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Resumo

Uma das principais razões para o grande desenvolvimento computacional visto
nas últimas décadas foi a miniaturização contínua no tamanho dos transistores.
Contudo, estamos próximos do limite físico de miniaturização deste componente
eletrônico. Portanto, com o intuito de manter o avanço do desempenho dos pro-
cessadores, novas alternativas de materiais e tecnologias devem ser investigadas. A
Nanocomputação visa o estudo de nanodispositivos e nanoestruturas para o desen-
volvimento de uma nova geração de computadores, com arquiteturas inovadoras
e eficientes. Dentre as possíveis soluções podemos destacar os nanodispositivos
semicondutores. Neste trabalho investigaremos a otimização de dois tipos de nan-
odispositivos semicondutores diferentes, Cristais Fotônicos e Microcavidades, que
podem permitir o desenvolvimento de uma futura geração de computadores que
utilizam como variável de estado a luz ao invés da carga elétrica dos processadores
convencionais.
Tipicamente, o processo de otimização destas estruturas físicas é empírico e
lento, dependendo principalmente do conhecimento e intuição dos especialistas.
A otimização mais robusta e eficiente exige a existência de modelos matemáti-
cos e simuladores capazes de representar o comportamento estrutural dos dispos-
itivos. Esses modelos podem assumir elevada complexidade computacional, tor-
nando a avaliação sistemática dessas estruturas um desafio. Além disso, a busca
por soluções eficientes esbarra em grandes espaços de busca e comportamento não
linear. Desta forma, neste trabalho aplicamos algoritmos evolutivos na busca por
soluções otimizadas que satisfaçam os requisitos necessários para o desenvolvi-
mento de futuras aplicações.
Cristais fotônicos são sistemas cuja função dielétrica é periódica no espaço. Geral-
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mente, essas estruturas são implementadas em um cristal semicondutor como, por
exemplo, Arseneto de Gálio (AsGa), e possuem padrões de buracos preenchidas
por ar. A partir da alteração dos parâmetros geométricos das cavidades do cristal,
ou seja, geração controlada de defeitos na estrutura, a luz pode ter seu fluxo con-
trolado, fato que permite o desenvolvimento de aplicações como portas lógicas
ópticas, sensores de alta resolução, processamento quântico da informação, dentre
outras. Neste projeto focamos na maximização do fator de qualidade da estrutura
conhecida como L3, variando as posições geométricas e raios dos buracos ao redor
do defeito. O fator de qualidade pode ser definido pela energia perdida por ciclo
versus a energia armazenada no defeito. Os resultados obtidos em nossos estudos
de caso superam aqueles previamente apresentados na literatura. Além disso, é
importante destacar que a simulação de cada estrutura gerada é computacional-
mente muito cara, o que levou ao desenvolvimento de um algoritmo distribuído e
robusto que pudesse tirar proveito do maior número de computadores possíveis.
Já as microcavidades semicondutoras podem ser consideradas como cristais fotôni-
cos de uma dimensão e são bases para uma variedade de dispositivos optoeletrôni-
cos, tais como, lasers e diodos emissores de luz (LEDs), além de transistores óticos.
Normalmente, estes materiais contém muitas camadas diferentes, cujas condições
de crescimento devem ser altamente estáveis, com um controle preciso sobre a
composição e espessura de cada camada individual. Contudo, incertezas durante o
processo físico de crescimento fogem do controle dos especialistas e podem compro-
meter significativamente a eficiências dos dispositivos. Desta forma, neste projeto
visamos não somente encontrar os parâmetros ideais que levem às soluções ótimas,
mas também que garantam o crescimento de dispositivos robustos e eficientes. Este
é o primeiro projeto que propõem a otimização da estrutura das microcavidades,
principalmente focando em sua robustez. Diferentes tipos de microcavidades foram
otimizadas e a estratégia proposta neste trabalho se mostrou eficaz, levando a es-
truturas com fator de qualidade maior que o descrito anteriormente na literatura
e alta garantia de robustez no crescimento.

Palavras-chave: Algoritmo Evolutionário, Semicondutores, Microcavidades,
Nanotecnologia, Nanodispositivos.
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Abstract

Recently, one of the main reasons for the large computational development seen
has been the continued miniaturization of transistors’ size. However, the minia-
turization of the electronic components is quickly approaching it’s physical limits.
Therefore, in order to maintain the advancement of processors’ performance, there
is the need of new alternative technologies and materials to be investigated. Thus,
nanocomputing aims to study nanostructures and nanodevices for the develop-
ment of a new generation of computers, with innovative and efficient architectures.
Among the possible solutions we can highlight the semiconductor nanodevices. In
this work it is investigated the optimization of two types of different semiconductor
nanodevices: Photonic Crystals and Microcavities, that can enable the develop-
ment of a future generation of computers that use light as a state instead of the
electric charge applied in conventional processors.
In the last years, with the advances in the fields of computational intelligence
and with the introduction of massive computing power, the design process has
undergone a huge advance in optimizing structures and design in science and en-
ginnering, where the optimization process is an essential part towards increasing
quality, improving functionality and robustness of devices.
Typically, the process of optimizing these physical structures is empirical and
slow, demanding knowledge and intuition of experts. A robust and efficient op-
timization requires the existence of mathematical models and simulators able to
represent the devices’ structural behavior. These models, in many cases, hold
high computational complexity, delivering a scenario where systematic evaluation
of these structures is a challenge. Moreover, the search for efficient solutions has
to deal with large search spaces and nonlinear behavior. Thus, in this work it is
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applied an evolutionary approach in the search for optimized solutions satisfying
the requirements for the development of future applications’ solutions.
Photonic crystals are systems whose dielectric function is periodic in space. Gen-
erally, these structures are implemented in a semiconductor crystal, for example,
Gallium Arsenide (GaAs), and have patterns of holes filled by air. By changing
geometrical parameters of the cavities of the crystal, that is, controlled genera-
tion of defects in the structure, the light can be controlled, a fact that allows the
development of applications such as optical logic gates, high resolution sensors,
quantum processing information, among others. In this project the focus is on
maximizing the Quality Factor of a structure known as L3, by varying the geo-
metric positions and radii of the holes around the defect. The results obtained
in our case studies outnumber those previously presented in the literature. Fur-
thermore, it is important to note that the simulation of each structure generated
is computationally very expensive, which led to the development of a massively
distributed and robust algorithm that could take advantage of the largest possible
number of computers.
In the other study case, semiconductor microcavities, which can be considered as a
1-dimension photonic crystal, are the bases for a variety of optoelectronic devices
such as lasers and light emitting diodes (LEDs), and optical transistors. Typically,
these materials contain many different layers, whose growth conditions should be
highly stable, with precise control over the composition and thickness of each indi-
vidual layer. However, uncertainties in the physical process of growth beyond the
control of experts can significantly compromise the efficiency of the final device.
Thus, in this project it is a goal to not only find the optimal parameters that lead
to optimal solutions, but also to ensure the growth of robust and efficient devices.
This is the first project proposed to optimize microcavities’ structure, mainly fo-
cusing on its robustness. Different types of microcavities were optimized and the
strategy proposed in this study proved to be effective, leading to structures with
higher Quality Factor than previously described in the literature while delivering
robustness in the growth process.
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Chapter 1

Introduction

1.1 Motivation

The interest in Nanoscience and Nanotechnology has emerged due to the possi-
bility of developing novel materials with improved and innovative properties. Ac-
cording to scientists, nanotechnology will be able to change the nature of almost
everything already done, which should impact areas such as medicine, engineering,
telecommunications, energy and computing. This is a truly multidisciplinary area,
involving scientists from different fields of knowledge such as chemistry, physics,
engineering, computer science, biology and medicine.

The advance in Nanoscience and Nanotechnology is allied to the development
of computational models of biological, chemical and physical systems, which allow
researches to simulate novel nanomaterials, devices and applications. Particularly,
the large computational development seen in last years has been provided by the
continued miniaturization of transistors’ size. However, the miniaturization of the
electronic components is quickly approaching it’s physical limits. Therefore, in
order to maintain the advancement of processors’ performance, there is the need
of new alternative technologies and materials to be investigated. In this way,
studying nanostructures and nanodevices for the development of a new generation
of computers, with innovative and efficient architectures, is a thriving path towards
filling this demand. Among the possible solutions, the semiconductor nanodevices,
can be highlighted.

1



2 Chapter 1. Introduction

These systems, when empowered by the advances in the fields of intelligent
computing paradigm and with the introduction of massive computing power, have
facilitated a move away from simple analytical systems towards large scale intelli-
gent computer-aided design optimization.

Optimization is an essential part of research, both in science and in engineer-
ing. In many cases, the research goal is an outcome of an optimization problem,
for example, designing aerodynamics shapes [Giannakoglou, 2002], space mission
design [Croisard et al., 2010] or improving quality of photonic systems [Saucer and
Sih, 2013].

Typically, the process of optimizing these physical structures is empirical
and slow, demanding knowledge and intuition of experts. A robust and efficient
optimization requires the existence of mathematical models and simulators able
to represent the devices’ structural behaviour. These models, in many cases, hold
high computational complexity, delivering a scenario where systematic evaluation
of these structures is unfeasible. Moreover, the search for efficient solutions has
to deal with large search spaces and nonlinear behaviour which is a challenging
problem which are known as ‘expensive optimization problems ’.

In the search of these promising properties found in the nanoscale, this work
investigate the optimization of two types of different semiconductor nanodevices:
Photonic Crystals and Microcavities, that can enable the development of a future
generation of computers that uses light as a state variable instead of the electric
charge applied in conventional processors.

Photonic crystals are systems whose dielectric function is periodic in space.
Generally, these structures are implemented in a semiconductor crystal, for ex-
ample, Gallium Arsenide (GaAs), and have patterns of holes filled by air. By
changing geometrical parameters of the cavities of the crystal, that is, controlled
generation of defects in the structure, the light can be controlled, a fact that allows
the development of applications such as optical logic gates, high resolution sensors,
quantum processing information, among others.

In the other study case, semiconductor microcavities, which can be consid-
ered as an 1-dimension photonic crystal, are the bases for a variety of optoelectronic
devices such as lasers and light emitting diodes (LEDs), and optical transistors.
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1.2 Goals

In the search for the optimal photonic crystal and microcavity structure, this work
aims to study and apply an evolutionary approach tailored to each study case,
satisfying the requirements for the development of future applications’ solutions.
Thus, this project has two distinct optimization targets: the photonic crystals and
microcavities structures.

For photonic crystals, the focus is on maximizing the Quality Factor, Q, of
a structure known as L3, by varying the geometric positions and radii of the holes
around the defect, in order to find Q higher than that previously presented in the
literature.

On the other hand, in the case of microcavities, typically, these materials
contain many different layers, whose growth conditions should be highly stable,
with precise control over the composition and thickness of each individual layer.
However, uncertainties in the physical process of growth beyond the control of
experts can significantly compromise the efficiency of the final device. Thus, in
this project it is a goal to not only find the optimal parameters that lead to optimal
solutions, but also to ensure the growth of robust and efficient devices.

1.3 Contributions

From the photonic crystals cavities optimization, the results obtained in our case
studies outnumber those previously presented in the literature. Furthermore, it
is important to note that the simulation of each structure generated is computa-
tionally very expensive, which led to the development of a massively distributed
and robust algorithm that could take advantage of the largest possible number of
computers.

