In the representation through MTBDD, the binary variables x1 e x2 encode the
indexes of the transition matrix lines, while y1 e y2 encode the indexes of the columns.
For example, for the entry M(1, 3) of the transition matrix, the index 1 of the line
is encoded through the binary representation (x1,x2) = (0,1) and the index 3 of the
column is encoded as (y1,y2) = (1,1). Thus, by following the path x1 = 0, y1 = 1, x2
= 1 and y2 = 1 in the MTBDD (note that the order of the variables is x1 < y1 < x2 <
y2) the terminal node 7 is reached, which is the value of the transition matrix for the
entry M(1, 3).

(a) A CTMC model. (b) The MTBDD for the
CTMC model.

Figure 4.17: A CTMC and its MTBDD representation

Further details on the techniques used by the PRISM tool can be found
in [Kwiatkowska et al., 2011, 2007, 2004].

Summary. In this chapter we have presented model checking, a technique used to
model and analyze systems, verifying if those respect a set of properties. The symbolic
model checking is presented, as well as its concepts and related subjects, such as the
model representation using the Kripke structure and the data structure binary decision
diagram. The properties to be verified are specified using special types of logic, the
temporal logics, Computational Tree Logic (CTL and CTL*) and Linear Time Logic
(LTL), which are also described. Using these logics, it is possible to specify different
types of properties, such as “if a message is sent, then that message is eventually
received”, or “a distributed system never enters a deadlock state”.
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The probabilistic model checking is also presented, an extension to the previous
technique which allows the modeling and analysis of stochastic systems. Different
structures are necessary and were described, such as multi-terminal binary decision
diagrams, and probabilistic logics, Probabilistic Computational Tree Logic (PCTL),
Continuous Stochastic Logic (CSL), and reward-based extensions. Some model
checkers, the tools which implement these techniques, are examined, such as PRISM,
used in the modeling and verification of our models. The PRISM modeling language
and property specification were briefly presented.



Chapter 5

Transmembrane Ionic Transport
Systems

Outline. In this chapter we describe transmembrane ionic transport systems, namely
ion channels and ionic pumps, cell structures which are responsible for transporting
ions between the inside and the outside of the cell. These systems can be affected by
diseases, syndromes and toxins, which change their regular behavior and compromise
the health of the cell, which has also been covered below.

5.1 Transmembrane Ionic Transport Systems

Animal cells contain structures called transmembrane ionic transport systems,
which are responsible for transporting ions between the inside and the outside of the
cell. Being a transmembrane structure means that it is located across the plasma
membrane, which is a biological boundary that separates the interior of all cells from
the outside environment, as shown in Figure 5.1a. Therefore, these systems function
as doors which open and close to control the movement of ions.

Ions are atoms in which the total number of electrons are not equal to the
total number of protons, giving the atom a net positive or negative electrical charge.
They are necessary for several biological processes. Their concentration levels must
be controlled in order to preserve the correct behavior of cells. For example, the
concentration of potassium ions inside a cell must be higher than the concentration of
sodium ions. On the other hand, the outside of the cell is rich in sodium and poor in
potassium. Ions tend to equalize their concentrations across the environment, which

47



48 Chapter 5. Transmembrane Ionic Transport Systems

(a) An illustration of a cell membrane. Adapted
from [OpenStax College, 2013a].

(b) Ion diffusion. Adapted from [Dickinson,
2013].

Figure 5.1: Transmembrane ionic transport systems are cell structures present in the
cell membrane (Figure 5.1a) which control the diffusion of ions (Figure 5.1b).

means that sodium ions tend to enter the cell, while potassium ions tend to leave it
(Figure 5.1b). This is called an ion concentration gradient.

Transmembrane ionic transport systems control ion movement by opening and
closing its doors, to allow or block the passage of ions, respectively. Ions commonly
transported are sodium (Na+), potassium (K+) and calcium (Ca2+). The difference
in charge and concentration between ions in both sides creates an electrochemical
gradient, which is essential for all animal cells to perform their functions properly
(Figure 5.2). Ionic transport systems are responsible for the maintenance of this
gradient, and participate in several biological processes, such as cellular volume control,
synapses and nerve impulses, coordination of heart muscle contraction, transport
of nutrients and release of accumulated calcium in the sarcoplasmic reticulum for
performance of muscle contraction [Aidley and Stanfield, 1996].

There are two types of transport systems: ion channels and ionic pumps. Both
systems are responsible for transporting ions, however, each one presents different
characteristics and properties, described in further detail in the following subsections.
These systems can be opened or blocked by toxins and drugs, which can compromise
or improve the health of an individual by manipulating its physiological conditions.
Some blockers and openers of transport systems are presented further below.
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Figure 5.2: The difference of charges and concentrations between ions in both sides of
the cell creates an electrochemical gradient, necessary for all animal cells to perform
their functions properly. Adapted from [OpenStax College, 2013b].

5.2 Ion Channels

An ion channel is a passive transport system which does not spend energy to promote
ion exchange. This means that ions move freely as long as the channel is open. The
ions are transported according to their concentration gradient, moving from a high
concentration environment to a low concentration one. Once open, ion channels rapidly
diffuse ions, allowing abrupt changes in ion concentration. Different factors can open
or close the channel, such as chemical or electric signals.

Figure 5.3: Generic Ion Channel. An open ion channel transfers ions down their
electrochemical gradient. For example, if the extracellular concentration is higher than
the intracellular one, the ions would rapidly move into the cell. A high concentration
of ions inside the cell could trigger a cellular response, which closes the channel.

A generic ion channel is shown in Fig. 5.3. The ion channel is initially closed,
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and there is a high concentration of ions in the extracellular medium. A signaling
molecule binds to the ion channel, which opens it. This allows the ions to diffuse
rapidly from the extra to the intracellular side (low concentration of ions). The change
in ion concentration inside the cell triggers a cellular response. The signaling molecule
unbinds the ion channel, which closes it, therefore interrupting ion flux.

Ion channels are prone to several diseases and syndromes, called channelopathies,
which disturb its functions and compromise the health of the individual. For
example, hyper- and hypokalemic, where high and low potassium blood concentrations,
respectively. Other examples include arrhythmias, cystic fibrosis, fibromyalgia,
seizures, Timothy syndromes, and long and short QT syndrome [Dworakowska and
Dolowy, 2000].

5.3 Ionic Pumps

An ionic pump is an active transport system that uses energy to perform ion exchange.
This energy comes in different forms, such as Adenosine Triphosphate (ATP), the
cell energy unit, and sunlight. Ionic pumps exchange ions against their concentration
gradient, which means that ions are moving from their low concentration side to their
high concentration side [Lehninger et al., 2008]. Ionic pumps exchange ions very slowly,
permitting only subtle changes in ion concentration. For ionic pumps, the passage of
ions can be viewed as two gates, one internal and another external, which open or close
based on different factors, such as chemical signals [Aidley and Stanfield, 1996].

An example of a pump is the sodium-potassium pump or
Na+/K+-ATPase (Fig. 5.4). This pump is responsible for exchanging three sodium
ions from the intracellular medium (rich in potassium and poor in sodium) for two
potassium ions from the extracellular medium (poor in potassium and rich in sodium).

This pump can be in two major states: open to the inside of the cell, or open
to the outside. The pump cycle starts with three sodium ions binding to the pump
when its open to the intracellular side. An ATP binds to the pump, which is followed
by its hydrolysis. This breaks the ATP into two molecules, one of phosphate (Pi),
which remains bound to the pump, and another of Adenosine Diphosphate (ADP),
which is released inside the cell. This also causes the pump to release the sodium
ions outside. Two potassium ions in the outside bind to the pump, which are released
in the intracellular side, as well as the phosphate. The pump now can repeat the
process [Aidley and Stanfield, 1996].

Other pumps include the calcium-pump or Ca2+-ATPase, proton pumps,
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Figure 5.4: The sodium-potassium pump. Na+/K+-ATPase exchanges three sodium
ions from the intracellular side of the cell for two potassium ions from the extracellular
side. This is an active transport and it hydrolyzes a molecule of ATP to phosphorylate
the pump and change its shape.

hydrogen-potassium-pumps or H+/K+-ATPase, and sodium-chloride-symporter or
Na+-Cl+ cotransporter. Ionic pump channelopathies include seizures, ataxia, migraine,
hyper- and hypokalemic, and hyper- and hyponatremia.

5.4 Blockers and Openers

Transmembrane ionic transport systems are one of the main targets in research for
discovery and development of drugs, since they play a major role in several biological
processes and their irregular behavior is associated with several diseases. Cardiac
glycosides are one type of these drugs, for example digoxin (also known as digitalis) and
ouabain, drugs that are used to improve heart performance by increasing its contraction
force [Aidley and Stanfield, 1996]. These drugs bind to the transport system, either
blocking it (closing its doors) and interrupting the passage of ions, or opening it
and letting the ions move freely across the plasma membrane. This has to be done
in a controlled manner, otherwise in order to treat one disease or syndrome, it would
disrupt many other biological functions – the side-effects of drugs.

Toxins are another type of blockers and openers of transport systems. They
operate in a similar manner to drugs, except that usually they only have negative effects
and are not controlled, depending exclusively on the toxin concentration levels. Some
examples of these toxins include Tetrodotoxin (TTX), used by puffer fish and some
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types of newts for defense, which blocks sodium channels; and Iberiotoxin, produced
by the Buthus tamulus (Eastern Indian scorpion) and blocks potassium channels.

(a) Marine species Palythoa toxica. Adapted
from [Johnny Vincent C., 2013].

(b) Palytoxin poisoning. Adapted
from [WetWebMedia Forum, 2013].

Figure 5.5: One toxin which affects the sodium-potassium-pump is the Palytoxin
(PTX) which is produced by the marine species Palythoa toxica. Its effects are opening
the pump which lets ions move freely across the plasma membrane.

Due to their role in the nervous system, ion transport systems are affected by
neurotoxins [Aidley and Stanfield, 1996]. One of the toxins that affects these structures
is the Palytoxin (PTX), a deadly toxin found in corals of the Palythoa toxica species.
PTX disturbs the Na+/K+-ATPase, modifying its behavior to the one of an ion
channel, meaning that the pump transfers ions down their electrochemical gradient
(from the ions high concentration side to their low concentration side), instead of
against it [Artigas and Gadsby, 2004].

Typical symptoms of palytoxin poisoning are angina-like chest pains, asthma-like
breathing difficulties, tachycardia, unstable blood pressure, hemolysis (destruction of
red blood cells), and an electrocardiogram showing an exaggerated T wave. The onset
of symptoms is rapid and death usually follows just minutes after [Artigas and Gadsby,
2002].

Even though transmembrane ionic transport systems have been discovered over
60 years ago, they still are an active research field [Aidley and Stanfield, 1996]. Because
of their different behaviors and transfer rates, ion channels and ionic pumps have
been seen as different entities. However, discoveries such as the interaction between
PTX and the Na+/K+-ATPase are forcing new studies about the mechanics of these
structures and its perception by the scientific community [Artigas and Gadsby, 2002,
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2004].

Summary. In this chapter we have described transmembrane ionic transport systems,
namely ion channels and ionic pumps, cell structures which are responsible for
transporting ions between the inside and the outside of the cell. We have also covered
diseases, syndromes and toxins, which block or open these systems and change their
regular behavior and compromising the health of the cell.





Chapter 6

Related Work

Outline. In this chapter we present the related works to this dissertation. Due to its
interdisciplinary nature (a computational approach and a biological case study), the
related works have been divided into two groups, which reflects in the organization of
this chapter.

The first group, Analysis of Transmembrane Ionic Transport Systems
(Section 6.1), consists of experimental studies of transmembrane ionic transport
systems, mostly represented by the works of Artigas and Gadsby, and Rodrigues and
co-workers. They have investigated the interactions of the toxin palytoxin with the
sodium-potassium pump, which essentially turns the pump behavior into the one of
an ion channel, which disrupts several biological processes. These works have been
studied in order to improve our understanding of pumps and ion channels from different
perspectives, as well as knowing other ways of investigation of these cell structures.

The second group, Modeling and Formal Analysis of Biological Systems
(Section 6.2), consists of works in the field of Formal Verification and Model Checking
which have modeled and analyzed biological systems, not necessarily pumps and ion
channels. It also includes useful formal techniques in the modeling and analysis of
stochastic systems. These works have been studied in order to be aware of the currently
used methodologies in the modeling, analysis and property specification of biological
systems using formal methods.

Each of these techniques take place in different contexts, which can be
experimental (in vivo or in vitro) or computational (in silico), briefly defined below.

In Vivo: model is inside or in the tissue of a living organism.
In Vitro: model is outside of a living organism.
In Silico: model is represented computationally using simulations and other methods.
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6.1 Analysis of Transmembrane Ionic Transport

Systems

The authors of [Artigas and Gadsby, 2002; Artigas, 2003b,a; Artigas and Gadsby,
2004] studied a deadly toxin produced by the marine species Palythoa toxica called
Palytoxin (PTX) and investigated its interactions with the sodium-potassium-pump
(Na+/K+-ATPase). They have performed several experimental studies using the
technique called Patch-Clamp, which allows measuring the induced current of ionic
pumps. This allowed them to observe the effects of PTX in the induced current. They
have discovered that the toxin drastically modifies the nature of the pump, changing
its behavior (active transport) to the one of an ion channel (passive transport). This
means that ions are moving freely down their electrochemical gradients, instead of
being controlled by the pump, which disrupts several biological processes. The authors
suggest that PTX, as well as other toxins, could be useful tools in future experiments
to discover the control mechanisms for opening and closing the gates of ion pumps.

