
EXTRACTING EXAMPLES FOR API USAGE

PATTERNS

HUDSON SILVA BORGES

EXTRACTING EXAMPLES FOR API USAGE

PATTERNS

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais – Departa-
mento de Ciência da Computação
como requisito parcial para a obtenção do
grau de Mestre em Ciência da Computação.

Orientador: Marco Túlio de Oliveira Valente

Belo Horizonte

Março de 2014

HUDSON SILVA BORGES

EXTRACTING EXAMPLES FOR API USAGE

PATTERNS

Dissertation presented to the Graduate
Program in Ciência da Computação of the
Universidade Federal de Minas Gerais – De-
partamento de Ciência da Computação
in partial fulfillment of the requirements for
the degree of Master in Ciência da Com-
putação.

Advisor: Marco Túlio de Oliveira Valente

Belo Horizonte

March 2014

c© 2014, Hudson Silva Borges.
Todos os direitos reservados.

Borges, Hudson Silva

B732e Extracting Examples for API Usage Patterns /
Hudson Silva Borges. — Belo Horizonte, 2014

xxi, 102 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais – Departamento de Ciência da
Computação

Orientador: Marco Túlio de Oliveira Valente

1. Computação – Teses. 2. Engenharia de software –
Teses. 3. Software – Reutilização – Teses. I.
Orientador. II. Título.

CDU 519.6*32(043)

Agradecimentos

Agradeço a todas as pessoas que me ajudaram a chegar até aqui, desde o primário até
o término do mestrado.

Agradeço especialmente aos meus pais, Diva e Hugo, que sempre estiveram ao meu
lado apoiando minhas decisões e dando todo suporte necessário.

Agradeço a minha amada noiva, Elisângela, que foi a pessoa que esteve ao meu
lado a todo momento durante esses dois anos. Agradeço também a minha segunda
família—especialmente Elir, Luzia, Elir Jr. e Eliel—que também sempre me apoiaram.

Agradeço ao professor Marco Túlio por todo apoio durante esses dois anos de
mestrado. Sempre atencioso e disponível, representou uma das importantes bases que
me apoiaram durante todo curso.

Agradeço aos meus amigos do LLP por tornar mais agradável a convivência diária no
departamento.

Agradeço ao Programa de Pós-graduação em Ciência da Computação (PPGCC) pelo
suporte financeiro e acadêmico.

Agradeço ao CNPq pelo apoio financeiro.

ix

Resumo

Atualmente, sistemas computacionais reusam cada vez mais funcionalidades providas
por bibliotecas e frameworks, que são acessados por meio de Application Programming
Interfaces (APIs). Contudo, o reuso de tais recursos requer um esforço não trivial. Es-
tudos empíricos recentes mostram que a falta de exemplos de uso é o maior obstáculo
para o uso de APIs atualmente. Por outro lado, o crescente aumento do uso de APIs
por sistemas clientes produz dados que podem ser usados para melhorar o aprendizado
de tais APIs. Esta dissertação de mestrado apresenta uma extensão da plataforma
APIMiner—chamada APIMiner 2.0—que instrumenta documentações tradicionais de
APIs com exemplos de código fonte relativos a métodos que são frequentemente chama-
dos em conjunto. Essa abordagem estende a plataforma APIMiner 1.0 usando algorit-
mos de mineração de regras de associação para extrair padrões de uso e incluir exemplos
de uso mais úteis. Particularmente, os exemplos são sumarizados usando um algoritmo
de slicing estático que considera várias estratégias propostas recentemente na liter-
atura visando melhorar a legibilidade. Uma instância da plataforma APIMiner 2.0 foi
implementada para a API de desenvolvimento do Android. Além disso, foi conduzida
uma profunda análise do uso da API do Android por centenas de sistemas clientes, um
estudo de campo envolvendo o uso do APIMiner 2.0 por desenvolvedores profissionais e
um estudo controlado com 29 participantes. Para esses estudos, a plataforma minerou
1.952 padrões de uso em 396 sistemas clientes de código aberto. Também foram extraí-
dos 102.442 exemplos para métodos únicos da API e 184.821 exemplos para padrões de
uso em 151 sistemas clientes de código aberto. Em um período de cinco meses, a instân-
cia Android APIMiner 2.0 recebeu 32.335 visitas e 5.721 requisições de exemplos de uso
para métodos únicos da API e padrões de uso. Além disso, foi conduzido um estudo
controlado incluindo duas tarefas de manutenção corretivas que foram implementadas
por 29 participantes. Finalmente, foi observado que a plataforma APIMiner 2.0 foi
particularmente útil para participantes que não possuem conhecimentos em Android.

Palavras-chave: API, compreensão de programas, padrões de uso, exemplos de código
fonte, regras de associação, slicing de programas.

xi

Abstract

In modern software development, systems increasingly reuse functionality provided by
libraries and frameworks, which are accessed by means of Application Programming
Interfaces (APIs). However, reusing current APIs generally requires a nontrivial effort.
Recent empirical studies show that the lack of usage examples is a major obstacle
for using modern APIs. On the other hand, the increasing use of APIs by client
systems produces data that can be used to improve APIs learning. This master dis-
sertation presents an extension of the APIMiner platform—called APIMiner 2.0—that
supports the instrumentation of traditional API documents with source code examples
on methods that are frequently called together. Our approach extends the APIMiner
1.0 platform by relying on association rules algorithms to extract usage patterns and
to include more useful examples. Particularly, the provided examples are summa-
rized using a slicing algorithm that considers several strategies recently proposed in
the literature to increase readability. An instance of the APIMiner 2.0 platform was
implemented for the Android API. Furthermore, we conducted an in-depth analysis
on the use of the Android API by hundreds of client systems, a field study involving
the use of APIMiner 2.0 by professional developers, and a controlled study with 29
subjects. In Android APIMiner 2.0, we mined 1,952 usage patterns by analyzing 396
open-source Android systems. We extracted 102,442 examples for single API meth-
ods and 184,821 examples for usage patterns from 151 open-source Android systems.
Moreover, Android APIMiner 2.0 received a total of 32,335 visits and 5,721 example
requests for single API methods and usage patterns in a five-month period. Finally,
we conducted a controlled study including two corrective maintenance tasks that were
performed by 29 subjects. We observed that APIMiner 2.0 was particularly useful for
subjects who do not have knowledge on Android.

Keywords: API, program comprehension, usage patterns, source code examples, as-
sociation rules, program slicing.

xiii

List of Figures

1.1 APIMiner 2.0 Overview . 4

2.1 JavaDoc instrumented with an "Example Button" 14
2.2 Database Representations . 20

3.1 APIMiner 2.0 architecture . 24
3.2 Feedback buttons . 35
3.3 JavaDoc for the SQLiteDatabase class as instrumented by APIMiner 2.0 . 38
3.4 Example window in APIMiner 2.0 . 38
3.5 Full source code dialog window . 39
3.6 API usage pattern example . 40

4.1 New main page of Android APIMiner 2.0 41
4.2 Ratio of methods with at least an API call, among the systems in the

Mining Dataset . 44
4.3 API calls/method, considering all methods of each system and only methods

with at least a single API call . 45
4.4 Distribution of the useful transactions . 47
4.5 Percentage of useful transactions per project 48
4.6 Number of rules by varying the minimum support value 52
4.7 API methods coverage by varying the minimum support value 52
4.8 Number of API method calls in the examples 54
4.9 Distribution of the examples size . 57
4.10 Number of visits per week . 60
4.11 Number of examples provided per week . 61
4.12 Relation between the number of examples requests for usage pattern and

single API method . 63
4.13 Screenshots from More Aqui . 66
4.14 Subjects’ expertise . 68

xv

4.15 Professional expertise of the subjects (in years) 68

xvi

List of Tables

3.1 API elements and their attributes . 26

4.1 Top five projects with more useful transactions 48
4.2 Top five most common transaction items 49
4.3 Intra-class and Inter-class calls in useful transactions 50
4.4 Top five API methods most called in useful transactions 50
4.5 Top five API classes most used in useful transactions 50
4.6 Top five methods with more rules and their average support 53
4.7 Top five rules with higher support . 54
4.8 API methods with more examples . 55
4.9 Methods that most appeared in all examples 55
4.10 Classes that most appeared in all examples 56
4.11 Packages that most appeared in all examples 56
4.12 Quality metrics (all examples) . 56
4.13 Top ten countries in visits . 61
4.14 Top ten methods with most requests for examples (#1) and their number

of available examples (#2) . 62
4.15 Top ten methods with most requests for usage patterns #1, their number

of single example requests #2, and usage patterns #3 63
4.16 Performance of the subjects in the experiment 70
4.17 Number of subjects who completed the tasks 71
4.18 Expertise on Android development of the subjects who concluded the Task 1 71
4.19 Expertise on Android development of the subjects who concluded the Task 2 71
4.20 Time spent in the tasks (in minutes) . 72

A.1 Mining Dataset . 85
A.2 Examples Dataset . 94

xvii

Contents

Agradecimentos ix

Resumo xi

Abstract xiii

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 2
1.3 Contributions . 3
1.4 Organization . 4

2 Background 7
2.1 Introduction . 7
2.2 IDE-based Recommendation Systems 9

2.2.1 Vertical Code Completion . 9
2.2.2 Mining API Code Snippets . 10

2.3 API Documentation . 11
2.3.1 APIMiner 1.0 . 12
2.3.2 eXoaDocs . 14

2.4 Examples Quality . 16
2.4.1 A Study of Programming Q&A in StackOverflow 16
2.4.2 Synthesizing API Usage Examples 17

2.5 Association Rules . 18
2.6 Program Slicing . 21

xix

2.7 Final Remarks . 22

3 Proposed Solution 23
3.1 Introduction . 23
3.2 Source Code Analyzer . 25
3.3 Patterns Analyzer . 26
3.4 Examples Extractor . 27

3.4.1 Summarization Algorithm . 29
3.4.2 Readability Improvements . 30
3.4.3 Removing Similar Examples . 33

3.5 Ranking Engine . 34
3.5.1 Ranking Examples for Single API Methods 34
3.5.2 Ranking Usage Patterns . 36

3.6 JavaDoc Weaver . 37
3.6.1 Example Button . 37
3.6.2 Examples Presentation . 38
3.6.3 Usage Patterns Interface . 39

3.7 Final Remarks . 40

4 Evaluation 41
4.1 Overview . 41
4.2 Android API . 42
4.3 Android APIMiner 2.0 . 43

4.3.1 Dataset . 43
4.3.2 Transactions . 46
4.3.3 Association Rules . 51
4.3.4 Examples . 53
4.3.5 Usage Patterns . 57

4.4 Field Study . 60
4.5 User Study . 64

4.5.1 Study Setup . 65
4.5.2 Experiment Execution . 67
4.5.3 Experiment Results . 69

4.6 Threats to Validity . 72
4.7 Final Remarks . 73

5 Conclusion 75
5.1 Contributions . 75

xx

5.2 Comparison with Related Work . 76
5.2.1 IDE-based Recommendation Systems 76
5.2.2 API Documentation . 77

5.3 Future Work . 78

Bibliography 79

Appendix A Android APIMiner 2.0 Datasets 85

Appendix B Forms 99
B.1 Subject Characterization Form . 99
B.2 Tutorial Task Form . 100

xxi

Chapter 1

Introduction

1.1 Motivation

In modern software development, systems often reuse functionality provided by libraries
and frameworks, which are accessed by means of Application Programming Interfaces
(API). This form of reuse brings numerous benefits such as (i) reduction of costs and
time; (ii) increase the focus of developers on the system’s core requirements since they
do not need to re-implement the services provided by an API; and (iii) increase on
software quality, assuming the API is implemented by experts.

However, reusing current APIs generally requires nontrivial effort. Robillard and
DeLine [2010] conducted an exploratory survey and identified inadequate learning re-
sources as a critical obstacle for learning new APIs. More specifically, they identified
that inadequate or insufficient documentation is the most severe obstacle faced by de-
velopers. Moreover, recent empirical studies indicate that low-level documentations—
which usually are automatically generated from the source code and are limited to
document the signature of the API methods—represent one of the major obstacles in
the API learning process [McLellan et al., 1998; Robillard, 2009; Robillard and DeLine,
2010; Hou and Li, 2011; Buse and Weimer, 2012; Duala-Ekoko and Robillard, 2012].
In common, such studies share the finding that source code examples are a central
instrument to make more productive the use of APIs.

On the other hand, the increasing use of APIs by client systems produces data
that can be used to improve APIs learning. For example, Uddin et al. [2011] and Uddin
et al. [2012] proposed an approach to identify cohesive subsets of an API that are often
introduced in client programs—called Temporal API Usage Patterns. These patterns
can be used to inform developers of the next programming steps required when using
an API. Silva Jr et al. [2012] presented an approach that relies on the source code of a

1

2 Chapter 1. Introduction

project to mine and suggest code sequences. Similarly, Hsu and Lin [2011] propose an
approach that suggests API methods that are frequently called together (in sequence
or not).

1.2 Problem Description

In general, the first resource accessed by developers when learning an API is its doc-
umentation [Robillard and DeLine, 2010]. However, common API documents are au-
tomatically generated from annotations in the code, like JavaDoc for Java and PyDoc
for Python. Robillard and DeLine [2010] classify such documentations as low-level, be-
cause they are typically restricted to briefly describe methods and variables and do not
provide a conceptual view of the API. These factors constitute the main obstacle when
developers need to learn a new API. Moreover, Mar et al. [2011] argue that making a
documentation that guides programmers on using an API correctly is a critical job for
API developers.

A key resource frequently used for ensuring the effectiveness of API documen-
tations is code examples [Nykaza et al., 2002; Robillard and DeLine, 2011]. For this
reason, some approaches have been proposed to automatically instrument traditional
documentations with source code examples, such as APIMiner [Montandon, 2013] and
eXoaDocs [Kim et al., 2009]. Particularly, these approaches rely on automatic code
summarization techniques for extracting code examples. As advantages, these systems
have a wider reachability (because they are independent from other platforms) and
greater scalability (because their results can be pre-processed). As a key disadvantage,
the provided examples are limited to single API methods.

On the other hand, code examples can also be provided by IDE-based recommen-
dation systems. Examples include VCC [Silva Jr et al., 2012] and MACs [Hsu and
Lin, 2011], which take advantage of different data sources available on IDEs to produce
examples. In such approaches, it is common the usage of data mining techniques to
identify patterns on the analyzed data to make recommendations. However, the pro-
vided examples are not for documentation purposes due to their dependence on the
IDE context.

To the best of our knowledge, there is no system centered on traditional API
documents that automatically extracts source code examples for API usage patterns.

1.3. Contributions 3

1.3 Contributions

The central objective of this master work is to introduce a new feature in the APIMiner
platform, which is a system that provides source code examples for single API methods
calls [Montandon, 2013; Borges et al., 2013; Montandon et al., 2013]. This new feature
relies on data mining techniques to identify API usage patterns and to provide real
source code examples that follow the mined patterns. Moreover, several strategies
recently proposed in the literature are used to increase the readability of the provided
examples.

For example, it is common the co-occurrence of methods like open() and close()
in client systems. In this case, the usage of data mining techniques allows us to derive
an usage pattern such as open() ⇒ close(). As another example, in Java a common
usage pattern related to the SQL API is as follows:

java.sql.DriverManager.getConnection(String) and java.sql.Connection.close()

In this sense, Listing 1.1 presents an example for this usage pattern, with readability
improvements—use of comments for abstract initialization (line 1) and comments in
empty blocks (line 4).

Listing 1.1: Example for the usage pattern DriverManager.getConnection(String)
⇒ Connection.close()

1 String url ; // initialized previously
2 Connection conn = DriverManager.getConnection(url);
3 try {
4 // some code
5 } finally {
6 conn.close() ;
7 }

Figure 1.1 illustrates the approach proposed in this master dissertation. This
approach—called APIMiner 2.0—initially identifies all methods provided by an API of
interest. Then, it mines API usage patterns from a set of client systems. Based on these
patterns, APIMiner 2.0 extracts source code examples from the client systems with
readability improvements for single API method calls and also for the identified usage
patterns. Finally, the JavaDoc documentation is instrumented with the examples.

4 Chapter 1. Introduction

Client Systems
Repositories

API
Source
Code

Usage
Patterns

Examples
JavaDoc

Files

Figure 1.1: APIMiner 2.0 Overview

The following characteristics highlights the main differences between APIMiner
2.0 and existing API documentations systems:

• The mined API usage patterns contribute to the extraction of representative
source code examples. Recent studies show that developers prefer examples
that involve more than one method call [Robillard and DeLine, 2010; Buse and
Weimer, 2012; Nasehi et al., 2012]. In this sense, APIMiner 2.0 presents usage
examples including API methods frequently called together in real applications;

• Automatic summarization techniques based on static slicing in many cases may
generate examples with readability problems. In order to improve the examples
extracted using slicing, we propose an algorithm that includes several strategies
recently proposed in the literature to increase the readability of API examples;

• A criterion for ranking the extracted examples that prioritizes examples that have
no compilation errors.

To evaluate the proposed approach, we implemented a particular instance for the
Android API. In this instance, we used APIMiner 2.0 to extract 287,263 source code
examples and 1,672 usage patterns. Moreover, we also report a field study, with real
data collected after APIMiner 2.0 was used by professional Android developers. Ad-
ditionally, we conducted a controlled experiment involving 29 subjects that performed
maintenance tasks in a small Android application with the help of APIMiner 2.0.

1.4 Organization

This master dissertation is organized in four chapters, which are described next:

1.4. Organization 5

• Chapter 2 describes background themes related to the central goal of this master
dissertation. Basically, we cover how recommendation systems are currently used
in software engineering and how such systems can be classified. Moreover, we
explain in details some recent studies highlighting key quality properties of API
usage examples. We also briefly present the data mining techniques and the static
slicing algorithm used by APIMiner 2.0;

• Chapter 3 presents the solution proposed in this master dissertation. In this
chapter, we present the central ideas behind our solution and we also highlight
the main differences between the proposed solution and its first version. We
also describe in details how we improve the summarization algorithm used by
APIMiner 1.0 to extract examples for API usage patterns and also to extract
examples with higher quality;

• Chapter 4 evaluates a particular instance of the proposed solution for the Android
API, called Android APIMiner 2.0. Initially, we characterize this particular in-
stantiation. Furthermore, we describe a field study conducted using this instance
and a controlled experiment;

• Chapter 5 presents the contributions and limitations of this work. Moreover, the
chapter also suggests possible future work.

Chapter 2

Background

2.1 Introduction

Nowadays, software development requires that developers deal with a huge amount of
information and technologies in order to maximize their productivity and improve the
quality of their products. In this context, the idea of supporting software development
with recommendations systems is a promising one [Happel and Maalej, 2008].

The organizers of the 3rd ACM International Conference on Recommender Sys-
tems proposed a general definition of a recommendation system [RecSys, 2009], which
was also cited by Robillard et al. [2010]:

Recommendation systems are software applications that aim to support
users in their decision-making while interacting with large information
spaces. They recommend items of interest to users based on preferences
they have expressed, either explicitly or implicitly. The ever-expanding
volume and increasing complexity of information [. . .] has therefore made
such systems essential tools for users in a variety of information seeking
[. . .] activities. Recommendation systems help overcome the information
overload problem by exposing users to the most interesting items, and by
offering novelty, surprise, and relevance.

To help developers to navigate in large information spaces (e.g., finding a par-
ticular class from a library) many Recommendation Systems for Software Engineering
(RSSEs) are emerging [Robillard et al., 2010]. Basically, RSSEs are software applica-
tions that provide information items estimated to be valuable for a software engineering
task in a given context.

Robillard et al. [2010] considered three main design dimensions for RSSEs:

7

8 Chapter 2. Background

• Nature of the context. The recommendation context is the most important
of the dimensions of RSSEs, because it characterizes the environment that the
developer is present. The inputs to RSSEs are contextual information, which can
be explicit, implicit, or a hybrid of these strategies. Explicit context is based on
user-interfaces interactions, like entering text, selecting elements in the code or
dragging and dropping elements on widgets. Basically, this strategy is appropri-
ate for contexts where it is difficult to detect the user’s information. On the other
hand, implicit contexts do not require interactions with users, i.e., the user’s in-
formation can be automatically gathered, from historical repositories. Finally,
the hybrid strategy combines the previous strategies when none is sufficient to
gathering the necessary information;

• Recommendation Engine. To make recommendations, RSSEs must analyze
more than contextual data and include additional data as means to provide ac-
curate recommendations. For example, Mining Software Repositories (MSR) is
a promising approach for retrieving these additional data. In additional, RSSEs
should provide a ranking mechanism that ideally puts the items most valuable
to the users at the top of the presented recommendations;

• Output mode: The recommendations provided by RSSEs can be trigged by an
user request (e.g., clicking in a button) or delivered without an explicit request
(e.g., the recommendations shown while programmers are coding). Moreover,
the recommendations can be presented in batch (set of recommendations about
a task) or inline (annotations atop of artifacts).

RSSEs typically provide recommendations related to software development arti-
facts, particularly source code, but they can also provide recommendations for many
other aspects of software development, such as quality measures, tools, project man-
agers, and other software engineering tasks [Robillard et al., 2010]. For instance, Ex-
pertise Browser is a system that analyzes past changes in code and other artifacts
to recommend software experts to consult [Mockus and Herbsleb, 2002]. The JMove
tool relies on the set of static dependencies established by a method to recommend
move method refactorings [Sales et al., 2013]. The ArchFix tool relies on architec-
tural violations raised by static architecture conformance tools to provide repairing
recommendations to guide the process of fixing such violations. [Terra et al., 2013].

Other important aspect of software development, addressed in this master dis-
sertation, concerns API comprehension and documentation. In this context, recom-

2.2. IDE-based Recommendation Systems 9

mendation systems are still under investigation by researchers. The following sections
present two main groups of RSSEs proposed for this particular context.

