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Abstract

This work presents approaches for the exact solution of the minimum spanning tree prob-

lem under conflict constraints. Given a graph G(V ,E) and a set C ⊂ E ×E of conflicting

edge pairs, the problem consists of finding a conflict-free minimum spanning tree, i.e.

feasible solutions may include at most one of the edges from each pair in C .

The problem is NP–hard in the general case. Although formulations and algorithms

have been discussed recently in the literature, computational results indicate consider-

ably large duality gaps and a lack of optimality certificates for the benchmark instances.

In this work, we consider polyhedral representations of conflict-free edge subsets as

stable sets in an auxiliary conflict graph Ĝ(E ,C ). We present integer linear programming

formulations including four classes of exponentially-many constraints: two of which cor-

respond to classic polyhedral representations of spanning trees in G , and two for strength-

ening the intersection with relaxations of the polytope of stable sets in Ĝ (with clique and

odd-cycle inequalities).

We introduce and evaluate a preprocessing method and branch and cut algorithms.

Encouraging results consistently improve on those previously available in the literature.

New feasibility and optimality certificates are provided, and stronger dual bounds are al-

ready obtained in the initial linear relaxation of the formulations, even for the hardest

instances in the standard benchmark.

Keywords: Optimal trees, conflict constraints, stable set, integer programming formula-

tions, branch and cut.
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Resumo

Este trabalho apresenta abordagens para a solução exata do problema de árvores gerado-

ras mínimas sob restrições de conflito. Dados um grafo G(V ,E) e um conjunto C ⊂ E ×E

de pares de arestas conflitantes, busca-se uma árvore geradora mínima de G incluindo no

máximo uma das arestas de cada par em C .

O problema é NP–difícil no caso geral e, embora formulações e algoritmos tenham

sido discutidos recentemente na literatura, resultados computacionais apresentavam

gaps de dualidade consideravelmente grandes e não forneciam certificados de otimali-

dade para conjuntos de instâncias padrão do problema.

Neste trabalho exploramos representações poliédricas de subconjuntos de arestas

livres de conflitos como conjuntos independentes em um grafo de conflitos auxiliar

Ĝ(E ,C ). Apresentamos formulações em programação linear inteira envolvendo quatro

classes de desigualdades com número exponencial de restrições: duas para represen-

tações poliédricas clássicas de árvores geradoras em G , duas fortalecendo a interseção

com relaxações do politopo de conjuntos independentes em Ĝ (restringindo cliques e ci-

clos ímpares).

Propomos e avaliamos computacionalmente um método de pré-processamento e

algoritmos branch and cut. As soluções obtidas superam de forma consistente os mel-

hores resultados disponíveis na literatura anteriormente. Novos certificados de viabili-

dade e otimalidade são obtidos, além de limites duais mais fortes já na relaxação linear

inicial das formulações, mesmo para instâncias mais difíceis do benchmark padrão.

Palavras-chave: Árvores ótimas, restrições de conflito, conjunto independente, formu-

lações em programação inteira, branch and cut.
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Resumo Estendido

Este resumo estendido visa esclarecer detalhadamente o trabalho desenvolvido. In-

dicamos a metodologia adotada e sumarizamos os resultados verificados. Para uma me-

lhor apresentação em português de parte deste trabalho, sugere-se verificar o artigo cor-

respondente nos anais do XLV Simpósio Brasileiro de Pesquisa Operacional [Samer and

Urrutia, 2013].

Apresentação

Dados um grafo G(V ,E), um conjunto C ⊂ E ×E de pares de arestas conflitantes, e custos

c : E → R, o problema da árvore geradora mínima com restrições de conflito (MSTCC,

do inglês minimum spanning tree under conflict constraints) consiste em encontrar uma

árvore geradora mínima (MST, do inglês minimum spanning tree) livre de conflitos, i.e.

uma árvore geradora de G , de mínimo custo e que inclua no máximo uma das arestas ei

ou e j de cada par
�
ei ,e j

�
∈C .

Este trabalho se baseia amplamente em uma definição equivalente do problema,

usando o conceito de um grafo de conflitos Ĝ(E ,C ): denotando cada aresta no grafo o-

riginal como um vértice em Ĝ , representa-se cada restrição de conflito como uma aresta

conectando respectivos vértices de Ĝ . Assim, o problema consiste em encontrar um sub-

conjunto de arestas de G , de mínimo custo, que corresponda simultaneamente a uma

árvore geradora de G e a um conjunto independente (stable set) em Ĝ .

O problema foi introduzido recentemente na literatura por Darmann et al. [2009,

2011], que descrevem diversos resultados sobre sua complexidade. Eles demonstram que

MSTCC é fortemente NP–difícil, mesmo quando toda componente do grafo de conflitos

consiste de um caminho simples de comprimento dois. Ainda mais, mostram que o pro-

blema não admite aproximação por um fator constante do ótimo, a menos que P=NP.

Novos resultados teóricos e computacionais sobre o MSTCC são descritos por

Zhang et al. [2011]. Os autores discutem casos particulares que podem ser resolvidos

em tempo polinomial, testes de viabilidade, heurísticas primais e dois algoritmos basea-
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dos em relaxação Lagrangeana. Este trabalho é a base de comparação para avaliarmos o

desempenho dos algoritmos que apresentamos nesta dissertação.

Formulações e algoritmos

Discutimos neste trabalho abordagens para a solução exata do MSTCC. Descrevemos for-

mulações em programação linear inteira com um número exponencial de restrições, al-

goritmos de branch and cut, além de um algoritmo de pré-processamento.

A metodologia central que discutimos neste trabalho é a de explorar o grafo de con-

flitos Ĝ(E ,C ), tornando disponíveis resultados válidos para conjuntos independentes, o

que inclui o uso de desigualdades válidas para o correspondente politopo Pst ab(Ĝ). Em

particular, fortacelemos as formulações que propomos com desigualdades de ciclo ímpar

e cliques. Sugerimos o recente tutorial de Rebennack et al. [2012] para correspondentes

algoritmos de separação e uma breve introdução ao politopo Pst ab(Ĝ) e suas relaxações.

Com respeito a representações poliédricas de árvores geradoras em G(V ,E), ex-

ploramos neste trabalho três formulações tão justas quanto possível: uma compacta,

baseada em fluxos multiproduto; duas com um número exponencial de restrições, uti-

lizando restrições de eliminação de subciclos, e desigualdades de cutset direcionadas.

Para uma revisão completa destas formulações e várias outras, indica-se a apresentação

em [Magnanti and Wolsey, 1995, Capítulo 3].

Nosso método de solução inicia com uma fase de pré-processamento, empregando

um algoritmo que propomos para a fixação de variáveis e geração de novas restrições de

conflito. O algoritmo emprega condições de viabilidade tanto de árvores em G quanto de

conjuntos independentes em Ĝ .

Em seguida, procede-se com o arcabouço de branch and cut padrão, separando

as classes de desigualdades com número exponencial de restrições. Uma exceção diz res-

peito às desigualdades clique. Conseguimos incluir a priori o subconjunto não dominado

de desigualdades correspondendo a cliques maximais de forma muito eficiente, uma vez

que o número destas nos grafos de conflitos das instâncias padrão de teste é menor que

o próprio número de conflitos. Assim, obtemos uma relaxação estritamente mais forte e,

simultaneamente, um modelo com menor número de restrições.

Resultados e conclusões gerais

Os experimentos computacionais que conduzimos visam avaliar a eficácia do método

de pré-processamento, o impacto de incluir as desigualdades válidas para o politopo de
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conjuntos independentes em Ĝ na qualidade dos limites duais, e a comparação de nossa

proposta com os melhores resultados disponíveis na literatura.

Verificamos que o algoritmo de pré-processamento é extremamente eficaz no caso

de instâncias cujo grafo de conflitos é denso, permitindo resolver o problema imediata-

mente. De fato, 19 dentre as 27 instâncias desta classe são convertidas em problemas

clássicos de árvores geradoras (sem conflitos). No caso de grafos de conflitos esparsos,

entretanto, nenhum avanço significativo foi constatado. O restante dos resultados se re-

fere principalmente a este subconjunto de instâncias.

O uso de desigualdades de ciclo ímpar e clique permite fortalecer a relaxação line-

ar das formulações (acima de 18%, em média), bem como os limites finais obtidos com

branch and cut (acima de 12%, em média).

Finalmente, o desempenho do algoritmo proposto melhora os resultados anterior-

mente disponíveis de forma consistente. De fato, o próprio limite dual da relaxação linear

inicial das formulações que discutimos é superior em relação aos fornecidos após horas

de computação com esquemas de relaxação Lagrangeana de Zhang et al. [2011]. Também

foi possível obter vários certificados de otimalidade, e cinco novos certificados de viabili-

dade, sendo três limites primais inéditos e duas instâncias comprovadamente inviáveis.
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Chapter 1

Introduction

Disjunctions model alternative relationships, being found in different contexts that in-

volve a selection among different options. For instance, we verify this notion in the set

union operation, the logical connective ∨, and any proposition which imposes satisfy-

ing one contition or the other. To some extent, relationships of this nature are contrasted

with conjunctions, where the selection must include all of the available alternatives. Anal-

ogously, examples include the set intersection operation and the logical ∧ connective.

Disjunctive relations arise in many contexts of integer programming (IP). Disjunc-

tive and multiple-choice constraints model the satisfaction of at least one among two

or more inequalities in a system [Wolsey, 1998, section 1.5]. Disjunctive cuts are imple-

mented in several mixed-integer programming solvers. Branching on disjunctions rather

than on variables in a branch and cut framework provides an interesting alternative to

reduce the corresponding enumeration tree, and different rules may be used to select

branching disjunctions [Karamanov and Cornuéjols, 2011]. It is also important to men-

tion that the Disjunctive Programming framework pioneered by Egon Balas in the 1970s

is still relevant and has relationships with other IP techniques [Balas, 2010].

In the context of combinatorial optimization, disjunctive relations further con-

straint the set of feasible solutions to a problem with respect to the interaction between

selected components. Usually expressed by means of or conditions, a natural example is

the scheduling problem with incompatible jobs, which requires processing given pairs of

tasks in different machines. In fact, to the best of our knowledge, a theoretical approach

to the complexity of particular cases of that problem is one of the earliest references on

this kind of combinatorial optimization problem [Bodlaender and Jansen, 1993].

Nevertheless, disjunctively constrained versions of classic problems in graph the-

ory were only recently discussed in the literature. For instance, shortest paths, spanning

trees and matchings under disjunctive constraints were introduced by Darmann et al.

1



2 CHAPTER 1. INTRODUCTION

[2009, 2011], while constrained maximum flows are investigated by Pferschy and Schauer

[2011a,b]. We present a more rigorous review of related work in Section 2.2.

In such problems, the selection of some alternative pairs of edges is constrained in

any feasible solution. Specifically, these are restricted according to the type of disjunctive

constraints, being allowed to include:

• at most one of the edges in each pair, if under conflict constraints;

• at least one of the edges in each pair, if under forcing constraints.

The literature on disjunctively constrained problems on graphs regards mainly

complexity and approximability results, but a particular interest in the minimum span-

ning tree problem under conflict constraints has led to the development of algorithms

and benchmark instances [Zhang et al., 2011]. Its feasibility version is also discussed in

the context of the quadratic bottleneck spanning tree problem [Punnen and Zhang, 2011].

In this thesis, we discuss approaches for the exact solution of the minimum span-

ning tree under conflict constraints (MSTCC) problem. Given an undirected graph

G(V ,E), a set C ⊂ E ×E of conflicting edge pairs, and weights c : E → R, the problem con-

sists of finding a minimum weight spanning tree in G which does not include both edges

from a pair in C . A more rigorous definition of the problem is presented in Section 2.1,

and we also discuss interesting properties and related results.

To the best of our knowledge, no practical application of the problem was known as

this thesis was written. Nevertheless, it is not hard to conceive conflict constraints in real-

world settings where the standard MST problem arises, e.g. communication networks

with different link technologies (which might be mutually exclusive in some cases), or

utilities distribution networks. In fact, the latter is a standard application of the quadratic

MST problem [Assad and Xu, 1992], which generalizes MSTCC, as we indicate in Section

2.1. Furthermore, although that was also the case for the matching problem under conflict

constraints (introduced together with MSTCC by Darmann et al. [2011]), it was rendered

an application on the thesis by Engels [2011], studying models for a freight car distribu-

tion problem arising in the logistics office of the german railway system (Deutsche Bahn

Schenker Rail).

