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Abstract

The large number of surveillance cameras available nowadays in strategic points
of major cities provides a safe environment. However, the huge amount of data
provided by the cameras prevents its manual processing, requiring the application
of automated methods. Among such methods, pedestrian detection plays an im-
portant role in reducing the amount of data by locating only the regions of interest
for further processing regarding activities being performed by agents in the scene.
However, the currently available methods are unable to process such large amount
of data in real time. Therefore, there is a need for the development of optimization
techniques. Towards accomplishing the goal of reducing costs for pedestrian detec-
tion, we propose in this work two optimization approaches. The first approach con-
sists of a cascade of rejection based on Partial Least Squares (PLS) combined with
the propagation of latent variables through the stages. Our results show that the
method reduces the computational cost by increasing the number of rejected back-
ground samples in earlier stages of the cascade. Our second approach proposes a
novel optimization that performs a random filtering in the image to select a small
number of detection windows, allowing a reduction in the computational cost. Our
results show that accurate results can be achieved even when a large number of
detection windows are discarded.

Keywords: Computer Vision, Pedestrian Detection, Rejection Cascade, Random
Filtering, Partial Least Squares, Variable Importance on Projection, Visual Surveil-
lance.
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Resumo

O grande número de câmeras de vigilância hoje em dia disponíveis em pontos es-
tratégicos das principais cidades fornece um ambiente seguro. No entanto, a enorme
quantidade de dados geradas por estas câmeras impede o processamento manual,
exigindo a aplicação de métodos automatizados. Entre estes métodos, a detecção
de pedestres desempenha um papel importante na redução da quantidade de da-
dos por localizar apenas as regiões de interesse para o tratamento posterior sobre
as atividades a serem realizadas pelos agentes na cena. No entanto, os métodos de
detecção de pedestres disponíveis atualmente são incapazes de processar tal quanti-
dade de dados em tempo real. Portanto, é necessário utilizar técnicas de otimização
para permitir a detecção em tempo real, mesmo quando grandes volumes de dados
têm de ser processados. Para cumprir a meta de redução de custos para a detecção
de pedestres, este trabalho propõe duas abordagens de otimização. A primeira
abordagem consiste em uma cascata de rejeição baseada no método Partial Least
Squares (PLS) e no método de Variable Importance in Projection (VIP), combinada com
a propagação de variáveis latentes através dos estágios. Os resultados mostram que
o método reduz o custo computacional, aumentando o número de amostras perten-
centes ao fundo rejeitadas nos estágios iniciais da cascata. A segunda abordagem
consiste em uma otimização baseada em uma filtragem aleatória na imagem para
descartar um grande número de janelas de detecção rapidamente, permitindo uma
redução do custo computacional. A avaliação experimental demonstra que pode
ser obtido uma grande acurácia, mesmo quando um grande número de janelas de
detecção é descartado.

Palavras-chave: Visão Computacional, Detecção de Pedestres, Cascata de Rejeição,
Filtragem Aleatória, Partial Least Squares, Variable Importance on Projection.
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Chapter 1

Introduction

VIDEO SURVEILLANCE has been around us for almost a century and recently it
suffered a huge growth due to the dropping prices of the cameras and the in-

creasing network connectivity [Porikli et al., 2013]. Nowadays, we have a grow-
ing availability of visual data captured by surveillance cameras, which provides
safer environments for people whom attend monitored environments. However, the
large number of cameras to be monitored and consequently the large number of im-
ages that must be interpreted, precludes an effective manual processing and require
a significant number of people dedicated to analyzing visual data. The ubiquity of
video surveillance is advantageous for protection, but it is harder to monitor.

Although the large amount of visual data may provide more secure environ-
ments, their analysis becomes challenging when performed manually. In addition,
most of the data do not present interesting events from the surveillance standpoint,
turning it into a repetitive and monotonous task for humans. Hence, automatic un-
derstanding and interpretation of activities performed by humans in videos show
great interest because such information can assist the decision making process of
security agents.

Most surveillance systems usually employ human operators to monitor activ-
ities of interest. However, human operators are more susceptible to fatigue after a
certain time of video monitoring. Hampapur et al. [2003] show that after 20 minutes
of watching and evaluating monitor screens, the operator’s focus weakens to well
bellow acceptable levels. In addition, we cannot forget that operators are not always
well-intentioned, such as recently happened on Araraquara (Brazil) in which the op-
erators were using the surveillance cameras to inappropriately look at women1. On
the other hand, smart surveillance tries to minimize these problems and can be used

1Story available at http://folha.com/no1384502 (in Portuguese).

1

http://folha.com/no1384502
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Figure 1.1. Panoptes: an example of a smart surveillance system, developed
by intuVision. Source: http://www.intuvisiontech.com/products/panoptes.
php.

to assist the operators, showing only relevant content instead of the full video.

Smart surveillance is defined by the employment of automatic video analy-
sis technologies in video surveillance applications [Hampapur et al., 2003]. Smart
surveillance systems can be designed to small processing tasks, such as detection
of unusual events, or to more complex ones, such as semantic understanding of
the activies happening on a video. In addition, it may be used to assist surveil-
lance operators to maintain their focus only on important events. For instance, Fig-
ure 1.1 depicts an operating smart surveillance system, detecting pedestrians who
are crossing dangerous regions, cars in parking lots, and ships. Regardless the range
of operation of those systems, the first step is to detect the pedestrians’ position in
an image, since they are the most important agents in the scene.

Humans can be found in several environments, representing a key information
for numerous applications. Given their importance, we are interested in monitoring
them to determine how they interact with the environment. Therefore, we want to
know their location and what activities they are performing to infer whether they
may harm someone or something might harm them. This knowledge can be then

http://www.intuvisiontech.com/products/panoptes.php
http://www.intuvisiontech.com/products/panoptes.php
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used to take preventive decisions to maintain the well being of people.
This work focuses on pedestrian detection, a subproblem of human detection.

The term pedestrian detection differs from human detection in the range of poses a
person may assume. We can distinguish them as the following. Human detection is
more broad, including people in any pose, while pedestrian detection is restricted
to bodies close to an upright position. Dalal and Triggs [2005] define pedestrian
detection as “the detection of mostly visible people in more or less upright poses, usually
standing.” For now on, we will only refer to pedestrian detection throughout this
work. We focus on pedestrian detection because, besides of capturing the most
important poses in video footages, pedestrians are the main agents interacting with
the environment in surveillance videos. Hence, we define pedestrian detection as
the following:

Definition 1.1 (Pedestrian Detection). Given an input image, a sequence or a video
footage, the Pedestrian Detection problem consists of locating the position of all persons
close to an upright pose, covering their exactly height and weight.

Pedestrian detection methods can be divided into two categories: holistic and
part-based methods [Schwartz et al., 2009]. Holistic methods statistically analyze a
detection window combined with the feature extraction to classify whether this win-
dow contains a pedestrian or not (see Figure 1.2(a) for an example). On the other
hand, part-based methods consist of a generative process where detected parts of the
human body are combined based on a prior human model (Figure 1.2(b)).

Several challenges are faced by the pedestrian detection problem [Geronimo
et al., 2010]. Among them, there are changes in appearance due to different types of
clothing, illumination changes and pose variations, low quality of the data acquired,
and the small size of the pedestrian, which makes the detection process harder. In
addition, a large number of applications require a high performance and reliable
detection results, outlining the need for efficient and accurate pedestrian detection
approaches.

1.1 Motivation

In some applications, pedestrian detection is one of the first steps of a larger system.
For instance, consider the applications of Looking at People, which concerns tasks of
visual analysis of humans including pose estimation, action recognition, and person
reidentification. Figure 1.3 illustrates the relationship of these tasks with pedestrian
detection. One can see that pedestrian detection is an elementary task, which other
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(a) (b)

Figure 1.2. Example of holistic and part-based methods. (a) Holistic method.
Source: Dalal and Triggs [2005]; (b) Part-based method. Source: Lin and Davis
[2008].

tasks depend upon. Hence, pedestrian detection must be fast enough, otherwise
the tasks depending on it will be executed after the events of interest have already
happened and then being useless to take preventive actions. In addition, it must
be accurate since the high-level tasks depends upon the data provided by detection
(e.g., if poorly locations are used for action recognition, one might miss an action).

Real-time applications require accurate and fast answers regarding the pres-
ence of a pedestrian to take preventive actions. The automotive industry and the
scientific community, for example, are currently researching intelligent systems inte-
grated into the vehicle aimed at anticipating accidents to avoid or lessen its severity.
These systems are called Advanced Driver Assistance Systems (ADAS) [Geronimo
et al., 2010], in which Pedestrian Protection Systems (PPS) play an important role.
The goal of a PPS is to detect the presence of pedestrians in a specific region around
the vehicle, as illustrated in Figure 1.4, in such way that the driver can be notified
about this presence or an automatic preventive action is taken to stop the vehicle.

Pedestrian detection can also be subject to several constraints, such as low pro-
cessing power or a large amount of data. When multiple cameras are used, the
amount of recorded data increases significantly, which is even more concerning if
we consider high resolution cameras. For example, the bar graph in Figure 1.5 illus-
trates the amount of data generated by a single camera, at different frame rates. A
camera widely used, of 640× 480 pixels and operating at 30 frames per second (FPS),
generates almost 10 megapixels per second. In higher definition, of 1920× 1080 and
30 FPS, it generates more than 60 megapixels per second; the detection problem be-
comes intractable for the current pedestrian detection methods [Dollar et al., 2012].
Due to such constraints, these scenarios require fast methods with high detection
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Figure 1.3. Looking at people and applications [Schwartz, 2012a]. Background
subtraction is shaded because it is optional to the execution of the other tasks.

rate. Nevertheless, the majority of pedestrian detection methods are not fast enough
for these applications [Dollar et al., 2012]. Therefore, it is desirable the development
of methods to significantly reduce the computational cost. One way of achieving
that is to focus on optimization approaches.

There are several optimization approaches to reduce the computational cost.
The most common are those based on the computation of efficient feature descrip-
tors [Dollár et al., 2014], cascade of rejection that incrementally increases the feature
complexity [Marin et al., 2013], region of interest filtering using saliency detection to
reduce the number of detection windows to be evaluated [Cheng et al., 2013], GPU-
based approaches to parallelize the processing [Benenson et al., 2012a]. However,
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Figure 1.4. Example of car with a pedestrian protection system. Source: http:
//www.caradvice.com.au/.

such approaches still are not enough to achieve real time processing in most cases.