2.2 IDE-based Recommendation Systems

Integrated Development Environments (IDEs) are software platforms that provide a
set of features to support the development process. In this group of platforms, stands
out Eclipse [Eclipse, 2013], NetBeans [Oracle, 2013] and IntelliJ [WebStorm, 2013].

In general, IDEs are designed to support new features, usually by means of plug-
ins. Such plug-ins are usually coupled to the IDE kernel and they can share function-
ality with existing modules. Therefore, recommendation systems developed as plug-in
for IDEs can take benefit from a very important context: the work environment of the
developers.

The first group of RSSEs described in this master dissertation is developed as
plug-ins for IDEs and therefore they can take advantage of different data sources to
trigger recommendations. The RSSE described in Section 2.2.1 uses code fragments
already implemented to make recommendations of statement sequences and associa-
tions that are frequent in projects. Section 2.2.2 describes a RSSE that provides code
snippets recommendations to be inserted directly into the source code.

2.2.1 Vertical Code Completion

Silva Jr et al. [2012] proposed a new approach for code completion, complementary
to existing approaches, which takes into account the semantics of what was coded to
suggest frequent code sequences. Basically, the approach relies on a sequence mining
algorithm [Agrawal and Srikant, 1995] to extract sequential patterns to be compared
with existing statements. In case of similarities, the remaining pattern elements are
automatically suggested to the user.

In order to automate the approach, the authors built a tool called VCC (Vertical
Code Completion) in the format of a plug-in for the Eclipse IDE. The implementation of
the tool as a plug-in allowed the reuse of several data structures from Eclipse (e.g., the
AST of the current project). Moreover, an IDE is a natural environment for presenting
the suggestions of frequent sequences of statements to developers.

In the first phase, the plug-in uses the project’s AST to extract information about
all method calls made in the project. The extracted information is structured and
processed with an algorithm for mining sequential patterns. The extracted patterns

10 Chapter 2. Background

are structured in the form of a search tree, which provides a good performance when
searching for patterns in the second phase.

The second phase consists of the query and presentation of the sequential patterns
recommendations to users, which is started whenever they request. When this happens,
the tool receives as input a set of sequences that represent different combinations of
method calls in the body of the method, maintaining the order in which they are
called. For each request, the sequential patterns in the tree that match the ones passed
as input sequences are ordered and suggested to the users.

An experimental evaluation in the form of a controlled experiment was conducted
to evaluate how the code suggestions are useful for developers during their development
tasks. The results showed that the suggestions provided by the tool achieved rates of
71.66% of approval, 20% of failure, and 8.33% were neutral about the usefulness of the
suggestions.

Providing sequential patterns directly from the source code is one of the strengths
of the approach, since the data used by the algorithm is specific of each project. On
the other hand, the approach fails in projects at early stages, where the available mass
of data is not sufficient for extracting accurate sequential patterns.

2.2.2 Mining API Code Snippets

Hsu and Lin [2011] proposed an approach to help APIs newcomers with recommenda-
tions of frequent API usage patterns mined from relevant source code files retrieved
in real time from a code search engine. Basically, the approach takes as input one or
more lines of code used for searching for relevant source code (i.e., files that contains
calls to the elements in the input). The retrieved source files are mined and processed
in order to obtain sequential patterns and association patterns. Next, these patterns
are transformed into recommendations and later in code snippets.

To automate the approach, the authors implemented a tool called MACs (Mining
API Code Snippets) as a plug-in for the Eclipse IDE. To provide recommendations
MACs works in two distinct stages: (i) populating the patterns database, and (ii)
making recommendations and generating code snippets.

The first stage consists in obtaining relevant source code files, extracting struc-
tural information, and mining patterns for the elements provided as input. The source
code files are analyzed and the extracted information is stored in order to provide
the necessary data for the mining process. This process relies on algorithms to mine
sequential patterns and association patterns.

2.3. API Documentation 11

The second stage consists in the treatment and reuse of the identified patterns
for generating code snippets that are inserted directly into the user’s workspace. Ini-
tially, the patterns are retrieved from the database and sorted by their frequency of
occurrence. When the user selects one of the patterns, the tool generates code snippets
that can be edited and inserted into a desired file in the workplace.

The authors evaluated the usefulness and accuracy of the recommendations pro-
vided by the approach in eight open-source projects. In each project selected for
evaluation, they randomly selected a file to be analyzed. Moreover, for each file, they
randomly chosen a third-party API used in this file. At this point, the authors assumed
that a developer without a prior knowledge of this API would program in the same
way as in the current code. In other words, it should use the same elements of the API
in a new implementation of this code.

Therefore, the evaluation was performed to measure the capability of the approach
to recommend: (i) the API elements present in the class for association rules, and (ii)
the API elements present in the method body for sequential patterns. The results
showed that association rules for the top ten recommendations had an precision of
85% and a recall of 60%. Moreover, the first recommendation of sequential pattern
achieved an precision of 85% and a recall of 82%. In this context, precision is defined
as the number of relevant API elements retrieved by a search divided by the total
number of retrieved API elements. On the other hand, recall is defined as the number
of relevant API elements retrieved by a search divided by the total number of relevant
API elements.

The authors also evaluated the performance of MACs. On average, the time spent
from the request to the presentation of the results was 12 seconds. They noted that the
step for accessing the Koders.com engine was the most important, representing 85%
of the total time. These result were possible due to some optimizations such as: (i)
limitation to a maximum of 20 files to be retrieved from Koders.com, (ii) application of
some filters on the data, (iii) the association patterns are limited to two elements (i.e.,
one premise and one consequent), and (iv) limitation to a maximum of 50 patterns.

2.3 API Documentation

API documentation is often considered as a key learning resource by developers [Robil-
lard, 2009]. However, inadequate or insufficient documentation is also often appointed
as the most severe obstacle facing by developers when learning a new API [Robillard
and DeLine, 2010; Hou and Li, 2011].

12 Chapter 2. Background

Traditionally published in the form of static HTML files, API documentations
have very few contextual information, unlike IDEs. Therefore, documentation-based
RSSEs tend to be less customized to the user’s context. In other words, it may be
necessary that users explicitly inform some information.

The RSSEs in this second group are developed as tools that instrument traditional
documentations. In Section 2.3.1, we present a RSSE that instruments the standard
Java-based API documentation format with concrete examples extracted from a pri-
vate source code repository. Moreover, the examples are summarized using a static
slicing algorithm. Section 2.3.2 describes a RSSE that extracts examples from source
code obtained from search engines to generate a new type of documentation, called
eXoaDocs.

2.3.1 APIMiner 1.0

To help developers using an API, Montandon [2013] proposed a platform that in-
struments the standard Java-based API documentation format with concrete source
code examples, extracted from a private repository. The proposed approach, called
APIMiner, receives as input a list of methods provided by an API of interest and a
repository of client systems that use this API. After that, the platform extracts source
code examples from such client systems, which are inserted in an instrumented JavaDoc
documentation, called the APIMiner documentation.

APIMiner architecture is divided into two major phases: preprocessing and query-
ing. The preprocessing phase is responsible by the computation that extracts the ex-
amples. The querying phase is responsible by the interaction between API users and
the APIMiner system. More specifically, this architecture is composed by seven main
components, as follows.

• API Database: This component stores information about the API to be ana-
lyzed and instrumented by the platform. This information includes the signature
of all public methods provided by the API, and the full qualified name of each
method;

• Systems Database: This component stores the source code of the systems used
to extract code examples. These systems must use the API of interest and must
be inserted in this database as a compressed file or using a version control system,
like Git or Subversion;

• Extraction: This component locates and selects the code snippets that might
represent an example of usage for a given API method. It relies on the Eclipse’s

2.3. API Documentation 13

JDT to parse each source code file on the Systems Database and to analyze
each method call performed by such systems. If the called method exists in
the API Database (i.e., if the method belongs to the API under analysis) then
the component sends the source code fragments with the method call to the
Summarization Module (next component);

• Summarization: This component extracts the statements representing an ex-
ample of API usage and stores the extracted code in the Examples Database
(next component). It receives as input the statement containing the API method
call and the body of the method where the API method is called. The component
then relies on a slicing algorithm to extract the statements structurally related
with the API call. The central goal is to provide a compact source code fragment
that represents a usage example for the API method call received as input;

• Examples Database: This component stores the examples extracted and sum-
marized by the previous component. Its central goal is to increase the perfor-
mance of the platform during the querying phase;

• Ranking Module: This component orders the examples extracted for a given
API method when the users queries for them. For this purpose, the authors
implemented a ranking criteria based on four metrics: (a) Lines of code, to give
priority to examples more concise and small; (b) Number of commits, to give
priority to examples more important in their systems; (c) Number of downloads,
to give priority to examples extracted from systems widely used and with active
community; and (d) Users feedback, to give priority to examples more relevant
according to user opinions. The final ranking is computed by applying a simple
weighted average over the values obtained from the metrics. The examples with
the highest scores are presented first to the end-users;

• JavaDoc Documentation: This component provides the interface for commu-
nication between the API user and the APIMiner platform. It instruments the
original JavaDoc by adding a button with the label Example next to the descrip-
tion of each API method as illustrated Figure 2.1. When the users click on this
button, a pop-up window appears to show the examples provided by the platform
for the given API method. For each example, it is also presented extra informa-
tion, such as project, file, and method from which the example was extracted,
number of checkouts, and rating.

14 Chapter 2. Background

Figure 2.1: JavaDoc instrumented with an "Example Button"

To evaluate the platform, the authors implemented a particular instance of their
solution for the Android API, called Android APIMiner [Montandon et al., 2013].
This instance provides 79,732 usage examples distributed over 2,494 methods and 349
classes of the API, which represents 18% of all methods and 19% of all classes in the
Android API. The examples were extracted from 103 popular open-sources systems.
Furthermore, a field study was conducted to answer some questions using the data
obtained from Google Analytics service and from a private logging service implemented
by the platform. The findings show that the Android APIMiner received a total of
20,038 visits, with three countries concentrating the accesses: United States (3,162
visits), India (2,086 visits), and Brazil (1,743 visits). An analysis on the queries used
by the users when they reached Android APIMiner from a search engine showed that
35% had the keyword example, which reinforces the importance that API users give
to source code examples.

2.3.2 eXoaDocs

Kim et al. [2009] proposed an intelligent search code engine that searches, summarizes,
and automatically embeds API documents with code examples. Each API element is
annotated with its popularity to help developers finding the APIs most frequently used
in programming tasks. Moreover, about two to five code examples are provided for
each API element. The resulting documentation generated by their approach is called
eXoaDocs [Kim et al., 2009, 2010].

The proposed framework consists of four modules: (i) Summarization, that builds
a repository of candidate code examples; (ii) Representation, that extracts semantic
features from each summarized example for further clustering and ranking; (iii) Diver-
sification, that clusters the summarized code into different usage types (i.e., various
kinds of situations that API examples can be used); and (iv) Ranking, that ranks the

2.3. API Documentation 15

code examples in each cluster. The most representative code example from each cluster
is inserted into the eXoaDocs. In the following paragraphs, we detail each of such
modules.

The Summarization Module searches, collects, and stores potential code examples
for each API method. To achieve this purpose, this module performs a query in a
code search engine, as Koders, with the API’s method name and collects the top-200
answers for each method. Next, the retrieved source code files are submitted to the
summarization algorithm that transforms the collected code into a concise snippet.
This algorithm identifies the API’s methods and selects the semantically relevant lines
related to this API element based on a slicing algorithm. More specifically, a source
code line is tagged as relevant if it satisfies at least one of the following requirements:
(R1) declares the input argument for the given API usage; (R2) changes the values of
the input arguments; (R3) declares the class of the given API; or (R4) calls the given
API element.

The Representation Module extracts information for clustering and ranking the
examples. This module seeks to achieve a balance between an abstract representation
(e.g., simple texts) and a specific representation (e.g., ASTs). More specifically, the
module extracts element vectors from the summarized snippet’s AST using a clone
detection algorithm and computes the similarity between the extracted vectors.

The Diversification Module clusters the summarized code into different usage
types. The final goal is to create clusters similar summarized code snippets. The
process is performed by invoking the k-means clustering algorithm four times and
selecting the result with the best quality according to a predefined set of quality metrics.

The Ranking Module ranks the examples in each cluster to select the most rep-
resentative ones. First, the summarized code snippets are ranked based on measures
such as representativeness, conciseness, and correctness. Next, the selected examples
are sorted based on the number of occurrences.

To evaluate the proposed tool, the authors generated a version of eXoaDocs

for the Java API. As result, the approach found examples for 20,480 methods, which
represents 74% of the considered API. A user study revealed that eXoaDocs helped
the subjects to complete more programming tasks and in less time than subjects who
do not use the system.

16 Chapter 2. Background

2.4 Examples Quality

Usage examples are a key API learning resource and their absence is often cited as one
of the main obstacles when learning a new API [Robillard, 2009]. Although there are
many systems for extracting code examples [Kim et al., 2009; Zhong et al., 2009; Hsu
and Lin, 2011; Silva Jr et al., 2012; Montandon et al., 2013], little is still known about
the aspects that make a good code example.

Buse and Weimer [2012] argue that examples generated by current approaches
might be useful, but they are very different from human-written examples. In Sec-
tion 2.4.1, we discuss the characteristics of a good code example and the attributes
distinguish them from unuseful examples. Section 2.4.2 presents a study on human-
written examples, which proposes key guidelines for automatically creating examples
sharing the best properties of human-written ones.

2.4.1 A Study of Programming Q&A in StackOverflow

Nasehi et al. [2012] conducted an exploratory study using the Stack Overflow forum
of programming questions and answers. Their goal was to identify the aspects that
characterize code examples, i.e., examples that effectively help developers and main-
tainers to solve real programming tasks. In addition, they identified the attributes that
distinguish useful examples from not useful ones.

The authors collected a set of threads containing answers with high scores and
manually analyzed all recognized answers. Basically, recognized answers correspond
to accepted answers and unaccepted answers with score greater than or equal to 10.
The authors found that only 2.4% of the responses posted in StackOverflow have such
score.

The analysis of the recognized responses revealed some common attributes to the
examples, which are listed below:

• Concise Code: The examples are small and less complex due to the elimination
of implementation details and the use of place-holders;

• Using Question Context: The examples use information or code present in
the question, resulting in more cohesive code;

• Highlighting Important Elements: The answer begins by highlighting the
key elements of the solution;

• Links to Extra Resources: The answer contains hyperlinks to other sources
of information, which generally have more information;

2.4. Examples Quality 17

• Multiple Solutions: Several answers in the same thread can provide alternative
solutions to the same problem, using different classes or APIs;

• Inline Documentation: Comments are frequently used as a way of explaining
small pieces of the code.

However, the presence of these attributes does not automatically lead to a rec-
ognized answer. On the other hand, it was observed that the lack of code, the lack
of explanation, and inconsistent explanations are the key attributes present in the re-
sponses not recognized. The authors also emphasize that the examples and the expla-
nations are mutually important for building good examples. In general, good answers
are customized to the needs of questioners. Moreover, the usage of familiar contexts to
developers facilitates the understanding by other users, beyond the questioner himself.

2.4.2 Synthesizing API Usage Examples

Buse and Weimer [2012] proposed a technique for mining and synthesizing usage exam-
ples more succinct, representative, and legible to developers. Basically, the technique
uses data flow analysis to model and extract usage information on API elements. This
information is transformed into abstract models and clustered to generate usage ex-
amples. The synthesized examples have specific characteristics that make them more
readable to developers, which were obtained by means of two main analyzes: (i) an
analysis of examples hand-crafted by developers and (ii) a survey with developers.

In the first analysis, the authors explored the original documentation of the Java
Software Development Kit, by collecting existing examples and analyzing them to
identify key quality properties. The authors assumed that the Java SDK documentation
is a good source of information because it is authoritative, generally considered of high
quality and written for a general audience. The main properties of the examples were:

• Length: On average the examples have 11 lines of code, and the median is five
lines of code;

• Abstract initialization: Some variables have their initialization abstracted,
in order to allow users to change the initialization to fit specific values in their
programming context;

• Abstract use: Abstract placeholders are used to indicate specific behaviors of
a context, for example a comparison between two specific objects;

18 Chapter 2. Background

• Exception Handling: Examples need to handle possible exceptions when nec-
essary or when commonly performed.

In the second analysis the authors conducted a survey with 150 undergraduate
students questioning what factors are important in code examples. Some common
themes emerged from the results:

• Multiple uses: Users prefer examples showing different ways to use the involved
elements;

• Readability: Users prefer examples that are easy to read and understand;

• Naming: The identifiers present in the examples should preferably be clear and
intuitive;

• Variables: Users prefer examples where all involved variables are declared in
the scope of the example.

Based on the information obtained in the analysis, the authors proposed an al-
gorithm to automatically generate usage examples with quality near to the one found
in examples produced manually by developers. In order to evaluate this algorithm, the
authors conducted an experiment with undergraduate students comparing examples
obtained by the proposed technique with examples found in the Java SDK documen-
tation and examples provided by the eXoaDocs tool [Kim et al., 2009].

The experiment involved 154 participants and each participant evaluated 35 pairs
of API examples. Each example pair was generated from the random selection of two
examples provided by two out of the three evaluated approaches. The results showed
that the examples provided by their technique rank better than the Java SDK examples
in 82% of the cases and in 94% of the cases, when compared to the examples provided
by eXoaDocs.

2.5 Association Rules

In many scenarios we need to discover how often two or more objects of interest co-
occur or the relationships between co-occurrences of objects. A typical example is
marketing analysis, for example to identify sets of items that clients frequently buy
together at a supermarket. Another example is API usage analysis, aiming to identify
sets of elements frequently used together in a client system. Such sets allow us to
extract co-occurrence information among items, which can be used to make statements

2.5. Association Rules 19

about how likely are two items to co-occur or to conditionally occur [Zaki and Meira Jr,
2014].

In data mining, these problems are typically known as frequent itemset mining
and association rules mining, as initially introduced by Agrawal et al. [1993]. Basically,
the process consists of first finding collections of items that are frequent (i.e., that
appear in the database an specified number of times). After, the goal is to generate
strong association rules (i.e., rules with a high probability to occur again) in the form
of A ⇒ B [Han et al., 2006].

To define these problems, the following concepts are needed:

• Items: Items are the elements under analysis. For instance, in API usage anal-
ysis, the items can be the collection of all API methods;

• Itemset: Itemset is a subset of the set of all items. Formally, suppose that I =
{x1, x2, ... ,xm} is the set of all items. A set X ⊂ I is called an itemset. For
example, the itemset I can represent all methods provided by an API and X can
be the methods provided by a class of this API;

• Transaction: A transaction is a tuple of the form <t,X>, where t is a unique
transaction identifier and X is an itemset. For example, consider an API usage
analysis scenario. In this case, t can represent the client’s methods that call
a given API method and X can represent the API methods called within this
method;

• Database: A database is a collection of transactions and can be represented by
different forms. A binary database is a binary relation on the set of transactions
identifiers and items. On the other hand, a transaction database is basically a
list of all transactions. For example, assume that I = {m1, m2, m3, m4} is the set
of all methods provided by an API A and that T = {<1,{m1}>, <2,{m2,m3}>,
<3,{m2,m4}>, <4,{m1,m2}>, <5,{m4}>} is the collection of the transactions ob-
tained after an analysis in client systems that use A. Figure 2.2a and Figure 2.2b
provide examples of the binary and transaction databases, respectively;

• Itemset support: Support is the number of transactions that contain a given
itemset. For example, in the database presented in Figure 2.2, the support for
the itemset {m1, m2} is 1, because it is present only in Transaction 4. On the
other hand, the support for the itemset {m4} is 2 because it is present in the
transactions 3 and 5.

20 Chapter 2. Background

id m1 m2 m3 m4

1 1 0 0 0
2 0 1 1 0
3 0 1 0 1
4 1 1 0 0
5 0 0 0 1

(a) Binary Database

id itemset
1 m1

2 m2 m3

3 m2 m4

4 m2 m2

5 m4

(b) Transaction
Database

Figure 2.2: Database Representations

An itemset is considered frequent if it has a support greater than or equal to a
predefined value. Therefore, mining frequent itemsets is not a trivial problem since
there are 2|I| potentially frequent itemsets.

An association rule represents an implication of the form X ⇒ Y, where X and
Y are itemsets of I and X ∩ Y = ∅. The support of a rule is the number of times in
the database in which both X and Y co-occur as subsets in the same transaction. The
relative support of a rule is the fraction of transactions in the database in which both
X and Y co-occur as subsets in the same transaction. The confidence of a rule is a
measure of the rule’s strength and it is calculated as the conditional probability that
a transaction contains Y given that it contains X. In other words, the confidence of a
rule is defined as the support of the rule divided by the support of its premise (the left
term in the rule).

Moreover, to extract association rules statistically significant, other metrics are
also often used:

• Lift: The lift of a rule measures its strength and it is calculated as the confidence
of the rule divided by the relative support of the consequent. Values greater than
1.0 suggest that the rule is quite useful [Bayardo and Agrawal, 1999];

• Jaccard: The Jaccard coefficient measures the similarity between the antecedent
and the consequent.

Agrawal and Srikant [1994] proposed an algorithm, called Apriori, that improves
a brute-force approach for frequent itemset mining. Zaki et al. [1997] proposed an
algorithm, called Eclat, that indexes the database and improves the computation of
the sets frequency. Finally, Han et al. [2000] proposed an algorithm, called FP-Growth,
for mining the complete set of frequent patterns by pattern fragment growth.

2.6. Program Slicing 21

As previously mentioned, there are several applications that can take benefit from
itemset and association rules mining. In this master dissertation, we use association
rules to extract usage patterns regarding API methods calls.

