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Resumo

A disponibilidade ubiqua de tecnologia computacional, c@martphones, tablets e outros
dispositivos facilmente portateis, bem como a adoc¢ao nalidéi sites de redes sociais tor-
nam cada vez mais possivel estar conectado e compartiltlas die forma continua para
o processo de publicacdo de informagdes massivamentieulido chamado rede de sensor
participativo (RSP). Neste cenario, as pessoas agem careorss sociais, voluntariamente
fornecendo dados que capturam as suas experiéncias deidi@da € oferecendo diversas
observacgdes, tanto no mundo fisico (por exemplo, locd@l@pguanto no mundo on-line (por
exemplo, eventos). Esta grande quantidade de dados spodes fornecer novas formas
de informacdes valiosas que ndo estdo disponiveis no momemsta escala, utilizando
métodos de coleta de dados tradicionais, e podem ser usadasiplhorar 0s processos
de tomada de decisdo. Nesta tese, mostramos que RSPs, ppi@®as derivadas do In-
stagram, Foursquare, e Waze podem atuar como valiosas fieteensoriamento em larga
escala, proporcionando acesso a caracteristicas impEs@mcomportamento social urbano
de forma mais rapida do que os métodos tradicionais.

O objetivo desta tese € a compreensao das propriedades de R8Btrar como elas
podem ser usadas para o estudo da dindmica de cidades e dortaomgnto social urbano.
Noés estudamos redes de sensor participativos derivadosedentdes sistemas, e demon-
stramos como modelar e extrair conhecimento a partir dd&agyrma individual e simul-
taneamente. Nossos resultados mostram que PSNs tém oipbtentornarem-se ferra-
mentas fundamentais para apoiar analises em larga gracala es(quase) tempo real dos
diferentes aspectos da dinamica de cidades e do compottasuamal urbana.

Palavras-chave:Sensoriamento participativo, midia social, big data, sesteciais moveis,
dindmica de cidades, comportamento social urbano.

XV






Abstract

The ubiquitous availability of computing technology sushsmartphones, tablets and other
easily portable devices, and the worldwide adoption ofaautworking sites make it in-
creasingly possible for one to be connected and continyalre data to this massively
distributed information publishing process called pgpatory sensor network (PSN). In this
scenario, people act as social sensors, voluntarily prayidata that capture their daily life
experiences, and offering diverse observations on botpltijisical world (e.g., location) and
the online world (e.g., events). This large amount of sod#da can provide new forms of
valuable information that are currently not available, tas tscale, by any traditional data
collection methods, and can be used to enhance decisiomgipkacesses. In this thesis we
show that PSNs, for instance those derived from Instagramrs§uare, and Waze can act
as valuable sources of large scale sensing, providing stogmportant characteristics of
urban social behavior much more quickly than traditionalhrods.

The goal of this thesis are the understanding of properfiesol, and show how they
can be used to the study of city dynamics and urban sociavimeh&Ve study participatory
sensor networks derived from different systems, and detradeshow to model and extract
knowledge from them, individually and concurrently. Ousuks show that PSNs have the
potential to become fundamental tools to support largeesziadl near real time analyses of
different aspects of dynamics of cities and urban sociahtiein.

Palavras-chave:participatory sensing, social media, big data, mobileaawtworks, city
dynamics, urban social behavior.
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Chapter 1

Introduction

1.1 Motivation

At the beginning, there were mainframes, shared by a lot oplge Then came the per-
sonal computing era, when a person and a machine have a elasenship with each
other. Nowadays we are witnessing the beginning of the utoigsi computing (ubicomp)
era, when technology recedes into the background of ous [Weiser and Brown1996
Krumm, 2009.

Mark Weiser, in his classical article entitled “The compufer the 21st cen-
tury” [Weiser 1991], popularized the concept of ubiquitous computing, whickigions
the availability of a computing environment for anyone, \@hgre, and at any time. It may
involve many wirelessly interconnected devices, not jutitional computers, such as desk-
tops or laptops, but may also include all sorts of objects emtties such as pens, mugs,
phones, shoes, and many others. Although this is not thigyrgat, much has been done in
this direction in the past 20 years after the publication eid&r’'s seminal paper, and the key
ingredients are evolving in a favorable direction for it. $8bve, for example, the increasing
number and popularization of numerous types of portablé&cdsy

A fundamental step to achieve Weiser’s vision is to senseetiveonment. The re-
search in wireless sensor networks (WSNs) has providedaewels, techniques and al-
gorithms to solve the problem of sensing in limited size sresaich as forests or facto-
ries [Yick et al., 2008 Akyildiz et al., 2003. However, traditional WSNs have their limi-
tations, for example the high costs related to achieve \emgel coverage spaces, such as
metropolises size areas. Consider, for instance, theertygs to build and maintain such
networks.

Mobile phones play a fundamental role in today’s technaally-advanced commu-
nity allowing people to communicate (almost) anywhere mworld and share all kinds of

1
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contextual information (e.g., location and opinion). Modenobile phones, nhamely smart-
phones, are the new frontier for accessing the Internetlamd\orld Wide Web. They are
being manufactured with an increasing number of powerfubesided sensors of different
categories (e.g., GPS, accelerometer, microphone, camgya@scope), enabling a variety
of new applications and services. Indeed, smartphoneseang lised for many personal
sensing applications, such as for monitoring physical@ses, and for wide participatory
sensing systems, which are not limited to a particular iidial (e.g., traffic conditions and
noise pollution) Lane et al.2010.

Participatory sensing systems (PSSs), such as InstagRoursquare Wazé€, and
Weddaf, combine features of online social networks with locati@sed services. This type
of system has started to create new virtual environmentgritegrate the user interactions
and, probably because of that, are becoming very populaexXample, in 2013 Foursquare
reported 40 million userdfoursquarg2013, Instagram 150 million userdistagram2013,
and Waze 50 million user&goel 2013.

PSSs have been driven by one important aspect: the infeemtie users share, in
particular location-related informatiorSinith et al, 2005. From a participatory sensing
system, it is possible to derive a participatory sensor ask(PSN) Burke et al, 2004. In
this type of network, the users’ mobile device plays an ingratrrole. Individuals carrying
these devices are able to sense the environment and shewantabbservations. Thus, each
node in a PSN consists of a user with a mobile device. Each R&MNdes access to data
related to certain aspects of a pre-defined geographicrrefar instance, in a PSN derived
from Waze, users report traffic conditions, in the one derifrem Foursquare, users can
share their actual location associated with a specific oayagf place (e.g., restaurant).

Participatory sensor networks enables the observatiotieafctions of hundreds mil-
lions of people in large scale urban areas in (near) real eintkover extended periods of
time. This opens an unprecedented opportunity to revaligeothe way social science is
done. Unlike traditional methods that rely on survey da&y techniques can be designed
to exploit participatory data, which is much cheaper, moyeaghnic as it reflects current
situations in (near) real time, and, more important, cailyeesach planetary scale. More-
over, as we argue here, such participatory sensing applsanay have the potential to be a
fundamental tool to better understand human urban inferact the future, leveraging our
awareness to different aspects of our lives in urban saanari

http://www.instagram.com.
2http://www.foursquare.com.
Shttp://lwww.waze.com.
“http://www.weddar.com.
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1.2 Obijective

The main objective of this thesis is to answer the questicam ®e use PSNs to perform
large scale and near real time study of city dynamics andwsbaial behavior? To that end,
a fundamental step is understand the properties of paataip sensor networks. We aim to
analyze PSNs derived from different systems. After that,gmal is to show how to model

and extract knowledge from PSNs, individually and conauttye Thus, we tackle the main

objective of this thesis answering three different questio

e What are the properties of PSN?Despite the concept of participatory sensor network
be relatively old, coined in 200@urke et al, 2004, very few properties of this type
of network are known. With that, our goal is to investigate finoperties of PSNs in
order to understand its challenges and usefulness;

e How can we use PSNs?Our goal here is use the properties we extract from the
analysis process to the design of techniques and methddsltmgthe study of city
dynamics and urban social behavior. First, we want a modelahables the knowl-
edge extraction from a PSN individually. Based on this motihal aim is to propose
techniques and methodologies to demonstrate the usesuifiésSNs to the study of
city dynamics and urban social behavior;

e Can we combine data from different PSNs to infer new informaton? Data from
different PSNs can be considered as “sensing layers”, giroyidata on various as-
pects of a predefined geographic region. Given that, our wiggctive is to show the
usefulness of using multiple PSNs to the extraction of néarmmation. For that, we
aim to define the concept of sensing layers. Next, we envigierproposition of a
framework that enables the analysis and exploration ofiplaliayers simultaneously.
Finally, we aim to present applications that use the progp&rsenework.

1.3 Contributions

Our main contributions can be summarized in:

1. Characterization and analysis of participatory sensor netvorks properties: We
have characterized and analyzed properties of three eliffelypes of PSNs: (1)
photo sharing services, particularly Instagram; (2) lmcasharing services, partic-
ularly Gowalla, Brightkite, and Foursquare; (3) and traffiert services, particularly
Waze. Among the results, we showed the planetary scale séthetworks, as well as
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the highly unequal frequency of data sharing, both spgitaild temporally, which is

highly correlated with the typical routine of people. Sutla@acterization provided us
with a deeper understanding of the properties of those P&Mkrevealed their great
potential to support studies on city dynamics and urbanasdahavior, motivating

then the proposition of techniques in this direction;

. Applicability of single PSNs: From the results obtained in the characterization stage,
we propose different methods and techniques that captweradeaspects of urban
areas, such as people’s routines, cultural traits, poinisterest, economical partic-
ularities, etc. These proposed methods and techniquesrdte how PSNs can be
exploited to enable large scale and near real time analysgty alynamics and urban
social behavior;

. Definition, modeling, and application of PSNs as sensing lays: We define the
concept of sensing layers, which represent data from diftgd? SNs, each one enabling
the access of data related to a certain aspect of the cityngeeraf fruitful opportunities
may emerge from this idea, because as each layer repregqamtsshview of the city,
their aggregation can provide a deeper understanding divith this in mind, we
propose a framework for integrating multiple sensing layarhich can be applied to
more sophisticated services than services based on a &ggle Finally, we present
applications that illustrate the use of the proposed fraonkwand the potential of using
multiple sensing layers.

The results for the Contribution 1 were reported in the feitgy publications:

In [Silva et al, 20128, we perform the first analysis of PSN properties. The PSNs
analyzed were derived from location sharing services (Hawad Brightkite);

In [Silva et al, 20134, we extended the workSjilva et al, 20121 analyzing also two
different PSNs derived from Foursquare, a popular locataring service;

In [Silva et al, 20134 (2nd best paper award and [Silva et al, 2013d, we investi-
gate properties of a PSN derived from Instagram, a photorghaervice;

In [Silva et al, 20131, we study properties of a PSN derived from Waze, a popular
traffic alert system.

The results for the Contribution 2 were reported in the feitgy publications:
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¢ In [Silva et al, 2012 (Best paper award, we propose a technique that provides a
visual summary of the city dynamics based on the movementglafiduals. An ex-
tended version Jilva et al, 20144, got accepted in the ACM Transactions on Internet
Technology (to be published in the second semester of 2014);

e In [Silva et al, 2013d, we propose a technique for point of interest (POI) idecdHi
tion, which is also able to extract sights out of the iderdifROls;

e In [Silva et al, 20134, we survey models and approaches applied in PSNs to support
different applications and techniques;

e In[Silva et al, 20144, we propose a new methodology for identifying cultural bdu
aries across populations using self-reported culturdepeaces recorded in PSSs.

The results for the Contribution 3 were reported in the fwitgy publications:

e In[Silva et al, 20134, we perform a comparative study of different PSNs derivedf
Instagram and Foursquare, and verified if they can compleesah other;

e In[Silva et al, 20144, we, among other things, introduce the concept of senayers
used in this work;

e In [Silva et al, 20144, we formalize the concept of sensing layers, presentsrada
work for working with multiple sensing layers, and also #ititates the potential of the
joint use of multiply sensing layers through two applicato An extension of this
work is under revision in the ACM International ConferengeModeling, Analysis
and Simulation of Wireless and Mobile Systems, where wegmtasiore details about
the proposed framework and the applications illustrated.

1.4 Work Organization

The rest of this document is organized as follows. Chaptpresents in Sectiog.1 the
concept of ubiquitous computing, showing its definitioni®e 2.1.1), discussing its cur-
rent state (Sectio.1.2 and also presenting the concept of context aware comp(Siac-
tion 2.1.3, which is a central piece of ubicomp. This chapter presailsis, in Sectior?.2,
related studies, discussing the approaches and modeldaisg&ttact and generate context
information from PSNs data in order to study city dynamicd arban social behavior.
Chapter3 discusses the participation of humans in the sensing ppcesering par-
ticularities of participatory sensor networks (Sect®t). Besides that, this chapter, in Sec-
tion 3.2 also discuss the challenges that emerge when dealing ®Nis PChapted studies
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the properties of participatory sensor networks derivethflocation sharing services, photo
sharing services, and traffic alert services in Sectbis4.2, and4.3 respectively. Sec-
tion 4.4 characterizes two distinct PSNs derived from Foursquadéwo from Instagram. It
compares these PSNs to investigate whether they can compleach other, or if they are
compatible to study the dynamics of cities and urban so@hhkbior. Finally, Sectiod.5
discusses the chapter’s results.

Chapter5 discusses proposed techniques and applications thatiteRSis to foster a
deeper understanding of relevant aspects related to aigrdics and urban social behavior.
Section5.1 presents a technique called City Image, which provideswal/summary of the
city dynamics based on people movements. Se&iddiscusses other possibilities to better
understand city dynamics through people movements. $ebt®presents a technique to
extract points of interest in the city. Secti®¥ discuss possibilities to use PSNs to the
analysis of social and economic aspects of city’s inhalstaBectiorb.5 motivates the use
of participatory sensing systems to the study of culturtiecknces. Sectiob.6 discusses
the chapter’s results. methodology to identify culturalbdaries.

Chapter6 is dedicated to the discussion of the concept of sensingdaygectiors.1
defines the concept of sensing layers and proposes a frakésororking with sensing
layers. Sectiol®.2discusses how to process sensing layers, defining exanfppsm@tions
that can be applied to sensing layers, as well as stratef@eaessing using the proposed
operations. Sectiof.3 presents some proposed applications that illustrate ttenpal of
using sensing layers. Finally, Chaptepresents the conclusions and future work.



Chapter 2

Background

2.1 Ubiquitous Computing

Modern computing can be divided into three eras. The firsharacterized by one sin-
gle computer (mainframe) owned by an organization and usgechdny people concur-
rently. In the second era, a personal computer (PC) is ysaalhed and used by a sin-
gle person. In the third era, ubiquitous computing (ubichneach person owns and uses
many computers, especially small networked portable @svguch as smart phones and
tabletsWeiser and Brown1996 Krumm, 2009.

Ubiquitous computing is related to mobile computing, altlo they are not the same
thing, neither a superset nor a subset of each oWeider 1996. Mobile computing devices
are not mere personal organizers. They are devices (comsmith processing power) that
contemplate a new paradigm: mobility. Mobility has somestmints, such as finite energy
sources. This paradigm is changing the way we work, comnatgjitave fun, study and
do other activities while we are movin§atyanarayanani99q. The fact is that ubiquitous
computing must support mobility, since motion is an intégeat of everyday life. Hence,
ubiquitous computing relay on mobile computing, but goesimfurther.

2.1.1 Mark Weiser's Visions

To talk about ubiquitous computing we have first to mentiorriA&/eiser, which has been
recognized as the “father” of ubiquitous computing. Weisatled by many “Visionary”,
was head of the Computer Science Laboratory at Xerox PatmRédsearch Center (PARC)
when he coined the term ubiquitous computing in 1988. Whemkliquitous computing pro-
gram emerged at PARC, it was at first envisioned only as anamswvhat was wrong with
personal computing, because they were too complex, too midinga of attention, among

7
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others things\\Veiser et al.1999. During the implementation of the first ubicomp system,
Weiser’s group realized they were, in fact, starting a gtStera, in other words, ubicomp
was emerging\Veiser et al.1999.

Mark’s visions influenced a countless number of research&limost one quarter of
all the papers published in the Ubicomp conference betw@@i 2nd 2005 cite Weiser’s
“foundational articles” Bell and Dourish2007. Among the Weiser’s foundational papers
of ubiquitous computing, perhaps the most impacting wotkeésone entitled “The Computer
in the 21st Century”, publish iBcientific Americaim 1991. In this paper, Weiser describes
the ideal ubicomp future, its purposes, concerns and aieslofo illustrate its ideas he told
the story of “Sal”, a tale about a single mother and how thddvwevolves around her needs.

“The most profound technologies are those that disappedieyTweave
themselves into the fabric of everyday life until they agistinguishable from
it” [Weiser 1991, p. 1].

Weiser believed that the most powerful things are thosearaeffectively invisible
in use. The ideal is to make a computer so embedded, so figngatural, that we use it
without even thinking about it. The essence of this visiomaking everything easier to do,
with fewer mental gymnastici\eiser 1991 19934.

According to Weiser, the style of computing that has beenoseg on users in the
first and second modern computing eras (mainframes and B§seatively) is too atten-
tion consuming, and divorce the users of what is happeniogral them. In the ubicomp
world, as Weiser believed, computation could be integratitd common objects that you
might already be using for everyday work practices, rathantconsidering computation to
be a separate activity. If the integration is done well, theisoned invisibility could be
achieved Weiser 1993a Krumm, 2009.

In order to clarify this concept of invisibility, considdré example based on the famil-
iar printed page (inspired irkKrumm, 2009). To perform a printing it is necessary deposit
ink on thin sheets of paper, and a consolidated technologgdsssary for that. For a good
result it is necessary to ensure that: it must be durableen st wick in the paper if wet;
among other things. However, we rarely pay attention onrikégchnologies when we read
printed pages. Instead, we read pages and comprehendndéagcessary focusing on the
technology, the characteristics of the ink, or the manufaag process of the paper to be
able to use it. In this example, the printing technology gwidible for the user, allowing
the higher-level goal of reading a story, or acquiring kredge. This kind of thinking rarely
happens with traditional PCs, which demand the users asmisly focus attention on the
system, maintaining it and configuring it to complete a task.
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Good technology is invisible, staying out of the way of thektdike a good car stays
out of the way of driving. Bad technology draws attentiontgelf, not the task, like a car
that needs a tune-up. Computers are mostly not invisiblaquiious computing is about
enabling invisibility in computersWeiser 1994.

2.1.2 Ubicomp Today

As a promising research area, ubiquitous computing gave ar® muestions than an-
swers Weiser et al. 1999, and many of them are still opeWeiser 19934. There are
many people around the world working on projects that detld ubicomp challenges. Those
projects range from prestigious computer science Schewts, as MIT (see several projects
from Media Lal for some examples), to mainstream computer companies asudicrosoft
(see the website http://research.microsoft.com/enrosfg/ubicomp/ with some projects).
In order to have a picture of ubicomp researchers, we celieictformation about all
papers published until 2011 in Ubicomp, Perva&ivand Percom, and performed a data
mining process, extracting statistics such as most produatithors and institutions, which
include those mentioned above. We also analyzed the codabon among authors identi-
fying, for instance, the formation of communities. Figue$(a)and2.1(b)illustrate those
results, depicting, respectively, the occurrence of asthad institutions in the analyzed pa-
pers. In that analysis authors and institutions are coynstance by paper, and the size of
the word reflects its representativeness. As we can see §rBgébowd is the author who
published the largest number of papers, and Universiti€atifornia and Intel are the most
productive institutions. The complete study is presemetié paper$ilva et al, 20123.
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Figure 2.1: Representativeness of authors and institsition

Since the early days of ubicomp, one of the main concernsheisdmputer too often
remain the focus of attention, rather than being a tool thihowhich we work, disappearing
from our awarenes¥eiser 19934. We may have not achieved the original Weiser’s vision

Ihttp://mwww.media.mit.edu.
2Now Ubicomp and Pervasive merged in one single conference.
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about Ubicomp yet. But we can say that the key ingredientseaodving in a favorable

direction for it. Many critical items that were rare in ead900s are now commercially
viable. Each year more possibilities for the mainstreamiegion of ubiquitous computing
open up.

The future envisioned by Weiser, ubiquitous computing,scders a computing en-
vironment in which each person is continually interactinghwnany wirelessly intercon-
nected devices\eiser 199334. Today it is easy to find several microprocessors at home,
available, for instance, in alarm clocks, the microwavensvand in the TV remote con-
trols. They do not qualify as ubicomp devices mainly becatsg do not communicate
with each other, but if we network them together they are abkmg technology for ubi-
comp Weiser and Brown1996. It soon may become a reality. For example, Google has
announced in the event Google 10%4n initiative called Android@Home, which allows
Android* applications to discover, connect and communicate witHiapgpes and devices
inside the house. After connecting together several inébion sources with many informa-
tion delivery systems we will start to have things, such #&scks that find out the correct
time after a power failure, and microwave ovens that dowshlzaw recipes.

Besides that, some of our computing technology are becouotiitgitous, for instance
smart phones, which are taking center stage as the mostyadielpted and ubiquitous
computer Krumm, 2009. When we get used to the possibility of accessing a GPSexind
map, social networks and the Internet anywhere at anytireyiVrealize the value of this
and it will become part of our lives.

“Applications are of course the whole point of ubiquitousnguut-
ing” [Weiser 1993a p. 80]

We have to keep in mind that is not just one service that wilkeneomputing a dis-
appearing technology, but the combination of many. ThosgacEs have to be available as
needed without extraordinary human interventidbgwd et al, 2003. The challenge is to
create a new kind of relationship between people and comgpuidere computers do not
demand too much attention, letting people live their livdisgwd and Mynatt200q. Appli-
cation will go beyond the big problems like corporate fingriodahe little annoyances such
as: where are the car-keys? Can | get a parking place? WHhe lsetst route to take now?
Which pub should | go in a certain area of the city®iser and Brown1994.

Since ubiquitous computing has intersections with mangsacé computing, several
research fields can contribute to its development, inclydiistributed computing, mobile
computing, sensor networks, and machine learning. In ihégtion we analyzed all papers

3http://www.google.com/events/io/2011.
“http://code.google.com/android.
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published in 2010 and 2011 in Ubicomp, Pervasive, and Percogating a taxonomy of
recent ubicomp research, more details can be foun&ilad et al, 20124. We can see in
that study that context-aware computing is a key area oarekehat can help us to meet the
original design goals of ubicomp.

2.1.3 Context-Aware Computing

Several context definitions have been proposed. Among thbwse presented by
[Schilit et al, 1994, [Dey et al, 1999, and [Pascoel1999 are close to the definition consid-
ered by most people as the ideal one. The problem is that tedggtions lack generality.
[Dey and Abowd200(Q proposed the following definition of context:

“Context is any information that can be used to charactetize situation
of an entity. An entity is a person, place, or object that insidered relevant
to the interaction between a user and an application, incigdhe user and
applications themselvegDey and Abowd200(0

This is one of the most accepted and accurate definitionsmilyrused by researchers.

It can be observed that the definition is very general whesidening what types of data are
context, being wide enough to accept the different needact @pplication. In addition,

it is interesting to note that the definition is precise, remjuiring a list of specific types or
classes of contexts.

In this work we consider participatory sensing. In this ¢cdsenans are responsible
for sharing data, acting as sensors in a network (this iskalsan as participatory sensor
network, as explained in Chapt8). The data shared by the “sensors” (humans plus his/her
portable device) can be then transformed in a context ussititly city dynamics and urban
social behavior. In the next section, Secth@, we discuss the model and approaches used
to transform raw data shared by users into context infolnati

2.2 City Dynamics and Urban Social Behavior

In this section we discuss the approaches and models useattaoteand generate contex-
tual information from participatory sensor networks dateorder to study city dynamics
and urban social behavior. This section discusses fiverdiffeclasses of studies to identify
contextual information. SectioR.2.1discusses studies related to the analysis of mobility
patterns. Sectio@.2.2considers studies that focus on the better understandingyodly-
namics. Sectio2.2.3discusses the study of social patterns. Se@i@¥discusses studies
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concerned in event detection. Sectih@.5presents studies related to human behavior. And,
finally, Section2.3discusses how this thesis differs from the previous studies

It is worth mentioning that each class of study is not neaédgsautually exclusive.
For example,l[ong et al, 2017 used a Foursquare dataset to classify venues based oh users
trajectories. This work has intersections with the clas®bity patterns” (Sectior2.2.1),
but instead of being classified in that class, it was assigm#tk class “Understanding cities”
(Section2.2.2, since it is more concerned in the analysis of city dynamics

2.2.1 Mobility Patterns

This class of work focuses on studying mobility patterns éns from their logs generated
from social media websites. These logs usually includeigpaiporal information, e.g.,
check-ins and geolocated photos. The study of mobility efuldor many purposes. For
example, it is possible to understand how human allocate tordifferent activities, thus
being a fundamental and traditional question in socialr®egGiannotti et al. 2017. As
another example, one could design new tools to help trafficeers to understand the flow
of people.

The modeling of mobility patterns has been attracting thenéibn of researchers
in different fields, such as physics and ubiquitous comgufBrockmann et aJ. 2006
Zheng et al.2009 Gonzalez et a]200§. For exampleSong et al[2010 analyzed 50,000
cellphone users and showed that user mobility presentsanegtictability. It is important to
point out that data derived from social media is differeatrirGPS tracking or cellphone us-
age data, such as phone calls, and present special featdrearsed contexts. For example,
check-ins in location sharing services or photos shareghm#o sharing service bring extra
information of a particular place. For instance, a checls-gssociated with a type of venue,
e.g. pub, and a photo may bring the information about theeatisituation inside this venue.
Again, throughout this work our focus is on studies that yaedata from social media.

Cheng et al[201] analyzed 22 million check-ins posted from several logatibaring
services (Foursquare is responsible for 53.5% of the tofEhey found that users follow
simple and reproducible patterns, and also that socialstat addition to geographic and
economic factors, are coupled with mobilitypproach: to make their analysis they used
three statistical properties to study and model human ntpbpgtterns.displacementradius
of gyratiorny andreturning probability Thedisplacemenof check-ins is the distance between
consecutive check-ins, measuring how far a user has movextadius of gyratiormeasures
the standard deviation of distances between the userskgéhe@nd the users’ center mass.
This measure indicates how far and frequently a user haslé@Returning probabilityis
a measure of periodic behavior in human mobility, sinceqakci behavior tends to happen
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frequently due to human routines. Besides that, the autidecsstudied factors that could
influence mobility, such as social status and geographieaadomic constraints.

Cho et al[201] investigated patterns of human mobility in three datasgteck-ins,
in two location sharing services, and cellphone locatica.d@hey were particularly inter-
ested in determining how often users move and where they,gstaell as how social ties
may impact their movements. They observed that short-chtrgeel is periodic both spa-
tially and temporally and is not affected by the social netairucture, while long-distance
travel is more influenced by social network tiepproach: based on their empirical find-
ings they built a model named Periodic & Social Mobility Mdde predict mobility of
users. This model is composed by three parts: (1) a modelatia$pocations that a user
usually visits based in a two-state mixture of Gaussiank witime-dependent state prior;
(2) a model of temporal movement between these locatioredbas a truncated Gaussian
distribution parameterized by the time of the day; (3) a nhoflmovement that is influenced
by the ties of the social network, e.g. encountering friedghis specific model, if a user
performs a check-in, then it will more likely be close in spamd time to one of his/her
friend’s check-ins. Their model is able to predict the exasztr location at any time with
40% accuracy.

Nguyen and Szymansk2012 used Gowalla, a location-based social network, to cre-
ate and validate models of human mobility and relationshipshat work, the authors pro-
posed a friendship-based mobility model (FMM) that take tcount social links in order
to provide a more accurate and complex model of human mpbith this model the au-
thors were able to study how frequently friends travel tbgetThis model may improve the
accuracy of a varied number of applications, such as traffggreering in communication
networks, transportation systems, and urban plannigproach: the proposed mobility
model uses a Markov Model where the states represent losatiocheck-ins and the links
represent the probability of going from one place to anotker example, the probability
of going from work to pub is defined as the ratio between thebemof times a given user
performs a check-in in a pub right after a check-in at workl gr@ number of times that user
performs a check-in at work.

Zheng et al[2017 studied tourist mobility and travel patterns from geotagghotos
shared on Flickr. In order to extract the travel patterns,ahthors focused the analysis on
tourist movement according to regions of attraction analwogical characteristics of travel
routes by different tourists. The authors demonstratqubitsntial by testing the approach on
four cities.Approach: firstitis built a database of touristic travel paths basetherconcept
of mobility entropy (considering Shannon’s entropy), usediscriminate the touristic and
non-touristic movement. Then, a significance test is aggbeensure that the resulting path
is statistically reliable. For that, they devised two methiaone based on a Poisson distribu-
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tion and the other on a normal distribution. Next, it is pre@d a method to discover regions
of attraction in a city, using for this the DBSCAN clusterialgorithm. To study the touristic
movement the authors considered a Markov chain model créaten the visiting sequence
of regions of attraction discovered by the proposed methdfith that, they can estimate
statistics of visitors traveling from one region to anothér order to study the topologi-
cal characteristics of tour routes, the authors perfornusece clustering on travel routes,
applying a modified version of the longest common subsequasa similarity metric to
minimize noise.

2.2.2 Understanding Cities

Information obtained from participatory sensing system@getthe power to change our per-
ceived physical boundaries and notions of space, as wealllastter understand city dynam-
ics [Bilandzic and Foth2013. This section focuses in presenting studies in these titrex
Many potential applications can benefit from these typeduwdiss, such as tools for city
planners to provide new manners to see the city, or for ends wgleo are looking for new
ways to explore the city.

Cranshaw et al.2017 presented a model to extract distinct regions of a city that
flect current collective activity patterns. The idea is tp@se the dynamic nature of local
urban areas considering spatial proximity (derived froraggaphic coordinates) and social
proximity (derived from the distribution of check-ins) oénues.Approach: in their study
the authors considered data from Foursquare. In order fo@his data, the authors devel-
oped a model based on spectral clustering. One of the matnmations is the design of an
affinity matrix between venues that effectively blends spparoximity and social proximity.
The similarity of venues is then obtained by comparing pafithese dimensions. After that,
this is used to compute the clusters that may representetiffgeographical boundaries of
neighborhoods. The clustering method is a variation of geesal clustering proposed by
Ng et al.[2003, introducing a post processing step to clean up any degtatecluster.

Noulas et al[2011H, proposed an approach to classify areas and users of aycity b
using venues’ categories of Foursquare. This could be wsetintify users’ communities
that visit similar categories of places, useful to recomdagion systems, or in the compari-
son of urban areas within and across citidpproach: their approach is based on spectral
clustering algorithmlluxburg 2007 Ng et al, 2003. More specifically, the authors divide
the area of a city to be analyzed into a number of equally sszgghres, each of them will
be a datapoint input for the clustering algorithm. For eadat is represented the activity
performed on it based on check-ins in each existing categiotyat area. Then, it is calcu-
lated the similarity between two areas as the cosine siityilaetween their corresponding
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activity representation. Having the similarity infornmati the authors apply it in the spectral
clustering algorithm.

Long et al.[2013 used a Foursquare dataset to classify venues based ohtraers
tories. The premise is that the venues that appear togetheamny users’ trajectories will
probably be taken as geographic topics, for example reptiegerestaurants people usually
go to after shopping at a mall. The approach can be appliedn$tance, to understand
users’ preferences to make recommendation of venédggroach: the authors used the
Latent Dirichlet Allocation (LDA) Blei et al, 2003 model to discover the local geographic
topics from the check-ins. With this approach, it is posstiol dynamically categorize the
venues in Foursquare according to the users’ trajectonikat indicates the crowds’ pref-
erences of venues. LDA is usually used to cluster documexgsdon the topics contained
in a corpus of documents. For this reason, some terms usesbtoilde the modeling make
reference to this context. The authors considered thatghesaineck-in represents a word,
which is the basic unit in the LDA. A trajectory of a user catsiof all the venues visited by
him/her, and this represents a document in the analogy.

