
SCALABLE AND PRECISE RANGE ANALYSIS

ON THE INTERVAL LATTICE

RAPHAEL ERNANI RODRIGUES

SCALABLE AND PRECISE RANGE ANALYSIS

ON THE INTERVAL LATTICE

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Fernando Magno Quintão Pereira

Belo Horizonte

Janeiro de 2014

RAPHAEL ERNANI RODRIGUES

SCALABLE AND PRECISE RANGE ANALYSIS

ON THE INTERVAL LATTICE

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Fernando Magno Quintão Pereira

Belo Horizonte

January 2014

© 2014, Raphael Ernani Rodrigues.
Todos os direitos reservados.

Rodrigues, Raphael Ernani

R696s Scalable and Precise Range Analysis on the Interval
Lattice / Raphael Ernani Rodrigues. — Belo Horizonte,
2014

xxviii, 79 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais

Orientador: Fernando Magno Quintão Pereira

1. Computação — Teses. 2. Compiladores — Teses.
I. Orientador. II. Título.

CDU 519.6*33(043)

This work is dedicated to my parents, friends, professors and fellows, who have
supported me throughout this journey. They have provided me with the vital conditions
to accomplish this mission.

ix

Acknowledgments

I’m grateful to my family, my friends, my professors, and my fellows at the university.
My family, specially my parents Gleyce and David, have provided the conditions

for me to continue studying. They gave me a suitable environment, and allowed me to
abstract from the bureaucracy of life in order to focus on my M.Sc. I am unconditionally
grateful for all they have done for me since I was born.

My friends gave me pretty happy days. That was surely important for me to
finish this program. Without their companionship, my days would be lonely, sad and
dark, and I would not have psychological stability to finish this work.

My professors have guided me through this journey, pointing the dead ends and
the promising opportunities. I’m very thankful for all their help, specially for the
wise words and patience of Fernando, my adviser. His words have encouraged me to
continue advancing, even during the hardest days and most difficult challenges of this
long path. Laure Gonnord, from École Normale Supérieure de Lyon, also deserves
special recognition for having nearly adopted me in my academic internship in Lyon.

I’m also thankful for the company of my fellows in the university. Igor Rafael
deserves special thanks for giving me valuable tips about the life as a graduate student.
In addition, also the loyal boys who inhabit the lab at room 3054 deserve special thanks,
because they made not only my days better, but the M.Sc. as a whole a pleasant
experience.

Finally, I must recognize the importance of CAPES and PPGCC to my formation.
CAPES have provided the financial aid that allowed me to exclusively dedicate my time
to the master’s program. PPGCC have provided the formal conditions in the academic
system. The good job done by PPGCC members have made my life easier as a student
and let me keep focus on the really important things.

xi

“To become an expert, you have to master the fundamentals”
(Stephen Gilbert & Bill McCarthy)

xiii

Resumo

Uma análise de largura de variáveis é um algoritmo que estima o menor e o maior valor
que cada variável em um programa de computador pode assumir durante a execução
deste programa. Este tipo de análise provê informação que permite ao compilador
entender melhor os programas e realizar uma série de otimizações.

Muito trabalho já foi realizado no projeto e implementação de análises de largura
de variáveis. Entretanto, soluções anteriores existentes na literatura têm sua aplicação
prática bastante restrita, porque se baseiam em abordagens que são muito caras ou
muito imprecisas.

Neste trabalho é apresentada uma implementação de análise de largura de var-
iáveis que é atualmente o estado-da-arte neste campo de pesquisa, oferecendo o melhor
balanço entre velocidade de análise e precisão de resultados.

Este trabalho também apresenta exemplos onde o uso da análise de largura de
variáveis contribui para segurança computacional, projeto de hardware e otimização de
programas.

Acreditamos que esta obra descreve a exploração mais completa dos benefícios
da análise de largura de variáveis em programas grandes, presentes no mundo real.

Palavras-chave: Compiladores, Análise de Largura de Variáveis, Análise estática,
Otimização.

xv

Abstract

A Range analysis is a technique that estimates the lowest and highest values that each
variable in a computer program may assume during an execution of the program. This
kind of analysis provides information that helps the compiler to better understand and
optimize programs.

There has been much work in the design and implementation of range analyses.
However, previous works have found limited practical application, because they rely
on approaches that are either expensive or imprecise.

In this work we present an implementation of range analysis that is currently the
state-of-art in this field of research, and provides the best balance between speed and
precision.

We also present examples where the use of our range analysis contributes to
software security, hardware design and program optimizations.

We believe that this work describes the most extensive exploration of the benefits
of range analysis in large, real-world, programs.

Palavras-chave: Compilers, Range Analysis, Static Analysis, Optimization.

xvii

Extended Abstract

A Range Analysis (RA) is an algorithm that estimates the lowest and highest values
that each integer variable in a computer program may assume during an execution of
the program. This kind of analysis provides information that helps the compiler to
better understand and optimize programs.

However, previous works rely on approaches that are either expensive or impre-
cise, limiting their practical application. In this work we present an implementation
of a new range analysis that is currently among the best tools of its kind publicly
available. Our implementation provides the best balance between speed and precision.
By relying on an idea that we deem future values - a key insight of our algorithm - we
produce fast results that are comparable to the precision of more expensive solutions.

We also present the advantages of the application of our range analysis in different
scenarios:

1. In computing security, to provide efficient protection against undefined be-
haviour caused, for instance, by integer overflows or access beyond the bounds of
an array. Integer overflow occurs when a variable assumes a value that does not
fit in the precision of the data type used for the variable while array-bound errors
occur when accesses to an array continue beyond the end of the array. Our RA
was applied successfully to remove unnecessary safety verifications in programs,
enhancing the performance of safe programs.

2. In hardware design, to reduce the storage space and the wiring necessary to
store a variable. RA can be used to prove that a given variable will not use the en-
tire width of the data type assigned to it in the program. Therefore that variable
can be stored into smaller registers and can use fewer lines to be transmitted be-
tween different areas of the processing element. The bitwidth reduction enabled
by the RA produces faster programs that make a better use of the hardware and
save energy.

xix

3. In static program analysis, to expand the scope and improve the precision
of static analysis routinely applied to code by optimizing compilers. A more
precise RA can be used to infer the outcome of conditional tests in a program.
For instance, with proven range bounds for the value of variables, a dead-code
elimination may be able to prove more code to be dead, a constant-propagation
may be able to propagate constants further, and an alias analysis may be able
to reduce the size of alias sets. More precise alias sets may enable further data
restructuring and automatic parallelization transformations that make better use
of the memory hierarchy and of multi-core processor architectures.

In this work we present many contributions related to our range analysis. First,
we present a new range analysis algorithm that relies on future values – the key insight
of our algorithm – to gain precision without resorting to expensive techniques. Second,
we present a technique to secure programs against integer overflows and show how
we can use the RA to avoid inserting unnecessary checks. Third, we present u-SSA,
a new program representation that is based on overflow-free programs and increases
the precision of the RA. Finally, we present an heuristic to estimate the number of
iterations of loops, based on patterns of variable updates.

This work summarizes a two years long effort that pushes the state of the art of
the range analyses into a new level and demonstrates that it can be successfully used
by program optimizations to produce smaller and faster machine code.

xx

List of Figures

2.1 Example program. 11

3.1 (a) Example program. (b) SSA form [Cytron et al. [1991]]. (c) e-SSA form
[Bodik et al. [2000]]. (d) u-SSA form. 19

3.2 Growth on the number of instructions in comparison with SSA representation. 21

4.1 A suite of constraints that produce an instance of the range analysis problem. 24

4.2 (a) Example program. (b) Control Flow Graph in SSA form. (c) Constraints
that we extract from the program. (d) Possible solution to the range analysis
problem. 25

4.3 Our implementation of range analysis. Rounded boxes are optional steps. . 26

4.4 (a) The control flow graph from Figure 4.2(b) converted to standard e-SSA
form. (b) A solution to the range analysis problem 27

4.5 The dependence graph that we build to the program in Figure 4.4. 28

4.6 (Left) The lattice of the growth analysis. (Right) Cousot and Cousot’s
widening operator. We evaluate the rules from left-to-right, top-to-bottom,
and stop upon finding a pattern matching. Again: given an interval ι =

[l, u], we let ι↓ = l, and ι↑ = u . 30

4.7 Rules to replace futures by actual bounds. 30

4.8 Cousot and Cousot’s narrowing operator. 30

4.9 Four snapshots of the last SCC of Figure 4.4. (a) After removing control
dependence edges. (b) After running the growth analysis. (c) After fixing
the intersections bound to futures. (d) After running the narrowing analysis. 31

4.10 Correlation between program size (number of var nodes in constraint graphs
after inlining) and analysis runtime (ms). Coefficient of determination =
0.967. 33

xxi

4.11 Comparison between program size (number of var nodes in constraint
graphs) and memory consumption (KB). Coefficient of determination =
0.9947. 33

4.12 (Upper) Comparison between static range analysis and dynamic profiler
for upper bounds. (Lower) Comparison between static range analysis and
dynamic profiler for lower bounds. The numbers above the benchmark
names give the number of variables in each program. 34

4.13 Design space exploration: precision (percentage of bitwidth reduction) ver-
sus speed (secs) for different configurations of our algorithm analyzing the
SPEC CPU 2006 integer benchmarks. 36

4.14 Strongly Connected Components extracted from our example program. . . 36

4.15 (Left) Time to run our analysis without building strong components divided
by time to run the analysis on strongly connected components. (Right)
Precision, in bitwidth reduction, that we obtain with strong components,
divided by the precision that we obtain without them. 37

4.16 (Left) Bars give the time to run analysis on e-SSA form programs divided
by the time to run analysis on SSA form programs. (Right) Bars give the
size of the e-SSA form program, in number of assembly instructions, divided
by the size of the SSA form program. 38

4.17 The impact of the e-SSA transformation on precision for three different
benchmark suites. Bars give the ratio of precision (in bitwidth reduction),
obtained with e-SSA form conversion divided by precision without e-SSA
form conversion. 39

4.18 Example where an intra-procedural implementation would lead to imprecise
results. 40

4.19 Example where a context-sensitive implementation improves the results of
range analysis. 41

4.20 The impact of inter-procedural analysis on precision. Each bar shows pre-
cision in %bitwidth reduction. 41

4.21 (Left) Runtime comparison between intra, inter and inter+inline versions
of our algorithm. (Right) Runtime comparison between different widening
operators. The bars are normalized to the time to run the intra-procedural
analysis. 42

4.22 An example where jump-set widening is more precise. 43

5.1 An example of an exploitable integer overflow vulnerability. 46

xxii

5.2 Overflow checks. We use ↓n for the operation that truncates to n bits.
The subscript s indicates a signed instruction; the subscript u indicate an
unsigned operation. 47

5.3 Number of instructions used in each check. 48
5.4 (a) A simple C function. (b) The same function converted to the LLVM

intermediate representation. (c) The instrumented code. The boldface lines
were part of the original program. 49

5.5 Percentage of overflow checks that our range analysis removes. Each bar is
a benchmark in the LLVM test suite. Benchmarks have been ordered by the
effectiveness of the range analysis. On average, we have eliminated 24.93%
of the checks (geomean). 52

5.6 Comparison between execution times with and without pruning, normalized
by the original program’s execution time. 54

6.1 (a)Example program. (b) CFG of the program, after conversion to SSA
form. (c)Dependence graph highlighting nodes that do not affect the loop
predicate, after converting the original program into 56

6.2 (a)Dependence graph. (b)Multi-node SCC of the variable i1. (c)Sequence
of redefinitions of the variable i1. (d)Effect of one iteration on the variable i1 59

6.3 Lattice of SR classifications. 60

xxiii

List of Tables

3.1 Impact of the transformation to e-SSA and u-SSA in terms of program size.
SSA: number of instructions in the SSA form program. # e-SSA: number
of instructions in the e-SSA form program. # u-SSA: number of instructions
in the u-SSA form program. 20

4.1 Variation in the precision of our analysis given the widening strategy. The
size of each benchmark is given in number of variable nodes in the constraint
graph. Precision is given in percentage of bitwidth reduction. Numbers in
parenthesis are percentage of gain over 0 + Simple. 43

5.1 Instrumentation without support of range analysis. #I: number of LLVM
bitcode instructions in the original program. #II: number of instructions
that have been instrumented. #O: number of instructions that actually
overflowed in the dynamic tests. 51

5.2 Instrumentation library with support of static range analysis. #II: num-
ber of instructions that have been instrumented without range analysis.
#E: number of instructions instrumented in the e-SSA form program. #U:
number of instructions instrumented in the u-SSA form program. 52

5.3 How the range analysis classified arithmetic instructions in the u-SSA form
programs. #Sf: safe. #S: suspicious. #U: uncertain. #SO: number of
suspicious instructions that overflowed. #UO: number of uncertain instruc-
tions that overflowed. 53

6.1 Natural Loops in the Control Flow Graph. L: number of natural loops. NL:
number of nested loops. SEL: number of loops that have a single exit point. 65

6.2 Classification of Natural Loops according to their stop conditions. L: num-
ber of natural loops. IL: number of Interval Loops. EL: number of Equality
Loops. OL: number of Other Loops. 65

xxv

6.3 Classification of Strongly Connected Components in the Dependence Graph.
SN: number of Single-Node SCCs. MN: number of Multi-Node SCCs. SP:
number of Single-Path SCCs. MP: number ofMulti-Path SCCs. SL: number
of Single-Loop SCCs. NL: number of Nested-Loop SCCs. 66

6.4 Trip Count Instrumentation. IL: interval loops. IIL: instrumented interval
loops. EL: equality loops. IEL: instrumented equality loops. 67

6.5 Trip Count Profiler - Trip count estimated using vectors. 69
6.6 Trip Count Profiler - Trip count estimated using simplified heuristic. . . . 69

xxvi

Contents

Acknowledgments xi

Resumo xv

Abstract xvii

Extended Abstract xix

List of Figures xxi

List of Tables xxv

1 Introduction 1
1.1 Range Analysis . 1
1.2 Integer Overflows . 2
1.3 Trip Count Prediction . 3
1.4 Contributions . 3
1.5 Experimental results . 5
1.6 Publications and Software . 6

2 Literature review 9
2.1 Range Analysis . 9
2.2 Live Range Splitting . 11
2.3 Integer Overflows . 12
2.4 Trip Count Analysis . 14

3 Live Range Splitting 17
3.1 Live Splitting Alternatives . 17
3.2 Experiments . 20
3.3 Conclusion . 21

xxvii

4 Range Analysis 23
4.1 Background . 23
4.3 Our Design of a Range Analysis Algorithm 25

4.3.1 Finding Ranges in Strongly Connected Components 29
4.3.2 Experiments . 32

4.4 Design Space . 35
4.4.1 Strongly Connected Components 35
4.4.2 The Choice of a Program Representation 37
4.4.3 Intra versus Inter-procedural Analysis 39
4.4.4 Achieving Partial Context-Sensitiveness via Function Inlining . . 40
4.4.5 Choosing a Widening Strategy 42

4.5 Conclusion . 44

5 Integer Overflows 45
5.1 The Dynamic Instrumentation Library 46
5.2 Experimental Results . 50
5.3 Conclusion . 53

6 Trip count prediction 55
6.1 Background . 55

6.1.1 Natural Loops . 56
6.1.2 Strongly Connected Components 57
6.1.3 Sequences of Redefinitions of Variables 58
6.1.4 Vectors . 60
6.1.5 Patterns of movement . 60

6.2 A Trip Count Algorithm Based on Vectors 61
6.3 A Simplified Trip Count Algorithm Based on Vectors for JIT compilers 63
6.4 Experimental Results . 64
6.5 Conclusion . 69

7 Final considerations 71
7.1 Future Works . 71
7.2 Conclusions . 72

Bibliography 73

xxviii

Chapter 1

Introduction

Range analysis is a compiler technique whose objective is to determine, statically, for
each program variable, limits for the minimum and maximum values that this variable
might assume during the program execution. In this work we propose a new range
analysis algorithm that has linear space and time complexity and has a precision that
is comparable to that of more expensive analyses. We also present a technique to
secure programs against integer overflows. Furthermore, we show how we use our
range analysis to eliminate unnecessary integer overflow checks. Finally, we present an
algorithm to estimate the trip count of loops – the number of iterations that the loops
of a program execute. We use parts of our range analysis to be more accurate in our
estimates.

1.1 Range Analysis

The analysis of integer variables on the interval lattice has been the canonical exam-
ple of abstract interpretation since its introduction in the seminal paper of Cousot and
Cousot [1977]. Optimizing compilers use range analysis to infer the possible values that
discrete variables may assume during program execution. This analysis has many uses.
For instance, it allows the optimizing compiler to remove from the program text redun-
dant overflow tests and unnecessary array bound checks(Bodik et al. [2000]; Gampe
et al. [2011]). Furthermore, range analysis is essential to bitwidth aware register allo-
cators (Barik et al. [2006]; Tallam and Gupta [2003]), register allocators that handle
registers of different sizes (Kong and Wilken [1998]; Pereira and Palsberg [2008]; Scholz
and Eckstein [2002]), and scratchpad cache allocators (Yang et al. [2011]). Addition-
ally, range analysis has also been used to statically predict the outcome of branches
(Patterson [1995]), to detect buffer overflow vulnerabilities (Simon [2008]; Wagner et al.

1

2 Chapter 1. Introduction

[2000]), to find the trip count of loops (Lokuciejewski et al. [2009]) and even to syn-
thesize hardware (Cong et al. [2005]; Lhairech-Lebreton et al. [2010]; Mahlke et al.
[2001]).

Given this great importance, it comes as no surprise that the compiler literature
is rich in works describing in details algorithmic variations of range analyses (Mahlke
et al. [2001]; Gawlitza et al. [2009]; Stephenson et al. [2000]; Su and Wagner [2005]).
On the other hand, none of these authors provide experimental evidence that their
approaches are able to deal with very large programs. There are researchers who
have implemented range analyses that scale up to large programs (Patterson [1995];
Blanchet et al. [2003]; Venet and Brat [2004]); nevertheless, because the algorithm
itself is not the main focus of their works, they neither give details about their design
choices nor provide experimental data about it. This scenario was recently changed by
Oh et al. [2012], who introduced an abstract interpretation framework which processes
programs with hundreds of thousands of lines of code. Nevertheless, Oh et al. have
designed a simple range analysis, which does not handle comparisons between variables,
for instance. They do not discuss the precision of their implementation, but only its
runtime and memory consumption. In this work we claim to push this discussion
considerably further.

1.2 Integer Overflows

The most popular programming languages, including C, C++ and Java, limit the size
of primitive numeric types. For instance, the int type, in C++, ranges from −231 to
231−1. Consequently, there exists numbers that cannot be represented by these types.
In general, these programming languages resort to a wrapping-arithmetics semantics
(Warren [2002]) to perform integer operations. If a number n is too large to fit into
a primitive data type T , then n’s value wraps around, and we obtain n modulo Tmax.
There are situations in which this semantics is acceptable, like Dietz et al. [2012] has
shown. For instance, programmers might rely on this behavior to implement hash func-
tions and random number generators. On the other hand, there exists also situations
in which this behavior might lead a program to produce unexpected results. As an
example, in 1996, the Ariane 5 rocket was lost due to an arithmetic overflow – a bug
that resulted in a loss of more than US$370 million (Dowson [1997]).

Programming languages such as Ada or Lisp can be customized to throw excep-
tions whenever integer overflows are detected. Furthermore, there exist recent works,
like Brumley et al. [2007] and Dietz et al. [2012], that proposes to instrument bina-

1.3. Trip Count Prediction 3

ries derived from C, C++ and Java programs to detect the occurrence of overflows
dynamically. Thus, the instrumented program can take some action when an overflow
happens, such as to log the event, or to terminate the program. However, this safety
has a price: arithmetic operations need to be surveilled, and the runtime checks cost
time. Zhang et al. [2010] have eliminated some of this overhead via a tainted flow
analysis. We have a similar goal, yet, our approach is substantially different.

1.3 Trip Count Prediction

Loops represent most of the execution time of a program. For that reason, there
is a well-known aphorism that says that "all the gold lays in the loops", because
compiler optimizations made inside loops have their benefits multiplied by the number
of iterations actually executed. As a consequence of that fact, there is a vast number of
works in the literature that are specialized in loop optimizations, like the ones described
by Kennedy and Allen [2001] and Wolfe et al. [1995].