Simultaneously, to the best of our knowledge this is the first project proposing
the optimizations of microcavities’ structure, mainly focusing on its robustness.
Different types of microcavities were optimized and the strategy proposed in this
study proved to be effective, leading to structures with higher Quality Factor than
those previously described in literature while delivering robustness in the growth
process.
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1.4 Roadmap

In chapter 2 there is a background discussion about what are semiconductors, mi-
crocavities, Photonic Crystals and Evolutionary Algorithms in order to aid readers
from different backgrounds to better understand the overall work.

To discuss previous work on optimization of real world structures, chapter 3
investigates the current literature to grab the state of art in the area where this
work innovates: optimization of nanodevices, and parallel evolutionary algorithms.

Chapter 4 does a deep discussion on the methods used to optimize each study
case.

Finally, chapter 5 reveals the outcome of the optimization process for both:
photonic crystals and microcavities structures.



Chapter 2

Background

The study of semiconductors nanodevices optimization is a multidisciplinary area
which comprises concepts of matter’s structure and computer science, so, in order
to better understand this work, this section gives an introduction to what are
Semiconductors, Photonic Crystals, Microcavities and Evolutionary Algorithms
and how they work.

2.1 Semiconductor

Semiconductors are materials in which electrical conductivity can change depend-
ing from the conditions that the material is exposed, so it can behave like an
insulator or a conductor.

As shown in figure 2.1 (a) an insulator is a material in which the last band,
with electrons, is completely filled, so that an eletrical field applied to it is not able
to change electrons momentum. On the other hand, conductors, as represented in
figure 2.1 (b), have their last band, with electrons, partially filled and an eletrical
field can put electrons in movement, thus, allowing conduction.

5
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Figure 2.1: Band occupation in insulators (a) and conductors (b). Shaded regions
represents the occupation of bands by electrons. [Rezende, 2004]

In an insulating crystal, only at temperature T = 0K the last band, called
the valence band is completely filled. When the temperature is higher than zero,
valence band electrons can gain enough thermal energy to reach the next band,
called conduction band, which was empty at T = 0. The migration of electrons to
the conduction band leaves, in the valence band, states that behave such as positive
charge carriers, called holes. The electrons in the conduction band and holes in
the valence band produce electrical current under the action of an external field.
The conductivity of the material depends on the number of electrons that passes
into the conduction band, which can be calculated probabilistically. This amount
of electrons is proportinal to the temperature and the inverse of the energy gap
between the two bands. This energy is represented by Eg, where g is the gap index.
The materials which are insulators at T = 0K, but have an Eg relatively small,
on the order of 1eV or less at room temperature, have significant conductivity
and, therefore, are called semiconductors. Figure 2.2 shows the occupation of the
valence and conduction bands in a semiconductor. In these materials the number
of electrons in the conduction band can be higher in relation to an insulator,
but is still much less than the number of free electrons in a metal. Therefore,
the conductivity of the semiconductor is much smaller than that of metals. The
main difference between an insulator and a semiconductor is the value of Eg. For
example, silicon has Eg = 1.1eV and is a semiconductor, while diamond which
has the same structure of Si, but comprised of atoms of C has Eg = 5eV , and
behaves as a good insulator. The Silicon Oxide, Si02, have an Eg ' 8eV and is
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also an insulator. The difference in the values of Eg may not seem so great to
produce radical change in conductivity, however, the occupation of the conduction
band decreases exponentially with the increase of the Eg

kBT
ratio, as described in

[Rezende, 2004].

Figure 2.2: Conduction and valence bands in semiconductors. Shaded regions
represents electrons ocupation in T > 0. The distance between bands is the energy
gap Eg. [Rezende, 2004]

2.2 Microcavities

A microcavity is a system in which a light emitting material can interact with
at most a single cavity-resonant-mode or there are no interactive electromagnetic
modes permitted to interact within the material transition width. Thus, enhanced
or suppressed spontaneous emission can be seen in this system, and in a very high
cavity quality factor Q, even oscillatory spontaneous emission is induced [Morin
et al., 1992; Raimond et al., 2001].

Semiconductor microcavities have been applied in important studies of var-
ious areas for technological and purely scientific purposes. Among the several
studies performed in microcavities we can emphasize: (a) the development of low
threshold emission lasers, since the microcavities acts as laser without popula-
tion inversion [Imamōglu and Ram, 1994]; (b) construction of optical transistors
[Cotta, 2009] and other all optical devices [De Matos et al., 2000]; (c) a parametric
generator of twin photons through the parametric up- or down-conversion process
[Ma et al., 2011; Banaee and Young, 2008]; (d) the Bose-Einstein condensate of
exiton-polaritons [Kasprzak et al., 2006]; (e) effects of optical bistability fully con-
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trollable [Cotta and Matinaga, 2007], among many others. All these phenomena
and devices require an excellent coupling between the resonance cavity and the
gain medium, which mainly consist of quantum-well(s) or quantum-dots. Thus,
it is very important to find an exact coupling between the cavity-resonance and
the emission peak of the gain media. Therefore, beyond an architectural design
project, a precise control of the growth becomes essential to take advantage from
the optical properties of the sample materials.

In a typical sample, a gain medium is placed at antinode of a λ cavity formed
by two Diffracted Bragg Reflector (DBR) mirrors and kept at 10K in a cold finger
cryostat. The sample is grown by Molecular Beam Epitaxy technique (MBE), that
rotates during growth of the DBR mirrors and the gain medium, but stopped at a
specific angle for growing the spacer layer, generating a thickness gradient across
the sample. This process allows making a cavity-detuning when excites the sample
in different positions on the surface. The Quality Factor of the cavity is measured
directly using an unpolarized white light source, focusing normally on the sample
surface.

Figure 2.3 shows the structure’s schematic form of a microcavity. In this
figure we can see that the heterostructure is grown on top of a Gallium Arsenite
(GaAs) substrate oriented in the direction [100]. On the substrate is deposited al-
ternating layers of two different materials based on a ternary alloy of AlxGa1−xAs,
where x is the concentration of Aluminum. The deposition of the first two layers
gives rise to the pair that is presented in the figure by white (refractive index n1

and thickness l1) and light gray (refractive index n2 and thickness l2). The periodic
superposition of pairs of layers N1 times forms a DBR mirror (Distributed Bragg
Reflector) at the bottom of the sample and an upper DBR mirror with N2 pairs
of layers. The two DBR mirrors are separated by a spacer layer (refractive index
n3 and thickness l3) also of AlxGa1−xAs, forming a Fabry-Perot type cavity. In
the middle of the cavity is placed a quantum well (SQW) of GaAs 10nm thick
[da Cunha, 2011; Coelho et al., 2013].
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Figure 2.3: Microcavity’s structure

2.3 Photonic Crystals

A crystal is a periodic arrangement of atoms or molecules. The pattern with which
the atoms or molecules are repeated in space is the crystal lattice. The crystal
presents a periodic potential to an electron propagating through it, and both the
constituents of the crystal and the geometry of the lattice dictate the conduction
properties of the crystal. [Joannopoulos et al., 2011]

The theory of quantum mechanics in a periodic potential explains that elec-
trons propagate as waves, and waves that meet certain criteria can travel through
a periodic potential without scattering (although they will be scattered by defects
and impurities). [Joannopoulos et al., 2011]

Importantly, however, the lattice can also prohibit the propagation of certain
waves. There may be gaps in the energy band structure of the crystal, meaning
that electrons are forbidden to propagate with certain energies in certain direc-
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tions. If the lattice potential is strong enough, the gap can extend to cover all
possible propagation directions, resulting in a complete band gap. For example,
a semiconductor has a complete band gap between the valence and conduction
energy bands, as shown in section 2.1.[Joannopoulos et al., 2011]

The optical analogue is the photonic crystal, in which the atoms or molecules
are replaced by macroscopic media with differing dielectric constants, and the
periodic potential is replaced by a periodic dielectric function (or, equivalently,
a periodic index of refraction). If the dielectric constants of the materials in the
crystal are sufficiently different, and if the absorption of light by the materials
is minimal, then the refractions and reflections of light from all of the various
interfaces can produce many of the same phenomena for photons (light modes)
that the atomic potential produces for electrons. One solution to the problem of
optical control and manipulation is thus a photonic crystal, a low-loss periodic
dielectric medium. In particular, we can design and construct photonic crystals
with photonic band gaps, preventing light from propagating in certain directions
with specified frequencies (i.e., a certain range of wavelengths, or “colors,” of light).
Photonic crystal can, also, allow propagation in anomalous and useful ways, which
is a property that gives these strutures promissing applications. [Joannopoulos
et al., 2011]

In figure 2.4 there is an example of a photonic crystal with the "L3" defect,
which was the first type of photonic crystal nanocavity in which quality factors in
excess of 104 were obtained experimentally [Chalcraft et al., 2007].

Figure 2.4: L3 defect in Photonic Crystal lattice, shown in perspective. [Akahane
et al., 2005]
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The "L3" defect is built by removing three holes from the photonic crystal
hexagonal lattice ([Fan et al., 2011]), as shown in figure 2.5. In this lattice, all
holes origin are equally distant by one unit and the distance between two rows is
sin(π

3
).

Figure 2.5: Schematic of how the L3 defect in Photonic crystal lattice is built.

[Akahane et al., 2003] defined that the Quality factor, Q, of a cavity is deter-
mined by the energy loss per cycle versus the energy stored. With no absorption by
the cavity material, Q is determined by the reflection loss at the interface between
the interior and exterior of the cavity.

In [Akahane et al., 2005] and [Chalcraft et al., 2007], it has been shown
theoretically and experimentally that by changing the geometry of the holes sur-
rounding the "L3" defect, cavities’ quality factor can be broadly increased.

One application of a photonic crystal, that describes how it works, is to
determine the refraction index of liquid solutions. The basic idea is to immerse
the crystal in the sample and the induced change in the background refractive index
produces a shift in the resonance frequency of the cavity mode, this shift can be
used to characterize the sample. Since the Q factor is inversely proportional to the
width of the transmission peak, the detection limit of such sensors is determined by
the quality factor of the cavity. In this way, a higher Q produces a high precision
sensor. [Pablo Vasco Cano, 2013]

These photonic cavities have many applications in enginnering and science.
Among these applications, we find high-resolutions sensors [Scherer et al., 2006],
quantum information processing [Michler et al., 2000] and the development of logic
gates [Noshad et al., 2012].
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2.4 Evolutionary Algorithms

Evolutionary Algorithms are general purpose optimization tools, designed to search
in non-linear function spaces. These algorithms are based in the species evolution
principle, where the most fitted individuals survive. In this way, an individual in
a population, represents potential solutions to a problem, in which each individual
holds a codification whose fitness can be evaluated by a mathematical function.
These populations can be genetically mutated through generations, and it’s in-
dividuals strives to survive in an procedure that seeks to choose the most fitted.
After a number of generations, a convergence of solutions can be observed around
the best individual.

Initial 
Population

Fitness 
Evaluation

Selection by 
tournament

Crossover

New 
Population

Last 
Generation?

