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ix





Acknowledgments

First, I thank my parents, Stella Maris and Pedro José, my sisters, Marité and Laura,
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Kássio, Laura, Leandro, Let́ıcia, Lorena, Luciana, Max, Marcos, Pedro (Silva and

Stancioli), Rafael (Colares, Santin and Siqueira), Rodolfo, Thiago, Tiago, Vińıcius and
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Resumo

Propriedades de conectividade de redes sem fio em espaços abertos normalmente são

modeladas utilizando grafos aleatórios geométricos, e já foram analisadas em profun-

didade em diferentes estudos. Esses cenários, no entanto, não representam, no geral,

situações reais encontradas na prática, tais como ambientes urbanos ou espaços fecha-

dos, que são profundamente afetados por obstáculos. Como alternativa, propomos

um modelo para redes sem fio ad hoc obstrúıdas, formadas por um conjunto de nós

posicionados de maneira aleatória numa grade, onde todos os nós compartilham um

mesmo raio de transmissão. Para o posicionamento dos nós no ambiente, todos os seg-

mentos são considerados como sendo unidimensionais, mas para fins de comunicação,

adicionamos um parâmetro ε para modelar a largura dos segmentos. Nós mostramos

como o modelo resultante pode ser utilizado para estudar as propriedades destas redes

de comunicação de maneira anaĺıtica e para simular uma variedade de topologias de

rede com o intuito de avaliar o desempenho de protocolos de comunicação nos cenários

acima mencionados.

Para calcular a probabilidade de conectividade em interseções de segmentos

(Pr(Icon)), propomos três modelos geométricos diferentes: os modelos Max-Norm,

Line-of-Sight (LoS) e Triangular. Mostramos a dificuldade de computo de Pr(Icon) sob

o modelo LoS, e calculamos limites inferiores para Pr(Icon) sob os modelos Max-Norm

e Triangular, com o respectivo limite superior no erro de aproximação.

Adicionalmente, introduzimos uma abstração na grade e aplicamos a teoria de

percolação para calcular a raio mı́nimo de transmissão que gera conectividade, no gráfo

de comunicações, com alta probabilidade. Esta solução exige um mı́nimo de visibilidade

nos cruzamentos dentre segmentos, e esta visibilidade depende do parâmetro ε. Com

isto, calculamos a visibilidade mı́nima exigida para ter conectividade quando utilizamos

o raio de transmissão mı́nimo derivado. Este raio de transmissão especifico é con-

hecido como o alcance de transmissão mı́nimo para conectividade (em inglês, Critical

Transmission Range (CTR)), e provamos que o CTR para conectividade derivado não

depende do modelo geométrico em cruzamentos. Fizemos um estudo da escalabilidade
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de redes obstrúıdas dentro do modelo proposto e desenvolvemos métodos anaĺıticos

para determinar se há possibilidade de obter conectividade com alta probabilidade em

topologias homogêneas de rede para determinadas combinações de caracteŕısticas, tais

como largura dos segmentos, tamanho da grade e limite tecnológico do raio máximo

de transmissão.
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Abstract

Connectivity properties of wireless networks in open space are typically modeled us-

ing geometric random graphs and have been analyzed in depth in different studies.

Such scenarios, however, do not often represent situations encountered in practice,

like urban environments or indoor spaces, which are deeply affected by obstacles. As

an alternative, we propose a model for obstructed wireless ad hoc networks consist-

ing of a set of nodes deployed at random in a grid, all of them sharing a common

transmission range. For positioning the nodes in the field, all segments are consid-

ered as being one-dimensional, but for communication purposes, we add a parameter

ε to model the segments’ width. We show how the resulting model can be used to

study properties of such communication networks analytically and to simulate a va-

riety of network topologies for performance evaluation of communication protocols in

the aforementioned scenarios.

In order to compute the probability of connectivity at segments’ intersections

(Pr(Icon)), we propose three different geometric models, namely, the Max-Norm, LoS

and Triangular models. We show the difficulty of computing Pr(Icon) under the LoS,

and we compute tight lower bounds for Pr(Icon) under the Max-Norm and Triangular

models, with the respective upper bound of the approximation error.

Additionally, we introduce an abstraction on the grid and apply percolation the-

ory to compute the minimum transmission range that generates communication graphs

that are connected with high probability (w.h.p.). The solution requires a minimal

visibility at intersections, depending on the parameter ε. We compute the minimal

visibility required to have connectivity using the derived minimum transmission range.

This particular transmission range is known as the CTR for connectivity, and we prove

that the derived CTR for connectivity does not depends on the geometrical model at

intersections. We performed a study of the scalability of obstructed networks within

the proposed model and developed analytical methods to determine the possibility of

obtaining connectivity w.h.p. in homogeneous topologies for specific combinations of

characteristics, e.g. segments’ width, grid size and the maximum transmission range.

xv





List of Figures

1.1 Line-of-sight network model of Frieze et al., with p = 0.45 and ω = 2, on a

grid of 8× 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 An instance of an obstructed wireless network with density µ = 5 deployed

in an 8 × 8 scenario and using transmission range r = 0.65. Gray areas

represent the obstacles; regions in the space with infinite path loss. The

communication criterion corresponds to our LoS model. . . . . . . . . . . . 3

1.3 Modeling obstructed wireless networks so as to derive the CTR for Connec-

tivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 The geometrical layer: an urban obstructed environment with nodes de-

ployed uniformly at random. The environment is defined by the granularity

g = 4 and the segments’ width parameter ε. . . . . . . . . . . . . . . . . . 11

2.2 Determining the communication links present at street intersections. The

gray region represents the coverage of node u. . . . . . . . . . . . . . . . . 13

2.3 Intances of the random grid G8, with V = {1, 2, . . . , 8}2, while using two

different values for the probability of edges in a bond percolation model. . 15

2.4 An instance of a random grid for the site percolation model with g = 8, and

the relationship with an instance of a bond percolation model. . . . . . . . 16

2.5 An extension of the bond percolation instance of Figure 2.3b with site prob-

ability ps = pb = 0.45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Reference scenario for connectivity at intersections . . . . . . . . . . . . . 20

3.2 Intersection Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Integration region D for computing p‖(µ) . . . . . . . . . . . . . . . . . . . 23

3.4 Empirical and analytical results for p‖(µ) under the Max-Norm model . . . 24

3.5 Integration region D, and alternative partition for computing pMN
⊥ (µ) . . . 25

3.6 Probability of connectivity between nodes located at perpendicular seg-

ments sharing an intersection . . . . . . . . . . . . . . . . . . . . . . . . . 26

xvii



3.7 Computing the probability of connectivity at intersections under the Max-

Norm model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 Ci,j ∩ e1 ∩ e3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9 Probability of connectivity at intersection under the Max-Norm model . . 34

3.10 Computing the probability of existence of at least one link between two

nodes in perpendicular streets . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.11 Probability of connectivity, under the Triangular model, between nodes

located at perpendicular segments sharing an intersection . . . . . . . . . . 39

3.12 Computing the probability of connectivity at intersections. . . . . . . . . . 40

3.13 C̃i,j ∩ e1 ∩ e3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.14 Ci,i ∩ e1 ∩ e3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.15 Pr(IT
con) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.16 Upper bound for the error of probability of connectivity at crossroads under

the Triangular model. The domain of these curves are
√

8ε ≤ r ≤ 1. . . . . 49

4.1 For big enough values of ε, connectivity at intersections is easier than at

segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Critical value εc, according to the density µ, for the Max-Norm and Trian-

gular models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Empirical Cumulative Distribution Functions (ECDFs) and analytical CTRs 64

4.4 Relation between density and the upper bound for the granularity for three

values of α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Proportion of connected components and proportional size of the Giant

component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xviii



Contents

Acknowledgments xi

Resumo xiii

Abstract xv

List of Figures xvii

1 Introduction 1

1.1 Modeling Obstructed Networks . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Role of Topology Control . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contribution and Organization . . . . . . . . . . . . . . . . . . . . . . 5

2 Model 9

2.1 Geometric Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Percolation Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Local Connectivity Probabilities 19

3.1 Probability of Connectivity at Intersections . . . . . . . . . . . . . . . . 19

3.1.1 Max-Norm Model . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Line-of-Sight Model . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.3 Triangular Model . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Probability of Connectivity at Segments . . . . . . . . . . . . . . . . . 48

4 Overall Connectivity 53

4.1 CTR for Connectivity in Open Spaces . . . . . . . . . . . . . . . . . . 54

4.2 CTR for Connectivity on Obstructed Networks . . . . . . . . . . . . . . 56

4.2.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Final Remarks 69

xix



Bibliography 71

xx



Chapter 1

Introduction

When modeling and analyzing different problems in wireless communication networks,

regardless of their topology (random [Santi and Blough, 2003], regular [Gupta and

Kumar, 2000], or arbitrary [Goussevskaia et al., 2009]), it has been typically assumed

that communication nodes are deployed in an open space without obstacles. This

assumption is quite natural, given that an open space represents the “purest” sce-

nario of wireless communication, in which the communication channel is shared among

all communication nodes, a distinguishing and challenging characteristic of wireless

technology. Moreover, wireless signal propagation and interference in non-obstructed

spaces can be represented by simpler, easier to analyze models [Haenggi and Ganti,

2009]. This generates possibilities for more generalized theories and results that can

be applied to many network instances of large sizes.

In reality, however, wireless networks are rarely deployed in completely open

spaces. Many wireless networks operate in highly obstructed environments, such as

dense urban areas and indoor spaces, not to mention networks deployed in constrained

spaces like tunnels and subways, or other specialized networks, like smart grid commu-

nication networks. The behavior of both wireless signal and interference when obstacles

are present is more complex and, therefore, more difficult to model and analyze.

Relatively few attempts have been made to analyze obstructed wireless networks,

many of which are quite complex and not easily extended to generic scenarios [Nekoui

and Pishro-Nik, 2009]. The next Section 1.1 presents the more remarkable efforts in

this direction, considering the gaps and discussing the requirements of a new approach.

That section finish with a brief description of the model we propose, together with im-

plications from the application and analytical point of view. Afterwards, in Section 1.2,

we argue about the importance of topological characterizations of ad hoc networks and

present Topology Control (TC) as an essential mechanism in this context. We dedicate

1



2 Chapter 1. Introduction

Figure 1.1. Line-of-sight network model of Frieze et al., with p = 0.45 and
ω = 2, on a grid of 8× 8.

the third section of this chapter to present our contribution and explain, in a nutshell,

the structure of our work.

1.1 Modeling Obstructed Networks

One interesting model for obstructed wireless networks is the so-called “line-of-sight

network”, proposed by Frieze et al. [2007] and further studied by Bollobás et al. [2009].

In this model, the network is represented by a grid of size [g]× [g], and a random subset

of [g]2 is obtained by selecting each point (x, y) with probability p, independently of the

rest. Then, each vertex of the grid is assumed to be a node in the network, and each

node has a deterministic communication range of ω blocks. Figure 1.1 shows an instance

of the line-of-sight network. Notice that, under this model, only vertical and horizontal

links are allowed. Moreover, if ω = 1, i.e., a node can only see neighboring points,

then the model reduces to the well-studied problem of (site) percolation1 on a lattice

square [Grimmett, 1999]. (We will see percolation models from close in Section 2.2,

since we apply this theory to derive part of our results.) Among other characterizations,

Frieze et al. [2009] derive asymptotic bounds for k-connectivity of such networks.

The line-of-sight network model manage to represent obstacles in a very simple

way. The advantage is that the obtained random structure has place on a discrete

domain and maintain similarity with a site percolation model. The drawback is that

the requirement of deploying nodes only at intersections limits the application of this

model.

1Percolation means existence of a giant connected component of infinite size.
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Figure 1.2. An instance of an obstructed wireless network with density µ = 5
deployed in an 8 × 8 scenario and using transmission range r = 0.65. Gray
areas represent the obstacles; regions in the space with infinite path loss. The
communication criterion corresponds to our LoS model.

Our judgment is that more general models for obstructed wireless networks are

required; models able to represent, and offer tools to characterize, ad hoc networks

deployed in urban environments. In this direction, we propose an obstructed network

model that considers a grid of size [g] × [g], where nodes are deployed uniformly at

random over segments and intersections (see Figure 1.2). Segments and intersections

have a width controlled by the parameter ε. Nevertheless, we consider that nodes are

deployed over one-dimensional lines, whilst the density of the network is controlled by

the µ parameter. Figure 1.2 shows an instance of our obstructed network model for

g = 8. Links between nodes are allowed only for those nodes which mutual distance

does not exceed r and at the same time have visual contact. Observe that the visibility

restriction is reflected in the figure by the absence of links intersecting gray boxes.

This model has several appealing aspects. From the point of view of applications,

it provides a realistic representation of environments with regularly spaced obstacles.
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As opposed to the model in Frieze et al. [2009], for instance, where nodes are placed

only at segments’ intersections (and there are no nodes along the segments themselves),

placing several nodes along a segment might better represent connectivity properties,

especially if low-power/short-range radios are used. Therefore, this model can be po-

tentially useful in simulating and analyzing different types of network scenarios, in

particular, those that are comprised of segments of one-dimensional arrays of nodes

and regularly distributed arrays of obstacles.

From the point of view of analysis, our model mixes two basic elements. On the

one hand, it might be viewed as a percolation model on a lattice (see Section 2.2),

where vertices and edges are random objects that occur with probabilities ps and pb,

respectively. On the other hand, it is an intrinsically geometric model on individual

segments and intersections of the grid: on the segments, we have a line topology,

where connectivity is determined by node density. On the intersections, we have a

two-dimensional scenario, where connectivity depends on node density and on the

width parameter, ε, as well. This division into “percolation” and “geometry” allows us

to simplify the model and analyze important properties of the network, such as local

connectivity probabilities and the minimum transmission range that warrants, with

high probability (w.h.p.), connectivity in the overall network.

1.2 The Role of Topology Control

The relevance of ad hoc networks in society is growing with the advances of commu-

nication technology. As a consequence, big effort from researchers in academia and

industry resulted in the design and standardization of basic mechanisms that enable

wireless ad hoc communication, like IEEE 802.11 and Bluetooth, among others [Santi,

2005a]. Despite this fact, applications based on ad hoc networking paradigm are still

scarce. This scarcity occurs, in part, because most of the challenges to be addressed

in practical implementations and real scenarios are still waiting to be solved.

In open space environments, researchers proposed methods for addressing energy

conservation, interferences and scalability. These challenges, considered the most im-

portant for ad hoc networking, give place to a set of methods and techniques known

as Topology Control (TC) [see Santi, 2005a,b; Labrador and Wightman, 2009]. More

specifically, TC techniques were motivated by the necessity of efficient use of the scarce

energy resources available in wireless ad hoc networks. Since Gilbert [1961], several

studies confirmed that, from the energy-consumption point of view, it is better to com-

municate using short multi-hop paths between nodes in an ad hoc network. In this
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context, TC techniques were developed to identify and remove energy-inefficient edges

from the communication graph while maintaining some desired structural property. As

a side effect, TC techniques increase the capacity of the network by eliminating high

interfering long-distance links.

Under homogeneous ad hoc networks, that is, networks composed by nodes with

equivalent communication hardware and configuration, the most important TC tech-

nique consists in the determine the so-called Critical Transmission Range (CTR) for

Connectivity. The “CTR for Connectivity” problem consists in determining the mini-

mal common transmission range, rc, that warrants w.h.p. a unique connected compo-

nent in the network. We will see later, in Chapter 4, what this exactly means and how

we can compute rc. Nevertheless, we anticipate here that some abstraction is required

to tackle this problem, and part of this abstraction consists on characterizing local

connectivity properties, and only then face the problem of connectivity in the overall

network.

1.3 Contribution and Organization

After identifying a gap in contributions of researchers toward the modeling of ob-

structed ad hoc networks, we proposed the framework briefly described in the last

part of Section 1.1. Additionally, three different modeling approaches for the commu-

nication of any two nodes, deployed in such environment, are proposed, namely, the

Max-Norm, LoS, and Triangular models.

