
EXPLOITING ITEM CO-UTILITY

TO IMPROVE RECOMMENDATIONS





ALINE BESSA

EXPLOITING ITEM CO-UTILITY

TO IMPROVE RECOMMENDATIONS

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Nivio Ziviani
Co-Advisor: Adriano Veloso

Belo Horizonte

February 18, 2014



           Bessa, Aline Duarte

B557e       Exploiting item co-utility to improve  recommendations / 
           Aline Duarte Bessa.— Belo  Horizonte, 2013.
               xiii, 49 f.: il.; 29 cm.

                Dissertação (mestrado) — Universidade Federal de    
           Minas  Gerais. Departamento de Ciência da Computação.

                Orientador: Nívio Ziviani.
                Coorientador: Adriano Alonso Veloso.
                                                                                                           
                1. Computação - Teses. 2.  Sistemas de 
recomendação     
           – Teses. 3. Recuperação da informação – Teses. 
           I..Orientador. II. Coorientador. III. Título.

                                                                      CDU 519.6*73 
(043)







To Raja and Lico.

vii





Acknowledgments

First to my advisor, Nivio Ziviani, who supported me throughout this process. I would
also like to especially thank Adriano Veloso, for being a dedicated co-advisor. Looking
back over the past two years I have learned undeniably much, thanks to these two
professors in particular, but also to UFMG in general. I also thank professor Juliana
Freire from NYU-Poly, who held an advisory role for me during my internship in 2013
and substantially changed my viewpoints on how to perform research.

Most of this thesis would not have been possible without the fruitful suggestions
of my colleagues. First Filipe Arcanjo, who helped me on understanding the relevance
of what I was studying, and on whom I bounced ideas since my first months in Belo
Horizonte. Special thanks to Fernando Mourão, who have given me substantial ideas
for experiments and validation. I have learned much from my peers at LATIN: Aé-
cio Santos, Adolfo Guimarães, Wladmir Brandão, Thales Costa, Cristiano Carvalho,
Arthur Camara, Anisio Lacerda, Sabir Ribas, and Leonardo Resende; and at NYU-
Poly: Fernando Chirigati, Tuan-Anh, and Kien Pham. I also would like to thank
CNPQ and CAPES for funding my research.

If not for friends, I would not have had enough motivation to go through my
master’s. I would like to thank Denise Neri, Fernanda Wanderley, Roy Hopper, and
Anthony Farnham for supporting me in so many ways during my time in Belo Horizonte
and New York City. To my old yet always present friends, Clara Fernandes, Julianna
Oliveira, Amine Portugal, Renata Amoedo, Rafael Saraiva, Alexandre Passos, thanks
for hitting me up constantly through Skype and e-mails, you are all very important to
me.

I also thank my family, Marcia Bessa, Andrea Bessa, and Adriano Bessa, who
have inspired me and taught me how to stay strong even when I think I cannot.

And last, but not least, I want to thank Davi, my love and best friend, for
reviewing this work and giving me invaluable advice and support all the time.

ix





“Life is the sum of all your choices.”
(Albert Camus)

xi





Abstract

In this thesis, we consider that a recommendation was useful if the associated user’s
feedback was positive – e.g., the user purchased the recommendation, gave it a high
rating, or clicked on it. We then formalize the concept of co-utility, stated as the
property any two items have of being useful to a user, and exploit it to improve recom-
mendations. We then present different ways of estimating co-utility probabilities, all
of them independent of content information, and compare them with each other. We
embed these probabilities, as well as normalized predicted ratings, in an instance of an
NP−hard problem named Max-Sum Dispersion Problem. A solution to this problem
corresponds to a set of items for recommendation. We study two heuristics and one
exact solution to the Max-Sum Dispersion Problem and perform comparisons among
them. According to our experiments, the three solutions have similar performance in
practice. We also contrast our method to different baselines by comparing the ratings
users give to different recommendations. We obtain expressive gains in the utility of
recommendations, up to 106%, and our method also recommends higher rated items
to the majority of users. Finally, we show that our method is scalable in practice and
does not seem to affect recommendations’ diversity.

Keywords: Recommender Systems, Co-Utility, Max-Sum Dispersion Problem.

xiii





Contents

Acknowledgments ix

Abstract xiii

1 Introduction 1
1.1 Work Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Work Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 7
2.1 Predictors for Top − N Recommendations . . . . . . . . . . . . . . . . 7
2.2 Exploiting Relations among Items . . . . . . . . . . . . . . . . . . . . . 8
2.3 Max-Sum Dispersion Problem (MSDP) . . . . . . . . . . . . . . . . . . 10

3 Basic Concepts 13
3.1 Individual Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 NNCosNgbr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 PureSVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Pairwise Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Combining scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Algorithms and Validation 21
4.1 Algorithms to MSDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Heuristic Greedy1 . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Heuristic Greedy2 . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 Exact Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Top − N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Mean-Variance Analysis . . . . . . . . . . . . . . . . . . . . . . 25

xv



4.2.3 Maximal Marginal Relevance . . . . . . . . . . . . . . . . . . . 26
4.3 Validation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Experimental Results 29
5.1 Studied Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Comparing Estimators for Pairwise Scores . . . . . . . . . . . . . . . . 31
5.3 Comparing Algorithms to MSDP and Baselines . . . . . . . . . . . . . 32

5.3.1 Comparing Non-Exact Algorithms to MSDP . . . . . . . . . . . 32
5.3.2 Comparing Non-Exact and Exact Algorithms to MSDP . . . . . 33
5.3.3 Comparing Our Method to Baselines . . . . . . . . . . . . . . . 35

5.4 Analysing the Scalability of Our Method . . . . . . . . . . . . . . . . . 42
5.5 Relating Co-Utility and Diversity . . . . . . . . . . . . . . . . . . . . . 43

6 Conclusions and Future Work 47

Bibliography 49

xvi



Chapter 1

Introduction

People from widely varying backgrounds are inundated with options that lead to a
situation known as “information overload”, where the presence of too much informa-
tion interferes with decision-making processes [Toffler, 1970]. To circumvent it, content
providers and electronic retailers have to identify a small yet effective amount of infor-
mation that matches users’ expectations. In this scenario, Recommender Systems have
become tools of paramount importance, providing a few personalized recommendations
that intend to suit user needs in a satisfactory way.

One type of such systems, known as Collaborative Filtering, makes predictions
about the interests of a user by gathering taste information from many other users. It
generally works as follows: (i) prediction step - keeps track of users’ known preferences
and processes them to predict items that may be interesting to other users; (ii) rec-
ommendation step - selects predicted items, optionally ranks them, and recommends
them to users [Adomavicius and Tuzhilin, 2005]. The scope of this work is limited to
Collaborative Filtering. We also do not perform ranking, and therefore do not analyse
the impact that the order of items may have on recommendations.

In the prediction step, scores are independently assigned to items by taking user’s
historical data into account [Ricci et al., 2011]. The higher the score the higher the
estimated compatibility between the item and user’s known preferences. It is therefore
intuitive to think that the highest scored items should be the ones selected in the
recommendation step. This is indeed what happens in the recommendation step of
many systems, where the selection of items is based exclusively on how well they
match users’ known preferences. Nonetheless, by neglecting relations between predicted
items, such systems may generate less useful recommendation lists. A large body of
research, dating back from early studies in the 1960s, draws attention to the importance
of exploiting dependencies between items [Bookstein, 1983; Carbonell and Goldstein,
1998].

1



2 Chapter 1. Introduction

In this work, we focus on improving the utility of recommendations by exploiting
relations between items. In our case, the relation in question is co-utility, and other
examples of item relations are diversity or competition [Zhang and Hurley, 2008; Xiong
et al., 2012]. Throughout this work, we consider that a recommendation was useful if
the associated user’s feedback was positive – e.g., she purchased the recommendation,
gave it a high rating, or clicked on it. Breese et al. [1998] and Passos et al. [2011]
also relate utility to positive feedback – high ratings, in particular. With respect to
relations between items, we focus on their co-utility, a concept that is defined in the
following.

Definition 1. Two items are co-useful with respect to a user if she considered both
of them useful. Co-utility is the property of being co-useful.

For each pair of items, we compute their probabilities of being co-useful, as de-
tailed in Chapter 3, and embed this information into methods designed to generate
recommendations. As we explain in Chapter 2, other works exploit relations between
items for recommendations, especially when they account for diversity. Nonetheless,
to the best of our knowledge, our work is the first to address co-utility relations in the
context of items’ recommendation.

This work is motivated by the Theory of Choice of Amos Tversky [Tversky, 1972],
which indicates that preference among items depends not only on the items’ specific
features, but also on the presented alternatives. In our case, the selection of an item is
based on its independently predicted rating and on how likely it is to be co-useful with
other selected items. The simplicity of estimating co-utility probabilities and the fact
that they are underexploited in the literature to date were also important motivations
behind this work.

1.1 Work Contributions

Some of the specific contributions of this work include:

• A definition of co-utility and methods for estimating co-utility probabilities. Such
methods are time efficient and do not depend on content information.

• An optimization objective function that combines prediction values and co-
utility probabilities, its reduction to a popular Facility Location Analysis prob-
lem [Borodin et al., 2012], and different algorithms to tackle it. We show heuris-
tics and an exact method to optimize this objective function.



1.2. Research Development 3

• A thorough evaluation of our method. We compare different algorithms that
adopt co-utility probabilities with methods that neglect relations between items
and with methods that take them into consideration. Our comparisons are mainly
focused on recommendations’ utility, albeit we briefly address diversity as well.

• An analysis of the scalability of our method, which indicates that it is applicable
for real-world recommender systems.

1.2 Research Development

This informal description aims to help you, the reader, understand the trajectory of
this work. We portray not only the choices that led to the theme of this dissertation
but also our main difficulties.

This research started as a study on diversity in the context of recommender
systems. The abundance of work in this area, alongside the fact that it is hard to
understand to what extent diversity should be regarded [Pu et al., 2012], has motivated
us to focus on other types of relation between items. The idea of modelling co-utility
probabilities came up naturally, and after a thorough investigation we concluded that
it was rather original in our context.

Initially, we combined co-utility probabilities and predicted scores in a bayesian
fashion. The selection of an item for recommendation depended on its prior probability
of being useful, and its posterior probability of being useful given the items that were
already selected for recommendation. For example, the selection of the first item, i1,
depended on its prior probability ; the selection of the second item, i2, depended on its
prior probability and on its posterior probability given that i1 was selected etc. These
prior probabilities were straightforward normalizations of predicted scores, and the
posterior probabilities were computed as co-utility probabilities.

We then examined a form of mapping these prior and posterior probabilities
into a bayesian network [Koller and Friedman, 2009]. We built a directed acyclic
graph with nodes corresponding to the candidate items, each associated to its prior
probability of selection, and edges corresponding to their co-utility probabilities. To
determine which items should be selected, we had to run a Maximum a Posteriori
(MAP) inference algorithm with a restriction on the size of the selected set, as we
wanted the recommendation lists to be comprised by a specific number of items [Koller
and Friedman, 2009]. An adequate option was HOP-MAP, an efficient message passing
algorithm proposed by Tarlow et al. [2010]. Nonetheless, this model was still not



4 Chapter 1. Introduction

practical enough due to slow convergence, and we were not convinced as to whether it
would work in real-time situations.

Some time later, we noticed that we could linearly combine predicted scores and
co-utility probabilities, pose the combination as an optimization problem, and then
tackle it under an Operations Research paradigm. Our combination trivially reduced
to a Facility Location Analysis problem named Max-Sum Dispersion Problem [Borodin
et al., 2012]. We detail the connection between our work and Max-Sum Dispersion
Problem in Chapters 2, 3, and 4.

After the definition of our optimization problem, we performed experiments to
analyse if the exploitation of co-utility probabilities could improve recommendations’
utility. Although we were no longer focusing on diversity, we did not want to generate
redundant recommendations, so our experiments also analysed whether our recommen-
dation lists were redundant. Finally, we studied the scalability of our method.