Get the best 
solution

No

Yes

Fitness 
Evalutation

Best 
individuals

Mutation

uniform

non-uniform

none

New 
individuals set

Figure 2.6: An evolutionary algorithm schema

Traditionally, a generation based Evolutionary Algorithm, as shown in fig-
ure 2.6, maintains a potential solutions population, encoded as an array of values
representing function parameters being optimized. Initially, the group of potential
solutions is determined randomly. These potential solutions, named individuals,
are allowed to evolve over a number of generations. At every generation, the fit-
ness of each potential solution is calculated. The fitness is a measure of how well
the potential solution optimizes the objective function. The subsequent genera-
tion is created by recombining pairs of chromosomes in the current generation.
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Recombination between two chromosomes is the method through which the pop-
ulations "evolve" better solutions. The solutions are probabilistically chosen for
recombination based upon their fitness. The "children" chromosomes produced
by the genetic recombination are not necessarily better than their parental chro-
mosomes. Nevertheless, because of selective pressure applied through a number of
generations, the overall trend is toward better solutions [Baluja, 1992].





Chapter 3

Related work

The advances in the fields of computational intelligence paradigm and the introduc-
tion of massive computing power have facilitated a move away from paper-based
analytical systems towards digital models and computer simulations. In this way,
the use of these models has allowed the development of a class of problems known
as "expensive optimization problems", as discussed in [Goh and Tenne, 2010],
which are problems with high computational cost, whose complexity can arise due
to:

• Resource-intensive evaluations of the objective function, when a computer
simulation replaces a real-world laboratory experiment during the optimiza-
tion process. Such simulations can be prohibitory expensive, requiring from
minutes to many hours of evaluation time for each candidate solution.

• Very high dimensional problems when there are multiple variables implying
in a huge search space. This scenario can deliver an intractability of the
optimum solution.

Dispite the challenges, computer-aided design optimization, using an evolu-
tionary approach, has now involved a wide range of design applications, which
includes the design of aerodynamic shapes [Giannakoglou, 2002], super-capacitors
fuel-cell hybrid electric vehicle optimization [Paladini et al., 2007], preliminary
space mission design under uncertainty [Croisard et al., 2010] and photonic crys-
tals systems as will be discussed in section 3.1.

15
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3.1 Optimization in Photonic Crystals

As discussed in [Jiang et al., 2003], the optimization process of photonic compo-
nents in which the minimum feature size is of the order of a wavelength or smaller
poses significant computational challenges because of the need for rigorous solu-
tion of Maxwell’s equations with computationally intensive numerical tools such
as the finite-difference time-domain (FDTD) method, whose implementation can
be found in tools such as MEEP [Oskooi et al., 2010].

Photonic crystal and compact waveguide structures are examples of devices
that are often designed by manual scanning of desired performance metrics as a
function of device parameters. This approach not only can become time consuming
but also can leave the device not fully optimized and overlook novel, unanticipated
solutions. [Jiang et al., 2003]

Therefore, many papers have been published regarding the optimization of
geometric features of a photonic crystal, in order to improve a desired property of
these structures.

[Sanchis et al., 2004] has used a genetic algorithm to reliably determine the
optimized photonic-crystal-based structure for a spot size converter.

[Ye et al., 2004] has used an evolutionary approach to design a two-
dimensional anisotropic photonic crystal of square lattice with a maximal absolute
band gap. The unit cell is divided equally into many small squares, and each filling
pattern of squares with two dielectric materials corresponds to a binary number.

In [Akahane et al., 2005], a photonic nanocavity with a high Q factor of
100,000 and a modal volume V of 0.71 cubic wavelengths, is demonstrated. This re-
sult, was achieved by further improving a point-defect cavity in a two-dimensional
photonic crystal slab, where the arrangement of six air holes in the L3 cavity’s line
was fine-tuned.

A genetic algorithm was used in [Håkansson et al., 2005] to design the opti-
mum configuration of defects that when put within a photonic-crystal taper im-
proves the coupling efficiency between dielectric and photonic crystals waveguides.

[Quan et al., 2010], propose and experimentally demonstrate a deterministic
method to design an ultrahigh Q, wavelength-scale photonic crystal nanobeam
cavity that is strongly coupled to the feeding waveguide. The design approach is
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deterministic in the sense that it does not involve any trial-based hole shifting,
resizing and overall cavity rescaling to ensure the ultrahigh Q-factor of the cavity.

[Quan and Loncar, 2011] extends the previous work by demonstrating designs
of dielectric-mode and air-mode cavities with Q > 109.

Figure 3.1: Holes shifted by [Saucer and Sih, 2013]

[Saucer and Sih, 2013] by slightly shifting the holes on the edge of the L3
cavity, as shown in figure 3.1, has achieved an cavity whose the quality factor, Q,
is 567,000, by applying a gravitational search algorithm.

In this work, a massively distributed genetic algorithm is applied to opti-
mize photonic cavities, overcomming the expensive process of evaluating the many
individuals needed by the evolutionary process.

3.2 Microcavities optimization

In literature, to the best of our knowledge, there is no work optimizing photonic
microcavities synthesis process, such as have been done in this work.

3.3 Parallel Evolutionary Algorithms

As discussed in [Desell et al., 2010], these complex models, such as those pointed in
the beginning of this chapter, have many local optima and evolutionary algorithms
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are very useful for quickly finding solutions in these challenging search spaces. In
addition to the complex search spaces involved, calculating the objective function
can be extremely demanding computationally. Because of this, distributed com-
putation is a necessity. In order to address these computational demands, top-end
distributed computing systems are surpassing hundreds of thousands of computing
hosts; and as in the case of Internet based volunteer computing systems, they can
also be highly heterogeneous and faulty.

Generally, as pointed by [Desell et al., 2010], distributed evolutionary ap-
proaches can be:

• Sequential, where new populations are generated sequentially and individuals
are evaluated in parallel.

• Hybrid, where there are islands of populations and individuals in these is-
lands are evaluated in parallel, and then an asynchronous migration happens
due to a certain criteria.

• Asynchronous, where there is a single-population and individuals are gener-
ated at the demand of an evaluating client and then, their results are send
back to a central hub to be integrated in the main population.

Typical applications of Evolutionary Algorithms require large scale comput-
ing resources which are derived from inherently complex fitness evaluation func-
tions, large numbers of individuals per generation, and the number of iterations
required by EAs to converge towards a satisfactory solution. Therefore, any source
of computing power can significantly benefit researchers using evolutionary al-
gorithms. So, the use of volunteer computing as a platform for harnessing the
computing resources of commodity machines that are nowadays present at homes,
companies and institutions can be used to improve these evolutionary process.
Taking into account that currently desktop machines feature significant comput-
ing resources volunteer computing has become a cost-effective platform for running
time consuming evolutionary algorithms in order to solve complex problems, such
as finding substructure in the Milky Way Galaxy, as presented in [Cole et al., 2010],
as a great example of the asynchronous approach for evolutionary algorithms.
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Other works, also leverage the use of massively distributed algorithms to solve
the challenge of evolving problems whose fitness evaluations are complex: [Laredo
et al., 2010] discuss the use of scalable peer-to-peer evolutionary algorithm and
[Tantar et al., 2008] propose a grid-based genetic algorithm combined with an
adaptive simulated annealing for protein structure prediction.

On the other hand, there are many works regarding several models that have
been used for fitness approximation to overcome the huge time required to evaluate
individuals. [Jin, 2005] describes the most popular ones, which are polynomials
(often known as response surface methodology), the kriging model, most popular
in design and analysis of computer experiments (DACE), the feedforward neural
networks, including multi-layer perceptrons and radial-basis-function networks and
the support vector machines.





Chapter 4

Methodology

In this work there are two optimization models, one for each application studied:
Microcavities and Photonic Crystals. These models can be optimized by a myriad
of different optimization techniques. Due to time constraints, this work has focused
in applying two different Evolutionary Algorithm approaches designed to each
study case.

Section 4.1 describes how the Evolutionary Algorithm applyied in this work
was set up for optimizing the models proposed.

Section 4.2, discusses about the process used to optimize the L3 photonic
crystal cavity using the Photonic Crystal Massively Distributed Genetic Algorithm
(PCMDGA), in order to overcome the computational complexity of evaluating each
candidate solution generated by the developed algorithm.

Section 4.3, leverages discussion about how microcavities were optimized to
achieve robust and high quality designs, using a typical Genetic Algorithm, namely
Microcavities Genetic Algorithm (MCGA).

4.1 Optimization algorithm

For optimizing the strutures studied, in this work, it has been applied an Evolu-
tionary Algorithm as introduced in section 2.4.

The Algorithm, initially, creates a set of randomly generated individuals to
compose the initial population.

21
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Individuals are, then, selected based in their fitness to create couples and have
their genes crossed to generate new individuals. Thus, each couple selected perform
the crossover procedure where each gene for each son is computed according to

Son1 = R ∗ Parent1 + (1−R) ∗ Parent2
Son2 = (1−R) ∗ Parent1 +R ∗ Parent2

(4.1)

where R is a random value between 0 and 1.

This crossover is always performed when new individuals are needed to create
a new population. In order to broaden the search, these new individuals generated
are randomly chosen to perform mutation. In the mutation process, genes are
chosen to receive a new values. It has been applied, in this work, three kinds of
mutation: uniform mutation, non-uniform mutation and side-shift mutation.

Elitism is ensured by always copying a number of best individuals from the
last generation to the current generation.

4.1.0.1 Non-uniform mutation

Non-uniform mutation, as described in [Michalewicz, 1996], is a technique to make
a fine search and ensure that at least a local optimum is reached. So a gene v is
selected through a mutation rate, and then applying equation 4.2 to compute the
new value.

v′ =

{
v + ∆(t, UB − v) if random value 0

v −∆(t, v − LB) if random value 1
(4.2)

where LB and UB are lower and upper domain bounds for variable v. t represents
the generation number. The function ∆(t, y), described in equation 4.3 returns
a value in the range [0, y] that rapidly approaches 0 as the end of generations
draws near. In this way, we allow our search to spread in the space initially and
very locally at later stages; thus tunning the search to minor steps, which brings
benefits when minimum and maximum can be very near on the search space. When
the algorithm has no generations, the criteria can be randonly chosen during the
evolution to determine when fine search will be held.
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∆(t, y) = y.(1− r(1− t
τ

)b) (4.3)

In equation 4.3, t is the current generation, y is the maximum value that the
function can return, r is a random number from [0..1], τ is the maximal generation
number, and b is a system parameter determining the strengh of the shift that is
going to happen in the gene.

4.2 Optimizing L3 Photonic Cavities

4.2.1 Problem definition

In this work, the "L3" photonic cavity, described in section 2.3, has been modeled
for optimization by varying the geometric parameters of the holes surrounding the
cavity, in order to find the best possible Quality Factor, Q.
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Figure 4.1: Photonic Crystal optimization schema

Figure 4.1 illustrates the setup used in this work for the optimization. The
holes 0, 1 and 2 can move in the X axis in both directions and their radius can
grow or shrink. Meanwhile, holes 3 and 4 can move freely in X and Y axis and the
radius can also grow or shrink. Therefore, in table 4.1 there is a description about
how the holes can change their parameters whose range were arbitrarily chosen to
reduce overlapping probability among holes. All values are relative to their holes
original position and size.

In this way, to reduce computational complexity, all the changes done to any
hole are mirrored in the X and Y axis, changing the gray holes, so that the crystal
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is symmetrical in both axis.
In order to simplify the optimization process all variables are limited to

real numbers ranging from 0 to 1 which are latter interpolated to match cavities’
attributes, as described in table 4.1.

Hole ID Attribute Attribute range

0, 1, 2
x (-0.4, 0.4)

radius ( 50%, 150%)

3, 4
x (-0.4, 0.4)
y (-0.4, 0.4)

radius ( 50%, 150%)

Table 4.1: Description of parameters range relative to the original hole location
and size, as shown in figure 4.1, in units relative crystal’s lattice parameter a.