Some optimizations, however, are highly sensitive to the number of iterations
of a given loop. For instance, if a given loop iterate a few times in an interpreter,
an aggressive optimization made by a Just-In-Time (JIT) compiler may not even pay
for the compilation overhead. On other hand, if the same loop iterates thousands of
times, the JIT compilation might use more expensive techniques and still have a better
end-to-end performance. The number of iterations a loop actually executes is called
Trip Count. Here we use the same concept of trip count as described by [Wolfe et al.,
1995, pp.200]. This number is only known at runtime, as it depends on the state of
the variables of the program immediately before the loop starts.

Rice [1953] has demonstrated that predicting this information is an undecidable
problem. Therefore, we can develop either a conservative solution or an heuristic to
solve this problem. In this work, we present a heuristic that extracts patterns of
the updates of variables’ values and estimates the trip count of loops with symbolic
expressions. Those expressions might, then, be evaluated at runtime and allow the
compiler to decide dynamically what code to execute depending on the actual expected
number of iterations.

1.4 Contributions

This work has four main contributions. First, we provide a complete description of
a range analysis algorithm, and show extensive experimental data that justifies our

4 Chapter 1. Introduction

engineering choices. Our range analysis relies on a three-phase algorithm that results
in good precision without resorting to expensive methods. Second, we present a tech-
nique to detect integer overflows and protect programs against them. We have used
our range analysis to prove that some instructions will never cause integer overflows.
Then, we can avoid inserting unnecessary checks in those instructions. Third, we
present u-SSA, a new program representation that provides more information about
the variables of overflow-free programs than previous representations. Finally, we bring
a new algorithm to estimate the trip count of loops. Our trip count predictor uses the
range analysis during the process of extracting symbolic expressions from the loops,
representing its estimated trip counts.

Range Analysis: Our first algorithmic contribution on top of previous works
is a three-phase approach to handle comparisons between variables without resorting
to any exponential time technique. The few publicly available implementations of
range analyses that we are aware of, such as those in FLEX 1, gcc 2 or Mozilla’s
IonMonkey 3 only deal with comparisons between variables and constants. Even
theoretical works, such as Su and Wagner [2005] or Gawlitza et al. [2009] suffer from
this limitation. This deficiency is one of the reasons explaining why none of these works
has made their way into industrial-strength compilers. Two other insights allow our
implementation to scale up to very large programs. We use Bodik’s Extended Static
Single Assignment (e-SSA) form (Bodik et al. [2000]) to perform path-sensitive range
analysis sparsely. This program representation ensures that the interval associated
with a variable is constant along its entire live range. Finally, we process the strongly
connected components that underline our constraint system in topological order. It is
well-known that this technique is essential to speedup constraint solving algorithms
([Nielson et al., 1999, Sec 6.3]); however, due to our three-phase approach, a careful
propagation of information along strong components not only gives us speed, but also
improves the precision of our results.

Integer Overflow Checks: Our second algorithmic contribution is a tech-
nique to identify integer overflows in programs. Like Dietz et al. [2012] and Brumley
et al. [2007], we insert dynamic checks inside the code of the target programs. Our
dynamic checks use the resulting value of the integer instructions and their operands to

1The MIT’s FLEX/Harpoon compiler provides an implementation of Stephenson’s algorithm
(Stephenson et al. [2000]), and is available at http://flex.cscott.net/Harpoon/.

2Gcc’s VRP pass (at http://gcc.gnu.org/svn/gcc/trunk/gcc/tree-vrp.c) implements a vari-
ant of Patterson’s algorithm (Patterson [1995]).

3hg.mozilla.org/projects/ionmonkey/file/629d1e6251b9/js/src/ion/RangeAnalysis.cpp

1.5. Experimental results 5

decide whether an overflow has occurred or not. This, of course, creates an undesired
overhead during the runtime. However, we have noticed that a large number of checked
instructions never actually overflow. We, then, use our range analysis to identify those
instructions that are guaranteed to never overflow and avoid inserting overflow checks
in them. By pruning the unnecessary checks, we were able to eliminate part of the
overhead, which means that we have increased the efficiency of the safe programs.
Our experiments show that the overhead that our remaining overflow checks cause is
negligible.

u-SSA - A new program representation: Our third contribution is a pro-
gram representation that extends Bodik’s e-SSA and provides additional information
about variables of programs that are safe against integer overflows. We have observed
that some properties hold when we ensure that the program terminates in face of
integer overflows. Thus, we have extended e-SSA and included more divisions in the
live range of variables that allow us to increase the precision of our range analysis.

Trip count prediction: Our fourth algorithmic contribution is an heuristic to
compute the symbolic trip count of loops. This information is important to estimate
the complexity of the program and to let the compiler to generate different code for
loops that will iterate small or large numbers of times. As the exact static computation
of the trip count of loops is impossible, there is no optimal algorithm to solve this
problem. Therefore, in this work we propose a new heuristic to estimate such number
of iterations. Our algorithm identifies patterns under which the variables are updated
between two iterations and derives vectors that represent how the variable move over
the real line. When we know how the variables move, we can estimate the number of
iterations needed for them to reach a termination state.

1.5 Experimental results

We have implemented our algorithms in the LLVM compiler (Lattner and Adve [2004]),
and have used it to process a set of benchmarks with 2.72 million lines of C code.

Range Analysis: As we show in Section 4.3.2, our Range Analysis implemen-
tation, is able to analyze programs with over one million assembly instructions within
fifteen seconds. And our implementation is not a straw-man: it produces very precise
results. We have compared the ranges that our implementation finds with the results

6 Chapter 1. Introduction

obtained via a dynamic profiler, which we have also implemented. As we show in
Section 4.3.2, when analyzing well-known numeric benchmarks we are able to estimate
tight ranges for almost half of all the integer variables present in these programs.
Our results are similar to Stephenson et al. [2000], even though our analysis does
not require a backward propagation phase. Furthermore, we have been able to
find tight bounds to the majority of the examples used by Costan et al. [2005] and
Lakhdar-Chaouch et al. [2011], who rely on more costly methods.

Integer Overflow Checks: We use our range analysis to reduce the runtime
overhead imposed by a dynamic instrumentation library. This instrumentation
framework, which we describe in Section 5.1, has been implemented in the LLVM
compiler. We have logged overflows in a vast number of programs, with special focus
on SPEC CPU 2006 benchmarks. We have re-discovered the integer overflows recently
observed by Dietz et al. [2012]. The performance of our instrumentation library,
even without the support of range analysis, is within the 5% runtime overhead of
Brumley et al. [2007]’s state-of-the-art algorithm. The range analysis halves down this
overhead. Our static analysis algorithm avoids 24.93% of the overflow checks created
by the dynamic instrumentation framework. With this support, the instrumented
SPEC programs are only 1.73% slower. Therefore, we show in this paper that securing
programs against integer overflows is very cheap.

Trip count prediction: As we show in Section 6.4, our trip count heuristics
present a good balance between speed and precision. The simpler analysis, that aims
JIT compilers, has been shown to offer a good precision, even without the use of our
Range Analysis. It was able to infer bounds for 75% of the loops of our benchmarks,
of which 66% was shown to be precise by our profiler. Our second analysis, that is
more elaborated and aims regular compilers, has been shown to be even more precise.
We have been able to provide bounds to 75% of the loops, of which 75% was shown to
be precise. Similar works, such as Gulwani et al. [2009a]’s are able to provide symbolic
bounds to 90% of the loops, but rely on a much more expensive technique, that limits
their application to smaller programs.

1.6 Publications and Software

Publications: Most of this work has already been published in three papers. The first
one, "Speed and Precision in Range Analysis" (Campos et al. [2012]), describes our

1.6. Publications and Software 7

range analysis algorithm and presents the engineering choices we have made. It also
brings the experimental results of our implementation. In chapter 4 we provide more
details about the algorithm and its experimental results. The second one, "A fast and
low-overhead technique to secure programs against integer overflows" (Rodrigues et al.
[2013]), presents our technique to identify integer overflows and to secure programs
against them. The third one, "Prevenção de Ataques de Não-Terminação baseados
em Estouros de Precisão" (Rodrigues and Pereira [2013]) shows how our technique
to secure programs against integer overflows can be used to avoid non-termination in
programs. Chapter 5 extends the discussion presented in the papers about integer
overflow handling.

Two other papers containing our trip count algorithm are currently under de-
velopment. The first one describes in details our algorithm, engineering choices and
results. The second one, "Selective Page Migration in ccNUMA Systems", is the result
of a joint effort with researchers from UNICAMP and ETH Zurich. It shows how our
trip count prediction can be used to make a more efficient use of the memory hierar-
chy. Both papers are being prepared to be submitted to international conferences in
February 2014.

Software: All the software produced during the research of this work is pub-
licly available at http://code.google.com/p/range-analysis. In our website we
maintain a repository of source code, a description our algorithm, a list of examples
and instructions for new users to apply our analysis in their own projects.

Chapter 2

Literature review

In this chapter we discuss a list of works that are strongly related to our studies. Our
goal here is to evaluate the previous results available in the literature and show where
we have made advances. Thus, in section 2.1 we discuss briefly how our Range Analysis
algorithm overcome previous approaches and what are its limitations. We also evaluate
the evolution of the program representations, that have created suitable conditions to
develop our algorithm. Section 2.3 shows the works with goals that are similar to our
integer overflow protection. Finally, section 2.4 discusses the papers in the literature
that are related to our trip count heuristics.

2.1 Range Analysis

In this section we make the literature review of works related to our Range Analysis.
We discuss how our Range Analysis is compared with previous analyses available in the
literature. In addition, we show how the area has evolved along the decades and how
we place our contribution in this evolution. Furthermore, we compare our approach
with existing alternatives, both in terms of scalability and precision.

Range analysis is an old ally of compiler writers. The notions of widening and
narrowing were introduced by Cousot and Cousot [1977] in one of the most cited
papers in computer science. Different algorithms for range analysis have been later
proposed by Patterson [1995], Stephenson et al. [2000], Mahlke et al. [2001] and many
other researchers. Recently there have been many independent efforts to find exact,
polynomial time algorithms to solve constraints on the interval lattice, as we can see in
Gawlitza et al. [2009], Su and Wagner [2005], Costan et al. [2005], Lakhdar-Chaouch
et al. [2011], and Su and Wagner [2004]. However, these works are still very theoretical,
and have not yet been used to analyze large programs. Contrary to them, our approach

9

10 Chapter 2. Literature review

has a strong practical engineering bias and is shown to be able to analyze programs
with millions of assembly instructions in less than 15 seconds.

The abstract interpretation framework introduced by Cousot and Cousot [1977]
does not apply only to range analysis. It was initially designed for safety proofs,
because of its capability of extracting properties of variables, functions or even entire
programs without executing the source code. Those properties could, then, be used
to find errors at compile time, as we can see in the works of Clarke et al. [1994] and
Flanagan et al. [2002]. Furthermore, abstract interpretation is used in many data flow
analyses, such as Liveness Analysis, Available Expressions, Reaching Definitions and
Constant Propagation [Schwartzbach, 2008, pp.17].

There have been many practical approaches to abstract interpretation, with
special emphasis on range analysis, such as Gampe et al. [2011] , Blanchet et al.
[2003], Bertrane et al. [2010], Cousot et al. [2009] and Jung et al. [2005]. Cousot’s
group,for instance, has been able to globally analyze programs with thousands of lines
of code, albeit using domain specific tools. The tool Astrée, for example, only analyzes
programs that do not contain recursive calls. The work that is the closest to ours is
the recent abstract interpretation framework of Oh et al. [2012]. Oh et al. discuss an
implementation of range analysis on the interval lattice that scales up to a program
with 1, 363KLoC (ghostscript-9.00). Because their focus is speed, they do not provide
results about precision. We could not find the benchmarks used in those experiments
for a direct comparison – the distribution of ghostscript-9.00 available in the LLVM test
suite has 27KLoC. On the other hand, we globally analyzed our largest benchmark,
SPEC CPU 2006’s 403.gcc, enabling function inlining, in less than 15 seconds. 403.gcc
has 521KLoC and, during our analysis, 1, 419K LLVM IR instructions. Oh et al.’s
implementation took orders of magnitude more time to go over programs of similar
size. However, whereas they provide a framework to develop general sparse analyses,
we only solve range analysis on the interval lattice.

There are in the literature works that are more powerful than ours. Figure 2.1
shows an example that illustrates one limitation of our approach. In this example,
variables i and s are initialized with the same value and are always updated together.
However, because i and s does not have any syntactic dependence, our range analysis
gives the range [0, 10] for variable i and [0,+∞] for variable s. Nevertheless, relational
abstract domains such as the polyhedron domain of Cousot and Halbwachs [1978] or the
octagon domain of Miné [2006] can handle this kind of problem. The advantage of our
approach is that we perform the analysis with a lower computational complexity. Our
experiments show that the precision that we lose is not significant, when comparing
our results against the results of more expensive analyses.

2.2. Live Range Splitting 11

Figure 2.1. Example program.

2.2 Live Range Splitting

In this work we present a sparse implementation of range analysis. Sparsity, in our
context, means that we associate points in the lattice of interest – intervals in our case –
directly to variables. Dense analyses map such information to pairs formed by variables
and program points. The compiler related literature contains many descriptions of
sparse data-flow analyses. Some among these analyses obtain sparsity by using specific
program representations, like we did. Others rely on data-structures. In terms of data-
structures, the first, and best known method proposed to support sparse data-flow
analyses is the Sparse Evaluation Graph (SEG) of Choi et al. [1991]. The nodes of this
graph represent program regions where information produced by the data-flow analysis
might change. Choi et al.’s ideas have been further expanded, for example, by the
Quick Propagation Graphs of Johnson and Pingali [1993], or the Compact Evaluation
Graphs of Ramalingam [2002]. Building upon Choi’s pioneering work, researchers
have developed many efficient ways to build such graphs. Examples of that can be
found in Pingali and Bilardi [1995], Pingali and Bilardi [1997], and Johnson et al.
[1994]. These data-structures have been shown to improve many data-flow analyses in
terms of runtime and memory consumption. Nevertheless, the elegance of SEGs and its
successors have not, so far, been enough to attract the attention of mainstream compiler
writers. Compilers such as gcc, LLVM or Java Hotspot rely, instead, on several types
of program representations to provide support to sparse data-flow analyses.

Most eminent among these representations is the Static Single Assignment form
presented by Cytron et al. [1991], which suits well forward flow analyses, such as
reaching definitions. Since its first presentation, the SSA form has been expanded in
different ways. For instance, the Gated SSA form allows the static association of logical
predicates with data-flow paths, as we can see in Ottenstein et al. [1990] and Tu and
Padua [1995]. Ananian [1999] has introduced in the late nineties the Static Single

12 Chapter 2. Literature review

Information (SSI) form, a program representation that supports both forward and
backward analyses. This representation was later revisited by Singer [2006] and, a few
years later, by Boissinot et al. [2009]. Singer provided new algorithms plus examples
of applications that benefit from the SSI form, and Boissinot et al., in an effort to
clarify some misconceptions about this program representation, introduced the notions
of weak and strong SSI form. Another important representation, which supports data-
flow analyses that acquire information from uses, is the Static Single Use form (SSU).
There exists many variants of SSU, as shown in the works of Plevyak [1996], George
and Matthias [2003], and Lo et al. [1998]. For instance, the “strict” SSU form enforces
that each definition reaches a single use, whereas SSI and other variations of SSU allow
two consecutive uses of a variable on the same path. The program representation that
we have used in this work – the Extended Static Single Assignment (e-SSA) form –
was introduced by Bodik et al. [2000]. The program representation

There are so many different program representations because they fit specific
data-flow problems. Each representation, given a domain of application, provides the
following property: the information associated with the live range of a variable is
invariant along every program point where this variable is alive. There are two key as-
pects that distinguish one representation from the others: firstly, where the information
about a variable is acquired, and secondly, how this information is propagated. The
e-SSA form, for instance, supports flow analyses that obtain information both from
variable definitions and conditional tests and propagate this information forwardly.
Such analyses are also supported by the SSI form; hence, we could have used this other
representation too. However, Tavares et al. [201X] have shown in previous work that
the e-SSA form is considerably more economical.

2.3 Integer Overflows

In this work we use the Range Analysis to eliminate unnecessary integer overflow
checks. By doing this, we are entering in a completely different field of research. Thus,
in this section we show what other researchers have already presented in this area. We
compare our solution with the previously existing ones.

Dynamic Detection of Integer Overflows: We say a method of detection
of integer overflows is dynamic when we need to actually execute the target program
to analyze it. Such methods may be implemented using many different methods.
Brumley et al. [2007] have developed a tool, RICH, to secure C programs against

2.3. Integer Overflows 13

integer overflows. The author’s approach consists in instrumenting every integer
operation that might cause an overflow, underflow, or data loss. The main result of
Brumley et al. is the verification that guarding programs against integer overflows
does not compromise their performance significantly: the average slowdown across four
large applications is 5%. RICH uses specific features of the x86 architecture to reduce
the instrumentation overhead. Chinchani et al. [2004] follow a similar approach,
describing each arithmetic operation formally, and then using characteristics of the
computer architecture to detect overflows at runtime. Differently from these previous
works, we instrument programs at LLVM’s intermediate representation level, which
is machine independent. Nevertheless, the performance of the programs that we
instrument is on par with Brumley’s, even without the support of the static range
analysis to eliminate unnecessary checks. Furthermore, our range analysis could
eliminate approximately 45% of the runtime overhead that the tests that a naive
implementation of Brumley’s technique would insert.

Dietz et al. [2012] have implemented a tool, IOC, that instruments the source
code of C/C++ programs to detect integer overflows. They approach the problem of
detecting integer overflows from a software engineering point-of-view; hence, perfor-
mance is not a concern. The authors have used IOC to carry out a study about the
occurrences of overflows in real-world programs, and have found that these events are
very common. It is also possible to implement a dynamic analysis without instrument-
ing the target program. In this case, developers must use some form of code emulation.
Chen et al. [2009], for instance, uses a modified Valgrind1 virtual machine to detect in-
teger overflows. The main drawback of emulation is performance: Chen et al. report a
50x slowdown. We differ from all these previous works because we focus on generating
less instrumentation, an endeavor that we accomplish via static analysis.

Static Detection of Integer Overflows: We say a method of detection of
integer overflows is static when all the analysis is done at compile time, without
actually executing the target program. Zhang et al. [2010] have used static analysis
to sanitize programs against integer overflow based vulnerabilities. They instrument
integer operations in paths from a source to a sink. In Zhang et al.’s context, sources
are functions that read values from users, and sinks are memory allocation operations.
Thus, contrary to our work, Zhang et al.’s only need to instrument about 10% of
the integer operations in the program. However, they do not use any form of range
analysis to limit the number of checks inserted in the transformed code. Wang et al.

1Nethercote and Seward [2007]

14 Chapter 2. Literature review

[2009] have implemented a tool, IntScope, that combines symbolic execution and
taint analysis to detect integer overflow vulnerabilities. The authors have been able
to use this tool to successfully identify many vulnerabilities in industrial quality
software. Our work and Wang et al.’s work are essentially different: they use symbolic
execution, whereas we rely on range analysis. Contrary to us, they do not transform
the program to prevent or detect such event dynamically. Still in the field of symbolic
execution, Molnar et al. [2009] have implemented a tool, SmartFuzz, that analyzes
Linux x86 binaries to find integer overflow bugs. They prove the existence of bugs by
generating test cases for them.

2.4 Trip Count Analysis

We also have used our Range Analysis to develop an heuristic to statically estimate
the trip count of a loop. That part of this work has its own related works, that we
describe here.

It is possible to estimate the trip count of loops in many different ways, in a
trade-off between speed and precision. In order to estimate the trip count of loops,
Ermedahl and Gustafsson [1997], Halbwachs et al. [1997], Gulavani and Gulwani [2008],
and Gulwani et al. [2009b] have used abstract interpretation. Lundqvist and Stenström
[1998] and Liu and Gomez [1998] have used symbolic execution to achieve similar
goals. Although those techniques are quite powerful, they are also computationally
expensive. Thus, their application is limited by the size of programs to be analyzed.
Nevertheless, the high complexity does not mean perfect precision. Some of those works
have restrictions with regards to the structure of the analyzed loops. For instance, some
of them only analyze loops with a single path and are very conservative while analyzing
nested loops. Our work aims to find a better balance between speed and precision.

In an effort similar to ours, Gulwani et al. [2009a] have developed a new approach
to estimate the number of iterations of a loop. They have proposed the Control-
Flow Refinement, a conversion of the programs into a suitable representation, that
allowed them to handle programs that other algorithms were not able to analyze.
That representation allowed them to find symbolic bounds for 90% of the programs
they have analyzed. However, they still rely on expensive techniques. For instance,
their implementation requires a theorem prover. Such tools often rely on solutions to
NP-complete problems. Differently to their work, here we present two heuristics to
estimate the number of iterations of loops that use simpler techniques. Despite of the
simplicity of our algorithms, our results show that we offer a good precision without

2.4. Trip Count Analysis 15

resorting to expensive techniques.

