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Resumo

Robótica de enxames é o estudo de sistemas multiagentes cujos robôs são relativamente

simples e possuem capacidades limitadas. Esses sistemas usualmente dependem de pro-

priedades como robustez, �exibilidade e escalabilidade para cumprir tarefas complexas

em cenários distintos. Com o objetivo de obter tais propriedades, enxames robóticos

geralmente simulam o comportamento coletivo de insetos e animais, os quais apresen-

tam intrincados mecanismos desenvolvidos pela evolução como soluções para vários

problemas reais. Um requisito básico para a maioria dos enxames robóticos é a ha-

bilidade de navegar seguramente em ambientes compartilhados. Particularmente, um

comportamento desejado é evitar a fusão de times diferentes que navegam em direções

opostas. Esse é um exemplo de segregação, um fenômeno natural que é comumente

observado na natureza. Vários sistemas biológicos se organizam de acordo com mecan-

ismos baseados em comportamentos segregativos. Dentre esses, a segregação celular é

de interesse particular pois desempenha um papel importante na formação de tecidos,

órgãos e organismos vivos. Neste trabalho, um estudo sobre a segregação em enxames

é apresentado e duas soluções são propostas para os problemas do agrupamento segre-

gado e navegação segregada. A primeira abordagem se baseia na Hipótese da Adesão

Diferencial, a qual a�rma que células segregam naturalmente devido a diferenças de

a�nidade. Um controlador capaz de segregar enxames heterogêneos de acordo com as

características de cada agente é introduzido, de modo que robôs semelhantes formem

times homogêneos e robôs distintos �quem segregados. Com relação ao segundo prob-

lema, um algoritmo baseado em abstrações hierárquicas, comportamentos de rebanho

e obstáculos de velocidade é desenvolvido visando-se manter times de robôs segregados

durante a navegação. Experimentos reais e simulados são analisados com o objetivo

de estudar a viabilidade e e�ciência dos métodos propostos. Os resultados mostram

que as abordagens permitem um enxame de robôs heterogêneos segregar de maneira

coerente e suave, sem a ocorrência de colisões.

Palavras-chave: robótica, enxames, segregação.

ix





Abstract

Swarm robotics is the study of large multi-agent systems whose robots are relatively

simple and have limited capabilities. These systems usually rely on properties such as

robustness, �exibility, and scalability to ful�ll complex tasks on distinct scenarios. In

order to achieve these properties, robotic swarms generally simulate the collective be-

havior of insects and animals, which display intricate mechanisms shaped by evolution

as solutions to many real-world problems. A basic requirement for most robotic swarms

is the ability for safe navigation in shared environments. Particularly, a desired be-

havior is to avoid merging with di�erent teams navigating in opposite directions. This

is an example of segregation, a natural phenomenon which is commonly observed in

nature. Several biological systems adopt self-sorting mechanisms based on segregative

behaviors. Among these, cell segregation is of particular interest since it plays an im-

portant role in the formation of tissues, organs, and living organisms. In this work, we

study segregation in swarm systems and propose solutions to two particular problems:

segregated clustering and segregated navigation. We tackle the former by exploring the

Di�erential Adhesion Hypothesis, which states that cells naturally segregate because

of di�erences in a�nity, and introduce a controller that can segregate heterogeneous

swarms of robots according to the characteristics of each agent, such that similar robots

form homogeneous teams and dissimilar robots are segregated. Regarding the latter

problem, we present a distributed mechanism that combines concepts such as hierarchi-

cal abstractions, �ocking behaviors, and velocity obstacles in order to maintain teams

of robots segregated during navigation. We perform simulated and real experiments in

order to study the feasibility and e�ectiveness of our methods. Results show that our

approaches allow a swarm of multiple heterogeneous robots to segregate in a coherent

and smooth fashion, without any interagent collisions.

Palavras-chave: robotics, swarms, segregation.
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Chapter 1

Introduction

In this chapter, we introduce the context and motivation of this dissertation by present-

ing a brief overview of swarm robotics and its potential applications. We also de�ne

our research problem and discuss our main contributions to the subject of segrega-

tive behaviors in swarm systems. Finally, the chapter is closed with an outline of the

organization of this document.

1.1 Swarm Robotics

Swarm robotics studies multi-agent systems consisting of a large number of relatively

simple robots. In recent years, such systems have been receiving much attention be-

cause of current advances in technology, which have been allowing the mass production

of increasingly smaller robots. �ahin [2005] de�nes swarm robotics as the study and

implementation of methods that allow a large number of simple physically embod-

ied agents to achieve a desired collective behavior which emerges from local interac-

tions with the environment and among themselves. Moreover, he states that a robotic

swarm should exhibit three system-level properties which are often observed in biolog-

ical swarms:

• Robustness: individuals should operate despite any agent malfunctions or ex-

ternal disturbances from the environment;

• Flexibility: the system should be able to cope with a wide range of di�erent

tasks and environments;

• Scalability: the swarm should support a large number of agents without signif-

icantly impacting its performance.

1



2 Chapter 1. Introduction

These properties provide advantages associated with the use of a swarm of simple

robots over a few sophisticated ones, some of which are low-cost distributed sensing,

lower chances of complete system failures, better workload distribution, and massive

task parallelization.

Inspirations for swarm robotics usually come from observations of the collective

behavior of insects and animals, which are exceptional examples of biological systems

whose simple individuals can thrive when working together. For instance, the natural

behavior of ant colonies, �ocks of birds, and schools of �shes were used as founda-

tions of many common approaches in swarm robotics, including Reynold's �ocking

model [Reynolds, 1987] and Particle Swarm Optimization [Kennedy and Eberhart,

1995]. In a broad sense, the study of emergent collective behaviors in self-organized

systems is the main subject of Swarm Intelligence, which comprises the development

of algorithms based on behavioral patterns of insect and animal societies [Bonabeau

et al., 1999; Eberhart et al., 2001]. Emergent intelligence occurs when each individual

has its own agenda, but the swarm as a whole seems highly organized towards a com-

mon goal. One example is the foraging behavior of ants, which is adapted according to

the quality and spatial distribution of food sources scattered throughout the environ-

ment [Deneubourg et al., 1991]. In robotics, researchers can solve many problems by

employing emergent behaviors such as aggregation, dispersion, foraging, self-assembly,

cooperative transport, and pattern formation, most of which are achieved by solely

relying on simple local interactions among individuals of the swarm. A thorough re-

view of many swarm behaviors can be found in the works by �ahin [2005] and Barca

and Sekercioglu [2013]. Furthermore, Parker [2008] gives a more general overview and

classi�cation of distributed intelligence in arti�cial systems.

Swarm systems have also a wide range of applications outside of robotics, e.g.,

digital animation [Reynolds, 1987], numerical optimization [Kennedy and Eberhart,

1995], web page classi�cation [Holden and Freitas, 2004], crowd simulation [Narain

et al., 2009], among others. In addition, civil engineers can use swarms to simulate a

crowd evacuating from a building in case of emergency, and this procedure can lead

to better design decisions that will minimize casualties in such a scenario [Thalmann

and Musse, 2007]. Moreover, in order to reduce production costs, �lm directors often

apply computer graphics and swarm technologies to create illusions of crowds, �ocks,

and herds. Notable examples include Batman Returns by Burton et al. [1992] and

The Lord of the Rings: The Fellowship of the Ring by Jackson et al. [2001], in which

swarms of bats and large-scale battle scenes were respectively computer-generated.

Besides robots and virtual agents, bacteria can be used as computer-controlled

swarms to accomplish precise operations in micro-scale levels, since some types thereof
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can be steered by external forces such as those originated from magnetic �elds. As a

proof-of-concept, Martel and Mohammadi [2010] performed a complex micro-assembly

experiment with magnetotactic bacteria, which were controlled by a set of coils capa-

ble of generating lines of magnetic �elds in any desired direction. Figure 1.1 shows

snapshots of an experiment from this work, in which a swarm of bacteria builds a

micro-scale pyramid. Further research in this direction could lead swarm systems to

deliver therapeutic agents into tumoral lesions inside the human body.

(a) Block pushing. (b) Block delivering. (c) Full pyramid.

Figure 1.1. Images from an optical microscope showing a swarm of approxi-
mately 5000 �agellated magnetotactic bacteria building a micro-scale pyramid.
Source: [Martel and Mohammadi, 2010].

After this brief overview of swarm systems and their potential applications, it

remains to introduce our problem. In this work, we explore a particular behavior of

swarm systems known as segregation. We state our motivations and de�ne the problem

in the following section.

1.2 Motivation and Problem De�nition

Most researchers in swarm robotics generally focus on homogeneous systems, in which

all robots have the same physical characteristics. For instance, �ahin [2005] even

includes in his de�nition of swarm robotics that agents should be rather homogeneous.

However, several applications of multi-robot and swarm systems require the use of

heterogeneous teams of agents in order to ful�ll a given mission, as sometimes it is not

possible to integrate all of the required sensing and actuation capabilities for the task in

a single robot. This is the case of the Swarmanoid project [Dorigo et al., 2013], whose

robots consist of three distinct types: foot-bots, a di�erential drive system with high

mobility on rough terrain; hand-bots, an autonomous agent capable of manipulating

objects as well as climbing vertical structures; and eye-bots, a �ying robot designed to

operate indoors (see Figure 1.2). These heterogeneous systems are especially useful on
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(a) Foot-bots. (b) Hand-bots. (c) Eye-bot.

Figure 1.2. Robots from the Swarmanoid project. Source: [Dorigo et al., 2013].

cooperative assignments such as search and rescue, surveillance, perimeter protection,

and cooperative transport.

In some cases, heterogeneous agents must be able to self-organize in a speci�c

manner in order to complete their assigned tasks (e.g., see [Pimenta et al., 2008]). For

instance, robots that gather distinct types of materials may need to form teams which

can maximize the gathering of a particular resource. One strategy would be to sort

agents according to their specialization, such that gatherers of similar materials stay

in the same team. Afterwards, these groups can be deployed to di�erent regions where

a speci�c resource is abundant. We can say that such system shows a segregative

behavior since the sorting process leads dissimilar agents into distinct teams.

Segregation is a particular sorting mechanism that is common in nature, being

widely used by many individuals such as cells and animals to shape their populations

into tissues as well as societies, respectively. This behavior has been extensively studied

by biologists, but few robotics researchers have tried to simulate it on large swarm

systems. Therefore, in this work, we study some basic mechanisms behind biological

segregation and propose controllers in order to simulate this behavior. More speci�cally,

we focus on two particular subproblems of segregation: clustering and navigation, which

are de�ned below.

