
OTIMIZAÇÕES DE CÓDIGO SENSÍVEIS A

CONTEXTO BASEADAS EM CLONAGEM DE

FUNÇÕES

MATHEUS SILVA VILELA

OTIMIZAÇÕES DE CÓDIGO SENSÍVEIS A

CONTEXTO BASEADAS EM CLONAGEM DE

FUNÇÕES

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como re-
quisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Fernando Magno Quintão Pereira

Belo Horizonte

Fevereiro de 2014

MATHEUS SILVA VILELA

CONTEXT-AWARE CODE OPTIMIZATIONS

BASED ON FUNCTION CLONING

Dissertation presented to the Graduate
Program in Computer Science of the Uni-
versidade Federal de Minas Gerais - Depar-
tamento de Ciência da Computação in par-
tial ful�llment of the requirements for the
degree of Master in Computer Science.

Advisor: Fernando Magno Quintão Pereira

Belo Horizonte

February 2014

c© 2014, Matheus Silva Vilela.
Todos os direitos reservados.

Ficha catalográ�ca elaborada pela Biblioteca do ICEx - UFMG

Vilela, Matheus Silva

V699c Context-aware Code Optimizations Based on
Function Cloning / Matheus Silva Vilela. � Belo
Horizonte, 2014

xviii, 68 f. : il. ; 29cm

Dissertação (mestrado) � Universidade Federal de
Minas Gerais - Departamento de Ciência da
Computação

Orientador: Fernando Magno Quintão Pereira

1. Computação - Teses. 2. Arquitetura de
computador. 3. Compiladores (Computadores).
4. Clonagem de código. I. Orientador. II. Título.

CDU 519.6*21(043)

Resumo

Compiladores fazem uso de duas técnicas principais para implementar otimizações

dependentes do contexto de chamadas de funções: integração e clonagem. Historica-

mente, a integração de funções tem tido um uso mais amplo, já que, na prática, tende

a ser mais efetiva. Apesar disso, a clonagem de funções provê benefícios não presentes

na integração. Em particular, a clonagem dá ao desenvolvedor uma maneira de mitigar

bugs de desempenho, já que sua aplicação gera código reusável. Além disso, ela lida

com recursão de uma forma mais natural. Finalmente, a clonagem pode levar a uma

menor expansão de código.

Neste trabalho, revisamos a clonagem de funções sob a luz desses benefícios.

Discutimos algumas técnicas de especialização de código independentes baseadas em

clonagem que, apesar de simples, são amplamente aplicáveis, mesmo em benchmarks

altamente otimizados, como o SPEC CPU 2006. Nossas otimizações são de fácil im-

plementação e aplicação. Utilizamos a conhecida heurística de pro�ling estático de

Wu e Larus para medir o ganho de desempenho de um clone. Essa métrica nos dá

uma maneira concreta de indicar, aos desenvolvedores de código, bugs de desempenho

potenciais, além de nos fornecer uma métrica para decidirmos se devemos manter ou

não um clone. Ao implementarmos nossas ideias no compilador LLVM, fomos capazes

de obter ganhos de desempenho signi�cantes nos benchmarks do SPEC, mesmo que

aplicados sobre o nível de otimização -O2.

Palavras-chave: clonagem, LLVM, otimizações sensíveis ao contexto.

ix

Abstract

Compilers rely on two main techniques to implement optimizations that depend on the

calling context of functions: inlining and cloning. Historically, function inlining has

seen more widespread use, as it tends to be more e�ective in practice. Yet, function

cloning provides bene�ts that inline leaves behind. In particular, cloning gives the

program developer a way to �ght performance bugs, because it generates reusable

code. Furthermore, it deals with recursion more naturally. Finally, it might lead to

less code expansion, the inlining's nemesis.

In this work, we revisit function cloning under the light of these bene�ts. We

discuss some independent code specialization techniques based on function cloning,

which, although simple, �nd wide applicability, even in highly optimized benchmarks,

such as SPEC CPU 2006. We claim that our optimizations are easy to implement and

deploy. We use Wu and Larus's well-known static pro�ling heuristic to measure the

pro�tability of a clone. This metric gives us a concrete way to point out to program

developers potential performance bugs, and gives us a metric to decide whether we keep

a clone. By implementing our ideas in LLVM, we have been able to achieve signi�cant

speed up on the SPEC benchmarks on top of the -O2 optimization level.

Palavras-chave: cloning, LLVM, context aware optimizations.

xi

List of Figures

3.1 A program that illustrates three di�erent clone-based optimizations. 13

3.2 The e�ects of clone-based constant propagation. (a) Code after constant

propagation. (b) Code after loop unrolling. (c) Code after instruction folding. 14

3.3 The e�ects of the elimination of unused return values. (a) Code after elim-

ination of the return statement. (b) Code after dead code elimination. . . . 15

3.4 Program on �gure 3.1, after inline expansion and dead code elimination. . 16

3.5 Example that bene�ts from function fusion. 17

3.6 (a) Example of Figure 3.5, after preliminary merging. (b) Inline expansion.

(c) Elimination of redundant parameters. (d) Replacement of clones in call

sites. 18

3.7 A simple vector multiplication routine. 19

3.8 The same vector multiplication routine, with its arguments modi�ed with

the restrict keyword, meaning that they never alias. 20

3.9 Example in which the potential aliasing between pointers can prevent code

optimizations. 21

3.10 Optimized version of copy, the function seen in Figure 3.9. 22

3.11 The e�ects of the elimination of dead stores. 23

3.12 (a) The control �ow graph of function divMod, originally seen in Figure 3.1,

augmented with probability of edge being taken. (b) Cost of each instruction

in the CFG, and edge frequencies. (c) Total cost of functiondivMod. (d)

CFG of divMod_clone_urve, seen in Figure 3.3. (e) Total cost of function

divMod_clone_urve. 25

3.13 Errors of Wu and Larus's static pro�ler on SPEC CINT 2006. 26

4.1 Transformation pipeline that we use to apply function cloning. 30

4.2 Constant Propagation: Applicability on Test-Suite SingleSource. 32

4.3 Elimination of unused retvals: Applicability on Test-Suite SingleSource. . . 33

4.4 Pointer Disambiguation: Applicability on Test-Suite SingleSource. 33

xiii

4.5 Function Fusion: Applicability on Test-Suite SingleSource. 34

4.6 Constant Propagation: Applicability on Test-Suite MultiSource. 35

4.7 Elimination of unused retvals: Applicability on Test-Suite MultiSource. . . 35

4.8 Pointer Disambiguation: Applicability on Test-Suite MultiSource. 36

4.9 Function Fusion: Applicability on Test-Suite MultiSource. 36

4.10 Elimination of Dead Stores: Applicability on Test-Suite MultiSource. . . . 37

4.11 Constant Propagation (Sec 3.2). Func: number of functions. Clone: num-

ber of clones. Orph: number of orphan functions. Calls: number of

function calls. F-ful: number of fruitful calls. F-less: number of fruitless

calls. AvgP: average pro�t of optimized clone. Rec: number of recursive

clones. 38

4.12 Elimination of unused return values (Sec 3.3). 39

4.13 Function Fusion (Sec 3.4). 40

4.14 Pointer Disambiguation (Sec 3.5). 41

4.15 Elimination of Dead Stores (Sec 3.6). 41

4.16 Maximum proportional pro�ts obtained on SPEC CPU 2006. 42

4.17 Compilation time of our optimizations when applied to Test-Suite Single-

Source. 43

4.18 Runtime variations on Test-Suite SingleSource. (a) Constant propagation.

(b) Elimination of unused return values. (c) Function fusion. (d) Pointer

disambiguation. 44

4.19 Size increase on binaries in Test-Suite SingleSource. 45

4.20 Compilation time of our optimizations when applied to Test-Suite Multi-

Source. 45

4.21 Runtime variations on Test-Suite MultiSource. (a) Constant propagation.

(b) Elimination of unused return values. (c) Function fusion. (d) Pointer

disambiguation. (e) Elimination of dead stores. 47

4.22 Size increase on binaries in Test-Suite MultiSource. 48

4.23 Compilation time of our optimizations when applied to SPEC CPU 2006. . 48

4.24 Runtime variations on SPEC CPU 2006 (a) Constant propagation. (b)

Elimination of unused return values. (c) Function fusion. (d) Pointer dis-

ambiguation. (e) Elimination of dead stores. 49

4.25 Runtime improvements of all our clone-based optimizations versus LLVM -O2 50

4.26 Constprop: Fruitful sites . 51

4.27 Elim. of Unused Retvals: Fruitful sites . 51

4.28 Function Fusion: Fruitful sites . 51

4.29 Pointer Dis.: Fruitful sites . 51

xiv

4.30 Elimination of Dead Stores: Number of fruitful sites 52

4.31 Maximum number of replaced call sites . 53

4.32 Size increase on binaries in SPEC CPU 2006. 54

4.33 Size reduction due to our optimizations. 54

5.1 Fft function present on Standford Benchmarks. 58

5.2 Function Fft optimized with Pointer Disambiguation. 59

5.3 dmxpy function present on Linpack Benchmark. 60

5.4 dmxpy function optimized with Pointer Disambiguation. 61

5.5 readULONG function present on povray benchmark. 62

5.6 readULONG function optimized with Elimination of Unused Retvals. 62

xv

Contents

Resumo ix

Abstract xi

List of Figures xiii

1 Introduction 1

1.1 Context . 1

1.2 Contributions . 2

1.3 Results . 3

1.4 Outline . 4

2 Background and Related Work 5

2.1 LLVM . 5

2.2 Performance Bugs . 5

2.3 Code Specialization . 6

2.4 Context-aware optimizations . 7

2.4.1 Function Cloning . 8

2.5 Alias analysis . 8

2.6 Optimizations . 9

3 Clone-Based Optimizations 11

3.1 This Work's Vocabulary . 11

3.2 Clone-Based Constant Propagation . 12

3.3 Elimination of Unused Return Values 14

3.4 Function Fusion . 17

3.5 Pointer Disambiguation . 19

3.6 Elimination of Dead Stores . 22

3.7 Estimating the Pro�t of a Clone . 24

xvii

3.7.1 Validating the static pro�ler . 26

4 Experiments 29

4.1 The Cloning Pipeline . 29

4.2 The Applicability of our Optimizations 31

4.2.1 Test-Suite SingleSource . 31

4.2.2 Test-Suite MultiSource . 34

4.2.3 SPEC CPU 2006 . 37

4.3 E�ectiveness: Time and Space . 42

4.3.1 Test-Suite SingleSource . 43

4.3.2 Test-Suite MultiSource . 45

4.3.3 SPEC CPU 2006 . 48

4.4 Discussion . 54

5 Case Studies 57

5.1 The Fft Function . 57

5.2 The dmxpy function . 59

5.3 The readULONG Function . 60

6 Final Remarks 63

6.1 Conclusion . 63

6.2 Future Work . 63

Bibliography 65

xviii

Chapter 1

Introduction

This dissertation is the result of two years of research on clone-based optimizations.

Our �ndings are summarized in the �ve chapters that constitute this dissertation. In

the �rst chapter we explain our motivations, goals and main contributions.

1.1 Context

In computer science, program optimization or software optimization is the process of

modifying a software system to make some aspect of it work more e�ciently or use

fewer resources [Sedgewick, 1984]. In the context of compilers, an optimization can not

change the program output or its side e�ects. The only di�erence between an optimized

program and the original one, from the user's perspective, is that the former runs faster

than the latter. The compiler optimization area has been studied for a long time. The

optimizations implemented on modern compilers vary from simple modi�cations on

basic blocks to more complex changes that rely on whole program analysis.

Code reuse is one of the main forces behind the astounding growth that the

software industry has experimented in the last decades [Krueger, 1992]. Testimony

of this statement is the importance that industry and academia ascribe to practices

such as component oriented programming, data encapsulation and interfaces as con-

tracts [Holmes and Walker, 2013]. However, software must be reused with discipline to

avoid performance bugs. According to Jin et al. [Jin et al., 2012], a performance bug is

a mistake that might impact the e�ciency of the program, without causing observable

errors. Jin et al. argue that one of the core reasons behind this kind of problem is

software reuse. Programmers often reuse a software component, looking for a speci�c

functionality, oblivious to the fact that this module may perform several other tasks

which are unnecessary in that particular context. We add another reason to perfor-

1

2 Chapter 1. Introduction

mance bugs: the natural evolution of programming languages. As an example, we can

cite the restrict modi�er, introduced in C99. [ISO, 1999, pp. 110]. This modi�er can

be used by the the developer to tell the compiler that one or more pointers, used as

actual arguments of a function call, don't alias each other. Using this information, the

compiler is able to apply more aggressive optimizations on the target program. How-

ever, as the restrict modi�er has been created on the late 90's, programs written

before that could not bene�t from it. Furthermore, the habit and ignorance make this

keyword unpopular between C programmers.

Classic optimizations cannot normally remove performance bugs. These opti-

mizations don't take into account that the results produced by a snippet may be useful

on some contexts and irrelevant on others. In order to remove this kind of bugs, an

optimization may be context-aware.

The compiler literature describes two main ways to enable context-aware code

optimizations: function inlining and function cloning. The former technique is much

more adopted than the latter. Many industrial compilers, such as gcc, LLVM, Open64,

Jikes and Mozilla's IonMonkey implement extensive inlining of functions at higher

optimization levels. Function inlining supports context sensitive optimizations more

e�ectively than cloning, because it integrates the body of procedures directly on the

place where they are invoked. On the other hand, cloning provides a few advantages

when compared to inlining. Firstly, a clone is a reusable unit of code, which can be

invoked at di�erent sites within or outside the optimized program. Secondly, func-

tion cloning deals more easily with recursion, as this kind of functions can not be

proper inlined [Keith D. Cooper, 2012, pg.458]. Finally, cloning tends to lead to less

code expansion than inlining, depending on how many times the replicated function is

called. These bene�ts have motivated us to revisit context-aware optimizations based

on cloning, a strategy that the literature has often neglected.

1.2 Contributions

Under the light of the bene�ts provided by cloning, we have de�ned and tested a code

optimization methodology based on this technique. We have designed and implemented

�ve di�erent optimizations. One of them, constant propagation, is well-known; the

other four have not been described before. We use clone-based constant propagation as

a baseline for comparisons, as it has been described previously in the literature [Metzger

and Stroud, 1993]. The four other optimizations that we describe are:

• Unused return elimination: this optimization removes from the procedure body

1.3. Results 3

all return statements and every computation used to build the expression that

the function returns.

• Dead store elimination: this optimization removes writes to memory positions

that are either overwritten after the function returns, and before being read, or

that are never read.

• Function fusion: this optimization merges a function g into the body of a function

f , if the invocation pattern f(. . . , g(. . .), . . .) is common enough.

• Pointer disambiguation: this optimization marks parameters of functions as no-

aliases whenever possible, via the restrict keyword available in the C99 stan-

dard.

In addition to these optimizations, we de�ne a method to measure the pro�tability of a

clone. We rely on the static pro�ling heuristics proposed by Wu and Larus in the early

90's [Wu and Larus, 1994]. This estimate of the bene�t of a clone gives the compiler the

subsidies to decide whether it keeps a clone, or throw it away. And more importantly,

this metric provides to the program developer hints about potential performance bugs.

1.3 Results

We have implemented our ideas in the LLVM compiler framework [Lattner and Adve,

2004]. This infra-structure has allowed us to test our optimizations in a vast benchmark

suite, with over 4.3 million lines of code. We have found many opportunities to apply

each of our four optimizations. As an example, 33% of the functions de�ned within the

programs of SPEC CPU 2006 bene�t from pointer disambiguation. Our optimizations

yield non-trivial bene�t on top of highly optimized programs, such as those available

in SPEC, and can greatly improve the runtime of less tuned code. We have been

applying our optimizations in open source audio encoding programs, with very positive

results. We have found that most of the functions in these programs do not employ

C's restrict keyword, for instance, even though its use is obviously safe. Thus, one of

the main bene�ts of the combination of static pro�ling and cloning is to aid developers

at the software engineering level.

