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Resumo

O desempenho é limitado pelo consumo de energia em arquiteturas de computadores

modernas. Uma forma de reduzir o consumo de energia e aumentar o desempenho, é

eliminar operações redundantes entre as instruções de máquina. Esta eliminação de

redundância, contudo, é difícil, porque envolve a solução de um problema caro durante

a execução: a super-sequência mais curta. Trabalhos anteriores propuseram muitas

heurísticas diferentes para resolver este problema em nível de arquitetura ou em nível

de compilador. O grande número de diferentes algoritmos, e o vasto espaço de busca

fazem com que uma comparação entre eles uma tarefa hercúlea. Nesta dissertação,

nós mergulhamos nesta tarefa, fornecendo a mais extensa análise comparativa destas

diferentes heurísticas já vista na literatura. Nós combinamos as diferentes heurísticas

em várias dimensões, incluindo a quantidade de paralelismo em nível de thread e

em nível de dados. Os nossos resultados mostram que a heurística relativamente

simples, tais como uma heurística chamada MinSP-MinPC, pode superar algoritmos

muito complicados. A partir dessa comparação traçamos subsídios para projetar,

testar e implementar novas heurísticas para compartilhar o trabalho redundante entre

threads paralelas. Os nossos novos algoritmos melhoraram os trabalhos anteriores de

maneiras não-triviais. Ao testar estes algoritmos em benchmarks de força industrial,

nós observamos que alguns deles são capazes de reduzir o número de instruções a serem

processadas por um fator de 3x.

Palavras-chave: Sincronização de Threads, Paralelismo em nível de threads,

Paralelismo em nível de dados, SIMD, Compartilhamento de recursos de hardware,

Redundância de instruções, Redundância de dados.
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Abstract

Performance is constrained by power consumption in modern computer architectures.

A way to reduce power consumption and increase performance, is to eliminate

redundant operations between assembly instructions. This redundancy elimination,

however, is di�cult, because it involves solving a costly on-line problem: the shortest

common supersequence. Previous work have proposed many di�erent heuristics to

solve this problem at either the architecture, or at the compiler level. The sheer

number of di�erent algorithms, and the vast search space makes a comparison between

them a herculean task. In this dissertation, we dive into this task, providing the most

extensive comparative analysis of these di�erent heuristics ever seen in the literature.

We match the di�erent heuristics along several dimensions, including the amount of

thread-level or data-level parallelism that they deliver. Our results show that relatively

simple heuristics, such as the so called MinSP-MinPC can outperform very convoluted

algorithms. From this comparison we draw subsidies to design, test and implement

new heuristics to share redundant work between parallel threads. Our new algorithms

improve on the previous works in non-trivial ways. When testing these algorithms in

industrial-strength benchmarks, we have observed that some of them are able to reduce

the number of instructions to be processed by a factor of 3x.

Palavras-chave: Thread Synchronization, Thread-Level Parallelism, Data-Level

Parallelism, SIMD, Hardware Resource Sharing, Instruction Redundancy, Data

Redundancy.
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Chapter 1

Introduction

In this dissertation we will discuss new ways to improve resource sharing at the

hardware level. With such purpose, in this section we introduce fundamental notions,

such as resource sharing and minimal multi-threading. We then move on to explain

the importance of keeping threads as much synchronized as possible in contemporary

hardware architectures. And �nally, we present the challenges and the proposed

contributions.

Before we delve into the subtitles of resource sharing in parallel applications, we

provide a bit of motivation behind our work. In current architectures, performance is

constrained by power consumption. A way to reduce power consumption and increase

performance is to eliminate redundant operations. In this work, we provide di�erent

ways to keep threads synchronized, with the purpose of maximizing the amount of

instructions simultaneously common to all of them.

1.1 The importance of Resource Sharing

Resource sharing at the hardware level is an alternative that computer architects

have been using to decrease the costs of highly parallel processors and the power

consumption. As a testimony of this fact, we observe the rising popularity of GPGPU

(General-Purpose computation on Graphics Processing Units), which is largely based

on the SIMD execution model [48].

The Single Instruction Multiple Data (SIMD) execution model is a technique that

allows the hardware to share resources. In this case, multiple processing units share

the same instruction fetcher. The SIMD hardware has multiple processing units that

perform the same operation on multiple data points simultaneously. By giving the

same instruction to di�erent processing units, the SIMD model foster a programming

1



2 Chapter 1. Introduction

style strongly based on data parallelism. This sharing is essential to keep the energy

consumption of GPUs low, while giving them performance capabilities never seen before

in the hardware industry [38].

The SIMD architecture is not the only way to share resources among di�erent

threads. As another example of resource sharing, we have the superscalar

architectures [28]. This type of hardware allows faster CPU throughput because it

executes more than one instruction during a clock cycle by simultaneously dispatching

multiple instructions to the same redundant functional units of the processor. Examples

of superscalar architectures are present in the x86 computers, which are used in servers

and personal computers.

A third example of resource sharing at the hardware level is pipelining [28]. That

technology is another way to increase the instruction throughput of the CPU. The

execution is divided in stages and each stage has an execution unit. An instruction

executes only one stage per cycle and the CPU will have multiple instructions executing

a stage during a cycle. Pipelining is heavily used in the hardware industry and

nowadays, virtually every processor uses some sort of pipeline to speedup the execution

of programs.

Finally, we can also cite Simultaneous Multi-Threading as an example of bene�cial

resource sharing [65]. In this case, multiple independent threads can better utilize the

resources provided by the processor. This improvement happens because a thread can

use a resource while another thread is executing, as long as they do not use the same

resource. The SMT (Simultaneous multi-threading) hardware is present in a number

of architectures, for instance, the Hyper-threading technology, which was introduced

in Intel Pentium 4.

From these examples, it is clear a general tendency of the industry to invest time

and resources in the design and development of sharing techniques at the hardware

level. Given that most of the newer architectures have some way to share resources,

and that new ways to portion out resources are being developed [39], we expect that

this tendency will only continue to grow. Nevertheless, there are still challenges that

must be overcome in order to maximize resource sharing at the hardware level.

1.2 The MMT model

In this dissertation we will pay particular attention to the Minimal Multi-Threading

(MMT) execution model [39]. This is an important technique to share resources

between threads. MMT is a mechanism that was recently proposed to combine
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instructions of di�erent threads when they are equal in a SMT machine. The

MMT model executes threads with the same instruction simultaneously whenever it is

possible.

An MMT-based architecture organizes threads into groups that share the same

instruction fetch and decode unit, and might share execution units. Each thread keeps

its own program counter (PC). At fetch time, the hardware chooses heuristically the

next PC among all the PCs of active threads. The next instruction to be processed

will be fetched at this PC. If the chosen PC is the same across several threads, then

all of these threads receive an instruction to execute. If this instruction has the same

input values, then the computations might be combined as well, so the instruction is

issued once on behalf of all participating threads.

Figure 1.1. SIMD pipeline

Minimal Multi-threading, being a recent concept, still o�ers room for

improvements. The SIMD model, which is illustrated in �gure 1.1, executes di�erent

threads simultaneously only when all these threads share the same instruction. From

this observation comes the need to keep the threads synchronized, so that they might

process the same instruction as often as possible. We are interested in maximizing the

amount of common instructions executed by independent threads. Keeping threads

as much synchronized as possible is important because if two separate threads read

di�erent program counters, then they will compete for the shared pipeline front-end, in

particular the fetch unit, causing pipeline stalls and/or increased energy consumption.

In its original conception, MMT does not explore any form of redundancies

in memory access patterns. The reason for this limitation is simply the fact that

researchers have not yet demonstrated that such redundancies are common in SIMD
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programs. Nevertheless, this type of redundancy has been already acknowledged in

the GPU world as a promising way to save hardware space and to reduce energy

consumption [39].

Redundancy can be found in instructions and data. Instructions redundancy

happens when multiple threads execute the same instruction and data redundancy

happens when these redundant instructions use the same data as input, which can be

memory address or the same register value. A study done by Long [39] seeks to �nd

redundancies in the instructions of di�erent threads. Long classi�es the redundant

instructions as follows:

• The instructions are the same (fetch-identical): The PC of these instructions

is the same, therefore the instruction have to be fetched from the memory only

once. The SIMD machine can only run simultaneously the threads that are

fetch-identical.

• The instructions have the same result (execute-identical): Besides being

fetch-identical, these instructions have the same input data, in other words,

the data in each register that are read by the instruction is the same in all

threads and consequently the result will be the same. It is mostly discovered

during the execution of the program, but there are cases that can be detected at

compile-time, such as instructions that manages for loops.

1.3 Challenges of thread synchronization

It is di�cult to �nd an universal synchronization heuristic that is good for every type

of application, because each program has its speci�c characteristics. Furthermore, the

programs may be written in any programming language, including assembly, and may

be strongly optimized by compilers. The resulting program may use some instructions

for unusual purposes and may control the function stack by itself. As a consequence,

it may have unstructured control �ow. Given this diversity, we have observed that it is

often the case that a thread synchronization heuristic that works for a program yields

bad results for a di�erent one.

Another problem is that the hardware implementation of a heuristic may be very

expensive due to the complexity of physical components or due to the performance

in hardware. In our work, we will simulate the heuristic in software and count the

number of fetched instructions that are shared to measure the performance. However

when a heuristic is implemented in hardware, it may take a long time to choose the

PC to fetch instructions, despite having good results in the software simulation. In
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other words, we will be approximating the behavior of a hardware, using a rather

contrived metric: the number of fetched instructions. A deeper evaluation of these

heuristics would have to take into consideration also the complexity of implementing

these heuristics in hardware. This omission is a limitation of our study.

As an example of the impact of a heuristics on the performance of the hardware,

we can analyse Long's reconvergence algorithm. Long's original formulation [39] uses

an intricate reconvergence heuristic, which, in the words of the authors themselves, has

impact on the performance of the hardware. This heuristics is expensive because it

looks up the history of program counters on every execution cycle. On the other hand,

the solution that has been currently used for GPGPU has very limiting constraints

when we want to extend the SIMD execution model to general-purpose processors [11].

Function-level synchronization poses more problems to thread reconvergence,

because the program may have recursive function calls and indirect function calls. We

call a function invocation indirect if that function is activated through a pointer which

might not be known at compilation time. Two threads may execute the same indirect

call instruction and call di�erent functions. These functions may call a function foo

that is the same in both threads. In this case, it would be di�cult to synchronize the

execution of the function foo that both threads execute. Indirect calls are common in

object-oriented programs. In this case, the shared function belongs to a base class and

may be used by objects of di�erent subclasses.

1.4 Heuristics

The synchronization problem may be initially seen as the shortest common

supersequence, whose optimal solution is NP-hard [4]. This problem is de�ned as:

"given two or more sequences of symbols, �nd the smallest supersequence that includes

all those sequences. The solution must keep the relative order of the symbols in each se-

quence, although the symbols may be contiguous or not". In this context, the sequences

are the threads and the symbols are the PCs of the instructions.

To exemplify this problem, we have the following sequences of symbols:

1. ABCDE

2. FBCAG

3. EFDAG
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The problem is solved in the following way:

A--BCDE--

--FBC--AG

-EF--D-AG

And the result, the shortest common supersequence, is:

AEFBCDEAG

This solution yields the smallest combined sequence. Additionally, every input

sequence is included in the solution. That is, the relative order of the symbols of each

input sequence is preserved in the �nal solution of this problem.

Our problem, however, has one extra di�culty: we do not have all symbols during

the execution of the programs. In other words, we are dealing with an on-line problem.

We cannot foresee the instructions that will be executed, and therefore the best existing

heuristics that �nds a reasonable result for the shortest supersequence problem cannot

be used in hardware. Thus, we will need to use a good heuristic (or policy) to schedule

common threads according to the current instructions without needing to know the

future instructions. In �gure 1.2, we can see the importance of a good heuristic.

T0 T1 T2 T3

A A A A

B B - -

D D - -

- - C C

- - D D

T0 T1 T2 T3

A A A A

B B - -

- - C C

D D D D

Control �ow graph Sub-optimal traversal order Optimal traversal order

Figure 1.2. Example of di�erent heuristics in control �ow graph

We will be crafting di�erent heuristics that are classi�ed in two distinct groups.

The �rst group contains the heuristics that are implemented without changes in ISA

(Instruction-Set Architecture) and are compiler-independent. The other group is made

of heuristics that propose changes in ISA or compiler. Details about these groups and

the heuristics are explained in chapter 3.
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1.5 Proposed contributions

The goal of this dissertation is to propose, implement and evaluate di�erent thread

synchronization heuristics. We hope, with this study, to advance the research related

to the MMT execution model. To meet this goal, we will explore di�erent ways to

share resources in parallel applications. Below we list the four main contributions that

come out of this work:

• New thread synchronization heuristics, which are competitive with the

state-of-the-art algorithms already described in the literature.

• The most extensive comparison between di�erent thread synchronization

heuristics in the literature, in terms of data-level parallelism and thread-level

parallelism.

• Measure of the amount of execute-identical instructions.

• Analysis of memory access patterns.

1.5.1 The New Heuristics

During this research we have designed and implemented a number of di�erent

thread synchronization heuristics. The participation of Sylvain Collange, currently

a researcher at INRIA in Rennes, was paramount in this e�ort. Each of our new

heuristics will be explained in chapter 3. They are:

• MinSP-MinPC [11, 44] and other heuristics based on this idea.

• Greedy Oracle

• Distance

1.5.2 The Extensive Comparison

Perhaps the most important contribution of this work was the very extensive

comparison of di�erent thread synchronization heuristics. We have compared these

heuristics assuming di�erent execution models. This work tries to study a hybrid of

SIMD and MIMD architectures [7]. The design models we have used in our study are

listed below:

• Pure MIMD: all threads advance independently as fast as possible. It implies

maximal parallelism, but no instruction sharing.
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• Pure SIMD: always synchronize threads to share instructions. It implies no

instruction parallelism, but maximal instruction sharing.

• Opportunistic SIMD: same as MIMD, but shares instructions when possible.

It implies high instruction parallelism and high instruction sharing. It is a theoric

model, but it can be implemented as a MIMD machine that is able to share fetch

and decode units while other units are unused.

Brunie [7] has shown performance improvement going from SIMD to "2IMD",

which is fetching 2 di�erent instructions per cycle. Now, we want to know the bene�ts

of going to 3IMD, 4IMD, until MIMD. Thus, we will study the opportunistic SIMD

model. Each heuristic gives a di�erent tradeo� between the ideal opportunistic SIMD

and the ideal pure SIMD. This tradeo� is measured by three metrics:

• Data-level parallelism (DLP) is the average number of fetch-identical

instructions (or the number of active threads) over the number of cycles. It

is only possible when we have threads with same instruction, but the data can

be di�erent. It implies instruction sharing, which indicates energy e�ciency. In

an SIMD hardware, the highest DLP implies the best performance.

• Thread-level parallelism (TLP) happens when we have multiple threads with

di�erent instructions. The di�erent instructions are only executed in parallel in

MIMD hardware while they are serialized in SIMD hardware.