Chapter 3

Live Range Splitting

A dense data-flow analysis associates information, i.e., a point in a lattice, with each
pair formed by a variable plus a program point. If this information is invariant along
every program point where the variable is alive, then we can associate the information
with the variable itself. In this case, we say that the data-flow analysis is sparse, as
defined by Choi et al. [1991]. In cases like our range analysis, a dense data-flow analysis
can be transformed into a sparse one via a suitable intermediate representation. A
compiler builds this intermediate representation by splitting the live ranges of variables
at the program points where the information associated with these variables might
change. In order to split the live range of a variable v, at a program point p, we insert
a copy v′ = v at p, and rename every use of v that is dominated by p. In this work we
have experimented with two different live range splitting alternatives.

3.1 Live Splitting Alternatives

The first strategy is the Extended Static Single Assignment (e-SSA) form, proposed
by Bodik et al. [2000]. We build the e-SSA representation by splitting live ranges
at definition sites – hence it subsumes the SSA form – and at conditional tests. Let
(v < c)? be a conditional test between two integers, and let lt and lf be labels in the
program, such that lt is the target of the test if the condition is true, and lf is the
target when the condition is false. We split the live range of v at any of these points
if at least one of two conditions is true: (i) lf or lt dominate any use of v; (ii) there
exists a use of v at the dominance frontier of lf or lt. For the notions of dominance and
dominance-frontier, see [Aho et al., 2006, p.656]. To split the live range of v at lf we
insert at this program point a copy vf = vu [c,+∞], where vf is a fresh name. We then
rename every use of v that is dominated by lf to vf . Dually, if we must split at lt, then

17

18 Chapter 3. Live Range Splitting

we create at this point a copy vt = vu [−∞, c−1], and rename variables accordingly. If
the conditional uses two variables, e.g., (v1 < v2)?, then we create intersections bound
to futures. We insert, at lf , v1f = v1 u [ft(v2),+∞], and v2f = v2 u [−∞, ft(v1)].
Similarly, at lt we insert v1v = v1 u [−∞, ft(v2) − 1] and v2v = v2 u [ft(v1) + 1,+∞].
A variable v can never be associated with a future bound to itself, e.g., ft(v). This
invariant holds because whenever the e-SSA conversion associates a variable u with
ft(v), then u is a fresh name created to split the live range of v.

The second intermediate representation consists in splitting live ranges at (i)
definition sites – it subsumes SSA, (ii) at conditional tests – it subsumes e-SSA, and
at some use sites. This representation, which we henceforth call u-SSA, is only valid
if we assume that integer overflows cannot happen. We can provide this guarantee by
using our dynamic instrumentation – described in Chapter 5 – to abort the execution
of a program in face of an overflow. The rationale behind u-SSA is as follows: we know
that past an instruction such as v = u + c, c ∈ Z at a program point p, variable u
must be less than MaxInt − c. If that were not the case, then an overflow would have
happened and the program would have terminated. Therefore, we split the live range
of u past its use point p, producing the sequence v = u + c;u′ = u, and renaming
every use of u that is dominated by p to u′. We then associate u′ with the constraint
I[U ′] v I[U] u [−∞,MaxInt − c].

Figure 3.1 compares the u-SSA form with the SSA and e-SSA intermediate pro-
gram representations. We use the notation v = • to denote a definition of variable v,
and • = v to denote a use of it. Figure 3.1(b) shows the example program converted
to the SSA format. Different definitions of variable u have been renamed, and a φ-
function joins these definitions into a single name. The SSA form sparsifies a data-flow
analysis that only extracts information from the definition sites of variables, such as
constant propagation. Figure 3.1(c) shows the same program in e-SSA form. This time
we have renamed variable v right after the conditional test where this variable is used.
The e-SSA form serves data-flow analyses that acquire information from definition sites
and conditional tests. Examples of these analyses include array bounds checking elimi-
nation (Bodik et al. [2000]) and traditional implementations of range analyses (Gough
and Klaeren [1994]; Patterson [1995]). Finally, Figure 3.1(d) shows our example in
u-SSA form. The live range of variable v1 has been divided right after its use. This
representation assists analyses that learn information from the way that variables are
used, and propagate this information forwardly.

Although the live range splitting makes possible to extract more information
from the programs, it has a drawback: the growth in the number of instructions. The
increment on the program size, however, does not mean a higher register pressure,

3.2. Experiments 19

v = •
(v > 0)?

u = v + 10 u = •

• = u
• = v

v = •
(v > 0)?

u0 = v + 10 u1 = •

u2 = ϕ(u0, u1)
• = u2
• = v

v0 = •
(v0 > 0)?

v1 = v0 ∩ [-∞, 0]
u0 = v1 + 10

v2 = v0 ∩ [1, ∞]
u1 = •

u2 = ϕ(u0, u1)
v3 = ϕ(v1, v2)
• = u2
• = v2

v0 = •
(v0 > 0)?

v1 = v0 ∩ [-∞, 0]
u0 = v1 + 10
v4 = v1

v2 = v0 ∩ [1, ∞]
u1 = •

u2 = ϕ(u0, u1)
v3 = ϕ(v4, v2)
• = u2
• = v2

(a) (b)

(c) (d)

Figure 3.1. (a) Example program. (b) SSA form [Cytron et al. [1991]]. (c)
e-SSA form [Bodik et al. [2000]]. (d) u-SSA form.

because when we split a variable v into v1 and v2, we will have only one of the three
variables live at once, depending on the execution flow of the program. That means that
the register allocator will assign the same register to the variables v, v1, and v2, keeping
the register pressure in the same level in both representations. However, although this
problem that is not impossible to overcome, it can bring some extra difficulties to
further analyses with high asymptotic complexity in function of the program size. In
this case, there is a trade-off between speed of analysis and precision of results. In
Section 4.4.2 we present a further discussion of this trade-off in the context of our
Range Analysis.

20 Chapter 3. Live Range Splitting

Benchmark # SSA # e-SSA % e-SSA/SSA # u-SSA % u-SSA/SSA

429.mcf 2633 2742 104.14% 2816 106.95%
470.lbm 3656 3718 101.70% 4058 111.00%
462.libquantum 6026 6250 103.72% 6503 107.92%
473.astar 8576 8920 104.01% 9261 107.99%
401.bzip2 17045 17845 104.69% 18865 110.68%
433.milc 23418 24355 104.00% 24942 106.51%
458.sjeng 30590 31780 103.89% 33191 108.50%
450.soplex 62865 64301 102.28% 65541 104.26%
456.hmmer 65163 68018 104.38% 70205 107.74%
444.namd 68050 71319 104.80% 73016 107.30%
471.omnetpp 92057 94377 102.52% 95507 103.75%
464.h264ref 136174 140274 103.01% 145185 106.62%
447.dealII 424250 434417 102.40% 442983 104.42%
483.xalancbmk 585212 599251 102.40% 604610 103.31%

Total 1525715 1567567 102.74% 1596683 104.65%

Table 3.1. Impact of the transformation to e-SSA and u-SSA in terms of
program size. # SSA: number of instructions in the SSA form program. # e-
SSA: number of instructions in the e-SSA form program. # u-SSA: number of
instructions in the u-SSA form program.

3.2 Experiments

We have observed the actual impact of the transformation of programs to e-SSA and
u-SSA forms. Table 3.1 shows the effect of the transformation in the programs of
the SPEC CPU 2006 benchmarks. According to the table, we can observe that both
representations lightly affect the number of instructions of the programs. From those
benchmarks, we can see that e-SSA causes an average growth of 2.74% and a maximum
growth of 4.8% of the program size, while u-SSA causes growths of 4.65% and 11,00%
respectively. Those results, however, are not exclusive to that set of programs. We
have similar results when we perform the same experiment on a set of benchmarks
extracted from the LLVM test-suite infrastructure and from SPEC CPU 2006.

Figure 3.2 shows the statistic distribution of the growth of our 300 larger bench-
marks. We represent our data using a Turkey box plot, as described by Frigge et al.
[1989]. In this kind of chart, the box represents 50% of the samples. The horizontal line
inside the box represents the median. The upper and lower whiskers each represent
up to 25% of the samples. The circles represent the outliers. We can observe from
the first box that in very few cases the e-SSA transformation increases the number of

3.3. Conclusion 21

e-SSA u-SSA
1

1,05

1,1

1,15

1,2

1,25

1,3

Figure 3.2. Growth on the number of instructions in comparison with SSA
representation.

instructions by more than 10% and that when this increment is higher than 15% it can
be considered an outlier. The second box shows that the increment in the number of
instructions is inferior to 10% in most of cases. However, in some cases it can reach up
to 20%.

3.3 Conclusion

In this chapter, we evaluate the program representations that will be used throughout
the rest of this work. First, we review e-SSA, proposed by Bodik et al. [2000], that allow
us to learn information from the conditional branches of the programs. The information
that e-SSA allows us to extract makes it possible to almost double the precision of our
range analysis, as we discuss in Section 4.4.2. Furthermore, we propose u-SSA, a new
program representation that extends e-SSA and applies to programs that are free from
integer overflows. u-SSA extracts information from the uses of the variables, given that
a integer overflow does not occur. Those information also increase the precision of our
analyses, but it narrows the scope of application to programs that have finite precision
but are guaranteed to never let an integer overflow happen. Finally, we discuss the

22 Chapter 3. Live Range Splitting

impact of those representations on the number of instructions of the source code.

Chapter 4

Range Analysis

Most of the material in this chapter has been published in the paper "Speed and Pre-
cision in Range Analysis" (Campos et al. [2012]). Here we expand that first discussion,
with more examples and details.

4.1 Background

Following Gawlitza et al. [2009]’s notation, we shall be performing arithmetic operations
over the complete lattice Z = Z ∪ {−∞,+∞}, where the ordering is naturally given
by −∞ < . . . < −2 < −1 < 0 < 1 < 2 < . . .+∞. For any x > −∞ we define:

x+∞ =∞, x 6= −∞ x−∞ = −∞, x 6= +∞
x×∞ =∞ if x > 0 x×∞ = −∞ if x < 0

0×∞ = 0 (−∞)×∞ = not defined
From the lattice Z we define the product lattice Z2, which is defined as follows:

Z2 = {∅} ∪ {[z1, z2]| z1, z2 ∈ Z, z1 ≤ z2, −∞ < z2}

This interval lattice is partially ordered by the subset relation, which we denote by
"v". The meet operator "u" is defined by:

[a1, a2] u [b1, b2] =

[max(a1, b1),min(a2, b2)], if a1 ≤ b1 ≤ a2 or b1 ≤ a1 ≤ b2

∅, otherwise

The join operator, "t", is given by:

[a1, a2] t [b1, b2] = [min(a1, b1),max(a2, b2)]

23

24 Chapter 4. Range Analysis

Y = [l, u] e(Y) = [l, u]

Y = φ(X1, X2)
I[X1] = [l1, u1] I[X2] = [l2, u2]

e(Y) = [min(l1, l2),max(u1, u2)]

Y = X1 +X2
I[X1] = [l1, u1] I[X2] = [l2, u2]

e(Y) = [l1 + l2, u1 + u2]

Y = X1 ×X2
I[X1] = [l1, u1] I[X2] = [l2, u2] L = {l1l2, l1u2, u1l2, u1u2}

e(Y) = [min(L),max(L)]

Y = aX + b
I[X] = [l, u] kl = al + b ku = au+ b

e(Y) = [min(kl, ku),max(kl, ku)]

Y = X u [l′, u′]
I[X] = [l, u]

e(Y)← [max(l, l′),min(u, u′)]

Figure 4.1. A suite of constraints that produce an instance of the range analysis
problem.

Given an interval ι = [l, u], we let ι↓ = l, and ι↑ = u. We let V be a set of
constraint variables, and I : V 7→ Z2 a mapping from these variables to intervals in
Z2. Our objective is to solve a constraint system C, formed by constraints such as
those seen in Figure 4.1(left). We let the φ-functions be as defined by Cytron et al.
[1991]: they join different variable names into a single definition. Figure 4.1(right)
defines a valuation function e on the interval domain. Armed with these concepts, we
define the range analysis problem as follows:

Definition 4.2 Range Analysis Problem

Input: a set C of constraints ranging over a set V of variables.
Output: a mapping I such that, for any variable V ∈ V, e(V) = I[V].

We will use the program in Figure 4.2(a) as the running example to illustrate
our range analysis. Figure 4.2(b) shows the same program in SSA form (Cytron et al.
[1991]), and Figure 4.2(c) outlines the constraints that we extract from this program.
There is a clear correspondence between instructions and constraints. A possible solu-
tion to the range analysis problem, as obtained via the techniques that we will intro-
duce in Section 4.3, is given in Figure 4.2(d). The SSA form, so common in modern
compilers, leads to a very conservative solution. This happens because in the SSA rep-

4.3. Our Design of a Range Analysis Algorithm 25

k = 0

while k < 100:

 i = 0

 j = k

 while i < j:

 i = i + 1

 j = j - 1

 k = k + 1

print k

k0 = 0

k1 = ϕ(k0, k2)
(k1 < 100)?

i0 = 0
j0 = k1

i1 = ϕ(i0, i2)
j1 = ϕ(j0, j2)
(i1 < j1)?

k2 = k1 + 1
i2 = i1 + 1
j2 = j1 - 1

(a) (b) (c) (d)

k0 = 0
k1 = ϕ(k0, k2)
i0 = 0
j0 = k1
i1 = ϕ(i0, i2)
j1 = ϕ(j0, j2)
i2 = i1 + 1
j2 = j1 - 1
k2 = k1 + 1

I[i0] = [0, 0]
I[i1] = [0, +∞]
I[i2] = [1, +∞]
I[j0] = [0, +∞]
I[j1] = [-∞, +∞]
I[j2] = [-∞, +∞]
I[k0] = [0, 0]
I[k1] = [0, +∞]
I[k2] = [1, +∞]

print k1

Figure 4.2. (a) Example program. (b) Control Flow Graph in SSA form. (c)
Constraints that we extract from the program. (d) Possible solution to the range
analysis problem.

resentation we can not extract information from the conditional branches. As we will
see shortly, we can improve this solution substantially by using a more sophisticated
program representation – the e-SSA form – which gives us flow-sensitiveness.

Our analysis is not like classical abstract interpretation implemented in PAGAI
by Henry et al. [2012], where the constraints are assigned to program points. Instead,
we assign information to the variables, as a strategy to achieve sparsity in our analysis.
Because SSA ensures that a variable is defined in a unique point of the program, the
constraint assigned to a variable holds in every program points that the variable is
alive. Thus, this association of constraints to variables is sound because we are using
the SSA form and e-SSA, that also have all the properties of SSA.

4.3 Our Design of a Range Analysis Algorithm

In this section we explain the algorithm that we use to solve the range analysis prob-
lem. This algorithm involves a number of steps. First, we convert the program to a
suitable intermediate representation that makes it easier to extract constraints. From
these constraints, we build a dependence graph that allows us to do range analysis
sparsely. Finally, we solve the constraints applying different fix-point iterators on this
dependence graph. Figure 4.3 gives a global view of this algorithm. Some of the steps
in the algorithm are optional. They improve the precision of the range analysis, at the
expense of a longer running time.
Choosing a Program Representation. The solution to the range analysis problem

26 Chapter 4. Range Analysis

Path sensitive:
e-SSA

interprocedural:
formal = actual

context
sensitive:

function inline
Extract

Constraints

Build
constraint

graph

Compute
SCCs

Sort
topologically

Remove control
dep. edges

Growth
analysis

Fix
futures

Narrowing
analysis

For each SCC in topological orderStrongly Connected Components

Figure 4.3. Our implementation of range analysis. Rounded boxes are optional
steps.

in Figure 4.2 is imprecise because we did not take conditional tests into considerations.
Branches give us information about the ranges that some variables assume, but only at
specific program points. For instance, given a test such as (k1 < 100)? in Figure 4.2(b),
we know that I[k1] v [−∞, 99] whenever the condition is true. In order to encode this
information, we might split the live range of k1 right after the branching point; thus,
creating two new variables, one at the path where the condition is true, and another
where it is false. There is a program representation, introduced by Bodik et al. [2000],
that performs this live range splitting: the Extended Static Single Assignment form, or
e-SSA for short.

Given that the exact rules to convert a program to e-SSA form have never been
explicitly stated in the literature, we describe our rules as follows. Let (v < c)? be a
conditional test, and let lt and lf be labels in the program, such that lt is the target
of the test if the condition is true, and lf is the target when the condition is false.
We split the live range of v at any of these points if at least one of two conditions is
true: (i) lf or lt dominate any use of v; (ii) there exist a use of v at the dominance
frontier of lf or lt. For the notions of dominance and dominance-frontier, see [Aho
et al., 2006, p.656]. To split the live range of v at lf we insert at this program point a
copy vf = v u [c,+∞], where vf is a fresh name. We then rename every use of v that
is dominated by lf to vf . Dually, if we must split at lt, then we create at this point a
copy vt = vu [−∞, c−1], and rename variables accordingly. If the conditional uses two
variables, e.g., (v1 < v2)?, then we create intersections bound to futures. We insert,
at lf , v1f = v1 u [ft(v2),+∞], and v2f = v2 u [−∞, ft(v1)]. Similarly, at lt we insert
v1v = v1 u [−∞, ft(v2) − 1] and v2f = v2 u [ft(v1) + 1,+∞]. Notice that a variable v
can never be associated with a future bound to itself, e.g., ft(v). This invariant holds
because whenever the e-SSA conversion associates a variable u with ft(v), then u is a
fresh name created to split the live range of v, given that v was used in a conditional.

4.3. Our Design of a Range Analysis Algorithm 27

k0 = 0
k1 = ϕ(k0, k2)
(k1 < 100)?

kt = k1∩[-∞,99]
i0 = 0
j0 = kt

i1 = ϕ(i0, i2)
j1 = ϕ(j0, j2)
(i1 < j1)?

k2 = kt + 1
it = i1∩[-∞,ft(j1)-1]
jt = j1∩[ft(i1),+∞]
i2 = it + 1
j2 = jt - 1

(b) I[i0] = [0, 0]
I[i1] = [0, 99]
I[i2] = [1, 99]
I[it] = [0, 98]
I[j0] = [0, 99]
I[j1] = [-1, 99]
I[j2] = [-1, 98]
I[jt] = [0, 99]
I[k0] = [0, 0]
I[k1] = [0, 100]
I[k2] = [1, 100]
I[kt] = [0, 99]
I[kt] = [100, 100]

(a)

kf = k1∩[100, +∞]
print kf

t f

f t

Figure 4.4. (a) The control flow graph from Figure 4.2(b) converted to standard
e-SSA form. (b) A solution to the range analysis problem

We use the notation ft(v) to denote the future bounds of a variable. As we will
show in Section 4.3.1, once the growth pattern of v is known, we can replace ft(v) by
an actual value. After splitting the live ranges according to the rules stated above,
we might have to insert φ-functions into the transformed program to re-convert it to
SSA form. This last step avoids that two different names given to the same original
variable be simultaneously alive at the program code. A variable v is alive at a program
point p if the program’s control flow graph contains a path from p to a site where v is
used, that does not go across any re-definition of v. Figure 4.4(a) shows our running
example changed into standard e-SSA form. We have not created variable names for if
and jf , because neither i1 nor j1, the variables that have been renamed, are dominated
by the target of the conditional’s else case. In this example, new φ-functions are not
necessary: new variable names are not alive together with the original variables. The
part (b) of this figure shows the solution that we get to this new program. The e-SSA
form allows us to bind interval information directly to the live ranges of variables; thus,
giving us the opportunity to solve range analysis sparsely. More traditional approaches,
which we call dense analyses, bind interval information to pairs formed by variables
and program points.

Extracting Constraints. Our implementation handles 18 different assembly instruc-
tions. The constraints in Figure 4.1 show only a few examples. Instructions that we
did not show include, for instance, the multiplicative operators div and modulus, the
bitwise operators and, or, xor and neg, the different types of shifts, and the logical
operators andalso, orelse and not. Most of these instructions are sign-agnostic; that

28 Chapter 4. Range Analysis

0 k0

k1 kt

k2

j0

j1

jt

j2

0 i0

i1

it

i2

[-∞,99]

[-∞, ft(j1)-1] [ft(i1), +∞]

+1

=

−1+1

ϕ

ϕ ϕ

[100, +∞]kf

Figure 4.5. The dependence graph that we build to the program in Figure 4.4.

is, given that numbers are internally represented in 2’s complement, the same imple-
mentation of a constraint handles positive and negative numbers. However, there are
instructions that require different constraints, depending on the input being signed
or not. Examples include modulus and div. We also handle different kinds of type
conversion, e.g., converting 8-bit characters to 32-bit integers and vice-versa. In ad-
dition to constraints that represent actual assembly instructions, we have constraints
to represent φ-functions, and intersections, as seen in Figure 4.1. The growth analysis
that we will introduce in Section 4.3.1 require monotonic transfer functions. Many
assembly operations, such as modulus or division, do not afford us this monotonic-
ity. However, these non-monotonic instructions have conservative approximations, as
shown by Warren [2002].