Kisilevich et al.[2010 used geo-tagged photos obtained from Flickr to analyze and
compare temporal events that happened in a city, and alsmkosightseeing places. More
specifically, the authors presented a way to assess thetattreess of places based on their
positions in a ranking, and suggested a set of visual anatyithods that mixes computa-
tional techniques with visual interactivity in order to gapt analysis of the dat®pproach:
to find the attractiveness of places the authors appliedigfugitom DBSCAN [Ester et al.
1994. In order to highlight areas of people’s activities witlarcluster, the authors applied
density maps. From the clusters obtained in the clustetiey, she weight of every geo-
tagged photo is calculated using a density function basati@relative position of photos
of other users in a cluster. The calculated weight is mappadcolor, facilitating the visual
inspection.

Frias-Martinez et al[2012 used a dataset from Twitter and proposed a technique to
determine the type of activities that is most common in aloytygtudying tweeting patterns.
They also proposed another technique to automaticallytiigdandmarks in a city. Ap-
proach: to automatically identity urban land usage, the authordyappo methods. The
first one is land segmentation. For that it is applied Setjadizing MapsKohonen 199(Q,
which is an unsupervised neural network. After training rileéwork, it is obtained a map
that segments the urban land into geographical areas Viiéinatit concentrations of tweets.
Each neuron of the network represents a pointer to a regitmavhigh density of tweets.
With that, the authors apply Voronoi tessellation consitgthe location of the neurons to
compute the land segments. Next, the authors use the segjfoent to detect different
land usages considering the average tweet usage on thefor 8ach land segment is built
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a unique tweet-activity vector that represents the averageting temporal behavior. To
characterize urban land usage, it is applied the k-meamsitdm, which shows common
tweeting behavior across land segments. To identify thdnearks, the authors used the
mean-shift clustering techniqgu€lieng 1995. The authors considered in this algorithm
that every tweet is assigned to a local maxima and a clugteesents a potential landmark.
After the execution, if the resulting clusters are rankedhsy number of tweets on them,
then the result represents a list of the most popular lanknar

Ji et al.[2009 mine blog-based sight photos in order to discover and sumzmaity
landmarks. Their main contribution is a generalized grapleling framework. This study
is useful, for example, for personalized tourist suggesticApproach: first the authors
have to extract locations of photos. For that, they colléwitps with different descriptors.
To identify their locations they use an application calleaz€tteer\\Wang et al.2005, which
is able to identify location from web resources. Then theate a hierarchical visual-textual
clustering scheme to organize sight photos into a “sceee*\structure for each city. For
this purpose it is used the concept Bag-of-Visual-WoNister and Steweniy2004 to gen-
erate the content descriptor of photos. Bag-of-Visual-d§a@re clustered by their similarity
measured by the cosine distance, generating then “viewfter #hat the authors create a
“scene-view”, using textual clustering to aggregate “\g&wmto “scenes”. Next, they model
two different graphs. The first one represents a scene, vdaaie node is a photo and an
edge exist if there is at least one word identical in the phatescriptors. For this graph
they present an algorithm, PhotoRank, to discover reptates views within a scene. Fi-
nally, the authors create another graph to represent thelwit encompasses a scene layer,
and present an algorithm to discover city landmarks on itictvlexplores the PhotoRank
algorithm and is inspired irKleinberg 1999.

2.2.3 Social Patterns

This class of studies concentrates in the analysis of data focial media to understand
social patterns. Data from social media enables unpretediepportunities to study human
relationships in a global scale, at a relatively low cost.amples of possibilities include
community detection, products recommendation based owligo®very of similar socio-
economic behavior, and new definitions of network cenyralit

Scellato et al[2011]] presents a study of the spatial properties of the locabased
social networks arising among users. Among the resultsatltieors reported, for instance,
that 40% of social links happens below 100 km, and that tleesrong heterogeneity across
users related to both social and spatial factéygproach: to extract properties and verify
their hypothesis, the authors analyzed datasets of thee¢idm based services: Foursquare,
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Gowalla, and Brightkite. In their study, the authors used tandomized models, a social
model and a spatial/geo model, to assess the statisticafisaqce of the empirical spatial
properties of the networks analyzed. The social model kdepsocial connections as they
are, randomizing all user locations. The geo model keepasbelocations unmodified and
then assigns every social link between two users at a celitstence according to the relative
probability of friendship, observed in their analysis.

Cranshaw et al[201Q introduced a new set of features of human location trail for
analyzing the social context of a geographical region. Tdeyonstrated the applicability
of these features by presenting a model for predicting @iséip between two users, showing
significant gains over previous models for the same purp@peroach: the authors used
a dataset from Locaccifpa system that allows users to share his/her current |ocatith
other Locaccino users through Facebbolor the co-location analysis, the authors split
the space in grids of 0.000X 0.0002 latitude/longitude, which means approximately 30
meters x 30 meters. The time was considered in slots of 10tesnin this way, a user is co-
located with another user if they are located in the samevgtidn a slot of time. To model
the co-location of users, it is applied three diversity noiees: frequency, user count, and
entropy ( Shannon’s entropy). The frequency measure capthe raw count of users who
visit a location. The user measure considers the total nuwfagnique users in a location.
The entropy measure considers the number of users obsédrilezllacation, as well as the
relative proportions of observations. High entropy me#ias tnany users were observed at
the location with equal proportion.

Quercia et al[2012 study how social media communities resemble real-lifesone
They tested whether established sociological theoriegsalflife social networks still hold
in Twitter. They found, for example, that social brokers imiffer are opinion leaders who
take the risk of tweeting about different topics. They al@xadvered that most users have
geographically local networks, and that social brokersesgnot only positive but also neg-
ative emotionsApproach: the authors applied network metrics about topic, geograuiy
emotions, regarding to parts of one’s social world. Thes#&ioseinclude reciprocity, sim-
melian ties, and network constraint. Reciprocity is thepprtion of edges in a network that
are bidirectional. Simmelian ties are a measure that cersidadic relationships. Network
constraint measure brokerage opportunities in the netwollere high network constraint
means less brokerage opportunities. They used Burt’s flation [Burt, 1997 in this spe-
cific case.

Java et al[2009 studied blog communities. For that they present a techeiquclus-
tering communities by using both the hyperlink structurblofj articles and tag information

Shttp://www.locaccino.org.
Shttp://www.facebook.com.
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available on them. The technique was tested in a real netefdslogs and tag information,
as well as in a citation networldpproach: the authors define a community as a set of nodes
in a graph that link more frequently within this set than algst, and they also share simi-
lar tags. Their technique is based on the Normalized Cut (N&gorithm [Shi and Malik
2000.

Sadilek et al[2017 studied the interplay between people’s location, inteoas, and
their social ties, presenting a technique for inferrind land location information from a
stream of message updates. The authors demonstrated, lpgiagasers from New York
City and Los Angeles, that their technique significantlypauforms other current compara-
ble approachesApproach: for link prediction their approach infers social ties by smh
ering patterns in friendship formation, the content of pelspmessages, and user location.
For location prediction, their technique implements a pholistic model of human mobil-
ity, where it treats users with known GPS positions as naesgaers of the location of their
friends.

2.2.4 Event Detection

This class of work is focused in the identification of evemotigh data shared in social
media. This task is especially favorable due the real-tiatene of certain types of social
media, such as Twitter. Events might be natural ones, suearisquakes, or not natural
ones, such as the identification/prediction of stock mackanhges.

Bollen et al.[201] studied whether collective mood states derived from Briteeds
are correlated to the value of the Down Jones Industrial Zyer(DJIA) over time. Their
findings indicate that it is possible to obtain an accuracg@i7% in predicting the daily
up and down changes in the closing values events of the DJH&.i$ possible by choosing
specific mood dimensions, but not all that were considefgproach: to extract the sen-
timent expressed by the users in the tweet the authors ugetbols. The first one is the
OpinionFinder (OF), which extract negative or positive sentiments from thesags. The
second tool, Google-Profile Mood State (GPOM), extractdsimensional daily time series
of public mood. The authors use Granger causality analgsighich it is correlates DJIA
values to GPOMs and OF valuesropast days. The authors also trained a Self-Organizing
Fuzzy Neural Network to predict DJIA values on the basis ofotss combinations of past
DJIA values and OF and GPOMS public mood data.

Gomide et al[201] analyzed how Dengue epidemic is reflected on Twitter and to
what extent that information can be used for the sake of dlamee. Gomide et al. showed
that Twitter can be used to predict, spatially and tempgrdéngue epidemics by means of

"http://mpga.cs.pitt.edu/opinionfinderrelease.
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clustering.Approach: The authors introduce an active surveillance frameworkahalyzes
how Twitter reflects epidemics based on four dimensionsimel, location, time, and public
perception. Specifically, they study how users refer to denig Twitter with sentiment
analysis and use the result to focus only on tweets that ssmekpress personal experience
about dengue. Then, Gomide et al. constructed a linearggigremodel for predicting the
number of dengue cases using the proportion of tweets esipgegersonal experience.

Sakaki et al[201(Q studied the real-time interaction of events in Twitteig(eearth-
guakes), and propose an algorithm to monitor tweets to tatéarget event. To demon-
strate the effectiveness of their method, the authors anikarthquake reporting system in
Japan, which was capable to detect 96% of earthquakes eddnytthe Japan Meteorologi-
cal Agency (JMA) with seismic intensity scale of 3 or more.tiication to registered users
was delivered faster than the announcements that are lastducthe IMAApproach: the
authors devise a classifier of tweets based on features sutle &eywords in a tweet, the
number of words, and their context. After that, they prodla@robabilistic spatio-temporal
model for the target event that can find the center and thectiajy of the event location.

Lee and Sumiy4201Q present a geo-social event detection system to identdsl lo
events (e.g., local festivals) by monitoring crowd behewviadirectly via Twitter. The sys-
tem was created on the hypothesis that users probably wate/ mposts about these local
events.Approach: first the authors decide what the usual status of crowd befsid in a
geographical region in terms of tweeting patterns. Aftat,th sudden increase in tweets in a
geographical region can be an important clue. Another hightrbe the increasing number
of Twitter users in a geographical region in a short periotimé. The authors also consider
if the movements of the local users become unexpectedlatedy The detection of unusual
events in the study uses the concept of boxpldeGill et al.,, 1978, which is applied to
create ranges to determine the cases desired to be detected.

Becker et al[201] analyze streams of Twitter messages to distinguish betwress-
sages about real-world events and non-event messages. idéraify each event and its
associated Twitter messagégproach: the authors use an online clustering technique that
groups together similar tweets. With that, they extractuess for each cluster to help de-
termine which clusters correspond to events. Next, thecasithise these features to train a
classifier to distinguish between event and non-eventeasist

Ginsberg et al[2009 presented a method for analyzing large numbers of Google
search queries to track flu illness in a population. The ntttam accurately estimate the
current level of weekly influenza activity in each region loé tUnited States, with a report-
ing lag of about one dayApproach: By analyzing Google queries usage the authors found
a close relationship between how many people search foelfated topics and how many
people actually have flu symptoms. Given that, they devel@simple model that uses
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aggregated Google search data to estimate current flutgctivi

2.2.5 Human Behavior

This group of studies focus on the study of human behavioutjin the data shared in social
media, which, as we mentioned before, can be seen as siguatsly users. This type
of study can be applied, for example, to the discovery ofviidldial social profiles, the dis-
covery of collective behaviors, the analysis of sentimext @pinion evolution, and a better
understanding of why individuals take certain actions.

Joseph et alf2017 analyzed a Foursquare dataset to identify groups of peamie
the places they go. Their model was able to identify grougseofple which represent both
geo-spatially close groups and people who appear to havkasinerests Approach: their
model is based on the idea of topic modeling. For that theyiegpphe Latent Dirichlet
Allocation [Blei et al, 2003. In the model instantiation, each check-in for a user can be
thought of as a word in a document. Similar to text documemktgre a “document” can
have multiple words, the authors defined a multinomial distron for the check-ins for
each user by using the number of check-ins in each venuetasdsa

Naaman et al[2017 focused their study in the characterization of tweetinggras
in different cities located in the USA, envisioning to prdeia framework for reasoning
about activities performed in cities. This study might befukto deal with challenges such
as transportation or resource planning faced in urbanesudipproach: first the authors
selected tweets from some US cities. Then, they selectetbfhd000 words from the
resulting dataset, and made a cleaning procedure in thiselatising the NLTK toolkit
removing, for example, stopwords. After that, the auth@dgmed a study of keyword-
based diurnal patterns in the considered locations. Begli, the authors applied the
concept of Shannon’s entropy and Mean Absolute Percentage(EMAPE), to measure the
variability of the data within days and across days, respelgt

Poblete et al[201]] analyzed a twitter dataset aiming the discovery of insgbit
how tweeting behavior varies across countries, as well asptissible explanations for
these differences.Approach: first the authors selected the top ten most active coun-
tries. Then, they extracted differences in the number oftéwiper user, languages used
per country, sentiment analysis (happiness), using thecfiffe Norms for English Words
(ANEW) [Bradley and Lang1999 and also a Spanish version of R¢dondo et a].2007,
and the content of the tweet. Moreover, they studied theakoeitwork properties for each
country applying metrics, such as, clustering coefficidiameter, and shortest paths.

8http://www.nltk.org.
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Gao et al[2013 propose a model to address the “cold start” location ptemhigrob-
lem, by using the social network information. Results in gpegiment based on a real-world
location-based social network show that the approach ec&fe for the studied problem.
Approach: the authors’ strategy encompasses the investigation afitbek-ins behavior to
understand the correlations in the context of the user'mboetwork and geographical dis-
tance. For this analysis, they considered four social sydiéith that, the authors modeled
the geo-social correlations of “new check-in” behavior sidering the intrinsic patterns of
users’ check-ins and his/her social cycles.

Yu et al.[2017 used the users’ behavioral patterns extracted from Siniaad/éo in-
vestigate how users’ frequent activities reflect theirsileg time and living time zones. The
authors showed that may be possible to detect the sleepnegpfi users. Their results could
also be used as an alternative way to estimate time zofyggtoach: based on the time
series of Sina Weibo usage the authors applied a simplstgtatimethod, assuming that
users keep a daily routine, going to bed and waking up on timdgtect long periods of
inactivity.

2.3 Discussion

A fundamental step to achieve the Ubiquitous Computingwiss to sense the environment.
The research in Wireless Sensor Networks has providedadwets, techniques and algo-
rithms to solve the problem of sensing in limited size arsash as forests or volcanoes.
However, sensing large scale areas, such as large metegatountries, or even the entire
planet, brings many challenges. For instance, considdrigfinecost associated with building
and managing such large scale systems. Thus, sensing teaseleecomes more feasible
when people participate sharing sensed data using theaipedevices (e.g., sensor-enabled
cell phones), forming what is called participatory sensetmworks (PSNs) (more details in
the next chapter, Chaptay.

Our work differs from previous ones in several ways. Desthieeconcept of PSNs be
relatively old, emerging on 2006, few properties are knowthis type of network. Given
that, one step that differentiate our study is the identificeof fundamental new properties
of PSNs (considering different kinds of PSNs), from a semsdwork viewpoint, and the
discussion of the challenges and implications when dealitly them. As far as we know,
we performed the first large scale study of Instagram anadyghotos shared by users, and
also the first study of Waze analyzing alerts shared userse(ohetails in Chapted). Our
work also differentiate from others because we propose aelniques and methodologies,

9A popular Chinese micro-blogging service.
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relying on PSNs, to the study of city dynamics and urban $d&havior (more details in
Chapters). Besides that, our study is the first to compare two PSNwel@from different
systems, particularly Instagram and Foursquare. The diwestigate whether data from
one PSN could complement the other, or if they are compatdgarding the study of city
dynamics and urban social behavior (details in Sectidh This comparison, among other
results, gave us insights about the potential for joint usdata from these applications,
considering each PSN as a sensing layer. With that, anotfieredice of this work is a
framework proposition for integrating multiple sensingdes, which was illustrated in the
construction of two applications for the study of city dynasnand urban social behavior
(more details in Chaptdd).



Chapter 3

Humans in the Sensing Process

The focus of this thesis is on systems that rely on humansicgazation in the sensing pro-
cess, where they are responsible for local data sharingh 8ata can be obtained with
the aid of sensing devices such as sensors embeddeshiaidphonesge.g., GPS) or by hu-
man sensors (e.g., vision), being subjective observapimduced by themSJrivastava et a|.
2013.

This chapter is organized as follows. Sect®hcovers particularities of participatory
sensor networks and Secti8r2discuss the challenges that emerge when dealing with PSNs.

3.1 Participatory Sensor Networks

Participatory sensing aims at monitoring large scale phmama and require the active in-
volvement of people to voluntarily share contextual infation and/or make their sensed
data availableBurke et al, 2004. It differs from opportunistic sensind.-gne et al. 2010
mainly by the user participation, which is minimal in thetéaitcase.

Participatory sensing systems (PSSs), such as InstagrfFoamsquare, combine the
features of online social networks with location-basedises, for this reason this type of
system have been also called location-based social me@&s Rllow people connected
to the Internet to provide useful data about the context inciwvithey are at (near) real
time, building new virtual environments that integrate rusg¢eractions. Recently, due to
the widespread adoption of smartphones and the Internesaitisrough these devices, such
systems are becoming increasingly popular, offering uweatented opportunities of access
to planetary scale sensing data.

One important aspect of PSSs is the data the users shareticujaa location-related
data Bmith et al, 2005. A data shared in a participatory sensing system is: (inioled
through physical sensors (e.g., GPS) or human observagogs road congestion report);

23
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(ii) defined in time and space; (iii) obtained automaticaltymanually; (iv) structured or
unstructured; and (v) voluntarily shared or not. To illasérthis type of system, consider an
application for traffic monitoring, such as Waze. Users daare reports about accidents or
congestion manually. It is still possible to calculate theed of the car and automatically
share the car’s route with the aid of the GPS. With speed mesmnts of different vehicles
sampled in a particular area, it is possible to infer, fornegke, congestion. In this case,
users manage the application, which was created for thigoger and the sensed data are
structured. But if users use a microblogging service, suchvétter, the sensed data are
unstructured. For example, the user “Bob” sends a messagm facing slow traffic near
the entrance of the campus.”

Participatory sensor networks (PSNs) can be derived fromicpeEatory sensing sys-
tems Burke et al, 200§. PSNs have users with their portable devices as the funataine
building block. Individuals carrying these devices areeabl sense the environment and to
make relevant observations at a personal level. Thus, eadd in a PSN consists of the
user plus his/her mobile device, sending context data teykms. For example, in a PSN
derived from Instagram, the sensed context data is a piofurspecific place where the user
is located.

In traditional wireless sensor networks, the high coste@ated with building and
managing large scale topologies are prohibitive. In camtidSNs allow access to useful
data about diverse contexts that users worldwide are gtbértat (near) real time, making
them potential sources of sensing at global scale. Thisoaemunprecedented opportunity
to revolutionize the way social science is done. Unlikeitradal methods that rely on survey
data, new techniques can be designed to exploit participdeta, which is much cheaper,
more dynamic as it reflects current situations in real timerédver, as we argue here, PSNs
have the potential to be a fundamental tool to better unaiesisthuman urban interaction in
the future, leveraging our awareness to different aspéasrdives in urban scenarios. This
is useful in many cases, for example, to build smarter camrierre applications.

Similar to WSNs, the sensed data in PSN are sent to a serviin&rnode”, where
data can be accessed (using systems APIs for PSNs, suchtagrdns API%). But unlike
WSNs, PSNs have the following characteristics: (i) nodesaatonomous mobile entities,
i.e., a person with a mobile device; (ii) the cost of the nekwe distributed among the nodes,
providing a global scale; (iii) sensing depends on the mgliiess of people to participate in
the sensing process; (iv) nodes transmit the sensed datdlgito the sink; (v) nodes do not
suffer from severe power limitations; and (vi) the sink nddes not have direct control over
the nodes.

Ihttp://www. twitter.com.
2http://instagram.com/developer.
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Indeed, PSNs have the potential to complement WSNs in mdrgr aspects besides
providing larger scalability. For instance, WSNs are scidje failure, since their operations
depend on proper coordination of actions of their sensoesoghich have severe hardware
and software restrictions. On the other hand, as PSNs ameetbby independent and au-
tonomous entities, i.e., humans, the task of sensing bextigély resilient to individual
failures. Obviously, PSNs brings also many new challenfggsinstance, their success is
directly connected to the popularization of $rartphoneand social media.

Users / nodes, s e
)

foursquare

0

L

Figure 3.1: Participatory sensor network illustration.

Figure3.1illustrates a PSN built from users with their portable degisending sensed
data about their locations to PSSs. The figure shows thengjectivities (represented by red
dots) of four users at three different points in time (labeféime 17, “Time 2”, and “Time
3"). Note that a user does not necessarily participate iisyiseem at all times. After a given
time, we can analyze this data in different ways. For insgatite bottom rightmost portion
of the figure shows, as an aggregated view, a directed grapmades representing locations
where data was shared and edges connecting locations tteesaged by the same user. Us-
ing this graph we can extract, for instance, user mobilitygeas, information that could be
used, for example, to perform load management more efflgientirban wireless network
infrastructure. In fact, knowledge discovery in PSNs wdtkgether with a wide range of
studies that use graph theory for social network analy$ig\j$Scott and Carringtar2011]

. As we show in Chaptes, well known techniques used for SNA may be directly appled t
analyze social oriented graphs derived from PSNs.

PSNs are an example of the interplay between technologatalanks and social net-
works, since a key element in a PSN is the human being. The ocwarponents of this
emerging type of network are illustrated in Figu2 This figure highlights the three most
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important components, namely: (i) participatory sens{iythe big raw data; and (iii) the
context information.

The component “Participatory sensing” encompasses ubargg data through par-
ticipatory sensing systems. The component “Big raw datagsponsible for data manage-
ment. As we can see in FiguB2, the collection process may be repeated, for example, to
get redundant or complementary data from the same or otsezrag. After that, the col-
lected data needs to be processed in order to be stored. tBmeanount of data coming
from PSSs may be very large, all the components need to brilbaesigned if the goal is
to get (near) real-time information. A more detailed distas of some of the challenges is
presented in Sectiod.2

Participatory sensing Big raw data
: Systems i :
i S
@IE’.?;@ —-'1—) Collection ——3» Processing ————» §

R R At

£ = Context information ;
: s = Social Human Y =
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Figure 3.2: Overview of participatory sensor network comgas.
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After the data management stage, the data are ready to beatalThe component
“Context information” represents five type of analysis tbatild be performed: Social pat-
terns; mobility; understanding cities; human behaviod avent detection. All these classes
of analysis are discussed on Sectiba

3.2 Challenges

The construction of a participatory sensor network impasasy challenges. Looking at
Figure3.2we see that a participatory sensor network could be divideiifierent blocks. In
Section2.2we described how researchers have been addressing clealiednly related in
the block named “Context information”, which representdeie and approaches to trans-
form big raw data from participatory sensing systems inwiseformation, to be applied,
for example, in applications. In this section we are coneget! in challenges related with
the blocks named “Participatory sensing” and “Big raw data”

Among the challenges present in these blocks we can mengianquiality, data col-
lection, data storage, data processing and indexing. Thétyjwf the shared data are a
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challenge that has been relatively well tackled in the waiala, however there are unique
challenges for controlling the quality of shared data whealidhg with ubiquitous user con-
tributions [Mashhadi and Capr&201]. For instance, since users can produce sensor read-
ings with relatively little effort, data integrity is notwhys guarantee®aroiu and Wolman
201d. Among other initiativesSaroiu and Wolmamn201(d tackled this issue proposing a
trusted platform module, which confirms the integrity of Sieg devices.

Besides that the shared data through participatory sesgstgms in some cases are
free text, not presenting structure nor codified semanesg complex to understand and
process. To better interpret such complex data, visuaizéchniques and tools should be
developed. Another issue related to data quality is thetitgven to users in certain PSSs.
Sometimes, users can post whatever, even incorrect, iafaymin different formats. This
demands mechanisms for data filtering. A reputation systesnbme very useful in this case.

Data collection is a challenging issue especially fromddgarty services, such as
Foursquare and Waze. By default, data shared in those systemusually private, unless
users decide to make them public, for example sharing it ortdiw This means that no
public data can be available at all. Furthermore, since #ita depends on the users will
in contribute, there is no guarantee on the delivery of artg.da his makes the use of
participatory sensing completely out of the control loogystem managers and application
developers. Some actions can be taken to ensure that thparieipation is sustained over
time. An example of action could be an incentive mechanisseth@n micro-payments, i.e.,
every time a user perform a given activity, he/she receivesnaall payment, as proposed
by Reddy et al[2010.

Another important issue is deal with a huge volume of dataB&Ss can offer, im-
posing challenges faeal timestoring, processing, and indexing using traditional dasab
management tools or data processing applications. Thigstak offer of real time services
using a participatory sensor network a challenge. To taithkieissue we need methods to
effectively store, move and process big amounts of data. algarithmic paradigms, for
example map-reduce, should be designed, as well as spedaificgiechniques should be
created according to these new paradigms. Other methodddstmntemplate data engi-
neering approaches for large networks with up to billiondesdedges, including effective
compression, search, and pattern matching metr@@sotti et al.2017. Fortunately, the
research on big data challenges is very active, and hasthgossde great advances by, for
example, relying on parallel platforms (e.g., Had®)dpr processing large scale datasets.

Furthermore, participatory sensor networks are very dyaaifo illustrate the chal-
lenges that emerge with this characteristic we analyzenttoemnation flow in PSNs, which

3http://hadoop.apache.org.
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is depicted in Figuré&.2, particularly the two flows symbolized by arrows labeledhithe
word “use”, pointing from the Context information to Systgnand from Third-party ap-
plications to Users. Users rely on applications, such ast@wor Waze, to transmit their
sensed data. The sensed data are, then, transmitted tatee se the “sink node”. The
Context information component is responsible for procestie shared data and generating
useful information, or contexts (Secti@l.3. Systems, such as Waze, by their turn, may
be fed back with the generated contexts and, from this, thegyprovide useful information
to the users. Contexts can also be generated by third-paptycations. For example, in
Section5.3, we describe an example of application that enables theifidation of regions

of interest in a city, which exemplifies a type of context. ékftising this application, users
may choose to change their behavior, e.g., to visit prefggadpular areas, which may ulti-
mately impact the number of potential shared data in thaseegl This gives an idea of how
dynamic a participatory sensor network is and the challetiggt emerge when dealing with
this dynamism.

Besides these problems there is still the problem of usewsqy. This challenge is
very broad, being present in many layers of the system. Dataqy in social media systems
has been currently discussed in several studies, suchPantds et al.2012 Toch et al,
201Q Brush et al.201Q.

A wide range of novel applications opens up after dealindpwit challenges of this
research field. Some of the opportunities are illustratedemext chapters.



Chapter 4

Properties of PSNs

Many questions arise from the emerging concept of particigesensor networks (PSNSs).
What are the properties of PSNs? What types of applicatiansve apply PSNs in? What
are their limitations? As the data provided by PSNs may bga@mplex, a fundamental step
in any investigation is to characterize the collected datder to understand its challenges
and usefulness.

In this chapter we analyze participatory sensor networkivel from three location
sharing services, namely Foursquare, Gowalla and Brighikesults presented in Sec-
tion 4.1). We also analyze a PSN derived from a photo sharing semamgly Instagram
(results presented in Secti@gn?), and a PSN derived from a traffic alert service, namely
Waze (results presented in Sect). Sectiond.4compares different PSNs. A discussion
about the results is presented in Secddh

4.1 PSN from Location Sharing Services

This section investigates PSNs derived from location sigaservices. First, Sectich1.1
describes the datasets considered. Then, Se¢tioRanalyzes the coverage of the analyzed
PSN at different spatial granularities, starting from timéire planet, going to continents,
cities until individual venues. Next, Sectidnl.3looks at the frequency which nodes share
data in individual locations of our dataset. Finally, Sect.1.4discusses the sensing sea-
sonality.

4.1.1 Data Description

The analyzed PSNs are derived from four datasets collected 8 location sharing ser-
vices, namely Foursquare, Gowalla and Brightkite. Threéhete datasets, one for each
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System # of check-ins Interval # of Venues| Categories
Foursquare-Year 11,743,781 | Feb2010-Jan2011 490,079 no
Foursquare-Crawled 4,672,841 | April 2012 (1 week)| 1,929,237 yes
Gowalla 6,442,890 | Feb2009 - Oct2010 1,280,969 no
Brightkite 4,491,143 | Apr2008 - Oct2010] 772,966 no
Total 27,350,655

Table 4.1: Dataset information.

system, are publicly availabl€ho et al, 2011 Cheng et al.2011. Moreover, since we are
also interested in the information about the categorieb®fvenues, we collected a fourth
dataset from Foursquare. We collected this data directign fifwitter, since Foursquare
check-ins are not publicly available, by default. Approately 4.7 million tweets contain-
ing check-ins were extracted from Twitter, each one prayjdh URL to the Foursquare
website, where information about the geographic locatidh@venue was acquired. To dif-
ferentiate the two datasets from Foursquare we refer tortbebtained fromCheng et al.
20171 asFoursquare-Year, and to the one we crawled Bsursquare-Crawled .

In location sharing services the basic activity users cafopa is called check-in,
which is an action to announce in the system where you are attait moment. Other
actions could also be allowed. For instance, in Foursquaessucan post tips in spe-
cific places aiming at sharing information on any aspecttedldo the venue with oth-
ers [Vasconcelos et gl2013. In this chapter we focus on users’ check-ins. In all four
datasets, each check-in consists of the latitude, longjteehue’s id, and time. As we men-
tioned, our collected Foursquare-Crawled dataset al$odas the venue category. Tadld
summarizes the four datasets. Note that the Foursquaré€traataset has approximately
40% of data of Foursquare-Year dataset, despite the int&reallection being much shorter.
This is explained by the way we performed our collection. Fbharsquare-Year dataset also
extracted information about check-ins from Twitter, bugtead of using the URL available
in the tweet to acquire the geographic information in therbquare website, the authors
considered only tweets with geo-tagged updates, whicheassftequent.

4.1.2 Network Coverage

Figure 4.1 depicts the coverage in the PSN formed from our datasetshwdan be very
comprehensive in a planetary scale. However, despite timbiagnitude of the coverage,
observe in Figurd.2 the total number of check-ins per continent and per intestdiime.
Note that the sensing activity in some continents, such aghManerica and Europe, are sig-
nificantly higher than in others, such as Oceania and Afti{avever, observe that Africans
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are increasing their participation, probably because efrétent investments in mobile in-
frastructure in AfricaTheEconomist2013. Observe also that for Foursquare-Crawled, the
most recent dataset, the participation of Asians and LatireAcans is at least equivalent, if
not larger in the case of Asians, than the participation atiNémericans.
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Figure 4.1: All sensed locations. The number of locationeer pixel is given by the value
of ¢ displayed in the colormap, where= 2¢ — 1.

We now turn our attention to six large and populous citiegied in five continents:
New York City (U.S.A.), Rio the Janeiro city (Brazil), Paiigrance), Sydney (Australia),
Tokyo (Japan) and Cairo (Egypt). Figute8 shows, for each city, the heatmap of the sens-
ing activity in these cities. In the heatmap, the darker thlercthe higher is the number of
check-ins in that area. Figurds3a (New York),4.3c (Paris) andt.3e (Tokyo) show that the
coverage of the PSN in these cities is high. Now, looking gufg4.3, we see that the cov-
erage in Cairo is very low (approximately only 10%), destheits equivalent population.

Economic factors might impact the usage of mobile devicethbylocal population,
ultimately impacting sensing coverage. If most peoplentiva given area cannot afford to
buy a smartphone (or any other mobile device), the localramemay be low. Besides the
economical aspect, cultural differences are also an irapbaspect that must be considered.
The cultural differences in Cairo, compared to the previatiss mentioned, might have
an impact on the adoption and use of location sharing systeewple from certain cultures
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Figure 4.2: Temporal variations in the number of check-ieisgontinent.

might be more aware of (and worried about) privacy issuesdilaers, and this might impact
their contributions to the PSN in terms of data sharing.