Segregated Clustering Problem (SEG-CLU). Given a set of heterogeneous mobile

robots, some of which share the same characteristics, sort all agents into homogeneous

clusters such that each cluster contains robots with only the same characteristics.

Segregated Navigation Problem (SEG-NAV). Given a set of homogeneous robot

clusters, each one having a particular goal position, navigate each cluster towards its

respective goal while maintaining segregation among robots.
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Both problems refer to segregation in a spatial distribution sense, i.e., the traits of

each robot directly in�uence its position in space. In this manner, similar agents form

a cohesive cluster, and dissimilar ones are separated from each other. Traits can be

either physical, such as having di�erent sensors and actuators; or virtual, such as using

broadcast identi�ers to discriminate robots. Furthermore, we assume that every agent

can perceive and recognize these characteristics by solely relying on onboard sensors,

since perception and recognition are out of the scope of this work.

We tackle the SEG-CLU problem by developing a controller based on the di�er-

ential potential concept [Kumar et al., 2010], an analogy for multi-agent systems of the

biological mechanisms by which cells segregate. We also employ LaSalle's Invariance

Principle in order to demonstrate convergence and present several simulated experi-

ments in 2D and 3D spaces, which validate the proposed approach. With regards to the

SEG-NAV problem, we investigate an algorithmic approach based on velocity obsta-

cles and �ocking behaviors in order to maintain segregation during robot navigation.

In this method, we introduce the Virtual Group Velocity Obstacle: a set of forbidden

velocities that can lead an agent of a particular cluster to mingle with other clusters.

We present a series of simulated and real experiments in order to show the robustness

of this method, and we analyze the results using a metric that measures the segregative

behavior of the system along its execution.

1.3 Contributions

A summary of the main contributions of this dissertation to the swarm robotics com-

munity is as follows:

• We developed two robust and distributed methods, each of which is capable of

solving the SEG-CLU and SEG-NAV problems, respectivelly, for multiple types

of heterogeneous robots.

• We proposed a new metric in order to quantitatively de�ne the spatial segregation

of a heterogeneous system in an intuitive sense.

• We showed interesting properties of one of our controllers by employing a formal

analysis based on Lyapunov Stability Theory [Lyapunov, 1992] and presenting

several simulated experiments with hundreds of agents.

• We provided behavioral comparisons between one of our controllers and other

previous approaches in order to show its advantages and disadvantages.
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• Both of our approaches extend the Velocity Obstacle framework [Fiorini and

Shillert, 1998] and the di�erential potential concept [Kumar et al., 2010].

During the development of this dissertation, we have produced some technical

papers that have been submitted for publication. The following list provide references

to these documents.

• Santos, V. and Chaimowicz, L. (2014). Cohesion and Segregation in Swarm

Navigation. Robotica. Cambridge University Press.

• Santos, V., Pimenta, L., and Chaimowicz, L. (2014). Segregation of multiple

heterogeneous units in a robotic swarm. In Proceedings of the IEEE International

Conference on Robotics and Automation.

• Santos, V., Campos, M., and Chaimowicz, L. (2012). On segregative behaviors

using �ocking and velocity obstacles. In Proceedings of the 11th International

Symposium on Distributed Autonomous Robotic Systems.

1.4 Organization

We have organized this dissertation into �ve chapters, each of which is described below,

with the exception of this introduction. Furthermore, we have separated our proposed

solutions to the SEG-CLU and SEG-NAV problems into two chapters that contain the

respective descriptions of our methods, experiments, and analyses.

• Chapter 2 � Background: discusses key concepts related to biological segre-

gation and related work on coordinating multi-agent and swarm systems.

• Chapter 3 � Segregated Clustering: presents the methodology, analysis, and

experiments related to the segregated clustering problem.

• Chapter 4 � Segregated Navigation: introduces the methodology, analysis,

and experiments related to the segregated navigation problem.

• Chapter 5 � Conclusion: closes this dissertation with our conclusions and

directions for future work.



Chapter 2

Background

In this chapter, we discuss some concepts related to biological segregation and present

previous research that has attempted to simulate the phenomenon. Afterwards, we

consider swarm segregation as a coordination problem and review some related work

on the latter.

2.1 Biological Segregation Models

Segregation is a natural phenomenon which appears in several biological systems. For

instance, ants sort their brood in annular patterns in which distinct broods tend to

be placed at particular annuli [Franks and Sendova-Franks, 1992]; odors can impact

the spatial distribution of several species of cockroaches, whose larvae prefer their own

strain odor to that of another strain [Ame et al., 2004]; and the Law of Segregation from

classic genetics explains trait inheritance as a process by which two genes separate from

each other during gamete formation, and this process allows them to appear in di�erent

gametes of the o�spring [Ridley, 2003]. Another example is cellular segregation, which

is of central importance in embryogenesis, as the formation of many tissues requires an

initial subdivision of cells into regions, each with speci�c characteristics that will allow

particular cell types to be generated [Eduard and Wilkinson, 2012].

In order to explain the segregative behavior of cells, Steinberg [1963] postulated

the Di�erential Adhesion Hypothesis (DAH), which states that di�erences in cell adhe-

sion generate mechanical forces that drive cellular segregation. In other words, a cell

population experience stronger cohesive forces when among similar cells than when

among dissimilar ones, and this imbalance is responsible for the segregative behav-

ior [Eduard and Wilkinson, 2012]. Figure 2.1 shows two populations of cells that

behave according to the DAH. Each cell type has been stained with distinct �uores-

7



8 Chapter 2. Background

cent membrane dyes in order to ease their discrimination. In this case, the DAH asserts

that red cells envelope the green ones because the adhesion among the latter is stronger

than among the former. As a matter of fact, cell adhesion was shown to be proportional

to the protein expression levels of N-cadherins in a cell's surface [Foty and Steinberg,

2005], and since the two populations of Figure 2.1 actually express di�erent levels of

such proteins, these results serve as evidence of the DAH. Besides biological experi-

ments, Agarwal [1995] successfully simulated segregation on a cellular automaton by

employing the DAH. Figure 2.2 presents one of his experiments, in which white cells

envelop black cells because of the same reasons as before. This simulation shows that

Steinberg's model of cellular segregation can be implemented on multi-agent systems.

Figure 2.1. Cellular segregation of two distinct populations which express dif-
ferent levels of N-cadherins at their surfaces. Source: [Foty and Steinberg, 2005].

Robotics researchers have mostly focused on segregation as a mechanism by which

robots sort a collection of objects. As an example, Deneubourg et al. [1991] developed

a method that allows robots to sort similar objects into clusters by mimicking the for-

aging behavior of ants. However, some authors have speci�cally dealt with segregation

of heterogeneous agents in the same sense as we do. In particular, Groÿ et al. [2009]

discussed a motor schema that allows mobile robots to self-organize into annular struc-

tures. A distributed controller considers robots as having distinct virtual sizes and

local interactions make �larger� robots move outwards. The procedure was inspired

by the Brazil Nut E�ect, a granular convection phenomenon by which a mixture of

granular material subjected to vibrations leads its largest particles to the surface. This

work was extended to consider real e-puck robots [Chen et al., 2012] as well. In spite of

the interesting results, the controller requires that all robots share a common target in

order to simulate the gravitational forces responsible for the granular convection, and

this implies that a centralized broadcast or a consensus algorithm must be executed

previously. Based on Steinberg's DAH, Kumar et al. [2010] proposed the di�erential

potential concept, which asserts that agents should experience di�erent magnitudes of
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Figure 2.2. Discrete numerical simulation of cellular segregation based on the
Di�erential Adhesion Hypothesis. Source: [Agarwal, 1995].

potential while interacting with agents of distinct types in order to achieve segregation.

Stability analysis as well as convergence proofs were presented. Nevertheless, their ap-

proach is limited to only two types of robots and the use of of multiple types easily leads

the system to local minima, where segregation does not occur, as we have seen through

many experiments which we have performed with their controller. Finally, both of

these works did not target the segregation of distinct groups during navigation, which

is one of the problems that we focus. Moreover, we are interested in developing proper

mechanisms that ensure segregation in the case of multiple robot types. We deal with

these problems in Chapters 3 and 4, as accounted in Section 1.4.

2.2 Segregation as a Coordination Problem

Robots must coordinate themselves in order to achieve segregation, since at every time

step any individual can in�uence the �nal position of other agents. Therefore, such

behavior can be seen as a particular instance of the multi-robot coordination problem.

As few works in robotics directly deal with the speci�c topic of this dissertation, we
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think it is important to review the research that has been done on coordinating multi-

robot and swarm systems. We start our survey by discussing concepts related to path

planning, since it is usual for coordination problems to be reduced into high-dimensional

path planning problems.

We classify related work into three main categories: centralized methods, which

employ classical arti�cial intelligence and optimization techniques in order to coordi-

nate the system as a whole; distributed methods, which specify individual behaviors

that are responsible for achieving global coordination; and hybrid methods, which

leverage the bene�ts over the disadvantages of the previous approaches. It is usual

for centralized techniques to search for optimal solutions according to some criteria,

such as the total navigation time, whereas decentralized methods often achieve coor-

dination by compromising optimality over e�ciency and scalability. In the middle of

these two extremes, hybrid approaches aim to �nd a balance by employing one or more

centralizing agents that help the underlying distributed system to achieve coordination.

2.2.1 Centralized Methods

Most centralized techniques achieve coordination in multi-robot scenarios by searching

for a path in a composite space that comprehends all of the system's degrees of free-

dom. That is, they reduce coordination to a path planning problem, which consists in

�nding a collision-free path in an environment populated with obstacles. In its original

formulation, known as the piano mover's problem [Reif, 1979], the task requires a piano

to be safely moved throughout a furnished room.

The path planning problem was precisely de�ned and showed intractable dur-

ing the 70s [Reif, 1979], and combinatorial solutions were developed during the

80s [Latombe, 1991]. However, these were restricted to systems with few degrees of

freedom, which in turn hindered the use of multi-robot and swarm systems. The

90s and the following years have seen the development of sampling-based path plan-

ning [Kavraki et al., 1996; LaValle and Ku�ner Jr., 2001; Karaman and Frazzoli, 2011],

whose e�ciency has allowed real industrial problems to be solved, even in areas outside

of robotics such as automation, virtual prototyping, bioinformatics, and others. The

books by Latombe [1991]; Choset et al. [2005]; LaValle [2006]; and de Berg et al. [2008]

present a thorough review of path planning algorithms as well as their underlying data

structures.