The Constraint Graph. The main data structure that we use to solve the range
analysis problem is a variation of the program dependence graph of Ferrante et al. [1987].
For each constraint variable V we create a variable node Nv. For each constraint C
we create a constraint node Nc. We add an edge from Nv to Nc if the name V is
used in C. We add an edge from Nc to Nv if the constraint C defines the name V .
Figure 4.5 shows the dependence graph that we build for the e-SSA form program given
in Figure 4.4(a). If V is used by C as the input of a future, then the edge from Nv

to Nc represents what Ferrante et al. call a control dependence [Ferrante et al., 1987,
p.323]. We use dashed lines to represent these edges. All the other edges denote data
dependencies [Ferrante et al., 1987, p.322].

Strongly Connected Components. In order to solve range analysis we find all
the strongly connected components (SCCs) of the dependence graph with Nuutila and
Soisalon-Soininen [1994]’s algorithm and collapse them into single nodes, obtaining a
directed acyclic graph. We then sort the resulting DAG topologically, and apply the

4.3. Our Design of a Range Analysis Algorithm 29

analyses from Section 4.3.1 on every SCC in topological order. Once we solve the
range analysis problem for a SCC, we propagate the intervals that we found to the
variable nodes at the frontier of this SCC. A variable node Nv is said to be in the
frontier of a strongly connected component S if: (i) Nv /∈ S; and (ii) there exists a
variable node N ′

v ∈ S, and a constraint node Nc, such that Nv ← Nc, and Nc ← N ′
v.

This propagation ensures that when analyzing a strongly connected component S any
influence that S might suffer from nodes outside it has already been considered.

When finding strongly connected components, we take control dependence edges
into consideration. For instance, in Figure 4.5 the nodes that correspond to the vari-
ables i1, i2, it, j1, j2 and jt form a single component. The dashed edges, which represent
control dependencies, keep all these variables connected. In this way, we ensure that,
upon stumbling upon an interval associated with future bounds, e.g., ft(v), either vari-
able v has been solved in a previous component, or it belongs to the current component.
In the latter case, as we will see soon, we can still take v’s interval into consideration.
This flexibility is possible because we first discover how each variable in a strong com-
ponent grows, before resolving future bounds. As we show in Section 4.3.2, most of
the strong components in actual programs are singletons. Furthermore, the composite
components tend to be small. These two facts ensure that the more costly parts of our
algorithm only have to handle small inputs.

4.3.1 Finding Ranges in Strongly Connected Components

Given a strongly connected component of the dependence graph with N nodes, we
solve the range analysis problem in three-steps:

1. Run growth analysis: O(N).

2. Fix intersections: O(N).

3. Apply the narrowing operator: O(N2).

However, before we start, we remove control dependence edges from the strongly con-
nected component, as they have no semantics to our transfer functions.
Growth Analysis. The first step of our algorithm consists in determining how the
interval bound to each variable grows. The possible behaviors of an interval are: (i)
does not change; (ii) grows towards +∞; (iii) grows towards −∞; and (iv) grows in
both directions. We ensure termination of this phase via a widening operator. We have
experimented with four different widening strategies, which we discuss in Section 4.4.5.
One of these strategies is based on the widening operator of [Cousot and Cousot,

30 Chapter 4. Range Analysis

I[Y] = [⊥,⊥]
I[Y]← e(Y)

e(Y)↓ < I[Y]↓ e(Y)↑ > I[Y]↑

I[Y]← [−∞,+∞]

e(Y)↓ < I[Y]↓

I[Y]← [−∞, I[Y]↑]

e(Y)↑ > I[Y]↑

I[Y]← [I[Y]↓,+∞]

Figure 4.6. (Left) The lattice of the growth analysis. (Right) Cousot and
Cousot’s widening operator. We evaluate the rules from left-to-right, top-to-
bottom, and stop upon finding a pattern matching. Again: given an interval
ι = [l, u], we let ι↓ = l, and ι↑ = u

Y = X u [l, ft(V) + c] I[V]↑ = u

Y = X u [l, u+ c]
u, c ∈ Z ∪ {−∞,+∞}

Y = X u [ft(V) + c, u] I[V]↓ = l

Y = X u [l + c, u]
l, c ∈ Z ∪ {−∞,+∞}

Figure 4.7. Rules to replace futures by actual bounds.

I[Y]↓ = −∞ e(Y)↓ > −∞
I[Y]← [e(Y)↓, I[Y]↑]

I[Y]↓ > e(Y)↓

I[Y]← [e(Y)↓, I[Y]↑]

I[Y]↑ = +∞ e(Y)↑ < +∞
I[Y]← [I[Y]↓, e(Y)↑]

I[Y]↑ < e(Y)↑

I[Y]← [I[Y]↓, e(Y)↑]

Figure 4.8. Cousot and Cousot’s narrowing operator.

1977, p.247]. The lattice of abstract states, plus a constraint system representing this
operator is given in Figure 4.6. Because the lattice has height three, the intervals
bound to each variable can change at most three times.
Fixing futures. The ranges found by the growth analysis tells us which variables have
fixed bounds, independent on the intersections in the constraint system. Thus, we can
use actual limits to replace intersections bounded by futures. Figure 4.7 shows the
rules to perform these substitutions. In order to correctly replace a future ft(v) that
limits a variable v′, we need to have already applied the growth analysis onto v. Had we
considered only data dependence edges, then it would be possible that Nv′ be analyzed
before Nv. However, because of control dependence edges, this case cannot happen.

4.3. Our Design of a Range Analysis Algorithm 31

j1[⊥, ⊥]

jt[⊥, ⊥]

j2[⊥, ⊥]i1[⊥, ⊥]

it[⊥, ⊥]

i2[⊥, ⊥]

[-∞, ft(J1)-1] [ft(I1), +∞]

−1+1

ϕ ϕ[0, 0] [0, 99]

j1[−∞, 99]

jt[−∞, 99]

j2[−∞, 98]i1[0, +∞]

it[0, +∞]

i2[1, +∞]

[-∞, ft(J1)-1] [ft(I1), +∞]

−1+1

ϕ ϕ[0, 0] [0, 99]

j1[-1, 99]

jt[0, 99]

j2[−1, 98]i1[0, 99]

it[0, 98]

i2[1, 99]

[-∞, 98] [0, +∞]

−1+1

ϕ ϕ[0, 0] [0, 99]

(a)

(b)

(c)

(d)

(i0) (j0)

j1[-∞, 99]

jt[-∞, 99]

j2[− ∞, 98]i1[0, +∞]

it[0, +∞]

i2[1, +∞]

[-∞, 98] [0, +∞]

−1+1

ϕ ϕ[0, 0] [0, 99]

Figure 4.9. Four snapshots of the last SCC of Figure 4.4. (a) After removing
control dependence edges. (b) After running the growth analysis. (c) After fixing
the intersections bound to futures. (d) After running the narrowing analysis.

The control dependence edges ensure that any topological ordering of the constraint
graph either places Nv before Nv′ , or places these nodes in the same strongly connected
component. For instance, in Figure 4.5, variables j1 and it are in the same SCC only
because of the control dependence edges.
Narrowing Analysis. The growth analysis associates very conservative bounds to
each variable. Thus, the last step of our algorithm consists in narrowing these intervals.
We accomplish this step via the classic narrowing operator of [Cousot and Cousot, 1977,
p.248], which we show in Figure 4.8.
Example: Continuing with our example, Figure 4.9 shows the application of our
algorithm on the last strong component of Figure 4.5. We are not guaranteed to
find the least fixed point of a constraint system. However, in this example we did it.

32 Chapter 4. Range Analysis

Figure 4.4(b) shows our final solution for this example. This solution is very precise,
in the sense that it is the least fixed point of the constraint system given in Figure 4.1.
However, the solution is still an over approximation of the dynamic behavior of the
program in Figure 4.2(a). For instance, we have found that variable i could reach the
upper value of 99. In any actual run of the program, i could be at most 50. Analyses
on relational lattices, such as the polyhedron (Cousot and Halbwachs [1978]) or the
Octagon (Miné [2006]) domains, can infer such tighter bounds, as shown by Lakhdar-
Chaouch et al. [2011]. However, analyses on these higher dimensional domains are
much more computationally expensive than analyses on the interval domain, as shown
by Oh et al. [2012].

We emphasize that finding this tight solution was only possible because of the
topological ordering of the constraint graph in Figure 4.5. Upon meeting the constraint
graph’s last SCC, shown in Figure 4.9, we had already determined that the interval [0, 0]

is bound to i0 and that the interval [0, 99] is bound to j0, as we show in Figure 4.9(a).
Had we applied the widening operator onto the whole graph, then we would have
found out that variable j1 is bound to [−∞,+∞]. This imprecision happens because,
on one hand j1’s interval is influenced by kt’s, which is upper bounded by +∞. On
the other hand j1 is part of a decreasing cycle of dependencies formed by variables jt
and j2 in addition to itself. Therefore, if we had not computed the strongly connected
components and, consequently, had applied the widening phase over the entire program
followed by a global narrowing phase, then we would not be able to recover some of
widening’s precision loss. However, because in this example we only analyze j’s SCC
after we have analyzed k’s, k only contribute the constant range [0, 99] to j0.

4.3.2 Experiments

The objective of this section is to show, via experimental numbers, that our implemen-
tation of range analysis is efficient and effective. We have used it to analyze a test suite
with 2.72 million lines of C code, which includes, in addition to all the benchmarks
distributed with LLVM, the programs in the SPEC CPU 2006 collection.
Time and Memory Complexity. Figure 4.10 provides a visual comparison between
the time to run our algorithm and the size of the input programs. We show data
for the 100 largest benchmarks in our test suite, in number of variable nodes in the
constraint graph. We perform function inlining before running our analysis. Each point
in the X line corresponds to a benchmark. We analyze the smallest benchmark in this
set, Prolangs-C/deriv2, which has 1,131 variable nodes in the constraint graph, in
20ms. We take 15.91 sec to analyze our largest benchmark, 403.gcc, which, after

4.3. Our Design of a Range Analysis Algorithm 33

1.E+01 

1.E+02 

1.E+03 

1.E+04 

1.E+05 

1.E+06 

Vars  Time (ms) 

Figure 4.10. Correlation between program size (number of var nodes in con-
straint graphs after inlining) and analysis runtime (ms). Coefficient of determi-
nation = 0.967.

1.E+02 

1.E+03 

1.E+04 

1.E+05 

1.E+06 

Vars  Memory (KB) 

Figure 4.11. Comparison between program size (number of var nodes in
constraint graphs) and memory consumption (KB). Coefficient of determination
= 0.9947.

function inlining, has 1,266,273 assembly instructions, and a constraint graph with
679,652 variable nodes. For this data set, the coefficient of determination (R2) is
0.967, which provides very strong evidence about the linear asymptotic complexity of
our implementation.

The experiments also reveal that the memory consumption of our implementa-
tion is linear with the program size. Figure 4.11 plots these two quantities together.
The linear correlation, in this case, is even stronger than that found in Figure 4.10,
which compares runtime and program size: the coefficient of determination is 0.9947.
The figure only shows our 100 largest benchmarks. Again, SPEC 403.gcc is the heav-
iest benchmark, requiring 265,588KB to run. Memory includes stack, heap and the
executable program code.

Precision. Our implementation of range analysis is remarkably precise, considering
its runtime. The relational analysis of Lakhdar-Chaouch et al. [2011], for instance,
takes about 25 minutes to go over a program with almost 900 basic blocks. We analyze
programs of similar size in less than one second. We do not claim our approach is

34 Chapter 4. Range Analysis

Bubblesort  FloatMM  IntMM  Oscar  Perm  Puzzle  Queens  Quicksort  RealMM  Towers  Treesort  Average 

1  n  n*n  imprecise 

!"##$%&'()* +$',)--* ./)--* 0&1,(* 2%(3* 2"44$%* 5"%%/&* 5"617&'()* 8%,$--* 9':%(&* 9(%%&'()* ;<%(,=%*

>* /* /?/* 63@(%16&%*

83 48 57 159 51 352 87 89 48 103 133 1210

Figure 4.12. (Upper) Comparison between static range analysis and dynamic
profiler for upper bounds. (Lower) Comparison between static range analysis and
dynamic profiler for lower bounds. The numbers above the benchmark names
give the number of variables in each program.

as precise as such algorithms, even though we are able to find exact bounds to 4/5
of the examples presented in Lakhdar-Chaouch et al. [2011]. On the contrary, this
paper presents a compromise between precision and speed that scales to very large
programs. Nevertheless, our results are far from being trivial. We have implemented
a dynamic profiler that measures, for each variable, its upper and lower limits, given
an execution of the target program. Figure 4.12 compares our results with those
measured dynamically for the Stanford benchmark suite, which is publicly available 1.
We chose Stanford because these benchmarks do not read data from external files;
hence, imprecisions are due to library functions that we cannot analyze.

We have classified the bounds estimated by the static analysis into four categories.
The first category, which we call 1, contains those bounds that are tight: during the
execution of the program, the variable has been assigned an upper, or lower limit, that
equals the limit inferred statically. The second category, which we call n, contains the
bounds that are within twice the value inferred statically. For instance, if the range
analysis estimates that a variable v is in the range [0, 100], and during the execution
the dynamic profiler finds that its maximum value is 51, then v falls into this category.

1http://classes.engineering.wustl.edu/cse465/docs/BCCExamples/stanford.c

4.4. Design Space 35

The third category, n2, contains variables whose actual value is within a quadratic
factor from the estimated value. In our example, v’s upper bound would have to be
at most 10 for it to be in this category. Finally, the fourth category contains variables
whose estimated value lays outside a quadratic factor of the actual value. We call
this category imprecise, and it contains mostly the limits that our static analysis has
marked as either +∞ or −∞.

As we see in Figure 4.12, 54.11% of the lower limits that we have estimated
statically are exact. Similarly, 51.99% of our upper bounds are also tight. The figure
also shows that, on average, 37.39% of our lower limits are imprecise, and 35.40% of our
upper limits are imprecise. This result is on pair with those obtained by more costly
analysis, such as that of Stephenson et al. [2000]. However, whereas that approach
has only been tested on single functions, we have been able to deal with remarkably
larger programs.

4.4 Design Space

As we see from a cursory glance at Figure 4.3, our range analysis algorithm has many
optional modules. These modules give the user the chance to choose between more
precise results, or a faster analysis. Given the number of options, the design space of a
range analysis algorithm is vast. In this section we try to cover some of the most im-
portant trade-offs. Figure 4.13 plots, for the integer programs in the SPEC CPU 2006
benchmark suite, precision versus speed for different configurations of our implemen-
tation. Our initial goal when developing this analysis was to support a bitwidth-aware
register allocator. Thus, we measure precision by the average number of bits that our
analysis allows us to save per program variable. It is very important to notice that
we do not consider constants in our statistics of precision. In other words, we only
measure bitwidth reduction in variables that a constant propagation step could not
remove.

4.4.1 Strongly Connected Components

The greatest source of improvement in our implementation is the use of strongly con-
nected components (SCCs). Figure 4.14 shows the SCCs extracted from our motivating
example. In order to propagate ranges across the constraint graph, we fragment it into
strongly connected components, collapse each of these components into single nodes,
and sort the resulting directed acyclic graph topologically. We then solve the range
analysis problem for each component individually. Once we have solved a component,

36 Chapter 4. Range Analysis

!"

#"

$"

%&"

%%"

%'"

%("

%)"

%&" %*" '&" '*" (&" (*")&"

ACEGI
ACEGJ

ADEGI

AEDGJ

BCEGI

BCEGJ

BDEGI

BDEGJ

ACEHI

ACEHJ

ADEHJ

ADEHI

BCEHI

BCEHJ
BDEHI

ACFGI

ADFGI

ADFGJ

BCFGJ

ACFHI

ADFHI

ADFHJ

BCFHI

BCFHJ

BDFHJ

BDFHI

ACFHJ

BDEHJ

ACFGJ

BCFGI

BDFGI
BDFGJ

A: SSA
B: e-SSA

C: 0 iterations
D: 16 iterations

E: intra
F: inter

G: no inlining
H: inlining

I: simple widening
J: jump-set widening

Time (secs)

P
recision

Figure 4.13. Design space exploration: precision (percentage of bitwidth re-
duction) versus speed (secs) for different configurations of our algorithm analyzing
the SPEC CPU 2006 integer benchmarks.

Figure 4.14. Strongly Connected Components extracted from our example
program.

4.4. Design Space 37

!"

#!!"

$!!"

%!!"

&!!"

'!!"

($
)&
*+
,"

-.
/-
*"

0-
1-
23
45
6"

.7
+2
8"

5
3,
"

95
2+
/:
:"

83
3"

89
45
6"

1;4
<=
-2
/=
5
"

4>
;:
$"

(5
5
+*
"

!"

!#!"

!#$"

!#%"

!#&"

!#'"

($
)&
*+
,"

-.
/-
*"

0-
1-
23
45
6"

.7
+2
8"

5
3,
"

95
2+
/:
:"

83
3"

89
45
6"

1;4
<=
-2
/=
5
"

4>
;:
$"

(5
5
+*
"

Figure 4.15. (Left) Time to run our analysis without building strong com-
ponents divided by time to run the analysis on strongly connected components.
(Right) Precision, in bitwidth reduction, that we obtain with strong components,
divided by the precision that we obtain without them.

we propagate its ranges to the next components, and repeat the process until we walk
over the entire constraint graph. It is well-known that this technique is essential to
speedup constraint solving algorithms [Nielson et al., 1999, Sec 6.3]. In our case, the
results are significant, mostly in terms of speed, but also in terms of precision. Fig-
ure 4.15 shows the speedup that we gain by using strong components. We show results
for the integer programs in the SPEC CPU 2006 benchmark suite. In some cases, as
in xalancbmk the analysis on strong components is 450x faster.

The strong components improve the precision of our growth analysis. According
to Figure 4.15, in some cases, as in bzip2, strong components increase our precision by
40%. The gains in precision happen because, by completely resolving a component, we
are able to propagate constant intervals to the next components, instead of propagating
intervals that can grow in both directions. As an example, in Figure 4.9 we pass the
range [0, 99] from variable k to the component that contains variable j. Had we run
the analysis in the entire constraint graph, by the time we applied the growth analysis
on j we would still find k bound to 0,+∞.

4.4.2 The Choice of a Program Representation

If strong components account for the largest gains in speed, the choice of a suitable
program representation is responsible for the largest gains in precision. However, here
we no longer have a win-win condition: a more expressive program representation
decreases our speed, because it increases the size of the target program. We have tried
our analysis in two different program representations: the Static Single Assignment
(SSA) Form (Cytron et al. [1991]), and the Extended Static Single Assignment (e-

38 Chapter 4. Range Analysis

!"#$

%$

%"&$

%"'$

()
#&
*+
,$

-.
/-
*$

0-
1-
23
45
6$

.7
+2
8$

5
3,
$

95
2+
/:
:$

83
3$

89
45
6$

1;4
<=
-2
/=
5
$

4>
;:
)$

(5
5
+*
$

!"#$%

!"#&%

!"#'%

!"#(%

!"#)%

!"#*%

!"!%

+,
'$
-.
/%

01
20
-%

30
40
56
78
9%

1:
.5
;%

8
6/
%

<8
5.
2=
=%

;6
6%

;<
78
9%

4>7
?@
05
2@
8
%

7A
>=
,%

+8
8
.-
%

Figure 4.16. (Left) Bars give the time to run analysis on e-SSA form programs
divided by the time to run analysis on SSA form programs. (Right) Bars give the
size of the e-SSA form program, in number of assembly instructions, divided by
the size of the SSA form program.

SSA) form (Bodik et al. [2000]). The SSA form gives us a faster, albeit more imprecise,
analysis. Any program in e-SSA form has also the SSA core property: any variable
name has at most one definition site. The contrary is not true: SSA form programs do
not have the core e-SSA property: any use site of a variable that appears in a conditional
test post-dominates its definition. The program in Figure 4.2(b) is in e-SSA form. The
live ranges of variables i1 and j1 have been split right after the conditional test via
the assertions that creates variables it and jt. The e-SSA format serves well analyses
that extract information from definition sites and conditional tests, and propagate this
information forwardly. Examples include, in addition to range analysis, tainted flow
analysis (Rimsa et al. [2011]) and array bounds checks elimination (Bodik et al. [2000]).