The effects of PTX on the sodium-potassium-pump is later studied by the
authors of [Rodrigues et al., 2008b], this time through mathematical simulations using
non-linear ordinary differential equations. In this first work, they have considered only
states and reactions related to the phosphorylation process (phosphate binding and
unbinding to the pump). This line of research produced other contributions considering
different states and reactions. One of these contributions is [Rodrigues et al., 2008a],
which considers interactions that are not related to the phosphorylation, in a way
complementary to its previous work. Another contribution is [Rodrigues et al., 2009a],
which considers only interactions with potassium ions (K+) in order to understand its
role, since potassium has been previously indicated as a physiological inhibitor of PTX.

Rodrigues and co-workers obtained different and reduced models, each one
analyzing one aspect of PTX interactions with the sodium-potassium pump cycle, also
known as the Albers-Post model [Post et al., 1965, 1972]. Interactions of PTX with
the complete model of the Na+/K+-ATPase are presented in [Rodrigues et al., 2009b].
This series of studies by Rodrigues and co-workers can be viewed as a simulational
approach of the experimental results of Artigas and co-workers. This dissertation can
be seen as a probabilistic model checking approach to the same experiments.

The sodium-potassium pump specific to cardiac cells is examined in [Oka et al.,
2010] using different types of models based on ordinary differential equations. Initially,
a model composed of thirteen states is presented. However, a reduction to a four-state
model is obtained, while mantaining the same behavior despite it being simpler. This
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work also demonstrates the central role that the pump plays in maintaining the calcium
ion concentration levels, essential to the heart muscle contraction. Additionally, it
presents a model for the pump coupled with cesium, a marker substance used to perform
experiments, which interferes in the behavior of the pump similarly to toxins and drugs.

Channels and pumps usually are investigated using experimental results in
laboratory benches, which are expensive for both financial and time resources. In
order to avoid or minimize these costs, different types of simulations, mathematical and
computational methods are employed, among these include sets of ordinary differential
equations (ODEs) and Gillespie’s algorithm for stochastic simulations [Gillespie, 1977].
Despite their ability to obtain valuable information, simulations do not cover every
possible situation, and might never search certain regions of the state space, therefore
possible overlooking some events, such as ion depletion, where all ions have been
exchanged. These systems are also described as a kinetic model, which presents its
states and possible reactions from one state to other states (for example, Figure 7.8).

6.2 Modeling and Formal Analysis of Biological

Systems

The main tools used in the formal verification of biological systems are
PRISM [Kwiatkowska et al., 2011], BioLab [Clarke et al., 2008], Ymer [Younes, 2005],
Bio-PEPA [Ciocchetta and Hillston, 2009] and BIOCHAM [Fages and Soliman, 2008].

PRISM is a probabilistic model checker, which allows modeling and analyzing
probabilistic systems. It exhaustively and automatically explores a formal model
checking if it respects a set of properties. PRISM supports different types of models,
properties and simulators [Kwiatkowska et al., 2011]. It has been largely used in distinct
fields, e.g. communication and media protocols, security and power management
systems. Due to its probabilistic nature, it switches its internal representation of
the models from the traditional binary decision diagrams (BDDs) of symbolic model
checking to multi terminal binary decision diagrams (MTBDDs), thus allowing multiple
terminal states and non-deterministic transitions [Bryant, 1986; Fujita et al., 1997].

Among its many supported models, there are continuous-time Markov chains
(CTMCs). These models are computationally efficient because they present theMarkov
property of stochastic processes, which means that evaluation of future states depend
only on the current state, instead of all previous states (or chain history), which would
be otherwise computationally expensive [Kwiatkowska et al., 2011].

We have used PRISM in this dissertation due to several reasons, which include:
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exact PMC in order to obtain accurate results; Continuous-time Markov Chain
(CTMC) models, suited for our field of study; rich modeling language that allowed
us to build our model; and property specification using Continuous Stochastic Logic
(CSL), which is able to express qualitative and quantitative properties.

The authors of [Clarke et al., 2008] introduce a new algorithm called BioLab.
Instead of building all states of a model, the algorithm generates the minimum number
of necessary simulations, given error bounds parameterized for acceptance of false
positives and false negatives of the properties to be verified. This algorithm is based
on the work of [Younes, 2005], author of the approximate model checker Ymer.

In [Younes et al., 2006], the authors compare numerical and statistical methods
for PMC, since exact model checking is not always possible due to timewise and
computational resources restrictions. Approximate model checking is an alternative
when it is acceptable to lose precision in order to obtain approximate results that are
obtained in a timely manner. The model checker Ymer uses this technique [Younes,
2005].

A novel computational modeling approach using formal verification with the
PRISM model checker is presented in [Calder et al., 2010]. The authors treat their
model – signaling pathways – as a distributed system, where its components can
interact with each other similarly to computer processes. Rather than using an
individual approach where each of the ligands are modeled individually, they treat
these components as populations, in order to capture the behavior of a whole set of
ligands.

The Biochemical Abstract Machine (BIOCHAM) is an environment for the
modeling and verification of biochemical systems [Fages and Soliman, 2008]. It
supports its own modeling language as well as other formats such as Systems
Biology Markup Language (SBML) and Systems Biology Graphical Notation (SBGN).
BIOCHAM includes several simulators, such as: boolean, which allows observing the
presence or absence of molecules; deterministic, which allows observing molecular
concentrations; and stochastic, which allows quantifying molecules [Fages, 2006].
Property specification is performed using several logics, including Computation Tree
Logic* (CTL*), Computation Tree Logic (CTL), Linear Temporal Logic (LTL),
Probabilistic Computation Tree Logic (PCTL) and LTL with Constraints Over Reals
(Constraint-LTL).

BIOCHAM is also capable of deducing the values of kinetic parameters (rates
of transitions) from a set of restrictions, as well as deducing logical rules from a set
of logical properties [Calzone et al., 2006; Gay et al., 2010]. In [Batt et al., 2010],
the authors also demonstrate the deduction of model parameters, however they must
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satisfy real data instead of a set logical properties.
The logics used by these tools are frequently extended, such as the work

of [Mateescu et al., 2011], which presents an extension to CTL named Computation Tree
Logic with Regular Expressions (CTRL). This new logic has the objective of supporting
regular expressions in the property specification. In [Monteiro et al., 2008], the authors
present a set of common property patterns frequently used in system specification.

The authors of [Monteiro et al., 2009] created and implemented a client-server
architecture with task delegation for different computational nodes in order to perform
formal verification of gene regulatory networks. The presented infrastructure is
sufficiently robust to deal with different model checkers, using server plugins. However,
depending on the model, parameters and properties to be checked, the verification can
take a considerable amount of time and rapidly occupy the nodes.

The application of PMC to model and analyze different complex biological
systems can be seen in [Heath et al., 2008; Kwiatkowska et al., 2010], for example
the signaling pathway of Fibroblast Growth Factor (FGF), a family of growth factors
involved in healing and embryonic development. The analysis of other signaling
pathways such as MAPK and Delta/Notch can be seen in [Kwiatkowska et al., 2009].

The use of PMC is demonstrated also in [Kwiatkowska et al., 2008; Kwiatkowska
and Heath, 2009], where the authors examine and obtain a better understanding of
mitogen-activated kinase cascades (MAPK cascades) dynamics, biological systems that
respond to several extracellular stimuli, e.g. osmotic stress and heat shock, and regulate
many cellular activities, such as mitosis and genetic expression.

Several researchers presented in [Sauro et al., 2006] some challenges for systems
biology, such as difficulties to integrate communities so different such as computer
science and biology, building a computational model of a multi-cellular organism and
using compositional reasoning on parallel systems such as cell signalling pathways.

Usually each tool has its own modeling language, which can be cumbersome
for someone using multiple tools. Some of them share similar notations which allows
faster modeling, such as the case of PRISM and MRMC, however often that is not the
case. Nonetheless, the Systems Biology Markup Language (SBML) [SBML, 2013] and
Cell Modeling Language (CellML) [CellML, 2013] are XML based markup languages
for describing models, and they are supported across several tools. There are other
languages as well, such as BioPAX [BioPAX, 2013]. Also, there are some online
repositories of biological models, such as the CellML [CellML Models, 2013] one,
Reactome [Reactome, 2013] and BioModels [BioModels, 2013].

Summary. In this chapter we have presented the related works of this
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dissertation, regarding both experimental and computational studies of transmembrane
ionic transport systems [Artigas and Gadsby, 2002]. Computational approaches can be
cost efficient alternatives to laboratory experiments, for example, using simulations of
ordinary differential equations to represent the behavior of the sodium-potassium-pump
coupled with the toxin palytoxin [Rodrigues et al., 2008b]. We have also covered formal
approaches to study biological systems in general [Kwiatkowska et al., 2008].



Chapter 7

Formal Analysis of Transmembrane
Ionic Transport Systems

Outline. In this chapter we present the formal modeling and analysis of one of our
electrophysiology models using probabilistic model checking. Our case study is the
sodium-potassium pump and its interactions with the toxin palytoxin (PTX), which
opens the pump and compromises its regular behavior.

We have built four models, following the works of Rodrigues and
co-workerss [Rodrigues et al., 2008b] and Artigas and Gadsby [Artigas and Gadsby,
2002], where they have studied the effects of PTX on the sodium-potassium-pump. One
could view the pump as a base model, and the palytoxin interactions as its extension,
therefore we have divided this chapter following that view.

Present ligands References
Model name Sodium Potassium ATP Experimental Simulational
ptx2007 4 Artigas and Gadsby [2002] Rodrigues et al. [2008b]
ptx2008a 4 4 Artigas [2003b] Rodrigues et al. [2008a]
ptx2008b 4 Artigas [2003a] Rodrigues et al. [2009a]
ptx2009 4 4 4 Artigas and Gadsby [2004] Rodrigues et al. [2009b]

Table 7.1: We have built four models, following the works of Artigas and Gadsby
and Rodrigues and co-workers. Each model focuses in one aspect, such as cell energy
reactions or the potassium inhibitory effect on PTX action.
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Systems

Our models are called ptx2007 [Rodrigues et al., 2008b; Braz, 2012d],
ptx2008a [Rodrigues et al., 2008a; Braz, 2012e], ptx2008b [Rodrigues et al., 2009a;
Braz, 2013a] and ptx2009 [Rodrigues et al., 2009b; Braz, 2013b], each one focused
on a different aspect of the model and associated with the publication in parenthesis,
respectively. Our models have been built using the PRISM model checker, and have
their characteristics summarized in Table 7.1.

The first model (ptx2007) focuses only on the role of cell energy (Adenosine
Triphosphate or ATP), which our model suggests that high concentrations of ATP
could inhibit PTX action. The second model (ptx2008a) focuses on the role of sodium
and potassium ions, excluding ATP related states and reactions. This model suggests
that sodium enhances PTX action and potassium inhibits it.

The third model (ptx2008b) focuses on the role of potassium ions, excluding
everything else (sodium and ATP), since potassium has been indicated as a
natural inhibitor of PTX action. We have also included in our model the GHK
(Goldman-Hodgkin-Katz) flux equation, which allows measuring the induced current
of ions.

The fourth and final model (ptx2009) is the complete model, and includes all
states, reactions and ligands. This model is considerably more complex than the other
ones and unfortunately we have not been able to perform thoroughly experiments on it.
However, it confirmed some of our previous results and it remains as a future challenge
as we intend to use approximate analysis techniques to handle large models.

Finally, we have used only our first model as an example of our formal modeling,
otherwise this chapter would be repetitive and impractical. This is because the models
are similar in their modeling, although different in their semantics.

7.1 Formal Analysis of the Sodium-Potassium

Pump

The models have been written in the PRISM modeling language (used by the PRISM
model checker [Kwiatkowska et al., 2011]). The Figure 7.1 below is a high level diagram
which describes the structure of our models.

Model Type LigandsVariables RatesPump Rewards

Figure 7.1: The structure of our models.

The PRISM modeling language is explained in Chapter 4. First of all, the model
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type is a continuous-time Markov chain, which is indicated by the ctmc keyword. This
is followed by the declaration of global variables (Figure 7.2), explained below in detail.

ctmc

const double exp;

const double AV=6.022*pow(10.0,23);
const double V=pow(10.0,-exp);

label "ptxAllBounded" = ptxOut=0;

formula pK = gammaO1 * PTXE + gammaO2 * PTXATPhighE;

Figure 7.2: Model type and declaration of variables.

These variables include useful definitions across the model, such as the Avogadro’s
constant (the constant AV) which is used alongside the pump volume to obtain the
number of ligand molecules. There are also parameters, such as the size of the
pump volume (the variable exp), which allows the parametric study of our models.
Labels are used to create meaningful events, such as the PTX depletion (the label
ptxAllBounded), where the condition of PTX molecules being equal to zero must be
met for it to be true. Formulas are used to quantify the model in function of other
variables, such as the permeability of potassium ions (the formula pK).