1.2 Dissertation’s Goal

In this work we study the pedestrian detection problem, focusing at reducing its
computational cost. The problem we are tackling can be defined in the following
question:

Dissertation’s Problem. How to reduce the computational cost of pedestrian detection
methods while keeping a high accuracy?

This work addresses the aforementioned problem by proposing two different
optimization approaches. In our first approach, described in details in Section 3.2,
we propose a novel optimization of pedestrian detection methods based on sliding
windows. The idea is to perform a random filtering in the image to select a very
small number of detection windows and discard the remaining ones. Differently
from other optimization techniques, the proposed approach does not perform any
kind of processing in the discarded windows, which provides a significant speed-
up. To the best of our knowledge, this is the first time such approach is employed to
optimize pedestrian detection. Due to the random nature of the choice, the selected
windows might be slightly shifted from the person’s body, which need to be fixed
before presenting them to a classifier. Therefore, a regression, referred to as location
regression, is executed to adjust the location of each detection window in the image.

http://www.caradvice.com.au/
http://www.caradvice.com.au/
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Figure 1.5. Amount of data recorded by a single camera at different frame rates
and resolutions.

In our second approach, described in Section 3.3, we reduce the computational
cost of the PLS Detector [Schwartz et al., 2009] by applying the Partial Least Squares
(PLS) [Rosipal and Kramer, 2006] in a rejection cascade framework to reduce the
number of projections and the amount of feature descriptors extracted (responsi-
ble for the majority of the computational cost). Variable Importance on Projection
(VIP) [Wold et al., 1993] is applied to rank features according to their discriminative
power, allowing the rejection of more samples in earlier stages of the cascade which
effectively reduces the number of projections and extracted feature descriptors. In
addition, this work also proposes the propagation of latent variables, estimated by
PLS, from one stage to another, aiming at achieving high accuracy. The cascade
resulting from the methodology described in this work is referred to as PLS Cascade.

1.3 Contributions

In this work, we propose algorithms to optimize pedestrian detection methods. The
main contributions of this work are:

• Reduction of the computational cost of the PLS Detector, a widely employed
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pedestrian detector;

• The application of Variable Importance on Projection (VIP) for feature ordering
for fast training cascades of rejection;

• A new filtering approach, which can be applied on any sliding window based
detector;

During the development of this work, we were awarded as one of the best
works at the Seminar Week of the Graduation Program in Computer Science at Uni-
versidade Federal de Minas Gerais. In addition, we have produced some technical
papers which have been submitted for publication. The following list provides ref-
erences to these documents.

• Melo, V., Leão, S., Campos, M., Menotti, D., and Schwartz, W. (2013). Fast
pedestrian detection based on a Partial Least Squares Cascade. In IEEE International
Conference on Image Processing.

• Melo, V., Leão, S., and Schwartz, W. (2013). Pedestrian Detection Optimization
Based on Random Filtering. In Workshop of Works in Progress (WIP) at Confer-
ence on Graphics, Patterns and Images (SIBGRAPI).

• Melo, V., Leão, S., Menotti, D., and Schwartz, W. (accepted). An Optimized
Sliding Window Approach to Pedestrian Detection. In International Conference
on Pattern Recognition.

1.4 Dissertation Organization

We have organized this dissertation into the following chapters. Chapter 2 reviews
previous work on pedestrian detection and approaches to decrease the computa-
tional cost. Chapter 3 describes our proposed approaches for reducing the compu-
tational cost of the PLS Detector using a cascade of rejection and the random filtering
approach. Chapter 4 shows our experimental evaluation. Finally, Chapter 5 points
our final remarks.



Chapter 2

Related Work

Several pedestrian detection approaches have been proposed in the past years. In
this chapter, we review mainly works that focus on reducing the computational cost
and improving the detection rate. Initially, Section 2.1 addresses the main pedestrian
detection methods and the state-of-the-art solutions in the literature. Section 2.2 de-
scribes the computational cost issue of pedestrian detection. Section 2.3 reviews
different approaches employed for reducing the computational cost, including cas-
cade of rejection and region of interest filtering, subjects directly related to our two
solutions proposed in this work.

2.1 Pedestrian Detection Approaches

We present in this section the state-of-the-art on pedestrian detection methods based
on Computer Vision. These methods may be divided into two classes, holistic and
part-based [Schwartz et al., 2009]. We focus mainly on monocular detectors rather
than stereo ones once stereo pairs of cameras are not always available, e.g, in surveil-
lance systems.

2.1.1 Holistic-Based Detectors

Most pedestrian detection methods proposed in the literature are holistic. Such ap-
proaches learn a model for the whole target object. When performing detection, they
try to match the entire model with the target object, in our case, the whole body of
a pedestrian. In other words, the pedestrian is described by a single feature vector
and is classified at once [Marin et al., 2013]. Holistic detectors can collect more dis-

9
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Figure 2.1. Illustration of HOG computation.

criminative information due to the large size of whole body, when compared to the
sizes of the parts [Schwartz et al., 2011].

Among these methods, Dalal and Triggs [2005] contributed with a remarkable
work for allowing a large improvement on pedestrian detection and other object de-
tectors as well. They proposed a new detector based on a novel feature descriptor1

called Histograms of Oriented Gradients (HOG) which was able to achieve better
results than the top performers at that time, such as detectors based on wavelets [Vi-
ola et al., 2003] and PCA-SIFT [Ke and Sukthankar, 2004]. The HOG is extracted
from a detection window divided into cells of size 8× 8. Each group of 2× 2 cells
is integrated into a block in a sliding fashion, making a dense grid of overlapping
blocks [Zhu et al., 2006]. Next, the algorithm computes a histogram of oriented gra-
dients for each cell, followed by a L2-norm with an optional clipping. Each block
contains the concatenation of all its cells. We give details about this procedure on
Figure 2.1. The HOG can be optimized by applying integral images [Viola and Jones,
2001], in which each histogram bin corresponds to an integral image. The HOG de-
scriptor still is one of the most used and has inspired several others [Wang et al.,
2009; Prisacariu and Reid, 2009; Dollár et al., 2009].

Based on integral images, Dollár et al. [2009] proposed linear and non-linear
transformations to compute multiple registered image channels, called Integral
Channel Features. Authors employed these descriptors into their CHNFTRS detec-

1In this work, we refer to both feature and descriptor interchangeably.



2.1. PEDESTRIAN DETECTION APPROACHES 11

tor. Using 6 orientation bins, 1 gradient magnitude, and 3 LUV color channels are
enough to reach state-of-the-art results. In Dollár et al. [2010], it is proposed a fea-
ture extraction that exploits the interpolation of features in different image scales,
significantly reducing the cost and producing faster detectors when coupled with
cascade classifiers. The Integral Channel Feature has demonstrated to be one of the
fastest, yet simpler, feature descriptor, being used by several works. Our proposed
approaches can also benefit from this feature descriptor since they are independent
of the feature descriptors used.

Schwartz et al. [2009] noticed that using HOG by itself may lead to false posi-
tives due to the spatial distribution of edge orientations. Thus, objects with a similar
spatial distribution to pedestrians, such as trees and light poles, may be misclassi-
fied as pedestrians. They observed that this problem can be avoided if one considers
other important sources of information that inherently belong to pedestrians and
do not belong to these false positives. The authors explored this insight proposing
the use of information to complement the one extracted by HOG, such as cloth-
ing homogeneity and skin color. This information set increases the feature space,
making the problem intractable by conventional machine learning techniques, such
as Support Vector Machines (SVM). Hence, Schwartz et al. applied the supervised
statistical approach called Partial Least Squares (PLS) to project the feature vectors
onto a smaller subspace, allowing the use of SVM and quadratic classifiers. Along
with the detector, the authors also proposed the use of Variable Importance on Pro-
jection, a feature selection tool based on PLS. The VIP provides a score for each
feature, allowing to rank them according to their discriminative power in the PLS
model [Schwartz et al., 2009]. This is important for our work because we employ it
on the training phase of the cascade, allowing to considerably reduce the training
computational cost and reduce a high number of detection windows on the early
stages of the cascade.

Benenson et al. [2012b] proposed a monocular and, optionally, stereo detector
with four incremental approaches. Their method is able to reach 50 FPS on a monoc-
ular system and 135 FPS on its stereo form. The authors use CHNFTRS [Dollár et al.,
2010] as the baseline detector and their optimizations approaches are incorporated
into it. The first optimization is a single scale detection, a slightly modified version of
FPDW, proposed by Dollár et al. [2010], that allows object detection without image
resizing and extraction of features for each image. The second approach is the use of
a optimized version of the attentional cascade, known as soft-cascade [Bourdev and
Brandt, 2005]. Besides, Benenson et al. [2012b] also employed a GPU-compatible
implementation of CHNFTRS. In addition, as stereo information allows to reduce
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Figure 2.2. Example of a deep learning model. Source: Ouyang and Wang [2013].

the search area, the authors employ depth information extracted by an estimation of
stixels [Benenson et al., 2011] and ground-plane.

Marin et al. [2013] proposed a combination of multiple local experts by means
of a Random Forest ensemble. Each tree of the forest corresponds to a local expert,
classifiers trained for feature vectors extracted from the same rectangular area across
several windows. Their method works with rich block-based descriptors which are
reused by the different experts of the ensemble. To obtain complementary and dis-
criminant local experts, the authors employ a feature selection based on a random
principle. They extract K rectangular areas with random values of width and height,
and then the most discriminant ones are selected. They also show how to integrate
the ensemble with a soft-cascade, in which the initial layer is compound of a number
of trees and each following layer has an additional tree.