Figure 4.16 compares these two program representations in terms of runtime. As
we see in Figure 4.16(Left), the e-SSA form slows down our analysis. In some cases, as
in xalancbmk, this slowdown increases execution time by 71%. Runtime increases for
two reasons. Firstly, the e-SSA form programs are larger than the SSA form programs,
as we show in Figure 4.16(Right). However, this growth is small: in none of the integer
programs in SPEC CPU 2006 we verified an increase in code size of more than 9%.
Secondly, the e-SSA form program has futures; hence requiring the future resolution
phase of our algorithm, which is not necessary in SSA form programs. Nevertheless, if
the e-SSA form slowdowns the analysis runtime, its gains in precision are remarkable,
as seen in Figure 4.17. These gains happen because the e-SSA format lets the analysis
to use the results of conditional tests to narrow the ranges of variables.

4.4. Design Space 39

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

()
)"

(*
+,
-"

.,
,
/0
"

.%
1'
0/
2"

34
54
6)
+,
-"

7
/*
8
/4
6"

!"

#!"

$!"

%!"

&
'(
)*
"

+,
--
./
"

0
,/
/1
'"

0
,2
(3
'4
*5
"

6*
//
'4
*5
"

7
/4
8
/)
1"

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

()
*)+
,"

-.
/-
0.
-,
-1
,"

*)2
-"

+-
3
*)2
-"

45
6"

7
-8
9
-6
+"

Intra Intra+inline Inter Inter+inline154
121 97

SPEC CPU 2006 Stanford Bitwise

Figure 4.17. The impact of the e-SSA transformation on precision for three
different benchmark suites. Bars give the ratio of precision (in bitwidth reduc-
tion), obtained with e-SSA form conversion divided by precision without e-SSA
form conversion.

4.4.3 Intra versus Inter-procedural Analysis

A naive implementation of range analysis would be intra-procedural; that is, would
solve the range analysis problem once per each function. However, we can gain in pre-
cision by performing it inter-procedurally. An inter-procedural implementation allows
the results found for a function f to flow into other functions that f calls. Figure 4.18
illustrates the inter-procedural analysis for the program seen in Figure 4.2(a). The triv-
ial way to produce an inter-procedural implementation is to insert into the constraint
system assignments from the actual parameter names to the formal parameter names.
In our example of Figure 4.18, our constraint graph contains a flow of information from
0, the actual parameter, to k0, the formal parameter of function foo.

Figure 4.20 compares the precision of the intra and inter-procedural analyses for
the five largest programs in three different categories of benchmarks: SPEC CPU 2006,
the Stanford Suite 2 and Bitwise (Stephenson et al. [2000]). Our results for the SPEC
programs were disappointing: on the average for the five largest programs, the intra-
procedural version of our analysis saves 5.23% of bits per variable. The inter-procedural
version increases this number to 8.89%. A manual inspection of the SPEC programs
reveals that this result is expected: these programs manipulate files, and their source
codes do not provide enough explicit constants to power our analysis up. However,
with numerical benchmarks we fare much better. On the average our inter-procedural
algorithm reduces the bitwidth of the Stanford benchmarks by 36.24%. For Bitwise we
obtain a bitwidth reduction of 12.27%. However, this average is lowered by two outliers:
edge_detect and sha, which have been purposely engineered to be resilient against

2http://classes.engineering.wustl.edu/cse465/docs/BCCExamples/stanford.c

40 Chapter 4. Range Analysis

main():
 foo(0, 100)

foo(k, N):
 while k < N:
 i = 0
 j = k
 while i < j:
 i = i + 1
 j = j - 1
 k = k + 1

0 k0

k1 kt

k2

j0

j1

jt

j2

0 i0

i1

it

i2

[-∞,ft(N)]

[-∞, ft(j1)-1] [ft(i1), +∞]

+1

=

−1+1

ϕ

ϕ ϕ

N100

Figure 4.18. Example where an intra-procedural implementation would lead
to imprecise results.

range analyses (Stephenson et al. [2000]). The bitwise benchmarks were implemented
by Stephenson et al. [2000] to validate their intra-procedural bitwidth analysis. Our
results are on par with those found by the original authors. The bitwise programs
contain only the main function; thus, different versions of our algorithm find the same
results when applied onto these programs.

4.4.4 Achieving Partial Context-Sensitiveness via Function

Inlining

Another way to increase the precision of range analysis is via a context-sensitive imple-
mentation. Context-sensitiveness allows us to distinguish different calling sites of the
same function. Figure 4.19 shows why the ability to make this distinction is important
for precision. In Figure 4.19(a) we have two different calls of function foo. If we apply
the trivial inter-procedural approach of Section 4.4.3, then we get the graph shown in
Figure 4.19(b). In other words, if a function is called more than once, then its formal
parameters will receive information from many actual parameters. We use φ-functions
to bind this information together into a single flow. However, in this case the multiple
assignment of values to parameters makes the ranges of these parameters very large,
whereas in reality they are not. A way to circumvent this source of imprecision is via
function inlining, as we show in Figure 4.19(c). The results that we can derive for the
transformed program are more precise, as each input parameter is assigned a single
value.

Figure 4.20 also shows how function inlining modifies the precision of our results.

4.4. Design Space 41

main():
 foo(0, 100)
 foo(10000, 100000)

foo(k, N):
 while k < N:
 i = 0; j = k
 while i < j:
 i = i + 1; j = j - 1
 k = k + 1

0

k0 N

100

constraint
graph of
the body

of foo

10000 100000

ϕ ϕ

main():
 ka = 0; Na = 100
 while ka < Na:
 ia = 0; ja = ka
 while ia < ja:
 ia = ia + 1; ja = ja - 1
 ka = ka + 1
 kb = 10000; Nb = 100000
 while kb < Nb:
 ib = 0; jb = kb
 while ib < jb:
 ib = ib + 1; jb = jb - 1
 kb = kb + 1(a) (b) (c)

Figure 4.19. Example where a context-sensitive implementation improves the
results of range analysis.

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

()
)"

(*
+,
-"

.,
,
/0
"

.#
%$
0/
1"

23
43
5)
+,
-"

6
/*
7
/3
5"

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+
,-
./
"

01
22
34
"

5
14
46
,"

5
17
-8
,9
/:
"

;/
44
,9
/:
"

<
49
=
4.
6"

!"

#!"

$!"

%!"

&!"

'!"

(!"

)*
+*,
-"

./
0.
1/
.-
.2
-"

+*3
."

,.
4
+*3
."

56
7"

8
.9
:
.7
,"

Intra Intra+inline Inter Inter+inline

SPEC CPU 2006 Stanford Bitwise

Figure 4.20. The impact of inter-procedural analysis on precision. Each bar
shows precision in %bitwidth reduction.

It is difficult to find an adequate way to compare the precision of our analysis with,
and without inlining. This difficulty stems from the fact that this transformation tends
to change the target program too much. In absolute numbers, we always reduce the
bitwidth of more variables after function inlining. However, proportionally function
inlining leads to a smaller percentage of bitwidth reduction for many benchmarks. In
the Stanford Collection, for instance, where most of the functions are called in only one
location, inlining leads to worse precision results. On the other hand, for the SPEC
programs, inlining, even in terms of percentage of reduction, tends to increase our
measure of precision.

Intra vs Inter-procedural runtimes. Figure 4.21(Left) compares three different
execution modes. Bars are normalized to the time to run the intra-procedural analysis
without inlining. On the average, the intra-procedural mode is 28.92% faster than

42 Chapter 4. Range Analysis

0 
0.5 
1 

1.5 
2 

2.5 
3 

3.5 

h2
64
re
f 

as
tar
 

xa
lan
cb
mk
 

sje
ng
 

mc
f 

om
ne
tp
p  gc

c 

go
bm
k 

lib
qu
an
tu
m 

bz
ip2
 

hm
me
r 

Inter/Intra  Inline/Intra 

0.7 
0.8 
0.9 
1 

1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 

h2
64
re
f 

as
tar
 

xa
lan
cb
mk
 

sje
ng
 

mc
f 

om
ne
tp
p  gc

c 

go
bm
k 

lib
qu
an
tu
m 

bz
ip2
 

hm
me
r 

simple+16/simple  jump‐set/simple  jump‐set+16/simple 

Figure 4.21. (Left) Runtime comparison between intra, inter and inter+inline
versions of our algorithm. (Right) Runtime comparison between different widen-
ing operators. The bars are normalized to the time to run the intra-procedural
analysis.

the inter-procedural mode. If we perform function inlining, then this difference is
45.87%. These numbers are close because our runtime is bound to the size of the
strong components. Although function inlining can increase the number of strongly
connected components in the constraint graph, it cannot increase the size of the largest
component, when compared to the simple inter-procedural analysis of Section 4.4.3.

4.4.5 Choosing a Widening Strategy

We have implemented the widening operator used in the growth analysis in two different
ways. The first way, which we call simple, is based on the original widening operator
of Cousot and Cousot [1977], and we have shown it in Figure 4.6(Right). The second
widening strategy, which we call jump-set widening consists in using the constants that
appear in the program text, in sorted order, as the next limits of each interval after
widening is applied. The jump-set widening can be seen as kind of Widening "up to"
(Halbwachs et al. [1997]), because it also delays the widening operation. This operator
is common in implementations of range analysis [Nielson et al., 1999, p.228]. Jump-set
widening never produces worse results than the simple operator, and sometimes it does
better. Figure 4.22 shows an example taken from the code of SPEC CPU bzip2. Part
of the constraint graph of the program in Figure 4.22(a) is given in Figure 4.22(b). The
result of applying the simple operator is shown in Figure 4.22(c). Jump-set widening
would use the lattice in Figure 4.22(d), instead of the lattice in Figure 4.6(Left). This
lattice yields the result given in Figure 4.22(e), which is more precise.

Another way to improve the precision of growth analysis is to perform a few
rounds of abstract interpretation on the constraint graph, and, in case the process

4.4. Design Space 43

int main(int N) {
 int i = 0;
 while (1) {
 int tooLong = 0;
 while (i <= N) {
 if (i == N) {
 tooLong = 1;
 }
 }
 if (tooLong) {
 break;
 }
 }
 return i;
}

tooLong0

tooLong1 0

1

ϕϕ

tooLong0[0, +∞]

tooLong1 [-∞, 1] 0

1

ϕϕ

[⊥, ⊥]

[−∞, 0]

[0, 0]

[−∞, +∞]

[1, 1]

[0, 1]

[0, +∞] [−∞, 1] [1, +∞]

tooLong0[0, 1]

tooLong1 [0, 1] 0

1

ϕϕ

(a)

(b)

(c)

(d)

(e)

Figure 4.22. An example where jump-set widening is more precise.

Benchmark Size 0 + Simple 16 + Simple 0 + Jump 16 + Jump

hmmer 38,409 9.98 11.40 (12.45) 10.98 (9.11) 11.40 (12.45)
gobmk 84,846 8.15 9.93 (17.92) 9.02 (9.64) 10.13 (19.54)
h264ref 97,494 12.58 13.11 (4.04) 13.00 (3.23) 13.11 (4.04)
xalancbmk 352,423 7.71 7.98 (3.38) 7.95 (3.02) 7.98 (3.38)
gcc 449,442 16.09 16.63 (3.25) 16.41 (1.95) 16.64 (3.31)

Table 4.1. Variation in the precision of our analysis given the widening strategy.
The size of each benchmark is given in number of variable nodes in the constraint
graph. Precision is given in percentage of bitwidth reduction. Numbers in paren-
thesis are percentage of gain over 0 + Simple.

does not reach a fixed point, only then to apply the widening operator. Each round of
abstract interpretation consists in evaluating all the constraints, and then updating the
intervals that change from one evaluation to the other. For instance, in Figure 4.22 one
round of abstract interpretation, coupled with the simple widening operator, would be
enough to reach the fixed point of that constraint system. We have experimented with
0 and 16 iterations before doing widening, and the overall result, for the programs in
the SPEC CPU 2006 suite is given in Figure 4.13. Table 4.1 shows some of these results
in more details for the five largest benchmarks in this collection. In general jump-set
widening improves the precision of our results in non-trivial ways. Nevertheless, the
simple widening operator preceded by 16 rounds of abstract interpretation in general
is more precise than jump-set widening without any cycle of pre-evaluation, as we see
in Table 4.1.

44 Chapter 4. Range Analysis

By combining the different widening operators – simple or jump-set – with the
different number of pre-evaluations – in our case 0 or 16, we have four different widening
strategies. Figure 4.21(Right) compares the runtime of all these strategies for the
integer programs in the SPEC CPU 2006 collection. We have observed no measurable
difference between the jump-set and the simple operator: the latter is 0.93% faster,
e.g., 1.0093x faster. The strategy that precedes the simple operator with 16 rounds
of pre-evaluation is 7% slower than the strategy that does not do any pre-evaluation.
Finally, the combination of 16 rounds of pre-evaluation, plus jump-set widening is 13%
slower than the simple widening strategy. We observe an anomalous behavior in astar

and mcf: the simple strategy results in a small slowdown. These benchmarks have
the two fastest runtimes in the benchmark suite; e.g., we analyze mcf in 0.02 seconds.
Thus, we believe that the unexpected behavior is due to runtime noise that outlives a
sequence of 100 executions of each benchmark.

4.5 Conclusion

In this chapter, we have presented our range analysis algorithm. We described the data
structures that we have used as well as the algorithm that we propose in this work.
We introduced the notion of future values, as the key insight to handle comparisons
between variables. Furthermore, we discussed the trade-off of each optional step of
our algorithm, giving a clear idea that our users have some control of the speed and
precision of our analysis. To the best of our knowledge, this work does the most
extensive evaluation in the literature of different settings of range analysis. Figure 4.13,
for instance, compares 32 different configurations in terms of precision and analysis
time.

Chapter 5

Integer Overflows

In addition to being a source of several bugs that are hard to identify, integer overflows
can represent a serious security risk. As pointed by Dietz et al. [2012], integer overflows
are the sources of vulnerabilities in widely used software, such as OpenSSH 1 and
Mozilla Firefox 2. Those vulnerabilities could give an adversary the opportunity to
execute arbitrary code in the compromised application. We will demonstrate this with
an example. The n-bits two’s complement arithmetics wraps around at multiples of 2n.
As an example the representation of 16× 16 in 8-bits two’s complement is 0, because
0 ≡ (16×16) mod 28. Programmers can use this well-defined behavior in benign ways.
For instance, the wrapping arithmetics provides a cheap mod 2n operator, which is
used in the implementation of hash-functions or random number generators.

Figure 5.1 illustrates an example of integer overflow vulnerability. This vulner-
ability allows an adversary to perform a buffer overrun attack on a program that is
apparently guarded against this type of exploit. For simplicity, we will use the C
datatype char, which represents 8-bit long numbers. Examples of actual vulnerabili-
ties, with larger primitive types, are given by Brumley et al. [2007], Dietz et al. [2012],
and Zhang et al. [2010]. The function read_matrix reads a matrix of bytes from a
file. This matrix is stored as a linear sequence of bytes in a vector out. The first and
second bytes in the file, e.g., w and h, determine the number of rows and columns in
the matrix. If the char datatype could represent arbitrarily long numbers, than this
function would be safe against buffer overruns, because it would only write data on
allocated memory. However, if, for instance, we have that w= 16 and h= 16, then s= 0,
as pointed before. In this case, a buffer of length zero would be allocated, and all the
data stored in the file would overwrite memory in the stack of activation records. By

1http://www.openssh.com/
2http://www.mozilla.org/firefox/

45

46 Chapter 5. Integer Overflows

char* read_matrix(char* file_name) {

 FILE* f = fopen(file_name, "r");

 char w = fgetc(f);

 char h = fgetc(f);

 char s = w * h;

 char* out = (char*)malloc(s);

 char* aux = out;

 for (char c0 = 0; c0 < w; c0++) {

 for (char c1 = 0; c1 < h; c1++) {

 if ((*aux++ = fgetc(f)) == EOF) {

 goto L0;

 }

 }

 }

L0:

 fclose(f);

 return out;

}

= 0 0 0 1 0 0 0 0 = 1610

= 0 0 0 1 0 0 0 0 = 1610

= 1 0 0 0 0 0 0 0 0 = 25610

w

h

h * w

Extra data to fill up
space in the function's
activation record

New return address
pointing to libc's telnet

Parameters to the
telnet call

= 0 0 0 0 0 0 0 0 = 010
s

h

*

w

Figure 5.1. An example of an exploitable integer overflow vulnerability.

carefully crafting an input file, and adversary can, in this way, overwrite the return
address of read_matrix, diverting program’s execution to one of libc’s function, such
as telnet, for instance.

5.1 The Dynamic Instrumentation Library

We have implemented our instrumentation library as an LLVM transformation pass;
thus, we work at the level of the compiler’s intermediate representation 3. This is in
contrast to previous works, which either transforms the source code Dietz et al. [2012]
or the machine dependent code Brumley et al. [2007]. We work at the intermediate
representation level to be able to couple our library with static analyses, such as the
algorithm that we described in Chapter 4. Our instrumentation works by identifying
the instructions that may lead to an overflow, and inserting assertions after those
instructions. The LLVM IR has five instructions that may result in arithmetic overflow:
Add, Sub, Mul, Trunc (also bit-casts) and Shl (left shift). Figure 5.2 shows the
dynamic tests that we perform to detect overflows.

The instrumentation that we insert is mostly straightforward. We take the values
of the operands and the resulting value of the checked operation to verify if an overflow
occurred. We discuss in the rest of this section a few interesting cases. When dealing

3http://llvm.org/docs/LangRef.html

5.1. The Dynamic Instrumentation Library 47

Instruction Dynamic Check

x = o1 +s o2 (o1 > 0 ∧ o2 > 0 ∧ x < 0) ∨
(o1 < 0 ∧ o2 < 0 ∧ x > 0)

x = o1 +u o2 x < o1 ∨ x < o2

x = o1 −s o2 (o1 < 0 ∨ o2 > 0 ∨ x > 0) ∨
(o1 > 0 ∨ o2 < 0 ∨ x < 0)

x = o1 −u o2 o1 < o2

x = o1 ×u/s o2 x 6= 0⇒ x÷ o1 6= o2

x = o1 M n (o1 > 0 ∧ x < o1) ∨ (o1 < 0 ∧ n 6= 0)

x = ↓n o1 cast(x, type(o1)) 6= o1

Figure 5.2. Overflow checks. We use ↓n for the operation that truncates to n
bits. The subscript s indicates a signed instruction; the subscript u indicate an
unsigned operation.

with an unsigned Sub instruction, e.g, x = o1 −u o2, then a single check is enough
to detect the bad behavior: o1 < o2. If o2 is greater than o1, then we assume that
it is a bug to try to represent a negative number in unsigned arithmetics. Regarding
multiplication, e.g., x = o1 × o2, if o1 = 0, then this operation can never cause an
overflow. This test is necessary, because we check integer overflows in multiplication
via the inverse operation, e.g., integer division. Thus, the test prevents a division by
zero from happening. The Trunc instruction, e.g., x = ↓n o1 assigns to x the n least
significant bits of o1. The dynamic check, in this case, consists in expanding x to the
datatype of o1 and comparing the expanded value with o1. The LLVM IR provides
instructions to perform these type expansions. Note that our instrumentation catches
any truncation that might result in data loss, even if this loss is benign. To make
the dynamic checks more liberal, we give users the possibility of disabling tests over
truncations.

Practical Considerations. Our instrumentation library inserts new instructions
into the target program. Although the dynamic check depends on the instruction that
is instrumented, the general modus operandi is the same. Dynamic tests check for
overflows after they happen. The code that we insert to detect the overflow diverts

48 Chapter 5. Integer Overflows

Add Sub Mul Shl Trunc

signed 12 12 6 8 3

unsigned 4 2 6 2 3

Figure 5.3. Number of instructions used in each check.

the program flow in case such an event takes place. Figure 5.4 shows an actual control
flow graph, before and after the instrumentation. Clearly the instrumented program
will be larger than the original code. Figure 5.3 shows how many LLVM instructions
are necessary to instrument each arithmetic operation. These numbers do not include
the instructions necessary to handle the overflow itself, e.g., block %11 in Figure 5.4, as
this code is not in the program’s main path. Nevertheless, as we show empirically, this
growth is small when compared to the total size of our benchmarks, because most of the
instructions in these programs do not demand instrumentation. Furthermore, none of
the instructions used to instrument integer arithmetics access memory. Therefore, the
overall slowdown that the instrumentation causes is usually small, and the experiments
in Section 5.2 confirm this observation.