The model is divided in several PRISM modules, most of them being ligand
modules (the molecules and ions). A ligand module contains a variable to store
the current number of ligands, e.g. atpIn for Adenosine Triphosphate (ATP), or
naOut for external sodium ([Na+]o). These modules are also responsible for controlling
their ligand consumption and allowed reactions (Figure 7.3). The other ligands are
Adenosine Disphosphate (ADP), Phosphate (Pi), Sodium (Na+) and Potassium (K+).
The Palytoxin (PTX) extensions include one additional module to represent the toxin.

module ptx
ptxOut : [0..(PTXO)] init PTXO; // number of PTX outside the cell
// reaction p1: PTXo + E1 <-> PTXE
[rp1] ptxOut>=1 -> ptxOut : (ptxOut’=ptxOut-1);
[rrp1] ptxOut<=(PTXO-1) -> 1 : (ptxOut’=ptxOut+1);

endmodule

Figure 7.3: A ligand module.

Each module is composed of PRISM commands (or transitions) that represent
reactions, which are responsible for changing the number of molecules. A PRISM
command uses the following structure:

[sync] conditions → rate : update
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where the conditions (also known as the guard part) must be observed for the update
to occur at a given rate (or probability). The sync (also known as label) is used to
synchronize multiple commands.

Command conditions usually are lower and upper bounds, i.e. there must be at
least one molecule for a binding reaction. The list of reactions can be found in the
comments of our model [Braz, 2012d], and in its associated publication (for example,
ptx2007 is [Rodrigues et al., 2008b], see Table 7.1).

module pump
E1 : [0..1] init 1; // e1 conformational state
E2 : [0..1] init 0; // e2 conformational state

// reaction 1: E2 <-> E1
[r1] E2=1 & E1=0 -> 1 : (E2’=0) & (E1’=1);
[rr1] E2=0 & E1=1 -> 1 : (E2’=1) & (E1’=0);

endmodule

Figure 7.4: The pump module.

There are also two special modules, one being the pump, which stores and controls
its state by manipulating boolean vectors (Figure 7.4). For example, there are two
states of the pump called E1 and E2, which represent the pump open to the internal
and external sides of the cell, respectively. The Table 7.2 lists the states of the pump.

Open ATP Binding Site

State name Intra Extra High Low Pi

E1 4

ATPhighE1 4 4

ATPlowPE1 4 4 4

E2 4

PE2 4 4

ATPlowPE2 4 4 4

ATPlowE2 4 4

Table 7.2: Albers-Post states characteristics. Albers-Post model states which
correspond to the pump cycle. The pump can be open to the intracellular side (2nd
column) and open to the extracellular side (3rd column). An ATP can bind to the
pump in either its high or low affinity binding sites (4th and 5th columns). The pump
can be phosphorylated (6th column).

The other special module is the rates module, which defines the rate or speed of
each reaction by binding the reaction rate constant with its associated reaction label
(Figure 7.5). For example, the reaction r1, which is the pump closing to the external
side and opening to the internal side. Its reaction rate is defined by the constant
r1rate. A PRISM command is used to bind the r1 label to the r1rate.
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const double r1rate = 1.00*pow(10,2);
const double rr1rate = 0.01;

module base_rates
[r1] true -> r1rate : true;
[rr1] true ->rr1rate : true;

endmodule

Figure 7.5: The rates module.

The model ends with the rewards definitions, which allows the quantification of
different aspects of the model, such as states and transitions (Figure 7.6). For example,
the state e1 is quantified by its homonym reward. In order to count towards the reward,
its conditions must be met. Transition rewards are slightly different – they are bound
to their labels and count only when all commands associated with that label are allowed
to execute. Finally, the time reward is always counted.

rewards "e1"
(E1=1) : 1;

endrewards

rewards "r1rate"
[r1] true: 1;

endrewards

rewards "time"
true: 1;

endrewards

Figure 7.6: The rewards definitions.

A fragment of the ptx2007 model is presented in Figure 7.7. It does not include
PTX because its interactions with the pump are an extension presented in the code
fragment of Figure 7.9. The complete version of this model can be viewed online [Braz,
2012d].

The Albers-Post model [Post et al., 1972] represents the Na+/K+-ATPase cycle
and it can be seen on the left side of Figure 7.8. According to it, the pump can be
in different sub-states, which change depending on different reactions involving ATP,
ADP and Pi. The right side shows the Palytoxin extension model, which is discussed
later. The Table 7.2 summarizes the states of the pump and their characteristics.

The pump can be open or closed to the extra and intracellular sides. An ATP
molecule can bind to the pump in its high or low affinity binding sites. An ATP
molecule bound to the pump can be hydrolyzed, leaving one Pi molecule bound to the
pump and releasing one ADP molecule. The reactions are bidirectional and their rates
were obtained from [Rodrigues et al., 2008b].
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Na+/K+-ATPase PRISM Model

module atp
// number of ATP inside cell
atpIn : [0..(N)] init ATPI;
// reaction1: ATPi + E1 <-> ATPhighE1
[r1] atpIn>=1 -> atpIn : (atpIn’=atpIn-1);
[rr1] atpIn<=(N-1) -> 1 : (atpIn’=atpIn+1);

endmodule

module pump
// e1 state: pump open to the intracellular side
E1 : [0..1] init 1;
// e1 with atp bound to its high affinity site
ATPhighE1 : [0..1] init 0;
//reaction1: ATPi + E1 <-> ATPhighE1
[r1] E1=1 & ATPhighE1=0 -> 1 : (E1’=0)&(ATPhighE1’=1);
[rr1] E1=0 & ATPhighE1=1 -> 1 : (E1’=1)&(ATPhighE1’=0);

endmodule

// base rates
const double r1rate = 1.50*pow(10,4)/(0.001*V*AV);
const double rr1rate = 1.64;
// module representing the base rates of reactions
module base_rates
[r1] true -> r1rate : true;
[rr1] true ->rr1rate : true;

endmodule

Figure 7.7: The Na+/K+-ATPase model. The model is a probabilistic transition system
composed of modules for the molecules species (for example, ATP, ADP and Pi), which
control their flow; the pump, which controls the pump sub-state and the base rates,
which define the speed of the reactions.

7.2 Formal Analysis of Palytoxin Interactions with

the Pump

The palytoxin model is an extension of the Na+/K+-ATPase model, previously
described. It corresponds to the right side of the Figure 7.8, and it is based on the
description of [Rodrigues et al., 2008b] and [Artigas and Gadsby, 2002]. Once again, a
fragment of the model extension is shown in Figure 7.9, and its complete version can
be seen online1.

This extension consists of: one additional molecule module (PTX) which controls
its flow; additional reactions in each of the already present modules; and additional
sub-states and transitions for the pump module. Initial concentrations for [PTX]o and
stochastic rates for reactions were obtained from [Rodrigues et al., 2008b].

The six additional sub-states correspond to the pump bound to PTX, when the
pump is open to both sides behaving like an ion channel. The Table 7.3 summarizes
the PTX states and their characteristics.

1ptx2007 model. http://dcc.ufmg.br/~fbraz/ptx2007/. Access date: October 31, 2013

http://dcc.ufmg.br/~fbraz/ptx2007/
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Figure 7.8: The kinetic model for the interactions of PTX with the pump. It describes
all the sub states (13) and reactions (22). The left side is the classical Albers-Post
model [Post et al., 1972], which describes the regular behavior of the pump, while the
right side describes the PTX related states and reactions [Rodrigues et al., 2008b].

Palytoxin PRISM Model

module ptx
// number of PTX outside the cell
ptxOut : [0..(PTXO)] init PTXO;
//reaction p1: PTXo + E1 <-> PTXE
[rp1] ptxOut>=1 -> ptxOut : (ptxOut’=ptxOut-1);
[rrp1] ptxOut<=(PTXO-1) -> 1 : (ptxOut’=ptxOut+1);

endmodule

module pump
PTXE : [0..1] init 0;
//reaction p1: PTXo + E1 <-> PTXE
[rp1] E1=1 & PTXE=0 -> 1 : (E1’=0) & (PTXE’=1);
[rrp1] E1=0 & PTXE=1 -> 1 : (E1’=1) & (PTXE’=0);

endmodule

// base rates
const double rp1rate=2.73*pow(10,1)/(0.001*V*AV);
const double rrp1rate=6.0*0.0001;
// module representing the base rates of reactions
module base_rates

[rp1] true -> rp1rate : true;
[rrp1] true -> rrp1rate : true;

endmodule

Figure 7.9: The palytoxin (PTX) extension of the model requires a new species module
to control the number of PTX molecules and several new sub-states and transitions for
the pump. Those are created to represent the interactions of PTX with the pump.
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ATP Binding Site

State name High Low Pi After Pi

PTXE

PTXATPhighE 4

PTXPE 4

PTXATPlowPE 4 4

PTXATPlowE* 4 4

PTXE* 4

Table 7.3: PTX related states characteristics. Sub-states which correspond to the pump
bound to PTX, when the pump is open to both sides behaving like an ion channel.
An ATP can bind to the pump in either its high or low affinity binding sites (2nd and
3rd columns). The pump can be phosphorylated (4th column). There is a distinction
between some states when the pump has been dephosphorylated (5th column).

Summary. In this chapter we have presented the formal modeling and analysis of one
of our electrophysiology models. Our case study is the sodium-potassium pump and
its interactions with the toxin palytoxin, which opens the pump and disrupts several
biological processes.

We have built four different models, following the experimental results of Artigas
and Gadsby and simulational results of Rodrigues and co-workers. Each model explores
a different aspect of our case study, such as cell energy related reactions and the
potassium inhibitory effect on palytoxin action. Our models have been built using the
PRISM model checker.



Chapter 8

Discussion and Results

Outline. In this chapter we present the results that we have obtained in this
dissertation. We have built four formal models of the toxin palytoxin (PTX)
interactions with the sodium-potassium-pump using a probabilistic model checking
approach. This toxin disrupts the regular behavior of the pump, compromising several
biological processes.

The models are based on different publications of Rodrigues and co-workers, each
one focusing on a aspect of the system. For example, our first model covers the role of
cell energy, while the second model focuses on the sodium and potassium reactions.

After we have built the models using the PRISM model checker, we have
decided to explore their dimensions by performing a parametric study. This consisted
of increasing or decreasing ligand concentrations (Section 8.1), which has allowed
the investigation of extreme conditions, such as diseases which increase the sodium
concentration or fatal exposures to PTX. We have used quantitatives PRISM properties
to quantify every aspect of the model, such as state and reaction probabilities.

Each model suggested a different behavior, such as that high concentrations
of ATP inhibit PTX action (Section 8.2), sodium enhances PTX (Section 8.3), and
potassium inhibits PTX (Section 8.4). We have also quantified the induced current
created by ions exchange through the Goldman-Hodgkin-Katz (GHK) flux equation
(Section 8.5). Since we have every aspect of the model quantified, we were able to
enhance the kinetic model with probabilities, thus creating a heat map (Section 8.6).
Finally, we briefly discuss on the matter of alternative models, which might be more
appropriate for future works since they are more similar to the currently available
experimental procedures (Section 8.7).

69
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8.1 Model Complexity and Parametric Study

We can explore our models by changing their parameters or dimensions1. Depending
on the model, these dimensions are: [PTX]o (extracellular PTX concentration),
[ATP]i (intracellular ATP concentration), [Na+]o (extracellular sodium concentration),
[K+]o (extracellular potassium concentration) and pump volume. Each dimension
represents a different aspect of the model, and can be changed to modify its behavior.

The values of these parameters influence directly to the complexity of the model
representation (number of states, transitions and topology), and the time to build and
verify model properties. For example, consider our first model with the parameters
[PTX]o = 0.001 µM, [ATP]i = 10 mM and pump volume of 10−22 L. In these conditions,
the model representation has 376 states and 1912 transitions, taking 0.004 s to build
and 310.895 s to check a state reward property discussed further below.

Pump Volume States Transitions Check Time

10−22 376 1912 310.895 s

10−21 1274 7140 321.506 s

Table 8.1: Model complexity as function of pump volume.

The Table 8.1 illustrates how these values increase in function of pump volume,
for our first model with [PTX]o = 0.001 µM, [ATP]i = 10 mM and a state reward
property (discussed further below). The machine used to perform the experiments is
an Intel(R) Xeon(R) CPU X3323, 2.50GHz with 16 GB of memory RAM.

The volume of an animal cell is 10−12 L [Hernández and Chifflet, 2000], which
is challenging to be represented using PMC. Otherwise, it would cause the classical
problem of state space explosion. Our analysis is restricted to only one pump.
Consequently, it would be unrealistic to model a large volume because in a real cell the
volume is shared between several pumps and other types of structures.

Our abstraction reduces the cell volume, concentrating our analysis in one pump
and its surroundings. We have achieved this by maintaining the proportions between
all interacting components. Therefore, the cell volume is called pump volume and it is
usually 10−22 L. Even though those values are many orders of magnitude smaller than
the real ones, they still represent proper cell behavior, and can be interpreted as using
a magnifying glass to investigate a portion of the cell membrane.

1A ligand name in brackets with a superscript o, for example [S]o, indicates the external
concentration of ligand S. On the other hand, a superscript i, for example [S]i, indicates the internal
concentration of ligand S.
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On the other hand, for some dimensions we have used more values than the
literature reference, ranging three orders of magnitude below and above their regular
values. For example, for [PTX]o and [ATP]i, we have used between 1 and 10 µM for
[PTX]o and 1 and 10 mM for [ATP]i. This allows the simulation of different conditions
for pump behavior, including abnormal concentrations of [ATP]i due to a disease or
syndrome, and different degrees of exposure to [PTX]o, from mild to fatal exposure.