For evaluating the Photonic Crystal’s Quality Factor, Q, the MEEP simulator
was applied [Oskooi et al., 2010], which is a free Finite-Difference Time-Domain
(FDTD) simulation software package, developed at MIT, to model electromagnetic
systems.

Hence, a script containing informations about crystal’s slab geometric con-
figuration and light’s excitation center, frequency and pulse’s width are delivered
to MEEP for evalution, whose result is shown in figure 4.2.

Quality factor

Figure 4.2: MEEP photonic crystal Quality Factor output

Each line with the string harminv0 represents an excited mode, and each of
them, holds a Quality Factor. Therefore, the crystal’s quality factor is given by
the greatest quality value, highlighted in the example in figure 4.2.
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Thus, the optimization process goal is to find the highest possible Q, as
shown in equation 4.4.

Solution = MAX(f(x0, x1, x2, x3, x4, y3, y4, r0, r1, r2, r3, r4)) (4.4)

where f is the function that evaluates Q and xn, yn are the parameters for the
horizontal and vertical moviment of holes and rn is the radius of each hole.

4.2.2 Applied optimization algorithm

The Evolutionary Algorithm implemented here, works in the same way of tradi-
tional Genetic Algorithm, as described in section 4.1, however with individuals
being replaced continually in a single population, instead of generations where all
individuals not in the elitist set are replaced at once.

The process flow is shown in figure 4.3. Thus, the Genetic Algorithm gen-
erates new individuals based on population’s current state in response to requests
from remote clients, available for individuals’ evalutation. Later, these evalutated
individuals are inserted in the population when and if they are reported.

Current population

Server

Request individual Receive individual

Client Client Client Client

Figure 4.3: Client server schema for the Massively Distributed Genetic Algorithm

When starting the optimization process, the population is empty and requests
from clients can be responded with fully randomized individuals or by individuals
taken from an initial individuals table. Whether the population reaches a previ-
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ously defined limit, crossover operations between individuals start happening for
responding new requests from clients.

It is important to note that due to the fact that remote clients can experience
random failures, because of their unknown conditions of operation, generating
individuals by demand is the main aspect that ensure robustness to the process,
since a non responding client will deliver no undesired state to the algorithm or
the need for an individual to be recalculated by another client.

Another relevant aspect is that the heuristics for generating new individuals
are randomized, allowing the asynchronous algorithm to generate as many unique
individuals as are required to satisfy all potential client workers.

4.2.3 Generating new individuals (Genetic operators)

The main operation for generating a new individual is the crossover which is done
by selecting two individuals (using an operation described in section 4.2.4) and
applying the operation in equation 4.5 for each gene, i, from selected parents, thus
generating the new individual.

Gi = R ∗ Parent1i + (1−R) ∗ Parent2i (4.5)

where R is a random generated number ranging from 0 to 1, which describes how
close the newly generated individual will be to one of their parents.

In order to avoid premature convergence of the algorithm to a local optima,
after the crossover operation, some individuals are chosen to be mutated, which can
be an uniform or a side-shift mutation. When performing an uniform mutation,
some genes are randomly replaced by new values, within the range that genes are
allowed to receive. On the other hand, if a side-shift mutation is performed, some
genes are chosen to shift towards a direction randomly chosen relative to their
current position in order to allow some degree of fine search to happen near newly
generated individuals.

Side-shift mutation applied in PCMDGA, resembles what was described as
non-uniform mutation in [Michalewicz, 1996], but fitted to work with a continu-
ously changing population. So a gene v is selected through a mutation rate, and
then applying equation 4.6 to compute the new value.
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v′ =

{
v + ∆(UB − v) if random value 0

v −∆(v − LB) if random value 1
(4.6)

where LB and UB are lower and upper bounds domain for variable v. The function
∆(y), described in equation 4.7, returns a value in the range [0, y] that is propor-
tional to a given strength r chosen randomly. In this way, we allow our search to
spread in the space or being very locally depending on the strength variable.

∆(y) = y.(1− r).s (4.7)

In equation 4.7, y is the maximum value that the function can return and
r is a random number from [0..1] that defines the mutation’s strength. s is the
strength of the mutation, which is a hard wired limit that defines the maximum
shift that the gene can be pushed.

It is remarkable that newly generated individuals are not sent to evaluation
if they are too close to others individuals in the population. Therefore, a metric
of uniqueness is defined in section 4.2.5, to ensure a reasonable genetic variability
in the algorithm’s current population.

In this way, figure 4.4 describes the generation process of a new individ-
ual: two individuals are chosen by the process described in section 4.2.4, then
a crossover is executed using equation 4.5. Finally, there is a probability of a
mutation over this newly generated individual.
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Figure 4.4: Flow for creating new individuals.

After all this creation process, provided that the individual is unique in the
current population, it is sent for evaluation to any client available in the network.
If a non-unique individual is generated, then the process is repeated until an unique
individual comes out.

4.2.4 Selection

For selecting an individual, among n available, the probability curve, given by
f(x), must always follow the rule described in equation 4.8, so that all individuals,
sorted in increasing order by their fitness, have a probability of being chosen,
proportionally to their position in the fitness ranking.∫ n

0

f(x)dx = 1 (4.8)

For example, in the case of a linear probability function, which was used in
this work for selection, the probability of choosing the ith individual among n is
the dashed area shown in figure 4.5, and given by equation 4.9.
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∫ i
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Figure 4.5: Probability distribution for choosing an individual

To easily implement a function for choosing an individual, an array of length
n, can be created and each position filled with the accumulated probability of the
latter individuals. This accumulated probability, in figure 4.5 for the ith individual
is the shaded area, which corresponds to the area between 0 and i. So for selecting
an individual, it is only a matter of choosing a random number ranging from 0 to
1 and looking for the gap in the array where it belongs.

4.2.5 Individual uniqueness

An individual is considered unique when its euclidean distance from all the others
individuals is greater than a threshold distance.

Checking whether two individuals are unique is important for continuous
search, because the crossover method have high probability of creating individuals
too close to others individuals in the search space, when no mutation is performed.
Therefore, before any individual is sent to evaluation it is checked against all the
current population: whether this individual is not unique, the process of creating
a new individual is repeated, as commented in section 4.2.3.

Therefore, a metric of uniqueness of an individual was implemented, based
in a fraction of the largest distance possible in the search space. Since the search
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space is limited in all dimensions to the space between 0 and 1, an individual is
unique if it has a distance greater than a given percentage from the

√
n, where n

is the number of dimensions (as shown in figure 4.6), to all the others individuals
placed in population.
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Figure 4.6: Largest distance possible in the search space

It is important to notice that, during the evolution, allowing the user to
dynamically change the threshold which defines how distant individuals must be
to be considered unique can help improve the local search when the algorithm is
converging.

4.2.6 Receiving individuals

Whenever a client responds to the server with an evaluation of an individual,
algorithm 1 will be executed.

Algorithm 1 Receive individual algorithm
1: if Population is not full then
2: insert individual in the population
3: else
4: replace an individual from the main table with the received individual
5: end if

In algorithm 1, the individual chosen to be replaced is select by a process
similar to the one described in section 4.2.4, but with individuals sorted in in-
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creasing order. This approach provides greater chances of lower fitness individuals
being selected to be replaced.

To ensure elitism to the evolutionary process, a set of individuals with the
highest fitness are never allowed to be chosen.

4.3 Optimizing Microcavities

4.3.1 Problem Description

As it has been described in section 2.2, the synthesis of semiconductor nanodevices,
such as microcavities, is a challenging task because in order to create the desired
device, the correct set of parameters must be chosen. The desired features are the
highest possible Quality Factor (Q) and the correct position of cavity’s resonance
peak (λo).

Quality Factor (Q = ∆λ/λo) is measured from the reflectance spectra, where
the full width at half maximum (FWHM) of the resonance (∆λ) and the cavity
resonance position (λo) are obtained directly.

It is well known that the resonance position is directly related to the thickness
of the cavity layer. So, if a particular position of the resonance peak is desirable,
the thickness of the cavity layer is easily defined by Lc = m(λo/2nc), for an integer
number m and a cavity with refractive index nc. Moreover, the thickness of the
layers in the DBR mirror is given by LDBR = λo/4ni, where ni is the refractive
index of each layer. However, the remaining parameters may shift slightly the
peak position. So, they have to be optimized in order to minimize as much as
possible this shift. Figure 4.7 shows how a growth error affected the position of
the resonance peak for 1900nm.



32 Chapter 4. Methodology

1800 1850 1900 1950 2000
Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
fl
e
ct
a
n
ce

[1900nm] [Q=9473.50] [∆E =5.30]

Figure 4.7: Resonance peak shift.

The problem of microcavities growth is to look for the best set of parameters
before the experimental synthesis of the desired nanodevice. Such parameters
will guide the experimental physicist in the slow and expensive process of growth.
Whereas the relationship between the desired position of the resonance peak and
the thickness of the layers are well known, the algorithm has to search for the
others parameters involved in the growth process. In this way, the parameters
involved in the microcavities optimization problem (MO), as shown in figure 4.8,
are:

• Number of layers in the inferior DBR mirror (NL1);

• Number of layers in the superior DBR mirror (NL2);

• Aluminium concentration in the first layer of the pair (CP1);

• Aluminium concentration in the second layer of the pair (CP2);

• Aluminium concentration in the layer of the cavity (CC).

Where CC, CP1 and CP2 are percentual concentration values, ranging from
0 to 1, and NL1 and NL2 are integer numbers between 0 and 30, whose limits were
defined to comply with demands from experts.
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Figure 4.8: Parameters for optimization.

So, given a microcavity with its desirable resonance peak and a set of param-
eters to be established, the MO problem consists in chosing the set of parameters,
such that the Q is maximized and ∆E is minimized.

In this way, for each structure it has been measured the Quality Factor (Q)
and the error deviation (∆E) to the desired position of the resonance peak. These
variables are related according to the equation 4.10.

F = Q

(
1−

(
∆E

∆E + n

))
(4.10)

So the MO problem can be defined as:

Solution = MAX(F ) (4.11)

where Q and ∆E in F is given by f(NL1, NL2, CP1, CP2, CC), where f is the
simulation presented in [Coelho et al., 2013].

Equation 4.10 was chosen due to the fact that ∆E has no known limit. Let
f(∆E) =

(
∆E

∆E+n

)
, then lim

∆E→+∞f(∆E) = 1, thus this part of the equation works
as a weight, ranging from 0% to 100% on how the error impacts in the fitness final
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value. If the error is zero, the impact is null, otherwise, if the error is to high, the
impact will be approaching 100% of the quality. Figure 4.9 shows how changing n
impacts on the value of f(∆E).
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Figure 4.9: Impact of varying n on Q

It has been verified that ∆E is strongly related to the growth inaccura-
cies and the optimized parameters haven’t a great influence in the error, but can
slightly minimize it. So, the main feature to be optimized is the Q value, but still
considering the ∆E.

