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Resumo

O barateamento dos dispositivos de armazenamento de grandes volumes de dados tem
contribuído com o surgimento de grandes bases de dados, todavia, ter a informação
armazenada não é o suficiente, pois é importante acessá-la de forma rápida e precisa
para que essa informação seja de fato útil. Neste cenário, dentro do conjunto de
informações multimídia, o volume de informação visual também vem crescendo e carece
de métodos apropriados e eficientes de recuperação. Embora seja possível indexar e
recuperar imagens com métodos tradicionalmente utilizados para texto, com base em
palavras-chave ou “rótulos”, a mídia visual pode ser melhor recuperada a partir de
informação visual, uma vez que esta é a sua natureza. Desse modo, a presente tese vem
propor um novo método para recuperação de imagens feitas a partir de um rascunho
que pode ser rapidamente confeccionado pelo usuário.

Dentre as várias abordagens visuais de recuperação de imagens existentes, o uso
de uma imagem de rascunho permite que o usuário expresse a imagem que deseja buscar
de forma visual, simples e rápida. O maior desafio desta forma de busca consiste em
encontrar uma representação para o conteúdo visual que permita comparar, de forma
eficiente, a similaridade entre o rascunho e as imagens da base de dados, mantendo
ainda a precisão dos resultados e tendo uma solução escalonável para grandes bases de
dados.

Esta tese propõe uma abordagem para recuperação de imagens com base em ras-
cunho onde, tanto o rascunho quanto os contornos das imagens da base de dados são
representados e comparados no domínio comprimido da transformada wavelet. Assim,
apenas os dados mais relevantes, provenientes do rascunho e das imagens são usados na
representação e comparação dos mesmos. O uso comprimido da informação é similar
aos tradicionais métodos de compressão de imagens com perda e traz como vantagem
um reduzido volume de dados para indexar grandes bases de imagens. Consequente-
mente, um índice pequeno e robusto torna a resposta às consultas mais rápida. Para
melhorar a eficácia do método, este trabalho, propõe também, uma comparação dos
contornos das imagens mais relevantes da busca fora do domínio comprimido. Essa
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comparação verifica a consistência espacial entre os traços do rascunho e os contornos
das imagens.

A indexação da base de imagens utiliza índices invertidos, tanto para as infor-
mações comprimidas quanto para os contornos das imagens. O uso de índices invertidos
melhora ainda mais a eficiência da abordagem proposta. Além do mais, a solução per-
mite que seja possível ajustar o tamanho do índice com base na taxa de compressão
de dados, de modo similar ao ajuste que o usuário faz na compressão de imagens,
reduzindo a qualidade para ganhar espaço de armazenamento. No índice, esse ajuste
afeta seu tamanho e reflete o balanço entre eficiência e precisão das buscas, podendo o
seu tamanho ser facilmente adequado aos recursos computacionais disponíveis.

Uma avaliação comparativa entre abordagens tradicionais usando a base de dados
de imagens de Paris e um subconjunto da base de dados do ImageNet com 535 mil
amostras, revela que a presente solução é superior à abordagem da mesma categoria,
porém sendo ao menos uma ordem de magnitude mais rápida. A presente abordagem
também é comparada com outros métodos de recuperação de imagem na base de dados
doFlickr15K. Embora essas outras abordagens utilizem técnicas de histogramas de
características visuais e objetivos de busca diferentes do nosso, essa comparação situa
a precisão da nossa abordagem entre esses métodos.

Ao final, é apresentada uma aplicação prática de recuperação de imagem com
base em rascunho para dispositivos móveis na plataforma Android. A aplicação utiliza
o método de busca proposto nesta tese e tem uma interface de busca e visualização dos
resultados bastante simples e intuitiva.

Palavras-chave: Recuperação de imagem com base em rascunho, indexação multimí-
dia, escalabilidade, processamento de imagens.
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Abstract

The cheapening of storage devices for large data volumes has contributed to the emer-
gence of large datasets. However, to have stored information is not enough and to make
it really useful. It is important to access needed data quickly and accurately. On this
scenario, within the set of multimedia information, the amount of visual information
has also been growing and it lacks appropriate and efficient recovery methods. While it
is possible to index and retrieve images with traditional methods used for text, based
on keywords or tags, the visual media can be best recovered from visual information,
since it is the image nature. Thus, this dissertation proposes a new method for sketch-
based image retrieval, once that the sketch can be quickly and easily drawn by the
user.

Among various image retrieval approaches, the use of sketches lets one express
a precise visual query with simple and widespread means. The challenge consists on
representing the image dataset features on a structure that allows one to efficiently and
effectively retrieve images on a scalable system.

We put forward a sketch-based image retrieval solution where both sketches and
selected contours extracted from the images are represented and compared on the
wavelet domain. The relevant information regarding to query sketches and image con-
tent has thus, a compact representation that can be readily employed by an efficient
index for retrieval by similarity. The use of compressed information is similar to tradi-
tional lossy image compression methods and it brings as advantage a small size for the
dataset index enabling the indexing of big data. Consequently a smaller and robust
index provided by compression makes the answer of the queries faster. To improve
the effectiveness of the method, this work also proposes a comparison of the most rele-
vant image contours provided by the query performed in the compressed-domain. This
comparison verifies the spatial consistency among the image contours and the sketch.

The dataset indexing uses inverted lists either for the compressed information
either for the image contours. The use of inverted lists improves even more the efficiency
of the proposed approach. Furthermore, with this solution, it is possible to adjust the
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index size based on the compression rate, in a similar way it is used on traditional lossy
image compression reducing quality to gain space. This adjustment affects the index
size and reflects on the balance between effectiveness and efficiency that can be easily
modified in order to adapt to available resources.

A comparative evaluation with a traditional method on the Paris dataset and a
subset with 535 thousand samples issued from ImageNet dataset shows that our solu-
tion overcame effectiveness of traditional methods while being more than one order of
magnitude faster. The approach proposed in this dissertation is also compared to other
retrieval methods that use bag of visual features on the Flickr15K dataset. Although
these methods have different query objectives and techniques, this comparison places
our approach among them.

Finally, we put forward a practical mobile application for sketch-based image
retrieval for Andoid platform. The application uses the proposed approach of this
dissertation and presents an easy and intuitive interface to create a sketch and visualize
the results.

Palavras-chave: Sketch-Based Image Retrieval, multimedia indexing, scalability, im-
age processing.
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Chapter 1

Introduction

The advent of digital cameras and the wide spread of mobile devices with camera has
encouraged people to take several pictures and to share them on the Internet. Online
photo-sharing, such as Flickr 1 on the web, and Instagram2 on mobile devices, allows
users to upload their photos with diverse content, generating databases with millions or
billions of images. For example, instagram has reached 20 billion shared images so far3.
Allied to video-sharing distribution, multimedia usage has brought a new revolution on
media sharing. All those factors have created a wide spread demand for visual retrieval
approaches and encouraged researchers to develop new tools and ideas. For example,
with the popularity of the touch screen devices, drawing a digital sketch is easier and
faster than on traditional computer devices. Thus, query an image by sketch can be
a useful tool on mobile devices to find the desired object on images locally stored, or
even, on the cloud connecting to a remote appropriate service.

Content-based image retrieval (CBIR) aims to deal not only with the absence
or insufficiency of annotations for most of the images, but also to support alternative
retrieval approaches, relying on visual perception, which is more appropriate in many
scenarios. Within CBIR, sketch-based image retrieval (SBIR) aims to return images
that are similar to a sketch made by the user (typically a simple set of strokes). SBIR is
particularly adapted to situations where the user has a mental image of what he/she is
searching. On this scenario, a sketch image is specially useful when the image dataset
is not annotated or the user has no similar example image to use as query input.
SBIR is also adequate when the user imagines a configuration of lines that can not be
described in words. As discussed by Smeulders et al. [2000], “Pictures have to be seen

1Flickr – http://www.flickr.com/
2Instagram – http://instagram.com/
3Source: http://blog.instagram.com/tagged/instagram_news

1

http://www.flickr.com/
http://instagram.com/
http://blog.instagram.com/tagged/instagram_news
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and searched as pictures: by objects, by style, by purpose”, and why not, by sketch?
There are two important challenges on SBIR: (i) finding a relevant visual content

representation associated to a similarity measure that allows effective comparison with
a query that is not a picture, but rather a drawing made by a user, and (ii) making
retrieval scalable to large image datasets by building an appropriate index structure
able to better exploit the content representation by the similarity measure. We consider
that both challenges should be jointly addressed to find efficient solutions for the SBIR
problem. Thus, we put forward here a solution where both, sketches and natural
contours extracted from the images are represented and compared in the compressed-
domain of wavelets, for an efficient query, that also uses the pixel domain for precision
refinements. The relevant information regarding to image content (as well as, query
sketches) has, thus, a compact representation that can be readily employed by an
efficient index for retrieval by similarity. Exploring these two SBIR challenges is the
main subject of the present dissertation.

Effectiveness was the major issue on SBIR since the introduction of this research
area in early 1990’s. However, significant advances on efficiency were only made recently
(e.g., [Cao et al., 2011]), making practical applications possible. Among the existing
SBIR proposals, we focus on [Jacobs et al., 1995; Cao et al., 2011; Eitz et al., 2011],
which we consider particularly relevant.

In [Jacobs et al., 1995], the authors used the wavelet domain to represent the
images of the dataset. The wavelet decomposition allows a good image approximation
with just a few amount of data. This same property is successfully used for lossy
image compression [DeVore et al., 1992]. Typically, in this context, just a few wavelet
coefficients with the largest magnitudes are used to represent an approximation of the
original image, allowing the construction of a very small index for the dataset. The
mentioned approach uses color sketches and the query may be interactive, i.e., while the
user draws the query image, a preview of the results is automatically shown. However,
this approach is evaluated in a small set of images and the evaluation is performed on
painting images instead of real photographs.

In the work presented in [Cao et al., 2011], named Mind-Finder, a black and
white line-based sketch approach is presented for a contour-based matching algorithm.
This approach estimates the similarity between a sketch and natural contours of index
images. The authors indexed the edge segments, including orientation information, and
evaluated their method in a collection of more than two million images. The problem
of this approach is the high memory cost to hold the dataset index in main memory,
which restricts this approach to the size of the available memory.

In [Eitz et al., 2011], the authors presented a benchmark approach for the SBIR



1.1. Motivation 3

task in large image dataset with a new descriptor based on the “bag-of-features”. They
also presented an interesting study with human comparison and comprehension about
how line-based sketches and real images are similar or not.

The present dissertation is focused on SBIR problem for large datasets. Our goal
is to retrieve in these large datasets all images that are visually similar to the query
sketch object’s shape at similar scale and position i.e. affine transform sensitive.

1.1 Motivation

During the last decades, many challenges have been proposed for the CBIR and SBIR
problems4. Among the challenges of CBIR in a dataset, we can cite: (i) how to find a
whole or partial image copy with accuracy on a good response time, even if the image
suffered changes on its geometry or it is represented in a compressed version; (ii) how
to retrieve images similar to some given example; (iii) how well the query results can
be improved with user feedback; (iv) how well may similar natural images be retrieved
by a hand-drawn sketch; (v) how quickly an image can be found while browsing. All
those propositions, and more specificity the proposition (iv), as well as, the increasing
number of publications on this research line motivated this dissertation.

Within CBIR challenges mentioned, SBIR approaches are useful to solve the
image retrieval problem in many scenarios. Probably the most important case can
be associated to the possibility to graphically specify the query. With a hand-drawn
query image, the user can graphically describe the target image that he/she is looking
for in the dataset on a free way that other approaches cannot, as free as a hand-draw
picture can be done. SBIR approaches are ideal for these cases, where scale, position
and rotation of the objects can be pictorially described and this information plays
an important role on the query. Comparing with the query by text, for example, this
specification is important, once that text information does not bring the desired results
in terms of visual object description, but rather, just semantic specification. The goal
of SBIR in this case is not just semantic, i.e., the problem is to return images with the
desired semantic object as it is specified by the sketch, and not just the object in any
position and/or scale. An other important use for SBIR lies when the image dataset is
not annotated at all or in part. In this case, an image dataset can be indexed for SBIR
without need to annotate all the images, what saves several hours of human or machine
work, that in both cases can be imprecise and subjective. However, even in annotated
datasets SBIR can also still be used, where both, annotation and visual description

4CBIR Challenges – http://www.benchathlon.net/resources/challenges.html

http://www.benchathlon.net/resources/challenges.html
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complements one each other. Reader may think that visual description can be given
by an example image, it is true, but the user needs to first find an image that describe
his/her needs, falling down on the chicken-and-egg problem, i.e. to make a search the
user needs a similar image, but to have this image he/she may need to search on the
dataset. In this case, the user can produce a sketch and perform a first query with this
sketch, then it is possible to use some results as example to a second query based on
an example image. Finally, SBIR can be used as a single tool or can complement other
CBIR approaches, e.g., query-by-text, by-example, by-painting or by-icon.