2.6 Program Slicing

In general, real-world software systems are complex and difficult to understand. To
facilitate the understanding of programs, developers frequently fragment the code into
smaller pieces. For example, to debug a program which presents a problem at a given
statement X, a developer may search for other statements that can affect this particular
statement. In other words, the developer breaks the code into smaller fragments to
identify and resolve his problem.

Weiser [1981, 1984] proposed an approach to automatically decompose a program
into slices according to particular criteria, known as program slicing. Basically, a
slice criterion represents a statement of the program and the slice represents a set of
independent code fragments. The slicing algorithm processes each statement in the
program and selects those related to the slice criterion.

According to Weiser, the power of slices comes from four facts:

1. Slices can be computed automatically, since it is possible to build algorithms to
automate the whole process.

2. Slices are generally much smaller than the program from which they originate,
because only the related statements are included in the slice.

3. Slices can be executed independently of one another, since all necessary state-
ments and variables are present in a slice.

4. Slices reproduce exactly a projection of the original program’s behavior, because
the selected statements are independent of the unselected ones.

Considered as a refinement of program slicing, Korel and Laski [1988] introduced
the concept of dynamic program slicing, which are slices that preserve the program’s
behavior for a specific input. Unlike static slicing, dynamic slicing is computed at
runtime and collects only the statements executed for a specific value given as input
[Agrawal and Horgan, 1990].

Generally, the slices produced by a static slicing algorithm are larger than the
slices produced by a dynamic slicing algorithm. However, the former are not limited
to a specific input [Harman and Hierons, 2001].

22 Chapter 2. Background

Moreover, static slicing can be categorized according to the program fragment
affected by the slicing, as follows: (a) backward slice, and (b) forward slice. A backward
slice consists of the set of statements that can affect the input statement, and a forward
slice consists of the statements that would be affected by the computation of the input
statement [Venkatesh, 1991].

In this master dissertation, we rely on a static slicing algorithm that accepts as
input multiple statements. Our goal is to select relevant statements that can be used
as examples for API usage patterns.

2.7 Final Remarks

This chapter presented background work related with the system proposed in this
master dissertation. Initially, we presented some recommendation systems in software
engineering and their potential to assist developers. We divide the recommendation
systems related to our research in two main groups. The first group includes RSSEs
developed as extensions of IDEs, which may provide more accurate recommendations.
The second group includes RSSEs that improve API documentations with usage ex-
amples.

Next, we presented two studies that provide guidelines on improving the read-
ability and usefulness of source code examples. These guidelines used together with a
static slicing algorithm constitute the core of the approach for extracting examples for
API usage patterns proposed in this master dissertation.

Finally, we presented the concept of association rules, which are used to extract
the API usage patterns considered in this work.

Chapter 3

Proposed Solution

3.1 Introduction

The central idea behind our solution is to provide source code examples involving
more than one API method call and representing usage patterns. We claim that real
programming tasks tend to be complex, and therefore most maintenance tasks are
not limited to a single method call. In other words, examples that illustrate a single
API method call are limited because real tasks tend to use multiple calls. Moreover,
when providing source code example it is also necessary to consider some aspects, like
representativeness and readability. Representativeness relates to the capacity of the
example present the correct use or an usage pattern of a given element. Readability
relates to the capacity to facilitate the understanding of the content by programmers.

Our approach extends the APIMiner 1.0 platform [Montandon, 2013] by using
data mining algorithms to extract usage patterns and to include more useful examples.
More specifically, we rely on an association rules mining algorithm to discover usage
patterns of the API methods. These patterns are used to extract and recommend ex-
amples representing a common usage of the API methods by client systems. Moreover,
we propose some techniques to improve the readability of the extracted examples. We
call our approach APIMiner 2.0.

Figure 3.1 presents the internal architecture of the APIMiner 2.0 platform.
Basically, this architecture has six artifacts and five modules:

API Source Code: This artifact represents the repository of the API’s source code;

Mining Dataset: This artifact represents a repository with API client systems—i.e.,
systems that use the API in their code. This repository is used to mine API usage

23

24 Chapter 3. Proposed Solution

Mining Database Patterns Analyzer

API
Source
Code

Mining Dataset

Souce Code
Analyzer

Examples Extractor

Examples
 Database

JavaDoc

Ranking
Engine

JavaDoc Weaver

Examples Dataset

Figure 3.1: APIMiner 2.0 architecture

patterns;

Source Code Analyzer: This module analyzes the source code of the target API
and their client systems. From the API, it extracts information on the provided
classes and methods (e.g., signatures, access modifiers, etc.). From the client systems,
it extracts information about the usage of the methods provided by the API;

Mining Database: This artifact is a database that stores the data generated by the
module Source Code Analyzer;

Patterns Analyzer: This module analyzes the usage information stored in the
Mining Database to extract usage patterns of the common API methods in the client
systems. This module relies on a data mining algorithm to mine frequent association
rules in the projects. We call these rules as usage patterns because they are frequently
followed by the client systems;

Examples Dataset: This artifact represents a repository with selected API client
systems to extract the examples. The systems in this artifact can be different from
the systems in the API Clients to Mining repository;

Examples Extractor: This module extracts single-calls and multiple-calls examples
with API methods (using the patterns mined by the Patterns Analyzer module).
Moreover, the examples are processed by this module to improve their readability;

Ranking Engine: This module ranks the examples with single API method calls

3.2. Source Code Analyzer 25

and the examples for the mined usage patterns, which include multiple API methods
calls. The ranked examples are stored in the Examples Database;

Examples Database: This artifact represents a database that stores examples and
usage patterns produced by the Examples Extractor and Ranking Engine modules;

JavaDoc Weaver: This module generates the instrumented documentation with the
examples and the usage patterns;

JavaDoc: This artifact represents the output of the proposed approach. It is a
documentation in JavaDoc format instrumented with examples and usage patterns.

Regarding the APIMiner 1.0 architecture, the proposed platform introduces the
Patterns Analyzer module and the Mining Database artifact. Moreover, the client
systems used in this new version are divided into two groups: (a) Mining Dataset,
which are systems for mining the usage patterns, and (b) Examples Dataset, which
are systems for extracting the usage examples. However, the client systems are not
necessarily exclusive in each dataset and may be present in both datasets. Moreover,
the module that extracts the usage examples (Example Extractor) was improved to
consider some attributes of readability suggested by the literature.

The ranking module (Ranking Engine) has a similar version in APIMiner 1.0.
However, the criteria used to rank the examples in both versions are different and the
new module also ranks usage patterns. The Example Database artifact and JavaDoc
Weaver also have a similar module in APIMiner 1.0. The key difference is that the
new modules were modified to store and present usage patterns.

The following sections present in details the modules in this architecture. Sec-
tion 3.2 describes the Source Code Analyzer module. Section 3.3 shows how the
patterns are mined by the Patterns Analyzer module. Sections 3.4 and Section 3.5
describe the extraction process and the ranking of examples and patterns by the Ex-
amples Extractor and Ranking Engine modules, respectively. Finally, Section 3.6
shows how the JavaDoc is instrumented by the JavaDoc weaver module.

3.2 Source Code Analyzer

The Source Code Analyzer module supports the first step that must be executed by
the proposed platform. Basically, this module analyzes the source code of the target

26 Chapter 3. Proposed Solution

API and their client systems to obtain information about: (i) classes and methods
provided by the target API, and (ii) calls to API methods made by the client systems.

More specifically, this module implements two main steps. First, it analyzes the
source code of the API to extract information about its classes and methods (as detailed
in Table 3.1). The extracted data is store in the Mining Database, and replicated into
the Examples Database. The decision to separate the mining data from the examples
data was taken to improve the quality of the presented examples.

Table 3.1: API elements and their attributes

Element Attribute Description

class
access modifier visibility of the class
identifier name of the class
methods list of methods provided by the class

method

access modifier visibility of the method
identifier name of the method
parameters list of object types
return type object type or void
throws checked exceptions the method can throw
class owner class

After analyzing the API, the proposed platform analyzes the use of the API meth-
ods by client systems. Each client system is analyzed individually to collect the sets of
API method calls. We relied on the method’s scope to build these sets, therefore at the
end of the process the number of sets is equal to the number of methods implemented
by the classes of the client systems. Each set of method calls represents a transaction
and are stored in the Mining Database.

It is worth mentioning that this module improves the procedure followed by
APIMiner 1.0, where the administrator needs to provide the API method’s signature
and the full qualified name of the class that the method belongs to. Therefore, in
APIMiner 2.0 we automated this task.

In the implementation of this module, we used the JDT component of the Eclipse
IDE to create an Abstract Syntax Tree (AST) from the source code files. Moreover, the
current implementation allows to automatically download the source code files from
different repositories, such as Git, Subversion, Mercurial, compressed files, or local files.

3.3 Patterns Analyzer

The Patterns Analyzermodule represents a key contribution of the proposed platform,
regarding its first implementation. In few words, the module is responsible to mine

3.4. Examples Extractor 27

usage patterns of the API methods in the client systems. Basically, it retrieves the
transactions stored in the Mining Database and then relies on an association rule
mining algorithm to extract the usage patterns of API methods.

First, the module searches the Mining Database for all transactions of the target
API containing more than one element (i.e., more than an API method call). The result
of the search represents the transaction database, provided as input to the association
rule mining algorithm. Moreover, it is also necessary to give as input a minimum
support value and a minimum confidence value to extract the rules.

In this context, the minimum support value represents the number of times that
the methods, included in a given rule, must appear in the transactions database. The
minimum confidence value represents the probability that the methods in the conse-
quent of the rule must appear in a transaction when the methods in the antecedent
are also present. Currently the platform does not provide an automated procedure to
select the best values of support and confidence, though it provides reports to support
the choice of such values by the administrators.

As result, the module produces a set of association rules in the form A ⇒ B,
where A and B are itemsets of API methods with a minimum support (minSupport)
and a minimum confidence (minConfidence). After, these association rules are used
by the Examples Extractor module to extract examples with more than a method call
and by the Ranking Engine module to rank the usage patterns and their examples.

In the implementation of this module, we used the WEKA (Waikato Environment
for Knowledge Analysis) library [Hall et al., 2009] to extract the association rules.
Moreover, the platform allows exporting the database of transactions to a file in a
WEKA specific format, which can be imported by the native user interface provided
by WEKA.

3.4 Examples Extractor

This module is responsible for extracting examples of a given API client system. Basi-
cally, the module receives the source code of a given client to extract examples both for
single API method calls and for the usage patterns mined by the Patterns Analyzer
module. After, the duplicated examples are removed and the remaining ones are stored
in the Examples Database.

This module has the same purpose of the Summarization module of the
APIMiner 1.0, which aims to extract examples: (i) with few lines of code, (ii) that
includes contextual information, and (iii) that highlights the computation provided by

28 Chapter 3. Proposed Solution

the API. However, in the new version, we modified the previously algorithm to include
some readability properties to the summarized examples.

First, the module receives as input the source code of a given API client and the
API methods stored in the Examples Database. The process begins by analyzing each
class from this API client. For each method implemented by such classes, the platform
performs four steps:

1. Identifying calls to API methods: The platform identifies all calls to API
methods in the method scope (called calls) and their corresponding statements
(called callsStatements);

2. Extracting examples for single API calls: From each call in calls, the
platform extracts examples using a summarization algorithm. For this purpose,
the original summarization algorithm implemented by APIMiner 1.0 (presented in
Section 3.4.1) is used to collect the set of statements that represents the example.
However, the collected examples are submitted in this version to a readability
improvement process (as detailed in Section 3.4.2);

3. Extracting examples for usage patterns: After extracting examples for sin-
gle method calls, the platform extracts examples for the mined association rules.
Initially, we search all mined association rules and group the elements of the an-
tecedent with the consequent elements to build sets of API methods (called sets).
This strategy allows us to extract only examples for the identified patterns.

Then, for each set in sets contained in calls, the platform retrieves the corre-
sponding statements (called statements) in callsStatements and executes the
summarization algorithm with statements and the method body as input. The
examples retrieved by this third step are also submitted to the readability im-
provement process;

4. Removing similar examples: In a project, it is normal that the development
team follows a common pattern of development, so the examples of a given API
method can be very similar. In this sense, the proposed platform relies on a
string comparison algorithm to detect and remove similar examples from an API
client. We acknowledge that this strategy may not be the best, but at least the
restriction to the examples of the same project allows improving its precision.

In the following subsections, we provide more details on each of the aforemen-
tioned steps.

3.4. Examples Extractor 29

3.4.1 Summarization Algorithm

As described earlier, we reuse the summarization algorithm implemented by APIMiner
1.0 to collect the set of statements included in an example. This algorithm relies on a
static slicing algorithm (see Section 2.6) to extract the source code lines structurally
related with a set of API method calls.

Basically, the algorithm has two input arguments: (a) seed, which are the state-
ments that call the API method; and (b) body, representing all existing statements in
the method where the seed is located. Then, for each statement in seed, it performs a
backward slicing to identify statements that modify the variables read by the analyzed
statement. It also performs a forward slicing to identify the statements that use the
variable returned by the statement, if the statement returns something. The statements
identified in both slicing types are stored in a list and the process is performed again
using such statements. As result, the algorithm returns all the statements identified as
relevant after the several iterations.

To illustrate the algorithm for multiple seeds, we will rely on the method presented
in Listing 3.1. Basically, this code receives the name of a client and a boolean value
indicating whether the client is authorized. If he/she is authorized, the code prints a
welcome message with his/her name at the console and the corresponding hour.

Listing 3.1: Slicing example using multiple method calls
1 public void welcome() {
2 String client = "Smith, John";
3 boolean authorized = true;
4

5 Calendar cal = Calendar.getInstance();
6 int hour = cal.get(Calendar.HOUR_OF_DAY);
7

8 if (authorized) {
9 System.out.println("Welcome back Mr." + client);

10 System.out.println("Now, it is : " + hour + " hour(s)");
11 }
12 }

Consider the statements related to the calls java.util.Calendar.getInstance()
(line 5) and java.util.Calendar.get(int) (line 6) as seed and the body of the wel-
come() method as the body. Initially, the algorithm starts analyzing the call to
java.util.Calendar.getInstance(). Therefore, the statement at line 5 is marked as
relevant. As this method call does not use any variable, the backward slicing is not

30 Chapter 3. Proposed Solution

called. However, the return of the call is assigned to the variable cal. Thus, the forward
slicing is called to collect the statements that use the variable cal.

The forward slicing for the variable cal identifies that only the statement at line
6 uses this variable, then it is marked as relevant. However, the seed already contains
the statement 6, so it is not necessary to add it again.

After, the algorithm analyzes the next statement in seed, which is at line 6. The
algorithm collects the readable variables. In this statement, there is only the variable
cal, because Calendar .HOUR_OF_DAY is a constant. Then, the algorithm executes
the backward slicing and identifies that the statement at line 5 modifies the variable
cal, but this statement is already marked.

In the forward slicing, the algorithm searches by statements that use the variable
hour, which in this case is the statement at line 10. However, because it is enclosed by
an if statement (lines 8-11), the algorithm extract the variables used by the if’s expres-
sion and apply the backward slicing over these variables. As observed, the authorized

variable is declared in line 3. Therefore, this statement and the statements at line 8
and 10 are marked as relevant.

Because all method calls in seed were analyzed, the algorithm returns the
statements marked as relevant (lines 3, 5, 6, 8, 10 and 11) and finishes. List-
ing 3.2 shows the source code fragment generated by the presented slicing algo-
rithm. As we can observe, this fragment represents an usage example of the methods
java.util.Calendar.getInstance() and java.util.Calendar.get(int), ignoring the lines
not related with (lines 2 and 9).

Listing 3.2: Extracted example
1 boolean authorized = true;
2 Calendar cal = Calendar.getInstance();
3 int hour = cal.get(Calendar.HOUR_OF_DAY);
4 if (authorized) {
5 System.out.println("Now, it is : " + hour + " hour(s)");
6 }

3.4.2 Readability Improvements

Although static slicing is an interesting algorithm for extracting source code examples,
in some scenarios it may generate code fragments presenting some readability problems.
For example, a large number of statements can be returned if the algorithm’s scope is

3.4. Examples Extractor 31

not limited. On the other hand, if we define a very constrained scope some variables
and calls to external methods may not be extracted.

To improve the examples extracted by the APIMiner platform, we implemented
an algorithm that transforms the examples in order to consider some attributes of
readability presented in the literature.

In the following subsections, such improvements are discussed.

A - Variables not Identified

When we limit the execution of the slicing to a small scope, important statements
may not be included. The most frequent situation is related to variables declarations.
For instance, consider the use of the java.awt API in the class presented in Listing 3.3.

Listing 3.3: Example to illustrate problems with delimitation of scope
1 import java.awt.Graphics;
2 import javax.swing.JApplet;
3

4 public class Hello extends JApplet {
5 public static final String MESSAGE = "Hello, world!";
6

7 public void paintComponent(Graphics g) {
8 g.drawString(MESSAGE, 65, 95);
9 }

10 }

The slicing extraction using the line 8 as seed and the body of the
paintComponent(Graphics g)method produces the example in Listing 3.4. We can ob-
serve that the result is an incomplete example that omits the types of g and MESSAGE .

Listing 3.4: Incomplete example due to a limited slicing scope
g.drawString(MESSAGE, 65, 95);

To transform the examples with this problem, we automatically add the declara-
tion of variables not identified in the slicing scope. Moreover, we added the comment
“initialized previously” to each declaration, abstracting its initialization and enabling
the users to fill the code with a specific initialization. Listing 3.5 presents the result of
this improvement applied to our example (Listing 3.4).

32 Chapter 3. Proposed Solution

Listing 3.5: Example with abstract initializations
String MESSAGE; //inicialized previously
Graphics g; // inicialized previously
g.drawString(MESSAGE, 65, 95);

B - Empty Blocks

Another situation when the readability of the code is affected is related to deci-
sion to include control statements. Particularly, in some cases, empty blocks can be
generated. For example, consider the example extracted using the original summa-
rization algorithm presented in Listing 3.6. In this example, the try block is empty,
because the seed is used only by the catch block.

Listing 3.6: Example with an empty block
Log log = Logger.getLog("ExampleLogger");
try {
} catch (Exception e) {

log . error(e.getLocalizedMessage());
}

In addition to try/catch statements, the following statements may generate ex-
amples with empty blocks:

• Loop statements: Empty blocks are commonly generated when the seed is
localized in a loop’s expression that may include assignments. Listing 3.7 presents
an example of this situation.

Listing 3.7: Empty blocks in loop statements
Iterator <String> strings = Arrays.asList("Foo", "Bar"). iterator () ;
for (String string ; string = strings.next(); strings .hasNext()) {
}

• Conditional statements: In this case, empty blocks commonly appear when
the seed placed in the conditional expression. Listing 3.8 presents an example of
this situation.

In summary, although the aforementioned examples show the use of the API
methods, their readability is not good. To improve this readability, we automatically

3.4. Examples Extractor 33

Listing 3.8: Empty blocks in conditional statements
Connection con; // inicialized previously
if (! con.isClosed()) {
}

add the comment “do something”, indicating that the empty block in fact performs a
specific code in the client context. Listing 3.9 presents the improved example regarding
the code in Listing 3.6.

Listing 3.9: Example with a comment in an empty block
Log log = Logger.getLog("ExampleLogger");
try {

//do something
} catch (Exception e) {

log . error(e.getLocalizedMessage());
}

3.4.3 Removing Similar Examples

Users typically want different examples for the same problem. In order to remove very
similar examples, we implemented a procedure that relies on an approximate matching
algorithm, which measures text similarity using cosine distance [Okazaki and Tsujii,
2010].

More specifically, this procedure is performed after extracting examples. Initially,
the examples are grouped by the API methods they call. Next, we executed the
Algorithm 1.

This algorithm receives as input the groups of examples (groups) and a value
between 0 and 1 (coefficient), which represents the minimum ratio to consider two
examples as similar. First, the algorithm iterates over each group in groups (line 3).
For each group, the algorithm selects an example, stores it in a list of examples called
examples and compares it with all other ones in the group (lines 4-8). If the similarity
coefficient between two examples is greater or equal to coefficient, then the algorithm
removes one of them. This process is performed until only one example stays in the
group. The last example of the group is also stored in examples. After all groups are
analyzed, the algorithm returns the examples in examples.

34 Chapter 3. Proposed Solution

Algorithm 1 Removing similar examples extracted from an API client
1: function RemoveSimilarExamples(groups, coefficient)
2: examples ← { }
3: for each group in groups do
4: while SIZE(group) > 1 do
5: example ← POP(group)
6: examples ← examples+ example
7: COMPARE_AND_REMOVE(example, group, coefficient)
8: end while
9: end for

10: return examples
11: end function

This procedure represents a important contribution from this new version of the
APIMiner platform, since the platform in version 1.0 did not address this problem.

3.5 Ranking Engine

This module is responsible for ranking the examples for single API methods and for
the mined usage patterns. Basically, it performs two independent tasks: (a) ranks the
examples, and (b) ranks the usage patterns for an API method and the associated
examples. In the next sections, we detail each one of such tasks.

3.5.1 Ranking Examples for Single API Methods

When the users request examples for an API method or a usage pattern, the platform
should rank the examples for this request. The examples are ranked based on three
metrics:

Completeness: This metric indicates whether an example is complete. We consider
an example as complete if it compile without errors. We consider that such examples
contain all information necessary for their reuse. We also consider this metric as the
most important one;

Lines of Code (LOC): This is a complementary metric to completeness. Basically,
we give priority to concise and small examples;

Users Feedback: This metric takes into consideration the feedback of the users of
the APIMiner platform and it is also a complementary metric to completeness. The

3.5. Ranking Engine 35

value of this metric may vary overtime, since it depends on information provided by
the platform’s users. In other words, the dynamic nature of this metric allows the
community to define itself, along the time, which examples are more relevant.