Recently, there is an increasing interest on deep learning methods applied on
computer vision [Hinton et al., 2006; Hinton, 2007]. Several authors have proposed
pedestrian detectors based on these methods [Zeng et al., 2013; Ouyang and Wang,
2012, 2013] achieving competitive results with the state-of-the-art. Figure 2.2 de-
picts an example of a convolutional neural network applied on pedestrian detection.
However, the main focus of works on deep learning is not on their computational
cost, since they require high computational power.
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2.1.2 Part-Based Detectors

Besides holistic detectors, another approach to perform detection consists of mod-
eling the pedestrians’ constituents into a part-based fashion. In general, part-based
detectors consists of a bottom-up approach that first detects the parts of a pedestrian
until it gradually matches the whole pedestrian’s body. They can be combined with
a holistic detector, which is referred as root within this context [Felzenszwalb et al.,
2010b]. The body parts might be either real, such as head, torso, arms, and legs, or
only body-inspired, in which the detection window is virtually splitted into regions
corresponding to body parts. In addition, they can be assumed at fixed locations or
searched in a range of allowed locations. The latter method, known as deformable,
allows the detection of unseen poses during the training phase and the removal of
misclassified parts [Geronimo and López, 2013].

Part-based detectors show better performance on high-resolution images and
are more suitable to handle conditions such as pose variation and partial occlu-
sions [Dollar et al., 2012]. However, they are harder to train because they often
make use of latent information, which is hard to retrieve because most datasets do
not have body parts’ annotations and it is daunting to make it manually [Felzen-
szwalb et al., 2010b]. Because of these weakly labeled data, deformable models are
often outperformed by models such as holistic on difficult datasets, containing low
quality images.

Among the classical part-based detectors, Weber et al. [2000] and Fergus et al.
[2003] proposed constellation structures that restrict parts of the body to a sparse
set of localizations, determined by a keypoint detector. The constellations capture
the geometric arrangement by using a Gaussian distribution. In contrast, pictorial
structure models [Felzenszwalb and Huttenlocher, 2005] define a matching prob-
lem whose body parts have an individual correspondence cost in a dense set of
localizations. Amit and Trouvé [2007] employed a similar approach, but the authors
consider explicitly as a appearance model with overlapping parts.

Deformable 2D models have difficulties to capture significant variations in ap-
pearance and form, such as the ones caused by extreme point of view changes.
One possible solution employs aspect graphs [Plantinga and Dyer, 1986], allow-
ing to capture significant point of view changes, in which mixture models reveal
to be a simple solution for this problem. For example, it is common to use mul-
tiple models to encode frontal and lateral views of faces and cars [Schneiderman
and Kanade, 2000]. Mixture models were also used to capture other aspects of ap-
pearance variation, such as when there are multiple natural subclasses in one object
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Figure 2.3. Part-based pedestrian model and detections. From left to right, HOG
model of the root; HOG model of eight parts; spatial layout cost function of the
parts (darker regions represents lower deformation cost); detections in Daimler
A.G. dataset, shown boxes frame the detected root and parts. Source: [Geronimo
and López, 2013], with kind permission of Springer Science+Business Media.

category [Schneiderman and Kanade, 2000].

Tosato et al. [2010] defined an hierarchy of overlapping parts with different
size levels. The hierarchy is structured in such a way that the number of details
is increased at each level. For example, the first level takes into account the full
pedestrian’s body. In the second level, the authors split the candidate window into
three virtually body-inspired partitions, which are head-shoulder, torso and legs.
The third level considers seven parts, the head, left and right shoulders, arms and
legs. The authors combine the full hierarchy, composed of 11 parts altogether, by
means of an ensemble using LogitBoost and using covariance as feature.

Felzenszwalb et al. [2010b] proposed a discriminatively trained, multi-scale,
and deformable part model for object detection. The method reveals to obtain com-
petitive results for pedestrian detection as well. Their method includes both a root
model covering the entire pedestrian and part models in higher resolution. As
explained earlier, the training phase is harder for part-based detectors due to the
lack of annotated parts. In that work, the authors presented a new methodology
for learning parts from weakly-labeled data based on generalization of SVMs, re-
ferred to latent SVM, which handles latent variables such as part positions. In ad-
dition, Felzenszwalb et al. [2010b] presented a new bootstrap method for data min-
ing hard negative samples during training. The final detector, LATSVM, showed
the highest detection rates among the part-based detectors and competitive scores
regarding other holistic detectors [Dollar et al., 2012]. The final location of the
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parts allows to compute a more precise location of the detected pedestrians, than
when using only the root model. Moreover, an extension of this work is proposed
by Park et al. [2010] to use multiresolution models, in which the method automat-
ically switches to parts only at sufficiently high resolutions, since LATSVM scores
better within this scenarios.

2.2 Computational Cost Issues

As illustrated in Figure 2.4, a general pedestrian detector is commonly composed of
the following steps. The first step generates a set of detection windows that sample
an input image. The second step extracts a set of feature descriptors from each detec-
tion window. Finally, in the third step, the feature vector of the detection windows
are presented to a classifier, which will output high responses for those detection
windows likely to contain pedestrians.

So far, we have reviewed several methods that addressed the pedestrian detec-
tion problem. Such methods still present a high computational cost related to two
steps in common to every detector, namely, the feature extraction and the classifica-
tion.

Feature extraction focuses on extracting relevant cues that better describe a
given object. This step would not be necessary if we decided to use the image pixels
by themselves. However, we cannot use pixel intensities solely since they are sub-
ject to noise, changes in illumination, curse of dimensionality, among others. Hence,
we employ feature extractors to compute measurements that are meaningful and in-
variant to certain properties, such as localization and illumination [Trucco and Verri,
1998].

In the training phase, the classifier learns the pedestrian model from a set of
feature descriptors extracted from several examples of pedestrians. In the testing
phase, the algorithm repeats the procedure of extracting features from each detec-
tion window, and then presents them to the classifier, which provides a confidence
score for this sample. As a detector must extract features for every test sample,
which can easily be more than 60,000 for a single 640x480 image, feature extraction
is responsible for a considerably amount of the computational cost. Therefore, we
are interested in extracting meaningful features for pedestrians, constrained by their
low computational cost.

The classifier employed by the detector also has a strong influence on the com-
putational cost since it is also executed for each sample. Classifiers are built by
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Figure 2.4. Scheme of a general pedestrian detector. We propose optimizations
related to both steps of detection window generation and classification.

taking a set of labelled examples and using them to come up with a rule that will as-
sign a label to any new example. In the general problem, we have a training dataset
(xi, yi); each of the xi consist of the feature vector for the i-th sample, and the yi is
a label giving the type of the object that generated the example [Forsyth and Ponce,
2011]. We need a classifier that best separates data into either pedestrian or back-
ground classes. While using more complex functions might lead to better results,
they also increase the computational cost. Thus, we must deal with the trade-off of
the computational cost versus the detection rate. Moreover, if the detector must deal
with high dimensional feature spaces, it might be necessary to reduce the number
of dimensions. One may apply dimensionality reduction tools, such as Principal
Component Analysis (PCA) and PLS, before presenting the sample to the classifier,
which influences the computational cost, as well.

2.3 Optimization Approaches

There are several optimization approaches to reduce the computational cost of
pedestrian detectors. On the one hand, the approaches might focus on reducing
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the amount of data processed, which allows the extraction of fewer features and
fewer samples, consequently reducing the computational cost. On the other hand,
the optimization approaches resort to specialized hardware to speed up the compu-
tation.

In this section, we explore the main optimization approaches for pedestrian
detection, grouping them in three main categories: cascades of rejection (Section 2.3.1),
parallelization and GPUs (Section 2.3.2), and filtering (Section 2.3.3) [Benenson et al.,
2012b]. In addition to these categories, prior knowledge also deserves mentioning. It
takes advantage from information of the environment and the camera setup, such
as ground plane estimation and fixed cameras, allowing to restrict the search area
instead of scanning the full image. Since such approaches depend on the inherent
characteristics of the data set, they are complementary to our work. Hence, we do
not extend on this topic.

2.3.1 Cascade of Rejection

Rejection cascades are a widely employed approach to reduce the computational
cost in object detection. They are composed of multiple stages, each one composed
of a classifier or an ensemble of them. The most common cascade employs AdaBoost
to build an ensemble of weak classifiers in each stage, as illustrated by Figure 2.5.
They are trained by adding features until the target detection and false positives
rates are met. A cascade of rejection may also be referenced by other names, such as
cascade of classifiers [Bourdev and Brandt, 2005], since it has multiple succeeding
classifiers; or even attentional cascade [Viola and Jones, 2001], as it focus attention
on samples harder to classify.

The main idea behind this approach is to use simple classifiers to discard de-
tection windows that are easy to classify, while the remaining windows advance
through the cascade, where more complex classifiers are used. The key insight be-
hind the usage of cascades is that most of the regions of natural images belong to the
background and present simple characteristics, such as walls, sky, or roads, while
few regions belong to pedestrians, which results in an unbalanced distribution with
much more counter-examples than pedestrians. Therefore, the early stages of the
cascade focus on those simple background regions, which can be discarded using
simple classifiers with few feature descriptors. Then, a small number of regions
is left for later stages, which are composed of more complex classifiers, with more
feature descriptors. This process leads to a significant reduction in computational
cost.
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...Test 
sample

Figure 2.5. Example of a cascade of rejection. The i-th stage is composed of
an ensemble of weak classifiers, creating a strong classifier Hi. Along with the
ensemble, a stage has a threshold θi to reject or propagate a window.

The cascade framework was initially employed in face detection by Viola and
Jones [2001]. In their seminal work, they proposed a face detector using this tech-
nique by successively combining classifiers with increasing complexity by means of
AdaBoost [Freund and Schapire, 1995] to build the cascade stages to allow rejection
of a large amount of windows in early stages.

In the pedestrian detection domain, the rejection cascade was firstly used
by Zhu et al. [2006] with the extraction of HOG features [Dalal and Triggs, 2005],
resulting in detection rates comparable to the state-of-the-art of the literature at that
moment with substantial speed improvement. However, the training time consid-
erably increased since AdaBoost needs to select the most discriminative features to
compose each of its weak classifiers.

Tuzel et al. [2007] improved the results obtained by Dalal and Triggs [2005] ap-
plying low-level features including intensity, gradient, and spatial location along
with a covariance matrix. As covariance matrices do not lie in a vector space,
the authors applied LogitBoost classifiers combined with a rejection cascade that
contains points lying on a Riemannian manifold. As an extension to Tuzel et al.
[2007], Paisitkriangkrai et al. [2008] proposed a classification cascade that evaluates
weak classifiers in a Euclidean space, instead of a Riemannian manifold, which re-
sults in a faster method.

