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Resumo

Métodos implementados em classes inapropriadas constituem um code smell comum
em sistemas orientados a objetos, especialmente quando tais sistemas são mantidos e
evoluídos durante anos. A refatoração Mover Método é a principal refatoração para
resolver tal falha de projeto. Apesar de sua importância, existem poucas ferramen-
tas para auxiliar desenvolvedores na identificação de oportunidades de uso dessa refa-
toração. Para suprir essa deficiência, apresenta-se uma abordagem que recomenda
refatorações Mover Método baseada no conjunto de dependências estáticas estabeleci-
das por um método. Em resumo, a abordagem proposta compara a similaridade entre
as dependências estabelecidas por um método com as dependências estabelecidas por
métodos de outras classes.

A fim de avaliar a solução, foi projetado e implementado JMove, uma ferramenta
que suporta a abordagem proposta nesta dissertação. A abordagem foi avaliada em
termos de precisão e recall utilizando uma amostra de 14 sistemas de código aberto
com 475 instâncias bem definidas do code smell Feature Envy, que foram artificialmente
sintetizadas. Nesse estudo, alcançou-se uma precisão e recall médios de 60,63% e
81,07%, respectivamente. Esses resultados são 129% e 49% melhores do que aqueles
obtidos por JDeodorant (um sistema que representa o estado da arte em recomendações
de refatoração Mover Método) e ainda 556,43% e 378% melhores do que os resultados
obtidos pela ferramenta inCode (uma solução comercial para identificação de code
smells). Finalmente, foi realizada uma segunda avaliação com dois sistemas reais, em
que especialistas em tais sistemas avaliaram as recomendações fornecidas por JMove,
JDeodorant e inCode.

Palavras-chave : Refatoração Mover Método; Sistemas de Recomendação; Conjunto
de Dependências.
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Abstract

Methods implemented in incorrect classes are common code smells in object-oriented
systems, especially in the case of systems maintained and evolved for years. In this
scenario, Move Method is the key refactoring for tackling this design flaw. Despite its
importance and usefulness, there are few tools to assist developers in identifying Move
Method refactoring opportunities. To address this shortcoming, we propose a novel
approach that recommends Move Method refactorings based on the set of static de-
pendencies established by a method. In short, our approach compares the similarity
of the dependencies established by a particular method with those established by the
methods of other classes.

To evaluate our approach, we first designed and implemented JMove, a proto-
type tool that supports the approach proposed in this dissertation. We evaluate our
approach in terms of precision and recall using a sample of 14 open-source systems
with well-defined Feature Envy instances, which we have artificially synthesized. More
specifically, we evaluated the proposed approach with 475 well-defined Feature Envy
instances achieving an average precision and recall of 60.63% and 81.07%. Respec-
tively, these results are 129% and 49% better than those achieved by JDeodorant (a
state-of-art Move Method recommendation system) and 556.43% and 378% better than
those achieved by inCode (a commercial solution for identifying design flaws, such as
Feature Envy). Furthermore, we report a second evaluation with two real systems,
in which the own system’s experts evaluated the recommendations raised by JMove,
JDeodorant, and inCode.

Keywords: Move Method refactoring; Recommendation systems; Dependency sets.

xv





List of Figures

1.1 Sketch of the proposed approach . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Recommendations in JHotDraw for the best coefficients . . . . . . . . . . . 33
3.3 Recommendations in JHotDraw for the worst coefficients . . . . . . . . . . 34
3.4 Recommendations in JHotDraw using distinct filter’s thresholds . . . . . . 34
3.5 JMove’s interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 JMove’s architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 SGA’s architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Intersection between the JMove, JDeodorant, and inCode . . . . . . . . . . 61

xvii





List of Tables

3.1 Dependency sets for the methods in CustomerView and CustomerDAO . . . 30
3.2 Similarity values for classes CustomerView and CustomerDAO . . . . . . . 31
3.3 Similarity Coefficients (Extracted from [Terra et al., 2013a]) . . . . . . . . . . . . . 32

4.1 Target Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Gold Sets size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Precision Results for JHotDraw . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Number of Recommendations for JHotDraw . . . . . . . . . . . . . . . . . 47
4.5 Recall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Number of Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.7 Real-world systems evaluated by experts . . . . . . . . . . . . . . . . . . . 56
4.8 Evaluation of the Geplanes’ recommendations by an expert . . . . . . . . . 60
4.9 Execution time for JHotDraw (minutes) . . . . . . . . . . . . . . . . . . . 63

xix





Contents

Agradecimentos ix

Resumo xiii

Abstract xv

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 An Overview of the Proposed Approach . . . . . . . . . . . . . . . . . 2
1.3 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 Central Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Code Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Software Remodularization . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Recommendation Systems . . . . . . . . . . . . . . . . . . . . . 10

2.2 Identification of Refactoring Opportunities . . . . . . . . . . . . . . . . 11
2.2.1 Design Differencing . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 A search-Based Approaches using Evolutionary Algorithms . . . 12
2.2.3 MethodBook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Metrics-based Detection of Code Smells . . . . . . . . . . . . . . 15
2.2.5 JDeodorant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

xxi



3 Proposed Approach 23
3.1 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Recommendation Algorithm . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Similarity Function . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Target Class Selection . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.4 The Approach in Action . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Exploratory Study: Similarity Coefficients . . . . . . . . . . . . . . . . 31
3.2.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Similarity Coefficient Results . . . . . . . . . . . . . . . . . . . 33
3.2.3 Filter’s Threshold Impact . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Evaluation 41
4.1 Evaluation with Open-Source Systems . . . . . . . . . . . . . . . . . . 41

4.1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.3 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.4 Qualitative Discussion . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Evaluation with Experts . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.3 SGA Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.4 Geplanes Results . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Conclusion 65
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 69

xxii



A Running Example Classes 75
A.1 Class CustomerView . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.2 Class CustomerDAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B SGA running Example Classes 81
B.1 Class Outsourcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xxiii





Chapter 1

Introduction

In this chapter, we state the problem and present this dissertation’s motivation (Sec-
tion 1.1). We then provide an overview of our approach (Section 1.2). Finally, we
present the outline of the dissertation (Section 1.3) and our publications (Section 1.4).

1.1 Motivation

In object-oriented systems, classes encapsulate an internal state that is manipulated
by methods. However, during software evolution, developers inadvertently implement
methods in incorrect classes, creating instances of the Feature Envy code smell [Fowler,
1999]. In fact, there are many studies that rank Feature Envy as one of the most
recurring code smell [D’Ambros et al., 2010; Sjoberg et al., 2013]. On one hand,
the causes of this design flaw are well-known and include deadline pressures, complex
requirements, or the partial understanding of the system’s design. On the other hand,
the consequences can be summarized in the form of a negative impact in the system’s
maintainability [Lanza et al., 2005; Yamashita and Moonen, 2012].

Besides the causes and consequences, the refactoring actions to remove a Feature
Envy are also well-documented. Basically, a Move Method refactoring must be applied
to move the method from its current class to the class that it envies [Fowler, 1999;
Tsantalis and Chatzigeorgiou, 2009]. In practice, such refactoring is usually supported
by the automatic refactoring engines that are part of most modern IDEs. Therefore, the
task of applying a fixing action is not challenging in case of Feature Envy design flaws.
On the other hand, before applying this refactoring, maintainers must perform two
program comprehension tasks: (a) detect the Feature Envy instances in the source code,
and (b) determine the correct classes to receive the methods detected by the first task.
Typically, such tasks are more complex because they require a global understanding
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2 Chapter 1. Introduction

of the system’s design and implementation, which is a skill that only experienced
developers have.

Moreover, Move Method is also a key refactoring for improving software architec-
tures. For example, Terra et al. [2013c] proposed an architectural repair recommenda-
tion system to fix violations raised by architecture conformance checking approaches.
Among the repair actions suggested by this system, several include a recommendation
to move a method to another class.

Despite the importance and usefulness of the Move Method refactoring, currently
there are few tools to assist developers in identifying opportunities to take advantage
of this refactoring. As one example, JDeodorant is a Move Method recommendation
system that follows a classical Feature Envy heuristic with some improvements to de-
tect opportunities of Move Method refactorings [Tsantalis and Chatzigeorgiou, 2009].
Basically, for JDeodorant a method m envies a class C when m accesses more services
from C than from its own class. However, this heuristic generally produces too many
recommendations and a higher number of false positives. For example, in a prelimi-
nary experiment with JHotDraw, a system that is well-known for its internal quality,
JDeodorant generates 27 recommendations. Therefore, the challenge when designing
such recommendation systems is not only to generate correct refactoring recommen-
dations, but also to avoid incorrect recommendations that an experienced developer
would easily discard.

1.2 An Overview of the Proposed Approach

As stated in the previous section, the task of detecting Feature Envy instances and
determining the correct classes to receive the detected methods is non-trivial, time-
consuming, and usually performed in an ad hoc way without adequate tool support.
To tackle this problem, we describe in this master dissertation a solution based on
recommendation system principles that provides Move Method refactoring recommen-
dations.

As illustrated in Figure 1.1, our approach detects methods displaying a Fea-
ture Envy behavior. In such cases, we also suggest a target class where the methods
should be moved to. More specifically, our approach is centered on the following as-
sumption: methods in well-designed classes usually establish dependencies to similar
types. For example, suppose that class CustomerDAO is used to persist customers in a
database. Typically, the dependency sets of the methods in this class include common
domain types (such as Customer) and also common persistence related types (such as
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                Move Method 
           Recommendations

Source Code

public class C {

  

}

 void m(){
   ...
   }

int getV( ) {
   ...
  }

Analysis of the
  Source Code

Figure 1.1: Sketch of the proposed approach

SQLException). Suppose also that one of such methods, named getAllCustomers (as
presented in Code 1.1), is inadvertently implemented in class CustomerView, responsi-
ble for user interface concerns. In this case, the dependency set of getAllCustomers will
not contain dependencies to types such as Button, Label, etc., which are common in
methods from CustomerView. Therefore, since the dependency set of getAllCustomers

is more similar to the dependency sets in CustomerDAO than to the dependency sets in
CustomerView, our approach may trigger a Move Method recommendation, suggesting
to move getAllCustomers from the former to the latter.

1: public class CustomerView extends JFrame {
... declaration of variables

2: public List <Customer > getAllCustomers (DB db) throws SQLException {
3: List <Customer > result = new ArrayList <Customer >();
4: Connection con = db. getConnection ();
5: PreparedStatement ps =
6: con. prepareStatement (" select * from CUSTOMER ");
7: ResultSet rs = ps. executeQuery ();

8: while (rs.next ()){
9: result .add(new Customer (rs. getInt ("ID"),rs. getString ("NAME")));
10: }
11: rs.close ();
12: ps.close ();
13: con.close ();
14: return result ;
15: }
16:}

Code 1.1: getAllCustomers method

In particular, to measure the similarity between a given method m with its own
class C, we compute the average similarity between the set of dependencies established
by m and by the remaining methods in C. Similarly, to measure the similarity between
the method m and a class Ci, we compute the average similarity between the depen-
dencies established by m and by the methods in class Ci. If the similarity between a
given method m and a class Ci is greater than the similarity between m and its own
class C, we infer that m is more similar to Ci than to its current class C. Therefore,
Ci is a potential candidate class to receive m.
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To measure the similarity between the sets of dependencies established by two
methods we rely on similarity coefficients, which are usually employed to measure the
similarity between two generic sets. However, to choose the most suitable coefficients,
we conducted an exploratory study where we evaluated 18 similarity coefficients using
JHotDraw, which is a system commonly used to illustrate object-oriented programming
practices and patterns. As the result, we decided to rely on the Sokal and Sneath 2
coefficient [Sokal and Sneath, 1963, 1973].

In order to evaluate our approach, we implemented a prototype tool, called
JMove. Basically, JMove is an Eclipse plug-in that supports the approach proposed in
this dissertation. We evaluate our approach in terms of precision and recall, using a
sample of 14 open-source systems with well-defined Feature Envy instances, which we
have synthesized manually. We report that our solution provides an average precision
of 60.63% and an average recall of 81.07%. Respectively, these results are 129% and
49% better than those achieved by JDeodorant (a state-of-art Move Method recom-
mendation system) and 556.43% and 378% better than those achieved by inCode (a
commercial solution for identifying design flaws, such as Feature Envy). Furthermore,
we conduct a second evaluation with two real systems. Experts on these two systems
evaluated the recommendations raised by JMove, JDeodorant, and inCode. In this
case we concluded that JMove was able to identify real Move Method opportunities.

1.3 Outline of the Dissertation
We organized the remainder of this work as follows:

• Chapter 2 covers central concepts related to this dissertation, including a dis-
cussion on refactoring and code smells. We also present some remodularization
approaches based on recommendation system principles. Finally, we provide an
overview on tools for detecting refactoring opportunities.

• Chapter 3 presents the proposed recommendation system, including the descrip-
tion of its underlying algorithms and an example that illustrates its operation.
Furthermore, this chapter presents an exploratory study to select the most ap-
propriated similarity coefficient used by our approach. Finally, we present a tool,
called JMove, that implements our approach.

• Chapter 4 compares our approach with two other recommendations systems
using 14 open-source systems where we artificially created the methods to be
moved. We detail the dataset used in this evaluation and the methodology we
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followed to generate the gold sets used to calculate precision and recall. Further-
more, we evaluate our approach with two real-world systems, when an expert in
each system evaluated the triggered recommendations.

• Chapter 5 presents the final considerations of this dissertation, including the
contributions, limitations, and future work.

1.4 Publications
This dissertation generated the following publications and therefore contains material
from them:

• Vitor Sales, Ricardo Terra, Luis Fernando Miranda, and Marco Tulio Valente.
Recommending Move Method Refactorings Using Dependency Sets. In 20th
Working Conference on Reverse Engineering (WCRE), pages 232-241, 2013.

• Vitor Sales, Ricardo Terra, Luis Fernando Miranda, Marco Tulio Valente. JMove:
Seus Métodos em Classes Apropriadas. IV Congresso Brasileiro de Software:
Teoria e Prática (Sessão de Ferramentas), p. 1-6, 2013.

• Vitor Sales. Revealing Move Method Opportunities. Poster, presented in 1st
Latin-American School on Software Engineering, 2013. (Prize of third best poster
in Master’s student category).





Chapter 2

Background

In this chapter, we discuss background work related to this dissertation. First, Sec-
tion 2.1 presents central concepts of our study: a description of refactoring, since
our approach relies on a well-known refactoring to improve the system design (Sec-
tion 2.1.1); a solid definition of code smells, which are related to our work in terms of
being a design flaw we aim to solve (Section 2.1.2); a discussion on remodularization ap-
proaches because they represent potential alternatives to architecture degradation (Sec-
tion 2.1.3); and an overview on recommendation systems because our approach is based
on recommendation system principles (Section 2.1.4). Second, Section 2.2 provides an
overview on the identification of refactoring opportunities since our approach detects
Move Method refactoring opportunities using dependency sets. Last, Section 2.3 con-
cludes this chapter with a general discussion.

2.1 Central Concepts

2.1.1 Refactoring

An intrinsic property of real-world systems is their need to evolve. As software evolves
it is modified and adapted to new requirements. During the evolution process, the
software source code usually becomes more complex and deviates from its original
design, which leads to a decrease in quality [Lehman, 1980].

Refactoring, as defined by Fowler [1999], is a change made to the internal structure
of a system to make it easier to understand and cheaper to modify, while preserving
its observable behavior. Thus, refactoring can be seen as a technique for reorganizing
code. Despite the benefits that continuous refactoring can provide, the refactoring
process is commonly overlooked due to budget and time constraints. On the other

7



8 Chapter 2. Background

hand, architectural deviations—i.e., violations from the intended architecture—have
a cumulative effect, which makes the maintenance and system evolution increasingly
costly [Terra and Valente, 2009].

Although the understanding of refactorings is straightforward, the task of for-
malizing and automating them is not trivial [Schäfer et al., 2009; Borba et al., 2004;
Steimann and Thies, 2009; Tsantalis and Chatzigeorgiou, 2009; Verbaere et al., 2006;
Opdyke, 1992; Soares et al., 2010, 2013]. The mechanics behind refactorings is usually
specified in natural language and does not cover all possible scenarios and precondi-
tions. In fact, even a bug-free implementation for typical refactorings—i.e., refactorings
whose scopes are limited to few classes—has proved to be a complex task [Steimann
and Thies, 2009].