Moreover, analyzing Figure$.3 (Rio) and4.3d (Sydney), we can see that the cov-
erage is not as homogeneous as in Paris, Tokyo or New YorkamRidSydney share some
geographic aspects in common. Rio has the biggest urbast fioréhe world, located in
the middle of the city, and many hills of difficult human acgeSince a central element of
a PSN sensor is a human being, areas with low populationtgessch as rural areas, or
areas with difficult access are expected to have fewer datangih(and thus lower coverage).
Residential areas with few commercial venues also corn&itmr a low sensing rate.

Now we analyze the number of check-ins in particular venuggure 4.4 presents
the complementary cumulative distribution function (CQDFthe number of check-ins per
venue. First, observe that a power law fitting is appropriatexplain this distribution.
Second, note that for all datasets the majority of locativage only a handful of check-
ins, while there are few locations with hundreds of them. seh&ndings are consistent
with previously reported resultdlpulas et al.20114. As we are analyzing location sharing
systems it is natural that some locations are shared maneothars. For example, locations
representing a restaurant or a coffee shop are more likebe tehared than a post office,
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(d) Sydney (e) Tokyo

Figure 4.3: [Best viewed in color]. All sensed locationsiiiaternational cities (Foursquare
datasets). The number of check-ins in each area is repegslent heatmap. The color range
from yellow to red (high intensity).

despite the fact that post offices are usually very populaveds If our application needs a
more comprehensive contribution per area, we have to iiveamsers to participate in places
that usually they would not. A punctuation system is one ohynigpes of incentive that
might work in this case.

We have seen that PSN can cover a planetary scale area. Nowerifig in Fig-
ure 4.5, the number of places that are active in a given time intef/aé Foursquare-Year,
Foursquare-Crawled, Gowalla, and Brightkite datasete hra@gpectively, approximately 490
thousands, 1,9 million, 1,3 million, and 773 thousandsmtstvenues. Considering the to-
tal number of distinct venues in each dataset, we find thaim#emum number of active
venues per day, or per hour, for Foursquare-Crawled, quurets to only 6%, 2%, 3.3% and
0.7% of this maximum for Foursquare-Year, Foursquare-@@awGowalla and Brightkite,
respectively. This indicates that the instant coverageSM 5 very limited considering all
locations they can reach, i.e., the probability of a randocation be active in a given day is
very small.
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Figure 4.4: The complementary cumulative distributionction of the number of check-ins
per venue.

4.1.3 Sensing Interval

Participatory sensor networks are very scalable becagsertbdes are autonomous, i.e.,
users are fully responsible for their own functioning. ®itlke cost of the network infras-
tructure is distributed among the participants, this emarsnscalability and coverage are
achieved without significant costs. The key challenge tastieeess of this type of network
is to have sustained and high quality participation. In ptlerds, the sensing is efficient as
long as users are kept motivated to share their resourcesemsdd data frequently.

Thus, now we investigate the frequency at which users paridata sharing. Fig-
ures4.6a, 4.6b, 4.6¢c, and4.6d show the histograms of the inter-event tim&s between
consecutive check-ins of one popular venue for the fouryaedl datasets. Note that a log-
logistic distributiort [Fisk, 1961 fits well the data. Observe the bursts of activity and the
long periods of inactivity in all datasets, i.e., a large tn@mof check-ins separated by a
few minutes and also consecutive check-ins separated leyadedays. This may suggest
that most of the data sharing, in these particular placggdrain specific intervals of time,

z

LProbability Density Functionf («|u, o) = L1 =i 2 > 0, wherez = 2=,
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Figure 4.5: The number of locations that were active in amgolay.

probably related to the time that people usually visit therg.( in restaurants people check-
in for lunch and dinner mostly). If, for instance, an apptica depends on sensed data from
a beach area (e.g., real-time weather), it has to be awaredtyefew people go to the beach
at night, so the sensing data will be rare.

Another interesting observation related to the inter-etiemes A, can be drawn from
Figures4.6e, 4.6, 4.69, and4.6h. In these figures, we show the Odds Ratio (OR) function
of the inter-event timeg\;. The OR is a cumulative function where we can clearly see the
distribution behavior either in the head or in the tail, arsdformula is given bYOR(z) =
fé’T%, whereCDF(z) is the cumulative density function. As ivdz de Melo et al.
2011, which analyzed phone SMS usage, the OR of the inter-eiraestbetween check-ins
is well fitted by a straight line with slope~ 1 in a plot with logarithmic scales, suggesting
that the data is well modeled by a Log-logistic distributiofhis is fascinating, since it
suggests that the mechanisms behind human activity dysam&y be more simple and
general than we knovBarabasi2005 Malmgren et al.2008.
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Figure 4.6: The distribution of the inter-event times bedweonsecutive check-ins of one
popular venue of each dataset.

4.1.4 Seasonality

We now analyze how the seasonal behavior of humans affexidata sharing. Figuré.7
shows the weekly location sharing pattern for all analyzathsetd As expected, the net-
work actuation presents a diurnal pattern, meaning thahgdine dawn the sensing activity
is very low. We can also observe that there are two classeshaiiior: weekdays and week-
ends. Considering weekdays, we can note, in all dataseiacesase in the activity from
Monday to Friday, as verified also I§heng et al[2011]. It is also possible to observe three
peaks during the day, around breakfast, lunch, and dinmasti These peaks occur on ev-
ery weekday, except on Friday morning. On that specific dayetlis no significant peak
around the breakfast time. This might be due to specific behpatterns, e.g., going out on
Thursday night and waking up late on Friday morning.

We further analyze the different behavioral patterns onkaags and weekends, fo-
cusing now on the two Foursquare datasets, as similar deasdics were observed for all
analyzed systems, in this thesis and als@&odllato et al.201]]. Figure4.8a shows the av-
erage number of check-ins of each hour from Monday to FriBagure4.80 shows the same
information for Saturday and Sunday. As we observe, thegpdakng weekdays happens
on 8:00 a.m. (breakfast), 12:00 p.m. (lunch), and 6:00 pdinngr). On weekends, there is
no peak activity in the morning, the lunch peak happens atdu@0 p.m., and the dinner
peak is flatter (comprising 6:00 p.m. to 7:00 p.m.). We cap alsserve that the activity is

2The timestamps where normalized to the local time of the kiirec
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Figure 4.7: Weekly location sharing patterns.

more intense on weekends. It is worth noting that routinesally performed on weekdays,
affects considerably the data sharing.
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Figure 4.8: Weekdays and weekend location sharing patterns
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4.2 PSN from Photo Sharing Services

This section investigates the participatory sensor nétwerived from Instagram. Section
4.2.1describes the datasets considered. Sedtidr2analyzes the coverage of the analyzed
PSN at different spatial granularities. Secth@.3looks at the frequency which nodes share
data in individual locations of our dataset. Secttb@.4discusses the sensing seasonality,
and finally Sectio.2.5analyzes the sensing activity of each individual node, (iger plus
smartphongin the PSN.

4.2.1 Data Description

Instagram, created in 2010, is a photo sharing service Homtsausers to take pictures, and
share them on a several social networking services, suclid®fT Currently, Instagram
users can create Web profiles featuring recently sharedrpgtbiographical information,
and other personal details. Instagram is a very popularop$luring service. In February
2013 Instagram announced that they had 150 million usedsina?014 this number reached
200 million userdnstagran{2014.

The data was collected via Twitter, which enables usersioamce photos available at
Instagram. In this case, photos of Instagram announced dgteflwecome available publicly,
which by default does not happen when the picture is pulddigwely on the Instagram
system.

Between June 30 and July 31 of 2012, we collected 2,272,586étsxcontaining geo-
tagged photos, posted by 482,629 users. Each tweet coosiGRBS coordinates (latitude
and longitude) and the time when the photo was shared.

4.2.2 Network Coverage

In this section, we analyze the coverage of the PSN of Inatagit different spatial granulari-
ties, starting around the planet, then by continents ames@nd ending up at neighborhoods.
Figure4.9a shows the coverage on the planet by the PSN of Instagramess enap of user
participation: darker colofsepresent larger numbers of photos shared in the partiategar
The results are similar to those observed in the Seetidr2 We also observe that, despite
being a fairly comprehensive coverage on a planetary sitakenot homogeneous. Fig-
ure 4.1 shows the number of photos shared by continent along the tidote that the
sensing activity in the Americas (North and South), Europe Asia is at least an order of
magnitude greater than in Africa and Oceania. Moreoveiirit loe observed that the par-

3Colors of the heat map for all subfigures are in the same scale.
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ticipation of users in North America is slightly higher themLatin America, Europe and

Asia.
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Figure 4.9: All photos shared. Number of photoper pixel obtained from the value of
shown in the figure, where = 2¢ — 1.
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Figure 4.10: Temporal variation of the number of photos ethdry continent.

Now we evaluate the participation of users in Instagram R&tlié same eight large
and populous cities in five continents analyzed in Sectidni2 Figure4.11shows the heat
map of the sensing activity (photo sharing) in each one cfaluities. Again, darker colors
represent a greater number of pictures in a given area. Asdtid®4.1.2 we here can also
observe a high coverage for some cities, as shown in Figutda (New York),4.11e (Paris)
and4.11g (Tokyo). However, we can see in Figutd If that the sensing in Cairo, which also
has a large number of inhabitants, is significantly lowectsdifference in coverage may be
explained by the same factors mentioned earlier. Besigdesdbnomic aspects, differences
in the culture of the inhabitants of this city when comparetthwultures present in the other
cities analyzed may have a significant impact on the adopt@huse of InstagranBparth,
1969.
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Figure 4.11: Spatial coverage of Instagram in eight cittesafl shared photos. The number
of pictures in each area is represented by a heat map, whesedle varies from yellow to
red (more intense activity).

Furthermore, we can see that the coverage in Rio de JanarSyaney is more het-
erogeneous compared with the coverage in Paris, Tokyo amd¥Ydek. This is probably
because of the geographical aspects that these citiesiawenimon, i.e., large green areas
and large portions of water, as we pointed out in Secfidn2 Moreover, in both cities the
points of public interest such as tourist spots and shoppémgers are unevenly distributed
throughout the city. There are large residential areasfethpoints of this type, while other
areas have large concentrations of these points. This\@igaT demonstrates the potential
of Instagram as a tool for participatory sensing in largeaartegions.
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Figure 4.12: Example of identification of a quadrant.

As the users’ participation can be quite heterogeneouswilctity, we propose to
divide the area of the cities into smaller rectangular spaain a grid. We call each rectan-
gular area of gluadrantwithin a city and, from this, we analyze the number of photesed
in these quadrants. In this thesis, we consider that a quildaa the following delimitation:
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Figure 4.13: Distribution of the number of photos in quadsan

10~*° (latitude) x 10~*° (longitude). This represents an area of approximatelg Bmeters

in New York City and 111 meters in Rio de Janeiro. For other cities, the areas san al
vary slightly, but this does not affect the analysis. Wedadithat this is a reasonable size to
represent an area of a venue, enabling then analysis of astvity at venue level in a city.
Figure4.12illustrates the process of dividing the area of a city in qaats and how it is the
association of geographic coordinate (24.0001433; 3.880® a quadrant X.

Figure4.13presents the complementary cumulative distribution fionc(CCDF) of
the number of photos shared in a quadrant of the city of Nevk ¥Bigure4.13) and all
locations in our database (Figutel ). First, note that in both cases, a power law describes
well this distribution. This implies that most of the quadtshave few shared photos, while
there are few areas with hundreds. These results are camtsigth the results for the par-
ticipation of users in location sharing serviceNdulas et al.20114 and in Sectior4.1.2.

In systems for photo sharing, as well as systems for locataming, it is natural that some
areas have more activity than others. For example, in toanéss the number of shared pic-
tures tends to be higher than in a supermarket, althoughexmsapket is usually a location
quite popular. If a particular application requires a masmprehensive coverage, it is nec-
essary to encourage users to participate in places theyatigiwould not. Micro-payments
or scoring systems are examples of alternatives that mighk im this case.

As previously shown, a PSN can have planetary scale coverbmegever, it was also
shown that such coverage can be quite heterogeneous, ih lahge areas are practically un-
covered. Figurd.14shows the total network coverage considering the temparsmsion,
i.e., the number of localities that are active (i.e., sepsed given time interval considering
all available data. The maximum number of quadrants sensedqur corresponds to only
approximately 0.2% of the total number of areas in our dai{ds@30,558). In other words,
the instant coverage of the PSN of Instagram is very limiteémwe consider all locations
that could be sensed on the planet. This means that the plibbaba quadrant to be sensed
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on a random time is very low.
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Figure 4.14: Temporal variation in the number of sensed iGunds.

4.2.3 Sensing Interval
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Figure 4.15: Distribution of the time interval between sthphotos in a popular quadrant.

We now investigate the frequency in which users share phatdsstagram. Fig-
ure4.15 shows the histogram of the inter-sharing tithebetween consecutive photos in a
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typical popular quadrant. Note that the histogram is weltleled by a log-logistic distribu-
tion (v = 2.605, o = 0.839) that has bursts of activity and long periods of inactivityere
are times when many photos are shared within a few minutethanel are times when there
is no sharing for hours. Information observed also in Sectid.3 This may indicate that
the majority of photo sharing, in this popular area (as irecth occurs at specific intervals,
probably related to the time when people usually visit théfar example, sharing photos
in restaurants is likely to happen during lunch and dinmaes. Applications based on this
type of sensing, as for location sharing services, shoutdider that the user participation
can vary significantly along the time. Figure reffig:indireasinstagramPHOTOb shows
the odds ratio function (OR) of these intervals (inter-gigatime A;). As found in anal-
yses of phone SMS usag¥gz de Melo et al.2011 and location sharing (Sectioh 1.3,
the OR of the inter-sharing time between photos suggest$itbalata is well modeled by a
Log-logistic distribution.

Based on these facts and also on Figludéxc, we can observe that a significant portion
of users performs consecutive photo sharing in a short tmerval. About 20% of all
observed sharing occurs within 10 minutes. As discussedatid4.2.5 this suggests that
nodes tend to share more than one photo in the sameNoedas et al[20114 also observed
a significant portion of check-ins performed in Foursquaithiw a short time interval. For
instance, more than 10% of checkins occur within 10 minutes.

Related to this analysis, it is interesting to verify thesibdity of an application for
near real-time visualization of a certain area of a city. that, a central question is: what is
the probability to obtain one picture of an area in a givereinio address this question, we
select a popular area of our dataset (south of Manhattamrsin Figure4.16, and divide
it in eight sectors of equal size.

Figures4.1@-e show the mean probability, along with its confidenceratieof 95%,
of seeing a picture in each of these sectors in the next 1imif6-minutes, 30-minutes, and
60-minutes. All these probabilities are calculated forrfdifferent times of the day: dawn
(Figure4.1@), morning (Figuret.16€c), afternoon (Figurd.16d), and night (Figurel.16e).
We observe that during the afternoon and night the diffexdmetween the probability of
seeing a picture in the next 15 minutes and 60 minutes areergthigh in most sectors.
On the other hand, during the dawn and morning this diffezeaenore expressive. This is
explained by the low sharing frequency during the dawn anching periods, as observed
in Figure4.17. Note also that even for a very popular area the probabditytain a picture
in the next minute is very low, for all four periods of the d&his means that applications
that need a considerable amount of photos within a smalvalt&ave to be aware that this
may not be feasible.

The results in Figurél.16 can also be used to better understand those sectors. For
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Figure 4.16: Mean probability of obtain a picture in the n&xtinute, 15-minutes, 30-
minutes, and 60-minutes, for eight popular areas duringléven, morning, afternoon, and
night.

instance, Sector 8 seems to be the least popular among s atlespite the biggest part of
water in that sector. If we analyze the probability of a phatthe next 15-minutes, we can
also see that during the dawn, Sectors 3, 5, and 6 are the mjskap ones, which might

indicate that those sectors have a more intense nightlifies ifformation could be useful,

for example, in a tourist guide, being one feature in an algorto recommend areas in a
city.
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Figure 4.17: Temporal photo sharing pattern.

4.2.4 Seasonality

We now analyze how humans’ routines affect the data shaFigt, we study all localities
present in our dataset (Sectidr2.4.], and then we study the sharing pattern for some cities
from different continents (Sectioh2.4.2.

42.4.1 All Localities

Figure4.17a shows the weekly pattern of photo sharing in Instadrafks expected, the
network participation presents a diurnal pattern, imgytimat the overnight sensing activity
is quite low.

Considering weekdays, we can see a slight increase intgdivbughout the week,
except for Tuesday, when there is a peak of activity. We, ttiSe4.1.4 andCheng et al.
[201]] analyzed location sharing systems and observed the sahawibe This suggests
that during the period of data collection, an unusual evesy hrave happened on Tuesday
that resulted in an abnormal number of shared photos. Iyjmdderve two peaks of activity
throughout the day, one around lunch and the other at dinmex. t Unlike the behavior
observed for location sharing (Sectiéri.4andCheng et al[2011)), for photo sharing there
is no peak of activity at breakfast time.

We also analyzed the behavioral patterns during weekdalmaekends. Figuré.17
shows the average number of photos shared per hour duringlaxe(Monday to Friday),
and also during the weekend (Saturday and Sunday). As weeeathe peaks during week-
days happen around 13:00 (lunch) and 19:00 (dinner), but eekends there is no peak
of activity at lunchtime. Rather, the activity remains imée throughout the afternoon until
early evening, with a slight increase at 19:00.

4The time of sharing was normalized according to the locatibare the photo was taken.
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4.2.4.2 Selected Areas

We now turn our attention to the photo sharing pattern thihougithe day in Rio de Janeiro,
Sao Paulo, Osaka, Tokyo, Barcelona, Madrid, Chicago andY¢ekwCity during weekdays
and weekends. These results are shown in Figut®. It is interesting to note that, even
when we analyze separate cities, we still do not observentst of the cities, a clear peak
of photo sharing around the breakfast time, as observeddatibn sharing.

Studying weekdays first, we can see that cities from Japgu&4.18), Spain (Fig-
ure4.18) and USA (Figurel.18y) present peaks of photo sharing that reflect typical lunch
and dinner times. On the other hand, not all peaks in the Baazturves (Figuret.18)
represent typical meal times. This might indicate that Bieaxs share photos in uncommon
moments. We conjecture that the peak of 6:00 p.m. is due go$hapur” and the peak of
9:00 p.m. is due to a leisure activity that happens in a pudgttr, concert, etc. Another
difference is that, in general, the Brazilian activity is imaontense late at night. During
weekdays it is possible to observe a certain similarity aifrsty patterns between Japanese,
Spanish, and American cities.

However, during the weekends these patterns are very distirhe Brazilian curve
still presents an unusual peak at 5:00 p.m. and the SpanisAraerican curves now present
more intense activity around the “brunch”/lunch time. Tdebserved patterns might express
cultural behaviors of inhabitants of those countries, gméag somehow the signature of a
certain culture. This hypothesis is reinforced becauseun@isingly see that the pattern for
each city in the same country is fairly similar on weekdayy] also on weekends, at the
same time, being distinct from patterns observed for othentries.

4.2.5 Node Behavior

In this section we analyze the sensing activity of each iddi&l node (i.e., user plusmart-
phong in the PSN. Figurd.19shows that the distribution of the number of photos shared by
each user of our database has a heavy tail, meaning thatarsiergation may vary widely.
For example, about 40% of users contribute with only a phatand the considered period,
while only 17% and 0.1% of users contribute more than 10 arfdddtos, respectively.
A heavy tail in the distribution of the number of performecdeck-ins was also observed
in [Noulas et al.20114. About 20% of users have just one check-in, with 40% above 10
whereas there is a set of approximately 10% that has morel@@oheck-ins.

We also analyze the geographical distance between two catngephotos shared by
the same user, according to the geographic coordinatesiatsbwith each photo. Fig-

SEach curve is normalized by the maximum number of photoseshiara specific region representing the
city.
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Figure 4.20: Distribution of the geographical distancenestn consecutive pictures of the
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ure 4.20a shows the cumulative density function of the geographstadce between each
pair of consecutive photos shared by each user in our datésen be observed that a sig-
nificant portion (about 30%) of the distances between carns@cphotos are very short (less
than 1 meter). This indicates that users tend to share reufilotos in the same location.
This hypothesis is reinforced by the significant portionioig intervals between consecutive
pictures of short duration shown in Figutelsc: 20% of these intervalgy;) do not exceed
10 minutes. This was not observed in the same proportiom&ation sharingNoulas et al.
[20114 observe that 20% of the shared locations happen up to 1 km. &ea shared pho-
tos, this value is approximately 45%. This result can bearpd by the simple fact that a
photo can contain much more information than one locatiasr. éxample, in a restaurant
users could share photos of his/her friends at the placel, fmoa particular situation, but
tend to share their location only once.
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Figure 4.21: Contribution of nodes, distance traveled,@wtrage.

We now analyze each user separately. Figug€b shows the distribution of the me-
dian distance between consecutive sharing computed foresar. Note that at lea50%
of consecutive photos of a significant portion of users (&B6%) are taken at a very short
distance (around 1 meter).

Finally, we study the performance of nodes consideringdted traveled distance, the
coverage in the city of New York (NY), and total number of ailmited photos. To analyze
the coverage, we consider the area of NY (Figlitla), which was divided into 27 sectors
of equal size. Figurd.21b shows a 3-D plot for the three dimensions considered. We are
able to observe the existence of “super nodes” in the systelcated by a green circle. This
nodes share a lot of photos, travel long distances, andmsity different areas in the city
(observed by the number of unique visited sectors). Thdifition of this type of users is
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important for several reasons. As the success of a PSN mliascontinuous contribution,
it is interesting to award this type of user to keep them adtivthe network. Besides that,
nodes of this type might be good candidates to be selecte@éxémple, in a network for
information dissemination a city.

4.3 PSN from Traffic Alert Services

This section investigates the participatory sensor ndtwerived from Waze. Sectioh3.1
describes the used dataset. Secddh2studies the coverage of the considered PSN. Sec-
tion 4.3.3analyses the frequency that users share alerts. SetiBhstudies how user
routines affect the temporal frequency of alert sharinghally, Sectiornd4.3.5analyses the
contribution of individual users in the PSN derived from \&az

4.3.1 Data Description

Waze is a popular navigation system that uses crowdsensiaoffer near real-time traffic
information and routing. The system was created in 2008 agi$tered approximately 50
million users in 2013. Waze periodically collects data fribra built-in GPS typically found
in smart phones, and uses it to compute the speed of the d@Vvittethat, Waze can provide
useful information about traffic conditions in differentas. The system also offers to its
users predefined alerts stating incidents such as traffis gard police traps, which extends
the information about traffic conditions. It is also possitd use subcategories of incidents
to better specify them, for example, “heavy traffic jam” ged of just “traffic jam”.

Here, we are interested in characterizing user parti@pai the dissemination of
alerts about traffic. To that end, we collected a dataset afeVdderts directly from Twit-
ter, since Waze traffic information is not publicly accetsioy an API. Our dataset covers
the period from December 21st, 2012 to June 28th, 2013, ansiste of 212,814 tweets
containing alerts about traffic shared by Waze users, eaelpamviding the user id, type of
incident (e.g., traffic jam), and the address of the incidéntorder to obtain the latitude
and longitude of the provided address, we performed a géoggufocess using the Bing
Maps APP, which provides the confidence of the result’s quality: lowedium, and high.
We excluded all results classified as low. After this filtgrprocess, we extracted 162,212
tweets containing alerts, shared by 21,852 users.

In Figure4.22 we provide an overview of types of alerts reported by usérsuo
dataset, using word clouds to represent the relative frezyie Alerts were translated into

Shttp://www.microsoft.com/maps/developers/web.aspx.
’The size of the word indicates its popularity.
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Figure 4.22: Overview of reported alerts.

ol | 10
O \ ,;‘.I, o 8
go] / A
=
5) o A | 6
c
2 f 4
-50¢ °
0

-100 0 100 ©
Latitude

Figure 4.23: All sensed locations. The number of locatioper pixel is given by the value
of ¢ displayed in the colormap, where= 2¢ — 1.

English using a manually created dictionary of translatismwe can see, the most common
type of reported alert is traffic janthough police and hazard are also very popular.

4.3.2 Network Coverage

In this section, we discuss the spatial coverage of the P3MNedefrom Waze. In this di-
rection, we first built a heatmap with all alerts shared byrsise our dataset, shown in
Figure4.23 As in location and photo sharing services (Sectidris2and4.2.2 respec-
tively), we note that user participation in Waze is globalever, it is low is certain regions,
particularly Asia. Then we selected the most popular cfbesurther analysis.

A popular city from our dataset is shown in Figut€4 In this figure we show the
number of alerts in different regions of Rio de Janeiro by @ Ineap, where the scale varies
from yellow to red (more intense activifyy) The spatial coverage is not as proliferated as
the one observed in location and photo sharing systemsi¢8sdt1.2and4.2.2. A factor

8Alerts containing a subcategory of an incident were unifeedts main category, for example, “heavy
traffic jam” was associated to the word “traffic jam”.
9The darkest red represents a region with 508 alerts.
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Figure 4.24: Spatial coverage of Waze in Rio de Janeiro.

that might help to explain it is the user population of ouradat, which is smaller than those
reported in the mentioned studies. Another factor is thatusiight have fewer opportunities
to share traffic alerts, compared to opportunities to shloégs or check-ins.

In order to evaluate user participation across differegiores at a finer granularity,
we propose to divide the geographical area of each city imaller rectangular spaces (or
guadrants), as performed in the analyzes for the PSN derivelgoto sharing services (Sec-
tion4.2.2.
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Figure 4.25: Distribution of the number of alerts.

The complementary cumulative distribution functions o ttumber of alerts shared
in a quadrant of the city of Rio de Janeiro, as well as acrddsadtions in our dataset are
presented in Figures.25 and4.25, respectively. Note that a power law describes well this
distribution in both cases. This means that few areas hawdrhds of shared alerts, while
most of the quadrants have just a small number. This findirgpisistent with previous
results about user participation in location sharing & as shown in Sectighl.2and
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by Noulas et al[20114, and photo sharing services, shown in Sec#o8.2 As in those
other services, it is likely that some areas, such as largaus in downtown, have more
activity of traffic alerts. Note that the number of vehicl@sglating on each region greatly
impacts the local coverage of a traffic alert sharing systeah &is Waze, as shared alerts
often refer to traffic jams and hazards, or even police traps Figuret.22), which tend to
occur more often in locations with heavier car flow. This is@mtrast to location and photo
sharing services, where places often visited by a large epuwfpeople are not necessarily
covered by a large amount of shared data, because the nuniwditusers to share data in
such systems is different from Waze. For example, a largersugrket may be visited by a
large number of people on a daily basis, but it is not likebttthose people will share many
check-ins or photos at it.

4.3.3 Sensing Interval

We now analyze the frequency in which users share alerts @eWahe histogram of the
inter-sharing timeA,; between consecutive alerts (performed not necessarijhésame
user), in a popular quadrant is shown in Figdr26a. Note that a log-logistic distribution
(n = 2.931, 0 = 1.065) fits well the data, reflecting the fact that there are timesmvmany
alerts are shared within a few minutes and there are timea titeee is no sharing for hours.
As also observed for location (Sectidrl.3 and photo (Sectiod.2.3 sharing services, this
result may indicate that the majority of alert sharing os@trspecific intervals. For instance,
alerts are more likely to be common in urban areas during nosins.

In Figure4.2@, we show the odds ratio function (OR) of inter-sharing titne As
also observed in previous analyses of phone SMS ud#&gede Melo et al.2017, location
sharing (Sectiod.1.3, and photo sharing (Secti@n2.3, the OR function also suggests that
the inter-sharing time between alerts also is well modeled bog-logistic.

The CDF of all observed inter-sharing times performed bywas®r in the same quad-
rant is shown in Figurd.26c. As we can observe, a considerable portion of users perform
consecutive alert sharing in a short time interval. This alas observed for photo sharing
(Section4.2.3 and location sharingNoulas et al.20114. This is expected to happen for
traffic alert services because, for example, when an accliiggpens many users tend to
share it in a short interval.
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Figure 4.26: Time intervals between consecutive alertsheoessarily done by the same
user.

4.3.4 Seasonality

In this section, we study how user routines affect the temfoequency of alert sharing. In
Figure4.27a, we show the temporal variatidfisf the number of alerts shared throughout the
week (Monday to Sunday), for all locations of our dataset.eAgected, user participation
presents a diurnal pattern, and the activity during latétigpurs and dawn is much lower
than previously observed in location and photo sharingepadt(Sectiond.1.4and4.2.4
respectively). During that period, traffic problems areitgfly rare, whereas users have
more opportunities to share data in location and photo spaystems (e.g., in a night club
or in a concert).

Intense user activity during the weekends, as observedcatit;m sharing services
(Section4.1.4and [Cheng et al.2011)) and photo sharing services (Sectiér2.4, is not
observed for traffic alerts. This might indicate that thesoe®es motivating users to contribute
alerts are distinct from the ones to perform check-ins. gure4.27, we show the average
number of data sharing throughout the day, separately fekdays (Monday to Friday) and

10The time of sharing was normalized according to the timezamere the alert was shared.
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Figure 4.27: General temporal sharing pattern (all locejo

weekends (Saturday and Sunday). Note the two clear peakgiatyg one around 7 to 8
a.m. and the other around 6 p.m., coinciding with typicahrbisurs in urban areas. This
result is different from the three clear peaks previouslyested in location sharing services
(Sectiord.1.4and [Cheng et al.2011]), around breakfast, lunch and dinner times, as well as
from the two peaks during lunch and dinner times in photoisgdSectiord.2.4).

We now analyze the hourly variations of alert sharing in aigé cities: Chicago and
New York (Figure4.28?!) in USA; Belo Horizonte and Sao Paulo in Brazil (Fig@2&);
and London, and Paris (Figude2&) in Europe. Note that the curve of each city follows the
general trend observed for all locations (Figdra7).
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Figure 4.28: Alerts sharing throughout the day in differgties around the world.

We can also observe that the peaks reflect distinct rush tinadsare related to the
common working hours of different cities. In Chicago (Fig4:28) the morning peak is
around 7 a.m., as in the two European cities (Figu28). In contrast, in New York and
in the Brazilian cities (Figurd.2&), the morning peak is usually one hour later, suggesting
that people tend to leave later to work in those cities. Theseé most expressive peak in

Y Each curve is normalized by the maximum number of alertseshiarthe city in question.
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both American cities is around 5 p.m., which is similar to Eneopean cities. However, this
is distinct from the Brazilian cities, which have a peak aihaty around 6 p.m..

To complement this analysis, we performed, from July 16tluly 18th, an hourly
collection of traffic conditions of Paris, using Google Mape note that the time of the
observed peaks reflects relatively well intense traffic @tk reported by Google Maps,
whereas the reduced activity prior and after the peaks afsects better traffic conditions.
This suggests that this information could be used to asbgrguality and improve traffic
condition information services, such as those offered bygkoMaps.

4.3.5 Node Behavior

We now analyze the contribution of individual nodes in theNR&rived from Waze. In
Figure4.29 we show that the distribution of the number of alerts shdrg@ach user of
our dataset has a heavy tail, as observed for photo shar@aj¢84.2.5 and location shar-
ing [Noulas et al.20114. This implies in a great variability of user participatioRor in-
stance35% of the users contributed with only one alert during appratety the six-month
period covered by our dataset, while 16% and 0.006% of usersibuted with more than
10 and 100 alerts, respectively, in the same period. Thegsopions are similar to those
observed in photo sharing.

We now analyze the spatial distance between consecutiits alethe same user, by

taking the distancejinnott 1984 between the geographic coordinates associated with both

alerts. In Figuret.30a, we show the CDF of the distances between consecutive aleated
by each user, for all users. Note that a large portion of tséadces are very short: for
instance, around0% are below 1 meter. Such large fraction of small distancewdmmt
consecutive sharing were also observed in photo sharingfi¢g8et.2.5 and, to a lesser
extent, location sharing serviceNdulas et al.201134. For location sharing 20% of the
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Figure 4.30: Distribution of the geographical distancensein consecutive data of the same
person.

consecutive sharing by the same user were in locations the apart from each other by
up to 1 km. For photos and alerts, this fraction raises to @pprately 45% and 80%,
respectively. This suggests that users tend to share heldiligrts in the same location.