A cascade of classifiers was also employed to build deformable part mod-
els. Felzenszwalb et al. [2010a] proposed a cascade of classifiers in which partial hy-
potheses are eliminated by a sequence of thresholds determined by a set of positive
examples, which theoretically guarantee the performance of this cascade method.
The detection algorithm of the cascade for general classification models is formally
defined by one grammar.

For training object detectors, an easier and faster training cascade variation,
called soft-cascade, which uses fewer features, was described by Bourdev and Brandt
[2005]. Zhang and Viola [2007] proposed the multiple-instance pruning (MIP) algo-
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rithm for soft-cascades. It computes thresholds to terminate the computation with
no reduction in detection rate or increase in false positive rate on the training set.

Dollár et al. [2012] reduced the computational cost of their previous
method [Dollár et al., 2010], reaching a speed detection of 35–65 FPS using the
crosstalk cascades. In this cascade variation, the authors explore the correlations
among the adjacent detection windows, introducing two opposite mechanism: de-
tector excitation of promising neighbors and inhibition of inferior neighbors. Due
to this communication between detectors, this method reaches a 4–30x speedup.

In general, we train one cascade of rejection for the domain of interest, e.g
pedestrians or faces. However, the cascade may fail when presented to a different
domain from the one learned. For instance, consider a cascade of classifiers trained
for a domain of adult faces. This cascade might be unable to generalize the classifi-
cation for baby faces. A common solution consists in training one cascade for each
domain, i.e one cascade for adult faces and a second cascade for baby faces. Nev-
ertheless, this is not scalable for a large number of data domains because it requires
huge data annotation and computational effort. With this in mind, Jain and Far-
fade [2013] proposed a cascade variation that easily allows the adaptation of a pre-
trained cascade to a new similar domain, instead of training one for each domain
from scratch. The solution requires a small number of labeled positive samples from
a different yet similar data domain. The results are better than the baseline cascade
and the one trained from scratch using the given training examples.

Different from the previous approaches, our detector, the PLS Cascade (de-
scribed in Section 3.3), proposes a cascade of classifiers using a combination of PLS
and variable selection approach VIP aiming at reducing the number of projections
required by the PLS detector [Schwartz et al., 2009]. In addition, different from ap-
proaches such as Viola and Jones [2001] and Zhu et al. [2006], the proposed cascade
propagates information (without increasing the computational cost) to later stages
to increase the discriminability of the classifiers instead of maintaining all feature
descriptors as candidates during all stages. Our resulting approach is faster to train
than the conventional cascades; the usage of the VIP allows to reject more samples
in the earlier stages, and the computational cost of the PLS Detector is considerably
reduced.

2.3.2 Parallelization and GPUs

Graphics Processing Units (GPUs) are highly parallelizable architectures, with many
cores and large amounts of memory in a single unit. Applying parallelization tech-
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Figure 2.6. Example of a GPU’s architecture and feature extraction. Left image
illustrates the thread architecture, while the right one exemplifies HOG extrac-
tion using GPU. Each vertical arrow represents one thread and the direction they
follow to process the pixels in the cell. Source: Prisacariu and Reid [2009].

niques allows to significantly increase the performance. Although Moore’s Law
predicts that processing capacity doubles every two years, the processing speed for
a single CPU is apparently stuck for a few years, making it unpractical to depend
only on such architecture. However, Moore’s Law is still valid for highly paralleliz-
able architectures, such as CPUs with multiple cores and GPUs [Leibe et al., 2008].
Thus, new methods for object detection must explore the capabilities of this growing
architecture.

There are many methods for object detection that explore these characteristics
and are able to achieve higher processing speed in conventional methods. Particu-
larly in pedestrian and face detection some methods use GPU to extract descriptors,
a significantly cost of a detection method in terms of computational time. Masaki
et al. [2010]; Wojek et al. [2008]; Zhang and Nevatia [2008]; Prisacariu and Reid
[2009] showed in their works efficient ways to extract descriptors using GPU such
as HOG, as illustrated in Figure 2.6. Benenson et al. [2012b] showed that it is pos-
sible to achieve a high speedup in detection, and in some cases, better accuracy
compared to other state-of-the-art methods. The authors adapted the CHNFTRS de-
tector, proposed method by Dollár et al. [2009], to a parallel architecture and also
extracted descriptors based on GPU. The authors claim to have achieved a seven
times higher speed than the original detector, just by changing it to GPU process-
ing. Oro et al. [2011] presented a real-time face detector based on Haar that uses the
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GPU to calculate integral images and filter evaluation, reaching 35 frames per sec-
ond in resolutions up to 1960× 1080 and using the sliding window approach with
shifting of one pixel.

Although parallelization and GPU algorithms are not addressed by this work,
our proposed approaches may benefit from them since they are complementary.
For example, we could employ feature extraction using GPU, which would allow a
significantly speedup to our method.

2.3.3 Region of Interest Filtering

Filtering regions of images consists in removing elements that do not belong to the
targeted object, reducing the region of search and keeping only potential objects of
interest, as illustrated in Figure 2.7. With smaller searchable regions, a robust clas-
sifier is applied onto a smaller number of windows. Therefore, instead of using this
classifier in the entire image, it is applied only in small regions, reducing the com-
putational cost of detection. Several methods address the aforementioned problem
induced by dense search in sliding window approaches. Some proposed heuristics
evaluate windows in fixed sizes, which are subsampled for certain strides [Dalal
and Triggs, 2005; Ferrari et al., 2008]. Depending on the stride, one might obtain
a more sparse or dense sampling of the image. For example, larger strides yields
more sparse sampling of the image.

Focusing on searching only promising regions of the image, Lampert et al.
[2008] proposed a method to perform object localization relying on a branch-and-
bound approach that finds the global optimum of a quality function over every
possible subimage. It returns the same object locations that an exhaustive sliding
window approach would, but requiring fewer classifier evaluations than there are
candidate regions in the image, typically running in linear time or faster in function
of the number of images. Related to this work, Lampert [2010] described a divide
and conquer method to accelerate the evaluation of classification cascades for object
detection. A set of candidate regions, in contrast with individuals regions, permit
a large number of potential locations to be discarded, reducing the computational
cost compared to other cascade strategies for object detection.

Saliency detectors are able to detect regions of interest by simulating the be-
havior of the human visual system. In the first phase, called pre-attentive visual
search, they quickly detect the possible positions of proto-objects in the image. The
obtained saliency map suggests the position of the proto-objects. Feng et al. [2011]
proposed a filtering method that finds the salience of each window and segments
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Figure 2.7. An example of saliency detector. From left to right, the orig-
inal image; the saliency map; and candidate regions in the saliency map.
Source: Silva Filho et al. [2012].

the image into regions based on their similarities. To find the most probable win-
dow to contain a salient object, it is employed the difference among regions given
their LAB color histograms and spatial distances.

To detect objects in different sizes, Itti et al. [1998]; Harel et al. [2007] proposed
the direct analysis of features extracted in multiple scales of the image. Based on
saliency detectors, Silva Filho et al. [2012] proposed a method based on multi-scale
Spectral Residual Analysis (MSR), in which an image is resized several times by a
factor to cover different scales. In each resizing, a saliency map is created and a
sliding window approach is applied, then a quality function is computed in each
map in order to discard regions. Figure 2.7 illustrates the application of MSR on an
image. In comparison with a regular sliding window approach, the MSR method
was able to reduce in 75% the number of windows to be evaluated by an object
detector and improving the detection rate in most cases.

Recently, Cheng et al. [2013] applied a soft image abstraction representation
to split an image into large scale and homogeneous elements for salient region de-
tection. The authors considered both appearance similarity and spatial distribution
of image pixels, abstracting unnecessary image details and allowing to compare
saliency values across similar regions. Such approach produces perceptually accu-
rate salient detection. Margolin et al. [2013] proposed a novel method that combines
patterns, colors, and high-level cues and priors. The experiments show that the
method outperforms most state-of-the-art methods on five data sets.

The full extent of these approaches contains several solutions to reduce the
amount of data to be processed. These approaches are based on branch-and-bound
techniques, saliency detectors, among others. Although most of the techniques al-
lows to reduce the amount of data and may be used as a preliminary step to the
classifier, they still might present unnecessary evaluations. In contrast, our random
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filtering approach, described in Section 3.2, aims at rejecting detection windows by
evaluating only a few of them; consequently, a large amount of windows are pre-
emptively discarded without cost. Later, we correct the misplaced windows using
location regression, which has a low computational cost since it requires the extrac-
tion of simple and sparse features. Therefore, our proposed filtering method is able
to achieve a considerably speedup.





Chapter 3

Methodology

This chapter describes our proposed methodology, composed of two novel opti-
mization approaches for reducing the computational cost of pedestrian detection,
namely, the random filtering and the PLS Cascade. These optimization approaches
focus on the generation of the detection windows and on the classifier.

As observed in the preceding chapter, filtering approaches such as saliency
detectors require to extract and evaluate features for all detection windows, at least
once, while most cascades of rejection do not take advantage of feature selection for
fast training and increased rejection of detection windows in earlier stages. In this
work, one of our focus is to avoid the feature extraction for most of the detection
windows.

As shown in Figure 3.1, our proposed optimization methodology consists of
the following steps. Given an input image, in the first step we apply the traditional
sliding window algorithm, which scans the input image with a window of fixed size
in a range of scales, generating a set of detection windows (described in Section 3.1).
Such detection windows are presented to the random filtering which selects a ran-
dom set of detection windows and adjusts them properly using a location regression
(described in Section 3.2). Later, the filtered and adjusted set of detection windows
is presented to the last step of our methodology, the PLS Cascade, to reject detection
windows that are easily classified as background, while windows that are harder to
predict advances through the stages of the cascade (described in Section 3.3).

It is worth noting that the proposed optimization approaches are mutually
independent, such that the random filtering is optional for the execution of the PLS
Cascade, and the converse is also true. Therefore, we may use random filtering
with any other detector based on sliding window, and the PLS Cascade might be
employed stand-alone. In this work, we focus on the PLS Detector [Schwartz et al.,
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2009] since it is widely used in the literature and achieves high detection rates on
several pedestrian detection data sets.

The remainder of this chapter describes each step of our methodology, starting
with a brief review of the generation of the detection windows based on the sliding
window algorithm [Forsyth and Ponce, 2011].