Most of these algorithms rely on the system's con�guration space, a concept

introduced in robotics by Lozano-Perez [1983] and Brooks [1983]. In order to illustrate

this idea, we depict in Figure 2.3 the con�guration space of a fully-actuated circular



2.2. Segregation as a Coordination Problem 11

mobile robot navigating in a planar workspace. Notice that workspace obstacles expand

when being mapped into the con�guration space, whereas the whole robot is reduced

to a point. The motivation behind this transformation is simple: instead of planning

a path for a complex rigid body, the problem just needs to be solved for a single

point [Choset et al., 2005]. For instance, in Figure 2.3, it is easy to see that a continuous

collision-free path in con�guration space represents a valid path in the workspace.

Although both spaces have the same dimension in this case, it is common for them

(a) Workspace W = R2 (b) Configuration Space C = R2

Figure 2.3. Workspace and Con�guration Space of a fully-actuated circular
mobile robot navigating in a plane.

to di�er not only at their dimensionalities but also at their topologies. For example,

consider a robot translating and rotating in a plane, as shown in Figure 2.4. It is clear

that its workspace is R2, but its con�guration space is in fact SE(2) since we need two

parameters for its position (x, y) ∈ R2 and one for its orientation θ ∈ S1 in order to

completely specify all points of the robot.

When dealing with multi-robot systems, we can reduce the coordination problem

into the path planning problem by considering a composite con�guration space, which

comprises all agents of the system. In this manner, �nding a collision-free path over

the Cartesian product of each robot's con�guration space is a su�cient condition to

coordinate them [Choset et al., 2005; LaValle, 2006]. Nevertheless, this approach is not

scalable since this compound space exponentially grows with the number of robots.

Due to this problem, researchers have developed alternatives whose main goal is to

decouple the coordination from path planning. These include Kant and Zucker [1986]

as well as O'Donnell and Lozano-Perez [1989], who presented a two-phase approach:

in the �rst phase, they �nd a distinct path for all agents individually, i.e., without
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(a) Workspace W = R2 (b) Configuration Space C = SE(2)

Figure 2.4. Workspace and Con�guration Space of a underactuated circular
mobile robot that navigates in a plane. Since SE(2) is a manifold, we locally
represent this space as R3.

taking into account other robots. Afterwards, in the second phase, authors resolve

possible inter-robot collisions through velocity adjustments along these precomputed

paths. More precisely, they parametrize all paths from the �rst stage and use these

parameters in order to span the path coordination space. A path within the latter

indicates the respective velocity modules that should be assigned at each point of a

particular precomputed path during robot navigation. In another work, LaValle and

Hutchinson [1998] discussed another variant of this approach, in which they employ

a roadmap during the �rst phase instead of a single path per robot. Additionally,

several authors including Erdmann and Lozano-Perez [1986]; Warren [1990]; Bennewitz

et al. [2002]; as well as van den Berg and Overmars [2005] contributed to another

alternative known as prioritized planning. In each iteration, a robot is sequentially

selected according to a priority scheme, and a composite path is found by taking

into consideration all robots of previous iterations, which are regarded as dynamic

obstacles that move along prede�ned trajectories. The planner generally constructs a

con�guration space-time that represents all time-varying constraints imposed on the

current robot by all static and dynamic obstacles [Erdmann and Lozano-Perez, 1986].

In a similar fashion, the technique by Saha and Isto [2006] searches for a path over

the Cartesian product of the individual con�guration space and the path coordination

space that has been accumulated up to the current iteration. In the general case,

these alternatives compromise completeness over e�ciency, since the existence of a

path in the system's composite con�guration space does not guarantee a solution in
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the path coordination space [Saha and Isto, 2006]. Therefore, such methods should be

employed only in speci�c coordination scenarios whose initial conditions allow solutions

to be found.

It is usual to reduce path planning problems in con�guration space to graph

search problems either by cellular decomposition or by sampling con�gurations [Choset

et al., 2005; de Berg et al., 2008]. Consequently, search methods such as Dijkstra's al-

gorithm [Dijkstra, 1959], A* [Hart et al., 1968], or D* [Stentz, 1993] can be directly

employed in order to �nd a feasible path. However, these methods are not suited for

multi-robot coordination problems because of two particular reasons: the decompo-

sition may su�er from the high dimensionality of the con�guration space, and these

search methods do not exploit the natural decoupling of robots that are well separated

in the workspace. Wagner and Choset [2011] explored these facts and created a multi-

robot search strategy called subdimensional expansion, which dynamically generates

low dimensional search spaces embedded in the full con�guration space of the system.

Initially, each robot plans an individual optimal policy towards a goal con�guration,

and the planner expands the dimensionality of its search space as it �nds inter-robot

collisions among the optimal policies. At these critical con�gurations, the planner ex-

pands its search considering the Cartesian product of the tangent space of each robot's

con�guration space. In this manner, composite con�guration spaces are explored only

for robots that are indeed involved in collisions. This strategy e�ectively reduces the

search space dimension, but it might underperform when dealing with swarm systems

in highly-packed conditions, since chances of collisions are much higher. Finally, the

subdimensional expansion strategy has received some attention in recent years and it

has been coupled with sampling-based planners [Wagner et al., 2012] as well as other

planning frameworks [Ferner et al., 2013].

Many coordination problems in multi-robot systems do not require a speci�c robot

to reach a particular goal. Such is the case of formation control, in which a permutation

of two or more robots would not change the overall shape of their formation. Recently,

researchers have been studying tailored solutions for these permutation-invariant sys-

tems. Kloder and Hutchinson [2006] modeled the formation as coe�cients of a complex

polynomial whose roots represent the robots' con�gurations. Their planner works in

formation space, and robot trajectories are generated by tracking the roots of a in-

terpolated complex polynomial. Moreover, Turpin et al. [2013a] found a permutation

matrix that relates robots to goals, as well as straight-line and collision-free trajecto-

ries, through a functional optimization problem. They developed both centralized and

decentralized algorithms that achieve optimal and suboptimal solutions, respectively,

and extended their work in [Turpin et al., 2013b] to consider obstacles and not just
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straight-line trajectories. Nevertheless, their algorithm relies on constraints that hold

only on initial conditions whose free regions have a homeomorphism to star-shaped

sets, which may hinder its applicability in some scenarios.

All in all, we could employ one of the discussed methods in order to solve the

SEG-CLU and SEG-NAV problems by selecting a compound con�guration in which

robots are segregated as the system's goal and expanding only states whose robots are

segregated during the compound path planning, respectively. However, such solutions

would not be proper because of the high dimensionality of the system's con�guration

space. Another disadvantage is that robots cannot be easily inserted or removed from

the system, since the compound path must be recomputed at every insertion or removal.

Essentially, the major drawback of centralized solutions is that they lack the required

scalability to cope with swarms systems. On the other hand, distributed methods are

well known to be scalable, and we delve into them in the next section.

2.2.2 Distributed Methods

Distributed approaches typically model the coordination of a robotic swarm through

the speci�cation of individual rules for each robot. Several distinct methodologies rely

on this paradigm, including behavior based [Reynolds, 1987; Balch and Arkin, 1998],

leader-follower [Tanner et al., 2004], and arti�cial potential functions [Leonard and

Fiorelli, 2001; Olfati-Saber, 2006].

Reynolds [1987] was one of the �rst researchers who tackled the problem of realis-

tically simulating the movement of a swarm of agents; more speci�cally a �ock of birds,

known as boids. Basically, his model comprises three simple steering behaviors that

an agent applies based on its neighbors: separation, which avoids collisions; alignment,

which steers the agents towards their average heading; and cohesion, which moves the

agents towards their average position. In each iteration, the agent computes and weighs

all rules according to user-speci�ed parameters, and the result is applied as a steering

input, as shown in Figure 2.5. Such interactions among agents can be modeled as a

special case of the social potential �eld method [Reif and Wang, 1999], an extension

of the classical arti�cial potential �eld technique [Khatib, 1985] that speci�cally deals

with multi-agent systems. These works have been widely employed as foundations to

several methodologies on the control of robotic swarms, such as behavior based [Balch

and Arkin, 1998], leader-follower [Leonard and Fiorelli, 2001; Tanner et al., 2004], hi-

erarchical abstractions [Belta and Kumar, 2004; Santos and Chaimowicz, 2011a], and

hydrodynamic-based models [Pimenta et al., 2013]. Additionally, Olfati-Saber [2006]

and Tanner et al. [2007] give a detailed analysis of the stability of �ocking behaviors,
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as well as their robustness to topology changes in the neighborhood graph.

(a) Separation. (b) Alignment. (c) Cohesion.

Figure 2.5. Steering behaviors of Reynold's �ocking model. Red arrows repre-
sent inputs and blue arrows describe data from neighboring agents.

Arti�cial potential �elds [Khatib, 1985] direct robots as if they were particles

moving in a vector �eld. A potential �eld is a di�erentiable map U : RN → R whose

image can be seen as energy, thus allowing its gradient ∇U to act as a force which

can be feedbacked into the robot's controller. In other words, this means that one

can devise a potential function such that robots act as charged particles which are

attracted towards their goals while being repelled from nearby obstacles, as shown in

Figure 2.6, and robots usually perform this procedure by following the negated gradi-

ent of the potential function. Khatib [1985] had originally conceived arti�cial potential

�elds as a trajectory planner, but later research has shown that the method is not

oscillation-free and su�ers from local minima, which is an intrinsic property that can

arise from the combination of potentials, specially in unknown environments [Koren

and Borenstein, 1991]. Figure 2.7 presents an example in which a robot is trapped

because of a local minimum scenario. In this case, all forces acting on the robot have

nulli�ed each other, i.e., the gradient of the potential function has vanished. Solutions

to the local minima problem include navigation functions [Rimon and Koditschek,

1992], which require con�guration spaces that are di�eomorphic to star-shaped sets;

and harmonic functions [Connolly, 1992; Pimenta et al., 2005], which generally need

to discretize the con�guration space in order to �nd a solution to Laplace's equation.

Because of scalability issues, these preconditions generally hinder the direct application

of such methods in swarm systems. Nevertheless, in spite of its theoretical limitations,

potential �elds have become a common tool in robotics, particularly as a local colli-

sion avoidance mechanism, due to its ease of implementation and its applicability to

general classes of con�guration spaces, such as multidimensional and non-Euclidean

ones [Siegwart and Nourbakhsh, 2004; Choset et al., 2005].
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Figure 2.6. Navigation based on arti�cial potential �elds. The robot is a posi-
tively charged particle that is attracted to its goal, whose charge is opposite, while
being repelled by the gray obstacle.

Figure 2.7. Local minimum scenario for navigation based on arti�cial potential
�elds. All forces acting on the robot sum to zero and thus it cannot reach its goal.
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Several works in swarm robotics have focused on using arti�cial potential �elds in

conjunction with �ocking rules in order to obtain speci�c coordinated behaviors, such as

moving in formation [Balch and Hybinette, 2000], converging into shapes [Chaimowicz

et al., 2005], area coverage [Howard et al., 2002], shepherding [Lien et al., 2004], and

evasive maneuvers [Marcolino and Chaimowicz, 2009]. In a review of the area, �ahin

[2005] discusses various swarm behaviors, many of which solely rely on potential �elds.