An other motivation for this work is that just a few authors have been addressing
the problem of SBIR and some current approaches still keep low effectiveness and/or
efficiency, specially in large datasets. Most existing SBIR approaches lack on the prob-
lem of scalability due to the issue of efficient sketch-based image retrieval. Achieving
scalable and efficient methods for SBIR can be used for several applications, such as:

Web Search: Internet image search engines like Google5 and Yahoo6 are currently the
only way to search images on the web. The problem of these tools is that they
are usually based on text information close to the image, instead of exploring its
visual content. Just recently Google introduced the query-by-example, but not
yet by sketch. The query-by-sketch can be an useful tool for searching web im-
ages complementing the query-by-text, as a primary search to get some example
images or even as a single query method.

Personal Photo Search: The organization and management of personal photo-
graphic collection becomes more difficult as the collection increases in size. Many
people have thousands of photos on their personal computers which are partially
or not organized at all. Searching a photo in a collection requires a lot of effort
in big collections and time consuming. In this scenario, an application for im-
age query by sketch is an ideal application because the user know the photo the
he/she wants to retrieve and can sketch it.

Mobile Image Search: The wide spread of mobile devices equipped with cameras
and several gigabytes of memory has generated lots of images on these devices.
The facility of drawing a sketch on the touch screen of the mobile device and the
growing of the number of images is another motivation for building SBIR tools,
adaptable to memory limitations like on these devices. Also, this kind of tool

5Google search engine – http://www.google.com/
6Yahoo search engine - http://www.yahoo.com/

http://www.google.com/
http://www.yahoo.com/
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can be used for local image retrieval or access a remote server to search images
by sketch on the cloud.

While there are many applications for text-based image retrieval, no practical
solution exists on the web, personal computer and mobile devices. Thus, those problems
and other potential applications motivated the development of the present dissertation.

1.2 Hypotheses

Considering the issues raised on the previous section, our hypothesis is that the use of
the compressed-domain index can be successfully used to support sketch-based image
retrieval with better efficiency on terms of index size, memory usage, query speed;
and at the same time, maintaining at least the same effectiveness comparing to the
approaches described in literature.

The lossy image compression, which we intent to use, discards some information,
mostly related to spatial image redundancy which is usually not considered crucial.
However, the raised questions are: (i) “Is the information lost in the compressed domain
impactful to SBIR effectiveness?”; and (ii) “Is the compressed domain efficient on terms
of memory and query speed costs?”.

A second hypothesis is to index the features using inverted files, in this case, one
inverted list per visual word. The benefit we want to achieve is scalability in order
to provide an approach capable to support growing image datasets. The verification
consists on discovering if the proposed index structure is really scalable and viable for
image indexing applied to the SBIR problem.

1.3 Goals

The objective of our approach for SBIR is to retrieve the most similar images to the
query sketch input sensitive to affine image transforms. We consider the similarity
between a sketch and one image using three main criteria: (i) shape sensitive, which
means that the contour shape of the target image must be as close as possible to the
sketch; (ii) position sensitive, which means that image contours should be as close as
possible to the sketch strokes in terms of position; and (iii) scale sensitive, which means
that the result images should present the objects in a similar scale to the ones drawn
on the query sketch.
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1.4 Contributions

The main contributions of this dissertation are:

1. A new approach for Sketch-based image retrieval using both the compressed-
domain and the pixel domain indexes combining two comparison measures. We
combine the efficiency of the compressed-domain of wavelet index, which is our
main original contribution, and effectiveness refinement with the pixel domain
comparison, based on the Oriented Chamfer Matching (OCM) [Cao et al., 2011]
in a single similarity measure. Regarding to the compressed-domain indexing of
the image dataset, a new visual word7 structure is proposed in order to represent
and encode image edges in a compact set, what we call here contour signature.
This visual word structure is based on the wavelet coefficient and presents a
very compact information of the image contours. The visual word is composed
by the wavelet coefficient position, its sign and the orientation of the edges.
These contour signatures make the dataset index much smaller than traditional
approaches, as well as, it is possible to set the desired size of the index according
to the machine capabilities of memory. It is possible to create smaller indexes
as much as necessary, gaining also efficiency, if it is acceptable to reduce a little
bit the effectiveness of the queries results, on a similar idea that the user opts to
stronger image compression losing some image quality.

2. A new similarity measure is proposed for comparing the contour signatures in
the wavelet domain. This similarity is based on computing the number of visual
words of the contour signature matched between the query sketch and the target
images.

3. An Android prototype application for SBIR using the proposed approach here
was built, thus testing the SBIR in a real and easy application for final users and
filling a gap of SBIR for mobile application on Android.

4. The creation of a collection with more than 100 sketches drawn by several vol-
unteers for the VGG Paris dataset8. Also, the construction of a ground-truth for
a subset of ImageNet9 and Paris dataset is an other contribution.

7The “visual words” come from a “dictionary” induced by quantizing the feature space of a low-level
local descriptor.

8Visual Geometry Group – http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/index.
html

9ImageNet – http://image-net.org/

http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/index.html
http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/index.html
http://image-net.org/
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1.5 Outline

The chapters that comprise this dissertation are organized as follows.

Chapter 2 - Background Provides a review on the basic concepts of content-based
and sketch-based image retrieval. This chapter also presents the main concepts
and definition for the image retrieval task. Related topics like: visual features,
semantic gap on image retrieval, query modalities, contour detection, as well as,
other important concepts used in this dissertation are also presented.

Chapter 3 - Literature Review Provides a wide-range literature review on
content-based and sketch-based image retrieval works. The literature review
addresses the main works on content-based image retrieval focusing on sketch
approaches ranging from the first steps to the latest publications, as far as we
know. This chapter also presents on detail two important works close related to
this dissertation, as well as, presents the main concepts on image indexing, image
retrieval on compressed-domain, inverted lists and the wavelet transform.

Chapter 4 - Sketch-Finder Approach Presents a detailed description of our pro-
posed approach and its main aspects. We describe the similarity measure and the
index structure for supporting scalable growing image datasets. The approach
is described on its first version and the new features introduced to improve the
effectiveness of the method.

Chapter 5 - Experimental Setup and Image Dataset Analysis presents three
datasets used in this dissertation to evaluate and compare efficiency and effec-
tiveness of our proposal. We describe a small dataset, mostly used for tuning the
parameters of our approach and evaluate effectiveness, a big dataset to evaluate
efficiency, and a third dataset to compare our approach with several others. This
chapter also describes the methodology used in our experiments.

Chapter 6 - Experimental Evaluation Presents a comparative evaluation of our
approach and the work described in [Cao et al., 2011] (Mind-Finder). Several ex-
periments are presented justifying how details on the approach were defined and
how parameters were adjusted. Chapter 6 also compares the effectiveness and
efficiency of our approach with Mind-Finder in a dataset with 535 thousand im-
ages, and with other five approaches, that use local descriptors on the Flickr15K
dataset.
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Chapter 7 - Application: A Mobile Prototype for Sketch-Based Image
Retrieval Presents an Android mobile prototype application for sketch-based
retrieval using our approach on a remote server to process the queries. The
structure used to implement this client/server architecture, as well as, the mobile
and server applications are presented in details in this chapter.

Chapter 8 - Conclusion and Future Work Concludes this dissertation and
presents some directions for future work.



Chapter 2

Background

The term Information Retrieval (IR) was mentioned for the first time by Moores [1951]
to describe the process through which an user can convert a set of input information
request into an useful collection of references. Moores defines information retrieval as:
“embraces the intellectual aspects of the description information and its specification
for search, and also whatever systems, techniques, or machines that are employed to
carry out the operation”. Although Moores had defined the IR for text purposes, his
definition of retrieval system can be perfectly used for visual information retrieval.

For Gupta and Jain [1997], Visual Information Retrieval (VIR) systems go beyond
text-based descriptors to elicit, store and retrieve content information in visual media.
Or simply, VIR is a methodology that searches and retrieves images and videos in
datasets. The basic premise behind VIR systems is that visual media should be as
easily retrieved as we do on textual information.

The visual information associated to visual media (image or video) is divided in
two categories: (i) information about the object, called metadata, and (ii) information
contained inside the object, called visual features. The Metadata is alphanumeric and
usually is expressed as a relational schema in a database while the visual features are
used to build the index for image retrieval. These features are mainly obtained using
computer vision or image processing and the processes are based on color, texture,
shape, image structure and/or spatial relation among the objects [Del Bimbo, 1999;
Liu et al., 2007].

In the remainder of this dissertation we introduce fundamental concepts of
content-based image retrieval, low level features, semantic gap on image description,
query modalities of image retrieval, the user objective when searching an image and
contour detection.

9
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2.1 Content-Based Image Retrieval (CBIR)

By nature, image is a complex media because of its unstructured information, which
makes the search task extremely difficult. The unstructured information contained
inside images is difficult to be automatically extracted, organized, analyzed and trans-
formed on useful and semantic information. The techniques applied to search visual
information in a structured index are grouped under the collective name of content-
based retrieval [Castelli and Bergman, 2004].

Content-Based Image Retrieval (CBIR) is the task of searching and retrieving
images from an indexed dataset using its visual features. For Datta et al. [2006], CBIR
is any technology that in principle helps to organize digital images datasets by their
visual content and according to Venters et al. [2005], CBIR is a general term used to
describe automatic or semi-automatic features extraction, indexing, and retrieval of
images by their visual characteristics.

2.1.1 Low Level Features

Image features at low level are the basis of CBIR and SBIR approaches. These features
can be global or local. On the first case, the entire image is used to obtain the features
while on the second case, specific regions are used. Image analysis and pattern recog-
nition algorithms yield the extraction of numeric descriptors which gives a quantitative
measure of these features. In the following sections we describe the main features used
to stand CBIR and SBIR.

Color Feature

Color is a visual feature which is immediately perceived when we look at some image.
In the CBIR domain, color is one of the most widely used features. Thus, color patterns
must be represented by a scheme where the chromatic properties are well described.

Color perception is a neurological and physiological stimulation derived from
physical electromagnetic radiation that strikes the retina. The human color vision
perception, or visible range, varies from 350 − 780nm wavelength [Del Bimbo, 1999].
The response of human visual system sensors are composed by two classes of receptors:
cones and rods. The cones are highly sensitive to colors in red, green and blue and each
eye has between six and seven millions of cones. The rods, in much larger number,
between 75 and 150 millions, are involved on low level illumination sense [Gonzalez
and Woods, 2006; De Grandis, 1986]. These sensors give the perception of brightness,
chromaticity and saturation.
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In computer systems, colors are typically represented in space model of three di-
mensions. Some models likeRGB, CIE andXYZ are physiologically inspired because
they are based on how colors appear to human observer. Hardware-oriented models
are based on the characteristics of some devices such as TV monitors and printers. The
main models of this category are: RGB, CMY and YIQ. Another important cate-
gory of color model is the user-oriented. They are based on the human perception of
colors. The tree components of human perception are: hue, saturation and brightness.
Some examples of user-oriented color models are: HSL, HCV, HSV, HSB, MTM,
L*u*v*, L*a*b* and L*C*h*.

In this way, the color can be defined on a wide variety of color spaces, each one
most recommended for its specific application. Description of color spaces can be found
in [Del Bimbo, 1999; Gonzalez and Woods, 2006; Plataniotis and Venetsanopoulos,
2000].

Among different approaches, the works of Kurita et al. [1992]; Flickner et al.
[1995]; Jacobs et al. [1995]; Smith and fu Chang [1996]; Smith and Chang [1996]; Carson
et al. [1999]; Chalechale et al. [2005]; Datta et al. [2007] use color as an important
feature for performing CBIR.

Texture Feature

Texture is observed in the structural patterns of objects such as wood, sand, grass,
grain, and others. Intuitively this descriptor can provide and measure properties such
as coarseness, regularity, smoothness and others. Regarding to process a texture de-
scriptor, a certain region of the image must be considered with its particular properties.
According to Belongie et al. [1998], while color is a point property feature, the texture
involves a local neighborhood property or set of properties. Many region texture de-
scriptors have been proposed and the tree main approaches are: statistical, structural
and spectral [Gonzalez and Woods, 2006].

Statistical approaches yield features that can describe textures like smooth,
coarse, grainy and so on. The most common statistical measures in a neighborhood
set of pixels are: average entropy, average gray level, standard deviation, histogram
moments and uniformity.

Structural analysis deals with the arrangement of image primitives such as the
regularity of occurrence of some pattern.