More than performance numbers, however, we believe that the main contribu-

tion of this work is to bring new attention to an important compilation technique,

which has been neglected both by the industry, and by the academia. A few compiler

textbooks, namely Kennedy's [Kennedy and Allen, 2002, pp.594] and Grune's [Grune

4 Chapter 1. Introduction

et al., 2012, pp.325] approach this form of code specialization, yet on a very super�cial

way. The most extensive discussion about clone-based optimizations that we are aware

of can be found in Mary Hall's PhD dissertation [Hall, 1991, Cp.5]. However, even

though the technique has been described before, it has yet to �nd space in industrial-

strength compilers. In the words of Allen and Kennedy, �The Convex Applications

Compiler [Metzger and Stroud, 1993] is the only commercial compiler we know that

performs this optimization". Today, this family, albeit modest, has some new mem-

bers. Both gcc, and Open64 can clone a function, if it is invoked only once, and receives

a constant as a parameter. This is a restricted version of Metzger's inter-procedural

constant propagation. In this work, we explore cloning in a much more extensive way.

1.4 Outline

The remainder of this dissertation is organized as follows:

• Chapter 2, Background and Related Work: this chapter describes impor-

tant concepts related to this work and a literature review.

• Chapter 3, Clone-based Optimizations: this chapter describes the optimiza-

tions we have implemented on top of LLVM. We discuss how we determine if a

given function may bene�t from a clone-based optimization, and give some simple

examples to ease understanding.

• Chapter 4, Experiments: this chapter describes how our proposed optimiza-

tions behave when applied on well-known benchmarks. We show our results in

terms of applicability, runtime and code expansion, and discuss each of these

points.

• Chapter 5, Case Studies: in this chapter, we study some interesting cases we

have found on the benchmarks. We analyze how our clone-based approach is able

to improve the generated code and why that happens.

• Chapter 6, Final Remarks: this chapter concludes this work. We give our

�nal remarks and discuss future work.

Chapter 2

Background and Related Work

This chapter gives an overview of key concepts related to this dissertation. It also

presents a literature review, describing previous works on the area.

2.1 LLVM

The LLVM project is a collection of modular and reusable compiler and tool-chain

technologies. It has an infrastructure designed for compile-time, link-time, run-time,

and �idle-time� optimization of programs written in arbitrary programming languages.

It was �rst described by Lattner and Adve [2004]. Nowadays, LLVM is used on many

companies, including Google and Apple, and has become very popular on compiler

research.

LLVM optimizer can take intermediate representation code from a compiler and

emit an optimized version of it. This optimized version can then be converted and

linked into machine-dependent assembly code for a target platform. Being open-source,

LLVM provides an easy and modular way to insert new optimizations into its pipeline.

It also de�nes a simple low-level language with strictly de�ned semantics used as in-

termediate representation. All the optimizations are applied on programs in this form.

The optimizations on this work are implemented as modular passes on the LLVM

optimizer.

2.2 Performance Bugs

The main inspiration for this work comes out of two recent papers, by Chabbi et

al. [Chabbi and Mellor-Crummey, 2012] and Jin et al. [Jin et al., 2012]. These two

5

6 Chapter 2. Background and Related Work

groups present empirical evidence of the widespread occurrence of performance bugs.

Chabbi et al. analyze, via pro�ling, the impact of redundant memory accesses in the

performance of programs. Jin et al. present an extensive review of performance bugs

reported in major open source projects, and discuss ways to avoid them.

In a previous work, Jovic et al. [2011] have shown that pro�ling alone may not be

enough to detect performance bugs. According to them, the routines that are critical

to the user's temporal perception tend to be called only a few times in interactive

applications. Nistor et al. [Nistor et al., 2013] have developed a tool that detects

repeated access to the same memory positions. This tool has e�ectively revealed many

hidden e�ciency faults on industrial software.

2.3 Code Specialization

Specialization refers to the translation of a general function into a more limited ver-

sion of it. For instance, a function with two arguments can be transformed into an

one-argument function by �xing one of its inputs to a particular value. In computer

science, transforming a program block into a specialized version of it is called pro-

gram specialization or partial evaluation [Jones et al., 1993]. This kind of optimization

happens when the compiler produces code specialized to certain inputs or contexts.

Code specialization can be done either at compile-time or run-time [Consel and

Noël, 1996], although this classi�cation can appear with the names static and dy-

namic specialization, respectively, in recent works [Grant et al., 2000; Shankar et al.,

2005]. Using this name convention, our approach is entirely static: no check is neces-

sary at runtime to determine which version of a clone to invoke. However, dynamic

code specialization is gaining growing attention within the programming language's

community [de Assis Costa et al., 2013; Samadi et al., 2012; Tian et al., 2011].

In the world of just-in-time compilers, de Assis Costa et al. [2013] have proposed

to generate specialized routines based on the runtime value of the arguments passed to

JavaScript functions. These values can be easily inspected, because code is being gen-

erated while the program executes. This approach resembles the constant propagation

that we have recalled in Section 3.2, although it is done on-the-�y.

An adaptive compiler produces code that is specialized to a certain type of inputs.

As a recent example, Samadi et al. [2012] have proposed an adaptive compiler for

CUDA. This compiler generates code with a switch that contains di�erent routines to

handle di�erent kinds of inputs. The runtime value of the particular input determines

which routine will be activated. Compared to the techniques that we proposed in this

2.4. Context-aware optimizations 7

paper, the adaptive compiler is coarser, as it does not generate code customized to

individual values. Furthermore, the binaries that it generates contain all the possible

variations of specialized code, whereas we only generate one specialized routine per

function.

A technique that aims to explore runtime characteristics of a program is the

hotspot optimization [Lau et al., 2006]. This technique, mostly used on virtual ma-

chines, explores the intuition that if a snippet is frequently executed or takes a consid-

erable amount of time to run, it must be optimized. Thus, the hotspot optimization

tries to employ aggressive transformations on regions of code where a high propor-

tion of executed instructions occur or where most time is spent during the program's

execution.

Trace scheduling [Fisher, 1981] and trace-based [Chang and Hwu, 1988] opti-

mizations also specialize code based on dynamic aspects of the executed code. These

optimizations determine, statically, sequence of instructions, including branches but

not including loops, that must be executed sequentially. This way, it can optimize this

so called traces with optimizations made for straight-line code sequence.

On Bolat and Li [2009], the authors propose a technique based on feedback that

applies di�erent optimizations according to the code behavior on distinct contexts. The

technique depends on a previous analysis that determines sequences of basic blocks

that may have di�erent behaviors during multiple runs. According to the authors, if

a snippet behaves the same between multiple runs, there is no need to optimize it in

more than one way. Using the mentioned analysis, it is possible to apply di�erent

optimizations to a snippet, according to each context.

St-Amour et al. [2012] have designed a compiler that helps the developer to code

in a more optimized way. The compiler suggests coding standards that can enable

more aggressive optimizations. This tool, however, is not automatic, as the developer

must explicitly agree with the modi�cations proposed by the compiler.

2.4 Context-aware optimizations

Compiler developers have long understood that procedure calls pose a barrier to code

optimizations. Within a single procedure, control �ow information can be relatively

easy derived. Compilers are capable of, without great di�culty, determining variable

lifetimes, constant expressions and common subexpressions. However, procedure calls

must be treated as black boxes: anything could happen inside the call. Within each

call site, the compiler su�ers from a degradation in the quality of information it can

8 Chapter 2. Background and Related Work

derive. This a�ects the optimizations it might be able to apply on the code.

Traditionally, two approaches have been used to break down the call site barrier

and, thus, enable context-aware optimizations: inlining and inter-procedural data-�ow

analysis. Inlining replaces call sites with a copy of the body of the procedure. The

code is then optimized in the context of the calling function. Inter-procedural data-

�ow analysis tries to determine a set of compile-time facts about the context where

a function is called. This information is then made available to the intra-procedural

optimizer.

Both techniques have limitations. Inlining can lead to code growth, increased

compile time, and degradation in code quality [Cooper et al., 1991]. Optimizations

based on inter-procedural data �ow analysis have a drawback: they must take into

account that each procedure can only be implemented once.

2.4.1 Function Cloning

An alternative to inlining and inter-procedural data-�ow analysis in order to enable

context-aware optimizations has been proposed by Mary Hall on her doctoral the-

sis [Hall, 1991, Cp.5] and latter discussed by Cooper et al. [1993]. The cloning tech-

nique improves on inter-procedural data-�ow analysis by no longer assuming that each

procedure should be implemented only once. This way, the compiler is free to create

multiple specialized copies of a procedure and optimize each one separately. The calls

to the original procedure can then be partitioned among all the specialized versions.

The context of each call site is the responsible to determine which specialized version

will be called.

Despite de�ning the concept of cloning, Mary Hall shows its application only

on functions that receive constant as parameters. On a recent book, Grune et al.

also describe cloning as a way to increase constant propagation reach [Grune et al.,

2012, pg.325]. In fact, it is still very hard to �nd, on programming languages literature,

discussions about the use of function cloning to implement context-aware optimizations.

Industrial compilers, such as icc and LLVM do not use cloning. Gcc can clone a function

that has only one call site and receives a constant as parameter. Open64 is also able to

clone functions, but just like gcc, just to help with constant propagation.

2.5 Alias analysis

Pointers are a feature of imperative programming languages. They are very useful,

because they avoid the need to copy entire data-structures when passing information

2.6. Optimizations 9

from one program routine to another. Nevertheless, pointers make it very hard to rea-

son about programs. The direct consequence of this di�culties is that compilers have a

hard time trying to understand and modify imperative programs. Some compiler opti-

mizations depend on knowing exactly which memory positions a pointer can reference:

this is the case of some clone-based optimizations proposed in the work. To this end,

compilers rely on alias analysis, also called pointer analysis or points-to analysis.

The goal of alias analysis is to determine which are the memory locations pointed

by each pointer in the program. This analysis is usually described and solved as a

constraint based analysis [Shivers, 1988].

Pointer analysis is often performed as a points-to analysis, which computes, for

each pointer p and pointer dereference expression exp, the set of logical locations that

may be accessed via p or exp. Two of the most well-known points-to analyses are

described by Andersen [1994] and Steensgaard [1996]. These static points-to analyses

compute an approximation of the set of objects to which a pointer may point. They are

conservative in the sense that their results must be correct for any input and execution

path of the program.

On this work, we have used an implementation of Andersen's analysis in order

to determine whether two pointers can alias. Furthermore, our implementation was

improved with lazy cycle detection [Hardekopf and Lin, 2007], to make it possible to

run in acceptable time even on large benchmarks, like the ones contained on SPEC

CPU 2006.

2.6 Optimizations

Two of our optimizations, function fusion and pointer disambiguation are similar to

techniques that have been discussed in previous work. However, none of these preceding

works mention cloning. Our version of function fusion, seen in Section 3.4, is a step of

deforestation, an optimization proposed by Philip Wadler in the context of functional

programming [Wadler, 1988]. Deforestation has been very in�uential in the design of

other optimizations for functional languages. In particular, we use the nomenclature

introduced by Wei-Ngan Chin [Chin, 1992] in our work. The simple test that we

use in Section 3.4 to ensure the safety of fusion is a design of our own. Researchers

have also investigated the e�ectiveness of pointer disambiguation. Diego Huang, for

instance, has proposed di�erent ways to parallelize loops, once the arrays that these

loops manipulate are shown not to be aliases [Huang, 2011]. Closer to our work, Markus

Mock has studied the pro�tability of the restrict key work in the C programs available

10 Chapter 2. Background and Related Work

in SPEC CPU 2000. By optimistically assigning the restrict modi�er to every function

argument, he has found that the expected performance gain lays between 1% and 8%.

This result is similar to those that we present in Chapter 4.

Our clone-based optimizations belong into the family of context-sensitive code

transformations. We enable our optimizations via static analysis which are classi�ed

as 0-CFA, following Shivers's terminology [Shivers, 1988]. This classi�cation means

that our contexts are formed by only one level of function calls. We distinguish two

invocations sites of a function f within another function g, without considering which

functions have invoked g. There are descriptions of more precise analyses in the liter-

ature. Usually they are time consuming [Whaley and Lam, 2004], or accept a certain

amount of imprecision [Lhoták and Hendren, 2006]. Yet, we speculate, from earlier

results obtained by Lhoták and Hendren [2006], that adding extra context levels to our

analyses would not increase by much the number of functions that we can successfully

specialize.

Chapter 3

Clone-Based Optimizations

In this chapter, we describe the clone-based optimizations that we have designed and

tested. One of these optimizations - constant propagation - is not a contribution of

this work; the others are novel. Our optimizations happen at the compiler level; hence,

they are applied on intermediate representation programs. However, we will illustrate

them using C code, because this notation is easier to understand.

3.1 This Work's Vocabulary

The activation record of a function call is the memory area that contains the data

that the function needs to execute, such as local variables, parameters and return

address. Usually, activation records are placed on a memory region named the stack.

The context of a function invocation is the sequence of activation records piled onto

the stack, at the moment the call was performed. A code optimization is said to be

context dependent, or context aware, when it might yield di�erent e�ects, depending

on the context where it is performed. The cloning-based optimizations that we present

in this work are context aware. It is possible, in principle, to consider the entire

activation stack when determining the context of a function call [Whaley and Lam,

2004]. However, this approach is very expensive, because it burdens the compiler with

a possibly exponential number of di�erent contexts. Therefore, when determining the

context in which a function f is called, we will be considering only the last function

invoked before f , i.e., whose activation record is on the top of the calling stack. Hence,

we say that our context has depth one.

We shall classify every function implementation present in the source code of the

program that we are optimizing into one of two categories: promising or indi�erent. A

function is indi�erent if it does not present any feature that we can optimize. Otherwise,

11

12 Chapter 3. Clone-Based Optimizations

it is promising. For instance, if we are trying to remove unused return expressions, then

a function that does not return any value is indi�erent. Similarly, if we are trying to

disambiguate pointers passed as parameters, then a function of zero arity, or a function

that only receives scalars parameters, is indi�erent.

We shall classify the calling sites of promising functions into two groups: fruitful

or fruitless. Notice that, whereas our �rst classi�cation - promising vs indi�erent -

refers to the implementation of functions, the second one - fruitful vs fruitless - refers

to calling sites of functions. We say that the invocation site s, where a function f

is called, is fruitful if s gives us the opportunity to replace f by an optimized clone

f ′. This opportunity is in�uenced by a suite of conditions, which can be determined

statically, and that we shall name enablers. If s does not o�er us any enabler, then this

context is fruitless. If we �nd a fruitful invocation site, then we proceed to clone the

callee. Henceforth we shall refer to the original function as base, and the new, derived

code, as clone. The clone is subject to a number of transformations, which are due to

the optimization that we apply. We shall use the generic term e�ect to refer to these

transformations. We shall make these notions more clear in the next examples.

3.2 Clone-Based Constant Propagation

The literature describes constant propagation as the canonic example of a clone-based

optimization [Grune et al., 2012; Hall, 1991; Kennedy and Allen, 2002]. This is also

the only inter-procedural code transformation that relies on function cloning which

we have found in industrial-strength compilers. Nevertheless, cloning is used in a

very limited way. For instance, gcc clones a function if it has only one calling site

in the entire program, and its linkage is internal. Gcc's enabler is a calling site in

which at least one of the parameters is a known constant. Open64 does a similar trick

to remove parameters from functions, if these parameters are always replaced by the

same constants. In this work we revisit this technique, albeit on a more extensive way.

We shall use Figure 3.1 to illustrate three of the clone-based optimizations that

we discuss in this section, including constant propagation. The program in Figure 3.1

contains implementations of functions divMod and main. This program also contains

six calling sites, at lines 15, 16, 19, 20, 23 and 24. Three of these sites invoke the

external function printf. We cannot optimize it, because we do not have access to

its source code. In the other three sites we have calls to divMod. We can replace the

fruitful calls with clones, whenever the right enabler occurs.