In Figure4.3M, we show similar results for the distribution of the meddstance
between consecutive sharing for each user. That is, evaegajing results for each user,
we still observe that alerts are shared at very short distanaroundi5% of users share
alerts 1 meter apart from each other.

4.4 Comparing PSNs from different systems

Social networks and social software have been driven by spe@s: connections between
people who use them and the information they share, in pdatitocation-related informa-
tion [Smith et al, 2009. In this section we are interested in comparing differeBNB, two
datasets of Foursquare (Foursquare-Crawled and Fouestjgay), and two datasets of In-
stagram (Instagram-OLD and Instagram-N&wTable4.2 summarizes all the used datasets
in this chapter. We analyze those datasets to investigag¢ghe@hwe can observe the same
users’ movement pattern, the popularity of regions in gjttbe activities of users who use
those social networks, and how users share their contemg &e time. In answering those
guestions, we want to better understand location-relatidmation, which is an important
aspect of the urban phenomena.

This section compares the four datasets of the two socialanks using location-
related information as the main aspect of the analysis, amganized as follows. Sec-

12Note that Instagram-New and Foursquare-New have the tingeltefction in common, which is not the
case for Instagram-OLD and Foursquare-Crawled datasets.
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System # of data Interval
Foursquare-Crawled 4,672,841 check-ing  Apr/2012 (1 week)
Foursquare-New | 4,548,941 check-ing 11 May 13 — 25 May 13
Instagram-OLD 2,272,556 photos | 30Jun 12 -31Jul 12
Instagram-New 1,855,235 photos | 11 May 13 — 25 May 13

Table 4.2: Dataset information. Note that Foursquare-@&@was already analyzed in Sec-
tion 4.1, and Instagram-OLD in Sectigh2

tion 4.4.1study the user behavior on the considered systems. Setddstudies the pop-
ularity of different areas. Sectiof.4.3studies how the routines affects the data sharing.
Sectiond.4.4analyses the transitions performed by people.

Throughout this section we consider three large and pogutdies (New York, Sao
Paulo, and Tokyo) in several analyses. Figdir&l shows the heat map of the coverage of
the datasets for each city, containing all data from InstagNew and Foursquare-New. The
darker the cold# in the figure, the higher the number of content shared in tlegt & he cov-
erage for the datasets Foursquare-Crawled and Instagtddnispresented in Sectiors1
and4.2, respectively.
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(a) NY — Foursquare
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(d) Sao Paulo — Instagram (e) Tokyo — Foursquare (f) Tokyo — Instagram

Figure 4.31: All sensed locations in three populous citidse number of check-ins in each
area is represented by a heat map. The color range from y&lozd (high intensity).

13Colors of the heat map for all subfigures are in the same scale.
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4.4.1 User Behavior

Considering the Instagram-New and Foursquare-New (datasth a common collection
time), we group users in three classes: (1) users that onigipated in Instagram; (2) users
that only participated in Foursquare; and (3) users thdigyaaited in both systems. Fig-
ure4.32a shows the cumulative density function (CDF) of the frequesf sharing content
per class, showing the inter-sharing tiligin minutes between consecutive content sharing.
We can observe that Class 1 (Instagram only), and Class B fystems) contribute more
content in shorter intervals than Class 2. For instanceacappately 20% of users in Class
1 and 3 share a consecutive content in an interval up to 10tesnin Class 2, the portion
of users that share content up to 10 minutes is approxima®8ly. This suggests that users
tend to share more content in the same place when using tastag his was also observed
in Section4.2 The sharing pattern of Class 3 might be dominated by the Usestagram,
explaining the closer similarity among the curves. It isunakto expect a higher volume of
content to be shared in the same place through Instagramrttraursquare. For instance,
in a night club users can share a photo of the place, of a daimkfriends.

Figure4.32 shows the CDF of the median distance between consecutivadsgpfor
each user. We observe that a significant portion of users €@ss 1, around 20%, shared
consecutive content at a very short distance, around 1 rftetemwas also observed in Sec-
tion 4.2). This is not observed in the same proportion for the othasses of users. The
results for Classes 2 and 3 are 3% and 15%, respectively. réinfrces what was previ-
ously observed, i.e., users tend to share content in a shihstance in Instagram than in
Foursquare. For instancHpulas et al[20113 observed that 20% of the shared locations
happen up to 1 km away. Again, the behavior of users thatoiete in both systems (Class
3), is more similar to Class 1. This closer similarity miglet éxplained by a more intense
content contribution in Instagram.

The understanding of user behavior is the first step to madelith models that
explain the user behavior we can make predictions of actimiisdevelop better capacity
planning of the system that supports the service.

4.4.2 Popularity of Areas

How is the popularity of regions across PSNs derived frontalgrem and Foursquare? This
is probably one of the main issues in an urban scenario. Twerthis question we divided
the areas of New York, Sao Paulo, and Tokyo ih0x 10 grid, as shown in Figurd.33
After that, we verified the number of content (photo or chegkshared in each cell of the
grid for all four considered datasets. Then, we correlabednumber of content in each
cell using the Pearson correlation. This result is showniguie 4.34 As we can see the
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Figure 4.32: Analysis of classes of users.

correlation is very high among all datasets. The lowestetation, although still high, was
observed in Tokyo with respect to the correlation of Instagand Foursquare (both old and
new). This might indicate that the popularity of regionsdescities is consistent regardless
of the system, and over the time. Recall that we use two datasth the same collection
time (Instagram-New and Foursquare-New) and two datasétstvfferent collection time
(Instagram-OLD and Foursquare-Crawled). Besides thatdlifference of time between the
“new” datasets and the “old” ones are of approximately oraa.ylaybe what is popular in
the city tend to remain popular for a long time and is captungdhoth systems, since they
allow users to express their routines freely.

Next, we verified if the popularity of a city is consistent@ss the systems. Popularity
in this case is measured by the number of content shared githé-or that we considered
29 cities around the worltf: Latin American cities (Belo Horizonte, Buenos Aires, Mexi
City, Rio, Santiago, and Sao Paulo); American cities (Gligd.os Angeles, New York,
San Francisco); European cities (Barcelona, IstanbuldbonMadrid, Moscow, and Paris);
Asian cities (Bandung, Bangkok, Jakarta, Kuala Lumpur, KiiviManila, Osaka, Semarang,
Seoul, Singapore, Surabaya, Tokyo); and Australian diiedbourne, Sydney). We ranked
all the cities by the number of content shared on it, then weetated these ranking using
Spearman correlation. Figude35displays the correlation results. As we can see the pop-
ularity of cities tend to be very correlated over time for #zne system, but this is not the
case for different systems. This means that users may usgiam and Foursquare in par-
ticular ways on different cities. For instance, Foursqumaight be very popular in Tokyo, but
Instagram might not be as popular. Cultural differenceshirtiglp to explain these results.

4Chosen by their popularity and representativeness ofrdiftaegions.
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Figure 4.33: Grids for the areas of New York, Sao Paulo, arkydo

4.4.3 Routines and the Data Sharing

Figure4.36 shows the temporal sharing pattern for Instagram and Foarsgconsidering
the old and new datasets. This figure shows the average nuwhpbotos shared per hour
during weekdays (Monday to Friday), and also during the wadKSaturday and Sunday).
As previously observed in Sectigh2 for the Instagram-OLD dataset, we can also see two
peaks of activity throughout the day, one around lunch aedother at dinner time. But,
we cannot see a clear peak at breakfast time, as the one etiserkigure4.36 and also

in [Cheng et al.201]. During the weekends we cannot observe clear peaks ofitaesiv
inherent of routines. Rather, the activity remains intahseughout the afternoon until early
evening.

Surprisingly, we see that the sharing pattern for each cregarding to the old and
new datasets, both on Instagram and Foursquare, are vetgrsigespite the huge gap be-
tween collections (approximately one year). This is theedas weekdays and weekends,
suggesting that the user behavior in both systems tend fpda@esistent over time, reinforc-
ing what was observed in Sectidm.2 This is an interesting and important result because
it shows how we can use different datasets.

In Figure4.37we show the correlogram for the temporal sharing patterngstlgram-
New and Foursquare-New datasets, during the weekday @~g8va) and weekend (Fig-
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Figure 4.34: Correlation of popularity of sectors insidies.
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Figure 4.35: Spearman correlation of popularity betwegai

ure4.3M). The correlogram plots correlation coefficients on theieal axis, and lag values
(in hours) on the horizontal axis, and it is an important tfmwl analyzing time series in
the time domain. As we can see, the lag of one hour in the timessef Instagram-New
dataset provides the highest correlation, however it id fotaximum). Analyzing the cross-
correlation for weekend, we observe that a lag of O providesreelation of 1, indicating
that the time series is already very correlated. This sugdeat users have particular shar-
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Figure 4.36: Temporal sharing pattern for Instagram anddepare — new and old datasets.

0.8

0.6

0.4

0.2

-0.2

0.4 -0.5
-10 5 0 5 10 10 5 0 5 10

Lags Lags

(a) Correlation —weekday  (b) Correlation —weekend

Figure 4.37: Cross-correlation between Instagram-Newramdsquare-New datasets, dur-
ing weekday and weekend.

ing pattern in each system during weekdays, but it is not #se on weekends. The users’
routines performed on weekdays may be the explanation ésethesults. The act of shar-
ing a photo might be more likely to happen in special occastbat are usually out of the

routines of people. For example, during breakfast time pircdoably uncommon to happen
something interesting to share a photo, but, for exampleywlou go out at night to have a
dinner you have more incentives to share photos.

We now study how routines impact the sharing behavior anagythe sharing pattern
during weekdays, considering the datasets Instagram-NelwFaursquare-New for New
York, Sao Paulo, and Tokyo. The results are shown in Figu&?®. In all figures we
display two cities from the same country for the new colldaatasets, and one city for the
old dataset as a reference of comparison.

First, observe the distinction between curves of each aitthe same system (e.g.,
Instagram, Figured.3&, c, e) and also across different systems (e.g., Figu@&8& and
4.3% for New York). Next, observe that the sharing pattern faheaty in the same country
is fairly similar, which might indicate cultural behavioo$ inhabitants of those countries,
presenting somehow the signature of a certain culture.

BEach curve is normalized by the maximum number of conteneshia a specific region representing the
city.
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Figure 4.38: Temporal sharing pattern of Instagram andsepuare for New York, Sao Paulo,
and Tokyo during weekdays.

Note that the sharing pattern in Instagram for AmericaresitjFigure4.38) and
Japanese cities (Figude3&) present peaks that reflect typical lunch and dinner tims.
is not the case for the curves that represent the Brazilianirgipattern in the cities of Sao
Paulo and Rio (Figurd.3&), where not all peaks represent typical meal times, sugges
that Brazilians share photos in atypical moments. Besio&s in general, the Brazilian ac-
tivity is more intense late at night. This information wasabbserved considering only the
Instagram-OLD dataset in Sectidr®

The sharing pattern of the new dataset of Foursquare vartee mhen compared
to the old one (Figured.3&, d, f), than the variation observed in the Instagram dégase
(Figures4.3&, c, e). Observe also that the sharing pattern in Instagoamaich analyzed
city is more distinct to each other than the one observeddardguare. This suggests that
using the sharing pattern from Instagram we might have a rdistenguishable “cultural
signature” for a certain region, and less susceptible togbsiover time.

4.4.4 Mapping Transitions

In a PSN, mobile nodes (users and portable devices) movedaegty to their routines or
local preferences sharing data along the way. Looking a pabple share it is possible to
have a sort of rudimentary location tracking. If we aggregdktransitions performed by all
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users we can obtain common paths users tend to take in the city

Given that observation, a question emerges: can we obseimrilar movement of
people using a PSN derived from Instagram and Foursquai@@dnto address this question
we create a directed graghV, E), where nodes; € V are a cell in the grid a particular city
shown in Figuret.33 A direct edge(, j), representing a transition, exists from nadeo
nodev; if at some point in time a user shared a content in ¢gjist after sharing a content
in cell v;. The weightw (i, j) of an edge is the total number of transitions that occurreah fr
cell v; to cellv;. Some features of transitions: (i) the content must be shewasecutively
and by the same individual; (ii) continuous content shaahg¢he same considered venue
cell represents a self-loop; and (iii) a transition mustehagcurred at the same day (we only
consider transitions occurred from 6:00 a.m. to 6:00 p.m.).

(a) Foursquare — Day (b) Instagram — Day

Figure 4.39: Transition graphs — New York.

Figures4.39 4.40 and4.41show the transition graphs for New York, Sao Paulo, and
Tokyo, respectively. In those figures, for better visudl@a we excluded all edges with
weightw = 1. Nodes’ positions in the figure are depicted according toctleposition
they represent in the city area. Nodes not displayed meaméhane shared content in that
particular area of the city.

Note that there are few transitions in the city. In other vgptgpical movements in the
city might not be very diverse. It is also interesting to alssehat we could capture more
transitions with the Foursquare dataset. This means tleaikeims might be more effective
to track typical routes of users. However this hypothesezisdurther investigation, because
this result might be due to the large amount of data obtaingékdd Foursquare dataset. An
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Figure 4.41: Transition graphs — Tokyo.

interesting possibility in this direction is use data mmalgorithms, such aZheng et al.
2009, on transition graphs to discover movement patterns.

In order to compare the similarity graph, we first discardsalf-loops, since those
transitions tend to be more likely to happen, then we rankebelting transitions and select
the top ten from each graph. We compare the groups of topitiarsbetween Instagram
and Foursquare graphs of each city, analyzing the numbeaw$itions in common. The
results show that approximately 70%, 50%, and 70% of the ranpsitions are similar for
New York, Sao Paulo, and Tokyo, respectively. However, iftalee now the top twenty
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transitions the results for transitions in common are axprately: 59%, 53%, and 50%, for
New York, Sao Paulo, and Tokyo, respectively. This indisdteat the graphs are not very
similar, but popular transitions are more likely to be exsexl by both systems.

The similarity graphs are also evaluated in a different wagr this comparison we
preserve the graphs without discarding self-loops, thercamepute the difference between
sets of edges of Instagram and Foursquare for each city. $¢ewdred that graphs for NY
have 156 different edges, and these numbers are 237, andbB88Bad Paulo and Tokyo,
respectively. This is a significant difference, and theselte are partially explained by the
fact that Foursquare graphs captured more transitions.

4.5 Final Considerations

45.1 Data Limitations and Bias

It is important to point out some possible limitations of olatasets. First, it reflects the be-
havior of a fraction of the city citizens. Our collection iaded on data shared by users
of Foursquare, Instagram, and Waze on Twitter. Therefoasda towards the citizens
who use those systems, who are likely to be under 50 yearaoid,especially those be-
tween 18-29 year-old, owners of smartphones, and urbaretaf@renner and Smitf2013
Duggan and Smitt2014. Consequently, urban areas with older and poorer popuatend

to have fewer data. Besides that, users might not share tlatiaoh their destinations, for
example hospitals, love hotels, and strip clubs. Thus, atasit might offer a partial view
of citizens habits.

Second, our dataset are based on a limited sample of data.mézns that we only
have a sample of the activities performed. External facgursh as bad weather conditions,
might have affected the total number of data we collecteddane places, especially outdoor
locations.

Third, as mentioned, we collected our datasets from Twittdrich has recently
emerged as a popular tool to spread information. This paw&rbl opens opportunities
for new forms of spamBenevenuto et al201Q Yardi et al, 2009. Data quality, one of the
challenges discussed in Secti8r2, under this circumstances becomes even more serious,
because the production of false data might be possible. rSeefare not aware of any sig-
nificant production of false data in the systems we analyaeeler this could potentially
compromise the results.
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45.2 Results Discussion

In this chapter we studied properties of PSNs derived fraration sharing services, photo
sharing services, and traffic alert services. These PSNe shaeral properties in common,
for instance:

e very large scale;

e user participation regarding to the number of shared datd,the number of data
shared per location may vary widely;

e and highly unequal frequency of data sharing, both spgtdt temporally, which is
highly correlated with the typical routine of people.

We also know that data from different PSNs are associatddspiatio-temporal con-
texts that can be correlated or not. With that, a fundamesiggd to deal with data from
different PSNs is to perform a characterization. In thisptba we also characterized PSNs
from Instagram and Foursquare considering the time andicocevhere the content (photo
or check-in) was shared. We aimed to understand whetheri¢bhegpof data from one sys-
tem are correlated to be used for the study of city dynamidsuaban social behavior. The
results show the existence of correlation. This gave uglsbout using different PSNs
as “sensing layers” of a predefined geographical region. comeept of sensing layers is
defined in more details in Chaptér

Our findings regarding the comparison of PSN can be sumnuhirze

e both Instagram and Foursquare datasets might be compatitsiding popular regions
of cities;

¢ the temporal sharing pattern did not vary considerably twe for the same system.
However, the sharing pattern for each system during weekdigydistinct;

e both Instagram and Foursquare might be used to captureydartsignatures of cul-
tural behaviors, but apparently Instagram offers a morengigishable “cultural sig-
nature”, and is less susceptible to changes over time;

e and Foursquare is apparently better to express typicadsmftpeople inside cities.

These results illustrate the potential of PSN analysis $tefothe large scale study of
urban social behavior. More broadly, our characterizapoovides a deep understanding
of the properties of those particular PSNs, revealing theiential to drive various studies
on city dynamics and urban social behavior, as discussdteingxt chapter, Chaptér In
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the propositions made in the next chapter we take into acdberpossible data limitations
mentioned above.



Chapter 5

Understanding city dynamics and
urban social behavior

What is the current best way to study the dynamics of a city@ ean we learn about the
routines of its citizens, their movement patterns, its {soof interest, and its cultural and
economic aspects? One might choose to rely on official catesias while others may opt to
simply get one or more guide books at their favorite bookstéithough we are very fond to
books and census efforts, do they always offer accurate@ngrehensive knowledge about
the current patterns and dynamics of a city? Societies aexrémtly very dynamic, i.e., they
change constantly over time, and, as the world gets more amd oconnected, we believe
that these changes tend to be even more frequent. Take,stange, guide books about
large cities involved with the Arab Spring, such as Tunis @adro. If they do not capture
the changes that came from this period, they are alreadwatmddSimilarly, official census
data may quickly become obsolete as such efforts are usuradlgrgone at low frequency
(e.g., once every 10 years) due to their high costs.

In contrast, PSNs offer up-to-date views about the locatiopinions, likes and dis-
likes of their users, and thus have the potential to addressfiorementioned questions in
near real time and, given their coverage (e.g., Figul reaching almost every part of the
globe. In this chapter, we elaborate on this potential bggméng various new techniques
and methods that exploit PSN data to support studies on gitardics and urban social
behavior.

This chapter is organized as follows. Sectot presents a technique called City Im-
age, which provides a visual summary of the city dynamicetham people movements.
Section5.2 discusses other possibilities to understand better cibadycs through people
movements. SectioB.3 presents a technique to extract points of interest in the 8ec-
tion 5.4 discusses possibilities to use PSNs to the analysis oflsecianomic, and cultural

69
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aspects of its inhabitants. Sectiérb motivates the use of participatory sensor networks
to the study of cultural differences. Finally, Sectibré discusses the key messages of the
chapter.

5.1 Visualizing the Invisible Image of Cities

Similarly to Kostakos et al[2009, we believe that cities present distinct characteristiog
evolve over time. Thus, we propose the City Image visuabmatechnique, which exploits
the movements of the city inhabitants. In summary, the Gitgde is a square matrix that
displays a visualization of the dynamics of a city. We startibscribing, in Sectiob.1.1, a
transition graph used to build the City Image. We then dbs¢in Sectiorb.1.2 a technique

to identify and quantify the most preferred and rejectedditéons (i.e., movement patterns)
in a city. Finally, in Sectiorb.1.3 we show, analyze and compare the City Image for several
cities.

5.1.1 Transition Graph

As we mentioned before, the sensing activity in a PSN is peréol by mobile individuals
who choose to share their information. Unlike traditionallite wireless sensor networks,
the nodes in a PSN move according to their routines or loczfepences, which are dic-
tated by the city dynamics. Thus, we propose a transitioplgta map the movements of
individuals in a PSN, and thus represent the city dynamics.

The proposed transition graph is a directed weighted géaph £), where the nodes
v; € V are themain categoriesof locations, and a direct edde j) exists from node; to
nodev; if at some point in time an individual performed a check-ima &cation categorized
by v; just after performing a check-in at a location categorizgd,b Thus, an edge repre-
sents a transition between two location categories. Thghwtei(i, j) of an edge is the total
number of transitions that occurred from nagéo nodev;.

To demonstrate this technique we use the PSN derived fronns§oare-Crawled
dataset, described in Sectidnl A transition between location categories is configured
according to three requirements. First, the check-ins fneigierformed consecutively and
by the same individual. Second, the check-ins should beopaed at different venués
Third, the check-ins must occur in the same “social day”,ovhwe define as the 24-hour
interval starting at 5:00 a.m. (instead of 12:00 a.m., simeare interested in capturing the
nightlife transitions as well). Transitions that cross witferent “social days” are considered

1 The number pairs of consecutive check-ins performed atahees/enue is very small, representing at
most 1.8% of the total transitions in any analyzed city.
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only if the time interval between them is under four hours. &perimented with various
policies for characterizing transitions, finding very danresults as only a small percentage
of transitions are discarded as we vary the policy.

5.1.2 Preferred and Rejected City Transitions

We here introduce the City Image technique, which is basdti@transition graply:(V, E)
defined in the previous section. In summary, the City Imagesquare matrix that displays
a visualization of a city dynamics based on the frequencyaofgitions that are performed
by its inhabitants.

After building the transition grap&'(V, E), we create ten random grapfis;(V, Er;),
wherei = 1,...,10. Each such graph is built using the same numberdi¥idualtransitions
in G(V, E). However, instead of considering the actual transitiors v; performed by an
individual (as reported in our dataset), we randomly pickaation category to replace,
simulating a random walk for this individual.
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Figure 5.1: Observed transitions occurrences sorted iseeteling order for NY city. Peri-
ods: weekday and weekend during the day and night.
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Figure 5.2: Observed transitions occurrences sorted irseetieling order for Tokyo. Peri-
ods: weekday and weekend during the day and night.

In Figuresb.1and5.2we compare, for each pair of location categories, the number
transitions that were simulated against the number of itians that were actually made by
individuals of New York and Toky® In these figures we consider four time periods: week-

°These results are representative of other cities.
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day/weekend during the day (from 5:00 a.m. to 6:00 p.m.), wedkday/weekend during
the night (from 6:01 p.m. to 4:59 a.m.). Theaxis represents particular transitions, e.g.,
Food — Work, and they-axis indicates the frequency of this particular transitidhe blue
curve (dotted line with a circle marker) represents thetrealsitions (i.e., representeddy),
sorted in descending order of number of occurrences. Tlok blarve (solid line) is the av-
erage number of transitions in the random graphs 1o, and the two green curves (dashed
lines) delimit the standard deviation. The results are sheaparately for each time period.
Note that, for many transitions, the number of real occuresns significantly larger (i.e., by
several standard deviations), than the expected averageinahe random graphs. This im-
plies that some transitions reflect more the preferencesaloits of users from a certain city
than others. There are also transitions that do not occyrofegn, with the number of real
occurrences being much smaller than the average numbee matidlom graphs, indicating
that the inhabitants of this city strongly reject these sraons.

Based on these observations, we next identify the most aasl favorable transi-
tions to occur in a given city. To that end, we adopt one of tivatsgies, depending on
whether the edge weights of the randomly generated graphs, follow a Normal distri-
bution N (w, 0,,). If they are normally distributed, we compute the maaand the standard
deviationo,, of the edge weights. We then define tinelifference rangeas the interval
(w — 304, + 30,,), Which is expected to contafiy.73% of the randomly generated edge
weight values, since the edge weights follow a Normal distion N (w, o,,). Analogously,
we define theejection rangeas the interval—oco, w — 30,,], and thefavouring rangeas the
interval [@ + 30,,, 00].

In case the edge weight distribution is not Normal, we calimuthe maximumrfazx)
and minimum {nin) values of the randomly generated edge weights. We thenedéfa
indifference rangas the interva{min, max),therejection rangeas the interval—oo, min,
and thefavouring rangeas the intervalmaz, oo|.

For all the cities analyzed in the next section, the edge htgigf the randomly gen-
erated graphs do follow a Normal distribution, as illustchin Figures.3and5.4for New
York and Tokyo, respectively. These figures show both thegram of the edge weights
and the fitting of the Normal distribution (red curve). Ndtat, for New York city, the fitted
Normal distribution has parametears= 114.85 andr,, = 10.712, which are the values used
to delimit therejection rangeindifference rangeandfavouring rangefor the transitions for
that city in that particular time period.
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Figure 5.3: Histogram of random generated transitions féith a Normal fitting.
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5.1.3 Building the City Images

Having defined the ranges for preferred, rejected and mdifft transitions in a given city,
we construct a square matrix that represents the movemgeatrsof the city, which is here
called the City Image. In this matrix, each cgll;) represents the willingness of a transition
from categoryi (line ¢ of the matrix) to another categoyy(column; of the matrix). To better
visualize this, we color cells that represent transitidwas arenotlikely to occur in a city, i.e.,
transitions whose edge weight fall in thegjection rangein red. We also color transitions
that are more likely to occur, i.e., transitions that falthefavouring rangein blue Finally,
white color are used in cells that represent transitiontsféilan the indifference range

We built the City Image for 30 cities around the world. Theestand the number of
check-ins available in our dataset in each of them are preden Table5.1 AppendixA
shows the City Image, for all analyzed cities, built usingr@gated data across all time
periods. These images provide a general picture of eacharity serve to illustrate broad
differences across cities.

Delving further into each city, we also analyze the City Imdgr each time period
separately. Figur®.5-5.12 present the City Image for London, Kuwait, Belo Horizonte,
Chicago, Surabaya, New York, Sydney, and Tokyo. Each figoogvs the City Image for
one of the four time periods: day, from 5:00 a.m. to 6:00 pon.a weekday; day on a
weekend; night, from 6:01 p.m. to 4:59 a.m., on a weekday;regiat on a weekend.

The City Image captures the city dynamics in a very summdnizay. Nevertheless, it
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City # of check-ins City # of check-ins
Bandung/Indonesia 59,332 || Mexico City/Mexico 85,721
Bangkok/Thailand 67,075 Moscow/Russia 59,654

Barcelona/Spain 9,083 New York/USA 86,867
Belo Horizonte/Brazil 18,280 Osaka/Japan 27,396
Buenos Aires/Argentina 17,762 Paris/France 11,746
Chicago/USA 27,446 Rio/Brazil 27,222
Istanbul/Turkey 103,456 San Francisco/USA 17,840
Jakarta/Indonesia 158,732 Santiago/Chile 79,733
Kuala Lumpur/Malaysia 109,048 Sao Paulo/Brazil 85,640
Kuwait City/Kuwait 34,195 Semarang/Indonesia 10,518
London/UK 15,671 Seoul/Korea 26,073
Los Angeles/USA 21,961 Singapore/Singapore 65,534
Madrid/Spain 13,004 Surabaya/Indonesia 38,021
Manila/Philippines 47,343 Sydney/Australia 6,390
Melbourne/Australia 6,182 Tokyo/Japan 118,788

Table 5.1: Distribution of check-ins across the selectéd<i
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Figure 5.6: The City Image of Kuwait for different periods.

can reveal striking differences in the dynamics of the saityeacross different time periods
(weekdays and weekends, day and night), as well as acrdesedif cities. Moreover, note
that the main diagonal of each matrix indicates a tendencybhaving consecutive check-
ins at the same category. The City Image also provides anvweagyo learn the most and

least favored places and transitions of each city in a givea period.
In general, using the City Image it is possible to distingutse routines of the inhabi-
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tants of two particular cities. For instance, in Kuwait (fig5.6) and Surabaya (Figui®9)

we observe the lack of favorable transitions considerirgdéitegorynightlife for all ana-
lyzed periods. On the other hantightlife transitions are strongly favorable to happen in
Chicago (Figureb.8) and New York (Figurés.10, not only on weekend nights but also on
weekday nights. Moreover, on weekends at night inhabifaons Kuwait and Surabaya are
very favorable to perform the transitioshop — food andfood — home This might be

explained by cultural differences that exist among thesesci
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As another example, note that inhabitants of Belo Horiz¢htgure5.7) are highly
favorable to perform transitions containing the categedycation This comes with no
surprise since this city is an important hub of education iazB. In this particular City
Image it is also worth noting that the transitieducation— officeis favorable. This is
because, many students in Belo Horizonte do keep a (pagtamfull-time) job. This also
explains the favorable transiti@ducation— homeon weekdays at night, as many students



76 CHAPTER 5. UNDERSTANDING CITY DYNAMICS AND URBAN SOCIAL BEHAVIOR

50 100 150 200 250 0 100 200 300 400 500

Food
Shop
Edu

Outd
Home
A&E
INL
Trvi
Office

|
%
4, 2
®
Source
| ﬂ i

> SR S & > & > » & & N
ST S S F /\GO'&Q SN P Y « S TS F e &

&5
Destination

oy >
& ® < ;{5’ RS d(\\&

Destination

Destination Destination

(a) Day — weekday (b) Day —weekend  (c) Night—weekday (d) Night —weekend
Figure 5.10: The City Image of New York for different periods

o
[
=
=3
o
.
o
.
o0

Food Food
Shop 'Shop Shop
Edu Edu
Outd

Home
IARE

INL INL INL
Trvl Trvl Trvl

Office Office

Source
Source
I
g
3
)
Source
I
)
3
@
Source

SO S F S

Destination Destination

> > © @ & S > S © @ & s >
PERC & F & /\GO‘&Q gy ¥ Q& & co QR

¢ & & Q& @
%0@ ERR
Destination Destination

o

(a) Day — weekday (b) Day —weekend  (c) Night—weekday (d) Night —weekend
Figure 5.11: The City Image of Sydney for different periods.

I:_

Food
Shop
Edu
Outd
Home
A&E
INL
Trvl
Office

S F S F ¥ S
Desllnal\cn

o e &
S & Q\oé\ S

Destination

P R . & & & & @
& & E ¥ & RS
Destination

&5

& & d(\\& & S EF S

Destination

(a) Day — weekday (b) Day —weekend  (c) Night—weekday (d) Night —weekend
Figure 5.12: The City Image of Tokyo for different periods.

who have a full-time job go to school at night. In contrast, fimel that Chicago residents
tend to reject any transition involving the categeducationfor all analyzed periods. This
is surprising, since Chicago has been a world center of higthecation and research, with
several universities located in the city.

We also note that one of the most favored transitions in Lar{@tgure5.5) on week-
days during the day isavel — office A similar trend also happens in other cities, such as
New York and Tokyo (Figur®.12. On the other hand, some cities, such as Belo Horizonte,
Sydney (Figureb.11), Kuwait and Surabaya, do not present favorable transtammtain-
ing the categoryravel on weekdays during the day. This could be associated witlgara
number of people who choose to drive to get to their destinatiinstead of taking public
transportation.

The City Image technique, as illustrated above, is an isterg way to better under-
stand the invisible image of a city. It provides a useful inotarious contexts, ranging from
helping city planners to better understand the actual dyecgaf a city, to providing tourists
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another source of information that might help them make tinevel choices. The transition
tendencies further serve as a source of fundamental infamf@r social behavior study.

One possible limitation of our dataset is the covered timerial, one week, which
might be considered short. In order to assess to which egte@nnight impact the con-
clusions drawn from the City Images, we collected the chaslperformed on the cities of
Belo Horizonte, Chicago, London, and Surabaya in the wekdéwing the period covered
by our original dataset. We then recalculated the City Irsdgeeach of these cities using
all the data available, thus covering a time interval of tweeks. We show the results for
weekdays during the day, which is the period where most ofdb&nes are performed, in
Figure5.13 We can observe that the new City Images are very similaréatiirespond-
ing ones produced using our original one-week dataset ($diu7a, 5.8a, 5.5, and5.%
for Belo Horizonte, Chicago, London, and Surabaya, respeyg). The strong favorable or
rejection transitions remain basically the same, whereashanges, if observed, occur in
some transitions classified in the indifference range. &pasticular changes are expected
because the larger dataset enables a clearer image of tlygeahaity. The same strong
similarities were observed for the City Images producedterother periods of time (e.g.,
weekend night). Thus, even with a single week of data, thg I@iage technique is able to
reveal remarkable and consistent patterns of each anatyed
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Figure 5.13: The City Image of cities in different regionstioé world during the day on
weekdays.