• Instruction throughput indicates performance in opportunistic SIMD

architecture. It equals the average number of executing threads per cycle and it

equals DLP times TLP.

DLP implies the total number of instructions fetched during the execution of

an application. The larger is the DLP, the smaller is this number. In other words,

it equals the total number of instructions executed by all threads divided by the

number of fetched instructions. We want the highest possible DLP to achieve the

best performance in the SIMD hardware. The highest DLP also gives us the highest

level of instruction sharing, which are fetch-identical instructions and they may be

execute-identical instructions. If all instructions had the same execution time, the

DLP would be the speedup in SIMD in comparison to serial execution.

We also want to �nd the tradeo� between DLP and TLP that optimizes the DLP

and the instruction throughput for the opportunistic SIMD hardware. Thus, we are

pursuing a setup that gives us good instruction sharing and good performance. From
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the instruction sharing we get low energy consumption. Performance, needless to say,

is the holy grail of the computer architect.

1.5.3 Measure of the amount of execute-identical instructions

The analysis of execute-identical instructions allows us to identify data redundancy

that may help to propose ways to optimize the hardware. This optimization may

reduce the cost or save energy.

The common cases of execute-identical instructions refer to opcodes that do

not read register or do not have parameters. It includes unconditional branches, for

instance. In the other cases, the registers that are read have the same data in all threads

and consequently the result of the instruction is the same. As an example, we can

include read from the same memory address and the counter of iterations in loops like

for. Direct function calls and return instructions may be treated as execute-identical

despite the value of SP (Stack pointer) and FP (frame pointer) being di�erent, but

they are the same in relation to the base of the stack.

1.5.4 Analysis of memory access patterns

Another direction of our research involves a study of the redundancy of data among

di�erent threads. In this dissertation we have focused on the MMT execution model.

Thus, we analyse the amount of redundancy between data processed by di�erent

threads in this hardware. Our analyses uses a suite of typical software applications,

which we believe is comprehensive enough to support our �ndings. The product of

this study is an analysis of the memory access patterns [12] in the MMT setting.

Such patterns describe the relative arrangement of addresses in the load and store

instructions used by each thread. When the same instruction is executed by di�erent

threads simultaneously and it accesses the memory, the addresses that are accessed by

di�erent threads may have some patterns. We classify these patterns in the following

way:

• Uniform: All threads access the same memory address. Of course, they are read

operation.

• A�ne: The threads access di�erent addresses, but the addresses are equally

spaced in memory. The address accessed by a thread is: Address = base + delta

* tid, where base and delta are constant values. We also include here the cases

where all threads accesses the same relative address in its own stack. This pattern

is classi�ed according to the size of the a�ne distance of the memory accesses.
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• Scattered: The threads access addresses that are di�erent and scattered. This

pattern is classi�ed according to the size of the interval where all memory accesses

are done.

As we show in this dissertation, we have observed substantial regularity in

inter-thread access patterns. This fact motivates the adoption, in the MMT context,

of recent memory coalescing hardware mechanisms that have been proposed for

GPUs [14]. For instance, if all the threads read data from the same location, or

from regularly spaced locations, then the hardware can bring all this data to registers

with only one cache access. On the other hand, if simultaneous memory accesses are

randomly scattered, then we lose inter-thread locality, and access fragmentation puts

an increased pressure on caches.

Current multi-threaded hardware has not been designed to bene�t from uniform

and a�ne memory patterns: independent on the target address, n simultaneous threads

require n accesses to memory ports. However, there are proposals for new hardware

designs that proceed di�erently [14]. In these processors, a uniform address causes only

one access to the data cache. It is this kind of hardware that will mostly bene�t from

this study of memory access patterns.

Bene�ting from regularly-spaced accesses is more complicated, but it is not

impossible. If n threads execute an a�ne access, then a set of n memory cells, spaced

by a constant distance K, and starting at base address C is accessed at once. When

K is equal to the word size, accesses are contiguous and can be combined into a single

memory transaction. For other K values, it is also possible to have con�ict-free parallel

access to a banked cache [59].

The size of scattered accesses interval is also important. If the data simultaneously

accessed by active threads is within a short distance of each other, then it may �t into

the same cache line. In this case, if the data is already cached, then every thread scores

a hit. Otherwise, it can be brought to the cache with just one trip to a lower level in

the memory hierarchy.

1.6 The Rest of this Dissertation

The remainder of this dissertation is organized as follows. We will �rst present

background and discusses related works in Chapter 2. In Chapter 3, we describe all

the heuristics that we have used in this research. Chapter 4 explains the methodology

that we use in our experiments. In Chapter 5, we show the results of the simulation

and discuss them. Finally, Chapter 6 concludes our work.
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Background and Related Works

The literature contains many di�erent examples of research whose goal is to explore

resource sharing to improve speed or energy consumption in parallel architecture. In

this dissertation we review some of these works. Before we delve into them, we will

de�ne a few terms that will be used throughout this dissertation.

2.1 Some de�nitions

According to Alle [2], a basic block is a portion of the code within a program with

certain desirable properties that make it highly amenable to analysis. Compilers usually

decompose programs into their basic blocks as a �rst step in the analysis process. The

code in a basic block has one entry point, meaning no code within it is the destination

of a jump instruction anywhere in the program, and one exit point, meaning only the

last instruction can cause the program to begin executing code in a di�erent basic

block. Under these circumstances, whenever a basic block starts, all instructions of the

basic block are necessarily executed.

Basic blocks form the vertices or nodes in a control �ow graph. A control �ow

graph (CFG) is a representation, using graph notation, of all paths that might be

traversed through a program during its execution. In a control �ow graph each node in

the graph represents a basic block, i.e. a straight-line piece of code without any jumps

or jump targets; jump targets start a block, and jumps end a block. Directed edges

are used to represent jumps in the control �ow. There are, in most presentations, two

specially designated blocks: the entry block, through which control enters into the �ow

graph, and the exit block, through which all control �ow leaves [2].

A thread in the context of this dissertation is a sequence of programmed

instructions that can be executed independently in the computer. Multiple threads

11
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can exist within the same process and share resources such as memory, while di�erent

processes do not share these resources. In a SIMD program, we have multiple threads

executing the same code simultaneously, but with di�erent inputs. The di�erent

threads can take di�erent paths in the same control �ow graph of the code due to

di�erent data.

2.2 Resource sharing at the hardware level

Instruction and data sharing are not new ideas in the computer architecture world.

In the mid nineties, Tullsen introduced the notion of Simultaneous Multi-Threading

(SMT) [65]. In the SMT execution model, several threads share the same superscalar

pipeline, including the front-end fetching and decoding instructions. In this way, the

hardware is better equipped to avoid control and data hazards; hence, keeping the

many stages of its pipeline always in use.

Intra-thread redundancy exists if di�erent instructions within the same thread

of execution share the same elements, e.g., registers, data or addresses. Intra-thread

instruction redundancy has been exploited by memorizing values for later reuse. It

includes the reuse of results of long-latency logic-arithmetic operations [54, 55, 9]

and the compression of functions or arbitrary sequences of instructions into a single

memorized result [24, 68, 15, 52, 67, 23]. Further studies were performed to analyse

the e�ectiveness and propose solutions for instruction reuse in the hardware [60, 61,

45, 10, 63, 3, 50, 46]. These optimizations increase performance and reduce energy

consumption [39].

In this work we will be concerned about inter-thread redundancy, which is

commonality that exists across di�erent threads of execution. Inter-thread instruction

redundancy has also been exploited in previous works. Inter-thread techniques were

used to reduce cache misses [8, 27, 6]. Acar [1] proposed a software approach by

maintaining the dependence graph of the computation and using the graph to propagate

changes from inputs to the output. Dechene [18] studied multiprocessors to evaluate a

hardware implementation that recognizes and exploits instruction-similarity.

In 2008, Gonzalez [25] brought in the concept of Thread Fusion, as a way to

decrease the energy consumption of SMTmachines. Thread fusion consists in giving the

same instruction to di�erent threads, whenever they have the same program counter;

hence, providing a way to share the pipeline front-end. In order to reconverge threads,

Gonzalez would require the compiler to insert barriers at control independent program

points.
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Long [39] extended Gonzalez's work by introducing the idea of minimal

multi-threading. They have designed a hardware mechanism that reconverges threads

without the intervention of a compiler. Notice that whereas SMT implies resource

multiplexing, MMT strives for resource sharing. That is, in the SMT case, only

one thread can use a given resource at a given time. In the latter, several threads

cooperatively use a resource to perform the same action, promising higher energy

reductions than what could be achieved with independent thread execution.

The literature describes a few di�erent ways to share the same hardware resource

between di�erent processing cores. The goal of this sharing is the reduction of energy

consumption and the reduction of the manufacturing cost. Kumar [33] studied the

advantages and disadvantages of sharing FPU (�oating point unit), instruction cache

and data cache between di�erent cores. The sharing of instruction cache is good when

the threads execute the same program code. The sharing of FPU is advantageous in

programs where �oating point operations are not frequent. In this case, it is likely that

both threads will not need the �oating point unit at the same time. Therefore, they

can re-use it between themselves. If a con�ict happens, then one thread must wait for

the other.

2.3 A Brief History of SIMD hardware

GPGPU applications brought renewed interest to the SIMD execution model.

Researchers have developed a plethora of applications for GPUs, and this e�ort required

a substantial amount of a pattern of behavior that we call "SIMD thinking". As we

will discuss shortly, the development of SIMD applications is substantially di�erent

from the development of applications in other execution models. These di�erences and

peculiarities constitute what we call SIMD thinking. Although today we see many

discussions about this model, its history is much older.

The �rst use of SIMD instructions was in vector supercomputers of the early

1970s such as the 'CDC Star-100' and the 'Texas Instruments ASC', which were able

to operate on a "vector" of data with a single instruction. Vector processing was

made popular by Cray in the 1970s and 1980s. Vector-processing architectures are

now considered separate from SIMD machines, based on the fact that vector machines

processed the vectors one word at a time through pipelined processors (though still

based on a single instruction), whereas modern SIMD machines process all elements of

the vector simultaneously [51].

Early SIMD machines were characterized by massively parallel processing-style
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supercomputers such as the 'Thinking Machines' 'CM-1' and 'CM-2'. These machines

had many limited processors that would work in parallel. For example, each of the

64,000 processors in a Thinking Machines CM-2 would execute the same instruction

at the same time, allowing, for instance multiplications on 64,000 pairs of numbers at

a time.

The �rst SIMD machines were unable to run programs with loops and decision

structures. There were machines whose threads executed instructions that were chosen

by a master thread, which has loops and decision structures. These machines were

limited because the threads cannot diverge. Later, some machines able to put up

with divergence appeared. With this new capacity came the challenge to reconverge

divergent threads. This challenge has motivated a long string of research in thread

reconvergence heuristics.

2.4 Divergence analysis

Since SIMD hardware is used in GPU nowadays, many researchers want to optimize

its performance and remove its limitations. Divergence is the source of performance

degradation in SIMD hardware, because the threads follow di�erent paths after

executing a branch instruction and the hardware issues only one instruction at a time.

Thus, some threads will have to wait, idly, while other threads execute. Divergence

cannot be completely remove, but it can be reduced. Therefore, the study of the

divergences is important to �nd ways to improve the performance.

To do analysis and characterization of applications to assist future work in

compiler optimizations, application re-structuring, and micro-architecture design.

Kerr [31] proposed a set of metrics for GPU workloads and used these metrics to analyze

the behavior of GPU programs. The results quantify the importance of optimizations

such as those for branch reconvergence, the prevalance of sharing between threads, and

highlights opportunities for additional parallelism.

According to Coutinho [17], optimizing the code to avoid divergences is di�cult

because this task demands a deep understanding of programs that might be large

and convoluted. To facilitate the detection of divergences, Coutinho introduces the

divergence map, a data structure that indicates the location and the volume of

divergences in a program. This map is built via dynamic pro�ling techniques. To

illustrate the importance of the divergence map, he used it to pinpoint the core regions

that must be optimized in well-known public applications. By hand optimizing some

applications, he added 9�11% speedups onto kernels that have already gone through
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the sieve of many programmers.

In face of divergences, Coutinho [16] introduced divergence analysis, a static

analysis that determines which program variables will have the same values for every

thread. This analysis is useful in three di�erent ways: it improves the translation of

SIMD code to non-SIMD CPUs, it helps developers to manually improve their SIMD

applications, and it also guides the compiler in the optimization of SIMD programs. He

demonstrated this last point by introducing branch fusion, a new compiler optimization

that identi�es, via a gene sequencing algorithm, chains of similarities between divergent

program paths, and weaves these paths together as much as possible. Branch fusion is

a technique to remove redundant code to decrease the size of divergent paths.

Many of these optimizations rely on divergence analysis, which classify variables

as uniform, if they have the same value on every thread, or divergent, if they might

not. Sampaio [57] introduced a new kind of divergence analysis, that is able to

represent variables as a�ne functions of thread identi�ers. The experiments show that

this algorithm reports 4% less divergent variables than the previous state-of-the-art

algorithm. Furthermore, we can mark about one fourth of all divergent variables as

a�ne functions of thread identi�ers. He also introduced the notion of a divergence

aware register allocator. This allocator uses information from this analysis to either

rematerialize a�ne variables, or to move uniform variables to shared memory. As a

testimony of its e�ectiveness, this divergence aware allocator produces GPU code that

is 29.70% faster than the code produced by Ocelot's register allocator.

Another work to reduce branch divergence was done by Han [26], which proposed

two software-based optimizations: iteration delaying and branch distribution. Iteration

delaying targets a divergent branch enclosed by a loop within a kernel. It improves

performance by executing loop iterations that take the same branch direction and

delaying those that take the other direction until later iterations. Branch distribution

reduces the length of divergent code by factoring out structurally similar code from

the branch paths. The evaluation of the two optimizations shows that they improve

the performance of the synthetic benchmarks by as much as 30% and 80% respectively,

and that of the real-world application by 12% and 16% respectively.

2.5 Thread Reconvergence Heuristics

The main goal of our work is to design new thread reconvergence heuristics, and to

compare these new approaches against older methods. Many di�erent reconvergence

algorithms have been described in the literature, and in this section we present a few
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of them. Some of the methods that we discuss here have been designed for the early

SIMD machines. Others are more recent, and have been developed to modern Graphics

Processing Units.

In 1984, Lorie-Strong [40] from IBM proposed what we believe is the �rst thread

reconvergence heuristic ever described in the literature. In the words of Collange [11], in

Lorie-Strong's solution, the compiler performs a relaxed topological sort on the control

�ow graph and labels all basic blocks following this order. This numbering controls

both the order of traversal of the control �ow graph and the detection of reconvergence.

The processor maintains both a PC and a block number per thread. In the case of

divergence, the block with the smallest number will be run in priority. When a potential

reconvergence point is reached, the block number of each thread is compared with the

number of the next block the processor is about to execute. When a match is found,

the associated thread is re-enabled. The divergence control mechanism is exposed at

the architectural level. The order of traversal of the control �ow graph is set statically

during compile time. The integrated GPU of Intel's Sandy Bridge processor [30] uses

an approach that resembles the Lorie-Strong's method. These methods do not handle

recursive functions and indirect calls.