Following a di�erent approach, Desaraju and How [2011] proposed a distributed

algorithm based on rapidly-exploring random trees [LaValle and Ku�ner Jr., 2001],

a well known sampling-based trajectory planner, in order to coordinate multi-robot

systems. In this method, robots simulate the movement of each agent using waypoints

and exchange bids containing their respective potential path improvement, a measure

that re�ects the expected improvement in path cost. A distributed auction determines

the winning bid, thus allowing the winner to improve its current path, which is sub-

sequently broadcast to all robots in the system. Despite having solved the particular

coordination scenarios presented in the paper, the procedure requires all robots to

know the control model of every agent in the system, so that their movements can be

simulated, and since swarm robotics should commit to relatively simple robots, i.e.,

agents with low computational resources, such simulations would be impractical.

A distinct kind of low-level coordination consists in avoiding collisions among

robots and obstacles in a reactive way, namely the obstacle avoidance problem. Several

works explore the problem considering only one robot inside the environment, whose

workspace may include dynamic obstacles with prede�ned trajectories [Borenstein and

Koren, 1991; Fox et al., 1997; Fraichard and Asama, 2003]. If there are other robots in

the environment, such algorithms typically assume that those agents are static objects

or try to predict their respective velocities in each iteration. However, these approaches

work only if robots navigate on low speeds with respect to the update frequency of the

algorithm, and it is often the case that agents show oscillatory motions while avoiding

each other. As indicated by van den Berg et al. [2008], such problems arise because the

reciprocity of the avoidance behavior is oftentimes neglected. In other words, robots

are not e�ectively coordinating themselves in a way that facilitates mutual avoidance.

Techniques based on the concept of velocity obstacles [van den Berg et al., 2008, 2011;

Snape et al., 2011] incorporate this cooperation into their methodologies.

A Velocity Obstacle [Fiorini and Shillert, 1998] is an extension of the Con�gura-

tion Space Obstacle [Lozano-Perez, 1983] for a time-varying system. It de�nes the set

of robot velocities that would result in a collision between the agent and an obstacle

moving at a given velocity. Thus, the robot can perform avoidance maneuvers by se-

lecting velocities that lie outside the velocity obstacle. The approach has been widely
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used and extended for single and multi-agent navigation [Abe and Yoshiki, 2001; Guy

et al., 2009; Wilkie et al., 2009; van den Berg et al., 2011; Alonso-Mora et al., 2012,

2013], even when considering uncertainties in position, shape, and velocity of the ob-

stacles [Fulgenzi et al., 2007; Snape et al., 2011; Hennes et al., 2012]. An important

addition was the development of the Reciprocal Velocity Obstacle by van den Berg

et al. [2008], who acknowledged that most works on collision avoidance had not taken

into account the reciprocity that arises when obstacles are in fact other agents which

can also react according to the robot's behavior. Recently, He and van den Berg [2013]

presented another extension for the case in which a single agent should avoid a group

as a whole. Despite relying on a virtual obstacle in a similar fashion as our Virtual

Group Velocity Obstacle [Santos et al., 2012], which is introduced in Chapter 4, they

do not focus on segregation since the method is restricted to a single agent instead

of a whole group. Furthermore, [van den Berg et al., 2012] has recently developed

Acceleration-Velocity Obstacles, showing that the Velocity Obstacle framework can be

further extended in order to cope with dynamics.

Few researchers have tried to use the Velocity Obstacle framework not only as

a collision avoidance protocol but also as a coordination mechanism. For instance,

Kimmel et al. [2012] devised algorithms that improve the coherence of a team of agents

navigating in an environment with obstacles. In spite of the interesting results, it is

still unclear how to directly use the framework to generate higher-level behaviors in a

general setting. However, we believe that, because of their simplicity and theoretical

foundations, further research in this direction might lead velocity obstacles to be as

commonly employed as arti�cial potential �elds in swarm systems.

In order to propose a solution to the SEG-CLU problem, we build upon the

di�erential potential concept [Kumar et al., 2010], an analogy of Steinberg's DAH

[Steinberg, 1963] that is based on arti�cial potential �elds [Khatib, 1985]. Furthermore,

we present a method that combines velocity obstacles [Fiorini and Shillert, 1998] with

�ocking rules [Reynolds, 1987] as an answer to the SEG-NAV problem. Regarding the

latter, we introduce the Virtual Group Velocity Obstacle, a concept that has some of

its foundations on hybrid methods.

2.2.3 Hybrid Methods

Hybrid coordination approaches exploit the bene�ts of both centralized and decentral-

ized coordination schemes, while trying to minimize their disadvantages. We consider

many of the following methods as semi-centralized, since it is usual to have a central

unit computing a high-level plan that directly a�ects the behavior of the underlying
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distributed multi-robot system.

The hierarchical abstraction paradigm considers groups of agents as single enti-

ties in a hierarchical fashion. These entities are sometimes called virtual structures as

they embody the pose and shape of a team of robots [Tan and Lewis, 1996]. In this

case, steering control laws are applied to the virtual structure as a whole in order to

maneuver the robotic swarm. We show in Figures 2.8 and 2.9 illustrative examples

of this concept from our own prior work [Santos and Chaimowicz, 2011a,b], in which

we chose ellipses as virtual structures that abstract the control equations of whole

robotic groups. In other words, we needed to control only the parameters of all ellipses

in order to coordinate an inde�nite number of robots, and this has led to signi�cant

reductions in computational complexity when dealing with robotic swarms. For in-

stance, in those works we minimized tra�c congestions in crossroads scenarios (Figure

2.8) and navigated large teams of robots in environments with obstacles (Figure 2.9),

without exploring con�guration spaces whose dimensions grow exponentially with the

number of robots. With regards to the latter �gure [Santos and Chaimowicz, 2011b],

we applied Probabilistic Roadmaps [Kavraki et al., 1996] in order to plan a path for the

ellipse, and robots track the virtual structure through vector �elds based on arti�cial

potential �elds [Khatib, 1985].

(a) (b) (c)

(d) (e) (f)

Figure 2.8. Example of tra�c control in a crossroad scenario using the Hierar-
chical Abstraction Paradigm [Santos and Chaimowicz, 2011a].
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(a) (b) (c)

(d) (e) (f)

Figure 2.9. Example of motion planning using the Hierarchical Abstraction
Paradigm [Santos and Chaimowicz, 2011b].

We can trace back work on virtual structures to papers by Tan and Lewis [1996]

as well as Egerstedt and Hu [2001], who de�ned controllers that converge and maintain

a team of robots in a rigid formation according to a known structure. Nevertheless,

such methods are not easily scalable to large groups because each distance constraint

among a pair of robots must be explicitly stated in order to achieve a desired formation,

and these �xed geometric relations may hinder formation changes during navigation.

To address these problems, deformable structures were presented in [Barnes et al.,

2009] and [Kamphuis and Overmars, 2004b] to group and control swarms of robots. In

the latter, Probabilistic Roadmaps [Kavraki et al., 1996] were used to plan paths for

the structure in environments with obstacles. However in the former, controllers were

designed in order to converge the swarm into a known elliptical region, which was used

to escort a vehicle convoy. Instead of considering a single deformable structure, some

studies employed a set of structures to increase team cohesion and to simplify the path

planning problem. For example, Li and Chou [2003] proposed a hierarchical sphere

tree to control �crowds of robots�, and in [Kamphuis and Overmars, 2004a] the path

planned for a single agent is extended to a corridor using the clearance along the path.

In this manner, it is possible to control a swarm that navigates through the corridor by

changing its characteristics in a desired way. In another work, Belta and Kumar [2004]
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introduced a formal abstraction that allows decoupled control of the pose and shape

of a team of robots. Their method is based on a mapping of the swarm's con�guration

space to a lower dimensional manifold, whose dimension is independent of the number of

robots. Michael et al. [2006, 2009] extended the work to account for three dimensional

swarms and non-holonomic robots, and Hou et al. [2009] suggested a dynamic control

model for similar abstractions. Moreover, Chaimowicz and Kumar [2007] discussed a

distinct extension that tackles the cooperation between multiple unmanned aerial and

ground vehicles, in which aerial agents estimate the con�guration of ground robots and

send control messages to the teams. The authors also studied merging and splitting

behaviors, as sometimes such maneuvers are necessary for groups to overcome obstacles.

However, interactions among teams with di�erent goals were not addressed, and such

scenarios can lead to tra�c congestions in the environment when multiple teams try

to navigate through the same region of space.

The tra�c control problem is an important research topic, being characterized as

a resource con�ict problem [Cao et al., 1995]. In general, works in this area assume that

robots are contained in a structured environment [Grossman, 1988; Kato et al., 1992], in

which they navigate in delimited lanes that meet at intersections, usually where tra�c

control is performed. This can be accomplished by using a single manager agent [Dres-

ner and Stone, 2005] or a more robust sensor network [Viswanath and Krishna, 2007].

As already cited, we employed a hybrid approach to tra�c control in [Santos and

Chaimowicz, 2011b], which in turn improved cohesion and maintained teams segre-

gated. Even though this method contributes a solution to the SEG-NAV problem, it

does not provide the required scalability since a centralizer agent is needed to compute

the trajectory of all ellipses. Thus, in this dissertation we explore distributed ap-

proaches that achieve similar results by relying on �ocking behaviors [Reynolds, 1987],

velocity obstacles [Fiorini and Shillert, 1998], and inspirations from the hierarchical

abstraction paradigm [Belta and Kumar, 2004].





Chapter 3

Segregated Clustering

In this chapter, we propose a solution to the SEG-CLU problem by extending the

di�erential potential concept [Kumar et al., 2010] to deal with multiple robot types.

Besides, we also introduce a new metric that de�nes segregation in a more convenient

way, which can be easily veri�ed. We perform a formal analysis on the properties of the

proposed controller, and present simulated experiments in 2D and 3D environments.

3.1 Model and De�nitions

We consider a set of fully actuated mobile agents whose dynamics are given by the

double integrator

q̇i = vi and v̇i = ui i ∈ Υ = {1, 2, . . . , n}, (3.1)

in which qi ∈ Rp, vi ∈ Rp, and ui ∈ Rp denote the position, velocity, and control input

of robot i, respectively. This set of mobile agents consists of di�erent types of robots,

which we represent by the partition τ = {τ1, τ2, . . . , τm}, where each τk ⊂ Υ contains

all agents of type k. We assume that ∀j, k : j 6= k → τj ∩ τk = ∅ and ∀j, k : |τj| = |τk|,
i.e., each robot is uniquely assigned to a single type and the type partition is fully

balanced. Moreover, in this work, we focus on systems with p = 2 or p = 3.