The results of these experiments, and comparisons with different baselines, were
published as a full-paper in SPIRE 2013, namely Bessa et al. [2013]. By that time, co-
utility probabilities bore the name of mutual influence, but after SPIRE we concluded
that this term was not very accurate. After SPIRE 2013, we studied more algorithms to
the Max-Sum Dispersion Problem, a different way of estimating co-utility probabilities,
and ran more experiments. Throughout this entire research, we had a difficulty with the
choice of baselines, as we explain in Chapter 2. Albeit some of them were recommended
by SPIRE reviewers and other researchers, we still think it would be better if at least
one of them addressed co-utility in a way that is similar to ours.

1.3 Work Outline

The remainder of this work is organized as follows.

Chapter 2 [Related Work] Related work is discussed and connected to our study.

Chapter 3 [Basic Concepts] Basic definitions, notations, and functions concerning
our combination of predictions and co-utility probabilities are presented.

Chapter 4 [Algorithms and Validation] Algorithms to tackle the optimization prob-
lem detailed in Chapter 3, which are a key part of our method, are presented. We also
detail baselines and our validation methodology.



1.3. Work Outline 5

Chapter 5 [Experimental Results] Experiments that demonstrate the efficiency and
efficacy of the algorithms discussed in Chapter 4 are presented.

Chapter 6 [Conclusions and Future Work] Contributions are presented and con-
clusions, limitations, and future work are discussed.





Chapter 2

Related Work

In this chapter, we present works that are related to ours in different ways. Section 2.1
discusses rating predictors that are associated to state-of-the-art Top − N recommen-
dations. Section 2.2 summarizes works that exploit dependencies among items in the
contexts of Information Retrieval and Recommender Systems. Section 2.3 addresses
works that relate with our optimization task.

2.1 Predictors for Top − N Recommendations

According to Cremonesi et al. [2010], Top − N is a recommendation task where the
"best bet" items are shown, but the predicted rating values are not. In this work,
Top − N stands for the recommendation task where the items shown are the ones with
the N highest predicted values, as in Deshpande and Karypis [2004] and Cremonesi
et al. [2010]. No relation among candidate items for recommendation is taken into
account to select them. Consequently, their presences in a recommendation list are
independent. Although Top − N may refer to any method for recommending N items
to users, we use this definition – which is rather popular – throughout this work.

Several predictors have been studied for collaborative filtering. They are grouped
into two general classes: memory-based and model-based [Breese et al., 1998]. Memory-
based predictors operate over the entire database to compute similarities between users
or items, usually by applying distance metrics such as the cosine distance, and then
come up with predictions. Memory-based predictors usually provide a more concise
and intuitive justification for the computed predictions and are more stable, being lit-
tle affected by the addition of users, items, or ratings [Ricci et al., 2011]. A rather
popular memory-based predictor is Amazon’s item-to-item collaborative filtering [Lin-
den et al., 2003]. It scales independently of the numbers of customers and items in

7



8 Chapter 2. Related Work

the product catalog. Model-based predictors use the database to learn models, usually
by applying a Machine Learning or Data Mining technique, and then use the learned
model for predictions. Model-based predictors have recently enjoyed much interest due
to related outstanding results in the Netflix Prize competition, a popular event in the
recommender systems field that took place between 2006 and 2009. 1 The SVD++
model-based predictor has received a lot of attention since 2008, when it came up as
a key algorithm in the Netflix Prize competition [Koren, 2008]. SVD++ is a ma-
trix factorization model that is optimized for minimizing error metrics such as RMSE
(Root-Mean-Square Error).

When explicit feedback – such as ratings or likes – is available, the state-of-the-art
prediction algorithms for Top − N recommendations are NNCosNgbr (Non-normalized
Cosine Neighborhood) and PureSVD (Pure Singular Value Decomposition) [Cremonesi
et al., 2010]. NNCosNgbr is memory-based and works upon the concept of neighbor-
hood, computing predictions according to the feedback given to similar users or items.
PureSVD is model-based and works on latent factors, i.e., users and items are modeled
as vectors in a same vector space and the score of user u for item i is predicted via
the inner-product between their corresponding vectors. When only implicit feedback
– such as browsing activity or purchase history – is available, model-based predictor
WRMF is very effective [Pan et al., 2008].

In this work, competitive predictors for Top − N recommendations are important
for two reasons. First, the optimization problem we tackle uses individual item scores
that are the ratings generated by such predictors. Second, our work extends Top − N

by addressing dependencies among items, and thus it is important to use Top − N

as a baseline. We are especially concerned with Top − N ’s utility, and not with how
accurate predictions are, so we decided to use NNCosNgbr and PureSVD as predictors
in all our experiments.

2.2 Exploiting Relations among Items

Attempts to abandon the assumption that items are independent date back from In-
formation Retrieval studies in the 1980s. By that time, researchers started questioning
the Probability Ranking Principle (PRP ), according to which documents should be
retrieved in decreasing order of their predictive probabilities of relevance [Robertson,
1977]. Bookstein [1983], for instance, presented decision-theoretic models for Informa-
tion Retrieval that take document interactions into account iteratively.

1http://en.wikipedia.org/wiki/Netflix_Prize



2.2. Exploiting Relations among Items 9

Later on, researchers started to focus on diversity-based re-ranking, and they
also had to address relations among items to diminish inter-similarities. In particular,
Carbonell and Goldstein [1998] have come up with the concept of Maximal Marginal
Relevance (MMR) to strive redundancy while maintaining query relevance. At each
iteration, MMR returns the highest-valued item with respect to a tradeoff between
relevance and diversity.

In the context of Recommender Systems, several papers exploit relations among
items to improve diversity. Zhang and Hurley [2008] model the competing goals of
maximizing diversity while maintaining similarity as a binary optimization problem,
relaxed to a trust-region problem. Wang [2009] presents a document ranking paradigm,
inspired by the Modern Portfolio Theory in finance [Elton et al., 2009], where both the
uncertainty of relevance predictions and correlations between retrieved documents are
taken into account. Wang [2009] theoretically shows how to quantify the benefits of
diversification and how to use diversity to reduce the risk of document ranking. Zuccon
et al. [2012] show how Facility Location Analysis, taken from Operations Research,
works as a generalization of state-of-the-art retrieval models for diversification in search.
They treat the Top − N search results as facilities that should be dispersed as far as
possible from each other.

Relations among items other than diversity are also exploited to improve aspects
of search results or recommendations. Tversky [1972] proposed a model according to
which preference among items is influenced by the presented alternatives. The model,
called Elimination By Aspects (EBA), states that a consumer chooses among options
by sets of aspects, eliminating items that do not satisfy such aspects. Aspects in
common among items can be exploited to change the selected results. A related work
that presents a variation of EBA for commerce search is Ieong et al. [2012]. They
propose a new model of ranking, the Random Shopper Model, where each item feature
is a Markov Network over the items to be ranked, and the goal is to find a weighting
of the features that best reflects their importance.

Another work that is somewhat close to ours is Xiong et al. [2012], where they
observed that the Click-Through Rate (CTR) of an ad is often influenced by the other
ads shown alongside. They designed a Continuous Conditional Random Field for click
prediction focusing on how similarities influence items’ CTRs. Weston and Blitzer
[2012] also incorporated inter-item similarity during ranking to improve results’ recall.
They used a latent structured model to learn the structure of the ranked list while
assigning scores to items, merging prediction and recommendation steps. Hansen and
Golbeck [2009] address the task of recommending collections of items – music lists and
mix tapes, for example. This task is different from the one we tackle, given that in



10 Chapter 2. Related Work

their problem each recommended item is actually a collection of items (mix tapes, for
instance). In spite of that, they also consider relations between items as an aspect
that contributes to the overall value of a collection. In particular, they model the
value of individual items, co-occurrence interaction effects, and order effects including
placement and arrangement of items.

In this thesis, we adopt Wang [2009] and Zuccon et al. [2012] as baselines. The
former is close to ours because it exploits correlations between documents in a collab-
orative filtering scenario, even though its focus is on ranking and diversity. The latter
relates to our work because they also use Facility Location Analysis as a framework,
though focused on diversity. Given that our method and theirs share the same theo-
retical framework, we think it is straightforward to compare both works. We do not
compare our method with Weston and Blitzer [2012] because what they present is a
specific improvement over latent factor models. As for Ieong et al. [2012], we discarded
it because it requires information about item features, and therefore is not a pure
collaborative filtering method.

2.3 Max-Sum Dispersion Problem (MSDP)

The idea of considering pairwise relations among items is becoming popular in the Rec-
ommender Systems literature. Some works, including Zuccon et al. [2012] and Vieira
et al. [2011], address diversity by using a formulation that is popular in the Operations
Research area. They consider the setting where they are given a set of candidate items
I and a set valuation function f defined on every subset of I. For any subset R ⊆ I, the
overall objective is a linear combination of f(R) and the sum of dissimilarities induced
by items in R. The goal is to find a subset R with a given cardinality constraint –
e.g. |R| = 5 if 5 items must be selected out of I – that maximizes the overall objec-
tive [Borodin et al., 2012]. Our overall objective, as discussed in Chapter 3, is similar
to this. Our valuation function is the sum of predicted ratings for items in R and we
combine it with the sum of co-utility probabilities induced in R.

These overall objectives map into a well-known Facility Location Analysis prob-
lem: the weighted version of the Max-Sum Dispersion Problem (MSDP). As presented
in Gollapudi and Sharma [2009], there are several papers in the Operations Research
area that tackle MSDP . A common scenario is the placement of facilities in a given
area in such way that the distances between them, as well as their individual relevances,
are maximized. Analytical models for MSDP assume that an area is represented by
a set V = {v1, . . . , vK} of K vertices with metric distance between every pair of ver-



2.3. Max-Sum Dispersion Problem (MSDP) 11

tices. The objective is to locate N ≤ K facilities such that some function of distances
between facilities, combined with individual relevances, is maximized.

MSDP is known to be NP-hard, but it admits approximation algorithms in some
cases. As we show in Chapter 3, approximations are not admitted in our case. To the
best of our knowledge, our work is the first application of MSDP for Recommender
Systems that focuses on recommendations’ utility.





Chapter 3

Basic Concepts

There are two fundamental sources of evidence that we use to select which items should
be recommended to a certain user: (i) individual scores φ, that correspond to ratings
predicted by either PureSVD or NNCosNgbr, and (ii) pairwise scores θ that quantify
co-utility probabilities among items. Scores φ and θ are always real values in the
interval [0, 1], and they are combined in a bi-criteria optimization problem.

In the context of collaborative filtering, a component named predictor is used to
estimate the feedback a user would give to an item. As an example, a predictor could
estimate that a certain user Sonia would give 3 stars out of 5 to Titanic in a movies
recommender system. Traditionally, generated predictions are considered independent
from each other, i.e., it is not assumed that the value of a prediction may interfere
with any other. Throughout this chapter, we assume that predictions are generated to
K items, and then N ≤ K items must be selected to compose a recommendation list.
Typical values for N are 5 and 10, and depending on the prediction algorithm K can
be equivalent to the total number of items in the dataset [Ricci et al., 2011]. We also
assume that users explicitly give feedback to items, and depending on the system it
can be a rating, a “like” etc.

This chapter is divided into three sections. In Section 3.1, we describe predictors
PureSVD and NNCosNgbr. In Section 3.2, we address different techniques for estimat-
ing pairwise scores θ. Finally, in Section 3.3, we present a formulation to MSDP .

3.1 Individual Scores

In this work, individual scores φ – i.e., predicted ratings – are generated by prediction
algorithms NNCosNgbr and PureSVD. They are both state-of-the-art methods for
Top − N recommendations when explicit feedback is available [Cremonesi et al., 2010].