Which actions are performed once the overflow is detected depends on the user,
who has the option to overwrite the handle_overflow function in Figure 5.4. Our
library gives the user three options to handle overflows. First option: no-op. This
option allows us to verify the slowdown produced by the new instructions. Second
option: logging. This is the standard option, and it preserves the behavior of the in-
strumented program. Whenever an overflow is detected, we print "Overflow detected

in FileName.cpp, line X." in the standard error stream. Third option: abort. This
option terminates the program once an overflow is detected. Thus, it disallows unde-
fined behavior due to integer overflows, and gives us the opportunity to use the u-SSA
form to get extra precision.

Using the static analysis to avoid some overflow checks. Our library can, op-
tionally, use the range analysis to avoid having to insert some overflow checks into the
instrumented program. We give the user the possibility of calling the range analysis
with either the e-SSA or the u-SSA live range splitting strategies. Our static analysis
classifies variables into four categories, depending on their bounds:

• Safe: a variable is safe if its bounds are fully contained inside its declared type.
For instance, if x is declared as an unsigned 8-bits integer, then x is safe if its
bounds are within the interval [0, 255].

5.1. The Dynamic Instrumentation Library 49

entry:
 %add = add nsw i32 %x, %y
 %0 = icmp sge i32 %x, 0
 %1 = icmp sge i32 %y, 0
 %2 = and i1 %0, %1
 %3 = icmp slt i32 %add, 0
 %4 = and i1 %2, %3
 %5 = icmp slt i32 %x, 0
 %6 = icmp slt i32 %y, 0
 %7 = and i1 %5, %6
 %8 = icmp sge i32 %add, 0
 %9 = and i1 %7, %8
 %10 = or i1 %4, %9
 br i1 %10, label %11, label %12

%11:
 call void %handle_overflow(...)
 br label %12

%12:
 ret i32 %add

entry:
 %add = add nsw i32 %x, %y
 ret i32 %add

(b)

(c)

int foo(int x, int y) {
 return x + y;
}

(a)

Figure 5.4. (a) A simple C function. (b) The same function converted to the
LLVM intermediate representation. (c) The instrumented code. The boldface
lines were part of the original program.

• Suspicious: we say that a variable is suspicious if its bounds go beyond the
interval of its declared type, but the intersection between these two ranges is non-
empty. For instance, the same variable x would be suspicious if I[x] = [0, 257],
as I[x]↑ > uint8↑.

• Uncertain: we classify a variable as uncertain if at least one of its limits is
unbounded. Our variable x would be uncertain if I[x] = [0,∞]. We distinguish
suspicious from uncertain variables because we speculate that actual overflows
are more common among elements in the former category.

• Buggy: a variable is buggy if the intersection between its inferred range and
the range of its declared type is empty. This is a definitive case of an overflow.

50 Chapter 5. Integer Overflows

Continuing with our example, x would be buggy if, for instance, I[x] = [257,∞],
given that [257,∞] u [0, 255] = ∅.

Independent on the arithmetic instruction that is being analyzed, the instrumentation
library performs the same test: if the result x of an arithmetic instruction such as
x = o1 +s o2 is safe, then the overflow check is not necessary, otherwise it must be
created.

5.2 Experimental Results

We have implemented our integer overflow check algorithm in LLVM 3.3, and have run
experiments on a Intel quad core CPU with a 2.40GHz clock, and 3.6GB of RAM. Each
core has a 4,096KB L1 cache. We have used Linux Ubuntu 10.04.4. We have executed
the instrumented programs of the integer benchmarks of SPEC 2006 CPU to probe the
overhead imposed by our instrumentation. These programs have been executed with
their "test" input sets. We have not been able to run the binary that LLVM produces
for SPEC’s gcc in our environment, even without any of our transformations, due to
an incompatible ctype.h header. In addition, we have not been able to collect the
statistics about the overflows that occurred in SPEC’s bzip2, because the log file was
too large. We verified more than 3,000,000,000 overflows in this program. Table 5.1
shows the percentage of instructions that we instrument, without the intervention of the
range analysis. The number of instrumented instructions is relatively low, compared
to the total number of instructions, because we only instrument six different LLVM
bitcodes, in a set of 57 opcodes, not counting intrinsics. Table 5.1 also shows how
many instructions have caused overflows. On the average, 4.90% of the instrumented
sites have caused integer overflows.

Table 5.2 shows how many checks our range analysis avoids. Some results are
expressive: the range analysis avoids 1,138 out of 1,142 checks in 470.lbm. In other
benchmarks, such as in 429.mcf, we have been able to avoid only 1 out of 165 tests. In
general we fare better in programs that bound input sizes via conditional tests, as lbm
does. Using u-SSA, instead of e-SSA, adds a negligible improvement onto our results.
We speculate that this improvement is small because variables tend to be used a small
number of times. Boissinot et al. [2008] have demonstrated that the vast majority of
all the program variables are used less than five times in the program code. The u-SSA
form only helps to avoid checks upon variables that are used more than once.

Table 5.3 shows how our range analysis classifies instructions. Out of all the
102,790 instructions that we have instrumented in SPEC, 3.92% are suspicious, 17.19%

5.2. Experimental Results 51

Benchmark #I #II #II/#I #O

470.lbm 13,724 1,142 8.32% 0
433.milc 44,236 1,602 3.62% 11
444.namd 100,276 3,234 3.23% 12
447.dealII 1,381,408 36,157 2.62% 50
450.soplex 136,367 3,158 2.32% 13
464.h264ref 271,627 13,846 5.10% 167
473.astar 19,243 857 4.45% 0
458.sjeng 54,051 2,504 4.63% 68
429.mcf 4,725 165 3,49% 8
471.omnetpp 203,201 1,972 0.97% 2
403.gcc 1,419,456 18,669 1.32% N/A
445.gobmk 308,475 14,129 4.58% 4
462.libquantum 16,297 928 5.69% 7
401.bzip2 38,831 2,158 5.56% N/A
456.hmmer 114,136 4,001 3.51% 0

Total (Average) 275,070 6,968 3.96%

Table 5.1. Instrumentation without support of range analysis. #I: number of
LLVM bitcode instructions in the original program. #II: number of instructions
that have been instrumented. #O: number of instructions that actually overflowed
in the dynamic tests.

are safe, and 78.89% are uncertain. This means that we found precise bounds to
3.92+17.19 = 21.11% of all the program variables, and that 78.98% of them are bound
to intervals with at least one unknown limit. We had, at first, speculated that over-
flows would be more common among suspicious instructions, as their bounds, inferred
statically, go beyond the limits of their declared types. However, our experiments did
not let us confirm this hypothesis. To check the correctness of our approach, we have
instrumented the safe instructions, but have not observed any overflow caused by them.

Figure 5.5 shows, for the entire LLVM test suite, the percentage of overflow checks
that our range analysis, with the e-SSA intermediate representation, could avoid. Each
bar refers to a specific benchmark in the test suite. We only consider applications
that had at least one instrumented instruction; the total number of benchmarks that
meet this requirement is 333. On the average, our range analysis avoids 24.93% of
the overflow checks. Considering the benchmarks in SPEC 2006 only, this number is
20.57%.

Figure 5.6 shows the impact of our instrumentation in the runtime of the SPEC
benchmarks. We ran each benchmark 20 times. The largest slowdown that we have

52 Chapter 5. Integer Overflows

Benchmark #II #E %(II, E) #U %(II, U)

lbm 1,142 4 99.65% 4 99.65%
milc 1,602 1,070 33.21% 1,065 33.52%
namd 3,234 2,900 10.33% 2,900 10.33%
dealII 36,157 29,870 17.39% 28,779 20.41%
soplex 3,158 2,927 7.31% 2,897 8.26%
h264ref 13,846 11,342 18.38% 11,301 18.08%
astar 857 808 5.72% 806 5.95%
sjeng 2,504 2,354 5.99% 2,190 12.54%
mcf 165 164 0.61% 164 0.61%
omnetpp 1,972 1,313 33.42% 1,313 33.42%
gcc 18,669 15,282 18.14% 15,110 19.06%
gobmk 14,129 12,563 11.08% 12,478 11.69%
libquantum 928 820 11.64% 817 11.96%
bzip2 2,158 1,966 8.90% 1,966 8.90%
hmmer 4,001 3,346 16.37% 3,304 17.42%

Total 104,522 86,688 85,135

Table 5.2. Instrumentation library with support of static range analysis. #II:
number of instructions that have been instrumented without range analysis. #E:
number of instructions instrumented in the e-SSA form program. #U: number of
instructions instrumented in the u-SSA form program.

0.00%

50.00%

100.00%

Figure 5.5. Percentage of overflow checks that our range analysis removes.
Each bar is a benchmark in the LLVM test suite. Benchmarks have been ordered
by the effectiveness of the range analysis. On average, we have eliminated 24.93%
of the checks (geomean).

observed, 11.83%, happened in h264ref, the benchmark that presented the largest
number of distinct sites where overflows happened dynamically. On the average, the

5.3. Conclusion 53

Bench #Sf #S #U #SO #SO/#S #UO #UO/#U

lbm 1138 0 4 0 0,00% 0 0,00%
milc 536 17 1048 0 0,00% 11 1,05%
namd 334 480 2420 0 0,00% 12 0,50%
dealII 6188 39 28740 0 0,00% 50 0,17%
soplex 229 16 2881 0 0,00% 13 0,45%
h264ref 2539 1195 10147 7 0,59% 160 1,58%
astar 48 11 795 0 0,00% 0 0,00%
sjeng 150 213 1977 0 0,00% 68 3,44%
mcf 1 0 164 0 0,00% 8 4,88%
omnetpp 659 25 1288 1 4,00% 1 0,07%
gcc 3365 1045 14065 N/A N/A N/A N/A
gobmk 1509 742 11736 0 0,00% 4 0,03%
libqtum 104 12 805 0 0,00% 7 0,87%
bzip2 192 40 1926 N/A N/A N/A N/A
hmmer 663 222 3082 0 0,00% 0 0,00%

Table 5.3. How the range analysis classified arithmetic instructions in the u-
SSA form programs. #Sf: safe. #S: suspicious. #U: uncertain. #SO: number of
suspicious instructions that overflowed. #UO: number of uncertain instructions
that overflowed.

instrumented programs are 3.24% slower than the original benchmarks. If we use the
range analysis to eliminate overflow checks, this slowdown falls to 1.73%. The range
analysis, in this case, reduces the instrumentation overhead by 46.60%. This improve-
ment is larger than the percentage of overflow checks that we avoid, e.g,. 20.57%. We
believe that this difference is due to the fact that we are able to eliminate checks on
induction variables, as our range analysis can rely on the loop boundaries to achieve
this end. We have not noticed any runtime difference between programs converted to
e-SSA form or u-SSA form. Surprisingly, some of the instrumented programs run faster
than the original code. This behavior has also been observed by Dietz et al. [2012].

5.3 Conclusion

In this chapter we have presented a technique to secure programs against integer over-
flows. Our strategy consists in detecting the integer overflows right after it has oc-
curred, by evaluating an expression containing only the operands and the result of
the checked instruction. Surprisingly, this simple transformation have produced less
overhead in the instrumented programs than any previous approach. Furthermore, we

54 Chapter 5. Integer Overflows

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

milc

na
md

de
alI

I

so
ple

x
lbm

bz
ip2

mcf

go
bm

k

hm
mer

sje
ng

lib
qu

an
tum

h2
64

ref

om
ne

tpp

as

tar

Avg

Full Instrumentation Instrumentation pruned by RA

Figure 5.6. Comparison between execution times with and without pruning,
normalized by the original program’s execution time.

have also demonstrated that it is possible to reduce even more the slowdown of the
checked programs by pruning unnecessary checks. We have used our range analysis to
avoid inserting overflow checks in instructions classified as safe. Our experiments have
shown that we were able to avoid inserting 24.93% of the checks, reducing the runtime
overhead by 46.60%.

Chapter 6

Trip count prediction

In this chapter, we present a heuristic that extracts patterns of the updates of vari-
ables’ values and estimates the trip count of loops with symbolic expressions. Those
expressions might, then, be evaluated at runtime and allow the compiler to decide dy-
namically what code to execute depending on the actual expected number of iterations.
Here we demonstrate that most of the loops of a large benchmark with more than 400
programs have a structure that is easy to analyze. Furthermore, we show that our
heuristic was able to estimate precisely the trip count for more than 70% of such loops,
using a simple technique that might be applied in Just-In-Time compilers.

6.1 Background

Our analysis combines information contained in the Control Flow Graph (CFG) and in
the Data Dependence Graph of the program. From the CFG we can extract information
about the structure of the analyzed program, like the points of the program where the
loops start and stop, and which variables and instructions directly affect the execution
flow. From the dependence graph we can extract information about the way that the
information flow among the variables. Those information allow us to generate symbolic
expressions that estimate the trip count of the loops of the program.

The dependence graph used here was defined by Ferrante et al. [1987] and is
defined in the following way: For each program variable v, we create a node nv,
and for each instruction i in the program we create a node ni. For each instruc-
tion i : v = f(. . . , u, . . .) that defines a variable v and uses a variable u we create
two edges: nu → ni and ni → nv.

In a program, many variables do not affect the predicates that represent the
loops’ stop conditions. Thus, we do not need to consider those variables in our analy-

55

56 Chapter 6. Trip count prediction

Figure 6.1. (a)Example program. (b) CFG of the program, after conversion to
SSA form. (c)Dependence graph highlighting nodes that do not affect the loop
predicate, after converting the original program into .

sis, because they do not have any impact on the number of iterations of those loops.
Therefore, despite of working with a slice of the program that eliminates those instruc-
tions, the result of our analysis remains the same. Figure 6.1 shows a dependence
graph for the factorial function and highlights the variables that we can prune before
doing our analysis.

6.1.1 Natural Loops

According to [Appel and Palsberg, 2002, p.376], a natural loop is a set of nodes S of the
control flow graph (CFG) of a program, including a header node H, with the following
properties:

• from any node in S there is a path that reaches H;

• there is a path from H to any node that belongs to S;

• any path from a node outside S to a node inside S contains H.

6.1. Background 57

A node PH of the CFG is a pre-header of a natural loop if and only if PH has H as
an immediate successor. In this work we normalize the CFG, so that every natural
loop have one unique pre-header PH, that is executed immediately before the first
iteration of the natural loop that succeeds it. The stop condition of a loop is a boolean
expression E = f(e1, e2, . . . , en), where each ej, 1 ≤ j ≤ n is a value that contributes
to the computation of E.

Depending on the stop condition of a natural loop we classify it in one of the
following categories:

• Interval Loops The stop condition is an integer comparison instruction that
receives two operands e1 and e2 and compares them with an inequality (<, ≤,
>, or ≥).

• Equality Loops The stop condition is an integer comparison instruction that
receives two operands e1 and e2 and compares them with an equality (== or
! =).

• Other Loops Any natural loop that neither is an Interval Loop nor is an Equality
Loop.

6.1.2 Strongly Connected Components

Variables that are redefined during the execution of a loop of the program belong to
cycles in the dependence graph. That means that the value contained in a variable
is used to compute the future value that the same variable might assume. Those
redefinition cycles can be identified by computing the Strongly Connected Components
(SCCs) on the dependence graph by using Tarjan [1972]’s or Nuutila and Soisalon-
Soininen [1994]’s algorithm. This helps us to group the different nodes of the graph
that belong to the same redefinition sequence.

After we have computed the SCCs of the dependence graph, the SCCs can be
classified in the following way:

• Single-node SCC - SCCs composed by only one node.

• Multi-node SCC - SCCs composed by more than one node. SCCs of this class
represent cycles in the dependence graph.

Multi-node SCCs can be divided in two categories:

• Single-path SCC - From any node in the SCC there is only one path that starts
and ends in the same node and passes through the edges of the SCC at most once.

58 Chapter 6. Trip count prediction

• Multi-path SCC - There is at least one node in the SCC for which there are
two or more paths that start and end in the same node and pass through the
edges of the SCC at most once.

Single-path SCCs are unconditional sequences of redefinitions of a variable. This
pattern of redefinition is the easiest to analyze, because it is possible to compute the
effect of one iteration in the program loop over the SCC variables. Multi-path SCCs
are conditional sequences of redefinitions of a variable. This means that there are
conditional branches inside the CFG loop. The number of branches makes the total
number of possible paths to grow exponentially. Thus, this class of SCCs is harder to
analyze.

Furthermore, Multi-path SCCs can be classified into two different categories:

• Single-loop SCC - The SCC has branches that does not constitute nested loops.

• Nested-loop SCC - There are inner loops inside the SCC.

Although we have the possibility of an exponential number of paths in Multi-
path SCCs, the number of paths in Single-loop SCCs is finite, so we can enumerate
all the possible paths and do our analysis. Section 6.4 we show that just 3.1% of all
the Multi-node SCCs have more than 1000 paths. Therefore, even if we set a limit
in the number of paths to avoid exponential behavior, we will still be able to analyze
more than 95% of the SCCs of the programs. On the other hand, Nested-loop SCCs
have infinite possible paths, what would make our current approach to not stop. As a
consequence, we exclude Nested-loop SCCs from our analysis. In Section 6.4 we show
that this kind of SCC represents just 7.99% of the Multi-path SCCs and we can avoid
analyze them for now.

6.1.3 Sequences of Redefinitions of Variables

A sequence of redefinitions (SR) is a path in the SCC that starts and ends in the
same node and does not repeat any edge. By construction, our dependence graph does
not admit self loops, so SRs are only extracted from Multi-node SCCs. A SR can be
interpreted to generate the effect of one iteration of the program on a given variable.
Figure 6.2 shows an example of SR for one induction variable.

Considering infinite precision, a SR have one of the following classifications:

• Constant - after one iteration through this path, the value of the variable remains
the same.

6.1. Background 59

Figure 6.2. (a)Dependence graph. (b)Multi-node SCC of the variable i1.
(c)Sequence of redefinitions of the variable i1. (d)Effect of one iteration on the
variable i1

• Increasing - after one iteration through this path, the value of the variable is
always larger than the initial value.

• Decreasing - after one iteration through this path, the value of the variable is
always smaller than the initial value.

• Possibly Oscillating - after one iteration, we are not able to prove neither an
increasing nor decreasing behavior.

We classify the SRs by interpreting them and comparing the final value of the
variable with its starting value.

SRs that are classified as Possibly Oscillating are placed in this category because
at least one of the following reasons is true:

• There is a call instruction in the SR. Currently our analysis is not able to analyze
interprocedural SRs.

• There is an operation in the SR that receives an operand X, where the range
analysis of X states that X↓ < 0 and X↑ > 0.

• The SR depends on SCCs that have been classified as Possibly Oscillating.

We can classify a Multi-node SCC within the same categories of a single SR. For
that, the classification of all the the SRs of the SCC must be combined using a meet
operation in the lattice shown in Figure 6.3. Therefore, the classification of a SCC is
the least upper bound of the classifications of the SRs that the SCC contains.

60 Chapter 6. Trip count prediction

Figure 6.3. Lattice of SR classifications.

6.1.4 Vectors

In order to achieve good precision, without sacrificing efficiency, we use an abstraction
called vectors to predict trip count. We place each numeric variable v of the analyzed
program on the real number line in the point corresponding to the value stored by v.
Thus, whenever the value that v stores is changed, we move v to another point of the
real line, corresponding to its new value. By doing that, we have observed that some
variables have a well defined behavior along loop iterations, that we can translate into
patterns of movement. The vectors are, then, the structures that help us to understand
those patterns of movement.

A vector is the step given by a variable v after one complete iteration through a
SR p. Before the execution of p, we have v0 stored in v. After the execution of p, v will
be redefined with a new value, vp. We can understand this redefinition of v as a move
on the real number line. The step given by v in the line is vp − v0. Thus, a vector of a
variable v extracted from a SR p is ∆vp.

The sign of ∆vp indicates the direction of the vector (i.e. the direction to where
we are moving v). Vectors may be defined by symbolic expressions involving other
variables of the program. This characteristic generates a chain of dependencies that
brings the need to process the SCCs in topological order. If the SCC of a variable n is
classified as Possibly Oscillating, then the vectors that depend on n are unknown.

6.1.5 Patterns of movement

When variables have their values updated always by vectors with the same character-
istics, some patterns of movement are noticeable:

6.2. A Trip Count Algorithm Based on Vectors 61

• Stationary - Occurs when the variables are updated by vectors with modules
equal to zero.