1.1 Main contributions

The main contribution of the work presented in this thesis is an algorithmic approach for

the exact solution of MSTCC problem instances.
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We introduce integer linear programming formulations building on an equivalent

definition of the MSTCC problem, which introduces an auxiliary, conflict graph to repre-

sent conflict constraints (see Section 2.1). The methodology of exploiting such conflict

graph to enhance formulations and design algorithms for the problem might be consid-

ered a contribution itself. The complete formulations and background information on

the polyhedral representations we use are described in Chapter 3.

The solution approaches we propose include a general preprocessing method,

which could be used in conjunction with any solution technique for the problem, and

branch and cut algorithms. These are described in Chapter 4, along with the separation

procedures we use. In particular, inequalities corresponding both to the spanning tree

and the stable set polytopes are separated (the latter allows tightening the representation

of conflict-free edge selections).

Experiments evaluating our implementation design and comparing our approach

with the best results previously available in the literature are described in Chapter 5. En-

couraging results include stronger dual bounds already for root LP relaxations, for all in-

stances in a benchmark set. We are also able to provide several optimality certificates and

new results for five instances whose feasibility was previously unknown.

With respect to scientific divulgation, the present work was communicated as fol-

lows:

XVI IPCO: poster session presentation at the 16th Conference on Integer Programming

and Combinatorial Optimization (March 18 – 20, 2013, Valparaíso, Chile).

XLV SBPO: full paper presentation at the brazilian symposium on operations research

(September 16 – 19, 2013, Natal, Brazil).

Optimization Letters: paper accepted for publication on the journal by Springer (DOI:

10.1007/s11590-014-0750-x). The manuscript is also available at arXiv:1307.1424.

1.2 Notation and terminology

We describe next the basic terminology and notation relevant to this thesis. These are ac-

tually quite standard, following basically from that of Bondy and Murty [2007] for graph

theory, and Grötschel et al. [1988] and Bertsimas and Weismantel [2005] for integer pro-

gramming and polyhedral combinatorics definitions.

For simplicity, we may refer to an algorithm as “our implementation” of the algo-

rithm, when the context suggests so.

http://dx.doi.org/10.1007/s11590-014-0750-x
http://arxiv.org/abs/1307.1424


4 CHAPTER 1. INTRODUCTION

Graph theory

All graphs in this work are finite and simple, i.e. they have neither loops nor parallel links

joining any pair of vertices. Unless stated otherwise, they are also undirected, and we use

n to denote |V |, as well as |E | = m. Given a graph G , we denote its set of vertices by V (G),

and its set of edges by E(G). Therefore, we use G(V ,E) and (V (G),E(G)) interchangeably.

The degree d(v) of a vertex v in G is the number of edges incident to v . We also denote the

set of edges incident to vertex i by δ(i ).

We call H a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). H is thus a proper

subgraph if the inclusion is strict in both cases. A spanning subgraph of G is a subgraph

H such that V (H) = V (G). Given a non-empty subset S ⊆ V , let E(S) ⊆ E be the set of

edges with both endpoints in S. We designate G[S] = (S,E(S)) as the subgraph induced

by vertices in S. Analogously, the subgraph induced by a subset T ⊆ E of edges is G[T ] =
(V (T ),T ), where V (T ) ⊆V is the set of ends (terminal nodes) of edges in T .

A walk in G is a finite, non-empty sequence alternating vertices and edges W =
v0e1v1e2v2 . . .ek vk , such that the ends of ei are vi−1 and vi , for 1 ≤ i ≤ k. If the edges and

the internal vertices in a walk W are distinct, W is called a path.

Two vertices u, v of G are connected if there is a (u, v)-path in G . The components of

G are the subgraphs G[V1], G[V2], . . . , G[Vk ], where V1,V2, . . . ,Vk consists of the partition of

V (G) such that any two vertices u, v are connected iff both u and v belong to the same set

Vi . If G has only one component, we say that it is connected. Otherwise, G is disconnected.

A given edge e is a cut-edge if the number of components of G(V ,E\{e}) is greater than that

of G .

A cycle is a walk where the origin and terminus coincide, and where the edges and

internal vertices are distinct. A chord in a cycle is an edge joining non-consecutive ver-

tices. A chordless cycle is called a hole.

A connected acyclic graph is a tree. A spanning tree of G is a spanning subgraph of

G that is a tree. Given a particular vertex r , an arborescence is a directed, rooted tree in

which all edges point away from r ; equivalently, for any vertex v �= r , there is exactly one

directed path from r to v .

A stable set or set packing S ⊆ V is a set of vertices, no two of which are adjacent

in G . A matching M ⊆ E is a set of edges without common vertices. A cut (U ,V \U ) is a

partition of the vertices of G into two disjoint subsets that are joined by at least one edge.

We also define the cutset of the cut as δ(U ) = {{i , j } ∈ E : i ∈U , j �∈U }, i.e. the set of edges

whose end points are in different subsets of the partition.

A proper vertex coloring of a graph is a labelling of its vertices such that no two

vertices sharing the same edge have the same label. A coloring using at most k colors is
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called a k-coloring . The smallest number of colors needed to color a graph is called its

chromatic number. Any complete subgraph in G(V ,E) is a clique, i.e. a subset of V such

that every two vertices in the subset are connected by an edge. A graph is perfect if the

chromatic number of every induced subgraph equals the size of the largest clique of that

subgraph.

Given a set of conflicting edge pairs C ⊂ E(G)×E(G), a conflict-free subset T ⊆ E(G) is

such that at most one of the edges ei , e j is in T , for each {ei ,e j } ∈C . Therefore, a conflict-

free spanning tree (arborescence) is a subgraph induced by a conflict-free set T ⊆ E(G)

which is a spanning tree (arborescence). Conflict-free matchings, shortest paths, etc. are

defined similarly.

Polyhedral combinatorics

Let T ⊆ E be the edge set of a spanning tree of G(V ,E). Define the incidence vector x =
(x1, x2, . . . , x|E |) of T as xe = 1 if edge e is included in T , and xe = 0 otherwise.

The spanning tree polytope of G , denoted by Pst (G), is the convex hull of the set Fst

of incidence vectors of spanning trees in G . That is: Pst (G) = conv(Fst ).

Other polytopes are analogously defined. Whenever possible, we use Pname to de-

note Pname (G), the polyhedron of interest considering a particular graph G .

A graph G is t-perfect if the polytope of stable sets in G is determined by the cycle-

constraint relaxation (see Section 3.2).





Chapter 2

The minimum spanning tree under
conflict constraints problem

This chapter formally presents the problem that we study in this thesis, starting with its

precise definition in Section 2.1. The problem was introduced recently by Darmann et al.

[2009, 2011], and we review the related literature in Section 2.2, also indicating recent

work on different problems with similar constraints.

We remark that the problem has been discussed in the literature using different des-

ignations, including the MST problem under disjunctive constraints, and MST under con-

flict constraints (MSTCC). In the remaining of this text, we adopt the latter denomination.

2.1 Problem definition

Given a graph G(V ,E) and a set of conflicting edge pairs C ⊂ E ×E , we define in Section

1.2 a conflict-free spanning tree of G as a set of edges T ⊆ E inducing a spanning tree of G ,

such that at most one of the edges ei , e j is in T , for each {ei ,e j } ∈C . Using the template of

Korte and Vygen [2012], we state the minimum spanning tree under conflict constraints

(MSTCC) problem formally as follows:

MINIMUM SPANNING TREE UNDER CONFLICT CONSTRAINTS PROBLEM

Instance: an undirected graph G(V ,E), a set of conflicting edge pairs C ⊂ E ×E , and

weights c : E →R.

Task: find a conflict-free spanning tree of G of minimum weight, or decide that none

exists.

7
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Figure 2.1. Feasible solution to a MSTCC instance: a subset of E inducing both a
spanning tree in G(V ,E) and a stable set in Ĝ(E ,C ). The conflicting edge pairs are
part of the input instance.

This thesis regards approaches for the solution of the MSTCC problem, and exploits

largely an equivalent definition of it, using the concept of a conflict graph Ĝ(E ,C ). By

denoting each edge in the original graph as a node in Ĝ , we represent each conflict con-

straint by an edge connecting the corresponding nodes in Ĝ . The problem is thus to find

a subset of E of minimum cost, corresponding both to a spanning tree of G and to a stable

set in Ĝ .

Figure 2.1 illustrates a feasible solution to an instance of MSTCC, in terms of the

original and the conflict graphs. We remark that the equivalent definition using this aux-

iliary graph was introduced with the problem [Darmann et al., 2011].

The conflict graph also allows a precise combinatorial definition of the MSTCC

problem. Let Pst (G) denote the polytope of spanning trees in G(V ,E) and Pst ab(Ĝ) denote

the polytope of stable sets in Ĝ(E ,C ), as defined in Section 1.2. Without loss of general-

ization, assume the task is to find the optimal weight of a conflict-free spanning tree in G ,

defined as infinity if none exists, for consistency.

The IP formulations we present on Chapter 3 consist of particularizations of the

following, general optimization problem:

min

�
�

e∈E
ce xe : x ∈ Pst (G)∩Pst ab(Ĝ) ⊆B|E |

�

Finally, we note that MSTCC can also be formulated as a quadratic minimum span-

ning tree problem [Assad and Xu, 1992]. For instance, Zhang et al. [2011] describe a stan-

dard big-M modeling of conflicting edge pairs.
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2.2 Literature review

Problems on optimal trees with different side constraints have been extensively studied.

These include constraints on vertex degree, diameter, capacity, cardinality, among others.

The chapter by Magnanti and Wolsey [1995] indicates different examples.

The MSTCC problem is relatively recent, being introduced by Darmann et al. [2009,

2011], together with other variations of problems on paths, trees and matchings under

disjunctive constraints. In particular, they regard both conflict and forcing constraints:

the latter requires solutions to include at least one of the edges from each pair in C . We

note that feasible solutions in this case induce a vertex cover in the corresponding conflict

graph.

The authors establish several results on the complexity and approximation hard-

ness of such problems. Interestingly, they observe particular graph classes for the conflict

graph Ĝ to prove that a sharp line separates between easy and hard instances: the partic-

ular case in which Ĝ consists of isolated edges can be solved in polynomial time; however,

if Ĝ consists of simple paths of length two or more, the problem is strongly NP-hard. Note

that no assumption is made regarding the structure of the original graph, over which a

conflict-free spanning tree is sought. The result also proves that MSTCC cannot be ap-

proximated by a constant factor of the optimal value, unless P=NP.

Both theoretical and computational results on MSTCC are further described by

Zhang et al. [2011]. Motivated by its application in developing algorithms for the

quadratic bottleneck spanning tree problem [Punnen and Zhang, 2011], the work de-

scribes different particular cases which are polynomially solvable, and feasibility tests re-

lating to the stable set and vertex cover problems. They present heuristics and two exact

algorithms based on Lagrangean relaxation schemes. One formulation is integral, as all

disjunctive constraints are relaxed and the standard MST is solved as subproblem. The

other approach relaxes only part of the conflicts and solves the NP-hard maximum edge

clique partitioning [Dessmark et al., 2007] as subproblem, yielding stronger dual bounds,

though at higher computational costs.

Zhang et al. [2011] also introduce two sets of benchmark instances and discuss com-

putational results for their algorithms. Nevertheless, considerably large duality gaps are

associated with these algorithms, which do not provide optimality certificates. This work

is the baseline of comparison for the approach we developed in this thesis, and an experi-

mental evaluation of the algorithms we propose is described in Chapter 5 to indicate their

relative performance.