Our objective is to synthesize a controller that can sort robots of di�erent types

into m distinct clusters in the workspace, such that each cluster contains agents of

a single type only. The latter is a proper solution to the SEG-CLU problem, and a

control system which solves this problem is said to display a segregative behavior.

23
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3.2 Control Law

Given a population of n heterogeneous mobile robots with partition τ and dynamics

speci�ed by (3.1), we propose the following control law:

ui = −
∑
j 6=i

∇qi
Uij(‖qi − qj‖)−

∑
j 6=i

(vi − vj), (3.2)

in which Uij(‖qi − qj‖) is the arti�cial potential function that rules the interaction

between agents i and j, ‖qi−qj‖ is the Euclidean norm of the vector qi−qj, and ∇qi

is the gradient with respect to the coordinates of agent i. The �rst term represents

the resultant force that acts on robot i given its interactions with all other agents,

and the second term serves as damping, which causes robots to match their velocities.

This kind of controller equation is a common approach for potential-based multi-agent

systems [Leonard and Fiorelli, 2001; Olfati-Saber, 2006; Kumar et al., 2010].

The arti�cial potential �eld Uij : R → R>0 is a function of the relative distance

between a pair of agents that we express as

Uij(‖qij‖) = α

(
1

2
(‖qij‖ − dij)2 + ln ‖qij‖+

dij
‖qij‖

)
, (3.3)

in which α is a scalar control gain, qij is a shortened form of writing qi − qj, i.e.,

qij = qi − qj; and dij is a positive parameter that will be described later. The initial

conditions and dynamics of the system exclude the situations where ‖qij‖ = 0, in

which (3.3) is unde�ned. As we will show later, if robots do not collide at the initial

con�guration then there will be no collisions through all time steps.

Although there are m distinct types of robots involved in the system, each agent

classi�es its neighbors as being either one of its own type or of a di�erent type. This

means that agents see the system through a binary �lter which reduces possible robot

interactions to only two kinds thereof: interactions among robots of the same type and

among robots belonging to distinct types. Formally, we say that an agent i has a local

type partition
iτ = {τk,Υ \ τk} i ∈ τk, (3.4)

where τk ∈ τ , and Υ \ τk represents the set di�erence.

In order to segregate robots, we apply the di�erential potential concept: when

agents interact with other distinct agents, they experience di�erent magnitudes of

potential [Kumar et al., 2010]. We can accomplish this by de�ning the parameter dij
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of (3.3) according to the local type partition iτ .

dij(
iτ) =

dAA, if i ∈ τk and j ∈ τk
dAB, if i ∈ τk and j 6∈ τk

. (3.5)

Equation (3.5) states that interactions among similar and dissimilar types of

robots are ruled by dAA and dAB, respectively. Thus, the system exhibits a segregative

behavior when we choose values for these parameters such that

0 < dAA < dAB. (3.6)

We show in Figure 3.1(a) a plot of the arti�cial potential function Uij(‖qij‖),
whose minimum is located at ‖qij‖ = dij. Furthermore, we depict the interaction

forces among a pair of robots in Figure 3.1(b), in which constraint (3.6) holds true.

The latter plot actually represents the scalar part of the gradient

∇Uij(‖qij‖) = α

(
‖qij‖ − dij +

1

‖qij‖
− dij
‖qij‖2

)
qij
‖qij‖

, (3.7)

in which we ignore the normalized vector term. It is easy to see that, at any given

distance, forces among agents of similar types are greater than those among di�erent

types. Therefore, our controller respects the Di�erential Adhesion Hypothesis [Stein-

berg, 1963], which states that cellular segregation occurs because there are stronger

adhesive forces among similar cells than among dissimilar ones. In this sense, we can
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Figure 3.1. Plot of the arti�cial potential �eld Uij(‖qj−qi‖) and its underlying
forces given dAA = 2 and dAB = 5.
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say that attractive forces simulate the adhesion between cells, whereas repulsive forces

prevent any inter-agent collisions.

3.3 Formal Analysis

This section presents a study on some properties of the multi-agent system when using

the proposed control law. We employ Lyapunov Stability Theory and LaSalle's Invari-

ance Principle in order to analyze convergence and the overall behavior of the swarm

at the steady state. We start with the de�nition of the Lyapunov candidate function

V (q,v) = U(q) +
1

2
vᵀv, (3.8)

where q ∈ Rnp and v ∈ Rnp are stacked vectors whose components are the con�gura-

tions and velocities of all robots, respectively, and U(q) : Rnp → R>0 is the collective

arti�cial potential function, which we write as

U(q) =
1

2

∑
τk∈τ

∑
i∈τk

∑
j∈τk,j 6=i

Uij(‖qi − qj‖)

+
1

2

∑
τk∈τ

∑
i∈τk

∑
j∈Υ\τk

Uij(‖qi − qj‖). (3.9)

The �rst and second term of (3.9) are the sum of the pairwise potential between all

pairs of similar and dissimilar robots, respectively. Thus, we can model the collective

dynamics of the system by

q̇ = v (3.10)

v̇ = −∇U(q)− L̂(q)v, (3.11)

in which L̂(q) = L(q)⊗ Ip is the Kronecker product of the system's Laplacian matrix

L(q) and the p × p identity matrix Ip (for a complete description, see [Olfati-Saber,

2006]). These de�nitions let us introduce the proposition below.

Proposition 1. Assuming that the underlying adjacency graph of the system

is complete at all times, for any initial condition that belongs to the level set

ΩC = {(q,v) | V (q,v) ≤ C}, with C > 0, a heterogeneous system with type par-

tition τ on n mobile agents, whose dynamics and control laws are respectively

given by (3.1) and (3.2), asymptotically converges to the largest invariant set in

ΩI = {(q,v) ∈ ΩC | V̇ (q,v) = 0}, without any inter-agent collisions. At this largest
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invariant set, the velocity of each agent is bounded, all velocities match, and the sys-

tem's collective potential reaches a local minimum.

Proof. We aim to demonstrate that V̇ (q,v) ≤ 0 in order to apply LaSalle's Invariance

Principle to show convergence. To achieve this, we can di�erentiate V (q,v) with

respect to time and then substitute (3.10) and (3.11) as follows

V̇ (q,v) = q̇ᵀ∇U(q) + vᵀv̇

= vᵀ∇U(q) + vᵀ(−∇U(q)− L̂(q)v)

= −vᵀL̂(q)v = −1

2

∑
i

∑
j

‖vj − vi‖2 ≤ 0. (3.12)

The last step holds because the system's adjacency graph is complete [Olfati-Saber,

2006]. From LaSalle's Invariance Principle, all initial conditions that lie on ΩC will

lead the system to the largest invariant set in ΩI , where V̇ (q,v) = 0. Therefore, this

constraint together with (3.12) imply that all velocities match (i.e., ∀i, j : vi = vj)

since this is the only case in which (3.12) can be equal to zero. Furthermore, by

applying the constraint V (q,v) ≤ C into (3.8), we conclude that vᵀv ≤ 2C, which

leads to ‖v‖ ≤
√

2C. Consequently, all individual velocities are bounded by
√

2C

as well. Matching velocities imply that inter-agent distances remain constant; hence,

∀i, j : q̇ij = 0, and we have

U̇(q) =
1

2

∑
τk∈τ

∑
i∈τk

∑
j∈τk,j 6=i

q̇ᵀ
ij∇qij

Uij(‖qij‖)

+
1

2

∑
τk∈τ

∑
i∈τk

∑
j∈Υ\τk

q̇ᵀ
ij∇qij

Uij(‖qij‖) = 0, (3.13)

which allows us to conclude that U(q) is constant at the steady state. Moreover,

matching velocities also imply that L̂(q)v = 0, which reduces (3.11) to

v̇ = −∇U(q). (3.14)

Therefore, ∇U(q) must be the zero vector, as otherwise the collective potential would

reach a lower value instead of being constant. This implies that the system has reached

a local minimum and velocities must not change. Finally, assume that robots i and

j collide (i.e., ‖qij‖ = 0) at some moment in time. We can see by (3.3) and (3.9)

that this would take U(q) → ∞, but this contradicts the fact that V (q,v) ≤ C and

V̇ (q,v) ≤ 0. Hence, no agent collides with each other.
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3.4 Experiments

In order to measure segregation among clusters quantitatively, we propose a metric

that is based on the pairwise intersection area of their convex hulls:

M(q, τ) =
∑
τk∈τ

∑
τl∈τ,l 6=k

A

(
CH(

⋃
i∈τk

qi)
⋂

CH(
⋃
j∈τl

qj)

)
, (3.15)

in which A(Q) and CH(Q) denote the area and the convex hull of set Q, respectively.

We have chosen this metric because the convex hull can be used as a simple and well-

de�ned shape representation of a cluster. This means that segregation occurs when

there is no overlap among clusters. In other words, we say that the system is fully

segregated when M(q, τ) approaches zero.

We executed a sequence of experiments to study the performance and feasibility

of our proposed approach. We �rst present the results according to metricM(q, τ) and

then display some snapshots of these simulations. Finally, we close the section with a

discussion on the behavior of the system as well as on particular details of our method.

3.4.1 Simulations

We have performed extensive series of simulations in order to analyze our controller

under metric M(q, τ). Each simulation consisted of 150 robots and a varying number

of agent types. At the initial state, all velocities were set to zero, and robots were

positioned according to a two-dimensional uniform distribution, which is independent

of a robot's type. Additionally, we have set dAA = 2 and dAB = 5 for all experiments.

We present in Figure 3.2 the mean and standard deviation of M(q, τ) among 100

experiments given these initial conditions. In all cases, both the mean and standard

deviation approach zero as the number of iterations increase. Moreover, systems with

less robot types tend to achieve segregation faster than those which have more types.

This is expected, as given a �xed number of robots, a large number of types would result

in few robots per cluster, which in turn would lower the magnitude of the resultant

attraction force towards it.

We display in Figure 3.3 a series of snapshots of particular instances from our

experiments. Through a visual inspection, we can see that similar robots quickly form

clusters whose size grows with time as other agents join them. Furthermore, interesting

geometrical patterns are organized at the stable state. We have also observed two

particular behaviors which might be di�cult to notice in the �gures: large ensembles

usually move to the outside of the main aggregate, the one which embodies all agents
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Figure 3.2. Mean intersection area of convex hulls for 100 experiments with a
varying number of robot types. Dashed lines represent one standard deviation
from the mean.

of the system, and adjacent dissimilar clusters form corridors which are used by agents

of a third type to move at higher speeds. Both of these behaviors are compelling since

they contribute to the opening of free spaces, whereby smaller clusters and lone robots

can take advantage of the situation and form larger ensembles.