The major inaccuracy during the synthesis process is related to the thickness
of the layers and their roughness. The roughness problem can be minimized with
the use of Molecular Beam Epitaxy (MBE) technique in the growth process. Since
our target devices are in nanometer scale, small variations in layers thickness can
impact significantly the final result. Thus, the optimization process developed in
this work has to deal with uncertainty. According to experts, during the growth
process two different problems can occur: (a) the MBE used to grow the device
is calibrated to a specific deposition rate. This deposition rate defines how many
atomic layers are deposited per second. An error of about 1% can occur in this
process, leading to a thickness variation in all layers of the device; (b) during the
deposition of each layer a local error, also equal to 1%, can happen, causing the
device to have layers with different thicknesses.
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Nevertheless, although the process of synthesis of nanoscale semiconductors is
well developed, there is still some inaccuracies not controlled by experts. Therefore,
in this work is intended to search for a set of parameters that could lead to the
development of good devices even if inaccuracies occur during the growth process.

In order to deal with this uncertainty, each set of parameters representing
a solution has its fitness evaluated against 10 different microcavities structures,
in which the first structure presents layers thickness in the DBR mirror given by
LDBR = λo/4ni, where ni is the refractive index of each layer, as described earlier.
The next nine structures are randomly generated considering the 1% error in cal-
ibration phase and the 1% error in the growth of each layer. It has been decided
to use ten structures because of the time consuming simulation of each individual
and due to preliminary testing with a larger number of structures showing small
changes in results.

So, to ensure that the experimental physist will be able to grow a microcavity
with the desired features, the MO problem is now defined as:

Solutionmin = MAX (MIN(Fi)) ; (i = 1, 2, ..., 10) (4.12)

where Fi is the evaluation of the ith struture.

Also, the average MO problem is defined and used to compare with the
previous solution. In this case:

Solutionaverage = MAX

(
10∑
i=1

Fi
10

)
; (i = 1, 2, ..., 10) (4.13)

Finally, an optimization problem that does not consider the robustness can
be defined as:

Solutionmax = MAX (MAX (Fi)) ; (i = 1, 2, ..., 10) (4.14)

The result of this optimization problem can deliver the highest possible eval-
utation, but it does not ensure that the grown microcavity will present the desired
features due to uncertainty.
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4.3.2 Applied optimization algorithm

The Genetic Algorithm implemented for optimizing these microcavities while
building the initial population, randomly tries to generate individuals without
null fitness until it fills the initial population or it reaches a defined limit of tries.
After the initial population is built, the algorithm works as described in section
4.1, with individuals whose chromosomes are built according to the parameters
described in section 4.3.1.

Each gene in the chromosome holds a floating point value ranging from 0 to 1.
The first three genes are the Aluminium concentration, x, of the two layers in the
pair of the DBR mirrors and in the cavity layer, according to figure 2.3. The last
two genes represent the number of pairs of layers on each DBR mirror. In order to
not encumber the future physical synthesis of the device, the number of pairs of
layers was limited to 30 in each mirror. These individuals are evaluated through
the simulation described in [Coelho et al., 2013] and the strategies described in
section 4.3.1.
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Experimental results

5.1 Photonic Crystal cavity design

For designing photonic cavities with high Quality Factor, PCMDGA, described in
section 4.2.2, has been applied in conjunction with MEEP [Oskooi et al., 2010]
for FDTD simulations in clients spread across multiple locations. These clients
includes personal computers, powerful computing servers in UFMG’s laboratories
and multi-processor clusters from LNCC and UFMG. Because of the long time
required by the optimization process during the experiments, these clients were
randomly attached and detached from the process, due to a multitude of factors
such as power shortages and maintenance routines.

This scenario displays the heterogeneous nature of the implemented algo-
rithm and makes clear that every experiment is unique. As commented in [Desell
et al., 2010], the order in which requests for new individuals are done and their
respective responses with simulation’s results greatly impacts the overall evolu-
tionary process. Thus, in real world scenarios, it is a hard task to reproduce the
conditions in which each experiment was developed.

Our goal is to reach similar or better crystals than what has been achieved
in [Saucer and Sih, 2013]. For doing so, a MEEP script, for physics simulation,
was developed with geometric parameters described in section 4.2 and the slab’s
properties in table 5.1.

37
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Resolution 20
Edge shift 0.15
Decay time 500
Number of padding holes 8
Hole radius 0.29
Slab thickness 0.6
PML 1
Pulse’s frequency center 0.273712876505613
Pulse’s width 0.01

Table 5.1: Photonic Crystal experiments parameters

MEEP discretizes every structure in space and time, and that is specified by
the resolution variable, which gives the number of pixels per distance unit. Before
the holes’ patterns in the slab, there is an Edge shift, which, effectively, is the
distance before the border of the first hole in every slab’s corner. For defining the
simulation time, there is a Decay time, in MEEP’s units. Before the cavity, there
are a number of padding holes which, actually, are the number of holes, before the
missing holes in the middle of the slab. The Perfectly Matched Layer (PML) is the
absorbing boundary condition in FDTD, described in [Berenger, 1994], which is
the surrounding computational cell with a medium that in theory absorbs without
any reflection electromagnetic waves at all frequencies and angles of incidence. For
analyzing the behaviour of the light within the slabs, a gaussian pulse of light with
a defined frequency center and width is used in the slab’s center.

These parameters were defined in talks with physists Juan Pablo Vasco
(UFMG) and Timothy Saucer (University of Michigan) which were working with
these photonic crystals cavities.

After setting up the simulation’s conditions, in order to optimize the design of
the photonic crystal, the parameters in table 5.2 were used to set up the PCMDGA.



5.1. Photonic Crystal cavity design 39

Elitist set length 5
Global mutation rate 10%
Maximum individuals in population 100
Mutation strength 50%
Side-shift mutation strength 30%
Number of decimal digits 5
Uniform mutation rate 50%
Uniqueness threshold 1%

Table 5.2: PCMDGA parameters

The elistist set length represents the size of the set of the best individuals in
the current population which can never be selected to be replaced. This procedure
ensures an elitist behavior, thus, preserving the evolution of the population.

In this way, as described in section 4.2, to make sure that the algorithm
does a broad search, 10% of all generated individuals are select to perform some
kind of mutation, in which 50% will be a Side-shift mutation and the other 50%

mutated by an uniform mutation. When performing a Side-shift mutation, there is
a strength threshold which limits in 30% how far the gene can be shifted, relative
to the current position of the gene and the upper or lower limit.

Therefore, to enable a broad search, each new generated individual, must be
at least 1% of the maximum distance in the search space (which in this case is√

12) far from all the other individuals in the current population. In latter stages
of the evolution, this distance can be reduced by the user in order to allow a more
narrow search around the best individuals, thus enabling a local optimization.

By applying these parameters in PCMDGA, during the course of four months
it was possible to run three experiments whose details are displayed in table 5.3.
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Experiment 1 2 3

Pulse frequency 0.2737 0.2737 0.26
Duration 35 days 38 days 43 days
Evaluations’ amount 8430 4565 7000
Best Q found 338173.46970151 336267.3187271 334516.66857112
Best Q insertion number 7931 3241 5336
Average simulation time (s) 13577.16 7251.19 21369.36
Estimated clients’ amount 50 30 60

Table 5.3: Photonic Crystal experiments results

The amount of evaluations in each experiment is fairly different from each
other because of the availability of resources during the experiment’s course. In
the first experiment, there were around 15 extremely fast machines (evaluating
individuals within 3500 seconds), working along 35 very slow machines (taking
50,000 seconds for each individual), what explains the higher amount of evaluations
and average of simulation time. In a different scenario, the second experiment was
running, mainly, with fast machines, which explains the reduced average time of
each simulation and the fewer individuals evaluated before the best were found. In
the third experiment, LNCC’s cluster were introduced in which individuals were
evaluated within a fair amount of time (around 13,000 seconds) along those slow
machines from the first experiment. The Best Q insertion number gives the time
in which the simulation’s best individual has been inserted in the population. In
this way, it is possible to see that when only faster machines were employed, the
results arrived earlier, which is the case of the second experiment.

These analysis aren’t conclusive, because there were not enough time to per-
form extensive experiments in each scenario, due to the computational complexity
around the FDTD’s simulation.

Due to complexity of PCMDGA, it is almost impossible to precisely know
the amount of clients that were actually generating results for the algorithm over
the course of time. The estimation is based on the number of MEEP’s process
started in the clusters and machines available in the beginning of each experiment.

Since there is no generation concept, a way to track the algorithm’s evolution
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is by plotting the increase in best fitness in current population in each individual
insertion. Figures 5.1 and 5.2 show how the quality factor for each experiment
performed for pulse’s frequency of 0.27371 and 0.26 respectively. Each rung tran-
sition in the chart represents that an individual better than all the others in current
population has been inserted.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Insertion number

0

50000

100000

150000

200000

250000

300000

350000

Cu
rr

en
t b

es
t f

itn
es

s

Photonic crystal massivelly distributed G.A evolution

(a)

0 1000 2000 3000 4000 5000
Insertion number

0

50000

100000

150000

200000

250000

300000

350000

Cu
rr

en
t b

es
t f

itn
es

s

Photonic crystal massivelly distributed G.A evolution

(b)

Figure 5.1: Photonic crystal PCMDGA evolution with frequency center at 0.27371.
(a) Experiment 1 and (b) Experiment 2.

In figure 5.2, all the parameters advertised in table 5.2 has been kept the
same, with the exception of the frequency center, which was changed to 0.26, in
order to see whether this parameter would deliver a different Quality Factor in the
evolution process.
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Figure 5.2: Photonic crystal PCMDGA evolution with frequency center at 0.26
for Experiment 3.

The evolutionary process was arbitrarily halted when the evolution seems to
not be receiving any new improvements. Figure 5.3 displays how the best crystal
found in each experiment looks like. These crystals holds similarities with that
found in [Saucer and Sih, 2013] and are a clue about the behaviour of L3 cavity
towards it’s optimum.

(a) (b)

(c) (d)

Figure 5.3: (a), (b) and (c) are the best crystals found in experiments 1, 2 and 3,
respectively. (d) is the best from [Saucer and Sih, 2013].
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In attempts to reproduce results from [Saucer and Sih, 2013], which has
advertised a Quality Factor of 560, 000, the best Q that could be achieved through
the experiments with the code provided by the author were 148, 749.57, with mode
volume of 0.858 when the frequency were set to 0.27371 and 12 padding holes with
resolution of 40. By comparison, in the same conditions, the best crystal found in
this work has a Quality Factor of 613, 158.15 and mode volume of 0.7683.

Table 5.4 compares the best results from each experiment performed in this
work, with that performed by [Saucer and Sih, 2013]. To check accuracy of the
crystal, [Saucer and Sih, 2013] recomended increasing the number of padding holes
to 12 and the resolution to 40. In this way, it is easy to see that the results from
this work were accurate and had performed better than that from [Saucer and Sih,
2013].

Results for resolution of 20 Results for resolution of 40
Quality Mode volume Quality Mode volume

Experiment 1 338173.47 1.089 550540.27 0.900
Experiment 2 336267.32 1.048 613158.15 0.768
Experiment 3 334516.66 0.895 106623.98 0.951

[Saucer and Sih, 2013] 101180.87 0.869 148749.57 0.858

Table 5.4: Best crystals results comparison.

It is important to note that the optimization process could not be held in
the resolution of 40, due to the increase in the evalution time, which would be
unfeasible.

The importance of reducing the mode volume of cavities were an unknown
fact during the early stages of this work, so there were no available time to conduct
optimizations for this target, thus, all the optimizations performed by PCMDGA
only accounted leveraging the Quality Factor. However, in this work the mode
volume has been improved.