Finally, we remark that conflict graphs have already been used for many years in in-

teger programming to represent logical relations among variables [Atamtürk et al., 2000].
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The standard motivation is to generate clique (or more general upper-bounding) inequal-

ities, whether in the context of particular applications, such as in airline crew-scheduling

[Hoffman and Padberg, 1993], or in polyhedral investigations of general programs with a

given structure. Examples of the latter case include the study of inequality systems with

only two binary variables per row by Johnson and Padberg [1982], or set packing relax-

ations of a series of problems on acyclic digraphs, linear orderings, cuts and multicuts, by

Borndörfer and Weismantel [2000].

In a different context, conflict graphs were also studied recently to leverage SAT con-

flict analysis techniques to enhance computational performance of MIP solvers [Achter-

berg, 2007]. The author presents a succesful method to generate cutting planes from

pruned nodes in the enumeration tree of a branch and cut framework.

Different problems under conflict constraints

We also note that recent papers on different combinatorial optimization problems under

disjunctive constraints can be found.

The knapsack problem (KP). Yamada et al. [2002] introduce a generalization of KP with

conflict constraints to model item incompatibilities. The complexity of particular

cases of the problem is discussed by Pferschy and Schauer [2009].

Both exact and heuristic algorithms for the problem were proposed. Hifi and

Michrafy [2007] describe a specialized branch and bound method using different

variable fixation tests. An algorithm based on local branching [Fischetti and Lodi,

2003] was introduced later by Akeb et al. [2011], capable of solving larger problem

instances. A two-dimensional version of the problem was also recently studied by

de Queiroz and Miyazawa [2012].

Bin-packing and scheduling. Bodlaender and Jansen [1993] present the problem of

scheduling with incompatible tasks. They establish complexity results on its fea-

sibility version, while the optimization problem was presented next [Bodlaender

et al., 1994], and it was proved that it generalizes the vertex colouring problem.

Later, Jansen and Öhring [1997] designed approximation algorithms observing that

it is also a generalization of the bin-packing problem.

A thorough literature describing both exact and heuristic algorithms for such prob-

lems is available, as Sadykov and Vanderbeck [2012] overview. Interestingly, the au-

thors present a branch and price algorithm for the bin packing problem with con-

flicts, solving conflict-constrained knapsack subproblems with dynamic program-

ming.
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Other problems on graphs. As described in Chapter 1, different disjunctively con-

strained versions of classic problems on graph theory were introduced recently. We

highlight the work of Darmann et al. [2011] on paths, trees and matchings with con-

flicts in the beginning of this section.

The particular case of shortest paths under conflict constraints is equivalent to the

problem with forbidden vertices, which was previously studied by Kann [1993], es-

tablishing its innaproximability even in the unweighted case.

The solution for minimum cost perfect matchings under conflict constraints is ap-

proached in the work of Öncan et al. [2013], where polynomially solvable cases, a

Lagrangean relaxation scheme and heuristics are presented.

Finally, the complexity of maximum flow problems under conflict constraints has

been studied by Pferschy and Schauer [2011a,b]. The authors also relate these with

the more classic transportation problem on networks subject to excluding con-

straints [Goossens and Spieksma, 2009].





Chapter 3

Integer linear programming
formulations

This chapter presents integer linear programming (ILP) formulations for modeling the

minimum spanning tree under conflict constraints (MSTCC) problem. Some of the for-

mulations include exponentially-sized classes of inequalities, and corresponding separa-

tion procedures for using them in a branch and cut framework are described in Chapter

4. Section 3.1 outlines the methodology adopted in this work. Since it builds on represen-

tations of the stable set polytope, Section 3.2 briefly reviews the relaxations considered in

this work. Finally, the complete formulations we introduce are described in Section 3.3.

In what follows, suppose we are given an input graph G(V ,E), with |V | = n, |E | = m,

weights ce associated with each edge, and a set C ⊂ E ×E of conflicting edge pairs. Out

of C , a conflict graph Ĝ(E ,C ) is defined, where edges of the original graph are associated

with its nodes, while conflicts are associated with its edges.

3.1 Overview

The methodology in this work builds on the observation that solutions to the MSTCC

problem consist of subsets of E corresponding simultaneously to a spanning tree of

G(V ,E) and a stable set in Ĝ(E ,C ). Although the conflict graph Ĝ has been associated with

the MSTCC problem, as introduced by Darmann et al. [2011, 2009], the existing solution

approaches do not explore previous results on solving stable set problems.

This is precisely one of the key features of the exact solution algorithm to be in-

troduced here. The ILP formulations we present are conceived exploiting different rep-

resentations of two polytopes: the one of spanning trees in G (denoted by Pst (G) in the

13
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remainder of this chapter), and that of stable sets in Ĝ (Pst ab(Ĝ) in what follows). Note

that the intersection of these spans the feasibility conditions of MSTCC.

This approach enables leveraging existing results regarding both polyhedral regions,

such as valid inequalities for Pst ab(Ĝ), which we discuss and include in the proposed for-

mulations. A fundamental point is that, on the one hand, there are several representations

of Pst (G) which are as tight as possible, i.e. they define the convex hull of incidence vec-

tors of spanning trees in G , and, additionally, the optimization problem associated with it

(MST) is well-solved (see Magnanti and Wolsey [1995]).

On the other hand, that is not the case for Pst ab(Ĝ), as the stable set problem is

NP-hard. Although it has been studied for decades, and several properties and valid in-

equalities have been established for it [Padberg, 1973, 1979], no ideal description of Pst ab

is to be expected, unless P=NP.

We thus start with a review of Pst ab(Ĝ) relaxations that we consider in this work to

denote the polyhedral region corresponding to conflict-free incidence vectors. Finally,

in Section 3.3 these are combined with three different descriptions of Pst (G) to provide

MSTCC formulations. We note in advance that one of them (which uses an extended mul-

ticommodity flow formulation) is not capable of solving benchmark problem instances,

in spite of different efforts to strengthen it. Nevertheless, it actually provided insight in

designing the other formulations, and a brief discussion on computational results is in-

cluded.

3.2 Stable set polytope relaxations

Given a stable set ϕ⊆ E in a graph Ĝ(E ,C ), its incidence vector χϕ ∈B|E | is defined as:

χ
ϕ
i =

�
1, if ei ∈ϕ
0, otherwise

The Pst ab(Ĝ) polytope consists of the convex hull of incidence vectors of all stable

sets in Ĝ . That is:

Pst ab(Ĝ) = conv
�
χϕ :ϕ⊆ E a stable set

�

Note that it is indeed a polytope, as it is embedded in the |E |-dimentional unit cube. To

describe this region by a system of linear inequalities, we associate a variable x ∈ B|E | to

denote incidence vectors. Then, the combinatorial definition of a stable set yields the
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simplest relaxation of Pst ab(Ĝ):

xei +xe j ≤ 1, ∀
�
ei ,e j

�
∈C (3.1)

0 ≤ xe ≤ 1, e ∈ E (3.2)

All integer solutions to this system correspond to incidence vectors of stable sets

in Ĝ : edge inequalities (3.1) constraint the selection of at most one of the vertices joined

by each edge, while (3.2) is the continuous relaxation of x. Together, these are refered

to as trivial inequalities, and the standard terminology for this region is simply stable set

polytope relaxation, or Pr st ab(Ĝ) =
�

x ∈R|E | : x satisfies (3.1) e (3.2)
�
. An important result

is that it yields the convex hull of stable sets in Ĝ if and only if the conflict graph is bipartite

[Grötschel et al., 1988, Section 9.1].

We strengthen this representation with the intersection of two tighter polyhedra, as

we describe next. The first is known as the cycle-constrained stable set polytope Pcst ab ⊂
Pr st ab ⊂R|E |

+ , given by (3.1), (3.2) and odd-cycle inequalities:

�

i∈U
xei ≤

|U |−1
2

, ∀U ⊂ E inducing an odd-cycle in Ĝ (3.3)

These are valid for Pst ab since the cardinality of any stable set in a subset U of vertices of Ĝ

inducing an odd-cycle (with or without chords) is at most � |U |
2 �= |U |−1

2 . Still, Pcst ab yields

the convex hull of stable sets in Ĝ if and only if the conflict graph is t-perfect [Grötschel

et al., 1988, Section 9.1]. Although this is a quite restrictive condition, the separation of

odd-cycle inequalities remarkably improves the quality of dual bounds for MSTCC bench-

mark instances, as we describe in Section 5.3.

Finally, an additional relaxation consists of the clique-constrained stable set poly-

tope Pqst ab ⊂ Pr st ab ⊂R|E |
+ , described by (3.2) and clique inequalities:

�

i∈Q
xei ≤ 1, ∀Q ⊂ E inducing a clique in Ĝ (3.4)

The unit upper bound is clearly valid for Pst ab , as no stable set in Ĝ could include more

than one vertex from any complete subgraph. The class of graphs for which Pst ab and

Pqst ab coincide is precisely that of perfect graphs [Grötschel et al., 1988, Section 9.2]. Note

that edge inequalities (3.1) correspond to 2-cliques, and any x ∈ Pqst ab also satisfy them.

Also, in the case of triangles in Ĝ , (3.3) and (3.4) coincide.

We remark that, when they induce odd-holes (chordless odd-cycles), inequalities

(3.3) might define facets of Pst ab , and the sequential lifting procedure of Padberg [1973]

could be used for that purpose. Padberg also proved that inequalities (3.4) are facet-
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defining for Pst ab if and only if the clique induced by Q is maximal. We build on this last

result to include exactly those non-dominated inequalities in the model (see Section 4.3).

Unfortunately, while clique inequalities traditionally had a strong impact in solving stable

set problems, the impact of these in MSTCC benchmark instances was less expressive, as

we evaluate in Section 5.3.

In conclusion, let Pst denote any representation of the polytope of spanning trees

in G(V ,E). The MSTCC formulations we introduce in the next section consist of a partic-

ularization of min
��

e∈E ce xe : x ∈ Pst ∩Pcst ab ∩Pqst ab ⊆B|E |�.

3.3 ILP formulations for MSTCC

The spanning tree polytope Pst has a major relevance in polyhedral combinatorics, and is

arguably one of the most studied. Related results, such as those by Edmonds [1971], were

very important to the development of this research field.

Several formulations of this polytope are known. Some of these are compact (in the

sense of including a polynomial number of variables and constraints), e.g. those based

on network flows, the one using Miller-Tucker-Zemlin constraints [Miller et al., 1960;

Desrochers and Laporte, 1991], or the more recent one by Urrutia and Lucena [2014]. As

for exponentially-sized formulations, those using subtour elimination constraints (SEC)

and cutset inequalities are the most usual. Moreover, there are interesting relations of

equivalence and inclusion among these, and the reader is referred to the chapter by Mag-

nanti and Wolsey [1995] for a thorough revision on the subject.

The main results of this work correspond to formulations with SEC and a directed

version of cutset inequalities, both providing the tightest possible representations of the

Pst polytope. Actually, a different setting was considered in early exploratory experiments,

using a single-commodity flow formulation, which is not tight. Unfortunatelly, as in the

case for the classic MST problem, rather weaker LP relaxation bounds were verified.

Finally, we stress that, although simply appending edge inequalities (3.1) to each

of the following representations of Pst would yield correct formulations for MSTCC, the

present approach strengthens it with tighter relaxations of the stable set polytope. As in

the previous discussion, define the incidence vector x = (x1, x2, . . . , x|E |) of a given solution

so that xe = 1 if edge e is included in the solution, and xe = 0 otherwise.

3.3.1 Extended multicommodity flow formulation

This section describes a first attempt to formulate MSTCC as an ILP with a polynomial

number of variables and constraints. Although this formulation is not further investigated



3.3. ILP FORMULATIONS FOR MSTCC 17

in the remainder of the text, it is included and brief computational results are outlined

here since, to some extent, it motivates the development of a cutting plane approach.

We consider a network flow f to impose connectivity and node spanning require-

ments on the solution. It is thus necessary to set an arbitrary root node r as flow source;

we use r = 1. Although the model is still defined on the undirected graph G(V ,E), flow

variables fi , j and f j ,i are introduced considering flow in both directions of each edge

{i , j } ∈ E . Moreover, there is a different commodity associated with each vertex k �= r .

One flow unit of each commodity k emanates from the root and must reach appropriate

vertex k. Let f k
i j denote the amount of commodity k flowing from i to j .