The Max-Norm is the simplest of the three models and it provides a linearization

of the concept of visualization. This abstraction do not consider links between nodes

which scalar coordinates difference exceed the width ε. For some scenario this is not

a big compromise, but for some scenarios it is. The LoS model is the most realistic

among the three and it is the one we use for implementing our simulations. However,

it is too complex to be useful analytically, as we will see in Section 3.1.2. Basically,

this model state that two nodes are able to communicate if there is a line of sight

between them and, additionally, if the Euclidean distance is smaller than, or equal

to, the transmission range r. The Triangular model represents a compromise between

the two previous models: it is simple enough to be treated analytically and, at the

same time, offers an accurate approximation to what we expect to obtain from the LoS

model, especially in high-density scenarios.

Our contributions can be summarized as follows:

• We analyze an alternative model for obstructed wireless environments, based on
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Obstructed
Network
Modeling

Geometric
Layer

Max-
Norm

LoS

Triangular

Percolation
Layer

bond

site

Pr(Scon) ⇔ pb

Pr(I MNcon ) ⇔
p
sPr(I LS

con) ⇔ ps

Pr(IT

con) ⇔ ps

Figure 1.3. Modeling obstructed wireless networks so as to derive the CTR for
Connectivity.

a grid structure of one-dimensional segments and two-dimensional intersections;

• We combine elements from percolation theory and geometry to analyze connec-

tivity properties in this model;

• We propose three different geometric models for communication between nodes

in the network;

• We derive tight approximation bounds for probability of connectivity at intersec-

tions;

• We derive the Critical Transmission Range for connectivity in the overall network;

• We discover the necessity of heterogeneous networks for large scale scenarios with

low-power transmitters, and;

• We simulate different network scenarios and validate our analytical results.
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The mind map of Figure 1.3 offers a visualization of how we derive the main result

of this thesis, the CTR for connectivity under an obstructed environment. We model

the network in two different layers, the geometric and percolation layers. In the geo-

metric layer, we compute the probability of connectivity at segments and intersections,

denoted by Pr(Scon) and Pr(Icon), respectively. Since differences between connectivity

models occur only for the visualization criterion, connectivity at segments does not

change over the models, and neither Pr(Scon) does. On the other hand, to differentiate

each case while considering connectivity at intersections, denoted by Icon, we specify

the model under which the event is occurring by simply adding a superscript. In this

sense Pr(IMN
con), Pr(ILS

con) and Pr(IT
con) denote the probabilities of connectivity at intersec-

tions for the Max-Norm, LoS and Triangular models, respectively. We find expressions

for all these in Chapter 3. Section 3.1.1 presents the probabilities for connectivity at

intersections for the Max-Norm model, whilst some arguments about the difficulty of

computing this probability under the LoS model are presented in Section 3.1.2. Im-

mediately after, we derive an expression for Pr(IT
con) in Section 3.1.3. We conclude

Chapter 3 presenting the probability of connectivity at segments, a well known prob-

lem in one-dimensional networks for which several papers of characterization have been

published already.

The (mixed) discrete percolation model is presented in Section 2.2. This model

is a mixture of the site and bond percolation models. Informally, the bond percolation

model consists of a grid where edges are random events that occur with probability pb,

whilst the site percolation model considers that nodes are random events that occurs

with probability ps. As showed in Figure 1.3, we associate the probability Pr(Scon)

to the parameter pb. Similarly, we associate the probability Pr(Icon) to the parameter

ps. These associations are done in Chapter 4, and allow us to solve the CTR for

connectivity by establishing the conditions on pb and ps to have percolation. These

conditions are, then, translated to the network by means of the model parameters,

namely, the granularity g, density µ, transmission range r and width ε.





Chapter 2

Model

Modeling wireless ad hoc networks involves the consideration of, at least, two aspects:

(i) the deployment process in an environment, and (ii) the definition of the communica-

tion rules, that is, the rules that determine whether two nodes are able to communicate

directly through a link.

In one-dimensiontal networks, for instance, several works [among them, those of

Desai and Manjunath, 2002; Ghasemi and Nader-Esfahani, 2006; Santi and Blough,

2003] consider an interval [0, z] where n nodes are deployed uniformly at random.

Additionally, they assume a common transmission range r, and consider that two nodes

u and v are able to communicate if the Euclidean distance between them is smaller

that or equal to r, which represents a typical deterministic communication model. This

modeling describes both items above, namely (i) and (ii), and it is a convenient starting

point for defining specific problems that we would like to solve, eventually.

Once we define a problem to solve, we may want to use tools and/or results from

other areas in order to tackle the aforementioned problem. As a consequence, this may

requires to change the model or, in the best case, to see the problem from a different

point of view. An interesting example is the work of Miorandi and Altman [2006]. The

authors were working toward the characterization of connectivity in one-dimensional

networks, but not limited to deterministic communication models. They discover that

it is possible to answer several connectivity questions by using queueing theory. In

this sense, they associated the communication range in the ad hoc network with the

service time in an infinite server queue. Similarly, they related a connected component

in the ad hoc network with a busy period in the server. This modeling allowed the

authors to compute, under a deterministic channel model, the coverage probability,

node isolation probability and mean cluster size, between other metrics of interest, in

addition to other results for non-deterministic channel models.

9
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In the same direction, we present in this chapter both aspects. Our goal is to

define a model for obstructed wireless networks that, on the one hand, captures some

essential characteristics of obstructed environments encountered in practice and, on the

other hand, maintains simplicity enough to provide a analytical path for characterizing

particular network properties related to connectivity.

Section 2.1 presents the so-called geometrical layer, which corresponds to the ac-

tual modeling of the obstructed network. There, we define how and where nodes are

deployed in an environment with obstacles, we define the shape and geometrical defini-

tion of this environment together with the rules that allow two nodes to be connected

through a link. Then, we present in Section 2.2 what we call percolation layer. This

layer is a higher abstraction on the geometric layer, and is the modeling that allowed us

to solve the connectivity problem known as the CTR for connectivity. The role of this

layer in our work is similar to the queueing theory approach in the work of Miorandi

and Altman [2006], in the sense that it is used to take advantage of a well known theory

with results ready to be applied on diverse scenarios for solving a plenty of problems.

2.1 Geometric Layer

Let us start by the definition of the environment. We consider a Manhattan-style

street map with g horizontal and g vertical streets, being each street a succession of

g − 1 blocks. We refer to g as the granularity of the model, and each block is called

a segment. Moreover, four adjacent segments form what we define as an intersection.

Since we are interested in modeling an urban environment, we associate to segments a

common width through the parameter ε.

We already introduced the environment with two parameters, namely, the gran-

ularity g and the segments’ width ε. Before proceeding to introduce the network that

will operate on this environment, let us first to take a visual representation of the

environment. Figure 2.1 presents a grid of granularity g = 4. Notice that segments are

of unitary length whilst the respective common width is 2ε, for all of them.

We perceive, also in Figure 2.1, that all these segments have a central dashed line.

In the model, nodes are deployed over these lines uniformly at random with intensity

enough to generate an expected amount of nodes per segment equivalent to µ. In

order to warrant the desired uniformity and density, we proceed to deploy the nodes

as follows:

1. Considering the total amount of segments in the environment, we compute the

total amount of nodes required for the density parameter µ. The total amount
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g − 1

2ε

1

Figure 2.1. The geometrical layer: an urban obstructed environment with nodes
deployed uniformly at random. The environment is defined by the granularity
g = 4 and the segments’ width parameter ε.

of nodes is determined by n = 2g(g − 1)µ;

2. We create a vector, denoted by S, of n elements coming from a uniform standard

distribution. This vector represents an sample of the family {Si}1≤i≤n of indepen-

dent and identically distributed (i.i.d.) random variables, such that Si ∼ U(0, 1);

3. We proceed similar as the previous step, creating a vector, denoted by N , of n

elements coming from a random discrete uniform distribution defined on the set

{1, 2, . . . , 2g(g − 1)};

4. We use any bijection fd(.) from {1, 2, . . . , n} to the set of segments in the grid

and, for all node i ∈ {1, 2, . . . , n} we deploy i in the segment fd(N [i]), in the

locally referenced position S[i] of that specific segment.

As we anticipated at the beginning of this chapter, a second aspect for modeling

a wireless ad hoc network consists on defining the rules of communication, that is, the

rules that determine the existence of links between nodes. In general, we say that two

nodes u and v are able to communicate through a link if and only if (iff) we satisfy (i)

a power restriction and (ii) there exist a path for the signal to arrive from one node

the the other.

The power restriction in open-space environments is typically described by the

Signal-to-Interference plus Noise Ratio (SINR) model. In this model, the energy of a
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signal fades with the distance to the power of the path loss. Consequently, when a

node u transmit a message to node v, we say that v is able to receive it if the strength

of the signal, perceived at the position of v, divided by the strength of interferences

from other transmissions that occur simultaneously plus the ambient noise, exceeds

some hardware dependent threshold β.

As Lotker and Peleg [2010] pointed out, a high amount of research exists on

the SINR model and other variants of the so-called physical model, yet progress has

been rather slow. This is a consequence of the non-triviality of this model for being

incorporated in the analysis of communication protocols and network design. Added

to these difficulties, we are in a more complex case with the presence of objects that

reflect the signal in different manners.

Accordingly, we adopt a widely accepted abstraction for wireless communication,

known as the Unit Disk Graph (UDG) model [Huson and Sen, 1995], and adapt it to

our obstructed urban environment. The UDG model states that a message sent by

node u is received by every other listening node v positioned within a disk, of radius

r, centered at the position of u. Additionally, since we are considering homogeneous

networks, the radius r is restricted to be a common transmission range, depending of

the power with which nodes in the network transmit.

More specifically, we define three different geometric models to determine whether

local communication links exist between two nodes u and v. Let us denote the positions

of u and v with (xu, yu) and (xv, yv), respectively. Note that the existence of such links

depends on two criteria: distance and visibility. Also, the most challenging scenario in

terms of visibility is when the two nodes are located in perpendicular segments sharing

an intersection. This happens because if they are in the same segment, then only the

distance criterion counts, and, if they are in parallel but non-successive segments, they

are never visible to each other.

We synthesize the three models as follows:

MaxNorm model: u and v are able to communicate with each other if the following

two conditions are satisfied: (i) the minimum norm min{‖xu − xv‖, ‖yu − yv‖}
does not exceed ε, and (ii) the maximum norm max{‖xu − xv‖, ‖yu − yv‖} does

not exceed the common transmission range r (see Figure 2.2a). Informally, this

model states that to satisfy the visibility criterion between nodes in perpendicular

segments, at least one node of {u, v} must be located inside the square of side 2ε

centered at the intersection of segments.

LoS model: u and v are able to communicate with each other if the following two

conditions are satisfied: (i) the Euclidean distance does not exceed the com-
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Figure 2.2. Determining the communication links present at street intersections.
The gray region represents the coverage of node u.

mon transmission range r, and (ii) there is a visibility line between u and v (see

Figure 2.2b). Note that this model makes no simplifications when establishing

visibility between two nodes in perpendicular segments, i.e., all possible place-

ments of {u, v} in perpendicular (and adjacent) segments must be considered.

Triangular model: u and v are able to communicate with each other if the following

two conditions are satisfied: (i) u and v are connected in the MaxNorm model, or

(ii) both u and v are at most at a distance 2ε far from a shared intersection (see

Figure 2.2c). This model greatly simplifies the definition of visibility between

two nodes in perpendicular street segments. It extends the MaxNorm model by

stating that if both u and v are located inside the rhombus of diagonal 4ε, they

are visible to each other. Note that this model has a higher similarity with LoS

than the MaxNorm model has, since a significantly larger area and, consequently,

more links are considered.

For determining a link between two nodes located in the very same or in successive

segments, there is no distinction between the variants of communication models. On

the other hand, when two nodes are located at segments perpendicular to each other,

then the three models above offer a different criterion to determine the existence of

a link. Figure 2.2 shows an example where the communication graph, of a deployed

network, changes under the different models. Observing this figure, we perceive that

the LoS model tends to be the most permissive, that is, the one that “accepts” more

link for a given deployment.

As we show in Chapter 3, it is difficult to compute link probability or the prob-

ability of connectivity at intersection under the LoS model. The Max-Norm model

greatly simplifies the problem of determining the probability of connectivity between

two nodes located at perpendicular segments sharing an intersection. This is because
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we can treat connectivity by cases dividing the segments in two sectors: [0, ε] and (ε, 1].

Nevertheless, having the LoS model as a reference, the main weakness of the Max-Norm

model takes place when are near ε but in the interval (ε, 1], and the transmission range

r is bigger than the distance between them. In this case, nodes can see each other, and

they are close to each other, but the Max-Norm does not consider that link.

In response to the main weakness of the Max-Norm model, the Triangular model

came for considering those links. In order to maintain a simple model for analytical

treatment, we assume r ≥
√

8ε. Consequently, we can treat connectivity by cases as

before, but in this model we should divide the segments in three sectors: [0, ε], (2ε, ε]

and (2ε, 1].

2.2 Percolation Layer

As previously mentioned, we abstract the obstructed network using a discrete percola-

tion theory [Grimmett, 1999]. This theory, originally introduced simply as percolation

theory1, was proposed by Broadbent and Hammersley [1957] after the work they had

done for optimal design of filters in gas mask during the World War II. According

to Franceschetti and Meester [2007], the gas mask of the time used granules of acti-

vated charcoal, and Broadbent and Hammersley perceived that the optimal functioning

of the gas mask occurred while using a high charcoal surface area and tortuous paths

from one extreme to the other, allowing the air flow through the canister for sufficient

time and contact to absorb the toxin.

Few years later, the work of Broadbent and Hammersley was generalized

by Gilbert [1961] in the context of radio communication. He introduced a model of

random planar networks in continuum space, considering a network of nodes randomly

distributed in the plane and connecting, through a communication link, nodes for

which mutual distance is no bigger than a certain threshold. He proved the existence

of a critical transmission range that induces and infinite chain of connected nodes.

Additionally, he proved that, below this critical transmission range, any connected

component of the network is bounded, that is, it is finite.

As we presented above, the discrete percolation model was introduced to study the

maximum impermeability (for minimizing the penetration of toxins inside of the mask)

that allows the flow of air through a canister with granules of activated charcoal. On the

other hand, the continuum percolation model was introduced to study the possibility

1This mathematical framework was baptized under the name of percolation theory, since mean-
dering paths reminded to Broadbent and Hammersley, the authors of the theory, of water trickling
through a coffee percolator [Franceschetti and Meester, 2007].
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(a) An instance of the grid G8 for pb = 1.
This case contains all possible edges be-
tween vertices.

(b) An instance of the grid G8 for pb = 0.45.

Figure 2.3. Intances of the random grid G8, with V = {1, 2, . . . , 8}2, while using
two different values for the probability of edges in a bond percolation model.

of providing long-distance radio connections using a large number of low-power radio

transmitters. The core motivation in both percolation models was the same: provide a

critical value for a parameter, p = pc, beyond which connectivity is warranted w.h.p.,

and under which any setting p < pc generates, w.h.p., fragmentation in the system.

Technically, we abstract the obstructed network through a discrete mixed per-

colation model, which is a combination between the bond and site percolation mod-

els [Grimmett, 1999]. In the following, we start by defining the random grid for both

versions (bond and site percolation). This is the regular grid structure over which

percolation is defined.

Consider the graph Gg = (V,E). The bond percolation model is defined on Gg

as follows:

1. We define V = {1, 2, . . . , g}2 as the vertices of the grid. The position of each

vertex (x, y) ∈ V is defined by means of its indices (line and column in the grid)

over the Euclidean plane;

2. For each pair of nodes u and v where ‖xu−xv‖+ ‖yu− yv‖ ≤ 1, we add the edge

(u, v) to the set E with probability pb, independently of the rest of edges.