An application that naturally emerges from the City Imagehteque is the numerical
comparison and clustering of different cities, by exphaitthe values in each square matrix.
This application helps to validate the City Image resulessitbes other applicability. We
present this application on Append As we can see in that appendix, the results agrees
with common knowledge.

5.2 Insights into People Movement Patterns

Another possible visualization of city dynamics based da dallected by PSNs is illustrated
in Figure5.14 It shows a heatmap of the sensing activity for the city ofdBldbrizonte,
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Brazil (Figure5.14a) and New York, USA (Figur&.14) for the PSN derived from the
Foursquare-Crawled dataset. The darker the color, theehtgle number of check-ins in the
area. These heatmaps by themselves conveys informataiaddb the popularity of specific
areas, being thus only partially informative about the digmamics. Richer information can
be obtained by making a small change in the City Image tianmsgfraphs presented above
in Section5.1 Thus, in this section we explore the concept of transiticapgs to draw
valuable insights about crowd mobility in cities.

5.2.1 Using Centrality Metrics

Many metrics of node centrality can be used to estimate tla¢ive importance of a node
within the graph. Although most of these metrics were firstetigped in social network
analysis Newman 2014, they can also be applied to a transition graph, similahtodne
proposed in Sectiob.1.], enabling the study of city dynamics. Thus, in this sectia w
build a transition graph where each node represents a spkmifition (and not location
category, as in Sectidn 1.1), and a direct edgé,(j) exists if someone performed a check-in
at locationy after a check-in at location The weight of the edge reflects the number of
transitions between the two specific locations. Theseitians are configured according to
the same requirements defined in Secbdh 1l

(a) Belo Horizonte (b) New York

Figure 5.14: Heatmap of the number of check-ins, where tha@ cange from yellow to red
(high intensity).

Traditionally used centrality metrics are degree, closerand betweenness central-
ity [Newman 201J. These metrics aim to identify nodes that have centraltiona within
the network structure. Since nodes in our networks reptdseations, a central node may
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Day
Degree Closeness Node Betweenness
Value \Venue Value \Venue Value Venue
0.04 Yankee S.| 0.18 Yankee S. 0.1 Yankee S.
0.02 Penn S. 0.18 Penn S. 0.05 Penn S.

0.02 Grand C. | 0.18 Times S. 0.04 Grand C.
0.02 Mad. S.G.| 0.17 Grand C. 0.03 Times S.
0.02 Times S. | 0.17 Mad.S.G. | 0.03 Mad. S.G.
0.01 Bryant 0.17 Bryant 0.03 Union S.
0.01 Union S. | 0.17 Union S. 0.03 Bryant
0.01 Wash. S. | 0.17 Int. Auto Show 0.02 Wash. S.
0.009 MoMa 0.17 Rockef. C. | 0.02 Mad. Sq. P.

0.008 Port A. 0.16 Port A. 0.01 Port A.
Night
Degree Closeness Betweenness
Value \Venue Value \Venue Value Venue
0.01 Yankee S.| 0.06 Yankee S. 0.02 Yankee S.
0.007 PennS. | 0.06 Penn S. 0.01 Penn S.

0.007 TimesS. | 0.06 Mad. S. G. | 0.007 TribecaF. F.
0.006 Mad. S.G.| 0.06 Times S. 0.007 Mad. S. G.
0.005 TribecaF. F 0.06 TribecaF. F | 0.007  Times S.
0.005 GrandC. | 0.06 Grand C. | 0.006 GrandC.
0.004 Webster H.| 0.06 Bowery B. | 0.004 Webster H.
0.003 UnionS. | 0.06 Term. 5 0.003 Bryant
0.003 BoweryB.| 0.06 Brook. Bowl | 0.003 Pacha
0.003 Port A. 0.06 Pacha 0.003 Radio City

Table 5.2: Centrality metrics for NY during the day and night

indicate a strategic point in the city, according to a specifetric. For example, the main
idea behind the degree centrality is to identify the totahber of links incident to a node,
i.e., the number of incoming and outgoing edges that a noslelhaur transition networks,
a node with high degree indicates a location where peopleanmase and depart with a high
probability. Thus, degree centrality is a good measureeatity popular places in the city.
These locations can be seen as city hubs.

The closeness centrality metric is related to how close & m®tb all other nodes in
the network, i.e., the number of edges separating a nodetfiernthers. In the context of
information dissemination, the higher the closeness odeglthe higher the probability that
a piece of information being disseminated from that plaeehes the whole network in the
least amount of time. In the perspective of a transition lgraipe closeness centrality may
indicate favorable locations in the network structure &tghe dissemination of information
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to the whole network. These locations may be strategic plaxenstall public information
centers to disseminate, for example, alerts using usertdige devices in an ad hoc manner.

Finally, the main idea behind the betweenness centralityseow how often a node is
in the shortest path between any two other nodes. In ourti@maetworks, it may indicate
the most interesting locations to act as bridges to cargrimétion among different places or
regions of places (set of places). That is, the higher thedminess of a location, the higher
the chance that a user passes through that particulardac&ne could explore these central
nodes to sign a commercial agreement to increase theiruesdyy, for instance, making an
advertising in order to direct flow of users to other indeparidusiness venues in the city.

We illustrate the use of these centrality metrics by showmgable 5.2 the top-10
locations with the largest degree, betweenness, and @sseentrality values in New York.
The table presents results for two time periods, day (5:00 @ 7:00 p.m.) and night (6:00
p.m. to 6:00 a.m?) aggregating results for weekdays and weekends for thecsdak@iding
hurting the presentation with excessive data. Note that tops10 locations, according to
all metrics, are widely known. Some of these locations, saaglYankee Stadium (Yankee
S.), are in the top-10 according to all metrics and in botHyaea periods, whereas others
appear in the top-10 list of only one metric, such as MoMa Widisted only in the degree
centrality column. This demonstrates that different aiyr metrics may identify different
central places.

We note that the Tribeca Film Festival (Tribeca F. F.) wasiidfied as a central place
in all metrics during the night. Foursquare encouragedsisarheck-in in this event offering
a special badge for it. This justifies the large number of khes and, thus, the increase of
centrality. Since in the studied network nodes are venudsvanues tend to be dynamic,
a temporal analysis when studying centrality is desiralvighis case, it would be possible
to identify that Tribeca F. F. was a temporary venue, and #vogd considering it a central
location after its expiration date.

We also note the greater diversity of central locations &roetrics for the night pe-
riod. In other words, there is a larger number of locatiorsd tppear among the top ten
according to only one or two metrics during the night. Theetyb these locations might
help explain the results. Observe that nightlife placesh s Pacha and Brooklyn Bowl, are
not listed in the top-10 locations with highest degrees., ety are amongst the locations
with highest betweenness and closeness values. This cewatfdained by the routine of
people, who usually go to a pub or a restaurant before goirggrtightlife spot. This first
visited location might not be very popular, e.g. a randone@lelose to the user’s house that

3If one transition happened in the overlapped hours (5:00 @.®:00 a.m., or 6:00 p.m. to 7:00 p.m.), it
is considered a transition of day and night periods, resmdygt NY has 49,849 check-ins during the day and
19,491 check-ins during the night.
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might be far away from the target place (nightlife spot).sltwuld connect different regions
from the network, helping to increase the betweenness dirtliéocation. Alternatively, the
first visited location could be a popular place, helping wéase the closeness.

5.2.2 Network Visualization

The visualization of transition graphs, specially hightigg central places, is interesting be-
cause it gives fascinating insights into how people moveatedact with the city. The edges
in the transition graphs represent somehow a rudimentay i&eking. With that, the final
network, after aggregating the transitions performed bys#rs, enables the reconstruction
of typical paths that users take to move in the city. Whenegsgnting the information of
centrality of a place in this network we are also able to Vigeaand understand better how
users interact with the city. Figur&s15 5.16 and5.17* show such networks for Belo Hor-
izonte and New York, during the day and night, for the degbetweenness, and closeness
centrality, respectively. Each color means a category aégyl as defined in the caption of
Figure5.15

(a) BH - Day (b) NY - Day (c) BH - Night (d) NY - Night

Figure 5.15: Node degree - For two cities in different cowastrEach node color represents
an specific category of places. Blue=Arts& Entertainmergd R College & Education;
Light Green = Food; Yellow = Home; Green Moss = Office; PurpMightlife Spot; White

= Great Outdoors; Beige = Shop & Service; Grey = Travel spgarC= no category.

Studying the results for New York, for example, it is possitd observe that during
the day there is an intense movement of people between Manhatew Jersey, Brooklyn,
and Queens, where Manhattan is the central destination. etwduring the night the
movement of people between Manhattan and New Jersey is rawel, Ibut the movement
between Manhattan, Brooklyn and Queens is still quite sgenThis might indicate that
people from New Jersey tend to go to Manhattan more often t& duaring the day than for
leisure time at night.

4The area represented by those networks is the same as thhawe is Figure5.14 Nodes disposition
respects their geo-location in the city.
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(a) BH - Day (b) NY - Day (c) BH - Night (d) NY - Night

Figure 5.16: Node Betweenness - For two cities in differenintries. Colors legend: see
caption of Figures.15

(a) BH - Day (b) NY - Day (c) BH - Night (d) NY - Night

Figure 5.17: Node Closeness - For two cities in differentntnas. Colors legend: see
caption of Figures.15

As another example, Figurésl@ and5.16 show that, during the day, both New
York and Belo Horizonte have a few places that stand out wighdr betweenness values
than the others in the same city. This does not happen in the peoportion for the degree
centrality, as shown in Figurés 15 and Figures.1%. Moreover, the same discrepancies
cannot be observed for neither centrality metric duringiilgét (Figures.15,5.15,5.16c,
and5.16d), which might be explained by the lack of peoples’ routines

Regarding the closeness metric, we can see a large numbkarceswith high close-
ness during the day in both cities (Figufted7a and5.17), implying that there are many
options of places to select in case one wishes to instali dissemination schemes in the
city, for example. Note also that places with high closerassrelatively well spread in
both cities during the day. However, this is not the casenduithe night (Figures.17 and
5.17). The results in this period follow the same tendency okeskfor the other metrics
and the explanation might be the same, i.e., lack of welléefroutines.

The network visualization can be also done in other waysgclwiespuld potentially
ease the understanding of certain aspects of the city. Fongbe Figure$.18 and5.1&
show the top 50 heavy weighted edges and the top 50 hub nadgegl degrees) for the
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Belo Horizonte and New York, respectively. Stars repredemhubs, black arrows represent
edges, and black circles represent self-loops. The langesyimbol, the larger the associated
value (edge weight or node degree) associated. Note thélothef people tend to be very
concentrated and skewed, as expected, with a small fracfitme city areas having most
of the heavy weighted edges and hubs. Note also that for Bet@éhte (Figure$.18),
most of the heavy weighted edges are self-loops and shaandis edges, suggesting that
people tend to perform activities in their neighborhoodsdntrast, cities that are known for
their fast public transportation systems, such as New Yaxqr the existence of some long
distance heavy weighted edges along the public transpéd,las shown in Figurg.18o.

(a) Belo Horizonte

Figure 5.18: Top 50 edge weights and node degrees (hubs)repmesent hubs, black arrows
edges, and black circles self-loops. Featured places $haael transitions (edges).

5.2.3 Information Summarization

Tablesb.3, 5.4, and5.5 show the summarization of values of each centrality metiég(ee
(D), betweenness (B), and closeness (C)), calculated lfptaades during the day and night
in Belo Horizonte, New York, and Tokyo, respectively. Thersnarization is expressed
by the percentage relative to the total of values by categbptaces. For example, in Ta-
ble5.3we can see that, during the day, all places of the categorgt Fegvesent 17.7% of all
degree centrality observed. These tables help us to vieutdle cities by their most impor-
tant classes of places. Analyzing the top degree centrdilityng the day we can observe that
inhabitants of Belo Horizonte concentrate a lot of actgtin education, shopping and work-
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Categ.| D.(%) B.(%) C.(%) Categ.| D.(%) B.(%) C.(%) Categ.| D.(%) B.(%) C.(%)
Day Day Day

Food 17.7 14.9 21.6 Food 29.5 21.8 333 Food 254 15.7 39.2
Shop | 13.8 22.5 12.9 Shop | 135 13.2 15.1 Shop | 16.3 13.9 18
Edu 14.5 15.8 10.6 Edu 2.5 1.9 2.5 Edu 3.1 1.8 3

Outd 9.1 15.3 6.3 Outd 8.8 15.2 6.1 Outd 4 4.2 4.8
Home 9.1 4.7 11.04 Home 2 1 3.1 Home 0.2 0.1 0.4
A&E 34 3.6 4.3 A&E 9.5 15.6 6.2 A&E 5.1 4.2 4.8
NL 4 3.2 5.7 NL 10.2 8.4 10.4 NL 2.9 1.3 5.7
Trvl 5.3 6.5 4.7 Trvl 7 10.9 5.7 Trvl 32.8 50.8 11.8
Offi 20.4 12.7 20 Offi 14.7 11 14.2 Offi 8.8 7.4 10

none 2 1 29 none 2 0.9 3.3 none 1.3 0.6 2.4

Night Night Night

Food 18.7 195 23.3 Food 31.1 22.7 36.4 Food 26.9 10.8 354
Shop 9.5 16.1 7.9 Shop 7.4 6.4 7.8 Shop 13.3 111 15.7
Edu 11.3 11.9 9.1 Edu 1.5 0.6 1.5 Edu 1.1 0.6 1.1
Outd 9.26 16.5 8.6 Outd 5.8 8.3 5 Outd 3 3.2 3.7
Home | 15.3 6.2 14 Home 3.2 1.1 3.6 Home 0.4 0.1 0.7
A&E 55 5.6 5.2 A&E 10 17.3 7.2 A&E 5 3.2 54
NL 10.3 14.1 13.6 NL 23.4 27.1 23.7 NL 7.5 3.6 10.8
Trvl 3.9 3.4 4 Trvl 6.6 9.9 6.1 Trvl 35.8 63.5 20
Offi 14.6 6.1 13 Offi 9.4 6.3 6.8 Offi 5.4 2.8 5.4
none 15 0.3 1.4 none 1.6 0.5 2 none 1.4 0.6 1.8

Table 5.3: Percentage of centralfable 5.4: Percentage of centralable 5.5: Percentage of cen-
ity metrics for all categories ofity metrics for all categories oftrality metrics for all cate-
places for BH (day and night).places for NY (day and night)gories of places for Tokyo
D=degree, B=betweennesd)=degree, B=betweennes¢day and night). D=degree,
C=closeness. C=closeness. B=betweenness, C=closeness.

ing (represented by the category Office), having the caiegof places Fooy Office, Shop
and Education as the most popular. Following the same asapjaces related to working,
shopping, and nightlife are quite central in New York. Stindynow the centrality in Tokyo
it is interesting to observe the high amount of activity iravel places, probably related to
public transportation spots. Note the high value for betwess and the considerable lower
value for closeness. This means that inhabitants of Tokghtise public transportation to
move to areas with not many central places, such as subugtdying the values observed
for betweenness and closeness.

Regarding to privacy issues, observe the centrality in #tegory of places Home.
In Belo Horizonte the number of check-ins is expressive ia tategory. However, in NY

SWe consider that food activities are complementary to a raativity, such as work or study, for this
reason we are not mentioning it as a main activity.
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and mainly in Tokyo people do not appear to have the same lmhahhis fact might be
explained to cultural differences. It is known that Japamesople are concerned with privacy
issues, and apparently Brazilians are not as concerned.

Differences in the habits of inhabitants of the cities caspdbe captured by those
tables. During the night, places related to education dtegite central in Belo Horizonte,
but not in NY or Tokyo. This is explained because night cosiiseschools and universities
are common in Belo Horizonte, since many people have to woring the day to pay their
studies. In New York, as expected, the centrality of plasdsted to nightlife and arts &
entertainment is high. On the other hand, shopping placestiigh centrality in Tokyo for
this considered period. This analysis illustrates how wevtsualize characteristics of cities,
and the potential of using it to differentiate them.

5.3 Points of Interest

It is quite common to find particular areas in a city that attraore attention of residents and
visitors, here callegoints of interes{POI). Among the most visited POIs, we can mention
the sights of the city. However, not all POls are sights ofty Eor example, an area of bars
can be quite popular among city residents, but not amongstsurFurthermore, POls are
dynamic, in other words, areas that are popular today malgertamorrow. In Sectiob.3.1
we present an algorithm to identify POIs and in SecBdh2we perform temporal analyses
of data shared on POls.

5.3.1 POl Identification Algorithm

Another example of application that naturally emerges feoralyzing PSN data are related
to the identification of POIs in a city. Let’s consider a PSNivkd from Instagram. The
identification of points of interest is possible becauségacture represents, implicitly, an
interest of an individual at a given moment. So, when manysusteare photos in a particular
location at a given moment, it can be inferred that this pla@POI (see Figuré.13.

More specifically, using as an example data of a PSN derivaa instagram, the
Algorithm 1 formalize the process of identifying POls by the followirtgss:

1. Each pair of coordinates (longitude, latitudé}, y); is associated with a poimpt;
2. calculate the distanc&innott 1984 between each pair of point;, p;);

3. group all the pointg; that have a distance smaller than 250 m into a cluSterThis
distance threshold was obtained by the method Completeabm Sarensen1949.
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Algorithm 1: Identification of points of interests (POISs).

O~NO O~ WNPE

PR
NP O

13
14
15
16
17
18
19

20
21
22
23
24
25
26

input : a data dictionary/ with shared data. The keys are the locations and the valegb@data attributes
output: a data dictionary\/po 1 containing POls

D <« 0; /] Distance between all points
C «+ 0; /1 All identified clusters
Cair + 0; /1 Alternative clusters
threshold < (;
Cpors < 0; 1l Clusters representing POls
P <—contains all geographic coordinates/df,
foreachp € P do
| D.insert(distance op between all coordinates @?);
end
C « identifyClusters(D);
foreachc, € C do
consider only one photo per user that shared datg;in
/I creates alternative empty clusters for each Cr
Coair-insert(0);

end

foreach f; € [all photos ofC] do
select a random cluster. € Cyy;
cransert(fi);

end
calculate the normal distribution of # of photos of eaclke C.+;
/' p and o refer to the normal distribution
threshold <+ [—oo; 1 + 20];
foreach ¢, € C do
if # of photos iy, ¢ threshold then
| Crors.insert(ck);
end

end
Mpors < {area of eaclr; € Cpors : [all users that shared datadn time of the data shared considered

This step is represented by the functi@lantifyClusters in the Algorithm1. The
result of this procedure is shown in Figusel 9, in which different colors represent
different clusters: for the city of Belo Horizonte;

. for each cluste€’;, we consider only one point (photo) per user. With that, tbe-p

ularity of a cluster is now based on the number of differemrsithat shared a photo
in the cluster area. This procedure avoids consideringsanséed by very few users,
e.g., homes, as popular ones;

. finally, for each cluste€’;,, we create an alternative clustér. Then, for each photo

fi» we randomly choose an alternate clusterand we assigrf; to C,. The number
of photos assigned to each cluster from that process fokbomemal distribution with
meany and standard deviatiom. Thus, from the original clusters;, found in the

previous step, we exclude those in which the number of phetadthin the distance
20 above from the average or is in the rangg—oo; i + 20]. The idea of this step
is to exclude those clusters that may have been generateahdpm situations, i.e.,
those that do not reflect the dynamics of the city.
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Figure 5.19: Points of interest of Belo Horizonte.

Figure 5.1% shows POls obtained through this process. Observe thdican
smaller number of points compared with the ones shown inrEigul%. Besides identi-
fying POIs in a city, we can also separate the sights from PEOsthis, first we generate a
graphG(V, E'), where the vertices; € V are all POIs and there is an ed@ge;) from the
vertexwv; to the vertexy; if in a given time a user shared a photo on a RQlafter having
shared a photo on P@).

The weightw(i, j) of an edge represents the total number of transitions peeddr
from POl v, to POl v; considering transitions of all users. To identify sight®, eonsider
that most tourists follow a well-known path within the cibging guided by the main sights
of it. Moreover, at each point of interest he/she takes onmane photos and goes to the
next tourist spot. Thus, we consider that edgeg) with high weightsw (i, j) denote these
frequent transitions from one sight to another in a city.

After this, we exclude fronG all edges(i, j) with weightsw(i, 7) smaller than a
thresholdt, which is given by the probability of generatingi, 7) randomly in a random
graphGg(V, Er). The identification of the value that separates edges wigh hieights
from low weights is made as follows. First, we create a randaaphG r(V, Er) containing
the same nodes @f. Then, for each sequence of photosf!, 2, ..., f* of each uset,
we randomly assign a POI to each photo, what generates tlemeedges of G. Thus,
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the sequence of locations where the photos were taken ismarolt the total number of
photos that were taken is preserved. The idea is to simwdatbom walks in a city. In this
random fashion, the distribution of edge weights followsoanmal distributionN, (1., 0)
with meany,, and standard deviatian,.

When the probability,, of generating an edge weightw, in Gr(V, ER) is, accord-
ing to Ny, (4w, 0w), Close to zero, then all transitions — v; with w(i, j) > w; are popular,
in which, according to our conjecture, are transitions leetwsights. For our dataset, the
value ofw; which provides a probability,, close to 0 isw; = 10. As we can see in Fig-
ure 5.1, the vertices (POIs) of the resulting graph representtigedly all the sights of
Belo Horizonte. The areas of the resulting POIs cover seu¢ofoall the eight Landmarks
recommended by TripAdvisbas the most important cultural and leisure areas of Belo Hor-
izonte.

Notice the difference between Figur24 % and5.1%, the first containing all POls and
the second only the sights of the city of Belo Horizonte. Thisans that inhabitants could
also use this application to explore the city. Again, thiplegation is interesting because it
is able to identify POls in a spatio-temporal context, whfundamental, since POls are
dynamic and change over time.
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Figure 5.20: Sights identified in different datasets.

Inspired by the analysis performed in Secti#d, we now have two goals: (i) verify
whether with the Instagram-New dataset we can identify #messights showed 5.1,
which used the Instagram-OLD dataset; and (ii) verify weetihe Foursquare dataset can
also be used for this purpose, by using the Foursquare-N&seta Following the steps
described earlier.

Figure5.20shows sights identified for different PSNs. As a baselineoohgarison,
considers.1%. Figures5.20a and5.2Qc show the sights identified for Instagram-New and

Swww.tripadvisor.com.
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Foursquare-New datasets, respectively. During the dalleof Instagram-OLD Belo Hori-
zonte was not receiving soccer games. This explains why ceesstadium was identified.
Apart of that, we can see that many of the sights identifiedheszemmon in all three datasets,
for example, Liberty Square, one of the most important sigfiBelo Horizonte. The sights
that were only previously identified, Palace of the Arts, &ahdeira Square, might not
have been identified in the new datasets because no speemlf@ppened in those places.
Palace of the Arts is a gallery with itinerant expositions] 8andeira Square is not a spot
that attracts naturally many people, especially tourisis.interesting to note that, all social
networks identified relevant sights of the city of Belo Horte, and they might be able to
complement each other, since no one found all sights.

5.3.2 The Vibe of POls

Figuress.1% and5.1%, for example, show that a particular area (southeastedfitii has a
high concentration of POls. This can be useful to guide stsin the city, for example, when
choosing a hotel location. Another interesting informatfior city explorers is the time when
certain POl is more popular. Intuitively, we know that certtypes of places are frequented
by people only at specific times of particular days. FighuZl shows the number of shared
photos per hour for all days of our dataset in different typleglaces. Figuré.21a shows

a soccer stadium. In that figure, the word “WK” indicates tthegt delimitation for dashed
lines represents a weekend, five in total. Most of the a@iwishown represent games that
happened during the analyzed interval. Observe also tlkedfaactivity between games,
indicating that this is amvent-oriented?Ol. Other types of POls are also event-oriented:
night clubs (Figure$.21b and5.21c), and a convention center (Figuse21d). Note that the
activities in night clubs concentrate more during weekeodghe other hand in a convention
center most of the activity happens during weekdays.

Concerning other types of POls, we can see in Fight@3 and5.21f that people
share photos in a mall in many different times of the day, uweekdays and weekends.
This is expected due to the high number of different attomstithat a mall usually offers
every day of the week. We also show the frequency of two of tlhetrfamous touristic
attractions of Belo Horizonte in Figurés21g and5.21h. The sharing pattern in touristic
spots are not as intense as POIs with a high concentratioeagl@ and attractions such
as malls, or as periodic as an event oriented POI, such ascligis. These are powerful
features for classifying POIs by their type and suggestsgysiabout the best time and day
to make a visit to it.

Finally, as we can see, the temporal photo sharing patt&septs somehow a signa-
ture of POIs, meaning that may be possible to automaticddigtify anomalous events. This
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Figure 5.21: The temporal photo sharing pattern for difietgpes of POls.

can be used to capture in near real time unexpected eventsaswan accident, or an event
happening in an unusual place, for instance a street pagygoncert on a park. After identi-
fying those events, we could use the shared pictures to ¢chreakar real time, snapshots of
those events. Figu21a illustrates the potential of this application, showinghemictures
for the greatest peak of activity in that POI. In this casesereould be aware that this event

is a game of the Cruzeiro soccer team.

5.4 Socio-Economic Aspects

Data collected from social media applications can be uséufé¢othe social network topol-
ogy and dynamics of entire cities, ultimately enabling thalgsis of social, economic, and

cultural aspects of its inhabitants.
Semantic location services will be critical for the next waef killer applica-

tions [Kim et al,, 2011, and there are many possibilities to design them. The piisisis
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listed here exploit the information about category of theues present in the Foursquare-
Crawled dataset.

Together with geographic neighborhoods, cities can beldiinto semantic neigh-
borhoods. To illustrate this idea, consider Figbr22a. This figure shows a heat map for
two categories of venues: Arts & Entertainment, rangingisellow to red, and Great Out-
doors, ranging from light to dark blue. Again, darker colegpresent larger numbers of
check-ins. Note that it is possible to distinguish populaaa of venues related to the Arts
& Entertainment and Great Outdoors categories. Using @mipktering algorithms to clas-
sify these regions, such as the one@rdgnshaw et al2017, it may be possible to offer to
a tourist, for instance, an intuitive and automatic viszeation of the points of interest in a
given city.

Moreover, one might argue that a small coverage of a certamlay a PSN (i.e., only
a small amount of data shared in that area) might indicatekadatechnology access by
the local population, since the frequent use of locatiomisbaervices often relies on smart-
phones and 3G or 4G data plans, which, usually, are experdiegpreliminary results in the
use of PSN in these scenarios demonstrate good opportutttenable the visualization of
interesting facts, some of them discussed in Seeti@r?2 For instance, analyzing carefully
the data for the particular case of Rio de Janeiro, illusttat Figures.22b, we observe that
it is common to find very poor areas next to wealthy ones. Nuwgestnall sensing activity
in the circle areas indicated as poor. This information may$eful to guide better public
politics in those areas. The same information can be oldaiseng traditional methods,
such as surveys, but in this new way we may be able to obtasetine results more quickly
and cheaply.

Poor area |
& Hiuge cemetery

zzzzzzzz

Poor areas
Wealthy areas

(b) Classification by lack of sensing

Figure 5.22: Examples of possible area classifications.

Other possibilities to classify areas emerge when jointdpsidering the time and
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venue where the check-ins are performed. It may be possilvistialize crowds in a city in
near real-time. Besides that, we observed in Secti@mthat the seasonal patterns may be
due to the circadian rhythm present in human routines. asanality has a great potential
for prediction applications, since it is very likely thatqme repeat their activities in a peri-
odic manner. We do believe that there are fruitful oppottesifor prediction given by the
circadian rhythm of people, enabling the prediction, fatamce, of how crowded a place
will be. This type of information is valuable in many scematisuch as services for smart
cities to avoid traffic in certain areas and offer altermatioutes for users.

The following scenario illustrates another possibilitattiexploits the same data. For
that, we created a simple method to estimate the number @kéhs in certain time and
space. This method average the number of check-ins for d@eddiinterest at a given time,
taking into account every category separated. Figbt2&, 5.23, and5.23 show the
check-ins estimation for “Food" places at 7:00 p.m., “Nig@t category at 11:00 p.m., and
“Nightlife" category at 1:00 a.m. for the same area respebtti Consider that Bob and Alice
have tickets to watch their favorite rock band at MadisongBg@arden, located in the area
depicted, on Saturday at 8:30 p.m. to 10:30 p.m.. They wame dinner in a popular place
before the concert, and after that go clubbing nearby thear@ince they do not know New
York, they decide to use the information provided by an imagy application represented
on Figures5.23, 5.23, and5.2%. A candidate area to have dinner is marked by a blue
rectangle in the Figurt.23. Regarding to where to go clubbing after the concert, theltre
shown in Figures.23 indicates at least two potentially good areas (blue rgdesh. Since
the couple plan to club until late at night, a tiebreakereciiin could be the estimation of the
number of check-ins late at night for the same category, @assin Figure5.23. The result
indicates one of the two areas as the best choice.

(b) Nightlife, Sat. 11 p.m. (c)Nightlife, Sun. 1 a.m.

Figure 5.23: Check-ins estimation for different times ayyktof places.
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5.5 Cultural Differences

When studying the social behavior of particular areas, dnleedfirst questions that emerges
is: how different is one’s culture from another? To addréss question, it is necessary to
define culture first. However, culture is such a complex cphtteat no simple definition or
measurement can capture it. Among the various aspectsdfiaedhe culture of a society
(or person), one may cite its arts, religious beliefs, teitand manners. Moreover, eating
and drinking habits are also fundamental elements in arutiod may significantly mark
social differences, boundaries, bonds, and contradgfiGarole 1997 Cochrane and Bal
199(Q. Thus, we use this aspect to study the idiosyncrasies firdiit societies.

In this section, we propose a new methodology for identgydaltural boundaries and
similarities across populations using self-reportedwalt preferences recorded in PSNs.
Our methodology, which is here demonstrated using dataaelll from Foursquare, consists
of the following steps. First, we map food and drink check-@xtracted from Foursquare
into users’ cultural preferences. By exploring this magpime are able to identify particular
individual preferences, such as the taste for barbecueéer s@aod and drink individual pref-
erences, as shown in this thesis, are good indicators afralisimilarities between users.
We then show how to extract features from Foursquare dataatkaable to delineate and
describe regions that have common cultural elements, dgfsignatures that represent cul-
tural differences between distinct areas around the plarethat end, we investigate two
properties of food and drink preferences: geographicaltamgporal characteristics. Next,
we apply a simple clustering technique, namelmneans, to show the “cultural distance” be-
tween two countries, cities or even regions of a city, allaywis to draw cultural boundaries
across them.

Unlike previous efforts, which used survey data, our workased on a dynamic and
publicly available Web dataset representing habits of amtaiger and diverse population.
Besides being globally scalable, our methodology alsanallthe identification of cultural
dynamics more quickly than traditional methods (e.g., sysy, since one may observe how
countries or cities are becoming more culturally similadstinct over time.

The correct identification of cultural boundaries is uséfuimany fields and applica-
tions. Rather than using traditional methods to identifitural differences, the proposed
method is an easier and cheaper way to perform this tasksagrasy regions of the world,
because it is based on data voluntarily shared by users ons@fgltes. Moreover, since
culture is an important aspect for economic reasédwso, 1972 Garcia-Gavilanes et al.
2013, our methodology is valuable for companies that have l®ssias in one country and
want to verify the compatibility of preferences acrossetiéint markets. Another applica-
tion that could rely on our methodology is a place recommgadaystem, which is useful
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for visitors and residents of a city. Foursquare estimdtasdnly 10% to 15% of searches
on Foursquare are for specific plac&hpey 2013. Much more often users are search-
ing within broader categories, such as “susl@hpey 2013. Based on this information,
systems like Foursquare and other location-based seagihesn as the one proposed in
[Shankar et al.2013, could benefit from the introduction of new criteria and iagisms
in their recommendation systems that consider culturé¢ihces between areas. For in-
stance, a person who enjoyed a specific area of Manhattad mmdive a recommendation
of a similar area when visiting London.