As discussed in section 4.2, the simulation has been done using genes that
range from 0.0 to 1.0 and each value were latter interpolated to match the actual
parameters for the simulator. This scenario, added to the fact that there were 5

decimals in each of the 12 genes, deliver a search space of 1060 possible individuals,
which in turn would be calculated by the FDTD simulator. By analysing table 5.3
it is possible to see that with less than 7000 evaluations a good result were achieved,
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which is much less than those 15000 simulations required by the algorithm applied
in [Saucer and Sih, 2013]. These results show that only a small portion of the
search space needs to be explored in order to reach results better than the best
currently found in literature.

In table 5.5 there is a comparison of the attributes of each hole in the cavity,
relative to the origin and placed in the third quadrant which are latter, mirrored
to all the other quandrants. These attributes are from the bests crystals found in
this work and in [Saucer and Sih, 2013] and displayed in figure 5.3.

Hole ID Attribute Experiment 1 Experiment 2 Experiment 3 From Saucer and Sih [2013]

0
x -2.25201 -2.20744 -2.0162 -2.05

radius 0.249333 0.171196 0.228862 0.15

1
x -3.12258 -3.0538 -3.14725 -3.00

radius 0.309233 0.20052 0.332879 0.29

2
x -3.93787 -3.97532 -4.14718 -4.00

radius 0.298311 0.290177 0.284104 0.29

3
x -0.4988 0.473688 -0.588032 -0.59
y -0.687753 0.707881 -0.779081 -0.67

radius 0.233027 0.233676 0.17964 0.20

4
x -1.54918 -1.52973 -1.61842 -1.57
y -0.778585 -0.853225 -0.764145 -0.72

radius 0.263787 0.284348 0.222236 0.25

Table 5.5: Best crystals features comparison, relative to the origin. The Holes IDs
are according to figure 4.1.

It is important to note that in [Saucer and Sih, 2013] it were optimized 8

parameters, which are the values in bold face in table 5.5.

5.2 Microcavities experiments

For each microcavity structure with different resonance peak ranging from 700nm
to 2000nm (increasing by 100nm in each experiment) it has been optimized five
parameters: the number of layers in the top and bottom of DBR mirrors and
the aluminium’s concentration in three distinct layers (each layer of the pair that
constitute the DBR mirror and the cavity).

The Genetic Algorithm applied in this optimization (described in section
4.3.2) has been set up, for all experiments, with parameters from table 5.6.
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Number of individuals per generation 40
Number of generations 200
Elitist set length 5
Mutation rate 10%
Uniform mutation rate 50%
Non-uniform mutation rate 50%

Table 5.6: MCGA parameters

The mutation rates described above means that 10% of the newly gener-
ated individuals are chosen to be mutated and among those, 50% are going to be
uniformly mutated and the other 50% will be non-uniformly mutated.

For each resonance peak it has been performed optimizations considering
the three fitness strategies described in section 4.3. It is important to remember
that the optimization goal is to look for structures that could present high Quality
Factor (Q) and the smaller possible shift in the position of the resonance peak.
Figures 5.4, 5.5 and 5.6 are results of the fitness curves, for resonance peaks of
800nm, 1400nm and 2000nm. In these curves, it is shown how each strategy
evolved in an average of the best individuals from each generation in 15 runs of
the algorithm. Evolution curves for all the other experiments can be found in
appendix B.1.
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Figure 5.4: Evolution for 800nm
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Figure 5.5: Evolution for 1400nm
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Figure 5.6: Evolution for 2000nm

The results of the best structure found in each experiment are shown in table
5.8. This table shows error deviation, ∆E, Quality Factor, Q, and evaluation value
for each of ten structures of the best individual found in each resonance peak for
each strategy.

In these experiments, it is expected that the first structure, labeled as 1,
presents the best evaluations (highest Q and lowest ∆E), due to the fact that this
structure is built without errors during the growth. So all the others structures
represents those with some error during the growth, therefore, showing how inac-
curacies can impact the quality factor. However, in some cases a structure other
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than the first one, had shown a better quality, probably because that growth issue
has delivered a good structure for that resonance peak.

As expected, in the evolution charts, as shown in figures 5.4, 5.5 and 5.6, the
highest fitness evaluation strategy presents the best fitness value, as it takes the
maximum evaluation value considering the ten different microcavities structures.
The experiments considering only the best evaluation has the advantage that at
least one structure will deliver a great quality, thus reaching the desired function
in the given resonance peak. However, the set of parameters delivered by the
evolutionary process, in this strategy, will not ensure that when some error in
the growth happens, the grown struture will behave as expected. Therefore, this
strategy doesn’t ensure robustness, as can be seen in results from table 5.8. This
fact is best seen through the high standard deviation value for highest evaluation
strategy which means that there is a huge variation in the quality from the worst
to the best microcavity.

On the other hand, the lowest evaluation strategy, as it takes the worst
evaluation value from the ten structures, evolves to a lower fitness value. This
strategy ensures that, in the worst case, when a microcavity with some error is
grown, a good Quality Factor device is going to be delivered. Actually, this strategy
has the warranty of robustness in the parameter set delivered by the evolutionary
process, due to the fact that worst device has some quality ensured. Generally,
the lowest evaluation strategy tends to present the most robust result. However,
when analysing the data from experiments, shown in table 5.8, it is possible to
see that the evolution considering the average of the ten strutures, also delivers a
robust parameter set for all resonance peaks. In some cases, the average strategy
outperform the robusteness presented by the lowest evaluation strategy, such as
in the case of resonance peak of 1600nm, where the worst case presented by the
average strategy is better than that presented by the lowest evaluation strategy.

In results from table 5.8, results with is a high average and a low standard
deviation in the fitness’ values, it means that growth problems will not deeply
impact on the overall quality of the final device, due to the fact that there is
reduced variance in the quality delivered by the parameter set.
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Table 5.7 shows all the parameters set for each resonance peak and strategy
studied in this work, which are needed to build structures presented in table 5.8.
These structures will look like that from figure 2.3.
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700 lowest 0.41 0.91 0.97 27 30
700 mean 0.54 0.98 0.74 29 30
700 highest 0.51 0.94 0.65 29 30
800 lowest 0.33 0.89 0.58 26 30
800 mean 0.35 0.98 0.55 26 30
800 highest 0.28 0.90 0.57 27 28
900 lowest 0.95 0.07 0.72 27 26
900 mean 0.96 0.02 0.78 25 27
900 highest 0.14 0.85 0.59 24 26
1000 lowest 0.97 0.07 0.80 27 28
1000 mean 0.97 0.07 0.71 26 27
1000 highest 0.14 0.91 0.46 23 25
1100 lowest 0.98 0.05 0.85 27 28
1100 mean 0.97 0.10 0.80 27 26
1100 highest 0.94 0.05 0.46 25 26
1200 lowest 0.99 0.06 0.94 25 26
1200 mean 0.99 0.01 0.84 25 27
1200 highest 0.94 0.09 0.71 27 26
1300 lowest 1.00 0.03 0.89 27 25
1300 mean 0.98 0.06 0.89 26 27
1300 highest 0.99 0.11 0.48 25 26
1400 lowest 0.07 0.98 0.95 23 24
1400 mean 0.97 0.06 0.97 29 26
1400 highest 0.94 0.09 0.57 27 27
1500 lowest 0.99 0.01 0.86 30 24
1500 mean 0.99 0.01 0.86 30 24
1500 highest 0.93 0.05 0.12 27 29
1600 lowest 0.09 1.00 0.92 23 26
1600 mean 0.99 0.03 0.99 29 28
1600 highest 0.92 0.05 0.61 28 28
1700 lowest 0.06 0.98 0.55 23 28
1700 mean 0.08 0.99 0.41 19 28
1700 highest 0.97 0.04 0.85 30 25
1800 lowest 0.99 0.07 0.89 27 27
1800 mean 0.10 0.99 0.90 25 30
1800 highest 0.98 0.07 0.90 30 26
1900 lowest 0.07 0.97 0.62 23 28
1900 mean 0.98 0.07 0.91 30 26
1900 highest 0.88 0.08 0.13 30 30
2000 lowest 0.08 1.00 0.64 22 29
2000 mean 0.08 0.99 0.71 25 27
2000 highest 0.10 0.89 0.59 26 28

Table 5.7: Best parameters found for microcavities
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When analysing how the Quality Factor evolves as a function of the reso-
nance peak, it is remarkable that the best Quality Factor found, after 900nm,
increases linearly as the resonance peak increase, as can be seen in figure 5.7. In
the experiments performed for resonance peaks lower than 700nm, there were no
Quality Factor found by the evolutionary process.
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Figure 5.7: Best quality factor found as a function of the resonance peak.

Figures 5.8, 5.9 and 5.10 displays the reflectance spectrum for the best struc-
tures found in this work for resonance peak of 800nm, 1400nm and 2000nm. All
the other structures’ resonance peaks are shown appendix B.2. These structures
are the best shown in table 5.8 among the ten microcavities applied in the opti-
mization process. The parameters needed to build these structures are shown in
table 5.7.

As can be observed in these reflectance spectra, all resonance peaks are
tightly aligned in their respective frequency peaks, as set before the optimiza-
tion tooks place. This behavior of being very thin at a given resonance peak
caracterizes a good Quality Factor, and demonstrates that the optimization has,
successfully, found the parameters needed to match each resonance peak.
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Figure 5.8: Reflectance for 800nm
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Figure 5.9: Reflectance for 1400nm
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Figure 5.10: Reflectance for 2000nm
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In order to demonstrate how hard is to, randomly, find an individual in
the search space with a fitness greater than zero, figure 5.11 plots the number of
randomly generated individuals that the algorithm has tried for constructing the
initial population. Inside each box, there is the average number of individuals
that were effectivelly found until the initial population was filled or the 20,000
limit of tries has been exhausted in the 15 experiments executed. It is remarkable
that when the lowest evaluated structure is being used as fitness, it is harder
to find individuals with fitness greater than zero. As discussed in section 4.3.2
randomly trying to find individuals which holds some Quality Factor, is a measure
that ensures that the evolution has a high probability of going through some
optimization, rather than randomly crossing over individuals that will never reach
any quality.
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Figure 5.11: Average of the number of tries the algorithm has randomly made to
find an individual with a fitness value greater than zero, in the 15 experiments
executed. Inside each box is the average number of individuals found.
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Table 5.8: Structures Fitness for each resonance peak.