13



14 Chapter 3. Basic Concepts

As already mentioned in Section 2.1, NNCosNgbr is memory-based – i.e., it uses rating
data to compute the similarity between users or items. PureSVD, on the other hand,
is model-based – i.e., it uses singular value decomposition to uncover latent factors that
explain observed ratings.

3.1.1 NNCosNgbr

NNCosNgbr generates its predictions based on similarity relationships among either
users or items. Working with item similarities usually leads to better accuracy rates
and more scalability [Papagelis and Plexousakis, 2005]. In this case, predictions can
be explained in terms of the items that users have already interacted with by rating
them, liking them etc [Papagelis and Plexousakis, 2005]. Due to these reasons, we
focus on item-based NNCosNgbr, i.e., our NNCosNgbr implementation exploits item
similarities. The prediction of an individual score φi, given a user u and an item i, is
computed as follows:

φi = bui +
∑

j∈Dl(u;i)

dij(ruj − buj) (3.1)

where bui is a combination of user and item biases, as in Koren [2008]; Dl(u; i) is the
set of l ∈ N items rated by u that are the most similar to i; dij is the similarity between
items i and j, which is computed by taking users’ feedback exclusively; ruj is an actual
feedback given by u to j; and buj is the bias related to u and j. Before being used
in our optimization problem, φi is divided by the maximum value it can assume, so it
always lies in the real interval [0, 1].

Biases are taken into consideration as they mask fundamental relations between
items. Item biases include the fact that certain items tend to receive better feedback
than others. Similarly, user biases include the tendency of certain users to give better
feedback than others. Finally, the similarity among items, used to compute both
Dl(u; i) and dij, is measured with the adjusted cosine similarity [Cremonesi et al.,
2010].

3.1.2 PureSVD

The input for PureSVD is a User × Item matrix M filled up as follows:

Mui =

numerical feedback, if user u gave feedback to item i,

0, if not.
(3.2)



3.2. Pairwise Scores 15

PureSVD consists in factorizing M via SVD as M = U × E ×Q, where U is an
orthonormal matrix, E is a diagonal matrix with the first γ singular values of M , and
Q is also an orthonormal matrix. The prediction of an individual score φi for a user u
is thus given by:

φi = Mu ×QT ×Qi, (3.3)

where Mu is the u-th row of M corresponding to user u latent factors; QT is the trans-
pose ofQ; andQi is the i-th row ofQ corresponding to item i’s latent factors [Cremonesi
et al., 2010]. Again, φi is normalized to the real interval [0, 1] before being used in our
optimization problem.

3.2 Pairwise Scores

Pairwise scores θij represent the probability of items i and j being co-useful to any
user. If we consider Eij as a random variable that represents the event “Items i and j
are co-useful to lij users”, and assume that Eij follows a Binomial distribution, then
its probability mass function is given by:

f(lij; fij, θij) =

(
lij
fij

)
θ
lij
ij (1− θij)fij−lij , (3.4)

where fij is the number of users that gave feedback to both i and j.
To estimate θij, we analysed estimators Maximum Likelihood and Empirical

Bayes [Bishop, 2006]. Maximum Likelihood gives the maximum of f(lij; fij, θij) by
using the point where its derivative is zero and its second derivative is negative. It
turns out that working with log(f(lij; fij, θij)) is more practical, and the results hold
for the original function trivially. Assuming that f(lij; fij, θij) 6= 0, then the derivation
of Maximum Likelihood works as follows:

log(f(lij; fij, θij)) = log

(
lij
fij

)
+ lij log(θij) + (fij − lij) log(1− θij),

∂ log(f(lij; fij, θij))

∂θij
=
lij
θij
− fij − lij

1− θij
.

To find the maximum, we set the derivative to zero:

lij
θij
− fij − lij

1− θij
= 0,



16 Chapter 3. Basic Concepts

fij − lij
1− θij

=
lij
θij
,

(fij − lij)θij = (1− θij)lij,

θij =
lij
fij
∈ [0, 1]. (3.5)

As f(lij; fij, 0) = f(lij; fij, 1) = 0, and f(lij; fij,
lij
fij

) ≥ 0, then lij
fij

is a maximum.
Also, when f(lij; fij, θij) = 0, then either θij = 0 or θij = 1. In the former case, lij must
also be 0, and in the latter, lij must be equal to fij. Consequently, Equation (3.5) also
holds in these cases.

Maximum Likelihood is simple and straightforward, but it is not always suitable
for scenarios where pairs of items have poor support. This is very common in recom-
mender systems, as users give feedback to a very small fraction of items. Empirical
Bayes has the advantage of being more robust when not much data is available. To
estimate scores with Empirical Bayes, we consider a simple prior distribution on θij:

π(θij) = 6θij(1− θij),

which is symmetric around 1
2
. This choice of prior is for convenience, as it simplifies

the ensuing calculations. We calculate the posterior distribution of θij given lij as:

π(θij|lij) =
Γ(fij + 4)

Γ(lij + 2)Γ(fij − lij + 2)
× θlij+1

ij (1− θij)fij−lij+1,

which is a form of the Beta distribution [Casella, 1985]. The estimate we effectively
use is a point estimate given by the mean of π(θij|lij):

E(θij|lij) =

∫ 1

0

θijπ(θij|lij)dθij =
fij

fij + 4
× lij
fij

+

(
1− fij

fij + 4
× 1

2

)
. (3.6)

To compute θij by using either Maximum Likelihood or Empirical Bayes, we
assume implicitly that the random variable Eij is the same for any user u and therefore
θij is independent of the user in question. Another important consideration is that,
ideally, Eij should only imply that i and j were co-useful if they were presented in a
same recommendation list. Unfortunately, it is not possible to track at what times i
and j were selected together in none of the studied datasets. As a consequence, it is not
possible to know which items were presented to users in a same list. Hence we compute



3.2. Pairwise Scores 17

θij by considering fij and lij regardless of temporality. To give an example, if a user
liked Titanic in November, 2012 and Matrix in June, 2011, we consider that they were
co-useful to her even though she was not presented with them simultaneously.

It is crucial to point out that scores θ differ from collaborative filtering item-to-
item similarities. In the first place, these similarities take all feedback into account.
For instance, if a set of common users rated two items negatively, this contributes to
their cosine similarity as much as positive ratings would. In the case of scores θ, what
is measured is co-utility – not similarity –, and only feedback attesting that items were
actually useful is taken into consideration. Following said example, only positive, useful
ratings given by a set of common users would be considered.

Another critical distinction between scores θ and item-to-item similarities has to
do with their scopes. Item-to-item similarities are computed between two sets of items
in the prediction step: (i) items that are already part of the user’s historical data
and (ii) items to which the user has not given feedback yet. The idea is to retrieve
candidates for recommendation that are likely to match the user’s taste. In this step,
no relation among the retrieved candidates is taken into account. Scores θ, on the other
hand, capture the co-utility probabilities of pairs of retrieved candidates. Figure 3.1
illustrates this semantical distinction.

Figure 3.1. While item-to-item similarities capture relations between user’s
historical data and candidates, scores θ are computed among pairs of candidates.

The first box in Figure 3.1 corresponds to movies the user in question has already
rated. They are the inputs for box 2, which represents a generic predictor – in our
case, it is either PureSVD or NNCosNgbr. The predictor then computes similarities
between its inputs and candidate items for recommendation. A list comprised by these
candidate items, alongside their predicted ratings, is the output of the predictor, and



18 Chapter 3. Basic Concepts

corresponds to box 3. The predictor does not compute similarities, or any relation,
between pairs of candidate items.

3.3 Combining scores

In this work, we combine individual and pairwise scores to select N items out of K for
recommendation. Our maximization problem is therefore posed as selecting a set of
items R = {i1, ..., iN} that maximizes the following function:

1

|R|
∑
ij∈R

φij +
1

|R|2
∑

(ik,il)∈R2

θikil , (3.7)

where the normalization in both summations is important to keep their contributions
fair. Scores φ and θ are also normalized to the interval [0, 1].

Structurally, this problem is an instance of MSDP . As previously mentioned,
MSDP is a Facility Location Analysis, NP-hard problem. When pairwise scores θ
satisfy the triangle inequality, MSDP admits a 2-approximation algorithm. The proof
for this can be seen in Borodin et al. [2012] and Hassin et al. [1997]. On the other
hand, it was demonstrated that if the triangle inequality is not satisfied, there is no
polynomial time approximation algorithm to MSDP unless P = NP [Ravi et al.,
1994]. The co-utility probabilities that we exploit in this work, namely pairwise scores
θ, do not satisfy the triangle inequality, as illustrated in Figure 3.2. Hence none of the
algorithms we analyse in this thesis have bounds on solution quality.

Figure 3.2. The triangle inequality is not satisfied, as θ13 ≥ θ12 + θ23.

There are some different ways of obtaining an exact solution to this optimization
problem. For instance, one can trivially enumerate all N -combinations of a set with K



3.3. Combining scores 19

items and choose the one that sums up to the highest value. It is also possible to use
integer programming to solve it [Nemhauser and Wolsey, 1988]. We describe how we
obtain exact solutions to MSDP in Chapter 4.





Chapter 4

Algorithms and Validation

To tackle MSDP under a practical viewpoint, we studied two suboptimal, polynomial
algorithms that are widely related to this problem. We also studied an integer program-
ming approach to MSDP . These algorithms are the focus of Section 4.1. This problem
cannot be solved efficiently by exact algorithms, albeit it is important to understand
how it can be optimally solved. Besides addressing MSDP , we detail our baselines in
Section 4.2. Finally, in Section 4.3, we present our validation schema for assessing the
quality of our experimental results.

4.1 Algorithms to MSDP

In this section, we address suboptimal and optimal algorithms to solve MSDP . Con-
cerning the former category, we studied two popular heuristics with no bounds on
solution quality. With respect to the latter, we describe how to model MSDP follow-
ing the integer programming paradigm.

The algorithms addressed in this section are compatible with any recommender
system where it is possible to estimate individual scores φ and pairwise scores θ to
candidate items. Therefore, these algorithms are a priori compatible with systems that
employ both matrix factorization techniques and sketching/fingerprinting methods.

4.1.1 Heuristic Greedy1

A widely used heuristic to MSDP is Greedy Best-First Search [Zuccon et al., 2012].
Henceforth, we will abbreviate it as Greedy1 . In spite of not having solution quality
bounds, it runs fast and yields acceptable solutions in practice. Greedy1 is shown in
Algorithm 1. I is a set of items, Iφ corresponds to their individual scores, and Iθ

21



22 Chapter 4. Algorithms and Validation

corresponds to their pairwise scores. The output R is a set with N selected items,
where N ≤ K.

Algorithm 1 Greedy1 Algorithm
Input: I = {i1, . . . , ik}, Iφ = {φi1 , . . . , φik}, Iθ = {θi1i2 , θi1i3 , . . . , θik−1ik} , and N ≥ 1,
|I| ≥ N
Output: Selected items R
1: i⇐ argmax

i∈I
φi

2: R⇐ {i}
3: I ⇐ I \ {i}
4: while |R| < N do

5: j ⇐ argmax
j∈I

φj +
1

|R|
∑
k∈R

θjk

6: R⇐ R ∪ {j}
7: I ⇐ I \ {j}
8: end while
9: return R

Greedy1 starts by selecting the item that has the best individual score i. All
other N − 1 selected items are chosen in a way that maximizes the equation in line 5,
where the maximized set is comprised by all items R, that were already chosen, and
the new item itself.

Greedy1 runs in polynomial time. The loop in line 4 will be executed exactly
N − 1 times. In line 5, an item is chosen out of K − 1 in the worst case; in the best
case, out of K − N + 1 ones. It means that O(K) items need to be analysed at each
time. In line 5, the first part of the summation is performed in O(1) time; the second
part, in O(|R|) time. An upper bound for the time complexity of Greedy1 is therefore
O(N × (K × |R|)) = O(KN2), given that |R| ≤ N .