Spectral techniques are based on Fourier Transform, Discrete Cosine Transform
(DCT), wavelets or other spectrum analysis that can identify global periodicity or
high-energy peaks.
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Among different approaches, the works of Flickner et al. [1995]; Ma and Manju-
nath [1997]; Carson et al. [1999]; Liu et al. [2004]; Datta et al. [2007] use texture as an
important feature for performing CBIR.

Shape Feature

The shape of an object describes its physical structure and plays an important role on
object recognition and CBIR approaches. Among other advantages, one of the main
reasons for the success of shape on CBIR and specially SBIR is its invariance to lighting
conditions [Zheng et al., 2011].

For human perception, shape can be enough information for a successful object
recognition and/or categorization [Lee and Grauman, 2009a]. Large datasets of object
shapes already exist and have application in several areas. Select and retrieve shapes
on image datasets that satisfy certain specific constraints is a central problem on shape
retrieval and management [Mehrotra and Gary, 1995].

Many strategies can be used to represent shape, among them we have boundary,
region, moment and structural representations. Shape can also yield geometric and
moment features. From geometric features, we can obtain: perimeter; area; consecutive
boundaries; corners; aspect ratio; roundness; number of holes and symmetry. For
moment features, we can express shape center mass; orientation; bounding rectangle;
best-fit ellipse and eccentricity. Also, shape can be expressed on frequency domain
analysis, like Fourier descriptors [Jain, 1989; Mehrotra and Gary, 1995].

In [Mehrotra and Gary, 1995], the authors addressed the problem of similar-shape
retrieval. They defined this problem as: “retrieve or select all shapes or images that
are visually similar to the query shape or the query image’s shape.” We can use this
definition to describe the objective of the present dissertation approach, where, finding
similar shapes described in the sketch image is our goal.

In addition to the mentioned works, we can detach [Flickner et al., 1995;
Del Bimbo and Pala, 1997; Ma and Manjunath, 1997; Mezaris et al., 2003] as im-
portant approaches that use shape feature to perform CBIR.

Spatial Location

Spatial relationship among objects (layout) plays an important role on image discrim-
ination and understanding [Del Bimbo, 1999]. Relative spatial relationship is more
important than absolute spatial location aiming to bring semantic characteristics [Liu
et al., 2007]. For example, clouds are expected to be found surrounded by sky, and sea
to be under clouds and sky no matter its absolute position.
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The spatial relations are categorized in two main groups: object-based and
relational-based. On the first group, the spatial relations are analyzed by an al-
gorithm yielding the objects coordinates and defining their relations. On the second
group, a model of the objects position is created and the visual information itself is
not used in the model. Objects are symbolically represented and the uninteresting or
unneeded spatial relationships are discarded. In relational-based approaches the stor-
age space is improved and the spatial query time is faster due to the use of symbols
instead of visual information. Further, the representation of objects is simple in rela-
tional models. On the object-based model, the representation can be a simple regular
tree [Nievergelt et al., 1984] or some hierarchical data structures like quadtrees, region
quadtrees, R-Trees, R+ Trees and R∗ Trees [Del Bimbo, 1999; Samet, 2006].

For the relational-based representation, the relative position of the objects can
be represented by a string. An example of spatial content representation is the 2-D
string structure described in [Chang et al., 1987]. In this work, the authors presented
an algorithm for encoding symbolic pictures in 2-D string representation. This string
can also be matched to one each another with the objective of finding relational spatial
equivalence. Also, the work [Lee and Chiu, 2003] extended the idea of Chang et al.
[1987] and improved memory storage and efficiency in terms of execution time due to
their cutting mechanisms.

Smith and fu Chang [1996] presented an approach for querying images by regions
and their spatial features attributes. The idea is to find images that present similar
spatial arrangements of regions to those diagrammed by the user in a kind of sketch.
The images of the dataset are indexed by features like regions, objects size, location
and other visual features. Also, we can cite [Smith and Chang, 1996; Carson et al.,
1999; Mezaris et al., 2003] as classical works that use spatial location to perform or
improve CBIR.

2.1.2 Semantic Gap

Depending on the user needs, visual similarity may in fact be crucial, while for other
applications visual similarity may have no importance where the semantic is imperative
[Datta et al., 2006].

The semantic gap is the lack between the visual features of the image and their
interpretation or understanding of what the features represent, i.e., their meaning. The
big issue of the semantic gap is how to link visual feature data to real meaning, which
is not an easy task [Datta et al., 2006; Zhang et al., 2012]. Humans are much better
than computers on image understanding and description, while computers are better
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on measuring properties and retaining this information in long-term memory [Flickner
et al., 1995]. In this way, semantics and visual features complement one each other.

Concerning the two main ways of image retrieval (text-based and content-based),
in general, there is no direct link between the high semantic level of the text-based
approaches and the low level of content-based visual features [Zhou, 2000]. Although
we have a lack on a direct link, some approaches using ontologies can help on bridging
this gap. In [Mezaris et al., 2003], the authors proposed an approach that uses image
segmentation to split it into regions and extract low level features from them describing
color, position, size and shape. Regarding to reduce the semantic gap, these features
are automatically mapped into an appropriate intermediate level descriptor composing
and associating them with an object ontology. In this approach, the low level features
are hidden to the ordinary user, that deals just with the middle level information
modeled as an ontology [Chandrasekaran et al., 1999].

In [Town and Sinclair, 2001], the authors proposed a CBIR system founded on
semantically meaningful labeling of images. The image labeling is achieved by training
visual features with neural network classifiers [Haykin, 2007], which map segmented
image region descriptors to semantic trained classes. In this system, the query is com-
posed by placing blocks of textures, named semantic regions, in the desired position.
The query is sensitive to the semantic region and their positions.

Another approach is to link web images to their key-words or hash-tags bringing
some semantic meaning. The authors [Cao et al., 2010] addressed this semantic problem
in a query platform. In this platform, the users place visual object segments on desired
position and tag it formulating the query. In [Hu and Collomosse, 2013], the authors
inserted keywords on the similarity measure of sketch images to bridge the semantic
gap in the SBIR domain.

This dissertation concerns on Sketch-Based Image Retrieval (SBIR), which is a
search modality of CBIR as described in the following.

2.1.3 Query Modalities

For a CBIR system, an important issue is how intuitive and easy the user interaction
with the system is. The importance of building a human-centered multimedia system
has been discussed by Jaimes et al. [2004]. The user interface provides a bridge between
the system and the end user. Thus, an easy interface query formulation is important
for the success of the retrieval tool. To start the search, the user provides an existing
visual model or creates the visual representation of his needs by drawing a sketch or
composing a set of visual features selected in a pallet of options. In the context of the
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query system input, the user may perform the query using a visual example (Query by
Visual Example (QVE)), or text, for text-based queries. Within the query modalities
for image retrieval, Del Bimbo [1999] and Venters et al. [2005] distinguish among six
different methods: (i) query-by-sketch; (ii) query-by-painting; (iii) query-by-example
or query-by-image; (iv) query-by-icon; (v) query-by-text; and (vi) query-by-browsing.
Each one of these categories is illustrated in Figure 2.1 and described in the following.

Image
Retrieval

Text
Features

Visual 
Features

Browsing

Tag 
Keyword

Free text Structured

Semi-structured

Unstructured

Draw Example

Sketch

Painting

Icon

Photography
Real image
or rendered

Figure 2.1. Image Retrieval Modalities: in the query-by-text, the user provides
keywords, tags or a free text; in the query by visual features, the user offers a
real image or draws a sketch, a color painting or even composes an iconic image;
and in the query-by-browsing, the user navigates through image thumbnails on a
structured or semi-structured classification of images by visual content or semantic
labels.

Query-by-sketch: In this technique, the user produces a sketch that consists on a
set of contour lines of either an object or a completed scene. The user sketch
must represent the visual content of the real image that he/she is expecting to
retrieve, considering or not affine transforms, depending on the approach used.
This technique presents two main advantages: the first one is the independence
of color and illumination, once the sketch has not these information, but just the
contours; the second one comes from the simplicity of the sketch picture design,
it is fast and easy to produce. Actually, this technique is the only one readily
available to all humans due to its facility to draw sketches with simple strokes.
Figure 2.2 (a) presents the idea of the query-by-sketch. Kurita et al. [1992] were
the fist authors to address this problem, but other examples of this approach
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are described by Del Bimbo and Pala [1997]; Flickner et al. [1995]; Müller and
Rigoll [1999]; Sciascio et al. [1999]; Chalechale et al. [2005]; Saavedra and Bustos
[2010]; Eitz et al. [2011]; Cao et al. [2011]; Tseng et al. [2012]; Hu and Collomosse
[2013]. Section 2.1.5 explores this approach with more details, the focus of this
dissertation.

Query-by-painting: This type of query is usually employed on color-based image
retrieval. It is also a hand-drawn image shaped by the user, however, instead of
simple set of lines representing the objects, like on the query-by-sketch, the user
produces a painting with color information representing the scene, this painting
is similar to a segmented image. Although the painting is also a hand-drawn
picture, this kind of picture is a more sophisticated and richer representation
than a simple set of sketch lines. In this sort of approach, the user has an idea
about the scene that he/she wants to retrieve in terms of similar position, scale
and also some approximated chromatic knowledge of the image that he/she is
looking for. Figure 2.2 (b) presents the idea of the query-by-painting. Some
works that use this type of query are [Jacobs et al., 1995; Flickner et al., 1995;
Bimbo et al., 1998; Wang et al., 2011].

Query-by-example or query-by-image: Differently of the query-by-sketch and
query-by-painting, on this kind of query, the user applies an existing image in-
stead of drawing one picture. The example image can be either an internal dataset
sample or an external image obtained anywhere else. This scenario is indicated
for queries based on color, texture or structure properties of the example image.
Also, the query-by-example is indicated when the user has some similar image on
his/her hands or when the visual content can not be easily reproduced. Sample
images can either be provided by the answers of previous queries performed by
query-by-sketch or any other query method. The image can be a real photogra-
phy, a realistic rendered image or any realistic image representing the real world.
In this type of query, the same visual features used to index the image dataset
are extracted from the example image aiming to perform the search and simi-
larity comparison of the images within the dataset. Figure 2.2 (c) presents the
idea of the query-by-example. Some approaches that perform query-by-example
are: [Faloutsos et al., 1994; Jacobs et al., 1995; Flickner et al., 1995; Ma and
Manjunath, 1997; Carson et al., 1999; Zhou et al., 2010].

Query-by-icon: The iconic querying is based on a high-level image retrieval concept.
On this query method, the user composes a pictorial image by selecting and
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placing icons at the desired position. The icons are predefined object/person
categories selected on a pallet of options. The icons relative spatial position, ori-
entation and scale are analyzed by a parser checking their correctness and trans-
lating the visual specifications into a formal symbolic query sentence [Del Bimbo,
1999; Venters et al., 2005; Gupta and Jain, 1997]. Several approaches in the last
years have been proposed for iconic query like: [Chang et al., 1987; Angelaccio
et al., 1990; Del Bimbo et al., 1993; Papantonakis and King, 1995; Aslandogan
et al., 1996; Smith and fu Chang, 1996; Chavda and Wood, 1997; Lee and Whang,
2001]. Figure 2.2 (d) presents the idea of the query-by-icon.

Query-by-text: On this sort of image retrieval, the user offers as input a textual
description of the desired content. The image dataset must have an index, a
priory annotated by human intervention or even machine. The human annotation
provides a rich high level feature (concepts), such as keywords and tags. This
is the most popular kind of image retrieval procedure and it is widely used on
web search engines like Google and Yahoo. Instead of human annotation, an
web image search engine uses the surrounding text of the picture to relate image
and semantic context [Datta et al., 2007]. Automatic image annotation can also
be used in order to bridge the gap between the low level of visual features and
the high level image concepts for the task of image retrieval by text. The latest
development on automatic image annotation extracts semantic features using
machine learning techniques [Zhang et al., 2012]. Figure 2.2 (e) presents the idea
of the query-by-text.

Query-by-browsing: This is the simplest method of image query. The query-by-
browsing can be performed on three ways: (i) unstructured browsing, where the
user can scroll through a complete view of image thumbnails; (ii) semi-structured,
where the user can scroll and select an example image to perform a query-by-
example, and then, iteratively scroll again on best classified results, until the
desired image be found; and (iii) structured, where image clusters are previously
defined. The image cluster can be defined by text or by visual information and
these clusters can be hierarchically organized or not. On the structured brows-
ing, the user can navigate through hierarchical classes of image features or labels
until find the desired images. One example of structured browsing is the Ima-
geNet1 dataset [Deng et al., 2009] where the images are organized according to the
WordNet [Miller, 1995] hierarchy. In [Paiva et al., 2011], the authors presented a

1ImageNet – http://www.imagenet.org/

http://www.imagenet.org/
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hierarchical visualization of images by separating groups and subgroups of visual
similarity. An illustration of structured browsing of the ImageNet dataset is pre-
sented in Figure 2.3. The viability of browsing is strongly dependent on the size of
the image dataset, i.e., it is very costly to find images in big datasets. Although
most users perform unstructured browsing to find personal images in folders of
small collections, there is no meaning on browsing unstructured datasets of mil-
lions of images. Examples of semi-structured browsing manners are presented in
[Sclaroff et al., 1997] and [Laaksonen et al., 2000].