Figure 2.3 presents instances of the random lattice square G8 using two different

values of pb. Notice that, in Figure 2.3a, each one of the possible edges of the lattice

occurs with maximum probability pb = 1. In Figure 2.3b we show an instance of G8

with edge probability pb = 0.45. In the discrete percolation literature, the occurrence of

an edge is usually referred as “open edge”, and the absence of an edge is denominated
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(a) An instance of a random grid for the site per-
colation model, constructed with ps = 0.45.

(b) Every instance of a random grid for the site
percolation model can be seen as an instance of
a random grid for the bond percolation model.

Figure 2.4. An instance of a random grid for the site percolation model with
g = 8, and the relationship with an instance of a bond percolation model.

a “closed edge”. The general rule of association with the “open” and “closed” words

is (i) “open” means“connected” and (ii) “closed” means “disconnected”.

Another kind of random grid can be obtained by considering each box of the

lattice square to be occupied (or equivalently, open) with probability ps, independently

of the rest of boxes, and available (or equivalently, closed) with probability 1 − ps.

Connections in this model have place between these open boxes, also known as “sites”,

and we say that two sites are connected if they share a side, that is, if they are

neighbours.

Figure 2.4a shows an instance of a random grid of size 8× 8 corresponding to a

site percolation process with ps = 0.45. Each gray square box in this figure corresponds

to an open site, and white spaces represent closed sites. We can think of sites as being

vertices and then, adding edges between pairs of nodes that share a side, we obtain

an instance of a bond percolation model, as Figure 2.4b shows. In this figure, open

sites are plotted with filled bullets and closed sites with empty bullets. We ad an edge

between two vertices whenever the vertices are open and have a common side.

Notice that instances of bond percolation processes cannot, in general, be viewed

as coming from a site percolation process. For example, an instance of a bond per-

colation process on G2 resulting with three edges does not represent any instance of

a any site percolation process with four sites. Although it is clear that these discrete

percolation models represent different random objects, the power of the relationship

pictured in Figure 2.4b emerges from the possibility of combination of bond and site
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Figure 2.5. An extension of the bond percolation instance of Figure 2.3b with
site probability ps = pb = 0.45.

percolation.

The discrete mixed percolation model is a bond percolation model, with param-

eter pb, where the set of vertices can be open with probability ps, independently of the

rest of vertices, or closed with probability 1−ps. Taking the bond percolation instance

of Figure 2.3b, we obtain the mixed percolation instance of Figure 2.5 by setting the

open site probability ps = 0.45.

We already defined three percolation models and, in order to establish a rela-

tionship with the geometrical layer of Section 2.1, we need then to define the concept

of connectivity. Under the bond percolation model the random grid is connected, for

a given instance, if there exists a sequence of vertices connected successively through

open edges, staring at i and finishing at j, for any pair of vertices i and j. On the

other hand, under the site percolation model the random grid is connected, for a given

instance, if all open sites are connected through successive open sites sharing a side.

Finally, the random grid is connected under the mixed percolation model, for a given

instance, if for any pair of open vertices or (equivalently) sites i and j, there exists a

sequence of open vertices and open edges starting at i and finishing at j.

Figure 2.3a, in page 15, holds some similarities with the urban obstructed en-

vironment of Section 2.1. These similarities are based in two facts: (i) for each edge

in the grid we have a segment in the geometric layer, and (ii) for each vertex in the

grid, there is an intersection in the obstructed environment. A natural procedure is,

then, to associate the occurrence of an edge in the mixed percolation model with the

connectivity at segments in the obstructed environment. Similarly, we associate the

event “open site” with connectivity at intersection in the obstructed network. Notice

that this association is consistent in the sense that the probability of connectivity at
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segments is equal in all the segments and independent of the connectivity of other

segments. The same applies to the probability of connectivity at intersections.

The aforementioned similarities allow us to construct the following abstraction:

1. We compute the probability of connectivity at intersections, denoted by Pr(Icon),

and the probability of connectivity at segments, denoted by Pr(Scon);

2. Under the mixed percolation model, we define the parameter ps to be Pr(Icon),

and we set the parameter pb to Pr(Scon);

3. We determine the critical values of pb and ps that warrant connectivity in the

random grid w.h.p.;

4. For Pr(Icon) and Pr(Scon), we characterize the transmission range r, density µ

and segments’ width parameter ε that generate the critical values for percolation

w.h.p. in the random grid.

After step 4, the characterizations of r, µ and ε that generate a certain property, let

us say connectivity for instance, match with the characterizations for the equivalent

property under the communication network. The more relevant case, and the main for

this thesis, corresponds to the characterization of critical value for connectivity, known

as the critical value for percolation under the grid, and introduced as the CTR for

connectivity in the communication network.

Next chapter is dedicated to the derivation of expressions for Pr(Scon) and for

Pr(Icon) under the three communication models presented in the geometrical layer.

Afterwards, in Chapter 4 we use the results of Chapter 3 to apply the abstraction of

the percolation layer to find an expression for the CTR for connectivity.



Chapter 3

Local Connectivity Probabilities

Connectivity is one of the most important properties in ad hoc wireless networks since

it allows basic communication between the nodes that constitute the network. There

are two different instances of wireless communication: direct and multi-hop. Direct

communication between two nodes occurs when they are able to exchange information

without any intermediary. On the other hand, multi-hop communication has place

when it is possible to find a path from one node to the other, passing through different

intermediate nodes are able to exchange information, in pairs, using direct communi-

cation.

The possibility of wireless direct communication relies on complex physical phe-

nomena, and the literature tradition is to abstract this complexity using diverse connec-

tivity models that allow us to work analytically on different problems. As anticipated in

Chapter 2, we consider a distance-based model for communication in one-dimensional

problems (for connectivity at segments), and three different geometric models for two-

dimensional cases (for connectivity at intersections).

In the next two sections, we derive analytical expressions for the probability of

connectivity at intersections and segments, respectively. These two events are the

building blocks used to solve connectivity in the overall network.

3.1 Probability of Connectivity at Intersections

As we saw in Section 2.1, we treat the problem of connectivity at intersections under

three different models. Probabilities related to connectivity at intersections under the

Max-Norm model are presented in Section 3.1.1. Analytical formulation for the LoS

model is included in Section 3.1.2. Then, we present a derivation of the probability of

connectivity at intersections under the Triangular model in Section 3.1.3.

19
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Figure 3.1. Reference scenario for connectivity at intersections

Before entering in details with any of the three models, let us first to introduce a

reference scenario that defines with more precision the elements to be considered while

computing connectivity at intersections.

We consider the reference scenario illustrated in Figure 3.1, where µ nodes are

deployed uniformly at random, in each one of the four adjacent segments of an inter-

section, over imaginary lines centered in each segment. All the 4µ nodes share the

same transmission range r, and segments’ width is 2ε, where ε is the parameter that

controls the visibility between nodes deployed in perpendicular segments.

In the aforementioned reference scenario, the communication net-

work can be represented as a graph G = (V,E), where V =

{X1, . . . , Xµ, Y1, . . . , Yµ,W1, . . . ,Wµ, Z1, . . . , Zµ}, and the set of edges E is com-

posed by pairs of nodes that are able to communicate with each other in the network,

according to each one of the three connectivity models.

Let us define now a new graph I = (V,E) with V = {X, Y,W,Z}, where X =

{X1, . . . , Xµ}, Y = {Y1, . . . , Yµ}, W = {W1, . . . ,Wµ} and Z = {Z1, . . . , Zµ}, and where

〈A,B〉 ∈ E iff there exist i ∈ A and j ∈ B such that 〈i, j〉 ∈ E, that is, iff 〈i, j〉 is an

edge in G. We call this new graph the Intersection Graph.

Problem 1 (Connectivity at Intersections). The connectivity at intersections prob-

lem consists in determining the probability of connectivity of the intersection graph I,

namely Pr(Icon).

Nodes under the same gray area in Figure 3.1 represent the four set of nodes X,

Y , W and Z. Notice that it is possible to have a fragmented network in a particular

segment, and also there is a possibility for this network to be connected at intersection
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Figure 3.2. Intersection Graph

when the biggest connected component in G is smaller than four, i.e., we just need to

connect the four nodes in I. Additionally, we observe that there is a link 〈A,B〉 in

the intersection graph iff there is a link between the closest nodes to the intersection

in the original graph G. These nodes are know to be the first order statistics, and are

denoted, in this case by A(1) and B(1), respectively.

Figure 3.2 shows the intersection graph. Here, we use the “(1)” subscript to

emphasize the fact that edges between nodes in the intersection graph are present iff

there exist a link between the corresponding first order statistics in the network. We

number random edges from e1 to e6 from now on according to Figure 3.2 to simplify the

treatment in the moment of computing the probability of connectivity at intersections.

In the network, we distinguish between links connecting nodes positioned in paral-

lel and perpendicular segments. We denote by p‖ the probability of existence of an link

between two nodes located in parallel segments sharing an intersection. On the other

hand, p⊥ denotes the probability of existence of a link between two nodes positioned in

perpendicular segments sharing an intersection. We extend these two definitions to the

probability of existence of at least one link between groups of µ nodes, and we denote

this extension by p‖(µ) and p⊥(µ).

3.1.1 Max-Norm Model

The Max-Norm is the simplest of the three proposed models, and we proceed to com-

pute some connectivity probabilities having as a final goal to compute the probability

of connectivity at intersections under the Max-Norm model, denoted by Pr(IMN
con).

We can think the event IMN
con as being the set instances of the intersection graph

that connect the four nodes X(1), Y(1), W(1) and Z(1) (see Figure 3.2). Individually, the

occurrence of edges e1, e2, e3 and e4 have the same probability, denoted by p⊥(µ). Since
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adjacent edges are spatially correlated,the probability of collective occurrence is not

simple to compute (correlation results from the fact that adjacent external edges share

a node). Differently, edges e5 and e6 are mutually independent, and the individual

probability of occurrence is denoted by p‖(µ). Although edges e5 and e6 are mutually

independent, they are not collectively independent with any of the other edges, from

e1 to e4.

In the following we present an accurate approximation of the probability p‖(µ)

for e5. Since the probability of e6 is the same as the one corresponding to e5, Lemma 1

we presents the general result. Here, and in the rest of the work, position of nodes are

relative to the origin of intersection, this means the the support for random variables

is on the interval [0, 1].

Lemma 1. Let {Xi}1≤i≤µ and {Wj}1≤j≤µ be two families of independent random vari-

ables, such that Xi ∼ U(0, 1)§ and Wj ∼ U(0, 1), denoting the positions of µ nodes

in each one of two parallel segments sharing an intersection. Let also r denote the

common transmission range of all nodes, where 0 ≤ r ≤ 1. The probability p‖(µ) of

existence of at least one link between two nodes in parallel adjacent segments is

p‖(µ) ≈ r

6

(
µ− µ(1− r)µ − 4µ

(
1− r

2

)µ−1 ((
1− r

2

)µ
− 1
))

.

Proof. Sorting the realizations of X1, X2, . . . , Xµ and W1,W2, . . . ,Wµ in increasing or-

der, we obtain the order statistics¶ X(1), X(2), . . . , X(µ) and W(1),W(2), . . . ,W(µ), re-

spectively. W.l.o.g., we consider that positions of nodes reflect the Euclidean distances

from each node to the intersection point between segments.

At least one crossing link between two nodes positioned in different parallel seg-

ments exists if and only if X(1) +W(1) ≤ r. Then, we can compute p‖(µ) by

p‖(µ) =

∫∫
D

fX(1)W(1)
(x,w) dw dx, (3.1)

where D = {(x,w) | 0 ≤ x ≤ r ∧ 0 ≤ w ≤ r − x} and fX(1)W(1)
(x,w) is the joint

distribution function of X(1) and W(1). Figure 3.3 draws integration region according

to the restriction X(1) +W(1) ≤ r.

It is well known that the k-th order statistic of a family of µ independent standard

uniform random variables is a Beta random variable U(k) ∼ B(k, µ + 1 − k). Conse-

quently, we have that fX(1)
(x) = µ(1− x)µ−1 and fW(1)

(w) = µ(1− w)µ−1. Since both

§I.e., distributed uniformly and at random in the interval [0, 1].
¶The k-th order statistic of a statistical sample is equal to its kth-smallest value.
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Figure 3.3. Integration region D for computing p‖(µ)

families {Xi}1≤i≤µ and {Wj}1≤j≤µ are independent, we have that the joint distribution

function of X(1) and W(1) is fX(1)W(1)
(x,w) = µ2(1− x)µ−1(1− y)µ−1. Then, replacing

fX(1)W(1)
(x,w) in Equation (3.1), we have

p‖(µ) =

∫ r

0

∫ r−x

0

µ2(1− x)µ−1(1− w)µ−1 dw dx

=

∫ r

0

µ
(
−(1− x)µ−1

)
((−r + x+ 1)µ − 1) dx. (3.2)

At this point, we are not able to solve the integration of Equation (3.2), so we

apply an approximation method known as the Simpson’s rule. Applying this Simpson’s

rule with two intervals, we have

p‖(µ) ≈ r

6

(
µ− µ(1− r)µ − 4µ

(
1− r

2

)µ−1 ((
1− r

2

)µ
− 1
))

.

Notice that in any moment during demonstration of Lemma 1 we assume a prop-

erty that holds specifically under the Max-Norm model, which implies that p‖(µ) is the

same for the three models addressed in this manuscript.

Figure 3.4 presents the probability of crossing links between parallel segments

sharing an intersection in three scenarios, determined by the parameter µ. Here we

perceive that the approximation we obtained, using Simpson’s rule with two intervals

in (3.2), is an accurate expression for p‖(µ).

So far, we proposed an approximation for p‖(µ), and this is an expression that does

depends only on geometric properties common to all models herein considered. In the

following Lemma 2, we consider the problem of determining the probability of existence
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Figure 3.4. Empirical and analytical results for p‖(µ) under the Max-Norm
model

of at least one link between two groups of µ nodes positioned in its two respective

segments sharing an intersection. In the derivation, we assume specific properties

related to the Max-Norm model, and we denote the exact probability of existing at

least one crossing link between perpendicular segments by pMN
⊥ (µ), emphasizing this

fact.

Lemma 2. Let {Xi}1≤i≤µ, such that Xi ∼ U(0, 1), and {Yj}1≤j≤µ, such that Yj ∼
U(0, 1), be two families of independent random variables denoting the position of µ

nodes in each one of two perpendicular segments sharing an intersection. Let also 2ε

be the segments’ width, and r denote the common transmission range of all nodes,

where ε ≤ r ≤ 1. The probability pMN
⊥ (µ) of existence of at least one link between two

nodes in different perpendicular segments, under the Max-Norm model, is

pMN

⊥ (µ) = 2 (1− (1− r)µ) (1− (1− ε)µ)− (1− (1− ε)µ)2 .

Proof. Let X(1), X(2), . . . , X(µ) and Y(1), Y(2), . . . , Y(µ) be the order statistics of

X1, X2, . . . , Xµ and Y1, Y2, . . . , Yµ, respectively. W.l.o.g., we consider that positions of

nodes reflect the Euclidean distances from each node to the intersection point between

segments. There exists at least one link between two nodes in different perpendicular

segments if and only if there is a link between X(1) and Y(1).
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Figure 3.5. Integration region D, and alternative partition for computing
pMN
⊥ (µ)

Considering ε ≤ r, we can compute pMN
⊥ (µ) by

pMN

⊥ (µ) =

∫∫
D

fX(1)Y(1)(x, y) dy dx, (3.3)

where D is the region showed in Figure 3.5a and fX(1)Y(1)(x, y) is the joint distribution

function of X(1) and Y(1).