4.1.2 Heuristic Greedy2

The second heuristic we studied, abbreviated as Greedy2 , was proposed by Borodin
et al. [2012]. It corresponds to Algorithm 2. Greedy2 is popular because, when pairwise
scores θ satisfy the triangle inequality, it is a 2-approximation algorithm to MSDP . It
is almost the same as Greedy1 , with a subtle yet relevant difference on line 5 – φj is
multiplied by 1

2
. This difference makes Greedy2 “non-oblivious”, as it is not selecting

the next element with respect to the original MSDP objective function (Equation (3.7)
on page 18).

With respect to how Greedy2 works, it starts by setting R, the output, as an
empty set. From lines 2 to 6, it selects N items, one at a time, by picking the ones that



4.1. Algorithms to MSDP 23

Algorithm 2 Greedy2 Algorithm
Input: I = {i1, . . . , ik}, Iφ = {φi1 , . . . , φik}, Iθ = {θi1i2 , θi1i3 , . . . , θik−1ik}, and N ≥ 1,
|I| ≥ N
Output: Selected items R
1: i⇐ argmax

i∈I
φi

2: R⇐ {i}
3: I ⇐ I \ {i}
4: while |R| < N do

5: j ⇐ argmax
j∈I

1

2
φj +

1

|R|
∑
k∈R

θjk

6: R⇐ R ∪ {j}
7: I ⇐ I \ {j}
8: end while
9: return R

maximize the objective function in line 3. In this loop, Greedy2 also updates sets I and
R. An upper bound for the time complexity of Greedy2 is O(N×(K×|R|)) = O(KN2),
given that |R| ≤ N .

4.1.3 Exact Solution

Since MSDP is NP-hard, it can only be solved efficiently by suboptimal algorithms.
Despite that, it is important to understand how to model an exact algorithm to MSDP ,
especially if comparisons between optimal and suboptimal solutions are of interest.
We decided to model MSDP under the integer programming paradigm because of
the rather fast exact solvers available. It was also quite simple to map our objective
function (Equation (3.7)) into an equivalent integer programming problem.

The parameters to model our integer programming problem are a set of items
I = {i1, . . . , ik}, their corresponding individual scores Iφ = {φi1 , . . . , φik}, the pairwise
scores for all combinations of items in I, Iθ = {θi1i2 , . . . , θik−1ik}, and the number of
items for selection N . We come up with binary variables Y = {y1, . . . , yk} to represent
which items are selected (yj = 1 if and only if ij is selected), and rewrite MSDP as:

maximize
1

|I|
∑
j∈I

yjφj +
1

|I|2
∑
j∈I

∑
k∈I|k 6=j

yjykθjk,

subject to yi ∈ {0, 1} ∀i,∑
yi∈Y

yi = N.

To frame this program in the integer programming paradigm, we have to linearize



24 Chapter 4. Algorithms and Validation

MSDP ’s products yjyk as variables xjk = yjyk ∀j,∀k. Considering that yj and yk are
binary variables, we have the following constraints for variables xjk:

xjk ≤ yj

xjk ≤ yk

xjk ≥ yj + yk − 1

That being stated, we rewrite our problem as:

maximize
1

|I|
∑
j∈I

yjφj +
1

|I|2
∑
j∈I

∑
k∈I|k 6=j

xjkθjk

subject to yi ∈ {0, 1} ∀i

xjk ≤ yj

xjk ≤ yk

xjk ≥ yj + yk − 1∑
yi∈Y

yi = N

4.2 Baselines

In this section, we describe the baselines with which we compare our method. Top − N

adopts the Probability Ranking Principle (PRP ) by selecting items according to their
individual scores φ, generated by predictors such as PureSVD, exclusively. Mean-
Variance Analysis, proposed by Wang [2009], and Maximal Marginal Relevance, widely
exploited by works in diversity, break with the PRP by considering relations among
candidate items for recommendation. Our method exploits co-utility probabilities un-
der an MSDP framework and semantically differs from these baselines. To the best of
our knowledge, there is no general-purpose, collaborative filtering selection techniques
that model co-utilities in a way that is similar to ours. Despite that, comparisons
among our method and these baselines are worthwhile, as we discuss in Chapter 5.

4.2.1 Top − N

Top − N is described in Algorithm 3. Input I corresponds to the set of K candidate
items, Iφ is the related set of predicted individual scores, and N is the number of items
for selection. Output R is the set of selected items for recommendation.

Top − N is rather simple, which is one of its competitive aspects. Its time com-
plexity is O(K logN) if a heap is used to store the N items with highest individual



4.2. Baselines 25

Algorithm 3 Top − N Algorithm
Input: I = {i1, . . . , ik}, Iφ = {φi1 , . . . , φik}, and N ≥ 1, |I| ≥ N
Output: Selected items R
1: R⇐ {ij ∈ I |φij is one of theN highest scores in Iφ}
2: return R

scores φ [Baeza-Yates and Ribeiro-Neto, 2011]. Alternatively, it is O(K logK) if a
complete ordering of items, according to their corresponding scores φ, is required.

4.2.2 Mean-Variance Analysis

Inspired by the Modern Portfolio Theory in finance, Wang [2009] proposes a method
for ranking a list of items on the basis of its expected mean relevance and its variance.
In that context, the variance works as a measure of risk. Based on this mean-variance
principle, they devised a document ranking algorithm, abbreviated henceforth as MVA.

MVA is shown in Algorithm 4. The input I corresponds to the set of K candidate
items; Iφ is the related set of individual scores, learned from a certain predictor; C is a
covariance matrix estimated from users’ historic data; α is a real-valued risk regulator;
N is the number of items for selection [Wang, 2009]. The output R is the set of selected
items for recommendation.

Algorithm 4 MVA Algorithm
Input: I = {i1, . . . , ik}, Iφ = {φi1 , . . . , φik}, C = {c11, c12, . . . , ck−1k, ckk}, α, and
N ≥ 1, |I| ≥ N
Output: Selected items R
1: R⇐ ∅
2: while |R| < N do
3: j ⇐ argmax

j∈I
φj − α× b2j − 2α×

∑
k∈R

bkbjckj

4: R⇐ R ∪ {j}
5: I ⇐ I \ {j}
6: end while
7: return R

The function in line 3 originally contains weights w for ranking regularization.
We omitted these weights because we do not evaluate ranking aspects in this work – we
focus on the selected set of items exclusively. Also in line 3, when α > 0, the selection
is risk-averse, while when α < 0, it is risk-loving [Wang, 2009].

MVA is a polynomial time algorithm. As in Greedy2 , the loop from lines 2 to 6
is executed N times and, in line 3, an item is chosen out of K in the worst case. It



26 Chapter 4. Algorithms and Validation

means that O(K) items need to be tested for selection at each time. For each test in
line 3, the objective function is computed in O(|R|) time. An upper bound for the time
complexity of MVA is thus O(N × (K × |R|)) = O(KN2), given that |R| ≤ N .

4.2.3 Maximal Marginal Relevance

Maximal Marginal Relevance (MMR) is a criterion that has been widely adopted in
search and recommendation contexts as a means of diminishing redundancy while main-
taining relevance [Carbonell and Goldstein, 1998; Vargas and Castells, 2011; Vieira
et al., 2011; Zuccon et al., 2012]. MMR consists in a ranking formula that, as well as
our method, takes the individual relevance of items and relations among them both
into account. Given the wide scope of applications for MMR, there are different ways of
implementing it. The implementation we use in this work is described in Zuccon et al.
[2012] and is shown in Algorithm 5. Input I corresponds to the set of K candidate
items; Iφ is the related set of individual scores, learnt from a certain predictor; ID is
the set of pairwise dissimilarities computed for all items in I via users’ historic data;
λ is a real-valued term regulator; and N is the number of items for selection. Output
R is the set of selected items for recommendation.

Algorithm 5 MMR Algorithm
Input: I = {i1, . . . , ik}, Iφ = {φi1 , . . . , φik}, ID = {Di1i2 , . . . , Dik−1ik}, λ, and N ≥ 1,
|I| ≥ N
Output: Selected items R
1: R⇐ ∅
2: while |R| < N do
3: j ⇐ argmax

j∈I
λφj + (1− λ)min

k∈R
Djk

4: R⇐ R ∪ {j}
5: I ⇐ I \ {j}
6: end while
7: return R

In this work, we follow the choice of Zuccon et al. [2012] and use Kullback-Leibler
Distance as the dissimilarity metric for pairs of items. Basically, this metric outputs
how divergent the feedback that two items have received is. MMR is a polynomial
time algorithm with an O(KN2) upper bound for its time complexity. The derivation
of this bound is analogous to MVA’s time complexity upper bound.



4.3. Validation Metrics 27

4.3 Validation Metrics

To validate our work, we use the explicit feedback users give over items as a utility
metric: the better it is, the more useful the recommendations are [Breese et al., 1998].
For example, in movie ratings, where a 5-star movie is considered an excellent movie,
we can assume that recommending a 5-star movie is more useful than recommend-
ing a 4-star one [Ricci et al., 2011]. Furthermore, we consider that the utility of a
recommendation system can be quantified by the utility of the recommendations it
actually makes – rather than how close predictions are from the actual feedback given
by users [Passos et al., 2011].

For all studied datasets, as we discuss in Chapter 5, feedback consists of ratings.
Considering that we are focused on recommendations’ utility, and that we use ratings
as a utility metric, we compare different algorithms by contrasting the ratings their
selected items receive.

All the datasets we study consist of tuples (user, item, rating). We applied cross-
validation in all experiments, and randomly partitioned the datasets into training and
test data. Consequently, we ignored rating timestamps, whenever they were present,
while splitting the data. Cross-validation is interesting in our case because we only
analyse three datasets, and by crossing training and data partitions we increase the
number of different scenarios on which we run experiments. Considering that rec-
ommendation lists are generated over items in the test data, to which we know the
actual ratings, our experiments simulate scenarios where users would rate all recom-
mended items. Other works that opt for cross-validation are Vargas and Castells [2011]
and Sarwar et al. [2001].

For each dataset, the training data is explored by predictors PureSVD and
NNCosNgbr to generate individual scores φ. The training data is also used to esti-
mate pairwise scores θ, as well as other pairwise information required by the baselines.
For all tuples (user, item, rating) in the test data, we hide the corresponding rating:
a ground-truth information that will be used as a metric of utility. The union of all
(user, item) test pairs with a user in common corresponds to the set of candidate items
for this user. This set, namely I, is one of the input parameters for all previously de-
tailed algorithms. Individual scores are then predicted to all items in I, as well as
pairwise scores for pairs of items in I.

We then run one of the studied algorithms and end up with a set of selected items
R. At this point, we can retrieve the ground-truth rating for each selected item in R
and analyse how useful the selection was in practice.

In this work we also make comparisons under a diversity perspective. In our



28 Chapter 4. Algorithms and Validation

scope, diversity is defined as the opposite of similarity, and hence as a synonym for
dissimilarity. Although not the focus of our work, we briefly investigate whether our
method hurts recommendations’ diversity. The diversity metric we apply, intra-list
distance (ILD), was proposed by Zhang and Hurley [2008] and works as follows:

ILD =
2

|R|(|R| − 1)

∑
ik,il∈R,l<k

1− sim(ik, il), (4.1)

where R is comprised by all selected items and sim(ik, il) is a generic similarity measure-
ment for items ik and il. Further discussions on how we computed items’ similarities
and performed experiments with ILD are presented in Chapter 5.



Chapter 5

Experimental Results

We examine different algorithms to MSDP , discussed in Chapter 4, by taking three
different datasets into consideration: MovieLens 100K,1 MovieLens 1M,2 and Jester 1.3

For the MovieLens datasets, we considered that movies were liked by users – i.e., they
were useful – if their ratings were equal or higher than 4; 4 in the case of Jester 1, if they
were equal or higher than 5.00. 5 The choice of these values is detailed in Section 5.1.