3.1 Sliding Window Algorithm

Object detection is closely related to the task of object classification. Given a test
sample, the classification task focuses on assigning a class to an object, while the de-
tection task aims at localizing the objects in an image. In other words, the main
difference between the two is that object detection requires to output the tuple
(x0, y0, w, h, r), in which x0 and y0 are the left-upper coordinate of the object; w and
h are its respective width and height; and r its rotation. In contrast, object classifica-
tion just requires to assign a label for a test sample. Hence, the question is how to
tackle the object detection problem?

A widely employed approach to solve the object detection problem is reducing
it to a classification problem. Such approach is called sliding window [Forsyth and
Ponce, 2011], and it works by exhaustively scanning an input image to generate a
set of coordinates of several detection windows in multiple scales. In this work, we
define a detection window as the following:

Definition 3.1 (Detection Window). A detection window consists of a candidate window
to contain a pedestrian, defined by a tuple (x0, y0, w, h), in which x0 and y0 are the left-upper
coordinate of the window, and w and h its respective width and height.

One may notice that this definition does not include the rotation r. It is not
required because the rotation is assumed to be always the same, as pedestrian de-
tection is restricted to pedestrians in more or less upright poses.

After generating this set of windows, the detection is handled as a classifica-
tion problem, i.e., the detection windows are presented to a classifier that predicts
whether a candidate window belongs to either the pedestrian or the background
class. For each scale, the algorithm shifts the detection window sx and sy pixels, in
the horizontal and vertical axis, respectively. The range of scales starts from a mini-
mum to a maximum value, aiming at covering pedestrians of all sizes in the image,
and each image is rescaled by a scaling factor α. The values of sx and sy are usually
estimated as a percentage of the detection window’s width w and height h scaled
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Figure 3.1. Fluxogram describing the general steps of the optimization method-
ology proposed in this work. The balloon represents our proposed approach,
divided into two smaller steps, namely, random filtering combined with loca-
tion regression (Section 3.2), and the PLS Cascade (Section 3.3).
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by α. Figure 3.2 illustrates the algorithm. For instance, a 640× 480 image, scanned
across 10 scales, easily generates more than 60,000 detection windows.

Figure 3.2. Sliding window algorithm. The input image is scanned in all possi-
ble locations and in multiple scales by a detection window, whose size is kept
fixed in our work. This example illustrates non-overlapping windows, but real
systems sets the strides such that the windows overlap with each other, avoiding
to skip a pedestrian.

3.2 Random Filtering and Location Regression

The sliding window algorithm generates the detection windows in a wide range of
scales and strides, yielding a set of overlapping windows with high redundancy,
which highlights the need for a filtering approach. To reduce the amount of data
processed by the pedestrian detector, we propose a method based on a random fil-
tering followed by adjustments on the detection window locations. Here, we ran-
domly select a fraction of windows that will be presented to a classifier (details in
Section 3.2.1). However, the selected windows might be slightly displaced from the
pedestrian’s location, which may result in lower responses by the classifier. There-
fore, before presenting them to the classifier, a regression is employed to adjust the
window location to increase their responses (Section 3.2.2). An overview of the steps
of this approach is depicted in Figure 3.3.

3.2.1 Random Filtering

As mentioned earlier, the first step of any pedestrian detector consists of applying
the sliding window algorithm in a given number of scales and strides. However,
if a large number of scales and small strides are used to move the detection win-
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Figure 3.3. Overall layout of the proposed approach based on random filtering
and location regression.

dow, we might have a large amount of windows to be classified, demanding high
computational power. On the other hand, if few scales with large strides are consid-
ered, pedestrians might be skipped. Therefore, the former option is more suitable
for achieving accurate results.

After generating an initial set of detection windows, instead of presenting all
windows to a classifier, our approach performs a random selection of the windows,
i.e., a percentage of the total number of detection windows is selected. To ensure
that every pedestrian is still detected, we use the Maximum Search Problem theo-
rem [Schölkopf and Smola, 2002, pp. 180]. The problem of classifying windows as
containing pedestrians or not may be seen as the task of finding a subset of windows
containing pedestrians from a finite set of windows. As most maximum search prob-
lems, the exact solution is computationally expensive (every sample has to be eval-
uated). Instead, it is possible to find almost optimal approximate solutions by using
probabilistic methods as the one described as follows.

The problem at hand might be formulated as follows. Given a set of m win-
dows, where M = { f1, . . . , fm} and Q[ f ] is a criterion to evaluate whether a detec-
tion window is covering image region with a pedestrian, i.e., the classifier response.
Then, the problem can be stated as finding a window f̂i that maximizes Q[ f ]. In
the pedestrian detection context, one is interested in finding not only the window f̂i
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that maximizesQ[ f ], but also a subset of windows with largeQ[ f̂i], since more than
one pedestrian might be in the image.

To solve the aforementioned problem, all terms Q[ fi] must be computed,
which demands m detection window evaluations. Due to the multiple scales and
strides considered to locate all pedestrians in an image, the number of extracted
windows is large for a given image, rendering this operation too expensive. For in-
stance, for an image with 640× 480 pixels, there are approximately 60,000 detection
windows that need to be evaluated to detect pedestrian in multiple scales. There-
fore, it is imperative to find a cheaper approximate solution.

Schölkopf and Smola [2002] demonstrated that by selecting a random subset
M̃ ⊂ M sufficiently large, one can take the maximum over M̃ as an approximation
of the maximum over M. If a small fraction of Q[ fi] (i = 1, 2, . . . , m), whose values
are significantly smaller or larger than the average do not exist, one can obtain a
solution that is close to the optimum with high probability.

To compute the required size, m̃ = |M̃| (M̃ ⊂ M), of a random subset to
achieve a desired degree of approximation, Schölkopf and Smola [2002] showed
that one can use the following equation

m̃ =
log (1− η)

ln (n/m)
(3.1)

where η is the desired confidence and n denotes the number of elements in M having
Q[ fi] smaller than the maximum of Q[ fi] among the elements in M̃.

Equation 3.1 states that at least one element fi ∈ M̃ will haveQ[ fi] higher than
the Q[ fi] of m elements in the original set M with a confidence of η. Therefore, this
result would not be helpful when the element fi ∈ M with only the maximumQ[ fi]

is required (m̃ would be very close to m). However, in the pedestrian detection prob-
lem based on sliding windows, we can take advantage of the fact that one pedestrian
is covered by more than one detection window leading to a correct detection. This
behavior is due to the redundancy resulting from the small strides in sx and sy and
multiple scales (Figure 3.4 illustrates that, even when very few windows are ran-
domly selected, there are a number of windows covering the pedestrian location).
Therefore, n in Equation 3.1 can be fairly large, which reduces m̃ significantly.

To illustrate the usage of the above result, we performed the following experi-
ment. Given an image with m = 60,000 detection windows uniformly sampled from
an 640× 480 image pixels at multiple scales, we found that 583 windows contain the
correct location of a pedestrian (windows that should lead to high values of Q[ fi],
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Figure 3.4. Mean number of detection windows covering a pedestrian in the
INRIA dataset as a function of the percentage of randomly selected windows. As
standard approach to determine whether a pedestrian is covered by a detection
window [Dollar et al., 2012], we consider that a window A covers a ground-truth
window B when their intersection divided by their union (Jaccard coefficient) is
greater than 0.5.

depending on the classifier being considered). Therefore, according to Equation 3.1,
a random sampling with m̂ = 133 (0.22% of the total windows) should contain at
least one pedestrian with a probability of 95%, which is compatible with the plot
shown in Figure 3.4.

Although the random filtering can provide a small subset of detection win-
dows, such that almost every person in the image is covered, these windows might
not provide the exactly location of a pedestrian. Hence, this pedestrian might be
missed due to the low response achieved by the classifier. Therefore, we employ
an extra step before presenting the window to the classifier to adjust the window
location to the pedestrian, as will be described in the next section.

3.2.2 Location Regression

Aiming at adjusting the bounding box delimited by a detection window, we learn
a regression model (referred to as location regression) to correct it to the pedestrian’s
location. In this problem, we want to find displacements ∆x and ∆y such that, when
added to the centroid (Gx, Gy) of a given window, they move the detection window
to the correct position of a pedestrian. Other variables may also be considered, such
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as the tuple (∆w, ∆h), in which ∆w and ∆h denotes width and height of a detection
window, respectively. Nonetheless, in this work we consider only the (∆x, ∆y) tuple
to demonstrate the detection improvement.

Previously, location regression has been applied on detection, but with a dif-
ferent purpose. Schwartz et al. [2013a] noticed that multiple redundant windows
could be over a pedestrian, which should be presented to a generic classifier at the
end of a detector stage. Hence, they applied location regression to reduce even fur-
ther the number of detection windows that would be considered by the classifier by
finding the corresponding pedestrian to each detection window. In this work, on the
other hand, we only have few windows that were selected by random filtering and
we want to predict their correct location. In other words, while the former wants
to reduce redundant windows, the latter aims at finding the “best” location for the
windows.

Unlike Schwartz et al. [2013a], our proposed method learns the regression
model during an offline phase. First, we need to generate a training set to be pre-
sented to the learning algorithm. Given a training sample, we generate a set of
displaced windows with the respective differences (∆x, ∆y) to their correct posi-
tion. This set of displaced windows is generated in all directions, as long as the
Jaccard coefficient between the ground-truth bounding box and the displaced win-
dow is greater than 50% [Dollar et al., 2012]. This ensures that we have a portion
of the pedestrian within the window. The Jaccard coefficient J(d1, d2) between two
windows d1 and d2 is defined as

J(d1, d2) =
|d1 ∩ d2|
|d1 ∪ d2|

. (3.2)

For instance, consider the sample shown in Figure 3.5. The blue bounding
boxes represent the ground-truth annotation, while the green bounding boxes rep-
resent the generated samples. A bounding box that correctly matches a pedestrian,
i.e., it positioned exactly over a pedestrian, (∆x, ∆y) equal to (0, 0). Another exam-
ple is a bounding box displaced one pixel to the left, such as the first one, must add
(1, 0) to match the ground-truth centroid. Finally, a bounding box displaced one
pixel above and to the right, such as the second one, must add (−1,−1) to correct
its location.

Another possibility is to model negative samples along with the positive ones.
In this regression model, we may represent their displacement correction as infinity,
i.e., (∞, ∞), since they cannot be adjusted to any pedestrians’ location. This would
allow us to build a decision surface that could improve the accuracy of location re-
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Figure 3.5. Examples of sample generation used in the learning phase of the
location regression.

gression and possibly reject negative windows in advance, as they would be shifted
to outside of the image’s boundaries. This modeling was not considered in this work
and it will be addressed as future work.