2.1.2 Code Smells

Knowing how refactoring works and its benefits is not sufficient to determine when a
refactoring should be applied. The decision on when to start and to stop the refactor-
ing process is as important as knowing the mechanics behind refactorings. Although
no metrics or heuristics can compete with human intuition, code smells are usually
considered good indicators of design problems that can be solved through refactorings.

According to Fowler [1999], a code smell is a symptom in the source code that
typically corresponds to a deeper problem in the system. Although code smells do
not prevent the operation of the system, they may indicate deficiencies in the design
that may hamper maintenance and evolution. Although Fowler [1999] defined 23 code
smells, we present here only the Feature Envy one because it is directly related to the
approach proposed in this dissertation.

Feature Envy:

“A classic smell is a method that seems more interested in a class other
than the one it actually is in. The most common focus of the envy is
the data. We’ve lost count of the times we’ve seen a method that invokes
half-a-dozen getting methods on another object to calculate some value.
Fortunately the cure is obvious, the method clearly wants to be elsewhere,
so you use Move Method to get it there” [Fowler, 1999].

More specifically, we can solve the feature envy code smell by three distinct ways:
(i) we can use the Move Method refactoring to move a method from its current class
to the class it envies; (ii) when only a code snippet of the method is responsible for
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the envy, we can first apply the Extract Method refactoring and then apply the Move
Method refactoring to move the extracted method to the class it envies; and (iii) we
can move the envied attributes to the class that envies them.

2.1.3 Software Remodularization

Remodularization is a process that modifies the modular design of a system for the
purposes of adaptation or evolution. Remodularization does not imply changes in the
system behavior. In fact, it can be very convenient to change the modular design of
a system without changing its external behavior. In this manner, remodularization is
quite similar to the definition of refactoring. However, remodularization usually denotes
a large number of refactorings sequentially applied to improve the system architecture.

Basically, such approaches are proposed to support the cases where a renovation
in the underlying architecture or even a complete rearchitecting effort are required. In
such instances, the transformations may include not only moving methods, but also
extracting classes, splitting packages, etc. For example, Moghadam and Ó Cinnéide
[2012] proposed an approach to automatically refactor the source code towards a de-
sired design, provided in the format of a UML class diagram. The proposed approach
compares the current and desired models and expresses the design differences as a set
of refactorings. In contrast, instead of a desired UML model, our approach suggests
Move Method refactorings to enhance a preexisting design.

Hierarchical clustering is another technique commonly proposed to evaluate al-
ternative software decompositions [Anquetil and Lethbridge, 1999; Santos et al., 2014].
As an example, Bunch is a tool that recommends system decompositions by parti-
tioning graphs of the entities (e.g., classes) and relations (e.g., dependencies) in the
source code [Mitchell and Mancoridis, 2006]. However, the effectiveness of clustering
in reengineering tasks is often challenged. For example, Glorie et al. [2009] reported
an experiment in which clustering and formal concept analyses have failed to produce
an acceptable partitioning of a monolithic medical imaging application.

To reveal the differences observed between current and planned software archi-
tectures, Maffort et al. [2013] proposed a conformance tool called ArchLint. The au-
thors combine static and historical source code analysis techniques in order to pro-
vide a lightweight alternative for architecture conformance. They consider ArchLint a
lightweight approach because it requires only two inputs on the system under analy-
sis: (i) a high-level component specification and (ii) the history of revisions, without
requiring further refinements on component specification.

The recommendation approach described in this dissertation was inspired by a
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previous work on architecture conformance and repair [Terra and Valente, 2009; Terra
et al., 2013c]. More specifically, Terra et al. [2013c] proposed a recommendation sys-
tem, called ArchFix, that supports a catalog of architectural repair recommendations
to fix violations raised by architecture conformance checking approaches (e.g., Arch-
Lint). Some repair actions in ArchFix include a recommendation to move a method
to another class, which is inferred using the set of dependencies established by the
source method and the target class. However, methods located in the wrong class are
provided as an input to the recommendation algorithm (and represent an architectural
violation). On the other hand, the goal of the approach proposed in this dissertation
is to automatically discover such methods, i.e., we investigate methods that do not
necessarily denote architectural violations.

2.1.4 Recommendation Systems

Recommendation Systems are software applications that aim to support users in their
decision-making while interacting with large amounts of information. Recommenda-
tion Systems help to overcome information overload by showing users only the most
relevant items [Robillard et al., 2010]. More specifically, Recommendation Systems for
Software Engineering (RSSEs) provide potentially valuable information for software
engineering tasks in a given context. In this section, we discuss some RSSEs with
focus on demonstrating the feasibility of a solution based on recommendation system
principles for enhancing the system design.

CodeBroker [Ye and Fischer, 2005] retrieves relevant software components based
on source code. It analyzes developer comments in the code and the method’s signature
to extract queries. Thereafter, it detects context-relevant code components that may
help users to implement the functionality of interest. CodeBroker uses a combination of
textual-similarity analysis and type-signature matching to identify relevant elements.
Moreover, the tool works in push mode, i.e., it produces recommendations each time
developers write comments.

Similarly, Holmes et al. [2006] propose Strathcona, an approach that relies on
the structure of the source code under development to retrieve relevant examples.
Strathcona automatically extracts a set of structural facts (e.g., method calls) about
the context of an indicated source code fragment and searches for examples that contain
similar structural context in the repository. As a distinguishing feature regarding other
approaches, relevant examples are automatically extracted from a source code fragment
indicated by the developer.

In a similar research line, to help developers in using an API (Application Pro-
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gramming Interface), Montandon et al. [2013] proposed APIMiner, a platform that
instruments the standard Java-based API documentation format with concrete source
code examples of usage, which are extracted from a private repository. APIMiner ex-
tracts examples from an internal repository of source code projects, which should be
populated before starting to use the platform. After that, APIMiner summarizes and
ranks the examples off-line, i.e., during a pre-processing phase. Finally, APIMiner au-
tomatically generates a new Javadoc documentation, with buttons that provide access
to the extracted source code examples.

2.2 Identification of Refactoring Opportunities

Although it is possible to manually refactor a system, tool support is considered cru-
cial [Mens and Tourwé, 2004]. Basically, there are two types of approaches related to
the degree of automation provided by refactoring tools: semi-automatic and automatic
approaches.

In a semi-automatic approach, the intervention of the developer is required to
identify which parts of the software need to be refactored or to select which refactorings
should be applied. After that, the application of the refactoring is automated. Based
on two studies of non-trivial cases, Tokuda and Batory [2001] estimated that semi-
automatic tools can increase the productivity factor in ten times or more. Although
semi-automatic refactoring tools that involve too much human interaction might make
refactoring a consuming activity, they represent the most useful approach in practice
because a significant part of the knowledge required to perform the refactoring cannot
be extracted from the software [Mens and Tourwé, 2004].

As an alternative approach to semi-automatic approaches, some researchers in-
vestigated solutions that offer a fully automated refactoring process, i.e., the developer
intervention is not necessary [Moghadam and Ó Cinnéide, 2012, 2011; Seng et al.,
2006; Kataoka et al., 2001; Moore, 1996; Casais, 1994]. On the other hand, automatic
approaches usually present to developers the refactored code after the whole process,
which may cause misunderstanding, in the sense that certain parts of the refactored
software become even more difficult to understand.

In recent years, many techniques have been proposed to deal with the identifica-
tion of the refactorings. Since our proposed approach works on recommending Move
Method refactorings, an overview the state-of-the-art on identification techniques of
refactorings is presented in following sections.
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2.2.1 Design Differencing

Moghadam and Ó Cinnéide [2011] proposed a platform named Code-Imp (Combina-
torial Optimisation for Design Improvement), which performs automated refactorings
for Java. Code-Imp uses an automatic refactoring-based search, i.e., refactorings are
mapped as a search problem and the goal is to maximize the value of an objective func-
tion. Thus, given an objective function, random refactorings are applied in order to
move around the solution space seeking a configuration that maximizes this function.
The search process is guided by a set of 27 metrics and the fitness function can be
defined based on any combination of these metrics. Refactorings are accepted when,
in addition to preserving the behavior of the system, they improve the values of the
chosen set of metrics.

Using the Code-Imp tool, Moghadam and Ó Cinnéide [2012] proposed an ap-
proach based on differences between UML (Unified Modeling Language) class models.
In this approach, developers first extract the UML class model of the system to refactor
using a tool named JDEvAn [Xing and Stroulia, 2008]. In practice, the extracted class
model represents the original architecture of the system. Second, developers modify
such extracted class model towards a desired architecture. Third, an algorithm called
UMLDiff extracts the differences between the original extracted class model and the
modified one. The differences are mapped to one or more refactorings supported by
Code-Imp. Finally, the results from this process are the refactorings needed to trans-
form the current architecture into the desired one.

To validate their approach, the authors conducted experiments using six open-
source Java applications. In each experiment the application under investigation was
randomly, massively, and automatically refactored to change its design structure. As
expected, this process led to a decrease in the quality of the design of the software
creating a degraded system architecture. After that, the authors rebuilt the original
source code from its low-quality refactored version based on the detected design dif-
ferences. The authors conclude that the original program could be refactored to the
desired architecture with an accuracy of over 90%. Although their evaluation indicated
a high degree of accuracy, it was conducted in a very restricted context and hence the
results may not be as good in real scenarios.

2.2.2 A search-Based Approaches using Evolutionary Algorithms

Seng et al. [2006] investigated how search-based techniques can be applied to recondi-
tioning the class structure. They described a novel search-based approach that assists
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software engineers to improve the system quality, using evolutionary algorithms and
simulated refactorings.

Specifically, the approach relies on a standard fact extraction technique to trans-
form the source code into a figurative model called phenotype. Phenotype consists
of the abstract source code model and several model refactorings, which simulate the
actual source code refactorings. The intermediate model is created to allow the sim-
ulation of refactorings in the source code and to evaluate their impact on a fitness
function. The goal is to find a set of refactorings that—when applied to the source
code model (phenotype)—maximizes the value of the fitness function and hence im-
proves the system quality. In addition, all refactorings performed on this model are
stored in a structure named genotype, which consists of an ordered list of refactorings
to transform the initial model A into an improved model B.

The fitness function measures the improvement in the quality of the source code.
This function is a weighted sum of several metric values that should be maximized.
It captures several properties of interest, such as coupling, cohesion, complexity, and
stability. The authors rely on several metrics from Briand’s catalogue to assess these
properties [Briand et al., 1998]. For example, they use Response for class (RFC) and
Information-flow-based-coupling (ICP) to measure coupling and metrics Tight class co-
hesion (TCC), Information-flow-based-cohesion (ICH), and Lack of cohesion (LCOM5)
to measure cohesion.

To conduct the evolutionary process, they consider multiple models that form
their population at a time. The initial population of models is created by copying
the initial model, extracted from the original source code, x times. During the first
evolutionary step, elements of the current population are modified using a random
model refactoring or a new model is created by combining genomes of two models using
a crossover operator. After this step, there are x + y models, i.e., the x preexisting
models and the y recent created models. In order to reduce the population to its
initial size of x elements, the most promising elements are selected using a tournament
selection strategy.

The optimization stops after a predefined number of evolutionary steps, which
is chosen based on the number of model elements and on the number of refactorings.
The model with the best rating according to the fitness function is chosen as the best
solution to improve the system quality. Since refactorings responsible for this model
generation are stored as genotype, users can identify which refactorings they need to
carry out on the original source code.

The authors evaluated their approach using JHotDraw, a well-known open-source
system. They modified JHotDraw by misplacing ten randomly selected methods. Given
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the non-deterministic nature of the approach, they perform series of ten runs using the
modified system. As a result, nine out of ten methods were moved back during each
run, which indicates that the approach was able to restore the original design.

2.2.3 MethodBook

Oliveto et al. [2011] proposed MethodBook, an approach to identify Move Method
refactoring opportunities and to remove the Feature Envy bad smell from source code.
The approach considers both structural and conceptual relationships between methods
to identify sets of methods that share the same responsibilities. They investigate
friendships between methods, using Relational Topic Model [Chang and M. Blei, 2010],
to infer the target class where the method should be moved to.

The concept of friendships between methods is used as a metaphor to identify
envied classes. Basically, two methods are considered friends when they share respon-
sibilities, i.e., both methods operate on the same data structures or rely on the same
features or concepts. Metaphorically, the authors claim that methods that are “good
friends” should belong to the same class.

In practice, this approach can be explained with an analogy to Facebook. In
Facebook, users can add friends, send them messages, and update their personal profiles
to notify friends about themselves. In particular, Facebook also relies on Relational
Topic Model (RTM) to analyze users profiles and to suggest new friends or groups
of people sharing similar interests. Analogously, in MethodBook, methods and classes
play the same role as people and groups in Facebook, respectively. Moreover, methods’
bodies are analogous to profiles in Facebook and contain information about structural
(e.g., method calls) and conceptual relationships (e.g., similar comments) with other
methods.

Their approach relies on RTM to identify “friends” of a method and therefore to
suggest Move Method refactoring opportunities. In particular, MethodBook suggests
as a target class the one that contains the higher number of “friends” with the method
under analysis. The model generated by RTM is used to determine the degree of
similarity among methods in the system and to rank friendships among these methods.
In this phase, a cut point is used to identify the n best friends, which represent the
methods having the highest similarity with the method under analysis. Once the “best”
friends are identified, MethodBook analyzes their classes to determine the envied class,
which contains the highest number of friend methods with the examined method. This
choice is justified by the conjecture that the higher the number of friends placed in the
same class, the higher its quality in terms of cohesion and coupling.
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The authors performed a preliminary evaluation of their approach on ArgoUML,
an open-source system. The goal was to investigate whether MethodBook is able
to identify meaningful Move Method refactoring operations for a given method. First,
they randomly extracted 1,000 methods from classes of ArgoUML. Second, the authors
applied MethodBook to identify the envied class for each extracted method, which is
likely to be the class the method was extracted from. As the result, their approach
achieved a recall of 75% and a precision of 70%. However, it is worth noting that the
method has to be given as input to the approach.

2.2.4 Metrics-based Detection of Code Smells

Marinescu [2004] proposed an approach to help developers and maintainers to detect
code smells. The proposed detection strategies consist of metrics-based rules to capture
deviations from good design principles. Using these strategies, engineers can directly
localize classes or methods affected by a particular code smell (e.g., Feature Envy),
rather than having to infer the real design problem from a large set of abnormal metric
values.

According to the author, a detection strategy is the quantifiable expression of a
rule by which design fragments that are conforming to that rule can be detected in
the source code. Therefore, a detection strategy is a generic mechanism for analyzing
a source code model using metrics. The use of metrics in detection strategies is based
on filtering and composition mechanisms. While the objective of filtering is to reduce
the initial data set, compositions are used to correlate the interpretation of multiple
metrics.

The author classifies the filters in various categories. Filters such as HigherThan
and LowerThan are parameterized with an absolute threshold, e.g., “a class should
not be coupled with more than six other classes”. Another category of filters have
their value relative to the original data. Filters such as TopValues and BottomValues
require a parameter that specifies the number of entities to be retrieved, rather than
specifying the maximum or minimum value allowed in the result set. The parameters
may be absolute—e.g., “keep 20 entities with the highest values”—or relative—e.g.,
“retrieve 10% of all measured entities having the lowest values”.

In addition to filtering mechanisms, detection strategies may be defined by com-
position mechanisms using the operators and, or, and butnot. In terms of set operators,
the and operator is mapped to intersection, the or to union, and the butnot to minus.

As a clarification example, the author described a strategy for detecting God
Classes, which is defined as:
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“An object that controls way too many other objects in the system and
has grown beyond all logic to become the class that does everything” [Riel,
1996].

The starting point is given by one or more informal rules that define comprehen-
sively the design problem. Particularly for God Classes, the authors use the following
set of three heuristics [Riel, 1996]:

Rule #1: Top-level classes in a design should share work uniformly;
Rule #2: Beware of classes with much non-communicative behavior; and
Rule #3: Beware of classes that access directly data from other classes.