Following the well-established jargon, we use the term formal parameter to denote

3.2. Clone-Based Constant Propagation 13

int divMod(int a, int b, int* m) {
 int quot = 0;
 while (a > b) {
 a -= b;
 quot++;
 }
 *m = a;
 return quot;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

void main(int argc, char** argv) {
 int mod;
 int quot;
 switch(argc) {
 case 1:
 quot = divMod(argv[0][0], 2, &mod);
 printf("modulus = %d, quotient = %d\n", mod, quot);
 break;
 case 2:
 quot = divMod(argv[0][0], argv[1][0], &mod);
 printf("quotient = %d\n", quot);
 break;
 case 3:
 divMod(argv[1][0], argv[2][0], &mod);
 printf("modulus = %d\n", mod);
 break;
 }
}

Figure 3.1. A program that illustrates three di�erent clone-based optimizations.

the names of parameters used in the declaration of a function. We use actual parameter

to refer to the parameters with which the function is invoked. As an example, the

function divMod, in Figure 3.1, has three formal parameters, a, b and m. At line

15, this function is invoked with three actual parameters: argv[0][0], 2 and &mod.

Our implementation of clone-based constant propagation is enabled at every call site

in which we can prove that one or more actual parameters are constants known at

compilation time. Continuing with our example, this optimization is enabled at line

15; hence, this is a fruitful call site.

This constant propagation generates a clone f ′, from a base procedure f , which

bears two e�ects. First, we replace every occurrence of the formal parameter pf whose

corresponding actual parameter pa is a constant c by c itself on the body of f ′. Second,

we remove the declaration of pf from the implementation of f ′. Figure 3.2 illustrates

these e�ects. We are using Wegman and Zadeck [1991]'s description of constant prop-

agation, which lets us learn information from conditional tests. Constant propagation

usually enables other optimizations. In this example, we show the �nal code that we

obtain, after loop unrolling and instruction folding. Having produced a clone f ′, we

replace a call of f by an invocation of f ′ at every fruitful site. In our example, this

replacement happened at line 15 of function main.

14 Chapter 3. Clone-Based Optimizations

int divMod_clone_cp(int a, int* m) {
 int quot = 0;
 while (a > 2) {
 a -= 2;
 quot++;
 }
 *m = a;
 return quot;
}

void main(int argc, char** argv) {
 ...
 case 1:
 quot = divMod_clone_cp(argv[0][0], &mod);
 ...
}

11

15

16

28

a -= 2;
quot++;
a -= 2;
quot++;
*m = a;

a -= 4;
quot += 2;
*m = a;

(a) (b) (c)

Figure 3.2. The e�ects of clone-based constant propagation. (a) Code after constant prop-

agation. (b) Code after loop unrolling. (c) Code after instruction folding.

3.3 Elimination of Unused Return Values

In some programming languages, such as Haskell or SML, every function returns a

value. In others, such as C or Java, functions might, or might not, return values back

to the caller. If a function does not return a value, then we shall refer to it as a

procedure, otherwise, we shall name it a valued function. Procedures are only invoked

for their side e�ects; however, side e�ects are not an exclusivity of them. Thus, a

valued function can also be called for its side e�ect, while its return value is discarded

by the invoker. We shall consider this situation an instance of a performance bug. Such

performance bugs are rather common. For instance, the conspicuous printf function,

present in C's standard I/O library, returns the number of characters printed, or a

negative value, in case an output error occurs. Yet, rarely do programmers use this

value. The presence of unused return values is cited by Jin et al. [2012] as a consequence

of programming malpractices.

We de�ne the Elimination of Unused Return Values as an optimization that

clones and improves valued functions whose returned data is not used in every calling

context. This optimization regards as promising any valued function. The enabler of

this transformation is standard dead code analysis. If a variable is de�ned in a program,

but is not used in this program's text, then we say that it is dead. Values used only

in the de�nition of dead variables are dead as well. Calling sites that produce dead

3.3. Elimination of Unused Return Values 15

void divMod_clone_urve(int a, int b, int* m) {
 int quot = 0;
 while (a > b) {
 a -= b;
 quot++;
 }
 *m = a;
}

void main(int argc, char** argv) {
 ...
 case 3:
 divMod_clone_urve(argv[1][0], argv[2][0], &mod);
 printf("modulus = %d\n", mod);
 ...
}

23

24

28

while (a > b) {
 a -= b;
}
*m = a;(a) (b)

25

Figure 3.3. The e�ects of the elimination of unused return values. (a) Code after elimination

of the return statement. (b) Code after dead code elimination.

return values are considered fruitful to this optimization, otherwise they are fruitless.

Given a promising function f , with at least one fruitful invocation site, the e�ect

of our optimization is the following: we produce a clone f ′ that does not generate

any return value, i.e., f ′ is a procedure. We then apply dead code elimination onto

f ′ to remove from its body any computation that only contributes to the expression

originally returned. Our dead code detection is made using classic analysis [Appel and

Palsberg, 2002, p.417].

In Figure 3.1, we have a promising function, divMod, and an indi�erent function,

main. The latter is indi�erent because it does not return a value. The call to divMod at

line 23 is fruitful; the other invocations are fruitless, as they produce values which are

not dead. The application of the elimination of unused return values in this example

leads to the code shown in Figure 3.3. The primary e�ect of this optimization is

the elimination of the return statement. Its secondary e�ects come out of dead code

elimination. In this particular example, variable quot, declared in divMod, becomes

dead, as it was only used in the return statement. A round of dead-code elimination

produces the function seen in Figure 3.3 (b). After generating an optimized clone,

we replace the original invocation of divMod, at line 23 of main, by the new function.

Figure 3.3 shows all these e�ects.

An alternative optimization is inline expansion, which allows each context to be

optimized alone. Figure 3.4 show inlining applied to the same divMod function. On

16 Chapter 3. Clone-Based Optimizations

int main(int argc, char** argv) {
 int modulus;
 int quotient;
 switch(argc) {
 case 1: {
 int quot = 0;
 int a = argv[0][0];
 int b = argv[0][1];
 int* m = &modulus;
 while (a > b) {
 a -= b;
 quot++;
 }
 *m = a;
 printf("q = %d, m = %d\n", quot, *m);
 break;
 }
 case 2: {
 int quot = 0;
 int a = argv[0][0];
 int b = argv[1][0];
 int* m = &modulus;
 while (a > b) {
 a -= b;
 quot++;
 }
 *m = a;
 printf("modulus = %d\n", *m);
 break;
 }
 case 3: {
 int quot = 0;
 int a = argv[1][0];
 int b = argv[2][0];
 int* m = &modulus;
 while (a > b) {
 a -= b;
 quot++;
 }
 *m = a;
 printf("modulus = %d\n", *m);
 break;
 }
 }
}

int main(int argc, char** argv) {
 int modulus;
 int quotient;
 switch(argc) {
 case 1: {
 int quot = 0;
 int a = argv[0][0];
 int b = argv[0][1];
 int* m = &modulus;
 while (a > b) {
 a -= b;
 quot++;
 }
 *m = a;
 printf("q = %d, m = %d\n", quot, *m);
 break;
 }
 case 2: {

 int a = argv[0][0];
 int b = argv[1][0];
 int* m = &modulus;
 while (a > b) {
 a -= b;

 }
 *m = a;
 printf("modulus = %d\n", *m);
 break;
 }
 case 3: {

 int a = argv[1][0];
 int b = argv[2][0];
 int* m = &modulus;
 while (a > b) {
 a -= b;

 }
 *m = a;
 printf("modulus = %d\n", *m);
 break;
 }
 }
}

Figure 3.4. Program on �gure 3.1, after inline expansion and dead code elimination.

the left side of the �gure, we show the main function, originally shown on �gure 3.1,

after inline expansion. Each call site of the divMod function is replaced by its body.

One of the advantages of inlining is that it allows the compiler to optimize each context

in a di�erent way, since there are no dependencies between contexts. On the example

shown, the compiler was able to remove the computation of the quot variable in both

contexts they are not used. However, as a result of inlining, we have a huge increase in

code size on the optimized program. This increase can compromise the program not

3.4. Function Fusion 17

only in size, but also in execution time, as it can damage the locality of reference on

instructions cache [Hennessy and Patterson, 2003]. Furthermore, there are situations

where reduced code size is still a big advantage, because it will be run on devices with

low memory resources, like embedded ones.

3.4 Function Fusion

It is usual that programmers chain functions together, feeding one of them with the

result produced by the other. Figure 3.5 illustrates an example of such pattern. In

the �gure, the outcome of strlen is immediately forwarded to sumArray. Following

Chin's nomenclature [Chin, 1992], we call strlen a producer, and sumArray a consumer

function. If this situation happens often enough, we can decide to merge strlen and

sumArray. We call this optimization function fusion. In this work, we chose to enable

the fusion of a producer f and a consumer g when the following conditions apply:

(i) f produces, as return value, a variable v, e.g., v = f(. . .);

(ii) v is only used as a parameter of g, e.g., g(. . . , v, . . .).

Notice that condition (ii) is necessary to avoid eliminating the de�nition of a value that

has further uses, besides being a parameter of g.

int strlen(char* a) {
 int i = 0;
 while (a[i] != '\0') {
 i++;
 }
 return i;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

int sumArray(char* v, int n) {
 int i;
 int sum = 0;
 for (i = 0; i < n; i++) {
 sum += v[i];
 }
 return sum;
}

int main(int argc, char** argv) {
 if (argc == 2)
 printf("%d\n", sumArray(argv[1], strlen(argv[1])));
 else
 printf("%d\n", sumArray(argv[1], 0));
}

19

20

21

Figure 3.5. Example that bene�ts from function fusion.

18 Chapter 3. Clone-Based Optimizations

1

2

3

4

5

6

7

8

16

17

18

int sumArray_clone(char* v, char* a) {
 int i;
 int sum = 0;
 int n = strlen(a);
 for (i = 0; i < n; i++) {
 sum += v[i];
 }
 return sum;
}

int main(int argc, char** argv) {
 if (argc == 2)
 printf("%d\n", sumArray_clone_ff(argv[1]));
 else
 printf("%d\n", sumArray(argv[1], 0));
}

19

20

21

9

1

2

3

4

5

6

7

8

int sumArray_clone_ff(char* v) {
 int i;
 int sum = 0;
 int n = 0;
 while (v[n] != '\0') {
 n++;
 }
 for (i = 0; i < n; i++) {
 sum += v[i];
 }
 return sum;
}

9

10

11

12

(a)

(b)

(c) (d)

1

2

3

4

5

6

7

8

int sumArray_clone_ff(char* v, char* a) {
 int i;
 int sum = 0;
 int n = 0;
 while (a[n] != '\0') {
 n++;
 }
 for (i = 0; i < n; i++) {
 sum += v[i];
 }
 return sum;
}

9

10

11

12

Figure 3.6. (a) Example of Figure 3.5, after preliminary merging. (b) Inline expansion. (c)

Elimination of redundant parameters. (d) Replacement of clones in call sites.

Once we �nd an enabler that lets us fuse f into the body of g, our function fusion

produces the following e�ects, where Pf is the set of formal parameters of f , and Pg is

the set of formal parameters of g:

1. create a function g_clone. We let the parameters of g_clone be formed by

Pf ∪ Pg.

2. insert a call of f as the �rst statement of g_clone. We let this call to be named

the surrogate;

3. perform inline expansion of the surrogate within g_clone;

4. whenever applicable, we eliminate redundant parameters.

This last step is an optional optimization: if all the fruitful calls pass common pa-

rameters to consumers and producers, then the clone will have redundant parameters,

which can be factored out. Figure 3.6 illustrates this transformation. In this example,

3.5. Pointer Disambiguation 19

the producer and the consumer have common parameters, which have been factored

out in Figure 3.6(c).

3.5 Pointer Disambiguation

The natural evolution of programming languages might lead to the occurrence of perfor-

mance bugs in legacy code. In this case, the performance bug happens backwardly on

time, because a program, developed in an early version of a language, might not bene�t

from new features added onto this language thereafter. An example of this situation is

due to the addition of the restrict keyword to C, as of the C99 standard [ISO, 1999,

pp. 110]. This type modi�er can be used in the declaration of parameters of pointer

type. It gives programmers the opportunity to state that a pointer has no aliases. Such

information promotes code optimizations, as the compiler no longer needs to consider

the e�ects of aliasing on code transformations regarding that pointer. This way, it is

free to perform more aggressive optimization on the code due to memory disambigua-

tion. Previous work found that, in some cases, memory disambiguation can result in

signi�cant speedups for kernel array codes [Bernstein et al., 1994]. Prior to the C99

standard, however, developers did not have access to this keyword. Hence, there exists

a substantial body of binary code in deployed systems that could have been further

optimized had it been written today. The optimization that we discuss is an attempt

to deal with this problem.

To motivate this optimization, consider the code on Figure 3.7. Procedure vmul

takes two arrays of �oating point numbers, a and b, and their size n as inputs and

computes the square of each element of a, storing them in array b. Without further

knowledge and without special hardware support, the compiler must assume that a

and b may refer to the same array or overlapping arrays, so that the loop cannot

be parallelized or software-pipelined. The compiler has to ensure that an update of

position b[i] is performed before the next value a[i] is loaded. This constraint also

prevents the compiler from generating loads for multiple array elements of a at the

same time, since the subsequent store to b[i] may modify elements of array a.

1 void vmul (int n , double∗ a , double∗ b) {
2 int i ;
3 for (i = 0 ; i < n ; i++)
4 b [i] = a [i] ∗ a [i] ;
5 }

Figure 3.7. A simple vector multiplication routine.

20 Chapter 3. Clone-Based Optimizations

1 void vmul (int n , double∗ r e s t r i c t a , double∗ r e s t r i c t b) {
2 int i ;
3 for (i = 0 ; i < n ; i++)
4 b [i] = a [i] ∗ a [i] ;
5 }

Figure 3.8. The same vector multiplication routine, with its arguments modi�ed with the

restrict keyword, meaning that they never alias.

The de�nition of the restrict keyword, according to Oracle [2013] speci�es

that �an object that is accessed through a restrict quali�ed pointer requires that all

accesses to that object use, directly or indirectly, the value of that particular restrict

quali�ed pointer. Any access to the object through any other means may result in

unde�ned behavior. The intended use of the restrict quali�er is to allow the compiler

to make assumptions that promote optimizations�.

Figure 3.8 shows an example of how restrict is supposed to be used. The

pointer-typed arguments a and b are modi�ed with the restrict keyword. This qual-

i�cation tells the compiler that the array pointed to by a is only accessed via pointer

a or any pointers derived from it. Similarly, the array pointed to by b is only accessed

via pointer b or pointers derived from it. Using these assertions, the compiler is able

to state that a and b may not overlap. Consequently, it can perform parallelization

and other transformations whose correctness depends on a and b not being aliased.

Compared to the routine shown in Figure 3.7, the restrict-quali�ed routine in Fig-

ure 3.8 executes 24% faster on a Sparc workstation and even 2.9 times faster on an

Itanium-based workstation with two processors, according to Mock [2004].

In order to achieve the bene�ts of memory disambiguation, we have implemented

an optimization that we call pointer disambiguation. Its goal is to inform the compiler

that formal parameters of pointer type do not alias each other. To this end, LLVM,

our baseline compiler, provides the noalias argument attribute, which is de�ned by its

intermediate program representation. Quoting LLVM's programming manual 1, �the

de�nition of noalias is intentionally similar to the de�nition of restrict in C99 for

function arguments, although it is slightly weaker�. In the context of this optimization,

a function is promising if it contains at least two formal parameters of pointer type.

The optimization is enabled on a function call f(a1, . . . , an), where ai, 1 ≤ i ≤ n are

actual parameters, if there are no ai and aj of pointer type that alias each other, or any

global variable. Calling sites where this condition applies are considered fruitful. This

optimization has the following e�ect on a function f(b1, . . . , bn), where each bi, 1 ≤ i ≤
1Available on-line at http://llvm.org/docs/LangRef.html

3.5. Pointer Disambiguation 21

void copy(char* a, char* b, char* r, int N) {
 int i;
 for (i = 0; i < N; i++) {
 r[i] = a[i];
 if (!b[i]) {
 r[i] = b[i];
 }
 }
}

int main(int argc, char** argv) {
 char* buf = (char*) malloc(SIZE*sizeof(char));
 if (argc < 2) {
 strcpy(buf, argv[0]);
 copy(argv[0], buf, buf, SIZE);
 } else {
 copy(argv[0], argv[1], buf, SIZE);
 }
 print(buf, SIZE);
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 3.9. Example in which the potential aliasing between pointers can prevent code

optimizations.

n is a formal parameter: it creates a clone f ′(b′1, . . . , b
′
n) such that b′i = bi if bi is not

a pointer, and b′i = noalias bi otherwise. The compiler is then free to optimize f ′ as

much as the new knowledge allows it.