For all experiments, PureSVD was executed with 50 latent factors, and the num-
ber of neighbors in Dk(u; i) in Equation 3.1 was fixed in 60. After grid searches, these
two values yielded the best Top − N results for both PureSVD and NNCosNgbr. Rec-
ommendation lists have sizes N = 5, 10, 20 because they are popular values in the
related literature. Considering that we use cross-validation, reported results are means
of values per fold. Additionaly, we also compute means of ratings in some experiments.
According to the Central Limit Theory, sampling distributions of means always follow
the Gaussian distribution, so the distributions that we analyse, comprised by means,
can be compared to each other via paired Student’s t-tests [Hastie et al., 2001].

This chapter is organized as follows. Section 5.1 brings a characterization of
the datasets that we studied in this work. Section 5.2 compares different statistical
estimators for pairwise scores θ. Section 5.3 contrasts different algorithms to MSDP

and compares our method with different baselines in terms of utility. Section 5.4
examines how our method scales in time. Finally, Section 5.5 investigates the relation
between our method and recommendations’ diversity.

1http://www.grouplens.org/system/files/ml-100k.zip
2http://www.grouplens.org/system/files/ml-1m.zip
3http://goldberg.berkeley.edu/jester-data/jester-data-1.zip
4Values range from 1 to 5.
5Values range from -10.00 to 10.00.

29

http://www.grouplens.org/system/files/ml-100k.zip
http://www.grouplens.org/system/files/ml-1m.zip
http://goldberg.berkeley.edu/jester-data/jester-data-1.zip


30 Chapter 5. Experimental Results

5.1 Studied Datasets

We performed experiments to validate our method over three different datasets: Movie-
Lens 100K, MovieLens 1M, and Jester 1. We chose to work with these datasets due to
their popularity in the collaborative filtering literature. It is worth pointing out that
the MovieLens datasets have some content and demographic data available. Nonethe-
less, we did not exploit these data when learning recommendation models because our
scope is limited to collaborative filtering. In this section we present a characterization
of them in order to facilitate posterior experiment analyses. To start off, Table 5.1
summarizes some of the datasets’ main features.

Feature MovieLens 100K MovieLens 1M Jester 1
Domain Movies Movies Jokes
Feedback Ratings (1 - 5) Ratings (1 - 5) Ratings (-10.00 - 10.00)

Number of users 943 6,040 24,983
Number of items 1,682 3,900 100

Number of given ratings 100,000 1,000,209 1,810,455
Minimum ratings/user 20 20 36

Sparsity rate 0.937 0.958 0.275
Mean rating value 3.588 3.703 1.877

Table 5.1. Characterization of the studied datasets.

As Table 5.1 shows, while ratings in the MovieLens dataset are discretized and
vary from 1 to 5, users in Jester 1 can assign any real number from -10.00 to 10.00
to any joke. Another key difference is that the MovieLens datasets are significantly
sparser than Jester 1. In the former, users rated at least 20 movies, whereas in the
latter feedback was given to at least 36 jokes. Considering that there are only 100 jokes
in Jester 1, this value corresponds to a minimum of 36%. Regarding MovieLens 1M, the
sparsest dataset, it is comprised by many more users and items than MovieLens 100K,
and its number of given ratings is smaller than Jester 1’s. As for the mean rating
value, Table 5.1 indicates that MovieLens users tend to give average-to-good ratings
to movies. This reveals that, in this scenario, users prefer to manifest their tastes by
rating movies they find enjoyable. As for Jester 1, the mean rating is more neutral.
Figure 5.1 conveys information about the distribution of rating values in the datasets.

Figure 5.1 draws attention to the fact that MovieLens users tend to give higher
ratings to items, when compared to Jester 1’s. The distributions for both MovieLens
datasets are rather similar, and some studies have shown that the assumption of Gaus-
sian distributions for these ratings holds [Goyal and Lakshmanan, 2012; Lipcon, 2007].
As for Jester 1, the authors of its original paper indicate that its rating distribution



5.2. Comparing Estimators for Pairwise Scores 31

Figure 5.1. Distributions of ratings in the studied datasets. In the
graph that corresponds to Jester 1, each bar consists of ratings in intervals
[−10.00;−9.00), [−9.00;−8.00), . . . , [9.00; 10.00].

can be approximated by a Gaussian distribution [Goldberg et al., 2001]. Considering
these results, we henceforth assume that the hypothesis of Gaussian distributions is
applicable for these ratings. Figure 5.1 also indicates that Jester 1 presents a higher
rating variance, implying that rating values distant from the mean are more common
in it than in the MovieLens datasets.

We adopted 4 as a threshold for high ratings, with respect to the MovieLens
datasets, because this value is considered high by relevant works [Ricci et al., 2011;
Jannach et al., 2011]. As for Jester 1, we decided to adopt 5.00 as a threshold because
this value is significantly higher than the interval [2.00; 3.00), which is associated with
most ratings in this dataset, and therefore seemed to be a safe choice. A more refined
approach would consider that these thresholds vary from user to user. For example,
users who tend to give lower ratings may find a 3-star movie useful. In spite of that, the
generic thresholds that we adopted yielded useful recommendations to most users, as
we discuss in this chapter. Consequently, we did not prioritize personalized thresholds.

5.2 Comparing Estimators for Pairwise Scores

In Chapter 3, we present two estimators for pairwise scores θ: Maximum Likelihood
and Empirical Bayes.

We examined Maximum Likelihood and Empirical Bayes estimators considering
all datasets. To assess the quality of these estimators, we contrasted mean ratings
obtained with solutions that use either Maximum Likelihood or Empirical Bayes to
estimate θ. In all cases, individual scores φ were generated by PureSVD exclusively, as
analysing predictors is not in the scope of this experiment. Table 5.2 summarizes the
obtained results.



32 Chapter 5. Experimental Results

List Size (N) Method MovieLens 100K MovieLens 1M Jester 1
ML−Greedy1 3.974 4.175 1.518
EB −Greedy1 3.976 4.175 1.518

N = 5 ML−Greedy2 3.977 4.184 1.689
EB −Greedy2 3.987 4.187 1.688
ML−Greedy1 3.874 4.057 1.188
EB −Greedy1 3.876 4.057 1.188

N = 10 ML−Greedy2 3.871 4.065 1.323
EB −Greedy2 3.881 4.065 1.323
ML−Greedy1 3.765 3.939 0.911
EB −Greedy1 3.765 3.939 0.911

N = 20 ML−Greedy2 3.766 3.942 0.923
EB −Greedy2 3.768 3.942 0.923

Table 5.2. Mean ratings computed with different methods. ML−Greedy1
and ML−Greedy2 use Maximum Likelihood estimates for pairwise scores.
EB −Greedy1 and EB −Greedy2 use Empirical Bayes estimates instead. Re-
ported results are averages of results obtained with 5-fold cross-validation.

Regarding Table 5.2, for each ML/EB pair of results with algorithm (Greedy1

or Greedy2), dataset, and N in common, we performed a paired t-test with a 95%
confidence interval. Aside from the underlined result, all outcomes were statistically
equivalent. This provides strong evidence that both estimators lead to very similar
recommendations in terms of utility – i.e., mean rating given by users.

5.3 Comparing Algorithms to MSDP and Baselines

In this section, we investigate the effectiveness of different non-exact algorithms to
MSDP . We also present a statistical comparison between non-exact and exact algo-
rithms to MSDP . Finally, we compare our method with three different baselines.

5.3.1 Comparing Non-Exact Algorithms to MSDP

To compare Greedy1 and Greedy2 , two non-exact algorithms to MSDP , we computed
individual scores φ using PureSVD and NNCosNgbr as predictors, and pairwise scores
θ were estimated with Empirical Bayes exclusively. Results are showed in Table 5.3,
and statistical differences are underlined.

For each Greedy1/Greedy2 pair of results with predictor, dataset and N in com-
mon, we performed a paired t-test with a 95% confidence interval. As shown in Ta-
ble 5.3, Greedy1 and Greedy2 led to statistically equivalent solutions in most cases. It
indicates that Greedy1 may perform as well in practice as Greedy2 . When Greedy1 and



5.3. Comparing Algorithms to MSDP and Baselines 33

Predictor Method MovieLens 100K MovieLens 1M Jester 1
Greedy1 − 5 3.976 4.175 1.518
Greedy2 − 5 3.987 4.187 1.688

PureSVD Greedy1 − 10 3.876 4.057 1.188
Greedy2 − 10 3.881 4.065 1.323
Greedy1 − 20 3.763 3.938 0.911
Greedy2 − 20 3.768 3.941 0.923
Greedy1 − 5 3.873 4.065 2.362
Greedy2 − 5 3.896 4.082 2.356

NNCosNgbr Greedy1 − 10 3.803 3.973 1.579
Greedy2 − 10 3.818 3.988 1.578
Greedy1 − 20 3.722 3.890 0.940
Greedy2 − 20 3.732 3.902 0.939

Table 5.3. Mean ratings generated by solutions Greedy1 and Greedy2 for rec-
ommendation lists with sizes N = 5, 10, 20. Greedy1− 5 corresponds to solutions
with sizeN = 5 generated byGreedy1, for example. Reported results are averages
of results obtained with 5-fold cross-validation.

Greedy2 generated statistically different results, Greedy2 was responsible for the best
values. For the Jester 1 dataset, whose ratings range from -10.00 to 10.00, the gains
were up to 11% with Greedy2 − 5 outperforming Greedy1 − 5 . As for the MovieLens
datasets, whose ratings range from 1 to 5, the gains were up to 0.4% for MovieLens 1M,
with Greedy2 − 5 winning over Greedy1 − 5 .

It is important to notice that the best mean ratings for the MovieLens datasets
were generated with predictor PureSVD. As for the Jester 1 dataset, NNCosNgbr
yielded better results. In the latter case, it is likely that NNCosNgbr has benefited
from Jester 1’s low sparsity, as it is a memory-based predictor sensitive to high sparsity
scenarios. Finally, it is clear in Table 5.3 that Greedy1/Greedy2 differences tend to get
smaller as N grows. This is a consequence of the fact that, with larger N values, the
difference between N and the number of items available for selection becomes smaller,
thus allowing higher overlaps between solution.

5.3.2 Comparing Non-Exact and Exact Algorithms to MSDP

Greedy2 is a polynomial time, non-exact algorithm to MSDP . It is thus useful to com-
pare it with an exact algorithm, namely Exact , presented in Section 4.1.3, to under-
stand how close their results are to each other in practice. We do not compare Greedy1

with Exact because, in previous experiments, its results were either statistically equiv-
alent or worse than Greedy2 ’s. In the following experiment, we used PureSVD for the
MovieLens datasets, as it yielded the best results in previous experiments. We did



34 Chapter 5. Experimental Results

not use both predictors because comparing their performances is not the goal of this
experiment and generating exact solutions to MSDP is very time-consuming. For the
same reason, we relied exclusively on predictor NNCosNgbr for the Jester 1 dataset.
After the variables, parameters, and restrictions of Exact were defined, we passed them
to IBM’s CPLEX optimizer [ILOG, Inc, 2013].

To contrast Greedy2 and Exact , we divided the dataset MovieLens 100K into 5
folds with approximately the same size randomly. As for MovieLens 1M and Jester 1,
the number of folds was 10, as generating exact solutions to a test set is an exponential
time task and takes many hours to be completed. In all cases, one of the folds was
chosen for test and the others were used for training. We did not perform cross-
validation either due to time constraints.

To make it possible to compute the exact solutions and perform comparisons that
could make sense in practical scenarios, we adopted a timeout of 20 seconds. We dis-
carded all exact solutions that would take more than that, and only compared optimal
solutions obtained below this time threshold with their corresponding suboptimal ones.
Solutions that take more than 20 seconds to compute may share specific characteristics
that could change our analysis, but at least they corresponded to less than 15% of all
cases. The mean ratings obtained by different solutions are listed in Table 5.4.