The first step for constructing a detection strategy is to translate informal rules
in a set of correlated symptoms. In the God Class case, the first rule refers to the
lack of a uniform distribution of intelligence among classes. Since it refers to the high
complexity of a class, the author selected the Weighted Method Count (WMC) metric
to quantify complexity [Chidamber and Kemerer, 1994]. The second rule is related
to the level of intraclass communication. Since it refers to low cohesion, the author
selected the Tight Class Cohesion (TCC) metric [Bieman and Kang, 1995]. The third
rule addresses a special type of coupling, that is, direct accesses to attributes defined
in other classes. Since it refers to the access of foreign data, the author selected Access
to Foreign Data (ATFD) metric to represent this property [Lanza et al., 2005].

The second step is to determine the proper filtering mechanism that should
be used with each metric. Because the first symptom is a “high class complexity”,
the author chose the TopValues filter for the WMC metric. For the “low cohesion”
symptom, the author chose the BottomValues filter. Finally, for the third symptom (to
capture access to foreign data), the author chose the HigherThan filter. Afterwards,
it is necessary to correlate these symptoms using the composition operators. For the
mentioned symptoms, the author infers that all these three symptoms should coexist
in God Classes, and therefore, the author used the and (∧) operator to connect all
symptoms. In summary, Equation 2.1 illustrates the detection strategy adopted for
God Classes.

GodClass(C) =
(WMC(C), T opV alues(25%)) ∧ (TCC(C), BottomV alues(25%)) ∧ (ATFD(C), HigherThan(1))

(2.1)

One of the most critical tasks in defining a detection strategy is to set the thresh-
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olds for each data filter. For Example, in Equation 2.1, the author uses a simplistic
approach and consider a 25% value for both the TopValues and the BottomValues fil-
ters. The selection of a threshold for the ATFD metric is simpler because no direct
access to data of other classes is permitted and, hence, the threshold value is one.

The threshold values have direct influence on the accuracy of the detection strate-
gies. In fact, this problem intrinsically characterizes metrics-based approaches. More
specifically, to determine “correct” threshold values is one of the major limitations of
such approaches. In practice, threshold values are obtained by empirical processes,
guided by past experiences and based on hints from metrics’ authors. There are ap-
proaches working on this problem, e.g., an approach based on a “tuning machine” that
tries to automatically find proper threshold values [Mihancea and Marinescu, 2005],
approaches that extract thresholds automatically from a software repository [Oliveira
et al., 2014]. Despite increasing efforts in this direction, setting the best value up for
thresholds remains a central challenge in metric-based approaches.

The authors claim to have also defined detections strategies for more than ten
design problems, such as Shotgun Surgery, Misplaced Class, God Method, and Feature
Envy. Because it is directly related to the approach proposed in this dissertation, we
present the Feature Envy detection strategy, which is defined as follows:

FeatureEnvy(m) =

ATFD(m), HigherThan(FEW )) ∧

(LAA(m), LessThan(ONE THIRD)) ∧ (FDP(m), LessOrEqualThan(FEW )) (2.2)

where metrics ATFD (Access to Foreign Data) measures the number of distinct at-
tributes the measured element accesses, LAA (Locality of Attribute Accesses) measures
the relative number of attributes that a method accesses on its class, and FDP (Foreign
Data Providers) measures the number of classes where the accessed attributes belong
to.

Marinescu et al. [2005] designed IPlasma, a tool that implements the aforemen-
tioned approach. Such tool is an integrated environment for quality analysis of object-
oriented software systems that supports more than 80 design metrics. It can also detect
design flaws—such as Feature Envy, Data Class, and God Class. Recently, the tool
has evolved to a commercial version, named inFusion.1

1www.intooitus.com/products/infusion
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2.2.5 JDeodorant

Proposed by Tsantalis and Chatzigeorgiou [2009], JDeodorant follows a classical heuris-
tic to detect Feature Envy bad smells: a method m envies a class C ′ when m accesses
more services from C ′ than from its own class. However, JDeodorant includes two
major improvements to this heuristic: (i) an Entity Placement metric and (ii) a set of
Move Method refactoring preconditions.

In order to avoid an explosion in the number of false positives, JDeodorant de-
fines a metric, called Entity Placement, to evaluate the quality of possibleMove Method
recommendations. This metric is used to evaluate whether a potential recommenda-
tion reduces a system-wide measurement of coupling and also improves a system-wide
measurement of cohesion.

To calculate the Entity Placement metric, JDeodorant creates an entity set for
each attribute and method. The entity set for a method m is formed by the attributes
that m accesses directly or through accessor methods and by the methods that are
called by m. On the other hand, the entity set for an attribute is formed by the
methods that directly or through accessors methods access it. Apart from the entity
sets of methods and attributes, the entity set of a class C contains only its attributes
and methods.

In the Entity Placement metric, a high similarity value between a method and a
class denotes a large number of common entities in their entity sets. JDeodorant relies
on the Jaccard similarity coefficient to calculate the similarity between entity sets, as
defined in Equation 2.3.

Jaccard(A, B) = |A ∩B|
|A ∪B|

(2.3)

On the other hand, the Jaccard distance—which measures the dissimilarity be-
tween sets—is obtained by subtracting Jaccard similarity value from one, as defined in
Equation 2.4.

dJ(A, B) = 1− Jaccard(A, B) = |A ∪B| − |A ∩B|
|A ∪B|

(2.4)

JDeodorant assumes that the Jaccard distance from a class to the inner entities
should be as small as possible to achieve high cohesion. Moreover, the Jaccard distance
from a class to outer entities (i.e., entities that do not belong to the class) should be
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as large as possible to achieve low coupling. Therefore, the Entity Placement metric is
defined considering for each class the ratio between the average inner and outer entity
distances. For a given class, the closer to zero such ratio is, the safer to conclude that
entities are correctly placed. Assume that ei refers to inner entities and ej to outer
entities, the Entity Placement value for a class C is defined by Equation 2.5.

EntityP lacement(C) =

∑
ei∈C

dJ(ei, C)

|entities ∈ C|∑
ej /∈C

dJ(ej, C)

|entities /∈ C|

(2.5)

Finally, JDeodorant defines a rich set of Move Method refactoring preconditions
to check whether the refactoring recommendations preserve the system’s behavior
and design quality. These preconditions are divided into three groups: Compilation,
Behavior-Preservation, and Quality Preconditions.

Compilation Preconditions:

1. The target class should not contain a method having the same signature as the
method to be moved.

2. The method to be moved should not override an abstract method. Moving a
method that overrides an abstract method can generate compilation problems
because the overriding of abstract method is mandatory for concrete classes.

3. The method to be moved cannot contain super method invocations.

4. The target class cannot be an interface because interfaces contain only abstract
methods.

Behavior-Preservation Preconditions:

1. The target class should not inherit a method having the same signature as the
method to be moved. Moving such method would lead to an overriding of the
inherited method, affecting the behavior of the target class.

2. The method to be moved should not override an inherited method in its original
class. Moving such method would affect the behavior of the source class because
it would enable the inheritance of the method defined in its superclass.
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3. The methods that originally invoke the method to be moved should be modified
to invoke it through the new reference. Therefore, the method should have a
reference to the target class through its formal parameters or source class fields.

4. The method to be moved should not be synchronized due to concurrency issues.

Quality Preconditions:

1. The method to be moved should not contain assignments to a class field, including
inherited fields. In fact, moving such method would increase the coupling between
the source and target classes because the method will remain coupled to the
source class. Furthermore, a method that changes the value of a field has stronger
conceptual binding with the class it belongs to, when compared to a method that
simply accesses the value of the field.

2. The method to be moved should have a one-to-one relationship with the target
class. This precondition does not allow the method to be moved to arrays or
Java Collection types.

JDeodorant considers only Move Method refactorings, and therefore it targets
only the Feature Envy design problem. Nevertheless, the tool has been recently ex-
tended to also identify Extract Method [Tsantalis and Chatzigeorgiou, 2011] and Extract
Class refactorings [Fokaefs et al., 2012].

2.3 Final Remarks

This chapter provided the background necessary to fully understand the approach
proposed in this dissertation. In Section 2.1, we presented central concepts of our study:
a description of refactoring since our approach relies on a primitive refactoring (Move
Method) to improve system architectures (Section 2.1.1); the relevance of bad smells
to spot opportunities of refactorings. We specified and then described the Feature
Envy code smell, which is directly related to the recommendation system proposed
in this dissertation (Section 2.1.2); a discussion on several remodularization tools and
techniques (Section 2.1.3); and an overview on RSSEs. These concepts are indeed
essential since our approach is a recommendation system that aims to achieve a better
software design by recommending Move Method refactorings Section 2.1.4.

In Section 2.2, we provide an overview of the state-of-the-art techniques on iden-
tification of refactoring opportunities, since our approach aims to recommend Move
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Method refactorings to improve the system architecture. In particular, we describe two
main approaches: (i) Detection Strategy, which consists of metrics-based rules that lo-
calize classes or methods affected by a particular code smell, and (ii) JDeodorant, which
follows a classical heuristic to detect Feature Envy code smells. These approaches are
especially important because we compare our approach with both of them.

In the next chapter, we present the Move Method refactoring recommenda-
tion system proposed in this dissertation, including underlying algorithms, an ex-
ploratory study for choosing the most appropriate similarity coefficient, and the design
of the JMove tool, an Eclipse plug-in that supports our approach.





Chapter 3

Proposed Approach

Chapter 2 provided the background for understanding this dissertation. Thereupon,
this chapter then describes our approach: a system that recommends Move Method
refactorings based on the set of static dependencies established by a method.

We organized this chapter as follows. Section 3.1 presents a specification of the
proposed recommendation system, including the process of determining the most ap-
propriate class for a method, the description of underlying algorithms and similarity
functions, and an example that illustrates the operation of our system. Section 3.2
describes an exploratory study to determine the most suitable coefficient to our ap-
proach. Section 3.3 presents JMove, a tool that implements the proposed approach.
Last, Section 3.4 concludes with a general discussion.

3.1 Proposed Algorithm
Our recommendation approach detects methods located in incorrect classes and then
suggests moving such methods to more suitable ones. More specifically, we first evaluate
the set of static dependencies established by a given method m located in a class C,
as illustrated in Figure 3.1. After that, we compute two similarity coefficients: (a) the
average similarity between the set of dependencies established by method m and by
the remaining methods in C; and (b) the average similarity between the dependencies
established by method m and by the methods in another class Ci. If the similarity
measured in the step (b) is greater than the similarity measured in (a), we infer that
m is more similar to the methods in Ci than to the methods in its current class C.
Therefore, Ci is a potential candidate class to receive m.

In the remainder of this section, we describe the recommendation algorithm pro-
posed in this dissertation (Section 3.1.1), the similarity functions that play a central
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Figure 3.1: Proposed approach

role in this algorithm (Section 3.1.2), and the strategy we propose to decide the most
suitable class to receive a particular method (Section 3.1.3).

3.1.1 Recommendation Algorithm

Algorithm 1 presents the proposed recommendation algorithm. Assume a system S

with a method m implemented in a class C. For all class Ci ∈ S, the algorithm verifies
whether m is more similar to the methods in Ci than to the methods in its original class
C (line 6). In the positive cases, we insert Ci in a list T that contains the candidate
target classes to receive m (line 7). Finally, we search in T for the most suitable class
to receive m (line 10). In case we find such a class C ′, we make a recommendation to
move m to C ′ (line 11).

Algorithm 1 Recommendation algorithm
Input: Target system S
Output: List with Move Method recommendations
1: Recommendations← ∅
2: for all method m ∈ S do
3: C = get_class(m)
4: T ← ∅
5: for all class Ci ∈ S do
6: if similarity(m, Ci) > similarity(m, C) then
7: T = T + Ci

8: end if
9: end for
10: C′ = best_class(m, T )
11: Recommendations = Recommendations + move(m, C′)
12: end for

This algorithm relies on two key functions: (a) similarity(m, C) that com-
putes the average similarity between method m and the methods in a class C; and
(b) best_class(m, T ) that receives a list T of candidate classes to receive m and re-
turns the most suitable one. These functions are described in the following sections.
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3.1.2 Similarity Function

Our approach relies on the set of static dependencies established by a method m to
compute its similarity with the methods in a class C, as described in Algorithm 2.
Initially, we compute the similarity between method m and each method m′ in C

(line 4). In the end, the similarity between method m and C is defined as the arithmetic
mean of the similarity coefficients computed in the previous step. In this algorithm,
NOM (C) denotes the number of methods in a class C (lines 8 and 10).

Algorithm 2 Similarity Algorithm
Input: Method m and a class C
Output: Similarity coefficient between m and C
1: sim← 0
2: for all method m′ ∈ C do
3: if m 6= m′ then
4: sim = sim + meth_sim(m, m′)
5: end if
6: end for
7: if f ∈ C then
8: return sim / [NOM(C)− 1]
9: else
10: return sim / NOM(C)
11: end if

The key function in Algorithm 2 is meth_sim(m, m′), which computes the simi-
larity between the sets of dependencies established by two methods (line 4). Based on
an exploratory study where we evaluated 18 similarity coefficients (described in Sec-
tion 3.2), we decide for the use of the Sokal and Sneath 2 coefficient [Sokal and Sneath,
1963, 1973; Everitt et al., 2011], defined as:

meth_sim(m, m′) = a

a + 2(b + c) (3.1)

where

• a = | Dep(m) ⋂
Dep(m′) |

• b = | Dep(m) − Dep(m′) |

• c = | Dep(m′) − Dep(m) |

In this definition, Dep(m) is a set with the dependencies established by method m.
This set includes the types the implementation of method m establishes dependency
with. More specifically, we consider the following dependencies:

• Method calls: if method m calls another method m′, the class of m′ is added to
Dep(m).
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• Field accesses: if method m reads from or writes to a field f , the type of f is
added to Dep(m). In the case where f is declared in the same class as m, then
the class itself is also added to Dep(m).

• Object instantiations: if method m creates an object of a type C, then C is
included in Dep(m).

• Local declarations: if method m declares a variable or formal parameter v, the
type of v is included in Dep(m).

• Return types: the return type of m is added to Dep(m).

• Exceptions: if method m can raise an exception E or if method m handles E

internally, then the type of E is added to Dep(m).

• Annotations: if method m receives an annotation A, then the type of A is included
in Dep(m). [-0.15cm]

When building the dependency sets we ignore the following types: (a) primitive
types; and (b) types and annotations from java.lang and java.util (like String,
HashTable, Object, and SupressWarnings). Since virtually all classes establish
dependencies with these types, they do not actually contribute for the measure of
similarity. This decision is quite similar to text retrieval systems that exclude stop
words because they are rarely helpful in describing the content of a document.

Example: Code 3.1 shows a method foo located in a class Bar, whose dependency set
is extracted as follows:

Dep(foo) = { Annot, R, B, Z, A, C, D, Bar }

1: public class Bar {
2: private C c;
3: @Annot
4: public R foo(B b) throws Z {
5: A a = b.getA ();
6: if (a != null) {
7: a. valueR = this.c.getD (). valueR ;
8: }
9: return a. valueR ;
10: }
11:}

Code 3.1: Example to illustrate dependency sets
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Next, we explain why each type was included in the dependency set: Annot (an-
notation used in line 3), R (return type in line 4), B (parameter declared in line 4 and
method call in line 5), Z (exception declaration in line 4), A (local variable declaration
in line 5 and field access in lines 7 and 9), C (method call in line 7), Bar and D (field
access in line 7).

It is worth noting that Dep(m) is a set—and not a multiset. Therefore, multiple
dependencies to the same type are represented only once. As an example, Dep(foo) has
a unique reference to B, even though there is a formal parameter of type B (line 4) and a
method call having a target of type B (line 5). Fundamentally, Terra et al. [2013a] have
provided evidences that traditional sets achieve better precision results than multisets
when evaluating the structural similarity of program entities.

For the sake of clarity, we omitted from Algorithm 2 a test that discards two
kinds of methods when calculating the similarity of dependency sets:

• A method m that is the only method in its class because our approach is based on
the similarity between a given method and the remaining methods in the class.