Each configuration of model parameters is called a scenario. For example,
the regular physiological conditions is the Control scenario, while an increased
concentration of [ATP]i, usually ten times greater, is the High [ATP]i scenario. Each
model has a different set of scenarios, depending on the ligands that are present.

8.2 ATP Interactions with the PTX-Pump Complex

The results in this section have been obtained using our first model (ptx2007), which
focuses on the role of cell energy reactions [Rodrigues et al., 2008b; Braz et al., 2012b].

We first decided to obtain the probability of PTX inhibiting the pump, i.e., the
pump being in PTX-related states. In order to do that, we quantified the probability
of every state, either PTX or non-PTX related. All states were labeled and quantified
using rewards. Basically, rewards are incremented each time their conditions are true.
In this case, they are being used to count how many times the pump is in a particular
state. The fragment of the model in Figure 8.1 shows the reward of the state PTXE,
where the pump is bound to PTX and open to both sides of the cell.

State Rewards

rewards "ptxe"
(PTXE=1) : 1;

endrewards

Accumulated State Reward Property

R{“ptxe”}=? [ C ≤ T ]

What is the expected accumulated reward of
the state ptxe at time T?

Figure 8.1: Rewards are used to quantify aspects of the model, such as states (for
example, ptxe) and reactions. The accumulated reward property is used to obtain
the expected accumulated (C operator) value of a particular reward (R operator) at a
given time (T variable).

A model with rewards for each state can be completely quantified, and allows, for
example, counting the expected accumulated reward associated with each state over
time. In order to do that, we have used properties such as the one shown in Figure 8.1.
The operator R allows the quantification a given reward, for example the number of
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times that the model was in the state PTXE. The operator C accumulates the reward
value until a given time T, therefore we are able to observe the reward over time.

Consider the following conditions: a single pump, a pump volume of 10−22 L,
[ATP]i = 10 mM and [PTX]o = 10 µM, at instant T=100s. The expected accumulated
rewards for the same sub-state PTXE and the sub-state PE2, where the pump is open
to the external side and bound to a phosphate, are respectively 1.0100 and 33.3544.
The state probability can be obtained by dividing the state reward by the sum of all
state rewards. In other words, in 100 seconds, the pump is expected to be open to the
extracellular side and phosphorylated approximately 34.1952% of the time, and the
pump is expected to be bound exclusively to PTX only 1.0355% of the time.

Table 8.2: PTX-pump state probability for different scenarios.

Pump State Control High [ATP]i Difference

E1 0.0072% 0.0045% -37.7249%
ATPhighE1 0.0312% 0.0185% -40.5495%
ATPlowPE1 0.0314% 0.0187% -40.5245%

E2 34.1902% 39.2551% +14.8137%
PE2 34.1952% 39.2389% +14.7496%

ATPlowPE2 7.3272% 6.5347% -10.8154%
ATPlowE2 0.0000% 0.0000% +2.4527%

Non-PTX related 75.7824% 85.0704% +12.2560%

PTXE 1.0355% 0.6201% -40.1175%
PTXATPhighE 3.4466% 2.3806% -30.9279%

PTXPE 8.3250% 5.8626% -29.5785%
PTXATPlowPE 0.0308% 0.0177% -42.4199%
PTXATPlowE* 0.7262% 0.1969% -72.8886%

PTXE* 10.6535% 5.8517% -45.0723%

PTX related 24.2176% 14.9296% -38.3520%

Probabilities for states of the sodium-potassium pump
interacting with palytoxin at time T=100s. Two
states are more present than others: E2, where the
pump is open to its external side; and PE2, that
same state although the pump is phosphorylated. As
[ATP]i increases, the probability of PTX related states
decreases, which suggests that ATP inhibits PTX
action.



8.2. ATP Interactions with the PTX-Pump Complex 73

Using a broad spectrum of different [ATP]i and [PTX]o, for the pump volume of
10−22 L, we have found that there are only two sets of values for sub-state rewards.
One set is associated with [ATP]i equals or below to 10 mM, while the other set is
associated with [ATP]i above 10 mM.

For example, when [ATP]i = 100 mM, the expected rewards associated with the
two sub-states PE2 and PTXE change to respectively 37.3577 and 0.5904, or 39.2389%
and 0.6201% of the time. Therefore, as we increased [ATP]i, the likelihood of the pump
being open to the extracellular side and phosphorylated increased 14.7496%, and for
the pump to be bound exclusively to PTX decreased 40.1175%.

Species Depletion Events
and Time Reward

label "ptxAllBounded" = ptxOut=0;

rewards "time"
true: 1;

endrewards

Species Depletion Properties

P>=1 [ F “ptxAllBounded” ]
The event “ptxAllBounded” eventually
always happens.

R{“time”}=? [ F “ptxAllBounded” ]
How long it takes for the event
“ptxAllBounded” to happen?

Figure 8.2: The depletion of a species (ATP and PTX) happens when the variable
which stores its number reaches zero. These events can be observed using labels, one
of the features of PRISM. One can check if a given event happens using reachability
properties (F operator). A time reward allows quantifying when an event occurs.

The rewards can be divided in two groups: PTX related sub-states and
Albers-Post (non-PTX) sub-states. Summing all the rewards of each group, and
dividing each by the total, one can obtain the probability of the pump being inhibited
by PTX. For [ATP]i = 10 mM and T=100s, PTX related states correspond to 24.2176%.
As we increased [ATP]i to 100 mM, PTX related states correspond to only 14.9296%,
suffering a 38.3520% reduction.

Therefore, this reduction suggests that as [ATP]i increases, the probability of
being in PTX related sub-states decreases, suggesting that ATP is an inhibitor of
PTX. As consequence, people with ATP depletion would be more vulnerable to this
toxin. ATP deficiency appears in different forms, e.g. brain disorders, for example,
stroke and encephalopathies [Yamada and Inagaki, 2002]. The Table 8.2 summarizes
the state reward values and percentages for the Control and High [ATP]i scenarios, as
well as the difference between them.

Similar reward structures to the ones of Figure 8.1 were created for transitions
(in our model, chemical reactions). For [ATP]i = 10 mM we found that during the first
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100 seconds PTX related reactions correspond only to approximately 8.01%. Once we
change [ATP]i to 100 mM the role of PTX related reactions decreases by approximately
42.97%, which reinforces our discovery that high doses of ATP inhibit PTX action.
The most active reactions are dephosphorylation, changes in the pump conformational
state, and coupling and releasing of ATP. Other pump volumes have one set of values
for each [ATP]i, even though the same behavior remains.

The experimental conditions used to study the major effects of various ligands
including ATP on PTX-modified Na+/K+-ATPase [Artigas and Gadsby, 2004] are
rather different and this poses a problem in terms of comparison with our results.
The inhibitory effect elicited by ATP as predicted by our model has been not verified
experimentally and it was unexpected. This result raises an important point that may
be worth being experimentally validated.

Our results suggest that in the presence of palytoxin, the extent of
phosphorylation from ATP is greatly reduced probably by a PTX-promoted rapid
dephosphorylation step that could, at high concentrations of ATP, lead to inhibition of
ATP binding. This reinforces the notion that the phosphorylated intermediates formed
from ATP are different and this may change PTX affinity and the overall behavior of the
pump. There are some reports in the literature that could support this result [Tosteson
et al., 2003]. These results have been obtained from a parametric study of the state
and transitions rewards of our model.

We have also investigated properties related to species (ions or molecules)
depletion, i.e. when there are no species in one side of the cell. For example, the
events “atpAllBounded” and “ptxAllBounded”, where all ATP and palytoxin molecules
are bound to the pump, respectively. These events can be created in PRISM using
labels, one of its features (Figure 8.2).

Species depletion properties state that these events eventually (F operator)
will always happen (P>=1 operator). For example, in every scenario the event
“ptxAllBounded” always eventually happens.

One could check how long it takes for those events to happen. For that we have
to use a time reward, and reward properties, such as the one shown in Figure 8.2. The
event “ptxAllBounded” is expected to happen in 30.4379 seconds in the [ATP]i = 10 mM
scenario. This event is sensitive to the parameter [ATP]i– in the 100 mM scenario, since
it happens in 49.4342 seconds.
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8.3 Sodium Enhances the PTX Inhibitory Effect on

the Pump

These results have been obtained using our second model (ptx2008a), which focuses
on the role of sodium and potassium reactions.

Considering a single pump, a pump volume of 10−22 L, a Control scenario, at
instant T=100, the expected rewards associated with the state PTXE is 36.2195. In
other words, in 100 seconds, the PTX inhibits the pump 36.11% of the time. In a High
[Na+]o scenario, the expected reward associated with PTXE changes to respectively
45.3599, 42.42% of the time. Therefore, as we increased [Na+]o, the likelihood of the
pump to be bound exclusively to PTX increased 17.46%. This result can be seen in
Figure 8.3, which represents the probability of PTX inhibiting the pump for our three
different scenarios, and also its time series version in Figure 8.4.
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Figure 8.3: Probability of PTX Inhibiting the Pump for Different Scenarios in 100
seconds: Control (normal ion concentration); High [K+]o scenario (10 times more
potassium than normal) which reduces PTX effect by 23.17%; and High [Na+]o scenario
(10 times more sodium than normal) which enhances PTX effect by 17.46%.

This result suggests that sodium enhances PTX action, and as consequence
people with electrolyte disturbances would be more vulnerable to this toxin. Sodium
disturbances appears in different forms (i.e. hypernatremia) and have different causes,
such as diabetes insipidus, Conn’s syndrome and Cushing’s disease [Yamada and
Inagaki, 2002]. Sodium concentration could be reduced in order to reduce PTX action.
However, this is a solution to be taken with caution since sodium is necessary for
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survival and its absence would shut down the pump. This is particularly interesting
since PTX is found in marine species, which inhabit an environment with a high sodium
concentration.

8.4 Potassium Inhibits the PTX Action on the

Pump

These results have been obtained using our second model (ptx2008a), which focuses
on the role of sodium and potassium reactions.

As the potassium concentration increases, an event opposite to the one discussed
the previous section is observed. In a High [K+]o scenario, the expected reward
associated with PTXE changes to respectively 29.2241, 27.74% of the time. Therefore,
as we increased [K+]o, the likelihood of the pump to be bound exclusively to PTX
decreased 23.17%. This result can be seen in Figures 8.3 and 8.4.
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Figure 8.4: Probability of PTX Inhibiting the Pump Time Series for Different Scenarios:
Control (regular ions concentrations); High [K+]o scenario (10 times more potassium
than regular concentration) which reduces PTX effect; and High [Na+]o scenario (10
times more sodium than regular concentrations) which enhances PTX effect.

This result suggests that potassium inhibits PTX action. Therefore individuals
with diets low in potassium, or with a pathology which decreases the potassium
concentration in their metabolism could be more vulnerable to PTX. Potassium
concentration could be increased to inhibit PTX action. In a similar way to sodium,
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there is another fine line here since a maximum amount of potassium is tolerated
for one individual. There are a number of causes associated with a high potassium
concentration (hyperkaulemia), such as renal insufficiency, Addison’s disease, Gordon’s
syndrome and Rhabdomyolysis. Both results have been obtained from a parametric
study of the state and transitions rewards of our model.

Regarding depletion events, in every scenario the event “ptxAllBounded”
eventually always happens. That is not the case for the event “naOutDepletion”. The
event “kInDepletion” is sensitive to the parameter [K+]o – in the Control scenario, its
property is true, while in the High [K+]o scenario, the property becomes false, because
it is more difficult to deplete internal potassium since there is 10 times more potassium.
One could check how long it takes for those events to happen. For that we have used
a time reward, and reward properties, such as the one shown in Figure 8.2. The event
“ptxAllBounded” is expected to happen in 1.7513E-5 seconds.

8.5 Induced Electric Current Measurements

These results have been obtained using our third model (ptx2008b), which focuses on
the known inhibitory effect of potassium on PTX action.

The induced current carried by potassium ions across the membrane can
be measured using the Goldman-Hodgkin-Katz (GHK) flux equation (divided in
Equations 8.1 and 8.2 shown below), which describes the ionic flux as a function of
transmembrane potential and ion concentrations inside and outside the cell [Hille,
2001].

This equation allows studying quantitatively the behavior of the induced current
under different conditions, such as the scenarios previously mentioned.

Jion = Pion z
2
ion

F 2 Vm
R T

[ion]i e
zion F Vm

R T − [ion]o

e
zion F Vm

R T − 1
(8.1)

The Pion part of Equation 8.1 is another formula, which represents the permeability of
the membrane for that ion and it is shown in Equation 8.2 below.

Pion = γ1[PTXE] + γ2[PTXATPhighE] + γ3[PTXATPlowE] (8.2)

Descriptions, values and units for constants, such as Vm (transmembrane potential)
and F (Faraday constant) are shown in Table 4.

Unlike simulations, which could run into local minima problems and demand a
prohibitive number of traces to obtain an approximation of expected values, our PMC
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approach always obtains the real expected value for our model due to its exhaustive
exploration of all states.

This is particularly important for electric current measurements, because it
depends on the probability of states PTXE, PTXATPhighE and PTXATPlowE, as well
as internal and external ion concentrations. These state probabilities and ion
concentrations change drastically for different scenarios, as we have in the previous
subsections.