700nm 800nm
Fitness: Highest Evaluation Fitness: Average Evaluation Fitness: Lowest Evaluation Fitness: Highest Evaluation Fitness: Average Evaluation Fitness: Lowest Evaluation

Structure ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi
1 0.00 700.00 700.00 0.00 700.00 700.00 0.00 636.36 636.36 0.00 1600.00 1600.00 0.00 1600.00 1600.00 0.00 1600.00 1600.00
2 2.20 697.80 571.97 2.20 697.80 571.97 2.00 698.00 581.67 2.40 1329.33 1072.04 2.40 1329.33 1072.04 2.50 1595.00 1276.00
3 2.10 697.90 576.78 2.00 698.00 581.67 1.80 698.20 591.70 2.20 1329.67 1089.89 1.90 1596.20 1341.34 2.00 1596.00 1330.00
4 1.00 0.00 0.00 1.00 699.00 635.46 0.50 699.50 666.19 0.60 1332.33 1256.92 0.60 1598.80 1508.30 0.60 1598.80 1508.30
5 2.20 697.80 571.97 2.20 697.80 571.97 2.40 697.60 562.58 3.00 1328.33 1021.79 2.70 1594.60 1255.59 2.70 1594.60 1255.59
6 3.00 697.00 536.15 3.00 697.00 536.15 2.60 697.40 553.49 3.10 1328.17 1013.87 3.60 1592.80 1171.18 3.60 1592.80 1171.18
7 2.00 698.00 581.67 1.90 698.10 586.64 2.10 697.90 576.78 2.40 1329.33 1072.04 2.10 1595.80 1318.84 2.20 1595.60 1307.87
8 0.80 699.20 647.41 0.80 699.20 647.41 1.00 699.00 635.46 1.30 1597.40 1413.63 0.90 1598.20 1466.24 0.90 1598.20 1466.24
9 1.00 699.00 635.46 1.00 699.00 635.46 1.10 635.36 572.40 1.30 1331.17 1178.02 1.40 1597.20 1401.05 1.40 1331.00 1167.54
10 0.40 699.60 672.69 0.40 699.60 672.69 0.80 699.20 647.41 0.90 1331.83 1221.87 1.00 1598.00 1452.73 1.00 1598.00 1452.73

mean 1.47 628.63 549.41 1.45 698.55 613.94 1.43 685.85 602.40 1.72 1383.76 1194.01 1.66 1570.09 1358.73 1.69 1570.00 1353.55
stdev 0.96 220.88 199.92 0.95 0.95 51.92 0.87 26.36 40.03 1.05 113.30 188.78 1.09 84.62 160.78 1.10 84.00 146.56

900nm 1000nm
Fitness: Highest Evaluation Fitness: Average Evaluation Fitness: Lowest Evaluation Fitness: Highest Evaluation Fitness: Average Evaluation Fitness: Lowest Evaluation

Structure ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi
1 0.00 9000.00 9000.00 2.00 9020.00 7516.67 1.80 9018.00 7642.37 0.00 10000.00 10000.00 1.80 10018.00 8489.83 2.00 10020.00 8350.00
2 2.60 8974.00 7122.22 0.70 8993.00 8404.67 0.90 8991.00 8248.62 2.50 9975.00 7980.00 1.30 9987.00 8838.05 1.00 9990.00 9081.82
3 2.60 8974.00 7122.22 0.00 8999.00 8999.00 0.60 8994.00 8484.91 3.30 9967.00 7493.98 0.50 9995.00 9519.05 0.70 9993.00 9339.25
4 0.60 4497.00 4242.45 1.40 9014.00 7907.02 1.20 9012.00 8046.43 1.10 9989.00 8999.10 1.10 10011.00 9018.92 1.30 10013.00 8861.06
5 3.00 8970.00 6900.00 0.70 8993.00 8404.67 1.70 8983.00 7677.78 3.60 4982.00 3663.24 1.80 9982.00 8459.32 2.00 9980.00 8316.67
6 3.50 8965.00 6640.74 1.30 8987.00 7953.10 1.60 8984.00 7744.83 3.60 9964.00 7326.47 2.90 9971.00 7729.46 1.90 9981.00 8387.39
7 2.90 8971.00 6954.26 0.30 8997.00 8734.95 0.90 8991.00 8248.62 3.60 4982.00 3663.24 0.70 9993.00 9339.25 1.00 9990.00 9081.82
8 1.20 4494.00 4012.50 1.30 9013.00 7976.11 0.20 9002.00 8825.49 1.00 4995.00 4540.91 0.60 10006.00 9439.62 0.20 10002.00 9805.88
9 2.00 8980.00 7483.33 0.30 9003.00 8740.78 0.40 9004.00 8657.69 2.00 9980.00 8316.67 0.00 10000.00 10000.00 0.40 10004.00 9619.23
10 0.80 8992.00 8325.93 1.00 9010.00 8190.91 0.70 9007.00 8417.76 0.90 4995.50 4583.03 0.40 10004.00 9619.23 0.80 10008.00 9266.67

mean 1.92 8081.70 6780.36 0.90 9002.90 8282.79 1.00 8998.60 8199.45 2.16 7982.95 6656.66 1.11 9996.70 9045.27 1.13 9998.10 9010.98
stdev 1.19 1890.12 1570.90 0.61 10.89 459.01 0.56 11.83 414.79 1.35 2577.13 2333.79 0.86 14.13 677.76 0.65 13.44 528.66

1100nm 1200nm
Fitness: Highest Evaluation Fitness: Average Evaluation Fitness: Lowest Evaluation Fitness: Highest Evaluation Fitness: Average Evaluation Fitness: Lowest Evaluation

Structure ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi
1 1.00 5505.00 5004.55 1.90 11019.00 9259.66 2.10 11021.00 9108.26 1.60 6008.00 5179.31 2.10 12021.00 9934.71 2.30 12023.00 9774.80
2 2.40 10976.00 8851.61 1.50 10985.00 9552.17 1.30 10987.00 9723.01 2.20 11978.00 9818.03 1.70 11983.00 10241.90 1.50 11985.00 10421.70
3 1.70 10983.00 9387.18 1.20 10988.00 9810.71 1.00 10990.00 9990.91 1.80 11982.00 10154.20 0.90 11991.00 11000.90 0.70 11993.00 11208.40
4 0.20 11002.00 10786.30 1.10 11011.00 9919.82 1.30 11013.00 9746.02 0.70 12007.00 11221.50 1.20 12012.00 10725.00 1.40 12014.00 10538.60
5 2.50 5487.50 4390.00 2.60 10974.00 8709.52 2.40 10976.00 8851.61 3.30 11967.00 8997.74 1.80 11982.00 10154.20 1.60 11984.00 10331.00
6 3.20 5484.00 4154.55 2.50 10975.00 8780.00 2.30 10977.00 8924.39 3.30 11967.00 8997.74 2.60 11974.00 9503.17 2.40 11976.00 9658.06
7 1.90 5490.50 4613.87 1.50 10985.00 9552.17 1.30 10987.00 9723.01 2.20 11978.00 9818.03 1.10 11989.00 10800.90 0.90 11991.00 11000.90
8 0.00 11001.00 11001.00 0.10 10999.00 10890.10 0.00 11000.00 11000.00 0.60 11994.00 11315.10 1.10 12011.00 10820.70 1.30 12013.00 10631.00
9 1.10 5494.50 4950.00 0.00 11001.00 11001.00 0.30 11003.00 10682.50 0.40 5998.00 5767.31 0.30 11997.00 11647.60 0.10 11999.00 11880.20
10 0.30 5498.50 5338.35 0.50 11005.00 10481.00 0.70 11007.00 10286.90 0.00 12001.00 12001.00 0.60 12006.00 11326.40 0.80 12008.00 11118.50

mean 1.43 7692.20 6847.74 1.29 10994.20 9795.62 1.27 10996.10 9803.66 1.61 10788.00 9327.00 1.34 11996.60 10615.55 1.30 11998.60 10656.32
stdev 1.09 2838.74 2804.50 0.91 15.16 799.52 0.82 15.13 718.92 1.17 2521.95 2259.55 0.70 15.37 654.96 0.71 15.37 673.63
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Table 5.8: Structures Fitness for each resonance peak.

1300nm 1400nm
Fitness: Highest Evaluation Fitness: Average Evaluation Fitness: Lowest Evaluation Fitness: Highest Evaluation Fitness: Average Evaluation Fitness: Lowest Evaluation

Structure ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi
1 1.10 13011.00 11721.60 2.10 13021.00 10761.20 2.20 13022.00 10673.80 1.20 7006.00 6255.36 2.20 14022.00 11493.40 0.00 14000.00 14000.00
2 3.00 12970.00 9976.92 2.10 12979.00 10726.40 1.90 12981.00 10908.40 3.30 13967.00 10501.50 2.60 13974.00 11090.50 3.40 13966.00 10422.40
3 2.10 6489.50 5363.22 1.00 12990.00 11809.10 1.50 12985.00 11291.30 2.80 6986.00 5457.81 2.40 13976.00 11271.00 4.60 13954.00 9557.53
4 0.00 13001.00 13001.00 1.20 13012.00 11617.90 1.20 13012.00 11617.90 0.00 14001.00 14001.00 0.40 13996.00 13457.70 1.60 13984.00 12055.20
5 3.10 6484.50 4950.00 2.70 12973.00 10215.00 3.30 12967.00 9749.62 4.60 6977.00 4778.77 2.80 13972.00 10915.60 5.10 13949.00 9237.75
6 4.00 12960.00 9257.14 4.20 12958.00 9125.35 3.00 12970.00 9976.92 4.60 13954.00 9557.53 4.60 13954.00 9557.53 5.00 13950.00 9300.00
7 2.40 12976.00 10464.50 1.30 12987.00 11492.90 1.90 12981.00 10908.40 3.30 6983.50 5250.75 1.80 13982.00 11849.20 5.00 13950.00 9300.00
8 0.00 13000.00 13000.00 0.50 13005.00 12385.70 0.30 12997.00 12618.40 1.40 6993.00 6134.21 0.40 14004.00 13465.40 1.50 13985.00 12160.90
9 1.50 12985.00 11291.30 0.30 12997.00 12618.40 0.00 13000.00 13000.00 1.10 6994.50 6301.35 0.00 14000.00 14000.00 2.80 13972.00 10915.60
10 0.50 6497.50 6188.10 0.20 13002.00 12747.10 0.50 13005.00 12385.70 0.60 6997.00 6600.94 1.40 14014.00 12293.00 1.30 13987.00 12377.90

mean 1.77 11037.45 9521.38 1.56 12992.40 11349.90 1.58 12992.00 11313.04 2.29 9085.90 7483.92 1.86 13989.40 11939.33 3.03 13969.70 10932.73
stdev 1.38 3137.73 3030.36 1.24 19.00 1150.32 1.11 18.13 1093.38 1.65 3373.14 2940.09 1.39 21.25 1378.44 1.86 18.64 1654.00

1500nm 1600nm
Fitness: Highest Evaluation Fitness: Average Evaluation Fitness: Lowest Evaluation Fitness: Highest Evaluation Fitness: Average Evaluation Fitness: Lowest Evaluation

Structure ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi
1 0.00 15001.00 15001.00 2.00 15020.00 12516.70 2.00 15020.00 12516.70 1.30 8006.50 7085.40 2.40 16024.00 12922.60 0.00 16000.00 16000.00
2 4.70 14953.00 10172.10 3.10 14969.00 11426.70 3.10 14969.00 11426.70 3.90 7980.50 5741.37 3.20 15968.00 12097.00 3.90 15961.00 11482.70
3 4.20 14958.00 10533.80 3.20 14968.00 11339.40 3.20 14968.00 11339.40 3.60 7982.00 5869.12 2.90 15971.00 12380.60 5.30 15947.00 10422.90
4 1.10 7494.50 6751.80 0.20 14998.00 14703.90 0.20 14998.00 14703.90 0.00 16001.00 16001.00 0.70 15993.00 14946.70 1.80 15982.00 13544.10
5 6.00 7470.00 4668.75 4.70 14953.00 10172.10 4.70 14953.00 10172.10 4.60 15954.00 10927.40 3.40 15966.00 11914.90 5.90 15941.00 10025.80
6 6.00 7470.00 4668.75 5.00 14950.00 9966.67 5.00 14950.00 9966.67 6.10 15939.00 9900.00 5.40 15946.00 10354.50 5.80 15942.00 10089.90
7 4.70 14953.00 10172.10 2.60 14974.00 11884.10 2.60 14974.00 11884.10 4.60 7977.00 5463.70 2.20 15978.00 13096.70 5.80 15942.00 10089.90
8 2.70 7486.50 5894.88 0.50 15005.00 14290.50 0.50 15005.00 14290.50 1.30 7993.50 7073.89 0.30 16003.00 15536.90 1.70 15983.00 13660.70
9 2.40 14976.00 12077.40 2.50 14975.00 11980.00 2.50 14975.00 11980.00 1.20 15988.00 14275.00 0.20 15998.00 15684.30 3.30 15967.00 12005.30
10 1.80 14982.00 12696.60 0.40 15004.00 14426.90 0.40 15004.00 14426.90 0.70 8003.50 7479.91 1.50 16015.00 13926.10 1.50 15985.00 13900.00

mean 3.36 11974.40 9263.72 2.42 14981.60 12270.70 2.42 14981.60 12270.70 2.73 11182.50 8981.68 2.22 15986.20 13286.03 3.50 15965.00 12122.13
stdev 2.07 3867.98 3586.51 1.69 23.70 1707.37 1.69 23.70 1707.37 2.07 4120.90 3711.45 1.62 24.45 1727.59 2.16 21.64 2069.68