• A method m whose dependency set has less than four dependencies because
methods with few dependencies are more subject to imprecise or spurious simi-
larity measures. Moreover, by establishing this lower threshold, we also filter out
accessor methods (getters and setters), which by their very nature are rarely
implemented in incorrect locations.

3.1.3 Target Class Selection

Assume that T is a list with classes C1, C2, . . . , Cn that are more similar to a method
m than its current class C, as computed by Algorithm 1. Assume also that the classes
in T are in descending order by their similarity with method m—i.e., most similar
classes first—as computed by Algorithm 2.

To reduce the chances of false positives we created a filter to avoid recommenda-
tions between two very similar classes. A move recommendation is not created when:
(i) T has less than three classes, and (ii) the difference between the similarity coefficient
value of C1 (the first class in the list) and C (the original class of m) is less than or
equal to 25%. In such cases, we consider that the difference between the dependencies
established by C1 and C is not discrepant enough to recommend a move operation.

On the other hand, when such conditions do not hold, a recommendation
move(m, Ci) is created for the first class Ci ∈ T that satisfies the preconditions of



28 Chapter 3. Proposed Approach

the Move Method refactoring (1 ≤ i ≤ n). Basically, as usual in the case of refactor-
ings [Opdyke, 1992; Fowler, 1999], a Move Method has its application conditioned by a
set of preconditions, fundamentally to ensure that the program’s behavior is preserved
after the refactoring. For example, the target class Ci should not contain a method
with the same signature as method m. When such preconditions are not satisfied by
a pair (C, Ci), we automatically verify the next pair (C, Ci+1). No recommendation is
returned when the refactoring preconditions fail for all pair of classes.

Our approach currently relies on preconditions of the Move Method automatic
refactoring engine provided by the Eclipse IDE. However, it is well-known that Eclipse
implements weak preconditions for some refactorings [Steimann and Thies, 2009; Schäe-
fer and de Moor, 2010; Soares et al., 2013]. For this reason, we strengthened the
Eclipse preconditions by supporting the following five preconditions originally proposed
by Tsantalis and Chatzigeorgiou [2009]:

• The target class should not inherit a method having the same signature of the
moved method.

• The method to be moved should not override an inherited method in its original
class.

• The method to be moved should not be synchronized.

• The method to be moved should not contain assignments to its original class
fields (including inherited fields).

• The method to be moved should have a one-to-one relationship with the target
class.

3.1.4 The Approach in Action

In this section, we describe an illustrative example in order to demonstrate the
mechanics of our approach.

Problem: Assume a hypothetical web-based system that has a method intention-
ally implemented in a wrong class, i.e., a method that violates the desired system
design. Specifically, we implemented a method responsible for database issues—such
as obtaining the connections, mapping Java objects to SQL data types, and perform-
ing SQL commands—in class CustomerView, as illustrated in Code 3.2. However,
CustomerView belongs to the presentation layer, which is responsible for UI (User
Interface) whereas the method should belong to a class in the persistence layer.
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1: public class CustomerView extends JFrame {
... declaration of variables

2: public CustomerView () {
... piece of code

3: JButton btnNewButton = new JButton ("Find");
4: btnNewButton . addActionListener (new ActionListener () {
5: public void actionPerformed ( ActionEvent e) {
6: ... piece of code
7: }
8: });
9: }

10: public List <Customer > getAllCustomers (DB db) throws SQLException {
11: List <Customer > result = new ArrayList <Customer >();
12: Connection con = db. getConnection ();
13: PreparedStatement ps =
14: con. prepareStatement (" select * from CUSTOMER ");
15: ResultSet rs = ps. executeQuery ();

16: while (rs.next ()){
17: result .add(new Customer (rs. getInt ("ID"),rs. getString ("NAME")));
18: }
19: rs.close ();
20: ps.close ();
21: con.close ();
22: return result ;
23: }
24:}

Code 3.2: Class CustomerV iew

Class CustomerView defines three methods: (i) constructor CustomerV iew

(lines 2–9), (ii) actionPerformed (lines 5–7), and (iii) getAllCustomers (lines 10–23).
Although the first two methods actually belong to the presentation layer,
getAllCustomers should be defined in the persistence layer. One can argue that
actionPerformed is a method defined in an inner class. However, our approach con-
siders every method in a class to measure similarity. It includes special methods,
such as accessors methods, constructors (e.g., CustomerV iew), and methods in inner
classes (e.g., actionPerformed). Although we consider these methods, they are not
liable to be moved and therefore our approach does not trigger recommendations for
moving them.

Code 3.3 presents class CustomerDAO, a class in the persistence layer where
our subject method getAllCustomers should be defined according to the desired
design. The assumption behind our approach is that methods that rely on the same
types should be defined in the same class. For instance, getAllCustomers establishes
dependency with BD and SQLException, which are types used by every method in
CustomerDAO. For clarification purposes, Appendix A presents the complete code of
classes CustomerView and CustomerDAO.
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1: public final class CustomerDAO {

2: public List <Customer > getCities (DB con) throws SQLException {
... piece of code

3: }
4: public String getCityOfOrigin (DB con , Ticket tic) throws SQLException {

... piece of code
5: }
6: public String getDestinyCity (DB con , Ticket tic) throws SQLException {

... piece of code
7: }
8:}

Code 3.3: Class CustomerDAO

Solution: We first calculate the set of static dependencies established by every method
in the system since our approach measures the similarity between a given method m

and its current class and also between m and all other classes of the system. In this ex-
ample, we focus on the measure of the similarity (i) between method getAllCustomers

and its current class CustomerView and (ii) between method getAllCustomers and
class CustomerDAO, the most appropriate class according to the desired system design.
Table 3.1 reports the dependency sets for the methods in classes CustomerView and
CustomerDAO, which were extracted by the Dep(m) function defined in Section 3.1.2.

CustomerView CustomerDAO
Method Dependency Set Method Dependency Set

getAllCustomers

{SQLException,

getCities

{SQLException,
Connection, Customer, Connection, Customer,

PreparedStatement, PreparedStatement,
DB, ResultSet} DB, ResultSet}

CustomerV iew

{CustomerView, JMenu,

getCityOfOrigin

ActionListener, {SQLException,
JMenuBar, JPanel, Connection, Ticket,
JFrame, JMenuItem, PreparedStatement,
JTextField, Window, DB, ResultSet}
JButton, JTextPane}

actionPerformed

{CustomerView,

getDestinyCity

{SQLException,
JTextField, Connection, Ticket,
Customer, PreparedStatement,

ActionEvent} DB, ResultSet}

Table 3.1: Dependency sets for the methods in CustomerView and CustomerDAO

Algorithm 2 (as defined in Section 3.1.2) defines that the similarity between
a method m and a class C—i.e., similarity(m, C)—is the arithmetic mean of the
similarity values between m and all other methods in C. In the case of our
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example, it is necessary to calculate meth_sim(getAllCustomers, CustomerV iew)
and meth_sim(getAllCustomers, actionPerformed) in order to obtain the
similarity(getAllCustomers, CustomerV iew) = 0.029, as reported in Table 3.2. Sim-
ilarly, this same procedure is performed for every class in the system. As an example,
Table 3.2 also reports the similarity values measured for CustomerDAO.

CustomerView CustomerDAO
meth_sim(getAllCustomers, meth_sim(getAllCustomers,

CustomerV iew) = 0.000 getCities) = 1.000
meth_sim(getAllCustomers, meth_sim(getAllCustomers,

actionPerformed) = 0.058 getCityOfOrigin) = 0.550
meth_sim(getAllCustomers,

getDestinyCity) = 0.550
similarity(getAllCustomers, similarity(getAllCustomers,

CustomerV iew) = 0.029 CustomerDAO) = 0.700

Table 3.2: Similarity values for classes CustomerView and CustomerDAO

Next, Algorithm 1 (as defined in Section 3.1.1)creates a ranked list of candidate
classes T to receive getAllCustomers. In short, T contains classes that have similarity
values greater than the similarity between getAllCustomers and its current class
CustomerView (0.029), as can be observed next:

T = {[CustomerDAO, 0.70], [ProductDAO, 0.55], [DepartmentDAO, 0.55], ... }

As expected, CustomerDAO is the most similar class throughout the system.
In fact, list T contains other classes that implement database functionalities (e.g.,
ProductDAO and DepartmentDAO). However, function best_class(m, T) chooses the
most similar class that complies with all preconditions of the Move Method refactoring.
Since CustomerDAO has the highest similarity value in T and it also satisfies the pre-
conditions, our approach precisely suggests moving method getAllCustomers to class
CustomerDAO.

3.2 Exploratory Study: Similarity Coefficients
In this section, we report an exploratory study aims to answer the following research
questions:

• RQ #1 – What is the most suitable similarity coefficient for our approach?
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• RQ #2 – What is the impact of the threshold used to filter out recommendations
involving very similar classes?

In this study, we evaluated the 18 similarity coefficients described in Table 3.3,
where a, b, and c are as previously defined in Section 3.1.2, and d is defined as follows:

d = | Dep(S)− [Dep(m) ∪ Dep(m′)] | (3.2)

where Dep(S) is a set with the dependencies established by all methods in the system S

under analysis and Dep(m) is a set with the dependencies established by method m.

Table 3.3: Similarity Coefficients (Extracted from [Terra et al., 2013a])

Coefficient Definition Range
1. Jaccard a/(a + b + c) 0–1*
2. Simple matching (a + d)/(a + b + c + d) 0–1*
3. Yule (ad− bc)/(ad + bc) -1–1*
4. Hamann [(a + d)− (b + c)]/[(a + d) + (b + c)] -1–1*
5. Sorenson 2a/(2a + b + c) 0–1*
6. Rogers and Tanimoto (a + d)/[a + 2(b + c) + d] 0–1*
7. Sokal and Sneath 2(a + d)/[2(a + d) + b + c] 0–1*
8. Russelll and Rao a/(a + b + c + d) 0–1*
9. Baroni-Urbani and Buser [a + (ad)

1
2 ]/[a + b + c + (ad)

1
2 ] 0–1*

10. Sokal binary distance [(b + c)/(a + b + c + d)]
1
2 0*–1

11. Ochiai a/[(a + b)(a + c)]
1
2 0–1*

12. Phi (ad− bc)/[(a + b)(a + c)(b + d)(c + d)]
1
2 -1–1*

13. PSC a2/[(b + a)(c + a)] 0–1*
14. Dot-product a/(b + c + 2a) 0–1*
15. Kulczynski 1

2 [a/(a + b) + a/(a + c)] 0–1*
16. Sokal and Sneath 2 a/[a + 2(b + c)] 0–1*
17. Sokal and Sneath 4 1

4 [a/(a + b) + a/(a + c) + d/(b + d) + d/(c + d)] 0–1*
18. Relative Matching [a + (ad)

1
2 ]/[a + b + c + d + (ad)

1
2 ] 0–1*

The symbol “∗” denotes the maximum similarity.

3.2.1 Study Design

We conducted the study using JHotDraw (version 7.6), which is a system commonly
used to illustrate object-oriented programming practices and patterns.1 Its implemen-
tation has 80 KLOC, 674 classes, and 6,533 methods. The system has a reputation

1http://www.randelshofer.ch/oop/jhotdraw/
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of having a well-defined and mature design, proposed and implemented by expert de-
velopers [Riehle, 2000]. For this reason, our study is based on the conjecture that all
methods in JHotDraw are implemented in their correct classes.

We executed Algorithm 1 (described in Section 3.1) multiple times to JHotDraw,
considering in each execution a different similarity coefficient. Based on our conjec-
ture, any recommendation should be flagged as a false positive. Therefore, we aim to
select the similarity coefficient that generates the lowest number of recommendations
in JHotDraw.

3.2.2 Similarity Coefficient Results

Figure 3.2 presents the number of recommendations generated by each similarity coef-
ficient. For the sake of readability, the results for the coefficients that generated more
than 100 recommendations (Hamann, Rogers and Tanimoto, Sokal and Sneath,
Simple Matching, and Sokal Binary Distance) are reported separately in Figure 3.3.
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Figure 3.2: Recommendations in JHotDraw for the best coefficients

As reported in Figure 3.2, the best coefficients were Sokal and Sneath 2 and
Russell and Rao, both with 10 recommendations. We decided to use Sokal and Sneath 2
because it is simpler to compute than Russell and Rao whose computation requires
counting the remaining dependencies in the system that do not occur in a given pair
of methods m and m′ (variable d in Equation 3.2).

3.2.3 Filter’s Threshold Impact

As explained in Section 3.1.3, we proposed the use of a filter to avoid recommendations
between two very similar classes. We conducted a preliminary study that showed that
76.28% of methods in JHotDraw are ranked among the three most similar classes of
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Figure 3.3: Recommendations in JHotDraw for the worst coefficients

the entire system. In other words, if a method is in the most appropriate class, it has
76.28% of chances of being located among the three more similar classes considering
all classes in JHotDraw.

However, in order to do not miss valuable recommendations, we restricted the
filter with a threshold that represents the maximum acceptable similarity difference
when the current class of the method is among the three most similar classes. Figure 3.4
shows the impact of changes on this filter’s threshold. Based on the results, we decided
to adopt the value of 25% because it is the less restrictive value among the filter’s
threshold that achieved the best possible result (10 recommendations).
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Figure 3.4: Recommendations in JHotDraw using distinct filter’s thresholds
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3.2.4 Qualitative Analysis

Furthermore, we analyzed each suggested recommendation on JHotDraw, in order to
confirm if they were indeed incorrect recommendations. Particularly, we could classify
the 10 incorrect recommendations in two well-distinguishing cases: (i) filtering and
(ii) semantically unrelated problems. Next, we discuss some recommendations in detail.

Filtering: Most incorrect suggestions (6 out of 10)—are related to small methods.
More specifically, these recommendations refer to five methods that handle events
and one setter method. In these cases, our approach suggested the move of these
methods to classes that represent event or data types, which is notably wrong. As
an example, Code 3.4 presents method selectionChanged—which is implemented
in class ApplyAttributesAction—but our approach has suggested to move to class
FigureSelectionEvent—which is an event type.

1: public void selectionChanged ( FigureSelectionEvent evt) {
2: setEnabled ( getView (). getSelectionCount () == 1);
3:}

Code 3.4: A wrong recommendation in a event handler method in JHotDraw

In fact, our filter for small methods has failed to exclude these methods.
As explained in Section 3.1.2, to exclude small methods like getters, setters and
handlers, we decide to do not recommend Move Method refactorings for meth-
ods that have less than four dependencies. However, as can be observed in
Code 3.4, the method selectionChanged has exactly four dependencies: a de-
pendency with the formal parameter FigureSelectionEvent (line 1); and three
more accessing dependencies (line 2). More specifically, there are accesses to
method setEnabled from its superclass AbstractAction, to method getView from
another superclass AbstractSelectedAction, and to method getSelectionCount

from class DrawingView, which is the type of the object returned by getView.
Indeed, the same problem occurred on the other five methods in this classification,

i.e., our approach failed to filter these small methods. A potential solution might be to
raise the threshold to exclude methods that have less than five dependencies. However,
we also noticed in further studies that we could miss correct suggestions if we reduce the
threshold. For this reason, we decided to keep the threshold to filter out methods with
less than four dependencies since it has presented itself as the best cost benefit solution.

Semantically unrelated: The remaining recommendations are related to methods
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that are structurally similar to a class C ′, but semantically they should not be moved
to C ′. This classification is frequently associated to some design patterns. In practice,
there are design patterns that deliberately violate specific design guidelines, e.g., the
methods that belong to a facade are not cohesive since they fundamentally forward
incoming requests to other classes [Gamma et al., 1995].

As an example, Code 3.5 presents method findFiguresWithin that belongs to
class QuadTreeCompositeFigure, which follows the Composite design pattern. This
pattern describes a group of objects that should be treated in the same way as a single
instance of an object [Gamma et al., 1995]. The intent of a composite is to “compose”
objects into tree structures to represent part-whole hierarchies. The implementation
of a composite pattern allows clients to treat both individual objects and compositions
in the same way. In this example, the QuadTreeCompositeFigure class abstracts all
events fired by the Figure objects contained in the Drawing objects.