We have also executed simulations in 3D space. Figure 3.4 contains two images of

the initial and �nal con�gurations from three experiments which comprised 150 robots

and a varying number of agent types. Initial conditions were chosen exactly as in

the 2D simulations. The controller was able to achieve segregation and robots have

displayed the same overall behavior as of their 2D counterparts. Particularly, we have

seen that it is easier for robots to form clusters in this scenario because the additional

degree of freedom allows them to maneuver in new directions. Thus, in the 3D case, it

is unusual to �nd lone robots wandering towards their cluster in later iterations, since

larger clusters are aggregated more quickly.
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(a) 5 heterogeneous types.

(b) 10 heterogeneous types.

(c) 15 heterogeneous types.

Figure 3.3. Snapshots of simulated executions with 150 robots for a varying
number of heterogeneous types. In each sequence, the initial con�guration is
depicted on the left, whereas the �nal con�guration is displayed on the right.
Each robot type is represented by a di�erent color.

3.4.2 Discussion

Desirable properties in swarm systems include scalability, �exibility, and robust-

ness [�ahin, 2005]. These are especially important on applications in which robots

may be inserted or removed from the system dynamically. One of the main advantages

of our approach is that a robot does not need to know either how many agents or how

many types exist in the system. This is due to the second case of (3.5), in which we

write j 6∈ τk instead of j ∈ Υ \ τk as the former explicitly states that robot i needs to

recognize only agents that are similar to itself. Consequently, robots can be inserted

or removed from the system at any time.

As can be seen in (3.2), our controller requires global perception capabilities. In

other words, each robot must know the position and velocity of all agents. Thus, in

spite of the robustness of our approach, this constraint may hinder the application

of our method on real distributed systems, because most sensors have constrained

capabilities that restrict robots to gather only local information.

As mentioned, our controller is based on a previous work by Kumar et al. [2010],

and both share the same advantages and disadvantages already cited. The main dif-
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(a) 5 heterogeneous types.

(b) 10 heterogeneous types.

(c) 15 heterogeneous types.

Figure 3.4. Initial and �nal con�gurations of simulated experiments in 3D
space with 150 robots and a varying number of heterogeneous types. We apply
an orthographic projection and slightly rotate the stable state to better depict
the separation among clusters.
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ference between the methods lies at the de�nition of the potential functions, of which

theirs can be written in our notation as

U ′ij(‖qij‖) = α

(
ln ‖qij‖+

dij
‖qij‖

)
. (3.16)

We have noticed that the gradient of the above potential function could vanish on

the free space among adjacent dissimilar clusters, and this is the reason why our initial

experiments using their controller for multiple partitions had often reached undesirable

local minima. Subtracting (3.16) from (3.3), we �nd

Uij(‖qij‖)− U ′ij(‖qij‖) =
α

2
(‖qij‖ − dij)2 , (3.17)

which is a quadratic term that is responsible for the segregative behavior in the case of

multiple partitions. By adding this term, we have actually biased the norm and direc-

tion of the gradient, allowing robots to keep moving towards their respective cluster.

Although we have limited our approach to balanced type partitions, we have also

executed some simulations with unbalanced partitions. Among these, several experi-

ments have reached local minima when the type partition was severely unbalanced. In

these local minima, robots were not segregated in the sense of our proposed metric.

This usually happens when robots cannot reach their cluster as the attractive forces

towards it are weaker than those repelling them away from other agents. On the other

hand, these types of local minima in experiments with balanced type partitions are

not common. For instance, among the 100 experiments with 15 types presented in

Figure 3.2, there was only one instance which did not segregate. However, given the

same initial conditions, by choosing a larger value for dAB

dAA
the controller was able to

achieve segregation. This result shows that the largest invariant set for a speci�c value

of dAB

dAA
can be a state in which robots are not fully segregated. Thus, we think that

these parameters should be chosen according to how many robots and types exist in

the system, as larger numbers thereof may require wider corridors between dissimilar

clusters so that the gradient of the potential function will not vanish.

We close this section with a proposition based on the evidences that we have

gathered from our results. We present it as a conjecture since we have yet to prove it.

Conjecture 1. Given a balanced type partition τ , and assuming that the underlying

adjacency graph of the system is complete at all times, for any initial condition that

belongs to the level set ΩC, there exists a �nite value r such that if dAB

dAA
> r then

M(q, τ)→ 0 as the number of iterations approaches in�nity.



Chapter 4

Segregated Navigation

Given that robots are already segregated into homogeneous clusters, it would be inter-

esting to deploy them to speci�c regions where a certain task must be performed, such

as the gathering of a particular material. We would like robots to maintain segregation

and to behave cohesively as a team during navigation. In this chapter, we propose a

solution to problem SEG-NAV by employing an algorithmic approach using the veloc-

ity obstacle framework as a foundation. We start by brie�y reviewing its core concepts

and then we introduce our methodology.

4.1 Velocity Obstacles

As mentioned in Chapter 2, a Velocity Obstacle [Fiorini and Shillert, 1998] is the set of

all velocities that will result in a collision between a robot and an obstacle moving at

a given velocity. Thus, robots can perform avoidance maneuvers by simply selecting a

velocity outside this set. To ensure a dynamically feasible maneuver, the dynamics of

the robot and its actuator constraints are mapped into acceleration constraints, which

can be transformed into the robot's velocity space. In the following paragraphs, we

provide a more formal de�nition of the Velocity Obstacle and present an extension

known as the Reciprocal Velocity Obstacle [van den Berg et al., 2008].

Given the same control model as in (3.1), let A and B be two circular robots

moving on the Euclidean plane. The velocity obstacle V OA
B(vB) of B to A is the set

of all velocities of A that will result in a collision with B at some instant in time if the

latter maintains its current velocity vB [Fiorini and Shillert, 1998]. To formally de�ne

V OA
B(vB), we specify λ(a,b) as a ray starting at point a heading in the direction b

λ(a,b) = {a + tb | t ∈ R≥0} (4.1)

33
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and B ⊕ −A as the Minkowski sum of B and −A, in which −A represents robot A

re�ected about its reference point

−A = {−a | a ∈ A} (4.2)

A⊕B = {a + b | (a ∈ A) ∧ (b ∈ B)}. (4.3)

With these de�nitions, we can say that a velocity v ∈ V OA
B(vB) if and only if the ray

starting at the position of A (i.e., qA) and heading in the direction v − vB intersects

B ⊕−A. Therefore, the full set of velocities that speci�es the velocity obstacle can be

denoted as

VOA
B(vB) = {v | λ(qA,v − vB) ∩ (B ⊕−A) 6= ∅}. (4.4)

Figure 4.1(a) shows a diagram of VOA
B(vB). As can be seen, it is a cone with apex

at (vB) that in�nitely grows as ‖v‖ takes large values. In order to compute (4.4), we

�rst represent B in the con�guration space of A by reducing the latter to a point and

enlarging the former to the circle B⊕−A. Afterwards, for a particular velocity vA, we

test whether λ(qA,vA−vB) intersects B⊕−A. If this is the case, then vA ∈ VOA
B(vB),

and robots will collide at some moment in time, which, if desired, can be calculated

by solving the implicit ray-tracing operations induced by these intersection tests. On

the other hand, if no intersections exist, then vA 6∈ VOA
B(vB), and no collisions will

occur. Both of these claims assume that robots maintain their current velocities at all

times. Thus, by construction, the set VOA
B(vB) partitions the velocity space of A into

colliding and avoiding velocities [Fiorini and Shillert, 1998].

(a) (b)

Figure 4.1. Diagrams of a Velocity Obstacle and a Reciprocal Velocity Obstacle.
Adapted from [van den Berg et al., 2008].
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The use of velocity obstacles can lead to oscillation issues when dealing with multi-

robot systems. The problem is due to symmetry, which is a property that immediately

follows from (4.4):

vA ∈ VOA
B(vB) ⇐⇒ vB ∈ VOB

A(vA). (4.5)

Given two robots A and B navigating with respective velocities vA and vB such that

vA ∈ VOA
B(vB) and vB ∈ VOB

A(vA), it is clear that each one should select a new velocity

v′A and v′B such that v′A 6∈ VOA
B(vB) and v′B 6∈ VOB

A(vA) in order to avoid a future

collision. In such a scenario, we see by (4.5) that vB 6∈ VOB
A(v′A) and vA 6∈ VOA

B(v′B),

which states that the old velocities are collision-free after the update. Therefore, if vA

and vB directly point to the goal position of A and B, respectively, then it is reasonable

for robots to select these velocities at the next iteration. This behavior clearly leads

to oscillations when the whole process is repeated.

In order to overcome the oscillation problem, van den Berg et al. [2008] introduced

the Reciprocal Velocity Obstacle (RVO), a simple extension that is able to smoothly

navigate agents in a shared environment. The RVOA
B(vB,vA) of B to A comprises all

velocities of agent A that are the average between its current velocity vA and a velocity

within VOA
B(vB). Formally, we have

RVOA
B(vB,vA) = {v | 2v − vA ∈ VOA

B(vB)}, (4.6)

which can be seen as the cone VOA
B(vB) translated such that its apex lies at the mean

of vA and vB, as shown in Figure 4.1(b). Assuming that B behaves reciprocally, if

A selects the closest velocity to vA outside the set RVOA
B(vB,vA), then navigation is

guaranteed to be collision- and oscillation-free. These are due to the properties below

vA + w 6∈ RVOA
B(vB,vA) ⇐⇒ vB −w 6∈ RVOB

A(vA,vB) (4.7)

vA ∈ RVOA
B(vB,vA) ⇐⇒ vA ∈ RVOA

B(vB −w,vA + w). (4.8)

Equation (4.7) asserts that if agents reciprocally select avoiding velocities, then both

will be collision-free, and (4.8) states that old velocities cannot be collision-free after

a reciprocal velocity update. These properties follow from the symmetry and transla-

tional invariance of the RVO (for a complete proof, see [van den Berg et al., 2008]). One

mechanism that ensures a reciprocal velocity update is for both robots to select the

closest velocity to their current one outside their respective velocity obstacles. More

speci�cally, if vA + w is the closest velocity to vA outside RVOA
B(vB,vA), then, by

symmetry, vB − w is the closest velocity to vB outside RVOB
A(vA,vB). Hence, (4.7)

and (4.8) are applicable, leading to a collision- and oscillation-free navigation.
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4.2 Virtual Group Velocity Obstacle

In this section, we extend the Velocity Obstacle framework with �ocking behaviors and

hierarchical abstractions in order to achieve our goal, which is to safely navigate large

groups of robots in a shared environment while maintaining segregation among them.