Method MovieLens 100K MovieLens 1M Jester 1
Greedy2 − 5 3.971 4.166 2.136
Exact − 5 4.003 4.184 2.149

Greedy2 − 10 3.900 4.137 1.369
Exact − 10 3.907 4.148 1.370

Greedy2 − 20 3.770 3.947 1.075
Exact − 20 3.771 3.951 1.078

Table 5.4. Mean ratings computed with Greedy2 and Exact for recommendation
lists with sizesN = 5, 10, 20. Greedy2−5 corresponds to solutions with sizeN = 5
generated by Greedy2, for example.

We performed a paired t-test with a 95% confidence interval and all mean ratings
obtained withGreedy2 were statistically equivalent to the corresponding ones prompted
by Exact . These results draw attention to the idea that, in practice, Greedy2 is a good
approach to MSDP .

A case where Greedy2 and Exact lead to different solutions works as follows. Let
us consider a set of candidate items I = {i1, i2, i3} with corresponding sets of scores
Iφ = {φi1 = 0.9, φi2 = 0.85, φi3 = 0.85} and Iθ = {θi1i2 = 0.7, θi1i3 = 0.6, θi2i3 = 0.9}. If
we want to select N = 2 items out of I, Exact will select i2 and i3, whereas Greedy2



5.3. Comparing Algorithms to MSDP and Baselines 35

will select i1 and i2. The greedy choice of starting the selection by choosing the item
with the highest score φ not necessarily leads to the optimal solution, as the example
illustrates. This situation happens in practice, but Table 5.4 indicates that, regardless
of it, selections prompted by both Exact and Greedy2 are likely to be similarly useful.

5.3.3 Comparing Our Method to Baselines

We decided to compareGreedy2 with Top − N ,MVA, andMMR in order to understand
some of its different aspects. With respect to Top − N , we wanted to evaluate how
the exploitation of co-utility alone can improve recommendations. As for MVA and
MMR, we were interested in contrasting Greedy2 with methods that also abandon the
assumption that items are independent. MMR, in particular, also maps into MSDP ,
although the semantics of its pairwise scores is related to diversity – not to co-utility.

For all methods, individual scores were predicted by PureSVD and NNCosNgbr.
Greedy2 ’s pairwise scores were calculated with the Empirical Bayes estimator. We set
MVA’s parameter α = 0.05 after a grid search involving values that ranged from -5.0
to 5.0, i.e., MVA is slightly risk-lover in our experiments. The parameter α = 0.05

prompted the best MVA’s results. As to MVA’s covariance matrix, we computed it by
considering, for every pair of items, the ratings they received by a common set of users.

With respect to MMR, we followed Zuccon et al. [2012] and adopted Kullback-
Leibler distance for computing the dissimilarity between items’ rating distributions.
There are several ways of measuring items’ dissimilarity, and even though this im-
plementation of MMR uses differences in rating distributions as a proxy for diversity,
many methods for measuring diversity are based on item content [Ricci et al., 2011].
The use of rating distributions is particularly indispensable when a strict collaborative
filtering schema has to be adopted, or when no information about the items is available.
One of the reasons why we chose this implementation of MMR is because it does not
use content information to devise pairwise scores, so the comparison becomes fairer.

Results that contrast Greedy2 and Top − N are listed in Table 5.5, Table 5.6
and Figure 5.2. As for MVA and MMR, they are compared with Greedy2 in Ta-
ble 5.7, Table 5.8, Figure 5.3, and Figure 5.4. For all experiments reported in tables,
we performed a paired t-test with a 95% confidence interval. Underlined results are
statistically equivalent.

Table 5.5 presents strong evidence that the exploitation of co-utility alone yields
better recommendations than those obtained with competitive Top − N baselines. In
all cases, either Greedy2 led to superior mean ratings or it was statistically equivalent
to the corresponding Top − N results. For the Jester 1 dataset, gains were up to 31%



36 Chapter 5. Experimental Results

Predictor Method MovieLens 100K MovieLens 1M Jester 1
Top − 5 3.924 4.127 1.292

Greedy2 − 5 3.987 4.187 1.688
PureSVD Top − 10 3.837 4.004 1.031

Greedy2 − 10 3.881 4.065 1.323
Top − 20 3.738 3.908 0.892

Greedy2 − 20 3.768 3.941 0.923
Top − 5 3.821 4.027 2.312

Greedy2 − 5 3.896 4.082 2.356
NNCosNgbr Top − 10 3.775 3.928 1.529

Greedy2 − 10 3.818 3.988 1.578
Top − 20 3.691 3.836 0.939

Greedy2 − 20 3.732 3.902 0.939

Table 5.5. Mean ratings computed with Top −N and Greedy2 for recommen-
dation lists with sizes N = 5, 10, 20. Greedy2 − 5 corresponds to solutions with
size N = 5 generated by Greedy2, for example. Reported results are averages of
results obtained with 5-fold cross-validation.

with Greedy2 − 5 outperforming Top − 5 . As for the MovieLens datasets, they were
up to 2% with Greedy2 − 5 outperforming Top − 5 for MovieLens 100K. Although the
difference between Greedy2 and Top − N in Table 5.5 may seem small on average, it
has an impact on recommender systems [Bell and Koren, 2007].

In absolute terms for Jester 1, Greedy2 outperforms Top − N by 0.396 points in
the best case (Greedy2 − 5 and Top − 5 ) and by 0.000 in the worst case (Greedy2 − 20

and Top − 20 ). With respect to the MovieLens datasets, Greedy2 wins over Top − N

by 0.228 points in the best case (Greedy2 − 10 and Top − 10 for MovieLens 1M) and
by 0.030 in the worst case (Greedy2 − 20 and Top − 20 for MovieLens 100K).

Some works suggest that it is worse to recommend an item the user dislikes than
to not recommend an item she likes [Hansen and Golbeck, 2009; Ricci et al., 2011].
In order to give continuity to our analysis, we exploit this idea by assuming that
low ratings are given to disliked items and compare the lowest ratings obtained with
Top − N and Greedy2 . Instead of focusing on all recommended items, this experiment
concerns only the worst rated item in each recommendation. Results are arranged in
Table 5.6. Underlined values are statistically equivalent.

Results in Table 5.6 indicate that the worst item recommended by Greedy2 tends
to be better rated than the corresponding one for Top − N . In all cases, Greedy2 led
to superior or statistically equivalent lowest ratings. In terms of ratings for Jester 1,
Greedy2 exceeds Top − N by 0.496 points in the best case (Greedy2 − 5 and Top − 5 )
and by 0.004 in the worst case (Greedy2 − 20 and Top − 20 ). As for the MovieLens
datasets, Greedy2 exceeds Top − N by 0.142 points in the best case (Greedy2 − 5



5.3. Comparing Algorithms to MSDP and Baselines 37

Predictor Method MovieLens 100K MovieLens 1M Jester 1
Top − 5 2.881 3.127 -3.766

Greedy2 − 5 3.003 3.217 -3.270
PureSVD Top − 10 2.404 2.624 -5.589

Greedy2 − 10 2.482 2.683 -5.231
Top − 20 2.100 2.223 -6.318

Greedy2 − 20 2.123 2.263 -6.285
Top − 5 2.670 2.963 -2.178

Greedy2 − 5 2.812 3.057 -2.200
NNCosNgbr Top − 10 2.303 2.472 -4.777

Greedy2 − 10 2.360 2.557 -4.789
Top − 20 2.035 2.117 -6.257

Greedy2 − 20 2.066 2.201 -6.261

Table 5.6. Lowest ratings generated by Top −N and Greedy2 for recommenda-
tion lists with sizes N = 5, 10, 20. Reported values are averages of results obtained
with 5-fold cross-validation.

and Top − 5 for MovieLens 100K) and by 0.023 in the worst case (Greedy2 − 20 and
Top − 20 for MovieLens 100K). Finally, recommendations generated for Jester 1 with
NNCosNgbr were particularly similar for both Greedy2 and Top − N , with equivalent
mean ratings for all N values.

Thus far, we have based our analysis on averages of ratings. Albeit useful, av-
erages are not statistically robust measures [Zaki and Meira, 2014]. Hence, to have a
better idea of the difference between Greedy2 and Top − N , we extend our analysis
to a percentual approach. Specifically, we computed how many times each method
yielded the highest ratings and reported percentages in Figure 5.2.

Figure 5.2 leads to a succint Win/Loss analysis. Greedy2 generates the highest
mean ratings to approximately 65% of users. The percentages associated with Greedy2

tend to increase as N grows, which suggests that our method brings gain to more users
when more recommendations are generated. We also investigated whether our method
works best to users with small historical data, or to users who tend to give particularly
high/low ratings, but no patterns were noticed.

As to what concerns MVA and MMR, results in Table 5.7 indicate that Greedy2

is likely to recommend items that receive better feedback from users. MVA’s mean
ratings were particularly low with respect to Jester 1, and the results yielded by MMR

were very close to those obtained with Top − N . The gains obtained with Greedy2

for Jester 1, when compared to MVA, were up to 106% with Greedy2 − 5 outper-
forming MVA− 5 . With respect to the MovieLens datasets, they were up to 2% with
Greedy2 − 20 outperforming MVA− 20 for MovieLens 1M. As for MMR, the gains
were up to 31% for Jester 1, also with Greedy2 − 5 outperforming MMR − 5 . These



38 Chapter 5. Experimental Results

Figure 5.2. Percentages of users to which Top −N and Greedy2 have won over
each other, in terms of highest mean rating given to generated recommendations.

gains were up to 3% for the MovieLens datasets, with Greedy2 − 5 outperforming
MMR − 5 for MovieLens 100K.

In absolute terms for Jester 1, Greedy2 surpasses MVA by 1.210 points in the best
case (Greedy2 − 5 versus MVA− 5 ) and by 0.059 in the worst case (Greedy2 − 20 ver-
sus MVA− 20 ). As for the MovieLens datasets, Greedy2 outperforms MVA by 0.235
points in the best case (Greedy2 − 10 versus MVA− 10 for MovieLens 1M) and by
0.040 in the worst case (Greedy2 − 20 versus MVA− 20 for MovieLens 1M). With re-
spect to MMR for Jester 1, Greedy2 wins over it by 0.396 points at most (Greedy2 − 5

versus MMR − 5 ) and by 0.000 at least (Greedy2 − 20 versus MMR − 20 ). Greedy2

outperforms MMR for the MovieLens datasets by 0.103 points in the best case
(Greedy2 − 5 versus MMR − 5 for MovieLens 100K) and by 0.041 in the worst case
(Greedy2 − 20 versus MMR − 20 for MovieLens 1M).

We repeated the analysis of lowest scores and percentages, performed for Top − N

and Greedy2 , over MVA, MMR, and Greedy2 . Results are summarized in Table 5.8,
Figure 5.3, and Figure 5.4. Underlined values are statistically equivalent, according to
a paired t-test with a 95% confidence interval.

Results in Table 5.8 lead to the conclusion that the worst item recommended by
Greedy2 tends to be better rated than the corresponding ones for MVA and MMR.



5.3. Comparing Algorithms to MSDP and Baselines 39

Predictor Method MovieLens 100K MovieLens 1M Jester 1
MVA− 5 3.923 4.128 1.092
MMR − 5 3.884 4.120 1.292

Greedy2 − 5 3.987 4.187 1.688
PureSVD MVA− 10 3.830 4.013 0.950

MMR − 10 3.799 4.012 1.031
Greedy2 − 10 3.881 4.065 1.323
MVA− 20 3.720 3.901 0.864
MMR − 20 3.698 3.900 0.892

Greedy2 − 20 3.768 3.941 0.923
MVA− 5 3.833 4.027 1.146
MMR − 5 3.801 4.022 2.312

Greedy2 − 5 3.896 4.082 2.356
NNCosNgbr MVA− 10 3.768 3.927 1.338

MMR − 10 3.760 3.926 1.559
Greedy2 − 10 3.818 3.988 1.578
MVA− 20 3.677 3.824 0.859
MMR − 20 3.677 3.832 0.939

Greedy2 − 20 3.732 3.902 0.939

Table 5.7. Mean ratings computed with MVA, MMR, and Greedy2 for recom-
mendation lists with sizes N = 5, 10, 20. Greedy2 − 5 corresponds to solutions
with sizeN = 5 generated byGreedy2, for example. Reported results are averages
of results obtained with 5-fold cross-validation.