Once the training set is created, features descriptors are extracted from the
windows and associated to the displacements. Ideally, such descriptors should be
simple enough to preserve a low computational cost. Then, a regression with two
dependent variables, ∆x and ∆y, is learned. Even though we have employed a re-
gression based on Partial Least Squares due to its numerical stability and robustness
to multicollinearity [Rosipal and Kramer, 2006], other methods could have been ap-
plied.

During the testing phase, the location regression corrects the detection win-
dows’ location before presenting them to the classifier, as illustrated in Figure 3.6.

3.3 Partial Least Squares Cascade

Although PLS allows accurate detection in high-dimensional feature sets, the
method presents a high computational cost [Dollar et al., 2012; Schwartz et al.,
2013b]. To reduce this cost, we propose the application of Partial Least Squares
method in the context of a cascade framework, referred to as PLS Cascade.

In the proposed cascade, the feature descriptors are ranked by Variable Impor-
tance on Projection (VIP) so that more discriminative descriptors are used first in
the cascade aiming at the rejection of a large number of samples in early stages. We



34 CHAPTER 3. METHODOLOGY

Selected detection 
window

Adjusted detection 
window

(x+Δx,y+Δy) 

Figure 3.6. Real example of performing location regression to adjust the detec-
tion window location.

also propose to propagate the latent variables from one stage to the next such that
discriminative information is also available in later stages without the need for re-
consideration of feature descriptors that were already used in previous stages. The
training and testing phases are illustrated in Figure 3.7 and Figure 3.8, respectively,
and are described in Section 3.3.2, after a overview on the Partial Least Squares and
its derived feature selection method, VIP (Section 3.3.1).

3.3.1 Partial Least Squares Analysis

Designed to model relations between observed variables, PLS constructs a set of pre-
dictor variables (latent variables) as a linear combination of the original predictors,
represented in a matrix X (feature matrix), containing one sample per row [Wold,
1985]. The responses associated with the samples are stored in a vector y, which are
the class labels in the pedestrian detection problem.

Given an m-dimensional feature space and a scalar denoting the class label,
a set with N samples is represented by the feature matrix XN×m and by the vector
yN×1. PLS decomposes X and y as

X = TPT + E, y = UqT + f (3.3)
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Figure 3.7. Overall layout of the proposed PLS cascade using Partial Least
Squares with latent variable propagation and Variable Importance on Projection
(VIP) for feature ranking. Initially, the descriptors are extracted from the image
and sorted using VIP, which ranks variables by their discriminative power. Ac-
cording to their rankings, the variables are set to stages, which allows to increase
the number of discarded samples in the early stages. Each stage adds features
until it reaches a desired false positive and miss rates. Hence, a PLS model
is created using these features to classify the samples presented to this stage.
Since features that have already been considered are not used in the later stages,
the low-dimensional feature set (latent variables) are propagated to avoid using
only features with less discriminative power.

where TN×p and UN×p stand for latent matrices containing p extracted latent vec-
tors, the matrix Pm×p and the vector q1×p represent the loadings, and EN×m and
fN×1 store the residuals from the decomposition. The PLS method employs the
Nonlinear Iterative Partial Least Squares (NIPALS) algorithm to estimate a set of
projection vectors W = {w1, w2..., wp}, referred to as projection vectors. Each of
these vectors is estimated to maximize the covariance between the predictor and
the response variables [Rosipal and Kramer, 2006], such as

|cov(ti, ui)|2 = max
|wi|=1

|cov(Xwi, y)|2 (3.4)

where ti is the i-th column of matrix T, ui the i-th column of matrix U, and cov(ti, ui)

is the sample covariance between latent vectors ti and ui. This process is repeated
until the desired number of latent vectors had been extracted. Therefore, while per-
forming the dimension reduction, the PLS focuses on the discrimination among the
classes, providing a low dimensional feature space suitable for classification and
regression.

To perform the dimensionality reduction, the feature vector xi is projected onto
the projection vectors W = {w1, ..., wp}, which gives as result the latent vector ti
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Figure 3.8. Testing phase. The detection window is evaluated through each
stage of the cascade. If the score of a detection window is higher than the re-
jection threshold θi, it triggers the classifier of the next stage; otherwise, it is re-
jected. This procedure repeats until the test sample reaches the last stage. When
computing the regression, PLS gerenates a set of latent variables Ti, which are
propagated to the subsequent stages.

(1× p), as
ti = xiW (3.5)

Finally, the matrix B of regression coefficients for the model y = UqT + f is
given as

B = WqT = W(TTT)−1TTy (3.6)

where B = {b1, b2, . . . , bp}.
In this work, we use the PLS approach to both classify a sample considering

the PLS regression [Schwartz, 2012b] and reduce the dimensionality of the data so
that we can use the latent variables in the remaining stages of the rejection cascade
to improve their discriminative power (described in Section 3.3.2).

Derived from PLS, the VIP provides a score for each variable on the original
feature space (matrix X), so that it is possible to rank the variables according to their
predictive power in the PLS model [Wold et al., 1993]. A higher score indicates that
the variable is more important. The VIP for the j-th variable is defined as

VIPj =

√√√√m
p

∑
i=1

b2
i w2

ji/
p

∑
i=1

b2
i (3.7)

where wji is the j-th element of vector wi, and bi is the regression weight for the
i-th projection vector (bi = UT

i Ti). VIP is employed to rank the variables to add
the most discriminative in the early stages of the cascade increasing the rejection of
background samples.
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3.3.2 PLS Cascade

As pointed out by Viola and Jones [2001], the intuition behind a rejection cascade
is to build smaller, but efficient classifiers, such that the simpler and faster ones are
applied in samples which are easy to classify as background and the more complex
and slower ones are employed on samples harder to classify. In this way, back-
ground detection windows are discarded in earlier stages and the detector will be
likely to focus on more promising detection windows, the one more likely to contain
pedestrians.

The PLS cascade focuses on two aspects to reduce the computational cost for
object detection. First, the VIP ranks the feature descriptors so that the most discrim-
inative variables are assigned to the initial positions of the feature vector. Hence,
differently from other cascades [Viola and Jones, 2001; Zhu et al., 2006] that need
to learn weak classifiers for every feature to choose the best, our method learns
classifiers by adding features incrementally, following their positions in the feature
vector. Second, to avoid considering all features as candidates for each stage, we
remove descriptors that have been already used. This aspect significantly reduces
the training time. Nevertheless, this approach may lead to a reduction in the de-
tection rate, considering that the later classifiers use less discriminative features. To
improve the detection rate in later stages of the cascade, we propose two strategies
for propagation of the low-dimensional feature set (latent variables). The cumula-
tive strategy propagates the latent variables from stages 1, 2, . . . , i to i + 1, while the
noncumulative strategy propagates from stage i to i + 1. PLS requires the projection
of the feature set onto a low-dimensional space when classifying a sample, hence
the propagation does not increase the computational cost of the method since this
information has already been extracted to run the earlier stages.

In the proposed approach, instead of pooling all descriptors and learning weak
classifiers for all of them (or a random subset of them) to choose the ones that are
more suitable for a stage, as in [Viola and Jones, 2001; Zhu et al., 2006], we first
apply the VIP to select the most discriminative descriptors and then learn the clas-
sifiers following the descriptors rank, which reduces the computational cost for the
training.

Another important feature of the proposed cascade is that each stage contains
only a single classifier based on PLS, instead of a set of weak classifiers. Therefore,
to learn each stage, descriptors are incrementally added following the rank of the
variables. A stage is completed when the learned classifier is able to reject a certain
number of negative samples and keep a specified maximum miss rate. Once a stage
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is finished, the latent variables estimated by the PLS are propagated to the next stage
to be used together with the descriptors. This process ends when all descriptors
have been considered, as illustrated in Figure 3.7 for a cascade with n stages.

In the testing phase, the PLS Cascade evaluates a detection window dk through
each of the n stages learned in the training phase, until it either rejects or classifies
the window as a pedestrian. As illustrated in Figure 3.8, the feature descriptors of a
detection window are splitted among the stages of the cascade, according to the or-
der determined during the training phase using VIP. While PLS estimates the confi-
dence score B(i)(dk) of a test sample for the i-th stage of the cascade, it also generates
the set of latent variables Ti, which are propagated to the next stage using either the
cumulative or the noncumulative strategy. The confidence score B(i)(dk) of the i-th
stage is measured against a rejection threshold θi, determined during the learning
phase aiming at the minimization of the false positive rate. Scores higher than the
threshold, i.e. B(i)(dk) ≥ θi, triggers the next stage of the cascade, in which the pro-
cedure is repeated. Otherwise, the detection window is rejected as non-pedestrian.
Finally, a detection window dk is classified as a pedestrian if it succeeds throughout
the n stages of the cascade.



Chapter 4

Experimental Results

This chapter evaluates the approaches proposed in Chapter 3. Section 4.1 presents
the data set employed in our experimental evaluation. Section 4.2 addresses the
random filtering approach and evaluates the effectiveness of location regression.
Section 4.3 explores the PLS Cascade. In the Section 4.4, we discuss the optimization
approaches and the results obtained.

As several works in pedestrian detection, we report the performance results
using Detection Error Tradeoff (DET) curves. They show the miss rate versus the
amount of false positives on a log-log scale. Hence, in such curves, lower and left-
most values denote better performance. Miss rate is defined as

Miss rate = 1− Recall =
#FalseNegatives

#TruePositives + #FalseNegatives
(4.1)

The amount of false positives may be either per window (false positives per
window, FPPW) or per image (false positives per image, FPPI). In this work we report
the random filtering results using FPPI and the PLS Cascade using FPPW.

4.1 Data Sets

We conducted our experiments on the widely employed INRIA Person data
set [Dalal and Triggs, 2005]. It is composed of several images in a wide range of
places and backgrounds, and under different weather conditions. The images con-
tain persons mostly standing, but they can assume any pose or orientation. The
data set is split into training and testing sets. The positive training set contains 1208
samples, normalized to 64× 128 pixels, as illustrated in Figure 4.1. With the left-
right reflection, this number doubles yielding 2416 positive training samples. The
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Figure 4.1. Positive training samples for the INRIA Person data set, normalized
to 64× 128 pixels.

negative training set contains 1218 images, which might be randomly sampled to
generate negative samples of size 64× 128. The testing set has 288 images contain-
ing pedestrians, yielding 589 pedestrians.