As in Chapter 3, we assume a partition τ = {τ1, τ2, . . . , τm}, in which τk ⊂ Υ

contains all agents of type k. However, only the constraint ∀j, k : j 6= k → τj ∩ τk = ∅
is necessary in this case, i.e., each robot must belong to only one partition, which is

not required to be balanced. We also consider that mobile agents of di�erent types

are already segregated at the initial time step. Thus, the partition τ not only speci�es

which robot belongs to each type, but also that they form teams.

Let ηi ⊂ Υ be the neighborhood of robot i, which we de�ne as the set of all robots

inside an open ball of radius r centered at qi

ηi = {j | (‖qi − qj‖ < r) ∧ (i 6= j)}, (4.9)

and let Φk = ηi ∩ τk be the set of robots belonging to the partition τk that are within

the neighborhood ηi, i.e., all agents of a particular team that are inside the sensing

radius of robot i. Moreover, we declare q(Φk) and v(Φk) as the average position and

average velocity of all robots belonging to Φk, respectively.

In order to achieve segregation, we block velocities that may lead a robot to merge

with another team by introducing the Virtual Group Velocity Obstacle (VGVO). The

VGVO is a simple concept: robot i senses the relative position and velocity of every

robot j within the neighborhood ηi and builds the shape of each team of robots, with

the exception of its own. In the workspace of robot i, these shapes are considered as

virtual obstacles moving at the average velocity of their respective underlying robots.

Thus, robot i can build a virtual velocity obstacle specifying all velocities that will lead

to a collision with these shapes, assuming that they maintain their current average

velocities. Formally, we de�ne the VGVO of robot i induced by group Φk as

VGVOi
Φk

(v(Φk)) = {v | λ(pi,v − v(Φk)) ∩ C(qi,Φk) 6= ∅} (4.10)

C(qi,Φk) = Shape(
⋃
j∈Φk

R(qj))⊕−R(qi), (4.11)

in which Shape(Q) is the shape of the set of points Q, such as the smallest enclosing

disc, the convex hull, or the more general class of α-shapes [Edelsbrunner et al., 1983];

and R(qi) denotes the set of points that represent robot i in its workspace. Figure 4.2

shows a diagram of the VGVO, in which the convex hull is used as the shape operator.
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Figure 4.2. The Virtual Group Velocity Obstacle VGVOiΦk
(v(Φk)).

Equation (4.11) refers to the idea of the hierarchical abstraction paradigm (e.g.,

see Chapter 2), in which whole groups of agents are considered as single entities. Par-

ticularly, we abstract the set of agents Φk as a single entity that moves according to the

average velocity of its underlying robots. During navigation, robots use the RVO in

conjunction with the VGVO, which guarantees a collision-free navigation while main-

taining the segregative behavior. Nevertheless, these two mechanisms cannot ensure

cohesion, i.e., the ability of agents to stay together as a team. We will account for this

using �ocking rules during the velocity update phase.

4.3 Velocity Update

An optimization problem must be solved in order to select inputs when dealing with

Velocity Obstacles, and several distinct approaches have been developed [Fiorini and

Shillert, 1998; van den Berg et al., 2008; Guy et al., 2009; van den Berg et al., 2011;

Snape et al., 2011]. In this work, we achieve cohesion during velocity update by ex-

tending the algorithm from [van den Berg et al., 2008] to account for �ocking rules.

Basically, the method samples a set of admissible velocities, which are dynamically

feasible, and selects the best one according to an utility function. Although other ap-

proaches have been developed to improve cohesion (e.g., [Kimmel et al., 2012]), �ocking
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rules are widely employed in swarm systems, being interesting to couple them with the

velocity obstacle framework.

In each iteration, robot i samples a set S of velocities using an uniform distribu-

tion from the admissible velocities

AV i(vi) = {v | (‖v‖ < vmaxi ) ∧ (‖v − vi‖ < amaxi ∆t)}, (4.12)

in which vmaxi and amaxi are the maximum speed and maximum acceleration of robot i,

respectively, and ∆t is the time step of the system. This set comprises all reachable

velocities from vi given the robot's kinematic and dynamic constraints. In order to

sample from AV i(vi), we actually sample from the input space of robot i and then

transform samples into velocity space, since this makes it easier to deal with all con-

straints on the robot.

Let vpref
i be the preferred velocity of robot i, such as the vector pointing at the

robot's goal with magnitude bounded by the maximum allowed speed. Among the

velocities in S, robot i should select a velocity outside all VGVOs and RVOs induced

by agents in ηi, and this velocity should also drive the robot in the direction of vpref
i

while maintaining cohesion with its teammates. However, as the environment may

become crowded to the point that no admissible velocities exist, the robot is allowed to

select a velocity belonging to a velocity obstacle, but this choice is penalized according

to the following function:

v�ock
i = vpref

i + α(v(Φk)− vi) + β(q(Φk)− qi) (4.13)

Pi(v) =
ω

Ti(v)
+ ‖v�ock

i − v‖, (4.14)

with i ∈ τk. In the above equations, α weighs the alignment of the new velocity to

the average velocity of teammates, β weighs the convergence of robot i to the centroid

of its team, and ω ∈ R≥0 regulates the avoidance behavior between aggressiveness and

sluggishness. In other words, lower values of ω cause robots to favor �ocking over

collision avoidance, whereas higher values induce the opposite. Finally, Ti(v) is the

expected time to collision of robot i moving at velocity v, which is computed by

solving the ray-tracing equations induced by (4.6) and (4.10) for all agents in ηi. In the

case of circular robots, these equations directly reduce to ray-circle and ray-segment

intersection tests, which are trivially solvable. Thus, robot i selects the velocity vnew
i

that minimizes the penalty function Pi over the sampled set S ⊆ AV i(vi).

vnew
i = argmin

v∈S
Pi(v) (4.15)



4.4. Experiments 39

Figure 4.3 exempli�es an iteration of the sampling-based velocity update.

Figure 4.3. Sampling-based velocity update. Samples are represented by small
circles. The red sample is chosen as it minimizes the penalty function.

Given two samples v and v′, if both belong to any velocity obstacle, then the

�rst term of (4.14) is well-de�ned, and, assuming that ‖v�ock
i − v‖ = ‖v�ock

i − v′‖, the
robot will select the safest velocity among the two, i.e., the one with a higher time to

collision. On the other hand, if both are collision-free, then the �rst term of (4.14)

tends to zero, which will make the robot select the closest velocity to v�ock
i . In the

general case, the value of ω balances the sampling-based velocity update between these

two behaviors.

4.4 Experiments

In this section, we compare the hierarchical abstraction approach from [Santos and

Chaimowicz, 2011a] to the proposed VGVO in terms of their segregative behavior as

well as the time taken by each team to reach their destination. We evaluate both of

these using a metric that compares the average distances among robots in di�erent

groups of the swarm [Kumar et al., 2010]. We do not employM(q, τ) from (3.15) since

the intersection area among convex hulls would be zero at every time step if the system

were to remain segregated during navigation. Thus, the use of the latter metric would

not bring any further insights besides knowing whether the system is segregated.

Additionally, we present experiments with two other methodologies for swarm

navigation: basic attractive/repulsive potential �elds [Khatib, 1985] and reciprocal

velocity obstacles [van den Berg et al., 2008]. We selected these methods in order to

show how the chosen metric from [Kumar et al., 2010] re�ects the behavior of controllers

that do not consider segregation. The basic arti�cial potential �eld approach consists

of each robot being attracted towards its goal while being repelled by nearby robots. In
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our implementation, we have employed potential functions such as the ones presented

in [Choset et al., 2005]. With regards to the RVO algorithm, we have implemented it

according to its description in Section 4.1, and the mechanism of Section 4.3 was used

at each iteration to select collision-free velocities. Moreover, �ocking behaviors were

inhibited by setting constants α and β to zero.

4.4.1 Simulations

Each simulation consists of a crossroad scenario where robots are evenly partitioned

into distinct teams. Initially, agents are randomly positioned according to a normal

distribution into a circular area around their cluster's initial position. Afterwards,

teams are commanded to swap their positions. All robots have a limited sensing range

as well as restrictions concerning their maximum speeds and accelerations. Although

our hierarchical controller requires a centralized unit that broadcasts the abstraction's

parameters, robots avoid collisions among themselves by solely relying on local sensing.

In order to properly re�ect the mathematical de�nition of the VGVO, we have used

α-shapes [Edelsbrunner et al., 1983] as a shape descriptor of each group, since they can

describe concave as well as convex shapes. However, to completely de�ne the VGVO,

it is su�cient to look at two agents that maximize their radial distance from each other

in the frame of reference of robot i. This can easily be seen in Figure 4.2, in which

the VGVO would have the same aperture if the middle agent were not in the depicted

group. Therefore, this feature can be used to optimize the implementation.

Figure 4.4 shows two groups of one hundred robots swapping their positions using

all four presented methods. As can be seen, the hierarchical abstraction (Figure 4.4(c))

and the VGVO (Figure 4.4(d)) are capable of maintaining cohesion and segregation.

On the other hand, neither potential �elds (Figure 4.4(a)) nor RVOs (Figure 4.4(b))

achieve segregation, since these methods were not developed with this intent. In this

speci�c scenario, we can observe that navigation based on the RVO tends to form

lines of robots, whereas the VGVO, in conjunction with �ocking behaviors, stretches

groups into elongated formations. Similarly, the repulsive/attractive potential �eld

leads groups to directly crash into each other, whereas the hierarchical abstraction

prevents agents from mingling with di�erent groups because of the avoidance behavior

of its virtual structure.

As already mentioned, Kumar et al. [2010] proposed a formal metric for measuring

segregation between two teams of agents. In their work, two teams τA and τB are said

to be segregated if the average distance among robots in the same team is less than

the average distance among robots in di�erent teams. In other words, the following
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(a) Attractive/Repulsive Artificial Potential Field.

(b) Reciprocal Velocity Obstacle.

(c) Hierarchical Abstraction.

(d) Virtual Group Velocity Obstacle.

Figure 4.4. Behavioral comparison among controllers with two hundred robots
evenly distributed into two groups using local sensing.

restriction must hold at all times

(dAAavg < dABavg) ∧ (dBBavg < dABavg), (4.16)

in which dABavg is the average distance among agents of teams τA and τB.

In Figure 4.5, we depict these average distances for the latter simulations. As

can be seen in 4.5(c) and 4.5(d), both the hierarchical abstraction and the VGVO

have successfully achieved the segregative property in the sense of constraint (4.16).