It is important to highlight that the join distribution function of two equally

distributed random variables is symmetric respect to the y = x plane in the Euclidean

space. Since region D is symmetric respect to line y = x and, additionally, fX(1)Y(1) is

symmetric respect to plane y = x, we can decompose integral of equation (3.3) into

regions as follows:

pMN

⊥ (µ) = 2

∫∫
R1

fX(1)Y(1)(x, y) dy dx−
∫∫
R2

fX(1)Y(1)(x, y) dy dx, (3.4)

where R1 = {(x, y) | 0 ≤ x ≤ r ∧ 0 ≤ y ≤ ε} and R2 = {(x, y) | 0 ≤ x ≤ ε ∧ 0 ≤ y ≤ ε}
(see Figure 3.5).

Since X(1), Y(1) ∼ B(1, µ) are independent, the joint distribution function is

fX(1)Y(1) = µ2(1− x)µ−1(1− y)µ−1. Then, from (3.4), we have

pMN

⊥ (µ) = 2

∫ r

0

∫ ε

0

µ2(1− x)µ−1(1− y)µ−1 dy dx−
∫ ε

0

∫ ε

0

µ2(1− x)µ−1(1− y)µ−1 dy dx

= 2 ((1− (1− r)µ)(1− (1− ε)µ))− (1− (1− ε)µ)2 .
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Figure 3.6. Probability of connectivity between nodes located at perpendicular
segments sharing an intersection

For the case of crossing links between perpendicular segments, we have selected

six scenarios, varying the segment width parameter, ε, and the expected number of

nodes per segment, µ. Figure 3.6 presents these results considering the assumption

r ≥ ε from Lemma 2. It can be seen that the expression obtained for pMN
⊥ (µ) is correct.

At this stage, we have already computed the probability of existence of at least

one crossing link between parallel segments, p‖(µ), and perpendicular segments, pMN
⊥ (µ).

The next step is to compute the probability of connectivity at intersections, namely

Pr(IMN
con). Somehow, this probability can be described by a (non-trivial) function of

p‖(µ) and pMN
⊥ (µ), which takes into account the geometric correlation between the ex-

istence of simultaneous links between both, parallel and perpendicular segments. Nev-

ertheless, we perceive in Almiron et al. [2012] that the influence of p‖(µ) on Pr(IMN
con) is

very small in most scenarios, i.e., the probability of connectivity at an intersection is

almost exclusively determined by the probability of links between perpendicular seg-
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ments sharing an intersection. An exception to this behavior is when µ or ε are very

small values, which are scenarios not so relevant in practice. An example of this occurs

in the CTR problem, where we want to use the minimum radio for communication as

possible while maintaining connectivity in the overall network. Clearly, in this prob-

lem, small densities and low visibility at intersections implies too large communication

radios, which is not of practical interest for nowadays technological environments. For

the reason above and for the sake of simplification, in Theorem 1, we compute a lower

bound on Pr(IMN
con) using only pMN

⊥ (µ). After this, in Theorem 2, we present an accurate

expression for Pr(IMN
con) but, at this time, considering links between both, parallel and

perpendicular segments.

Theorem 1. Let {Xi}1≤i≤µ, {Yj}1≤j≤µ, {Wk}1≤k≤µ and {Zm}1≤m≤µ be four families of

independent random variables, such that Xi ∼ U(0, 1), Yj ∼ U(0, 1), Wk ∼ U(0, 1) and

Zm ∼ U(0, 1), denoting the positions of µ nodes in four adjacent segments sharing an

intersection. Let also 2ε be the segments’ width and r denote the common transmission

range of all nodes, with ε ≤ r ≤ 1. A lower bound of the probability of connectivity at

intersections, denoted by Pr(IMN
con), is given by

Pr(IMN

con) ≥ 2ξ2 − ξ4

p2
+ p2, (3.5)

where ξ = ((1− ε)µ − 1)((1− r)µ − (1− ε)µ) and p = pMN
⊥ (µ).

Proof. W.l.o.g., we consider that positions of nodes reflect the Euclidean distances

from each node to the intersection point between segments. Consider the order statis-

tics X(1), Y(1), W(1) and Z(1), from the families {Xi}1≤i≤µ, {Yj}1≤j≤µ, {Wk}1≤k≤µ and

{Zm}1≤m≤µ, respectively. There exists a path between at least one node in a segment

connecting at least one node in each one of the three other segments if and only if there

exists a path between X(1), Y(1), W(1) and Z(1).

Considering only links between perpendicular segments, we can obtain a lower

bound as follows. Let e1 be the event that indicates the presence of a link between the

realizations of Y(1) and W(1) (see Figure 3.2, in page 21). Additionally, let e2, e3 and e4

represent the existence of a link between X(1) and Y(1), X(1) and Z(1) and finally W(1)

and Z(1), respectively. Since X(1), Y(1), W(1) and Z(1) are independent, we have e1⊥⊥e3
and e2⊥⊥e4, where ⊥⊥ indicates the stochastic independence between events. Consider

now the experiment of observing the presence of e1 and e3 simultaneously. The sample

space of this experiment can be partitioned by Ω = {e1 ∩ e3, e1 ∩ e3, e1 ∩ e3, e1 ∩ e3}.
Consequently, by law of total probability, we can compute the aforementioned lower
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bound by

Pr(IMN

con) ≥ Pr(IMN

con | e1∩e3)p2+2 Pr(IMN

con | e1∩e3)p(1−p)+Pr(IMN

con | e1∩e3)(1−p)2, (3.6)

where p = Pr(e1) = Pr(e3) = pMN
⊥ (µ).

Notice that Equation 3.6 does effectively represent a lower bound, since links

between nodes positioned in parallel segments are not considered in the expression.

This restriction has an immediate consequence: the third term of Equation 3.6 does not

contribute to connectivity, because there is no way to have connectivity at intersections

without e1 nor e3. Then, we only need to find expressions for Pr(IMN
con | e1 ∩ e3) and

Pr(IMN
con | e1 ∩ e3). Lets consider Pr(IMN

con | e1 ∩ e3) first.

We can solve Pr(IMN
con | e1∩e3) considering probabilities of three cases under which

we achieve connectivity at intersections: (i) both, e2 and e4 occur, (ii) e2 occurs and e4

does not and (iii) e2 does not occur and e4 does. Since cases (ii) and (iii) are symmetric,

we have

Pr(IMN

con | e1 ∩ e3) = Pr(e2 | e1 ∩ e3)2 + 2 Pr(e2 | e1 ∩ e3) (1− Pr(e2 | e1 ∩ e3)) . (3.7)

Additionally, we have

Pr(e2 | e1 ∩ e3) = 1− Pr(e2 | e1 ∩ e3)

= 1−
Pr(ε ≤ X(1) ≤ r ∩ ε ≤ Y(1) ≤ r ∩ e1 ∩ e3)

Pr(e1 ∩ e3)
. (3.8)

Since e1⊥⊥e3, we can rewrite (3.8) and solve

Pr(e2 | e1 ∩ e3) = 1−

(∫ r
ε

∫ ε
0
fX(1)Z(1)

(x, z) dz dx
)2

p2

= 1− ((1− ε)µ − 1)2((1− r)µ − (1− ε)µ)
2

p2
. (3.9)

In order to solve the lower bound for Pr(IMN
con) proposed in (3.6), we still need to

compute Pr(IMN
con | e1 ∩ e3). Notice that even in the case where we do not have e3, we

still need X(1) ≤ r and Z(1) ≤ r, otherwise we are not able to achieve connectivity at

intersection. Being aware of this, we know then that ε < X(1) ≤ r and ε < Z(1) ≤ r.

This is because we do not want to give a chance to have e3 while we are actually

conditioning on e1 ∩ e3. We all these considerations, we can then compute

Pr(IMN

con | e1 ∩ e3) = Pr(A | e1 ∩ e3) (3.10)
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where A = {0 ≤ Y(1) ≤ ε∩0 ≤ W(1) ≤ ε∩ ε ≤ X(1) ≤ r∩ ε ≤ Z(1) ≤ r}. Since Y(1)⊥⊥e3,
W(1)⊥⊥e3, X(1)⊥⊥e1 and Z(1)⊥⊥e1, from (3.10) we have

Pr(IMN

con | e1 ∩ e3) =

(∫ ε

0

∫ ε

0

fY(1)W(1)
(y, w) dw dy∫ r

ε

∫ r

ε

fX(1)Z(1)
(x, z) dz dx

)
1

p(1− p)
. (3.11)

Solving the definite integrals in (3.11), we obtain

Pr(IMN

con | e1 ∩ e3) =
((1− ε)µ − 1)2((1− r)µ − (1− ε)µ)

2

p(1− p)
. (3.12)

Finally, combining (3.7), (3.9) and (3.12) within Expression (3.6), and considering

ξ = ((1− ε)µ − 1)((1− r)µ − (1− ε)µ) we finally have

Pr(IMN

con) ≥ 2ξ2 − ξ4

p2
+ p2.

Although Theorem 1 considers only links between nodes located in perpendicular

segments sharing an intersection, the obtained lower bound was not an expression as

simple as we would like. This last fact, encouraged us to find a solution considering

all links, that is, not just those between nodes in perpendicular segments, but those

between nodes located in parallel segments as well.

Theorem 2 presents a tight lower bound for Pr(IMN
con) considering all links at a

given intersection.

Theorem 2. Let {Xi}1≤i≤µ, {Yj}1≤j≤µ, {Wk}1≤k≤µ and {Zm}1≤m≤µ be four families of

independent random variables, such that Xi ∼ U(0, 1), Yj ∼ U(0, 1), Wk ∼ U(0, 1) and

Zm ∼ U(0, 1), denoting the positions of µ nodes in four adjacent segments sharing an

intersection. Let also 2ε be the segments’ width and r denote the common transmission

range of all nodes, with 2ε ≤ r ≤ 1. A lower bound of the probability of connectivity at

intersections, denoted by Pr(IMN
con), is given by

Pr(IMN

con) ≥ p2 + 2Dε
0(µ)Dr

ε (µ)Dr−ε
ε (µ) [Dr

0(µ) +Dr
ε (µ)] , (3.13)

where Dj
i (k) = (1− i)k − (1− j)k and p = pMN

⊥ (µ).

Proof. W.l.o.g., we consider that positions of nodes reflect the Euclidean distances from

each node to the center point between streets. Consider the order statistics X(1), Y(1),
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W(1) and Z(1), from the families {Xi}1≤i≤µ, {Yj}1≤j≤µ, {Wk}1≤k≤µ and {Zm}1≤m≤µ,

respectively. The intersection graph I is connecterd iff there exists a path between

X(1), Y(1), W(1) and Z(1).

Consider events e1, e2, e3, e4, e5 and e6, from Figure 3.2 (page 21), as being the

events that indicates the presence of a link between the realizations of Y(1) and W(1),

X(1) and Y(1), X(1) and Z(1), W(1) and Z(1), X(1) and W(1), and finally Y(1) and Z(1),

respectively. Let us highlight that e1⊥⊥e3 and e2⊥⊥e4, and that pairs of edges sharing

a node are clearly not independent because of geometrical correlation. In particular,

since e1⊥⊥e3, we are able to construct the partition Pe = {e1∩e3, e1∩e3, e1∩e3, e1∩e3}
on the sample space Ω (the set of all possible combinations of nodes positions).

Consequently, applying the law of total probability and considering the symmetry

between e1 ∩ e3 and e1 ∩ e3 , we can compute

Pr(IMN

con) = Pr(IMN

con | e1 ∩ e3) Pr(e1 ∩ e3) + 2 Pr(IMN

con | e1 ∩ e3) Pr(e1 ∩ e3)

+ Pr(IMN

con | e1 ∩ e3) Pr(e1 ∩ e3) (3.14)

The three summands in (3.14) contain the event IMN
con conditioned on e1∩e3, e1∩e3

or e1 ∩ e3. To solve these probabilities, we use a second partition with bounds on ε

and r,

Pε,r = {0 ≤ W(1) ≤ ε, ε < W(1) ≤ r} × {0 ≤ Z(1) ≤ ε, ε < Z(1) ≤ r}, (3.15)

and apply the law of total probability on e1 ∩ e3, e1 ∩ e3 and e1 ∩ e3, respectively. We

identify two intervals, in (3.15), where W(1) and Z(1) belong to [0, ε] and (ε, r]. We

call these two intervals as S1 and S2, respectively, and define Ci,j as being the element

of partition Pε,r where W(1) ∈ Si and Z(1) ∈ Sj. With this partition, we proceed to

compute each conditional term of (3.14).

Let us consider firstly the partition Pε,r on e1 ∩ e3 for solving Pr(IMN
con | e1 ∩ e3).

Figure 3.7a shows a schematic view of partition Pε,r on e1 ∩ e3, where the black balls

represent instances of W(1) and gray balls represent instances of Z(1). Each pair of

balls of different color represent a class Ci,j of Pε,r. Edges, in this figure, represent the

conditioning on e1 ∩ e3, and the position of stars represent the worst case (farthest

region from the origin) for this conditioning. Numbering in both, balls and stars, is

used for identifying the intervals of instances of W(1) and Z(1), and more important,

for visualizing each class Ci,j of Pε,r. Observing the partition Pε,r in Figure 3.7a we

perceive that for each class Ci,j it is possible to have a third edge connecting the
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Figure 3.7. Computing the probability of connectivity at intersections under
the Max-Norm model

connected components {W(1), Y(1)} and {Z(1), X(1)}, which implies

Pr(IMN

con | e1 ∩ e3) = 1. (3.16)

Let us consider now the partition Pε,r on e1 ∩ e3 for solving Pr(IMN
con | e1 ∩ e3).

Applying law of total probability, we obtain

Pr(IMN

con | e1 ∩ e3) =

2∑
i=1

2∑
j=1

Pr(IMN
con ∩ Ci,j ∩ e1 ∩ e3)

Pr(e1 ∩ e3)
. (3.17)

Figure 3.7b shows classes Ci,j on e1∩e3. The schematic view in this figure is essentially

the same as Figure3.7a, with the exception for gray stars which represent the best case

positioning. The idea behind considering best cases is to identify potential edges. In

the following, we analyze each one of the four terms, Pr(IMN
con∩Ci,j∩e1∩e3), separately.

For the three classes Ci,1, we observe that random node X(1) is isolated even in
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Figure 3.8. Ci,j ∩ e1 ∩ e3

the best case, since X(1) > r (see Figure 3.7b). This means that

2∑
i=1

Pr(IMN

con ∩ Ci,1 ∩ e1 ∩ e3) = 0. (3.18)

Let us consider now Pr(Icon ∩ C1,2 ∩ e1 ∩ e3). Figure 3.8a shows the geometrical

restrictions for C1,2 ∩ e1 ∩ e3. Here we perceive that we need the edge e2 = (X(1), Y(1))

or e5 = (X(1),W(1)) in order to have connectivity. Since e2 and e5 are correlated, we

compute a lower bound considering only e5. Additionally, for the sake of simplicity,

we compute a lower bound for the probability of e5 assuming the worst case W(1) = ε,

i.e., farthest away from the center. With this, we have

Pr(IMN

con ∩ C1,2 ∩ e1 ∩ e3) ≥
∫ ε

0

fW(1)
(w) dw

∫ r

0

fY(1)(y) dy∫ r

ε

fZ(1)
(z) dz

∫ r−ε

ε

fX(1)
(x) dx (3.19)

The last integral in (3.19) corresponds to random variable X(1). Note that here we

restrict the domine of X(1) to maintain the edge e5 = (X(1),W(1)) given W(1) = ε, that

is, we originally have X(1) ∈ (ε, 1] because of condition C1,2 ∩ e3, and afterwards we

restrict X(1) to a smaller interval, contained in (ε, 1], given place to event e5. This

explain the integration intervals of (3.19).

As we saw before, the k-th order statistic of a family of µ independent standard

uniform random variables is a Beta random variable U(k) ∼ B(k, µ+ 1− k) (see David

and Nagaraja [2003]). In particular, the probability density function (p.d.f.) of the first

order statistic U(1) is fU(1)
(u) = µ(1−u)µ−1 and

∫ j
i
k(1−u)k−1 du = (1− i)k− (1− j)k.