Dataset

Query Type:

(a)

(b)

(c)

"Eiffel Tower"

(d)

Result:

(e)

Figure 2.2. Types of Image Retrieval: (a) query-by-sketch – the user draws a set
of strokes describing the shape of the objects or scene; (b) query-by-painting – the
user draws an image with chromatic information; (c) query-by-example – the user
offers an existing image as input query; (d) query-by-icon – the user composes a
query definition by selecting and placing predefined icons; and (e) query-by-text –
the user defines keywords, tags or gives a free text description for image retrieval.
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Figure 2.3. Structured browsing using the WordNet ontology for the ImageNet
dataset hierarchy structure. The objects are organized by the Wordnet ontology
on semantic terms. For example, to find tiger images, the user browses by selecting
“animal”, then “cat”, and finally “Tiger cat”. – Source: ImageNet.

In order to improve the effectiveness of the queries and bring more facilities to the
user, the input can be composed by two or more query modalities, simultaneously or
not. An example is the work presented in [Cao et al., 2010], where the user can compose
the query with example image fragments and tags or keywords to better express his
expectation. Also, Hu and Collomosse [2013] complemented the query-by-sketch with
semantic tags to enhance the results and bridge the semantic gap. In [Datta et al.,
2007], the authors presented four different scenarios for querying image associating
visual features and image tags. Additionally, they presented an approach for tagging
images in near-real-time in order to help meaningful retrieval. The authors affirmed
that their approach ensures high precision and recall annotations and outperforms
traditional approaches on the query scenarios proposed by them.
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2.1.4 User Objective

According to the objective, the user may perform a query with one of the three objec-
tives: (i) search by association (ii) aimed search; and (iii) category search [Smeulders
et al., 2000; Datta et al., 2006]. The objectives are detailed on following:

Search by association: in this category, the user has no exact target image, but
he/she can define some feature like a range of color and/or other features to query
and then browse on the resulting images. After the first query, if necessary, the
user can refine it and repeat the process until get satisfied.

Aimed search: this query is used when a specific image is sought, for example when
it is necessary to find wholly or partially image copies or when the user has a
very specific image on mind, like an image he/she knows exists in the dataset
and wants to retrieve it [Zhou et al., 2010].

Category search: this query is used when an image representing a semantic category
class is sought, for example, a sketch or an example image of an aircraft is used
in order to retrieve any image containing at least one aircraft.

The query-by-sketch can fall into any one of these three user objectives, however,
depending on the objective, one or other approach can be more adequate. The present
dissertation proposal and the works [Cao et al., 2011; Tseng et al., 2012; Jacobs et al.,
1995; Sun et al., 2013], are mostly congruous for “search by association” and/or “aimed
search” objective, while the approaches [Eitz et al., 2011; Hu and Collomosse, 2013]
better falls in the “category search”. It is important to distinguish the user objective for
different approaches in order to better compare and evaluate them on their respective
groups.

2.1.5 Sketch-Based Image Retrieval (SBIR)

Humans have been using sketches to represent the real world since prehistoric times,
like on the use of petroglyph, or rock art as illustrated in Figure 2.4.

Finding images by sketch is not a trial task. Several factors make this problem
difficult to solve. The “query” image is typically very different from the real “target”
image in the dataset, specially when the user is not very skillful or patient on drawing
a digital sketch image, a problem known as sketch uncertainty [Sun et al., 2012].
Figure 2.5 presents some examples of lions sketches obtained from the [Eitz et al., 2012]
dataset. It shows that the human perception of the real world may not be very close
to the reality in terms of shape depiction.
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Figure 2.4. Petroglyph sketch example. Sketches have been used since prehis-
toric times to represent objects.

Figure 2.5. Lion Sketch examples. These examples show that the human per-
ception of the real world may not be very close to the reality in terms of shape
depiction. These sketches were obtained from the sketch dataset of Eitz et al.
[2012].

In [Bird et al., 1999], the authors affirmed that the users blamed their own sketch
when the query result was not successful. Also, according to Hu and Collomosse
[2013], the user limitation on depictive representation of objects limits the accuracy of
the query-by-sketch. Further, intra-class shape variation and specially inter-class
shape ambiguity can disrupt a query-by-sketch [Sun et al., 2012]. Intra-class shape
variation is defined as the variety of shapes that the same object may have, depending
on several issues like, position, rotation of the object and even the shape variety of the
object nature. Two class examples that varies a lot are chair and bridges. Figure 2.6
presents some examples of intra-class shape variation. Inter-class shape ambiguity is
related to the same, or similar shape, that different objects may have. This is a really
difficult problem for SBIR because it is a semantic issue rather than shape. Figure 2.7
show some examples of inter-class shape ambiguity. Finally, digital input devices, like
mouse, do not help performing good sketches.

In order to outline this problem, the SBIR approach must be tolerant to some
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Figure 2.6. Examples of intra-class shape variation. The shapes of the same
object may present a big diversity.

Figure 2.7. Examples of inter-class shape ambiguity. Different objects might
present quite similar shapes.

distortions on the sketch, such as position of the object, scale and rotation. If the sketch
is color based, i.e., a painting sketch, the approach must be tolerant to some chromatic
shift once that the user does not know the exact color of the objects, although he/she
has a general idea of what is looking for.

On SBIR approaches, where the query is a simple black and white hand-draw
draft, texture and color loose their original ability to serve as content keys, remaining
from the traditional CBIR approaches, the importance of shape and spatial features to
represent the natural image contours.

2.1.6 Sketch Datasets

In order to evaluate a SBIR approach it is necessary to have a dataset of sketches and
a ground-truth for it. Aiming to evaluate the SBIR approach proposed by this disser-
tation, we created a sketch dataset for the Paris dataset as described in Section 5.3.

Besides Paris sketch dataset collection, other datasets were built for SBIR eval-
uation, like the sketches for the Flickr15K dataset with 330 samples in 33 different
categories [Hu and Collomosse, 2013] and the work of Eitz et al. [2012]. The sketches
of Eitz et al. [2012] were collected using the Amazon Mechanical Turk (AMT) with
1,350 unique workers spending a summed time of 741 hours. The average time to draw
each sketch was 86 seconds and the initial collection of 22,500 sketches was reduced,
after a data verification, to 20,000. The authors categorized the sketches in 250 groups
where each one has exactly 80 sketch samples. As far as we know, this is the biggest
collection of sketches available in this domain.
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2.2 Contour Detection

Contour detection and image segmentation are not identical but related problems on
image processing and computer vision. Among several approaches, contour detection
plays an important role on image shape detection. In order to perform sketch-based
image retrieval, the detection of natural image contours is crucial in the visual feature
description for indexing an image dataset, which is the main core of this work. If the
image dataset is not well described by its relevant contours, the retrieval task based on
this entity becomes ineffective. Also, the contours can not be over detected because
the excess of contours may act like noise.

Looking for a good contour detector, we found in literature a relevant approach,
state of the art on image segmentation and contour detection as far as we know [Ar-
belaez et al., 2011]. This approach presents a high performance on contour detection
combining local and global information on its method. The contour signal is then trans-
formed into a hierarchical representation of closed regions or segments that preserves
the original contour quality.

The basic principle of the approach described in [Arbelaez et al., 2011] is based
on the previous work of [Martin et al., 2004], who defined a function Pb(x, y, θ) whose
objective is to predict the probability of a boundary at each pixel (x, y), with orien-
tation θ, by measuring the difference in local image features of brightness, color and
texture channels.

For each channel feature, the function Pb(x, y, θ) is computed placing a circular
disc centered at pixel (x, y) and split by a diameter at angle θ. On each half-disc,
an histogram of intensity is computed, generating two histograms g and h. On the
following, the X2 distance between the histograms g and h are computed as a function
Pb(x, y, θ). Figure 2.8 shows an example.

This Ultrametric Contour Map (UCM) algorithm, from the work [Arbelaez et al.,
2011], is used in our approach to estimate the contours of our image datasets described
in Section 4.1.1. Some examples of final contour detection using the UCM algorithm are
presented in Figure 4.2(b), obtained from the natural images shown in Figure 4.2(a).

2.3 Conclusion

This chapter presented a review on the most important concepts used in this disserta-
tion. Among these concepts, we presented the concept of content-based image retrieval
and sketch-based image retrieval. This review also presented some basic concepts used
in our proposed approach. The visual features are the basis of image description for
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Figure 2.8. Contour detection with oriented gradient histograms. On left, the
image with a centered disc at pixel (x, y), where the contour existence probability
is been estimated. The disc is split on 45○ by a diameter in half blue and half red
segments. On each half part of the disc (blue and red) is estimated a histogram of
the analyzed feature (brightness, color or texture). On the middle of this figure is
shown the histogram obtained by each half disc of the left image and on right, the
contours probability obtained on the orientation θ = 45○ are presented, where red
mean high probability of contours and blue represents low probability. Source:
Arbelaez et al. [2011]

CBIR and SBIR approaches and the main low level features are color, texture and
shape. Using the visual features, a visual image retrieval system can perform image
retrieval in four main ways: by sketch; by example; by painting; and by icon. For
sketch-based image retrieval, the most important low level feature is based on shape
descriptors. The low semantic discriminating power of the low level features is known
as semantic gap, and the use of textual information can help on bridging this gap.

A good algorithm for contour detection plays an important role on sketch-based
image retrieval, once that this is the main feature used to describe and compare images
and the input sketch. As shown in the experiments on Section 6.2.1, the threshold
used on the image contours presents a relevant impact on the effectiveness of these
approaches.



Chapter 3

Literature Review

This chapter provides a general review of the main approaches for content-based and
sketch-based image retrieval. This review goes from the first approaches and extends
until the most recent works as far as we know. We present an overview of each approach
presenting its strong and weak features. Two other important approaches that guided
the development of our proposal are described in details: Mind-Finder [Cao et al., 2011]
and Fast Multiresolution Image Querying [Jacobs et al., 1995]. Within the description
of these approaches, we also present their similarity measures, image indexing and
inverted lists concepts, as well as, the wavelet transform for image indexing in the
compressed-domain.

Inside the general modalities of CBIR (see Section 2.1.3), the SBIR domain is a
less stated field comparing to the others. Among the existing SBIR approaches, we
stand out the works of Del Bimbo and Pala [1997]; Chalechale et al. [2005]; Saavedra
and Bustos [2010]; Eitz et al. [2011]; Cao et al. [2011]; Tseng et al. [2012]; Hu and
Collomosse [2013]. Here, we briefly discuss the main CBIR approaches with emphasis
on SBIR domain.

3.1 Related Works

One of the first approaches, using the idea of sketch as input to search image collections,
is the work described in [Kurita et al., 1992]. In this paper, the authors addressed the
problem of SBIR with an approach named Query-by-Visual Example (QVE). For this
work, the authors used a dataset of art gallery paintings. The query and the images of
the dataset are transformed into an abstract representation of the image edges maps
in 64×64 pixels. Aiming to compare the images, the similarity measure estimates a
local correlation of the sketch edges with the corresponding neighborhood of the target

25
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images. However, the low resolution images lead to low effectiveness, and the use of
only art galleries images restricts the scope of this proposal.

Probably, one of the most known works in CBIR and SBIR using low level features
is the IBM’s Query by Image Content (QBIC) system described in [Flickner et al.,
1995]. Developed in the middle of the nineties, the QBIC is a tool that allows users
to query visual content not only in images and but also in videos. Regarding to visual
features on which the users can search images, it is possible to explore: color, texture
and shape. In QBIC system, the query can be performed by example or by sketch.

In the query-by-painting domain, we stand out the work of Jacobs et al. [1995].
This work presented a general approach for query-by-painting and query-by-example
(see Section 2.1.3). A color hand drawn painting or a scanned image can be used to
search in the image dataset using the same algorithm, however with different configu-
ration parameters. The approach used wavelet decomposition, aiming to obtain a set
of coefficients that composes the image signature, as the authors named. This image
signature is composed by the n most significant negative and the n most significant
positive wavelet coefficients. On the query time, these image signatures are compared
in the compressed domain, by an image query metric that operates on this domain. Es-
sentially, the similarity measure compares how many high energetic wavelet coefficients,
provided by the query image, are matched to their similar coefficients on the image
dataset index. The metric includes weights of parameters according to the coefficient
spatial position that can be tuned using statistical analysis. Algorithms are simple,
and the resulting image signature requires just a little storage overhead. Because in
this dissertation the technique of using the most significant wavelet coefficients is also
applied, a detailed description of this approach is presented in Section 3.3.