In order to determine if two pointer-typed arguments can alias each other, we have

implemented and used an alias analysis algorithm like the one described on section 2.5.

Figure 3.9 illustrates our pointer disambiguation. This program has been adapted

from a recent work due to Chabbi and Crummey, who have used it as an example of

performance bug [Chabbi and Mellor-Crummey, 2012]. Function copy might write the

same position of array r twice, depending on the result of the branch at line 5. The

�rst write happens in line 4, and the second might happen in line 6. This redundancy

is necessary, because the arrays b and r can be aliases. If they are, indeed, aliases,

then the store at line 4 may change the outcome of the test at line 5. This happens,

for instance, in the invocation of copy at line 15 of Figure 3.9. In that call site, the

formal parameters b and r are bound to the same array buf. On the other hand, if

the compiler had the knowledge that such aliasing is not possible, as in line 17, then

it could apply very aggressive optimizations onto the code of copy.

The call at line 17 of Figure 3.9 meets the enabling conditions of our pointer

22 Chapter 3. Clone-Based Optimizations

void copy_clone_pd(char* restrict a,

 char* b, char* restrict r, int N) {

 int i;

 for (i = 0; i < N; i++) {

 int tmp = a[i];

 if (!b[i]) {

 tmp = b[i];

 }

 r[i] = tmp;

 }

}

1

2

3

4

5

6

7

8

9

10

11

17

20

int main(int argc, char** argv) {
 ...
 copy_clone_pd(argv[0],
 argv[1], buf,SIZE);
 ...
}

Figure 3.10. Optimized version of copy, the function seen in Figure 3.9.

disambiguation. Therefore, we can clone copy, and mark its parameters with the

noalias modi�er 2. Figure 3.10 shows the result of this optimization. The two stores

onto r have been replaced by updates on the local variable tmp, at lines 4 and 6. At line

8 the value in tmp is transfered to r. Even though this optimization consists on small,

and very local changes in the code of copy, it delivers very good results. To emphasize

this last point, we have compared copy and copy_clone_pd on an Intel Core 2 Duo,

2.27GHz, having N equal to 100,000. In this setting, the cloned function is almost 30%

faster than its original version.

3.6 Elimination of Dead Stores

Functions usually produce side-e�ects by writing values in memory. Such updates are

used, for instance, to indicate exceptional conditions in C, or to simulate functions

that return multiple values. For example, in Figure 3.1, function divMod returns the

remainder of the division of a by b in its third parameter m. We consider that a

performance bug occurs whenever a function f updates a memory location that is dead

outside the scope of f . A memory location is dead if it is not read before being updated

again. Although it is di�cult to pinpoint dead memory locations statically, Chabbi

and Mellor-Crummey have shown, via a dynamic analysis of execution traces, that this

problem is widespread among binaries produced out of C and C++ programs [Chabbi

and Mellor-Crummey, 2012].

2Because we are using C in our examples, and not LLVM assembly, we use restrict instead of

noalias in Figure 3.10

3.6. Elimination of Dead Stores 23

int divMod_clone_dse(int a, int b) {
 int quot = 0;
 while (a > b) {
 a -= b;
 quot++;
 }
 return quot
}

void main(int argc, char** argv) {
 ...
 case 2:
 quot = divMod_clone_dse(argv[1][0], argv[2][0]);
 printf("quotient = %d\n", quot);
 ...
}

19

20

28

(a)

21

Figure 3.11. The e�ects of the elimination of dead stores.

In this work, we de�ne the elimination of dead stores as a clone-based optimization

that removes code to update dead external memory from the body of functions. Any

function f that updates external memory is considered promising. External memory

can be allocated inside the scope of f , or outside it. Any memory that has been

allocated outside the scope of f is external to f . Any memory that f allocates in the

heap is external, as long as this location escapes f . A memory location m escapes the

scope of a function f if f returns a pointer to it, or assigns its address to a parameter

passed via a pointer [Blanchet, 1998]. A call site is fruitful if it invokes a promising

function f , which updates external memorym, and at least one of the following enabling

situations occurs:

• Location m is declared locally in the scope of f 's caller, and is not read after f

returns;

• Locationm is overwritten in the scope of f 's caller, after f returns, without being

read before.

We have limited our analysis to the local scope of f 's caller, to simplify it. This

limitation means that we do not discover enablers via a global dead memory analysis;

instead, we use a local analysis within f 's caller. We use an Andersen style [Andersen,

1994] - global - pointer analysis to avoid false negatives. In other words, we assume

that location m is updated if any of its aliases is written. When applied on a function

f , this optimization produces a clone f ′ with the following e�ects: any update of dead

24 Chapter 3. Clone-Based Optimizations

external location m is removed from f ′, and dead code elimination is applied to get rid

of subsequent expressions that is made useless.

Continuing with our example, function divMod in Figure 3.1 is promising, as it

updates location m, which is external to its scope. Function main is indi�erent, as

it does not update any external memory location. The call of divMod at line 20 is

fruitful, because location mod is not read after the function returns. The other calling

sites are fruitless. Figure 3.11 shows the e�ect of applying dead store elimination on

the program seen in Figure 3.1. In this case, the only pro�t of our optimization was

the removal of the assignment *m = a in line 7 of Figure 3.1, and the replacement of

the call of divMod at line 20 by a new call of the clone divMod_clone_dse.

3.7 Estimating the Pro�t of a Clone

We need a way to estimate the pro�tability of a clone. Such metric is useful for two

reasons. Firstly, some clones o�er too little bene�t over the original function, and we

believe that they are not worth keeping. Our metric helps us to remove unwanted

clones; hence, it avoids excessive code expansion. Secondly, this number gives the

compiler a more concrete way to point back to the program developer potential per-

formance bugs. Very pro�table clones o�er to the software engineer strong indication

that code is being reused in improper ways. In this work, we chose to use Wu and

Larus static pro�ler [Wu and Larus, 1994] to measure the bene�t of a clone.

Wu and Larus's static pro�ler assigns to each edge in the control �ow graph

of a program a frequency. This frequency is an estimate of how many times that

edge will be traversed during the execution of the program. In order to determine

this frequency, Wu and Larus resort to heuristics. These rules gauge the chance that

branches will be taken. Some heuristics are based on the structure of the control �ow

graph of the program, and others are based on the type and/or value of variables used

in conditional tests. For instance, Wu and Larus assume that a branch that goes back

to a loop header, or that leaves the loop will stay in the loop 88% of the time. They

also predict that a comparison of a pointer against null is likely to fail with 60% of

chance. In total, Wu and Larus have de�ned nine di�erent approximation rules. It

is possible that di�erent rules apply to the same branch. In this case, the authors

have a way to combine these di�erent probabilities, a feat that they accomplish with

Dempster-Shafer theory of evidences [Shafer, 1976].

Figure 3.12 applies the static pro�ler on function divMod, seen in Figure 3.1.

Part (a) of the �gure shows the probabilities that each edge in the CFG is taken,

3.7. Estimating the Profit of a Clone 25

L1: int quot = 0

L2: p = a > b
L3: if p goto L7

L4: a -= b
L5: quot++
L6: goto L2

L7: *m = a
L8: return quot

1.00

0.12

0.88 1.00

(1) int quot = 0

(1) p = a > b
(1) if p goto Lx

(1) a -= b
(1) quot++
(1) goto Ly

(3) *m = a
(1) return quot

1.00

14.56

21.84

3.48

L1: _

L2: p = a > b
L3: if p goto L7

L4: a -= b
L5: _
L6: goto L2

L7: *m = a
L8: _

1.00

0.87

7.28 7.28

0.00

14.56

14.56

2.61

(a) (b) (c) (d) (e)

1.00

0.87

7.28 7.28

Figure 3.12. (a) The control �ow graph of function divMod, originally seen in Figure 3.1,

augmented with probability of edge being taken. (b) Cost of each instruction in the CFG, and

edge frequencies. (c) Total cost of functiondivMod. (d) CFG of divMod_clone_urve, seen in

Figure 3.3. (e) Total cost of function divMod_clone_urve.

and part (b) shows the edge frequencies. The calculation of edge frequencies is non-

trivial, because it depends on the notion of block frequency. The de�nition of these two

quantities is mutually-recursive. The frequency of which block u is visited is the sum

of the edge frequencies of every edge that reaches u. The frequency of an edge u← v,

that leaves block u towards block v is the frequency of u multiplied by the probability

that u← v is taken. Wu and Larus give a technique to compute the least �xed point

of the equations that determine edge and block frequency.

The result of this technique, when applied on our example, lets us to compute

the cost of each basic block, as we show in Figure 3.12(c). We chose to approximate

the cost of a basic block b by multiplying its execution frequency by the individual

cost of every instruction within b. We estimate the cost of instructions by reading the

architecture manual. In our example, we assigned a 1-cycle cost to every instruction,

but stores, which are worth 3-cycles.

Figure 3.12(d) shows the edge frequency of the cloned function

divMod_clone_urve. This clone is produced from divMod by the application of

Elimination of Unused Return Values, the optimization that we discussed in Sec-

tion 3.3. Figure 3.12(e) shows the cost of the optimized clone. As we can see, we

predict that divMod_clone_urve will be slightly faster than divMod. We can even

guess the speedup that the clone delivers, when compared to the original function:

(1.00 + 14.56 + 21.84 + 3.48)/(14.56 + 14.56 + 2.61) = 28.83%.

26 Chapter 3. Clone-Based Optimizations

3.7.1 Validating the static pro�ler

We have made some experiments in order to validate the reliability of Wu and Larus's

static pro�ler. In order to do that, we have compared branch probabilities generated

by the static pro�ler with real branch frequencies obtained using a dynamic pro�ler.

We have made our tests against the benchmarks present on SPEC CINT 2006 with the

provided inputs.

The dynamic pro�ler gives us the number of times a branch is taken

(branch_frequency) and the number of times the condition of a branch is analyzed

(condition_frequency). Based on these two numbers, we got a dynamic_probability,

given by the expression branch_frequency/condition_frequency. Wu and Larus's

static pro�ler gives us the static probability a branch should be taken. Given the static

and dynamic probabilities, we have calculated the error of the static pro�ler with the

formula |dynamic_probability − static_probability|.
We show our results on Figure 3.13. We have analyzed the error of the static

pro�ler with and without considering untaken branches. On the former case, we con-

sider every branch of the programs in order to calculate the error. On the latter case,

we only calculate the error of branches taken during execution.

Ignoring untaken branches, Wu and Larus's static pro�ler had an average er-

ror of 25,34%. When considering untaken branches, however, the average error was

much higher, 46,46%. This was already expected, as the static probability of untaken

Bench Error with untaken branches Error without untaken branches

perlbench 29,41% 54,64%

bzip2 28,06% 41,17%

gcc 30% 49,08%

mcf 22,01% 32,64%

gobmk 27,03% 45,58%

hmmer 24,13% 56,08%

sjeng 27,86% 46,69%

libquantum 27,86% 48,87%

h264ref 22,72% 52,06%

omnetpp 21,7% 42,5%

astar 18,2% 31,79%

xalancbmk 31,48% 56,45%

Figure 3.13. Errors of Wu and Larus's static pro�ler on SPEC CINT 2006.

3.7. Estimating the Profit of a Clone 27

branches is considered an error as a whole. We have made the same experiments with

LLVM's static pro�ler and found similar numbers: 24,82% of average error without

considering untaken branches and 47,14% of average error considering branches not

taken during execution. This way, we believe Wu and Larus's static pro�ler provides

enough reliability to let us calculate the static costs of our optimized clones.

Chapter 4

Experiments

The goal of this chapter is to show the applicability and the e�ectiveness of the proposed

optimizations. We have implemented them as modules of the LLVM compiler, version

3.3. This way, they are easily loaded and used during the optimization step, using

the opt tool. All the experiments reported in this work have been performed on an

Intel Xeon CPU e5-2665, with 132GB of RAM, running at 2.4GHz. The operating

system used was Ubuntu 12.04. We have run our optimizations against the well-known

benchmarks in SPEC CPU 2006 [Henning, 2006] and LLVM Test-Suite 1. This last set

of benchmarks is commonly used to test new features and optimizations implemented

on top of LLVM.

4.1 The Cloning Pipeline

Figure 4.1 shows our code transformation pipeline, i.e., the sequence of steps that we

perform to apply one clone-based optimization. All our clone-based transformations

are completely independent, and they can be applied together, or separately. In order

to apply our optimizations, we have split the required steps into two groups, opti-

mization steps and additional steps.

The optimization steps are responsible for creating the cloned functions. They

are described as follows:

1. Identi�cation: we run some speci�c static analysis to �nd promising functions,

and fruitful call sites.

2. Cloning: each promising function is cloned.

1Documented on-line at http://llvm.org/docs/TestingGuide.html

29

30 Chapter 4. Experiments

Figure 4.1. Transformation pipeline that we use to apply function cloning.

3. Replacement: fruitful calls are replaced by invocations of the clone.

Once we �nish these steps, we perform some additional steps in order to improve

our generated code. They are described as follows:

1. Polishing: we run the optimizations available in LLVM -O2 over the entire

program. It is this set of optimizations that will polish the code of the clones.

For instance, when we apply unused return values elimination, we remove return

instructions from the clone, and set its type to void; however, we do not eliminate

subsequent dead instructions. This last stage is performed by the optimization

steps described above.

2. Elimination of worthless clones: After this optimized code is generated, we

run a �nal pass over the program, estimating the costs of all cloned and base

functions, like we described on section 3.7. This estimation gives us a metric

to remove clones that we think are not worth keeping. For instance, given a

4.2. The Applicability of our Optimizations 31

base function and its corresponding clone, we remove the cloned version if its

static cost is greater than the cost from the original function. This di�erence can

happen because both the original and cloned versions went through the polishing

step. This way, it's possible that our clone-based optimization may have inhibited

the applicability of some other optimizations, in a way that the �nal code for the

base function is the more optimized version. If that's true, we remove the cloned

version and restore fruitful calls to invocations of the base function. Sometimes,

it is not possible to restore the original calls, as the base and cloned versions of

the function have di�erent arities.

3. Elimination of orphan function: Before producing an executable code, we

remove orphan functions. If all the calling sites of a given promising function are

fruitful, then the original function will no longer be reachable. In this case, we

say that this function is orphan.

During the polishing step, we may choose to remove the inline expansion opti-

mization from LLVM -O2. We may do this because inlining makes it hard to probe the

e�ectiveness of our transformations, as it removes from the program several calls to

original and cloned functions. On the rest of this chapter, if we have chosen to remove

inline expansion, we will explicitly say we have done so.

4.2 The Applicability of our Optimizations

In this section, we provide numbers to show the applicability of the proposed optimiza-

tions. We have tested the clone-based optimizations on the well-known SPEC CPU

2006 benchmark and the benchmarks contained in LLVM Test-Suite. The latter is a

collection of benchmarks divided in two types of tests: single source programs and mul-

tiple source ones. The SingleSource benchmarks are known to be simple chunks of code

contained on a single �le. The MultiSource benchmarks contain larger benchmarks and

whole applications. We have divided our numbers according to the benchmarks used

to generate them.

4.2.1 Test-Suite SingleSource

The Test-Suite SingleSource is a collection of 311 simple programs. The whole collection

has 47,845 lines of code and 11,208 functions. Thus, the average number of functions

in a single benchmark is 36. Figures 4.2�4.5 provide applicability data for each of our

proposed optimizations when applied to these benchmarks. We do not show numbers

32 Chapter 4. Experiments

13
3	

34
	

9	
14
	 19

	
11
	

22
	

3	 5	
1	

43
	

1	 3	 5	
1	 2	 2	 1	 2	 0	 0	

0	

20	

40	

60	

80	

100	

120	

140	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	
10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Promising	 func>ons	
13
5	

3	
21
	

13
	

10
	

22
	

9	 11
	

7	
3	

14
	

4	 2	 3	 2	 4	 1	 0	 0	 0	
47
	

0	

20	

40	

60	

80	

100	

120	

140	

160	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	
10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Frui=ul	 callsites	

Figure 4.2. Constant Propagation: Applicability on Test-Suite SingleSource.

for elimination of dead stores, as it could not �nd any optimization opportunity on the

collection.