This feedback is obtained from the instrumented JavaDoc by means of two
buttons: (i) Like, and (ii) Dislike, as showed in Figure 3.2. A similar strategy is used
by popular websites, as Youtube, Facebook, and StackOverflow.

Figure 3.2: Feedback buttons

To calculate the final ranking of the examples, we propose the Algorithm 2.
Basically, this algorithm ranks the examples with less compilation errors at the top.
For examples with the same number of errors, the algorithm prioritizes the ones with
less LOC and with a high feedback score. The feedback score is the difference between
the number of positive and negative feedbacks.

Algorithm 2 Prioritization algorithm
1: function CompareExamples(example1, example2)
2: numErrorsE1 ← CompilationErrors(example1)
3: numErrorsE2 ← CompilationErrors(example2)
4: if numErrorsE1 = numErrorsE2 then
5: iScoreE1 ← LOC(example1) - FeedbackScore(example1)
6: iScoreE2 ← LOC(example2) - FeedbackScore(example2)
7: if iScoreE1 < iScoreE2 then
8: return 1
9: else if iScoreE1 > iScoreE2 then

10: return -1
11: else
12: return 0
13: end if
14: else
15: if numErrorsE1 < numErrorsE2 then
16: return 1
17: else
18: return -1
19: end if
20: end if
21: end function

Initially, the CompareExamples function receives as input two examples
example1 and example2. Then, for each example, the function calculates the number

36 Chapter 3. Proposed Solution

of compilation errors and the results are stored in numErrorsE1 and numErrorsE2

(lines 2-3). If the number of compilation errors presented by the example1 is less than
example2, then the function returns the value 1, otherwise it returns -1. A positive
value indicates that the first example is better than the second one.

If the number of compilation errors is the same, then the algorithm combines two
metrics as a tiebreaker: LOC and Users Feedback. This new tiebreaker criterion
gets the number of lines of code of the example using the function LOC and subtracts
the feedback score (function FeedbackScore), smaller values are better.

3.5.2 Ranking Usage Patterns

Besides providing examples for single methods, a key contribution of the proposed
platform is to recommend sets of API methods that are frequently called together. As
usual, it is also important to recommend the most relevant examples first to users.

In Section 2.5, it was discussed that, at certain cases, only the support value for
an association rule may not be the best metric to evaluate its value. Therefore, other
metrics are frequently used, like Lift and Jaccard.

To rank the usage patterns we implemented an algorithm that takes into account
two metrics related to association rules mining: (a) Lift, and (b) Number of Items
in the Rule. Lift is a well-known statistical measure and it is particularly useful to
determine whether an association rule is useful [Bayardo and Agrawal, 1999]. The
Number of Items in the Rule is a basic measure that indicates the number of methods
in the rule (i.e., items in the antecedent + items in the consequent).

More specifically, the algorithm sorts the usage patterns using the Com-

pareUsagePatterns function presented in Algorithm 3. This function receives as
input two usage patterns, usagePattern1 and usagePattern2. Initially, the algorithm
calculates the value of the Lift metric for both inputs using the GetLiftValue func-
tion and stores the results in the liftR1 and liftR2 variables (lines 2-3). If these values
are equal, the algorithm calculates the Number of Items in the Rule from each input
using the GetNumItems function and returns their difference (lines 4-7). Otherwise,
the algorithm returns the difference between the Lift value of the first input and the
second one (line 9).

A positive value means that the first usage pattern is more relevant than the
second one. A negative value is the opposite, and a value equals to 0 means that they
have the same importance.

After mining and sorting the usage patterns, the next step is to collect and sort
the examples from each one. This process is similar to the one presented in Section

3.6. JavaDoc Weaver 37

Algorithm 3 Usage Patterns Prioritization
1: function CompareUsagePatterns(usagePattern1, usagePattern2)
2: liftR1 ← GetLiftValue(usagePattern1)
3: liftR2 ← GetLiftValue(usagePattern2)
4: if liftR1 = liftR2 then
5: supportR1 ← GetNumItems(usagePattern1)
6: supportR2 ← getNumItems(usagePattern2)
7: return supportR1 - supportR2
8: else
9: return liftR1 - liftR2

10: end if
11: end function

3.5.1 to rank examples for single API methods.

3.6 JavaDoc Weaver

This module supports the last step of the proposed platform. In few words, it is
responsible to generate the instrumented documentation with the examples and usage
patterns mined by the previous modules, in JavaDoc format. The new documentation
keeps some aspects of the interface provided by the APIMiner 1.0, improving and
adding some others to support the proposed approach.

This module automatically generates the JavaDoc documentation from the source
code and instruments it. This instrumentation generates a new JavaDoc with tree main
interfaces: (i) Example button, (ii) Single example dialog, and (iii) Associated Rules
examples dialog. The following sections present these interface components.

3.6.1 Example Button

The Example button is reused from APIMiner 1.0. Basically, the instrumented JavaDoc
includes Example buttons next to the list of public methods of an API target class, as
presented in Figure 3.3. Also, there is a small label below the button, which indicates
how many examples the platform provides for the method.

When the user clicks on an Example button, a dialog window is launched to
show the examples (Section 3.6.2) and the usage patterns (Section 3.6.3) provided by
the platform.

38 Chapter 3. Proposed Solution

Figure 3.3: JavaDoc for the SQLiteDatabase class as instrumented by APIMiner 2.0

3.6.2 Examples Presentation

As mentioned previously, the interface that shows the examples is a dialog window.
This new interface is similar to the one implemented by APIMiner 1.0, but with some
presentation improvements, as presented in Figure 3.4.

Figure 3.4: Example window in APIMiner 2.0

In the header of the dialog window, we present the method signature and an
option to close the window. The body of the window is divided into four regions: (a)
example header, which contains information about the current example; (b) example,
which shows the example’s source code; (c) usage patterns (detailed in Section 3.6.3);
and (d) footer, which contains buttons for evaluation and navigation over the examples.

The window’s header contains information about the project and source code file
from where the example was extracted. On the right side, there is a select box that
allows the user to navigate through the examples. Moreover, the user can view the full
source code where the example was extracted by clicking in the file name (Figure 3.5).

3.6. JavaDoc Weaver 39

Figure 3.5: Full source code dialog window

The example is presented in the center of the dialog window and the code is for-
matted using a code syntax highlighter. Moreover, the seed statements are highlighted.

Finally, the footer contains buttons for evaluation (like and dislike) and naviga-
tion (Previous and Next). In the first case, the buttons are located on the left side
and follows a strategy very similar to other websites such as YouTube, Facebook, and
StackOverflow. In the second case, the buttons are located on the right side and allows
the users to navigate through the examples.

3.6.3 Usage Patterns Interface

The usage patterns are presented between the example and the footer region. The
interface starts by presenting the text “Frequently called with:”, indicating that the
API method is frequently called with other API methods. Then, the interface shows
the top three usage patterns, as computed by the Ranking Engine module.

By selecting one usage pattern, the instrumented documentation filters the
examples and presents only those that include the methods in the selected
one. For example, Figure 3.4 presents the first example for the method an-
droid.database.sqlite.SQLiteDatabase.beginTransaction() and three usage pat-
terns. When selecting the third usage pattern, the result is as showed in Figure 3.6.

As we can observe, the methods involved in a usage pattern are highlighted
(beginTransaction() + setTransactionSuccessFul + endTransaction()). Moreover,
the usage pattern is showed as selected and an option to clean the filter is enabled. We
also emphasize that the navigation between the examples considers now the selected
usage pattern.

40 Chapter 3. Proposed Solution

Figure 3.6: API usage pattern example

3.7 Final Remarks

This chapter presented in details the solution proposed in this master dissertation to
extend the APIMiner 1.0 platform. This new version relies on an association rule
mining algorithm to discover usage patterns for API methods. These patterns are used
to extract source code examples including more than one API method call. Moreover,
the examples have their readability improved based on properties usually suggested by
the literature. We are calling this extended solution APIMiner 2.0.

Chapter 4

Evaluation

4.1 Overview

To evaluate the proposed platform, we implemented a particular instance for the
Android API. Currently, Android APIMiner 2.0 provides around 100,000 examples
for single API methods and 180,000 examples for the usage patterns. This new
instance replaces the previous version and can be accessed in the following URL:
http://apiminer.org. Figure 4.1 shows the new main page of this website.

Figure 4.1: New main page of Android APIMiner 2.0

More specifically, in this chapter we report three studies conducted to evaluate the
proposed solution. In the first study, we characterize an instantiation of our platform
for the Android API. In the second study, we analyze the real data collected after the
public usage of the platform. Finally, the third study reports a controlled experiment

41

42 Chapter 4. Evaluation

performed with 29 subjects to evaluate Android APIMiner’s gains in comparison with
the traditional Android documentation.

The remainder of this chapter is organized as follows. Section 4.2 presents some
information on the Android API. Section 4.3 details some information on the instantia-
tion of the proposed platform for the Android API. Finally, Section 4.4 and Section 4.5
present respectively an open study and a controlled experiment performed to evaluate
Android APIMiner 2.0.

4.2 Android API

Android is an open-source operating system for mobile devices based on the Linux
kernel. The first version (1.0) of the platform was released on 23 September 2008 and
the system is currently on version 4.4.2 (released on 9 December 2013). Nowadays,
the platform surpassed 1 billion device activations and every day more than 1 million
Android devices are activated, in more than 190 countries. Moreover, more than 1.5
billion apps and games have been downloaded from Google Play each month1.

Google provides a Software Development Kit (SDK) for developing Android ap-
plications. Basically, this SDK provides a set of libraries and developer tools to build,
test, and debug applications. Additionally, Google provides a modified version of the
Eclipse IDE which includes the essential Android SDK components and the Android
Developer Tools (ADT) to implement applications2.

In this dissertation, we relied on the version 4.1.2-r1 of the Android API to gener-
ate an instance of the proposed platform—called Android APIMiner 2.0. This Android
version was released on 9 October 2012 and it presents only minor improvements and
corrections regarding version 4.1. More specifically, this release has 24,934 public meth-
ods and 1,606 protected methods (both including class constructors) distributed over
2,920 public classes and 48 protected classes (including enumerators).

Furthermore, 17,303 methods (65.2%) and 2,575 classes (86.76%) are marked
with JavaDoc annotations (denoting therefore artifacts subjected to automatic doc-
umentation generation). However, we detected an annotation @Hide to remove the
node and all of its children from the documentation. In this case, the number of API
methods and classes marked with the remaining annotations is 15,461 (58.26%) and
1,997 (67.28%), respectively. In our analysis, we considered all public and protected
methods and classes available in the API, since developers can use them.

1http://developer.android.com/about
2http://developer.android.com/sdk

4.3. Android APIMiner 2.0 43

4.3 Android APIMiner 2.0

To better characterize Android APIMiner 2.0, we analyzed all data produced in the
process of making this instance. Basically, the following sections reports and analyze
data about the inputs and outputs of each module of the proposed platform.

4.3.1 Dataset

In this section, we describe the Android systems we used to extract the source code
examples. As described in Section 3.1, APIMiner 2.0 relies on two repositories of client
systems: (a) Mining Dataset, used to mine the API usage patterns, and (b) Example
Dataset, used to extract the examples.

The selection of the systems in each repository followed different criteria, as dis-
cussed in Section 4.3.1.1 and Section 4.3.1.2. Additionally, we present some properties
of the systems included in each repository.

4.3.1.1 Mining Dataset

The selection of the systems in this dataset was more flexible to allow a large number of
client systems. Particularly, we assume that systems not widely known by the Android
community do not directly impact the quality of the mined patterns. To automate the
construction of this dataset, we implemented a script that automatically searches and
downloads Android client systems from GitHub. However, to assume a minimum level
of quality, the following criteria were adopted:

• Programming Language: The projects should be marked as a Java project.

• Commits: The projects should have at least 50 commits. This criterion is
followed to eliminate projects with very reduced programming or maintenance
activity.

• Forks: The projects should not be a fork of another project. The inclusion of
forked projects would duplicate information, therefore reducing the accuracy of
the mined patterns.

In addition to the projects retrieved automatically from Github, we inserted some
projects manually. These projects are well known by Android users and developers
and their source code is publicly available for download. The list of all projects in this
dataset is presented in Appendix A.1. Basically, we considered 396 projects, totalizing
57,658 classes and 450,762 methods, and 362,900 calls to API methods.

44 Chapter 4. Evaluation

Among the considered projects, we can highlight projects such as Cyanogen-

Mod, Astrid, and Wordpress. CyanogenMod is a customized firmware distri-
bution for Android devices based on the Android Open Source Project. Basically, the
project is divided in a core application and many customized applications. In our
dataset, we include the core application and 23 customized applications.

Astrid is a task organization tool with features like reminders, tagging, widgets,
and integration with online synchronization services. The project contains more than
1,800 classes and 13,000 methods and it was recently acquired by Yahoo! Inc.. Finally,
Wordpress is an Android application to write, edit, and publish posts to WordPress’
websites. Currently, the application has between a million and five million downloads3.

To evaluate the usage of the Android API by client systems, we analyzed all
projects in the mining dataset. Figure 4.2 shows the ratio of client’s methods with at
least one call to a method from the Android API. We can observe that in the system
representing the median value, 41.38% of the methods have at least one call to an
API method, which represents a high usage of the Android API by the client systems.
Moreover, the data shows that the dataset contains projects using the API in different
magnitude, contributing to the diversification of data.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

%
 o

f m
et

ho
ds

 w
ith

 A
P

I m
et

ho
ds

 c
al

ls

Figure 4.2: Ratio of methods with at least an API call, among the systems in the
Mining Dataset

3https://play.google.com

4.3. Android APIMiner 2.0 45

Figure 4.3 shows the ratio API calls/method in each project. More specifically,
we calculate two ratios for each system: (i) the total number of API calls divided by
the total number of methods, and (ii) the total number of API calls divided by the total
number of methods with at least one call to API method. Regarding the first ratio, the
system representing the median has 1.37 API calls/method. Furthermore, 75% of the
systems had a ratio between 0.78 and 4.40 API calls/method, which demonstrates the
importance of the API in such systems. We highlight that the system CMScreenshot

has a ratio of 10.25 API calls/method. This happened because it is a small application
that just saves the screen of the device and has only two classes and four methods that
call 41 API methods.

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●
●

All Only with calls

A
P

I c
al

ls
 p

er
 m

et
ho

d

0
1

2
3

4
5

6
7

8
9

10

Figure 4.3: API calls/method, considering all methods of each system and only methods
with at least a single API call

Regarding the second ratio, the system representing the median has 3.23 API
calls/method. The data also shows that 50% of the projects have between 2.72 and
3.89 API calls/method, which reinforces our argument that real applications tend to
call more than one API method to achieve their goals. Similarly to the first ratio,
CMScreenshot is the system with the highest ratio because all methods call API
methods.

Additionally, we performed a correlation test between the project’s size (in terms
of number of methods) and the usage of the API (in terms of number of calls to
API methods). Initially, we checked whether the distribution of our data follows a

46 Chapter 4. Evaluation

normal distribution, using the Shapiro-Wilk test. The test result was a p-value less
than 2.2E−16, indicating that the data is not normally distributed. For this reason,
we performed the Kendall Tau rank correlation test [Kendall, 1938] to measure the
correlation between the defined variables. The result was a coefficient value equal to
-0.43, which indicates that large projects tend to call API methods proportionally less
than the smaller ones.

4.3.1.2 Example Dataset

Different from the Mining Dataset, this second dataset follows more rigid criteria for
selecting the projects. More specifically, the projects were manually selected based
on their popularity among the Android developers community. Moreover, only open
source projects and projects available for free download were considered.

A major goal of the proposed platform is to provide high-quality source code
examples. However, to achieve this goal it is necessary that the source code used
to extract the example present good quality, i.e., it should, preferably, follow good
programming practices. In this sense, we claim that the selection of projects developed
and maintained by larger groups of developers at least increase the chances of a data
set with high quality code.

The projects selected for this dataset are presented in Appendix A.2. In short,
we manually selected 151 projects that provided 287,263 examples (as detailed in Sec-
tion 4.3.4). The main difference regarding the dataset described in the previous sec-
tion consists of its more curated nature. Basically, contains less projects than the first
dataset. In fact, this dataset is as a subset of the Mining Dataset since all projects
from the Example Dataset are present in the Mining Dataset.

4.3.2 Transactions

As described in Section 3.3, the set of transactions (Transactions Database) is the
main input to the association rules algorithm. We consider a transaction as a client
method; moreover, the API methods called by such methods are the items.

However, the data presented in Section 4.3.1.1 shows that not all methods imple-
mented by API clients include a call to an API method. Moreover, transactions with
a single call to an API method are not relevant, for the particular purpose of mining
association rules. For this reason, we first removed such methods from the database.

More specifically, we initially mined 512,993 transactions, where 397,183 (77.43%)
are transactions that do not include calls to API methods and 47,150 transactions
(9.19%) had a single call to an API method. Finally, 68,660 transactions (13.38%)

4.3. Android APIMiner 2.0 47

with least two calls to API methods were selected. We refer to transactions with more
than one API method call as useful transactions.

Figure 4.4 shows the distribution of the number of method calls in the useful
transactions. It is possible to observe that 37.66% of the useful transactions have a
size equal to two and transactions greater than ten are very rare. Moreover, the me-
dian of the transactions is three (indicated by the first vertical line) and the mean is
4.6 (indicated by the second vertical line). In addition to the transactions shown in
Figure 4.4, we retrieved 23 transactions with more than 40 API methods calls. Partic-
ularly, 10 of these transactions belong to the core application of the CyanogenMod

project. For example, the method onTransact(int, Parcel, Parcel, int) in the class
android.app.ActivityManagerNative from the project CyanogenMod Core, has
137 calls to API methods. This method has 1,920 code lines and a major switch with
multiples case statements.

0
10

20
30

API methods calls

%
 o

f u
se

fu
l t

ra
ns

ac
tio

ns

2 4 6 8 10 14 18 22 26 30 34 38

Figure 4.4: Distribution of the useful transactions

Figure 4.5 presents the percentage of useful transactions per project. On average,
each project has 30.49% of useful transactions and the median is 26.53%. We can also
observe that five projects have 100% of useful transactions (i.e., all methods imple-
mented by these projects include at least two calls to API methods). A brief analysis

48 Chapter 4. Evaluation

of such projects revealed that they are small projects, having between two and thirteen
methods.

●

●

●●

●

●

●●●

●

●

●●●●

0
20

40
60

80
10

0

%
 o

f u
se

fu
l t

ra
ns

ac
tio

ns

Figure 4.5: Percentage of useful transactions per project

Regarding the projects that more contributed with useful transactions, the
CyanogenMod Core project provided 11,322 useful transactions (16.49% of all use-
ful transactions in the database). Table 4.1 presents the top five projects with more
useful transactions. The high number of transactions in the CyanogenMod Core

project is due to the fact that it is the largest project in our database. In addition,
it includes the complete code of the Android platform with their customizations. The
second largest contributor project (Astrid) has only 20% of the number of useful
transactions provided by CyanogenMod Core.

Table 4.1: Top five projects with more useful transactions

Project Useful Transactions
CyanogenMod Core 11,322 (23.3%)
Astrid 2,307 (17.6%)
MiCode 2,290 (28.5%)
Openintents 1,228 (21.6%)
k9 1,080 (17%)

We also analyzed the most frequent transactions, as presented
in Table 4.2. The most frequent transaction denotes calls to the

4.3. Android APIMiner 2.0 49

Toast.makeText(Context, CharSequence, int) and Toast.show() API methods,
which were called together in 212 transactions from 76 projects. Analyzing the Android
documentation, we can observe that Toast.makeText(Context, CharSequence, int)
method is a static method that returns an object of the type android.widget.Toast.
Basically, this type is used to create and show a view containing a quick message.
Particularly, Toast.show() is called to show the view in the device.

Table 4.2: Top five most common transaction items

Frequent items Frequency # Projects
Toast.makeText(Context, CharSequence, int) 212 76Toast.show()
ContentResolver.query(Uri, String[], String, String[], String) 171 38Context.getContentResolver()
Activity.onCreate(Bundle) 161 47Activity.setContentView(View)
getMenuInflater() 142 81MenuInflater.inflate(int, Menu)
Log.d(String, String) 137 52Log.e(String, String)

The first, second, and fourth items in Table 4.2 follow the same usage pattern,
which consists of calling a method to obtain an object used as another call. The third
item occurs when an application needs to create a new view. First the application
sets the content of the view by calling the Activity.setContentView(View) method
and then calls the Activity.onCreate(Bundle) method from the super class. The fifth
item is used to debug code in Android applications, using the Log.d(String, String)
method to output debug messages and Log.e(String, String) method to output error
messages. Under general terms, we perceive that these transactions are not restricted to
few projects and for this reason they denote common patterns when using the involved
API methods.

Another aspect we analyzed is the relationship of the API methods in the trans-
actions. Basically, our objective was to identify whether the transactions are composed
by methods from a single class or from different classes. The result of this analysis is
showed in Table 4.3. We can observe that most transactions are composed by methods
from more than one class (inter-class transactions). This result also emphasizes the
complexity of real projects, since the relationship among methods from many classes
demand more effort from developers, when understanding such calling patterns.

Finally, we analyzed how many API methods and API classes are covered by the
transactions. As described in Section 4.2, the analyzed version of the Android API

50 Chapter 4. Evaluation

Table 4.3: Intra-class and Inter-class calls in useful transactions

Type Frequency
Intra-class 11,736 (17.09%)
Inter-class 56,924 (82.91%)

has 26,540 methods and 2,968 classes. From this total, 43.26% (11,483) of the API
methods are present in the transactions and 38.86% (10,316) in useful transactions.
The API classes have coverage of 48.85% (1,450) and 45.14% (1,340), respectively.