This last expression represents the probability of having the first order statistic of

family {Uh}1≤h≤k within the interval (i, j), and it is denoted by Dj
i (k). Then, we can
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rewrite the expression (3.19) as

Pr(IMN

con ∩ C1,2 ∩ e1 ∩ e3) ≥ Dε
0(µ)Dr

0(µ)Dr
ε (µ)Dr−ε

ε (µ). (3.20)

For Pr(IMN
con∩C2,2∩e1∩e3) we proceed similarly. Figure 3.8b shows the restrictions

for C2,2∩e1∩e3. Here we observe that e2 implies e5, and that e4 is an impossible event.

Therefore, we need to restrict X(1) ≤ r for having e2 and consider the conditions for

having e6. These considerations lead to the following lower bound

Pr(IMN

con ∩ C2,2 ∩ e1 ∩ e3) ≥
∫ r

ε

fW(1)
(w) dw

∫ ε

0

fY(1)(y) dy∫ r−ε

ε

fZ(1)
(z) dz

∫ r

ε

fX(1)
(x) dx

= Dr
ε (µ)Dε

0(µ)Dr−ε
ε (µ)Dr

ε (µ). (3.21)

Combining (3.18), (3.20) and (3.21) into (3.17), we obtain

Pr(IMN

con | e1 ∩ e3) ≥
Dε

0(µ)Dr
ε (µ)Dr−ε

ε (µ) [Dr
0(µ) +Dr

ε (µ)]

Pr(e1 ∩ e3)
. (3.22)

The next step is to derive the third term of (3.14). Considering partition Pε,r on

e1 ∩ e3, we obtain four cases, namely C1,1, C1,2, C2,1 and C2,2 (see Figure 3.7c). From

these four cases, just the case C2,2 has no isolated nodes, with positions closer than

r from the intersection. Additionally, we notice that no link between nodes located

in perpendicular segments is possible. As a consequence, even in case we have links

between nodes positioned in parallel segments, it is not possible to achieve connectivity

in this scenario, therefore

Pr(IMN

con | e1 ∩ e3) = 0. (3.23)

Finally, adding up (3.16), (3.22) and (3.23), into (3.14), and observing that e1⊥⊥e3
implies Pr(e1 ∩ e3) = Pr(e1) Pr(e3) = pMN

⊥ (µ)2, we obtain (3.13), and this concludes the

proof.

Figure 3.9 shows the empirical probability of connectivity at intersections against

the analytical lower bound derived in Theorem 1 and tight lower bound presented in

Theorem 2. Red and blue curves correspond to Theorems 1 and 2, respectively. Red

curves start from ε while blue curves start from 2ε in agreement with the restrictions

in the corresponding analytical results. We observe that the error in the lower bound

of Theorem 1 (red curves) grows when density and visibility decrease, that is, when

nodes are far from the intersection due to low density (small µ), or when the visibility
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Figure 3.9. Probability of connectivity at intersection under the Max-Norm
model

is restricted because of a small ε, the observed connectivity can be constructed, in a

very small proportion, with links between nodes located in parallel segments sharing

an intersection. From a different point of view, we observe that the higher the density

of the network and the greater the segments’ width are, the closer this lower bound is

to the proper value of Pr(IMN
con). This happens because in these scenarios, links between

nodes located in parallel segments are no longer needed to grant connectivity.
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Differently, the result of Theorem 2 (blue curves) provides a tight lower bound

independently of the scenario. In particular, we highlight two facts: (i) the error

become smaller for small values of ε, as we expected from the proof of the analytical

result, and (ii) approximations to Pr(IMN
con) are better for high probabilities.

The Max-Norm model is a simplification of a still abstract geometrical model

known as the LoS model. Next section presents the formulation of local connectivity

properties under this model, and the mathematical limitation for solving it analytically.

3.1.2 Line-of-Sight Model

As we saw in Section 3.1.1, for computing the probability of connectivity at intersec-

tion, we need first to compute the probability of connectivity between nodes located

in perpendicular segments sharing an intersection. We already computed this for the

Max-Norm model, and here we will formulate the problem for the LoS model. When

we introduced the LoS model in Section 2.1, we assume that this was a convenient

abstraction, comparable to the disk model for open-space networks, nevertheless this

convenience is just apparent, and we will see here the limitation for analytical treat-

ment.

Let us start considering {Xi}1≤i≤µ and {Yj}1≤j≤µ as being two families of standard

uniform independent random variables denoting the position of µ nodes in each one

of two perpendicular segments sharing an intersection, as usual. Let also r denote the

common transmission range of all nodes, where 2ε ≤ r ≤ 1. Additionally, let 2ε be the

segments’ width. Let us consider now the problem of determining the probability pLS
⊥ (µ)

of having at least one link between µ nodes in each one of two different perpendicular

segments sharing an intersection.

Let X(1), X(2), . . . , X(µ) and Y(1), Y(2), . . . , Y(µ) be the order statistics of

X1, X2, . . . , Xµ and Y1, Y2, . . . , Yµ, respectively. We consider, as before, that positions

of nodes reflect the Euclidean distances from each node to the center of intersection.

With these assumptions, the problem then is to compute the probability of connectivity

between X(1) and Y(1).

Under the LoS model, we need to satisfy two restrictions to have a link between

X(1) and Y(1), and these restrictions are reflected in the domine of random variables

X(1) and Y(1). Figure 3.10a shows the restrictions on the domine of these random

variables. Here, function y =
√
r2 − x2 represents the transmission range restriction,

and function y = xε/(x − ε) is the restriction of visibility. Since X(1) and Y(1) are

i.i.d., we have that the join distribution function fX(1)Y(1)(x, y) is symmetric respect

of the plane y = x. Consequently, we can compute pLS
⊥ (µ) as twice the value of the
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√
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Figure 3.10. Computing the probability of existence of at least one link between
two nodes in perpendicular streets

volume bounded by fX(1)Y(1)(x, y) under the three filled regions of Figure 3.10a. We

know from previous section that the joint distribution function of X(1) and Y(1) is

fX(1)Y(1)(x, y) = fX(1)
(x)fY(1)(y) = µ2(1− x)µ−1(1− y)µ−1, then we have

p⊥(µ) = 2

(∫ 2ε

0

∫ x

0

µ2(1− x)µ−1(1− y)µ−1 dy dx

+

∫ z

2ε

∫ xε
x−ε

0

µ2(1− x)µ−1(1− y)µ−1 dy dx

+

∫ r

z

∫ √r2−x2
0

µ2(1− x)µ−1(1− y)µ−1 dy dx

)

= 2

(
1

2
(1− x)2µ − (1− x)µ +

∫ z

2ε

µ(1− x)µ−1
(

1−
(

1−
√
r2 − x2

)µ)
dx

+

∫ z

2ε

µ(1− x)µ−1
(

1−
(

1− xε

x− ε

)µ)
dx

)
(3.24)

where z is the smaller root of the system
√
r2 − x2 − xε

x−ε = 0. For the two integrals in

(3.24), we found no solution in terms of standard mathematical functions. And even

if there exist one, we do not expect this expression to be simple.

The lack of solution for integrals in (3.24) added to the complexity of upper limit

for definite integration motivate the use of a new simplified model. This model should

be an abstraction capable of maintaining simplicity and accuracy at the same time,

and this is the Triangular model.
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3.1.3 Triangular Model

So far we derived local connectivity probabilities for the Max-Norm model, and founded

elements that lead us to think about the impossibility of mathematical treatment of the

LoS model. The Triangular model emerge from this impossibility and, as we will see,

represents an solution with “balance” between complexity and accuracy. Naturally,

for a better description of this balance, definitions of “complexity” and “accuracy”

are required. We can think model complexity based on the complexity of functions, or

classifying according to how easy these functions can be integrated. On the other hand,

we can propose a measurement of accuracy based on distances of functions, having the

LoS model as a reference. Independently of the measurements, the aforementioned

balance cannot be universal; the best model can change from case to case, based on

the final goal of the modeling. Nevertheless, we consider the LoS model as a reference,

and we compare models with this criterion.

Herein we follow the same strategy as before, that is, we first compute, in Lemma 3

the probability of connectivity between any two nodes from two different sets of µ nodes

placed at perpendicular segments sharing an intersection, and then we compute the

probability of connectivity at intersection. We denote these probability by pT
⊥(µ) and

Pr(IT
con), respectively.

We try to make proofs as self-contained as possible, although we can fall in tedious

repetition. We took this decision to facilitate the reading process, allowing the reader

to follow proofs with less effort.

Lemma 3. Let {Xi}1≤i≤µ and {Yj}1≤j≤µ be two families of standard uniform indepen-

dent random variables denoting the position of µ nodes in each one of two perpendicular

segments sharing an intersection. Let also 2ε be the segments’ width. Additionally, let

r denote the common transmission range of all nodes, where 2ε ≤ r ≤ 1. Assuming the

Triangular model, the probability pT
⊥(µ) of having at least one link between two nodes

in different perpendicular segments is

pT

⊥(µ) = (1− 2ε)2µ + 2(1− ε)µ ((1− r)µ − (1− 2ε)µ) + 2 (1/2− (1− r)µ) (3.25)

Proof. Let X(1), X(2), . . . , X(µ) and Y(1), Y(2), . . . , Y(µ) be the order statistics of

X1, X2, . . . , Xµ and Y1, Y2, . . . , Yµ, respectively. We consider, without loss of gener-

ality (w.l.o.g.), that positions of nodes reflect the Euclidean distances from each node

to the center point between segments. There exists at least one link between two nodes

in different perpendicular segments iff there is a link between X(1) and Y(1).

For connecting X(1) with Y(1), under the Triangular model, we need to satisfy one
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of the following two conditions: (i) the minimum norm min{‖xu− xv‖, ‖yu− yv‖} ≤ ε,

and the maximum norm max{‖xu−xv‖, ‖yu−yv‖} ≤ r, or (ii) both u and v are at most

at a distance 2ε far from a shared intersection. Figure 3.10b shows the region in the

domine of fX(1)Y(1)(x, y) that satisfy at least one of these conditions. Since fX(1)Y(1)(x, y)

is symmetric respect of the plane y = x, we can compute pT
⊥(µ) as twice the value of the

volume bounded by fX(1)Y(1)(x, y) under the two filled regions in the domine illustred in

Figure 3.10b. Note that we assume r ≥ 2ε. This is not a strong assumption, since values

of r <
√

8ε do not represent a scenario with obstacles. Said that, and remembering that

the joint distribution function of X(1) and Y(1) is fX(1)Y(1)(x, y) = µ2(1−x)µ−1(1−y)µ−1,

we proceed to compute pT
⊥(µ) as follows:

pT

⊥(µ) = 2

(∫ 2ε

0

∫ x

0

fX(1)Y(1)(x, y) dy dx+

∫ r

2ε

∫ ε

0

fX(1)Y(1)(x, y) dy dx

)
= 2

(∫ 2ε

0

∫ x

0

µ2(1− x)µ−1(1− y)µ−1 dy dx

+

∫ r

2ε

∫ ε

0

µ2(1− x)µ−1(1− y)µ−1 dy dx

)
= (1− 2ε)2µ + 2(1− ε)µ ((1− r)µ − (1− 2ε)µ)

+2 (1/2− (1− r)µ) , (3.26)

and this concludes the proof.

Figure 3.11 shows the empirical and theoretical results for pT
⊥(µ). Red curves

correspond to expression (3.26) under different densities and segments’ width values.

Notice that Lemma 3 presents the exact analytical solution, and all these cases in the

figure are just a mechanism of validation for all the steps in the proof. Besides expres-

sion (3.26) gives the exact value for pT
⊥(µ) under the Triangular model, we highlight

that under the LoS model this expression represents a lower bound for r ≥
√

8ε, and

this is why we assume the same while computing the probability of connectivity at

intersections, in the following Theorem 3.

Theorem 3. Let {Xi}1≤i≤µ, {Yj}1≤j≤µ, {Wk}1≤k≤µ and {Zm}1≤m≤µ be four families of

independent random variables, such that Xi ∼ U(0, 1), Yj ∼ U(0, 1), Wk ∼ U(0, 1) and

Zm ∼ U(0, 1), denoting the positions of µ nodes in four adjacent segments sharing an

intersection. Let 2ε be the segments’ width, and let r denote the common transmission

range of all nodes, with
√

8ε ≤ r ≤ 1. The probability of connectivity at intersections
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Figure 3.11. Probability of connectivity, under the Triangular model, between
nodes located at perpendicular segments sharing an intersection

under the Triangular model, denoted by Pr(IT
con), is given by

Pr(IT

con) ≥ p⊥(µ)2 + 2
(
Dε

0(µ)Dr
0(µ)

[
Dr

2ε(µ)Dr−ε
ε (µ) +D2ε

ε (µ)Dr−ε
2ε (µ)

]
+D2ε

ε (µ)D2ε
0 (µ)

[
Dr−2ε

2ε (µ)Dr−2ε
ε (µ) +D2ε

ε (µ)Dr−2ε
2ε (µ)

]
+Dr

2ε(µ)Dε
0(µ)

[
Dr−ε

2ε (µ)Dr
ε (µ) +D2ε

ε (µ)Dr
2ε(µ)

])
+ 2

(
D2ε
ε (µ)Dr−2ε

2ε (µ)
)2
, (3.27)

where Dj
i (k) = (1− i)k − (1− j)k.

Proof. W.l.o.g., we consider that positions of nodes reflect the Euclidean distances from

each node to the center point between segments. Consider the order statistics X(1),

Y(1), W(1) and Z(1), from the families {Xi}1≤i≤µ, {Yj}1≤j≤µ, {Wk}1≤k≤µ and {Zm}1≤m≤µ,

respectively. The intersection graph I is connected iff there exists a path between X(1),

Y(1), W(1) and Z(1).

Let e1 be the event that indicates the presence of a link between the realizations
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Figure 3.12. Computing the probability of connectivity at intersections.

of Y(1) and W(1) (see Figure 3.12a). Additionally, let e2, e3, e4, e5 and e6 represent the

existence of a link between X(1) and Y(1), X(1) and Z(1), W(1) and Z(1), W(1) and X(1)

and finally Y(1) and Z(1), respectively. Then, we have e1⊥⊥e3 and e2⊥⊥e4, while edges

that share a node are clearly not independent because of geometrical correlation. Since

e1⊥⊥e3, we are able to construct the partition P̃e = {e1 ∩ e3, e1 ∩ e3, e1 ∩ e3, e1 ∩ e3} on

the sample space Ω.

Consequently, applying the law of total probability and considering the symmetry

between e1 ∩ e3 and e1 ∩ e3 , we can compute

Pr(IT

con) = Pr(IT

con | e1 ∩ e3) Pr(e1 ∩ e3) + 2 Pr(IT

con | e1 ∩ e3) Pr(e1 ∩ e3)

+ Pr(IT

con | e1 ∩ e3) Pr(e1 ∩ e3) (3.28)

The three summands in (3.28) contain the event IT
con conditioned on e1∩e3, e1∩e3

or e1 ∩ e3. To solve these probabilities, we use the same technique as the one used in
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Theorem 2, that is, we apply the law of total probability in the partition

P̃ε,r = {0 ≤ W(1) ≤ ε, ε < W(1) ≤ 2ε, 2ε < W(1) ≤ r}

× {0 ≤ Z(1) ≤ ε, ε < Z(1) ≤ 2ε, 2ε < Z(1) ≤ r} (3.29)

on e1 ∩ e3, e1 ∩ e3 and e1 ∩ e3, respectively. We identify in (3.29) three intervals where

W(1) and Z(1) belong to [0, ε], (ε, 2ε] and (2ε, r]. We call these three intervals as S̃1,

S̃2 and S̃3, respectively, and define C̃i,j as being the element of partition P̃ε,r where

W(1) ∈ S̃i and Z(1) ∈ S̃j. With this partition, we proceed to compute each conditional

term of (3.28).