Electric Current Rewards

rewards "pos_jK"
(jK>=0): jK;

endrewards

rewards "neg_jK"
(jK<0): (-1)*jK;

endrewards

Instantaenous Current Reward Property

R{“pos_jK”}=? [ I=T]

What is the expected instantaneous reward for the
positive current pos_jK at time T?

PRISM allows the calculation of the correct expected electric current through
rewards. Unfortunately, PRISM does not accept negative rewards, therefore we have
to separate positive (pos_jK) and negative (neg_jK) rewards. The negative reward is
multiplied by (−1), in order to allow its computation.

Measurements are performed through instantaneous reward properties, which
obtain the reward value precisely at T time. A negative induced current indicates
normal potassium ion flux (two potassium ions go inside), while a positive one indicates
an abnormal flux (two potassium ions go outside).

In the Control scenario, at T = 100, the induced current is positive (52, 547 A
m2 ),

which means that potassium ions are moving in favor of their gradient. In the High
[K+]o scenario, the induced current becomes negative (−426, 790 A

m2 ) – potassium
ion exchange is completely changed, having its direction reversed. Both states
PTXATPhighE and PTXATPlowE play a major role in that equation, except that their
coefficients are different (γ1 = 0.15 and γ3 = 0.9, respectively). This reversion of ion
exchange suggests that high concentrations of [K+]o could fight PTX action.

8.6 A Probabilistic and Quantified Kinetic Model

These results have been obtained using our first model (ptx2007), which focuses on
the role of cell energy reactions.

The Albers-Post model of the Na+/K+-ATPase was first proposed in [Post et al.,
1972]. It is a kinetic model (and also a directed graph) which describes the set of
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states of the pump, and the chemical reactions that lead from one state to another,
consuming or producing ligands.

P (ri) =
ri
N∑
i=0

ri

(8.3)

We are able to quantify this kinetic model using PMC through state and transition
(rate) rewards. These rewards have been presented in previous chapter and essentially
count the expected number of times that a state (or transition) is observed. We can
calculate a state probability by dividing its reward by the sum of all state rewards
(Equation 8.3). This is also applied to reactions and ligands, such as ATP.

Once we have all the states and reactions probabilities, we associate colors to each
of them, allowing their visual representation. The kinetic model can be colored using
a jet palette, which is often associated with temperatures. In this pallete, probabilities
transit from red to blue, or from likely to unlikely, respectively.

Figure 8.5: Heat Map: the kinetic model of the Na+/K+-ATPase with state and
rate probabilities represented as colors. Each state and rate is colored based on
its probability. Red states/rates are likely while blue states/rates are improbable.
This could be a visual tool for biologists as it shows model dynamics and overlooked
conditions.
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This modified kinetic model is called a heat map. Red states and reactions are
more probable or hot, while blue states and reactions are unlikely or cold. An example
of the heat map for our first model (called ptx2007) can be seen in Figure 8.5, where
the states PE2 and ATPlowPE2 (phosphorylated pump open to the external side and
that same state with ATP bound to its low affinity binding site, respectively) are more
probable, and reactions between E1 and ATPlowE2 (pump open to the internal side
and pump open to the external side with ATP bound to its low affinity binding site,
respectively) occur more often.

For example, the reaction between the states E1 and ATPlowE2 is one of the most
active reactions, while the states themselves are one of the most inactive states. This
could suggest that either these states are temporary or there might be an intermediary
and unknown state between these two states.

After contacting Rodrigues and co-workers, they have suggested that this
intermediary state is the pump transitioning between open to the external side and
open to the internal side, which is exactly the effect of the reaction between those two
states.

This odd behavior could reflect an imprecision on the kinetic model description
itself, which might not include all the existing states and reactions of the pump
interacting with palytoxin. Novel experiments could be performed in order to validate
this behavior and further improve the current description of PTX-pump interactions.

The heat map could be a valuable tool for biologists as it shows model dynamics
and it could be used to suggest overlooked experiments. Since the kinetic model is an
abstraction suggested by experimental data, it could be incomplete, which the heat
map would assist towards its completion. It raises several questions, especially about
likely reactions involved with improbable states.

8.7 Alternative Models

Alternative models can be produced using different approaches and abstractions. One
could favor one aspect of the system over another. Also, even different tools, based on
other formal methods, could have been used.

Our models are focused on the current understanding of the pump ion exchange
and its interactions with palytoxin. However, the ion exchange itself is an event very
difficult to observe using currently available experimental procedures. Techniques such
as Patch-Clamp analysis observe the behavior of the induced electric current by several
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ions. However, these fluctuations occur due to millions of ion exchanges, therefore the
granularity of our model is incompatible with such technique, which makes it difficult
to validate our results experimentally.

An alternative model that would reflect more accurately current experimental
procedures would not focus on the ion exchange and the discretization of the species’
concentrations. The reasoning behind this is that the volume of ions in either side of
the cell is so big that two or three ions moving from one side to the other does not have
an impact on the cell behavior. From the perspective of the pump, one ion which has
been exchanged is rapidly replaced by another ion. It is similar to an infinity flux or
quantity of ions in either side. The important information is the concentration: how
the species’ concentration of one side compares to the other side.

In an effort to bridge the gap between our models and the experimental
procedures, we have built an initial model taking these possibilities into consideration.
We have removed the cell volume and the discretization of species’ concentrations. The
species’ modules no longer have variables storing the number of ions in either side of the
cell. Naturally, the species’ transitions no longer have to update the species’ variables.

This change made the models significantly smaller than the previous models. For
example, in the case of the ptx2007model, the number of states reduced from 376 states
to eight states, and the number of transitions from 1912 transitions to 26 transitions.
Even for PMC, which has to perform floating point operations, this is a simple model.
However, it is still relevant since it more similar to currently available experimental
tests and can analyze several relevant state-of-the-art experimental studies.

Figure 8.6: The induced electric current by the ions over time. Each segment of the
time series is a different concentration of ATP. Adapted from Rodrigues et al. [2008b].
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In order to compare this new and smaller model with the experimental procedures,
we have selected an experiment devised by Artigas et al., where the ATP concentration
is modified over time, while the induced electric current by the ions is observed. This
experiment is shown in Figure 8.6, adapted from Rodrigues et al. [2008b]. In different
time periods, ranging from 50 to 600 seconds, the experiment is subject to different
ATP concentrations. It starts with 1µM, then it is increased to 2µM, followed by an
increase to 5µM, and so on (as denoted by the arrows in the graphic). Finally, at 2400s,
when the ATP concentration is 10 mM, it is completely removed from experiment. At
3000s, another 10 mM of ATP are added to the experiment. This has been performed
in [Artigas and Gadsby, 2002], where they have made their breakthrough, confirming
that PTX modulates the pump, which can behave like and ion channel, and observing
the role fo ATP in such system.

This modification of ATP concentration over time presents in itself a challenge
for our modeling approach and in general to the model checking field. Since the model
is built a priori, we can not verify a property, change the model structure as we change
one parameter a posteriori, and continue the verification. We have to build the model
again. Therefore, we have several independent verifications, each one for a different
ATP concentration, which can not be chained one after another using PRISM and
our modeling approach. Nonetheless, we have performed the several experiments and
chained them in a single time series in an attempt to visualize how it compares with
the original experimental procedure.

Figure 8.7: Our results for the induced electric current by the ions over time. Each
segment of the time series is a different concentration of ATP.

Our results have been shown in Figure 8.7. We have performed several different
verifications using this alternative model and PRISM, where each verification uses a
different concentration of ATP, corresponding to the ones used by Artigas et al.. For
example, in the first verification, the ATP concentration is set to 1µM, which is followed
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by another verification using an ATP concentration of 2µM. In each verification, the
electric current reward is measured for ten time steps of the given period, which is
different for each test and have been roughly estimated since the paper does not provide
this information. Table 8.3 shows the parameters which have been used to perform the
experiment shown in Figure 8.7.

[ATP] ti (s) Interval te (s)
1 µM 0 50 50
2 µM 50 200 250
5 µM 250 200 450
10 µM 450 250 700
20 µM 700 200 900
50 µM 900 200 1100
100 µM 1100 200 1300
200 µM 1300 200 1500
500 µM 1500 250 1750
1 mM 1750 250 2000
5 mM 2000 200 2200
10 mM 2200 200 2400
0 mM 2400 600 3000
10 mM 3000 250 3250

Table 8.3: The parameters which have been used in the experiment shown in Figure 8.7
which attempted to reproduce the results of Artigas and Gadsby [2002].

Although the behavior is not the same as the Artigas et al. experiment shown in
Figure 8.6, we can see an overall trend on the rate of change or the inclination of the
time series, specially in the initial segments, where the model behaves similarly to the
original experimental procedure. From one segment to another, there is a difference
which does not chain one experiment with the other. This is because each verification is
independent from another. As the experiment progresses (once the ATP concentration
reaches 0 mM, roughly between 2500 s and 3000s), that trend is lost. The rate of
change should zero, as there is no induced electric current. This difference should be
further studied in future works, in an attempt to explain why it happens. However,
after we change the ATP concentration back to 10 mM again, there is a rate of change
decreasing, although not as abrupt as in the experimental test.

The lack of precise information about the original experiment performed by
Artigas et al. is a problem in order to reproduce it, therefore our parameters could be
slightly different than the original ones. Nonetheless, our results have shown a similar
trend on the rate of change of the induced electric current. In order to chain one
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experimental scenario with another, one modeling approach or formal method would
have to be developed which would change the model structure in real time, while
the verification is being performed. Another approach would be creating a modeling
which chains the output of a verification with the input of another verification.
The fact that the trends have been reproduced is an indication that this alternative
modeling can precisely reflect the original experimental tests. Naturally, further studies
are necessary, however as the model created is very efficient, this approach is promising.

Summary. In this chapter we have presented the results that we have obtained in
this dissertation. We have built four formal models of the toxin palytoxin (PTX)
interactions with the sodium-potassium-pump using a probabilistic model checking
approach through the PRISM model checker. This toxin disrupts the regular behavior
of the pump, compromising several biological processes. Each model focuses in a
different aspect of the system. For example, our first model focuses on the role of
cell energy, while the second model covers the sodium and potassim reactions.

After that we have used parametric study to the dimensions of our models, which
allowed the investigation of extreme conditions, such as diseases which increase ligand
concentrations or fatal exposures to PTX. We have used quantitatives properties to
quantify every aspect of the model, such as state and reaction probabilities.

Each model provided suggestions for the behavior of the system, such as that
high concentrations of ATP inhibit PTX action, sodium enhances PTX, and potassium
inhibits PTX. We have also quantified the induced current created by ions exchange
through the Goldman-Hodgkin-Katz (GHK) flux equation. The complete model
reinforced our previous results.



Chapter 9

Additional Contributions

Outline. In this chapter we present additional contributions of this dissertation. We
have used probabilistic model checking results to visually annotate electrophysiology
models, obtaining heat maps which represent the most common states and reactions,
as well as model dynamics. We have built a tool called dot2heatmap, which helps
producing heat maps from graphs described in the DOT language using PMC results.
We have also created a tool called MCHelper, a prototype of a model checking support
environment, which helps manage and treat the information and results obtained
through PMC. This tool has been further developed by João Sales Amaral in his
undergraduate project. Finally, we have also developed a tool called PrismRecipes,
which helps writing PRISM models and properties, which often exhibit several
regularities and repetitions.

9.1 dot2heatmap Tool

We have created a tool called dot2heatmap which automatically generates heat maps.
It receives two inputs:

• A graph description of the model encoded in the DOT language.

• A file containing the values associated with each node and edge of the graph.

It outputs a customized version of the graph description, which is annotated with
appropriate colors for each node and edge based on the values provided for them. A
few simple parameters must also be included:

• Start color: associated with lower values. For example: blue, or #0000FF.
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• End color: associated with higher values. For example: red, #FF0000.

• Number of classes: number of different colors, from start color to end color.

Suppose the start color blue, end color red and six different classes. Lowest-valued
nodes and edges are associated with the start color, highest-valued ones with the
end color, and intermediary ones with intermediary colors, following the color schema
created by the tool and shown below:

This tool is actually general purpose and could be used with any graph-based
model and also any approach to quantify the nodes and edges, despite being completely
unrelated to PMC. It is freely available online [Braz, 2012a].

The DOT language was chosen because it is one of the main languages used to
formally describe graphs [GraphViz, 2013]. However, the tool could be easily extended
to other graph descriptions, such as GEXF [GEXF, 2013] and GraphML [GraphML,
2013].

9.2 MCHelper Tool

We have created a tool called MCHelper, a support environment for formal verification,
with the objective of helping the user to deal with several aspects of model checking,
such as parsing the results and logs, task scheduling and outputting the model graph.
It is freely available online [Braz, 2012b].