Tables 4.4 and 4.5 present the methods and classes most found in the trans-
actions, respectively. In Table 4.4, we can observe that the most used API method
is Log.d(String, String) with 6,729 calls, from 257 projects. However, the method
present in more projects is TextView.setText(CharSequence), with 5,028 calls from
310 projects. Basically, the first method outputs debug logs and the second one set a
text for an object in an application view.

Table 4.4: Top five API methods most called in useful transactions

Method Frequency # Projects
Log.d(String, String) 6,729 257
TextView.setText(CharSequence) 5,028 310
Context.getString(int) 3,526 238
View.findViewById(int) 3,310 233
Log.e(String, String) 3,193 246

Regarding the classes, the most frequent used class is android.view.View with
40,967 uses in 343 projects. Basically, the classes listed in Table 4.5 reflect their
importance in the API. The android.view.View class represents a basic way for build-
ing components in the user interface, the android.app.Activity class represents a
basic class to interact with the users, the android.util.Log class provides methods
to log events, the android.content.Intent class supports late operations, and finally
android.content.Context class allows access to application-specific resources.

Table 4.5: Top five API classes most used in useful transactions

Class Frequency # Projects
android.view.View 40,967 343
android.app.Activity 27,633 371
android.util.Log 21,083 338
android.content.Intent 20,582 352
android.content.Context 16,389 345

4.3. Android APIMiner 2.0 51

4.3.3 Association Rules

In this section, we describe the decisions we made when selecting input values for
the association rules mining algorithm and we also analyze the produced rules. As
described in Section 3.3, APIMiner 2.0 does not provide an automated procedure to
select automatically the best values from the input parameters. However, in this section
we present the strategy we used to select these values.

The first step when mining association rules is selecting the minimum values of
support and confidence (see Section 3.3). Our strategy aimed to select values that do
not generate a very large number of rules, while maximizing the API methods coverage
as possible. For that purpose, we performed several tests varying the values of support
and confidence to observe the variation in the number of rules and their coverage.

Figure 4.6 shows the variation in the number of extracted rules by varying the
support and confidence values. More specifically, we restrict the possible values of
confidence to 70%, 80%, 90%, and 95% to keep a minimum quality in the rules. As we
can observe, support values greater than 60 cause major reduction in the number of
rules, despite the confidence threshold. On the other hand, support values less than 11
generate many rules (for example, 11,054 rules for a confidence value equal to 95% and
33,685 rules for a confidence value equal to 70%). Finally, we also observed that from
support values equal to 21 the number of rules begins to grow more sharply. Thus, this
support value represents a good candidate for selection according to our criteria.

Figure 4.7 shows the variation in the rules coverage. As we can observe, the
variation in the support does not impact as much as the variation in the confidence
value. Thus, we conclude that, from the viewpoint of coverage, the value of 70% for
confidence covers a large proportion of methods without losing much in quality.

Based on the results and conclusions on the input values, we defined the mini-
mum values of support and confidence as 21 transactions and 70%, respectively. As
mentioned before, these values represent an interesting balance between the number of
rules and the number of methods.

However, we emphasize that other support and confidence thresholds could be
used. By using a minimum support value lower than 21 would increase the number
of rules and the coverage of the API methods at the cost of obtaining of rules with
a smaller degree of confidence. On the other hand, using a minimum support value
greater than 21 would cover fewer API methods.

The execution of the Patterns Analyzer module returned 38,661 rules, including
rules with antecedents having more than one method. Considering only rules whose
antecedent size is equal to one, we obtained 1,952 rules. These rules are used to build

52 Chapter 4. Evaluation

10 20 30 40 50 60

0
10

20
30

40

Support value

R

ul
es

 (
th

ou
sa

nd
)

●●

●●●●●

●

●●●

●

70%
80%
90%
95%

Figure 4.6: Number of rules by varying the minimum support value

10 20 30 40 50 60

0
20

0
40

0
60

0
80

0
10

00
12

00

Support value

M

et
ho

ds

●●●
●●●●●●●

●

●●●●
●

●
●●

●

70%
80%
90%
95%

Figure 4.7: API methods coverage by varying the minimum support value

4.3. Android APIMiner 2.0 53

the final usage patterns. Moreover, the rules cover 624 distinct API methods, which
represent coverage of 2.35% of all Android API methods and 6.05% of the Android
API methods that appear in useful transactions. Furthermore, the rules cover 191 API
classes, which represent 6.43% of all API classes and 13.17% of the API classes in useful
transactions.

Table 4.6 shows the top five API methods with more rules (i.e., the antecedent of
the rule contains only the cited method) and their average support. As we can observe,
the API methods with more rules are not present in the most frequent transactions
or among the most frequently called API methods (as showed in Tables 4.6 and 4.4,
respectively). This fact is explained by the lower average support of the rules, which
is close to the minimum value defined for the extraction.

Table 4.6: Top five methods with more rules and their average support

API Method # of rules
ViewGroup.addViewInLayout(View, int, ViewGroup.LayoutParams) 63 (22.09)
PackageManager 41 (36.34).queryIntentActivityOptions(ComponentName, Intent[], Intent, int)
ListFragment.setEmptyText(CharSequence) 41 (22.90)
View.getWindowVisibleDisplayFrame(Rect) 41 (41.97)
View.resolveSizeAndState(int, int, int) 41 (34.82)

Table 4.7 presents the five rules with higher support values. Initially, we can
observe that the first and second rules include the same methods present in the most
frequent transactions (Table 4.2). Moreover, we can also observe that the third and
fourth rules include the same methods, but with the antecedent and consequent in-
verted. On the other hand, the methods in the fifth rule do not appear in the
most frequent transactions, but they constitute the rule with the highest confidence
among the listed rules. More specifically, from 1,044 occurrences of the method
AlertDialog.Builder.setTitle(CharSequence) in useful transactions, in 1,019 trans-
actions (97.60%) the method AlertDialog.Builder.Builder(Context) is also present.

4.3.4 Examples

The example extraction process resulted in 287,263 examples. More specifically,
102,442 examples were extracted for single API methods and 184,821 examples for
the usage patterns. Figure 4.8 shows the distributions of the examples according to
the number of API methods called. We can observe that most examples include calls
to only one API method (36%), and that the examples including calls to two API
methods are minority (6%).

54 Chapter 4. Evaluation

Table 4.7: Top five rules with higher support

Rule Support Confidence
Activity.setContentView(View)

1,362 75.08%⇓
Activity.onCreate(Bundle)

Toast.show()
1,133 86.09%⇓

Toast.makeText(Context, CharSequence, int)
ViewGroup.getChildCount()

1,077 75.15%⇓
ViewGroup.getChildAt(int)
ViewGroup.getChildAt(int)

1,077 73.66%⇓
ViewGroup.getChildCount()

AlertDialog.Builder.setTitle(CharSequence)
1,019 97.60%⇓

AlertDialog.Builder.Builder(Context)

1 method (35.66%)

2 methods (5.62%)

3 methods (27.77%)

4 methods (30.96%)

Figure 4.8: Number of API method calls in the examples

Moreover, the examples cover 3,915 Android API methods (14.75%) and 549
classes (18.5%). The five API methods with more examples are presented in Table 4.8.
The Activity.findViewById(int) and View.findViewById(int) methods are used to
retrieve an object in the view, the TextView.setText(CharSequence) method sets
the text of the component, the Context.getString(int) method gets a localized string
from the application, and the Log.d(String, String) method outputs debug messages.

4.3. Android APIMiner 2.0 55

Additionally, these five methods concentrate 11.75% of the examples for single methods.

Table 4.8: API methods with more examples

Method # Examples
Activity.findViewById(int) 3,239
TextView.setText(CharSequence) 2,818
Log.d(String, String) 2,366
Context.getString(int) 2,126
View.findViewById(int) 1,489

Table 4.9 shows the five methods that most appeared in all ex-
amples, with emphasis on the AlertDialog.Builder.Builder(Context),
AlertDialog.Builder.setTitle(CharSequence), and AlertDialog.Builder.create()
methods. These methods are typically used together to construct dialogs that display
up to three buttons.

Table 4.9: Methods that most appeared in all examples

Method # Examples
AlertDialog.Builder.Builder(Context) 31,935
AlertDialog.Builder.create() 17,176
TextView.setText(CharSequence) 16,486
AlertDialog.Builder.setTitle(CharSequence) 15,803
View.findViewById(int) 13,886

The five classes that most appeared in the examples are presented in Table 4.10
together with their number of methods. The android.view.View class is the Android
class with more methods in the API (511 methods). In this sense, it is natural that it is
present in most examples. On the other hand, the android.app.AlertDialog.Builder
class has fewer methods (38 methods), but it is also present in a large number of
examples. More specifically, this class is present in 129,100 examples, which represents
an average of 3,397 examples per method. Moreover, three methods of this class
contribute with more than half of the presences (50.28%).

At the package level, the packages that most appeared in all examples are pre-
sented in Table 4.11. The android.app package contains high-level classes of the An-
droid application model, the android.view package provides classes to handle screen
layouts and interaction with users, the android.content package contains classes for
accessing and publishing data on devices. Finally, the android.widget package con-
tains UI elements to use on application screens, and the android.database package
contains classes to manage databases.

56 Chapter 4. Evaluation

Table 4.10: Classes that most appeared in all examples

Class # Methods # Examples
android.view.View 511 136,635
android.app.AlertDialog.Builder 38 129,100
android.app.Activity 187 48,444
android.content.Intent 140 32,930
android.content.Context 91 25,670

Table 4.11: Packages that most appeared in all examples

Package # Examples
android.app 207,398
android.view 203,869
android.content 134,905
android.widget 54,330
android.database 37,691

We also extracted some metrics from the examples aiming to evaluate quality
aspects. Table 4.12 presents the values for such metrics extracted from all exam-
ples. The CONDITIONAL_STATEMENTS metric returns the number of conditional
statements (like if, for, and while) in the examples. The data shows that, on average,
one out of three examples includes a conditional statement, which is an evidence that
the examples have low cyclomatic complexity. The LOC (Line of Code) metric com-
putes the size of the examples, which amounted 3,969,660 code lines. Declarations of
variables that were not identified (UNDISCOVERED_DECLARATIONS) during the
summarization process achieved an average of three declarations at each two examples.
Finally, the UNHANDLED_EXCEPTIONS metric computes the number of exceptions
that are not handled, including runtime exceptions. We highlight that the values mea-
sured for UNDISCOVERED_DECLARATIONS and UNHANDLED_EXCEPTIONS
emphasize the importance of the readability improvements proposed in Section 3.4.2.

Table 4.12: Quality metrics (all examples)

Metric Max Min Average Sum
CONDITIONAL_STATEMENTS 30 0 0.31 90,615
LOC 290 1 13.82 3,969,660
UNDISCOVERED_DECLARATIONS 152 0 1.46 418,376
UNHANDLED_EXCEPTIONS 49 0 0.02 7,531

Regarding the size of the examples, Figure 4.9 presents the distribution of the
examples by their size. More specifically, the first box plot shows the distribution

4.3. Android APIMiner 2.0 57

regarding single API method calls while the second one presents the size of the examples
considered when mining for usage patterns. Moreover, outliers are not included to
facilitate visualization.

Single API call Usage Patterns

0
10

20
30

40

LO
C

Figure 4.9: Distribution of the examples size

As we can observe in the first box plot, half of the examples have at most three
lines of code and only 25% of the examples have six or more lines of code. Although
the examples involve the invocation of a single API method, we consider such number
of lines of code as good values because methods may require parameters. In this sense,
the presence of variables in the example causes a natural increase in their size. On the
other hand, the size of the examples considered while mining for usage patterns are
considerably higher. More specifically, half of the examples have at most 14 lines of
code and 25% have 23 lines of code or more. We consider such values adequate because
91.27% of the examples for usage patterns call at least three API methods.

4.3.5 Usage Patterns

As described in Section 3.5, the ranking engine supports basically two tasks: (i) ranking
the examples including a single API call, previously stored in the Examples Database;
and (ii) ranking examples for the already mined association rules. In the first task, the
platform ranked the examples for 3,915 distinct API methods. In the second task, first
the platform selected and ranked the examples for the association rules described in

58 Chapter 4. Evaluation

Section 4.3.3. Next, the platform identified the association rules which had examples
and generated and ranked the usage patterns.

In particular, for some usage patterns we did not identify examples because the
Examples Dataset does not included all projects from the Mining Dataset. More
specifically, we were not able to find examples for 280 association rules (14% of 1,952).
Consequently, 88 API methods out of the 624 distinct API methods with rules were
not included for not presenting examples.

In order to evaluate the rank criteria for single API methods, we analyzed the
first 20 examples extracted for the Activity.findViewById(int) API method (which
is the API method with more examples). We found that all examples have size equal
to one and do not present compilation problems. Moreover, we identified four main
ways of using this method: (i) by returning the result of the call (Listing 4.1); (ii) by
assigning the value to a variable (Listing 4.2); (iii) by passing the result of the call
to another method (Listing 4.3); and (iv) by performing a casting to specific types
(Listing 4.4).

Listing 4.1: Using Activity.findViewById(int) to return a value
1 return findViewById(R.id.veecheck_no);

Listing 4.2: Using Activity.findViewById(int) in an assignment
1 View root = findViewById(R.id.form_root);

Listing 4.3: Using Activity.findViewById(int) as a target
1 findViewById(R.id.edit_name).requestFocus();

Listing 4.4: Using Activity.findViewById(int) in a casting
1 Button b = (Button) findViewById(R.id.clear);

To evaluate the ranking of usage patterns, we selected the
MediaRecorder.prepare() method, used by many association rules. The first
usage pattern for this method is:

4.3. Android APIMiner 2.0 59

MediaRecorder.prepare()
↓

MediaRecorder.start() + MediaRecorder.setAudioSource(int) +
MediaRecorder.setOutputFile(String)

with lift value of 1986.69. Moreover, another usage pattern has the same lift value but
the number of methods in the rule (second criterion) is smaller.

Listing 4.5 presents the first example for the aforementioned usage pattern. As
we can observe, the methods in the usage pattern are called in lines 3, 4, 6, and
12 and they are called in the same order as the example in the original documen-
tation4. Moreover, the call to MediaRecorder.prepare() (line 6) happens within
try/catch clause. On the other hand, we also identified that the example does not
included other necessary API methods as MediaRecorder.setOutputFormat(int) and
MediaRecorder.setAudioEncoder(int).

Listing 4.5: First example of the first usage pattern for MediaRecorder.prepare()
method

1 android.media.MediaRecorder mRecorder; //initialized previously
2 java .lang.String mFileName, AUDIO_DIR; //initialized previously
3 mRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);
4 mRecorder.setOutputFile(AUDIO_DIR + mFileName);
5 try {
6 mRecorder.prepare();
7 } catch (IllegalStateException e) {
8 //do something
9 } catch (IOException e) {

10 //do something
11 }
12 mRecorder.start();

Finally, we conclude that the ranking criteria followed by APIMiner 2.0 achieved
satisfactory results because it resembles the example from the original Android API
documentation. Moreover, it was possible to derive usage patterns for most of the
association rules mined by the previous modules, even significantly reducing the number
of projects in the Examples Dataset.

4http://developer.android.com/reference/android/media/MediaRecorder.html

60 Chapter 4. Evaluation

4.4 Field Study

To investigate how the community used this new version of the platform, we conducted
a field study using Android APIMiner 2.0, available at www.apiminer.org. More
specifically, our study reproduce the study of Montandon [2013], but aiming to evaluate
the new features from this new version.

The evaluation was based on data collected in the period of 13th May 2013 to
11th October 2013 (five months). Similarly to the study conducted for the version
1.0, the data was obtained from a private logging service and from Google Analytics5.
However, the private logging service was modified to log requests for usage patterns.

During the time frame considered in our study, Android APIMiner 2.0 received
a total of 32,335 visits. This number represents 29.1% more visits per month than the
version 1.0. Figure 4.10 presents the number of visits per week to our version. We
emphasize that in the reported period we did not make any promotion in websites,
only in academic events through publications and paper presentations.

apiminer ­ http://java.llp.dcc.ufmg.br/apiminer
apiminer

Go to this report

May 13, 2013 ­ Oct 11, 2013Audience Overview

Language Visits % Visits

1. en­us 17,888 55.32%

2. pt­br 1,288 3.98%

3. ja 1,133 3.50%

4. en­gb 1,112 3.44%

5. ko 1,038 3.21%

6. zh­tw 1,006 3.11%

7. ru 955 2.95%

8. fr 932 2.88%

9. es 831 2.57%

10. zh­cn 605 1.87%

Overview

26,234 people visited this site

 Visits

June 2013 July 2013 August 2013 September 2013 October 2013

1,5001,5001,500

3,0003,0003,000

Visits

32,335
Unique Visitors

26,234
Pageviews

48,640

Pages / Visit

1.50
Avg. Visit Duration

00:01:11
Bounce Rate

80.57%

% New Visits

80.33%

New Visitor Returning Visitor

19.6%

80.4%

© 2014 Google

All Visits
100.00%

Figure 4.10: Number of visits per week

Regarding demographic information, Table 4.13 presents the top ten countries in
number of visits and the their total participation in the number of visits. As we can
observe, the country with more visits was India (5,089 visits) followed by United States
(3,137 visits), and Brazil (1,692 visits). These three countries concentrate one third
of all visits, and India had doubled its number of visits whereas the number of visits
coming from the United States was maintained.

As result, these visits generated 5,545 requests for single API examples. More
specifically, the number of requests by clicking in the Example button was 2,601
(46.9%). Therefore, 2,944 requests (53.1%) were made by navigating between the ex-
amples, which shows that users often seek for different examples for the same method.

Figure 4.11 presents the number of requests for examples—for single API
methods—per week. We can observe that the number of requests increased in the
period in the same way that the number of visits.

5https://www.google.com/analytics

www.apiminer.org

4.4. Field Study 61

Table 4.13: Top ten countries in visits

Country # Visits
India 5,089 (15.74%)
United Stated 3,137 (9.7%)
Brazil 1,692 (5.23%)
Japan 1,513 (4.68%)
South Korea 1,507 (4.66%)
Germany 1,100 (3.4%)
Taiwan 1,053 (3.26%)
United Kingdom 1,028 (3.18%)
France 856 (2.65%)
Canada 855 (2.64%)

Figure 4.11: Number of examples provided per week

Table 4.14 presents the top ten methods with more requests of single examples
and their number of available examples. The first method with more example requests
was SQLiteDatabase.beginTransaction() (209 requests). However, this number is
explained by the fact that we use the method as an example in the homepage of the
platform.

Moreover, we can observe that most examples have some relationship such as:

(A) SQLiteDatabase.beginTransaction()
SimpleCursorAdapter.SimpleCursorAdapter(Context,int,Cursor,String[],int[])
SimpleCursorAdapter.setViewBinder(SimpleCursorAdapter.ViewBinder)
SQLiteDatabase.insertOrThrow(String, String, ContentValues),

(B) ViewPager.OnPageChangeListener.onPageSelected(int)
ViewPager.OnPageChangeListener.onPageScrollStateChanged(int),

(C) RectF.RectF(float, float, float, float)

62 Chapter 4. Evaluation

Table 4.14: Top ten methods with most requests for examples (#1) and their number
of available examples (#2)

Method #1 #2
SQLiteDatabase.beginTransaction() 209 36
ViewPager.OnPageChangeListener.onPageSelected(int) 101 4
SimpleCursorAdapter.SimpleCursorAdapter(Context,int,Cursor,String[],int[]) 91 32
RectF.RectF(float, float, float, float) 57 71
Point.Point(int, int) 56 52
ViewPager.OnPageChangeListener.onPageScrollStateChanged(int) 55 4
SimpleCursorAdapter.setViewBinder(SimpleCursorAdapter.ViewBinder) 50 12
BitmapRegionDecoder.decodeRegion(Rect, BitmapFactory.Options) 50 1
SQLiteDatabase.insertOrThrow(String, String, ContentValues) 48 7
RectF.RectF() 44 24

Point.Point(int, int)
BitmapRegionDecoder.decodeRegion(Rect, BitmapFactory.Options)
RectF.RectF()

(A) which are used for manipulating databases and presenting queries results.
(B) which refers to callbacks for changing states of pages. (C) which refers to codes to
manipulate rectangle regions in images.

On the other hand, the methods in Table 4.14 do not have usage patterns, with
the exception of SQLiteDatabase.beginTransaction(). In the Top 100 methods, 19
methods have at least one usage pattern.

Regarding the usage patterns, the visits generated 176 requests. Moreover, from
536 API methods with usage patterns, 135 API methods received at least one click
on the “Example” button (event that allows the platform presents the examples and
usage patterns). Table 4.15 presents the top ten methods with most requests for usage
patterns, their number of single example requests, and usage patterns. Similarly to the
previous table, SQLiteDatabase.beginTransaction() method concentrates the largest
number of usage pattern requests, which is also explained by its usage the main page
of Android APIMiner 2.0.