Flow directions are defined in consistency with the usual cutset δ(U ) associated

with a subset U of V : δ(U ) = {{i , j } ∈ E : i ∈ U , j �∈ U }, such that δ({i }) denotes the set

of edges incident to vertex i . Then, let δ+({i }) indicate flow directions leaving vertex i , i.e.

variables f k
i , j for all j ,k. Analogously, δ−({i }) indicates flow directions reaching vertex i .

The extended multicommodity flow representation of the spanning tree polytope

consists of Pem f low ⊂R|E |
+ ×R2|E |×(|V |−1)

+ , given by (3.5)− (3.11) below:

�

e∈δ−({r })
f k

e −
�

e∈δ+({r })
f k

e =−1, ∀k (3.5)

�

e∈δ−({k})
f k

e −
�

e∈δ+({k})
f k

e = 1, ∀k (3.6)

�

e∈δ−({v})
f k

e −
�

e∈δ+({v})
f k

e = 0, ∀k, v �∈ {r,k} (3.7)

�

e∈E
xe = |V |−1 (3.8)

f k
i j + f k �

j i ≤ xe , ∀k, k �, e = {i , j } ∈ E (3.9)

f k
i j ≥ 0 and f k

j i ≥ 0, ∀k, {i , j } ∈ E (3.10)

0 ≤ xe ≤ 1, e ∈ E (3.11)

Equations (3.5) to (3.7) are flow balance constraints on every commodity k. This

connectivity requirement, together with the selection of n−1 edges in equation (3.8), en-

sures the solution is a spanning tree. Inequalities (3.10) restrict flow values to be non-

negative, and (3.11) is the continuous relaxation of binary variables for selecting edges.

Although the formulation includes variables f k
i , j and f k

j ,i , bidirectional flow inequal-

ities (3.9) are shown to correctly bind flow of different commodities in a given edge to the

same direction, as Magnanti and Wolsey [1995] show. Moreover, they prove that this for-

mulation is tight (providing the convex hull Pst of incidence vectors of spanning trees of

G in the LP relaxation) only if this class of O(mn2) inequalities is included.
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Now, by projecting Pem f low on x variables and taking the intersection with a relax-

ation of Pst ab , a formulation for MSTCC is provided. To keep the number of constraints

polynomial in the input size, one would start with the simplest relaxation with edge in-

equalities (3.1), though alternatives were considered (see the end of this section). That is:

min

�
�

e∈E
ce xe : x ∈ pr o jx(Pem f low )∩Pr st ab ⊆B|E |

�

(3.12)

Preliminary experiments were performed with both this and the analogous single

commodity formulation (which is not tight, including fractional vertices), described by

Zhang et al. [2011]. On the one hand, none of these is able to solve MSTCC benchmark in-

stances in less than dozens of hours of computation with CPLEX 12.5.1, in a platform with

an Intel Core i7 980 (3.33GHz) CPU and 24GB of RAM. E.g., one of the smallest instances

(|V | = 50, |E | = 200, |C | = 398) takes over 13 hours to be solved and, just by replacing the

conflict graph so that |C | = 597, it takes over 55 hours. In fact, only two type 1 instances

(problems which are not trivial) could actually be solved within two days of execution.

On the other hand, the results with an alternative set of problem instances yield

limited intuition. A set of 56 instances was constructed, where graphs G(V ,E) are smaller,

with |V | ∈ {10,25,50}, and conflict graphs Ĝ(E ,C ) are yet sparser, with |C |≤ 15
100 ×m (while

the benchmark ones have |C | ≤ 15
100 ×

m(m−1)
2 , i.e. up to 15% of the maximum density of

Ĝ). In this case, the single commodity formulation yields much worse dual bounds than

its multicommodity counterpart; note that the same conclusion holds for the classic MST

problem [Magnanti and Wolsey, 1995]. While the former requires a large number of nodes

in the enumeration tree to verify an optimal solution, the latter can solve several of these

smaller instances in the root LP relaxation.

We considered that, using a decomposition strategy with tight formulations equiv-

alent to Pem f low , would enable solving large problem instances by generating the model

dynamically, as opposed to loading the complete formulation a priori.

Finally, different strategies for better approximating Pst ab in (3.12) were evaluated,

none of which had any impact worthy of notice. This included making triangle inequali-

ties (either 3-cliques in (3.4) or 3-cycles in (3.3)) explicit, their lift to maximal cliques, and

the complete enumeration of maximal clique inequalities.
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3.3.2 Undirected formulation with subtour elimination

constraints

Let Psec ⊂R|E |
+ denote the representation of the spanning tree polytope with subtour elim-

ination constraints (SEC), given by:

�

e∈E(S)
xe ≤ |S|−1, ∀S ⊂V ,S �=� (3.13)

�

e∈E
xe = |V |−1 (3.14)

0 ≤ xe ≤ 1, e ∈ E (3.15)

While SEC (3.13) enforce a cycle-free condition, since any connected subgraph on S

inducing a cycle has at least |S| edges, a feasible solution is guaranteed to be a spanning

tree of G by picking |V |−1 edges (3.14). Constraints (3.15) correspond to the continuous

relaxation of binary variables xe .

An important result by Edmonds [1971] is that the above formulation is tight, as

all its vertices are integer-valued. Since there are exponentially-many inequalities (3.13),

they could only be included a priori in a model for very small-sized instances. An usual

approach in practice is thus to generate them dynamically, as they are violated by solu-

tions to LP relaxations of the formulation. Section 4.4 describes the standard separation

procedure implemented for this purpose in the corresponding algorithm.

This representation is used to formulate MSTCC as the following ILP, to which we

refer as the undirected formulation:

min

�
�

e∈E
ce xe : x ∈ Psec ∩Pcst ab ∩Pqst ab ⊆B|E |

�

(3.16)

3.3.3 Directed formulation with cutset inequalities

Alternatively, a formulation with directed cutset inequalities (DCUT) is also investigated.

In this case, we consider the directed graph G �(V , A), with A = {(i , j )∪ ( j , i ) : {i , j } ∈ E },

and both arcs have the same cost ci , j as the corresponding edge in G . The problem is

thus to find a conflict-free minimum spanning arborescence of G �. This requires setting a

particular vertex r as the arborescence root. Magnanti and Wolsey [1995] show that this

formulation is symmetric with respect to the selection of the root vertex, i.e. the LP relax-

ation bound for the classic minimum spanning arborescence problem is independent of

the choice for r . We use r = 1 in this work; further research could investigate the impact

of alternative choices.
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The directed formulation Pdcut ⊂R2|E |
+ consists of:

�

a∈δ+(U )
ya ≥ 1, ∀U ⊂V ,r ∈U (3.17)

�

a∈δ−(v)
ya = 1, ∀v ∈V \{r } (3.18)

�

a∈δ−(r )
ya = 0, (3.19)

�

a∈A
ya = |V |−1, (3.20)

0 ≤ ya ≤ 1, a ∈ A (3.21)

Cutset inequalities (3.17) guarantee the selection of a connected subgraph, estab-

lishing that every component (induced by a proper subset of vertices U containing the

root) has at least one arc leaving it. As in the case of SEC (3.13), this class of inequalities is

exponentially sized, and the corresponding separation procedure is described in Section

4.4.

Constraints (3.20) and (3.21) are analogous to the undirected case. Equalities (3.18)

impose that exactly one arc must reach every non-root node, while (3.19) excludes from

the solution all those arcs directed into the root node. Both constraints are actually im-

plied by (3.17) and (3.20), but including them explicitly makes the solution of the LP re-

laxation by the cutting-plane approach more efficient. As less iterations of the separation

procedure for DCUT are performed, the relaxation is completed much faster and the re-

sulting model is smaller.

In consistency with the discussion in Section 3.2, the representation of conflict-free

arborescences considers the projection π : R2|E |
+ �→ R|E |

+ , mapping y back into the space of

undirected variables by π(y){i , j } = y(i , j ) + y( j ,i ). Note that y(i , j ) + y( j ,i ) ≤ 1 is also implied

by (3.17) and (3.20). Moreover, Magnanti and Wolsey [1995] show that both formulations

for Pst are equivalent, i.e. Psec and pr o jx(Pdcut ) describe precisely the same polyhedral

region, as tightly as possible.

Finally, we may formulate MSTCC by:

min

�
�

a∈A
ca ya : y ∈ Pdcut ⊆B2|E |,π(y) ∈ (Pcst ab ∩Pqst ab) ⊆B|E |

�

, (3.22)

3.4 Final remarks

This chapter discussed several results concerning polyhedral representations of interest

for the development of exact algorithms for the MSTCC problem, including descriptions
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of the spanning tree polytope, as well as different relaxations of the stable set polytope.

The intersection of these provides ILP formulations for MSTCC, which in turn are suitable

for a cutting plane approach.

While this work was rather successful in using these formulations to improve on the

previous literature results, as described in Section 5.4, a more thorough problem-specific

analysis of the MSTCC polytope would also be interesting. For instance, one could inves-

tigate the form of valid inequalities, whether also valid for the stable set relaxation or not.

It would be interesting to know under which conditions are odd-hole and maximal clique

inequalities also facet-defining for the new polytope.

While such issues are interesting in their own right, the algorithmic approach may

require enhanced formulations and to leverage more established techniques from the sta-

ble set literature. In this sense, a natural extension would be to consider the edge projec-

tion technique to separate rank inequalities, a large class which generalize both odd-cycle

and clique inequalities [Rossi and Smriglio, 2001; Rebennack et al., 2012].

We also note that Rebennack et al. [2012] describe different classes of inequalities

for Pst ab , and offers a tutorial introduction on branch and cut approaches for the stable

set problem. The current work built on their description of the separation procedure for

odd-cycle inequalities.

Finally, a more rigorous description of the issues discussed in Section 3.2 is available

in the book by [Grötschel et al., 1988, Chapter 9], along with more in-depth results on the

stable set polytope.





Chapter 4

Exact algorithms for MSTCC

This chapter introduces an approach for the exact solution of the MSTCC problem. This

approach includes two main phases. First, a preprocessing method, described in Section

4.2, attempts to reduce the instance size and probes problem variables for possible fixa-

tions. That is followed by a branch and cut phase, where a model with exponentially-many

constraints corresponding to one of the formulations presented in Sections 3.3.2 or 3.3.3

is solved, i.e. either the undirected formulation (with subtour elimination constraints) or

the directed one (with cutset inequalities).

The remaining algorithms are presented next. The general methods for each formu-

lation are outlined in Section 4.3. The procedures for solving separation problems with

respect to each class of inequalities are at the core of each algorithm; these are described

in Section 4.4. Finally, we give particular implementation details and design choices in

Section 4.5, followed by general remarks.

4.1 Overview

As an enhancement to the solution process, MSTCC problem-specific feasibility condi-

tions were considered to devise the preprocessing algorithm described in the next sec-

tion. It is worth remarking that, although designed in the context of our branch and cut

approach, the algorithm may be integrated to any solution technique for the problem.

A branch and cut framework is the general method we specialize to solve the dis-

cussed ILP formulations with the dynamic generation of cutting planes. The reader is re-

ferred to the book by Applegate et al. [2007] for a recent and thorough presentation of the

computational aspects of the method. The corresponding separation algorithms used in

this work are exact. Moreover, an important feature is that, even though the clique sepa-

23
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Figure 4.1. Three steps of the preprocessing algorithm, given input graphs G(V ,E)
and Ĝ(E ,C ). Both a contraction in the first step and a removal in the second implies
fixing edge variables and updating the corresponding conflicting pairs in C . The out-
put includes the objective function offset due to contracted edges.

ration problem is itself NP-hard, we were able to identify and include in our formulations

the subset of non-dominated inequalities in this class a priori (see Section 4.3).

Finally, this chapter was written regarding reproducibility matters. The exposure

detail is such that a reader (with access to the corresponding literature references) could

implement the described algorithms, execute similar experimental evaluations and de-

rive the same general conclusions [Johnson, 2002].

4.2 Preprocessing algorithm

The preprocessing phase is the first one in the solution approaches developed in this the-

sis, and it is an important factor for their overall sucess (as described in Section 5.2). Also,

it is an essential part of the problem-specific analysis of the present contribution. Figure

4.1 depicts the overall method, which is described next.