We have chosen to show the data in form of histogram graphics. For each bench-

mark, we have calculated the percentage of promising functions, i.e., the ones that can

bene�t from a given optimization. This number is given by the equation Clone/Func,

where Clone is the number of functions cloned while Func is the total number of

functions contained in the program. We also wanted to show the applicability of our

optimizations in terms of fruitful call sites, i.e., call sites that can bene�t from the

optimized clones. So, we have designed histogram graphics showing the percentage of

fruitful call sites. This number is given by the equation F-ful/Calls, where F-ful is the

number of fruitful call sites, while Calls is the total number of calls of the benchmark.

The total number of function calls in the entire collection is 22,522, with an average of

72 function calls in each benchmark.

In the histograms shown, the Y axis is the number of benchmarks, while the

X axis is the percentage of promising functions or fruitful call sites. We just show

the percentages in multiples of 5, in order to make our graphics smaller and easier to

understand. Thus, in Figure 4.2 left, we can read that 133 benchmarks (out of 311)

had 0%�5% of functions that could bene�t from clone-based constant propagation.

As another example, Figure 4.2 right tells us that 47 benchmarks have had all their

4.2. The Applicability of our Optimizations 33

25
5	

15
	

11
	

5	 1	 2	 6	 1	 1	 0	
9	

0	 2	 2	 0	 0	 0	 0	 0	 1	 0	

0	

50	

100	

150	

200	

250	

300	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	
10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Promising	 func>ons	

25
9	

14
	

8	 3	 4	 0	 1	 0	 0	 0	
8	

1	 0	 0	 0	 0	 0	 0	 0	 0	
13
	

0	

50	

100	

150	

200	

250	

300	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	
10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Frui=ul	 callsites	

Figure 4.3. Elimination of unused retvals: Applicability on Test-Suite SingleSource.

21
2	

1	 5	
28
	

7	 11
	

3	 3	 5	 7	
15
	

5	 1	 5	 1	 1	 0	 0	 0	 1	 0	

0	

50	

100	

150	

200	

250	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	
10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Promising	 func>ons	

21
3	

1	
12
	 18
	

9	 9	
2	
9	 5	 5	 8	 3	 2	 2	 0	 0	 1	 0	 0	 0	
12
	

0	

50	

100	

150	

200	

250	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	
10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Frui=ul	 callsites	

Figure 4.4. Pointer Disambiguation: Applicability on Test-Suite SingleSource.

34 Chapter 4. Experiments

function calls replaced by invocations of clones optimized by constant propagation.
28
0	

5	 4	 3	 3	 4	 3	 0	 2	 2	 1	 0	 0	 3	 0	 0	 0	 0	 0	 0	 1	

0	

50	

100	

150	

200	

250	

300	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	
10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Promising	 func>ons	

27
7	

4	 4	 5	 2	 4	 2	 0	 4	 1	 0	 1	 5	 0	 1	 0	 0	 0	 0	 0	 1	

0	

50	

100	

150	

200	

250	

300	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	
10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Frui=ul	 callsites	

Figure 4.5. Function Fusion: Applicability on Test-Suite SingleSource.

From the �gures 4.2�4.5, we can see that constant propagation has a high ap-

plicability, while all the other optimizations see less reach. The average percentage of

promising functions are: constant propagation 17.65%, elimination of unused retvals

4.43%, pointer disambiguation 10.45% and function fusion 2.81%. Our optimizations

have a relevant applicability in terms of call sites. For instance, the average percentage

of call sites touched by our optimizations are: constant propagation 27.95%, elimi-

nation of unused retvals 6.62%, pointer disambiguation 11.88% and function fusion

3.42%.

4.2.2 Test-Suite MultiSource

The Test-Suite MultiSource is a collection of 182 programs. These programs consist of

large benchmarks and whole applications. The whole collection has 1,343,150 lines of

code and 46,034 functions. Thus, the average number of functions in a single benchmark

is 252. The total number of function calls in the entire collection is 188,346, with an

average of 1,034 function calls in each benchmark.

Figures 4.6�4.10 provide applicability data for each of our proposed optimizations

when applied to these benchmarks. We show histogram graphics for the percentage of

4.2. The Applicability of our Optimizations 35

17
	

14
	

29
	

29
	

23
	

18
	 19
	

9	
5	

11
	

4	
1	

3	
0	 0	 0	 0	 0	 0	 0	 0	

0	

5	

10	

15	

20	

25	

30	

35	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	

10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Promising	 func>ons	
20
	

15
	

15
	

12
	

20
	

10
	

8	
13
	

8	
3	

8	
2	

4	
1	 1	 1	 1	 1	

0	
36
	

3	

0	

5	

10	

15	

20	

25	

30	

35	

40	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	

10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Frui=ul	 callsites	

Figure 4.6. Constant Propagation: Applicability on Test-Suite MultiSource.

91
	

26
	

12
	

7	
1	 1	 0	 1	 1	 1	 3	
0	

10
	

6	
12
	

6	 4	
0	 0	 0	 0	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	
10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Promising	 func>ons	

10
0	

17
	

12
	

5	
2	 0	 0	 1	 0	 1	 2	 0	 1	 1	 0	 0	 0	 1	 2	 0	

37
	

0	

20	

40	

60	

80	

100	

120	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	
10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Frui=ul	 callsites	

Figure 4.7. Elimination of unused retvals: Applicability on Test-Suite MultiSource.

36 Chapter 4. Experiments

21
	

19
	

30
	

24
	

16
	

11
	

15
	
17
	

9	
2	

6	
3	 3	
4	

2	
0	 0	 0	 0	 0	 0	

0	

5	

10	

15	

20	

25	

30	

35	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	

10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Promising	 func>ons	
56
	

9	
15
	

8	 9	
17
	

6	
20
	

8	 7	 7	
4	

1	 0	
3	 3	 3	

0	 1	 0	
5	

0	

10	

20	

30	

40	

50	

60	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	

10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Frui=ul	 callsites	

Figure 4.8. Pointer Disambiguation: Applicability on Test-Suite MultiSource.

15
3	

12
	

4	 2	 2	 1	 3	 1	 1	 0	 2	 0	 0	 0	 0	 1	 0	 0	 0	 0	 0	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	
10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Promising	 func>ons	

15
2	

11
	

4	 5	 3	 0	 2	 2	 0	 0	 1	 0	 1	 0	 0	 0	 1	 0	 0	 0	 0	

0	

20	

40	

60	

80	

100	

120	

140	

160	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	
10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Frui=ul	 callsites	

Figure 4.9. Function Fusion: Applicability on Test-Suite MultiSource.

4.2. The Applicability of our Optimizations 37

promising function and fruitful call sites, just like we have done on Section 4.2.1.

From the �gures 4.6�4.10, we can see that the proposed optimizations have much

more reach when dealing with larger benchmarks. All the optimizations obtained a high

applicability, with averages of promising functions being 20.43% for constant propa-

gation, 17.96% for elimination of unused retvals 21.37% for pointer disambiguation,

2.93% for function fusion and 0.65% for elimination of dead stores. We could see a

high applicability in terms of call sites. Considering all function calls in the collec-

tion of benchmarks, the proportions of call sites touched by our optimizations were:

constant propagation 38.73%, elimination of unused retvals 25.21%, pointer disam-

biguation 23.79%, function fusion 3.02% and elimination of dead stores 0.38%.

15
8	

24
	

0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	
10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Promising	 func>ons	

17
2	

6	 4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

0%
	
10
%	

20
%	

30
%	

40
%	

50
%	

60
%	

70
%	

80
%	

90
%	
10
0%
	

N
um

be
r	 o

f	 b
en

ch
m
ar
ks
	

Frui=ul	 callsites	

Figure 4.10. Elimination of Dead Stores: Applicability on Test-Suite MultiSource.

4.2.3 SPEC CPU 2006

The SPEC CPU 2006 is a well-known collection of programs. These programs are often

used, both on industrial and academic community, in order to test the performance of

either hardware or software. The whole collection contains 1,910,549 lines of code and

75,052 functions. The benchmarks in SPEC are divided in two classes of programs:

SPECint and SPECfp. The former is used for testing integer performance, whereas the

latter tests �oating-point performance.

38 Chapter 4. Experiments

Bench Func Clone Orph Calls F-ful F-less AvgP Rec

perlbench 1,869 353 34 14,547 6,266 2,083 25 94

bzip2 99 21 4 268 84 58 14 0

gcc 5,562 1,212 281 49,448 21,154 5,190 236 165

mcf 24 11 5 28 12 2 13 0

gobmk 2,679 260 24 10,853 4,753 656 58 6

hmmer 536 74 10 2,222 1,108 232 217 0

sjeng 144 32 4 721 222 139 10 3

libquantum 115 20 4 377 59 126 21 1

h264ref 589 136 43 2,403 1,044 127 863 4

omnetpp 2,833 327 49 12,540 5,567 548 7 1

astar 149 39 15 454 110 49 18 0

xalancbmk 28,601 2,650 90 83,656 16,157 4,087 10 18

Total 43,200 5,135 563 177,517 56,536 13,297 292

Figure 4.11. Constant Propagation (Sec 3.2). Func: number of functions. Clone: number

of clones. Orph: number of orphan functions. Calls: number of function calls. F-ful:

number of fruitful calls. F-less: number of fruitless calls. AvgP: average pro�t of optimized

clone. Rec: number of recursive clones.

Figures 4.11�4.13 provide static data to evidence the reach of our optimizations

on SPECint. Similarly to what we have done on previous sections, we show their appli-

cability in terms of promising functions. This way, on each table, we show data from a

speci�c clone-based optimization. These data include the number of functions that the

benchmark contains (Func), the number of functions that have been cloned (Clone),

and the number of functions that became orphans after replacement (Orph). From this

data, we conclude that our optimizations are highly applicable. In other words, a large

proportion of functions are promising (Clone/Func): const-prop = 11.9%, unused-ret-

val-elim = 5.8%, pointer disambiguation = 32.9% and fusion = 23.1%. The exception

was the elimination of dead stores, that could be applies on only 0.18% of the functions.

We already expected the low applicability of the latter optimization, because of the

di�culties involved in pinpointing dead memory locations statically.

We also wanted to show the applicability of our optimizations in terms of fruitful

call sites, i.e., call sites that can bene�t from the optimized clones. So, we show

the total number of function calls (Calls) in a given benchmarks, plus the number of

fruitful (F-ful) and fruitless sites (F-less). The number of invocations of promising

functions is given by F-ful + F-less. The optimization Function Fusion, by de�nition,

4.2. The Applicability of our Optimizations 39

Bench Func Clone Orph Calls F-ful F-less AvgP Rec

perlbench 1,869 162 9 14,547 1,984 2,519 176 48

bzip2 99 10 4 268 24 1 3 0

gcc 5,562 272 23 49,448 3,214 6,560 26 45

mcf 24 6 3 28 9 0 0 0

gobmk 2,679 50 4 10,853 1,299 836 10 1

hmmer 536 23 12 2,222 78 51 11 0

sjeng 144 x x 721 x x 0 0

libquantum 115 8 3 377 40 22 3 0

h264ref 589 48 19 2,403 243 137 5 1

omnetpp 2,833 118 8 12,540 908 232 2 0

astar 149 7 3 454 8 3 1 0

xalancbmk 28,601 1,817 29 83,656 4,376 2,203 12 13

Total 43,200 2,521 117 177,517 12,183 12,564 108

Figure 4.12. Elimination of unused return values (Sec 3.3).

does not have fruitless sites. The proportion of function calls that are touched by our

optimizations (F-ful/Calls) is, again, very high: const-prop = 36.2%, unused-ret-val-

elim = 7.4%, pointer disambiguation = 36.7% and fusion = 25.7%. The elimination of

dead stores, as an exception, touched just 0.05% of the total number of calls contained

in SPECint. In the case of pointer disambiguation, we already expected those results,

because, as showed by Mock et al. [2001], the majority of program variables in the

SPEC benchmarks point to only a single logical location during execution with the

SPEC-provided test inputs.

Figures 4.11�4.13 also provide some interesting numbers from our optimizations.

We show the number of cloned functions that are recursive: these functions would pose

di�culties to inline expansion, because they cannot be properly inlined. Our clone-

based optimizations, otherwise, don't have any di�culties in optimizing this kind of

function. In general, a very small proportion of functions �t into this category. For

instance, only 3.4% of the clones created by function fusion are recursive. Finally, the

tables also provide the average pro�t that we obtained for each benchmark using the

static pro�ler we have explained in Section 3.7. We calculate the pro�t of a given

clone by the formula original_cost − cloned_cost, where original_cost is the static

cost from the base function, while cloned_cost is the static cost from the optimized

clone. Except for h264ref after pointer disambiguation, the average pro�ts tend to

40 Chapter 4. Experiments

Bench Func Clone Orph Calls F-ful F-less AvgP Rec

perlbench 1,869 292 12 14,547 1,622 0 31 98

bzip2 99 0 0 268 0 0 0 0

gcc 5,562 1,903 43 49,448 20,388 0 17 180

mcf 24 0 0 28 0 0 0 0

gobmk 2,679 24 9 10,853 54 0 6 0

hmmer 536 7 2 2,222 30 0 6 0

sjeng 144 0 0 721 0 0 0 0

libquantum 115 2 1 377 4 0 0 0

h264ref 589 7 7 2,403 28 0 3 0

omnetpp 2,833 214 25 12,540 938 0 5 3

astar 149 5 2 454 14 0 2 0

xalancbmk 28,601 7,550 113 83,656 19,330 0 2 55

Total 43,200 10,004 214 177,517 42,408 0 336

Figure 4.13. Function Fusion (Sec 3.4).

be small, in the order of 50 estimated cycles per function. In the case of h264ref,

pointer disambiguation has enabled extensive loop unrolling in a video compressing

function. Pointer disambiguation is the optimization that yielded the largest static

pro�ts. The elimination of unused return values, function fusion and the elimination

of dead stores gave us the lowest pro�ts. In the former case, we have observed that

many functions simply contain a command return 0 or return 1 at its end, which we

were eliminating. This return instructions may just indicate if the given function has

executed successfully or not. In the case of function fusion, LLVM -O2 has not been

able to capitalize much on the extended function bodies that we were creating after

function fusion, possible due to the nature of C programs. As for the elimination of dead

stores, the removal of store instructions does not seem to generate great opportunities

for dead code elimination. Nevertheless, we have observed a few good speedups after

reducing the cost of many function by cloning, as we will show in Section 4.3.

Figure 4.16 shows the maximum proportional pro�ts obtained by our opti-

mizations. This number represents the best proportional pro�t a clone-based op-

timization could obtain on a given benchmark, and is calculated by the formula

original_cost/cloned_cost, where original_cost is the static cost from the base func-

tion, while cloned_cost is the static cost from the optimized clone. For example, on

perlbench benchmark, Constant Propagation has selected to clone a function with a

4.2. The Applicability of our Optimizations 41

Bench Func Clone Orph Calls F-ful F-less AvgP Rec

perlbench 1,869 367 62 14,547 4,031 75 3 2

bzip2 99 19 2 268 34 0 61 0

gcc 5,562 1,769 339 49,448 15,480 241 31 0

mcf 24 7 3 28 7 0 227 0

gobmk 2,679 190 38 10,853 1,337 9 12 0

hmmer 536 160 48 2,222 566 0 1,267 0

sjeng 144 13 3 721 50 1 1 0

libquantum 115 4 1 377 9 0 279 0

h264ref 589 98 44 2,403 764 33 24,057 0

omnetpp 2,833 627 16 12,540 5,211 128 276 0

astar 149 34 13 454 69 1 122 0

xalancbmk 28,601 10,949 632 83,656 30,990 1,005 8 0

Total 43,200 14,237 1,201 177,517 58,548 1,493 2

Figure 4.14. Pointer Disambiguation (Sec 3.5).