1: public List <Figure > findFiguresWithin ( Rectangle2D . Double bounds ) {
2: LinkedList <Figure > contained = new LinkedList <Figure >();
3: for ( Figure f : children ) {
4: Rectangle2D r = f. getBounds ();
5: if (f.get( TRANSFORM ) != null) {
6: r = f.get( TRANSFORM ). createTransShape (r). getBounds2D ();
7: }
8: if (f. isVisible () && bounds . contains (r)) {
9: contained .add(f);
10: }
11: }
12: return contained ;
13:}

Code 3.5: findFiguresWithin method

Method findFiguresWithin is responsible for finding all Figures objects,
among their children, within a given rectangular frontier. Our recommendation algo-
rithm suggests moving this method to class QuadTree. Although findFiguresWithin

is indeed structurally more similar to the methods of class QuadTree, the suggestion
is semantically incorrect. Class QuadTree is a data structure for performing searches
by partitioning a two-dimensional space into four square regions. Due to the nature of
the QuadTree class, most of its methods have a dependency with Rectangle2D.Double

and Rectangle2D classes. As can be observed in Code 3.5, these classes denote two
out of the six dependencies established by findFiguresWithin and, for this reason,
this method is very similar to class QuadTree.

A potential solution to address such problem is to define rules to identify and
filter methods that are part of design pattern scenarios. Thus, our approach would
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not trigger any incorrect recommendation for these scenarios. Such a solution is quite
similar to the one proposed by Seng et al. [2006] to identify methods that should not
be moved. The authors propose an approach to identify the role of design elements
by describing their static structure and naming conventions. As an example, static
factory methods are described as having the static modifier, having a non-void return
type, and containing a call to a constructor that creates objects whose type is equal to
the return type of the method.

3.2.5 Threats to Validity

There are two main threats regarding the validity of this initial study. First, as usual,
we cannot extrapolate our results to other systems (external validity). However, it is
not simple to find systems that confessedly have a mature design, as JHotDraw. Second,
even in JHotDraw, it is possible to have methods that are in fact not implemented in
the most recommended class (conclusion validity). On the other hand, due to the
particular motivation and context behind JHotDraw’s implementation, we claim that
the number of such misplaced methods is really small.

3.3 Tool Support

We implemented a prototype tool, called JMove,2 that supports the approach pro-
posed in this dissertation. Basically, JMove is an Eclipse plug-in that implements
Algorithms 1 and 2 (previously defined in Section 3.1).

Figure 3.5 illustrates the tool’s interface using our previously illustrated example
(Section 3.1.4) where method getAllCustomers from the persistence layer was
purposely implemented in class CustomerView from the presentation layer. As can
be noticed, JMove adds a new report panel to the IDE interface, which is used to
display the recommended Move Method refactorings. Regarding the tool architecture,
Figure 3.6 illustrates the main modules from JMove’s implementation. First, module
Dependency Extraction is used to extract the dependency sets that characterize the
methods in our approach. In our running example, method getAllCustomers has the
following dependency set:

Dep(getAllCustomers) = {SQLException, Connection, PreparedStatement, DB

ResultSet, Customer}

2JMove is publicly available at: http://aserg.labsoft.dcc.ufmg.br/jmove/
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Target ClassSource MethodRefactoring

Figure 3.5: JMove’s interface

Figure 3.6: JMove’s architecture

Second, module Similarity Measurement implements Algorithms 1 and 2. In our
running example, this module computes a list T with the following candidate target
classes to receive getAllCustomers:

T = {[CustomerDAO, 0.70], [ProductDAO, 0.55], [DepartmentDAO, 0.55], ... }

Third, module Recommender System implements function best_class(m, T ).
Given a list T of candidate classes, this function selects the most suitable one to receive
method m, according to the criteria defined in Section 3.1.3. As already reported in
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Section 3.1.4, this function returns class CustomerDAO since it has the highest number
of methods similar to getAllCustomers. In other words, getAllCustomers is more
similar—based on its dependency set—to the methods in CustomerDAO than to the
methods in its current class CustomerView.

3.4 Final Remarks
This chapter presented our recommendation approach to detect methods located in
incorrect classes and to suggest moving such methods to more suitable ones. We first
evaluate the set of static dependencies established by a given method m located in a
class C and then suggest moving to a more suitable class C ′, if there is one.

In Section 3.1, we presented the proposed recommendation system, including
the selection of the most appropriate class for a method, underlying algorithms and
similarity functions, and an illustrative example of our recommendation system. In
Section 3.2, we reported a quantitative study on JHotDraw that compares 18 similar-
ity coefficients to identify that SokalandSneath2 is the most appropriate coefficient
to determine where a method should be located. We conclude that the coefficient
SokalandSneath2 is the most suitable for our approach. We also conducted a qualita-
tive analysis to understand the incorrect recommendations, which were verified filtering
and semantic issues. Last, in Section 3.3, we presented JMove, an Eclipse plug-in that
implements our proposed approach.

In the next chapter, we describe the evaluation of our recommendation system.
In short, we present and discuss results on applying our approach (i) in 14 open-source
systems using a synthesized dataset and (ii) in two real-world systems in which the
system’s experts evaluated the Move Method recommendations.
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Evaluation

Chapter 3 presented the proposed recommendation system, including a description of
the underlying algorithms and similarity functions, an exploratory study to select the
most appropriate coefficient, and a tool—called JMove—that implements the proposed
approach.

We divided this chapter into four main sections. In Section 4.1, we compare our
approach with JDeodorant and inCode using 14 open-source systems where we have
artificially created the methods to be moved. In Section 4.2, we compare our approach
with JDeodorant and inCode using two systems where the systems’ expert evaluated
the triggered recommendations. In Section 4.3, we describe a performance comparison
of JMove, JDeodorant, and inCode. Finally, Section 4.4 concludes.

4.1 Evaluation with Open-Source Systems
This section is divided into five parts, Section 4.1.1 states the research questions we
aim to answer. Section 4.1.2 presents the dataset used in our evaluation and the
methodology we followed to generate our gold sets (for precision and recall measuring).
Section 4.1.3 exhibits the precision and recall achieved by the approaches. Section 4.1.4
discusses three examples of Move Method refactorings suggested by our approach in
the JHotDraw system. Finally, Section 4.1.5 lists threats to validity.

4.1.1 Research Questions

This first evaluation aims to answer the following research questions:

• RQ #1 – How does our approach compare with JDeodorant and inCode in terms
of precision?

41
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• RQ #2 – How does our approach compare with JDeodorant and inCode in terms
of recall?

Both questions compare our approach with JDeodorant and inCode for three rea-
sons: (a) JDeodorant is a well-known solution for identifying Move Method refactoring
opportunities; (b) inCode is a commercial solution for identifying design flaws. It is
worth noting that inCode is a lightweight and more affordable version of inFusion (refer
to Section 2.2.4), which behaves exactly like inFusion to detect Feature Envy instances;
and (c) both tools are robust and friendly enough to be used in real-world systems.

4.1.2 Study Design

In this section, we present the dataset used in our evaluation and the methodology we
followed to generate our gold sets (i.e., the methods implemented in incorrect classes).

Dataset: We evaluate our approach using the systems in the Qualitas.class Cor-
pus [Terra et al., 2013b]. This corpus is a compiled version of 111 systems originally
included in the Qualitas Corpus [Tempero et al., 2010], which solely provides the source
code of the systems. However, for evaluating tools that depend on the Abstract Syntax
Tree (AST) provided by a given IDE, as the one considered in this paper, we need to
import and compile the source code. However, this effort is not trivial in the case of
systems with many external dependencies. For this reason, we decided to use the afore-
mentioned parallel project which aimed to create a compiled variant of the Qualitas
Corpus.

Particularly, our evaluation considers only a sample of the systems in Quali-
tas.class Corpus. We selected the systems according to the following criteria: (a) we
only considered active projects to avoid outdated systems; (b) we only considered sys-
tems having between 500 and 5,000 classes to filter out small and huge systems; (c) we
only considered systems whose implementation consists of a single Eclipse project (oth-
erwise we would have to execute the tools multiple times for each project). Among
the systems attending our criteria, we selected the first 15 systems, sorted according
to their release date from newest to oldest, as stated in the original Qualitas Corpus
documentation. For our initial systems selection, JDeodorant did not raise recommen-
dations for two systems: Lucene and iReport. We therefore decided to remove these
systems from our sample. Finally, we included JHotDraw to the sample, due to the
same reasons that motivated its use in our first study (Section 3.2).

Table 4.1 presents the final 14 systems considered in the study, including their
names, version, number of classes (NOC), number of methods (NOM), and size in
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terms of lines of code (LOC).

Table 4.1: Target Systems

System Version NOC NOM LOC

Ant 1.8.2 1,474 12,318 127,507
ArgoUML 0.34 1,291 8,077 67,514
Cayenne 3.0.1 2,795 17,070 192,431
DrJava r5387 788 7,156 89,477
FreeCol 0.10.3 809 7,134 106,412
FreeMind 0.9.0 658 4,885 52,757
JMeter 2.5.1 940 7,990 94,778
JRuby 1.7.3 1,925 18,153 243,984
JTOpen 7.8 1,812 21,630 342,032
Maven 3.0.5 647 4,888 65,685
Megamek 0.35.18 1,775 11369 242,836
WCT 1.5.2 539 5,130 48,191
Weka 3.6.9 1,535 17,851 272,611
JHotDraw 7.6 674 6,533 80,536

Gold Sets: To evaluate precision and recall, it is crucial to identify the methods
implemented in the wrong classes, which we refer as the gold sets [Dit et al., 2013].
Typically, the task of generating such sets would require the participation of expert
developers on the target systems in order to manually analyze and classify each method.
However, in the context of open-source systems, it is not straightforward to establish
a contact with the key project developers. For this reason, inspired by the evaluation
proposed by Moghadam and Ó Cinnéide [2012] in a work on design-level refactoring, we
manually synthesized a version of each system with well-known methods implemented
(at least a high probability) in incorrect classes.

More specifically, we randomly selected a sample including 3% of the classes in
each system and manually moved a method from them to new classes, also randomly
selected. Before each manual move, we verified the following preconditions: (a) the
method selected to be moved must have at least four dependencies in its dependency
set because our approach automatically filters out methods not satisfying this condition
(as described in Section 3.1.2); (b) a given class (source or target) can be selected at
most once in order to avoid multiple moves to or from the same class;1 and (c) given a

1In practice, multiple moves to or from the same class reduce the chances of returning the moved
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method m in a class C and a target class C ′, it must be possible to move m to C ′ and
also back to C. This last precondition is important because otherwise our approach—
and also JDeodorant—would never make a recommendation about m in the synthesized
system. On the other hand, inCode is not affected by this last precondition because his
Feature Envy detection technique does not verify Move Method preconditions. Finally,
when a given method and a target class do not attend the proposed preconditions, a
new candidate is randomly generated, until reaching 3% of the classes in the system.

By following this procedure, we synthesized for each system S a modified sys-
tem S ′ with a well-known GoldSet of methods with a high probability to be located in
the wrong class for the reasons described next:

• In the case of JHotDraw, as claimed in Section 3.2, it is reasonable to consider
that all methods in the original system are in their correct class since JHotDraw
was developed and maintained by a small number of expert developers. Therefore,
we argue that in the modified version of the system, the methods in the GoldSet

are the only ones located in wrong classes. Due to this special condition, for
JHotDraw, we generated five instances of the system with well-known GoldSet.

• In the case of the other systems, it is not reasonable to assume that all methods
are in the correct classes because such systems are maintained and evolved by
developers with different levels of proficiency (i.e., ranging from beginners to
experts). However, we argue that it is reasonable to assume that at least most
methods are in the correct classes. More specifically, the number of methods in
such systems range from 4,885 methods (FreeMind) to 21,630 methods (JTOpen).
As a consequence, in a sample with such considerable number of methods, the
probability of randomly selecting one located in the correct class is much higher
than otherwise.

In fact, the proposed procedure only inserts an invalid method in a synthe-
sized GoldSet when the following two unlikely conditions hold for a randomly selected
method m and a randomly selected target class C ′: (a) m is originally implemented in
a wrong class in the original system; and (b) C ′ is exactly the class where this method
should have been implemented. For example, when condition (a) holds, but condition
(b) does not hold, we still have a valid method in the GoldSet because we are basically
moving a method implemented in a wrong class to another class that is also not correct.

methods to their original class. For instance, assume a class in which all methods were moved to
another class. In this case, it would be unlikely to recommend the return of such methods to the
original one, an empty class.



4.1. Evaluation with Open-Source Systems 45

Table 4.2 shows the number of methods in the gold sets generated for each sys-
tem. In total, using the Eclipse support to Move Method refactorings, we moved 475
methods, including 100 methods in the five JHotDraw instances.

Table 4.2: Gold Sets size

System |GoldSet | System |GoldSet |

Ant 25 JRuby 41
ArgoUML 32 JTOpen 39
Cayenne 47 Maven 24
DrJava 18 Megamek 35
FreeCol 17 WCT 29
FreeMind 12 Weka 31
JMeter 25 JHotDraw 20

Calculating Precision and Recall: We executed JMove, JDeodorant, and inCode
in the modified systems. Each execution generated a list of recommendations Rec,
whose elements are triples (m, C, C ′) expressing a suggestion to move m from C to C ′.
A recommendation (m, C, C ′) is classified as a true recommendation when it matches
a method in the GoldSet. Particularly, for a list of recommendations Rec generated by
JMove, JDeodorant, or inCode, and a given GoldSet, the set of true recommendations
is defined as:

TrueRec = { (m, C, C ′) ∈ Rec | ∃(m, C, C ′) ∈ GoldSet }

It is worth noting that suggestions from JMove and JDeodorant contains only
one destination class for a method, whereas suggestions from inCode are in format
(m, C, T ), where T is a list of classes C1, C2, . . . , Cn. In others words, inCode can
suggest moving a method to several classes in the same suggestion. It occurs because
inCode shows, for a Feature Envy code smell, attributes from one or more external
classes used by method m. For this reason, we consider a suggestion (m, C, T ) from
inCode as correct when there is any C ′ ∈ T matching a method in the GoldSet.

Furthermore, in the case of the Qualitas.class systems, we cannot assume that
the methods in the gold sets are the only ones implemented in incorrect classes. For
this reason, we measure precision only for the five instances of JHotDraw, as follows:

Precision = | TrueRec |
| Rec |
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In all other systems, we calculated a first recall measure defined as the ratio
of the methods covered with the evaluated tools by the number of methods in the
GoldSet, as follows:

Recall1 = | TrueRec |
| GoldSet |

We also calculated a second recall, defined as:

Recall2 = | { (m, C, ∗) ∈ Rec | ∃(m, C, ∗) ∈ GoldSet } |
| GoldSet |

This second definition considers the ratio of methods covered by recommendations
suggesting moving m to any other class (denoted by a ∗), which is not necessarily the
correct one. Thus, we always have Recall1 ≤ Recall2.

4.1.3 Quantitative Results

In this section, we provide answers for the proposed research questions.

RQ #1 (Precision): Table 4.3 shows the precision results for the five instances of
JHotDraw. Our approach—as implemented by the JMove tool—achieved an average
precision of 60.63% against 26.47% achieved by JDeodorant and 12.68% by inCode.
As reported in Table 4.4, JMove generated less recommendations than JDeodorant
(26.2 x 39.2 recommendations on average). Besides that, we generated more true
recommendations (15.8 x 10.4 true recommendations on average). In fact, inCode
produced the lowest number of recommendations (11.60 recommendations on average),
but achieved the worst precision (1.6 true recommendations on average). On the other
hand, in the best case (instance #4), JMove achieved a precision of 66.67%.

RQ #2 (Recall): Table 4.5 shows Recall1 and Recall2 for each system. Regarding
the JHotDraw system, the results presented in this table are the average of the recall
considering the five instances we generated for this system.