Another technique proposed by Takahashi in 1997 allows running code in SIMD

mode without requiring annotations in the instruction set [64]. In the words of

Collange [11], each thread has its own PC. A control unit walks through the control

�ow graph. When a branch is encountered, priority is given to the branch whose entry

point has the lowest address, as long as at least one thread is active. When no thread

is active, the other branch is taken. The assumption that appears to be made is that

reconvergence points are found at the "lowest" point of the code they dominate, that

is at the highest address. The strategy consists in attempting to always execute the

instructions whose addresses are lowest when deciding which branch to execute, in

order to not pass a potential reconvergence point. The drawback of this method is

that thread activity signals are delayed by one clock cycle as they are sent back to

the control unit. At the time the control unit receives the value, the data associated

with the last branch instruction are not available any more. The processor has to

continue running the program while all threads are inactive. Else blocks are always

run regardless of divergence, and loops always run one extra iteration. Besides, the

fact that the processor can speculatively follow branches which are not taken by any

thread leaves the possibility that it encounters invalid instructions or runs past the code

section. Unlike the case of branch predictors in superscalar processors, no provision is

made to return to a non-speculative former state. To circumvent those problems, the

authors propose that branch instructions be duplicated by the compiler. However, this
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cancels the advantage of not depending on the compiler.

In 1988, Quinn [53] proposed a heuristic that chooses the thread with the smallest

PC value to execute. The processor then just needs to compare the PC of each thread

against the global PC to �nd active threads. Reconvergence happens when the PCs of

di�erent threads coincide. Further details are presented in section 3.1.1.

Some reconvergence techniques require the program to have a structured control

�ow graph (CFG). A program with structured CFG only contains sequence of

instructions, conditional blocks (such as if-then and if-then-else) and loops (such as

while and do-while). These loops can be nested. An unstructured CFG contains

arbitrary jumps to any part of the program and they appear in programs written with

structured programming languages due to compiler optimizations. It is possible to

transform an arbitrary CFG into a structured CFG at compile time, at the possible

expense of replicated code when the graph is not reducible [69]. The transformation

method was created by Zhang [71] in 2004.

Levinthal [37] proposed the Pixar Chap Computer in 1984, which synchronizes

programs with structured control �ow with if-then-else and do-while statements. It

supports nested structures using stacks where the push and pop operations are provided

by a change in the ISA. Later, Chap project was improved in the POMP parallel

computer [32]. It replaces the stack by counters that holds the current depth level of

each thread. The active threads have the highest depth level. Unlike Chap, POMP

supports recursive function calls, but the stack pointer of the active threads must be

the same.

Intel G45 [29] improved the ideas of POMP including the use of explicit

instructions to represent continue and break statements to allow to exit from loops

with any nesting depth. The structured control �ow graph is more �exible and allows

smaller program codes. Indirect calls are not supported, but they are not a challenge

for next versions. A heuristic that uses structured control �ow graphs with break and

continue is presented in section 3.2.2.

More recently, NVIDIA has developed the Tesla GPU architecture [38]. In the

words of Collange [11], Tesla's instruction set includes conditional branch instructions

resembling those of scalar processors, rather than structured control instructions.

These instructions are complemented by annotations pointing at divergence and

reconvergence points. Divergence is handled using a stack-based scheme, as in Chap.

However, Tesla provides less information in program code than other instruction set.

In particular, the matching between divergence points and reconvergence points is

not explicit in the binary. Hence, the divergence stack needs to store the address of

reconvergence points in addition to masks. This excludes an implementation based on
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activity counters. Later, the mechanism used by Tesla can be extended to support

indirect jumps, as o�ered by the Fermi architecture [48]. Additionally, this approach

gives some �exibility in the traversal order that other techniques do not allow. It tends

to move part of the scheduling decisions from the architecture to the micro-architecture.

Coon [14] introduced explicit instructions to represent continue and break statements

to help in the reconvergence.

Fung [22] proposed synchronization in the immediate post-dominator of a branch

in 2007. A divergence instruction has multiple basic blocks as successor and the one

to be executed is chosen by a conditional instruction. The immediate post-dominator

is the nearest basic block that will be always executed after the divergence instruction

with any path that the control �ow takes. The Fung's method supports unstructured

control �ow, but it has excessive thread serialization. Later, Fung [21] developed many

methods to improve his heuristic, such as thread block compaction, but there is no

generic method to improve all unstructured control �ow cases. Our implementation of

the idea of post-dominator is presented in section 3.2.1.

Brunie [7] also proposed a method to synchronize threads in the immediate

post-dominator. The implementation is cheap, but the method has limitations. The

only entry-point of the code block between the divergent instruction (PCdiv) and the

post-dominator (PCrec) is the �rst branch instruction. In this technique, each PCdiv

contains a pointer to PCrec and while any thread is between PCdiv and PCrec, the

other threads will be blocked in PCrec. Furthermore, PCdiv must be smaller than

PCrec. Thus, this technique does not allow synchronization of loops.

Diamos [19] proposed thread frontiers in which the compiler gives priority to

the basic blocks and the hardware chooses the threads where the basic block has the

highest priority. This is currently the state-of-the-art in thread synchronization for

GPGPU. This method is cheaper to implement and faster to choose threads to execute

than other simple heuristics, such as Quinn's heuristic. This heuristic does not present

a speci�c way to handle function calls, but it can use other methods to help. Most

synchronization methods for GPGPU use a mechanism based on stack or counters,

which Chap or POMP use to handle divergences when some threads call a function

while other threads do not. Further details about thread frontiers are presented in

section 3.2.3.
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2.6 Thread-level parallelism in SIMD

In this work, we explore di�erent ways to increase a metric called Thread Level

Parallelism. This is the amount of di�erent work that is done by di�erent threads.

A high TLP is present in non-regular programs and does not help SIMD machines.

The measure of TLP with an optimized heuristic helps to identify the irregularity

of SIMD programs. Previous work have provided ways to improve TLP, and in this

section we go over some of those results.

We start our review with MLEP [49], multithreaded lockstep execution processor.

This processor architecture improves the resource cost of SMTmachines and the limited

applicability of SIMD machines. This architecture exploits thread-level parallelism

(TLP) as in SMT, but it executes parallel threads in lockstep as in SIMD by translating

TLP into statically scheduled instruction level parallelism (ILP) by a compiler.

Other ideas to take advantage of higher TLP, besides MLEP, have been proposed.

High TLP is not necessarily good in SIMD hardware, because the thread divergences

cause under-utilization of the hardware potential. According to Narasiman [47], the

GPU cores are still under-utilized, resulting in performance far short of what could

be delivered. Two reasons for this are conditional branch instructions and stalls due

to long latency operations. To improve GPU performance, computational resources

must be more e�ectively utilized. To accomplish this, Narasiman [47] proposed two

independent ideas: the large warp microarchitecture and two-level warp scheduling.

Their mechanisms improve performance by 19.1% over traditional GPU cores for a

wide variety of general purpose parallel applications.

As individual threads take divergent execution paths, they are processed

sequentially. This serialization defeats part of the performance advantage of SIMD

execution. Brunie [7] presented two complementary techniques that mitigate the

impact of thread divergence on SIMD micro-architectures. Both techniques relax the

SIMD execution model by allowing two distinct instructions to be scheduled to disjoint

subsets of the the same row of execution units, instead of one single instruction. They

increase �exibility by providing more thread grouping opportunities than SIMD, while

preserving the a�nity between threads to avoid introducing extra memory divergence.

To overcome the limitations of the SIMD model when running control �ow

intensive programs on a GPGPU hardware, Malits [42] propose to use hierarchical

warp scheduling and global warps reconstruction, implementing an ideal hierarchical

warp scheduling mechanism that they call ODGS (Oracle Dynamic Global Scheduling)

designed to maximize machine utilization via global warp reconstruction. Many general

purpose data parallel applications are characterized as having intensive control �ow
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and unpredictable memory access patterns. Optimizing the code in such problems for

current hardware is often ine�ective and even impractical since it exhibits low hardware

utilization leading to relatively low performance. They showed both analytically and by

simulations of various benchmarks that local thread scheduling has inherent limitations

when dealing with applications that have high rate of branch divergence.

2.7 Previous study of data redundancy in parallel

applications

In our context, data redundancy is the commonality that exists between data

manipulated by di�erent threads. Data redundancy tends to be increased by good

thread synchronization heuristics, as we show empirically. There have been di�erent

attempts, in the literature, to describe ways to capitalize on data redundancy. We

review some of these works in this section.

Data locality is an important factor in the development of high-performance

programs. The literature traditionally considers two types of locality in sequential

applications: spatial and temporal. Recently, Meng et al. [43] have introduced the

notion of inter-thread locality in the context of the SIMD execution model. If two

separate threads simultaneously read data from nearby memory cells, then these

accesses are said to have good inter-thread locality. In this case, a single memory

access might provide data to several di�erent threads. The importance of inter-thread

locality is clear in the context of graphics processing units, given that memory access

coalescing is, according to many authors, the most important optimization in this

environment [56, 70, 34].

Collange [12] presented a hardware mechanism which dynamically detects uniform

and a�ne vectors used in GPGPU applications. Collange's technique minimizes

pressure on the register �le and reduces power consumption with minimal architectural

modi�cations. The vector units execute the same instruction on the same data leading

to as many unnecessary operations as the length of the vector when uniform data

are encountered. These unnecessary operations involve data transfers and activity

in functional units that consume power. These transfers are a critical concern in

architectural and microarchitectural designs of GPUs. This optimization can bene�t

up to 34% of register �le reads and 22% of the computations of GPGPU applications.

Later on, Collange [13] proposed the A�ne Vector Cache, a compressed cache

design that complements the �rst level cache. Preserving memory locality is a major

issue in highly-multithreaded architectures such as GPUs. As each thread needs
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to maintain a private working set, all threads collectively put tremendous pressure

on on-chip memory arrays, at signi�cant cost in area and power. He showed that

thread-private data in GPU-like implicit SIMD architectures can be compressed by a

factor up to 16 by taking advantage of correlations between values held by di�erent

threads. It resulted in a global performance increase of 5.7% along with an energy

reduction of 11% for a negligible hardware cost. The AVC stores blocks of memory

that obey speci�c patterns named a�ne vectors. A�ne vectors consist of either a

sequence of equal integers, or a sequence of uniformly-increasing integers.

Finally, Long [39] studied fetch-identical and execute-identical instructions, which

we explain in section 1.2. The fetch-identical instructions are important to synchronize

SIMD threads and to increase the performance. The execute-identical instructions is

a case of inter-thread data redundancy in which the instructions executes the same

computation. He proposed methods to detect execute-identical instructions and to

avoid multiple executions of the same computation.

2.8 Final considerations

We conclude this chapter justifying our work. We believe that this dissertation is useful

to computer architects and compiler writers because it presents the �rst comparative

study between such a vast number of di�erent synchronization heuristics. Additionally,

there is space for innovation in the wide horizon of reconvergence algorithms. Nobody

has proposed a relevant mechanism to synchronize threads running on programs with

complex function call graphs, for instance. In particular, from the survey in this section,

we conclude that the research community has ignored function calls when designing

thread synchronization algorithms. As an example of this omission, we have a clear

need of a method to reconverge the execution �ow before di�erent threads enter the

same function called from divergent program points.
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The heuristics

As we had said, a heuristic is a policy that the hardware use to schedule the threads.

Each thread has its own PC. The heuristic is executed at the moment just before each

fetch operation. It chooses the PC to be fetched and all threads with the chosen PC

will execute an instruction. Threads with di�erent PCs cannot execute simultaneously

on the SIMD hardware.

It is expensive to execute a heuristic before each fetch, but most heuristics can

be executed to choose the PC whenever the program �nishes a basic block, calls a

functions or return from a function. Thus, the chosen threads with the same PC will

execute the entire basic block simultaneously. This solution improves the performance,

but does not change the synchronization capability.

In this section we present the heuristics and explain how they work. The hardware

implementation is not our goal, because some heuristics are too expensive. However we

included the complexity analysis of some heuristics. This complexity is given in terms

of the delay caused by its execution and the area of the hardware implementation. In

the analysis, we will consider n as the number of threads.

3.1 Hardware-level heuristics

These heuristics a�ects only the thread scheduling that is done by hardware. They

do not propose changes in the ISA (Instruction-Set Architecture) and have to be

independent from the compiler output for the architecture. They have the advantage

of being compatible to programs compiled before the hardware implementation.

The main problem of these heuristics is the lack of hardware support to identify

the end of a basic block. Terminator instructions allow to detect the end of a basic

block. These instructions are conditional or unconditional branches. However a

23
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basic block may �nish with any instruction, because the next instruction may be the

destination of a branch, and the end of the basic block cannot be detected by the

hardware. Another problem is that the instructions call and return may be used with

purpose not related to functions in general programs.

A new ISA, tailored to this SIMD world could give the hardware the tools to

know where each basic block begins and ends. Notice, however, that obtaining this

information is still possible without changes in ISA using the compiler. When a basic

block ends with a non-terminator instruction, the compiler can insert an unconditional

jump instruction at the end of the basic block. This jump is to the next instruction to

execute, the �rst instruction of the next basic block. But the heuristic will not work

with older programs compiled without the compiler solution.

3.1.1 Minimum-PC

This heuristic was proposed by Quinn [53]. It is one of the �rst synchronization methods

and exists since the late 80's. This is a simple synchronization method that was

proposed to reconverge SIMD programs in distributed programs and nowadays it is

used as base to synchronize threads in GPU architectures [19, 36].

This heuristic follows the idea that a function starts with the smallest PC

(program counter) and ends with the largest PC. Then, threads with smallest PC

are behind and needs to execute. It works by giving priority to the thread with the

smallest PC.

This heuristic does not take into account any other details about the state of the

machine and does not deal with function calls in any special way. Consequently this

heuristic does not perform well with function calls. However in some cases, it is able to

overcome better heuristics if the address of the functions code are ordered favorably by

the linker. To achieve good results, it requires the compiler and linker to statically lay

out the binary code of each function according to the function call graph, complicating

the build process and preventing its use on existing applications.

This heuristics requires to �nd the thread with the smallest PC value among all

threads. Thus, in a sequential machine, its time complexity would be O(n). Yet, on

a hardware implementation this action can be implemented using parallel comparison

with reduction tree. The delay complexity order is O(log n) and the area complexity

order is O(n).

The behavior related to function calls when this heuristic is used can be seen in

some of our tests. There are cases in which callee functions with smaller PC is favorable,

as shown in the CFG in �gure 3.4. But there are cases in which callee functions with
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larger PC is favorable, and it is shown in �gures 3.1 and 3.2. Therefore, it would be

di�cult to use the linker to sort the functions favorably.

Figure 3.1. CFG of if-then-else with redundant code

In �gure 3.1, if the PC of the big function is larger than the PC of the calling

function, the Min-PC heuristic will be able to synchronize the execution of the big

function. A thread will execute the `then' and the other will execute the `else'. The

`then' block will be executed �rstly and it will call the big function. The function has

the PC larger than the PC of the `else' block, then the current thread will wait and

the other thread will execute the `else' block and call the same big function. Thus, the

execution of the big function will be done simultaneously by all the threads in �ight.