Let a MSTCC input instance consist of the original graph G(V ,E) and the conflict

one Ĝ(E ,C ). The general algorithm is a three-phase iterative process, where each phase

is executed as long as the problem instance is updated. To every step fixing an edge in G

corresponds an update in the conflicting pairs in Ĝ .

The first phase checks for cut-edges (bridges) in G , using depth-first search. As long

as the original graph is connected, any cut-edge e1 is contracted, its cost ce1 is added as

an offset to the optimal value of the reduced problem (if any), and conflicting pairs are

removed both from G and Ĝ , i.e. we can fix variables corresponding to ek to zero, for all

ek ∈ E such that {e1,ek } ∈C . If at any point we verify that G is not connected, the original

problem is infeasible; on the other hand, if the resulting graph is a conflict-free tree, it is

also the unique feasible solution to the problem. Figure 4.2 illustrates the execution of

this phase; note that the resulting problem instance has a unique solution.
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Figure 4.2. Example of the first preprocessing phase, given input (original) graph G1

and conflict graph Ĝ1. Since cut-edge 6 is necessary for the graph to be connected, it
must be selected in any spanning tree. After contracting it, we remove the conflicting
ones (edges 3 and 5) from G1, as well as the corresponding nodes in the conflict graph
Ĝ1. The algorithm continues checking for other cut-edges, and recognizes that the
resulting graph G2 is a conflict-free tree and, therefore, the unique feasible solution.

The remaining phases use the probing technique (i.e. evaluating the consequences

of possibly setting a binary variable to one of its bounds), based on implications from fea-

sibility conditions, as Atamtürk et al. [2000] denote. Nevertheless, in the context of that

work it means analyzing the structure of a general IP to derive infeasibility implications,

while our next steps analyze the combinatorial structure at hand: any solution is required

to induce a connected subgraph of G , and conflicting edge pairs might render that infea-

sible after tentatively fixing variables in chain.

In the second phase, we check the connectivity of subgraphs of G including a given

edge e (with degree in the conflict graph δĜ (e) > 0). If the chain removing conflicting pairs

and fixing any cut-edges possibly implied by the selection leads to a disconnected graph,

we may remove e from E and the corresponding conflicts from C . In this case, we return to

the first phase as G might include new cut-edges. Figure 4.3 includes a sample execution

of this phase. Note that no decision could be draw from probing edge 1 if it does not imply

any cut-edge.

Finally, if no edge could be fixed in the previous step, a third phase performs a sim-

ilar evaluation on the connectivity of G , now probing pairs of variables. The chain starts

fixing in the solution edges e1 and e2 (neither already in conflict with each other nor both

conflict-free in Ĝ), and proceeds by removing conflicting ones and including any cut-

edges implied by the selection. Now, if G would become disconnected, the new conflict

pair (e1,e2) is included in C , and we may return to the second phase to check if it is pos-

sible to remove any edge. Moreover, if that is the case, we return to the first phase. See

Figure 4.4 for a sample iteration of this phase.
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Figure 4.3. Example of the second preprocessing phase, given input (original) graph
G1 and conflict graph Ĝ1. We probe the instance fixing edge 1 in the solution, which
implies removing 4 and 7. Checking for cut-edges, we have implied that 2 (any other
edge, in fact) would also be selected. Since the conflict graph includes {2,5}, we would
remove edge 5, and the graph would have another component (the node in black
is disconnected from the others). This means that our original probe is wrong: no
spanning tree includes edge 1, and we may remove it from the input. The algorithm
proceeds by probing new edges.

If an iteration is completed without any update on the third phase, the reduced in-

stance and the objective value offset are output. Note that, if any conflict-free spanning

tree of G is obtained during the last two phases, we may store it as a primal feasible solu-

tion.

Since all the three phases perform a number of iterations parameterized by the cur-

rent cut-edges count, to discuss the asymptotic complexity of the procedure would re-

quire a specialized average-case analysis, which is beyond the scope of this work. One

could point independently that one iteration of the first phase has cost in O(|V |+|E |), that

the second phase perform O(|E |) probing chains, while the third performs O(|E |2). Never-

theless, a worst-case bound on the behavior of the algorithm is of minor significance. In

practice, however, we observe that it is sufficiently fast for preprocessing MSTCC bench-

mark instances, with execution time below one minute in a platform with an Intel Core i7

980 (3.33GHz) CPU.
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Figure 4.4. Example of the third preprocessing phase, given input (original) graph
G1 and conflict graph Ĝ1. We probe the instance fixing the pair of edges 1 and 2 in
the solution, which implies removing 4 and 5, as they are in conflict. Since this would
disconnect the input graph (the node in black would become isolated), no feasible
solution can select both edges 1 and 2 simultaneously. I.e. they are in conflict and
{1,2} can be made explicit in the conflict graph.

4.3 Branch and cut algorithms

After preprocessing the problem instance with the algorithm described in Section 4.2, we

propose a branch and cut approach for MSTCC, solving either (3.16) or (3.22) with the

generation of cutting planes corresponding to violated odd-cycle inequalities (3.3) and

either SEC (3.13) or DCUT (3.17), respectively.

Both formulations consider the intersection with the Pqst ab polytope, constrained

by the exponentially-sized class of clique inequalities (3.4). However, the separation prob-

lem associated with it isNP-hard, in general. In fact, the optimization problem over Pqst ab

itself is NP-hard [Grötschel et al., 1988, Section 9.2]. Nevertheless, we verified that con-

flict graphs in the set of challenging benchmark instances for MSTCC used in the literature

have a limited number of maximal cliques: except for one instance, Ĝ(E ,C ) has less than

|C | maximal cliques, leading to a smaller model than using edge-inequalities (3.1). In fact,

after the preprocessing phase, that was the case for the complete benchmark set.

It was therefore possible to successfully use the maximal clique enumeration algo-
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rithm of Tomita et al. [2006] to actually include the corresponding (non-dominated sub-

set of) maximal clique inequalities a priori. It is extremely fast in practice, with negligible

runtime for MSTCC instances. The authors also prove that the worst-case complexity of

the algorithm (O(3m/3), in an m-vertex graph) is optimal with respect to m, since there

can be at most T (m) ≤ 3m/3 maximal cliques.

The methodology proposed in the current work might be effective when T (m) is in

O(|C |). Alternatively, when using one of these formulations to solve a different instance

set, which renders the enumeration method infeasible, one could use a greedy heuristic

to: (i) replace edge-inequalities by any maximal clique containing it; (ii) lift any violated

triangle identified during the separation procedure for odd-cycle inequalities to a larger

clique (Rebennack et al. [2012] suggests that it could be effective in the context of stable

set instances).

Now, the algorithms starts as follows:

• in the case of the undirected formulation (3.16) we solve min
��

e∈E ce xe
�

subject to

(3.14), (3.15) and (3.4). Let x be the solution to such linear program (LP). Clearly, if x

is integral and a depth-first search from any vertex i ∈V reaches every other vertex

in V \{i }, then x is also the optimal solution of the original ILP.

• in the case of the directed formulation (3.22), we solve min
��

a∈A ca ya
�

subject to

(3.18), (3.19), (3.20) and (3.4). Let y be the solution to such LP. Clearly, if y is integral

and there is a directed path from the root r to every other vertex in V \{r }, then

the projection of y into the x variable space by x{i , j } = yi , j + y j ,i is also the optimal

solution of the original ILP.

Otherwise, we search for constraints violated by the current solution, which

strengthen the relaxed polyhedron: we check both for odd-cycle inequalities (3.3), as well

as SEC (3.13) in the undirected formulation, or DCUT (3.17) in the directed case. This is

performed by the separation procedures we describe in the next section. If any procedure

is able to separate the current solution, we add the corresponding cuts globally, and solve

the new, reinforced LP. If both separation procedures fail to find a violated inequality, we

branch on variables and iterate.

Finally, note that there are several strategies for selecting which cuts to include in

the formulation, once different cutting planes were found by the separation procedures.

We discuss four alternatives and compare their behavior in Section 4.5.
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4.4 Separation procedures

The following is a description of the algorithms for solving the exact separation problems

for SEC (3.13), DCUT (3.17), and odd-cycle inequalities (3.3). Apart from details of the

current implementation, these are actually quite standard, and the reader is referred to

classic expositions.

Subtour elimination constraints and directed cutset inequalities

The algorithms for both procedures are very similar, and are described next in conjunc-

tion. Magnanti and Wolsey [1995] describe a standard algorithm to look for violated SEC

in a solution x to the relaxation of Psec . First, a directed network corresponding to x is

built, with the capacity of both arcs (i , j ) and ( j , i ) set to the current value of edge variable

xi , j . We also set an arbitrary vertex as root r ; we use r = 1. Now, x satisfies all subtour

elimination constraints if and only if we can send one unit of flow from r to every other

vertex in the capacitated network.

Therefore, by performing |V |−1 maximum flow (minimum cut) computations, from

r to every vertex i ∈ V \{r }, we may check in polynomial time if x is feasible in Psec : if the

value of any minimum cut is less than 1, we have found a violated inequality.

The same procedure applies to DCUT, with a slightly simpler implementation. In

particular, the network and root node are already defined in advance in this case. Also

note that, after finding a minimum cut (S,V \S) , the violated DCUT inequality is already

defined, while for SEC it is neccessary to check whether the cutset S or its complement

yield the violated constraint.

To find a minimum (r, i ) cut, we use an implementation of the highest-label preflow-

push algorithm of Goldberg and Tarjan [1988], available in the open-source Library for Ef-

ficient Modeling and Optimization in Networks (LEMON, see Dezső et al. [2011]). Ahuja

et al. [1997] present a comparative study of different implementations of the preflow-push

algorithm. They indicate that this version has the best worst-case complexity while si-

multaneously having the best empirical performance. The implementation in LEMON

has a worst-case time-complexity in O(|V |2
�
|E |); therefore, the current implementation

of both separation procedures executes in time proportional to O(|V |3
�
|E |).

Odd-cycle inequalities

Gerards and Schrijver [1986] introduce an exact separation procedure for odd-cycle in-

equalities, which is clearly described in the tutorial of Rebennack et al. [2012]. Much like
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the separation of SEC, we may check in polynomial time if every odd-cycle inequality is

satisfied by computing a minimum cost cycle in an auxiliary graph.

We start by defining a new weight function w for adjacencies in the conflict graph

Ĝ(E ,C ): let w(u, v) = (1−xu−xv )
2 for each {u, v} ∈ C . Since constraints (3.1) and (3.2) are

satisfied a priori, we have that w : C → [0, 1
2 ]. We also construct an auxiliary bipartite

graph H by duplicating Ĝ as follows: H has two vertices u+ and u− for each u ∈ E , as well

as edges {u+, v−} and {u−, v+} for each {u, v} ∈C , both with weight w(u, v).

Then, for each u ∈ E , we compute a shortest (u+,u−) path in the auxiliary graph

H . Note that, as the weight function w is non-negative, we may use Dijkstra’s algorithm,

stopping its execution as soon as the goal vertex u− is selected. By the construction of H ,

the vertices u+ and u− are in different sets of the bipartition, implying that the path has

odd length. By omitting the + and − indices, the path corresponds to a closed odd-walk

in Ĝ . However, this walk might include repeated nodes and edges, since the shortest path

is determined in H ; in fact, H might as well not be connected. An odd-cycle is possibly

retrieved after removing such repetitions, by inspecting the vertices in the sequence. Note

that the remaining sequence may not be a closed walk, and the shortest path computation

for this u yields no cycle in Ĝ for the current solution x.

The weight of any such odd-cycle U ⊂ C in the conflict graph, disregarding any

chords it might have, is w(U ) = �
{i , j }∈U w(i , j ) = �

{i , j }∈U
(1−xi−x j )

2 = |U |
2 − 1

2
�

{i , j }∈U (xi +
xu) = |U |

2 −�
i∈V (U ) xi , where V (U ) ⊆ E denotes the set of nodes induced by U . That is,

�
i∈V (U ) xi = |U |

2 −w(U ), implying that x violates the corresponding odd-cycle inequality
�

i∈V (U ) xi ≤ |U |−1
2 = |U |

2 − 1
2 if and only if w(U ) < 1

2 .