The remaining simulations show the behavior of the metric when segregation is not

achieved. For instance, in Figures 4.5(a) and 4.5(b), the constraint is violated since we

observe intersection points between the curves dABavg and dBBavg .

Another important information that we can extract from Figure 4.5 is the total

amount of time required to complete the task. This can be measured at the point when
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Figure 4.5. Segregative behavior analysis for two hundred robots evenly dis-
tributed into two groups that swap positions. (a) Attractive/Repulsive Arti�cial
Potential Field. (b) Reciprocal Velocity Obstacle. (c) Hierarchical Abstraction.
(d) Virtual Group Velocity Obstacle.

curve dABavg returns to its initial value, which means that both groups have swapped their

average positions. Instead of requiring that all particular goals are reached, we consider

the swap between average positions as a requirement for the task because this metric

emphasizes the group behavior over the individual behavior. Therefore, we can see that

the RVO is the fastest approach, followed, in order, by the hierarchical abstraction,

arti�cial potential �elds, and the VGVO. The performance loss of the VGVO is mainly

due to reciprocal dances [van den Berg et al., 2008], i.e., both teams cannot agree on

which side to pass each other. The avoidance maneuver eventually takes place when

robots reach a consensus, but this usually requires both teams to stretch into elongated

shapes, as shown in Figure 4.4(d), which in turn can retard the completion of the task.

The e�ciency of the VGVO can be improved by introducing social rules, such as the

one used in the method of Figure 4.4(c), in which ellipses always turn counterclockwise;

or by biasing the velocity update towards one side of the VGVO, in a manner similar
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(a) Attractive/Repulsive Artificial Potential Field.

(b) Reciprocal Velocity Obstacle.

(c) Hierarchical Abstraction.

(d) Virtual Group Velocity Obstacle.

Figure 4.6. Behavioral comparison among controllers with two hundred robots
evenly distributed into four groups using local sensing.

to the work by Snape et al. [2011]. Furthermore, the second and third terms of (4.13)

also contribute to the e�ciency loss because robots always select the safest velocity to

maintain the �ock. In congested scenarios, this results in slower speeds for the whole

�ock when compared to the RVO, which does not consider �ocking behaviors.

We complement these results with another set of simulations in a similar scenario,

but having two hundreds robots partitioned into four teams. Figure 4.6 illustrates

these experiments. In Figures 4.6(a) and 4.6(b), robots form a large heterogeneous

cluster in the center of the environment, which slowly dissipates while they reach their

target positions. Moreover, a symmetrical avoidance behavior was achieved in the

experiment of Figure 4.6(c) because we have used circles as the shapes of the virtual

structures. Both simulations of Figures 4.6(c) and 4.6(d) have achieved cohesion and

segregation in the sense of (4.16). We do not show the average distance plots for these
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experiments since the combination of all curves per team results in a cluttered graph.

Nevertheless, results were similar to the ones obtained in Figure 4.5, i.e., both the

hierarchical abstraction and the VGVO achieved segregation, and robots took a longer

time to �nish the task using the latter than the former.

4.4.2 Real Robots

We have also validated our results in proof-of-concept experiments with real robots.

Such experiments are important in order to show the feasibility of the algorithms in

real scenarios, where all uncertainties caused by sensing and actuation errors may have

an important role on results. We used a set of twelve e-puck robots [Mondada et al.,

2009] (e.g., see Figure 4.7), which are small-sized di�erential robots equipped with a

ring of 8 IR sensors for proximity sensing and a set of LEDs for displaying status. A

bluetooth wireless interface allows local communication among robots and also with a

remote computer. We controlled these robots through Player [Gerkey et al., 2003], a

well-known framework for robot simulation and programming.

Figure 4.7. Twelve e-puck robots used in the experiments.

In order to estimate the con�guration of all robots, we used a swarm localization

architecture developed by Garcia et al. [2007], which is based on �ducial markers and

overhead cameras, as shown in Figure 4.8. In this framework, one or more computers

process the captured images and determine the position of all robots in a common

frame of reference. Afterwards, control inputs are calculated according to our algo-

rithm and broadcasted to the swarm through Bluetooth connections. Additionally, we

implemented a virtual sensor to detect neighboring agents because of the limitations

on the e-puck's IR sensors. Furthermore, to account for nonholonomic constraints, we

transformed input velocities according to the approach presented in [Luca et al., 2000].

Figure 4.9 shows snapshots from executions of the VGVO approach. We can vi-

sually inspect that the experimental results are similar to the simulations, i.e., robots

maintain cohesion and segregation during navigation. We observed that average dis-

tances follow the trend shown in Figure 4.5: The average distance between robots in
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Figure 4.8. Schematic diagram of the architecture used in the experiments.
Source: [Garcia et al., 2007].

the same team is always less than the average distance among robots in di�erent teams.

Although these experiments indicate that our controllers may work reasonably well to

ensure cohesion and segregation, we emphasize that they are proof-of-concepts only,

and more experiments are needed in order to fully evaluate the proposed approach in

real swarm systems.

4.4.3 Discussion

The Velocity Obstacle framework is known for allowing high-speed navigation in multi-

robot scenarios, but robots tend to prioritize slower speeds when using our approach.

This result also in�uences the tuning process of all constants, since their values can

impact the e�ciency of the system. For example, given a high value for α in (4.13),

robots will quickly align their velocities to the average velocity of their neighbors, which

can easily lead to overshoot goal positions as well as increase the chances of collisions

with single robots moving at high speeds. Similarly, a high value for β may lead agents

into tightly aggregated groups, which makes robots prefer slower speeds because most

higher speeds will be inside some velocity obstacle.

We can see evidence of these discussed problems in Figure 4.5(b), in which there

is a noticeable overshoot of the average distance among robots in di�erent groups. The

same has happened in the experiment of Figure 4.5(d), but it is not shown because

of the scale on the axes. In both algorithms, this issue arises because there is no

damping over the robot's acceleration towards its goal. Moreover, the velocity matching

term of (4.13) actually worsens the problem, and it is easy to see that agents may

leave their goal while trying to match their velocities. Therefore, parameters α and
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(a) Two robotic teams.

(b) Four robotic teams.

Figure 4.9. Real execution of the VGVO algorithm with di�erent team sizes.

β must be chosen with care since higher values can compromise the swarm behavior

over the individual behavior, i.e., matching velocities over convergence to the goal. An

alternative approach would be to completely dismiss the group behavior as soon as a

robot is close to its goal.

Since the VGVO uses average velocities in its de�nition, it does not necessarily

guarantee segregation. For instance, if a single robot moving at a high speed passed

another robot of a di�erent team, then the latter could enter the team of the former.

However, it is unusual for this to take place, because the �ocking behavior does not

enable particular robots to move at such speeds. Actually, agents tend to drive near-

ing the average speed of their neighbors. Another problem is that average velocities

can lead to loss of information, i.e., they might not indicate the correct direction of

movement for a group of agents. Thus, it may be interesting to build the VGVOs of

some subsets in Φk as well. For instance, subsets of two or three can be considered in

conjunction with the whole set, and these will block more velocities than the VGVO

of Φk alone, increasing safety with regards to segregation.
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Conclusion

In this dissertation, we studied segregative behaviors in swarm systems and proposed

distinct methods that allow robotic swarms to segregate in the context of clustering and

navigation. Motivations behind this research included the spreading interest in het-

erogeneous multi-robot architectures and the recurrent use of segregation as a sorting

mechanism in nature. More speci�cally, we explored two particular problems: segre-

gated clustering, in which agents must be sorted into homogeneous clusters according to

some characteristic; and segregated navigation, in which teams of robots must navigate

towards their goal region while maintaining segregation among di�erent teams.

Regarding the segregated clustering problem, we proposed a controller that sorts

a system consisting of multiple heterogeneous mobile robots into homogeneous clusters,

such that similar agents are segregated from dissimilar ones. Our approach extended

the di�erential potential concept to multiple types of robots. In this framework, agents

experience di�erent magnitudes of potential when interacting with dissimilar agents,

in a manner analogous to the Di�erential Adhesion Hypothesis from cellular biology.

Furthermore, we presented stability analyses and several experiments in 2D and 3D

scenarios. The results in simulation show agreement with the formal analysis of the

controller and indicate that it is robust in terms of segregation. However, we are unable

to determine whether the largest invariant set corresponds to states in which segrega-

tion always holds true. Despite these good results, there are still limitations that must

be resolved. For instance, assumptions such as global sensing and balanced partitions

are generally not practical in real scenarios, but these constraints may be loosened

by employing other potential functions that consider local sensing and asymmetry in

their formulations. All in all, we expect that further study in this sense can provide

improved solutions that are applicable in a wider variety of instances.

With respect to the segregated navigation problem, we introduced the Virtual

47



48 Chapter 5. Conclusion

Group Velocity Obstacle concept, a set of velocities that can lead a robot to merge

with a team of agents. Particularly, the VGVO resembles ideas from the hierarchical

abstraction paradigm, in which robotic teams are considered as single virtual entities.

We also maintained cohesion among agents by coupling the velocity obstacle framework

with �ocking behaviors. In our method, the robot's preferred velocity is biased to

account for �ocking rules, and velocities are updated according to a sampling-based

procedure. We performed several experiments in simulated and real scenarios, whose

results demonstrated the e�ectiveness of the proposed approach. Nevertheless, there

are plentiful opportunities for improvements. For example, the main downside of our

method is its performance in relation to time, which may be enhanced by introducing

social rules, such as a preferred side to avoid di�erent teams; properly balancing the

shared avoidance e�ort among teams, in a similar fashion to the Optimal Reciprocal

Collision Avoidance method [van den Berg et al., 2011]; or by relying on di�erent

approaches for achieving cohesion and biasing velocities (e.g., [Kimmel et al., 2012;

He and van den Berg, 2013]). Investigations along these lines may lead to interesting

results that could further extend the velocity obstacle framework.

Because segregation is not a complete task in itself, we see our solutions as tools

that can be used as subtasks in complex missions. Examples of which include, but are

not limited to, tra�c control protocols in structured environments, formation control

mechanisms for terrestrial and aerial robots, and splitting behaviors for teams of agents

that reach branching paths in an exploration scenario. Furthermore, it is clear that both

of our solutions require improvements in order to be suitable for real swarm systems.

However, they can be directly used without much modi�cations in an animation system,

as an arti�cial intelligence behavior for virtual agents, and even on real robots working

in an environment that is small when compared to the capabilities of their sensors.

With the results of our work, we intend to increase the interest in research on

heterogeneous robotic swarms, and our goal in this direction is to explore distinct

behaviors that are exclusive to such systems. Heterogeneity is a fundamental charac-

teristic in many natural systems, and its use on robotic swarms may lead to the design

of better, robust, and reliable systems.
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