However, if the PC of the big function is smaller than the PC of the calling function,

this heuristic will not be able to do this synchronization.

Figure 3.2. CFG of loop with continue statement and big code in the beginning

In �gure 3.2, a good synchronization happens if the address where the big
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function starts is larger than the address of the calling function and the number of

iterations of all threads is the same. Thus, if a thread that executed the `continue'

statement call the function and there are threads that did not execute `continue', then

the calling thread will wait until the other threads call the function. Consequently, the

beginning of the iterations of the loop will be synchronized. When the address of the

big function is not favorable, the threads that did not execute the `continue' statement

will not execute the big function simultaneously with the threads that did.

Figure 3.3. CFG of loop that may end with break statement

In �gure 3.3, the test is a loop that calls a big function, if it stops through the

break statement. With Min-PC, if the PC of the big function is larger than the PC

of the calling function, then the threads that exit through break will execute the big

function simultaneously. It does not happen if the PC of the big function is smaller.

Finally, if the PC of the big function is larger, the threads that exit through the main

way will continue without waiting the threads that called the big function.

3.1.2 Minimum SP, Minimum PC

Collange [11] idealized MinSP-MinPC and we implemented and tested it [44]. This

heuristic improves Quinn's Min-PC heuristic in programs that contain function calls.

Any function calls are supported, including indirect calls and recursive functions. The

address where the called function begins may be anywhere in the program and it may

mess with the choice of the smallest PC.
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This heuristic follows the idea that threads with smallest SP (stack pointer) called

functions and they have not returned yet. The call stack grows down, therefore the SP

value decreases when it points to larger stacks. Knowing this, this heuristic chooses the

threads with the smallest SP. When there are multiples threads with the same smallest

SP, it chooses the threads among them with the smallest PC to execute.

Despite this heuristic being good with recursive calls, it still cannot synchronize

the threads when the same function is reached by di�erent threads through di�erent

intermediate functions called by indirect function calls. In compiler analysis jargon,

this heuristics is 1-Context Sensitive. In other words, it works considering only one

nesting depth in the activation stack of functions.

Although this heuristics is an improvement on Minimum PC, it also presents

shortcomings. This heuristic requires the SP register, that may be not available

in some architectures. It also requires that programs do not use the SP for other

purposes. Instructions that manage the stack, such as push and pop, may compromise

the e�ectiveness of the heuristics.

The complexity of this heuristics, in terms of space and area, is the same as in

Min-PC heuristic.

Figure 3.4. CFG of if without else block that calls a big function

The �gure 3.4 shows the improvement of MinSP-MinPC over Min-PC. If the PC

of the called function is smaller, then Min-PC will be able to synchronize the caller and

the callee threads. But if the PC is larger, then the long code after the `if' block will be

executed twice, because the function will be executed after the thread that did not call

it execute the long code. This example justi�es the use of the heuristic MinSP-MinPC,

because it does not depend on the PC of the called function.
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3.1.3 Maximum Function Level, Minimum PC

MaxFun-MinPC (Maximum Function Level - Minimum PC) heuristic is much like

MinSP-MinPC, but instead of choosing the smallest SP, it chooses the thread that has

the the highest number of activation records on the stack. Therefore, this heuristic

would have the same behavior of MinSP-MinPC if all activation records had the same

size. This idea is based on the counters that POMP machine uses and similar idea is

used in GPUs.

This heuristic can be used in architectures in which the SP register is not available.

Each thread would have a register that keeps the current number of activation records

in the stack. This heuristic can use the call instruction to increment the function call

depth and the return instruction to decrement it. However it will not work if the

program uses the instructions call and return for other purposes, which are not related

to functions. It will also not work if the functions are called and returned by unusual

ways, because the heuristic requires a return for each call and vice versa. Therefore it

does not work if the C longjump is used or exceptions are thrown.

In order to support exceptions, the heuristic would require compiler support

to execute an useless return instruction for each function that is interrupted by the

exception. This return instruction has the purpose of decrementing the function depth

value. It would be executed like C++ destructors for all functions of the program.

Although this heuristic requires compiler support to deal with exceptions, it does not

require changes in the ISA.

The complexity of this heuristics, in terms of space and area, is the same as in

Min-PC heuristic.

In �gure 3.5, we have a class with derivated classes and both implementations

of eat call the overridden function in the parent class. If the indirect call leads a

thread to Wolf::eat and another thread directly to Animal::eat, the thread that called

the derivated class should be executed �rtly to synchronize the execution of eat in

the parent class. With MinPC heuristic, if the address of Wolf::eat is smaller than

the address Animal::eat, this synchronization will be possible. MinSP-MinPC heuristic

will depend on the size of the activation record of Wolf::eat and Animal::eat, if the size

of the former is larger, and therefore having the smallest SP, Wolf::eat will be executed

�rstly and the synchronization will happen.
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Figure 3.5. Example of a virtual function

We implemented three versions of this heuristic to decide what to do when an

indirect call is executed and the threads start di�erent functions. In this case, the

function level will be the same in all threads. Each version has a priority to choose a

thread, before choosing by the smallest PC.

1. Nothing.

2. Choose the thread with largest SP, in other words, the function with smallest

activation record.

3. Choose the thread with smallest SP, in other words, the function with largest

activation record.

With the example in �gure 3.5, �rst implementation has the same behavior

as MinPC, and the third implementation has the same behavior as MinSP-MinPC.

The second implementation will be able to synchronize the function if the size of the

activation record of Wolf::eat is smaller. In the end, we do not have a rule that is the

best for any case.

3.1.4 Long

Long [39] created this heuristic to analyse redundancies in SIMD programs. Its key

idea is to add some sort of memory to each thread. One thread uses the memory of

the others to advance or stall. If the current PC of a thread t0 is in the recent history
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of another thread t1, then thread t0 is probably behind t1. In this case, t0 needs to

progress to catch up with t1.

This heuristic uses a table called FHB (Fetch History Bu�er), which is a circular

bu�er where each thread will store the PC of the last basic blocks that it executed.

Whenever a basic block starts, its PC, which is the PC of its �rst instruction, is inserted

into the table. This table has a �nite number of spots. Thus, an update may cause

the dropping of the oldest entry.

We consider the code just after a call instruction as a new basic block, in other

words, the instruction after return is being considered as a new basic block. In

our implementation, this heuristic works ignoring basic blocks that are not easily

detectable. A basic block is not easily detectable if it does not start after a

non-terminator instruction. However this heuristic can be implemented with changes

in ISA or compiler support to allow the detection of the beginning of any basic block.

The heuristic works using the FHB to take choices. Each thread receive 1 point of

priority for each thread whose FHB contains the basic block that the current thread is

executing. The threads with highest priority will be chosen to execute, but threads with

di�erent PC and the same highest priority execute each entire basic blocks alternately.

The main problem of this heuristic is that it is very expensive to be implemented

in hardware. This di�culty stems from the fact that it needs to keep tables with

data. Maintaining and consulting these tables is expensive. Therefore, this heuristic

should be used only in simulations. It could be used, for instance, to �nd instruction

redundancy in emulated programs.

Long's heuristic has the size of the FHB table as an implementation parameter.

According to the results of our experiments, which are presented in chapter 5, no

speci�c size is the best option always. The sizes of the table that we are using in this

dissertation are 2, 4, 8, 16, 32 and 64. Higher values are expensive and we observe,

empirically, that the result is not good. So far, we have not been able to provide a

rationale on why this is true.

The required memory to store the FHB table for all threads is also O(n*s), where

s is the size of the FHB table. The delay complexity order is O(log n), because each

thread check if its PC is in the table of other threads parallelly and the number of

occurrence is compared. The energy consumption is high, because the number of

parallel consults in FHB is O(n*n).

Figure 3.1 shows a situation in which this heuristic is good. When the threads

diverges, the threads are executed in a round-robin fashion. Long's heuristic is able

to detect when multiple threads are executing the same function and it is able to

synchronize the execution of this function.
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And �gure 3.4 gives a case in which this heuristic is bad. With the thread

divergence, a thread will execute the `if' block and other thread will continue the

execution after the block. This heuristic is not able to detect `if' statements without

`else' and fails. Therefore, the basic block C will not be synchronized and will be

executed twice.

3.1.5 Variations of Long's Heuristic

The idea of Long's heuristic can be used to create other heuristics. When multiple

threads have the same highest priority, the original heuristic executes these threads

alternately, but the variations of Long's heuristic use other policies to choose the next

thread to execute. During this research, we have proposed and experimented three

variations of Long's method, which we explain in this section:

• Long's with Min-PC: When multiple threads have the highest priority, the

basic block of the threads with smallest PC is executed �rstly. Then, all priorities

are recounted again for the next choice.

• Long's with MinSP-MinPC: This is the same as above, but uses

MinSP-MinPC policy.

• Long IRB (Instruction Round-Robin): This is almost the same as original

heuristic, but it stores the address of each executed instruction instead of the

beginning of each basic block. It schedules single instructions instead of basic

blocks. It is able to expose more TLP than the original heuristic.

3.1.6 Lee

This heuristic was proposed by Lee [36]. It uses two lists of threads, current list and

future list. The heuristic chooses the threads with the smallest PC from the current

list. When an conditional or unconditional branch is executed, if the PC of a thread

has the value changed to a smaller address, the thread is removed from the current list

and inserted into the future list. When the current list becomes empty, both lists are

swapped.

The complexity of this heuristics, in terms of space and area, is the same as in

Min-PC heuristic. But it is more expensive, because it uses two lists of threads and

chooses a thread from one of the lists.

While this heuristics optimizes loops with continue statements, which Min-PC is

not good to execute, it worsens loops with break statements. In �gure 3.2, an example
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of loop with `continue', the threads that execute `continue' will be placed in future

list and will be delayed. When the other threads �nishes the iteration, all threads

will execute together. However, if the threads execute a di�erent number of iterations,

the threads that �nished the loop will continue and the threads that started the next

iteration will be waiting in the future list.

Figure 3.3 is an example of loop with `break'. The big code will be executed

twice, because `break' is not a backward jump. The threads that starts a new iteration

will execute a backward jump and consequently they will be placed in future list and

will be stopped.

3.2 Heuristics that require ISA change or compiler

support

The heuristics that we have described previously can be implemented at the hardware

level. This mean that they can be used on binaries already deployed. However, if we

are allowed to re-compile programs, than we can do even better. In this section we

describe heuristics that demand compiler support. Some of them also require changes

in the ISA.

These heuristics require that the compiler analyses and modi�es the baseline

program. The changes in the ISA include the insertion of data from the compiler static

analysis and insertion of new instructions, for instance, insertion of synchronization

barriers in the code. In this case, the compiler can analyse the code to decide where

the barrier should be inserted. The compiler can also change the control �ow graph of

the program to optimize the heuristic or meet its requirements.

The drawback of this group of heuristics is that programs that were compiled

before the change in ISA cannot run in the hardware. The new version of the hardware

may use a new and better heuristic that is not compatible with older programs. In order

to allow the execution of older programs, the hardware has to keep the implementation

of the older heuristic and it is expensive. However we notice that changing the ISA is

not a problem in the GPGPU context, because languages like OpenCL foster a runtime

environment that keeps the source code in the program distribution and this source

code is compiled just when the GPU that will execute the code becomes known.
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3.2.1 Nearest post-dominator reconvergence

The reconvergence in post-dominators, proposed by Fung [22], uses the compiler to

�nd the nearest post-dominator basic block of each branch in a function. We say that

a point p in a directed graph with an ending node e post-dominates another point v, if

every path from v to the end of the graph e must go across p. The post-dominator of

a branch is the point where the control �ow will reconverge certainly. In other words,

it is a point that will be always executed, independent on the result of the branch.

Furthermore, the post-dominator of the branch is the "nearest" point to be always

executed. When a group of active threads execute the branch and the threads diverge,

all threads that reach the post-dominator will wait until all the other threads yet to

reach that place make progress. Thus all threads will be synchronized again at the

post-dominator of the branch.

This idea requires a helper heuristic to execute divergent threads while the

post-dominator is not reached. Many helper heuristics can be used:

• Minimum PC (Quinn's)

• Minimum SP, Minimum PC

• Maximum function level, Minimum PC

• Maximum SP, Minimum PC

• Minimum function level, Minimum PC

• Round-robin

Figure 3.6. CFG with distant post-dominator
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The helper heuristic has an important impact of the e�ectiveness of the core

algorithm. Fung has proposed a heuristic that executes each divergent path separately

and the result was not good. In the CFG in �gure 3.6, A is a branch and its

post-dominator is E. If two divergent threads will execute respectively (A, B, D, E)

and (A, C, D, E), D will be executed by both threads. The post-dominator idea alone

will not be able to make both threads execute D simultaneously, because D is not a

post-dominator. However, if the Min-PC is used as a helper heuristic, it will be able

to synchronize the threads before the execution of D starts.

Our implementation of this heuristic is complex, because it does not put

limitations on the program, such as forbidding nested divergent structures. Our

implementation is:

• The pair branch and its nearest post-dominator have an identi�er that is unique

in the function.

• At compile-time, the compiler has to put a mark in each branch and its nearest

post-dominator. The marks will be read by the heuristic at run-time.

• The hardware has to use a stack or bu�er to store each unreconverged divergence.

The highest size of the stack is the number of threads, because it is the highest

number of divergences. It is needed to support programs with nested structures

of branch and its post-dominator.

• When a divergence happens, the hardware must push the identi�er of the branch

to the stack along with the mask of active threads. Indirect function calls are also

divergent points and it post-dominator is the next instruction after the return of

the function call.

• If the branch identi�er is already on the stack and the thread �nds it again, then

the branch should be ignored. It happens in loops when the ending condition is

tested.

• When a thread �nds a post-dominator mark, it searches for its identi�er in the

bu�er to know what are the threads that executed the corresponding branch.

Then, it blocks the thread until all threads reach the post-dominator.

• A thread may �nd a post-dominator mark that belongs to a branch that it did

not execute or did not diverge. In this case, the thread has to ignore the wait in

the post-dominator.
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• The same point may contain multiple post-dominator marks, because it may be

the post-dominator of multiple branches.

• The function level (the number of activation records) has to be stored along with

the branch identi�er. The same function may be on the call stack and it happens

with recursive functions.

� If the same branch is found again, but the function level is higher, then it

can be pushed in the stack again.

� If a post-dominator is found, but no corresponding branch with the same

level is found in the bu�er, then the post-dominator has to be ignored.

Branches with the same identi�er and lower function level can be on the

bu�er, but has to be ignored.

The iterations of a loop with break statement, as in �gure 3.3, cannot be

synchronized by this heuristic, because the post-dominator of the branch that leads

to the break statement is after the loop. The behavior of the heuristic will depend on

the helper heuristic.