• Constant Speed - Occurs when the variable is updated by a vector with constant
module. In this case, in each iteration, the variable is moved a constant distance
from its previous location, creating a linear behavior.

• Constant Acceleration - Occurs when the variable is updated by a vector that
has a linearly increasing module. This kind of vector is generated by a linear
expression involving a Constant Speed variable, creating a quadratic behavior.

• Constantly Increasing Acceleration Occurs when the variable is updated by
a vector that is generated by a linear expression involving a Constant Acceleration
variable, creating a cubic behavior.

• More Than Cubic Occurs when the variable is updated by a vector that is
generated by a linear expression involving a Constantly Increasing Acceleration
or More Than Cubic variable, creating a more-than-cubic behavior.

• Unknown - Occurs when:

Variables are updated with vectors that depend on variables with Unknown
movement patterns.

Variables are updated with vectors that have their modules decreasing in
each iteration.

6.2 A Trip Count Algorithm Based on Vectors

In order to estimate the trip count of loops, the classic static analysis techniques based
on abstract interpretation can not achieve the precision we want to have. That is true
because given that most of the loops have their number of iterations controlled by the
data that comes from the input, a purely static analysis will never be precise enough
to solve this problem. We propose, then, a hybrid solution involving a static and
a dynamic step: we statically analyze the program and generate symbolic expressions
that represent the estimated trip counts of its loops. Dynamically, during its execution,
the instrumented program evaluates those expressions with a O(1) complexity. Other
optimizations may use the result of those expressions to make decisions at runtime,
depending on the expected trip count. Any of those expressions that remain unused at
the end of the compilation process can be trivially removed by a dead code elimination
procedure.

62 Chapter 6. Trip count prediction

Algorithm 1 Trip Count Instrumentation Based on Vectors
Input: Program P
Output: Program P with new instructions that estimate the maximum trip count of the loops
1: for all Loop l ∈ P do
2: if not isOtherLoops(l) then
3: Variable op1 = getF irstOperand(l.getStopCondition())
4: Variable op2 = getSecondOperand(l.getStopCondition())
5: Expression step = estimateMinimumStep(op1, op2)
6: if ∃ step then
7: Insert instruction |op1 − op2|/step before the first iteration of l.
8: end if
9: end if
10: end for

Algorithm 1 presents the static analysis needed to generate the trip count ex-
pressions using vectors. Our heuristic only covers Interval Loops and Equality Loops,
although it is possible to extend this code in order to handle some of the Other Loops.
For sake of simplicity, we have chosen to ignore Other Loops, as they represent a small
part of the loops we have analyzed. Interval Loops and Equality Loops guaranteedly
have two operands. Once we have collected both operands of the stop condition of a
loop l, we have to estimate the minimum step of approximation of the two variables in
the real numbers line. If there is a well defined behavior of update of both variables,
then estimateMinimumStep(op1, op2) will return a valid step and we can estimate the
trip count. On the contrary, the program will not receive new instructions to estimate
the trip count of l.

Algorithm 2 estimateMinimumStep: Estimate the minimum step of approximation
of variables in the real line.
Input: Pair of Variables op1, op2
Output: Expression step with the minimum step.
1: Vector v1 = getMinV ector(op1)
2: Vector v2 = getMinV ector(op2)
3: if ∃ v1 and ∃ v2 then
4: return |v1 − v2|
5: else
6: return null
7: end if

Algorithm 2 shows how we estimate the minimum step given the minimum vec-
tors of the two variables that control the stop condition of the loop. The variables
will only have a minimum vector if they have a monotonic behavior i.e. whenever the
variables move in the real line, they move in the same direction. As we have imple-
mented only Stationary and Constant Speed vectors, the calculation of the step is given
by the subtraction of both vectors. When we implement more complex vectors, the
step calculation will turn into a more complicated method, eventually involving the
calculation of an integral.

6.3. A Simplified Trip Count Algorithm Based on Vectors for JIT
compilers 63

Algorithm 3 getMinVector: Generate the minimum vector of a given monotonic vari-
able
Input: Variable v

Output: Vector
#»
V with the minimum length.

1: Vector
#»
V = ⊥

2: for all RedefinitionSequence rs of v do
3: Vector

»
Tmp = evaluateDelta(rs)

4: #»
V = joinV ectorsmin(

#»
V ,

»
Tmp)

5: if
#»
V == unknown then

6: break
7: end if
8: end for
9: return

#»
V

Algorithm 3 generates the minimum vector for a given variable. In order to
generate such vector, we have to symbolically evaluate every Sequence of Redefinition
of that variable and join the results in a vector. The join operation has two steps:
first we check the direction of both vectors. If the vectors have opposite directions or
one of the vectors is unknown, the result of joinV ectorsmin(

#»

V ,
»

Tmp) is unknown.
Else, we take the vector with the minimum length as the result of the join. If during
the processing the vector

#»

V assumes the value unknown, then we stop the processing
routine, because that means that we have completely lost our precision.

6.3 A Simplified Trip Count Algorithm Based on

Vectors for JIT compilers

With the massive increase of the usage of the World-Wide-Web and the introduction
of many new architectures that must run the same programs, it is essential to have
portable programs. Code interpreting provides easy portability of programs, because
just the interpreter must be translated into the different architectures, instead of any
program of a given language. However, code interpreting is slow and excessively con-
sumes resources. In this context, Just-In-Time (JIT) compilers are used to overcome
the inefficiencies that code interpreters inherently have (Plezbert and Cytron [1997]).

JIT compilers work by compiling pieces of code right before they are executed.
Whenever the controller thread tries to execute some function that has no native code
available, the controller thread calls the compiler before executing the function. That
means that the execution stops while the JIT compiler is generating native code. There-
fore, the JIT compiler must generate the most optimized code possible in the minimum
time, because the total time (compiling + execution) must be lower than the interpret-
ing time, or else there is no point in compiling those programs. Because of that, JIT

64 Chapter 6. Trip count prediction

compilers must use extremely lightweight algorithms to keep the compiling time as low
as possible.

Here we present a simplification in our trip count prediction heuristic in order
to be able to apply it in JIT compilers. As we have observed in section 6.4, 90%
of the natural loops are either Interval Loops or Equality Loops. Moreover, most of
our vectors are constant speed vectors with length equal to one. From those facts, in
the simple heuristic we assume that in every Interval or Equality loops the minimum
step of approximation of op1 and op2 is equal to one. Thus, the estimated trip count
is |op2 − op1| and we avoid calling EstimateMinimumStep(op1, op2). Our heuristic
generates the expression that estimates the trip count with O(1) complexity. The
complexity of the analysis of the whole program is O(n), where n is the number of
natural loops of the program.

6.4 Experimental Results

We have implemented the heuristics presented in this chapter and an analysis that
observes the structure of the loops of programs with regards to the taxonomy that we
have defined here. We have implemented our analyses in the LLVM compiler, version
3.3, and have used it to analyze more than 500 programs, including the benchmarks
of the LLVM test-suite and the benchmarks of SPEC 2006 CPU. In this session we
will focus the discussion in the results obtained with the analysis of the benchmarks of
SPEC 2006 CPU. We have chosen that set of benchmarks, because they reflect well a
subset of general real world programs. Moreover, SPEC benchmarks are accepted by
the scientific community and are widely used as a base to compare different algorithms.

Most of the loops of the programs have a simple structure, and that means that
the analysis does not need to be complicated in order to cover almost all loops of a
program. Table 6.1 analyzes the structure of natural loops of programs. According to
Ferrante et al. [1987], natural loops are single-entry regions. We have observed that
65.92% of the loops have just one instruction that decides when the loop must stop or
not. Those loops are, then, single-entry and single-exit regions, what is an interesting
property and might allow some aggressive optimization to be applied. However, 39.87%
of the loops are nested inside other loops. Those numbers tell us that despite of the
simplicity of most loops, a considerable amount of them is nested, so loop analyses
that does not support nested loops leave a large number of loops uncovered.

We have also identified a pattern in the stop conditions of the loops. Table 6.2
shows that approximately 85% of the natural loops have a single integer comparison

6.4. Experimental Results 65

Program L NL % NL/L SEL % SEL/L

433.milc 426 211 49.53% 399 93.66%
444.namd 623 418 67.09% 593 95.18%
447.dealII 6526 2695 41.30% 3412 52.28%
450.soplex 742 181 24.39% 554 74.66%
470.lbm 23 10 43.48% 23 100.00%
401.bzip2 238 85 35.71% 150 63.03%
403.gcc 4614 1357 29.41% 3202 69.40%
429.mcf 50 9 18.00% 39 78.00%
445.gobmk 1288 482 37.42% 913 70.89%
456.hmmer 881 245 27.81% 740 84.00%
458.sjeng 267 62 23.22% 201 75.28%
462.libquantum 98 13 13.27% 90 91.84%
464.h264ref 1870 1008 53.90% 1784 95.40%
471.omnetpp 465 66 14.19% 249 53.55%
473.astar 119 37 31.09% 104 87.39%
483.xalancbmk 3106 259 8.34% 1611 51.87%

Total 21336 7138 33.46% 14064 65.92%

Table 6.1. Natural Loops in the Control Flow Graph. L: number of natural
loops. NL: number of nested loops. SEL: number of loops that have a single exit
point.

Program L IL % IL/L EL % EL/L OL % OL/L

433.milc 426 417 97.89% 5 1.17% 4 0.94%
444.namd 623 494 79.29% 7 1.12% 122 19.58%
447.dealII 6526 4597 70.44% 604 9.26% 1325 20.30%
450.soplex 742 572 77.09% 101 13.61% 69 9.30%
470.lbm 23 23 100.00% 0 0.00% 0 0.00%
401.bzip2 238 201 84.45% 29 12.18% 8 3.36%
403.gcc 4614 2103 45.58% 1954 42.35% 557 12.07%
429.mcf 50 17 34.00% 28 56.00% 5 10.00%
445.gobmk 1288 1098 85.25% 131 10.17% 59 4.58%
456.hmmer 881 697 79.11% 109 12.37% 75 8.51%
458.sjeng 267 117 43.82% 128 47.94% 22 8.24%
462.libquantum 98 88 89.80% 6 6.12% 4 4.08%
464.h264ref 1870 1789 95.67% 19 1.02% 62 3.32%
471.omnetpp 465 283 60.86% 82 17.63% 100 21.51%
473.astar 119 108 90.76% 1 0.84% 10 8.40%
483.xalancbmk 3106 1687 54.31% 752 24.21% 667 21.47%

Total 21336 14291 66.98% 3956 18.54% 3089 14.48%

Table 6.2. Classification of Natural Loops according to their stop conditions.
L: number of natural loops. IL: number of Interval Loops. EL: number of Equality
Loops. OL: number of Other Loops.

as the stop condition. Moreover, the vast majority of those loops are interval loops,
the easiest kind of loop to analyze. We have also observed similar proportions while
analyzing the rest of our benchmarks. Those numbers are favorable to our heuristics,
because we take advantage of the simplicity of the loops to produce precise results with
simple algorithms.

66 Chapter 6. Trip count prediction

Program SN MN SP % SP/MN MP SL % SL/MP NL % NL/MN

433.milc 2507 426 409 96.01% 17 11 64.71% 6 1.41%
444.namd 5879 781 604 77.34% 177 6 3.39% 171 21.90%
447.dealII 79169 7249 6077 83.83% 1172 505 43.09% 667 9.20%
450.soplex 13032 807 683 84.63% 124 53 42.74% 71 8.80%
470.lbm 94 24 23 95.83% 1 1 100.00% 0 0.00%
401.bzip2 3610 214 171 79.91% 43 16 37.21% 27 12.62%
403.gcc 123775 5121 4513 88.13% 608 276 45.39% 332 6.48%
429.mcf 1022 54 40 74.07% 14 7 50.00% 7 12.96%
445.gobmk 17675 1555 1283 82.51% 272 163 59.93% 109 7.01%
456.hmmer 12215 946 825 87.21% 121 67 55.37% 54 5.71%
458.sjeng 3337 276 221 80.07% 55 38 69.09% 17 6.16%
462.libquantum 1439 123 100 81.30% 23 8 34.78% 15 12.20%
464.h264ref 21502 1946 1841 94.60% 105 27 25.71% 78 4.01%
471.omnetpp 12383 470 379 80.64% 91 39 42.86% 52 11.06%
473.astar 2591 138 118 85.51% 20 7 35.00% 13 9.42%
483.xalancbmk 57181 3024 2486 82.21% 538 373 69.33% 165 5.46%

Total 357411 23154 19773 85.40% 3381 1597 47.23% 1784 7.70%

Table 6.3. Classification of Strongly Connected Components in the Dependence
Graph. SN: number of Single-Node SCCs. MN: number of Multi-Node SCCs. SP:
number of Single-Path SCCs. MP: number of Multi-Path SCCs. SL: number of
Single-Loop SCCs. NL: number of Nested-Loop SCCs.

The dependence graph of the programs has been inspected during our research. In
order to avoid interferences caused by variables that do not affect the stop conditions of
the loops, we have pruned the graph before analyzing it. We did backward depth-first
searches starting from the stop conditions and discarded the nodes that were not visited
at least once. Table 6.3 shows the statistics collected while analyzing the dependence
graphs of the programs. 85.40% of the Multi-Node SCCs are Single-Path SCCs. That
means that there is only one SR for the variables of such SCCs. Moreover, just 7.70%
of the Multi-Node SCCs have nested cycles and do not fulfill the requirements of our
analysis. All the presented data confirms that the programs have a structure that that
is suitable for our heuristics to produce accurate results.

In order to estimate the trip count of a loop, our prototype must be able to
infer the values that Op1 and Op2 store before the first iteration. Op1 and Op2 are the
operands of the stop condition of the loop. This information is not always possible to be
inferred, because sometimes one of the operands is the result of a call to other function.
In cases like this, we do not know the value of the operand before the loop starts and,
consequently, are not able to estimate its trip count. Moreover, both operands must
be integer variables. Table 6.4 shows the number of loops of which we are able to
infer the trip count. For instance, we were able to estimate the trip count of 85.50%
of the interval loops of the benchmark 403.gcc, while we were able to instrument just
9.83% of its equality loops. We have investigated this and we observed that most of

6.4. Experimental Results 67

Program # IL # IIL % IIL/IL # EL # IEL % IEL/EL

433.milc 417 391 93.76% 5 3 60.00%
444.namd 494 469 94.94% 7 1 14.29%
447.dealII 4597 3535 76.90% 604 77 12.75%
450.soplex 572 422 73.78% 101 48 47.52%
470.lbm 23 23 100.00% 0 0 -
401.bzip2 201 186 92.54% 29 7 24.14%
403.gcc 2103 1798 85.50% 1954 192 9.83%
429.mcf 17 7 41.18% 28 1 3.57%
445.gobmk 1098 1040 94.72% 131 56 42.75%
456.hmmer 697 664 95.27% 109 39 35.78%
458.sjeng 117 106 90.60% 128 17 13.28%
462.libquantum 88 77 87.50% 6 1 16.67%
464.h264ref 1789 1411 78.87% 19 8 42.11%
471.omnetpp 283 238 84.10% 82 29 35.37%
473.astar 108 80 74.07% 1 1 100.00%
483.xalancbmk 1687 1403 83.17% 752 108 14.36%

Total 14291 11850 82.92% 3956 588 14.86%

Table 6.4. Trip Count Instrumentation. IL: interval loops. IIL: instrumented
interval loops. EL: equality loops. IEL: instrumented equality loops.

the 403.gcc’s equality loops are bounded by comparisons between pointers. The same
was observed in other programs. Because of that, we should focus only in the interval
loops.

We have developed a profiler that collects the estimated trip count and the real
trip count during an actual execution of the benchmarks. The result of our profiler let
us to observe how accurate are our heuristics. We have split our accuracy results into
seven categories according to the actual number N of iterations:

• [0,
√
N]: Occurs when the estimated trip count is less or equal the square root of

the actual trip count. For example, if we estimate that a loop will iterate 2 times
and it iterates 10 times during its execution, this loop will be classified into this
category.

•]
√
N , N/2]: Occurs when the estim ted trip count is greater than the square root

of the actual trip count but is less or equal its half. For example, if we estimate
that a loop will iterate 4 times and it iterates 10 times during its execution, this
loop will be classified into this category.

•]N/2, N [: Occurs when the estimated trip count is greater than the half of the
actual trip count but is less than the trip count. For example, if we estimate that
a loop will iterate 8 times and it iterates 10 times during its execution, this loop
will be classified into this category.

68 Chapter 6. Trip count prediction

• [N , N]: Occurs when the estimated trip count equals the actual trip count. For
example, if we estimate that a loop will iterate 10 times and it iterates 10 times
during its execution, this loop will fall into this category.

•]N , 2 ∗N]: Occurs when the estimated trip count is greater than the actual trip
count, but is less or equal to two times the actual trip count. For example, if
we estimate that a loop will iterate 16 times and it iterates 10 times during its
execution, this loop will be classified into this category.

•]2 ∗N , N2]: Occurs when the estimated trip count is greater than two times the
actual trip count, but is less or equal to the power of two of the actual trip count.
For example, if we estimate that a loop will iterate 32 times and it iterates 10
times during its execution, this loop will be classified into this category.

•]N2, +∞]: Occurs when the estimated trip count is greater than the power of
two of the actual trip count. For example, if we estimate that a loop will iterate
128 times and it iterates 10 times during its execution, this loop will be classified
into this category.

Table 6.5 shows the comparison between the estimated trip count and the actual
trip count that we have collected with our profiler. The subtotal lines contain only the
SPEC CPU benchmarks, while the total lines also include more than 300 benchmarks
distributed with LLVM. While running the programs, each time a loop stops, we col-
lect the actual trip count and compare it with the estimated trip count. Thus, the
numbers that we presented is the number of instances of loops, instead of the number
of natural loops. We did this because we may predict correctly the trip count for some
instances and may predict wrongly for other instances of the same CFG loop. Table 6.6
shows information about the programs that had their trip counts estimated using the
simplified heuristic, following the same rules used to build table 6.5.

By analyzing table 6.5 we can observe that our heuristic is very precise. 87.25%
of the trip counts that we have precidted were the same as the actual trip count.
Moreover, we have observed that more than 99% of the estimated trip counts were over-
approximations of the actual trip counts. This is an interesting fact, because although
we developed an heuristic, our results are still conservative. When we analyze the
results obtained with the simplified heuristic, we also find some impressive numbers.
As expected, the vector heuristic has better results than the simplified heuristic, but
the difference was small. Our predictions were exact in 84.46% of the cases, despite of
the extreme simplicity of the algorithm. Furthermore, we also have observed the same
over-approximation that we have noticed with the complete vector heuristic.

6.5. Conclusion 69

Program [0,
√
N]]

√
N , N/2]]N/2, N [[N , N]]N , 2 ∗N]]2 ∗N , N2]]N2, +∞]

433.milc 14 0 0 435,514,912 38,360 9,984 1,032,930
444.namd 0 0 0 21,602,695 8,064 3,168 0
450.soplex 1,851 367 122 186,943 12,782 10,219 43,338
470.lbm 0 0 0 53,397 0 0 0
401.bzip2 8,616,650 2 311,724 13,204,855 14,195,603 1,128,948 28,939,274
403.gcc 433,588 17 326 17,240,735 1,851,284 278,164 336,422
429.mcf 96,576 87 42 555 2,643,736 634,623 1,705,369
445.gobmk 8,392 20 400 651,081 70,492 117 20,141
456.hmmer 0 0 0 31,551,408 8,512,797 3,893,744 3,273,429
458.sjeng 0 620 2,565,378 41,787,788 3,423,766 7,917 1,038,075
462.libquantum 0 0 0 8,182,095 0 1 0
464.h264ref 6,749,850 0 0 311,274,945 13,427,840 57,300 228,711
473.astar 7,147 0 0 74,614,711 602,244 2,550 609,708

Subtotal 15,914,068 1,113 2,877,992 955,866,120 44,786,968 6,026,735 37,227,397
Subtotal (%) 1.50% 0.00% 0.27% 89.95% 4.21% 0.57% 3.50%

Total 25,525,142 2,078 2,922,080 4,134,074,825 163,974,403 11,363,892 400,209,181
Total (%) 0.54% 0.00% 0.06% 87.25% 3.46% 0.24% 8.45%

Table 6.5. Trip Count Profiler - Trip count estimated using vectors.