A hybrid system named VisualSeek is presented in [Smith and Chang, 1996].
Indexed visual features and spatial query methods were integrated in this work. Re-
garding to spatial relations, the user composes the query by specifying the spatial
arrangement of color regions. The search engine considers not only the absolute po-
sition of the objects, but also, the relative position among them. In such work, the
authors affirmed that the spatial information improves the performance of retrieval
over non-spatial approaches.

An elastic shape similarity for sketch-based image retrieval was shown in
[Del Bimbo and Pala, 1997]. The proposal is based on elastic deformation of the user
sketch regarding to match objects in the images of the dataset. This approach is an
attempt to approximate how human perception works in shape similarity perception of
objects. Spatial relationships among objects in multi-object queries play an important
role on this work. Furthermore, the elastic matching is integrated with arrangements
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to provide scale and partial rotation invariant, however, the main drawback of this
work, is the expensive computational cost.

A content-based image retrieval using three dimensional models is presented by
Assfalg et al. [2002]. The authors described an approach to create 2D images from 3D
models and apply them to query-by-example. Image is constructed by the user in a
3D environment where he/she can place the desired objects and define their colors and
textures, then, the search engine retrieves the images based on the color and texture
similarity.

A sketch-based image retrieval method is shown in [Chalechale et al., 2005]. In
this approach, two abstract edge representations are obtained, one from the strong
edges of the natural images, and another from morphological thinned outline of the
sketch image. Angular-spatial edge distributions obtained from the images are, then,
employed to extract a compact set of features using the Fourier Transform. Extracted
features are invariant to rotation and scale, and robust against translation as well.

In [Saavedra and Bustos, 2010], the authors described a method based on his-
togram of edge local orientations named HELLO (Histogram of Edge Local Orienta-
tions). Local orientations are computed based on directional fields of fingerprints, in
the context of biometric processing. The proposed description is invariant to scale and
translation transforms. Aiming to achieve rotation invariance, the authors applied two
different normalization processes, one using Principal Component Analysis (PCA), and
other using polar coordinates. Also, in [Saavedra and Bustos, 2010], the user sketches
do not need to be performed using continuous strokes.

A recent method for sketch-based image retrieval that inspired the approach of the
present dissertation is shown in [Cao et al., 2011]. In such work, named Mind-Finder,
the authors presented a contour-based matching algorithm to assess the similarity of
sketches and natural image contours. In this approach, the authors converted each
image of the dataset into a set of oriented edgel descriptors. The edgels are contour
image pixels or edges, plus their line orientation. Following, this visual word is indexed
using inverted lists. In the query step, the edgels of the query sketch are matched to
the dataset index using a variation of the Chamfer Matching (CM) [Brogefors, 1988]
algorithm. In this work, the variation of the CM is named Oriented Chamfer Matching
(OCM) [Stenger, 2004], because of the addition of the orientation information. Two
million image composes the dataset of this approach, indexed in main memory with
6.5 GB. However, indexing large datasets is limited to the available memory space,
and the amount of data to process a query makes the approach very expensive on very
large datasets. More details about Mind-Finder approach are presented in Section 3.2.

Germane to the evaluation performance on large scale SBIR approaches, the
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authors Eitz et al. [2011] designed a benchmark and built a dataset of more than
30,000 ratings, according to human criteria of how much a pair sketch/image is similar.
The evaluation study was performed in a controlled environment where the users were
instructed on how to perform the task. This analysis demonstrates that humans match
sketch and image pairs in a similar way. Also, the approach presents a new local
descriptor based on shape and Scale-Invariant Feature Transform (SIFT) descriptors
[Lowe, 2004]. Those descriptors are then adapted to a “bag-of-features” [Sivic and
Zisserman, 2003] approach for SBIR domain.

Lee et al. [2011] presented a work for guiding the drawing of objects through a
shadows projection on the canvas drawing area. This shadow is iteratively projected
while the user draws his/her sketch. The shadows are projected based on the average
of dataset image contours similar to already drawn strokes. The objective of this work
is to help people to draw more realistic sketches and can be potentially used on SBIR
systems to improve the pictorial user skills, and consequently, improving the efficacy
of the results.

Concerning to a collection of sketches, Eitz et al. [2012] presented a study with
more than 20,000 sketches distributed over 250 categories. Authors described a sketch
representation approach in a form of “Bag-of-Visual-Words” for training a multi-class
Support Vector Machine (SVM) for classifying sketches. Human vs. machine sketch
classification is confronted and the results showed that humans can correctly identify
the object category 73% of the time, while computers presented an accuracy of 56%.
Furthermore, in this work, the authors affirmed that automatic recognition of the sketch
category can be potentially employed to improve the SBIR task.

Similar to [Eitz et al., 2012] with respect to sketch recognition, is the work pub-
lished by Sun et al. [2012]. In such work, the authors developed a general sketch
recognition system that used one million web clipart images to compose a dataset.
This dataset is the knowledge base of the recognition mechanism. The system used an
adapted SBIR approach to retrieve cliparts based on the input sketch and relate the
web text surrounding the clipart results to infer the sketch class.

A similar work to this dissertation, where the objective is to save memory space
and computational cost is presented in [Tseng et al., 2012]. This SBIR application
is also based on the approach of Cao et al. [2011], and the authors focused on the
idea of SBIR for mobile devices. This approach also splits the image edges on six
quantized orientations, and then, the authors apply the Distance Transform (DT) on
each oriented channel. Following, high dimensional DT features are projected in a
compact hash bits. Retrieval performance is competitive to Cao et al. [2011], requiring
only 3% of the memory storage, according to authors. However, this work presented
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just a few results and did not use a common dataset and sketches to compare their
approach with others.

Sun et al. [2013] used a similar hash bits idea to the one presented in [Tseng
et al., 2012]. The objective of this work is to perform a big data sketch-based image
retrieval, indexing more than 1.5 billion images. The basis of this work is the same of
Cao et al. [2011], and its goal is to build a compact index that represents the oriented
image contours as in Tseng et al. [2012].

Hu and Collomosse [2013] presented another approach adopting “Bag-of-Visual-
Words”. Histogram of Oriented Gradients (HOG) descriptor is adapted to Gradient
Field HOG (GF-HOG). Authors tested eight common distance measures frequently
used in text (“Bag-of-Words”) retrieval. The approach is evaluated using 33 shape cat-
egories search patterns. Further, the authors incorporated semantic keywords aiming
to enable the use of annotated sketches for image search. As shown in the paper, the
keywords relevance inserted in the similarity measure increased the results in semantic
terms.

Other approaches for content-based and sketch-based image retrieval are de-
scribed in [Faloutsos et al., 1994; Matusiak et al., 1998; Carson et al., 1999; Engel
et al., 2011]. In next section, we describe in more details two important works that
introduce some basis for the present dissertation SBIR proposal.

3.2 Mind-Finder

The work presented by Cao et al. [2011], named Mind-Finder, plays an important role
in this dissertation once that it introduces an important idea. The idea is to represent
the image edges in six quantized orientations and then use this information on SBIR
task. In Mind-Finder, the authors present the edgel, a short name for edge pixel.
The edgel is a triple (x, y, θ) containing not only the spatial pixel coordinate (x, y),
but also, its quantized orientation (θ). Mind-Finder similarity measure is based on how
many similar edgels between a sketch and the target image are computed, the more
similar edgels found, the more similar the sketch and the image are. The similarity
comparison considers the edge coordinate and orientation. Following sections describe
Mind-Finder approach in more details.

3.2.1 Similarity measure using Oriented Chamfer Matching

The main idea of Mind-Finder to measure the similarity of a query sketch Q and the
natural image contours of some target image T , is based on computing the number
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of edgels that matches a similar spatial position Xp = (xp, yp) and orientation (θ). In
such work, the authors propose the idea of Hit Map to compare the edgels. The hit
map is an extended spatial area, or neighborhood of the edgels inside a radius r, given
in pixels. It is used to match the neighborhood edgels of Q to the edgels of T , and
vice versa. Figure 3.1 (b) presents some examples of hit maps obtained from the sketch
3.1 (c).

The Oriented Chamfer Matching [Stenger, 2004] is an extension of the
Chamfer Matching (CM) [Borgefors, 1983; Brogefors, 1988] algorithm, where the
image edges are matched considering its spatial position. To improve performance,
the authors use an inverted list index of image IDs stored in main memory. In Mind-
Finder, the memory space and query time are linear to the dataset size. Figure 3.1
presents the idea of edgel Oriented Chamfer Matching in the Hit Map. Natural image
contours are presented in Figure 3.1 (a). These contours are segmented in six quantized
orientations, aiming to match its edgels to the respective oriented hit map of the sketch
(Figure 3.1 (b)).

Figure 3.1. Oriented Chamfer Matching Diagram. In (a) the natural image
contour is presented in black lines. In (b), four samples of Hit Maps with radius
r = 3 pixels are shown. The oriented chamfer matching between the natural
contour and the sketch is presented in black, where matches occur when a black
segment intersects a colored area. The sketch Hit Map is presented in 4 parts
based on their orientation in different colors, i.e., purple (0○), green (60○) and
red (120○). Empty hit map channels (90○ and 150○) are hidden in this figure. In
(c), the query sketch is represented in color lines just to distinguish the stroke
orientatin, although in fact the sketch is a binary image. Source: [Cao et al.,
2011].

The OCM algorithm computes the similarity in the number of edgels at similar
position inside a given radius r and at same orientation θ. Considering the set of
edgels LQ, representing the oriented sketch contours, in which the position of the
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edgels p ∈ LQ is denoted by Xp = (xp, yp) and its gradient orientation is denoted by θp.
Also, considering the oriented hit map represented by MQ

θ of a query sketch Q with
NΘ channels (θ ∈ Θ), r is the tolerance radius and ∣LQ∣ the number of edgels of Q.
Equation 3.1 gives the matching of edgels and the similarity measure from the query
sketch Q to the target image T is denoted by Equation 3.2.

HitQ(p) =
⎧⎪⎪⎨⎪⎪⎩

1 ∃p ∈ LQ(∥XQ −XT ∥2 ⩽ r & θQ = θT )
0 otherwise

(3.1)

SimQ→T = 1

∣LQ∣
∑ p∈LHitQ(p) (3.2)

In fact, the OCM is performed in two ways, from the sketch to the target image
SimQ→T , and vice versa SimT→Q (Equation 3.2).

Finally, the similarity measure considering the two ways of OCM is given by
Equation 3.3.

SimQ,T = (SimT→Q ⋅ SimQ→T )1/2 (3.3)

The reason for the comparison be performed in two ways is that the similarity
T → Q is different from Q → T in Mind-Finder, i.e., all edgels of Q can be contained
inside the hit maps of T , but it is possible that all edgels of T may not be contained
in the hip maps of Q, and vice versa. Figure 3.2 illustrates this idea, in such figure, all
edgels of the query sketch are contained in the hit maps of the first image, middle top
in the figure, using the similarity measure SimQ→T , but all edgels of the first image
are not contained in the sketch using SimT→Q. For the second image, right top in the
figure, both comparisons (SimQ→T and SimT→Q) match all edgels.

3.2.2 Image indexing with inverted lists

An inverted list or inverted file is an index data structure for storing a map of content.
Inside an inverted list, the roles of records and attributes are reversed, i.e., instead of
listing the attributes for a given record, also known as forward list, the inverted list
presents a list of records for a given attribute [Knuth, 1998].

The use of inverted lists has been applied with success for indexing data for text
retrieval [Brin and Page, 1998; Badue et al., 2001] and several other applications. Mul-
timedia data can also be benefited by the use of inverted lists, as on Mind-Finder and
the present dissertation. This strategy speeds up the query and works quite well be-
cause it acts like a shortcut to go directly on the desired attribute or feature, therefore,
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Query Sketch

One-Way Two-Way

Figure 3.2. Mind-Finder query in one-way and two-way similarity measure. On
the left, the query sketch; on the middle, the image query result (top) and its
natural contour (bottom) using one-way OCM similarity; and on the right, the
query result (top) and its natural contour (bottom) using two-way OCM similarity.

accessing all documents where the feature is present, without having to read all index.
On Mind-Finder, each inverted list represents an edgel word feature. This list is

composed by Identification code (ID) of the image where the edgel is present. Figure 3.3
presents the scheme of inverted lists for the edgel indexing.

Figure 3.3. Edgel Index using inverted lists. In this figure, the Hit Map of a
sketch (top left box) and the mapping of each edgel hit to the edgel dictionary
(top right box) are presented. In the edgel dictionary, each word is associated to
its respective occurrences in the image dataset by an inverted list of image IDs
(right bottom box). Source: [Cao et al., 2011].