This heuristic is able to synchronize the iterations of the loop with `continue',

as in �gure 3.2. In the examples, the iteration starts with a big code and execute a

branch to decide if the program will continue executing the current iteration or will

start the next iteration. In this example, Min-PC will start the next iteration of the

threads that executed `continue' and the threads that did not will be stopped and will

not execute the big code. With this heuristic, the threads that executed `continue' will

wait the threads that have not �nished the iteration

Figure 3.7. CFG of loop with continue statement and big code in the end
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In �gure 3.7, we see the opposite, because the synchronized iterations have not

good results. It has a big code after a `continue' statement. Let's use the case where

we have two threads and two iterations, and only the �rst thread executes `continue'

on the �rst iteration and only the second thread executes `continue' on the second

iteration. In this case, the big chunk of code will be executed twice. Min-PC does not

su�er this penalty, for instance. If we use this heuristic, the �rst thread will wait the

second thread to start the next iteration and both threads will execute the big code

together.

Figure 3.1, is an example in which if we use a helper heuristic that chooses the

threads with the largest SP or smallest function level, the execution of the big function

will be synchronized. When a thread call a function, the threads that did not call it

will execute. If there were a third block, such as `else if', the post-dominator would

avoid that the threads continue after the post-dominator without waiting the other

threads.

3.2.2 Heuristic with structured control �ow graph

Programs with structured control �ow graph are easier to synchronize. Notice, however,

that many compiled programs do not have structured control �ow graphs. Even

though there are ways to convert a non-structure program to a structure format, these

approaches have some shortcomings [71, 69]. In particular, they su�er from code

expansion. Nevertheless, we will describe a synchronization heuristic that assumes

structured code in this section.

The POMP machine, which uses a register for each thread to count the depth

of control �ow structures, can be improved. Support to indirect function calls can

be added easily to execute each di�erent function per time. Another improvement is

the inclusion of explicit instructions that represents the continue and break statements

with any nesting depth. It allows to �nish an iteration or the loop from a deep nesting

level.

With the support of break and continue instructions, an algorithm to transform

unstructured CFG would create structured CFG that uses these instructions.

Consequently it would have smaller code expansion in comparison to the original

transformation method, because it would have more options and do less changes in

the code.

Due to the code expansion, in order to compare the performance of this heuristic,

we need to check if the resulting sequence of instructions executed by a program using

this heuristic is smaller than the result of another heuristic without code expansion.
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Code requirements:

• All loops must have the structure "while(true)...".

� The end of an iteration is the instructions `continue' (unconditional) or

`if-continue' (conditional).

� The end of the loop is the instructions `break' (unconditional) or `if-break'

(conditional).

� "while(cond)..." should become "while(true) if(!cond)break; ... continue;"

� "do-while(cond)..." should become "while(true) ... if(cond)continue; break;"

• No indirect branch is allowed, which includes switch statements.

How it works:

• Each thread has its nesting depth register (NDR).

• Threads with the highest NDR are chosen to execute and the heuristic must

ensure the same PC.

• Special instructions changes the values of NDR and reschedule threads.

Added and modi�ed instructions:

• if-then: This is a simple `if' statement without `else'. The NDR of the threads

that enter in the block is incremented when the block starts and decremented

when it ends.

• if-then-else: This is an `if' block with `else'. Firstly it executes the `then' block.

When it ends, it executes the `else' block. When it ends, the threads will be

synchronized.

• call: This call a function and the NDR is incremented. Recursive functions are

supported. Indirect calls are also supported, each di�erent function would have

a di�erent increment in NDR and the value of NDR to decrement is saved on the

call stack.

• return: This instruction can be placed anywhere. It returns and decrements the

NDR by the number of nesting depths it increased since the function started and

this number is statically known as parameter of the instruction.



38 Chapter 3. The heuristics

• break: This ends the current loop, decrements the NDR by the desired nesting

depth that is statically known as parameter of the instruction and sends the PC

to after the broken loops.

• continue: This ends the current iteration, decrements the NDR by the desired

nesting depth that is statically known as parameter of the instruction and sends

the PC to the beginning of the desired loop.

• if-continue: This is a conditional `continue' and have no intermediate basic block.

• if-break: This is a conditional `continue' and have no intermediate basic block.

• begin-while: This is a neutral instruction that increments the NDR before the

beginning of the loop. This is the beginning of each iteration and the destination

of `continue' instructions.

• end-while: This is a pseudo-instruction at the end of the loops. It is an

unconditional jump to go to the next iteration. It is really the instruction

`continue'.

• reconvergence: It is a neutral instruction placed in the end of `then' blocks that

are without else and in the end of any `else' blocks.

The implementation can be Improved:

• When an `if' block that is inside a loop and it ends with `break' or `return', the

execution of this basic block should be delayed until all threads �nish the loop or

achieve this basic block. Thus, all thread can execute this block simultaneously.

A neutral instruction should be placed in the beginning of the block saying to

wait.

• There are cases where `then' and `else' call the same function, such as in �gure

3.1, and we would like to synchronize the execution of the function. The solution

could be branch merging or a neutral instruction asking to wait when the function

is called.

3.2.3 Thread frontiers

The thread frontiers [19] method uses the compiler to give priority to basic blocks

following a policy. During the execution, the hardware chooses to execute the threads

in basic block with the largest priority. The challenge is to �nd the best priority policy
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to use and multiple options are possible. For instance, MinPC can be a priority policy,

in this case, the compiler can give priorities based on the order of the basic blocks in

the original program. The policy is hardware-independent, because the priorities are

assigned at compile-time. Thus, the only change in ISA is the support to follow the

policy and the compiler can choose any policy.

The main priority policy is to give higher priority to basic blocks whose longest

distance in number of basic blocks in the CFG until the end of the function is larger.

The longest path until the end of the function cannot include repeated basic blocks.

This policy cannot be used with large CFG, because the longest path problem is

NP-hard [58]. Nevertheless, if the graph is acyclic, in other words, the graph does

not have any loop, a solution in polynomial time for this case exist. The reference

implementation of thread frontiers is in Ocelot [20], a dynamic compilation framework

used for GPGPU. Its priority policy uses an algorithm based on edge-covering tree,

which is a heuristic to �nd an approximated solution for the longest path problem.

This policy of longest path includes the post-dominator features. Any basic

block that comes before its post-dominator has larger priority than its post-dominator,

because the post-dominator is ever included in any path until the end of the function.

Therefore, its longest path until the end includes the post-dominator. Furthermore,

thread frontiers is much cheaper than a full implementation of the post-dominator

heuristics. We could discard post-dominators heuristics, however the post-dominator

idea can still be used to try di�erent approaches with some sub-heuristics, such as

MinFun-MinPC, MaxSP-MinPC and Round-robin, which cannot be done with thread

frontiers.

In �gure 3.2, we can compare Min-PC, thread frontiers and generic

post-dominator heuristics. If a divergence happened in B, a thread will execute C and

the other thread will execute D. C and D should be executed before A to synchronize

the threads. Min-PC executes C followed by A �rstly, because C and A have PC

smaller than D. Post-dominator executes A and D �rstly, because A is post-dominator

of the branch in B. And thread frontiers will execute C and D before A, because the

longest path from C and D until the end of the function, without repetition, is larger.

The distances are: A is 1, B is 3, C is 2, and D is 2.

This method can be implemented without changes in ISA. The compiler can

transform the CFG of the function by sorting the basic blocks by basic blocks with

largest priority. Thus the basic block with larger priority would have smaller PC

and consequently we can use the Min-PC heuristic in hardware for intra-function

synchronization. The PC is available in the hardware, but the priority would have

to be presented in the beginning of the code of each basic block. In �gure 3.3, if the
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compiler moves the basic block C to the place between D and E, the PC of C will be

larger than the PC of D and smaller than the PC of E, and Min-PC will be able to

synchronize it correctly.

This method does not specify how to handle function calls, but allows the help

of speci�c techniques. Most GPGPU heuristics use a stack or counters of activation

record per thread in order to make the threads that called a function have higher

priority. Thus, this heuristic can have the bene�ts that MaxFun-MinPC has related to

function calls.

We implemented two versions of this heuristic using the policy of the longest

of the longest path until the end. The di�erence is the behavior when the priority

of di�erent basic blocks is the same. In the �rst version, we choose the thread by

smallest PC. And in the second, it executes each basic block with the same priority in

a round-robin way before choosing the next basic blocks.

3.3 Experimental Heuristics

These are heuristics created by Collange, as explained in section 1.5.1, to be used in

experiments. They have not been published yet. Some of them may be expensive to

be implemented in hardware, because they may need to store data about the program

for each basic block. Other of them may be impossible to implement in hardware when

they check the future by reading the execution traces. Their main goal is to reach

higher DLP or TLP to help us to know that it is possible to have better results, which

other heuristics cannot reach.

3.3.1 Reconvergence Detection

This is an experimental heuristic that does not produce good results. It uses a mask in

the beginning of each basic block to know what threads that were executing the basic

block previously to detect when a reconvergence was missed. When a group of thread

executes a basic block, its mask is saved. If a basic block is executed by a group of

thread whose mask is not the same as the previous mask, then the active threads will

be blocked until the threads that were in the previous mask achive this basic block.

This heuristic is very expensive to be implemented in hardware, because it keeps a

mask of the previous active threads in each basic block.
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3.3.2 Distance

This is an experimental heuristic that is expensive to be implemented in hardware.

It takes some ideas from Reconvergence Detection heuristic and improves them. It

tries to detect the divergence points and its corresponding reconvergence point. It

estimates dynamically branch lengths. It is able to output high TLP when high DLP

is not possible. Common heuristics do not know if a branch instruction is an `if' block

with or without an `else' block. This information is important to decide if the two

destinations of branch should be executed simultaneously in opportunistic SIMD to

output high TLP without worsening in DLP and it cannot be done with `if' statements

without `else' blocks.

3.3.3 Greedy Oracle

This is a heuristic for testing purposes. It cannot be implemented in hardware, because

it sees the future, by accessing the execution trace. It sees the next instructions of the

execution trace before taking decision. It checks the future of each thread that is not

active to �nd the PC of the active threads. The priority is given according to the

distance until the found PC. Large distance has higher priority. The heuristic has

as parameter the number of future instructions to check. High numbers have slower

performance. If the PC is not found, the highest priority is given.

3.3.4 Round-Robin

This heuristic was used to simulate the execution of the program in a true MIMD

machine. Thus it has the maximum TLP and minimum DLP. It is not used for SIMD

and opportunistic SIMD because it does not share instructions. It is implemented to

choose only a single instruction of a thread per time to execute. The next chosen

instruction belongs to another thread and after all threads execute an instruction, it

starts again with the �rst thread.

A variant of this heuristic is Round-Robin-Eq. This heuristic works like

Round-Robin, but it executes the threads with the same PC simultaneously whenever it

is possible, unlike Round-Robin. If the PC of all threads are di�erent, this heuristic has

the same behavior as Round-Robin. Thus, this heuristic is able to share instructions

and have higher DLP.





Chapter 4

Methodology

As we have mentioned, one of the main contributions of this work is an extensive

comparison between di�erent thread synchronization heuristics. This comparison

uses well-known benchmarks, and is implemented on top of an industrial-quality

infrastructure. In this section we describe these benchmarks, and the testing

infrastructure.

4.1 Benchmarks

One of the main di�culties that we faced when working on this project was related to

the choice of benchmarks. To be able to compare the di�erent heuristics in a meaningful

setup, we have de�ned a few properties that should be present in each benchmark:

• Data-parallelism. Multiple threads execute the same program for di�erent data.

• Balanced load distribution between threads. In other words, the number of

instructions that each thread execute is likely to be similar, or has the potential

to be similar.

• All threads must belong to the same process (multithreaded programs rather than

multiple processes). We want the address space of the multiple threads to be the

same. Thus, the PC of instructions will be the same for all threads, including

instructions in shared libraries. This setup lets us study the patterns of memory

access.

• Pthread implementation. Pthreads are lightweight compared to the more

complex frameworks. Furthermore, pthread based programs are easy to

instrument with our tools.
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• No complex synchronization techniques. Benchmarks with mutex or monitor are

accepted, because we can ignore the protected instructions by detecting where

these instructions start and �nish. However, semaphore is not allowed, because

it does not protect simply a limited area that we can detect and ignore.

We chose the following benchmarks, which meet the requirements enumerated

above:

• 4 benchmarks from Parsec [5] package:

� blackscholes: option pricing with Black-Scholes Partial Di�erential

Equation (PDE).

� swaptions: application that uses the Heath-Jarrow-Morton (HJM)

framework to price a portfolio of swaptions.

� bodytrack: computer vision application that tracks a human body with

multiple cameras through an image sequence.

� �uidanimate: �uid dynamics for animation purposes with Smoothed

Particle Hydrodynamics (SPH) method.

• 7 benchmarks from Splash2 [66] package:

� barnes: simulation of the interaction of a system of particles with the

Barnes-Hut method.

� fmm: simulation of the interaction of a system of particles with a parallel

adaptive Fast Multipole Method to simulate the interaction of a system of

paticles.

� �t: signal processing application that uses Fast Fourier Transform.

� radix: radix sort algorithm.

� volrend: A raytracer algorithm.

� ocean_ncp: simulation of large-scale ocean movements based on eddy and

boundary currents.

� water_nsquared: simulation of water molecular dynamics.

• Tachyon raytracer [62]

These benchmarks were implemented in C/C++. We compiled them to 64-bit x86

architecture using Clang 3.1 [35]. Therefore, whenever we mention number of instruc-

tions we mean number of x86-64 instructions. Some of the benchmarks had di�erent
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implementations. Whenever more than one implementation would be available, we

chose that one which uses pthreads.

Benchmark Insts Seq Crit

blackscholes 787 533 0

bodytrack 21,067 1,026 65537

�uidanimate 5,274 5,691 5856

swaptions 2,248 1,123 0

tachyon 5,796 542 1346

barnes 4,164 1,414 6131942

�t 2,004 697 2102

fmm 7,289 2,668 6749323

ocean_ncp 11,726 379 36040

radix 1,627 734 2299

volrend 5,014 182 20663

water_nsquared 6,413 254 82875

Table 4.1. Characteristics of the benchmarks.

In table 4.1, Insts means number of static X86 instructions in the benchmark,

Seq means number of instructions (in millions) in the dynamic sequence produced with

Pin, and Crit means number of instructions in critical sections.

4.2 Execution

In order to execute the benchmarks and extract data, we have used the Pin [41] tool.

Pin is an instrumentation framework developed by Intel. It is able to execute X86

programs and modify the code during the execution. It allows us to insert new

instructions to extract information about the execution of programs. It can count

instructions, detect function calls, detect memory access and can be used as debugger

and as pro�ler.

In the work, we used Pin to test benchmarks and know if the benchmarks meet

the desired requirements. We counted the number of instructions that each thread

executes to check if the load is balanced between the threads. And we also used the

instrumentation to know what is the �rst function that a thread execute. If the function

is the same for all worker threads, the benchmark is data-parallel.
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The main use of Pin was to create an execution trace for each thread of the

benchmark. The execution traces contain the sequence of PC (instruction address) of

each executed instruction. Each trace was stored in a �le in disk. Along with the PC,

we also report the value of the SP (stack pointer address) in the moment before the

execution of the instruction. This value is changed to be relative to the bottom of the

stack, which is the SP that we record when the thread starts. Thus, the SP that we

obtain is the size of the call stack. We also include the value of all registers read by the

instruction. If the instruction accesses memory, the memory address is also written.