Is important to emphasize that cross-cultural studies, (itee study of cultural dif-
ferences) do not constitute a new research area. Indeedhtve been carried out by
researchers working in the social sciences, particularlgultural anthropology and psy-
chology Murdock 1949. Despite globalization and many other technological hevo
tions Blossfeld et al.2003, group formation might lead to the emergence of culturairzb
aries that exist for millennia across populatioBsiith, 1969. Axelrod [1997 proposed a
model to explain the formation and persistence of thesei@ilboundaries, which are ba-
sically a consequence of two key phenomena: social influgirestinger 1967 and ho-
mophily [McPherson et al.2001. While homophily dictates that only culturally similar
individuals are likely to interact, social influence makedividuals more similar as they
interact. In a long term, these two phenomena lead to veryrmallly distinct groups of
individuals, delimited by the so-calledliltural boundaries

The rest of this section is organized as follows. Secid@nldescribes our dataset and
the core of our methodology for extracting cultural prefees from participatory sensor
networks. Sectiob.5.2shows how to extract cultural signatures for different arefithe
globe and explore the similarities among them, while Sed&ib.3applies this knowledge to
analyze the implicit cultural boundaries that exist fofeliént cultural aspects of the society.

5.5.1 Extracting Cultural Preferences
5.5.1.1 Mapping User Preferences

One of the biggest challenges in the analysis of culturdéihces among people and re-
gions is finding the appropriate empirical data to use. Thrroon approach to overcome
this challenge is the use of surveys based on questionridiieelsduring face-to-face inter-
views [Valori et al, 2013, such as the Eurobarometer datasstimitt et al.2005. Through
these questionnaires, individual preferences, such amshe for coffee and fast food, can
be mapped into multidimensional vectors representing (@ratacterizing) each intervie-
wee. From these vectors, it is possible, for instance, totfyehow similar or different two
individuals are.
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Although survey data are broadly used in the analysis otioest there are some se-
vere constraints in its use, which are well known to reseaschFirst, surveys are costly
and do not scale up. That is, it is hard to obtain data of nrm#licor even thousands of peo-
ple. Second, they provide static information, i.e., thelem the preferences of users at a
specific point in time. If some of the preferences change figaificant amount of the in-
terviewed people, such as the taste for online gaming idsistreet ball playing, the data
is compromised.

In order to overcome the aforementioned constraints, wpgqa® the use of publicly
available data from PSNs to map individual preferences. P& be accessed everywhere
by anyone who has an Internet connection, solving the sitifgiroblem and allowing data
from (potentially) the entire world to be collected. Moreovthese systems are dynamic,
being able to capture the behavioral changes of their usees whey occur, which solve the
second mentioned constraint. However, data from suchragstan be used if and only if
they meet the requirements:

e [R1] Itis possible to associate a user to its location;

e [R2] It is possible to extract a finite set of preferences from thia dhat is generated
by the system;

e [R3] Itis possible to map users’ actions in the system into théepeaces defined in
[R2].

Considering that these requirements are met, a dataseticioigtindividual activities
of N users of a PSN can be used to map preferences as follows.dssstiate each user
with a location/;, which may be a country, a city or even a region within a cityefi, define
a set ofm individual preferences (or featureg), /-, ..., f,, that can be extracted from the
dataset, which may represent the taste for the most variegsthsuch as Japanese food or a
certain football team. Finally, map the activities of eaatlividualn; into anm-dimensional
vector of preferences; = fii, foi, ..., f,,: that characterizes the person’s tastes, the same
type of vector that is usually created from survey d&&lqri et al, 2017.

Since the preference vectdt; is generated from self-reported temporal data of an
individual n;, we may populate and modify it in various ways. For instanvee,can use
a binary representation, whefg = 0|1 represents whether usey has or not preference
fr (e.g., whether a person likes/dislikes a certain type oflfprespectively. Alternatively,
we may consider the intensity at which a user likes a featuferred from the number
of times the corresponding preference is reported in thegoés data, i.e.f,: = [0;00).
In Appendix C, we adopt a binary representation. Finally, one can grodjvituals by
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their geographical regions and sum up their preferencex®td characterize their regions.
We adopt this approach in Sectiérb.2to build preference vectors for regions (instead of
individuals).

5.5.1.2 Data Description

Here we consider the dataset Foursquare-Crawled, deddrildgection4.1 Since we are
primarily interested in food and drink habits, we manualtguped relevant subcategories
of the Food and Nightlife Spots categories into three cksBeink, Fast Food, and Slow
Food places. We did this by excluding some subcategori¢sithanot related to these three
classes (e.g. Rock Club and Concert Hall) and moving somzasedpories (e.g. Coffee Shop
and Tea Room) from the Food category to the Drink class. Bedidat we also disregard
the category Restaurant, because it is a sort of meta cgtéuatr could fit in any of the
two classes of food. After this manual classification precése Drink class ended up with
279,650 check-ins, 106,152 unique venues and 162,891 enisgrs; the Fast Food class
with 410,592 check-ins, 193,541 unique venues, and 230)&#fue users; and the Slow
Food class with 394,042 check-ins, 198,565 unique venud231,651 unique users. More-
over, the Drink class has 21 subcategories (e.g., brewargpke bar, and pub), whereas the
Fast Food class has 27 subcategories (e.g., bakery, boigergnd wings joint) and the
Slow Food class has 53 subcategories, including Chinetaurasit, Steakhouse, and Greek
restaurant.

To provide an idea about the size of the user population P&Nseach, consider the
World Values Surveyproject. That study is maybe the most comprehensive iryasitin
of political and sociocultural change worldwide, which wamducted from 1981 to 2008
in 87 societies, with about 256,000 interviews. Observé dh@ one-week dataset has a
population of users of the same order of magnitude of the murabinterviews performed
in that project in almost three decades.

5.5.1.3 Mapping Foursquare Data into User Preferences

Several characteristics of human beings are not direcgifable, such as personality traits.

Thus, we rely on face-to-face interactions or online sigmaldiscover the presence of those
hidden qualitiesPentlangd201d. In this direction, a check-in given in a PSN can be consid-
ered as a signal because it is a perceivable feature/atidmexpresses the preference of a
user for a certain type of place. With that in mind, we use Bquare check-ins to represent

user preferences regarding food and drink places. Spdbific@ use the three main classes

defined in Sectio®.5.1.2 namely,Drink, Fast Food andSlow Food

"http://www.worldvaluessurvey.org.
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Figure 5.24: Frequency of check-ins at all subcategori¢bethree analyzed classes. The

names of some places are abbreviated but the semanticsradrties is preserved.

Figures5.24a,5.24, and5.24c show the frequency of check-ins at each subcategory
of the Drink, Fast Food, and Slow Food classes, respectiselwe can have a general idea
about the popularity of user preferences for different faad drink related places. These
figures show the popularity of different places accordingeaople’s preferences worldwide.
Note that Coffee Shop and Bar are the two most popular sulpmads of Drink places, with
86,310 and 81,124 check-ins, respectively. The two mostilpop-ast Food subcategories
are Café and Fast Food Restaurant, with 91,303 and 56,648 checkessectively. Finally,
American Restaurant (47,373 check-ins), and Mexican Remt& (28,712 check-ins) are the
two most visited subcategories of Slow Food places.

In this dataset, a user is represented by a vecter ef101 features corresponding to
the 101 subcategories that comprise the three classes walbfined. A featurg; € F =
{f1, f2,---, fi01} is equal to 1 if a user made at least one check-ify,aand 0 otherwise. In
this way, a feature vector represents the positive and ivegattieferences of a user for fast
food, slow food and drink subcategories. With that, a fingedf preferences is extracted
(requiremen{R2], see definition in Sectioh.5.1.] and users’ actions are mapped into this
set (requiremerfR3]). To associate a user with a location (requirenj&ii]), we analyzed
the GPS coordinates of all check-ins performed by the u$atl theck-ins performed are
from the same country, according to the free reverse gengod| offered by Yahot) we
assume that the user taken into consideration is from thaitop Otherwise, we do not
consider the user in our analysis. In this way, we minimizewhong association of a user
with a country. Following this procedure, approximately d¥%ihe users were disregarded
from our analysis.

8Like in many European countries, this term is referred astugant primarily serving coffee as well as
pastries.
°http://developer.yahoo.com.
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5.5.2 Extraction of Cultural Signatures

AppendixC analyzes the individual preferences of users, showingngmther results, that
food and drink preferences are good indicators of culturallarities. Given that, we hy-
pothesize that it is possible to define cultural signatufehfferent areas around the planet.
In this section, we show how to extract features from Fouasgjdata that are able to describe
regions from their cultural elements. In particular, wedstigate two properties of food and
drink preferences: their geographical (Sectmb.2.]) and temporal (Sectiob.5.2.9 as-
pects.

5.5.2.1 Spatial Correlations

Here our goal is to define a set of features that are able tactesize the cultural preferences
of a given geographical area in the planet, such as a coantry or a neighborhood. Thus,
for a given delimited area(e.qg., the city of Chicago), we sum up the values of the festur
the preference vectors of the users who checked in at vertieast@rea. In other words, we
count the number of check-ig8* = ¢{, ¢, . . ., cfy; performed in venues of each of the 101
subcategories,, ss, . . ., s191 Of the Fast Food, Slow Food and Drink classes (Se&ibri.2
that are located within the perimeter of areaNext, we represent each aredy a vector
of 101 featurest™* = f{, fs, ..., f{y,, where each featurg” is equal toc¢ / max(C®). That
is, we normalize the number of check-ins at each subcatdgpitpe maximum number
of check-ins performed in a single subcategory in ar¢max(C*)). Thus, each area is
represented by a feature vectot containing values from 0 to 1, indicating the preferences
of people who visited that area, i.e., the profile of prefeesfor that area. From now on, we
usery i Firooq @NAFY, o refer, respectively, to the subset of features that spoed
to subcategories belonging to the Drink, Slow Food and FastiElasses in area

In order to verify if two areas andb are culturally similar, we compute the Pear-
son’s correlation coefficient between the two feature wscks and £ of those areas. We
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(a) Drink (b) Fast Food (c) Slow Food
Figure 5.26: Correlation of preferences between cities.

compute the correlation considering all featuré$ @nd £°) as well as a subset of them
(e.9.,F4,., andF? . ). In particular, Figuré.25shows the correlations between areas cor-
responding to 27 different popular countries for the Dribkga), Fast Foodg.2%), and
Slow Food b.25%) classes; the darker the color, the stronger the comelétiue for positive
correlations, red for negative correlations). The sameetations computed for city level
areas (16 cities around the world) are shown in Figug&

Analyzing the results for the Drink class (Figuse25), we find countries with very
strong correlations, such as Argentina and Chile, as watbastries with low correlation,
such as Brazil and Indonesia. Moreover, although regiarseajeographically tend to have
stronger correlations, this is not always the case. For pl@rthe correlation between Brazil
and France is stronger than the correlation between Englash&rance, which are geograph-
ically closer. Similarly, Figur®.26° shows that cities in the same country tend to have very
correlated drinking habits in most cases, but there areptiees: Manaus (Brazil), for in-
stance, has weak correlation with other cities in BrazilisThight be due to this city being
located in the North region of Brazil, which is known for hagia strong cultural diversity
compared to other parts of the country.

Turning our attention to food practices, we observe in Fegl.2% and5.2@b the
global penetration of fast food venues, at both country atdlevels, explained by the
diffusion of fast food places worldwidaNatson 20064. This is not observed in the same
intensity for the Slow Food class (Figure25 and5.26c). The Slow Food class presents
the highest distinction, or smaller correlation, acrossinad the countries and cities. This
is expected, since Slow Food venues usually are representditthe local cuisine. Note,
for instance, that cities from Brazil and USA have highlyretated drinking and fast food

10The ratio of check-ins per inhabitant is similar among adl tities taken into consideration. For example,
comparing Manaus (one of the cities with fewer check-inghvdao Paulo (largest number of check-ins in
Brazil) we find the following ratios0.35 x 10~ and0.37 x 10~3 (Drink class);0.73 x 10~ and0.75 x 103
(Fast Food class); arid54 x 102 and0.71 x 10~ (Slow Food class).
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habits, but almost no correlation in slow food habits.

Finally, we turn our attention to the cultural habits witheity boundaries. It is
known that, in many cities, there is a strong cultural digracross different neighbor-
hoods Cranshaw et al2017, reflecting distinct activities typically performed ingbke ar-
eas. To analyze these local cultures, we focus on three papulities, namely London,
New York, and Tokyo. We divide each city’s geographical arsiag a grid structure. Next,
we select the most popular cells in the grid of each city abellthem with a number, as
shown in Figureés.27. We then compute the correlation between the selected didte that
we here assume a grid with regular (rectangular) cells tawghe potential of the proposed
analysis. However, our approach can be applied to any otlggnentation of the city areas
(e.q., by city districts).

Figure 5.28 shows the correlations for pairs of cells within the samg aitd from
different cities. Note that, for the Drink class, differaméas within the same city tend to have
very strong correlations. There are also areas from diffes#ties with strong correlations
(e.g., areas NY-5 and TKO-1). For Fast Food places, the latiors between areas within
the same city are much stronger for Tokyo, although the tiroes between New York and
London areas are fairly moderate. In contrast, there assavéh negative correlation, e.g.,
NY-3 with most of Tokyo areas.

Finally, for the Slow Food class, once again Tokyo areas arg strongly correlated
among themselves. In comparison with the Fast Food claam® tha more clear distinction
(weaker correlation) between London and New York areas #sawamong distinct areas in
London. This last observation is probably due to a specifecatteristic of London, which
has neighborhoods with a strong presence of a cuisine ofteydar region of the globe.
Observe also that two specific areas of New York, namely NWd IdY-8, are particularly
not correlated with the others from this city. This is prolyatelated to the location of
Chinatown in those areas (mainly NY-7). Indeed, this palticarea (NY-7) has a strong



5.5. QULTURAL DIFFERENCES 101

1 Chinatown 05
(both cities;

~

000000000zzzzz2<<<<<<<<
000000000 ZZZZZZ<<<<<<<<

Y 1
Y 2
Y 3
Y 4
Y 5
Y 6
Y 7
Y 8
N 1
N 2
N 3
N 4
N 5
N 6
0 1
Q 2|
0 3|
Q 4
Q 9|
Q 6|
Q7
0 8|
0O 9|

e et
e et

Ll
LI
Ll
Ll
Ll
Ll
T
T
T
T
T
T
T
T
T

7
8
9

©oo~

SANMSHLOONOHNMHOO—HNMHLNON0D AN OO DOHNMHOO—NMLION00 AN OO DN OO —NMLION00
>>—>>—>—>—>—>—%§ZZZZOOOOOOOOO >->>->->->->->-§%ZZZZOOOOOOOOO >->>->->->->->-§%ZZZZOOOOOOOOO

lala'ala) [ala'ala) [ala'ala)
i i i

(a) Drink (b) Fast Food (c) Slow Food
Figure 5.28: Correlation of preferences in regions of LanddYC and Tokyo.

correlation with a particular area of London, LND-5, whef@i@&town/London is located.

5.5.2.2 Temporal Analysis

We now turn our attention to the temporal and circadian asp#cultural habits. The time
instants when check-ins are performed in food and drinkgdamay also provide valuable
insights into the cultural aspects of a particular regiaor. é&xample, in a particular area, one
may like to drink beer during the weekends but not during teekdays.

To that end, we first count the number of check-ins per houinduhe whole week
covered by our dataset in venues of each class (Drink, Fast&ud Slow Food) for different
regions. Next, we group days into weekdays and weekendsmswgrup the check-ins
performed on the same hour of the day in each group and forregan. We then normalize
this number by the maximum value found in any hour for the gjgeegion, so that we
can compare the patterns obtained in different regions.illegtration purposes, we show
the results for three countries (Brazil, USA, and Englami) &r three American cities
(Chicago, Las Vegas, and New York) in Figue29and5.3Q respectively. Results for each
class are shown separately for weekdays and weekends.

Focusing first on weekday patterns, Figr29 shows that American and English
people have similar peaks of activities, despite diffeesnin their preferences for differ-
ent categories of places, as previously shown (Figu2&). In contrast, Brazilians tend to
have significantly different temporal patterns, particylan terms of activities in Slow Food
places (Figuré.2): whereas Americans and English people tend to have tregir meal
at dinner time, Brazilians have it at lunch time. Observe #isit Brazilians have their meals
later, compared to Americans and English people.

Concerning the times when people go to drink venues, it isiptesto note similarities
among most of the cities from the same country, but also soffeeeht patterns. For exam-
ple, most of the analyzed cities from USA exhibit a weekdatggoa similar to New York
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Figure 5.30: Number of check-ins throughout the hours ofdag in different American
cities (WD = weekday; WE = weekend).

and Chicago, shown in Figui3Q0a, with three distinct peaks around breakfast, lunch and
happy hour (around 6 p.m.). This behavior is consistent tghgeneral pattern observed
for the country, shown in Figurg.2%. However, Las Vegas is one exception, since there is
an intense activity during the dawn, besides many othergebitctivities that do not occur
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in other cities.

Turning our attention to eating habits on weekdays, FiguB@shows that most cities
in the USA present activity patterns very similar to the gahpattern identified for the coun-
try, both in terms of Slow and Fast Food places. However, asmid for drinking patterns,
there are exceptions, such as Las Vegas, which exhibiiactistends that reflect inherent
idiosyncrasies of this city. We also note relevant simiilesiand differences in eating habits
of people from cities in different countries. For examplanparing Figure$.3( and5.30c
with similar graphs produced for different Brazilian c&jeve find that while all curves for
the Fast Food class are very similar, the curves for Slow Fades are quite different,
reflecting distinct habits for each country, as discussedipusly.

The curves for weekends have very distinct peaks of a@s/ftom those of weekdays,
both at the country and city levels. For instance, as showigiare5.29 English people have
a very distinct drinking pattern from Americans on weekentforeover, the differences
among the countries in terms of preferences at Slow Foo@gla® also clear on weekends:
Brazilians tend to go to Slow Food places more often at luimok,twhereas Americans and
English people do it more at dinner time.

We note that there is no clear (dominant) temporal checlaitepn for Fast Food places
on weekends, when considering different cities of a coulitowever, we do note that most
activities happen after noon, which was expected. In ceptthere is a dominant pattern
for check-ins at Slow Food places on the weekends, and itrigasito the one observed
on weekdays. This is possibly because such places (oftéaurasts) have well-defined
opening hours, serving meals around lunch and dinner timbs which coincide with the
times of check-in peaks (Figur&s2<, 5.29, 5.3, and5.3(). Assuming that the height
of such peaks reflects the importance of that meal for a cectdture, we note once again a
key distinction between Americans and Brazilians.

5.5.2.3 Discussion

In addition to temporal and spatial patterns of check-irdifegrent types of places, we also
compute the Shannon’s entrogytfannon194§ of preferences for each venue subcategory
among all considered areas. The goal is to analyze whetherttbck-ins at specific sub-
categories are more concentrated at specific areas (loapgntor not (high entropy). We
compute the entropy for subcategories of each class (DRakt Food and Slow Food) at
country and city levels. The average entropy for subcategaf the Drink class is 3.23
(standard deviatior = 0.93) for countries and is 3.88(= 1.09) for cities. Sake bar is
one example with low entropy (1.13 for countries and 1.89%cfbes), which indicates that
this subcategory is popular on very few countries and citisely Japan contributes con-
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siderably to this result. On the other hand, the averagentor subcategories of the Slow
Food class is much larger, 2.63 & 0.78). This higher entropy reflects the widespread
popularization of various cuisines. For example, a checktian Italian restaurant does not
necessarily mean that it represents a behavior of an Itadiane it is a very international
type of restaurant, confirmed by the high entropy (3.63).elNbbwever, that if the check-in
at an Italian restaurant is made at lunch time it could be rtikety to represent a Brazilian
behavior than American, since Brazilians have their maialratelunch time, as presented in
Section5.5.2.2 Time plays an important role in this case.

Given these considerations and all the observations egbere, we propose the use
of spatio-temporal correlations of check-ins as cultuigthatures of regions.

5.5.3 Identifying Cultural Boundaries
5.5.3.1 Clustering Regions

In this section, we use the cultural signatures of regiorseiileed above to identify sim-
ilar areas around the planet according to their culturaéetsp delineating their so-called
“cultural boundaries”. To that end, we first represent eaeaa by a high dimensional
preference vector composed of 808 features, namely theatiaed number of check-ins at
each of the 101 subcategories in four disjoint periods ofdéng on weekdays and on the
weekends. We then apply the Principal Component AnalystA{H Jolliffe, 2003 tech-
nique to these vectors to obtain their principal comporténtsinally, we use thé-means
algorithm, a widely used clustering technique, to groufaaie the space defined by these
principal components. We perform this analysis for aredsme@ at the country, city and
neighborhood levels.

The score values for the first two principal components jénerated by the PCA for
countries, cities, and regions are shown in Fig&.&da, 5.31b, and5.31c, respectively. The
variance in the data explained by these first two componergsawn in each figure. Each
color/symbol in those figures indicates a cluster obtainet-means, which used thefirst
principal components that explain 100% of the variationha tata $=15 for countries,
p=26 for cities andp=22 for regions). Thet value in thek-means varied according to the
characteristics of the considered areas. For countriesgiie=7 (same number of clusters
used in [nglehart and WelzeR01Q). Following the same logic, we s&t4 for cities, since
we considered cities from 4 different continents/coustrandki=3 for regions inside a city,
because we considered 3 cities. We used the cosine simitaritompute the similarity
between locations.

HAlternative methods could be applied to reduce the dimemdity of these vectors. A comparison of
these methods is out of the scope of the present work.
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Figure 5.31: Clustering results for countries, cities, egglons inside cities.

It is possible to observe in FiguBe3la that countries with closer geographical prox-
imity are not necessarily associated with the same cluster.example, Australia and In-
donesia arenotin the same cluster. Although they are geographically feghg countries,
they are culturally very distinct. When analyzing largeestfrom the considered countries,
Figure5.31b shows that they are well clustered by the geographicabnsgivhere they are
located: Asia, Brazil, Europe and USA. Intuitively, thisoit makes sense, since, for in-
stance, cosmopolitan European capitals tend to preserd sioilar cultural habits among
each other than among cities from different continentsnifhgy our attention to regions in-
side London, NY, and Tokyo, we observe in Figr&1c that all regions in the same city
are in the same cluster. This result was also expected whesidasing all features. Besides
that, when we analyze a subset of features, for examplekidgrhabits during weekends
in all regions of London, NY, and Tokyo, FiguBe32shows this result, we find that some
regions of London and NY are clustered together. This isotmrated by the results shown
in Section5.5.2 for certain categories, there are regions from differéin¢that are very
similar and, thus, end up clustered together.
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Figure 5.32: Clustering results for cities on weekend, m@rég only the Drink class.
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Figure 5.33: The cultural map of the World given by the Worldlués Sur-
vey [Inglehart and WelzeR014.

5.5.3.2 Comparing with Survey Data

Similarly to us, Ronald Inglehart and Christian Welzel pysed a cultural map of the world
based on the World Values Surveys (WVS) data from 2005 to 20@fehart and Welzel
2010. This map is shown in Figur&.33 and contains only the countries we analyze in
this thesis. It reveals two major dimensions of cross-caltuvariation: a traditional versus
secular-rational values dimension and a survival verslisegpression values dimension.
Moreover, it offers a division of the world into clusterspsiarly to what we have done in
the previous section. Comparing Figur@81a and5.33 observe that the similarities are
striking, with only two major differences. First, the “Ishéc” cluster dissolved, with Turkey
joining Russia and Indonesia joining Malaysia and Singap@econd, USA and Mexico
left the “English Speaking” and the “Latin America” cluserespectively, and paired up to
form a new one. Note, nevertheless, that these differenagst mot be surprising as these
new boundaries.

We formally investigate the differences between boundagieen by the WVS study
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Table 5.6: The Spearman’s rank correlation coefficigf@nd its respective p-value) between
the rank of similar countries generated from WVS and by opragach.

Country datasety dataseto

- p p-value p p-value

Argentina | 0.56 0.03 0.77 | 0.0007
Australia | 0.32 0.23 0.60 0.02

Brazil 0.48 0.06 0.81 | 0.0002
Chile 0.32 0.23 0.53 0.04
England | 0.87 0 0.70 0.004

France 0.85 2e-06 0.61 0.01
Indonesia | 0.84 4e-05 0.75 0.001
Japan 0.38 0.15 0.39 0.13
Korea 0.68 0.004 0.45 0.08
Malaysia | -0.16 0.54 0.11 0.68
Mexico 0.55 0.03 0.71 0.003
Russia 0.78 | 0.0006 | 0.76 0.001
Singapore| 0.34 0.20 0.65 0.008
Spain 0.78 | 0.0005 | 0.75 0.001
Turkey -0.18 0.50 -0.31 0.24
USA 0.70 0.004 0.67 0.005

and by our approach. In order to do so we rank, for a given cgualt the other countries
according to their cosine similarity towards it. We compilte similarity using the dimen-
sions produced by the WVS dataglehart and WelzeR01(J and the dimensions computed
by our approach. Then, we compute the Spearman’s rank aborelcoefficienty between
these two ranks to see, for instance, if the most similar @stinct) countries to England
using the WVS data are ranked similarly when we use our approkn our approach, we
use two different datasets. Hutaset;, we use the full set of features, as done so far. In
datasety, we use solely the features extracted from the fast foodkehnecperformed during
the weekend$. Table 1 shows these results. We highlight in bold all thefaments which
are statistically significant, i.e., with @value < 0.05. Observe that the correlatignis
significant and positive for several countries. Hataset, anddataset,, 9 and 12 coun-
tries have similar ranks with the ones given by the WVS, retypaly. This shows that our
approach, which is based solely on one week of participadatg, has a clear potential to
reproduce cultural studies performed using surveys, sa¢heones relying on the WVS,
which is based on 4 years of survey data.

We would also like to point out the reasons for the differenbetween our cultural
map and the WVS map, as well as for the negative correlatiees g Table 1. First, the
traits of each dataset are significantly different. While WVS looked at several cultural
dimensions, from religion to politics, from economics tiestyle, we looked only at food
and drink preferences. Second, the WVS data has a distantéodf years to our data.
During this time, significant cultural changes may have leaggl, given that the world is

12This particular set of features was chosen because it watifgguration which gave the best results.
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getting more connected at every day. Third, the most sigmifidifferences are related to
multi-ethnic, multicultural, and multilingual countriesuch as Malaysia and Turkey. In
these countries it is probably hard to find culturally homuagsus samples of individuals,
which might be the cause of the discrepancies seen betweersuits and those described
in [Inglehart and WelzeR014.

5.6 Discussion

In sum, the use of participatory sensor networks can helgtisfunderstand the dynamics
of cities and urban social behavior, and from this we are tdéfer smarter services to meet
people’s needs. We demonstrated this by proposing difféeehniques and methodologies
to that end, including:

e atechnique for summarizing the city dynamics based onitrangjraphs;
e atechnique for identification of points of interest in thg/gi

e a new methodology for identifying cultural boundaries amdilarities across popula-
tions;

e presentation of possibilities to better understand cityashgics through people move-
ments.

e presentation of possibilities to the use of PSNs to the amabyf social and economic
aspects of cities’ inhabitants.

In Chapter4 we discussed some possible limitations of our datasetse ttersum-
marize the performed procedures to tackle those limitati@ne possible limitation of our
Foursquare dataset is that it might be considered smakcesdfy the one used to demon-
strate the City Image technique (one week). To analyze tolwéxtent this might impact the
conclusions drawn from the City Images, we collected exteck-ins (for one extra week)
and recalculated the City Images for each considered cihgual the data available. We
observe that the new City Images are very similar to the spoeding ones produced using
our original one-week dataset, the changes, if observexirae some transitions classified
in the indifference range.

Besides that, we also performed several statistical treatisrin the datasets. Here we
illustrate some examples. In the City Image and POls ideatifin techniques we created
null models, identifying data that could be generated inraom fashion. This step is
important because prevent us to use data that do not hav®mslsip with the phenomena
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Our proposal Verification
City Images Clusterization agrees with common
knowledge

Methodology for cultural bound} Very similar results with WSV
aries identification
Sights identification Compatibility with TripAdvisor’s
recommendation

Table 5.7: Summary of the approaches applied to verify aulte.

we are interested in. We also studied the ratio of check-ensrhabitant, showing that it is
similar among all the studied cities. We were also alwayseamed in normalizing the data
before performing comparisons.

In addition, we always tried to verify the results obtainesing the techniques and
methods proposed here. Talle/ summarizes this discussion. In order to investigate if
the City Images generated reflects the reality, we proposeethod for clustering them.
The results are shown in the Appendx We could confirm that they are compatible with
common knowledge, showing that the results does refleataypiansitions of performed by
inhabitants of those cities. To investigate the accura@uoinethod for cultural boundaries
identification, we compared our results with the culturaprogthe world based on the World
Values Surveys (WVS), one of the most important studiesisfarea. We observe that the
similarities of this study with our results are very goodnddly, we studied the identified
sights by the POI identification technique, and we found tihey cover seven out of all the
eight Landmarks recommended by TripAdvisor as the most rtapb cultural and leisure
areas of the studied city.

As we can see, despite the possible bias and limitations otlata, the results we
present in this work, as demonstrated, hold strong. Nester$h, although these limitations
do prevent us to make some general assertions, theyotimvalidate our techniques and
methodologies. We believe that applying the proposed iqaks to a larger less biased
datasets in future research may provide an even more aeaw@tesentation of the city
dynamics and urban social behavior.






Chapter 6

Participatory Sensor Networks as
Sensing Layers

Data from different PSNs are associated with a spatial-teatwontext that can be corre-
lated or not. In order to find out what is the case, a charaetéon study is needed. With
that in mind, we characterize distinct PSNs in previous tdrap Particularly from the anal-
ysis performed in Sectio#.4, we have found evidence that the studied PSNs are correlated
and might complement each other. This result called ountdie to the potential for joint
use of data from these PSNs, considering each dataset fré@dhNa® a “sensing layer” (or
just layer, for short).

This chapter is dedicated to discuss the concept of sersyegd, and it is organized
as follows. Sectiorb.1 defines the concept of sensing layers and proposes a frak&vor
working with sensing layers. Secti@?2 discusses how to process sensing layers, defining
examples of operations that can be applied to them, as welitategies of processing sensed
data using the proposed operations. Sec@@presents some proposed applications that
illustrate the potential of using sensing layers.

6.1 Sensing Layers

In this section, we first define the concept of sensing layeSeiction6.1.1, and then for-
malize a model for sensing layers in Sect®t.3 Section6.1.2discusses the usefulness of
sensing layers. Sectidghl.4discusses some issues when dealing with data of distinetday
Finally, Section6.1.5discusses the results of this chapter.

111
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6.1.1 Basic Concepts

A sensing layer represents data, with the correspondiniputies, from a given source of
data. The data represented by sensing layers have to comefsmurce that can be con-
sidered a sensor. Examples of data sources are: web sersicdsas weather condition
provided by “The Weather Channé'traditional wireless sensor networks; income census;
and participatory sensor networks. In these examples thgose are: webservice of The
Weather Channel; physical sensor in a WSN; census of a aity;uger & mobile device
in a PSN. In this context, the applications or organizatipmwide a data stream, with very
different throughputs. The census sensing, for instanag,bm slow, e.g., data sharing every
four years. These examples help to illustrate the ubiquitydiversity of data that may be
available. This universe of “ubiquitous data” may be compteunderstand and work with,
opening opportunities for research studies. Given tha gssential step is a characterization
study, since data from different sources can be very heteaus and not correlated.

We discuss the concept of sensing layers for participatengar networks, most of
the time, because this is an emerging source of data with fhoMaharacteristics, such as
(near) real time and very large scalability, as shown in @ragp Due to these special
characteristics, the use of PSNs as sensing layers simeoliaty with other layers, even
derived from other sources, may bring new information alegytdynamics and urban social
behavior, which could enable the design of more sophigtisatvices (as discussed later).
All the concepts discussed in this chapter can be used fer diita sources associated to a
predefined geographical region, sometimes with requiragtadions.