Bench Func Clone Orph Calls F-ful F-less AvgP Rec

perlbench 1,869 1 0 14,547 2 4 3 1

bzip2 99 0 0 268 0 0 0 0

gcc 5,562 3 1 49,448 6 7 9 2

mcf 24 0 0 28 0 0 0 0

gobmk 2,679 3 0 10,853 3 35 3 0

hmmer 536 4 1 2,222 5 3 3 0

sjeng 144 0 0 721 0 0 0 0

libquantum 115 0 0 377 0 0 0 0

h264ref 589 1 0 2,403 1 32 3 0

omnetpp 2,833 0 0 12,540 0 0 0 0

astar 149 0 0 454 0 0 0 0

xalancbmk 28,601 64 1 83,656 69 44 3 0

Total 43,200 76 3 177,517 86 125 3

Figure 4.15. Elimination of Dead Stores (Sec 3.6).

cost of 312. The optimized clone's cost is 21. This way, the proportional pro�t of this

cloning is 312/21 = 14.85. We show these numbers as divisions on Figure 4.16, in order

to retain the information about static costs.

42 Chapter 4. Experiments

Bench Const. Prop. Elim. Retvals F. Fusion Pointer Dis. Elim. Dead Stores

perlbench 312/21 120/67 4,627/159 78/74 8,780/8,777

bzip2 1,369/774 19/18 � 875/871 �

gcc 88/2 5,295/257 1,563/71 482/179 309/297

mcf 10,169/1,220 122/121 � 210/203 �

gobmk 146/17 39/35 25/20 2,611/2,174 24/21

hmmer 263/17 25/23 144/80 1,041/191 17/17

sjeng 334/127 � � 44/43 �

libquantum 115/20 13/12 � 1,755/926 �

h264ref 621/15 105/93 611/610 23,174/1,121 �

omnetpp 105/27 65/27 84/42 1,869/259 �

astar 48/34 48/47 � 13,927/1,433 �

xalancbmk 253/15 64/29 81/24 527/73 60/57

Figure 4.16. Maximum proportional pro�ts obtained on SPEC CPU 2006.

We got high proportional pro�ts from both Constant Propagation and Pointer

Disambiguation. Function Fusion also got nice pro�ts on perlbench and gcc. Max-

imum pro�ts for Elimination of Dead Stores and Elimination of Unused Retvals tend

to be small, with an exception being the latter optimization on gcc benchmark. We

will study some of the functions with high proportional pro�ts on Chapter 5.

The main conclusion that we draw from these tables is that our clone-based

optimizations are widely applicable and are able to reduce the costs of functions, even

in mature programs, such as those found in SPEC CPU 2006.

4.3 E�ectiveness: Time and Space

In this section, we analyze how our proposed clone-based optimizations a�ect compi-

lation time, runtime and code size. We have made our tests on the same benchmarks

used in Section 4.2: SPEC CPU 2006 and LLVM Test-Suite. We will analyze each of

these collections individually.

When analyzing runtime, we have run each test 15 times. Our runtimes are

compared against the optimization level LLVM -O2.

4.3. Effectiveness: Time and Space 43

4.3.1 Test-Suite SingleSource

Compilation time. LLVM provides an easy way to see how much time an optimiza-

tion step took during the compilation2. Figure 4.17 shows the average percentage of

time each of our optimizations took to run on Test-Suite SingleSource benchmarks.

Optimization Average % of Compilation Time

Constant Propagation 1.15%

Elimination of Unused Return Values 0.54%

Function Fusion 0.49%

Pointer Disambiguation 0.70%

Figure 4.17. Compilation time of our optimizations when applied to Test-Suite SingleSource.

From Figure 4.17, we can see that our optimizations do not take a large share

of the compilation time. Actually, our slowest optimization, Constant Propagation,

accounted for an average of 1.15% of total compilation time. The time required to run

the other optimizations were less than 1% of total time. Thus, we can say that the

proposed clone-based optimizations are safe to be used on programs that require short

compilation times.

Runtime. In order to analyze the runtime improvements provided by our op-

timizations, we have chosen to calculate the speedups obtained on the biggest bench-

marks contained in Test-Suite SingleSource. We got the 20 largest benchmarks by

choosing the ones that take more time to run. Figure 4.18 shows the runtime varia-

tions for these benchmarks when applying our optimizations. We are comparing our

runtimes against the ones obtained with the LLVM -O2 optimization level. Elimi-

nation of dead stores is not shown in this �gure, because it found no optimization

opportunities on these benchmarks.

Constant propagation got good results on lists, with an improvement of 4.37%.

Elimination of unused retvals yielded an improvement of 2.02% on ReedSolomon. Func-

tion fusion got nice numbers on almabench (4.07%) and spirit (3.97%). Pointer dis-

ambiguation was our best optimization, yielding 24.5% of improvement on top of

loop_unroll, and good results on smallpt (13.38%) and spirit (10.48%).

Space. In order to analyze how our optimizations a�ect the size of programs,

we have measured the size of the binaries generated at the end of the pipeline shown

in Figure 4.1. We used the UNIX command wc -c to get the size of the binaries.

2Documented on-line at http://llvm.org/docs/CommandGuide/llc.html#cmdoption�time-passes.

44 Chapter 4. Experiments

!"#$$%&

!'#$$%&

!(#$$%&

$#$$%&

(#$$%&

'#$$%&

"#$$%&

)#$$%&

*#$$%&

!"#$$%&

!'#($%&

!'#$$%&

!$#($%&

$#$$%&

$#($%&

'#$$%&

'#($%&

"#$$%&

"#($%&

!"#$$%&

$#$$%&

"#$$%&

'#$$%&

(#$$%&

)#$$%&

*#$$%&

!"#$$%&

$#$$%&

"#$$%&

'$#$$%&

'"#$$%&

($#$$%&

("#$$%&

)$#$$%&

*+
,
,
&

-.,
/0+

12
3/
+-
104

4/
1.5

67
8.7
52
&

94
/-
&

044
/1
:5
84
00&

0.5
/7
;<
!/
;&

=+
+>
?4
04,

45
&

70,
7@
+5
;A
&

-,
700
/2
&

0.-
2-&

-3
,
,
&

(,
,
&

-.+
6+
&

-7
0-7
($
&

-/
.8.
2&

),
,
&

*;
;!0
44
/-
&

-2+
/7
54
61
6+
;24

8&
A:
B
+5
;A
&

-2+
/7
54
61
7@
-28
7;
C4
5&

-2+
/7
54
61
6'
/(
&

(a)

(b)

(c)

(d)

Figure 4.18. Runtime variations on Test-Suite SingleSource. (a) Constant propagation. (b)

Elimination of unused return values. (c) Function fusion. (d) Pointer disambiguation.

4.3. Effectiveness: Time and Space 45

We got the sizes of the programs without inline expansion on the polishing step, like

we explained on Section 4.1. We did this because inlining could fool our results, as

it would expand calls for many of our cloned functions. Figure 4.19 shows how our

optimizations a�ects the size of the entire Test-Suite SingleSource collection. We also

show how inline expansion contributes to code increase.

Optimization % of increase in size

Constant Propagation 1.54%

Elimination of Unused Return Values 0.23%

Function Fusion 2.77%

Pointer Disambiguation 1.18%

Inline Expansion 6.47%

Figure 4.19. Size increase on binaries in Test-Suite SingleSource.

Inline expansion increased the code size of Test-Suite SingleSource benchmarks

in 6.47%. Our optimizations were less expensive. The clone-based optimization that

yielded the largest code size increase was function fusion, with 2.77% of code growth.

The use of all other optimizations resulted in less than 2% of code size growth.

4.3.2 Test-Suite MultiSource

Compilation time. Figure 4.20 shows the average percentage of time each of our

optimizations took to run on the benchmarks of Test-Suite MultiSource.

From Figure 4.20, we see that, even on large programs, like the ones contained on

Test-Suite MultiSource, our optimizations don't take much time to run. Our slowest

optimization on this collection of benchmarks was Constant Propagation, accounting

Optimization Average % of Compilation Time

Constant Propagation 2.36%

Elimination of Unused Return Values 0.82%

Function Fusion 0.28%

Pointer Disambiguation 0.80%

Elimination of Dead Stores 0.15%

Figure 4.20. Compilation time of our optimizations when applied to Test-Suite MultiSource.

46 Chapter 4. Experiments

for an average of 2.36% of total compilation time. The other optimizations took less

than 1% of total compilation time to run.

Runtime. Figure 4.21 shows the runtime variations for each of our optimizations

on the biggest benchmarks of Test-Suite MultiSource. We are comparing our optimized

programs with the ones obtained after the application of the LLVM -O2 optimization

level.

Most runtime improvements stayed between -1% and 1%. We consider this vari-

ations as inconclusive results. Our best result was obtained when applying pointer

disambiguation optimization on top of enc-pc1, that yielded 10.39% of improvement.

Constant propagation got an improvement of 3.02% on pairlocalalign. Function fusion

could speed up minisat in 1.8%.

Space. Figure 4.22 shows the code size growth caused by the application of our

optimizations. For comparison purposes, we also show how inline expansion a�ects

code size.

On Test-Suite MultiSource, the application of constant propagation and function

fusion resulted in large code growths, 15.08% and 10.26%, respectively. These results

were really close to inline expansion, that increased the code size in 14.22%. Elimination

of unused retvals and elimination of dead stores didn't increase the code by much, as

they were less applicable on the benchmarks. Pointer disambiguation yielded a slightly

code growth, 6.09%.

The applicability charts on Section 4.2.2 can help us understand why the appli-

cation of constant propagation resulted in a signi�cant code growth. This optimization

is highly applicable on the benchmarks of MultiSource Test-Suite. Besides that, most

clones are not able to replace all the call sites from their base functions, i.e., it is

uncommon that all the call sites of a given function are fruitful. This way, the �nal

code often contains two versions of each promising function: the base and the clone.

Had the clone the ability to replace all the call sites, the base function would become

orphan and would be eliminated on our pipeline, just like we explained on Section 4.1.

As for function fusion, the de�nition of the optimization makes its application

more likely to result in a big code growth: we are combining the bodies of two functions

under a new function, i.e., the clone. It is really rare a situation where the clone can

replace all the call sites from both functions used to created it. This will only happen

if these two functions are always used together, in a way that all their call sites can be

combined. As we can see from the applicability charts on Section 4.2.2, this situation

is very unlikely to happen.

4.3. Effectiveness: Time and Space 47

!"#$$%&

!'#$$%&

$#$$%&

'#$$%&

"#$$%&

(#$$%&

)#$$%&

!"#$%&'

!"#%%&'

!%#$%&'

%#%%&'

%#$%&'

"#%%&'

"#$%&'

(#%%&'

!"#$%&'

!"#%%&'

!%#$%&'

%#%%&'

%#$%&'

"#%%&'

"#$%&'

(#%%&'

!"#$$%&
!'#$$%&
$#$$%&
'#$$%&
"#$$%&
(#$$%&
)#$$%&
*$#$$%&
*'#$$%&

!"#$$%&

!$#'$%&

$#$$%&

$#'$%&

"#$$%&

"#'$%&

(#$$%&

)*
+,
-.
/0
1!
23
&

4/
/5
)*
13
6,
-3
,6
70
8!

9/
03
6/
:4/

/5
1!
23
&

96
;1
3<
:=
>&

9/
03
6/
:?:
/@

!2
3&

:*
0-
/+
&

A
70
71<
3&

9/
03
6/
:?:
/@

!+
B:
&

CD
EC
C&

*0
-!
5-
"&

*A
F+
&

G75
!B
*0
-H
A
<6
>&

:,
<&

E=
IA

>&
C*
<6
-H
70
8!
+B
:&

C*
<6
-H
70
8!
23
&

D<
->
70
8!
23
&

D<
->
70
8!
+B
:&

5<
76:
/-
<:
<:
78
0&

5<
JK
5&

(a)

(b)

(c)

(d)

(e)

Figure 4.21. Runtime variations on Test-Suite MultiSource. (a) Constant propagation. (b)

Elimination of unused return values. (c) Function fusion. (d) Pointer disambiguation. (e)

Elimination of dead stores.

48 Chapter 4. Experiments

Optimization % of increase in size

Constant Propagation 15.08%

Elimination of Unused Return Values 2.58%

Function Fusion 10.26%

Pointer Disambiguation 6.09%

Elimination of Dead Stores 0.18%

Inline Expansion 14.22%

Figure 4.22. Size increase on binaries in Test-Suite MultiSource.

4.3.3 SPEC CPU 2006

Compilation time. Figure 4.23 shows the average percentage of time our optimiza-

tions took to run on the benchmarks of SPEC. Even on large benchmarks, our opti-

mizations did not present any harm for compilation time. Constant propagation was

out slowest optimization, accounting for an average of 1.39% of compilation time. The

other optimizations took less than 1% of compilation time to be applied.

Optimization Average % of Compilation Time

Constant Propagation 1.39%

Elimination of Unused Return Values 0.29%

Function Fusion 0.52%

Pointer Disambiguation 0.91%

Elimination of Dead Stores 0.17%

Figure 4.23. Compilation time of our optimizations when applied to SPEC CPU 2006.

Runtime. The charts in Figure 4.24 show the runtime variation that our

optimizations produce for all the SPEC CPU 2006 programs. This time we show

results for the integer and �oating point benchmarks. We regard runtime variations

of less than 1% as inconclusive. Our largest improvement was 5.9% due to pointer

disambiguation on 483.xalancbmk. Function fusion gave us good results in 403.gcc

(3.3%). We did not get expressive results due to the elimination of unused return values

nor elimination of dead stores.

Both inlining and clone-based optimizations perform context-aware optimiza-

tions. Thus, we also compared the e�ects in runtime that the application of all our

clone-based optimizations together could achieve against inline expansion. In order to

4.3. Effectiveness: Time and Space 49

!"#$$%&

!'#$$%&

!(#$$%&

$#$$%&

(#$$%&

'#$$%&

"#$$%&

)#$$%&

!"#$%&'

!"#%%&'

!%#$%&'

%#%%&'

%#$%&'

"#%%&'

"#$%&'

!"#$$%&

!'#$$%&

$#$$%&

'#$$%&

"#$$%&

(#$$%&

)#$$%&

!"#$$%&

!'#$$%&

!(#$$%&

$#$$%&

(#$$%&

'#$$%&

"#$$%&

)#$$%&

!"#$%&'
!"#%%&'
!%#$%&'
%#%%&'
%#$%&'
"#%%&'
"#$%&'

(%
%#
)*
+,-
*.
/0
'

(%
"#
-1
2)
3'

(%
4#
5/
/'

(3
6#
7
/8
'

(4
4#
7
2,/
'

(4
9#
/:
/;
<=
>?

@
'

((
(#
.:
7
A'

((
$#
5B
-7

C'
((
D#
A*
:,
EE'

($
%#
=B
),
*F
'

($
4#
)B
G+
:H
'

($
(#
/:
,/<

,2F
'

($
9#
07

7
*+
'

($
I#
=J*

.5
'

(9
3#
,2-
K<
:.
;<

(9
(#
03
9(
+*
8'

(D
%#
,-
7
'

(D
"#
B7

.*
;)
)'

(D
4#
:=
;:
+'

(I
3#
=)
02
.F
4'

(I
4#
F:
,:
./
-7

C'

(a)

(b)

(c)

(d)

(e)

Figure 4.24. Runtime variations on SPEC CPU 2006 (a) Constant propagation. (b) Elimina-

tion of unused return values. (c) Function fusion. (d) Pointer disambiguation. (e) Elimination

of dead stores.

50 Chapter 4. Experiments

do that, we compiled the benchmarks on SPEC with three di�erent sets of optimiza-

tions described as follows:

(i) Baseline (-O2 without inlining);

(ii) Inlining (full -O2);

(iii) Cloning (all clone-based optimizations together, excluding inline expansion from

the polishing step).