As an example, we have a sample trace produced for the program seen in �gure

4.1. If a thread executes the loop twice, for instance, the sequence of basic blocks in

the trace would be: ABDABDAE. The traces contains the sequence of intructions of

the basic blocks.

Figure 4.1. Example of trace

The traces generate output �les with huge size that do not �t in the computer

RAM, because the benchmarks have billions of instructions. Therefore we placed the

trace �les on the hard disk during the experiments. While the benchmark runs in

a short time, it takes long time to generate traces. Furthermore, the heuristics take

longer time to execute.

Local variables created during function calls are placed in allocation units called

activation records and these records are stored in a space called the stack frame. When

a memory access is done inside the stack frame, the target address is located between

the SP and the beginning of the stack. Each thread has its own stack of data. In order
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to observe the memory access patterns across threads, we would like that the target

addresses in the function stack be equally spaced. We achieve this goal by separating

the base address of each thread's stack by the same amount. We perform this conversion

at instrumentation time. During the instrumentation, when stack accesses are detected,

these addresses are modi�ed by the correct o�set, so that all the stacks are aligned.

To �nd more execute-identical instructions, all values of stack pointer (SP) and

frame pointer (FP) were converted to be in relation to the base of the stack. However,

we were not able to detect when the same arithmetic operation related to arrays were

performed to �nd a address. The address of the array is di�erent and we do not know

if the arithmetic operation is to �nd the address of something in an array or to another

purpose.

Our analysis works as follows: �rstly we execute the instrumented benchmark

using Pin. This instrumented program generates an execution trace, which we have

described before. In a second phase, we go over these traces, simulating the application

of each synchronization heuristic on it. During this simulation, we collect statistics,

that we save to analyse later on. Thus, each heuristic will read the �les that contains

the sequence of instructions executed by each thread in �ight. Each analysis produces

three outputs. The �rst output is the total number of instructions fetched by the

heuristic. The second output is the patterns of memory access. Finally, the third

output is the percentage of fetch-identical instruction.

4.3 Instrumentation with compiler support

The heuristics that require compiler support work on modi�ed binaries. In order

to use these heuristics, we had to recompile the benchmarks, to augmented them

with pragmas. In this work, pragmas are marks in the code and we use them to

represent changes in architectures. The pragmas can be used, for instance, to represent

synchronization barrier in the code.

We have used LLVM [35] to perform the modi�cation and the insertion of

pragmas. LLVM is a set of softwares related to program compilation. It has a

virtual machine whose instructions are an intermediate format. Programs in high-level

languages can be compiled to LLVM bytecodes and can be optimized or modi�ed

through passes, which are plugins written for LLVM using LLVM API.

Thus, we have created an LLVM pass to �nd suitable points to insert pragmas.

When executing the benchmarks, we ignored the pragmas. In other words, these marks

have no special semantics, other than guiding the heuristics. The heuristics will read
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the pragmas in the code and take decision based on them. We compiled the benchmarks

with optimizations, such as -O2, to generate LLVM bytecode and combined all modules

into a single �le with LLVM bytecode. Our LLVM pass is executed with this �le as

the last step before generating the �nal machine code.

A pragma is implemented simply as a call to an empty function, which is inserted

by the LLVM pass and detected through Pin tool. We can only insert pragmas in code

that we can compile easily. Consequently, the instructions of shared libraries, such as

the C library and the pthread library, are ignored. Ignoring shared libraries does not

have impact on the purpose of the work, because the benchmark were executed in a

way in which the shared libraries were not part of the program and, therefore, they do

represent serial or synchronized parts.

An example of the use of pragma is present to help the post-dominator heuristics.

We used LLVM to �nd each pair of branches and their nearest post-dominator. We

inserted a pragma just before the branch instruction with an identi�er, to tell that the

next instruction is a branch. And we inserted a pragma with the same indenti�er before

the �rst instruction of the post-dominator basic block. This is the synchronization point

of the post-dominator heuristic.
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Results

In this chapter, we present the results of our experiments using the methodology

introduced in Chapter 4. We present the results of each benchmark running them

with 16 threads. The results show the amount of data regularity that we found with

the heuristic. The data regularity and instruction regularity depend mostly on the

input data that the benchmark receives. If the data is very regular, the program will

follow the same control and process similar data.

The �rst part of this chapter shows the comparison of heuristics. The main

conclusion that we take from these numbers is that there is not a heuristic that is

clearly better than the others. This conclusion leads us to think that the best heuristic

depends on the nature of the application, and on its input data. Nevertheless, we show

that the heuristics that we have designed are very competitive with state-of-the-art

approaches. In fact, in many cases, we could outperform very complex synchronization

algorithms using our simple Min-PC approach.

In the second part of this chapter we study the average number of active threads

per application. On top of this study, we analyse the number of execute-identical

instruction found in each benchmark. These results seem to indicate that 30% of the

instructions are execute-identical on average. This is a promising result, as it indicate

that the hardware industry has an enormous opportunity to save resources by exploring

similarities between the instructions given to di�erent threads.

Finally, we close this chapter analysing the memory access patterns of our

applications. From this analysis, we conclude that we have a signi�cant amount

of uniform and a�ne accesses. This is another fact that points towards the great

opportunities available to resource sharing. Given that threads tend to process

instructions with the same, or similar, data, much can be saved if the hardware is able

to share among di�erent threads the same results that they produce. The columns
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that lacks bar in the charts means that there was no time that we had that number of

active threads, consequently we do not have memory access patterns for that number.

To measure the amount of execute-identical instructions and analyse the memory

access patterns, for each benchmark, we used the speci�c heuristic that has the

highest DLP with the benchmark. The highest DLP implies the highest instruction

sharing, which represents fetch-identical instructions. Execute-identical instructions

and memory access regularity only happens between fetch-identical instructions.

5.1 Comparison Between the E�ectiveness of the

Heuristics

In this chapter, we present an extensive comparison between the di�erent heuristics. We

show the DLP (data-level parallelism) and the instruction throughput of the heuristics

for each benchmark. Both metrics are explained in section 1.5.2. DLP is the average

number of active threads per cycle with the threads executing the same instruction,

but the data may be di�erent. Instruction throughput is the average number of active

threads per cycle that can be executed simultaneously, but the instructions may be

di�erent.

In normal SIMD architecture, the best heuristics are the ones with largest DLP,

because SIMD is used for data parallelism. A high DLP indicates that di�erent

threads have been able to combine instructions often times, because the instructions

are fetch-identical. Thus, a large DLP means higher speedup, because performance in

SIMD hardware is measured by the number of fetched instructions.

In opportunistic SIMD architecture, the heuristics with higher instruction

throughput have better performance. The de�nition of opportunistic SIMD machine

has been given in Section 1.5.2. Higher instruction throughput means that the average

number of active threads per cycle is higher. Consequently the performance is better

because the program is executed with less cycles. And DLP in opportunistic SIMD

indicates the amount of instruction fetch that can be shared.

The left chart shows DLP and the right one shows instruction throughput. In

the end, we present the average of the result of each heuristics, which was calculated

by arithmetic mean.

Figure 5.1 shows the reduced names that we used in the charts and tables

to identify each benchmark. It also shows the heuristic that we chose to analyse

execute-identical instructions and memory access patterns. And �gure 5.2 shows the

reduced names of the heuristics.
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Small name Benchmark Chosen heuristic

barn barnes LongMinSP(02)

blacks blackscholes MinSP MinPC

body bodytrack MinSP MinPC

�t �t MinSP MinPC

�uid �uidanimate Lee

fmm fmm LongMinSP(8)

ocean ocean_ncp MinSP MinPC

radix radix MinSP MinPC

swapt swaptions LongMinSP(04)

tach tachyon MinSP MinPC

volr volrend Long(16)

water water_nsquared Dist(0 0 10k)

Table 5.1. Subtitles of benchmarks

Small name Heuristic

Dist(0 0 10k) Distance (0 0 10000)

Dist(1 1 -1) Distance (1 1 -1)

Dist(1 1 1k) Distance (1 1 1000)

Dist(1 1 10k) Distance (1 1 10000)

Dist(1 1 100k) Distance (1 1 100000)

Oracle(10 0) GreedyOracle (10 0)

Oracle(1k 0) GreedyOracle (1000 0)

Oracle(1k 0.5) GreedyOracle (1000 0.5)

Oracle(1k 1) GreedyOracle (1000 1)

Oracle(1k 4) GreedyOracle (1000 4)

Lee Lee

Long(02) Long (02)

Long(04) Long (04)

Long(08) Long (08)

Long(16) Long (16)

Long(32) Long (32)

LongIRB(04) Long IRB (04)

LongIRB(08) Long IRB (08)

LongIRB(16) Long IRB (16)

LongIRB(32) Long IRB (32)

LongIRB(64) Long IRB (64)

LongIRB(128) Long IRB (128)

LongMinPC(02) Long MinPC (02)

LongMinPC(04) Long MinPC (04)

LongMinPC(08) Long MinPC (08)

LongMinPC(16) Long MinPC (16)

LongMinPC(32) Long MinPC (32)

LongMinSP(02) Long MinSP PC (02)

Small name Heuristic

LongMinSP(04) Long MinSP PC (04)

LongMinSP(08) Long MinSP PC (08)

LongMinSP(16) Long MinSP PC (16)

LongMinSP(32) Long MinSP PC (32)

MaxFunMinPC1 MaxFun MinPC (1)

MaxFunMinPC2 MaxFun MinPC (2)

MaxFunMinPC3 MaxFun MinPC (3)

MinPC MinPC

MinSP PC MinSP MinPC

RDMinSP(2 1 n) RD MinSP PC (2 1 no)

RDMinSP(4 0 n) RD MinSP PC (4 0 no)

RDMinSP(4 1 n) RD MinSP PC (4 1 no)

RDMinSP(8 1 y) RD MinSP PC (8 1 yes)

RoundRobinEq RoundRobin Eq

LongestPath1 LongestPath simple

LongestPathP LongestPath parallel

PDomMaxFun PostDom MaxFun

PDomMaxSP PostDom MaxSP

PDomMinFun PostDom MinFun

PDomMinPC PostDom MinPC

PDomMinSP PostDom MinSP

PDomRB PostDom RB

PDomLong(2) PostDom Long (2)

PDomLong(4) PostDom Long (4)

PDomLong(8) PostDom Long (8)

PDomLong(16) PostDom Long (16)

PDomLong(32) PostDom Long (32)

Table 5.2. Subtitles of heuristics
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Figure 5.1. Heuristics with blackscholes
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Figure 5.2. Heuristics with bodytrack
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Figure 5.3. Heuristics with �uidanimate
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Figure 5.4. Heuristics with swaptions
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Figure 5.5. Heuristics with tachyon
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Figure 5.6. Heuristics with barnes
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Figure 5.7. Heuristics with �t



5.1. Comparison Between the Effectiveness of the Heuristics 59

Figure 5.8. Heuristics with fmm
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Figure 5.9. Heuristics with ocean_ncp
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Figure 5.10. Heuristics with radix
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Figure 5.11. Heuristics with volrend
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Figure 5.12. Heuristics with water_nsquared
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Figure 5.13. Average result of heuristics
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Heuristic barn blacks body �t �uid fmm ocean radix swapt tach volr water avg

Dist(0 0 10k) 5,01 14,73 14,69 15,09 2,83 1,38 15,78 14,25 8,14 6,95 1,66 11,53 9,34

Dist(1 1 -1) 1,57 14,52 1,95 1,89 1,17 2,01 1,97 3,96 1,42 3,89 1,09 2,00 3,12

Dist(1 1 1k) 1,56 14,52 1,95 7,03 1,17 2,13 1,92 4,11 1,41 4,17 1,09 1,93 3,58

Dist(1 1 10k) 1,56 14,52 1,93 5,89 1,17 2,13 1,99 3,85 1,45 3,81 1,09 1,98 3,45

Dist(1 1 100k) 1,57 14,52 1,97 5,33 1,17 2,13 1,96 3,85 1,43 3,60 1,09 2,24 3,41

Oracle(10 0) 1,42 10,92 3,91 4,36 1,67 1,40 2,86 3,74 6,50 4,35 1,49 6,44 4,09

Oracle(1k 0) 4,89 14,73 2,04 7,78 1,02 1,07 6,02 3,98 2,83 10,88 2,17 9,61 5,58

Oracle(1k 0.5) 1,08 14,73 1,94 15,09 1,02 1,07 6,98 4,05 1,98 15,33 1,97 7,76 6,08

Oracle(1k 1) 1,79 14,73 1,79 15,09 1,04 1,12 4,01 4,99 3,15 14,44 1,84 3,93 5,66

Oracle(1k 4) 1,06 13,75 2,62 15,09 1,36 1,09 2,92 6,92 3,31 8,73 1,64 3,06 5,13

Lee 2,15 14,73 1,01 7,40 4,81 1,01 3,50 9,00 3,96 1,01 1,02 1,01 4,22

Long(02) 3,32 2,44 2,81 5,78 1,94 2,38 1,57 2,98 1,77 1,63 1,66 2,15 2,53

Long(04) 4,66 12,36 2,91 10,60 2,32 2,62 1,82 3,48 2,58 3,52 1,83 2,02 4,23

Long(08) 5,32 12,36 14,11 7,95 2,76 2,74 2,77 4,57 2,54 4,85 2,13 2,83 5,41

Long(16) 2,57 9,44 14,30 7,54 1,86 2,64 2,97 7,00 2,35 6,11 2,56 2,80 5,18

Long(32) 1,66 9,44 12,53 5,30 1,72 2,69 3,29 6,82 3,52 6,68 1,80 2,52 4,83

LongIRB(04) 1,50 5,23 11,98 4,55 1,43 2,71 2,84 6,66 6,45 6,23 1,43 1,80 4,40

LongIRB(08) 1,63 1,34 1,53 3,53 1,23 1,97 3,13 2,48 1,71 1,27 1,17 1,97 1,91

LongIRB(16) 3,75 13,37 2,22 9,69 1,58 2,81 2,91 3,46 3,41 2,56 1,48 2,70 4,16

LongIRB(32) 4,56 13,37 2,27 12,51 2,01 3,16 3,45 4,48 13,53 3,88 1,89 3,37 5,71

LongIRB(64) 5,26 13,37 3,12 7,04 2,68 3,10 4,36 6,10 3,49 7,31 2,39 4,09 5,19

LongIRB(128) 2,26 1,74 1,75 3,85 1,40 2,25 2,92 3,94 1,89 1,81 1,28 1,82 2,24

LongMinPC(02) 1,18 6,10 14,37 2,87 1,17 1,16 3,88 3,29 2,28 1,16 1,69 1,52 3,39

LongMinPC(04) 1,18 6,10 14,37 2,87 1,18 1,16 3,88 3,30 2,28 1,16 1,70 1,47 3,39

LongMinPC(08) 1,07 6,10 14,08 2,87 1,18 1,16 3,88 3,30 2,28 1,16 1,70 1,47 3,35

LongMinPC(16) 1,07 5,27 13,99 2,65 1,21 1,17 4,78 3,66 2,21 1,16 1,63 1,36 3,35

LongMinPC(32) 1,08 5,05 12,83 3,18 1,25 1,43 4,41 3,66 2,18 1,16 1,66 1,36 3,27

LongMinSP(02) 3,81 12,68 14,37 14,48 1,27 4,24 15,72 14,46 6,73 14,64 1,56 7,83 9,32