Figure 4.12 shows the relation between the number of example requests for usage
patterns and for single API methods, considering only the methods with user requests.
We can observe that the median has a ratio of 45% (i.e., from around two example
requests for single API method is made an example request for an usage pattern).
Particularly, android.content.DialogInterface.cancel() method received more exam-
ple requests for usage patterns than single API methods. In the total, we obtained 31

4.4. Field Study 63

Table 4.15: Top ten methods with most requests for usage patterns #1, their number
of single example requests #2, and usage patterns #3

Method #1 #2 #3
SQLiteDatabase.beginTransaction() 131 209 3
Toast.setGravity(int, int, int) 12 43 3
AlertDialog.Builder.create() 6 8 1
SQLiteDatabase.setTransactionSuccessful() 3 10 3
ContentValues.ContentValues(ContentValues) 3 3 1
DialogInterface.cancel() 3 2 5
Toast.makeText(Context, int, int) 2 9 1
AudioTrack.getState() 2 7 7
CursorWrapper.moveToNext() 2 5 4
Toast.setText(CharSequence) 2 5 1

evaluations of examples by end-users, distributed over 26 API methods. The methods
with more evaluations are:

●

0.
0

0.
5

1.
0

1.
5

us

ag
e

pa
tte

rn
 r

eq
ue

st
s

pe
r

si
ng

le
 A

P
I m

et
ho

ds
 r

eq
ue

st

Figure 4.12: Relation between the number of examples requests for usage pattern and
single API method

• Color.rgb(int, int, int) (three evaluations)

• ViewPager.OnPageChangeListener.onPageSelected(int) (two evaluations)

• Intent.getStringArrayExtra(String) (two evaluations)

64 Chapter 4. Evaluation

• NotificationCompat.Builder.setVibrate(long[]) (two evaluations)

Listing 4.6 and Listing 4.7 present the two examples of the
NotificationCompat.Builder.setVibrate(long[]) method evaluated by the end-
users. The example in Listing 4.6 received a positive evaluation, while the example
in Listing 4.7 received a negative one. We can observe that the first example is more
complete (for example, all variables are initialized in the example’s scope). On the
other hand, in the second example the variables are not initialized. This fact reinforces
the findings of Buse and Weimer [2012], regarding the user’s preference examples for
where all the variables are declared and initialized in the example’s scope.

Listing 4.6: Example for the method NotificationCompat.Builder.setVibrate(long[])
(with a positive evaluation)

1 NotificationCompat.Builder notificationBuilder = new NotificationCompat.Builder(
2 context);
3 long [] vibratePattern = null;
4 vibratePattern = parseVibratePattern(vibrate_pattern_raw);
5 notificationBuilder .setVibrate(vibratePattern);

Listing 4.7: Example for the method NotificationCompat.Builder.setVibrate(long[])
(with a negative evaluation)

1 long [] vibrationPattern; // initialized previously
2 android.support.v4.app.NotificationCompat.Builder builder; // initialized previously
3 builder .setVibrate(vibrationPattern);

4.5 User Study

To shed light on the benefits and drawbacks of our platform, we conducted a controlled
experiment with 29 subjects who were invited to use both Android APIMiner, and
the traditional Android documentation. More specifically, we proposed this study to
answer the following question:

Do the recommendations provided by APIMiner 2.0 help developers to implement
maintenance tasks with less effort?

4.5. User Study 65

To answer this question, we designed a study including two corrective main-
tenance tasks that were performed by the subjects. As a restriction, the subjects
were asked to implement one task accessing the documentation provided by Android
APIMiner 2.0, and the second task accessing Android’s traditional JavaDoc. Moreover,
we analyzed the relationships between the subjects’ profile and the time they spent on
each task.

This section is organized as follows. Section 4.5.1 presents the configuration of
the study, which includes the target application, the proposed tasks, and the desired
profile of the participants. Section 4.5.2 describes how the study was executed. Finally,
Section 4.5.3 describes our findings and Section 4.6 discuss threats to validity.

4.5.1 Study Setup

In this study, we decided to use a strategy similar to the one followed to evaluate the
first version of the platform. Basically, we developed three corrective maintenance tasks
that the subjects were invited to perform. These tasks are related to the target system,
More Aqui app, which consists of an Android application to help users who are looking
for properties on sale. Basically, More Aqui allows users to register new properties or
consult registered properties. More Aqui’s implementation relies on many resources
of the Android platform such as: (i) database manipulation, (ii) localization services,
(iii) user interface elements, and (iv) event handling.

Figure 4.13 presents three screens from More Aqui. Figure 4.13(a) presents
the main screen of the application, which allow users to register new properties (Fig-
ure 4.13(b)) by clicking in the button Novo or to list all properties already registered
(Figure 4.13(c)) by clicking in the button Visualizar.

Regarding the tasks, they were designed to represent real maintenance activities.
In other words, each task represents an application functionality that as implemented
do not follow certain requirements. The proposed maintenance tasks are described as
follows:

1. Obtaining location: When a user carries out the inclusion of a property, the
application collects the last registered location using the location provider service
available on the Android devices. The initial problem is that one of the criteria for
selecting the provider is wrong and the implementation does not address scenario
where there are no available provider;

2. Inserting new properties: After the user fills out the information and clicks on
the Done button, the data is validated and inserted into the database. However,

66 Chapter 4. Evaluation

(a) Main screen (b) Registration screen (c) Listing screen

Figure 4.13: Screenshots from More Aqui

as initially implemented, the system does not handle possible problems when
inserting the property, like connection problems;

3. System messages: For some user actions it is necessary to present a response
to the user, using little messages. The proposed task demands a modification in
the code so that the message appears centralized and with a long duration.

For each task, we presented to the subjects a detailed description of the require-
ments that the code should attend. Moreover, we developed an automated test that
checks whether such requirements are implemented correctly.

Regarding their complexity, the tasks have the same difficulty considering that
the number of lines of code and the number of presented problems are the same. The
main aspect that can facilitate the tasks’ implementation is prior knowledge on certain
technologies. For instance, subjects with expertise in manipulating databases could
perform better than other subjects without this knowledge. Furthermore, the Obtain-
ing location task was used to explain the experiment to the subjects (as discussed in
details in the next section) and the Inserting new properties and System messages
tasks were used in the experiment. Particularly, the use of different domains in each
task does not allow them to become simpler after the implementation of the previous
task.

When selecting the subjects, we defined that they should have skills on the Java
programming language, but they should not be experts in the Android platform. This

4.5. User Study 67

information was obtained through a characterization form, presented in Appendix B.1.
At this point, we emphasize that the identification of the subjects was not requested
in this form. However, we offered the subjects the opportunity to receive the compiled
results of the experiments along with their performance in relation to other subjects.

In the experiment we followed a crossover methodology, which consisted of di-
viding the subjects in two groups (A and B). Group A did the first task accessing the
traditional Android documentation and the second task accessing the documentation
provided by Android APIMiner 2.0. In contrast, group B did the first task accessing
the Android APIMiner 2.0 and the second task using the traditional Android docu-
mentation. Thus, each subject did a task in each evaluated approach and at the end we
obtained an equal number of samples for each approach to be analyzed. The division
of the subjects in groups was made randomly.

We prepared a laboratory with 20 computers for the experiment execution. Each
computer has the following settings: Dell Optiplex 790 with Intel Core I3 3.30 GHz,
8 GB RAM, 1 TB of HD, and Windows 7 Professional 64 bits. Each station was
configured with Eclipse IDE and the Android ADT version 22.3.0 (latest version) along
with a pre-defined workspace.

4.5.2 Experiment Execution

The experiment included 29 subjects and was divided in three sessions. Basically, the
first session was executed on 20th September 2013 with nine postgraduate students, the
second session was executed on 14th October 2013 with nine postgraduate students, and
the third session was also executed on 14th October 2013 with 11 graduate students.

A subject declared that he had no knowledge in Java and therefore he was elim-
inated from the experiment. Furthermore, four subjects dropped out before the time
limit allowed and were also eliminated. Regarding the subjects distribution, group A
stayed with 12 subjects and group B also stayed with 12 subjects. In other words, the
elimination of the subjects did not affect the final distribution of the subjects.

Figure 4.14(a) summarizes the knowledge of the subjects in the Java programming
language, according to the answers in the form. Most of the subjects rated their knowl-
edge as “Basic” (nine subjects, 37.5%) and “Intermediary” (nine subjects, 37.5%). The
other six subjects rated their knowledge as “Expert” (25%). Figure 4.14(b) summarizes
the knowledge of the subjects on the Android platform. As expected, most subjects
stated they had no knowledge in this platform (18 subjects, 75%). Five subjects rated
their knowledge as “Basic” and one rated their knowledge as “Intermediary”.

Moreover, Figure 4.15 summarizes the professional experience of the subjects.

68 Chapter 4. Evaluation

Basic (37.5%)

Expert (25%)

Intermediary (37.5%)

(a) Java

Basic (20.83%)

Intermediary (4.17%)

None (75%)

Expert (0%)

(b) Android

Figure 4.14: Subjects’ expertise

Most subjects (10 subjects, 41.67%) reported more than three years of experience and
eight subjects (33.33%) reported that never worked professionally. Furthermore, five
subjects reported between one and three years of experience and one subject reported
less than one year of experience. As we can observe, the experiment included a repre-
sentative group of subjects regarding their professional experience.

< 1 (4.17%)

1 ~ 3 (20.83%)

> 3 (41.67%)

Never (33.33%)

Figure 4.15: Professional expertise of the subjects (in years)

We started the experiment with a brief introduction on Android development,
highlighting the main topics the subjects should know when implementing the tasks.
Among these topics, we showed how to use the development tools and the More Aqui
application. Next, we used the Obtaining location task as a training task. Basically,

4.5. User Study 69

the following methodology was recommended when implementing the tasks:

1. Read the description: First the subjects were instructed to read the entire
description of the task. This description includes information on how the appli-
cation should behave, the requirements that the code should attend, and specific
instructions such as the documentation to be used (traditional or instrumented
by APIMiner 2.0);

2. Register the starting time: With emphasis on this statement, we asked the
subjects to fill the form with the current time;

3. Run the automated test: As a first step, the subjects were instructed to run
the automated test to verify the current problem of the code, and to get initial
context to start the task;

4. Perform the task: When implementing the tasks, the participants were in-
structed to access a specific documentation. The task is considered successfully
completed when the code is accepted by the automated testing. If the time limit
expires, the task is considered failed and the subjects were instructed to move to
the next task;

5. Register the ending time: After finishing a task, the subjects were instructed
to fill the form with the current time.

The tutorial task was used to illustrate this methodology, but we did not limit
the maximum time for the tasks. After the initial presentation and the tutorial task,
the subjects were informed that the maximum time for performing each task was
25 minutes. Because the tasks are independent from each other and checked by an
automated testing, we did not follow each subject individually during the experiment.
However, 25 minutes after starting the first task we warned those subjects who failed
to move to the next task.

Besides informing the maximum time, we also informed the subjects that the tasks
should be done individually and no questions would be answered, since all necessary
information is available in the form distributed or in the source code.

4.5.3 Experiment Results

Table 4.16 presents the time spent (in minutes) in each task by the subjects, the
session they participated and the group they were assigned to. In this table, the
subjects are identified by the codes P1 to P29. Moreover, Task 1 denotes the Inserting

70 Chapter 4. Evaluation

new properties task and Task 2 denotes the System messages task. The ∞ symbol
means that the subject failed to complete the task and the group indicates which
documentation was used in each task. Group A means that the Task 1 was conducted
using the traditional documentation and the Task 2 using the documentation provided
by Android APIMiner 2.0. In the group B, the documentations used in each task are
reversed.

Table 4.16: Performance of the subjects in the experiment

Subject Session Task 1 Task 2 Group
P1

1

24 16 A
P2 ∞ 10 B
P3 ∞ 3 B
P4 ∞ 20 A
P5 22 ∞ B
P6 ∞ 19 A
P7 ∞ 14 A
P8 ∞ 22 A
P9 19 24 B
P11

2

25 9 A
P12 ∞ 7 B
P13 13 6 A
P15 25 16 B
P16 15 ∞ A
P17 ∞ 15 A
P19

3

14 7 B
P20 10 11 B
P21 17 6 A
P22 ∞ 15 A
P23 ∞ 24 B
P25 ∞ ∞ B
P26 ∞ 23 A
P27 ∞ ∞ B
P28 ∞ ∞ B

Table 4.17 shows the number of subjects that completed the tasks using Android
APIMiner 2.0 and with the traditional documentation. Initially, we can observe that 10
participants (41.66%) finished the first task, including five subjects using the traditional
documentation and five using Android APIMiner 2.0. On the other hand, 19 subjects
finished the second task. Among the five participants who failed to complete this task,
four used the traditional documentation and one used Android APIMiner 2.0.

After inspecting Task 1 results, we concluded that the knowledge in Java and
the experience of the subjects in each group is the same. The main difference among

4.5. User Study 71

Table 4.17: Number of subjects who completed the tasks

Task Android APIMiner 2.0 Traditional JavaDoc
Task 1 5 5
Task 2 11 8
Total 16 13

the subjects is their knowledge on Android. Table 4.18 shows the Android’s knowl-
edge of the subjects who completed the Task 1 and the documentation they used in
this task. As we can observe, the group using Android APIMiner has more subjects
without knowledge on Android (3 subjects). Therefore, there are evidences that the
documentation provided by Android APIMiner helped such participants in finishing
this task.

Table 4.18: Expertise on Android development of the subjects who concluded the Task
1

Documentation None Basic Intermediary
Android APIMiner 3 1 1
Traditional 2 3 0

Regarding Task 2, the group using the documentation provided by Android
APIMiner 2.0 has also more subjects without knowledge on Android (Table 4.19).
Moreover, the number of subjects who concluded this task using Android APIMiner
2.0 outperforms the number of subjects that concluded the task using the traditional
documentation.

Table 4.19: Expertise on Android development of the subjects who concluded the Task
2

Documentation None Basic Intermediary
Android APIMiner 7 4 0
Traditional 6 1 1

Regarding the time spent in the tasks, Table 4.20 presents the minimum time,
the maximum time, the average time, and the number of subjects who concluded the
tasks using each of the evaluated documentation. As we can observe in Table 4.16, P13
is the subject who concluded Task 1 in less time (13 minutes), using the traditional
documentation. Moreover, the maximum time spent by subjects who concluded the
tasks in each group is 25 minutes (the maximal allowed time). Finally, the average time
spent by the subjects using Android APIMiner was slightly lower than the average time

72 Chapter 4. Evaluation

spent by the subjects who used the traditional documentation—18 minutes against 18
minutes and 48 seconds, respectively.

Table 4.20: Time spent in the tasks (in minutes)

Task Documentation Minimum Maximum Average #(%)

#1 Android APIMiner 14 25 18 5 (41.67%)
Traditional 13 25 18.8 5 (41.67%)

#2 Android APIMiner 6 24 15 11 (91.67%)
Traditional 3 24 12.75 8 (66.67%)

Considering Task 2, P3 is the subject who concluded the task in less time (3
minutes), using the traditional documentation. Meanwhile, P21 concluded the task in
6 minutes, using Android APIMiner. However if we observe the other times we can
classify P3 an outlier in this task. On the other hand, the average time spent by the
subjects using the traditional documentation is less than the time spent using Android
APIMiner 2.0. However, the difference between the number of subjects who completed
the tasks is also considerable (3 subjects or 37.5% more subjects).

Regarding the example requests made by the subjects when performing their
tasks, we registered 686 example requests for single API methods distributed over 48
API methods and 182 example requests for usage patterns distributed over 13 API
methods. On average, each subject requested 23 examples for single API methods and
6 examples for usage pattern examples.

4.6 Threats to Validity

We organize threats to validity in four categories, as proposed by Wohlin et al. [2000]:

Construct Validity: The first decision of our study is over the set of client systems to
compose the Mining Dataset and Examples Dataset. Regarding the second dataset,
we followed a more rigid criteria when selecting the client systems to be used as example
providers; this decision resulted in some usage patterns without examples. However,
we observed that the usage patterns and the extracted examples are very close to the
ones produced by real developers.

Also regarding the client systems, we claim that the selection of projects that
are developed and maintained by larger groups of developers at least increases the
chances of a dataset with high quality code. However, this assumption is hard to be
formally proved. The analysis by an expert in each client system would be extremely

4.7. Final Remarks 73

time-consuming, subjective, and non replicable. Moreover, Stamelos et al. [2002]
investigated the structural code quality of well-known Linux applications and identified
that the vast majority of program components are acceptable by the community
of developers. Finally, in our user study we included only students (undergraduate
and postgraduate). However, we also observed that most subjects had professional
expertise. More specifically, 62.5% of all subjects had one or more years of expertise
in professional software development.

Internal Validity: When creating the instance for the Android API, we decided
to select not the highest possible values for support and confidence. As discussed in
Section 4.3.3, lowest values of support and confidence can cover a highest number
of API methods, although producing usage patterns that are less representative.
Regarding the user study, the subjects were randomly assigned to groups and some
were later removed, since they did not finish the tasks. However, the groups remained
balanced regarding the number of subjects and therefore the analysis was not affected.

External Validity: When collecting the access data in Android APIMiner 2.0,
we do not identify the profile of the visitors. We argue that this information is not
important, since the documentation provided by APIMiner 2.0 is not restricted to any
developer profile. Moreover, in our evaluation we always used the particular instance
for the Android API. Thus, our results are specific for this API and may not be
generalized to other APIs. To a better comprehension on the impact of APIMiner 2.0,
we need to create other instances for APIs with different levels of documentations,
from incomplete to the well-documented APIs.

Conclusion Validity: Regarding the user study, our tasks and target application
may not be representative enough to reproduce real development scenarios. However,
we noted that many API methods used by the tasks are among the methods most
used by Android applications (Section 4.2).

4.7 Final Remarks

In this chapter, we presented a particular instantiation for the Android API. This
instantiation, called Android APIMiner 2.0, provides 287,263 source code examples
obtained from 151 open-source Android applications and 1,672 usage patterns mined

74 Chapter 4. Evaluation

from 396 open-source Android applications. We presented a characterization study on
the use of the Android API by such applications. We found, for example, that more
than 40% of the client’s methods in theMining Database call at least one API method.
On the other hand, only 38% of the API methods were used in the useful transactions.

A field study based on data collected after five months of use by real Android
developers showed that the access to Android APIMiner 2.0 remained in constant
growth, besides a greater number of requests for single API methods and for usage
patterns examples. Moreover, a user study with 29 participants showed that APIMiner
2.0 was particularly useful for subjects who do not have knowledge on Android. When
compared with APIMiner 1.0, we observed that the usage patterns of usage patterns
helped the users in the implementation of the proposed maintenance tasks, specially
the ones involving several API elements.

Chapter 5

Conclusion

5.1 Contributions

In this master dissertation, we tackled the problem faced by developers when learning
new APIs. Particularly, APIs’ documentations are the central learning resource ac-
cessed by API users [Robillard and DeLine, 2010]. However, the poor quality of this
documentation is a major obstacle for their use. In order to make more productive
the use of APIs, several studies propose the use of source code example as an essen-
tial resource in API documentations [McLellan et al., 1998; Robillard, 2009; Robillard
and DeLine, 2010; Hou and Li, 2011; Buse and Weimer, 2012; Duala-Ekoko and Ro-
billard, 2012]. Moreover, Nasehi et al. [2012] and Buse and Weimer [2012] argue that
the example’s readability is a critical factor for developers when searching for usage
examples.

In this master dissertation, we presented the APIMiner 2.0 platform that provides
examples for API usage patterns, which also consider some readability aspects of source
code examples. Specifically, the contributions of the APIMiner 2.0 are as follows:

• Usage pattern examples: We proposed in this work a new approach to recommend
usage patterns in API documentations in the JavaDoc format. First, the usage
patterns are mined from a collection of API client systems using data mining
algorithms. Moreover, the usage patterns are ranked and presented according to
the strength of the subjacent association rules;

• Readability improvements: We implemented an algorithm that modifies the ex-
amples to consider some attributes of readability suggested by the recent litera-
ture. Among such improvements, we can mention the use of abstract initialization
of variables and comments in empty code blocks;

75

76 Chapter 5. Conclusion

• Implementation: We implemented the proposed solution and made it available
for public use. Moreover, it provides a set of functions that support the users
when using APIMiner 2.0, like functions to define the inputs for the Patterns
Analyzer module;

• Android APIMiner 2.0: We implemented and configured a particular version of
the APIMiner 2.0 platform for the Android API. As result, we obtained 1,952
usage patterns for 624 API methods and 287,263 examples. Android APIMiner
is publicly available at http://apiminer.org;

• Practical Evaluation: We evaluated the Android APIMiner 2.0 instance under
three dimensions: (i) by analyzing all data produced in the process of creating
the instance, (ii) by analyzing the data obtained from its usage by real Android
developers, and (iii) by conducting a controlled experiment with 29 subjects to
evaluate the gains provided by Android APIMiner.

5.2 Comparison with Related Work

In Chapter 2 we presented the related works to our solution. In this section, we compare
such works with APIMiner 2.0.

5.2.1 IDE-based Recommendation Systems

IDEs provide a set of features to support the development process. Particularly, IDE-
based tools can explore the developer’s environment to provide more relevant recom-
mendations. However, the recommendations provided by such tools are not focused
on documentation. Typically, IDE-based tools recommend code snippets based on
information gathered from the project in which the developer is working.

The VCC tool also collects information from the project that the developer is
working and uses as input to an algorithm for sequential pattern mining [Silva Jr et al.,
2012]. To make the recommendations, the approach collects existing statements in a
method and searches for code sequences that match the one used as input. However,
in API documentations, the usage of sequential patterns is not suitable because of the
lack of contextual information. Typically, developers access API documents for learning
how to use specific methods. Therefore, the recommendation of methods frequently
called together, as supported by APIMiner 2.0, is more appropriate since the required
input is just a target method.

http://apiminer.org

5.2. Comparison with Related Work 77

The MACs tool recommends frequent API usage patterns mined from relevant
source code files retrieved in real time from a code search engine [Hsu and Lin, 2011].
Basically, the tool receives as input one or more statements and provides related code
snippets as result. Because it is an approach that builds recommendations in real time,
the number of retrieved files from the code search engine is limited to 20 files. This
restriction may limit the result of the mining process, and therefore it may contribute
to the lack of representativeness of the mined usage patterns. On the other hand,
APIMiner 2.0 is based on a private source code repository to mine and recommend
usage patterns, therefore allowing full control over the data source.