Program [0,
√
N]]

√
N , N/2]]N/2, N [[N , N]]N , 2 ∗N]]2 ∗N , N2]]N2, +∞]

433.milc 14 0 0 435,514,912 38,360 9,984 1,032,930
444.namd 0 0 0 21,602,688 8,065 3,174 0
450.soplex 1,851 367 112 186,939 12,784 10,231 43,338
470.lbm 0 0 0 53,333 0 64 0
401.bzip2 5,270,006 2 311,724 14,386,219 15,987,072 1,502,759 28,939,274
403.gcc 420,390 17 326 17,252,944 1,841,701 283,373 343,054
429.mcf 96,576 87 42 555 2,643,736 634,623 1,705,369
445.gobmk 8,392 20 400 651,081 70,492 117 20,141
456.hmmer 0 0 0 31,551,408 8,512,797 3,893,744 3,273,429
458.sjeng 0 620 2,565,378 41,787,788 3,423,766 7,917 1,038,075
462.libquantum 0 0 0 8,182,095 0 1 0
464.h264ref 367,010 0 0 302,394,768 12,636,622 5,636,387 10,703,859
473.astar 7,147 0 0 74,614,711 602,244 2,550 609,708

Subtotal 6,171,386 1,113 2,877,982 948,179,441 45,777,639 11,984,924 47,709,177
Subtotal (%) 0.58% 0.00% 0.27% 89.22% 4.31% 1.13% 4.49%

Total 10,762,387 2,094 2,882,136 3,996,856,652 227,506,781 53,384,130 441,012,280
Total (%) 0.23% 0.00% 0.06% 84.46% 4.81% 1.13% 9.32%

Table 6.6. Trip Count Profiler - Trip count estimated using simplified heuristic.

6.5 Conclusion

In this chapter we have discussed the prediction of the number of iterations of loops.
We have indicated the usefulness of such information to decide at runtime which code
to execute based on the estimated trip count of loops. We also have classified the loops
into a taxonomy proposed by us, which allowed us to better understand where the
most promising optimizing opportunities are. In addition, we proposed the Vectors,

70 Chapter 6. Trip count prediction

an abstraction inspired by physics to represent patterns of updates of variables on the
real line. Furthermore, we have proposed two heuristics to estimate the trip count of
loops, based on our Vectors. Finally, we have evaluated the precision of our heuristics,
observing 87.25% of accuracy while analysing interval loops.

Chapter 7

Final considerations

In this chapter we finish this work. First, we point possible directions that we can
further explore, in order to increase either the precision or the applicability of our
analyses. Finally, we conclude the two-year long effort that culminates with this dis-
sertation. We briefly visit again our contributions discussing the main results we have
achieved.

7.1 Future Works

The contributions presented in this work can be used to achieve further goals in many
research areas; some of them are already being pursued by our compiler research team.
First, we can use our Range Analysis in further analyses and optimizations, like we did
with our Integer Overflow Instrumentation. Second, we can extend our Range Analysis
to other types of variables (e.g. float). Third, we can use our trip count prediction
methods to create optimizations according to the estimated trip count. Finally, we can
develop a Worst-Case Computational Complexity (WCCC) estimation method based
on our trip count estimation.

Our Range Analysis extracts valuable information about the integer variables.
We can use that information to enhance existing analyses and optimizations, such as
dead code elimination or branch prediction. We can also implement a true context-
sensitive analysis, instead of using function inlining, in order to try to achieve more
precision without the drawback of the growth of the program size. Furthermore, our
symbolic implementation of range analysis makes possible to use the Range Analysis
together with algorithms based on Symbolic Execution. In addition, we can extend
our Range Analysis to other numerical types (e.g. float) and have it compatible with
a larger number of analyses.

71

72 Chapter 7. Final considerations

Our trip count prediction heuristics also open new opportunities for future works.
First, our simpler heuristic allows us to perform more aggressive optimizations in JIT
compilers, when we estimate that we will have a large number of iterations in a given
loop. Second, our vector heuristic allows us to perform optimizations that depend on
the number of iterations of a given loop. For instance, some architectures like ccNUMA
are very sensitive to the location of the memory read by a program running in a given
core. Thus, we can choose to either move or not to move pages in the memory according
to the number of iterations. Similarly, we can use the symbolic trip count of loops to
derive the WCCC of a given function and decide whether it is advantageous or not to
run the same function in a GPGPU (General Purpose Graphics Processing Unit).

7.2 Conclusions

This dissertation summarizes a two-year long effort of research on compiler analyses
and optimizations. One of the more significant findings to emerge from this study is
our Range Analysis algorithm. The resolution of future values – the key contribution
of our research – allows our analysis to be more precise without resorting to complex
techniques. Instead, we have demonstrated that in the average case, our analysis has
linear time complexity in function of the program size.

Our second contribution is a technique to dynamically check integer overflows.
Our approach to tackle this problem is simple, but is effective and has produced the
least overhead in the programs, when compared with previous works existing in the
literature. Furthermore, we were able to show an example of how other analysis or
optimizations can benefit from the information provided by our range analysis to give
better results to their users. Moreover, we have also extracted some properties from
overflow-free programs. Those properties were used to develop the u-SSA representa-
tion, that were able to increase the precision of our Range Analysis.

Our third major finding was an heuristic to estimate the trip count of loops.
Our insight of using vectors to represent the abstraction of patterns of redefinition of
variables have allowed us to estimate precise trip counts for 75% of the instrumented
loops. Additionally, we have developed a simplified version of our heuristic, aiming
JIT compilation. Despite of the simplicity of the heuristic, we have been able to infer
correctly the trip counts of 66% of the instrumented loops.

Bibliography

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley.

Ananian, S. (1999). The static single information form. Master’s thesis, MIT.

Appel, A. W. and Palsberg, J. (2002). Modern Compiler Implementation in Java.
Cambridge University Press, 2nd edition.

Barik, R., Grothoff, C., Gupta, R., Pandit, V., and Udupa, R. (2006). Optimal bitwise
register allocation using integer linear programming. In LCPC, volume 4382 of
Lecture Notes in Computer Science, pages 267–282. Springer.

Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., and Rival, X.
(2010). Static analysis and verification of aerospace software by abstract interpreta-
tion. In I@A, pages 1--38. AIAA.

Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., and Rival, X. (2003). A static analyzer for large safety-critical software. In PLDI,
pages 196--207. ACM.

Bodik, R., Gupta, R., and Sarkar, V. (2000). ABCD: eliminating array bounds checks
on demand. In PLDI, pages 321–333. ACM.

Boissinot, B., Darte, A., Rastello, F., de Dinechin, B. D., and Guillon, C. (2009).
Revisiting out-of-SSA translation for correctness, code quality, and efficienty. In
CGO, pages 114–125. IEEE.

Boissinot, B., Hack, S., Grund, D., de Dinechin, B. D., and Rastello, F. (2008). Fast
liveness checking for SSA-form programs. In CGO, pages 35–44. IEEE.

Brumley, D., Song, D. X., cker Chiueh, T., Johnson, R., and Lin, H. (2007). RICH:
Automatically protecting against integer-based vulnerabilities. In NDSS. USENIX.

73

74 Bibliography

Campos, V. H. S., Rodrigues, R. E., de Assis Costa, I. R., and Pereira, F. M. Q.
(2012). Speed and precision in range analysis. In Programming Languages, pages
42--56. Springer.

Chen, P., Wang, Y., Xin, Z., Mao, B., and Xie, L. (2009). BRICK: A binary tool
for run-time detecting and locating integer-based vulnerability. In ARES, pages
208–215.

Chinchani, R., Iyer, A., Jayaraman, B., and Upadhyaya, S. (2004). ARCHERR: Run-
time environment driven program safety. In European Symposium on Research in
Computer Security. Springer.

Choi, J.-D., Cytron, R., and Ferrante, J. (1991). Automatic construction of sparse
data flow evaluation graphs. In POPL, pages 55–66.

Clarke, E. M., Grumberg, O., and Long, D. E. (1994). Model checking and abstraction.
ACM Transactions on Programming Languages and Systems (TOPLAS), 16(5):1512-
-1542.

Cong, J., Fan, Y., Han, G., Lin, Y., Xu, J., Zhang, Z., and Cheng, X. (18-21 Jan. 2005).
Bitwidth-aware scheduling and binding in high-level synthesis. Design Automation
Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South Pacific, 2:856–
861.

Costan, A., Gaubert, S., Goubault, E., Martel, M., and Putot, S. (2005). A policy
iteration algorithm for computing fixed points in static analysis of programs. In
CAV, pages 462–475.

Cousot, P. and Cousot, R. (1977). Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In POPL,
pages 238--252. ACM.

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., and Rival, X. (2009). Why
does astrée scale up? Form. Methods Syst. Des., 35(3):229--264.

Cousot, P. and Halbwachs, N. (1978). Automatic discovery of linear restraints among
variables of a program. In POPL, pages 84--96. ACM.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1991). Ef-
ficiently computing static single assignment form and the control dependence graph.
TOPLAS, 13(4):451–490.

Bibliography 75

Dietz, W., Li, P., Regehr, J., and Adve, V. (2012). Understanding integer overflow in
c/c++. In ICSE, pages 760--770. IEEE.

Dowson, M. (1997). The ariane 5 software failure. SIGSOFT Softw. Eng. Notes,
22(2):84--.

Ermedahl, A. and Gustafsson, J. (1997). Deriving annotations for tight calculation of
execution time. In Euro-Par’97 Parallel Processing, pages 1298--1307. Springer.

Ferrante, J., Ottenstein, K., and Warren, J. (1987). The program dependence graph
and its use in optimization. TOPLAS, 9(3):319--349.

Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B., and Stata, R.
(2002). Extended static checking for java. In ACM Sigplan Notices, volume 37, pages
234--245. ACM.

Frigge, M., Hoaglin, D. C., and Iglewicz, B. (1989). Some implementations of the
boxplot. The American Statistician, 43(1):50--54.

Gampe, A., von Ronne, J., Niedzielski, D., Vasek, J., and Psarris, L. (2011). Safe,
multiphase bounds check elimination in java. Software: Practice and Experience,
41:753--788.

Gawlitza, T., Leroux, J., Reineke, J., Seidl, H., Sutre, G., and Wilhelm, R. (2009).
Polynomial precise interval analysis revisited. Efficient Algorithms, 1:422 -- 437.

George, L. and Matthias, B. (2003). Taming the ixp network processor. In PLDI,
pages 26--37. ACM.

Gough, J. and Klaeren, H. (1994). Eliminating range checks using static single assign-
ment form. Technical report, Queensland University of Technology.

Gulavani, B. S. and Gulwani, S. (2008). A numerical abstract domain based on expres-
sion abstraction and max operator with application in timing analysis. In Computer
Aided Verification, pages 370--384. Springer.

Gulwani, S., Jain, S., and Koskinen, E. (2009a). Control-flow refinement and progress
invariants for bound analysis. In ACM Sigplan Notices, volume 44, pages 375--385.
ACM.

Gulwani, S., Mehra, K. K., and Chilimbi, T. (2009b). Speed: precise and efficient
static estimation of program computational complexity. In ACM SIGPLAN Notices,
volume 44, pages 127--139. ACM.

76 Bibliography

Halbwachs, N., Proy, Y.-E., and Roumanoff, P. (1997). Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2):157--185.

Henry, J., Monniaux, D., and Moy, M. (2012). Pagai: a path sensitive static analyser.
Electronic Notes in Theoretical Computer Science, 289:15--25.

Johnson, R., Pearson, D., and Pingali, K. (1994). The program tree structure. In
PLDI, pages 171--185. ACM.

Johnson, R. and Pingali, K. (1993). Dependence-based program analysis. In PLDI,
pages 78–89. ACM.

Jung, Y., Kim, J., Shin, J., and Yi, K. (2005). Taming false alarms from a domain-
unaware c analyzer by a bayesian statistical post analysis. In SAS, pages 203–217.

Kennedy, K. and Allen, R. (2001). Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann.

Kong, T. and Wilken, K. D. (1998). Precise register allocation for irregular architec-
tures. In MICRO, pages 297–307. IEEE.

Lakhdar-Chaouch, L., Jeannet, B., and Girault, A. (2011). Widening with thresholds
for programs with complex control graphs. In ATVA, pages 492--502. Springer-
Verlag.

Lattner, C. and Adve, V. S. (2004). LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO, pages 75–88. IEEE.

Lhairech-Lebreton, G., Coussy, P., Heller, D., and Martin, E. (2010). Bitwidth-aware
high-level synthesis for designing low-power dsp applications. In ICECS, pages 531-
-534. IEEE.

Liu, Y. A. and Gomez, G. (1998). Automatic accurate time-bound analysis for high-
level languages. In Languages, Compilers, and Tools for Embedded Systems, pages
31--40. Springer.

Lo, R., Chow, F., Kennedy, R., Liu, S.-M., and Tu, P. (1998). Register promotion by
sparse partial redundancy elimination of loads and stores. In PLDI, pages 26--37.
ACM.

Lokuciejewski, P., Cordes, D., Falk, H., and Marwedel, P. (2009). A fast and precise
static loop analysis based on abstract interpretation, program slicing and polytope
models. In CGO, pages 136–146. IEEE.

Bibliography 77

Lundqvist, T. and Stenström, P. (1998). Integrating path and timing analysis us-
ing instruction-level simulation techniques. In Languages, Compilers, and Tools for
Embedded Systems, pages 1--15. Springer.

Mahlke, S., Ravindran, R., Schlansker, M., Schreiber, R., and Sherwood, T.
(2001). Bitwidth cognizant architecture synthesis of custom hardware accelerators.
Computer-Aided Design of Integrated Circuits and Systems, 20(11):1355–1371.

Miné, A. (2006). The octagon abstract domain. Higher Order Symbol. Comput., 19:31-
-100. ISSN 1388-3690.

Molnar, D., Li, X. C., and Wagner, D. A. (2009). Dynamic test generation to find
integer bugs in x86 binary linux programs. In SSYM, pages 67--82. USENIX.

Nethercote, N. and Seward, J. (2007). Valgrind: a framework for heavyweight dynamic
binary instrumentation. In PLDI, pages 89--100. ACM.

Nielson, F., Nielson, H. R., and Hankin, C. (1999). Principles of Program Analysis.
Springer.

Nuutila, E. and Soisalon-Soininen, E. (1994). On finding the strongly connected com-
ponents in a directed graph. Inf. Process. Lett., 49(1):9–14.

Oh, H., Heo, K., Lee, W., Lee, W., and Yi, K. (2012). Design and implementation of
sparse global analyses for C-like languages. In PLDI, pages 229--238. ACM.

Ottenstein, K. J., Ballance, R. A., and MacCabe, A. B. (1990). The program depen-
dence web: a representation supporting control-, data-, and demand-driven interpre-
tation of imperative languages. In PLDI, pages 257--271. ACM.

Patterson, J. R. C. (1995). Accurate static branch prediction by value range propaga-
tion. In PLDI, pages 67--78. ACM.

Pereira, F. M. Q. and Palsberg, J. (2008). Register allocation by puzzle solving. In
PLDI, pages 216–226. ACM.

Pingali, K. and Bilardi, G. (1995). APT: A data structure for optimal control depen-
dence computation. In PLDI, pages 211–222. ACM.

Pingali, K. and Bilardi, G. (1997). Optimal control dependence computation and the
roman chariots problem. In TOPLAS, pages 462--491. ACM.

78 Bibliography

Plevyak, J. B. (1996). Optimization of Object-Oriented and Concurrent Programs. PhD
thesis, University of Illinois at Urbana-Champaign.

Plezbert, M. P. and Cytron, R. K. (1997). Does “just in time”=“better late than never”?
In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 120--131. ACM.

Ramalingam, G. (2002). On sparse evaluation representations. Theoretical Computer
Science, 277(1-2):119--147.

Rice, H. G. (1953). Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74(2):358--366.

Rimsa, A. A., D’Amorim, M., and Pereira, F. M. Q. (2011). Tainted flow analysis on
e-SSA-form programs. In CC, pages 124--143. Springer.

Rodrigues, R. E. and Pereira, F. M. Q. (2013). Prevenção de ataques de nao-terminação
baseados em estouros de precisão. In Anais do XVII Simpósio Brasileiro de Lingua-
gens de Programação, pages 32--46. SBC.

Rodrigues, R. E., Sperle Campos, V. H., and Quintao Pereira, F. M. (2013). A fast
and low-overhead technique to secure programs against integer overflows. In Code
Generation and Optimization (CGO), 2013 IEEE/ACM International Symposium
on, pages 1--11. IEEE.

Scholz, B. and Eckstein, E. (2002). Register allocation for irregular architectures. In
LCTES/SCOPES, pages 139–148. ACM.

Schwartzbach, M. I. (2008). Lecture notes on static analysis. Basic Research in Com-
puter Science, University of Aarhus, Denmark.

Simon, A. (2008). Value-Range Analysis of C Programs: Towards Proving the Absence
of Buffer Overflow Vulnerabilities. Springer, 1th edition.

Singer, J. (2006). Static Program Analysis Based on Virtual Register Renaming. PhD
thesis, University of Cambridge.

Stephenson, M., Babb, J., and Amarasinghe, S. (2000). Bitwidth analysis with appli-
cation to silicon compilation. In PLDI, pages 108--120. ACM.

Su, Z. and Wagner, D. (2004). A class of polynomially solvable range constraints for
interval analysis without widenings and narrowings. In TACAS, pages 280--295.

Bibliography 79

Su, Z. and Wagner, D. (2005). A class of polynomially solvable range constraints for
interval analysis without widenings. Theoretical Computer Science, 345(1):122--138.

Tallam, S. and Gupta, R. (2003). Bitwidth aware global register allocation. In POPL,
pages 85--96. ACM.

Tarjan, R. E. (1972). Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160.

Tavares, A. L. C., Boissinot, B., Bigonha, M. A. S., Bigonha, R., Pereira, F. M. Q., and
Rastello, F. (201X). A program representation for sparse dataflow analyses. Science
of Computer Programming, X(X):2--25. Invited paper with publication expected for
2012.

Tu, P. and Padua, D. (1995). Efficient building and placing of gating functions. In
PLDI, pages 47--55. ACM.

Venet, A. and Brat, G. (2004). Precise and efficient static array bound checking for
large embedded c programs. SIGPLAN Not., 39:231--242.

Wagner, D., Foster, J. S., Brewer, E. A., and Aiken, A. (2000). A first step towards
automated detection of buffer overrun vulnerabilities. In NDSS, pages 3--17. ACM.

Wang, T., Wei, T., Lin, Z., and Zou, W. (2009). Intscope: Automatically detecting
integer overflow vulnerability in x86 binary using symbolic execution. In NDSS.
Internet Society.

Warren, H. S. (2002). Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc.

Wolfe, M. J., Shanklin, C., and Ortega, L. (1995). High performance compilers for
parallel computing. Addison-Wesley Longman Publishing Co., Inc.

Yang, Y., Yan, H., Shao, Z., and Guo, M. (2011). Compiler-assisted dynamic scratch-
pad memory management with space overlapping for embedded systems. Software:
Practice and Experience, 41(7):737–752.

Zhang, C., Wang, T., Wei, T., Chen, Y., and Zou, W. (2010). Intpatch: automatically
fix integer-overflow-to-buffer-overflow vulnerability at compile-time. In ESORICS,
pages 71--86. Springer-Verlag.

	Acknowledgments
	Resumo
	Abstract
	Extended Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Range Analysis
	1.2 Integer Overflows
	1.3 Trip Count Prediction
	1.4 Contributions
	1.5 Experimental results
	1.6 Publications and Software

	2 Literature review
	2.1 Range Analysis
	2.2 Live Range Splitting
	2.3 Integer Overflows
	2.4 Trip Count Analysis

	3 Live Range Splitting
	3.1 Live Splitting Alternatives
	3.2 Experiments
	3.3 Conclusion

	4 Range Analysis
	4.1 Background
	4.3 Our Design of a Range Analysis Algorithm
	4.3.1 Finding Ranges in Strongly Connected Components
	4.3.2 Experiments

	4.4 Design Space
	4.4.1 Strongly Connected Components
	4.4.2 The Choice of a Program Representation
	4.4.3 Intra versus Inter-procedural Analysis
	4.4.4 Achieving Partial Context-Sensitiveness via Function Inlining
	4.4.5 Choosing a Widening Strategy

	4.5 Conclusion

	5 Integer Overflows
	5.1 The Dynamic Instrumentation Library
	5.2 Experimental Results
	5.3 Conclusion

	6 Trip count prediction
	6.1 Background
	6.1.1 Natural Loops
	6.1.2 Strongly Connected Components
	6.1.3 Sequences of Redefinitions of Variables
	6.1.4 Vectors
	6.1.5 Patterns of movement

	6.2 A Trip Count Algorithm Based on Vectors
	6.3 A Simplified Trip Count Algorithm Based on Vectors for JIT compilers
	6.4 Experimental Results
	6.5 Conclusion

	7 Final considerations
	7.1 Future Works
	7.2 Conclusions

	Bibliography