Once again, values obtained with MMR were somewhat similar to those prompted by
Top − N . MVA performed better than MMR with respect to the MovieLens datasets
and the opposite was noticed with respect to Jester 1. In all cases, Greedy2 led to
superior or statistically equivalent lowest ratings, when compared with both baselines.

In terms of ratings for Jester 1, Greedy2 exceeds MVA by 2.087 points in the
best case (Greedy2 − 5 and MVA− 5 ) and by 0.064 in the worst case (Greedy2 − 20

and MVA− 20 ). As for the MovieLens datasets, Greedy2 outperforms MVA by 0.133
points at most (Greedy2 − 5 and MVA− 5 for MovieLens 100K) and by 0.048 in the
worst case (Greedy2 − 20 and MVA− 20 for MovieLens 100K). With respect to MMR

for Jester 1, Greedy2 surpassed it by 0.495 points in the best case (Greedy2 − 5 and
MMR − 5 ) and was surpassed by it by 0.012 points in the worst case (Greedy2 − 10

and MMR − 10 ). Regarding the MovieLens datasets, Greedy2 outperformed MMR by
0.205 points at most (Greedy2 − 5 and MMR − 5 for MovieLens 100K) and by 0.054
points at least (Greedy2 − 20 and MMR − 20 for MovieLens 100K).

As noticed in Table 5.6, recommendations generated for Jester 1 with NNCosNgbr
were particularly similar for Greedy2 and all baselines, with equivalent mean ratings for



40 Chapter 5. Experimental Results

Predictor Method MovieLens 100K MovieLens 1M Jester 1
MVA− 5 2.870 3.129 -4.295
MMR − 5 2.798 3.114 -3.766

Greedy2 − 5 3.003 3.217 -3.271
PureSVD MVA− 10 2.405 2.608 -5.918

MMR − 10 2.339 2.612 -5.590
Greedy2 − 10 2.481 2.683 -5.232
MVA− 20 2.075 2.208 -6.349
MMR − 20 2.037 2.209 -6.319

Greedy2 − 20 2.123 2.263 -6.285
MVA− 5 2.711 2.962 -4.287
MMR − 5 2.663 2.953 -2.179

Greedy2 − 5 2.812 3.057 -2.200
NNCosNgbr MVA− 10 2.290 2.457 -5.937

MMR − 10 2.272 2.466 -4.778
Greedy2 − 10 2.359 2.556 -4.790
MVA− 20 2.016 2.087 -6.350
MMR − 20 2.011 2.111 -6.257

Greedy2 − 20 2.065 2.201 -6.261

Table 5.8. Lowest ratings generated by MVA, MMR, and Greedy2 for recom-
mendation lists with sizes N = 5, 10, 20. Reported values are averages of results
obtained with 5-fold cross-validation.

all N values. Figures 5.3 and 5.4 ratify the results illustrated by Figure 5.2. Greedy2

wins over MVA for approximately 65% of users, and it is more effective when the
adopted predictor is NNCosNgbr. With respect to MMR, Greedy2 outperforms it for
approximately 65% of users as well. Nonetheless, results varied more for MMR: in the
graph associated with Jester 1 and NNCosNgbr, in particular, it won over Greedy2

for approximately 48% of users. The percentages associated with Greedy2 tended to
increase as N growed as well, as noticed in Figure 5.2.

With respect to the predictors, NNCosNgbr is consistently associated with the
best results for Jester 1. Regarding the MovieLens datasets, the reported absolute
gains are similar for both predictors. In general, absolute and percentual gains were
much higher for the Jester 1 dataset. Despite that, the gains obtained with Greedy2

were consistent even when they were small.
Finally, the best baseline we studied in general, according to our experiments,

was MMR, and the worst was MVA. It is important to bear in mind, nonetheless,
that MVA is an application of Modern Portfolio Theory that was designed to improve
ranking [Wang, 2009]. With respect to MMR, its main purpose is to increase rec-
ommendations’ diversity without hurting their utility [Zuccon et al., 2012]. Ranking
and diversity are aspects that are outside the scope of our work, and therefore these
baselines were chosen exclusively because they also break with the PRP principle.



5.3. Comparing Algorithms to MSDP and Baselines 41

Figure 5.3. Percentages of users to which MVA and Greedy2 have won over
each other, in terms of highest mean rating given to generated recommendations.

Figure 5.4. Percentages of users to which MMR and Greedy2 have won over
each other, in terms of highest mean rating given to generated recommendations.



42 Chapter 5. Experimental Results

5.4 Analysing the Scalability of Our Method

Results presented in Section 5.3 consistently indicate that Greedy2 , by employing co-
utility probabilities in its selection strategy, can improve recommendations. As a con-
sequence, it is important to devise competitive implementations for Greedy2 that scale
in real-time situations.

Although Greedy2 is polynomial and rather fast, there are some easy and impor-
tant optimizations that make it scalable and competitive in practice. It is important,
for example, to precompute and store all pairwise scores θ in a hash table as a pre-
processing step. This offline computation speeds up the generation of solutions to
MSDP by avoiding redundant computations of pairwise scores. Another improvement
involves the use of memoization to reuse partial summations. Figure 5.5 illustrates the
mean computation time per validation fold for each dataset, varying N and the predic-
tor algorithm. All experiments were performed in a Pentium Dual-Core 2.0GHz with
2GB RAM. We decided to compare Greedy2 with Top − N because, from all studied
methods, Top − N is the fastest one in practice. 6

Figure 5.5. Mean running times per validation fold, in seconds, for different
combinations of datasets and predictors, with N = 5, 10, 20.

Results in Figure 5.5 correspond to the mean aggregated running time for the
generation of all recommendation lists concerning a validation fold. For higher values of
N , the time difference between Greedy2 and Top − N could increase, but such analysis

6We used a Top −N implementation with time complexity O(K logN), as explained in Sec-
tion 4.2.1.



5.5. Relating Co-Utility and Diversity 43

is not useful in real-world scenarios because N values are not big in practice [Ricci et al.,
2011]. Therefore, for realistic values of N , Greedy2 scales well and its mean running
times per validation fold are only slightly worse than those obtained with Top − N .
In spite of that, the time difference for generating a single recommendation list with
all methods is irrelevant. Given that in real-world systems recommendation lists are
generated once at a time via the interaction with users, Greedy2 is a feasible alternative.

5.5 Relating Co-Utility and Diversity

In this section, we investigate whether items that are co-useful are necessarily similar.
To perform this task, we rely on content similarity measures. We also compare the
level of diversity in recommendations generated by Greedy2 , Top − N , and MMR.
We opted to contrast Greedy2 with Top − N to analyse whether the pairwise scores
θ would hamper the diversity of recommendations generated by predictors PureSVD
and NNCosNgbr. As for MMR, we wanted to understand how its results differ from
those prompted by Greedy2 and Top − N – two methods that do not focus on diversity.
Finally, we analyse if pairwise scores θ – i.e., co-utility probabilities – correlate with
the cosine similarity.

There are several methods to measure recommendations’ diversity [Vargas and
Castells, 2011; Ricci et al., 2011]. In our scenario, it is important to choose a method
that explores item content, as this information was not used by any of the studied al-
gorithms. The use of content dissimilarities allows more impartial comparisons among
these algorithms – especially with respect to MMR, as it already embeds rating distri-
butions’ dissimilarities in its optimization.

An advantage of exploring content instead of rating distributions is the inter-
pretability of diversity results. For instance, stating that two books are different be-
cause their genres and authors are not the same is more interpretable than affirming
it because their ratings are not alike. Most experiments in this section are exclusive
to the MovieLens datasets because they have content information with which we can
compute movie dissimilarities, in contrast to the Jester 1 dataset. To have an intuition
about whether co-useful items share the same genres, we listed the pairs of movies with
highest co-utility probabilities alongside their genres in common in Table 5.9.

Table 5.9 indicates that movies that are highly co-useful to users are not necessar-
ily similar in terms of genres. 5 out of 10 movies have no genre in common. Although
there may be other sources of similarities that we did not consider, such as actors in



44 Chapter 5. Experimental Results

MovieLens 100K MovieLens 1M
Pairs of Movies Genres in Common Pairs of Movies Genres in Common
The Third Man
and Casablanca

None Seven Samurai
and Sanjuro

Action

A Close Shave
and Wallace &
Gromit

Animation The Boat and
Sanjuro

Action

The Wrong
Trousers and
Wallace &
Gromit

Animation GoodFellas and
Sanjuro

None

To Kill a Mock-
ingbird and Ver-
tigo

None Casablanca and
Sanjuro

None

Paths of
Glory and Dr.
Strangelove

War The Wrong
Trousers and A
Close Shave

Animation/Comedy

My Life as a Dog
and His Girl Fri-
day

None The Great Escape
and Sanjuro

Adventure

12 Angry Men
and To Kill a
Mockingbird

Drama The Wrong
Trousers and
Wallace &
Gromit

Animation

Rear Window and
Vertigo

Thriller/Mistery Yojimbo and The
Bridge on the
River Kwai

Drama

When We Were
Kings and Star
Wars Episode IV

None Yojimbo and
A Clockwork
Orange

None

Taxi Driver
and Wallace &
Gromit

None To Live and Boys
Don’t Cry

None

Table 5.9. Top 10 pairs of movies with highest co-utility probabilities, computed
with Empirical Bayes. Along with these pairs, the genres in common.

common, these results strengthen the hypothesis that co-utility does not imply simi-
larity. For instance, My Life as a Dog is a drama released in the 1980s whereas His
Girl Friday is reported as a comedy from 1940. It is important to note that most of
these movies are very popular and received high ratings in websites such as IMDb and
Rotten Tomatoes. 7 8

To further our understanding of how co-utility may relate to diversity, we aggre-

7http://www.imdb.com/
8http://www.rottentomatoes.com/

http://www.imdb.com/
http://www.rottentomatoes.com/


5.5. Relating Co-Utility and Diversity 45

gated the diversity levels of recommendations generated with Greedy2 , Top − N , and
MMR in Table 5.10. To compute movie dissimilarities, we calculated Jaccard’s coeffi-
cient over movies’ corresponding genres. To compare the diversity levels of Greedy2 ,
Top − N , and MMR, we used the ILD metric described in Section 4.3.

Predictor Method MovieLens 100K MovieLens 1M
Top − 5 0.8558 0.8305
MMR − 5 0.8572 0.8309

Greedy2 − 5 0.8554 0.8302
PureSVD Top − 10 0.8619 0.8392

MMR − 10 0.8621 0.8395
Greedy2 − 10 0.8615 0.8392
Top − 20 0.8645 0.8444
MMR − 20 0.8648 0.8445

Greedy2 − 20 0.8643 0.8444
Top − 5 0.8571 0.8360
MMR − 5 0.8585 0.8365

Greedy2 − 5 0.8565 0.8358
NNCosNgbr Top − 10 0.8628 0.8429

MMR − 10 0.8621 0.8428
Greedy2 − 10 0.8628 0.8429
Top − 20 0.8649 0.8458
MMR − 20 0.8646 0.8458

Greedy2 − 20 0.8650 0.8458

Table 5.10. Mean ILD values generated by for recommendation lists with sizes
N = 5, 10, 20. Greedy2 − 5 corresponds to solutions with size N = 5 generated
by Greedy2 , for example. Reported values are averages of results obtained with
5-fold cross-validation.