Considering Recall1, JMove achieved a recall of 81.07±5.88 (average plus/minus
standard deviation), JDeodorant achieved a result of 54.36 ± 11.83, and inCode
achieved 12.35 ± 10.35. Therefore, on average, our results are 49.13% better than
JDeodorant and 556.43% better than inCode in terms of recall. Moreover, our minimal
recall was 70.73% (JRuby) and our maximal recall was 91.67% (FreeMind). On the
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Table 4.3: Precision Results for JHotDraw

System Precision (%)
JMove JDeodorant inCode

JHotDraw #1 57.14 25.64 28.57
JHotDraw #2 59.26 25.64 16.67
JHotDraw #3 57.14 21.05 0
JHotDraw #4 66.67 29.27 9.09
JHotDraw #5 62.96 30.77 9.09
Average 60.63 26.47 12.68
Std Dev 4.13 3.78 10.67
Median 59.26 25.64 9.09
Max 66.67 30.77 28.57
Min 57.14 21.05 0

Table 4.4: Number of Recommendations for JHotDraw

System | Recommendations | | TrueRec |
JMove JDeo* inCode JMove JDeo* inCode

JHotDraw #1 28 39 14 16 10 4
JHotDraw #2 27 39 12 16 10 2
JHotDraw #3 28 38 10 16 8 0
JHotDraw #4 21 41 11 14 12 1
JHotDraw #5 27 39 11 17 12 1
Average 26.20 39.20 11.60 15.80 10.40 1.60
Std Dev 2.95 1.10 1.52 1.10 1.67 1.52
Median 27 39 11 16 10 1
Max 28 41 14 17 12 4
Min 21 38 10 14 8 0

JDeo∗ stands for JDeodorant

other hand, JDeodorant achieved a minimal recall of 27.66% (Cayenne) and a maximal
recall of 72.22% (DrJava) while inCode achieved a minimal recall of 0.00% (FreeCol
and Maven) and maximal recall of 38.71% (Weka).

Considering Recall2, JMove achieved a recall of 84.11 ± 4.35, JDeodorant
achieved a result of 59.58 ± 11.27, and inCode achieved 12.63 ± 10.51. When
comparing the results of Recall1 and Recall2, we can observe that Recall2 is 3.74%
better than Recall1 in our approach, 9.60% better in JDeodorant, and 2.26% better
in inCode, on average. In other words, when the tools detect a method in the wrong
class, usually they are also able to infer the correct class to receive the method.

Additional Result: Table 4.6 presents the number of recommendations triggered by
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Table 4.5: Recall Results

System Recall1 (%) Recall2 (%)
JMove JDeo∗ inCode JMove JDeo∗ inCode

Ant 84.00 72.00 16.00 84.00 84.00 16.00
ArgoUML 84.38 56.25 9.38 84.38 56.25 9.38
Cayenne 72.34 27.66 8.51 78.72 38.30 8.51
DrJava 83.33 72.22 5.56 83.33 72.22 5.56
FreeCol 76.47 41.18 0.00 76.47 58.82 0.00
FreeMind 91.67 58.33 25.00 91.67 58.33 25.00
JMeter 84.00 60.00 16.00 84.00 60.00 20.00
JRuby 70.73 58.54 9.76 85.37 58.54 9.76
JTOpen 89.74 53.85 20.51 89.74 58.97 20.51
Maven 79.17 45.83 0.00 87.50 54,51 0.00
Megamek 80.00 51.43 8.57 80.00 60.00 8.57
WCT 82.76 48.28 6.90 86.21 48.28 6.90
Weka 77.42 64.52 38.71 87.10 74.19 38.71
JHotDraw #1-#5 79.00 51.00 8.0 79.00 52.00 8.0
Average 81.07 54.36 12.35 84.11 59.58 12.63
Std Dev 5.88 11.83 10.35 4.35 11.27 10.51
Median 81.38 55.05 8.97 84.19 58.68 8.97
Max 91.67 72.22 38.71 91.67 84.00 38.71
Min 70.73 27.66 0 76.47 38.30 0

JDeo∗ stands for JDeodorant

Table 4.6: Number of Recommendations

System Number of Recommendations
JMove JDeodorant inCode

Ant 21 + 118 21 + 156 4 + 16

ArgoUML 27 + 41 18 + 30 3 + 10

Cayenne 37 + 121 18 + 105 4 + 43

DrJava 15 + 81 13 + 293 1 + 10

FreeCol 13 + 162 10 + 281 0 + 24

FreeMind 11 + 44 7 + 60 3 + 5

JMeter 21 + 50 15 + 102 4 + 31

JRuby 35 + 310 24 + 399 4 + 40

JTOpen 35 + 90 23 + 427 8 + 31

Maven 21 + 32 13 + 56 0 + 15

Megamek 28 + 224 21 + 243 3 + 285

WCT 25 + 31 14 + 72 2 + 46

Weka 27 + 175 23 + 327 12 + 31

JMove, JDeodorant, and inCode for the systems in the Qualitas.class Corpus. The
results are in the format tr + r, where tr are the recommendations that matched a
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method in the generated gold sets and r are the remaining recommendations, which is
not safe to infer whether they represent true recommendations or not. On one hand,
inCode produces less recommendations than JMove and JDeodorant in virtually all
systems—except the Megamek system. When comparing JMove to JDeodorant, we
observe that in 11 out of the 13 systems, JDeodorant produced more recommendations
than our approach.

4.1.4 Qualitative Discussion

In this section, we discuss our results in qualitative terms. More specifically, we
present three examples of Move Method refactorings suggested by our approach for
the first modified version of JHotDraw, as described in Section 4.1.2.

Example #1: Code 4.1 shows our first example in which method calculateLayout2—
moved from class LocatorLayouter—does not access any service from its class
AttributeKey. Thus, its dependency set is very different from the dependency sets of
the other methods in this class, as follows:

Similarity(calculateLayout2, AttributeKey) = 0.02

On the other hand, this method is more similar to the methods in class
LocatorLayouter. To illustrate, we report the similarity between calculateLayout2
and the three methods in LocatorLayouter:

meth_sim(calculateLayout2, layout) = 1.00
meth_sim(calculateLayout2, calculateLayout) = 0.33
meth_sim(calculateLayout2, getLocator) = 0.27

As result, we have that:

Similarity(calculateLayout2, LocatorLayouter) = 0.53

Due to this high similarity, our approach has correctly recommended moving
method calculateLayout2 back to its original class LocatorLayouter.

On the other hand, JDeodorant does not make a recommendation moving
this method back. Basically, in the case of getter methods, as the getLocator

call in line 6, JDeodorant considers that the method envies not the target type
(LocatorLayouter) but the type returned by the call (Locator). However, it is not
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possible to move calculateLayout2 to Locator because JDeodorant’s refactoring pre-
conditions fail in this particular case.

1: public class AttributeKey <T> implements Serializable {
... piece of code

2: Double calculateLayout2 ( LocatorLayouter locLayouter ,
3: CompositeFigure compositeFigure , Double anchor , Double lead) {
4: Double bounds = null;
5: for ( Figure child: compositeFigure . getChildren ()){
6: Locator loc = locLayouter . getLocator (child );
7: Double r;
8: if (loc == null) {
9: r = child. getBounds ();
10 } else {
11: Double p = loc. locate ( compositeFigure );
12: Dimension2DDouble d = child. getPreferredSize ();
13: r = new Double (p.x, p.y, d.width , d. height );
14: }
15: if (!r. isEmpty ()) {
16: if ( bounds == null) {
17: bounds = r;
18: } else {
19: bounds .add(r);
20: }
21: }
22: }
23: return ( bounds == null) ? new Double () : bounds ;
24: }
25:}

Code 4.1: First Move Method Example (JHotDraw)

In order to identify the code smell Feature Envy, inCode uses a strategy described
in Section 2.2.4. InCode fails in suggesting to move method calculateLayout2 because
the metric ATFD (Access to Foreign Data) considers only accesses to external data
(e.g., attributes from external classes handled directly or via accessors methods).
However, in calculateLayout2, only methods from the original class LocatorLayouter

are called.

Example #2: Code 4.2 shows the second example discussed here. Similar the pre-
vious example, method fireAreaInvalidated2 does not access any service from class
DrawingEditorProxy. However, it calls three methods from AbstractTool (lines 4-6)
and the Move Method preconditions are satisfied. For this reason, JDeodorant infers
that AbstractTool is the most suitable class for the method.

Our approach also suggests to move fireAreaInvalidated2 back to
AbstractTool because the method is more similar to this class than to its current
class, as indicated by the following similarity function calls:
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1: public class DrawingEditorProxy extends AbstractBean
2: implements DrawingEditor {

... piece of code
3: void fireAreaInvalidated2 ( AbstractTool abt , Double r){
4: Point p1 = abt. getView (). drawingToView (...);
5: Point p2 = abt. getView (). drawingToView (...);
6: abt. fireAreaInvalidated (
7: new Rectangle (p1.x, p1.y, p2.x - p1.x, p2.y - p1.y));
8: }
9:}

Code 4.2: Second Move Method Example (JHotDraw)

Similarity(fireAreaInvalidated2, DrawingEditorProxy) = 0.00

Similarity(fireAreaInvalidated2, AbstractTool) = 0.10

On the other hand, inCode fails in recommending to move fireAreaInvalidated2
because only methods are accessed from its original class AbstractTool.

Example #3: Code 4.3 shows an example in which all evaluated approaches success-
fully recommend moving a method to its original class. As in the previous examples,
method setEditor— moved from SVGDrawingPanel—does not access any service from
its class ViewToolBar. However, the method accesses 13 different attributes from class
SVGDrawingPanel.

For JDeodorant a method m envies a class C ′ when m accesses more services
(attributes and methods) from C ′ than from its own class. Therefore, JDeodorant
correctly infers that class SVGDrawingPanel is the most suitable class for the method.

InCode also successfully identified setEditor as a Feature Envy instance. Partic-
ularly, the three rules that compose the detection strategy described in Equation 2.2
are satisfied in this case: (i) the method accesses 13 different attributes from external
classSVGDrawingPanel and therefore the first rule for the ATFD metric holds; (ii) the
method does not access any service from its current class and therefore the second
rule for the LAA metric holds; and (iii) only attributes of class SVGDrawingPanel are
accessed in the body of the method and therefore the third rule for the FDP metric
holds.

Our approach also suggests to move setEditor back to SVGDrawingPanel

because the method is more similar to SVGDrawingPanel than any other class in the
system, including its current class ViewToolBar.

Example #4: Code 4.4 shows the last example discussed here where, besides inCode,
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1: public class SVGDrawingPanel extends JPanel implements Disposable {
... piece of code

2: public void setEditor ( SVGDrawingPanel svg , DrawingEditor newValue ) {
3: DrawingEditor oldValue = svg. editor ;
4: if ( oldValue != null) {
5: oldValue . remove (svg.view );
6: }
7: svg. editor = newValue ;
8: if ( newValue != null) {
9: newValue .add(svg.view );
10: }
11: svg. creationToolBar . setEditor (svg. editor );
12: svg. fillToolBar . setEditor (svg. editor );
13: svg. strokeToolBar . setEditor (svg. editor );
14: svg. actionToolBar . setUndoManager (svg. undoManager );
15: svg. actionToolBar . setEditor (svg. editor );
16: svg. alignToolBar . setEditor (svg. editor );
17: svg. arrangeToolBar . setEditor (svg. editor );
18: svg. fontToolBar . setEditor (svg. editor );
19: svg. figureToolBar . setEditor (svg. editor );
20: svg. linkToolBar . setEditor (svg. editor );
21: DrawingView temp =
22: (svg. editor == null) ? null : svg. editor . getActiveView ();
23: if (svg. editor != null) {
24: svg. editor . setActiveView (svg.view );
25: }
26: svg. canvasToolBar . setEditor (svg. editor );
27: setEditor (svg. editor );
28: if (svg. editor != null) {
29: svg. editor . setActiveView (temp );
30: }
31: }
32:}

Code 4.3: Third Move Method Example (JHotDraw)

JMove also fails. Similar the previous examples, method loadDrawing does not access
any service from its new current class ProgressIndicator. However, it calls four
methods from its original class SVGApplet (lines 3-6) and the Move Method precondi-
tions are satisfied. For this reason, JDeodorant correctly infers that SVGApplet is the
most suitable class for the method. Once again, inCode fails in recommending to move
loadDrawing because only methods are accessed from its original class SVGApplet.

Finally, our approach fails to recommend to move loadDrawing back to
SVGApplet because the method is not structurally similar to the other methods in this
class. As can be observed in Code 4.4, due to its specific task of loading a Drawing,
the set of dependencies of the method contains many particular classes, such as
URLConnection, URL, IOException, and BufferedInputStream. For this reason,
loadDrawing has a low similarity to the analyzed classes, as follows:

Similarity(loadDrawing, ProgressIndicator) = 0.038

Similarity(loadDrawing, SV GApplet) = 0.037
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In spite of the small difference of similarity between the two classes (only 2.7%),
method loadDrawing is more similar to its current class( ProgressIndicator) and
therefore JMove does not provide recommendations for moving the method.

Limitations: Our approach does not provide recommendations for methods that have
less than four dependencies and also for methods that are the single methods in their
classes (as explained in Section 3.1.2). Regarding the JHotDraw system, we found only
17 classes (2.5%) having a single method. On the other hand, among the 6,533 methods
in the system, 4,250 methods (65%) have less than four dependencies. More specifically,
2,173 of such methods (51.1%) are getters or setters. We also found 1,064 methods
(25%) that are graphical user interface listeners or utility methods, such as toString,
equals, etc. By their very nature, such methods are typically implemented in the
correct classes. They are also not considered by other Move Method recommendation
systems, including JDeodorant and the search-based approach proposed by Seng et al.
[2006].

Furthermore, we do not recommend to move methods that do not attend the
refactoring preconditions. This decision is based on the fact that the moving operation,
in this case, typically requires a more complex restructuring both in the source and
in the target classes. Finally, we do not provide suggestions to move fields since
it is rare to observe fields declared in wrong classes [Tsantalis and Chatzigeorgiou, 2009].

Final Remarks: The distinguishing characteristic of our approach is the fact that we
depart from the traditional heuristics for detecting Move Method refactorings. Essen-
tially, such heuristics consider that a method m should be moved from C to C ′ when
it accesses more data from C ′ than from its current class C. Instead, we consider that
m should be moved when it is more similar to the methods in C ′ than to the meth-
ods in C. Moreover, we assumed that the dependencies established by a method are
good estimators of its identity. Therefore, our notion of similarity relies on a similarity
coefficient applied over dependency sets, calculated at the level of methods.

Besides checking the traditional heuristic for detecting Feature Envy, JDeodor-
ant only makes a recommendation when the refactoring improves a system-wide metric,
which combines cohesion and coupling. Basically, this metric is based on the Jaccard
distance between all entities in the system and the original class with the Feature Envy
instance. On the other hand, we evaluate the gains of a Move Method refactoring by
comparing only the original class of the method with the target class. In fact, re-
cent work has questioned whether high-cohesion/low-coupling—when measured at the
level of packages—is able to explain the design decisions behind real remodularization
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1: public class ProgressIndicator extends javax. swing. JPanel {
... piece of code

2: public Drawing loadDrawing ( SVGApplet svgApplet ) throws IOException {
3: Drawing drawing = svgApplet . createDrawing ();
4: if ( svgApplet . getParameter (" datafile ") != null) {
5: URL url = new URL( svgApplet . getDocumentBase (),
6: svgApplet . getParameter (" datafile "));
7: URLConnection uc = url. openConnection ();

8: if (uc instanceof HttpURLConnection ) {
9: (( HttpURLConnection ) uc). setUseCaches ( false );
10: }

11: int contentLength = uc. getContentLength ();
12: InputStream in = uc. getInputStream ();
13: try {
14: if ( contentLength != -1) {
15: in = new BoundedRangeInputStream (in);
16: (( BoundedRangeInputStream ) in)
17: . setMaximum ( contentLength + 1);
18: setProgressModel (( BoundedRangeModel ) in);
19: setIndeterminate (false );
20: }
21: BufferedInputStream bin = new BufferedInputStream (in);
22: bin.mark (512);

23: IOException formatException = null;
24: for ( InputFormat format : drawing . getInputFormats ()) {
25: try {
26: bin.reset ();
27: } catch ( IOException e) {
28: uc = url. openConnection ();
29: in = uc. getInputStream ();
30: in = new BoundedRangeInputStream (in);
31: (( BoundedRangeInputStream ) in)
32: . setMaximum ( contentLength + 1);
33: setProgressModel (( BoundedRangeModel ) in);
34: bin = new BufferedInputStream (in);
35: bin.mark (512);
36: }
37: try {
38: bin.reset ();
39: format .read(bin , drawing , true );
40: formatException = null;
41: break;
42: } catch ( IOException e) {
43: formatException = e;
44: }
45: }
46: if ( formatException != null) {
47: throw formatException ;
48: }
49: } finally {
50: in.close ();
51: }
52: }
53: return drawing ;
54: }
55:}

Code 4.4: Fourth Move Method Example (JHotDraw)
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tasks [Anquetil and Laval, 2011].
Since inCode considers only accesses to attributes (not methods), the tool fails

in many cases. Therefore, a potential improvement to inCode would be changing
the AFTD metric to consider all dependencies defined by a given method (similar to
JDeodorant and our strategy). On the other hand, this improvement may lead to an
explosion in the number of false positives, and therefore new preconditions (e.g., Move
Method ones) or new strategies (e.g., JDeodorant’s Entity Placement metric) need to
be considered.