In Figure 3.3, the Edgel Dictionary represents all edgel words on the approach
configuration, and each edgel word has one inverted list of image IDs, where that
specific edgel is present. The configuration of Mind-Finder is presented on the following.
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Image Preprocessing in Mind-Finder

In the practical work, Mind-Finder indexed a dataset of two million images. These
images were downsampled to 200×200 pixels, which the authors considered a good
balance between preserving structure information and storage cost. To obtain the
natural image contours, they used the algorithm described in [Martin et al., 2004], and
the index for two million images consumed 6.5 GB of memory.

3.3 Fast Multiresolution Image Querying

In this section, we describe the work named Fast Multiresolution Image Querying
(FMIQ) [Jacobs et al., 1995]. Although this work is built for query-by-paint and
query-by-example, which are not a sketch, this work is important because it presents a
relevant contribution using the technique of compressed-domain index, like the index
proposed on this dissertation. The compressed-domain index of Jacobs et al. [1995] is
based on the wavelet image decomposition, and the basic idea of this work for image
querying is to directly compare matches of wavelet coefficients in the compressed-
domain. Basically, the more matches between two images, the more similar they are.
Subsequent sections describe this work in more details.

3.3.1 The Compressed-Domain Index

The voluminous nature of visual information, like image and video, requires the use of
compression techniques for storage, transmission and indexing for visual retrieval. In
particular, visual information compression works very well with lossy methods, once
that the visual information in image and video usually has a lot of redundant data to
represent them. Thus, this kind of data with strong visual redundancy on space and
time (for videos) is a key point where the compression techniques work eliminating
them.

A straightforward approach of Compressed-Domain Index (CDI) [Castelli
and Bergman, 2004], is to apply existing compression techniques, and to use derived
compressed information to build indexes for visual information retrieval [Benois-Pineau
et al., 2012]. The main advantage is its inherent efficiency of compression, reducing
the complexity of visual data processing.

Typically, the features used for indexing visual data are directly extracted from
the original image pixels. However, it is possible to use the compressed data to extract
visual features to index the visual content. As advantage, the Compressed-Domain
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Index has the inherent quality of efficiency and reduced complexity, due to its smaller
amount of data to process. This strength is used as the basis for saving memory
and CPU cost in order to speed up the retrieval of the approach presented in this
dissertation.

The CDI is classified in two main categories: transform-domain and spatial-
domain methods. Transform domain methods are generally based on Discrete Fourier
Transform (DFT) [Villasenor, 1993], Karhunen-Loève Transform (KLT) [Jain, 1989],
Discrete Cosine Transform (DCT) [Ahmed et al., 1974; Rao and Yip, 1990], subband or
Discrete Wavelet Transform (DWT) [Antonini et al., 1992; Daubechies, 1992; Mallat,
2008; Stollnitz et al., 1995a,b]. Spatial-domain techniques are based on fractal image
compression [Fisher, 1995] and vector quantization methods [Idris and Panchanathan,
1995]. Table 3.1, obtained from [Castelli and Bergman, 2004], presents a comparison
among several compression techniques.

Although Table 3.1 presents the DFT translation invariant of the coefficients as
an advantage, for our propose of sketch-based image retrieval, this feature is considered
a disadvantage, once that our user objective retrieval (Section2.1.4) and goal intend to
retrieve images with objects without or just a few translation.

In the work of Jacobs et al. [1995], the compressed information of the image is
obtained from the wavelet transform domain and represented by its main quantized
coefficients. A little introduction to wavelets as a lossy image compression tool is
presented on the following.

3.3.2 The Wavelet Transform

Wavelet is a mathematical tool for hierarchical function decomposition. Function rep-
resentation in the wavelet domain has a coarse information plus the details in different
levels of hierarchy [Antonini et al., 1992; Daubechies, 1992; Mallat, 2008; Stollnitz
et al., 1995a,b]. Some authors say that the wavelet decomposition is like seeing the
forest, the trees, and the leaves, depending on the detail level you are looking at the
function.

Among the wide spectrum usage of the wavelet decomposition, we can cite diverse
applications to image processing and computer vision. In [Loupias and Sebe, 2000; Tsai,
2012], the authors used the wavelet decomposition, in order to obtain salient points used
for CBIR. Wavelets are also applied with success to image compression [Christopoulos
et al., 2000], surface reconstruction from contours [Meyers, 1994], and others. On
image compression, the wavelet is used as a tool to encode the image using the most
significant coefficients, like in JPEG2000 image format [Christopoulos et al., 2000]. In
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Table 3.1. Compressed-Domain Indexing Approaches. Source: Castelli and
Bergman [2004].

Technique Advantages Disadvantages References

DFT

Uses complex exponentials
as basis function. The
magnitudes of the coeffi-
cients are translation invari-
ant. Spatial domain correla-
tion can be computed by the
product of the transforms.

Lower compression efficiency [Villasenor, 1993]

DCT

Uses real sinusoidal basis
function. Has energy com-
paction efficiency close to
optimal KLT

Block DCT produces block-
ing artifacts

[Ahmed et al., 1974;
Rao and Yip, 1990]

KLT

Employs the 2nd order sta-
tistical properties of an im-
age for coding. Pro-
vides maximum energy com-
paction among linear trans-
formations

Is data dependent: basis im-
ages for each subimage has
to be obtained, and hence
has high computational cost

[Jain, 1989]

DWT

Numerous Basis functions
exist. There is no blocking
of data as in DCT. Yields, as
by-product, a multiresolu-
tion pyramid. Better adap-
tation to nonstationary sig-
nals. High decorrelation and
energy compaction. Low
computational cost for fast
Haar DWT

Chip-sets for real-time im-
plementation is not readily
available

[Antonini et al.,
1992; Daubechies,
1992; Mallat, 2008;
Stollnitz et al.,
1995a,b]

Vector Quantization

Fast decoding. Reduced
hardware requeirements
makes is attractive for
low power applications.
Asymptotically optimum
for stationary signals.

A codebook has to be avail-
able at both the encoder
and decoder, or has to be
transmitted along with im-
age. Encoding and code-
book generation are highly
complex.

[Idris and Pan-
chanathan, 1995]

Fractals
Exploits self-similarity to
achieve compression. Poten-
tial for high compression

Computationally intensive,
hence hinders real-time im-
plementation.

[Fisher, 1995]

general lines, compression consists on just using the most significant coefficients and
discarding the less significant ones, what usually, are majority. Therefore, just a few
coefficients are enough to represent the main structure of the image. Although this
technique presents loss of information, this loss can be controlled, and even not be
noticed by most part of the users. Figure 3.4 presents four image reconstructions using
the Haar wavelet using the most n significant coefficients. As shown in Figure 3.4, the
more coefficients are used, the more the details of the original image are preserved.

In [Jacobs et al., 1995], the authors applied the Haar wavelet decomposition
not for compression, but for indexing the image dataset with the most significant co-
efficients for CBIR. These coefficients represent a few percentage of the raw image
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16K coeffs - Original400 coeffs100 coeffs20 coeffs

Figure 3.4. Image reconstruction using Haar wavelet transform. From left to
right, the reconstruction using the n most representative coefficients with n =
{20,100,400,16K}.

pixel data. This compression characteristic brings the first advantage of using the
compressed-domain index, once that we can build very small indexes with this ap-
proach.

Theoretically, the majority of the most significant coefficients use to be the same
in similar images, what is not true when the images are different. Figure 3.5 presents
three images on top, and its respective most significant coefficients map on the wavelet
domain, at bottom. All three images are dissimilar, but the second and third ones
are very similar to one each other, thus, this similarity is reflected on their respective
most significant coefficients. White dots on the coefficient map of Figure 3.5 represent
negative coefficients, while the white, represent positive ones. As shown, almost all
significant coefficients on the second and third images are the same ones, while not on
the coefficient maps among the first and the other images. The compressed domain
of wavelets presents two main advantages for comparing two images: first, the repre-
sentation of the image on the compressed domain is much smaller; and second, the
comparison of a few set of coefficients data is computationally cheaper than comparing
all image pixels.

On the work presented by Jacobs et al. [1995], the wavelet coefficients are used to
index an image dataset in order to support query-by-painting and query-by-example.
The authors performed experiments in two datasets, one with 1,000 images and another
with 20,000.

To perform a retrieval, the query image, either an example or a painting is
transformed to the wavelet domain. Then, the comparison of the query image to
the compressed-domain index is performed basically comparing the number of wavelet
coefficients matched between the query image and the coefficients of each indexed im-
age. The more matches of coefficients, the more similar two images are. Moreover,
some weights for the coefficients are considered. The weights of the coefficients are
applied into Equation 3.4 and these weights are presented in Table 3.2.

The Haar wavelet decomposition is simple and fast to compute. Algorithms pre-
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Figure 3.5. Image examples, on top, and its respective most significant quantized
coefficients, at bottom. White dots on the coefficient map represent the most
significant positive coefficients, while the black ones, the most negative. The
three images are different, however, the second and third images are similar to
one each other, and this similarity is reflected on their most significant quantized
coefficients. This characteristic does not happen between the first image and the
others, where most part of the quantized coefficients is different.

sented in Algorithm 1 and 2 are used for the image wavelet transform, and generate as
results, the average value of gray level pixels, plus a set wavelet coefficients. The first
algorithm is employed to one-dimensional decomposition of each image row/column.
Algorithm 2 performs the image decomposition using the one-dimensional Algorithm 1.
On the first step, Algorithm 1 decomposes all rows of the image, following, it decom-
poses all columns over the already decomposed rows.

Algorithm 1 Compute 1-D wavelet decomposition of a image row/column
1: procedure DecomposeArray(A ∶ array[0..h − 1])
2: A← A/

√
h

3: while h > 1 do
4: h← h/2
5: for i← 0 to h − 1 do
6: A′[i]← (A[2i] +A[2i + 1])/

√
2

7: A′[h + 1]← (A[2i] −A[2i + 1])/
√

2
8: end for
9: end while
10: A← A′

11: end procedure

In Algorithm 1 (DecomposeArray) for row/column decomposition, A repre-
sents the image row or column and h (must be power of two in this algorithm) represents
the number of A elements.
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Algorithm 2 Compute 2-D image wavelet decomposition
1: procedure DecomposeImage(T ∶ array[0..r − 1,0..r − 1])
2: for row ← to r do
3: DecomposeArray(T [row,0..r − 1])
4: end for
5: for col ← to r do
6: DecomposeArray(T [0..r − 1, col])
7: end for
8: end procedure

In Algorithm 2 (DecomposeImage), T represents the image matrix and r the
number of rows and columns of T . In practice, DecomposeImage is better imple-
mented by decomposing each row, transposing the matrix T , decomposing each row
again, and finally, transposing back the matrix T .

To build the dataset index, Jacobs et al. [1995] used the Haar Wavelet, YIQ
color space, non-standard wavelet decomposition [Beylkin et al., 1991; Stollnitz et al.,
1995a] and image resolution of 128×128 pixels. Each channel of the YIQ color space is
independently processed with Algorithms 1 and 2 aiming to obtain the main wavelet
coefficients and index the image dataset.

Using the image resolution of 128×128, there are 1282 = 16,384 different wavelet
coefficients for each color channel. Rather than using all coefficients to compare im-
ages, the authors kept just the coefficients with largest magnitude. This is the key
for reducing the index size, and according to the authors, truncating the coefficients
improved the discriminatory power of the metric. Also, the authors suggested using
the 60 largest magnitude coefficients of each color channel for query-by-painting and
40 for query-by-example.

In the FMIQ approach, a quantization process is applied to the selected largest-
magnitude coefficients. The quantization turns −1 for negative, and +1 for positive
coefficients. Like truncation, the quantization of each wavelet coefficient speeds up the
querying processes, reduces the storage, and according to the authors, improves the
discriminatory power of the metric, i.e., the use of quantized value is more discrimina-
tory than its real value, even retaining little or no data about the precise magnitudes
of major features of the images. Section 3.3.3 describes the distance measure for image
retrieval and how the quantized coefficients are employed in the metric.

3.3.3 Query Distance Measure

Jacobs et al. [1995] compared two images, either a painting or an example query image
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Q, to the target image T , using a distance measure based on two main parts. First
part corresponds to the average gray level difference between the images. The second
corresponds to the number of wavelet coefficient matches with same spatial position
(x, y) and quantized sign (s = {+1 or − 1}) between the compared images. The more
matches between the two images Q and T , the less distant, or more similar, they are.

Formally, for the distance measure between Q and T , let Q̃[x, y] and T̃ [x, y]
represent the [x, y] − th truncated quantized wavelet coefficient, with sign s = {+1 or
−1}, respectively obtained from Q and T . Also, let Q[0,0] and T [0,0] represent the
average intensity of the color channel of the images Q and T . For convenience, Q̃[0,0]
and T̃ [0,0] which do not correspond to any wavelet coefficient, are defined as 0.