In the present implementation, the shortest path algorithm uses a binary heap, with

worst-case time complexity in O(|E |× lg(|V |)). Therefore, the separation procedure exe-

cutes in time proportional to O(|V |× |E |× lg(|V |)).

4.5 Implementation details

The following is a series of details and design choices regarding the implementation of

separation procedures and the enumeration of maximal cliques, thus completing the de-

scription of the proposed algorithms.

Separating integral solutions. It is important to highlight that, in the special case of an

integral solution x ∈ B|E | (or y ∈ B2|E |, in the directed formulation), there can be no

violated odd-cycle inequality, since the edge inequalities (3.1) guarantee a stable set

in Ĝ .
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Hence, we try to find a violated SEC or DCUT, according to the adopted formulation.

In this case, we need reduced asymptotic complexity than in the fractional case: x

is feasible in Psec (analogously, y in Pdcut ) if and only if the corresponding edges

induce exactly one connected component in G , which we check in O(|E |) time with

DFS. If there are different components, inspecting them yields the subtour (or vi-

olating cutset) and the inequality to add, and we terminate the procedure without

considering the different algorithms to separate a fractional solution.

Retrieving cycles from a closed walk in OCI separation. The description in Section 4.4

includes a step to retrieve odd-cycles in the conflict graph from a closed walk in

an auxiliary, bipartite graph. While it is a simple task of inspecting the walk, one

must take care to keep the linear complexity of this step.

The intuition is basically to check the walk sequentially and, as soon as a repeated

vertex is identified, to remove (and store) the corresponding cycle.

Improving OCI separation. Rebennack et al. [2012] also indicate some implementation

tweaks for the separation of odd-cycle inequalities. Among those, we include two

simple and effective adjustments in our approach.

First, the auxiliary graph H can be greatly reduced by removing nodes u+ and u−

whenever xu is integer, since no odd-cycle including u could yield a violated con-

straint, as we explain next. Suppose U is an odd-cycle in Ĝ(E ,C ), and that it includes

j ∈ E , with x j = 0. Now,
�

i∈U xi =
�

i∈U ,i �= j xi ≤ |U \{ j}|
2 = |U |−1

2 , where the inequal-

ity holds because every two consecutive nodes can contribute at most 1 to the sum

in the left hand side, provided edge inequalities (3.1) are satisfied. Similarly, x j = 1

implies two neighbors in U with null value, and the above argument applies.

The second refinement regards the case of x such that xu +xv = 1 for a given (u, v) ∈
C . The definition of the weight function w provides that both edges (u+, v−) and

(u−, v+) in H would have null cost. It is more interesting, though, to add a small

weight � instead, to avoid unnecessary vertices in the shortest path. We use �= 10−6,

as the authors suggest.

Strategies for cut selection and inclusion. Preliminary experiments indicated that dif-

ferent strategies for reinforcing the relaxed polyhedron when separating the current

solution have a major impact on computational performance. Standard strategies

evaluated in this work include returning as soon as a first cut is found, looking for

the most violated inequality, or including all violated cuts.
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The best overall results were verified with an alternative strategy looking for some

of the best cuts: we include not only the most violated inequality, but also others

which are close enough to being orthogonal to it. Pilot studies suggested accepting

hyperplanes with an inner product of 0.1 or less. This enhanced strategy seems to

balance the strength and diversity of included cuts, allowing to solve the LP relax-

ation in time similar to that of including all violated cuts, while limiting the model

size. Alternative, more robust strategies are proposed in different works, e.g. Lucena

and Resende [2004] and Koch and Martin [1998], both in the context of different

Steiner problems in graphs

For completeness, details of the corresponding evaluations are as described next:

• Requiring hyperplanes to be orthogonal (to have a null inner product) seems

too strict if we are interested in including a considerable fraction of the cuts

generated in a single execution of the separation procedure. Therefore, we

introduce a tolerance � for accepting hyperplanes as orthogonal, defined by

comparing the average ratio of included cuts to the total number of cuts gen-

erated, using both the directed and undirected formulations. After evaluating

� ∈ {0,0.1,0.2, . . . ,0.9}, it was possible to notice a major increase in the average

ratio of included cuts when using �≥ 0.2. Therefore, �= 0.1 was adopted.

• Next, the time required to solve the initial LP relaxation using each strategy

was compared. Evaluating both formulations, there is a remarkable difference

in the total relaxation time if a single cut is included in each execution of the

separation procedures (either the first found or the most violated one), or if

several are considered at once (either all cuts found or those close to being

orthogonal to the most violated one). The average execution time for fifteen

type 1 instances (with |V | ∈ {100,200}) using each strategy is presented in Table

4.1. We decided to use the enhanced strategy with orthogonal cuts, as its per-

formance is comparable to the strategy of including all cuts, while restricting

the model size – another driver of the overall performance in a branch and cut

setting (on average, 40% less cuts are included, per execution of the separation

procedures).

Efficient enumeration of maximal cliques. The algorithm of Tomita et al. [2006] is quite

simple to implement but, since it is a recursive procedure based on depth-first

search, it is remarkably output-sensitive. The authors indicate this behavior and

suggest alternatives for iteratively storing the cliques. In the current algorithm, the

corresponding incidence vector is iteratively updated (technically, an object repre-
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Table 4.1. LP relaxation execution time with different cut selection strategies.

Strategy Average time (s)
First cut only 142.1

Most violated cut only 154.1
Most violated and orthogonal cuts 8.7

All violated cuts 4.5

senting it is a parameter passed by reference) and, when a maximal clique is deter-

mined, the corresponding inequality is appended to the model.

Furthermore, the algorithm depends on efficient set intersection and union oper-

ations. In this implementation, a bitset representation of the adjacency lists of the

graph is used. Finally, it is worth remarking that the description of the algorithm by

Cazals and Karande [2008] is rather simpler and easier to follow.

4.6 Final remarks

Together with Chapter 3, this one completes the description of the methodology adopted

in this work. In summary, a general, two-phase solution method for MSTCC was devel-

oped, with preprocessing and branch and cut algorithms. The latter builds on separation

procedures for SEC, DCUT and OCI, as well as an enumeration technique for maximal

clique inequalities.

Although some exploratory experiments were performed with different branching

configurations (e.g. adjusting variable priorities, using strong branching or tree node se-

lection options), no conclusion could be draw thereof. It could be interesting to leverage

more established techniques from the stable set literature, e.g. the balanced branching

rule of Balas and Yu [1986].

It would also be interesting to extend the separation procedure for OCI as Reben-

nack et al. [2012] suggests. If a step to remove chords from the cycles is included, odd-hole

inequalities could be separated (while keeping the exactness of the procedure).

Some of the design choices focus into achieving better computational performance.

In this sense, further research could include an evaluation of tailing-off effects in opti-

mization, such as described by Padberg and Rinaldi [1991]. Also, note that all the sepa-

ration procedures described in this work are suitable for parallel implementations, with

different maximum flow (in the case of SEC and DCUT) and shortest paths (for OCI) com-

putations being performed simultaneously in a multicore platform. Finally, the shrinking

heuristic of Padberg and Grötschel [1985] to reduce the network size could be used to

speed up the maxflow algorithm; for instance, it is rather effective in the context of the
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branch and cut algorithm of Lucena and Beasley [1998] for the Steiner problem in graphs.



Chapter 5

Computational experiments

This chapter completes the main body of contributions in this dissertation, describing a

series of computational experiments involving the use of the algorithms proposed in this

study. Section 5.1 outlines the experimental design and objectives. The next two sections

consider the isolated impact of the algorithm building blocks, discussing issues such as:

how effective is the preprocessing algorithm? How does separating OCI or including max-

imal clique inequalities a priori helps to improve dual bounds for MSTCC?

Finally, Section 5.4 presents a direct comparison of the proposed formulations

against the best results previously available in literaure. The baseline is the work by Zhang

et al. [2011], and we indicate how stronger the solution bounds provided by the current

approach are, and claim that it is the best known algorithm for the MSTCC problem.

5.1 Overview

The main contribution of this work is the approach for the exact solution of MSTCC. The

goals of the computational evaluation we present are thus twofold: to assess the impact

of the main design decisions on the computational performance of our implementation,

and to indicate how stronger the bounds it provides are as compared to those of Zhang

et al. [2011].

With respect to design choices, we refer mainly to the methodology of observing the

conflict graph representation of conflicting edge pairs. In this sense, one of the reasons to

consider both the undirected and the directed formulations, (3.16) and (3.22) respectively,

is to evaluate the impact on two different settings.

The algorithms we developed are implemented in C++, using the callback mecha-

nism of the Concert API of CPLEX 12.5. All preprocessing, heuristics and cut generation

options of the solver are turned off – only user cuts are separated. We consider a numer-

35
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ical precision of 10−5, even when looking for violated constraints. All experiments were

carried on a machine with an Intel Core i7 980 (3.33GHz) CPU, with 24GB of RAM. We use

the MSTCC benchmark instances proposed by Zhang et al. [2011]; as these are integer-

valued, we set the absolute MIP gap tolerance parameter of CPLEX to 0.9999. We set an

overall (wall-clock) time limit of 5000 seconds, as done in Zhang et al. [2011]. Note that

their hardware platform has quite similar computing capability (described solely as “a PC

with 3.4GHz Intel Pentium processor with 2GB of RAM”).

The benchmark includes type 1 and type 2 instances. The first set is associated with

harder problems, and several instances have no optimality or feasibility certificates avail-

able for them. The latter set is much easier to solve in practice, possibly because its in-

stances are made feasible through a heuristic. Therefore, most of the following evalua-

tions are based on type 1 instances. We refer to an instance defined on a graph (V ,E) and

conflict set C by the identifier |V |− |E |− |C |.
Finally, concerning the claim that the current approach provides the best known re-

sults for this set of benchmark instances, the main argument is that LP relaxation bounds

for both formulations (3.16) and (3.22) are stronger than the previous known bounds.

5.2 Effectiveness of the preprocessing algorithm

The preprocessing algorithm has quite different impact considering type 1 and type 2 in-

stances, as presented in the upper and lower sections of Table 5.1, respectively. The first

three columns indicate the instance dimensions. The fourth column consists of the total

number of edges fixed, while the fifth reports the number of new conflict pairs included in

the last phase of the algorithm. The next column indicates the resulting instance dimen-

sions, or the certificate provided (when that is the case), followed by the total execution

time.

Recalling that type 2 instances have denser conflict graphs, these are more

amenable to the probing techniques we apply. Actually, the algorithm had major impact

on this set, and all instances become trivial problems. In most cases, the conflict set is

empty, resulting in a standard MST problem (and we thus say that it is solved to optimal-

ity).