We then calculated the runtime improvements obtained with (ii) and (iii) when

compared to the runtimes of (i). Figure 4.25 shows the improvements obtained on each

benchmark of SPEC when using the set of optimizations (ii) and (iii)

Benchmark Inlining runtime improvement Cloning runtime improvement

400.perlbench 1.20% 1.55%

401.bzip2 0.94% 0.14%

403.gcc 6.27% 1.51%

429.mcf 3.90% 0.95%

433.milc 0.80% 0.96%

436.cactusADM 0.25% 0.54%

444.namd 4.69% 0.01%

445.gobmk 0.68% 0.50%

447.dealII 413.83% 14.37%

450.soplex 43.11% -0.51%

453.povray 60.97% -0.08%

454.calculix 0.06% -0.76%

456.hmmer 0.15% -0.17%

458.sjeng 3.64% -0.73%

462.libquantum 4.29% 2.97%

464.h264ref 0.94% 0.82%

470.lbm -0.32% -0.22%

471.omnetpp 65.81% 2.86%

473.astar 21.86% -2.01%

482.sphinx3 1.52% -0.43%

483.xalancbmk 307.24% 7.26%

Figure 4.25. Runtime improvements of all our clone-based optimizations versus LLVM -O2

4.3. Effectiveness: Time and Space 51

The Cloning set of optimizations got some good results when applied on top

of -O2 without inlining. It was able to speed up 447.dealII in 14.37% and

483.xalancbmk in 7.26%. However, this set of optimizations could not beat Inlining

in runtime improvement on most SPEC CPU 2006 benchmarks. This happens because

inline expansion is able to apply context-aware optimizations extensively, while our

clone-based approach implements just prede�ned optimizations.

Space. One of the advantages cloning provides on top of inline expansion is

that it generates reusable code. Thus, a clone is an optimized function that can be

invoked at di�erent call sites. Inline expansion, on the other hand, requires every call

5678	

1113	

453	 319	 126	 149	 85	 86	 49	
505	

0	

1000	

2000	

3000	

4000	

5000	

6000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10+	

N
um

be
r	
of
	 c
lo
ne

s	

Number	 of	 call	 sites	 replaced	

Figure 4.26. Constprop: Fruitful sites

273	

121	

53	
35	 36	 26	 20	 9	 7	

100	

0	

50	

100	

150	

200	

250	

300	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10+	

N
um

be
r	
of
	 c
lo
ne

s	

Number	 of	 call	 sites	 replaced	

Figure 4.27. Elim. of Unused Retvals:

Fruitful sites

3437	

990	

337	 297	
109	 116	 64	 84	 39	

454	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10+	

N
um

be
r	
of
	 c
lo
ne

s	

Number	 of	 call	 sites	 replaced	

Figure 4.28. Function Fusion: Fruitful

sites

405	

223	

88	 86	

37	 40	
18	 19	 5	

106	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10+	

N
um

be
r	
of
	 c
lo
ne

s	

Number	 of	 call	 sites	 replaced	

Figure 4.29. Pointer Dis.: Fruitful sites

52 Chapter 4. Experiments

85	

7	
0	 0	 0	 1	 1	 0	 0	 0	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10+	

N
um

be
r	
of
	 c
lo
ne

s	

Number	 of	 call	 sites	 replaced	

Figure 4.30. Elimination of Dead Stores: Number of fruitful sites

site to be replaced with the called function's body, producing a large code expansion.

We have analyzed the clones generated by the application of each of our clone-based

optimization on SPEC. We have counted the number of fruitful call sites each clone

was able to touch. These data are shown on Figures 4.26�4.30 as histograms. We

got these numbers after applying our optimizations without inline expansion on the

polishing step.

We can see that a large number of clones are invoked at di�erent call sites. In fact,

60.56% of the clones generated by Pointer Disambiguation are called in more than one

site. The other optimizations generated proportions of clones called more than once of

59.85% for Elimination of Unused Return Values, 42.1% for Function Fusion, 33.69%

for Constant Propagation and 9.57% for Elimination of Dead Stores.

Table 4.31 shows some interesting numbers about our optimizations. It shows

the maximum number of times a cloned function is called, i.e., the maximum number

of fruitful call sites a single cloning procedure could optimize. The gcc benchmark

generated good opportunities for our optimizations. In fact, a single clone created by

Constant Propagation was able to optimize 1,268 call sites in gcc. Function Fusion

also created a clone able to optimize 1,873 sites. Cloning with Pointer Disambigua-

tion yielded an optimized function that could replace 405 fruitful sites on the same

benchmark.

Figure 4.32 shows the code growth generated by our clone-based optimizations on

SPEC CPU 2006. We have calculated the percentage of size growth in all the compiled

binaries. In order to do that, we have compared the sizes after the optimization pipeline

against the sizes of the binaries compiled with the set of optimizations -O2 without

inlining. We also show the code growth caused by the application of inline expansion.

From 4.32, we conclude that our clone-based approach produces less code ex-

4.3. Effectiveness: Time and Space 53

Benchmark Constprop Retvals elim. Fusion Pointer dis. Elim. dead stores

perlbench 161 76 67 308 2

bzip2 5 4 0 1 0

gcc 1286 669 1873 405 2

mcf 2 1 0 1 0

milc 8 22 0 46 0

cactusADM 17 727 9 16 1

namd 3 0 3 21 0

gobmk 215 43 2 19 1

dealII 203 115 334 86 0

soplex 37 2 18 5 1

povray 274 166 52 27 2

calculix 54 80 9 114 7

hmmer 38 36 5 18 2

sjeng 15 0 0 6 0

libquantum 4 3 1 3 0

h264ref 13 24 5 139 1

lbm 1 0 0 1 0

omnetpp 399 113 18 36 0

astar 8 1 2 7 0

sphinx3 20 2 1 7 2

xalancbmk 85 74 45 206 6

Figure 4.31. Maximum number of replaced call sites

pansion than inlining. Our optimization that yielded the largest code size growth

was Function Fusion, with 24.85% of increase. Inline expansion, on the other hand,

increased code size in 57.45%.

The tests shown above where made using LLVM's implementation of inline ex-

pansion. This implementation tends to inline just small functions, and procedures that

are called only once. Our clone-based approach, on the other hand, is applied exten-

sively. To provide a fairer comparison, we have made some tests using the following

methodology: for each non-recursive promising function, we replicate its body at each

fruitful site, and record the number of new instructions created. The sum of new in-

structions created for each function is the size of the program, after inlining, which

we denote by I. We let C be the size of the program after cloning, i.e., the number

54 Chapter 4. Experiments

Optimization % of increase in size

Constant Propagation 17.53%

Elimination of Unused Return Values 1.80%

Function Fusion 24.85%

Pointer Disambiguation 4.00%

Elimination of Dead Stores 0.17%

Inline Expansion 57.45%

Figure 4.32. Size increase on binaries in SPEC CPU 2006.

of new instructions created by cloning. Figure 4.33 reports the ratio C/I. Sizes are

as following: Constant propagation: I = 16, 714, 965, C = 922, 043. Elimination of

unused returns: I = 3, 306, 904, C = 201, 359. Pointer disambiguation: I = 1, 441, 569,

C = 603, 573. Function fusion: I = 36, 362, 025, C = 1, 856, 044. Elimination of dead

stores: I = 46, 569, C = 11, 097. Thus, we conclude that inlining produces one order

of magnitude more instructions than our clone-based optimizations.

0.00	
0.50	
1.00	
1.50	
2.00	
2.50	

pe
rlb
en
ch
	

bz
ip2
	
gc
c	

mc
f	
mi
lc	

ca
ctu
sA
DM

	

na
md
	

go
bm
k	

de
alI
I	

so
ple
x	

po
vra
y	

ca
lcu
lix
	

hm
me
r	

sje
ng
	

lib
qu
an
tu
m	

h2
64
re
f	
lbm

	

om
ne
tp
p	

as
tar
	

sp
hin
x3
	

xa
lan
cb
mk
	

Constprop	 Elim.	 dead	 stores	 Fusion	 Pointer	 dis	 Unused	 retval	 elim.	

Figure 4.33. Size reduction due to our optimizations.

4.4 Discussion

In this chapter, we have provided data to show the applicability and e�ectiveness of

our clone-based approach. The application of the proposed optimizations has led to

minimal increases in compilation times. Thus, their use is appropriate even in large

programs. Considering the runtime impact of our optimizations, we have been able

4.4. Discussion 55

to speedup a large amount of benchmarks, ranging from small programs to large in-

dustrial applications. Among the novel optimizations described in this work, Pointer

Disambiguation has led to our best results. In particular, it was able to improve the

loop_unroll benchmark by 24.5%, reducing its runtime in almost one quarter. In gen-

eral, we have not been able to observe large speedups in the SPEC CPU 2006 programs.

This happens because these benchmarks come from very mature applications.

When comparing inline expansion with cloning without inlining on the polishing

step, the former got the best runtime results. Inline expansion is a strong enabler

of context-aware optimizations, as it does not rely on prede�ned optimizations like

cloning does. Cloning, on the other hand, has the advantages of leading to less code

expansion and generating reusable functions.

Chapter 5

Case Studies

In this chapter, we dive into the Software Engineering side of our clone-based approach.

We analyze some functions found on known benchmarks and applications in the light

of the bene�ts provided by our optimizations. We try to understand how and how

much the proposed optimizations can improve the compiled code, using the static cost

methodology presented in Section 3.7.

In order to study how our clone-based optimizations can enhance the compiled

code, we got the functions that yielded the best pro�ts on each benchmark. We then

analyzed these functions, studying its original source code and intermediate code, in

order to �nd out why the application of a given optimization generated such a great

pro�t. We present, in the following sections, the functions we found to be of great

interesting.

5.1 The Fft Function

Our experiments indicate that Pointer Disambiguation is the most e�ective optimiza-

tion in our suite of techniques. It was able to generate the best speedups when applied

on a variety of benchmarks. As we explained on Section 3.5, Pointer Disambiguation

tells the compiler that a pointer, passed as parameter to a given function, has no aliases

on the function's context. This way, the compiler is able to perform more aggressive

optimizations on the code. In this section, we will show the bene�ts of applying Pointer

Disambiguation to a function named Fft, shown in Figure 5.1.

The Fft function is present on one of the Standford Benchmarks 1. Among its

parameters, this function receives three arrays of the same struct, namely z, w and e.

1 https://llvm.org/viewvc/llvm-project/test-suite/trunk/SingleSource/Benchmarks/Stanford/

57

58 Chapter 5. Case Studies

1 struct complex {
2 f loat rp , ip ;
3 } ;
4 void Fft (int n , struct complex z [] , struct complex w [] ,
5 struct complex e [] , f loat sq r inv) {
6 int i , j , k , l , m, index ;
7 m = n / 2 ;
8 l = 1 ;
9 do {
10 k = 0 ;
11 j = l ;
12 i = 1 ;
13 do {
14 do {
15 w[i + k] . rp = z [i] . rp + z [m + i] . rp ;
16 w[i + k] . ip = z [i] . ip + z [m + i] . ip ;
17 w[i + j] . rp = e [k + 1] . rp ∗ (z [i] . rp
18 − z [i + m] . rp) − e [k + 1] . ip ∗ (z [i] . ip − z [i + m] . ip) ;
19 w[i + j] . ip = e [k + 1] . rp ∗ (z [i] . ip
20 − z [i + m] . ip) + e [k + 1] . ip ∗ (z [i] . rp − z [i + m] . rp) ;
21 i = i + 1 ;
22 }
23 while (i <= j) ;
24 k = j ;
25 j = k + l ;
26 }
27 while (j <= m) ;
28 index = 1 ;
29 do {
30 z [index] = w[index] ;
31 index = index + 1 ;
32 }
33 while (index <= n) ;
34 l = l + l ;
35 }
36 while (l <= m) ;
37 for (i = 1 ; i <= n ; i++) {
38 z [i] . rp = sqr inv ∗ z [i] . rp ;
39 z [i] . ip = −sq r inv ∗ z [i] . ip ;
40 }
41 }

Figure 5.1. Fft function present on Standford Benchmarks.

During its main while loop, the function changes the values of the elements of w based

on the elements of z and e, between lines 14 and 23.

The compiler must be conservative and assume, by default, that any of z, w

and e can alias each other, i.e., any of these pointers can point to the same memory

location. This way, the compiler has to load the values of z[i] and e[i] from memory

whenever they are used on lines 14..23, because the previous assignment to w[i] may

have changed their values. If the vectors cannot alias, however, the compiler can

cache the values of z[i] and e[i], loading them only once during an iteration. This is

possible because neither z[i] nor e[i] appears on the left-hand side of any instruction

during an iteration. This way, the application of Pointer Disambiguation generates an

optimized code like the one shown in Figure 5.2.

We show the optimized source code in C for an easier understanding. Our opti-

5.2. The dmxpy function 59

1 void Fft . n o a l i a s (int n , struct complex r e s t r i c t z [] ,
2 struct complex r e s t r i c t w [] , struct complex r e s t r i c t e [] , f loat sq r inv) {
3 (. . .)
4 do {
5 z i r p = z [i] . rp ;
6 z i i p = z [i] . ip ;
7 zmirp = z [m + i] . rp ;
8 zmiip = z [m + i] . i r ;
9 zimrp = z [i + m] . rp ;

10 zimip = z [i + m] . i r ;
11 ekrp = e [k + 1] . rp ;
12 ek ip = e [k + 1] . ip ;
13
14 w[i + k] . rp = z i r p + zmirp ;
15 w[i + k] . ip = z i i p + zmiip ;
16 w[i + j] . rp = ekrp ∗ (z i r p − zimrp) − ek ip ∗ (z i i p − zimip) ;
17 w[i + j] . ip = ekrp ∗ (z i i p − zimip) + ekip ∗ (z i r p − zimrp) ;
18 i = i + 1 ;
19 }
20 while (i <= j) ;
21 (. . .)

Figure 5.2. Function Fft optimized with Pointer Disambiguation.

mization is, however, applied on the intermediate code representation. When analyzing

the intermediate code of the base and cloned versions, we see that Pointer Disambigua-

tion is indeed able to remove memory loads. The base version of Fft, optimized with

the -O2 optimization level, contains 19 load instructions. The cloned version, in con-

trast, has had half of these instructions eliminated, presenting just 8 load instructions.

When analyzing both the base and cloned versions in terms of static cost, we obtained

costs of 30500 and 21800, respectively. So, we see that Pointer Disambiguation could

reduce the static function cost in almost 30%.

5.2 The dmxpy function

Dmxpy is another function we will use to show the bene�ts of Pointer Disambiguation.

This function, shown in Figure 5.3, is present on the Linpack Benchmark 2, known for

testing performance of �oating point operations.

The application of Pointer Disambiguation on function dmxpy makes the compiler

able to hoist many load instructions out of for loop bodies. The dmxpy has two vector, x

and y among its parameters. The nested for loops between lines 7 and 26 are responsible

for changing the values of y based on values of x and others. More speci�cally, each

new value assigned to an element of y depends on the elements of x from x[j-15] to

x[j]. This way, considering x and y can alias each other, the compiler has to load

these 16 elements every time the assignment of line 9 is made. This happens because

the present assignment can change the value of any element of x. Thus, the execution

2http://www.top500.org/project/linpack/

60 Chapter 5. Case Studies

1 void dmxpy (int n1 , double y [] , int n2 , int ldm , double x [] , double m[]) {
2 int j , i , jmin ;
3
4 (. . .)
5
6 jmin = (n2%16)+16;
7 for (j = jmin−1; j < n2 ; j = j + 16) {
8 for (i = 0 ; i < n1 ; i++)
9 y [i] = ((((((((((((((((y [i])
10 + x [j −15]∗m[ldm∗(j−15)+ i])
11 + x [j −14]∗m[ldm∗(j−14)+ i])
12 + x [j −13]∗m[ldm∗(j−13)+ i])
13 + x [j −12]∗m[ldm∗(j−12)+ i])
14 + x [j −11]∗m[ldm∗(j−11)+ i])
15 + x [j −10]∗m[ldm∗(j−10)+ i])
16 + x [j− 9]∗m[ldm∗(j− 9)+ i])
17 + x [j− 8]∗m[ldm∗(j− 8)+ i])
18 + x [j− 7]∗m[ldm∗(j− 7)+ i])
19 + x [j− 6]∗m[ldm∗(j− 6)+ i])
20 + x [j− 5]∗m[ldm∗(j− 5)+ i])
21 + x [j− 4]∗m[ldm∗(j− 4)+ i])
22 + x [j− 3]∗m[ldm∗(j− 3)+ i])
23 + x [j− 2]∗m[ldm∗(j− 2)+ i])
24 + x [j− 1]∗m[ldm∗(j− 1)+ i])
25 + x [j] ∗m[ldm∗ j+i] ;
26 }
27 return ;
28 }

Figure 5.3. dmxpy function present on Linpack Benchmark.

has to emit 16 load instructions before computing and assigning the new value to an

element of y.