Let us consider firstly the partition P̃ε,r on e1 ∩ e3 for solving Pr(IT
con | e1 ∩ e3).

Figure 3.12b shows a schematic view of partition P̃ε,r on e1 ∩ e3, where the black balls

represent instances of W(1) and gray balls reprecent instances of Z(1). Each pair of

balls of different color represent a class C̃i,j of P̃ε,r. Edges, in this figure, represent the

conditioning on e1 ∩ e3, and the position of stars represent the worst case (farthest

region from the origin) for this conditioning. Numbering in both, balls and stars, is

used for identifying the intervals of instances of W(1) and Z(1), and more important,

for visualizing each class C̃i,j of P̃ε,r. Observing the partition P̃ε,r in Figure 3.12b

we perceive that for each class C̃i,j it is possible to have a third edge connecting

the connected components {W(1), Y(1)} and {Z(1), X(1)}, which implies Pr(IT
con | e1 ∩

e3) = 1. Additionally, we have e1⊥⊥ e3, then the first term of (3.28) is Pr(e1 ∩ e3) =

Pr(e1) Pr(e3) = pT
⊥(µ)2.

Let us consider now the partition P̃ε,r on e1 ∩ e3 for solving Pr(IT
con | e1 ∩ e3).

Applying law of total probability, we obtain

Pr(IT

con | e1 ∩ e3) =

3∑
i=1

3∑
j=1

Pr(IT
con ∩ Ci,j ∩ e1 ∩ e3)

Pr(e1 ∩ e3)
(3.30)

Figure 3.12c shows classes Ci,j on e1∩e3. The schematic view in this figure is essentially

the same as Figure3.12b, with the exception for gray stars which represent the best case

positioning. The idea behind considering best cases is to identify potential edges. In

the following, we analyse each one of the nine terms, Pr(Icon∩Ci,j∩e1∩e3), separately.

For the three classes C̃i,1, we observe that random node X(1) is isolated even in

the best case, since X(1) > r (see Figure 3.12c). This means that
∑3

i=1 Pr(IT
con ∩ C̃i,1 ∩

e1 ∩ e3) = 0.

Let us consider now Pr(IT
con ∩ C̃1,2 ∩ e1 ∩ e3). Figure 3.13a shows the geometrical

restrictions for C̃1,2 ∩ e1 ∩ e3. Here we perceive that we need the edge e2 = (X(1), Y(1))
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Figure 3.13. C̃i,j ∩ e1 ∩ e3
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Figure 3.14. Ci,i ∩ e1 ∩ e3

or e5 = (X(1),W(1)) in order to have connectivity. Since e2 and e5 are correlated, we

compute a lower bound considering only e5. Additionally, for the sake of simplicity,

we compute a lower bound for the probability of e5 assuming the worst case W(1) = ε,
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i.e., farthest away from the center. With this, we have

Pr(IT

con ∩ C̃1,2 ∩ e1 ∩ e3) ≥
∫ ε

0

fW(1)
(w) dw

∫ r

0

fY(1)(y) dy∫ 2ε

ε

fZ(1)
(z) dz

∫ r−ε

2ε

fX(1)
(x) dx (3.31)

The last integral in (3.31) corresponds to random variable X(1). Note that here we

restrict the domine of X(1) to maintain the edge e5 = (X(1),W(1)) given W(1) = ε, that

is, we originally have X(1) ∈ (2ε, 1] because of condition C̃1,2 ∩ e3, and afterwards we

restrict X(1) to a smaller interval, contained in (2ε, 1], given place to event e5. This

explains the integration intervals of (3.31).

We know that the p.d.f. of the first order statistic U(1) is fU(1)
(u) = µ(1 − u)µ−1

and
∫ j
i
k(1−u)k−1 du = (1−i)k−(1−j)k. This last expression represents the probability

of having the first order statistic of family {Uh}1≤h≤k within the interval (i, j), and it

is denoted by Dj
i (k). Then, we can rewrite the expression (3.31) as

Pr(IT

con ∩ C̃1,2 ∩ e1 ∩ e3) ≥ Dε
0(µ)Dr

0(µ)D2ε
ε (µ)Dr−ε

2ε (µ). (3.32)

For Pr(IT
con∩ C̃1,3∩e1∩e3) and Pr(IT

con∩ C̃2,2∩e1∩e3), we have a similar scenarios

as C̃1,2, as can be observed in Figure 3.13d and Figure 3.13b. Using the same approach,

we consider just e5 and obtain the following lower bounds

Pr(IT

con ∩ C̃1,3 ∩ e1 ∩ e3) ≥
∫ ε

0

fW(1)
(w) dw

∫ r

0

fY(1)(y) dy∫ r

2ε

fZ(1)
(z) dz

∫ r−ε

ε

fX(1)
(x) dx

= Dε
0(µ)Dr

0(µ)Dr
2ε(µ)Dr−ε

ε (µ), (3.33)

and

Pr(IT

con ∩ C̃2,2 ∩ e1 ∩ e3) ≥
∫ 2ε

ε

fW(1)
(w) dw

∫ 2ε

0

fY(1)(y) dy∫ 2ε

ε

fZ(1)
(z) dz

∫ r−2ε

2ε

fX(1)
(x) dx

= D2ε
ε (µ)D2ε

0 (µ)D2ε
ε (µ)Dr−2ε

2ε (µ). (3.34)

Figure 3.13e and 3.13f present a different scenario, with just one edge. Here, for

having connectivity we need at least two more edges, one of them connecting Z(1) to

Y(1), and other connecting X(1) to Y(1) or W(1). Observe that Z(1) can only connect
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to Y(1), since W(1) is not visible, and X(1) is not allowed because of condition e3. For

C̃2,3 we consider edge e5 and e6, obtaining a lower bound for the worst case fixing

Y(1) = 2ε and W(1) = 2ε. On the other hand, for C̃3,3 we only fix Y(1) = ε, to compute

the worst case probability of the edge (Y(1), Z(1)) simultaneously with the probability

of (X(1), Y(1)). With this approach, we have

Pr(IT

con ∩ C̃2,3 ∩ e1 ∩ e3) ≥
∫ 2ε

ε

fW(1)
(w) dw

∫ 2ε

0

fY(1)(y) dy∫ r−2ε

2ε

fZ(1)
(z) dz

∫ r−2ε

ε

fX(1)
(x) dx

= D2ε
ε (µ)D2ε

0 (µ)Dr−2ε
2ε (µ)Dr−2ε

ε (µ), (3.35)

and

Pr(IT

con ∩ C̃3,3 ∩ e1 ∩ e3) ≥
∫ r

2ε

fW(1)
(w) dw

∫ ε

0

fY(1)(y) dy∫ r−2ε

2ε

fZ(1)
(z) dz

∫ r

ε

fX(1)
(x) dx

= Dr
2ε(µ)Dε

0(µ)Dr−2ε
2ε (µ)Dr

ε (µ). (3.36)

Finally, in the last case we have Pr(IT
con ∩ C̃3,2 ∩ e1 ∩ e3) = Pr(e2 ∩ C̃3,2 ∩ e1 ∩ e3),

where e2 = (X(1), Y(1)) (see Figure 3.13c). Considering this, we have

Pr(IT

con ∩ C̃3,2 ∩ e1 ∩ e3) =

∫ r

2ε

fW(1)
(w) dw

∫ ε

0

fY(1)(y) dy∫ 2ε

ε

fZ(1)
(z) dz

∫ r

2ε

fX(1)
(x) dx

= Dr
2ε(µ)Dε

0(µ)D2ε
ε (µ)Dr

2ε(µ). (3.37)

Combining (3.32) to (3.37) into (3.30) and replacing in the second term of (3.28),

we obtain the second term of the general result of this theorem.

The next step is to derive the third term of (3.28). Considering partition P̃ε,r

on e1 ∩ e3, we obtain four cases with no isolated nodes, namely C̃2,2, C̃2,3, C̃3,2 and

C̃3,3 (see Figure 3.12d). Additionally, it is easy so perceive that it is not possible to

establish connectivity for C̃2,3 nor C̃3,2, then

Pr(IT

con | e1 ∩ e3) =

2∑
i=1

Pr(IT
con ∩ C̃i,i ∩ e1 ∩ e3)

Pr(e1 ∩ e3)
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Figure 3.14 presents the scenarios C̃2,2 and C̃3,3. For having connectivity under C̃2,2 ∩
e1 ∩ e3, we need internal edges (Y(1), Z(1)) and (X(1),W(1)). We can approximate this

probability, by considering the worst case W(1) = 2ε and Z(1) = 2ε, as follows

Pr(IT

con ∩ C̃2,2 ∩ e1 ∩ e3) ≥
∫ 2ε

ε

fW(1)
(w) dw

∫ r−2ε

2ε

fY(1)(y) dy∫ 2ε

ε

fZ(1)
(z) dz

∫ r−2ε

2ε

fX(1)
(x) dx

=
(
D2ε
ε (µ)Dr−2ε

2ε (µ)
)2
. (3.39)

Finally, as we can see in Figure 3.14b, we need internal edges (Y(1), Z(1)) and

(X(1),W(1)), and external edge (X(1), Y(1)) for grant connectivity under C̃3,3 ∩ e1 ∩ e3,
which leads to

Pr(IT

con ∩ C̃3,3 ∩ e1 ∩ e3) ≥
∫ 2ε

ε

fW(1)
(w) dw

∫ r−2ε

2ε

fY(1)(y) dy∫ 2ε

ε

fZ(1)
(z) dz

∫ r−2ε

2ε

fX(1)
(x) dx

=
(
D2ε
ε (µ)Dr−2ε

2ε (µ)
)2
. (3.40)

Adding up (3.39) and (3.40), we obtain the third term of (3.28), and this concludes

the proof.

We know, by the approximation strategy, that the bigger the segments’ width, the

bigger the error of Theorem 3 and, indeed, Figure 3.15 shows this phenomenon. Here we

visualize good approximations in all scenarios, and we also observe that approximations

slightly improve as we consider denser scenarios and bigger transmission ranges.

Besides the density and transmission range clearly affect the perceived error of

Theorem 3, it is really hard to determine the degree of influence of two aforementioned

parameters by observing Figure 3.15. Fortunately, it is possible to compute an upper

bound of this error by considering best cases for connectivity in all combinations of

partitions P̃e and P̃ε,r, and this is what we do in the following Corollary 1.

Corollary 1 (Upper bound for error in Theorem 3). The upper bound of the error in

Theorem 3 under the Triangular model, is given by

error ≤ 2
(
Dε

0(µ)Dr
0(µ)

[
D2ε
ε (µ)Dr

r−2ε(µ)

+Dr
2ε(µ)Dr

r−ε(µ)
]

+D2ε
ε (µ)D2ε

0 (µ)
[
D2ε
ε (µ)Dr

r−2ε(µ) +Dr
2ε(µ)Dr

r−2ε(µ)
]

+Dr
2ε(µ)Dε

0(µ)Dr
ε (µ)Dr

r−ε(µ)
)

+ 2D2ε
ε (µ)2

[
Dr−ε

2ε (µ)2 −Dr−2ε
2ε (µ)2

]
(3.41)
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con)

Proof. In the proof of Theorem 3, we give lower bounds for the second and third

summands of (3.28). The method for computing the lower bounds was to consider the

worst case positions for those nodes that belong to small intervals, fixing some nodes

to values as far as possible from the origin, while respecting the restrictions inherent

to the class within partition P̃ε,r.

We can compute upper bounds for those two summands of (3.28) similarly as
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done with the lower bounds considering, now, the best case positions. Let us start

with Pr(IT
con | e1 ∩ e3). Following the same strategy as in Theorem 3, we consider each

one of the nine term of (3.30) separately. As we showed in the proof of Theorem 3,∑3
i=1 Pr(IT

con ∩ C̃i,1 ∩ e1 ∩ e3) = 0. Let us consider Pr(IT
con ∩ C̃1,2 ∩ e1 ∩ e3). Observing

Figure 3.13a, we perceive that a tight upper bound can be obtained considering W(1) =

0 for the occurrence of edge e5. Then, using the same notation as in Theorem 3, we

have

Pr(IT

con ∩ C̃1,2 ∩ e1 ∩ e3) ≤
∫ ε

0

fW(1)
(w) dw

∫ r

0

fY(1)(y) dy∫ 2ε

ε

fZ(1)
(z) dz

∫ r

2ε

fX(1)
(x) dx

= Dε
0(µ)Dr

0(µ)D2ε
ε (µ)Dr

2ε(µ). (3.42)

For Pr(IT
con∩C̃1,3∩e1∩e3) we fix W(1) = 0 while computing the probability of edge

e5, and for Pr(IT
con∩ C̃2,2∩e1e3) we use W(1) ∈ [0, ε] (see Figure 3.13d and Figure 3.13b,

respectivelly). Considering this, we have

Pr(IT

con ∩ C̃1,3 ∩ e1 ∩ e3) ≤
∫ ε

0

fW(1)
(w) dw

∫ r

0

fY(1)(y) dy∫ r

2ε

fZ(1)
(z) dz

∫ r

ε

fX(1)
(x) dx

= Dε
0(µ)Dr

0(µ)Dr
2ε(µ)Dr

ε (µ). (3.43)

and

Pr(IT

con ∩ C̃2,2 ∩ e1 ∩ e3) ≤
∫ 2ε

ε

fW(1)
(w) dw

∫ 2ε

0

fY(1)(y) dy∫ 2ε

ε

fZ(1)
(z) dz

∫ r

2ε

fX(1)
(x) dx

= D2ε
ε (µ)D2ε

0 (µ)D2ε
ε (µ)Dr

2ε(µ). (3.44)

Observing Figure 3.13e we perceive that an upper bound can be obtained fixing

Y(1) = 0 while computing the probabilities of edges e5 and e6. On the other hand, Fig-

ure 3.13f shows that we can compute an upper bound fixing Y(1) = 0 while computing

the probability of edge e6. Consequently, tight upper bounds for Pr(IT
con∩ C̃2,3∩e1∩e3)
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and Pr(IT
con ∩ C̃3,3 ∩ e1 ∩ e3) are given by

Pr(IT

con ∩ C̃2,3 ∩ e1 ∩ e3) ≤
∫ 2ε

ε

fW(1)
(w) dw

∫ 2ε

0

fY(1)(y) dy∫ r

2ε

fZ(1)
(z) dz

∫ r

ε

fX(1)
(x) dx

= D2ε
ε (µ)D2ε

0 (µ)Dr
2ε(µ)Dr

ε (µ). (3.45)

and

Pr(IT

con ∩ C̃3,3 ∩ e1 ∩ e3) ≤
∫ r

2ε

fW(1)
(w) dw

∫ ε

0

fY(1)(y) dy∫ r

2ε

fZ(1)
(z) dz

∫ r

ε

fX(1)
(x) dx

= Dr
2ε(µ)Dε

0(µ)Dr
2ε(µ)Dr

ε (µ). (3.46)

The probability Pr(IT
con∩ C̃3,2∩ e1∩ e3) was computed in the proof of Theorem 3,

and the exact expression is given in (3.37).

Let L and L′ be the lower and upper bounds, respectively, for Pr(IT
con) under the

Triangular model. Then, an upper bound of the error is given by L−L′. Solving this,

we obtain (3.41).

Figure 3.16 shows the error curves for few combinations of ε and µ. Smaller values

of ε respect to r lead to smaller errors, as expected. Higher densities of nodes also are

better for decreasing the error. In all cases, we perceive that the error is almost null

when r is big enough.