In common, the examples provided by such tools are not focused on documenta-
tion and do not consider readability characteristics. On the other hand, the examples
provided by APIMiner 2.0 are slices of code extracted from real projects improved with
readability aspects.

5.2.2 API Documentation

Unlike IDE-based tools, JavaDoc-based tools are designed and implemented to be
independent from IDEs and usually are publicly accessed from the web (as APIMiner).
Moreover, this type of documentation depends on limited contextual information.

APIMiner 1.0 instruments the standard Java-based API documentation format
with concrete source code examples, extracted from a private repository [Montandon,
2013]. Moreover, the code examples are summarized using a standard static slicing
algorithm that does not address aspects of examples readability. Furthermore, the
examples provided by the tool are focused on single API methods. On the other hand,
APIMiner 2.0 supports examples for API methods frequently called together.

eXoaDocs is a tool that searches, summarizes, and automatically embeds API
documents with code examples [Kim et al., 2009]. Like the MACs tool, eXoaDocs

relies on code search engines to obtain the source code files used to extract the examples.
Moreover, the tool uses a summarization algorithm to extract the examples and a
clustering algorithm to identify different usages. However, the instrumented JavaDoc
provided by eXoaDocs must be regenerated whenever a new source code example
is processed. On the other hand, APIMiner 2.0 relies on data mining algorithms to
identify and recommend API usage patterns and examples that illustrate such patterns.

Finally, both eXoaDocs and MACs do not consider issues related to the exam-
ples readability. In contrast, the examples provided by APIMiner 2.0 consider some
attributes of readability presented in the literature.

78 Chapter 5. Conclusion

5.3 Future Work

In Section 4.3.3, we presented our strategy to select the minimum values of support
and confidence. Basically, we aimed to do not generate a large number of rules, while
maximizing the API methods coverage as possible. As a result, we mined a reason-
able number of rules for a small group of API methods. Therefore, we recommend
the investigation of other strategies for selecting the support and confidence values.
Particularly, we recommend the investigation of automatic strategies to choose such
values, which do not depend on manual calibration.

As observed in Section 4.3.4, some API methods have a massive number of ex-
amples. Despite that, the proposed approach does not implement procedures to detect
different usage types among the examples. In this sense, we recommend the investi-
gation of techniques to detect such patterns in order to avoid the presentation of very
similar examples.

Our current ranking algorithm is based on three criteria: (i) Completeness;
(ii) LOC; and (iii) Feedback score. Particularly, the Completeness criterion was
introduced in this new version of the APIMiner platform and has focus mainly on the
readability of the examples. In this sense, we recommend the investigation of other
ranking criteria, mainly based on their readability. Specifically, traditional metrics like
McCabe’s Complexity may represent a good criteria for example ranking.

As observed from the results of the Field Study (Section 4.4), even using some
workarounds to reduce readability problems, users still prefer examples where all vari-
ables and initializations are available. Therefore, we recommend the investigation of
other static slicing implementations to consider these aspects. More specifically, we
recommend an investigation concerning the scope delimitation of the slicing algorithm.

Bibliography

Agrawal, H. and Horgan, J. R. (1990). Dynamic program slicing. In Conference on
Programming Language Design and Implementation (SIGPLAN), volume 25, pages
246--256.

Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining association rules between
sets of items in large databases. In 12th International Conference on Management
of Data (SIGMOD), volume 22, pages 207--216.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large
databases. In 20th International Conference on Very Large Data Bases (VLDB),
pages 487--499.

Agrawal, R. and Srikant, R. (1995). Mining Sequential Patterns. In 11th International
Conference on Data Engineering (ICDE), pages 3--14.

Bayardo, Jr., R. J. and Agrawal, R. (1999). Mining the most interesting rules. In
5th International Conference on Knowledge Discovery and Data Mining (SIGKDD),
pages 145--154.

Borges, H., Felix, D., Montandon, J. E., Costa, H. A. X., and Valente, M. T. (2013).
APIMiner 2.0: Recomendaçao de exemplos de uso de apis usando regras de associ-
açao. IV Congresso Brasileiro de Software: Teoria e Prática (Sessão de Ferramen-
tas), pages 1--5.

Buse, R. P. L. and Weimer, W. (2012). Synthesizing API usage examples. In 34th
International Conference on Software Engineering (ICSE), pages 782–792.

Duala-Ekoko, E. and Robillard, M. (2012). Asking and answering questions about un-
familiar APIs: An exploratory study. In 34th International Conference on Software
Engineering (ICSE), pages 266--276.

Eclipse, F. (2013). Eclipse - The Eclipse Foundation open source community website.

79

80 Bibliography

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.
(2009). The WEKA data mining software. ACM SIGKDD Explorations Newsletter,
11(1):10.

Han, J., Kamber, M., and Pei, J. (2006). Data Mining: Concepts and Techniques (2nd
edition). Morgan Kaufmann.

Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate
generation. In 19th International Conference on Management of Data (SIGMOD),
volume 29, pages 1--12.

Happel, H.-J. and Maalej, W. (2008). Potentials and challenges of recommendation sys-
tems for software development. In 2nd International Workshop on Recommendation
Systems for Software Engineering (RSSE), page 11.

Harman, M. and Hierons, R. (2001). An overview of program slicing. Software Focus,
2(3):85--92.

Hou, D. and Li, L. (2011). Obstacles in Using Frameworks and APIs: An Exploratory
Study of Programmers’ Newsgroup Discussions. In 19th International Conference
on Program Comprehension (ICPC), pages 91--100.

Hsu, S.-K. and Lin, S.-J. (2011). MACs: Mining API code snippets for code reuse.
Expert Systems with Applications, 38(6):7291--7301.

Kendall, M. (1938). A new measure of rank correlation. Biometrika, 30(1/2):81--93.

Kim, J., Lee, S., won Hwang, S., and Kim, S. (2009). Adding Examples into Java
Documents. In 24th International Conference on Automated Software Engineering
(ASE), pages 540--544.

Kim, J., Lee, S., won Hwang, S., and Kim, S. (2010). Towards an intelligent code search
engine. In 24th Conference on Artificial Intelligence (AAAI), pages 1358--1363.

Korel, B. and Laski, J. (1988). Dynamic program slicing. Information Processing
Letters, 29(3):155--163.

Mar, L. W., Wu, Y.-C., and Jiau, H. C. (2011). Recommending Proper API Code
Examples for Documentation Purpose. In 18th Asia-Pacific Software Engineering
Conference (APSEC), pages 331--338.

McLellan, S., Roesler, A., Tempest, J., and Spinuzzi, C. (1998). Building more usable
APIs. IEEE Software, 15(3):78--86.

Bibliography 81

Mockus, A. and Herbsleb, J. D. (2002). Expertise browser: a quantitative approach
to identifying expertise. In 24th international conference on Software engineering
(ICSE), pages 503--512.

Montandon, J. E. (2013). Documenting application programming interfaces with source
code examples. Master’s thesis, Federal University of Minas Gerais.

Montandon, J. E., Borges, H., Felix, D., and Valente, M. T. (2013). Documenting APIs
with Examples: Lessons Learned with the APIMiner Platform. In 20th Working
Conference on Reverse Engineering (WCRE), pages 401--408.

Nasehi, S. M., Sillito, J., Maurer, F., and Burns, C. (2012). What makes a good
code example?: A study of programming Q&A in StackOverflow. In 28th IEEE
International Conference on Software Maintenance (ICSME), pages 25--34.

Nykaza, J., Messinger, R., Boehme, F., Norman, C. L., Mace, M., and Gordon, M.
(2002). What Programmers Really Want: Results of a Needs Assessment for SDK
Documentation Janet. In 20th International Conference on Computer Documenta-
tion (SIGDOC), pages 133--141.

Okazaki, N. and Tsujii, J. (2010). Simple and efficient algorithm for approximate
dictionary matching. In 23rd International Conference on Computational Linguistics
(COLING), pages 851--859.

Oracle, C. (2013). Welcome to NetBeans. https://netbeans.org/.

RecSys (2009). 3rd ACM International Conference on Recommender Systems.

Robillard, M. (2009). What Makes APIs Hard to Learn? Answers from Developers.
IEEE Software, 26(6):27--34.

Robillard, M. and DeLine, R. (2010). A field study of API learning obstacles. Empirical
Software Engineering, 16(6):703--732.

Robillard, M. and DeLine, R. (2011). A field study of API learning obstacles. Empirical
Software Engineering, 16(6):703--732.

Robillard, M., Walker, R., and Zimmermann, T. (2010). Recommendation Systems for
Software Engineering. IEEE Software, 27(4):80--86.

Sales, V., Terra, R., Miranda, L. F., and Valente, M. T. (2013). Recommending move
method refactorings using dependency sets. In 20th Working Conference on Reverse
Engineering (WCRE), pages 232--241.

https://netbeans.org/

82 Bibliography

Silva Jr, L. L. N. d., de Oliveira Alexandre Plastino, T. N., and Murta, L. G. P.
(2012). Vertical code completion: Going beyond the current ctrl+ space. In 6th
Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software (SB-
CARS), pages 81--90.

Stamelos, I., Angelis, L., Oikonomou, A., and Bleris, G. L. (2002). Code quality
analysis in open source software development. Information Systems Journal, pages
43--60.

Terra, R., Valente, M. T., Czarnecki, K., and Bigonha, R. S. (2013). A recommendation
system for repairing violations detected by static architecture conformance checking.
Software: Practice and Experience, pages 1–28.

Uddin, G., Dagenais, B., and Robillard, M. (2011). Analyzing temporal API usage pat-
terns. In 26th International Conference on Automated Software Engineering (ASE),
pages 456--459.

Uddin, G., Dagenais, B., and Robillard, M. (2012). Temporal analysis of API usage
concepts. In 34th International Conference on Software Engineering (ICSE), pages
804--814.

Venkatesh, G. A. (1991). The semantic approach to program slicing. ACM SIGPLAN
Notices, 26(6):107--119.

WebStorm (2013). IntelliJ IDEA — The Best Java and Polyglot IDE.

Weiser, M. (1981). Program slicing. In 5th International Conference on Software
Engineering (ICSE), pages 439–449.

Weiser, M. (1984). Program Slicing. IEEE Transactions on Software Engineering,
10(4):352--357.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A.
(2000). Experimentation in software engineering: An introduction. The Kluwer
International Series In Software Engineering.

Zaki, M. J. and Meira Jr, W. (2014). Data Mining and Analysis: Fundamental Concepts
and Algorithms. Cambridge University Press.

Zaki, M. J., Parthasarathy, S., Ogihara, M., and Li, W. (1997). New algorithms for
fast discovery of association rules. In 3rd International Conference on Knowledge
Discovery and Data Mining (SIGKDD), volume 20, pages 283--286.

Bibliography 83

Zhong, H., Xie, T., Zhang, L., and Pei, J. (2009). MAPO: Mining and recommending
API usage patterns. ECOOP Object-Oriented Programming, 5653:318--343.

Appendix A

Android APIMiner 2.0 Datasets

Table A.1: Mining Dataset

System Description Transactions

360 Engine for Android 360 Engine for Android 3,321
4Chan Image Browser 4Chan Image Browser 88
4Dnest — 391
AA-C4C Computer Academic Assoc 31
Absolute Android RSS RSS Reader for Absolute Android 78
aCal CalDAV calendar client 2,012
AccelerometerPlay Android 16 Samples 19
ACRA Application Crash Reports for Android 342
ActionBarCompat Android 16 Samples 109
ActionBarSherlock Library for action bar design pattern 2,721
ActionBarSherlock-v4 — 2,453
ADW Launcher Launcher 1,145
Aerogear android Android library for AeroGear 614
Agendatech android agendatech para android 65
Agit Agit - Git client for Android 1,017
Alien Blood Bath 2D platform shooter 205
Allplayers android Android app for AllPlayers.com 298
Amarino Interface to Arduino via Bluetooth 247
And Bible Study the Bible on Your Android Mobile 2,720
AndAR Augmented Reality on the Android platform 439
Andless audio player 141
Andlytics Android Market statistics app 3,555
AndNav GPS navigation program 2,649
Andro Sens Displays sensor data 10
Android actionbar Android Action Bar Implementation 38
Android Archetypes Maven Archetypes for Android development 58
Android async http An Asynchronous HTTP Library for Android 152
Android autostarts Tool to manage autostarts 160
Android BitmapCache Specialised cache for use with Android Bitmap 101
Android database sqlcipher SQLite API based on SQLCipher 581
Android delicious — 290

Continued on next page

85

86 Appendix A. Android APIMiner 2.0 Datasets

Table A.1—continued from previous page
System Description Transactions

Android File Manager An open source file manager 101
Android GPUimage Android filters based on OpenGL 394
Android Launcher Plus Launcher 811
Android mapviewballoons Information balloon annotation for MapView 71
Android menudrawer A slide-out menu implementation 441
Android Metronome Metronome application 15
Android Microblog Microblogging client 363
Android network discovery Android network tool 151
Android pedometer Steps counter app 161
Android proxy library Android Proxy Library (APL) 112
Android PullToRefresh Pull-to-Refresh UI Pattern for Android 400
Android Simple Social Sharing Reusable instrument for sharing 1,108
Android SlideExpandableListView A better ExpandableListView 55
Android store Open Code Project for In App Purchasing 453
Android support v4 googlemaps A port of the Android Compatibility 2,499
Android Terminal Emulator 663
Android ui design pattern Demo of Android UI Design Patterns 152
Android Universal Image Loader Async image loading, caching and displaying 549
Android viewflow A horizontal view scroller library 115
Android ViewPagerIndicator Paging indicator widgets 264
Android VNC Viewer VNC Remote Desktop 716
Android xbmcremote Official XBMC Remote for Android 5,193
Android xbmcremote sandbox Playing with new features 354
Android-ocr Optical character recognition on Android 225
AndroidBeamDemo Android 16 Samples 8
AndroidBillingLibrary Market In-app Billing Library 301
Androidquery AndroidQuery 1,085
AndroidRivers Anxiety free news reader for Android 6,482
androidtracks Android Tracks 128
AndroidUIFundamentals — 146
Androkom Android KOM client 244
Androrm An Object Relational Mapper for Android 591
Andtweet Twitter Client 417
AntennaPod A podcast manager for Android 1,420
APG OpenPGP for Android 435
ApiDemos Android 16 Samples 2,102
Apktool A tool for reverse engineering Android apk files 556
APM android Android version of Universal Password Manager 298
APN Mobile Data Switch for Android 6
AppNavigation Android 16 Samples 24
Apps Organizer Organize installed applications using labels 1,388
Aptoide Client Alternative application installer 1,480
ARViewer Augmented reality application 657
Asqare Stone-swapping puzzle game 325
Astrid Astrid: Android’s #1 Task Management Application 13,104
Augmented Reality Framework Reality App on Android 319
AutobahnAndroid WebSocket WAMP for Android 276
BackupRestore Android 16 Samples 18

Continued on next page

87

Table A.1—continued from previous page
System Description Transactions

Barcode Scanner Barcode reader 429
BasicGLSurfaceView Android 16 Samples 11
Battery Notifier Battery level on notification area 91
Battery Widget Shows battery percentage and temperature 12
Beem XMPP (Jabber) IM Client 1,288
BeTrains BeTrains for android 555
BetterBatteryStats Advanced battery stats 431
Bistro Math — 24
Bitcoin android Send and receive bitcoins 5,396
Bluegps4droid A branch of bluegps4droid 81
BluetoothChat Android 16 Samples 38
BluetoothHDP Android 16 Samples 24
Book Catalogue A book cataloging tool for Android phones 2,951
Box android sdk Box Android library 572
BuddyCloud client buddycloud android client 1,110
Calculon DSL for Android views and activities 185
Campyre A Campfire client for Android 250
Catroid A Catrobat IDE for Android 5,899
Caverns of Fire Shooter Game 1,662
Ccalabash android Automated Functional testing based on cucumber 6,773
Cell Finder — 201
CIDR Calculator Simple Android based IP subnet calculator 63
Cling UPnP/DLNA library for Java and Android 6,471
cocos2d cocos2d for android 5,505
Congress android Learning about new bills and laws 971
ConnectBot SSH Client 1,919
Contact Ownder Displays your (or a friend’s) contact information 30
ContactManager Android 16 Samples 19
Cordova android Mirror of Apache Cordova Android 1,578
Corporate Addressbook Exchange contact (GAL) lookup client 437
Countdown Alarm Provides a basic countdown timer 69
CrossCompatibility Android 16 Samples 22
Crouton Context sensitive notifications for Android 142
Crowdroid Twitter Client 2,535
csci498 Android Development 125
CubeLiveWallpaper Android 16 Samples 39
CW advandroid — 742
CW android — 413
CyanogemMod Android dalvik Android DalvikVM 49,862
CyanogemMod Browser Android Web Browser 604
CyanogemMod Contacts Android Contacts application 482
Cyanogen Updater — 308
CyanogenMod ApplicationsProvider — 35
CyanogenMod Bluetooth — 890
CyanogenMod CMScreenshot Screenshot activity for CM 4
CyanogenMod CMStats — 30
CyanogenMod CMUpdateNotify — 60
CyanogenMod ContactsProvider — 1,180

Continued on next page

88 Appendix A. Android APIMiner 2.0 Datasets

Table A.1—continued from previous page
System Description Transactions

CyanogenMod Core — 48,566
CyanogenMod DSPManager — 49
CyanogenMod Exchange — 941
CyanogenMod FileManager OI File Manager for CyanogenMod 288
CyanogenMod FM — 367
CyanogenMod Gallery3D Android Gallery3D Application 1,407
CyanogenMod LatinIME — 1,857
CyanogenMod Launcher2 — 1,617
CyanogenMod LockClock 173
CyanogenMod MediaProvider Android MediaProvider 62
CyanogenMod PackageInstaller — 34
CyanogenMod Phone Phone app for Android 1,473
CyanogenMod Settings Android settings app 1,349
CyanogenMod SoundRecorder — 57
CyanogenMod Stk — 104
CyanogenMod Tag — 667
CyanogenMod TelephonyProvider — 110
CyanogenMod Torch Nexus One Torch 49
CyanogenMod VoiceDialer Android Voice Dialer 109
DeskClock Backporting for Donut 184
Device Samsung d710 — 75
Dialer2 Alternative dialer with T9 search 91
Diaspora-Webclient A simple android/ Diaspora-Webclient 41
DiskUsage Storage card usage viewer 513
DownloadProvider Android DownloadProvider 90
Drag-sort-listview Android ListView with drag and drop reordering 294
Droid-fu A utility library for your daily needs 793
Droidgiro android Android scanner for swedish invoices 195
DroiDic Spell checker / Crosswords cheater 127
DroidReader Fast PDF Reader 105
EventBus Android optimized event bus 337
Exchange OWA Mail Client 354
FBReaderJ e-book reader 5,404
FeedGoal RSS/Atom Feed Reader 255
FFvideo Live Wallpaper Video as the wallpaper 95
Floating Image Continuous stream of floating images 1,674
Food-4-Thought Android app for SDD 306
Frozen Bubble Knock the bubbles 344
FTDriver Android 3.x USB Host Serial Driver 48
gaeproxy GAEProxy for Android 1,007
Gauges android Gaug.es Android App 277
GCal Call Logger Android Sync client 12
GCstar Scanner — 9
GCstar Viewer View your collections created with GCstar 136
Geeklist android Android client for Geeklist 58
GeoBeagle Search for geocaches and letterboxes near you 3,839
Geocaching4Locus Download and import caches directly 504
GeocamMemoAndroid Take geotagged notes and audio messages 105

Continued on next page

89

Table A.1—continued from previous page
System Description Transactions

GeocamMobileForAndroid Take geotagged photos and upload 226
GeocamTalkAndroid Send geotagged text and audio messages 238
GeoHunter Find geocaches 1,233
Geoloqi Android SDK Geoloqi example application 27
Gesture imageview Implements pinch-zoom, rotate, pan as an ImageView 163
GestureBuilder Android 16 Samples 35
Gmote Computer Remote Control 233
Gnucash android Gnucash companion application 372
Gobandroid A Goban for Android 806
GPS Share Minimalist location sharing 9
GreenDroid GreenDroid development library 652
Greenhouse android Greenhouse native Android client 350
HelloEffects Android 16 Samples 21
Hellomap3d Android 3D map SDK getting started 2,646
HideBar Hides and restores the android systembar 45
Home Android 16 Samples 71
HoneycombGallery Android 16 Samples 69
Hot Death Variant on the classic card game Uno 319
Hubroid The Original Awesome GitHub App for Android 342
iFixitAndroid Official iFixit Android App 591
Iglaset App for iglaset.se 424
IrssiNotifier Notifies from irc private messages 363
Jamendo android Official Jamendo Android Player 749
JetBoy Android 16 Samples 45
Jota Text Editor Text editor for Android 1,233
K9 Email client 6,349
Keepassdroid KeePass implementation for android 2,483
KeyChainDemo Android 16 Samples 23
Lexic Word-grid game - against the clock! 247
LibreGeoSocial Geolocated Social Network 1,508
LibreSoft Gymkhana Open source educational and geolocated game 672
libVoyager OBD/CAN Vehicle network communications library 643
Life Saver SMS and call log SD backup 46
LogAcceleration Accelerometer values logger and grapher 39
Love android Löve2d for android phones 411
LunarLander Android 16 Samples 33
m2e-android Android Connector for M2E Maven Integration 190
Madvertise android sdk madvertise SDK for Android 150
MandelBrot Fractal Viewer 197
Marine Compass A nice looking 3D compass 26
Maven plugin samples Usage examples for Maven Android Plugin 1,668
MemorizingTrustManager SSL/TLS certificate management 31
MicDroid Pitch correction effect made famous by T-Pain 203
Microlog4android Microlog logging library to Android 322
MINDDroid Controller for Lego Mindstorms NXT robots 222
Minitruco android Port of miniTruco 459
Mixare Augmented Reality Engine 895
Mobileorg android MobileOrg for the Android platform 1,186