PRISM Output

R{"pos_jK"}=? [ I=T ]:
T Result
10 1.7343118918209834E-108
20 1.4781637278396714E-88
30 4.085920811890698E-77
40 3.813136481916314E-69
50 4.4883826490291614E-63
60 3.342506861392057E-58
70 3.7221857491630943E-54
80 1.035688813023802E-50
90 1.0026667274806526E-47
100 4.233844763788241E-45

→

CSV Output
T,pos_jK
10,1.7343118918209834E-108
20,1.4781637278396714E-88
30,4.085920811890698E-77
40,3.813136481916314E-69
50,4.4883826490291614E-63
60,3.342506861392057E-588
70,3.7221857491630943E-54
80,1.035688813023802E-50
90,1.0026667274806526E-47
100,4.233844763788241E-45

Figure 9.1: The MCHelper was initially developed to parse the considerable amount
of results which are produced when you explore several parameters of the model. For
example, one output per property, per parameter scenario.
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This tool was initially created to parse the considerable amount of results
which are produced when you explore several parameters of the model, as well as
checking properties individually (for example, one output per property, per parameter
scenario). The output of the tool is a CSV (Comma-separated values) file (Figure 9.1),
which is very practical for using in spreadsheets, and other mathematical and
statistical environments, such as MATLAB, Octave and the R language. Eventually,
a novel version of PRISM (4.0.3) was developed which included outputting CSV files.
Nonetheless, this tool still had potential to be further extended.

Model Code

dtmc
module die
// local state
s : [0..7] init 0;
[] s=0 -> 0.5 : (s’=1) + 0.5 : (s’=2);
[] s=1 -> 0.5 : (s’=3) + 0.5 : (s’=4);
[] s=2 -> 0.5 : (s’=5) + 0.5 : (s’=6);
[] s=3 -> 0.5 : (s’=1) + 0.5 : (s’=7);
[] s=4 -> 0.5 : (s’=7) + 0.5 : (s’=7);
[] s=5 -> 0.5 : (s’=7) + 0.5 : (s’=7);
[] s=6 -> 0.5 : (s’=2) + 0.5 : (s’=7);
[] s=7 -> (s’=7);

endmodule

→

Model Graph

1

0

3

2

54

7

6

Figure 9.2: Further development of the MCHelper allowed generating graphical
representations of the model using the DOT language.

This is an initial implementation, and could be further extended to several others
functions, such as managing computer nodes, allocation of model checking tasks,
rescheduling of tasks due to error recovery. Errors include, for example, insufficient
memory and model checking engine parameters. As his undergraduate monograph,
João Lucas Ademir Sales Amaral further developed the tool, including the parsing of
logs, task scheduling and outputting model graphs (Figure 9.2).

9.3 PrismRecipes Tool

We have also created a tool called PrismRecipes to help writing PRISM models
and properties. There are several parts of PRISM models in general which are
repetitive, such as Reward structures and quantitative properties. Specific modeling
approaches, such as the one we have used for electrophysiology models, also have their
own regularities. For example, chemical reactions are usually translated into PRISM
commands in a similar manner.

The tool is currently capable of:
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• Creating rewards for variables and labels (f in Figure 9.3).

• Specifying instantaneous and cumulative reward properties (g in Figure 9.3).

• Translating chemical reactions to PRISM commands.

Variable
PTXE : [0..1] init 1;

f−→
Reward

rewards "ptxe"
(PTXE=1) : 1;

endrewards

g−→ Quantitative Property

R{“ptxe”}=? [ C ≤ T ]

Figure 9.3: The PrismRecipes tool can, for example, create rewards for variables (f)
and quantitative properties for rewards (g).

Eventually PrismRecipes could be integrated into MCHelper. It could also be
generalized to other model checkers and modeling approaches, such as MRMC [Katoen
et al., 2011] and Uppaal [Bengtsson et al., 1996]. It is freely available online [Braz,
2012c].

Summary. In this chapter we have presented additional contributions of this
dissertation, such as the tool dot2heatmap, which helps producing heat maps from
graphs described in the DOT language using PMC results. We have also presented the
tool MCHelper, an initial implementation of a model checking support environment,
which helps manage and treat the information and results obtained through PMC.
Finally, we have also shown the tool PrismRecipes, which helps writing PRISM models
and properties, which often exhibit several regularities and repetitions.
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Conclusions

This dissertation presented the modeling and analysis of transmembrane ionic transport
systems and its interactions with toxin palytoxin using the formal verification technique
of probabilistic model checking.

The sodium-potassium pump (Na+/K+-ATPase) is a cellular structure which is
responsible for exchanging sodium and potassium ions through the plasma membrane
against their concentration gradients. This exchange costs cell energy (Adenosine
Triphosphate or ATP). The pump can be affected by diseases and toxins, which disrupt
its behavior. Its correct performance is necessary for all animal cells, otherwise several
biological processes such as cellular volume control and heart muscle contraction could
be compromised, along with the health of an individual.

One of these toxins is the palytoxin (PTX), which binds to the pump, opening
both of its doors. This disturbs the control of ion flux, which are now free
to move in favor of their gradients. Artigas and Gadsby [Artigas and Gadsby,
2002; Artigas, 2003b,a; Artigas and Gadsby, 2004], followed by Rodrigues and
co-workers [Rodrigues et al., 2008b,a, 2009a,b], have studied these effects thouroughly
after several experiments and computational simulations, respectively.

Each of the publications of Rodrigues and co-workers analyzes a different aspect
of the PTX interactions with the pump. We have followed these works, building four
different models, one for each publication. We have used a probabilistic model checking
(PMC) approach to model and analyze each of these models, which has allowed their
formal, exaustive and automatic exploration, checking if they respect a set of given
properties in a special type of probabilistic logics.

We have used the PRISM tool, a probabilistic model checker which is used to
formally explore stochastic systems such as the PTX-pump complex. PMC has allowed
us to investigate the models using properties about biological events, which have been
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expressed in probabilistic logics, e.g. “What is the probability of being in PTX related
sub-states?” or “What is the expected time for the occurrence of ATP depletion?”.

After building the models, we have explored them using a parametric approach,
where we have changed the concentrations for each of the ligands (ATP, Adenosine
Diphosphate or ADP, Phosphate or Pi, Sodium or Na+, Potassium or K+, and PTX).
This has allowed simulating extreme situations such as a disease where the sodium
levels are decreased or a fatal exposure to PTX. These different conditions are called
scenarios, for example, the Control scenario are the normal physiological conditions,
while the High [Na+]i scenario has an increased concentration of intracellular sodium.

We have obtained three different results worthwhile experimental validation. Our
first model, called ptx2007, which focuses on the role of ATP [Rodrigues et al., 2008b],
indicated that as [ATP]i increases, the probability of PTX related sub-states decreases.
For example, from our Control scenario to our High [ATP]i scenario, that probability is
reduced by 38.3520%. This suggests that high [ATP]i could inhibit PTX action, which
implies that individuals with ATP depletion are more susceptible to PTX effects. ATP
deficiency appears in different forms, such as in brain disorders, for example, stroke.
The study of the role and ability of ATP to change our Na+/K+-ATPase model behavior
is even more important, because its production can not be stimulated directly.

Our second model, called ptx2008a, which focuses on sodium and potassium
ions [Rodrigues et al., 2008a], suggested that high [Na+]o could enhance PTX effects.
For example, from the Control scenario to the High [Na+]o scenario, the probability
of PTX inhibiting the pump increases 17.46%. This suggests that electrolyte (sodium
and potassium ions) disturbances could render an individual susceptible to the toxin.
Since PTX is found in an environment with a high [Na+]o, this does not seem to be a
coincidence. Disturbances which present high [Na+]o levels in the blood have different
causes, such as diabetes insipidus [Aidley and Stanfield, 1996]. An opposite behavior
is observed for high [K+]o. From a Control scenario to a High [K+]o scenario, PTX
effects are reduced by 23.17%. Both results suggest that electrolytes could be changed
to reduce PTX effects by decreasing [Na+]o and increasing [K+]o. Since electrolyte
levels in the blood can be manipulated up to a certain degree, the study of their role
and capability to change the behavior of our pump model is even more important.

Our third model, called ptx2008b, which focuses on the known inhibitory effect
of potassium on PTX action [Rodrigues et al., 2009a], suggested that in the Control
scenario, the most active state of the pump is the PTX-pump complex with an
ATP molecule bound to its high affinity binding site (PTXATPhighE). In the High
[K+]o scenario, the most active state shifts to a similar one, except that now ATP
is bound to its low affinity binding site (PTXATPlowE).
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We have used the Goldman-Hodgkin-Katiz (GHK) flux equation to measure
the induced current caused by ion exchange. In the Control scenario, the induced
current is positive (52, 547 A

m2 ), which means that potassium ions are moving in favor
of their gradient. In the High [K+]o scenario, the induced current becomes negative
(−426, 790 A

m2 ) – potassium ion exchange is completely changed, having its direction
reversed. Both states PTXATPhighE and PTXATPlowE play a major role in that equation,
except that their coefficients are different (γ1 = 0.15 and γ3 = 0.9, respectively). This
reversion of ion exchange suggests that high concentrations of [K+]o could fight PTX
action.

Our fourth and final model, called ptx2009, which represents the complete
Albers-Post model (the sodium-potassium-pump cycle) and its interactions with
PTX [Rodrigues et al., 2009b], reinforced the results observed in the previous models.

We have also enhanced the kinetic model of the pump, which is used to describe
the states and reactions of the system, with probabilities, creating a heat map. It
reveals unexpected situations, such as a frequent reaction between unlikely states,
which suggests that either these states are temporary; or there is an unknown state
between those two. This odd behavior could reflect an imprecision on the kinetic model
description itself, which might not include all the states and reactions of the pump
interacting with palytoxin. Novel experiments could be performed in order to validate
this behavior and further improve the current description of PTX-pump interactions.

We have also started building a set of initial tools which we expect that in the
long run will be helpful to probabilistic model checking research. The PrismRecipes

tool helps writing PRISM models which often show regularities and repetitions, while
the MCHelper tool helps parsing results and logs which are mass produced during a
parametric study such as the one we have used.

We have shown in this dissertation that PMC can be used to obtain valuable
insight of transmembrane ionic transport systems in a simple and complete way. This
type of analysis can provide a better understanding of how cell transport systems
behave, giving a better comprehension of these systems. These systems often are
targets of toxins and other substances such as drugs, and their study could lead to the
discovery and development of drugs and novel ways to fight toxins.
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10.1 Future Works

There are several open questions and frontiers for this work, which could be explored
in future works. We are currently working towards some of them, such as using
a qualitative approximate analysis of our models and building an integrated and
hierarchical environment or approach to cope with PMC and other techniques, such
as simulations. We have briefly discussed each one of these open questions below, and
we hope that they will be explored in the future.

Validation. We have obtained several results using formal computational models,
such as the indication that cell energy and potassium inhibits palytoxin action, or
the other way around, that sodium enhances palytoxin action. However, as good
as a computational model can be, its results must be confronted with supporting
experimental evidence obtained through wet lab experiments. Therefore, one
could attempt to reproduce the conditions we have explored computationally in an
experimental environment.

Expansion. We have built four formal models, following the works of Artigas and
Gadsby, and Rodrigues and co-workers. Each one of these models is focused in one
aspect of the sodium-potassium pump cycle interacting with the palytoxin. One model
focuses in the cell energy role, while another one focuses in the potassium inhibitory
effects of palytoxin. However, these models follow the current understanding of the
pump behavior based on experimental evidence and currently available experimental
procedures, which in turn could be incomplete, including unnecessary states or
omitting unknown or not fully understood ones. The reaction rates could be slightly
wrong, as novel experimental techniques could offer improved precision in their
measurements. Our models could be easily further expanded to new states.

Exploration. We have explored the different dimensions or aspects of our models,
namely the molecules, ions and pump volume, in order to observe their impact in
the model behavior. We have used several orders of magnitude for each dimension
above or below their reference values (for example, the concentration of phosphate
is 4.95 M−3 and we have studied 4.95 M−2 and 4.95 M−4). These changes could
be interpreted as simulating a disease, syndrome or conditions. Although this
exploration has revealed several interesting results, such as increasing cell energy
reduces palytoxin action, it has been done so far in a naive way. We would like to
know the precise point where model behavior changes. Also, some of these dimensions
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still are challenging, such as pump volume, which drastically increase model complexity.

Adaptation. We have studied the effects of the toxin palytoxin in the
sodium-potassium-pump, which essentially open the pump more than it should
be and disrupt several cell processes and physiological concentrations of ions. Our
models could be adapted to other toxins (for example, ouabain), deadlier or more
common. This adaptation requires further study of these toxins, state-transition
models for pump and its interactions with the toxin, ligands concentrations and
reactions rates. Furthermore, these models could be adapted to drugs (e.g. digitalis)
which behave similarly to toxins, by changing physiological conditions to trigger a cell
response, in order to study drug effects at the cellular level. Finally, these toxins or
drugs might block the pump in a particular state, instead of opening it.

Approximate Analysis. We have used exact probabilistic model checking in order
to obtain accurate results. However, as our models grew in size and complexity,
properties began to take too long to be verified, specially quantitative ones. We have
performed an initial study on approximate analysis of formal models, using methods
available in the PRISM model checker such as confidence intervals. However, the
obtained results were far off from the exact ones and also did not follow the same
behavior, which lead us to halt progress in this line of research. Further studies
could reveal the appropriate methods and their parameters to use in electrophysiology
models. This would allow studying larger pump volumes and macroscopic studies
using several pumps.