On the other hand, no similar effect was verified for type 1 instances. In most cases,

no edge could be fixed at all, even though the conflict graph could be extended by the pair

probing technique of the last phase in the algorithm. Moreover, actually solving the result-

ing models indicated a negligible impact on solution bounds (in comparison to solving

the original instance without preprocessing), with both the undirected and the directed
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Table 5.1. Instance reduction using the preprocessing algorithm.

|V | |E | |C | # Edges Fixed # Conflicts Included Resulting Instance Time (s)
50 200 199 0 0 |V | = 50, |E | = 200, |C | = 199 0.05
50 200 398 0 0 |V | = 50, |E | = 200, |C | = 398 0.05
50 200 597 0 0 |V | = 50, |E | = 200, |C | = 597 0.06
50 200 995 0 11 |V | = 50, |E | = 200, |C | = 1006 0.13

100 300 448 0 23 |V | = 100, |E | = 300, |C | = 471 0.4
100 300 897 1 135 |V | = 100, |E | = 299, |C | = 1026 0.77
100 300 1344 1 188 |V | = 100, |E | = 299, |C | = 1472 0.9
100 500 1247 0 0 |V | = 100, |E | = 500, |C | = 1247 0.79
100 500 2495 0 0 |V | = 100, |E | = 500, |C | = 2495 0.86
100 500 3741 0 2 |V | = 100, |E | = 500, |C | = 3743 1.81
100 500 6237 0 31 |V | = 100, |E | = 500, |C | = 6268 1.99
100 500 12474 8 2747 |V | = 100, |E | = 492, |C | = 12720 13.8
200 600 1797 0 126 |V | = 200, |E | = 600, |C | = 1923 3.96
200 600 3594 0 504 |V | = 200, |E | = 600, |C | = 4098 7.34
200 600 5391 – – Infeasible 9.05
200 800 3196 0 6 |V | = 200, |E | = 800, |C | = 3202 7.75
200 800 6392 0 27 |V | = 200, |E | = 800, |C | = 6419 8.46
200 800 9588 0 175 |V | = 200, |E | = 800, |C | = 9763 8.93
200 800 15980 1 1220 |V | = 200, |E | = 799, |C | = 16558 55.44
300 800 3196 – – Infeasible 41.42
300 1000 4995 0 201 |V | = 300, |E | = 1000, |C | = 5196 46.32
300 1000 9990 1 661 |V | = 300, |E | = 999, |C | = 10477 42.04
300 1000 14985 – – Infeasible 60.23
50 200 3903 159 1 |V | = 33, |E | = 41, |C | = 12 0.05
50 200 4877 167 3 |V | = 27, |E | = 33, |C | = 10 0.03
50 200 5864 175 1 |V | = 21, |E | = 25, |C | = 7 0.09

100 300 8609 287 0 Optimal 0.05
100 300 10686 291 0 Optimal 0.03
100 300 12761 291 0 Optimal 0.06
100 500 24740 464 35891 |V | = 32, |E | = 36, |C | = 2 2.25
100 500 30886 469 0 Optimal 0.24
100 500 36827 465 0 |V | = 33, |E | = 35, |C | = 1 0.21
200 400 13660 368 0 |V | = 30, |E | = 32, |C | = 1 0.01
200 400 17089 382 0 |V | = 17, |E | = 18, |C | = 1 0.01
200 400 20469 392 0 Optimal 0.01
200 600 34504 567 0 Optimal 0.59
200 600 42860 584 0 Optimal 0.19
200 600 50984 588 0 Optimal 0.09
200 800 62625 785 0 Optimal 0.29
200 800 78387 755 0 Optimal 0.24
200 800 93978 786 0 Optimal 0.69
300 600 31000 – – Optimal 0.45
300 600 38216 555 0 |V | = 44, |E | = 45, |C | = 1 0.02
300 600 45310 575 0 Optimal 0.02
300 800 59600 795 0 Optimal 0.03
300 800 74500 775 0 Optimal 0.03
300 800 89300 780 0 Optimal 0.04
300 1000 96590 984 0 Optimal 2.08
300 1000 120500 – – Optimal 9.12
300 1000 144090 – – Optimal 17.18

formulations.

Finally, note that nineteen instances are solved during the preprocessing phase.

Sixteen type 2 instances are reduced to a problem defined on a tree without conflicting

edges, in which case the solution is unique. Three type 1 instances were proved to be in-

feasible. Note that these are among the hardest problems on the benchmark (the subset
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Table 5.2. Improvement on dual bounds of the undirected formulation (with SEC).

Instance LP Relaxation Bound MIP Lower Bound
OCI Cliques OCI+Cliques OCI Cliques OCI+Cliques

50−200−199 0.0 0.0 0.0 0.0 0.0 0.0
50−200−398 1.7 1.4 1.4 0.1 0.0 0.0
50−200−597 2.3 0.7 2.0 0.1 0.0 0.1
50−200−995 22.9 7.1 23.3 0.0 0.0 0.0

100−300−448 0.0 0.0 0.0 0.0 0.0 0.0
100−300−897 6.2 2.4 6.4 0.0 0.0 0.0

100−300−1344 18.3 6.5 18.5 -1.5 2.8 -0.9
100−500−1247 0.0 0.0 0.1 0.0 0.0 0.0
100−500−2495 6.6 1.6 6.6 0.0 0.0 -0.7
100−500−3741 17.0 7.6 17.0 2.6 4.6 2.7
100−500−6237 30.4 23.0 30.8 13.5 15.9 14.6

100−500−12474 44.1 62.2 62.8 6.3 19.8 14.1
200−600−1797 3.7 0.7 3.7 -0.5 -0.1 -1.2
200−600−3594 26.2 10.5 26.2 14.2 7.2 16.5
200−800−3196 3.2 0.8 3.4 -0.9 0.5 -0.4
200−800−6392 24.1 9.1 24.0 18.6 8.5 18.8
200−800−9588 38.5 31.2 39.2 26.5 24.2 26.4

200−800−15980 48.1 52.6 53.7 31.8 46.0 37.8
300−1000−4995 15.8 3.3 15.8 12.5 2.8 12.0
300−1000−9990 33.8 21.8 33.8 26.9 17.0 25.4

Average 17.2 12.1 18.4 7.5 7.5 8.3

for which no feasible solution is known, and therefore no duality gap is available). In-

terestingly, while the branch and cut algorithm could also prove the first two problems

(200−600−5391 and 300−800−3196) to be infeasible within the time limit, the certificate

for the largest one (300−1000−14985) was only provided by the preprocessing algorithm.

5.3 Impact of odd-cycle and clique inequalities

We consider next the improvement provided by the constraints obtained from the poly-

tope of stable sets in the conflict graph. In practice, it corresponds to the effect of sep-

arating odd-cycle inequalities (3.3) and including a priori maximal clique inequalities in

(3.4), as described in Section 4.3.

Tables 5.2 and 5.3 present the percentual improvement on dual bounds over the

plain formulation without these inequalities: i.e. columns OCI correspond to the impact

of intersecting the spanning tree polytope (Psec for Table 5.2, Pdcut for Table 5.3) with the

cycle-constrained relaxation Pcst ab instead of the simplest relaxation Pr st ab ; analogously,

columns Cliques use Pqst ab instead of Pr st ab , while OCI+Cliques compare Pqst ab ∩Pcst ab

with Pr st ab . We report on percentual strengthening on both the initial LP relaxation and

on the final bound provided by the branch and cut algoritm, using all type 1 instances

which are not proved to be infeasible.

In general, OCI contributes significantly more to tightening the LP dual bound: in

both the directed and undirected formulations, its improvement outperforms that pro-
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Table 5.3. Improvement on dual bounds of the directed formulation (with DCUT).

Instance LP Relaxation Bound MIP Lower Bound
OCI Cliques OCI+Cliques OCI Cliques OCI+Cliques

50−200−199 0.0 0.0 0.0 0.0 0.0 0.0
50−200−398 1.2 1.2 1.2 0.0 0.0 0.0
50−200−597 3.1 0.9 3.1 0.0 0.0 0.0
50−200−995 22.9 7.5 22.9 0.0 0.0 0.0

100−300−448 0.0 0.0 0.0 0.0 0.0 0.0
100−300−897 5.5 1.6 5.5 0.0 0.0 0.0

100−300−1344 17.0 5.4 17.0 9.4 6.4 9.5
100−500−1247 0.0 0.0 0.0 0.0 0.0 0.0
100−500−2495 6.9 2.2 6.9 2.6 1.8 2.4
100−500−3741 16.4 7.5 16.4 11.8 5.8 11.9
100−500−6237 29.6 22.3 30.0 21.1 18.8 21.3

100−500−12474 43.4 61.1 61.6 24.8 41.2 39.2
200−600−1797 3.9 0.7 3.9 2.3 1.2 2.9
200−600−3594 26.1 10.8 26.1 22.8 10.7 22.3
200−800−3196 4.2 1.0 4.2 3.5 1.6 3.6
200−800−6392 23.9 9.3 23.9 21.1 9.5 21.0
200−800−9588 38.3 31.2 39.0 33.0 29.9 33.0

200−800−15980 47.9 52.2 53.3 40.6 58.2 50.0
300−1000−4995 15.8 3.2 15.8 14.8 3.8 14.8
300−1000−9990 33.7 21.8 33.7 24.1 16.6 24.1

Average 17.0 12.0 18.2 11.6 10.3 12.8

vided solely by maximal clique inequalities for most instances. Still, the complete formu-

lation using both classes is never worse (disregarding a factor of 0.1%), as expected.

The point supporting the methodology of using the strongest formulation is clearer

for the final branch and cut bounds. On average, OCI and clique inequalities provide

equivalent contribution, though one of them is remarkably more effective in each partic-

ular instance. The intuition on using both of them is therefore to capture both scenarios

in the proposed algorithm. In this sense, the complete formulation (with OCI+Cliques)

performs better, on average, than isolated counterparts. It is worth noting that the im-

provement is greater for larger problem instances.

We also note that, while both formulations present the same behavior, strengthen-

ing the MIP in the directed formulation is considerably more effective. A possible factor

driving its better performance could be the somewhat simpler implementation of the sep-

aration procedure for DCUT than for SEC (despite the equivalent asymptotic complexity),

as discussed in Section 4.4.

We also comment on the overall execution time, considering the subset of type 1

instances solved to optimality. We verify in Table 5.4 the expected tradeoff between using

formulations providing stronger bounds, and the execution time to compute them, dis-

regarding preprocessing time. The complete formulation (with OCI+Cliques) takes longer

time to close the gap in most cases, considering both the directed and the undirected for-

mulations. We also note that, though the directed model requires less execution time for

most instances, it failed to close the gap for the last one within the time limit (indicated in
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Table 5.4. Solution time of type 1 instances solved to optimality.

Instance Undirected Formulation (SEC) Directed Formulation (DCUT)
Plain OCI Cliques OCI+Cliques Plain OCI Cliques OCI+Cliques

50−200−199 0.07 0.07 0.05 0.06 0.01 0.01 0.01 0.01
50−200−398 0.20 0.08 0.13 0.15 0.03 0.00 0.00 0.00
50−200−597 0.48 0.67 0.50 0.97 0.65 0.90 0.44 0.58
50−200−995 10.07 21.42 4.07 21.13 64.53 19.87 10.67 13.46

100−300−448 0.81 0.82 1.32 1.31 0.03 0.04 0.03 0.03
100−300−897 133.14 697.87 119.12 1297.34 151.06 430.92 435.40 470.53

100−500−1247 0.66 0.48 0.54 0.53 0.01 0.01 0.01 0.01
100−500−2495 567.26 4825.29 528.10 4947.23 4936.85 * 4943.08 * 4889.89 * 4936.82 *

Table 5.4 with an asterisk).

Finally, it is interesting to acknowledge the overall shorter execution time of using

Cliques instead of the plain formulation. As discussed in Section 4.3, Table 5.5 reports

the number of maximal cliques in the conflict graphs of type 1 instances, which is less

than the cardinality of the corresponding conflict set itself (except for instance 100−500−
12474).

5.4 Comparison with results from the literature

The goal of this last set of experiments is to indicate how stronger are the bounds provided

by the present approach, comparing them with the best results available in the literature.

As presented in Section 2.2, these correspond to the Lagrangean relaxation scheme of

Table 5.5. Number of maximal cliques in type 1 instances.

|V | |E | |C | # Maximal Cliques
50 200 199 199
50 200 398 369
50 200 597 540
50 200 995 782

100 300 448 448
100 300 897 842
100 300 1344 1154
100 500 1247 1192
100 500 2495 2182
100 500 3741 2914
100 500 6237 4434
100 500 12474 16508
200 600 1797 1715
200 600 3594 3063
200 600 5391 4052
200 800 3196 2992
200 800 6392 5300
200 800 9588 6852
200 800 15980 13292
300 800 3196 2992
300 1000 4995 4609
300 1000 9990 7958
300 1000 14985 10744
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Table 5.6. Comparing results with Zhang et al. [2011] on previously open instances.