Furthermore, let us consider the equality operator, or matching hit function:

HitQ(c) =
⎧⎪⎪⎨⎪⎪⎩

1 ∃c ∈ AQ(Q̃[x, y] = T̃ [x, y],
0 otherwise

that evaluates to 1 on each match of wavelet coefficient between Q and T . Where AQ
represents the set of quantized largest-magnitude coefficients of Q.

The formulation for the distance measure WQ,T , between Q and T , at each color
channel (YIQ), is presented in Equation 3.4.

WQ,T = w0 ∣Q[0,0] − T [0,0]∣ −
NQ
∑
i=1

wbin(x,y)HitQ(ci) (3.4)

In Equation 3.4, NQ is the number of coefficients of Q; and wb is the weight
factor based on Table 3.2. The bin(x, y) function, presented in Equation 3.5, is used
to address the weight line b of Table 3.2, according to the coefficient position (x, y).
Where, min(x, y) is a function that returns the minimum value between x and y, and
max(x, y) returns the maximum value.

bin(x, y) ∶=min{max{x, y},5} (3.5)

While the lines of Table 3.2 address the weights based on the coefficient position,
columns address the weight according to the kind of query, by painting or by example,
as well as, the color channel (YIQ).

The practical application of Fast Multiresolution Image Querying is shown in
Figure 3.6. In this figure, we have the painting image query on left and the best
classified results on a grid on the right.
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Table 3.2. Weights for the wavelet coefficients.

Painting Example

b wY [b] wI[b] wQ[b] wY [b] wI[b] wQ[b]

0 4.04 15.14 22.62 5.00 19.21 34.37

1 0.78 0.92 0.40 0.83 1.26 0.36

2 0.46 0.53 0.63 1.01 0.44 0.45

3 0.42 0.26 0.25 0.52 0.53 0.14

4 0.41 0.14 0.15 0.47 0.28 0.18

5 0.32 0.07 0.38 0.30 0.14 0.27

Figure 3.6. Query-by-painting in the Fast Multiresolution Image Querying ap-
plication.

3.4 Conclusion

This chapter presented a wide review on SBIR, from the first known works to the most
recent publications. This review also described two main works that brought impact
in the development of the present approach. First approach, Mind-Finder, inspired
the comparison and representation of image contours in quantized orientations. The
second, Fast Multiresolution Image Querying, inspired the use of the wavelet-domain
to represent the dataset index in the compressed-domain. The algorithms presented
for the wavelet transform are also used in this dissertation approach. From both
works presented in this chapter, we also based the similarity measure of our proposal.
Concerning to inverted lists, the present dissertation also takes the advantages of such
strategy to speed up the queries, as described in Section 4.1.4.

Next chapter describes our proposal, the methods and the processing steps in
details.



Chapter 4

Sketch-Finder Approach

In this chapter, we introduce our approach for SBIR, named Sketch-Finder. First, we
resume the main features of the approach, and then, we present the technical details for
indexing the dataset and querying an image. On the technical description, we present
the feature extraction steps, our similarity measure proposal using the features, and
the index structure.

Sketch-Finder is an approach for black and white sketches. Those sketches consist
of a stroke set that describes important contours of the images that the user is looking
for. Here, we consider that, the more a query and a target image have strokes/contours
at the same or near position and orientation, the more similar they are.

This proposal is presented in two versions: Sketch-Finder 1.0 and 2.0. Although
the newer version presents better effectiveness, the presentation of the Sketch-Finder
1.0 is important to show how Sketch-Finder 2.0 achieved its properties. Further, Sketch-
Finder 1.0 is faster than Sketch-Finder 2.0, making the first approach a good choice
when efficiency is imperative, like in the prototype for mobile devices shown in Chap-
ter 7.

Sketch-Finder 1.0 and 2.0 have two main differences: the first version uses only
the compressed domain of wavelets to encode the index of the dataset, also, the number
of features to represent the image contours is fixed, while on the second version, the
number of wavelet coefficients is variable. Further, besides the compressed domain,
Sketch-Finder 2.0 uses the pixel domain to verify the contour consistency between the
sketch strokes and the image contours, what improves the effectiveness of the approach.
Our proposed approach uses an index stored on disc with efficient data structures,
granting the growth of the image dataset without memory limitations dependence,
thus, allowing big data sketch-based image retrieval.

According to the users objective (Section 2.1.4), he/she can retrieve images by
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sketch in two main scenarios. In the first one, he/she may wish to retrieve the desired
object, no matter its scale and/or position. Usually, approaches using image descriptors
and “Bag-of-Visual-Words” (BoVW) fall in this category, like the works of Eitz et al.
[2011]; Hu and Collomosse [2013]. By the other hand, the user may want to retrieve
not just the object, but he/she also has in mind its similar position, rotation and
object scale. Our approach, and others like [Cao et al., 2011; Del Bimbo and Pala,
1997; Tseng et al., 2012; Jacobs et al., 1995; Sun et al., 2013] lies inside this objective.
These approaches do not use the BoVW, but a descriptor that preserves, in some way,
the spatial information. Therefore, for the proposed approach in this thesis work, we
consider the similarity between a sketch and some image using two main criteria: (i)
shape sensitive, which means that the contour shape of the target image objects must
be as close as possible to the sketch, and (ii) position sensitive, which means that image
contours should be as close as possible to the sketch strokes in terms of position and
scale.

The present approach aims to improve the retrieval efficiency comparing to Mind-
Finder [Cao et al., 2011], while preserving effectiveness. High memory and computa-
tional cost for holding and processing a big amount of data in the pixel domain is
one problem of Mind-Finder, i.e., keeping the index and processing a huge amount of
edgels in big datasets. Not only us noticed this problem on Mind-Finder, but other
works like those described in [Tseng et al., 2012; Sun et al., 2013], also did. These
works were actually developed in parallel to ours, without knowing one each other.
Further, the present thesis and the works [Tseng et al., 2012; Sun et al., 2013] have
in common Mind-Finder as base for comparison of effectiveness and efficiency. These
works also share the same user objective and basic root methods for SBIR, e.g., the
orientation of the image contours. Although those works followed other ways to solve
the problem, they reached a similar objective about compressing index data, like we
did in the present thesis. While in [Tseng et al., 2012; Sun et al., 2013], the authors
used a compact hash of bits, in this thesis we used the compressed-domain index based
on the wavelet decomposition. The pixel domain is also used on an improved version
of the present approach, in order to verify the spatial consistency of the edgels and to
increase effectiveness. As shown in Section 3.2, an edgel is an edge pixel with its spatial
position (x, y) plus the orientation (θ) of the stroke/contour that the pixel remains.
This segmentation in quantized orientations is important to better describe the image
contours or the sketch strokes without merging the same area around the contour in
different orientations. Next section describes the technical details of Sketch-Finder 1.0
and some properties for Sketch-Finder 2.0. Section 4.2 presents the main characteristics
introduced on the approach for Sketch-Finder 2.0.
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Figure 4.1. Indexing workflow of Sketch-Finder 1.0 and 2.0 – in this sequence:
image input I resize; contour detection using the Ultrametric Contour Map; con-
tours thresholding; edge orientation estimation; oriented edgel neighborhood es-
timation inside a radius r, given in pixels (set of edgels L only for Sketch-Finder
2.0); standard Haar wavelet decomposition; set of wedgels A, or, wavelet most
significant coefficients.

4.1 Sketch-Finder 1.0

Sketch-Finder 1.0 is an approach for SBIR based in two main works: Mind-Finder
[Cao et al., 2011] presented in Section 3.2 and Fast Multiresolution Image Querying
presented in Section 3.3. Even as the approaches [Tseng et al., 2012; Sun et al., 2013],
Sketch-Finder 1.0 inherits the idea of representing and comparing sketch strokes and
image contours in six quantized orientations. From the approach FMIQ, Sketch-Finder
inherits the idea of using the compressed-domain index, where image contours and
sketch strokes are represented by wavelet coefficients. Roughly, the similarity measure
of Sketch-Finder compares the number of largest magnitude coefficients at the same
position, signal and orientation map. Details of preprocessing, indexing and querying
images are presented in the following.

4.1.1 Feature Extraction

On a SBIR approach, it is necessary to index the image dataset. First, we need
to preprocess the images and extract the features that represent the contour in the
index. On Sketch-Finder, the feature extraction process consists on six main steps:
image resize; contour detection using the Ultrametric Contour Map; threshold of the
contours; orientation; oriented edgel neighborhood estimation inside a radius r, given
in pixels; and wavelet analysis. This process is illustrated in Figure 4.1. At the end of
the process, we get the wavelet coefficients obtained from different oriented contours.

The coefficients resultant of the image processing are the basic visual features
of the Sketch-Finder, and we named this feature as wedgel, a short name for wavelet
coefficient obtained from edgel information. This visual word is based on the Haar
wavelet transform using Algorithms 1 and 2 (shown in Section 3.3.2) plus its oriented
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edgel map source. In our approach, the wedgel is represented as a quadruple (x, y, s, θ),
where (x, y) represent the wavelet coefficient spatial position, s the coefficient quantized
sign (+1 or -1) and θ the edge map orientation used before the wavelet transform.

Each step of the image processing, represented in Figure 4.1, to obtain the set of
wedgels is described with details on following.

Image resize. Aiming to have all images with the same size, important for matching
the spatial position (x, y) of the wedgels, all images are resized to the same
pattern, 256 × 256 pixels. Although the image aspect ratio is lost, all images,
likewise the sketch, use the same aspect and the distortion in position is naturally
compensated by the spatial approximation of the visual features obtained on the
next steps. Some examples of resized images are shown in Figure 4.2 (a).

Contour detection. Because our approach uses black and white line-based sketches,
we need to detect the contours of the dataset images. As such, a good algorithm
of contour detection is fundamental for the success of this approach. To obtain
the image contours, we use the hierarchical Ultrametric Contour Map (UCM)
approach, with the default parameters, described in [Arbelaez et al., 2011]. As
far as we know, this high level contour detection is state-of-the-art in literature.
Some examples of the UCM are shown in Figure 4.2 (b), respectively obtained
from the images shown in line (a) of the same figure. Also, in the figure, we
present the contours in black with white background for better printing of the
present text, however, the real contours are white lines in a black background.
This information is important because the parameter value used in the next step,
the threshold, depends on how the contour is represented.

Threshold. To obtain the most important object contours, the result given by the
UCM algorithm is then thresholded. The threshold choice and other parameters
were obtained on an optimization process with a genetic algorithm, as described
in Section 6.2.2.

Orientation estimation. The natural contours of each image I and the query sketch
Q are quantified in NΘ oriented Θ channels, where Θ is a set of quantified ori-
entations: Θ = {θ1, θ2, ..., θn}. In this work, the edge orientation is estimated
and quantified in six intervals, i.e., NΘ = 6: −15○ ∼ 15○,15○ ∼ 45○, ...,135○ ∼ 165○.
Each edge pixel (x, y) plus its orientation information θ, named edgel, is defined
as pi = (x, y, θ) [Cao et al., 2011]. Figure 4.3 (b) represents the edge orienta-
tion estimation obtained from Figure 4.3 (a). In this figure, we show just three
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orientations to simplify the idea and illustration, although we actually use six
orientations.

Oriented edgel neighborhood. For each orientation θ, the pixel neighborhood of
each edge element in a radius r, given in pixels, is integrated to the set of edgels,
making this neighborhood part of the set of edgels L = {p1, p2, ..., pn}. In this
dissertation, the neighborhood of edgels is simply named “edgel neighborhood
map” GIθ , of an Image I and orientation θ. Figure 4.3 (c) presents an illustration
of three (GIθ 1

,GIθ 2
,GIθ 3

) edgel neighborhood, with radius r = 2 pixels, obtained
from Figure 4.3 (b). More details on defining r are given in Section 6.2.2.

Wavelet transform. For each edgel neighborhood map GIθ , we apply the standard
Haar wavelet transform [Chui, 1992; Stollnitz et al., 1995a], following Algorithms
1 and 2 presented in Section 3.3.2. The n largest magnitude coefficients are used
to encode each transformed GIθ , composing the set of wedgels A = {w1,w2, ...,wn},
where a wedgel is a quadruple wi = (x, y, s, θ), with its coefficient at spatial posi-
tion represented by (x, y), its quantized sign s, and its edgel neighborhood map
orientation represented by θ. In Sketch-Finder 2.0, instead of using a fixed num-
ber of coefficients, we select the largest magnitude coefficients greater than a given
threshold ω, Section 4.2 explains why this change is taken. Figure 4.3 (d) repre-
sents the positive wedgels in white dots, and the negative ones in black. Those
coefficients were obtained from the Haar wavelet transform of GIθ represented in
Figure 4.3 (c). Selected coefficients or wedgels are quantized to +1 if the coeffi-
cient is positive, or -1 otherwise; in our approach, the real value of the selected
coefficients is not important. The number of words of the dictionary, or different
wedgels, can be calculated by using NR ×NC ×NS ×NΘ; where NR represents the
number of image rows; NC the number of columns; NS the number of quantized
signs for the wavelet coefficient, always two; and NΘ the number of quantized
orientations. In our proposal, the index dictionary has 256 × 256 × 2 × 6 = 786432

possible wedgels.