LongMinSP(04) 3,54 12,68 14,37 14,48 1,27 4,23 15,72 14,46 11,14 14,64 1,59 6,64 9,56

LongMinSP(08) 3,39 11,80 14,08 14,48 1,27 4,23 15,70 14,46 10,50 14,64 1,47 6,64 9,39

LongMinSP(16) 2,46 10,63 13,99 14,48 1,27 4,42 15,70 14,46 10,50 14,64 1,47 6,29 9,19

LongMinSP(32) 2,11 10,63 13,06 14,48 1,30 4,40 15,70 14,46 9,88 14,15 1,29 6,21 8,97

MaxFunMinPC1 3,66 14,73 14,69 14,27 1,90 2,02 15,78 14,25 8,14 15,74 1,57 8,28 9,59

MaxFunMinPC2 2,79 14,73 14,69 3,94 1,30 2,40 5,34 5,45 5,35 15,74 1,40 1,99 6,26

MaxFunMinPC3 3,66 14,73 14,69 14,27 1,90 2,14 15,78 14,25 8,14 15,74 1,57 8,28 9,60

MinPC 2,00 7,73 14,69 4,09 1,82 1,39 5,78 5,45 4,14 6,89 1,66 1,99 4,80

MinSP_MinPC 3,66 14,73 14,69 14,27 1,90 4,35 15,78 14,25 8,14 15,74 1,57 8,28 9,78

RDMinSP(2 1 n) 2,69 14,69 14,66 10,20 1,75 4,25 15,78 14,25 5,47 15,33 1,54 8,11 9,06

RDMinSP(4 0 n) 3,66 14,73 14,69 14,27 1,90 4,35 15,78 14,25 8,14 15,74 1,57 8,28 9,78

RDMinSP(4 1 n) 2,77 14,84 14,65 14,27 1,75 3,85 15,78 14,25 5,47 15,33 1,54 8,12 9,39

RDMinSP(8 1 y) 2,57 14,73 14,56 14,27 1,67 3,80 15,78 14,25 7,24 14,10 1,56 2,86 8,95

RoundRobinEq 3,95 4,64 2,74 7,02 1,93 2,74 2,60 7,63 3,82 5,27 1,29 2,26 3,82

LongestPath1 3,28 5,76 1,04 7,60 4,69 1,17 1,85 2,03 7,69 14,58 1,32 1,64 4,39

LongestPathP 3,66 11,38 2,28 7,63 3,50 1,17 3,00 4,96 7,79 14,63 1,43 8,71 5,84

PDomMaxFun 3,42 7,85 14,60 2,44 1,29 2,57 1,67 3,89 6,70 14,43 1,63 2,02 5,21

PDomMaxSP 2,17 6,10 12,17 7,80 1,79 1,15 5,01 5,04 1,08 1,26 1,73 1,75 3,92

PDomMinFun 3,55 12,25 14,72 15,16 2,76 1,00 7,56 7,52 1,13 1,26 1,73 10,52 6,60

PDomMinPC 1,17 6,10 14,60 2,65 1,16 1,19 3,79 3,89 2,59 1,16 1,71 1,59 3,47

PDomMinSP 3,63 12,66 14,60 14,42 3,01 4,29 15,75 14,40 6,77 14,70 1,63 10,87 9,73

PDomRB 3,88 4,48 2,65 4,00 1,85 2,44 1,64 3,71 2,51 3,14 1,26 2,01 2,80

PDomLong(2) 4,00 8,52 2,30 4,98 2,10 2,51 3,41 3,74 3,22 3,40 1,77 1,99 3,49

PDomLong(4) 4,87 7,96 2,35 6,99 2,25 2,79 6,24 4,76 2,69 4,51 2,09 2,00 4,12

PDomLong(8) 5,04 6,04 3,52 7,09 2,11 2,72 6,06 7,10 2,77 7,14 2,46 2,81 4,57

PDomLong(16) 2,79 6,16 3,54 9,53 1,64 2,74 6,01 11,25 5,02 8,93 2,28 2,42 5,19

PDomLong(32) 2,19 5,29 6,11 9,35 1,45 2,79 6,13 11,25 4,98 8,07 1,74 1,92 5,11

Table 5.3. DLP of all benchmarks with all heuristics
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Heuristic barn blacks body �t �uid fmm ocean radix swapt tach volr water avg

Dist(0 0 10k) 5,12 15,07 14,69 15,09 2,92 1,38 15,79 14,26 8,17 7,09 1,67 11,75 9,42

Dist(1 1 -1) 4,45 15,07 12,93 1,90 5,66 8,53 4,95 11,03 13,35 14,88 12,62 4,81 9,18

Dist(1 1 1k) 4,46 15,07 12,89 7,75 6,43 11,59 4,81 12,21 13,22 14,84 11,27 4,37 9,91

Dist(1 1 10k) 4,45 15,07 12,91 7,65 6,24 11,63 4,97 11,72 13,45 14,83 10,16 4,85 9,83

Dist(1 1 100k) 4,45 15,07 12,86 6,35 4,60 11,85 4,91 11,72 13,42 14,79 12,62 6,90 9,96

Oracle(10 0) 1,64 14,87 8,04 4,79 6,13 1,65 3,03 12,87 9,33 14,68 5,03 8,89 7,58

Oracle(1k 0) 4,94 15,04 2,06 7,88 1,02 1,09 6,08 3,98 2,83 10,92 2,17 9,75 5,65

Oracle(1k 0.5) 1,08 15,06 1,96 16,00 1,02 1,09 7,13 4,05 1,99 15,54 2,04 8,18 6,26

Oracle(1k 1) 1,81 15,07 1,81 16,00 1,04 1,13 4,26 4,99 3,17 15,27 2,00 4,38 5,91

Oracle(1k 4) 1,07 14,93 2,66 16,00 1,40 1,12 3,02 6,93 3,39 15,32 2,60 3,74 6,01

Lee 2,16 14,85 1,96 7,45 4,84 1,96 3,50 9,02 3,97 1,96 1,02 1,96 4,55

Long(02) 3,81 2,68 3,04 5,83 2,14 2,51 1,64 2,98 2,07 1,84 1,81 2,39 2,73

Long(04) 5,26 12,74 3,14 10,67 2,54 2,72 1,89 3,49 2,88 3,95 1,97 2,16 4,45

Long(08) 5,74 12,74 14,16 8,01 2,96 2,81 2,86 4,58 2,74 5,34 2,26 2,99 5,60

Long(16) 2,65 9,67 14,32 7,58 1,90 2,70 3,06 7,00 2,43 6,66 2,66 2,89 5,29

Long(32) 1,70 9,67 12,62 5,33 1,75 2,73 3,34 6,82 3,58 7,10 1,83 2,58 4,92

LongIRB(04) 13,83 14,50 14,77 15,19 11,65 14,41 15,74 15,98 14,95 14,68 13,03 12,01 14,23

LongIRB(08) 12,21 12,92 14,53 7,99 10,93 14,32 8,90 15,83 13,34 14,14 11,85 3,85 11,73

LongIRB(16) 9,94 15,07 8,96 13,56 7,17 4,64 4,84 8,27 14,87 12,57 5,93 4,55 9,20

LongIRB(32) 6,96 15,07 4,93 7,65 5,43 4,11 6,14 8,83 4,03 12,56 5,14 5,19 7,17

LongIRB(64) 2,06 9,61 5,29 6,54 8,37 3,69 8,52 10,52 6,95 12,12 4,92 4,92 6,96

LongIRB(128) 10,23 15,07 11,20 12,59 9,43 13,32 4,87 7,03 7,53 13,70 9,96 3,88 9,90

LongMinPC(02) 1,18 6,11 14,38 2,87 1,18 1,16 3,88 3,29 2,28 1,16 1,70 1,52 3,39

LongMinPC(04) 1,18 6,11 14,38 2,87 1,18 1,16 3,88 3,30 2,28 1,16 1,70 1,47 3,39

LongMinPC(08) 1,07 6,11 14,08 2,87 1,18 1,16 3,88 3,30 2,28 1,16 1,70 1,47 3,36

LongMinPC(16) 1,07 5,28 14,00 2,65 1,21 1,17 4,78 3,66 2,21 1,16 1,63 1,36 3,35

LongMinPC(32) 1,08 5,06 12,84 3,18 1,25 1,43 4,41 3,66 2,18 1,16 1,66 1,36 3,27

LongMinSP(02) 3,82 12,74 14,38 14,48 1,27 4,24 15,72 14,46 6,74 14,66 1,56 7,87 9,33

LongMinSP(04) 3,55 12,74 14,38 14,48 1,27 4,23 15,72 14,46 11,16 14,66 1,59 6,68 9,58

LongMinSP(08) 3,40 11,88 14,09 14,48 1,27 4,23 15,71 14,46 10,51 14,66 1,47 6,68 9,40

LongMinSP(16) 2,47 10,67 14,00 14,48 1,27 4,42 15,71 14,46 10,51 14,66 1,47 6,31 9,20

LongMinSP(32) 2,12 10,67 13,07 14,48 1,30 4,40 15,70 14,46 9,88 14,16 1,29 6,24 8,98

MaxFunMinPC1 3,67 14,85 14,69 14,27 1,90 2,02 15,79 14,25 8,16 15,74 1,57 8,34 9,60

MaxFunMinPC2 2,79 14,85 14,69 3,94 1,30 2,40 5,34 5,45 5,37 15,74 1,40 1,99 6,27

MaxFunMinPC3 3,67 14,85 14,69 14,27 1,90 2,14 15,79 14,25 8,16 15,74 1,57 8,34 9,61

MinPC 2,02 7,79 14,69 4,09 1,85 1,40 5,79 5,45 4,15 6,91 1,66 2,02 4,82

MinSP_PC 3,67 14,85 14,69 14,27 1,90 4,35 15,79 14,25 8,16 15,74 1,57 8,34 9,80

RDMinSP(2 1 n) 2,70 14,81 14,66 10,20 1,75 4,26 15,79 14,25 5,48 15,33 1,54 8,17 9,08

RDMinSP(4 0 n) 3,67 14,85 14,69 14,27 1,90 4,35 15,79 14,25 8,16 15,74 1,57 8,34 9,80

RDMinSP(4 1 n) 2,78 14,96 14,65 14,27 1,75 3,85 15,79 14,25 5,48 15,33 1,54 8,18 9,40

RDMinSP(8 1 y) 2,58 14,85 14,56 14,27 1,67 3,80 15,79 14,25 7,26 14,10 1,56 2,88 8,96

RoundRobinEq 11,57 12,97 10,43 15,16 8,37 9,26 8,70 15,93 11,57 13,88 10,25 8,69 11,40

LongestPath1 3,28 5,78 1,04 7,60 4,69 1,17 1,85 2,03 7,70 14,59 1,32 1,64 4,39

LongestPathP 3,69 14,85 3,17 7,63 3,51 1,17 3,02 4,96 8,93 14,91 1,44 8,97 6,35

PDomMaxFun 3,43 7,89 14,60 2,44 1,29 2,57 1,67 3,89 6,72 14,44 1,63 2,03 5,22

PDomMaxSP 2,19 6,11 12,17 7,80 1,80 1,15 5,01 5,04 1,08 1,26 1,73 1,76 3,93

PDomMinFun 3,57 12,31 14,72 15,16 2,80 1,00 7,57 7,52 1,13 1,26 1,74 10,62 6,62

PDomMinPC 1,17 6,11 14,60 2,65 1,16 1,19 3,79 3,89 2,59 1,16 1,71 1,59 3,47

PDomMinSP 3,64 12,74 14,60 14,42 3,01 4,29 15,76 14,40 6,78 14,72 1,63 10,97 9,75

PDomRB 11,54 12,67 10,28 15,65 8,48 8,98 9,10 15,84 10,19 10,63 10,39 8,52 11,02

PDomLong(2) 4,37 8,59 2,44 5,07 2,19 2,57 3,48 3,74 3,32 3,58 1,87 2,07 3,61

PDomLong(4) 5,20 8,01 2,48 7,08 2,33 2,84 6,45 4,76 2,74 4,69 2,18 2,07 4,24

PDomLong(8) 5,26 6,05 3,59 7,14 2,14 2,77 6,08 7,10 2,81 7,34 2,55 2,86 4,64

PDomLong(16) 2,83 6,17 3,60 9,57 1,66 2,78 6,04 11,25 5,05 9,13 2,32 2,45 5,24

PDomLong(32) 2,23 5,29 6,15 9,38 1,47 2,82 6,15 11,25 5,00 8,12 1,76 1,94 5,13

Table 5.4. Throughout of all benchmarks with all heuristics
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5.1.1 Discussion

Despite the applications being data-parallel, many of them are di�cult to synchronize.

Consequently, no heuristic is good with all of them. This diversity leads to curious

situations: sometimes a heuristic that is bad in most cases is good for a speci�c

benchmark. This case is illustrated by Lee's heuristic, which is good with �uidanimate.

In the end, we have not been able to identify a heuristic that outperform all

the others. We are inclined to think that the hardware industry needs an adaptive

heuristic that learns the characteristics of the benchmarks and is able to capitalize in

these speci�c features.

Heuristics that are good in normal SIMD will not have worse performance in

opportunistic SIMD. Because the performance in opportunistic SIMD is identi�ed by

the instruction throughput and instruction throughput includes DLP, as explained in

section 1.5.2.

Heuristics that provide higher TLP, such as some variations of Distance, Greedy

Oracle and Long-IRB, have better instruction throughput than the best heuristics

for normal SIMD, which have high DLP. These heuristics were created to have high

TLP instead of high DLP and, as consequence, they have better performance in an

opportunistic SIMD architecture. We have been able to observe this behavior in

benchmarks that are di�cult to synchronize, such as �uidanimate, barnes, fmm and

volrend. Therefore, if we do not have a heuristic with good performance for normal

SIMD, we have a heuristic with better performance in opportunistic SIMD.

MaxFun-MinPC has almost the same result as MinSP-MinPC. It was expected

because they follow the same principle of regarding the activation records in the call

stack and using the smaller PC. MinSP-MinPC has good results with benchmarks

that are easy to synchronize. These benchmarks have functions that Min-PC can

synchronize easily. Min-PC is improved by MaxFun-MinPC and MinSP-MinPC

because it handles the e�ects of di�erent functions calls as explained in chapter 3.

We can see that Distance and MinSP-MinPC are good heuristics in most cases,

but they have di�erent results. Distance with tachyon has bad DLP, but good TLP.

The instruction throughput is high and therefore it is good in opportunistic SIMD. In

common SIMD, while Distance is better with barnes and bad with tachyon, which is

easy to synchronize, MinSP-MinPC is good with tachyon and bad with barnes, which

is di�cult to synchronize.