Sensor nodes in a PSN are comprised of users, each one wittalpalevice. Thus,
when we refer to a user, we are referring to a sensor node irNa R&e that the sensing
activity depends on the willingness of each person to ppetie in the sensing process. Thus
a user, as well as any kind of sensor, may or may not be a cotdriduring a certain time
window.

Figure6.lillustrates the idea of sensing layers, showing four déffetayers for a city:
Traffic alerts layer provides traffic conditions in certain locations,sas traffic jam or ac-
cident (obtained, for example, from Waze or Bing Maj@@)gck-inslayer provides category
of a certain place, such as school or pub (obtained for exarfipim Foursquare)\Veather
condition layer provides climate conditions observed in a certai@tion, such as windy
or rainy (obtained, for example, from Weddar or The Weathear@el); andPictures of
placeslayer provides photos of a certain place, such as a monumletatifed, for example,
from Instagram). As illustrated, a plane represents a sgriayer, where the observations
of a certain aspect of a predefined geographic region aresksh Each observation (at each

Ihttp://www.weather.com.
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layer) has the following attributes associated with it: difwhen the observation occurred),
space (geographic location), contributor sensor ( e.gr,wsand specific data from a layer
(specialty data

Pictures of places

Figure 6.1: Sensing layers for a city. Each layer gives mfation about a specific aspect of
the city.

Figure6.2expands the illustration of PSNs presented in the Ch&pteow embedding
the concept of sensing layers. Note that the figure illussrétiree types of sensors: a tradi-
tional wireless sensor; companies providing data, sucfilas Weather Channel”; and users
sharing real-time data with their portable devices. Thiarkgdepicts three sensing layers,
namelypictures of placegobtained from Instagramixaffic alerts(obtained from Waze) and
check-inqobtained from Foursquare). Other layers could be obtadiysather types of data
source, such as traffic condition provided by Google Mapssee data, or even be derived
from one or more layers, as will be exemplified latter.

A sensing layer consists of data describing specific aspéetgeographical location.
As shown in Figurés.2by a box labeled “big raw data”, these data should be colie@Esy.,
using an API) and processed, which also includes analydisiata standardization. The last
step is the data storage. These steps do not include thetextraf context (or knowledge)
from the obtained data, but organize thddey and Abowd200qJ. However, data of sensing
layers could be used for context inference, generating nésmation.

Big raw data Sensing layers

* Colect, <4 >

s process =P Data af. alerts (r2) ()

: and store | stream 5 & ©°

'
: fi 4

Figure 6.2: Overview of participatory sensor networks wiite concept of sensing layers.
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To illustrate these processes, consider data from a PSMedefiom Foursquare. In
Foursquare, users can, among other activities, perforckeims at locations and leave tips
on visited places. From these data, we can define at leasayweos, namely: check-ins, con-
taining the check-ins performed by users (check-ins carsbd to discover popular places,
for example), and tips of places, containing tips, such lais festaurant has amazing food”,
provided by users about certain places. The creation of$ags shown in Figuré.2, de-
pends on specific operations for each system. In the casaucddfisare check-ins, a possible
way to get them is through Twitter, as explained in Chagtethis means that we have to
collect, analyze, and process tweets. The coding of togketform those steps varies ac-
cording to the system or application. Next, we must definewcsire to represent and store
the data of interest associated with a given place wherestshared, thus representing a
layer. Each data in a layer has the following attributes:

t: time interval when the data was created;

a: location (e.g., GPS coordinates, neighborhood area) wherdata was generated. We
represent all locations by an afea

s. specialty data;
u: one or more IDs of user(s) who generated the data;

Each layer has also a variable which indicates the status of the layer, whére-
0|1, representing the inactive and active states, respegtiVek list below represents some
examples of layers that are currently available:

=

. check-ins (example of source: Foursquare);

N

. tips of locations (example of source: Foursquare);

3. traffic alerts (example of source: Waze);

4. pictures of places (example of source: Instagram);

5. average income per area (example of source: census);

6. weather condition (example of source: The Weather CHgnne

7. noise level (example of source: Noise T)be

2Even if the data is referred by a GPS coordinate it is erron@réor this reason it is interesting to consider
an area for this point, for example, a circle with radiy$rom the GPS coordinate
3http://noisetube.net.
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6.1.2 Usefulness of Sensing Layers

The processing of a set of sensing layers may enable a laaje-study of each monitored
aspectin (near) real time, and provides historical dataatte s observed over long periods.
Sensing layers can be applied to several contexts of urbaputing, for example, helping
to better understand the dynamics of cities and urban behavidifferent regions of the
world, and respond quickly to unexpected changes.

The use of sensing layers currently in the literature is comgnperformed indepen-
dently, i.e., there is no joint analysis. The individual w$e sensing layer can still be very
useful. For instance, using a sensing layer containinfjdrafformation may enable real-
time identification of highways with accidents and pothpléisose detection is difficult with
traditional sensors, but it becomes more feasible whersysaticipate in the sensing pro-
cess. Such detection opens opportunities for variouscsyvsuch as assist smart cars in the
correct identification of problems on the road.

Despite the usefulness of using single layers only, sesvii@sed on just one layer
might lack of complementary data. For example, Google Fendi$, a service based on
Google queries, is a type of sensing layer. Very recentlypamof social scientists reported
that Google Flu Trends not only wildly overestimated the benof flu cases in the U.S. in
the 2012-13 flu season, but has also consistently overshiot ilast few yearsljazer et al,
2014. According to them, the problem might be because GoogleTFdnds is not using
complementary information in their service. Indeed, thalgsis reported inljazer et al.
2014 shows that combining Google Flu Trends with CDdata, works best. Seems that the
way to save this interesting service is using multiple layeven Matt Mohebbi, co-inventor
of Google Flu Trends, agrees with thabhr, 2014.

The joint analysis of multiple sensing layers can also besextly useful in building
new applications. For example, we know that a common comiptdiinhabitants of large
cities is traffic jam. With this in mind, an application thaitarally emerges is one that has
the goal of inferring the causes of jam, an essential stepddressing the problem. This
is not an easy task to accomplish, and the result may vary fiace to place. However,
the joint analysis of different sensing layers of the cityldocontribute to build a more ro-
bust application. For example, we could cross-check inédion provided by the following
layers: traffic alerts, derived from Waze; check-ins, dmtitrom Foursquare; and pictures
of places, derived from Instagram. The first layer providearnmeal-time data about where
traffic jams are occurring. The second one provides datatajoes of places located in the
areas of jams. Having that, it is possible to better undedstiae areas of interest (for exam-

“http://www.google.org/flutrends.
SCenters for Disease Control and Prevention - https://c@tagov/.



116 GHAPTER 6. PARTICIPATORY SENSORNETWORKS ASSENSING LAYERS

ple, identifying a commercial area). Finally, by analyzthg picture of places layer, we can
get visual evidence of what is happening in almost real tiear the areas of jams. When
analyzing data from these three layers together, we camrtdéde example, cars blocking

intersections, and infer the possible causes of them. @blyipother layers may also be
used, such as the weather condition, layer derived fromesystsuch as Weddar or other
traffic condition layer provide, for instance, by Bing Méps

6.1.3 A Formal Model for Sensing Layers

Let U = {uy,us...u,} represent a set of sensors (users & mobile device, WSN sensor
etc.), and letP = {py, p2, ...p,} represent a set of sensing systems (E.g., WSNs or PSNs).
Recall that for simplicity throughout the text the desddps of concepts are mainly based
on PSNs, but the concepts applies for other sensing pracasseell. In fact, an application
considering also other source of data, besides PSN, igrdhesl in Sectiorb.3.2

Each user; € U can share unlimited data on any PgNe P. Eachj-th data shared
d?’@ into a PSNp,, has the forml?’@ = (t,m), wheret refers to a timestamp when user
has shared data ., andm is a tuple containing attributes of the shared data. Thetupl
is composed of the attributes present in all sensing layata, ¢ this casen = (a,u, ),
wherea is the area of the location where the data was sharesdthe specialty data, and
refers to the uset; € U who shared the data.

The data shared in, € P can be viewed as a data stredttr. We define that a data
streamBP+ consists of alln data shared by usef$ in a PSNp, in a given time. Thus,
Bpe = (dV*, dbF, ..., dPr), and BP+ represents a sensing layer. Table6.1shows examples
of data present in sensing layers that have been shared thrée PSNg,, p2, andps,
illustrated in Figures.3, which represents three users sharing data in differensPgNred
cloud), p» (green cloud) ang; (orange cloud) at three different time intervalsl( 72 and
T3). Note that data in the same stream can have the samég simee they may have been
shared by multiple users simultaneously.

One way to work with sensing layers is to represent them irséimee structure, what
we call herework plan containing one or more layers. This work plan represerdséh
sulting plan composed by data combined after applying ap@ate algorithms to the cor-
responding layers we are interested in. How to perform tbishkination depends on the
functionality of the layer(s) that it captures. The abdimacused to represent a combina-
tion of data from one or more layers is a data diction&fy which is a collection of pairs
{key : value}. This structure was chosen because of its simplicity, whielps to ease the

Swww.bing.com/maps.
"This model faces the clock synchronization problem. Tleesf'same time” means close times accepted
to be considered equivalent.
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Attributes (n)
Timestamp{) | Area (@) | User (1) | Specialty dataq)
T1 ay 1 “Times square”
T1 a; 2 “Times square”
T2 as 1 “Fifth Av.”
T3 ay 1 “Statue of Liberty”
(a) Foursquare PSN
Attributes (n)
Timestamp{) | Area (@) | User (t) | Specialty datas)
T1 a; 3 “Traffic Jam”
T2 as 2 “Accident”
T2 as 3 “Police control”
(b) Waze PSN
Attributes (n)
Timestamp{) | Area (@) | User (1) | Specialty datay)
T1 a; 3 “photo data”
T3 ay 1 “photo data”

(c) Instagram PSN

Table 6.1: Data stream describing users activity in thréferéint PSNs: Foursquare, Waze,
and Instagram.

concepts understanding. Keep in mind that other structtoakl be used, as long as they
respect the principles represented here.

We define that the operation responsible for the work plaratome is called
COMBINATION (F,relation()), whereF is a subset oB = {B"', B2, ..., B},
or F C BB, andrelation() is a function that defines the relationship between data frem
streamsB?+ contained inF. The functionrelation() defines the keys of the work plav,
and the data that these keys refer to, which are other olissrs@f the data’* not used as
key. The operatio@ OM BIN ATION results in the work plad/.

To demonstrate the operatiéddOM BIN ATITION, we illustrate here two types of
relations used to combine data: (1) by location and (2) bysu@ensors). To demonstrate a
work plan containing combined data by location, considerattivity shown in Figuré.3.

In this case,F = {BP', B’ BP*}. The work plan)}/; represents this activity, and it is
illustrated in Figures.4. Observe that the work plan represents data that have beeadsh
across all considered layers. The color of the symbol reptexy a given datd; indicates
from which layer it was extracted. The data shared in the dagstion are grouped and
indexed by the key that represents the location. In the wiank ja';, one keyk; is represented
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Time 1 (T1) Time 2 (T2) Time 3 (T3)

g B b B B HH
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Data stream
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Figure 6.3: lllustration of sharing data in three PSNs tigiwut the time, resulting in layers.
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Figure 6.4: Combination by location.
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Figure 6.5: Combination by users.

by a;, which is a unique area among all areas of all data shareceicdhsidered layers:
r1, r9, andrs. The d;”j/ refers to the observations not used as key of the dateom the
layerr;, or (t,u,s). Thus, each unique areas become a key in work plan Work plan
M,, as described, presents the following structuréy: = {a, : {d}", d3", d7?, d7*'}, ay -
{d5", 5}, ay  {d5” }, ag : {d}", &5} ).

Figure 6.5 illustrates the combination by user. In this case, a work p&abuild
containing keys that represent user ids. The figure showsvtiik plan M5, which was
created considering the activities shown in Figér8 The content of the work plan is:
My = {uy : {diV, d5" dyY d5 Y ug - {dyY dy? Y us o {d7?, d7¥, d5¥ ). As we can see,
each unique user has become a keylin This work plan grouped all attributes by the same
user in different layers.
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6.1.4 Issues of Data from Multiple Layers

There are issues when dealing with data from several layardtaneously. For instance, in
order to perform data combination, such as by location or, @éseexemplified, we have to
make sure that the data is consistent in all layers. This isiadatory condition for correct
functioning.

Consider that we want to combine two layers A and B by locationhe format of
data location in Layer A is expressed as latitude and lodgitiand as street address in
Layer B. One way to solve this inconsistency is performinggaapding process, using, for
example, the Yahoo! geocoding tdoln this way the street address will be transformed in a
geographic coordinate (latitude and longitude).

Another issue that might happen when combining data by ilmtas regarding to
areas that overlap each other. How to define a key in this c@se?possibility is consider
several keys, one for the intersection between those ardsne or twdas the area(s) not
overlapped. Another option is to define just one key, thishiig interesting when one area
is inside another, so the key becomes the bigger area.

The combination by users is specially an issue when our sé&naa user, as in PSNs,
because the same user may participate in different layezts suppose we want to com-
bine data by users using the check-ins layer (obtained froomdguare) and the picture of
places layer (obtained from Instagram). Since we are dgalith independent systems,
users (sensors) have different identification. One wayttotbypass this issue is verifying
other networks in order to match the user ID of one layer irtlz@ro For example, users of
Foursquare and Instagram tend to be also users of Twdtggdgan and Smit2014. In this
way, the key in the combination process could be the twiter |

Note that if the combination by user desired is between a RSB land other layers
that doesn’t have users as sensors, such as WSNs, the steocgidoes not exist, because
every sensor has its unique ID. Although it is necessaryatuete if a combination by users
(sensors) between those layers lead to the desired infiamat

Another issue is that different layers might refer to datiécv@r different interval of
times. This is natural because some data sources providesaattime data, others not. For
example, an alert in a Waze PSN refers to a traffic situatiahrtiay not exist five minutes
later. However, a census data usually is valid for a big watiesf time, months or years, until
the next census is released. We have to be aware of all theisesisvhen designing new
applications and define a way to treat them.

There might be other issues. For example, issues relatdtetoadiume of data. If

8https://developer.yahoo.com/boss/geo.
°If one area is not completely inside another.
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we do not have significant data for a certain layer, its w@tlan may not lead to the correct
information extraction. Different data sources may préesiiferent characteristics for this

issue. For instance, in a PSN many factors influence the whindata, for example, geo-

graphical, cultural and economic aspects. The granulafigreas may also influence other
data sources. If we consider, for example, data from WSN agex e may not have data
for an entire metropolis, because of size restrictions as¢énetworks.

In summary, note the importance of a characterization @oc@/e have to know the
properties of the layers we want to use, in order to verifigéiit simultaneous use may lead to
the intended information extraction. Theation() informed totheCOM BIN ATION
encapsulate the solution chosen for dealing with hetemmes data, which is application
dependent. If there is no solution to eliminate the incdesisy between data from two
layers, then they cannot be used together.

6.1.5 Discussion

The use of layered (multi-layer) models to extract new imfation or design new applica-
tions is not new. Very recent studies focused on a particyta of multi-layer network, the
multiplex, where each agent can be networked in differerysywand with different intensity,
on several multiple layers simultaneously. This model efuls for example, to study links
that the same user has in different social networks (layfmsinstance, to better understand
the information spreading. Another example is the studyarigportation in a city. The
network of bus routes and stops (layer 1) is different fromlangay network (layer 2) in the
same city, but a user can use both networks to reach its dastifDomenico et al.2013.

In the same directionXin et al. [2009 proposed a layered graph model to develop
routing and interface assignment algorithrhaura et al[200 proposed a layered model
for the Web network, aiming to design a model that resembd¢tebthe complex nature of
the Web. A GIS (geographic information system) is anothange, because it often utilizes
a layered model for characterizing and describing our wdtldises maps to visualize and
work with geographic information in several laye@hang 2010. GIS is related to the ideas
proposed here, in fact, some GIS tools could be used to suiyequroposed framework, for
example, in the combination process. Our proposal difflemfia simple implementation
of a GIS because it is not driven by jurisdictional (such asty,gurpose, or application
requirements. We focus on the discussion of a sensing lagmerefvork. Besides that we
envision demonstrate the potential of simultaneous userwdisg layers derived from PSNs,
for the extraction of new information related to the studyity dynamics and urban social
behavior.

More close relate to our proposal, there are studies thatidendifferent sources of
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data simultaneously to better understand the dynamicgiesciFor exampleBollen et al.
[201]] investigated whether collective mood states derived fllovitter feeds are correlated
to the value of the Down Jones Industrial Average over tiSegl et al[20173 analyzed the
collective human behavior based on mobile data, and coéecelawith meteorological data
from weather stations.

In sum, this work differs from all previous studies becaugedefine the concept of
sensing layers; (ii) propose a framework that enables iateg of the analysis and explo-
ration of multiple layers simultaneously; and (iii) presapplications that use the proposed
framework and illustrate the potential of using multiplesiag layers.

6.2 Processing Sensing Layers

This section discusses how to process one or more sensiaglalo that end a number of
example operations are proposed. Sec@dhl presents examples of such operations and
Section6.2.2presents some strategies to process layers using the pobppsrations.

6.2.1 Operations

In Section6.1.3 we illustrate how to represent sensing layers in a work,d@nexample,

by location (M) or users {/;). The general purpose of work plans is to be basic structures
that can be easily manipulated. Recall that the structurearnhere to represent a work plan
is a data dictionary. Having a work plan, as thg or M, shown in Figure$.4 and6.5,

we can apply operations to derive other structures and atsact new information. The list
below provides examples of some generic operations:

e dGRAPH (directed graph): This operation is represented by theriatgo 2. It ex-
pects as input a work plaf/, and the result is a directed graph= (V, E). This
operation builds a directed gragh = (V, E'), where each key; in the work plan
represents a node € V, and the data indexed by are attributes of;,. An edge
e = (v;,v;) is added depending on the desired analysis, which is exga¢bsough
some specific operations, as we describe below. Initially; @. All variables of the
work plan are incorporated in the graph;

e C NG (change): This operation is represented by the Algori8ari expects a work
plan M, a layer identification {D), and a statusO(or 1). It results in the alteration
of the variableh of the informed layer, i.e., it changes the status of a lalgesugh
the variableh. If the informed status i8, thenh = 0 and the work plan are adjusted
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Algorithm 2: Operation dGRAPH.

1
2
3
4

5

input : work planM

output: directed grapl@?

G+ 0/l G is directed graph

foreach key € M do
G.insertNode(key);
G.insert Atributes(key.atributes); /I insert attributes of the entry key in the
last added node

end

accordingly, i.e., this particular layer of the work plardisabled. The layer disabled
can be enabled again with the same data it had previouslg aishabling time;

Algorithm 3: Operation CNG.

0N O WNPE

input : work planM, alayerI D, and an integef
output: M’ with the modifications imposed by the changehof

hiddenLayers; /I structure to keep hidden layers
if h = 0then
hiddenLayers.insert(I1D);
foreach key € M do
foreach data € key do
if data is from layerI D then
hiddenLayers.ID.insert(key < data);
M' + M.remove(key < data);
end
end
if size(key) = 0then
| M’ <+ M.remove(key);
end

end
else
dataLayer < hiddenLayers.ID;
foreach key € dataLayer do
foreach data € key do
| M.insert(key « data); Il key entry is created if it doesn't exist
end
end

end

RESET: This operation is represented by the Algoritdmit expects a directed or
undirectedG graph, and results in a work plaif. It is extracted all the necessary
information from the graph to build a corresponding workmpl&ll variables of the
graph are incorporated in the work plan;

dEDGE (directed edges): This operation is represented by therligo 5. It ex-
pects a directed graph resulted from a work plan combined by locations, and results
in a graphG’ containing directed edges. This operation creates a dotesige from
nodew; to nodev; if and only if at least one user shared data, in any layer, é th
location represented by the nodgeright after sharing data, also in any layer, in a lo-
cation represented by the node The weight of an edge represents the total number
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Algorithm 4: Operation RESET.

© O ~NOOO P~ WNPRE

input : graphG representing sensing layer(s)
output: work planM representing thé/

M « 0;
foreachnode € G do
allData + 0;
foreach data € node do
| allData.insert(data);
end
key < node; /I the node ID is the key of the work plan
M.insert(key < allData);
end

Algorithm 5: Operation dEDGE.

QWO ~NOOUAWNPRE

NNNRRPRRPRERERRERE R
NP, O OoOoO~NOODOUuRWNPRE

input : directed grapfts resulted from a work plan combined by locations
output: graphG’ containing directed edges

allUsers < (;
foreach node € G do
foreach data € node do
location < nodel D,
if data.user ¢ allUsers then
allUsers.insert(data.user);
allUsers[data.user].insert([data.time,location]);
else
| allUsers|data.user].insert([data.time,location));
end
end

end
sort the data of each key atiU sers by chronological order;
foreach User € allUsers do
foreach user Data € User do
loc < userData|2];
if user Data is not last data ol ser then
nextLoc + location of nextuser Data of User;
G’ insert Edge(loc,nextLoc)ll directed edge loc — nextLoc
end
end

end

of transitions performed from; to v; considering transitions of all users. Note that it
is possible to have more than one transition for the same user

DEL (delete): This operation is represented by the Algorithnit expects a graph
G and an integet. It results is a subset gragh,,;..; derived fromG. This operation
deletes edges € E (F is a set of edges af), with weightw, < t;

rdGRAPH (random directed graph): This operation is representechbyAigo-
rithm 7. It expects a directed gragh(V, £), and results is a random directed graph
Gr(V, Eg). The random graplt'r is constructed keeping the same nodes:/aind
uses the same number of individual transitions;ofHowever, instead of considering
the real transition; — v; performed by an individual, the operation randomly choose
two nodes to replace, andv;, simulating random transitions performed by users;
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Algorithm 6: Operation DEL.

1

2
3
4
5

input : graphG representing sensing layer(s) and an inteéger
output: subset grapld’s.pse: derived fromG
foreach edge € G do
if edge.weight < t then
| G subset < G.remove(edge);
end
end

Algorithm 7: Operation rdGRAPH.

OO ~NOOOA~WNPR

iy
o

input : directed graplG(V, E) representing sensing layer(s)
output: random directed grap'r(V, ERr)

numEdges < number Edges(Q);

Gr < 0l Ggr is directed graph

foreachnode € G do

| Gr.insertNode(node);

end

for ¢ «+ 1to numNodes do
rndNodel < randomNode(G); Il randomNode() retrieves a random node
rndNode2 < randomNode(G);
Gr.inserEdge(rndNodel, rndNode2);

end

M ERGE: This operation is represented by the AlgoritBmt expects a work plan
M, a work plan),, and a data relatiorelation(). M; and M, have to be produced
following the same data relation, for example, by locatias®xplained above in the
processCOMBINATION . This operation results in a work plaw,,.,,.a(V, E) rep-
resenting the merge of the sensing layers representéd;gnd ;. This operation
merge information of\/; and M, respecting the data relation informedation().

Algorithm 8: Operation MERGE.

1

input : a work planiM, a work planMa, relation()
output: a graphMmerged

foreach keyl € M, do

foreach key2 € M> do

allDataKeyl + keyl.retrieveAll Data();

allDataKey2 «+ key2.retrieveAll Data();

if by relation() keyl andkey2 should be mergethen
mergedKey < keyl andkey2 merged;
allData < allDataKeyl |JallDataK ey?2;
Mergea.insert(mergedKey < allData);

else
Mergea.insert(keyl <— allDataKeyl);

‘ Merged-insert(key2 < allDataKey?2);

end
end

end

We can have also specific operations to produce new infoométrhich could be rep-

resented in a new layer), using one or more existing layact as the following operations:
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Algorithm 9: Operation fPOIS.

input : Work plan M representing a sensing layer
output: Work planMpo s containing points of interest

/I identificaPOIs represents the algorithm 1 (Section 5.3)
1 Mpors < identificaPOIs(M);

e fPOIS (find POIs): This operation is represented by the Algoritnit expects a
work plan M representing a layer such elseck-insandpictures of placegsombined
by locations. Other layers might also be used, but previeusication of feasibility
is needed, for example, data might not be available for tleggghical region of
interest. This operation results in a work plan of a new layertaining popular areas,
or points of interest (POI), based on the number of actwierformed on them. This
operation identifies POIls applying the algoritdmspecified in Sectios.3, to select
geographic areas;

e FSIGHTS (find sights): This operation is represented by the AlgonittO. It ex-
pects a work plan/”?’s containing POIs, and results is a gra@gh’ “"7< containing
sights. This operation identifies sights from a work plaif’©’*s, where keys are
the areas of POls identified in a particular pre-defined geographicareg This al-
gorithm is described in Sectioh3. More details of this operation are presented in
Section6.3.1

Algorithm 10: Operation fSIGHTS.

input : work planMpo1s containing points of interest
output: graphGsrears containing sights

1 Gpors +— dGRAPH(]\/IPOIS);
2 Gpors—rrow < dEDGE(Gpors);

/It is identified in the way described in Section 5.3
3 Gsiegurs ¢ DEL(Gpors—rrow,t);

We chose specifically those operations because they araruiezl applications pre-
sented in the next sections. Note that other operationseandposed. For instance, another
operation to create edges differently frahi DG E. This new operation, called for example
uEDGE, could be suitable for a graph produced from a work plan combined by users.
The operatioru EDGE could create an undirected edge betwegandv,, if and only if
useru;, represented by node, shared data in the same location (layer independent) $leat u
u;, represented by node. The weight of an edge represents the total number of latsitio
that nodes); andv; have in common. Other operations could be designed to adec{ed
or undirected) edges with different way to assign weights.
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Flow graph - layer r2
Ddl‘

Work Plan My

Operation
d2" d1' .
on® B e
. oo 2 o ‘
L |
dzl-jw .Ddz Operation
a3

Figure 6.6: lllustration of flow graph creation from one datayer, and also from multiple
layers.

6.2.2 Processing Strategies

As shown in the previous section, our framework providegsghoperations useful to pro-
cess sensing layers in several manners. To give an exampie aésults we can obtain
in processing sensing layers using those operations, wemsnate how to obtain: flow
graphs, graphs that map the locations where the same useddhata, thus capturing the
movements or transitions in a geographical area; and alsdspaf interest and sights. It is
particularly interesting to illustrate the creation of flgrnaphs because it is a fundamental
piece of some operations, for instant8IGHT'S.

Algorithm 11: Generation of flow graph for one single layer.

input : work planM combined by locations

output: flow graphG/.° that represents data from the layer

M «+ My ; /I M, is the work plan created previously
M' + CNG(M,rl1,0);

M" «+ CNG(M',r3,0);

G+ dGRAPH(M");

GIl°" + dEDGE(G);

g b WDN PP

Consider the data sharing of the situation illustrated guFe6.3. After a certain time,
we can process the data in order to extract knowledge irrdiftavays. Take for instance the
flow graph labeled “flow graph - layer r2”, shown in Figugé. The Algorithm11 describe
the steps necessary to generate this graph, referred@é;fés(built from layerr,). In this
algorithm we consider the work plalY; as explained above (combined by locations). We
initially apply the operatiolC N G hiding layersr; andrs. After that, we have to generate
a directed grapli: usingdGRAPH and apply the operatiod EDGE in (G, obtaining
G{éow. In this case, we have a flow graph that represents data fronglke $ayer. With this
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Figure 6.7: Illustration of new layers creation from thetpre of places layer.

graph we can extract many valuable information, for exagmelgular trajectories in a city,
as shown in Sectiof.1

Another possible analysis is to consider different layersitaneously. In Figuré.6,
the part named the “flow graph — all layers” shows a graph, lwhve callGﬁl"“’. The
Algorithm 12 describes the steps necessary to gen(éi’é,lfé’. This algorithm also consider
the work plan)/; created above. As we can see in the algorithm, in order toroGta™ we
need to apply the operatiah DG E in G. In the resulting graph, the nodes represent data
shared in the same location at any layer. Edges connect npdesy; if at least one user
shared data in the location represented by ngdeght after sharing a data in the location
represented by the node

Algorithm 12: Generation of flow graph for multiple layers.
input : work planM combined by locations

output: flow graphG? " that represents multiple layers

1 M <+ M, /I M, is the work plan created previously
2 G+ dGRAPH (M),

3 Gl = dEDGE(G);

New information could be obtained by processing data dvigl&rom one or more
sensing layers. Points of interest (POI) in a city, iderdifiem data shared in Instagram and
obtained using operatioiPO1I S, represent an example. To identify a sight it is necessary
the POls, according to the operatigt6 IGHT'S. This is demonstrated in Figu&7. In
this figure, the new information obtained is expressed aslagars. Note that these new
layers are represented in the box labeled “Contextual imédion”, which had its meaning
explained in Chapte3. Basically, new information generated from other sensaygis are
contextual information. Recall that contextual inforneatmight have the power to influence
the data generation. For example, once users know whereihis pf interest are they may
tend to share more data in those places instead of othersnéier details in this direction
see the discussion of FiguBe2in Section3.1
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6.3 Applications Using the Sensing Layers
Framework

In this section, we discuss two applications that illugtthe potential of the proposed frame-
work for working with sensing layers. Those application presented on Sectiorg3.1
and6.3.2 Section6.3.3presents some final considerations about this section.

6.3.1 Identification of Sights

First, we discuss an application that identifies sights iclamsg multiple layers simultane-
ously, highlighting the improvements on the strategy pmesskin Sectiorb.3, which con-
siders only one layer. In this analysis, we consider theafgrstm-New and Foursquare-New
datasets, described in Sectibd.

The picture of places layer) is represented by the dataset Instagram-New, and the
layer check-insi;) by Foursquare-New dataset. Our goal is to obtain resultgyusoth
layers. To that end, we first combine the data by locationdyecng a work plan/;. First
we want to identify sights for the layef. With that in mind, we disable layet, from M,
using the operatio®@ N G obtaining)M,.,. After that, we applyf POIS in M,, to generate
M?Pes, work plan containing the POls. In the resulting work plaft*s, the keys are the
areas of the identified POls. In the scenario illustratedguie 6.7, we have only two keys
for a work plan representing POIs, represented by Area 1 aad A

Algorithm 13: Identification of sights using sensing layers.

1 M; + r1 andr; combined by locations;
/I identifying sights for layer r1
2 M,, + CNG(My,r2,0);
MPO" « fPOIS(M,,);
Gyt « fFSIGHTS(ME™);
/I identifying sights for layer ro
My <+ CNG(Ml,TQ, 1),
M., < CNG(My,r1,0);
ME™ «+ fPOIS(M,,);
Gy fFSIGHTS(ME™);
/I All sights of rl and r2 layers
9 M9 « RESET(Gio");
10 M} « RESET(G;"*);
11 MEights o MERGE(M;9"", M9 relation()); /I relation() by location

total

B~ W

o N o O

Each POI in)M?* represents a popular arean a given geographical region, e.g., a
city. Popularity is identified through the volume of sharedadmade available by usets
That is, a POI represents the activity performed by a groupsefsu in a time intervalt.
Note that, the specialty datain this particular case, is the POI area itself. We use thé&wo



6.3. APPLICATIONS USING THE SENSING LAYERS FRAMEWORK 129

*———, Pampulha Lake f‘? e

- .
a Soccer\ Stadium-1

* Pampulha Chufch

s g e =
m’“ : 3 I o Liscas.
% r,/ Srse ¥ § 8
4 : N do
/ o eisure afea-2- 'mm_@
Lo
1%

Savasijff
.

Figure 6.8: All identified sights with Foursquare and Instay datasets.

plan M7 for the extraction of sights with the help of the operati§iIGHT'S, which is
represented by the Algorithd0. First, the operatiorf SIGHT'S creates a directed graph
(in the examplez2’), from the received work plan (in the exampl&°’*), using operation
dGRAPH. Next it maps the flow of users performed between POls. Fsr thapplies
the operatiord EDGE in Gt obtainingGros—flv_ After that, popular transitions that
connect two nodes; — v; are selected. For that, it uses the operafio®' L in the graph
fo“‘f low ysing a parameter The parameterin this case is calculated in the way presented
in Section5.3. According to the conjecture considered in the algorithnihaf operation
FSIGHTS, the popular transitions selected connects the sightghndrie represented in
the grath;?jghtS = (V', E'). In this graph, nodes; € V' are the areas of the identified
sights.