Hierarchical Approach. We have used a different computational approach to study
electrophysiology models – the probabilistic model checking. Usually these models are
studied using simulations, such as the works of Rodrigues and co-workers which have
used a set of ordinary differential equations to explore the interactions of palytoxin
with the sodium-potassium-pump. There are also several other approaches, such as the
Gillespie’s method for stochastic simulations, not to mention the experimental results
itself, which are electric current time series obtained using Patch-Clamp techniques.
However, each approach explores different aspects of the same models, which difficults
their comparison and correlation. We would like to build tools which allowed us to
obtain and compare results using different approaches, using experimental studies,
simulation techniques and formal approaches.

Mixed or Hybrid Approach. We have studied discrete and stochastic formal
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models for small pump volumes. However, for larger volumes this discretization of
the environment could be unnecessary, and some models might exhibit deterministic
behavior. We would like to develop novel mixed or hybrid approaches, which
could deal with both discrete and continuous values, as well as deterministic and
stochastic behavior. For example, in the sodium-potassium pump, the external sodium
concentration is larger than the internal one – the first could be continuous while
the second could be discrete. Larger volumes such as the external environment could
be represented as ordinary differential equations, while smaller environments such
as the pump volume, could be represented as Markov chains. This direction would
be a major challenge and if accomplished could be extremely inefficient due to dual
nature of the model, however, we believe it would be more close to the real cell behavior.

Other Models. Finally, different types of pumps could be modeled, such as the
calcium pump which plays a major role in the heart muscle contraction, or even other
types of transmembrane ionic transport systems, such as ion channels, which play a
major role in synapses and other nerve impulse related cell processes. There are other
biological systems, such as gene regulatory networks and cell signalling pathways, which
have already been modeled using formal methods, and could be studied as well.



Bibliography

Aidley, D. J. and Stanfield, P. R. (1996). Ion channels : molecules in action. Cambridge
University Press. ISBN 0521498821.

Alon, U. (2006). An Introduction to Systems Biology: Design Principles of Biological
Circuits (Chapman & Hall/CRC Mathematical & Computational Biology). Chapman
and Hall/CRC, 1 edition. ISBN 1584886420.

Artigas, P.; Gadsby, D. C. (2003a). Ion occlusion/deocclusion partial reactions in
individual palytoxin-modified Na/K pumps. Ann N Y Acad Sci, 986:116–26. ISSN
0077-8923.

Artigas, P.; Gadsby, D. C. (2003b). Na+/K+-pump ligands modulate gating of
palytoxin-induced ion channels. Proc Natl Acad Sci U S A, 100(2):501–5. ISSN
0027-8424.

Artigas, P. and Gadsby, D. C. (2002). Ion channel-like properties of the Na+/K+-pump.
Annals of the New York Academy of Sciences, 976(1):31--40. ISSN 1749-6632.

Artigas, P. and Gadsby, D. C. (2004). Large diameter of palytoxin-induced Na/K pump
channels and modulation of palytoxin interaction by Na/K pump ligands. J. Gen.
Physiol., 123(4):357--376.

Batt, G., Page, M., Cantone, I., Goessler, G., Monteiro, P., and de Jong, H.
(2010). Efficient parameter search for qualitative models of regulatory networks
using symbolic model checking. Bioinformatics, 26(18):i603–i610.

Bayesia (2013). To leave uncertainty behind you, enter the bayesian network era.
http://www.bayesia.com/en/technology/bayesian-network.php/.

Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., and Yi, W. (1996). UPPAAL
– a tool suite for automatic verification of real-time systems. In Proceedings of
the DIMACS/SYCON workshop on Hybrid systems III : verification and control:

95

http://www.bayesia.com/en/technology/bayesian-network.php/


96 Bibliography

verification and control, pages 232--243, Secaucus, NJ, USA. Springer-Verlag New
York, Inc.

Berezin, S., Campos, S. V. A., and Clarke, E. M. (1998). Compositional reasoning
in model checking. In Revised Lectures from the International Symposium on
Compositionality: The Significant Difference, COMPOS’97, pages 81--102, London,
UK, UK. Springer-Verlag.

BioModels (2013). Biomodels. http://ebi.ac.uk/biomodels-main.

BioPAX (2013). Biological pathway exchange. http://biopax.org/.

Bollig, B. and Wegener, I. (1996). Improving the variable ordering of OBDDs is
NP-complete. Computers, IEEE Transactions on, 45(9):993 –1002. ISSN 0018-9340.

Boyce, W. (2008). Elementary Differential Equations, Ninth Edition Binder Ready
Version. John Wiley & Sons. ISBN 9780470404041.

Braz, F., Cruz, J., Faria-Campos, A., and Campos, S. (2012a). Palytoxin inhibits the
sodium-potassium pump - an investigation of an electrophysiological model using
probabilistic model checking. In Gheyi, R. and Naumann, D., editors, Formal
Methods: Foundations and Applications, volume 7498 of Lecture Notes in Computer
Science, pages 35–50. Springer Berlin Heidelberg.

Braz, F. A., Cruz, J. S., Faria-Campos, A. C., and Campos, S. V. (2012b). A
probabilistic model checking approach to investigate the palytoxin effects on the
Na+/K+-ATPase. In Souto, M. and Kann, M., editors, Advances in Bioinformatics
and Computational Biology, volume 7409 of Lecture Notes in Computer Science,
pages 84–96. Springer Berlin Heidelberg.

Braz, F. A. F. (2012a). dot2heatmap tool website. http://code.google.com/p/

dot2heatmap/.

Braz, F. A. F. (2012b). MCHelper tool website. http://code.google.com/p/

mchelper/.

Braz, F. A. F. (2012c). PrismRecipes tool website. http://code.google.com/p/

mchelper/.

Braz, F. A. F. (2012d). ptx2007 model website. http://www.dcc.ufmg.br/~fbraz/

ptx2007/.

http://ebi.ac.uk/biomodels-main
http://biopax.org/
http://code.google.com/p/dot2heatmap/
http://code.google.com/p/dot2heatmap/
http://code.google.com/p/mchelper/
http://code.google.com/p/mchelper/
http://code.google.com/p/mchelper/
http://code.google.com/p/mchelper/
http://www.dcc.ufmg.br/~fbraz/ptx2007/
http://www.dcc.ufmg.br/~fbraz/ptx2007/


Bibliography 97

Braz, F. A. F. (2012e). ptx2008a model website. http://www.dcc.ufmg.br/~fbraz/
ptx2008a/.

Braz, F. A. F. (2013a). ptx2008b model website. http://www.dcc.ufmg.br/~fbraz/
ptx2008b/.

Braz, F. A. F. (2013b). ptx2009 model website. http://www.dcc.ufmg.br/~fbraz/

ptx2009/.

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation.
IEEE Trans. Comput., 35:677--691. ISSN 0018-9340.

C. Dehnert, J.-P. K. and Parker, D. (2013). SMT-based bisimulation minimisation
of Markov models. In Giacobazzi, R., Berdine, J., and Mastroeni, I., editors,
Proc. 14th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’13), volume 7737 of LNCS. Springer. To appear.

Calder, M., Gilmore, S., Hillston, J., and Vyshemirsky, V. (2010). Formal methods for
biochemical signalling pathways. In Boca, P., Bowen, J. P., and Siddiqi, J., editors,
Formal Methods: State of the Art and New Directions, pages 185–215. Springer
London. 10.1007/978-1-84882-736-3_6.

Calvert, J., Parker, J., Vermeulen, N., and Penders, B. (2010). Systems biology,
interdisciplinarity and disciplinary identity, page Chapter 3. Ashgate.

Calzone, L., Chabrier-rivier, N., Fages, F., and Soliman, S. (2006). Machine learning
biochemical networks from temporal logic properties. Transactions on Computational
Systems Biology, 4220:68--94.

CellML (2013). Cell modeling language project. http://cellml.org/.

CellML Models (2013). Cellml models. http://models.cellml.org/cellml.

Chapman, J. B., Johnson, E. A., and Kootsey, J. M. (1983). Electrical and biochemical
properties of an enzyme model of the sodium pump. J. Membr. Biol., 74(2):139--153.

Chaves, M., Eissing, T., and Allgöwer, F. (2009). Regulation of apoptosis via the
NFκB pathway: Modeling and analysis. In Ganguly, N., Deutsch, A., Mukherjee,
A., and Bellomo, N., editors, Dynamics On and Of Complex Networks, Modeling and
Simulation in Science, Engineering, & Technology, pages 19–33. Birkhauser Boston.
10.1007/978-0-8176-4751-3_2.

http://www.dcc.ufmg.br/~fbraz/ptx2008a/
http://www.dcc.ufmg.br/~fbraz/ptx2008a/
http://www.dcc.ufmg.br/~fbraz/ptx2008b/
http://www.dcc.ufmg.br/~fbraz/ptx2008b/
http://www.dcc.ufmg.br/~fbraz/ptx2009/
http://www.dcc.ufmg.br/~fbraz/ptx2009/
http://cellml.org/
http://models.cellml.org/cellml


98 Bibliography

Ciocchetta, F. and Hillston, J. (2009). Bio-PEPA: A framework for the modelling
and analysis of biological systems. Theoretical Computer Science, 410(33-34):3065 –
3084. ISSN 0304-3975.

Clarke, E. and Emerson, E. (1982). Design and synthesis of synchronization skeletons
using branching time temporal logic. In Kozen, D., editor, Logics of Programs,
volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer Berlin /
Heidelberg. 10.1007/BFb0025774.

Clarke, E., Emerson, E., Jha, S., and Sistla, A. (1998). Symmetry reductions in
model checking. In Hu, A. and Vardi, M., editors, Computer Aided Verification,
volume 1427 of Lecture Notes in Computer Science, pages 147–158. Springer Berlin
Heidelberg.

Clarke, E., Grumberg, O., and Peled, D. (1999). Model Checking. MIT Press.

Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst., 8:244--263. ISSN 0164-0925.

Clarke, E. M., Faeder, J. R., Langmead, C. J., Harris, L. A., Jha, S. K., and
Legay, A. (2008). Statistical model checking in BioLab: Applications to the
automated analysis of T-Cell receptor signaling pathway. In Proceedings of the 6th
International Conference on Computational Methods in Systems Biology, CMSB ’08,
pages 231--250, Berlin, Heidelberg. Springer-Verlag.

Crepalde, M. (2011). Modelagem e análise de sistemas de transporte de Íons em
membranas celulares usando verificação de modelos. Master’s thesis, Universidade
Federal de Minas Gerais.

Dickinson (2013). Thinking allowed - cell membrane structure. http://dickinsonn.
ism-online.org/2009/11/16/cell-membrane-structure/.

DiMasi, J. A. and Grabowski, H. G. (2012). The Oxford Handbook of The Economics
of the Biopharmaceutical Industry, chapter R&D Costs and returns to new drug
development: a review of the evidence, pages 21--46. Oxford University Press,
Oxford, UK.

DiMasi, J. A., Hansen, R. W., and Grabowski, H. G. (2003). The price of innovation:
new estimates of drug development costs. J Health Econ, 22(2):151--185.

http://dickinsonn.ism-online.org/2009/11/16/cell-membrane-structure/
http://dickinsonn.ism-online.org/2009/11/16/cell-membrane-structure/


Bibliography 99

Dworakowska, B. and Dolowy, K. (2000). Ion channels-related diseases. Acta Biochim.
Pol., 47(3):685--703.

Emerson, E. A. and Clarke, E. M. (1980). Characterizing correctness properties of
parallel programs using fixpoints. In Proceedings of the 7th Colloquium on Automata,
Languages and Programming, pages 169--181, London, UK. Springer-Verlag.

Fages, F. (2006). From Syntax to Semantics in Systems Biology Towards Automated
Reasoning Tools. In Transactions on Computational Systems Biology IV, pages
68--70. Springer-Verlag.

Fages, F. and Soliman, S. (2008). Formal cell biology in BIOCHAM. In Proceedings
of the Formal methods for the design of computer, communication, and software
systems 8th international conference on Formal methods for computational systems
biology, SFM’08, pages 54--80, Berlin, Heidelberg. Springer-Verlag.

Ferreira, B., Braz, F. A., and Campos, S. V. (2012). A probabilistic model checking
approach to investigate vehicular networks. In Proceedings of the 15th Brazilian
Symposium on Formal Methods (SBMF). short paper.

Filho, F. (2007). Algoritmos Numéricos. LTC. ISBN 9788521615378.

Fujita, M., McGeer, P., and Yang, J.-Y. (1997). Multi-terminal binary decision
diagrams: An efficient data structure for matrix representation. Formal Methods
in System Design, 10:149–169. ISSN 0925-9856. 10.1023/A:1008647823331.

Gay, S., Soliman, S., and Fages, F. (2010). A graphical method for reducing and relating
models in systems biology. Bioinformatics (Oxford, England), 26(18):i575--i581.
ISSN 1367-4811.

GEXF (2013). Graph exchange xml format. http://www.gexf.net/.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340--2361.

Godefroid, P., Peled, D., and Staskauskas, M. (1996). Using partial-order methods in
the formal validation of industrial concurrent programs. Software Engineering, IEEE
Transactions on, 22(7):496 –507. ISSN 0098-5589.

GraphML (2013). Graph modeling language. http://graphml.graphdrawing.org/.

GraphViz (2013). Graph visualization software. http://www.graphviz.org/.

http://www.gexf.net/
http://graphml.graphdrawing.org/
http://www.graphviz.org/


100 Bibliography

Hahn, E. M., Hermanns, H., Wachter, B., and Zhang, L. (2009). INFAMY: An
infinite-state Markov model checker. In Proc. 21st International Conference on
Computer Aided Verification (CAV’09), volume 5643 of LNCS, pages 641–647.
Springer.