4.2 Random Filtering and Location Regression

In this section, we evaluate the performance of random filtering and location regre-
sion, employed to adjust the detection window’s location before presenting it to a
classifier.

Considering the experimental setup described in Section 4.2.1, we evaluate
the proposed approach by focusing on five points: evaluation of the detection win-
dows selected by random filtering regarding the ground-truth (described in Sec-
tion 4.2.2); adjustment of the selected windows using location regression (described
in Section 4.2.3); evaluation considering a real classifier (described in Section 4.2.4);
evaluation of the computational cost of each step (described in Section 4.2.5); and
study of the pedestrians’ distribution (described in Section 4.2.6).

Initially, we are interested to determine if random filtering is able to detect
every pedestrian in an image, for which we evaluate the windows selected by ran-
dom filtering regarding the ground-truth – i.e., a perfect classifier (Section 4.2.2).
Although in this experiment random filtering misses only a few persons in the
image, when these windows are presented to a real classifier (e.g., the PLS Detec-
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tor [Schwartz et al., 2009]), the detection rate decreases due to slight displacements
in the detection windows. Hence, we employ location regression to adjust the de-
tection windows selected by random filtering (Section 4.2.3) and, then, present them
to a classifier (Section 4.2.4). We explore how location regression improves the de-
tection rate and how it is influenced by larger distances between a sample and a de-
tection window (Section 4.2.3). Finally, as we have considered up so far that pedes-
trians are uniformly distributed in the images, we study their distribution which
might yield a better filtering approach (Section 4.2.6).

4.2.1 Experimental Setup

From the training partition of the INRIA Person data set, we generated 500,000 neg-
ative samples to be used in the learning phase of the detector. Note that, differently
from Dalal and Triggs [2005], no bootstrapping is performed to obtain hard negative
samples for training the PLS Detector, which may reduce the recall achieved. Since
in this work we are only interested in the relative comparisons, this does not affect
the experiments.

We consider the following setup to execute the experiments. The detection
window size is set up to 64× 128 pixels. The images are resized by a range of scales
(increased by 10%), so that pedestrians with sizes between 60 and 700 pixels can be
detected. The detection window is shifted by a stride of 12% and 4% of the object
width and height, respectively.

We use the PLS Detector [Schwartz et al., 2009] as our baseline (any other slid-
ing window based detector could be used instead). The detector was trained using
the same Histograms of Oriented Gradients (HOG) setup used by Dalal and Triggs
[2005], i.e, a feature vector with 3, 780 dimensions.

To execute the location regression, we consider two feature descriptors,
namely, pixel intensity and HOG. While the former simply considers the pixel inten-
sity within the detection windows, which is extremely fast to compute, the latter is
extracted following setup proposed by Dalal and Triggs [2005]. As we show in Sec-
tion 4.2.4, the number of detection windows remaining after the random filtering is
small, hence the HOG extraction does not increase significantly the computational
cost.
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Figure 4.2. Achievable recall as a function of the number of selected windows,
evaluated on the INRIA data set (RF: random filtering).

4.2.2 Ground-truth Comparison

To verify the applicability of the Maximum Search Problem theorem, presented in
Section 3.2.1, this experiment determines the ratio of pedestrians that are covered1

by at least one detection window as a function of the percentage of selected win-
dows. This can be verified according to their correct position given by the ground-
truth.

Figure 4.2 shows that a random selection of 1.4% of detection windows is
enough to detect 83% of the pedestrians on the INRIA data set (if the classifier
provided perfect results). Note that according to the theorem, approximately 0.2%
would be enough to approximate the maximum (find at least one pedestrian). How-
ever, since, on average, two people are present in each image, this value increases.
In addition, we cannot achieve maximum recall score in this experiment because we
are not padding the images, which means that people near to the edge of the images
cannot be fit within a detection window.

In the next section, we compare the results of random filtering (RF) when cou-
pled with location regression (LR). In addition, we evaluate different feature setups
for random filtering, for the best one is employed with the detector (described in

1A window is considered covered when the Jaccard coefficient (Equation 3.2) is greater than 0.5.
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Figure 4.3. Achievable recall as a function of the number of selected windows,
evaluated on the INRIA data set (RF: random filtering, LR: location regression).

Section 4.2.4).

4.2.3 Location Regression

After applying the random filtering, we adjust the detection windows using location
regression. This section evaluates the detection rate obtained by incorporating this
approach. Figure 4.3 reports the results achieved when applying the technique, us-
ing either pixel intensity or HOG as feature descriptor. As we can see, the regression
is able to correct the position of the detection windows and, consequently, increase
the recall achieved by the random filtering to a recall of 0.9 when 1.4% of the detec-
tion windows are selected. Note that these results show the maximum achievable
recall if the detector provided perfect results.

In addition, this section evaluates which feature descriptors yields the best re-
sults for location regression. Since it must be fast, we trained the regression models
with two simple feature descriptors. The first model uses pixel intensity as feature,
which consists of concatenating all pixels within the detection window into a fea-
ture vector. The second model is based on HOG, also using the Dalal and Triggs’
setup. Figure 4.3 shows that both models present comparable results.

We also evaluated the variance of the random filtering and location regres-
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Figure 4.4. Variance of the random filtering and location regression.

sion. We repeated this experiment 33 times for random selections of 0.2%, 1%, 1.4%.
In this experiment, location regression was employed with pixel intensity features
since we are only interested in the variance. Figure 4.4 shows that the variance of the
approaches is negligible, even considering its randomness. Hence, we can consider
that the random filtering is reliable to achieve a given recall score as a function of
the selected windows.

In the next experiment, we evaluated the predicted values of location regres-
sion (also using pixel intensity as feature) when the detection window moves aways
from a pedestrian. For easier comprehension of their behavior, we analysed the
horizontal and vertical predictions independently. Figures 4.5 and 4.6 shows that
the error slightly increases when the detection window moves farther, demonstrat-
ing that location regression becomes less accurate for windows with large displace-
ments. In these Figures, the x-axis presents the values of the ground-truth and the
y-axis presents the absolute error of the regression regarding the ground-truth.

4.2.4 Pedestrian Detector

We may notice in Figure 4.2 that the selected windows miss only a few pedestrians
in the data set after performing the random filtering. However, these windows still
need to be presented to a classifier, which may not obtain high accuracy due to
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Figure 4.5. Horizontal prediction of location regression when a detection win-
dow moves away from a pedestrian. x-axis represents the horizontal movement,
while the y-axis presents the absolute error regarding the ground-truth.

Figure 4.6. Vertical prediction of location regression when a detection window
moves away from a pedestrian. x-axis represents the vertical movement, while
the y-axis presents the absolute error regarding the ground-truth.
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Figure 4.7. Recall achieved at 1 FPPI when the selected detection windows are
presented to the PLS detector. The PLS detector is shown as line because it is
executed with 100% of the detection windows (without filtering).

some displacement of windows regarding to the person’s location so that is does
not result in high responses. This experiment evaluates how that may affect the
accuracy of the detector/classifier. In the following experiments, we discuss only
results achieved with HOG, because it has lower dimensionality and consequently
is less subject to issues regarding the curse of dimensionality.

The results in Figure 4.7 show the recall obtained at one false positive per im-
age (FPPI). Even after executing the random filtering, the accuracy is still compa-
rable to the original detector, which considers 100% of the detection windows (no
windows are discarded). However, to achieve similar results, the number of se-
lected detection windows had to be larger than the result achieved by the ground
truth experiment described in Section 4.2.2. This indicates that, although the cor-
rect detection windows have been selected, the PLS detector does not provide high
responses for all the correct windows. By using the location regression, we could
improve the random filtering results, increasing the recall to 40.9% (close to the 45%
achieved by the original detector). It is worth noting that, for this experiment, the
PLS Detector was executed with a single stage. Therefore, it is not the same version
employed by Schwartz et al. [2009].

The results achieved with this experiment demonstrate the high influence of
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the classifier in the accuracy. Even though a random selection of 1.4% detection win-
dows covers more than 85% of the pedestrians in this data set (Figure 4.2), when a
classifier was employed to the same number of windows, the results decreased sig-
nificantly. According to Figure 4.7, the maximum achievable by the PLS Detector at
1 FPPI is 45%, but when 1.4% detection windows were selected, the recall achieved
is approximately 15%, which was increased to 20% when the location regression
was considered. If it had followed the results in Figure 4.2, it should have obtained
at least 40% of recall (90% of the maximum achievable). Therefore, these results em-
phasize the need for further studies to increase the robustness of classifiers to small
displacements of the detection windows to allow the fully exploitation of techniques
such as random filtering.

4.2.5 Computational Cost

This section reports the speedup achieved when compared to the execution of the
detector PLS alone. The results in Table 4.1 show the speedup for the results re-
ported on Figure 4.7. The random filtering was able to achieve significant reduction
in the computational cost, which also justifies its usage. In addition, by comparing
the last two rows in Table 4.1 one may note that the employment of the location
regression presents a low overhead.

Table 4.1. Relative speedup achieved with the proposed method when com-
pared to original detector alone (RF: random filtering, LR: location regression
using HOG).

SETUP
PERCENTAGE OF SELECTED WINDOWS

1% 2.5% 5% 7.5% 10% 12.5% 15% 100%

PLS Detector – – – – – – – 1.00×
RF 67.91× 37.64× 21.81× 15.58× 12.10× 9.62× 8.45× –

RF+LR 64.83× 35.13× 20.40× 14.59× 11.39× 9.09× 7.97× –

4.2.6 Pedestrians’ Distribution

Up to now, we have considered that pedestrians are uniformly distributed over an
image. However, this is not necessarily true. This assumption may lead to more
erroneous or inefficient sampling.

We have built histograms of the x- and y-coordinates of the pedestrians’ cen-
troids for every image. These histograms were collected from INRIA Person data
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Figure 4.8. Histogram of the distribution of the pedestrian according to the im-
age coordinates in the x and y axes.

set. According to the histograms displayed in Figure 4.8, it is clear that the dis-
tribution of the pedestrians in the frames is not uniform. We intend to study such
characteristic in future works aiming at reducing even more the number of detection
windows that have to be randomly sampled to detect all pedestrians in the image.