Instance Bounds of LP Bound MIP Bounds
Zhang et al. [2011] (3.16) (3.22) (3.16) (3.22) (%)

100−300−1344 [4681.27 , –] 6059.3 6081.6 [6621.2 , –] [6561.8 , –] 41.4
100−500−6237 [4968.99 , –] 7189.2 7214.9 [7568.7 , –] [7346.4 , –] 52.3

100−500−12474 [5194.67 , –] 9011.5 9037.8 [9816.9 , –] [9679.7 , –] 89.0
200−600−1797 [11425.8 , –] 12906.2 12979.3 [13072.9 , 14707.0] [13128.6 , 14107.0] 14.4
200−600−3594 [12487 , –] 16791.5 16804.3 [17532.7 , –] [17563.0 , –] 40.4
200−600−5391 [12873.2 , –] infeasible infeasible – – –
200−800−3196 [17992.6 , –] 20303.2 20632.5 [20744.2 , 21852.0] [20775.5 , 21979.0] 15.3
200−800−6392 [19705.7 , –] 25929.1 25975.4 [26361.3 , –] [25982.4 , –] 33.8
200−800−9588 [20684.8 , –] 29230.0 29268.4 [29443.6 , –] [29294.2 , –] 42.3

200−800−15980 [20226.9 , –] 32271.9 32283.5 [33345.1 , –] [33231.1 , –] 64.9
300−800−3196 [30190.1 , –] infeasible infeasible – – –

300−1000−4995 [40732.7 , –] 51066.3 51181.8 [51451.3 , –] [51181.8 , –] 26.3
300−1000−9990 [42902.5 , –] 59884.6 59921.4 [60907.8 , –] [59921.4 , –] 42.0

300−1000−14985 [44639.1 , –] infeasible infeasible – – –

Zhang et al. [2011], where a maximum edge clique partitioning subproblem is solved. As

for the primal bounds of their approach, the best result achieved by one of the heuristics

they propose is reported here.

Table 5.6 presents the results of the branch and cut algorithm with both formu-

lations (3.16) and (3.22), considering the hardest problem instances in the benchmark,

namely those for which no feasible solution was known in the work of Zhang et al. [2011].

The third and fourth columns indicate LP relaxation bounds, while columns 5 and 6

present [primal, dual] bounds provided by branch and cut (see Section 5.1 for the com-

plete experimental design). The last column depicts percentual improvement on the best

dual bound previously available when using the undirected formulation (3.16).

Two new feasibility certificates are provided, yielding the first primal bounds on in-

stances 200−600−1797 and 200−800−3196 (values in bold on Table 5.6). Moreover, we

have described in Section 5.2 that three new infeasibility certificates are also presented.

Interestingly, the improvement on previous results varies much among instances, rang-

ing from 14% to 89%, motivating further work and different approaches for the MSTCC

problem.

A key result in this work regards the consistent improvement of previous known

dual bounds by the initial LP relaxation bound of the proposed formulations. In particu-

lar, these are tighter for the directed formulation (3.22): on average, the bounds are 37%

stronger than those achieved by the Lagrangean lower bounding scheme of Zhang et al.

[2011] after hours of computation; in fact, they report execution times of up to 28421.5

seconds.

For completeness, the results on the remaining type 1 instances are presented in Ta-

bles 5.7 and 5.8. Columns 2 and 3 present the results reported by Zhang et al. [2011]. Note

that the authors report some gap values retrieving the optimal cost from the solution of a
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Table 5.7. Comparing undirected formulation with Zhang et al. [2011] on remaining
type 1 instances.

Instance Zhang et al. [2011] Branch and cut with (3.16)
Bounds Gap Bounds MIP Gap LP Gap # Nodes Time (s)

50−200−199 [702.793 , 708] 0.74 708 0.0 0.99 33 0.1
50−200−398 [757.816 , 785] 1.58 770 0.0 1.56 55 0.2
50−200−597 [807.745 , 1044] 11.91 917 0.0 6.99 136 1.0
50−200−995 [877.495 , 1424] 33.72 1324 0.0 10.94 462 21.1

100−300−448 [3991.18 , 4102] 1.23 4041 0.0 1.23 165 1.3
100−300−897 [4624.24 , –] – 5658 0.0 8.15 3018 1297.3

100−500−1247 [4165.68 , 4293] 2.56 4275 0.0 0.64 35 0.5
100−500−2495 [4805.40 , 6603] 37.4* [5951.4 , 6006] 0.9 7.48 8079 4947.2
100−500−3741 [4871.27 , 8787] 80.38* [6510.8 , 9440] 31.0 33.69 2279 4943.6

flow formulation in a MIP solver, instead of considering the primal bound they achieve;

these are marked in column 3 with an asterisk. Columns 4 and 5 correspond to the final

solution bounds and duality gap, while column 6 describes the root LP relaxation gap.

The last two columns describe number of nodes in the enumeration tree and the total

execution (real) time.

We remark the new optimality certificate for instance 100− 300− 897, and rather

tighter bounds on the two instances which are not solved to optimality. Also note that, on

the one hand, one could indicate that the directed formulation has a more efficient per-

formance on the context of branch and cut: smaller LP gaps, less enumeration nodes and

shorter execution time, when an optimal solution is reached by both formulations. Nev-

ertheless, it is not as effective as the undirected one in closing the duality gap for the most

difficult instances. Not only does it fails to provide a primal bound for the last instance

(100−500−3741) on Table 5.8, but it is also yields weaker dual bounds for most instances

in the previous Table 5.6.

Finally, it is worth mentioning that easier, type 2 instances consist of trivial input

to the algorithms under discussion. Both formulations systematically solve them to opti-

mality, instantly (executing in negligible wall clock time), in the root LP relaxation node.

We therefore choose not to tabulate similar values for these instances, since it would pro-

vide no further information.

5.5 Final remarks

The computational experiments presented in this chapter report on the results obtained

for the very first approach using cutting planes for the MSTCC problem. The focus is

to evaluate the strength of the proposed formulations and the designed algorithms on

standard instances currently evaluated in the literature of the problem. The preprocessing

algorithm is also evaluated, and was highly successful in turning a set of instances into
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Table 5.8. Comparing directed formulation with Zhang et al. [2011] on remaining type
1 instances.

Instance Zhang et al. [2011] Branch and cut with (3.22)
Bounds Gap Bounds MIP Gap LP Gap # Nodes Time (s)

50−200−199 [702.793 , 708] 0.74 708 0.0 0.4 3 0.0
50−200−398 [757.816 , 785] 1.58 770 0.0 0.0 0 0.0
50−200−597 [807.745 , 1044] 11.91 917 0.0 2.4 10 0.6
50−200−995 [877.495 , 1424] 33.72 1324 0.0 10.6 269 13.5

100−300−448 [3991.18 , 4102] 1.23 4041 0.0 0.1 3 0.0
100−300−897 [4624.24 , –] – 5658 0.0 7.0 1360 470.5

100−500−1247 [4165.68 , 4293] 2.56 4275 0.0 0.0 0 0.0
100−500−2495 [4805.40 , 6603] 37.4* [5875.8 , 5997] 2.0 6.4 5365 4936.8
100−500−3741 [4871.27 , 8787] 80.38* [6496.8 , –] – – 2817 4941.7

trivial computational tasks.

We want to stress the methodology for exploring the conflict graph, which makes

sense as it clearly improves both formulations we discuss. Moreover, it provided the best

currently known algorithm for solving the MSTCC problem.

We are able to consistently improve the best solution bounds previously available in

the literature. While doing so already in the initial LP relaxation, we make a point on the

strength of the proposed formulations, and regard it as a main argument on its relative

superiority and on the contribution of this work. Instances with up to five hundred edges

are solved to optimality, and infeasibility certificates are provided for yet larger instances.

Nevertheless, we could not acknowledge any pattern indicating how does the solution gap

or execution time scale with instance size, and further work could elaborate on the limits

of tractability of MTSCC problem instances.

An extended discussion could explore different factors driving the performance of

an algorithmic approach such as the one described here. For instance, evaluating alter-

native branching rules, heuristics to derive primal bounds, or even different strategies or

reformulations to solve the general integer programs. These are left as future work.

Finally, note that the presented experiments are limited to the (randomly built)

benchmark instances previously studied in the literature. Further evaluations with dif-

ferent experimental designs could be interesting to support the current claims. In par-

ticular, one could evaluate DIMACS stable set benchmark problems [Rebennack et al.,

2012] as conflict graphs of different MSTCC problem instances. Alternatively, quadratic

MST benchmarks could be converted into MSTCC instances by defining a threshold on

interaction costs, beyond which a conflict would be included in the input problem.





Chapter 6

Conclusion

This final chapter briefly conveys our general conclusions on the investigation carried

out in this dissertation. First, the observations are established in the context of previous

knowledge on the problem, clarifying our contribution. Next, we indicate what might

be the forms of further research on MSTCC, describing open issues and different algo-

rithmic approaches and experiments which could yield insight into the tractability of the

problem.

6.1 General conclusions

In summary, this work contributes with an exact solution approach to a disjunctively con-

strained generalization of the MST problem, namely the minimum spanning tree under

conflict constraints problem (MSTCC).

The general methodology of exploiting the conflict graph to approach the conflict-

constrained problem is the main feature guiding the designed algorithms. We present

a general preprocessing method based on implications from problem-specific feasibility

conditions, which might be integrated with different techniques for the problem solution.

IP formulations are introduced, building on classic polyhedral descriptions to represent

the feasibility of a solution with respect to both input graphs G(V ,E) and Ĝ(E ,C ) of a

MSTCC instance.

Computational results support the contribution of that methodology. The prepro-

cessing algorithm succeeds in reducing all problem instances in a benchmark set con-

sisting of denser conflict graphs to trivial problems, which can be solved with negligible

computational effort. As for the branch and cut algorithms, we could verify in practice

a consistent improvement on the best results previously available in the literature, and
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provide new feasibility and optimality certificates for the set of challenging benchmark

instances of the problem.

To the best of our knowledge, the present approach is interesting because it: (i) pro-

vides certificates or sistematically stronger solution bounds; (ii) provides such bounds

with much reduced computational effort, even considering only the initial LP relaxation

of the formulations we propose; (iii) presents an underlying methodology of interest by

itself, which could be extended in the context of related problems.

6.2 Future work

In the closing section for the main chapters in this thesis, we indicate possible extensions

to the modeling and solution techniques we introduced. The reader is thus referred to

Sections 3.4, 4.6 and 5.5 for ideas more directly linked to this work. The following is a

free discussion on open issues which the author acknowledges might or might not be of

interest.

Extending the methodology of exploiting the conflict graph to a further level, we

also verify that the MSTCC problem consists of optimizing over k-cardinality stable sets in

Ĝ(E ,C ), with k = |E |−1, which do not induce cycles in G . The complexity of k-cardinality

stable set problems was considered in the literature before [Janssen and Kilakos, 1999].

A possible research line would investigate if this combinatorial structure provides a bet-

ter approach for MSTCC. Also, in the same model of the work by Darmann et al. [2011],

different problems closely related to MSTCC might be conceived, e.g. allowing different

types of disjunctive constraints in a single problem instance.

From a graph-theoretical point of view, further investigation on the complexity

in particular graph classes could yield further cases which are solvable in polynomial

time and infeasibility tests, as well as combinatorial relaxations providing algorithmic

approaches. The latter was the case, for instance, in one of the Lagrangean relaxation

schemes of Zhang et al. [2011] for MSTCC, where an edge-clique partitioning subprob-

lem arise.

As in the case of related problems in graph theory, one could wonder, if the conflict

graph Ĝ is such that the stable set problem can be solved in polynomial time, whether

that would extend for the solution of a MSTCC instance defined over it as well.

For some problems defined on trees, e.g. the k–cardinality tree problem [Simon-

etti et al., 2013], boundary values of an instance parameter correspond to polinomially-

solvable particular cases. One could investigate whether a similar result could be derived

for MSTCC, since the sparsity of the conflict graph Ĝ has a major impact on the tractabil-
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ity of instances, with the problem being well-solved in practice for rather sparse or overly

dense Ĝ .

We also seek to gain insight into the hardness and tractability of related problems

under disjunctive constraints, such as the ones described by Darmann et al. [2011]. Note

that the approach we present in this study might be appropriate for these problems as

well.

Finally, an interesting investigation would consider the intersection of the indepen-

dence systems at hand: noting that MSTCC regards the optimization over the indepen-

dence system formed by stable sets in Ĝ , and the graphic matroid of G . Polyhedral results

from both could be leveraged to bring insight into the new problem.
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