3.2 Probability of Connectivity at Segments

As we described in the beginning of this chapter, we are interested in computing local

connectivity probabilities in both, segments and intersections. Problem 1 presented

the connectivity at intersections as the problem of determining the probability of con-

nectivity locally at intersection. This probability is used in next chapters as a building

block for characterizing connectivity in the overall network, in particular, for deter-

mining bounds on the visualization restrictions in order to grant connectivity. On the

other hand, we need also a characterization of connectivity at segments to have a com-

plete description of connectivity in the network. As the intention of this work is to

describe global connectivity in terms of local connectivity, we define the connectivity

at segments problem as follows.
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Figure 3.16. Upper bound for the error of probability of connectivity at cross-
roads under the Triangular model. The domain of these curves are

√
8ε ≤ r ≤ 1.

Problem 2 (Connectivity at Segments). The connectivity at segments problem consists

in determining the probability of having a unique connected component of µ nodes,

where these µ nodes are uniformly distributed at random over the line segment [0, 1].

We denote this probability by Pr(Scon).

Fortunately, this is a well know problem in ad hoc wireless networks theory. To

the best of out knowledge, the first exact solution of this problem was reported by Desai

and Manjunath [2002]. In that paper the authors consider a finite ad hoc network with

µ nodes distributed uniformly at random in the segment [0, z], where all nodes have

a transmission range r. Then, they expressed the probability of connectivity in the

network as the fraction of volumes of polytopes induced by the order statistics of all

connected networks and the order statistics of all feasible networks, respectively. With

this approach, they obtained

µ−1∑
i=0

(
µ− 1

i

)
(−1)i

(z − ir)µ

zµ
u(z − ir),
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where u(.) is the unit step function, defined by

u(t− a) =

{
0 if t < a,

1 if t > a.

We can now consider z = 1, and take the case i = 0 separately. Then, we obtain

1 +

min{µ−1,b1/rc}∑
i=1

(
µ− 1

i

)
(−1)i(1− ir)µ. (3.47)

At this point, we perceive that formula is not simple as we wish. We need an

expression able to be used inside of other complex functions, as we expect to be the

case for characterizing connectivity in the overall network.

Differently to Desai and Manjunath [2002], Ghasemi and Nader-Esfahani [2006]

considered a generalization of the connectivity problem. They were interested in com-

puting the probability of having at most C connected component in the network de-

ployed in [0, z], denoted by Pr(SCcon(z)). The authors’ strategy was to consider the

problem of random division of an interval, reported in Chapter 6 of David and Nagaraja

[2003]. Here, {Ui}µi=1 is a family of random variables uniformly distributed in the in-

terval [0, z]. They consider the order statistics 0 ≤ U(1) ≤ · · · ≤ U(µ) ≤ z, and define

∆i−1 = U(i)−U(i−1), for 0 ≤ i ≤ µ, where clearly U(0) = 0. If ∆(1) ≤ ∆(2) ≤ · · · ≤ ∆(µ−1)

denote the order statistics of the family of random variables {∆i}µ−1i=1 , then we have

Pr(SCcon(z)) = Pr
(
∆(µ−C) ≤ r

)
. Solving this, Ghasemi and Nader-Esfahani obtained

Pr(SCcon(z)) = 1−
min{µ−1,bz/rc}∑

i=C

(−1)i−C
(
i− 1

C − 1

)(
n− 1

i

)(
1− ir

z

)µ
. (3.48)

For the special case where C = 1 and z = 1, expression (3.48) is equivalent to the

previous result of Desai and Manjunath presented in (3.47). The difference with this

approach, is that we know that random variables {∆i}µ−1i=1 have identical distributions

and, assuming that they are approximately independent, we have

Pr(Scon) = Pr(∆(µ−1) ≤ r) ≈ Pr(∆0 ≤ r)µ−1.

This approximation improves as µ grows, and it is the core of the next result, expressed

in Theorem 4.

Theorem 4. Let {Xi}1≤i≤µ be a family of independent random variables, such that

Xi ∼ U(0, 1), denoting the positions of µ nodes in a segment. Let also r denote



3.2. Probability of Connectivity at Segments 51

the common transmission range of all nodes, where 0 ≤ r ≤ 1. The probability of

connectivity between all nodes is

Pr(Scon) = (1− (1− r)µ)µ−1 + δ

where δ → 0 when µ→∞.

Proof. See Ghasemi and Nader-Esfahani [2006].

Besides the convergence to null error happens when µ → ∞, results comparing

Theorem 4 with the exact theoretical solution of (3.48) and simulations in Ghasemi

and Nader-Esfahani [2006], the authors show that even for small values of µ (about

10) we have accuracy, specially for high probabilities.

Next chapter presents the CTR problem, formally, and we will approach this

problem using the two main building blocks we derived here; probabilities Pr(Scon)

and Pr(Icon).





Chapter 4

Overall Connectivity

We introduced in Chapter 1 several arguments in favor of considering TC techniques

in the design of wireless ad hoc networks. Here we adhere to the TC concept of Santi.

Informally, we consider TC to be the “art of coordinating nodes’ decisions regarding

their transmitting ranges, in order to generate a network with the desired properties

while reducing node energy consumption and/or increasing network capacity” [Santi,

2005a].

In homogeneous networks, which is the kind of networks we consider in this work,

the simplest TC technique consists in characterize the CTR. Characterizing the CTR

means to determine a common transmission range, for all nodes in the network, in such

a way that we reduce node energy consumption and increase network capacity while

maintaining an structural property. In this chapter we are interested in, probably, the

most important structural property: connectivity. We present the so-called CTR for

Connectivity, below, in Definition 1.

Definition 1 (CTR for Connectivity). Suppose n nodes are distributed in a region R.

The Critical Transmission Range (CTR) for Connectivity is the minimum transmission

range, denoted by rc, which induces a communication graph with a unique connected

component, including all the n nodes of the network.

With this definition of the CTR for connectivity we review, in the next Sec-

tion 4.1, the main results for open spaces without obstacles. Approaches and concepts

introduced in that section serve to have a better understanding of the methodology ap-

plied in Section 4.2, where we compute the CTR for connectivity under our obstructed

model, introduced in Chapter 2.

53
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4.1 CTR for Connectivity in Open Spaces

Independently of the model and/or scenario, solving the CTR for Connectivity requires

the knowledge of the position of each node in the network. As Santi [2005a] pointed

out, once we know all position of nodes, we can compute the CTR for Connectivity by

constructing an Euclidean Minimum Spanning Tree (MST) on the same set of nodes,

and then computing the length of the longest edge in the tree. With this approach,

as the network scales to bigger sizes the solution become impractical or not efficient in

the best case. Because of this, the usual treatment consists in considering a network

with n nodes deployed in a region R at random, which requires some probabilistic

formulations.

In a random scenario, we consider all possible instances of deployment on a canon-

ical region and according to some distribution. The typical assumption corresponds to

model each coordinate for one-dimensional, two- and three-dimensional networks, as

being uniformly distributed over the dimensions of the regions. For one-dimensional

networks, we consider the region R = [0, z], and nodes follow the uniform distribution

in that interval, i.e., Xi ∼ U(0, z) for 1 ≤ i ≤ n. In the case of two-dimensional

networks, the typical region considered by researchers is R = [0, z]2. Here, nodes’ co-

ordinates follow, independently, a uniform distribution. As a consequence, nodes are

positioned in the two-dimensional Euclidean space following a Poisson point process

conditioned to the amount of deployed nodes. This last conditioned distribution corre-

sponds, technically, to a Binomial distribution on [0, z]2. Finally, the three-dimensional

case is just an extension of the other two cases above.

From the aforementioned assumptions we perceive that it is not possible to find

the CTR for connectivity in agreement with Definition 1 while considering random net-

works. In other words, without knowing the exact position of all nodes it is not possible

to determine the CTR for connectivity. For instance, consider a one-dimensional net-

work with two nodes deployed uniformly at random in the interval [0, 1]. Each pair

of nodes deployed is a sample of the random network, and each sample will have a

particular CTR for connectivity corresponding to the distance between the two nodes,

or alternatively, corresponding to the length of the longest edge of the Euclidean MST

build on the pair of nodes.

Besides we just said that there is no CTR for connectivity for random networks,

it is possible to have a random approach for the CTR for connectivity by determining

the CTR for connectivity w.h.p.. In this sense, we are interested in the minimum

transmission range inducing connectivity w.h.p. in the overall network, that is, we

analyze the network as a random object, and we compute the CTR for connectivity as
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being a random event. Moreover, we are interested in characterize the conditions that

make this random event to occur w.h.p. in the random network. Since all interesting

results for the CTR in the literature are for random networks, we usually do not

find any distinction for this specific case, we just observe assertions saying that the

characterization corresponds to the CTR for connectivity. Nevertheless, it is important

to have in mind what we are characterizing; an event that occurs w.h.p. in a random

network. Technically, we say that a random event Ek, that depends on a parameter k,

occurs w.h.p. if limk→∞ Pr(Ek) = 1.

In random ad hoc networks, there are basically two approaches to compute the

CTR for connectivity: (i) we select a fixed d-dimensional deployment region with side

z and analyze the CTR for connectivity when n/zd → ∞, or (ii) we consider the

deployment region side z as a parameter, expressing the transmission range r and

network size n as a function of z and the nodes’ distribution, and we analyze the

CTR for connectivity when z →∞. Each one of these approaches has different levels

of difficulty, and also has different application restrictions. In the case (i), by fixing

the deployment region, we want to discover the expression rc = f(n, z, d) such that

limn/zd→∞ Pr(CTR = rc) = 1. Applying diverse techniques, but mainly Geometric

Random Graphs (GRGs) theory [Penrose, 2003], researchers found expression for rc

in d-dimensional networks deployed over [0, z]d, with d ∈ {1, 2, 3}. Nevertheless, all

those results grant Pr(CTR = rc) = 1 only for dense networks, since we only ensure

that the event of interest occurs when n → ∞. For one-dimensional dense networks,

the CTR for connectivity was reported by Santi [2005b]. He combined previous results

from Holst [1980] and Penrose [1997, 1999a], obtaining the CTR for connectivity in

[0, 1]:

rc =
log n

n
(4.1)

Penrose [1997] also analyzed the length of the longest edge in the Euclidean MST

induced by a Binomial deployment in [0, 1]2. From that result, it is possible to deduce

that the CTR for connectivity in the unit square is

rc =

√
log n+ f(n)

nπ
, (4.2)

where f(n) is a function such that limn→∞ f(n) = ∞. Santi [2005a] combined results

from Dette and Henze [1989] and Penrose [1999b], obtaining the CTR for connectivity

in [0, 1]3:

rc =
3

√
log n− log log n

nπ
+

3

2

1.41 + g(n)

nπ
, (4.3)
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where g(n) is a function as f(n) above, i.e. limn→∞ g(n) =∞.

On the other hand, the case (ii) considers a more flexible scenario, where the

side of the deployment region, z, is an independent variable. With this approach,

results hold for networks with arbitrary node density; not just for dense scenarios but

for sparse deployments as well. Santi and Blough [2003] applied occupancy theory

(see Kolchin et al. [1978]) to prove that for n nodes deployed uniformly at random in

[0, z], the CTR for connectivity is

rc = k
z log z

n
, (4.4)

where k is a constant with 1 ≤ k ≤ 2. The authors also analyzed two- and three-

dimensional networks and they partially proved the following proposition: for n nodes

deployed uniformly at random in [0, z]d, with d ∈ {1, 2, 3}, the CTR for connectivity is

rc = k
zd log z

n
, (4.5)

where k is a constant such that 0 ≤ k ≤ 2ddd/2+1.

Obstructed wireless ad hoc networks represent a totally different scenario, in com-

parison to open-space networks, and this new scenario requires a different approach.

The following section presents the derivation of the CTR for connectivity on the ob-

structed model proposed in Chapter 2, including an analysis of limitations in terms

scalability and application scenarios.

4.2 CTR for Connectivity on Obstructed Networks

Let us start by considering the percolation layer of Section 2.2. At first glance, it

is reasonable to associate, on the one hand, edges of the grid with segments in the

obstructed network and, on the other hand, to relate vertices of the grid with intersec-

tions in the obstructed network. Nevertheless, understanding the relationship between

connectivity in the obstructed network and percolation on the grid requires a little bit

more of effort.

As we commented previously, we adopt the concept of percolation on finite grids

of Franceschetti and Meester [2007], which defines percolation in this context as full

connectivity of all vertices of the grid (see Section 2.2).

Besides the mixed percolation model has two parameters, namely, the edge prob-

ability pb and the vertex probability ps, percolation in finite grids makes no sense for

ps < 1. This implies that under the obstructed network we need to ensure connectivity
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Figure 4.1. For big enough values of ε, connectivity at intersections is easier
than at segments

at intersections with probability ps → 1. This seems to be a strong restriction, but is

it? Let us analyze the implications.

The density of the network was defined, in the model, to be µ. By “density”

we mean to denote the expected amount of nodes in a unit space of the deployment

region of the network. Intervals at segments and intersections can be simplified to

obtain the canonical intervals [0, 1] and 0× [0, 1/2] ∪ [0, 1/2]× 0, respectively. We can

then compute, analytically, the distance between any two nodes on those two regions

and compare those distances. Nevertheless, it is not hard to perceive that distances

at intersections are shorter than distances at segments. We can observe this, in a

simplified way, by putting a thread of unity size on a table and then lifting one of

the extremes, perpendicularly to the table, in such a way that we obtain a x shape.

Clearly, every interval included in the half of thread that is now in the air, is closer to

the other part of the thread, the one that still is having rest on the table.

At intersections, independently of the Max-Norm, Euclidean or Triangular mod-

els, we have two requirements to meet connectivity between nodes: (i) distance below

the common transmission range r and (ii) visibility. As we notice above, distances at

intersections are shorter than distances at segments. Additionally, we also know that
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big values of ε warrant visibility.

Figure 4.2 shows empirical results about the required transmission range for con-

nectivity at intersections, while using big values of ε, under the Max-norm (represented

by red plus signs) and Triangular (denoted with blue triangles) models. We compare

this with the required transmission range for having connectivity in the overall network,

represented with black balls in the figure. Notice that this last transmission range cor-

responds to the CTR for connectivity. Here, we perceive that Pr(Icon | r = rc−∆) = 1

for ∆ > 0, in both, the Max-Norm and Triangular models. Moreover, we observe that

the CTR for connectivity does not depend on the intersection model.

These elements allow us to think that restricting ps → 1 is not a limiting condition

when we look for connectivity in the overall network. Nevertheless, it is necessary to

reveal which values of ε are big enough or, similarly, which is the minimum value

of ε, denoted by εc (critical ε), that grants ps → 1 according to different settings of

transmission range (r) and density (µ).

Theorems 2 and 3, presented in Chapter 3, offer a starting point toward the

characterization of εc under the Max-Norm and Triangular models, respectively. Those

theorems compute Pr(Icon) in terms of the transmission range r, the density µ and the

visibility parameter ε. Defining F (ε, r, µ) = Pr(Icon), we can compute the critical ε by

εc = lim
q→1−

F−1(q; r, µ), (4.6)

where F−1(.) is the inverse cumulative distribution function for F (.), i.e. the quantile

function for F (.).

Theorem 5 presents the CTR for connectivity under the obstructed network

model, independently of the intersection model adopted. We denote the value of the

CTR for connectivity by rc. Theorem 5 considers that ε is large enough, and that the

lower bound for ε is determined by εc according to (4.6).

Theorem 5. Let N be a set of n nodes deployed uniformly at random in a lattice

square of granularity g in the area [0, g − 1]2, with segments’ width 2ε. Let also µ

be the expected quantity of nodes per segment. The Critical Transmission Range for

Connectivity, denoted by rc, is

rc =
ln
(
ga+1/2

)
+ ln(µ− 1)

µ

for a > 0, whenever ε ≥ εc.

Proof. Let us abstract the connectivity problem using a bond percolation model within
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a random grid of g × g vertices. Here, each vertex corresponds to an intersection in

the lattice square and each edge corresponds to a segment. In the percolation model,

each edge occurs with probability pb.