4.1.5 Threats to Validity

Quite similar to the study reported in Section 3.2, there are three main threats re-
garding the validity of this study. First, as usual, we cannot extrapolate our results
to other systems (external validity). However, we argue that we evaluated a credible
sample including 14 real-world systems. Second, we acknowledge that the strategy
we follow to generate the gold sets can lead to incorrect classifications in rare circum-
stances, as already discussed in Section 4.1.2 (conclusion validity). However, despite
having a low probability of being synthesized, invalid entries in our gold sets would af-
fect equally our results and the results generated by JDeodorant and inCode, which at
least makes our comparison of the tools fair. Third, we cannot claim that our approach
outperforms JDeodorant and inCode in a real scenario since our evaluation is based
on artificial moves (conclusion validity). However, in order to address this threat, we
perform a field study involving real systems and assertions of experts, described in the
next section.

4.2 Evaluation with Experts

This section is divided into five parts, Section 4.2.1 states the research questions we
aim to answer. Section 4.2.2 presents the evaluated systems and our methodology.
Sections 4.2.4 and 4.2.3 report and discuss the results achieved in the two systems
evaluated in the section. Finally, Section 4.2.5 lists threats to validity.

4.2.1 Research Questions

This second study aims to answer the following research questions:
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• RQ #1– How does our approach compare with JDeodorant and inCode in real
instances of methods implemented in incorrect classes from industrial-strength
systems?

• RQ #2– How relevant are our recommendations from a developers’ point of
view?

4.2.2 Study Design

In this section, we present the evaluated systems and the methodology we followed in
this second study.

Target systems: This study relies on two real-world systems: (i) Geplanes, an
open-source strategic management Java web-based system designed to handle strategic
management activities, including management plans, goals, performance indicators,
actions, etc.; and (ii) SGA,2 an EJB-based information system used by a major Brazil-
ian university, which includes functionalities for human resource management, finance,
accounting, and material management. Table 4.7 presents the main characteristics of
both systems, in terms of their sizes.

Table 4.7: Real-world systems evaluated by experts

System NOC NOM LOC

Geplanes 340 3,101 29,046
SGA 1,056 11,556 27,045

We chose these systems for two main reasons: (i) both systems are mature
projects, facing a continuous process of maintenance due to constant requirement
changes. Therefrom, it is reasonable to expect that they offer several refactoring
opportunities; and (ii) we have accesses to an expert in each system, who could
dedicate a significant amount of time to studying and commenting the refactoring
suggestions provided by the considered approaches.

Methodology: We executed the JMove, JDeodorant, and inCode on the SGA and
Geplanes systems. As already detailed in Section 4.1.2, each execution generated a list
of recommendations, whose elements are triples (m, C, C ′) expressing a suggestion to

2Due to confidentiality reasons, we omit the real name of this system.
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move m from C to C ′. On the other hand, a suggestion from inCode is a triple (m, C, T ),
where T is a list of classes.

After generating the list of recommendations provided by the three approaches,
we invited the expert to evaluate the recommendations using the Likert scale [Jamieson,
2004]. Specifically, we asked the expert the following question: How do you rank this
Move Method recommendation? The answers could be: (1) Strongly not recommended,
(2) Not recommended, (3) Neither recommended nor not recommended, (4) Recom-
mended, (5) Strongly Recommended.

4.2.3 SGA Results

We executed the three refactoring recommendation tools (JMove, JDeodorant, and
inCode) in the SGA system. JMove could not trigger any recommendation, while
JDeodorant and inCode triggered 43 and 50 recommendations, respectively. More
important, the expert classified every recommendation triggered by JDeodorant and
inCode as strongly not recommended.

In order to explain the reasons behind too many incorrect recommendations,
Figure 4.1 presents a high-level component model of the SGA’s architecture, as de-
fined by its expert developer. As can be observed, SGA follows a layered architectural
pattern where the ManagedBean layer is the bridge between Graphical User Inter-
face (GUI) components and business-related components. The Service layer is the
core business processes, Persistence Layer is responsible for database operations, and
the BusinessEntity layer implements system domain types (e.g., Professor, Student,
etc.).

ManagedBean Layer

Service Layer

Persistence  Layer

BusinessEntity Layer

Database

GUI Layer

Figure 4.1: SGA’s architecture
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According to SGA expert, the BusinessEntity layer should contain only entity
classes, which have only fields and accessor methods (i.e., getters and setters). Never-
theless, all recommendations given by JDeodorant and inCode suggest to move methods
to such entity classes. As an example, we present a strongly not recommended sugges-
tion provided by JDeodorant. In this particular case, JDeodorant recommended to
move method find (Code 4.5) to class Outsourcing (Code 4.6).3

1: public class OutsourcingDAO implements IOutsourcingDAO {
... piece of code

2: public List < Outsourcing > find( Outsourcing service ) {
3: Query query = this. entityManager . createNamedQuery (
4: OutsourcingDAO . FIND_OUTSOURCING );
5: return (List < Outsourcing >) query. setParameter ("id",
6: service .getId ()). getResultList ();
7: }
8:}

Code 4.5: Example to illustrate a typical recommendation on SGA

1: public class Outsourcing extends AuditInfo implements Serializable {
2: @Id
3: @GeneratedValue ( strategy = GenerationType . IDENTITY )
4: private long id = 0;

... remainder attributes

5: public long getId () {
6: return id;
7: }
8: public void setId(long idOutsourcing ) {
9: this.id = idOutsourcing ;
10: }

... remainder accessor methods
11:}

Code 4.6: Class Outsourcing

The find method is currently implemented in class OutsourcingDAO located on
the Persistence layer, which is the unique layer that can access the database according
to the SGA’s architecture. Therefore, the expert classified such Move Method refac-
toring recommendation as strongly not recommended for the following two reasons: (i)
Outsourcing is an entity class, which must contain only fields and accessor methods;
and (ii) classes in the BusinessEntity layer cannot access the database, wich represents
an architectural violation.

In fact, JDeodorant and inCode triggered too many wrong recommendations
because they rely on the number of accessed members and, by their nature, entity
classes are widely accessed. On the other side, JMove is more robust to such false

3The complete source code of class OutsourcingDAO is available in Appendix B.1
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positives because it does not rely on the number of members accesses of each class, but
on the set of static dependencies established by the method. In other words, an access
to a class is transformed into a single dependency regardless of the number of times it
happens. Therefore, a single dependency is not able to attract a method to an entity
class, because JMove does not make recommendations for methods whose dependency
set has less than four dependencies.

In summary, this study provides empirical evidence that—in systems with a strict
and well-defined architecture—it is quite rare that developers implement methods in
inappropriate classes. In fact, none of approaches was able to identify true Move
Method refactoring opportunities.

4.2.4 Geplanes Results

JMove triggered 72 recommendations of Move Method refactorings for the Geplanes
system. In a first analysis, we found that 31 out of 72 recommendations are in accessor
methods, which by their very nature are rarely implemented in incorrect locations.
As mentioned in Section 3.1.2, to exclude accessors methods, we do not recommend
Move Method refactorings for methods that have less than four dependencies. However,
Geplanes makes massive use of Java annotations. For instance, Code 4.7 illustrates a
typical getter method from a persistence class in Geplanes.

1: @Required
2: @DisplayName ("Data da auditoria ")
3: public Date getDataAuditoria () {
4: return this. dataAuditoria ;
5: }

Code 4.7: Typical getter method in Geplanes

The method getDataAuditoria has four dependencies: a dependency with the
return type Date (line 3); a dependency with its owner class AuditoriaGestao (line
4), and two dependencies due to the annotations Required (line 1) and DisplayName

(line 2). Due to the frequent use of annotations in accessors methods, our filter failed
on excluding these getters methods in Geplanes.

To address this shortcoming, we decide to manually remove from the analysis
methods that have no parameters and have only one statement—which is a return

statement. This solution can be automated and it is based on the one proposed
by Seng et al. [2006] to identify methods that should not be moved. Using this fil-
ter, 41 JMove’s recommendations were given to the expert. Table 4.8 presents the
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number of recommendations triggered by JMove, and also by JDeodorant and inCode
on Geplanes system.

Table 4.8: Evaluation of the Geplanes’ recommendations by an expert

How do you rank this Move Method recommendation?
JMove JDeodorant inCode

(5) Strongly recommended 7 (17%) 6 (3%) 1 (3%)

(4) Recommended 3 (7%) 6 (3%) 1 (3%)

(3) Neither recommended nor not recommended 2 (5%) 18 (9%) 0 (0%)

(2) Not recommended 9 (22%) 28 (15%) 5(13%)

(1) Strongly not recommended 20 (49%) 136 (70%) 31(81%)

Total 41 194 38

Our approach could trigger three recommendations scored as recommended and
seven as strongly recommended. Stated differently, 10 out of 41 recommendations trig-
gered by JMove would improve the system quality according to the expert judgment.

In a detailed analysis for the recommendations triggered by JMove we observed
that 10 out of 20 recommendations scored by the expert as strongly not recommended
are methods having a parameter WebRequestContext, which should never be moved
as explained by the architect because this refactoring violates the system architecture.

Moreover, for the ten remaining strongly not recommended JMove’s suggestions,
the current and the recommended classes are structurally very similar to the method.
For example, 5 out of 10 recommendations suggest to move methods between DAO
(Data Access Object) classes, which by their nature are very similar. More specifi-
cally, these five recommendations indicate to move methods from class AnomaliaDAO

to class UnidadeGerencialDAO. Although these methods are structurally similar to
class UnidadeGerencialDAO, semantically they should not be moved. Similarly, the
five remaining recommendations occurred between methods of Service layer classes,
which are structurally very similar.

For the not recommended suggestions triggered by JMove, we observed that 7 out
of 9 recommendations also refer to the case in which the current and the recommended
classes are mostly structurally very similar to the method. Regarding the suggestions
classified as neither recommended nor not recommended, the expert argued that the
recommendation could be applied, but it would not significantly improve the system
quality.
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When comparing JMove with JDeodorant and inCode, we observed that JDeodor-
ant was able to detect more correct suggestions than JMove and inCode in absolute
values. As reported in Table 4.8, JDeodorant could detect 12 strongly recommended
or recommended refactorings, whereas JMove and inCode could detect 10 and 2, re-
spectively. However, JDeodorant triggered 194 recommendations, which is 373% and
410% more recommendations than JMove and inCode, respectively. As a result, 164
recommendations (85%) triggered by JDeodorant are not recommended or strongly not
recommended. Furthermore, it is possible to observe that similarly to the evaluation
with open-source systems (Section 4.1), inCode produced the lowest number of 38
recommendations, but achieved the worst precision of 5.2%, i.e., 36 out of 38 recom-
mendations triggered by inCode are not recommended or strongly not recommended.

Intersection of the results: Finally, we checked the intersection between the rec-
ommendations triggered by JMove, JDeodorant, and inCode which is presented in
Figure 4.2. Regarding the correct recommendations (scores 4 and 5), we can observe
that there is a relevant intersection between JDeodorant and JMove (half of the cor-
rect recommendations provided by JMove are also provided by JDeodorant). On the
other side, we found no intersection between JMove and inCode and between JDe-
dorant and inCode. Regarding the incorrect recommendations (scores 1 and 2) the
results basically reinforce our previous observation on the massive number of false pos-
itives provided only by JDeodorant (136 recommendations) and, to some extent, by
inCode only (21 recommendations). Essentially, this finding undermines the possibil-
ity of running the three tools and combining their results. In fact, this scenario would
only be feasible after investigating a heuristic to reduce the false positives provided by
JDeodorant, without affecting the true positives detected by such tool.

Figure 4.2: Intersection between the JMove, JDeodorant, and inCode

(a) Correct recommnedations (b) Wrong recommnedations (c) All recommnedations
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Lessons Learned: Two main lessons were learned after this study:

• The results indicate that a more sophisticated mechanism is necessary to decide
when recommendations involving two very similar classes should be triggered. Cur-
rently, as explained in Section 3.1.3, a move recommendation is not created when:
(i) T has less than three classes, and (ii) the difference between the similarity coeffi-
cient value of C1 (the first class in the list) and C (the original class of m) is less than
or equal to 25%. A potential improvement to address this shortcoming is to intro-
duce a mechanism to measure the amount of uncertainty in each Move Method rec-
ommendation. This solution is similar to the one recently proposed by Bavota et al.
[2014] who complements Move Method refactoring recommendations with a confi-
dence level that indicates the reliability of the proposed refactoring.

• The recommendations should be filtered by the system’s architect, possibly using
an automatic filtering based on straightforward regular expressions, to remove rec-
ommendations that represent violations in design rules. For example, the Geplanes’
architect could hide all recommendations involving methods from the Controller

layer having a WebRequestContext parameter. By following this filter, we could
achieved a precision of 38.5% in Geplanes.

4.2.5 Threats to Validity

The subject systems Geplanes and SGA are Java EE web applications, thus our results
might be in part due to the specific nature of these systems. As usual, we cannot
extrapolate our results to others types of systems (external validity). The experts
could be responsible for some bad design choices and consequently they could not have
recognized a correct Move Method refactoring opportunity as meaningful. However,
we conducted a deep discussion with them on the results. Moreover, the feedback we
received about the correct recommendations demonstrated that the experts provided
an objective evaluation of the Move Method operations.

4.3 Performance Analysis

We executed JMove, JDeodorant, and inCode in the original version of JHotDraw
(described in Section 3.2.1) to measure the tool’s runtime performance. The system
configuration used was an Intel Core2 Duo CPU E8400 @3.00GHz with 16GB RAM,
operating system LinuxMint 14 (Nadia), and Java SE Runtime Environment 1.6.0_45.
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Table 4.9 reports the time needed by the approaches to provide their recommen-
dations. JMove required 17:56 minutes to provide Move Method recommendations
on JHotDraw, while JDeodorant required 2:49, and inCode 1:27 minutes. InCode
required less time to provide the recommendations, but it is important to emphasize
that this tool does not check the Move Method refactoring preconditions and therefore
some recommendations could not have a trivial application.

Table 4.9: Execution time for JHotDraw (minutes)

JMove JDeodorant inCode

17:56 2:49 1:27

To understand our low performance, it is necessary to present some details of
JMove’s current implementation. JMove is implemented as an Eclipse plug-in and re-
lies on the Eclipse JDT parser to build the Abstract Syntax Tree (AST). Furthermore,
JMove relies on preconditions checked by the Move Method automatic refactoring en-
gine provided by the Eclipse IDE. More specifically, the process we follow to identify
Move Method refactoring opportunities is as follows.

1. Parsing the system into an Abstract Syntax Tree (AST).

2. Computing the set of dependencies (for every single method).

3. Measuring the similarity between each method/class pair of the system.

4. Verifying Move Method refactoring preconditions.

As observed, JMove creates dependency sets for every method and also measures
the similarity between these methods and all classes in the system. To save compu-
tational resources, JMove only calculates the similarity between a given method m

and a class C when the operation satisfies the Move Method refactoring preconditions.
However, JMove depends of an external API to check the Move Method refactoring
preconditions, which is not very efficient. Basically, this checking procedure demanded
13:41 minutes, i.e., 76.4% of the total executing time.