Next, we identify the sighté:i;’ghts for r,. First, we enable, and disable layer; from
M. The next steps are performed similarly to the way it waseresl forr,. After that we
merge the contextual layers containing the sights for Byeandr,, M9 and M9,
respectively, in the work plan/ 9>, This work plan contains all identified sights, which
are shown by the Figui@.8.

The sight indicated by a red arrow (Central Market) was idfiedtonly by Foursquare.
Sights pointed by a blue arrow (Pampulha Church, Pampulke,lzand leisure Area 2) were
not identified with Foursquare. All sights are very relevalttis important to observe the
potential for complementary results using both layers.

6.3.2 Economic-Cultural Analysis of Regions

The application described in this section allows varioumemic-cultural analyses. In this
document, we focus on two. The objective of the first analisi® correlate the general
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sentiment expressed in the tips for all locations in a givarsas tract,; (geographic region
defined for the purpose of taking a census), with the medizonie of the inhabitants of this
tract. On the other hand, the aim of the second analysis igitty $he movement of users
in the considered tracts, taking into account the typicabime of these tracts. This second
analysis aims to identify possible social segregation iitya ¢

To illustrate this application, we consider two datasetsved from Foursquare and
one derived from the census of NY. The first, named CHECKING-®onsists of 34,677
check-ins performed in New York City, in a week of April 201ZHECKINS-NY is a
subset of the dataset Foursquare-Crawled. The seconcefatasmed TIPS-NY, contains
all the tips contributed by users up to January 2013 in alquailocations of the dataset
CHECKINS-NY. The tips were collected through the FourseuaPI. Each tip contains a
location, a user ID, a time, and the textual content of the Wjge consider only tips in
English. We define that a tip is in the English language if astéhalf of the words of the
tip is listed in a dictionary containing key words in Englishhis resulted in 157,197 tips
(2,531 discarded). The last dataset, named CENSUS-N Yarwinformation of the census
of New York City, and it refer to the 2006-2010 American Commity Survey. Figures.9
represents some examples of tracts considered in the CEM&UBhe area of each tract is
pre-defined by the census of New York. It contains, amongrattiermation, the median
income per tract (information we are interested here).

The TIPS-NY dataset is used to represent a sensing layeddads of locationsi(;).
The layerr; is composed of a data strea). Each data stream has the forfh; (a, u, s)).

An example of the specialty dataof this layer is: “This place is awesome, | recommend
the burger.”. The income layer), derived from CENSUS-NY, is composed of a dataset
d; for different tracts of New York. Each specialty datadinhas the median income of the
inhabitants of a particular tract. The formafis t =2006-2010¢ = [area of Tract 1]u =
“USA Census”,s = “median income in US$ for the Tract L”Note that, this is an example
of layer obtained from a different source than PSNs. Thissiliates the use of other sources
of data about predefined geographical regions.

For the first analysis we combine the data from the laygandr,. The chosen method
is the combination by location, method described in Sedidr8 This combination process
consider the keys as the areas of the tracts. Eacly,k@ymbines, among other data, the tips
of all the places that are located within the area of a traxct the median income information
of the tract. The combination process results in a work plan

Thus, we usél/; to calculate the general sentiment about all locations ah éeact.
For this analysis, we used the program SentiStreriftelwall et al, 20174, to classify the

10we used the tool IFeeoncalves et al2013 to help in the selection of this sentiment analysis program
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sentiment expressed in the tips. SentiStrength compuesetitiment of a tip in a scale from
—4 (strongly negative) to 4 (strongly positive), O indicadaseutral sentiment. This program
is applied to each tip and then combined by location, andlitgl tract.

Then we calculate the average sentiment for all locatiores given tract. Next, we
group the tracts in five income groups: less than US$25,0@Byden US$25,000 and
US$50,000; between US$50,000 and US$75,000; between UERrand US$100,000;
and over US$100,000. Finally, we calculate the averageevailisentiment for each of the
five income groups, considering all tracts that belong thvegoup.

Table6.2presents this result, and also for each income group, tlveptge of average
sentiment that falls in one of five range of sentiment: (+3, {41, +2), (0), ¢1, —2), and
(—3, —4). As we can observe, the result suggests that poor trautisttehave the worst
sentiment expressed by users. This may be associated withjuality services in these
tracts. With the tract income increasing, opinions tenddaarore positive. Although the
average sentiment for the richest tracts group (over US®000) is slightly lower than the
second richest (between US$75,000 and US$100,000), thipgtill has a larger number of
positive tips compared to all other groups, and does not hegative tips. Note the potential
of this analysis for social studies, e.g., for the study efjualities in the quality of services
in cities.

Group | Mean Sent. (std)| (+3,+4)% | (+1,4+2)% | (0)% | (-1,-2)% | (-3,-4)%
<25000 0,46 (0,67) 0 73,08 | 21,15] 5,77 0
>25000 anck50000 | 0,73 (0,63) 1,23 8431 |1292| 123 0,31
>50000 anck75000 | 0,81 (0,46) 0,40 9328 | 593 | 0,39 0
>75000 anck 100000 0,9 (0,36) 0 96,97 | 3,03 0 0
>100000 0,87 (0,28) 0,96 98,08 | 0,96 0 0

Table 6.2: General sentiment per groups of tracts

For the second analysis, which has the steps representéa iAlgorithm 14, the
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dataset CHECKINS-NY is used to represent a sensing laykedcetheck-ins«;). We com-
bine layersr; (as defined above) and by location on the work plaid/;. We then create

a graphG,, and use it to generate a flow graﬁ!ﬁl"w, where the edges are the transitions
performed by the same user in different tracts (nodes in thplg. We exclude loops, i.e.,
visits from the same user on the same tract, generating(ﬂﬁ@ﬁ’. To gather evidence of
the existence of segregation, we study the assortatiidyee to the median income by tract
in G{l"”'. This is a way to try to observe the existence of segregation.

Algorithm 14: Analysis 2.

M < r9 andrs combined by location;
GQV < (Mg);
GI'" « dEDGE(G:);
G%‘low/ «— removeLoops(G3'");
foreach node € G4 do
if node.income < US$75, 000 then
| node.insert(class < “A");
else

| node.insert(class < “B");
end

end

oO~NOO0O A W NP
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assortativity < calcAssortativity(GL""); /I assortativity by attribute “class”
assort RndGraph < 0;
for i + 1to 10 do
Gri « rdGRAPH (G
foreachnode € Gr; do
node.insert(choose random class (A or B)
/I The number of A and B nodes respects the numbers observed in
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Gélow/
18 end
19 assortTemp < calcAssortativity(Gr;);
20 assort RndGraph.insert(assortTemp);
21 end

22 calculate i.c. of 95% for the average valuewskort RndGraph;

The assortativity measures the similarity of connectionthe network relative to a
particular attribute, and ranges frofl to +1 [Newman 2003. In an assortative network
(with positive assortativity), vertices with similar valsifor a given attribute (e.g., the same
income) tend to be connected (be similar) to each other,edsan adisassortative network
(negative assortativity), the opposite happens. All saatre associated with a class based
on the median income of the tract: Class A for median inconpe® WS$75,000; and Class
B for higher median incomes. The assortativity considetirege two classes as attributes
of GJ'" is 0.14. Thus, the network for this attribute is assortatineicating a trace of
segregation, i.e., users tend to share content (or atteridgdts that have the same class of
income.

After that, we create ten random graphig;(V, E'r;), wherei = 1, ..., 10, using the
operationrdGRAP H . For each grapliry; is also randomly associated a class of a node,
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A or B. The number of nodes of class A and B are also consistihttiae one observed in
Ggl"“". After that, we calculate the assortativity for all randoraghsGr;.19. The assorta-
tivity for all graphs, with 95% confidence level, are in thega is:[—0.0084, —0.0014]. As
we can see, these random networks do not indicate segneg@iowiously, in order to draw
any conclusion in this sense, a more detailed investigasioreeded. However, this result
shows the potential for joint analysis of multiple layers.

Note also the potential of considering the same layers terges a work plan\/;
combined by users. Besides identifying users’ prefereneescan also try to infer their
social class studying the income of the tracts that the usigsvThis can be useful for social
studies, and for more effective advertising.

6.3.3 Discussion

In this section we demonstrated two applications thattilais the potential of sensing layers.
The first one consider two layers derived from PSNs. The atherconsiders also a layer
not derived from PSN, to demonstrate the usefulness andiliexof our proposal.

Obviously many other applications could be proposed. Fampte, in any city is
likely to find many places where people perform more oftenrtiqadar activity, for example
an area of bars and restaurants where people meet to secidliese locations could be
identified with the help of the check-ins layer. The inforroatprovided by other layers
could help users choose the best areas of interest at the mhoRue example, a user could
use the information provided by the traffic alerts layer tentify among all the options, the
area with the lowest number of traffic problems at the timd,#s®e the picture of places layer
to view the style of the establishments in those areas angetbgle who frequent them.






Chapter 7

Conclusions and Future Work

This chapter summarizes this thesis and discusses dimedtiofuture research. Secti@nl
presents the conclusion of this thesis. Seclidhpresents the future work. Finally, Sec-
tion 7.3lists and comments all the publications performed durimgdbctoral period.

7.1 Conclusions

Applications are becoming increasingly mobile, desigmadfer user interests and location,
and make different sorts of predictions. A mobile devicedsjast a better option, but may
be the only option for many people. This is similar to anofftegnomenon that has happened
for some years now: more and more people are ditching thediilzes in favor of cellphones.
When people get to that point, they tend to acquire not angloehe but preferably the latest
generation smartphone.

This document presented the dissertation entitled LargeeStudy of City Dynamics
and Urban Social Behavior Using Participatory Sensor Nekgo In this work we show
that the use of participatory sensor networks can help usrgtderstand the dynamics of
cities and urban social behavior, and from this we are abtdfes smarter services to meet
people’s needs.

Using several large scale datasets, we characterized atyizad the main proper-
ties of PSN three different types of PSNs: location sharenyises (namely Foursquare,
Gowalla and Brightkite); photo sharing services (paraclyl Instagram); and traffic alert
services (particularly Waze). We identified several propsiof PSN, for instance, the plan-
etary scale of those networks, as well as the highly unegequéncy of data sharing, both
spatially and temporally, which is highly correlated wittettypical routine of people. We
also performed a comparison of different PSNs derived fnastelgram and Foursquare aim-
ing to understand whether data from one system could conguiethe other, or if they are
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compatible regarding the study of city dynamics and urbamast®ehavior. This analysis
gave us insights about the potential for joint use of datanftieese applications, considering
each PSN as a sensing layer. In general, our analysis panteskveral challenges of this
emerging type of network, which may restrict its use, bub asowed that there are good
opportunities. In particular, we demonstrate a range dfféduopportunities that emerge
when using PSNs to the large scale study of city dynamics dvathusocial behavior.

In this direction, we presented a visualization techniqaked City Image, and il-
lustrated its use in different cities around the world. Tieshnique summarizes the city
dynamics based on transition graphs that map the movemieintdividuals between differ-
ent location categories in the PSN. We also showed the ugesatfeichnique for clustering
cities based on their similarities in terms of movementgyatt, which can be exploited to
build city recommendation systems. Finally, we invesegathe use of centrality metrics,
computed on transition networks built at the granularityspécific venues, as a means to
complement the City Image technique towards a deeper uadeiag of the city dynamics.

Next, we propose a technique for point of interest identifica The technique consid-
ers that each pair of coordinates (longitude, latitude$soaiated with a point that represents
a shared data, for instance a photo. We start by computingetbgraphic distance between
each pair of points, and grouping together the points theatknse to each other, e.g., those
that have a distance smaller than a certain distance (depetitteshold). To capture the
POls, we exclude groups that may have been generated bymagitieations (i.e., random
people movements), and thus do not reflect the dynamics oftihdo identify those groups,
we analyze the number of data sharing in each group and anhoplesstatistical methods.
The technique is also able to extract sights out of the iledtPOls, using the transition of
people between POls for that.

We also propose a new methodology for identifying cultu@litdaries and similar-
ities across populations using self-reported culturafgsemces recorded in PSNs, such as
Foursquare, which is the system we use to demonstrate tHeodwbdgy. Besides being
globally scalable, our methodology also allows the idesdtion of cultural dynamics more
quickly than traditional methods (e.g., surveys), e.ge &y observe how countries or cities
are becoming more culturally similar or distinct over time.

In this document we also present the definition and applitataf the concept of
sensing layers. The use of a set of sensing layers may besdppliseveral contexts of
urban computing, for example, helping to better understaedlynamics of cities and urban
behavior in different regions of the world, and respond Klyito unexpected changes. In
this direction, we proposed a framework for integrating tipleé sensing layers, which was
illustrated in the construction of two applications usingltiple sensing layers.
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7.2 Future Work

In our study three types of systems, namely location, phend, traffic alerts sharing ser-
vices, have been explored. These systems fall into thréereliit sensing layers - location
categories, picture of places, and traffic alerts. We paerty have studied the time and lo-
cation dimensions of our data from these layers. Besidésweshave explored also the spe-
cialty data provided by the location categories layer (éngthe City Image technique), but
we have not explored the photos themselves provided by therpiof places layer nor the
alerts from traffic alerts layer. Certainly, a range of fiulibpportunities may emerge when
exploring the specialty data offered by each layer. For eptapapplying image processing
techniques on the photos shared by people could potentiallyseful in many cases, such
as, a new way to capture people’s sentiment about certabe ptat use the photos to learn
particular characteristics of different regions, in theedtion of the studyDoersch et aJ.
2017 .

Other possibility of future work include the developmentather applications that
exploit the proposed framework for integrating other seg$ayers. For example, the traffic
alerts layer derived from Waze and the weather conditioarlagrived from Weddar. With
this we could build a more accurate mapping of the city dyrmamin the same direction,
a future work is to investigate the interplay between dataiokd from traditional wireless
sensor networks and data obtained from PSNs. This stepdaifa@ntal to offer applications
that is based on both source of information.

Another future work is build applications and services fmiast cities exploring some
of the opportunities presented in this document, such #gtraonitoring, information dis-
semination and recommendation systems. For instancefisplyg about traffic related ap-
plications, there are several opportunities reported otiGe4.5.

From the methodology of cultural boundaries identificatimme of the obvious direc-
tions for future work is to exploit the cultural criteria idtfied here, to perform social studies
at large scale (e.g., study of global culture). Besides thatalso envision the development
of recommendation mechanisms considering the culturatmmétion of specific urban areas.
This could be useful, for instance, for location-basedalowtworks like Foursquare to im-
prove their current recommendation systems. Anotheréuttark is to develop applications
for companies that have businesses in one country and wametrify the compatibility of
cultural preferences across different markets.

Future work specifically related to the City Image technigue build new city recom-
mendation services that explores the City Image techniqdelee proposed city clustering
methodology. For that an essential step is extend our agmlysa very large number of
cities in the world, or even all of them. Another possibiligyto use the transition matrices
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to complement a urban mobility model in different cities.isSThew model may improve the
accuracy of a varied number of applications, such as trafiggneering in communication
networks and transportation systems.

In our analysis we considered static graphs varying in the twhen needed, such as
in the City Image technique. One concept that we could algpdoex is temporal graphs,
a representation that encodes temporal data into graphe fully retaining the temporal
information of the original data. Temporal graphs enabl@ysis of the dynamic temporal
properties of data by using existing graph algorithms (sagleentrality algorithms), with
no need for data-driven simulations. We believe that vdaiaiformation can be extracted
using with temporal graphs from PSN data.

Quiality control of PSN data is an important issue which cateoneglected, as men-
tioned in Chapte8. In this direction, another future work is to evaluate thalgy of the data
provided by PSNs. One of the possibilities is propose qualietrics for PSN data, consid-
ering, for example, amount of data per users and per areagddtibution, data entropy, and
data trust. Defining quality metrics we can have a way to nreasow accurate the result
obtained is, and also have a parameter for deciding aboutsth@f certain layer. Another
possibility is to investigate spam or other malicious bétain PSNs. If those malicious
behaviors start to be significant in the system, this is adumehtal step in order to propose
solutions.

Finally, is also a future work to evaluate other kind of sagdiayers that could be
extracted from the current technologies. In the same direcs also a future work compare
different sensing layers with similar purposes. For exanp the traffic layer obtained
from Waze better for traffic inference than the one obtaimedhfBing Maps? can they
complement each other? If yes, how to fuse these information

These are only some examples of future work that could bepeéd from this thesis.
Certainly, a range of other possibilities can also be pregos

7.3 Comments on Publications

Section7.3.1lists all the publications obtained direct from the resuoltghis thesis. Sec-
tion 7.3.2presents other publications performed during the docfmeabd.

7.3.1 Contributions from the Thesis

The list below contains all the publications derived dilefitom the thesis:
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e [Silvaetal, 20121 published in ACM International Workshop on Hot Topics in
Planet-scale Measurement (HotPlanet’12). This was ourviiosk towards the un-
derstanding participatory sensor networks propertieg HBN analyzed was derived
from location sharing services, particularly Gowalla anayBtkite;

e [Silva et al, 2013h published in IEEE Symposium on Computers and Communica-
tions (ISCC’13). This extended the worSi[va et al, 2012 analyzing also two dif-
ferent PSNs derived from Foursquare. Besides that, we edésepted some challenges
and opportunities to the study of city dynamics;

e [Silva et al, 20134 (2nd best paper award published in Brazilian Symposium on
Computer Networks and Distributed Systems (SBRC’'13). imork we investigated
properties of a PSN derived from Instagram, a photo shaengce;

e [Silva et al, 2013d published in IEEE International Conference on Distriltl@om-
puting in Sensor Systems (DCOSS’13). This study extendedvibrk [Silva et al,
20134 in several ways, for instance, performing new analysiss#rg’ contribution
and the temporal photo sharing pattern in different citied BOIs. This study also
propose a technique for point of interest identificatiorsdzhon the popularity of ar-
eas where people shared pictures. The technique is alsdoabktract sights out of
the identified POls, using for that popular transitions afgle between POls;

e [Silva et al, 20131 published in Springer International Conference on Solcifdr-
matics (Soclnfo’13). In this work we studied properties ®#3N derived from Waze.

e [Silva et al, 2012 (Best paper award published in IEEE International Conference
on Cyber, Physical and Social Computing. In this study weppsed a technique
named City Image. This technique provides a visual summatieocity dynamics
based on the movements of individuals. As demonstratesl télchnique is promis-
ing way to better understand the city dynamics, helping udgoalize the common
routines of their citizens;

e [Silva et al, 20134 book chapter published in the book: Ubiquitous Social Medi
Analysis edited by Springer. In this work we survey models$ approaches applied in
PSNs to support different applications and techniques;

e [Silvaetal, 20144 under revision in ACM Transactions on Internet Technology
(TOIT). This study is an extended version ilyva et al, 2012d. This study builds
upon on Bilva et al, 2012d by several ways: analyzing the proposed technique to a
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much larger number of cities; showing how to use the tecleniguperform a quan-
titative comparison of multiple cities, illustrating it lyustering cities based on their
similarity in terms of transitions; and including complemy analysis to the City
Image technique that focus on transitions between spegdatibns in a city;

e [Silva et al, 20141 accepted for publication in International AAAI Conferenon
Weblogs and Social Media (ICWSM’14). In this study we propasnew methodol-
ogy for identifying cultural boundaries and similarities@ass populations using self-
reported cultural preferences recorded in PSSs.

e [Silva et al, 20134 published in ACM SIGKDD International Workshop on Urban
Computing (UrbComp’13). In this study we perform a compaeastudy of different
PSNs derived from Instagram and Foursquare. We analyze #8hls to investigate
whether we can observe the same users’ movement pattenoopikarity of regions
in cities, the activities of users who use those social ntsycand how users share
their content along the time;

e [Silva et al, 20144 published in IEEE Wireless Communications Magazine. Is th
study we discuss the potential of location-based socialianggstems as sources of
large scale participatory sensing from which valuable Keodge about city dynamics
and urban social behavior can be drawn. We also discuss thaital challenges
involved in building and deploying such methods. We alsooihtice the concept of
sensing layers;

e [Silva et al, 20149 accepted for publication in Brazilian Symposium on Congput
Networks and Distributed Systems (SBRC’14). In this stu@yfermalize the concept
of sensing layers, presents a framework for working withtipld sensing layers, and
also illustrates the potential of the joint use of multipBnsing layers through two
applications;

e [Silva et al, 20144 this work in under revision in ACM International Conferenon
Modeling, Analysis and Simulation of Wireless and Mobiles@ms. This is an ex-
tended version ofSilva et al, 20149 where we present more details about the pro-
posed framework.

7.3.2 Other Publications

It is important to point out that the preliminary study todathe research topic of this thesis
generated two other contributions:
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e [Silva et al, 20124 (Best paper award published in Brazilian Symposium on Perva-
sive and Ubiquitous Computing (SBCUP’12). This work pemigra study of the cur-
rent state of research in ubiquitous computing. We coltestormation about all the
papers published in the main ubicomp conferences (Ubic®apasive, and Percom)
and performed a data mining process extracting statisficds &s most productive au-
thors and institutions. We also analyzed the collaboraioong authors, identifying,
for instance, communities’ formation. Besides that, welyaread all papers published
in 2010 and 2011, creating a taxonomy of recent ubicomp relsga

e [Silva et al, 20123 published in Journal of Applied Computing Research. Thiskv
is an extension of the work performed i8ifva et al, 20124, where a more detailed
analysis of the collaboration network and the proposedritamnty are presented.

In parallel with my thesis research topic, | has been pgaiing in other studies related
Computer and Social Networks, one as first author and two-asittwr:

e [Silvaetal, 2011 published in Elsevier International Journal of Computed a
Telecommunications Networking (Computer Networks). Tdtisdy is an extension
of the work | performed during my master on live streaming séngenerated videos;

e [Maia et al, 2013 published in Brazilian Symposium on Computer Networks Brsd
tributed Systems (SBRC’12). This work analyzes the SBR®amst collaboration
network;

e [Maia et al, 2013 published in Journal of the Brazilian Computer SocietyisWiork
is an extension of the studivaia et al, 2013.
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Appendix A

General City Images

FiguresA.1 andA.2 show the City Image, for all analyzed cities in Secttad, built using
aggregated data across all time periods. These imageslprageneral picture of each city,

and serve to illustrate broad differences across cities.
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Figure A.1: The general City Image, which does not considéFrént periods separately of

all cities.
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Appendix B

Quantitative Comparison of Cities

In this appendix we propose an application that use the @igge technique for numerical
comparison of different cities, by exploiting the valuesech square matrix given by the
technique. Specifically, we propose to compare two citesd j by following the steps:

1. For each city, the weight of each transitianof its City Image is normalized by the
maximum weight of all transitions in this particular City &ge. We refer to this nor-
malized value ag;. As a result, we produce a vectfr= (t;,,1;,, ...t; s;) containing
all normalized transitions (total of 81, as there are 9 liocatategories) for a specific
City Image;

2. We then compute the Euclidean distadgebetween each pair of vectof$;, ;) of
cities: andj. By doing so we are calculating the distance between eacéidened
city for all transitions.

More generally, the comparison of multiple cities produaectorD containing the
distance between each pair of cities. Vectorcould then be used in several ways. For
example, it could be exploited to cluster cities by simtla(in terms of movement patterns),
as shown in the following steps:

1. Build a hierarchical cluster tree for the cities basednandistances in vectdp using,
for example, the Ward’s methdard Jr{1963. This is a general agglomerative hier-
archical clustering procedure, where the criterion foragiog the pair of clusters to
merge at each step is based on the optimal value of an olgduatiction. In our case,
this objective function is the minimum total intraclusteriance, which is computed
based on the distancég

2. Determine the number of clusterso be generated by visually inspecting the hierar-
chical cluster tree created, using, for example, a dendrogpiot of the tree;
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3. Prune the tree created in step 1 in order to haslasters.

We applied this procedure to compare and cluster the 3Gsatialyzed in Section
5.1.3 considering two different time periods: weekdays durimg day, to study the typical
time when users perform their main routines; and weekenthgldhe night, to study the
typical period when people perform leisure activities. UfgB.1 shows the dendrograms
built for each period. The red lines (dashed ones) indideetts used to define the number
of clustersc in each case. We definedequal to 9 clusters for weekdays during the day and
7 clusters for weekend during the night.

g i

Cities Cities

(a) Day — weekday (b) Night —weekend

Figure B.1: Dendrogram plots for the binary cluster tree@diBferent cities, in two different
time periods.

TablesB.1 andB.2 show the clustering results for weekdays during the day azekw
ends during the night, respectively. Note that, in genaities from the same country or
that are geographically close to each other were groupegthieg The geographical prox-
imity, which may reflect, to some extent, cultural similgris favorable to produce a similar
behavior between the inhabitants from those cities, andhiig the explanation to the clus-
tering results. However, there are exceptions. For exagnfigleveekdays during the day,
San Francisco was grouped apart from other American citibsyeas Bangkok, far away
from USA, was grouped in the same cluster as some Americas.cithus, the inhabitants
of cities of the same country do not necessarily have sirbigdnravior, reflecting heteroge-
neous patterns which are natural to occur in large counsiesh as USA. Conversely, large
geographical distances also do not necessarily imply i@dif(grences in people’s habits. For
instance, cities with good transportation system or manipnog for outdoor activities, such
as beaches and parks, tend to favor transitions contatning! andoutdoor, regardless of
their particular geographical location, and tend to diffem other cities, even cities in the
same country, that do not have such facilities.

We note that the proposed city clustering procedure andityéistance metric could
be applied to a much larger number of cities in the world, wéleral potential applications.
One example is a personalized city recommendation systesufigporting tourism-oriented



Cluster Cities

1 Bandung, Semarang, Surabaya

2 London, Paris, Madrid

3 Kuwait, Singapore, Moscow,
Santiago

4 Sydney, Melbourne, Seoul, San
Francisco

5 Rio, Belo Horizonte, Sao Paulo,
Barcelona, Buenos Aires

6 Jakarta, Kuala Lumpur, Manila,
Mexico City

7 Los Angeles, Chicago, New
York, Bangkok

8 Tokyo, Osaka

9 Istanbul

Table B.1: Clustering results for weekday durinfable B.2: Clustering results for weekend during

the day.

161

Cluster Cities

1 Kuwait, Singapore, Kuala
Lumpur, Manila, Bangkok

2 Tokyo, Osaka

3 Seoul, Jakarta, Bandung, Se-
marang, Surabaya

4 Rio, Belo Horizonte, Sao Paulo

5 Istanbul, Moscow

6 Santiago

7 Los Angeles, Chicago, San
Francisco, New York, Mel-
bourne, Sydney, Paris, Madrid,
London, Barcelona, Buenos

Aires, Mexico City

the night.

applications. Such application could explore the propastyctlustering strategy to suggest
new cities that the user might like, based on the user’sester(which could be inferred

from prior user’s interactions in the system). For exampleJearning that a user liked

Bandung during the day, the application might suggest Syahs a city to visit, as the two

cities are grouped in the same cluster and thus have siti@kariocation-based social media
(like Foursquare) could benefit from this strategy to imgrtveir current recommendation
systems, by introducing the City Image as a new criteria.






Appendix C

Cultural Analysis of Individuals

In this Appendix, we use the map of preferences presenteddtid®5.5.1.3to analyze the
individual preferences of users, showing, among otherltedat food and drink prefer-
ences are good indicators of cultural similarities.

In order to assess the cultural similarities among users;omstruct a similarity net-
work Gy = (V, Es), wheres is a similarity threshold used to build the network, versite
represent the set of users, and an gdge; ) exists inE; if usersy; andv; have a similarity
score abova. The similarity score; ; between two users andv, is the Jaccard index (JI)
between their preference vectbraultiplied by 100. In this ways; ; varies from 0 to 100
and measures the percentage of preferences shared by the; @s&lv,;. For example, con-
sidering a similarity thresholel = 65 (or 65%-networR), there is an edge between vertices
v, andw, if the corresponding users have, at least, 65% of prefesanceommon. We have
built two similarities networksG!; andG?2. The networkG! considers only food and drink
preferences, i.e., only check-ins at food and drink pla&s.the other hand;;? consider
all preferences, i.e., all Foursquare subcategoriesjdinad) food and drink venues. To build
both networks we consider only the users who performed at lEaheck-ins in the dataset
(i.e., at least one check-in per day on average). In total3Busers were considereddi
and 194,902 irG%. Moreover, isolated nodes were disregarded. We here camtid fol-
lowing values ofs € {65, 70, 75, 80, 85, 90, 95, 1p0Note thatG! andG? are undirected
unweight and symmetric graphs.

We first analyze relevant properties@f andG?2. FigureC.la shows the percentage
of vertices (i.e., users) in the two largest components efnitworkG!, for various values
of s (figure omitted for the network:? due to space limitations). Figuf@.1la shows that
the largest component of the 65%-network practically dostall nodes. The percentage of

1The Jaccard index of sets A and B is computeeﬁ—@%
2Network created with a thresholds referred to as-network.
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users in the largest component slowly decreases as thaastgnthreshold increases, until

s reaches 85. For larger values 9fthe number of users in the largest component drops
sharply, becoming comparable to the size of the seconddacgenponent. This is explained
by observing networks built using large values fpsuch as the 100%-network, where every
component is composed of very similar users. Since usersweily similar preferences are
rare, the largest components tend not to have very largeréiftes in size. We note that the
results for the network:? are similar to those observed for the netw6ik for example, the
largest component of the 65%-network also contains piabtiall nodes.

10 -8-Big. Comp. . “vDegree ! “vDegree
D g Sec.Big.Cj  20.8{#Region 2°0.8]#Region
8— S Continent S Continent
o 60 ‘T 0.6]-Country ‘T 0.6]-Country
o by +
w40 S 0. O 0.4
o g g Y
8 2 < OM:T B
70 80 90 100 70 &0 90 100 70 &0 90 100
Similarity threshold "s" Similarity threshold "s" Similarity threshold "s"
(@) % of users in the ¥ (b) AssortatG! (c) Assortat.G:?
largest compG!

Figure C.1: General metrics for all similarity networks.

In order to verify the tendency of users from the same regiohd connected, we
calculate the assortativity of the similarity networks. sAdativity measures the similar-
ity of connections in the network with respect to a givenilattie, and varies from-1 to
+1 [Newman 2003. In an assortative networkwith positive assortativity), vertices with
similar values of the given attribute (e.g., same counegyltto connect with (be similar to)
each other, whereas indisassortative networkwith negative assortativity), the opposite
happens. The assortativity analysis for the netwatkeind G formed from various values
of s are shown in Figure€.1b andC.1c, respectively. Note that the assortativity for the net-
work G! with respect to the geographical attributes (region We#Eerstern, continent, and
country) decreases with the similarity threshold. Thisgeas because most of the edges
in the networks, formed from similarity threshodd> 90, connect users who have prefer-
ence vectors with a few positive features (as defined in @ebtb.1.3. This also helps to
explain why, in both figures, the degree assortativity iases with the similarity threshold:
considering only very particular tastes, the network tandse composed mostly of cliques,
making the degree assortativity very close to 1.

On the other hand, if we vary the value ©fn the networkG?, the assortativity for
geographical attributes remains roughly the same. It isiptesto explain this behavior by
looking at the size of the preference vecforfor the networkG!, which is much smaller
compared to that for the netwok? (101 against 435). Since the preferences are distributed
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over almost all the categories, a larger preference vecipliés a lower probability of having
preferences in common between two users, and, consequentr edges in a similarity
network, even for lower values of Note also that, in both FigureS.1b andC.1c, all
similarity networks we take into consideration are assivda However, the assortativity
values of the geographical attributes f8f are most of the time higher compared to those
obtained forG2. When considering all preferences/features we also iseréae number
of features that do not discriminate cultural differencefiicgently well (e.g., venues like
homes, hotels, student centers, and shoe stores), sincamhessentially present in all
the cities and countries in the world. This suggests thathigcase, a similarity network
considering only food and drink preferences might providéds insights in the study of
cultural differences.
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