We know, from Theorem 4, the probability of connectivity at segments, which

in the abstraction corresponds to pb. Additionally, we know that the probability of

connectivity at intersections Pr(Icon), which in the abstraction corresponds to ps, must

approximate to one.

Franceschetti and Meester [2007] already studied the rate of convergence of pb in

order to meet percolation in a finite lattice square of g × g. They found that pb must

scale slightly faster than
√
g in order for the random grid to be fully connected w.h.p.,

which means that pb = 1 − Cg/
√
g guarantees connectivity w.h.p. if and only if the

sequence Cg → 0 when g →∞.

Considering the modeling presented in Chapter 2, from Theorem 4 we have

pb = (1− (1− r)µ)µ−1 , (4.7)

while from Franceschetti and Meester [2007] we know it is necessary the convergence

rate

pb = 1− Cg√
g
, (4.8)

with Cg → 0 when g → ∞, in order to have percolation in the finite g × g square

lattice. Alternatively, we can express the result of Franceschetti and Meester [2007] by

considering bond percolation under the random graph Gg and write

lim
g→∞

Pr

(
Gg percolates

∣∣∣∣ pb = 1− Cg√
g
∧ Cg → 0

)
= 1.

Let Ncon be the event denoting connectivity in the overall network, with density µ,

deployed in a grid with granularity g and segments’ width bigger than 2εc. Putting (4.7)

and (4.8) together, we can then obtain the CTR for connectivity, rc, implicitly:

lim
g→∞

Pr

(
Ncon

∣∣∣∣ 1− Cg√
g

= (1− (1− rc)µ)µ−1 ∧ Cg → 0

)
= 1. (4.9)

The conditional part of (4.9) establish the necessary and sufficient requirements for

meet connectivity w.h.p. in the network. Since we are interested in the CTR for

connectivity, we proceed in the next steps to write these conditions making rc explicit.



60 Chapter 4. Overall Connectivity

We can start by applying the ln(.) function and simplify as follows:

ln

(
1− Cg√

g

)
= ln

(
(1− (1− rc)µ)µ−1

)
,

ln
(

1− Cg√
g

)
µ− 1

= ln(1− (1− rc)µ). (4.10)

It is well knwon that the Maclaurin series representation for ln(1 − x) is
∑∞

i=0
−xi
i

.

Then, applying Maclaurin series on ln(.) for both sides of (4.10), we obtain

∑∞
i=1−

(
Cg√
g

)i
i

µ− 1
=
∞∑
i=1

−(1− rc)iµ

i
. (4.11)

It is reasonable to take just the first term of the series for values that are not close to 1.

This is even more reasonable to apply in (4.11), since the elimination of terms occurs

on both sides, achieving balanced approximations. Assuming the errors as being small

enough to not be considered, we write

− Cg√
g(µ− 1)

= −(1− rc)µ.

In order make explicit rc, we apply ln(.) and solve as follows:

− ln

(
Cg√

g(µ− 1)

)
= − ln ((1− rc)µ) ,

− ln

(
Cg√

g(µ− 1)

)
= −µ ln (1− rc) . (4.12)

At this point, before split the left side of (4.12), we define Cg = 1
ga

. Clearly,

limg→∞
1
ga

= 0, and depending on a we can customize to different convergence speeds.

From (4.12) we proceed applying the definition of Cg above, and also using the Maclau-
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rin series approximation as before. Then, we have

− ln

(
1
ga√

g(µ− 1)

)
= −µ ln (1− rc) ,

− ln

(
1

ga+1/2(µ− 1)

)
= µrc,

−
(
ln 1− ln

(
ga+1/2(µ− 1)

))
= µrc,

ln
(
ga+1/2

)
+ ln(µ− 1)

µ
= rc. (4.13)

Note that (4.13) corresponds to the CTR for Connectivity whenever connectivity at

intersections is guaranteed, i.e., when ε ≥ εc. Then, replacing (4.13) on (4.9), we have

lim
g→∞

Pr

(
Ncon

∣∣∣∣∣ rc =
ln
(
ga+1/2

)
+ ln(µ− 1)

µ
∧ ε ≥ εc

)
= 1,

and this finish the proof.

So far we computed the CTR for connectivity, rc, and determined the validity for

ε ≥ εc. Recall that, according to (4.6), the critical value εc is defined as the minimum

value of ε that warrant connectivity w.h.p. at intersections.

Notice that we are interested specifically in determining the value of εc in the

context of the CTR problem. Then, by setting the transmission range to at least

rc, we are sure that the condition of distance holds for connecitivy at intersections

(see Figure 4.2). Consequently, we need only to check the visibility condition for

connectivity at intersections, since the distance condition for connectivity is warranted

while using r ≥ rc. In particular, assuming r = 1 will allow us to find the relationship

between the density µ and ε, and this will give us an upper bound for εc.

Let us start by the Max-Norm model. Theorem 2 showed us that

Pr(IMN

con) ≥ p2 + 2Dε
0(µ)Dr

ε (µ)Dr−ε
ε (µ) [Dr

0(µ) +Dr
ε (µ)] ,

where Dj
i (k) = (1 − i)k − (1 − j)k and p = pMN

⊥ (µ). Applying substitution r = 1, we

have

Pr(IMN

con) ≥ pMN

⊥ (µ)2 + 2 (1− (1− ε)µ) (1− ε)µ ((1− ε)µ − εµ) (1 + (1− ε)µ) . (4.14)
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Additionally, by Lemma 2, we now that

pMN

⊥ (µ) = 2 (1− (1− r)µ) (1− (1− ε)µ)− (1− (1− ε)µ)2 .

Then, we apply also substitution r = 1, and solve

pMN

⊥ (µ) = 2 (1− (1− ε)µ)− (1− (1− ε)µ)2 ,

= 1− 2(1− ε)2µ + (1− ε)4µ. (4.15)

Finally, replacing (4.15) into (4.14) and solving, we obtain

Pr(IMN

con) ≥ 1− 2εµ(1− ε)µ + 2εµ(1− ε)3µ − (1− ε)4µ. (4.16)

The inequality in (4.16) does not allow us to find an expression for the critical

value εc, because it represents just a lower bound for Pr(IMN
con) and consequently there is

no warranty to find reasonable values of µ and ε such that Pr(IMN
con) = 1. Nevertheless,

it is possible to tackle this problem by assuming a small error of β in the lower bound

for Pr(IMN
con), and then we computationally solve

Pr(IMN

con)− β = 1− 2εµ(1− ε)µ + 2εµ(1− ε)3µ − (1− ε)4µ. (4.17)

In a similar manner, we can obtain a characterization of the critical value εc for

the Triangular model. From Theorem 3 and Lemma 3, assuming a small error β̃, we

have

Pr(IT

con)− β̃ = (1− 2ε)4µ − 4(1− 2ε)3µ [(1− ε)µ + (2ε)µ] + 2(1− 2ε)2µ
[
2(2ε)2µ

+2(1− ε)µ(2ε)µ − (1− ε)2µ
]

+ 2(1− 2ε)µ
{

(1− ε)µ
[
2(2ε)µ − 3(2ε)2µ − εµ

]
+(1− ε)2µεµ − (2ε)2µ

}
+(1−ε)2µ

[
(2ε)2µ + 2εµ − 4(2ε)µ

]
+2(1−ε)µ

[
(2ε)2µ − εµ

]
+1.

(4.18)

We implemented (4.17) and (4.18) in the R platform and obtained, for each model

and different densities, the minimal value of ε for which the requirement Pr(Icon) = 1

holds. Each minimal value ε corresponds, then, to the respective critical value εc.

Figure 4.2 presents different critical values for β = β̃ = 0.02, according to specific

densities. The horizontal axis corresponds to the density and the vertical axis to the

critical value εc. Red plus signs and blue triangles correspond to the Max-Norm and

Triangular models, respectively.

We perceive from Figure 4.2 that in case of low density, the critical value εc for
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Figure 4.2. Critical value εc, according to the density µ, for the Max-Norm and
Triangular models

the Triangular model is less than half of the critical value εc for the Triangular model.

This difference diminish gradually as we approach big densities and has a common

infimum at µ =∞, equivalent to zero.

We already know the values of ε (those ε ≥ εc) that validate the result of Theo-

rem 5. Consequently, we are able then to set up the scenarios for testing the theoretical

CTR for connectivity through Monte Carlo simulation. Figure 4.3 presents ECDFs for

the CTR for connectivity under different network sizes and densities, using the critical

value εc for the Max-Norm and Triangular models. In both cases the result is the same,

as expected, since the CTR for connectivity does not depend on the ε parameter. Here,

we denoted the theoretical CTR for connectivity of Theorem 5 by a horizontal red line.

In particular, we use a = 1, which warrants a fast convergence for relatively small

grids. We observe that the denser the scenario, the stronger the phase transition.

Although it is not possible to visualize it in Figure 4.3, we expect to have longer

phase transitions as we handle with bigger grids, even increasing the amount of nodes

in order to maintain the density at a particular µ. We expect the aforementioned

behavior simply because big values of granulatity (g) bring variance to the deployment

of nodes, and this generate variance in the CTR for connectivity.
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Figure 4.3. ECDFs and analytical CTRs

4.2.1 Scalability

Theorem 5 describes the CTR for connectivity in term of the granularity g and density

µ. This transmission range, denoted by rc, corresponds to the minimal transmission

range that warrants connectivity w.h.p. in the overall network. Nevertheless, it is not

unusual to have technological and/or market restrictions on the settings of wireless

devices, invalidating the usefulness of the theorem. Alternatively, we can think about

the transmission range as a constant α and determine, afterwards, the scalability of

the network in terms of size.

It is clear at this point that when g → ∞ an infinite amount of connected

components emerges, independently of the value of α. More technically, denoting

the distance between two consecutive nodes in the line by ‖X(i) − X(i+1)‖, the event

‖X(i) −X(i+1)‖ > α, for a fixed i, is a rare event. Notice that this holds because, even

for big values of α, the event above occurs with positive probability, probably near
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zero, but still positive. Then, applying the second Borel-Cantelli lemma1 we have an

infinite amount of i’s such that ‖X(i) − X(i+1)‖ > α, obtaining an infinite amount of

connected components in the network induced by setting the transmission range to α.

As a consequence, for a fixed value of α, we have a restriction on values for g and µ.

More specifically, big values of g require much more higher values of µ.

In general, by fixing the transmission range to α we are obligated to maintain

an equilibrium between granularity and density. The harmonious relationship between

these two parameters is given by the result of Theorem 5. From there, we have

α =
ln(ga+1/2) + ln(µ− 1)

µ
,

exp{µα} = ga+1/2 (µ− 1) ,(
exp{µα}
µ− 1

) 2
3

= g, (4.19)

whenever we use the convergence factor a = 1.

Expression (4.19) give us an upper bound for the granularity according to the

transmission range α and density µ. To visualize it properly, let us take as example

α ∈ {0.3, 0.4, 0.5} and 5 ≤ µ ≤ 30. Figure 4.4 shows three curves corresponding to the

upper bound, in each case, for the granularity g. We plot the relationship as continuous

curves, but it is important to highlight that both, the density µ and granularity g, are

discrete variables and has sense only under those conditions.

We perceive, through Figure 4.4, that extremely low-power radio devices are

not suitable for medium to high scale homogeneous networks. As an example, let us

make the assumption that each segment in the grid represents 100 meters in an urban

scenario. We observe that a network with nodes configured to transmit up to 30 meters

requires a dense deployment, about 30 nodes per segment, to be able to scale in size

up to a grid of 42 × 42 while maintaining connectivity. In return, if we are able to

give little more of power to nodes achieving a transmission range of 40 meters, with

the same density above, we are able to maintain connectivity w.h.p. in much bigger

scenarios, with granularities up to 315.

We just observed that small variations in the configuration of transmission range

have high impact on the scalability of connectivity. This phenomenon occurs not

just in the cases pictured in Figure 4.4, but in all cases included in the expression

of Theorem 5. To understand this behavior, it is necessary to know how the unique

1The second Borel-Cantelli lemma states that if the events En are pairwise independent and the
sum of the probabilities on the En diverges to infinity, then the probability that infinitely many of
them occur is one.
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Figure 4.4. Relation between density and the upper bound for the granularity
for three values of α

connected component of the network emerges as we increase the transmission range.

With this knowledge we can observe the price we are paying for connecting the last

two connected components in order to have connectivity in the overall network. If we

are connecting with this last link two big connected components, then it is worth to

pay this with extra resources (e.g. energy), otherwise, we can relax the connectivity

requirement to γ-almost connectivity [Franceschetti and Meester, 2007], that is, to

ensure connectivity to γ × 100 percent of the nodes in the network, or equivalently, to

contain γ × 100 percent of nodes in the Giant component.

Figure 4.5 presents interesting evidence of how connectivity emerges as we in-

crement the transmission range of nodes. We show two different measures: (i) the

normalized quantity of connected components in the network, and (ii) the normalized

size of the Giant component. We observe in this figure that the Giant component grows

to a unique connected component very fast, and this phenomenon becomes faster and

faster as we increment the density µ. Note that when the Giant component starts to

grow, the proportion of connected components diminishes considerably. This implies

that it is rare to have isolated nodes and a big Giant component in the same network.
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Chapter 5

Final Remarks

In this work, we proposed and analyzed an alternative model for obstructed wireless

networks, based on a grid structure of one-dimensional segments and two-dimensional

intersections. This model provides a realistic representation of different network sce-

narios with obstacles and, at the same time, allows us to perform analythical char-

acterizations, partly based on percolation theory and partly based on basic geometry.

We analyzed three different approaches for modeling the geometric part of the net-

work and derived tight bounds for probabilities of local connectivity at segments and

intersections.

Initially, the result of Theorem 1, that computes a lower bound for Pr(IMN
con), was

published in Almiron et al. [2012], together with a first version of the CTR for Connec-

tivity presented in Theorem 5. Knowing about the difficulty for computing Pr(ILS
con),

we proposed the Triangular model in Almiron et al. [2013], offering additionally a lower

bound for Pr(IT
con). The tight lower bound of Theorem 3, considering all correlations

while computing Pr(IT
con) was published in Almiron et al. [2014].

At this point, in Almiron et al. [2013], we added the convergence parameter, de-

noted by a, to the CTR for Connectivity, obtaining the result presented in Theorem 5.

Notice that this result is definitive in the sense that does not depends on any visibility

rule. In other words, if we consider other visibility rules or even if we take into consid-

eration other elements (e.g. reflections on obstacles), the CTR for Connectivity does

not change, it remains the same as presented in Theorem 5. What does change, in

case more realistic visibility rules are added, is the critical value εc. The procedure for

computing the critical value εc in any model was presented in Chapter 4, and it allows

to compute new values of εc from an expression characterizing Pr(Iψcon) for any given

geometrical visibility criterion ψ.

We performed a study of the scalability of obstructed networks within the pro-

69
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posed model and developed analytical methods to determine the possibility of obtaining

connectivity with w.h.p. in homogeneous network topologies for specific combinations

of characteristics, such as segments’ width, the grid size and the technological limit

of maximum transmission range. With that, we characterized scenarios that defy the

limits of homogeneous network topologies and showed that, in sufficiently large net-

works deployed in obstructed environments with constrained segments’ width or radio

transmission range, it becomes necessary to make use of alternative topologies, such

as, for example, heterogeneous topologies with auxiliary backbones of base stations

connected by a wired network.

There is a number of possibilities for other future work based on our results.

One might compute other connectivity properties, such as almost-connectivity and k-

connectivity, and characterize several network properties, such as degree distribution

of nodes. Such characterizations can assist in designing new topology-aware network

algorithms. An interesting extension would be to look at other kinds of regular lattices

to replace the underlying grid structure that we used.

Additionally, the PhD candidate has collaborated with some scientific

works [Almiron et al., 2010; Ramos et al., 2010; Vieira et al., 2011], during the course,

that even when they are not directly related to the main subject of this thesis, con-

tributed to the maturity of ideas herein included.
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