In summary, since our tool is a prototype, it requires further performance im-
provements. For instance, we could implement the checking of the Move Method refac-
toring preconditions in the same way as JDeodorant, rather than using an external
API. However, it is important to acknowledge that, although our prototype needs
performance improvements, it is robust enough to be used in real-world systems.
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4.4 Final Remarks
This chapter reported the evaluation of our approach. In Section 4.1, we manually
synthesized versions of 14 open-source systems with well-known methods implemented
in incorrect classes. We achieved an average precision of 60.63% and an average recall
of 81.07%. On average, our results were 49.13% better than JDeodorant and 556.43%
better than inCode in terms of recall, and 129% better than JDeodorant and 378%
better than inCode in terms of precision.

In Section 4.2, we used two real-world systems in which the systems’ experts eval-
uated the recommendations triggered by the approaches. Regarding the SGA study, we
learned that in systems with a well-defined architecture it is quite rare that developers
implement methods in inappropriate classes. Regarding the Geplanes study, we con-
clude that some improvements can be made on JMove to make it more robust, including
a filter for accessor methods (especially, getters) and a more sophisticated mechanism
to decide when recommendations between two very similar classes should be triggered.
In spite of these findings, JMove was more precise than the other approaches in both
evaluated systems. In the Geplanes system, for instance, JMove achieved a precision
of 25.6% against 6.8% achieved by JDeodorant and 5.2% by inCode.
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Conclusion

We organized this chapter as follows. First, Section 5.1 provides a brief description of
the problem and the approach we proposed. Second, Section 5.2 reviews the contri-
butions of our research. Next, Section 5.3 points the limitations of our work. Finally,
Section 5.4 suggests further work.

5.1 Summary

During software evolution, developers may inadvertently implement methods in incor-
rect classes, creating instances of the Feature Envy code smell. Basically, the actions
to remove a Feature Envy are well-documented. A Move Method refactoring must be
applied to move the method from its current class to the class that it envies [Fowler,
1999; Tsantalis and Chatzigeorgiou, 2009]. However, maintainers must first detect the
Feature Envy instances in the source code, and determine the correct classes to receive
the methods, which are two non-trivial program comprehension tasks. Despite that,
currently there are few tools intended to assist in identifying opportunities to take
advantage of Move Method refactorings.

To address this shortcoming, we proposed in this master’s dissertation a solution
based on recommendation system principles to recommend Move Method refactorings.
Basically, our recommendation approach detects methods located in incorrect classes
and then suggests moving them to more suitable classes. Moreover, we conducted an
evaluation where experts in two industrial-strength systems provided us encouraging
feedback on the applicability of our recommendations. We also conducted an evaluation
where we manually synthesized versions of 14 open-source systems with well-known
methods implemented in incorrect classes. In this case, we achieved an average precision
of 60.63% and an average recall of 81.07%. On average, our results are 49.13% better

65
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than JDeodorant and 556.43% better than inCode in terms of recall, and 129% better
than JDeodorant and 378% better than inCode in terms of precision.

5.2 Contributions
This research makes the following contributions:

• The design of an algorithm that provides Move Method recommendations for
developers and maintainers to remove the Feature Envy code smell and therefore
to improve the system quality (Chapter 3);

• An empirical study that supported the implementation decisions (coefficients and
strategies) related to our heuristic to calculate the similarity between methods
and classes (Section 3.2);

• A prototype tool called JMove that implements our approach and hence de-
tects methods located in incorrect classes and then suggests moving them to
more suitable classes. Furthermore, JMove applies the Move Method when re-
quested. JMove is publicly available at: http://aserg.labsoft.dcc.ufmg.br/jmove/
(Section 3.3);

• An evaluation of the correctness of our recommendations using two industrial-
strength systems and synthesized versions of 14 open-source systems (Chapter 4);

• A dataset with 475 well-defined Feature Envy instances distributed among 14
open-source systems, including 100 methods in five JHotDraw instances.This
dataset is publicly available at JMove’s website (Chapter 4.1.2).

5.3 Limitations
Our work has the following limitations:

• Our heuristic is based only on structural similarity, even though the way that
developers decide a most suitable class for a method might also consider semantic
and architectural aspects;

• We do not handle static methods;

• We do not provide recommendations about method that do not satisfy the Move
Method preconditions, i.e., methods that can not be automatically moved;
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• Our prototype tool has some performance issues that can be tackled by imple-
menting its own precondition checking functions instead of relying on the Eclipse
functions.

• We did not evaluate with experts whether our approach provides equivalent re-
sults in contexts other than web-based systems;

5.4 Future Work
We consider that this work can be complemented with the following future work:

• Proposed Approach: (i) a new mechanism to decide when recommendations be-
tween similar classes should be triggered. A potential improvement to address
this problem is to investigate a mechanism to measure the uncertainty inherent
to each Move Method recommendation, similar to the one proposed by Bavota
et al. [2014]. Basically, in this work they supplement a suggestion of envied class
with a confidence level that indicates the reliability of the proposed refactoring;
(ii) extend our approach to search opportunities for Move Method refactorings
in methods’ fragments, to extract fragments into a new method and then to rec-
ommend the move; (iii) conduct an evaluation of our approach using experts in
non web-based systems; and (iv) compare our approach with MethodBook, an
approach that considers structural and semantic aspects to provide Move Method
recommendations [Bavota et al., 2014].

• JMove Tool: (i) the implementation of a module to check the Move Method
refactoring preconditions; and (ii) work on performance improvements to reach
for example a performance similar to the one achieved by JDeodorant.
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Appendix A

Running Example Classes

In this appendix, we include the complete source code of the following classes used
in the running example presented in Section 3.1.4: CustomerView (Section A.1) and
CustomerDAO (Section A.2).

A.1 Class CustomerView

1: package com.foo.view;

2: import java.awt.event. ActionEvent ;
3: import java.awt.event. ActionListener ;
4: import java.sql. Connection ;
5: import java.sql. PreparedStatement ;
6: import java.sql. ResultSet ;
7: import java.sql. SQLException ;
8: import java.util. ArrayList ;
9: import java.util.List;
10: import javax.swing. JButton ;
11: import javax.swing. JFrame ;
12: import javax.swing.JMenu;
13: import javax.swing. JMenuBar ;
14: import javax.swing. JMenuItem ;
15: import javax.swing. JPanel ;
16: import javax.swing. JTextField ;
17: import javax.swing. JTextPane ;
18: import com.foo.dao. CustomerDAO ;
19: import com.foo. database .DB;
20: import com.foo. domain . Customer ;

21: public class CustomerView extends JFrame {

22: private JPanel contentPane ;
23: private JTextField textField_Name ;
24: private JTextField textField_SocialNumber ;
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25: private Customer customer ;
26: private CustomerDAO city;

27: public List <Customer > getAllCustomers () throws SQLException {
28: List <Customer > result = new ArrayList <Customer >();
29: Connection conn = DB. getConnection ();
30: PreparedStatement ps =
31: conn. prepareStatement (" select * from CUSTOMER ");
32: ResultSet rs = ps. executeQuery ();

33: while (rs.next ()) {
34: result .add(new Customer (rs. getInt ("ID"),rs. getString ("NAME")));
35: }
36: rs.close ();
37: ps.close ();
38: conn.close ();
39: return result ;
40: }

41: public CustomerView () {
42: this. setDefaultCloseOperation ( JFrame . EXIT_ON_CLOSE );
43: setBounds (100 , 100, 450, 300);

44: JMenuBar menuBar = new JMenuBar ();
45: setJMenuBar ( menuBar );

46: JMenu mnNewMenu = new JMenu("File");
47: menuBar .add( mnNewMenu );

48: JMenuItem item1 = new JMenuItem ("Open");
49: mnNewMenu .add(item1 );

50: contentPane = new JPanel ();
51: setContentPane ( contentPane );
52: contentPane . setLayout (null );

53: JTextPane txtpnName = new JTextPane ();
54: txtpnName . setText ("Name:");
55: txtpnName . setBounds (25, 151, 68, 20);
56: contentPane .add( txtpnName );

57: textField_SocialNumber = new JTextField ();
58: textField_SocialNumber . setColumns (10);
59: textField_SocialNumber . setBounds (139 , 11, 193, 20);
60: contentPane .add( textField_SocialNumber );

61: textField_Name = new JTextField ();
62: textField_Name . setBounds (105 , 151, 193, 20);
63: contentPane .add( textField_Name );

64: textField_Name . setColumns (10);
65: JTextPane txtpnCpf = new JTextPane ();
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66: txtpnCpf . setText (" SocialNumber ");
67: txtpnCpf . setBounds (25, 11, 98, 20);
68: contentPane .add( txtpnCpf );

69: JMenuItem mntmNewMenuItem = new JMenuItem ("Save");
70: mnNewMenu .add( mntmNewMenuItem );

71: JButton btnNewButton = new JButton ("Find");
72: btnNewButton . addActionListener (new ActionListener () {
73: public void actionPerformed ( ActionEvent e) {
74: customer = new Customer ( textField_SocialNumber . getText ());
75: textField_Name . setText ( customer . getName ());
76: }
77: });

78: btnNewButton . setBounds (157 , 57, 89, 23);
79: contentPane .add( btnNewButton );
80: }
81:}

Code A.1: Class CustomerV iew

A.2 Class CustomerDAO

1: package com.foo.dao;

2: import java.sql. PreparedStatement ;
3: import java.sql. ResultSet ;
4: import java.sql. SQLException ;
5: import java.util. ArrayList ;
6: import java.util.List;
7: import com.foo. database .DB;
8: import com.foo. domain . Customer ;
9: import com.foo. domain . Ticket ;

10: public final class CustomerDAO {

11: public List <Customer > getCities (DB db) throws SQLException {
12: String sql = " select * from CITY";
13: List <Customer > listaDeCidades = new ArrayList <Customer >();
14: Customer tmp = null;
15: PreparedStatement pstmt;
16: pstmt = db. getConnection (). prepareStatement (sql );
17:
18: ResultSet rs = pstmt. executeQuery ();
19:
20: while (rs.next ()) {
21: tmp = new Customer ();
22: tmp. setCityId (rs. getString (" CityID "));
23: tmp. setCityName (rs. getString (" CityName "));
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24: listaDeCidades .add(tmp );
25: }
26:
27: return listaDeCidades ;
28: }

29: public String getCityOfOrigin (DB db , Ticket ticket )
30: throws SQLException {
31: String instanceStatement ;
32: PreparedStatement pmts = db. getConnection ().
33: prepareStatement (" select min( IDINSTANCE ) as instance from"
34: +" ADM. TICKETINSTANCE where idTicket = ?");
35: pmts. setString (1, ticket . getIdPassagem ());
36: ResultSet rs = pmts. executeQuery ();

37: if (rs.next ()) {
38: instanceStatement = rs. getString (" instance ");
39: } else {
40: return null;
41: }

42: pmts = db. getConnection ().
43: prepareStatement (" select CITYNAME as name from ADM. INSTANCE "
44: + " natural join PATH natural join CITY"
45: + "where IDCITYOFORIGIN = IDCITY and IDINSTANCE =?");
46: pmts. setString (1, instanceStatement );
47: rs = pmts. executeQuery ();

48: if (rs.next ()) {
49: return rs. getString ("name");
50: } else {
51: return null;
52: }
53: }

54: public String getDestinyCity (DB db , Ticket ticket )
55: throws SQLException {

56: String instanceStatement ;
57: PreparedStatement pmts = db. getConnection ().
58: prepareStatement (" select max( IDINSTANCE ) as instance "
59: +" from ADM. TICKETINSTANCE where idTicket = ?");
60: pmts. setString (1, ticket . getIdPassagem ());
61: ResultSet rs = pmts. executeQuery ();
62: if (rs.next ()) {
63: instanceStatement = rs. getString (" instance ");
64: } else {
65: return null;
66: }

67: pmts = db. getConnection ().
68: prepareStatement (" select CITYNAME as name from ADM. INSTANCE "
69: + " natural join PATH natural join CITIES "
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70: + "where IDDESTINYCITY = IDCITY and IDINSTANCE =?");
71: pmts. setString (1, instanceStatement );
72: rs = pmts. executeQuery ();

73: if (rs.next ()) {
74: return rs. getString ("name");
75: } else {
76: return null;
77: }
78: }
79:}

Code A.2: Class CustomerV iew
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SGA running Example Classes

In this appendix, we include the complete source code of the class Outsourcing used
in the SGA example presented in Section 4.2.3.

B.1 Class Outsourcing

1: package *. ext. nucleo . dominio ;

2: import java.io. Serializable ;

3: import javax. persistence . CascadeType ;
4: import javax. persistence . Entity ;
5: import javax. persistence . GeneratedValue ;
6: import javax. persistence . GenerationType ;
7: import javax. persistence .Id;
8: import javax. persistence . JoinColumn ;
9: import javax. persistence . ManyToOne ;
10: import javax. persistence . NamedQueries ;
11: import javax. persistence . NamedQuery ;

12: import *. nucleo . dominio . AuditoriaInfo ;

13: @Entity
14: @NamedQueries ({...})

15: public class Outsourcing extends AuditInfo
16: implements Serializable {

17: private static final long serialVersionUID = 1L;

18: @Id
19: @GeneratedValue ( strategy = GenerationType . IDENTITY )
20: private long id = 0;
21: private String activity = "";

81
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22: @ManyToOne ( cascade = CascadeType . PERSIST )
23: @JoinColumn (name = " id_projectActivity ")
24: private ProjectActivity projectActivity ;

25: private String terceiro = "";
26: private boolean pessoaFisica = false ;
27: private boolean pessoaJuridica = false ;
28: private long quantity = 0;
29: private long unitary = 0;
30: private double unitaryValue = 0.0;

31: @ManyToOne ( cascade = { CascadeType . PERSIST })
32: @JoinColumn (name = " id_engagedResource ",
33: referencedColumnName = "ID", nullable = true)
34: private EngagedResource engagedResource ;

35: public Outsourcing () {
36: engagedResource = new EngagedResource ();
37: }

38: public long getId () {
39: return id;
40: }

41: public void setId(long idOutsourcing ) {
42: this.id = idOutsourcing ;
43: }

44: public void setActivity ( String activity ) {
45: this. activity = activity ;
46: }

47: public String getActivity () {
48: return activity ;
49: }

50: public void setTerceiro ( String terceiro ) {
51: this. terceiro = terceiro ;
52: }

53: public String getTerceiro () {
54: return terceiro ;
55: }

56: public void setQuantity (long quantity ) {
57: this. quantity = quantity ;
58: }

59: public long getQuantity () {
60: return quantity ;
61: }
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62: public void setUnitary (long unitary ) {
63: this. unitary = unitary ;
64: }

65: public long getUnitary () {
66: return unitary ;
67: }

68: public void setUnitaryValue ( double unitaryValue ) {
69: this. unitaryValue = unitaryValue ;
70: }

71: public double getUnitaryValue () {
72: return unitaryValue ;
73: }

74: public void setEngagedResource ( EngagedResource engagedResource ) {
75: this. engagedResource = engagedResource ;
76: }

77: public EngagedResource getEngagedResource () {
78: return engagedResource ;
79: }

80: public void setPessoaFisica ( boolean pessoaFisica ) {
81: this. pessoaFisica = pessoaFisica ;
82: }

83: public boolean isPessoaFisica () {
84: return pessoaFisica ;
85: }

86: public void setPessoaJuridica ( boolean pessoaJuridica ) {
87: this. pessoaJuridica = pessoaJuridica ;
88: }

89: public boolean isPessoaJuridica () {
90: return pessoaJuridica ;
91: }

92: public boolean equals ( Object obj) {
93: if (!( obj instanceof Outsourcing )) {
94: return false;
95: }
96: return this. getActivity (). equals (
97: (( Outsourcing ) obj ). getActivity ());
98: }

99: public void setProjectActivity ( ProjectActivity projectActivity ) {
100: this. projectActivity = projectActivity ;
101:}

102: public ProjectActivity getProjectActivity () {
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103: return projectActivity ;
104:}
105:}

Code B.1: Example to illustrate a typical recommendation on SGA
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