Continued on next page

90 Appendix A. Android APIMiner 2.0 Datasets

Table A.1—continued from previous page
System Description Transactions

Motion Detection Framework Motion detection 55
MultiResolution Android 16 Samples 4
Mumble android Android mumble client 2,486
Musicbrainz android Official Android client to the MusicBrainz 1,151
Mustard — 1,030
mWater Android App Snaps a picture of a petrifilm 2,756
Net Meter — 78
NetCounter Network usage counter 400
Nethack Android Rogue-like game NetHack 536
Newton’s Cradle model the physics of Newton’s Cradle 48
NineOldAndroids Android library for using the Honeycomb animation 644
Noise Alert — 28
NotePad Android 16 Samples 59
Novoda android Examples of Android applications 771
Novoda ImageLoader Library for async image loading and caching 501
Novoda RESTProvider Automatically parse RESTful API responses 95
Novoda SQLiteProvider Extended SQLite functionality for Android 480
Numberpicker Example source of an number picker widget 84
Oauth for android An OAuth Library/application 158
OI About File manager 47
OneBusAway OneBusAway 3,590
Onibus android Encontre-se melhor no transporte coletivo! 2,481
Open Android Game Open source game 94
Open WordSearch a word search game for android 275
Openconferenceware Open Source Bridge conference 56
openintents OpenIntents applications 5,676
OpenMap Framework OpenMap API 240
OpenSudoku Sudoku numbers / maths puzzle game 527
Orbot Tor proxy 207
OsmAnd GPS navigation program 11,166
OsmTracker GPS tracking with annotation 295
Osmtracker android GPS tracking tool for OpenStreetMap 295
Otto Enhanced Guava-based event bus 176
Password Hash pwdhash implementation 61
Patchrom android — 8,035
Pd for android Pure Data for Android 326
Pedometer Counts your steps 161
Pedometer remote service — 40
Permissions Shows permissions for installed android apps 96
Phonegap android PhoneGap API 154
Picture Map Show geotagged photos on a map 335
Play android Play Android App 186
PMix MPD client 175
Podax Podcast client for Android 385
Pretty-Painter Graphics editor for Android 138
Prey android client Prey anti-theft software 644
ProgrammingAndroid2Examples O’Reilly’s Programming Android 1,075
PullToRefresh ListView Android ListView implementation 33

Continued on next page

91

Table A.1—continued from previous page
System Description Transactions

Pyload android Android client for pyload 8,013
QPad 4-way breakout game for Android 56
QuasselDroid Quasselclient for Android 561
Quran android a quran reading application for android 765
RandomMusicPlayer Android 16 Samples 70
RapidFTR RapidFTR API 996
RenderScript Android 16 Samples 3
Replica Island a side-scrolling platformer for Android devices 1,562
Restful RESTful Android application 139
Retrofit Type-safe REST client 357
Ringdroid Create ringtones with musics 249
Robospice Writing asynchronous long running tasks 1,186
robotfindskitten Android implementation of robotfindskitten 51
Robotic Space Rock 361
Robotium Like Selenium 407
ROM Updater Helps the user to maintain custom ROM updated 141
roman10 android tutorial android tutorial source code 3,487
Root-tools — 5,295
Ruboto-irb IRB application for JRuby on Android 477
rVoix Call recorder 184
SalesforceMobileSDK Android Android SDK for Salesforce 961
SampleSyncAdapter Android 16 Samples 121
Sanity Call recorder/blocker/manager 810
Sat Info — 93
Say My Name reads out caller’s name 61
SD Move Move to SD Card manager 78
SD Watch Move to SD card manager 22
SearchableDictionary Android 16 Samples 31
Secrets Application to securely store and manage passwords 187
SeriesGuide Manage (re)watching favorite TV shows 1,339
ServeStream HTTP(s) media server browser and stream player 779
Shortyz A crossword puzzle client 939
Shuffle Get Things done (GTD) application 1,337
Simon Tatham’s puzzles — 187
Simple App History Widget App history widget 10
Simple Audio Widget Audio volume widget 10
Simple Battery Widget Battery Widget 9
Simple Cache Widget Cache Widget 13
Simple CPU Widget CPU Widget 9
Simple GPS Widget GPS Widget 13
Simple Storage Widget Storage space Widget 9
Simple Traffic Widget Traffic Widget 10
Simple WLan Widget Wifi widget 10
SipDemo Android 16 Samples 16
Sipdroid SIP Client 2,606
SkeletonApp Android 16 Samples 8
SL4A Scripting Layer for Android (SL4A) 8,188
Slashdot Slashdot reader 17

Continued on next page

92 Appendix A. Android APIMiner 2.0 Datasets

Table A.1—continued from previous page
System Description Transactions

SlidingMenu Create applications with slide-in menus 386
sls Simple Last.fm Scrobbler 534
Sms backup plus Backup SMS, MMS and call log 424
SMS Popup SMS Messaging application 474
SMSSync SMS gateway for Android powered phones 2,964
Snake Android 16 Samples 34
Socialize sdk android Socialize SDK for Android 6,455
SoftKeyboard Android 16 Samples 87
Sokoban Warehouse Puzzle Game 41
Solitaire Collection Android Games 357
SparkleShare Android Android Client for SparkleShare 213
Spell Dial T9 search enabled dialer 60
SpellChecker Android 16 Samples 16
Spinner Android 16 Samples 13
SpinnerTest Android 16 Samples 6
Spoon Distributing instrumentation tests 460
Sri Lanka Train Schedule Train Delays and Ticket Prices 99
StackMob Android The official StackMob SDK 25
SubmatixBTAndroid4 SUBMATIX SPX42 Tauchcomputer 150
Subsonic Home of the DSub Android client 4,111
SuperCollider Android SuperCollider audio synthesis engine 58
SuperGenPass Password hasher 189
SwallowCatcher Podcast client for Android 134
Swiftp FTP server for android 231
Taps of Fire Frets on Fire (Guitar Hero like game) 1,073
Target Anagram Word Puzzle 115
Taskwarrior androidapp Taskwarrior for Android 2,853
Tea Timer A straight-forward tea timer 96
TextSecure Secure text messaging 2,876
TicTacToeLib Android 16 Samples 34
TicTacToeMain Android 16 Samples 2
TiltMazes Logical puzzle game for the Android platform 96
Todo txt-touch Managing your todo.txt file stored in Dropbox 3,426
Tomahawk android Tomahawk’s Android Music Player 790
TouchDB Android CouchDB-compatible mobile database 712
ToyVpn Android 16 Samples 10
Tram Hunter Melbourne’s Tram Tracker service 643
Transdroid Android remote client 3,726
Trovebox Trovebox mobile application for Android 4,295
TtsEngine Android 16 Samples 18
Tumblife Tumblr Client 422
TweetLanes Tweet Lanes for Android 2,032
Twidere Twitter client for Android 4,129
Twisty Z-machine emulator 274
Twitli Twitter Client 1,675
Twitterdroid Twitterific for Android 103
Typographic Widgets Weather, clock and battery widgets 178
USB Android 16 Samples 52

Continued on next page

93

Table A.1—continued from previous page
System Description Transactions

Ushahidi Android Stories on a maps 4,000
Vanilla Vanilla Music Player 658
Veader Chinese Ebook Reader 390
Vector-Pinball Pinball game for Android 372
Vidiom Mobile video blogging and web video publishing tool 5,321
VoicemailProviderDemo Android 16 Samples 132
VoiceRecognitionService Android 16 Samples 4
Voyager Connect In-vehicle network diagnostic 24
VuDroid PDF Reader 293
WeatherListWidget Android 16 Samples 24
Webimageloader Asynchronous image loading on Android 400
Weechat android Weechat-Relay Android Client 417
Weiciyuan Sina Weibo Android Client 3,397
WhatAndroid The What.CD Android App 842
Wheelmap android An android app for wheelmap 1,340
Wi-Fi Widget Connect/disconnect Wi-Fi and show network SSID 14
WidgetPreview Android 16 Samples 13
WiFiDirectDemo Android 16 Samples 43
Wiktionary Android 16 Samples 31
WiktionarySimple Android 16 Samples 10
Wishlist Android Utilities 224
WLANAudit-Android Audit security of WLAN Access points 2,930
Word Seek Word Search Game 190
Wordpress WordPress CMS Client 1,146
XBMC Remote Official XBMC Remote for Android 5,193
XmlAdapters Android 16 Samples 87
Yaaic Another Android IRC Client 3,317
YAXIM Another XMPP Instant Messenger 362
Zandy Zotero on Android 311

94 Appendix A. Android APIMiner 2.0 Datasets

Table A.2: Examples Dataset

System Description Examples

4Chan Image Browser 4Chan Image Browser 138
aCal CalDAV calendar client 6,044
ADW Launcher Launcher 3,644
Agit Android Git Client 1,134
Alien Blood Bath 2D platform shooter 346
Amarino Interface to Arduino via Bluetooth 684
AndAR Augmented Reality on the Android platform 350
And Bible Study the Bible on Your Android Mobile 1,961
andless audio player 918
AndNav GPS navigation program 6,118
Android Launcher Plus Launcher 2,713
Android Metronome metronome application 55
Android Microblog Microblogging client 762
Android Terminal Emulator — 633
Android VNC Viewer VNC Remote Desktop 1,038
Andro Sens Displays sensor data 141
Andtweet Twitter Client 1,797
APG Android Privacy Guard 3,516
APN Mobile Data Switch for Android 35
Apps Organizer Organize installed applications using labels 1,658
Aptoide Client Alternative application installer 3,249
ARViewer Augmented reality application 2,345
Asqare Stone-swapping puzzle game 708
Astrid Task recording 29,285
Augmented Reality Framework Reality App on Android 311
Barcode Scanner Barcode reader 1,312
Battery Notifier Battery level on notification area 335
Battery Widget Shows battery percentage and temperature 101
Beem XMPP (Jabber) IM Client 1,565
Bistro Math — 82
Caverns of Fire Shooter Game 42
Cell Finder — 190
CIDR Calculator Simple Android based IP subnet calculator 1,701
ConnectBot SSH Client 2,306
Contact Ownder Displays your (or a friend’s) contact information 162
Corporate Addressbook Exchange contact (GAL) lookup client 846
Countdown Alarm Provides a basic countdown timer 344
Crowdroid Twitter Client 10,588
Cyanogen Updater — 1,437
Dialer2 Alternative dialer with T9 search 608
DiskUsage Storage card usage viewer 1,400
DroiDic Spell checker / Crosswords cheater 284
DroidReader Fast PDF Reader 548
Exchange OWA Mail Client 232
FBReaderJ e-book reader 3,551
FeedGoal RSS/Atom Feed Reader 1,906
FFvideo Live Wallpaper Video as the wallpaper 168

Continued on next page

95

Table A.2—continued from previous page
System Description Examples

Floating Image Continuous stream of floating images 3,549
Frozen Bubble Knock the bubbles 403
GCal Call Logger Android Sync client 239
GCstar Scanner — 19
GCstar Viewer View your collections created with GCstar 798
GeoBeagle Search for geocaches and letterboxes near you 2,181
GeoHunter Find geocaches 1,730
Gmote Computer Remote Control 1,700
GPS Share Minimalist location sharing 65
Hot Death Hot Death is a variant on the classic card game Uno 356
K9 Email client 19,219
Keepassdroid KeePass-compatible passphrase manager for Android 1,026
Lexic Word-grid game - against the clock! 800
LibreGeoSocial Geolocated Social Network 7,582
LibreSoft Gymkhana Open source educational and geolocated game 3,538
libVoyager OBD/CAN Vehicle network communications library 351
Life Saver SMS and call log SD backup 126
LogAcceleration Accelerometer values logger and grapher 170
MandelBrot Fractal Viewer 293
Marine Compass A nice looking 3D compass 198
MemorizingTrustManager SSL/TLS certificate management 156
MicDroid Pitch correction effect made famous by T-Pain 814
MINDDroid Controller for Lego Mindstorms NXT robots 704
Mixare Augmented Reality Engine 1,557
Motion Detection Framework Motion detection 67
Mustard — 3,286
NetCounter Network usage counter 1,265
Nethack Android Rogue-like game NetHack 1,114
Net Meter — 159
Newton’s Cradle model the physics of Newton’s Cradle 166
Noise Alert — 158
OI About File Manager 256
Openintents PIM applications 20,959
OpenMap Framework OpenMap API 66
OpenSudoku Sudoku numbers / maths puzzle game 1,353
Open WordSearch a word search game for android 2,440
Orbot Tor proxy 671
OsmAnd GPS navigation program 10,953
OsmTracker GPS tracking with annotation 2,028
Password Hash pwdhash implementation 71
Pedometer Counts your steps 153
Pedometer remote service — 209
Permissions Shows permissions for installed android apps 681
Picture Map Show geotagged photos on a map 37
PMix MPD client 842
Replica Island a side-scrolling platformer for Android devices 628
Ringdroid Create ringtones with musics 681
robotfindskitten Android implementation of robotfindskitten 250

Continued on next page

96 Appendix A. Android APIMiner 2.0 Datasets

Table A.2—continued from previous page
System Description Examples

Robotic Space Rock — 173
ROM Updater Helps the user to maintain custom ROM updated 2,211
rVoix Call recorder 1,116
Sanity "Call recorder/blocker/manager 1,325
Sat Info — 968
Say My Name reads out caller’s name 276
SD Move "Move to SD Card" manager 199
SD Watch Ultra-simple "Move to SD card" manager 56
Secrets Application to securely store and manage passwords 386
ServeStream HTTP(s) media server browser and stream player 4,376
Shortyz A crossword puzzle client 1,122
Shuffle Get Things done (GTD) application 1,720
Simon Tatham’s puzzles — 981
Simple App History Widget App history widget 52
Simple Audio Widget Audio volume widget 54
Simple Battery Widget Battery Widget 37
Simple Cache Widget Cache Widget 53
Simple CPU Widget CPU Widget 54
Simple GPS Widget GPS Widget 68
Simple Storage Widget Storage space Widget 54
Simple Traffic Widget Traffic Widget 56
Simple WLan Widget Wifi widget 52
Sipdroid SIP Client 1,502
SL4A Scripting Layer for Android (SL4A) 4,176
Slashdot Slashdot reader 71
SMS Backup Plus Backup and restore Android SMS/MMS 1,090
SMS Popup SMS Messaging application 2,107
Sokoban Warehouse Puzzle Game 439
Solitaire Collection Includes Klondike, Spider Solitaire, and Freecell 242
Spell Dial T9 search enabled dialer 120
Sri Lanka Train Schedule Train Delays and Ticket Prices 249
SuperCollider Android SuperCollider audio synthesis engine 131
SuperGenPass Password hasher 728
SwallowCatcher Podcast client for Android 1,769
Swiftp FTP server for android 439
Taps of Fire Frets on Fire (Guitar Hero like game) 616
Target Anagram Word Puzzle 786
Tea Timer A straight-forward tea timer 477
TiltMazes Logical puzzle game for the Android platform 396
Tram Hunter Melbourne’s Tram Tracker service 1,814
Transdroid Android remote client 16,506
Tumblife Tumblr Client 353
Twisty Z-machine emulator 492
Twitli Twitter Client 3,490
Typographic Widgets Weather, clock and battery widgets 659
Veader Chinese Ebook Reader 3,830
Vector Pinball Pinball Game 129
Vidiom Mobile video blogging and web video publishing tool 1,300

Continued on next page

97

Table A.2—continued from previous page
System Description Examples

Voyager Connect In-vehicle network diagnostic 99
VuDroid PDF Reader 433
Wi-Fi Widget Connect/disconnect Wi-Fi and show network SSID 42
Wordpress WordPress CMS Client 6,257
Word Seek Word Search Game 1,818
XBMC Remote Official XBMC Remote for Android 7,123
Yaaic IRC Client 14,599
Yaxim Jabber/XMPP Client 2,234

Appendix B

Forms

B.1 Subject Characterization Form

Formulário – Experimento Controlado APIMiner 2.0

1. Marque os cursos/disciplinas que você já fez, ou então se tais conteúdos foram dados em conjunto
com algum dos cursos que você fez.

[] Programação orientada a objetos [] Programação Java

[] Programação Android [] Sistemas de banco de dados

[] Desenvolvimento de aplicações Web [] Desenvolvimento de aplicações móveis

2. Você já trabalhou (ou está trabalhando) em empresa de desenvolvimento de sistemas? Se sim, por
quanto tempo?

() Não, nunca trabalhei em empresa de desenvolvimento.

() Trabalhei menos que 1 ano.

() Trabalhei entre 1 e 3 anos.

() Trabalhei mais de 3 anos.

3. Como você classifica seu conhecimento em relação aos seguintes tópicos?

I. Desenvolvimento Java

() Nenhum () Pouco () Moderado () Experiente

II. Desenvolvimento Android

() Nenhum () Pouco () Moderado () Experiente

4. Se você deseja receber uma compilação dos resultados preencha o campo abaixo com seu email

Email: ___

99

100 Appendix B. Forms

B.2 Tutorial Task Form

TAREFA TUTORIAL: OBTENÇÃO DE LOCALIZAÇÃO

1. Anote aqui o horário de início: _____ : _____

Arquivo da Tarefa: com.dcc052.more.aqui.app.InsertActivity.java (More Aqui App)
Arquivo do Teste: com.dcc052.more.aqui.app.test.TarefaTutorialTest (More Aqui App Test)

O contexto:

No momento em que o usuário realiza a inserção de um imóvel, o aplicativo coleta informações
de localização no serviço de localização provido pelo aparelho, como a última localização registrada pelo
provedor. Mais especificamente, este aplicativo necessita somente dos últimos valores de latitude e
longitude registrados pelo provedor.

2. Anote aqui o horário de término: _____ : _____

3. Os exemplos providos pela plataforma foram úteis ?

() Sim () Não () Em parte

4. As recomendações de padrões providas pela plataforma foram úteis ?

() Sim () Não () Em parte

5. Observações (Opcional):

B.2. Tutorial Task Form 101

TAREFA 01: INSERINDO UM IMÓVEL

1. Anote aqui o horário de início: _____ : _____

Arquivo da Tarefa: com.dcc052.more.aqui.app.InsertActivity.java (More Aqui App)
Arquivo do Teste: com.dcc052.more.aqui.app.test.TarefaUmTest (More Aqui App Test)

O contexto:

Após o usuário preencher as informações e clicar em "Pronto!", os dados são validados e
inseridos. Neste processo é necessário que os dados sejam devidamente inseridos, evitando que os dados
sejam corrompidos durante o processo. Nesse sentido, esta tarefa tem por objetivo garantir que os dados
(já validados) sejam devidamente inseridos.

2. Anote aqui o horário de término: _____ : _____

3. Os exemplos providos pela plataforma foram úteis ?

() Sim () Não () Em parte

4. As recomendações de padrões providas pela plataforma foram úteis ?

() Sim () Não () Em parte

5. Observações (Opcional):
__
__
__
__
__
__

102 Appendix B. Forms

TAREFA 02: EXIBINDO MENSAGENS AO USUÁRIO

1. Anote aqui o horário de início: _____ : _____

Arquivo da Tarefa: com.dcc052.more.aqui.app.InsertActivity.java (More Aqui App)
Arquivo do Teste: com.dcc052.more.aqui.app.test.TarefaDoisTest (More Aqui App Test)

O contexto:

Para diversas ações dos usuários é necessário apresentar uma resposta para o usuário. Assim, esta
atividade engloba os códigos necessários para apresentação de uma determinada mensagem ao usuário.

2. Anote aqui o horário de término: _____ : _____

3. Observações (Opcional):
__
__
__
__
__
__

	Agradecimentos
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Description
	1.3 Contributions
	1.4 Organization

	2 Background
	2.1 Introduction
	2.2 IDE-based Recommendation Systems
	2.2.1 Vertical Code Completion
	2.2.2 Mining API Code Snippets

	2.3 API Documentation
	2.3.1 APIMiner 1.0
	2.3.2 eXoaDocs

	2.4 Examples Quality
	2.4.1 A Study of Programming Q&A in StackOverflow
	2.4.2 Synthesizing API Usage Examples

	2.5 Association Rules
	2.6 Program Slicing
	2.7 Final Remarks

	3 Proposed Solution
	3.1 Introduction
	3.2 Source Code Analyzer
	3.3 Patterns Analyzer
	3.4 Examples Extractor
	3.4.1 Summarization Algorithm
	3.4.2 Readability Improvements
	3.4.3 Removing Similar Examples

	3.5 Ranking Engine
	3.5.1 Ranking Examples for Single API Methods
	3.5.2 Ranking Usage Patterns

	3.6 JavaDoc Weaver
	3.6.1 Example Button
	3.6.2 Examples Presentation
	3.6.3 Usage Patterns Interface

	3.7 Final Remarks

	4 Evaluation
	4.1 Overview
	4.2 Android API
	4.3 Android APIMiner 2.0
	4.3.1 Dataset
	4.3.2 Transactions
	4.3.3 Association Rules
	4.3.4 Examples
	4.3.5 Usage Patterns

	4.4 Field Study
	4.5 User Study
	4.5.1 Study Setup
	4.5.2 Experiment Execution
	4.5.3 Experiment Results

	4.6 Threats to Validity
	4.7 Final Remarks

	5 Conclusion
	5.1 Contributions
	5.2 Comparison with Related Work
	5.2.1 IDE-based Recommendation Systems
	5.2.2 API Documentation

	5.3 Future Work

	Bibliography
	A Android APIMiner 2.0 Datasets
	B Forms
	B.1 Subject Characterization Form
	B.2 Tutorial Task Form