We performed paired t-tests for each Top − N /Greedy2 and MMR/Greedy2 pair
in Table 5.10 with a 95% confidence interval and none of the results were statistically
different. This is an evidence that Greedy2 is not likely to hurt recommendations’
diversity when compared to Top − N and may generate as diversified recommendations
as the MMR algorithm implemented with the Kullback-Leibler distance. Nonetheless,
it is important to highlight that different implementations of MMR may yield mean
ILD values that are statistically better than those related to Greedy2 . As the focus of
this work is not on diversity, though, we only implemented MMR with the Kullback-
Leibler distance. Another important consideration is that, if Greedy2 starts hampering
diversity in any specific scenario, it is always possible to penalize pairwise scores that
correlate with very redundant pairs of items.

To finish our analysis, we investigated whether co-utility probabilities correlate



46 Chapter 5. Experimental Results

positively with the cosine similarity, a very popular metric for assessing similarities
in recommender systems [Ricci et al., 2011; Jannach et al., 2011]. For each pair of
items i and j, we computed its co-utility probability via Empirical Bayes and its cosine
similarity. We then correlated the resulting distributions using the Pearson correlation
coefficient. For datasets MovieLens 100k, MovieLens 1M, and Jester 1, correlations
were -0.472, -0.497, and 0.968 respectively. These values show that the correlation
between co-utility probabilities and the cosine similarity can be negative – moderately
negative, in particular, which may indicate a mild discorrelation or no correlation at
all [Zaki and Meira, 2014]. This implies that co-utility probabilities cannot necessarily
be substituted by the cosine similarity. Furthermore, if one assumes that a high cosine
similarity between two items is a proxy for low diversity, then co-utility probabilities
do not necessarily worsen recommendations’ diversity, as they are not always positively
correlated with the cosine similarity.

The high positive correlation for Jester 1 means that co-useful jokes also share a
similar rating pattern. Then again, if we assume that a high cosine similarity implies
low diversity, then Jester 1 users have a redundant taste for jokes, as recommendations
get better rated when co-utility is taken into consideration. The higher the co-utility,
the more similar jokes would potentially be. Moreover, in the case of Jester 1, this
high positive correlation indicates that it is possible to adopt the cosine similarity in
lieu of co-utility probabilities.



Chapter 6

Conclusions and Future Work

In this thesis, we investigated how co-utility probabilities can be estimated and ex-
ploited in order to improve recommendations’ utility. The main intuition behind this
project is that not only individual predicted scores should be taken into account by
recommender systems. Relations between all candidate items also play an important
role on the utility of recommendations.

We proposed two ways to estimate co-utility probabilities: Maximum Likelihood
and Empirical Bayes [Bishop, 2006]. Empirical Bayes is theoretically more robust in
scenarios where data is sparse. Despite that, it prompted results that were statistically
equivalent to those generated by Maximum Likelihood, as detailed in Chapter 5.

We modelled the combination of individual predicted scores and co-utility prob-
abilities as a linear combination. Afterwards, we posed the task of finding the best
subset of candidate items for recommendation as an optimization problem. The
problem mapped trivially into the Max-Sum Dispersion Problem, abbreviated as
MSDP [Borodin et al., 2012]. This problem has been thoroughly studied by the Op-
erations Research community and was previously used to capture the semantics of
diversity in Information Retrieval and Recommender Systems contexts.

We implemented two heuristics and one exact formulation to MSDP : Greedy1 ,
Greedy2 , and Exact . We also implemented three baselines: Top − N , MVA, andMMR.
We describe our method and the baselines in Chapter 4. Comparisons between Greedy1

and Greedy2 were performed and the mean ratings obtained from recommendation lists
yielded by both heuristics were mostly statistically equivalent. We then contrasted
Greedy2 to Exact and results were also statistically equivalent, which indicates that
Greedy2 is likely to be a good heuristics in practice.

With respect to the baselines, we compared Greedy2 with them by contrasting
mean ratings, lowest ratings, and percentages of users to which each method has won

47



48 Chapter 6. Conclusions and Future Work

over each other. Greedy2 has performed consistently better than all baselines. By
comparing the running times of Greedy2 and Top − N , we also present evidence that
Greedy2 is scalable and therefore useful for real-world scenarios. Finally, by contrasting
Greedy2 , Top − N , and MMR in terms of diversity, we show that the exploitation of
co-utility probabilities does not necessarily hurt recommendations’ diversity.

Throughout this thesis, we showed that co-utility probabilities are an important
evidence for recommender systems. Hence we intend to develop Learning to Rank
algorithms that embed them in a near future. We also want to extend our method to
hybrid recommenders, by using content information to compute co-utility probabilities.



Bibliography

Adomavicius, G. and Tuzhilin, A. (2005). Towards the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering, 17(6):734--749.

Baeza-Yates, R. and Ribeiro-Neto, B. (2011). Modern Information Retrieval: The
Concepts and Technology behind Search (2nd Edition). ACM Press Books.

Bell, R. and Koren, Y. (2007). Lessons from the netflix prize challenge. ACM SIGKDD
Explorations Newsletter, 9(2).

Bessa, A., Veloso, A., and Ziviani, N. (2013). Using mutual influence to improve
recommendations. In Proceedings of the 20th String Processing and Information
Retrieval Symposium, pages 17--28.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Bookstein, A. (1983). Information retrieval: A sequential learning process. Journal of
the American Society for Information Science, 34(5):331--342.

Borodin, A., Lee, H. C., and Ye, Y. (2012). Max-sum diversification, monotone sub-
modular functions and dynamic updates. In Proceedings of the 31st Symposium on
Principles of Database Systems, pages 155--166.

Breese, J. S., Heckerman, D., and Kadie, C. (1998). Empirical analysis of predic-
tive algorithm for collaborative filtering. In Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence, pages 43--52.

Carbonell, J. and Goldstein, J. (1998). The use of mmr, diversity-based reranking for
reordering documents and producing summaries. In Proceedings of the 21st annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 335--336.

49



50 Bibliography

Casella, G. (1985). An introduction to empirical bayes data analysis. The American
Statistician, 39(2):83--87.

Cremonesi, P., Koren, Y., and Turrin, R. (2010). Performance of recommender algo-
rithms on top-n recommendation tasks. In Proceedings of the 4th ACM conference
on Recommender Systems, pages 39--46.

Deshpande, M. and Karypis, G. (2004). Item-based top-n recommendation algorithms.
ACM Transactions on Information Systems, 22(1):143--177.

Elton, E. J., Gruber, M. J., Brown, S. J., and Goetzmann, W. N. (2009). Modern
Portfolio Theory and Investment Analysis. Wiley.

Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. (2001). Eigentaste: A constant
time collaborative filtering algorithm. Information Retrieval, 4(2):133--151.

Gollapudi, S. and Sharma, A. (2009). An axiomatic approach for result diversification.
In Proceedings of the 18th international conference on World Wide Web, pages 381-
-390.

Goyal, A. and Lakshmanan, L. V. S. (2012). Recmax: Exploiting recommender systems
for fun and profit. In Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1294--1302.

Hansen, D. L. and Golbeck, J. (2009). Mixing it up: Recommending collections of
items. In Proceedings of the 27th ACM Conference on Human Factors in Computing
Systems, pages 1217--122.

Hassin, R., Rubinstein, S., and Tamir, A. (1997). Approximation algorithms for max-
imum dispersion. Operations Research Letters, 21:133--137.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learn-
ing. Springer.

Ieong, S., Mishra, N., and Sheffet, O. (2012). The random shopper model: Predict-
ing preference flips in commerce search. In Proceedings of the 29th International
Conference on Machine Learning.

ILOG, Inc (2013). ILOG CPLEX: High-performance software for mathemati-
cal programming and optimization. See http://pic.dhe.ibm.com/infocenter/

cosinfoc/v12r5/index.jsp.

http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r5/index.jsp
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r5/index.jsp


Bibliography 51

Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2011). Recommender Sys-
tems: An Introduction. Cambridge University Press.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and
Techniques. MIT Press.

Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 426--434.

Linden, G., Smith, B., and York, J. (2003). Amazon.com recommendations: Item-to-
item collaborative filtering. Internet Computing, 7(1):76–80.

Lipcon, T. (2007). Algorithms for Collaborative Prediction. PhD thesis, Brown Uni-
versity.

Nemhauser, G. and Wolsey, L. (1988). Integer and combinatorial optimization. Wiley.

Pan, R., Zhou, Y., Cao, B., Liu, N. N., Lukose, R., Scholz, M., and Yang, Q. (2008).
One-class collaborative filtering. In Proceedings of the 8th IEEE International Con-
ference on Data Mining, pages 502--511.

Papagelis, M. and Plexousakis, D. (2005). Qualitative analysis of user-based and item-
based prediction algorithms for recommendation agents. Engineering Applications
of Artificial Intelligence, 18(7):781--789.

Passos, A., Gael, J. V., Herbrich, R., and Paquet, U. (2011). A penny for your thoughts?
the value of information in recommendation systems. In Proceedings of the 1st Neural
Information Processing Systems Workshop on Bayesian Optimization, Experimental
Design, and Bandits, pages 9--14.

Pu, P., Chen, L., and Hu, R. (2012). Evaluating recommender systems from the
user’s perspective: survey of the state of the art. User Modeling and User-Adapted
Interaction, Volume 22(4–5):317--355.

Ravi, S., Rosenkrantz, D., and Tayi, G. (1994). Heuristic and special case algorithms
for dispersion problems. Operations Research, 42(2):299--310.

Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B., editors (2011). Recommender
Systems Handbook. Springer.

Robertson, S. E. (1977). The probability ranking principle in information retrieval.
Journal of Documentation, 33(4):294--304.



52 Bibliography

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collabora-
tive filtering recommendation algorithms. In Proceedings of the 10th international
conference on World Wide Web, pages 285--295.

Tarlow, D., Givoni, I. E., and Zemel, R. S. (2010). Hop-map: Efficient message passing
with high order potentials. In Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics.

Toffler, A. (1970). Future Shock. Random House.

Tversky, A. (1972). Elimination by aspects: A theory of choice. Psychological Review,
79(4):281--299.

Vargas, S. and Castells, P. (2011). Rank and relevance in novelty and diversity metrics
for recommender systems. In Proceedings of the 5th ACM conference on Recom-
mender Systems, pages 109--116.

Vieira, M. R., Razente, H. L., Barioni, M. C. N., Hadjieleftheriou, M., Srivastava, D.,
Jr., C. T., and Tsotras, V. J. (2011). On query result diversification. In Proceedings
of the 27th IEEE International Conference on Data Engineering, pages 1163--1174.

Wang, J. (2009). Mean-variance analysis: A new document ranking theory in infor-
mation retrieval. In Proceedings of the 31st European Conference on Information
Retrieval, pages 4--16.

Weston, J. and Blitzer, J. (2012). Latent structured ranking. In Proceedings of the
28th Conference on Uncertainty in Artificial Intelligence, pages 903--913.

Xiong, C., Taifeng Wang, Wenkui Ding, Y. S., and Liu, T.-Y. (2012). Relational click
prediction for sponsored search. In Proceedings of the 5th International Conference
on Web Search and Web Data Mining, pages 493--502.

Zaki, M. and Meira, W. (2014). Data Mining and Analysis: Fundamental Concepts
and Algorithms. Cambridge University Press.

Zhang, M. and Hurley, N. (2008). Avoiding monotony: Improving the diversity of
recommendation lists. In Proceedings of the 2nd ACM conference on Recommender
Systems, pages 123--130.

Zuccon, G., Azzopardi, L., Zhang, D., and Wang, J. (2012). Top-k retrieval using facil-
ity location analysis. In Proceedings of the 34th European Conference on Information
Retrieval, pages 305--316.