The heuristics that use the longest path, which is used by the reference

implementation of thread frontiers, did not have good results. We speculate that

the reason is a bad algorithm to �nd good aproximated longest path, because many
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functions are large. We do not have a depth study that measures how good is this

policy.

Long's heuristics have many variations, which may be good in di�erent cases. As

a consequence, we could not �nd a generic version of Long's heuristic that is better

generally. We observed that tables with sizes larger than 32 are bad and some very

small sizes are for rare speci�c cases. The size of the table cannot be large or small.

Small table does not have enough space to keep the distance of divergent threads. But

a large table causes lots of false positives, because a thread that is ahead may �nd its

PC in the table of a thread that is behind due to loops.

The Round-Robin heuristic simulates the execution in a MIMD machine,

therefore it has the lowest DLP, which is 1, and highest TLP, which should be the

number of threads, but it is a little smaller due to the small unbalance in the distribution

of the thread load. Round-Robin-Eq is a heuristic similar to Round-Robin, but it shares

instruction fetches when it is possible. These heuristics illustrate the extreme cases with

high TLP.

Finally, we can de�ne an optimal subset of heuristics. We exclude heuristics that

cannot be implemented in hardware or are very expensive, such as Long, Distance

and GreedyOracle. The subset would include MinSP-MinPC, MaxFun-MinPC and

PostDom with MinSP. Nevertheless LongestPath heuristics need further improvements

in the implementation and studies in the behavior when we have multiple function

calls.

5.2 Execute-identical instructions

Here we present histograms that show how often we have a speci�c number, from 1

to 16, of active threads. In other words, the histograms show in how many cycles we

have N threads in execution when an instruction is being executed. This information

lets us know how many threads are divergent on average. Consequently, it gives us the

average number of waiting threads.

The instructions of each bar of the histogram are fetch-identical. Among them,

the charts also show how many instructions are execute-identical. As explained in

section 1.2, execute-identical instructions may be existing only if the instructions are

fetch-identical.

In these charts, the X axis denotes the number of threads in execution and the

Y axis denotes the number of cycles in millions that it happens. The execute-identical

instructions are in black, while the non-execute-identical instructions are in gray.



5.2. Execute-identical instructions 69
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�uidanimate swaptions

tachyon barnes

Figure 5.14. Histogram (1/2)
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ocean_ncp radix

volrend water_nsquared

Figure 5.15. Histogram (2/2)
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Figure 5.16. Average of execute-identical instructions.

5.2.1 Discussion

As presented in section 5.1, there is no heuristic that is good in all cases, but there are

heuristics that are generally bad, but good with a speci�c benchmark. When a heuristic

that is able to keep the threads of some benchmarks synchronized, we have all threads

active during almost all the time. The benchmarks that we could not synchronize well

have their execution almost serial with single active thread during most times. These

benchmarks are �uidanimate, barnes, fmm and volrend.

We speculate that most of the histograms concentrate on one or sixteen because

we have used the best heuristics for each benchmark, when doing this analysis. The

benchmarks that are di�cult to synchronize have their execution almost serial with

any heuristic.

We can see that the number of execute-identical instructions is high. The average

of execute-identical instructions of all benchmarks when we have 16 executing active

is 33.670%. And on the average we had 37.697% threads active at any time.

5.3 Memory access pattern

The following �gures show how often each memory access pattern is found in our

simulation using those data-parallel applications. These patterns are described in

section 1.5.4. In these charts, white denotes scattered memory accesses, gray means

a�ne memory accesses and black means uniform memory accesses. The X axis is the

number of active threads.
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Figure 5.17. Memory access pattern (1/2)
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Figure 5.18. Memory access pattern (2/2)
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Figure 5.19. Average of memory access patterns

5.3.1 Discussion

We found a large amount of regularity in the memory access patterns. In the average

with 16 active threads, 14.459% of the simultaneous memory accesses is uniform and

24.948% is a�ne. And in the total average, 25.446% of the accesses is uniform and

35.005% is a�ne. The amount of scattered accesses is high due to the allocation of

data on the heap.

Data placed on the heap is not layer out in any organized pattern. The

benchmarks and our experiments are not able to �nd patterns with heap data, because

the benchmarks were written to run in machines like standard PC. Dynammic memory

allocation generally are not present in SIMD architecture, for instance, OpenCL, a

language for GPGPU, does not support malloc and free.

As explained in 1.5.4, memory access regularity is good, because it allows many

possible optimizations. Uniform address would cause only one shared access to the

memory. Contiguous a�ne accesses can be optimized to be part of the same cache

page and the accesses can be combined into a single memory transaction.
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5.4 Distance between memory accesses

Here we show the distances between a�ne accesses and the distance that is the interval

that includes all scattered accesses. Knowing the distances is important, because it

gives the computer architect the subsidies to optimize memory access. Short distances

allow the same memory access to retrieve data for di�erent threads. GPUs have been

using this technique extensively: threads that access nearby data have the opportunity

to read or write these data through one single coalesced access.

In the charts, each number, e.g., 0 to 63, is the base-2 logarithm of the maximum

distance between two addresses. We grouped the exponent values, from the darkest to

the lightest, in 0 to 3, 4 to 7, 8 to 15, 16 to 31 and 32 to 64. For each benchmark,

the left chart shows a�ne accesses and the right chart shows scattered accesses. The

X axis is the number of active threads.
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Figure 5.20. Memory access distances (1/4)
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swaptions

tachyon

barnes

Figure 5.21. Memory access distances (2/4)
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Figure 5.22. Memory access distances (3/4)
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Figure 5.23. Memory access distances (4/4)
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5.4.1 Discussion

The large quantity of a�ne accesses that we have observed is attributed to the stack

frames. The most common distance between a�ne accesses is 223 bytes. Each thread

receives 223 bytes of memory to allocate their stack frames. Thus, local variables, which

are stored in the stack, are likely to be spaced 223 bytes.

We have not observed very close a�ne accesses, e.g., within blocks up to 27 bytes

long. This behavior was expected because, in the current architecture, the blocks

belongs to the same cache page. If multiple threads could write on it simultaneously,

then we would experiment a performance penalty in PC architecture due to cache

coherence updates.

Future compilers and architectures could merge the call stack of all threads into a

single vectorial call stack. In the merged stack, each variable would be a vector with an

instance per thread. Thus, the data that is stored in stack of di�erent threads would

be contiguous and it helps to optimize cache operations and memory access.

In general we have observed very long distances between the scattered addresses

used by threads when simultaneously processing load and store instructions. Most

distances that we have observed are between 216 and 231. The data in this case is

stored either in static memory, or, more usually, in the memory heap. The memory

heap is often used to keep data structures of objects and containers.

We speculate that these large spaces between addresses are common because the

benchmarks and compilers have not been done with memory coalescing in mind. They

are meant to run in traditional CPUs, and in this case inter-thread locality is not

at a premium. On the contrary, close inter-thread locality would be harmful in the

context of multi-core platforms with coherent private caches, by causing false sharing

of cache lines. Collange has observed a substantially di�erent behavior in GPGPU

applications [11]. In that case, inter-thread proximity is much more common, as this

type of locality contributes notoriously to performance improvements.
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Final Remarks

In this dissertation we have advanced the research on minimal multi-threaded hardware.

We believe that this is an important contribution, because parallelism is, currently,

the main avenue towards high-performant systems. Our work paves the way to

multi-threaded processors to run data-parallel applications as e�ciently as possible.

We have compared di�erent thread-synchronization heuristics. The

MinSP-MinPC and MaxFun-MinPC heuristics were proposed during this study and

our empirical evaluation has demonstrated that these techniques are very e�ective

in keeping threads synchronized. In addition to being e�ective, we claim that

MinSP-MinPC and MaxFun-MinPC are one of the simplest heuristics available in the

literature.

We have also studied the memory access patterns typical of data-parallel

multi-threaded applications. This study let us �nd a substantial amount of regularity

between concurrent threads. This regularity is a further motivation for new hardware

designs that have been proposed in the literature, but are yet to be manufactured.

New hardware designs might include better memory coalescing, uniform memory access

sharing and merged call stack.

Finally, we have analysed the distance between the addresses of data accessed

simultaneously by di�erent threads. Data accessed by di�erent threads tend to be

distant in memory. This distance makes it di�cult to take bene�t from spatial locality

in inter-thread memory accesses. This somehow negative result suggests that the data

layout of the call stack should be reconsidered in the context of inter-thread locality.

We leave this new study as future work.

81
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6.1 Limitations of this work

We have not succeed to �nd a heuristic that is better than all the others in every

scenario. Although we identi�ed some speci�c cases to be optimized, no heuristic that

is good in all cases was found. We also show that the current state-of-art priority

policies can be improved.

Our experiments were executed with full benchmarks. We should have divided

the study to �nd good heuristics in two steps. The �rst part would use programs with

single function with any kind of realistic and complex CFG. It would help to �nd good

heuristics for intra-function synchronization. The second step would include programs

with complex graph of function calls.

Another limitation of this work is that we have tested all our techniques in

software only. We have not simulated them in hardware. A deeper study, involving

possibly a cycle accurate hardware simulator or FPGA implementation, would let us

probe the real cost of each heuristic in terms of wires, gates and delays. Although we

have not studied the cost of the real hardware implementation, our work has allowed

us to verify that very good synchronization policies exist. This positive result leads us

to think that better heuristics with cheap hardware implementation may come in the

future.

From this last observation, we believe that our post-dominator heuristics can be

improved in a real hardware implementation. We have implemented these heuristics

in software, using sequential algorithms to compare PCs. Our simulation in software

relies on many compiler hints that were inserted in the code increasing the size of the

code. We believe that this heuristics has great potential to bene�t from new helper

instructions and speci�c compiler optimizations.

6.2 Future works

Throughout this work, we had many ideas that could be used to create heuristics, but

we did not implement them for the lack of time. One of these ideas is to use the branch

predictor, which may be already available in hardware, to help in the synchronization

e�ort. The branch predictor may help the synchronizer to guess where a break or

continue statements of a loop is. In other words, it may detect when a thread �nishes

a loop, or an iteration within this loop. Thus, we may give priority to threads that

have not �nished the current iteration or have not �nished the loop yet, forcing threads

that are ahead in the loop to wait.

Since we do not have a heuristic that is good for all cases, as a future work, an
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adaptive heuristic could be createad. It would be able to detect the behavior of the

program and choose a known heuristic to handle it. It may also analyse characteristics

of speci�c parts the program, to decide the best heuristic to synchronize it. Its hardware

implementation is a challenge, because it is very expensive.

A natural continuation of our work is to investigate heuristics that are good

at synchronizing threads at the beginning of called functions. Some heuristics,

such as MaxFun-MinPC, manage to synchronize the threads when the functions

return. However, it does not do anything when the same function is reached

through di�erent intermediate function calls. We believe that handling this case is

an important contribution to this work, because it tends to improve the performance

of object-oriented programs that run in parallel. In this world, we have many virtual

function calls, which may even be invoked through di�erent names and small overridden

functions may call the corresponding function of the parent class. Ideally, a good

heuristic should be able to synchronize threads with many levels of function calls.

For instance, in �gure 3.5, we have the class Animal, which is inherited by Wolf

and Tiger. Both classes override the function Animal::eat and both Wolf::eat and

Tiger::eat call Animal::eat. In this example, we have three threads that called the

virtual function instance->eat() and the �rst thread called Wolf::eat, the second one

called Tiger::eat and the third one called Animal::eat directly. We would like to make

all threads execute Animal::eat simultaneously.

Another case is present in �gure 3.1. In this case, we wold like to make all

threads execute big_function simultaneously without worsening the heuristics. This

speci�c problem is solved by branch fusion [16], which is a technique that divides

"if-then-else" in parts and redundant code is not repeated. However, we can also have

a case of "if-then-else" in which then calls function foo, else calls function bar, and

both functions are small and call function fubaz, which we want to synchronize.

We have not got good results with the policy of the longest path. New algorithms

to solve with better accuracy the longest path distance in cyclic graphs could be

invented in the future. The algorithm would be optimized for CFG, which has one or

two edges per node. The exit node has no out edge and is the only destination, whose

longest distance from any node is desired. Sometimes, a large CFG may have small

isolated subgraphs that may be solved locally with non-polynomial-time algorithm. For

instance, we have a subgraph between the entry node, which must have no predecessor,

and the nearest post-dominator of the entry node; and no node can have a predecessor

that is not part of the subgraph. The solution of the subgraph helps to decrease the

size of the full CFG.

We believe that the linker can be used to help existing heuristics and to design
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new heuristics. We envision an algorithm in which the linker creates a graph of the

entire program where each function is a node and edges link caller to callee. This

graph starts with the �rst function that the threads execute. The linker can sort

topologically the graph. The linker could add priority hints or synchronization hints

in the beginning of each function to help when the same functions is reached through

di�erent paths. The linker may also sort all the functions of the program favorably to

help the Min-PC heuristic. Notice that implementing such an algorithm is challenging.

The optimization of programs with indirect calls, including virtual functions, would be

di�culty because they cannot be easily included in the graph, but the linker can see

the entire program. Functions of shared libraries would be a further problem.

As a future work, we would also like to implement the heuristic that uses

structured control �ow graph with break and continue statements, which is explained

in 3.2.2. It requires a structured program, but it can be compiled using an algorithm

to transform the input CFG into a structured CFG. This transformation leads to code

expansion. However, we speculate that this kind of heuristic may be very e�ective at

synchronizing threads; thus, leading to shorter execution traces.

Another work that we leave for the future involves the study of architectures

between SIMD and MIMD, such as 2IMD and 4IMD. The study of these architectures

has been done previously; however, the literature has yet to compare and �nd good

heuristics for them. TLP is always 1 in SIMD, but it varies from 1 to 2 in 2IMD

and from 1 to 4 in 4IMD. When the DLP of some benchmarks cannot be improved,

the TLP should be higher to improve performance. Implementing these heuristics is

also a di�culty endeavor. A good implementation may require the use of compiler

support and changes in ISA. These changes should give us the opportunity to decide

if a thread should execute the second path of a divergent block, or if it should wait

for synchronization. This decision depends on the code structure, e.g., are we in an

"if-then-else block" or are we in an "if-then block"?

Finally, an architecture that is intermediate between SIMD and MIMD could

emerge. A future study should �nd a good number of fetch units in relation to the

number of execute units that a parallel machine should have to run data-parallel

programs. This number may equal the largest number of divergent paths in the

program. In programs whose DLP is 2 and TLP is high, an hIMD architecture would

have good performance. The hIMD would be an architecture in which the number of

fetch units is half of the number of execute units,
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6.3 Software

We expect that our contributions may help computer engineers to create new concrete

hardware that is faster, cheaper and more power-e�cient. Towards this end, we

leave more than empirical results in this work. We have developed a framework

to create and execute new heuristics. We believe that it may be useful to other

researchers in the future. The source code of this framework, of the heuristics and

of the many benchmarks that we have developed during our toils can be found in:

http://code.google.com/p/mmt-sync/
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