4.3 PLS Cascade

In this section, we analyze the impact of the PLS technique in a cascade structure
using VIP to sort the feature descriptors according to their discriminative informa-
tion as well as the contribution of the propagation of the latent variables to improve
the detection rates.

The experimental evaluation of the proposed method focuses on four main
points: the results achieved by the baseline cascade, i.e., the cascade without VIP or
propagation of latent variables (described in Section 4.3.2); the contribution of the
VIP to rank the features so that a large number of detection windows are rejected in
early stages (described in Section 4.3.3); the reduction in the miss rate achieved by
the propagation of latent variables to the next stage (described in Section 4.3.4); and
comparison with other approaches (described in Section 4.3.5). These points are dis-
cussed in more details in the next sections, after the description of the experimental
setup.
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4.3.1 Experimental Setup

The experimental evaluation was based on the extraction of a set of HOG features
with the same setup as in Dalal and Triggs [2005]. The HOG features are extracted
in blocks of size 16 × 16, divided into 2 × 2 cells of size 8 × 8. The experiments
were performed in the INRIA Person data set [Dalal and Triggs, 2005] (described
in Section 4.1) resulting in a total of 3,780 feature descriptors per detection window.
For all experiments, we employed a 5-fold cross-validation to estimate the threshold
used to reject a sample in a given stage and to estimate the number of latent variables
for the PLS models. The minimum detection rate for each stage was set to 0.9 and
the maximum false positive rate was 0.8. Following other works [Schwartz et al.,
2009; Zhu et al., 2006; Dalal and Triggs, 2005], we have reported the miss rate at
10−4 FPPW. In addition, we report the rate of discarded samples considering the
first stage of the cascade.

4.3.2 Baseline Cascade

Initially, we have learned a cascade without using VIP and without applying the
propagation of latent variables to have a baseline, referred to as baseline cascade. This
cascade is able to reject a certain number of samples in the earlier stages (20% by the
first stage, as shown in Figure 4.9), which results in a lower number of projections
when compared to the PLS detector (9.64% of the projections are required), as shown
in Figure 4.11. However, it suffers with a high miss rate of 75.32% at 10−4 FPPW
(Figure 4.10).

4.3.3 Application of the VIP

Aiming at rejecting a larger number of samples in the earlier stages, the VIP has
been applied to rank the features according to their discriminative power. The fea-
tures are added to the stages following their ranks, as discussed in Section 3.3.2. We
consider two approaches with the VIP. The first, referred to as VIP once, the VIP is
applied once before the beginning of the cascade considering all variable at once and
the second consists of applying VIP before each stage of the cascade, not considering
the variables already used in previous stages.

On the one hand, the results achieved by both approaches increased signifi-
cantly the number of samples rejected in the first stage of the cascade (around 70%,
as shown in Figure 4.9), compared to the baseline cascade. According to Figure 4.11,
the number of projection also has been reduced to 6.63% compared to the PLS de-
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Figure 4.9. Cumulative rate of discarded samples as a function of the stages,
reported for different setups and methods. The setup referred to as PLS cascade
is composed of VIP once and incremental propagation of latent variables.

tector Schwartz et al. [2009]. On the other hand, the miss rate has increased to more
than 88.91% at 10−4 FPPW (Figure 4.10). The reason for this poor result is that the
discriminative feature descriptors have been employed in the earlier stages, and in
the later stages (responsible for discarding complex samples), features with low dis-
criminative power are used.

Since both approaches present similar results, we have chosen to use the VIP
once throughout the remaining experiments because it is applied only once, which
reduces the computational cost to learn the cascade.

4.3.4 Propagation of Latent Variables

To incorporate more discriminative information in the remaining stages, we evalu-
ate the benefits of propagating the latent variables to the later stages of the cascade.
According to experimental evaluation, the best number of latent variables propa-
gated to the next stage is 11, number used in the experiments.

Propagating latent variables from one stage to the next (referred to as propaga-
tion of latent variables) shows a positive effect by reducing the miss rate when com-
pared to the previous experiments (36.01% at 10−4 FPPW, as shown in Figure 4.10),
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Figure 4.10. Results achieved with different setups and methods, reported in a
detection error tradeoff plot.

which is expected once the stages have more information to classify the samples.
Even though there is a trade off between the size of the set propagated and the
number of projections (the more variables are propagated, the more projections are
needed), this number is still low: only 7.50% of the projections required by the PLS
detector, as shown in Figure 4.11.

Finally, we considered the cumulative propagation of latent variables. There-
fore, instead of propagating the variable only from stage i to i + 1, the model in the
i-th stage uses the variables from stages 1, 2, . . . , i− 1. The setup considering VIP
once and the cumulative propagation of latent variables is referred to as PLS cascade
and it will be set as the final configuration for the proposed cascade. With the PLS
cascade, the miss rate reduces to 28.35% at 10−4 FPPW (Figure 4.10) at a slight incre-
ment of 3.63% in the number of projections when compared to propagation only to
the next stage.

4.3.5 Comparisons

We compared the PLS cascade with the cascade proposed by Zhu et al. [2006] (us-
ing PLS for classification, instead of SVM) and with the PLS detector proposed
by Schwartz et al. [2009]. In order to establish a fair comparison, we have used
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the same 3,780 feature descriptors employed to learn the PLS cascade to learn Zhu’s
cascade and the PLS detector.

Regarding the cascades, the results in Figure 4.10 show that the miss rate
achieved by the PLS cascade (28.35% at 10−4 FPPW) is smaller than the one achieve
by Zhu’s cascade (40.16%). In addition, according to Figure 4.9, the number of sam-
ples discarded in the early stages is greater when the proposed cascade is considered
(e.g., 67.45% of the detection windows are rejected by PLS cascade at the first stage
and 44.46% by the Zhu’s cascade), which makes the PLS cascade a faster and more
accurate method.

When compared to the PLS detector, the proposed cascade achieved a higher
miss rate at 10−4 (17.38% for the PLS detector and 28.35% for the PLS cascade),
according to Figure 4.10. Even though the miss rate is higher, the proposed cascade
performs only 7.49% of the projections required by the PLS detector (Figure 4.11),
which makes the PLS cascade a promising approach for further investigation, which
should focus mainly on the use of a larger number of feature descriptors, which is
usually necessary for cascade approaches (e.g., as much as 98, 928 descriptors were
used by Zhu et al. [2006] to achieve similar results obtained by Dalal and Triggs
[2005] with only 3,780 descriptors with their SVM-based detector).
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4.4 Discussion and Remarks

This chapter has presented the experimental evaluation of our proposed optimiza-
tion approaches. In this section, we present a discussion and remarks of the
achieved results.

Random filtering allowed to greatly reduce the amount of detection windows
processed, without significantly increasing the computational cost. The percentage
of selected windows, estimated in Section 3.2.1, might be seen as a lower limit of the
real estimation of the number of selected windows. Applying location regression
to correct the windows selected by random filtering allows to increase the detection
rate, which could be explored to select an even smaller number of windows without
greatly affecting the computational cost.

Random filtering was not able to achieve the same recall obtained by the PLS
Detector stand-alone, mainly due to the generalization of the classifier for non-
centralized pedestrians. We will address this issue in future works by exploring
other classifier’s setup. In addition, based on our analysis of the pedestrians’ distri-
bution, random filtering might take advantage of this prior knowledge to perform
an improved random selection. For example, in a video sequence, it would not need
to select windows from known background regions, such as the sky, which would
allow a higher speed up and detection rates. It is worth noting that, even though the
images from the INRIA Person data set [Dalal and Triggs, 2005] are not a sequence,
they still present peak-centered distributions, meaning that not all regions require
to be sampled equally.

PLS Cascade allowed to reduce the number of projections performed by the
PLS Detector. The experiments have shown that VIP allows faster training and rapid
window rejection in earlier stages of the cascade. The cumulative strategy of prop-
agation has obtained better results than the noncumulative, since it incorporates
features of every previous stage. Finally, there is no extra cost on computing the
feature space onto a low dimensional one, since it is already done when performing
the PLS regression.

Finally, as both approaches focus on reducing the computational cost, we could
integrate them to reduce even further the computational cost. We will address this
method in future work.





Chapter 5

Conclusions

In this work, we proposed two novel optimization approaches for reducing the com-
putational cost of pedestrian detection.

The first optimization is based on random filtering approach to discard a large
number of detection windows, which is further improved by the application of a
regression to correct the window location to fit the persons in the image. This ap-
proach can be applied as a early step of any sliding window based detector. For
instance, it could be used as the first step of a cascade of rejection. Compared to
the application of a detector method alone, our experimental evaluation showed
that accurate results at a reduced computation cost may be achieved by our method
even when a large number of detection windows are discarded.

The second optimization approach addresses the computational cost of the
Partial Least Squares (PLS) Detector [Schwartz et al., 2009] by proposing the us-
age of a rejection cascade based on PLS. This method allows reducing the compu-
tational cost by discarding less promising samples earlier. In order to discard even
more samples in earlier stages of the cascade, we proposed the use of the PLS-based
feature sorting method VIP and to improve the detection rate, a latent variable prop-
agation scheme is employed. Results showed that the combination of VIP and prop-
agation of latent variables is promising due to the significant reduction on the num-
ber of projections, even when compared to a well-known cascade approach [Zhu
et al., 2006].

5.1 Future Works

As future works, we intend to evaluate the integration of our proposed optimization
approaches, i.e., random filtering and the PLS Cascade. As both approaches focus

55
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on reducing the computational cost, their integration might lead to a large reduction
in the cost. In addition, we will evaluate our proposed methodology in other data
sets, such as the ETHZ Pedestrian data set [Ess et al., 2007].

Regarding the random filtering approach, we intend to evaluate the influence
of modeling negative samples along with the positive ones. Our hypothesis is that it
would allow the location regression to build a decision surface that might improve
its accuracy and, possibly, reject negative windows in advance, as they would be
shifted to outside of the image’s boundaries. Moreover, we will extend the study
on how detection window displacements affects the classifier, as it would allow to
further improve the location regression to achieve exactly the same result achieved
by an sliding window based detector alone at a much smaller computational cost.
In addition, we will exploit the pedestrians’ distribution in a data set and measure
the gain of this approach.
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