If vectors x and y do not alias each other, the loads of elements of x become

invariants in the inner loop. They can, therefore, be hoisted from the inner to the

outer loop body. This way, the number of load instructions executed reduce in n1

times. Figure 5.4 show how the optimized code would look if it was written in C.

When analyzing the static costs of the base and cloned versions of dmxpy, we

see that Pointer Disambiguation was able to reduce the cost from 6050 to 5310, an

improvement of 12%.

5.3 The readULONG Function

One of the many benchmarks contained in SPEC CPU 2006 is povray. This benchmark

has a small function responsible for reading a given �le in chunks of 4 bytes. These

bytes are then combined in an unique byte using shift operations. The result of these

operations is returned to the caller. The source code of this function, named readULONG

is shown on Figure 5.5.

When reading a given �le, however, the bytes corresponding to its header may

not be interesting to the programmer, as they only contain meta-data about the �le.

5.3. The readULONG Function 61

1 void dmxpy . n o a l i a s (int n1 , double r e s t r i c t y [] ,
2 int n2 , int ldm , double r e s t r i c t x [] , double m[]) {
3 int j , i , jmin ;
4
5 (. . .)
6
7 jmin = (n2%16)+16;
8 for (j = jmin−1; j < n2 ; j = j + 16) {
9 x j = x [j] ;
10 xj1 = x [j− 1] ;
11 xj2 = x [j− 2] ;
12 xj3 = x [j− 3] ;
13 xj4 = x [j− 4] ;
14 xj5 = x [j− 5] ;
15 xj6 = x [j− 6] ;
16 xj7 = x [j− 7] ;
17 xj8 = x [j− 8] ;
18 xj9 = x [j− 9] ;
19 xj10 = x [j −10] ;
20 xj11 = x [j −11] ;
21 xj12 = x [j −12] ;
22 xj13 = x [j −13] ;
23 xj14 = x [j −14] ;
24 xj15 = x [j −15] ;
25 for (i = 0 ; i < n1 ; i++)
26 y [i] = ((((((((((((((((y [i])
27 + xj15 ∗m[ldm∗(j−15)+ i])
28 + xj14 ∗m[ldm∗(j−14)+ i])
29 + xj13 ∗m[ldm∗(j−13)+ i])
30 + xj12 ∗m[ldm∗(j−12)+ i])
31 + xj11 ∗m[ldm∗(j−11)+ i])
32 + xj10 ∗m[ldm∗(j−10)+ i])
33 + xj9 ∗m[ldm∗(j− 9)+ i])
34 + xj8 ∗m[ldm∗(j− 8)+ i])
35 + xj7 ∗m[ldm∗(j− 7)+ i])
36 + xj6 ∗m[ldm∗(j− 6)+ i])
37 + xj5 ∗m[ldm∗(j− 5)+ i])
38 + xj4 ∗m[ldm∗(j− 4)+ i])
39 + xj3 ∗m[ldm∗(j− 3)+ i])
40 + xj2 ∗m[ldm∗(j− 2)+ i])
41 + xj1 ∗m[ldm∗(j− 1)+ i])
42 + xj ∗m[ldm∗ j+i] ;
43 }
44 return ;
45 }

Figure 5.4. dmxpy function optimized with Pointer Disambiguation.

This happens on the povray benchmark. In this case, the source code makes a call

to the readULONG function, discarding its return value, i.e, the caller does not use a

variable to store the value returned by the callee. In this situation, the Elimination of

Unused Return Values can be used to improve the code generated by the compiler. The

application of this clone-based optimization would yield the code shown in Figure 5.6

if it was applied on C code.

We can see that the optimized version of readULONG doesn't execute any shift

operations with the bytes read on lines 5�8, as the result of these operations are not

interesting to the caller function. When analyzing the base and cloned versions of

readULONG using the static pro�ler, we see that our proposed optimization could reduce

62 Chapter 5. Case Studies

1 stat ic ULONG readULONG(IStream ∗ i n f i l e , int l i n e ,
2 const char ∗ f i l e) {
3 int i0 , i 1 = 0 , i 2 = 0 , i 3 = 0 ;
4
5 i f ((i 0 = i n f i l e −>Read_Byte ()) == EOF | |
6 (i 1 = i n f i l e −>Read_Byte ()) == EOF | |
7 (i 2 = i n f i l e −>Read_Byte ()) == EOF | |
8 (i 3 = i n f i l e −>Read_Byte ()) == EOF) {
9 Error ("Error read ing TrueType font f i l e at l i n e %d , %s" ,
10 l i n e , f i l e) ;
11 }
12
13 return (ULONG) ((((ULONG) i 0) << 24) |
14 (((ULONG) i 1) << 16) |
15 (((ULONG) i 2) << 8) |
16 ((ULONG) i 3)) ;
17 }

Figure 5.5. readULONG function present on povray benchmark.

1 stat ic void readULONG. noret (IStream ∗ i n f i l e , int l i n e ,
2 const char ∗ f i l e) {
3 int i0 , i 1 = 0 , i 2 = 0 , i 3 = 0 ;
4
5 i f ((i 0 = i n f i l e −>Read_Byte ()) == EOF | |
6 (i 1 = i n f i l e −>Read_Byte ()) == EOF | |
7 (i 2 = i n f i l e −>Read_Byte ()) == EOF | |
8 (i 3 = i n f i l e −>Read_Byte ()) == EOF) {
9 Error ("Error read ing TrueType font f i l e at l i n e %d , %s" ,
10 l i n e , f i l e) ;
11 }
12
13 return ;
14 }

Figure 5.6. readULONG function optimized with Elimination of Unused Retvals.

the cost of this function from 23 to 9, a reduction of 60%.

Chapter 6

Final Remarks

6.1 Conclusion

The goal of this dissertation was to show that code specialization using cloning can

be e�ective in implementing context-aware optimizations. We have used the de�nition

of context-aware optimizations to �nd performance bugs that could be removed with

cloning. Then, we have designed optimizations that were able to remove those bugs.

We have also discussed a way to estimate the pro�tability of a clone, based on Wu and

Larus's static pro�ler. Our optimizations, although simple, have wide applicability.

We have been able to speedup some known benchmarks up to 25%. We believe that

function cloning is a useful and e�ective tool to �ght performance bugs. In this sense,

cloning serves programmers better than inlining, because it gives them units of reusable

code - the cloned functions.

Software: In page https://github.com/matheusvilela/clone-based-opts you

may �nd the code for all our clone-based optimizations, plus our static pro�ler.

6.2 Future Work

As future work, we want to study better the relationship between cloning and inlining.

For instance, we want to be able to decide if a given function should be cloned or

inlined during the optimization step. In order to decide which optimization gives us

the greatest bene�t, we aim to use the same static pro�ler presented in this work.

63

64 Chapter 6. Final Remarks

We also want to improve our framework in order to be able to warn about a possible

performance bug to the developer. We want to do this using the static pro�ler results. If

the cost of a cloned function is much lower than the original's cost, the implementation

of this function may have a performance bug.

Bibliography

Andersen, L. O. (1994). Program Analysis and Specialization for the C Programming

Language. PhD thesis, DIKU, University of Copenhagen.

Appel, A. W. and Palsberg, J. (2002). Modern Compiler Implementation in Java.

Cambridge University Press, 2nd edition.

Bernstein, D., Cohen, D., and Maydan, D. E. (1994). Dynamic memory disambiguation

for array references. In Proceedings of the 27th Annual International Symposium on

Microarchitecture, MICRO 27, pages 105--111, New York, NY, USA. ACM.

Blanchet, B. (1998). Escape analysis: Correctness proof, implementation and experi-

mental results. In POPL, pages 25�37. ACM.

Bolat, M. and Li, X. (2009). Context-aware code optimization. Performance Computing

and Communications Conference (IPCCC), 2009 IEEE 28th InternationalComput-

ers, IEEE Transactions, pages 256�263.

Chabbi, M. and Mellor-Crummey, J. (2012). Deadspy: a tool to pinpoint program

ine�ciencies. In CGO, pages 124--134. ACM.

Chang, P. P. and Hwu, W. W. (1988). Trace selection for compiling large c application

programs to microcode. MICRO 21: Proceedings of the 21st annual workshop on

Microprogramming and microarchitecture, pages 21�29.

Chin, W.-N. (1992). Safe fusion of functional expressions. In LFP, pages 11--20. ACM.

Consel, C. and Noël, F. (1996). A general approach for run-time specialization and its

application to c. In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL '96, pages 145--156, New York, NY,

USA. ACM.

Cooper, K. D., Hall, M. W., and Kennedy, K. (1993). A methodology for procedure

cloning. Comput. Lang., 19(2):105--117. ISSN 0096-0551.

65

66 Bibliography

Cooper, K. D., Hall, M. W., and Torczon, L. (1991). An experiment with inline

substitution. Softw. Pract. Exper., 21(6):581--601. ISSN 0038-0644.

de Assis Costa, I. R., Alves, P. R. O., Santos, H. N., and Pereira, F. M. Q. (2013).

Just-in-time runtime specialization. In CGO, pages 1--11. ACM.

Fisher, J. (1981). Trace scheduling: A technique for global microcode compaction.

Computers, IEEE Transactions, C-30(7):478�490.

Grant, B., Mock, M., Philipose, M., Chambers, C., and Eggers, S. J. (2000). Dyc:

An expressive annotation-directed dynamic compiler for c. Theor. Comput. Sci.,

248(1-2):147--199. ISSN 0304-3975.

Grune, D., van Reeuwijk, K., Jacobs, H. E. B. C. J. H., and Langendoen, K. (2012).

Modern Compiler Design. Springer, 2nd edition.

Hall, M. W. (1991). Managing interprocedural optimization. PhD thesis, Rice Univer-

sity, Houston, TX, USA. UMI Order No. GAX91-36029.

Hardekopf, B. and Lin, C. (2007). The ant and the grasshopper: fast and accurate

pointer analysis for millions of lines of code. In PLDI, pages 290�299. ACM.

Hennessy, J. L. and Patterson, D. A. (2003). Computer Architecture: A Quantitative

Approach. Elsevier, 3rd edition.

Henning, J. L. (2006). Spec cpu2006 benchmark descriptions. SIGARCH Comput.

Archit. News, 34(4):1--17.

Holmes, R. and Walker, R. J. (2013). Systematizing pragmatic software reuse. ACM

Trans. Softw. Eng. Methodol., 21(4):20:1--20:44.

Huang, D. (2011). Programmer-assisted automatic parallelization. Master's thesis,

University of Toronto.

ISO (1999). ISO C standard 1999. Technical report, American National Standards

Institute. ISO/IEC 9899:1999 draft.

Jin, G., Song, L., Shi, X., Scherpelz, J., and Lu, S. (2012). Understanding and detecting

real-world performance bugs. In PLDI, pages 77--88. ACM.

Jones, N. D., Gomard, C. K., and Sestoft, P. (1993). Partial Evaluation and Automatic

Program Generation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA. ISBN 0-13-

020249-5.

Bibliography 67

Jovic, M., Adamoli, A., and Hauswirth, M. (2011). Catch me if you can: performance

bug detection in the wild. In OOPSLA, pages 155�170. ACM.

Keith D. Cooper, L. T. (2012). Engineering a Compiler. Morgan Kaufmann, 2nd

edition.

Kennedy, K. and Allen, J. R. (2002). Optimizing compilers for modern architectures: a

dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA. ISBN 1-55860-286-0.

Krueger, C. W. (1992). Software reuse. ACM Comput. Surv., 24(2):131--183.

Lattner, C. and Adve, V. S. (2004). LLVM: A compilation framework for lifelong

program analysis & transformation. In CGO, pages 75�88. IEEE.

Lau, J., Arnold, M., Hind, M., and Calder, B. (2006). Online performance auditing:

using hot optimizations without getting burned. SIGPLAN, 41(6):239�251.

Lhoták, O. and Hendren, L. (2006). Context-sensitive points-to analysis: is it worth

it? In CC, pages 47--64. Springer-Verlag.

Metzger, R. and Stroud, S. (1993). Interprocedural constant propagation: an empirical

study. ACM Lett. Program. Lang. Syst., 2(1-4):213--232.

Mock, M. (2004). Why programmer-speci�ed aliasing is a bad idea. In CLEI, pages

On�line. SCEAS.

Mock, M., Das, M., Chambers, C., and Eggers, S. J. (2001). Dynamic points-to sets: A

comparison with static analyses and potential applications in program understanding

and optimization. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop

on Program Analysis for Software Tools and Engineering, PASTE '01, pages 66--72,

New York, NY, USA. ACM.

Nistor, A., Song, L., Marinov, D., and Lu, S. (2013). Toddler: Detecting performance

problems via similar memory-access patterns. In ICSE, pages 1�10. IEEE.

Oracle (2013). C99 Keyword (Sun Studio 12 Update 1: C User's Guide).

Samadi, M., Hormati, A., Mehrara, M., Lee, J., and Mahlke, S. (2012). Adaptive

input-aware compilation for graphics engines. In PLDI, pages 13--22. ACM.

Sedgewick, R. (1984). Algorithms. In Algorithms, page 84.

68 Bibliography

Shafer, G. (1976). A Mathematical Theory of Evidence. Princenton University Press,

1st edition.

Shankar, A., Sastry, S. S., Bodík, R., and Smith, J. E. (2005). Runtime specialization

with optimistic heap analysis. In Proceedings of the 20th Annual ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and Applications,

OOPSLA '05, pages 327--343, New York, NY, USA. ACM.

Shivers, O. (1988). Control-�ow analysis in scheme. In PLDI, pages 164�174. ACM.

St-Amour, V., Tobin-Hochstadt, S., and Felleisen, M. (2012). Optimization coaching:

optimizers learn to communicate with programmers. In OOPSLA, pages 163--178.

ACM.

Steensgaard, B. (1996). Points-to analysis in almost linear time. In Proceedings of

the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL '96, pages 32--41, New York, NY, USA. ACM.

Tian, K., Zhang, E., and Shen, X. (2011). A step towards transparent integration of

input-consciousness into dynamic program optimizations. In OOPSLA, pages 445--

462. ACM.

Wadler, P. (1988). Deforestation: transforming programs to eliminate trees. Theor.

Comput. Sci., 73(2):231--248.

Wegman, M. N. and Zadeck, F. K. (1991). Constant propagation with conditional

branches. TOPLAS, 13(2).

Whaley, J. and Lam, M. S. (2004). Cloning-based context-sensitive pointer alias anal-

ysis using binary decision diagrams. In PLDI, pages 131�144. ACM.

Wu, Y. and Larus, J. R. (1994). Static branch frequency and program pro�le analysis.

In MICRO. IEEE.

	Resumo
	Abstract
	List of Figures
	1 Introduction
	1.1 Context
	1.2 Contributions
	1.3 Results
	1.4 Outline

	2 Background and Related Work
	2.1 LLVM
	2.2 Performance Bugs
	2.3 Code Specialization
	2.4 Context-aware optimizations
	2.4.1 Function Cloning

	2.5 Alias analysis
	2.6 Optimizations

	3 Clone-Based Optimizations
	3.1 This Work's Vocabulary
	3.2 Clone-Based Constant Propagation
	3.3 Elimination of Unused Return Values
	3.4 Function Fusion
	3.5 Pointer Disambiguation
	3.6 Elimination of Dead Stores
	3.7 Estimating the Profit of a Clone
	3.7.1 Validating the static profiler

	4 Experiments
	4.1 The Cloning Pipeline
	4.2 The Applicability of our Optimizations
	4.2.1 Test-Suite SingleSource
	4.2.2 Test-Suite MultiSource
	4.2.3 SPEC CPU 2006

	4.3 Effectiveness: Time and Space
	4.3.1 Test-Suite SingleSource
	4.3.2 Test-Suite MultiSource
	4.3.3 SPEC CPU 2006

	4.4 Discussion

	5 Case Studies
	5.1 The Fft Function
	5.2 The dmxpy function
	5.3 The readULONG Function

	6 Final Remarks
	6.1 Conclusion
	6.2 Future Work

	Bibliography