Hahn, E. M., Hermanns, H., Wachter, B., and Zhang, L. (2010). PARAM: A model
checker for parametric Markov models. In Proc. 22nd International Conference
on Computer Aided Verification (CAV’10), volume 6174 of LNCS, pages 660–664.
Springer.

Heath, J., Kwiatkowska, M., Norman, G., Parker, D., and Tymchyshyn, O. (2008).
Probabilistic model checking of complex biological pathways. Theor. Comput. Sci.,
391(3):239--257. ISSN 0304-3975.

Heiner, M. and Sriram, K. (2010). Structural analysis to determine the core of hypoxia
response network. PLoS One, 5(1):e8600. ISSN 1932-6203.

Hernández, J. and Chifflet, S. (2000). Electrogenic properties of the sodium pump in
a dynamic model of membrane transport. Journal of Membrane Biology, 176:41–52.
ISSN 0022-2631. 10.1007/s00232001074.

Hille, B. (2001). Ion Channels of Excitable Membranes. Sinauer Associates, 3 edition.
ISBN 0878933212.

Johnny Vincent C. (2013). Palythoa toxica. http://reefbuilders.com/2012/03/04/
palytoxin/#more-55617.

Katoen, J.-P., Zapreev, I. S., Hahn, E. M., Hermanns, H., and Jansen, D. N. (2011).
The ins and outs of the probabilistic model checker MRMC. Perform. Eval.,
68(2):90--104. ISSN 0166-5316.

Kwiatkowska, M., Norman, G., and Parker, D. (2004). Probabilistic symbolic model
checking with PRISM: A hybrid approach. International Journal on Software Tools
for Technology Transfer (STTT), 6(2):128--142.

Kwiatkowska, M., Norman, G., and Parker, D. (2007). Stochastic model checking. In
Bernardo, M. and Hillston, J., editors, Formal Methods for the Design of Computer,
Communication and Software Systems: Performance Evaluation (SFM’07), volume
4486 of LNCS (Tutorial Volume), pages 220–270. Springer.

http://reefbuilders.com/2012/03/04/palytoxin/#more-55617
http://reefbuilders.com/2012/03/04/palytoxin/#more-55617


Bibliography 101

Kwiatkowska, M., Norman, G., and Parker, D. (2008). Using probabilistic model
checking in systems biology. SIGMETRICS Perform. Eval. Rev., 35(4):14--21. ISSN
0163-5999.

Kwiatkowska, M., Norman, G., and Parker, D. (2009). Quantitative verification
techniques for biological processes. In Condon, A., Harel, D., Kok, J. N., Salomaa,
A., and Winfree, E., editors, Algorithmic Bioprocesses, Natural Computing Series,
pages 391–409. Springer Berlin Heidelberg. 10.1007/978-3-540-88869-7_20.

Kwiatkowska, M., Norman, G., and Parker, D. (2010). Symbolic Systems Biology,
chapter Probabilistic Model Checking for Systems Biology, pages 31--59. Jones and
Bartlett, Sudbury, Mass., USA.

Kwiatkowska, M., Norman, G., and Parker, D. (2011). PRISM 4.0: Verification of
probabilistic real-time systems. In Gopalakrishnan, G. and Qadeer, S., editors, Proc.
23rd International Conference on Computer Aided Verification (CAV’11), volume
6806 of LNCS, pages 585--591. Springer.

Kwiatkowska, M. Z. and Heath, J. K. (2009). Biological pathways as communicating
computer systems. J. Cell. Sci., 122(Pt 16):2793--2800.

Laubenbacher, R. and Jarrah, A. S. (2009). Chapter 7 - algebraic models of biochemical
networks. In Brand, M. L. J. L., editor, Methods in Enzymology, volume 467 of
Methods in Enzymology, pages 163 – 196. Academic Press.

Lehninger, A., Nelson, D. L., and Cox, M. M. (2008). Lehninger Principles of
Biochemistry. W. H. Freeman, 5th edition.

Mateescu, R., Monteiro, P., Dumas, E., and de Jong, H. (2011). Ctrl: Extension of ctl
with regular expressions and fairness operators to verify genetic regulatory networks.
Theoretical Computer Science, 412(26):2854–2883.

McMillan, K. L. (1992). Symbolic model checking: an approach to the state explosion
problem. PhD thesis, Carnegie Mellon University.

Monteiro, P., Ropers, D., Mateescu, R., Freitas, A., and de Jong, H. (2008).
Temporal logic patterns for querying dynamic models of cellular interaction networks.
Bioinformatics, 24(16):i227--i233.

Monteiro, P. T., Dumas, E., Besson, B., Mateescu, R., Page, M., Freitas, A. T., and
de Jong, H. (2009). A service-oriented architecture for integrating the modeling and
formal verification of genetic regulatory networks. BMC Bioinformatics, 10(1):450.



102 Bibliography

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541--580. ISSN 00189219.

Nash, D. B. (2008). PhRMA 2008. P T, 33(12):685.

Next Generation Pharmaceutical (2013). Systems biology solution for drug
discovery and personalized medicine. http://www.ngpharma.com/article/

Systems-Biology-Solution-for-Drug-Discovery-and-Personalized-Medicine/.

Oka, C., Cha, C. Y., and Noma, A. (2010). Characterization of the cardiac Na+/K+
pump by development of a comprehensive and mechanistic model. Journal of
Theoretical Biology, 265(1):68 – 77. ISSN 0022-5193.

OpenStax College (2013a). Biology - eukaryotic cells. http://cnx.org/content/

m44407/latest/?collection=col11448/latest.

OpenStax College (2013b). Concepts of biology - active transport. http://cnx.org/
content/m45435/latest/?collection=col11487/latest.

Parker, D. (2002). Implementation of Symbolic Model Checking for Probabilistic
Systems. PhD thesis, University of Birmingham.

Post, R., Sen, A., and Rosenthal, A. (1965). A phosphorylated intermediate in
adenosine triphosphate-dependent sodium and potassium transport across kidney
membranes. J. Biol. Chem, 240:1437–1445.

Post, R. L., Hegyvary, C., and Kume, S. (1972). Activation by adenosine triphosphate
in the phosphorylation kinetics of sodium and potassium ion transport adenosine
triphosphatase. J. Biol. Chem., 247(20):6530--6540.

Queille, J. P. and Sifakis, J. (1982). A temporal logic to deal with fairness in transition
systems. In Proceedings of the 23rd Annual Symposium on Foundations of Computer
Science, SFCS ’82, pages 217--225, Washington, DC, USA. IEEE Computer Society.

Reactome (2013). Reactome. http://reactome.org.

Riedl, M., Schuster, J., and Siegle, M. (2008). Recent extensions to the stochastic
process algebra tool CASPA. In Proc. 5th International Conference on Quantitative
Evaluation of Systems (QEST’08), pages 113–114. IEEE CS Press.

Risken, H. (1984). The Fokker-Planck Equation: Methods of Solution and Applications.
World Publishing Corporation. ISBN 9787506214223.

http://www.ngpharma.com/article/Systems-Biology-Solution-for-Drug-Discovery-and-Personalized-Medicine/
http://www.ngpharma.com/article/Systems-Biology-Solution-for-Drug-Discovery-and-Personalized-Medicine/
http://cnx.org/content/m44407/latest/?collection=col11448/latest
http://cnx.org/content/m44407/latest/?collection=col11448/latest
http://cnx.org/content/m45435/latest/?collection=col11487/latest
http://cnx.org/content/m45435/latest/?collection=col11487/latest
http://reactome.org


Bibliography 103

Rodrigues, A. M., Almeida, A.-C. G., Infantosi, A. F., Teixeira, H. Z., and Duarte,
M. A. (2009a). Investigating the potassium interactions with the palytoxin induced
channels in Na+/K+ pump. Computational Biology and Chemistry, 33(1):14 – 21.
ISSN 1476-9271.

Rodrigues, A. M., Almeida, A.-C. G., and Infantosi, A. F. C. (2008a). Effect of
palytoxin on the sodium-potassium pump: model and simulation. Physical Biology,
5(3):036005.

Rodrigues, A. M., Almeida, A.-C. G., Infantosi, A. F. C., Teixeira, H. Z., and Duarte,
M. A. (2008b). Model and simulation of Na+/K+ pump phosphorylation in the
presence of palytoxin. Comput. Biol. Chem., 32(1):5--16. ISSN 1476-9271.

Rodrigues, A. M., Infantosi, A. F., and de Almeida, A. C. (2009b). Palytoxin and the
sodium/potassium pump–phosphorylation and potassium interaction. Phys Biol,
6(3):036010.

Sauro, H., Uhrmacher, A., Harel, D., Hucka, M., Kwiatkowska, M., Mendes, P., Shaffer,
C., Strömback, L., and Tyson, J. (2006). Challenges for modeling and simulation
methods in systems biology. In Perrone, L., Wieland, F., Liu, J., Lawson, B.,
Nicol, D., and Fujimoto, R., editors, Proc. 2006 Winter Simulation Conference,
pages 1720–1730. IEEE.

SBML (2013). Systems biology markup language. http://sbml.org/.

Song, M. A. J. (2004). The UML-CAFE: an Environment to Specify and Verify
Tran-sactional Systems. PhD thesis, Universidade Federal de Minas Gerais.

Tosteson, M., Thomas, J., Arnadottir, J., and Tosteson, D. (2003). Effects of palytoxin
on cation occlusion and phosphorylation of the (Na+,K+)-ATPase. Journal of
Membrane Biology, 192:181–189. ISSN 0022-2631. 10.1007/s00232-002-1074-9.

Tribastone, M. (2007). The PEPA plug-in project. In Proc. 4th International
Conference on Quantitative Evaluation of Systems (QEST’07), pages 53–54. IEEE
Computer Society.

WetWebMedia Forum (2013). Palytoxin in zoanthids and
palythoas.... http://wetwebmediaforum.com/showthread.php?

2268-Palytoxin-in-Zoanthids-and-Palythoas....

Yamada, K. and Inagaki, N. (2002). ATP-sensitive K+ channels in the brain: sensors
of hypoxic conditions. News Physiol. Sci., 17:127--130.

http://sbml.org/
http://wetwebmediaforum.com/showthread.php?2268-Palytoxin-in-Zoanthids-and-Palythoas....
http://wetwebmediaforum.com/showthread.php?2268-Palytoxin-in-Zoanthids-and-Palythoas....


104 Bibliography

Younes, H. (2005). Ymer: A statistical model checker. In Etessami, K. and Rajamani,
S., editors, Computer Aided Verification, volume 3576 of Lecture Notes in Computer
Science, pages 171–179. Springer Berlin / Heidelberg. 10.1007/11513988_43.

Younes, H., Kwiatkowska, M., Norman, G., and Parker, D. (2006). Numerical vs.
statistical probabilistic model checking. International Journal on Software Tools for
Technology Transfer (STTT), 8(3):216–228.


	Agradecimentos
	Abstract
	Resumo Estendido
	List of Figures
	List of Tables
	1 Introduction
	1.1 Challenges of Laboratory Experimentation
	1.2 Systems Biology
	1.3 Probabilistic Model Checking
	1.4 Palytoxin Interactions with the Sodium-Potassium-Pump
	1.5 Major Contributions
	1.6 Organization

	2 Mathematical Modeling
	2.1 Classification
	2.2 Stochastic Processes
	2.3 Biological Systems
	2.3.1 Discrete Chemistry
	2.3.2 Individual Approach
	2.3.3 Law of Mass Action


	3 Computational Models
	3.1 Deterministic and Discrete
	3.2 Deterministic and Continuous
	3.3 Stochastic and Discrete
	3.4 Stochastic and Continuous

	4 Model Checking
	4.1 Introduction
	4.2 Symbolic Model Checking
	4.2.1 Kripke Structure
	4.2.2 First Order Representations
	4.2.3 Binary Decision Diagrams
	4.2.4 Temporal Logic

	4.3 Probabilistic Model Checking
	4.3.1 Probabilistic Logics
	4.3.2 Rewards

	4.4 Model Checkers for Markov Chains
	4.4.1 PRISM


	5 Transmembrane Ionic Transport Systems
	5.1 Transmembrane Ionic Transport Systems
	5.2 Ion Channels
	5.3 Ionic Pumps
	5.4 Blockers and Openers

	6 Related Work
	6.1 Analysis of Transmembrane Ionic Transport Systems
	6.2 Modeling and Formal Analysis of Biological Systems

	7 Formal Analysis of Transmembrane Ionic Transport Systems
	7.1 Formal Analysis of the Sodium-Potassium Pump
	7.2 Formal Analysis of Palytoxin Interactions with the Pump

	8 Discussion and Results
	8.1 Model Complexity and Parametric Study
	8.2 ATP Interactions with the PTX-Pump Complex
	8.3 Sodium Enhances the PTX Inhibitory Effect on the Pump
	8.4 Potassium Inhibits the PTX Action on the Pump
	8.5 Induced Electric Current Measurements
	8.6 A Probabilistic and Quantified Kinetic Model
	8.7 Alternative Models

	9 Additional Contributions
	9.1 dot2heatmap Tool
	9.2 MCHelper Tool
	9.3 PrismRecipes Tool

	10 Conclusions
	10.1 Future Works

	Bibliography