1700nm 1800nm
Fitness: Highest Evaluation Fitness: Average Evaluation Fitness: Lowest Evaluation Fitness: Highest Evaluation Fitness: Average Evaluation Fitness: Lowest Evaluation

Structure ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi
1 1.90 17019.00 14301.70 0.00 17000.00 17000.00 0.00 17000.00 17000.00 2.00 18020.00 15016.70 0.00 18000.00 18000.00 2.00 18020.00 15016.70
2 4.00 8480.00 6057.14 7.10 16929.00 9900.00 4.30 16957.00 11858.00 4.30 17957.00 12557.30 5.80 17942.00 11355.70 3.90 17961.00 12921.60
3 4.10 16959.00 12027.70 6.40 16936.00 10326.80 5.70 16943.00 10791.70 4.30 8978.50 6278.67 4.60 17954.00 12297.30 3.30 17967.00 13509.00
4 0.70 8496.50 7940.65 0.90 16991.00 15588.10 2.00 16980.00 14150.00 0.70 17993.00 16815.90 1.40 17986.00 15777.20 0.60 18006.00 16986.80
5 5.70 8471.50 5395.86 6.80 16932.00 10078.60 6.30 16937.00 10390.80 6.10 17939.00 11142.20 5.90 17941.00 11283.60 5.70 17943.00 11428.70
6 6.20 16938.00 10455.60 6.20 16938.00 10455.60 6.30 16937.00 10390.80 6.60 17934.00 10803.60 7.20 17928.00 10423.30 5.50 17945.00 11577.40
7 3.50 16965.00 12566.70 5.70 16943.00 10791.70 6.30 16937.00 10390.80 3.70 17963.00 13111.70 5.00 17950.00 11966.70 3.90 17961.00 12921.60
8 0.00 17001.00 17001.00 0.40 16996.00 16342.30 1.90 16981.00 14269.70 0.00 18001.00 18001.00 1.60 17984.00 15503.40 1.50 17985.00 15639.10
9 3.20 16968.00 12854.50 3.70 16963.00 12381.80 3.50 16965.00 12566.70 3.40 17966.00 13407.50 3.70 17963.00 13111.70 1.10 17989.00 16206.30
10 0.00 17000.00 17000.00 0.70 16993.00 15881.30 1.70 16983.00 14515.40 0.00 18000.00 18000.00 2.20 17978.00 14736.10 0.40 17996.00 17303.80

mean 2.93 14429.80 11560.09 3.79 16962.10 12874.62 3.80 16962.00 12632.39 3.11 17075.15 13513.46 3.74 17962.60 13445.50 2.79 17977.30 14351.10
stdev 2.22 4103.98 4112.59 2.98 29.82 2963.43 2.32 23.19 2277.23 2.38 2845.01 3648.87 2.35 23.48 2446.59 1.95 25.93 2166.38
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Table 5.8: Structures Fitness for each resonance peak.

1900nm 2000nm
Fitness: Highest Evaluation Fitness: Average Evaluation Fitness: Lowest Evaluation Fitness: Highest Evaluation Fitness: Average Evaluation Fitness: Lowest Evaluation

Structure ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi ∆E Q Fi
1 0.00 19001.00 19001.00 2.00 19020.00 15850.00 0.00 19000.00 19000.00 0.00 20000.00 20000.00 0.00 20000.00 20000.00 0.00 20000.00 20000.00
2 6.50 9467.50 5737.88 4.60 18954.00 12982.20 4.90 18951.00 12718.80 6.80 19932.00 11864.30 6.50 19935.00 12081.80 6.70 19933.00 11935.90
3 6.50 9467.50 5737.88 4.70 18953.00 12893.20 6.50 18935.00 11475.80 5.30 9973.50 6518.63 5.10 19949.00 13211.30 7.20 19928.00 11586.00
4 2.70 9486.50 7469.69 0.80 18992.00 17585.20 2.20 18978.00 15555.70 1.60 19984.00 17227.60 1.60 19984.00 17227.60 1.20 19988.00 17846.40
5 8.20 0.00 0.00 6.60 18934.00 11406.00 7.10 18929.00 11069.60 7.50 19925.00 11385.70 6.60 19934.00 12008.40 7.30 19927.00 11518.50
6 9.00 0.00 0.00 7.10 9464.50 5534.80 7.10 18929.00 11069.60 9.90 0.00 0.00 8.10 19919.00 11005.00 7.50 19925.00 11385.70
7 6.00 18940.00 11837.50 4.00 18960.00 13542.90 7.10 18929.00 11069.60 5.80 19942.00 12621.50 5.60 19944.00 12784.60 7.00 19930.00 11723.50
8 2.00 9490.00 7908.33 0.00 19000.00 19000.00 2.10 18979.00 15685.10 2.50 9987.50 7990.00 1.80 19982.00 16933.90 1.60 19984.00 17227.60
9 5.30 9473.50 6191.83 3.70 18963.00 13841.60 4.00 18960.00 13542.90 3.90 9980.50 7180.22 4.10 19959.00 14155.30 3.30 19967.00 15012.80
10 2.00 9490.00 7908.33 0.10 18999.00 18810.90 1.90 18981.00 15950.40 2.90 9985.50 7740.70 2.50 19975.00 15980.00 2.60 19974.00 15852.40

mean 4.82 9481.60 7179.24 3.36 18023.95 14144.68 4.29 18957.10 13713.75 4.62 13971.00 10252.86 4.19 19958.10 14538.79 4.44 19955.60 14408.88
stdev 2.98 6323.52 5485.47 2.55 3007.60 4015.18 2.63 26.31 2733.09 3.00 6976.05 5706.55 2.63 26.27 2882.55 2.98 29.77 3201.74



Chapter 6

Conclusion and Future works

The process of designing structures in the nanoscale is a challenging task which
involves not only setting up the parameters needed to achieve the desired function,
but also to plan how to handle problems that may arise from the building process
of the nanostructure. For that end, this work is a glimpse at how evolutionary
algorithms can be used to design nanostructures, while overcoming the challenges
towards quality and robustness of nanometric sized devices. As a sample of that
potential, both study cases from this work, had reached results that outperform
the bests from literature.

From the photonic crystals cavities optimization, the results obtained in our
experiments outnumber those previously presented in the literature by threefold,
as shown in section 5.1. Furthermore, the challenge imposed by the computation-
ally expensive experiments in the FDTD simulations could be overcomed by the
massivelly distributed genetic algorithm presented in this work.

The presented PCMDGA consists of a single population strategy that dis-
tribute evaluations across many different clients on large and heterogeneous com-
puting environments. In this way, the implementation of this algorithm proved
to be robust against external issues, such as power shortages and maintenance
routines which are common events that disturb algorithms whose the required
running time is extensive. Moreover, the results showed that this strategy re-
quired less evaluations than previous attempts in literature for solving the same
problem.
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As computing environments continue to become more distributed and het-
erogeneous, results from this work show that using an asynchronous strategy for
distributed evolutionary algorithms can provide significant benefits in terms of
scalability and resilience to heterogeneity and faults.

Simultaneously, to the best of our knowledge, this is the first project proposed
to optimize microcavities’ structure, mainly focusing on its robustness. Different
types of microcavities were optimized and the strategy proposed in this study
proved to be effective, leading to structures with higher Quality Factor than those
previously described in literature while delivering robustness in the growth process.

Microcavity structures has attracted the attention of scientist and engineers
and has been applied to technological or purely scientific purpose. The optimiza-
tion of microcavities parameters is a challenging task, mainly because some uncer-
tainties are related to the growth process. These cause the synthesis of semicon-
ductor nanodevices with undesirable layers thickness. The optimization procedure
proposed here was able to find satisfactory results, overcoming the known exper-
imental solution. Also, the procedure found parameters sets that minimized the
problem caused by the uncertainty. The results present high Quality Factor de-
spite the uncertainties involved, which can assist the experts in the development
of optimized structures. Many microcavities structures with different resonance
peaks were optimized. As expected, the increase in the value of the resonance
peak, lead to a higher Quality Factor. In all optimization cases, the shift of the
desirable peak position was minimized.

6.1 Future works

From this work, many others may arise. It is possible to highlight:

1. Further investigate on how applying the massivelly distributed genetic algo-
rithm could help improve the results of problems with faster simulations like
in the case of optimizing microcavities.

2. Optimize microcavities, taking into account others parameters proposed by
experts.
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3. Apply neural networks and other surrogate functions for predicting fitness
from Photonic Crystals, without actually going through expensive simula-
tions as discussed in [Jin, 2005].

4. Implementing the photonic crystal simulation in a web browser, using novel
technologies such as the Native Client [Yee et al., 2009], could lead to a huge
leap in distributing the simulations across many clients, since it would be a
user friendly way of asking people to help on the optimization process.

5. Optimize Photonic Crystals with PCMDGA taking into account the Q
V
ratio,

as the fitness value.

6. Optimize structures other than the L3 cavity and take into account asym-
metry using an evolutionary approach.

7. Try others metaheuristics and compare their results with those obtained in
this work.
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Appendix B

Microcavities results

B.1 Evolution charts
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Figure B.1: Evolution for 700nm
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Figure B.2: Evolution for 800nm
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Figure B.3: Evolution for 900nm
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Figure B.4: Evolution for 1000nm
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Figure B.5: Evolution for 1100nm
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Figure B.6: Evolution for 1200nm
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Figure B.7: Evolution for 1300nm
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Figure B.8: Evolution for 1400nm
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Figure B.9: Evolution for 1500nm
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Figure B.10: Evolution for 1600nm
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Figure B.11: Evolution for 1700nm
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Figure B.12: Evolution for 1800nm
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Figure B.13: Evolution for 1900nm
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Figure B.14: Evolution for 2000nm
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B.2 Reflectances
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Figure B.15: Reflectance for 700nm
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Figure B.16: Reflectance for 800nm
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Figure B.17: Reflectance for 900nm
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Figure B.18: Reflectance for 1000nm
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Figure B.19: Reflectance for 1100nm
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Figure B.20: Reflectance for 1200nm
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Figure B.21: Reflectance for 1300nm
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Figure B.22: Reflectance for 1400nm
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Figure B.23: Reflectance for 1500nm
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Figure B.24: Reflectance for 1600nm
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Figure B.25: Reflectance for 1700nm
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Figure B.26: Reflectance for 1800nm
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Figure B.27: Reflectance for 1900nm
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