Some methods and parameters of this work are based either on literature, either
on the best balance between precision of the desired results and efficiency based on
experiments. The image size of 256×256 pixels is an approximation of the size used in
the work Cao et al. [2011] which is 200×200. This resolution presents compatibility with
the fast wavelet decomposition algorithm presented in Jacobs et al. [1995] which must
have the lines and columns equals 2k, further this resolution presents a good relation in
terms of object shape representation and acceptable computational time on the contour
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(a)

(b)

(c)

Figure 4.2. Contour detection examples from natural images using the Ultra-
metric Contour Map (UCM) algorithm and their respective thresholded images
with threshold = 0.16 in [0, ...,1]. We have in (a) natural images; in (b) hierar-
chical contours; and in (c) the thresholded contours.

detection of the algorithm Ultrametric Contour Map (UCM) Arbelaez et al. [2011].
Smaller resolution might bring lost of important information while bigger resolution
must be prohibitive in terms of computational costs. The choice of the UCM for contour
detection comes from literature review, that says, as far as we know, that this contour
detection is the state of the art on its domain, further, this algorithm is available for
research proposals. The contours threshold and the radius size of the neighborhood are
experimentally obtained as described in Section 6.2.2 while the number of orientation
for the contours comes from the Mind-Finder approach. The choice of Haar wavelet
comes from the work Jacobs et al. [1995], this wavelet algorithm is fast and simple to
implement.

Figure 4.3 presents the natural image contours or the sketch strokes processing
until the wavelet domain representation.

Algorithms 1 and 2 presented in Section 3.3.2, were used in our approach to
obtain Haar wavelet coefficients. Further details on the wavelet transform used in this
thesis can be found in [Antonini et al., 1992; Daubechies, 1992; Mallat, 2008; Jacobs
et al., 1995; Stollnitz et al., 1995a,b].
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Figure 4.3. Visual features extraction: Preprocessing: (a) image contours map;
(b) estimation of edges orientation and segmentation of their contour maps; (c)
neighborhood edgels estimation; (d) wavelet domain representation of the ten
most positive coefficients (white dots) and the ten most negative coefficients (black
dots).

4.1.2 Similarity Measure

The use of the compressed-domain of wavelet is an efficient strategy for SBIR, as shown
by the experiments presented in Chapter 6. The similarity measure WQ,T between the
query sketch Q and some target image T of the dataset is based on computing the
number of similar wedgels matched between Q and T , times some weight. On the
following, we present the similarity measure equation; the appropriate weight for the
coefficients were chosen based on the experiments presented in Chapter 6.
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Wavelet Comparison

Consider the problem of computing the similarity, on the wavelet domain, between
a query sketch AQ and a potential target image with set of wedgels AT . Let
ÃQ[x, y, s, θ,Gr] and ÃT [x, y, s, θ,Gr] represent the [x, y] − th truncated quantized
wavelet coefficient, respectively of Q and T , with sign s = (+1 or −1), orientation
θ and neighborhood edgel map Gr, with radius r given in pixels. Also let NΘ represent
the number of orientations, and NG the number of different Gr used in the index.

Furthermore, let us consider the equality operator, or hit (Equation 4.1) wedgel
function:

HitQ(w) =
⎧⎪⎪⎨⎪⎪⎩

1 ∃w ∈ AQ(ÃQ[x, y, s, θ,Gr] = ÃT [x, y, s, θ,Gr]),
0 otherwise

(4.1)

that evaluates to 1 on each match of wedgel between Q and T . For the wavelet
coefficients comparison WQ,T , the more similar Q and T are, the more matches of
wavelet coefficients at the same spatial position, sign and orientation are computed.
The comparison is taken in several parts, one for each combination of the set K =
{Gr, θ, s}. Let ∣ AQ(Gr,θ,s) ∣ be the number of coefficients of the query sketch for the set
{Gr, θ, s}. The equation for the sum of match weighted wedgels WQ,T between Q and
T is presented in Equation 4.2.

WQ,T =
NG
∑
Gr=1

NΘ

∑
θ=1

2

∑
s=1

∣AQ(Gr,θ,s)∣
∑
i=1

(α ⋅ bin(x, y) + (1 − α) ⋅X ) ⋅HitQ(wi) (4.2)

Where α ∈ [0− 1] and is used to perform a linear interpolation between two kind
of weights. First weight, determined by bin(x, y) function (shown in Equation 3.5) is
based on the hypothesis that the weight for the wavelet coefficients can be based on the
coefficient position (x, y) as in [Jacobs et al., 1995]. For bin function, we considered the
neighborhood edgel map as a luminance channel Y from YIQ color model [Gonzalez
and Woods, 2006]. Thus, we used the weights for bin function given in Table 3.2, for
painting image and color channel Y, i.e., column wY [b].

Experiments considering only bin function with α = 1 did not presented good
results in some sketch examples. These examples were images where the distribution
of edgels within the six oriented maps were not uniform, i.e., when some orientation
was much more dense in strokes rather than others. For example, the Pantheon sketch
(e.g. Figure 5.14 (h)) presents much more vertical strokes than horizontal and the other
intermediate orientations. Using only bin function for The Pantheon sketch, brings,
among true positive images, lots of pyramids due to the pyramid above the vertical
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strokes on the Pantheon. This occurs because each oriented map represented with the
same number of wavelet coefficients plays the same importance weight. However, to
bring more true positive pantheons, it is necessary to give more importance to dense
orientations. This drives us to a second hypothesis for coefficient weights.

On this second hypothesis, the weight X (Equation 4.3) is determined by the
estimation of the number of edges in Q, given by the function t.

X = t(θ,Gr)
r

w∈AQ (4.3)

Function X models orientation maps with higher importance related to large
number of edges, i.e., the more edgels at orientation θ, the higher is the weight for
its wavelet coefficients. The radius size of Gr, represented by r in pixels, is used in
Equation 4.3 to balance the average gray level of the oriented maps according to its
neighborhood edgel map, otherwise, bigger radius would bring higher weights. Thus,
the division by r aims to provide a good balance of the coefficient weight when com-
bining more than one neighborhood edgel map. Otherwise, larger neighborhood edgel
maps, without the division by r, should give higher relevance in relation to edgel maps
with small radius, which is not desired.

A simple way to measure the amount of edges in order to know the importance
of the orientation, thus the weights of the wedgels, is to use the average value of gray
level of GQθ . The higher the average value is, the more edges are present. Also, this
strategy approximates our approach to the idea of the similarity measure presented in
Cao et al. [2011]. The average value of gray level of GQθ at r is given within the interval
[0.1, ...,1], so as the minimum value of the weight is 0.1, empty GQθ or with just a few
number of edges are also considered, but with small similarity contribution. Given the
average value of gray level within [0, ...,1], the weight for t is given by Equation 4.4:

t = AV G(GQθ ) − AV G(GQθ )
10

+ 0.1 (4.4)

where AV G(GQθ ) represents the average value of gray level of GQθ , within the interval
[0, ...,1].

As shown in the experiments of Section 6.1.1, using more than one version of
neighborhood edgel map on the wavelet transform improves the precision of the ap-
proach. Thus, using more than one radius r neighborhood edgel map version, produces
different versions of wedgels. In fact, it is one set of wedegel for each configuration of
radius r.

We performed several experiments to evaluate the importance of the coefficient
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weight according to our first and second hypothesis of weights, using bin function and
edgel density X , thus, varying α between 0 and 1 on Equation 4.2. Results presented
in Section 6.1.1 prove that second hypothesis, where the coefficient weight is based on
the edgel density of each oriented map X , presents better precision.

4.1.3 Query Process

The query process has some common steps to the indexing workflow described in Sec-
tion 4.1.1: image resize; orientation estimation; neighborhood edgel map; and wavelet
transform. Contour detection is not necessary on the query time because the sketch
is already a contour entity, and the threshold is not applied because we consider that
the input is already binary. Therefore, we describe on the following just the processes
not in common to those explained in Section 4.1.1 for indexing the dataset. Figure 4.4
presents the query workflow of the proposed approach.

Similarity measure. In this step, the set of wedgels AQ obtained from the sketch is
used to load in main memory the correspondent inverted file list of each wedgel
wi ∈ AQ. Following, we measure the similarity with Equation 4.2. In Sketch-
Finder 2.0, the set of edgels LQ is also retrieved in inverted files for the OCM
precision refinement. More details about inverted list concepts and our practical
implementation can be found respectively on Sections 3.2.2 and 4.1.4.

Sorting the similarity. Once we have the similarity of the sketch to the images of
the dataset, obtained on the last step, we sort the similarity using the quick sort
algorithm [Cormen et al., 2001] and present the z most relevant images for the
user. In our prototype, we present the results in a (HTML) page format. A text
file is also created with all results for precision×recall evaluation of effectiveness.

Image resize
256 x 256

Orientation 
Estimation

Wavelet
Transform

Oriented
Edgel

Neighborhood

Similarity
measure

Sorting 
the

Similarity

Result
Display

Figure 4.4. Query workflow – in this sequence: the sketch input Q; sketch
resize; edges orientation estimation; edges orientation estimation and set of edgels
L (only for Sketch-Finder 2.0); standard Haar wavelet decomposition and set of
wedgels A; similarity measure of the sketch strokes; sorting the similarity results;
and display of the classified results.
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4.1.4 Index Structure

The proposed approach of this thesis presents several advantages. Its compact index
was designed to support efficient and effective query. Efficiency is mainly achieved be-
cause the compressed-domain has only a few number of wavelet coefficients to process,
rather than on uncompressed index.

In lossy image compression formats like JPEG [Ansari and Memon, 2000] and
JPEG2000 [Christopoulos et al., 2000], the user may choose between compression rate
and image size, accepting lower image quality to gain memory space. We can use this
very same idea in our index size. Theoretically, the more coefficients, the bigger is
the index size, gaining better effectiveness of retrieval by paying less efficiency, and
vice-versa. Our experiments presented in Section 6.2.1, respectively for Sketch-Finder
1.0 and 2.0 demonstrated in both that, the impact of the index size on the effectiveness
is small, among several parameters. Thus, in our approach, it is possible to control the
index size, thereafter, choosing the most desirable characteristic between effectiveness
and efficiency. Furthermore, it is possible to have different index versions on disk, and
load the most desirable one according to the machine memory and CPU load, if other
processes are concurring. Our compact index also allows big data image indexing for
SBIR.

Finally, we can mention the small variation on the query speed of our approach
as shows the standard deviation in Table 6.7, Section 6.2. This statistical measure
presents a small variation of CPU usage on the query time, when compared to Mind-
Finder. The reason for less variation time in the query speed comes from fixed number
of wedgels to compose the contour signature, on Sketch-Finder 1.0. Thus, Sketch-
Finder always processes the same number of wedgels on the similarity measure, an
advantage that using our approach is possible to have a better estimation of the time
of each query. On the following topic, we present the structure of the proposed index.

4.1.5 Wedgel Index

Aiming to improve performance, the “matching” of wedgels is performed by retrieving
each inverted file list of image (IDs), associated to each wedgel (x, y, s, θ) of the sketch.
This strategy acts like a shortcut to go directly on the important information to process,
without having to read all index. Each image ID in the inverted lists represents one
hit or match in the similarity measure. After processing the corresponding lists of each
sketch wedgel, the similarity of the images of the indexed dataset, is then, sorted using
quick sort algorithm.
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Figure 4.5. Indexing of wedgels using inverted lists: (a) wavelet domain repre-
sentation of coefficients (wedgels) with positive coefficients represented in white
and negative in black; (b) wedgels dictionary; and (c) inverted list of image IDs
for each wedgel.

Figure 4.5 presents the index structure for the compressed-domain of wavelet co-
efficients. The wavelet domain with its most significant coefficients, already quantized,
are shown in Figure 4.5 (a). Negative coefficients are represented by black dots, while
the positive ones are represented on white. To simplify the idea, here, we illustrate just
three orientations, although, actually we have six. Figure 4.5 (b) presents the wedgel
dictionary (x, y, s, θ), and Figure 4.5 (c), presents the list of image IDs associated with
each wedgel of the dictionary.

4.2 Sketch-Finder 2.0

Sketch-Finder 2.0 presents two main differences over its antecessor, the number of
wavelet coefficients is no more constant, furthermore the similarity of the compressed-
domain index is refined in the pixel domain, improving effectiveness.

First version of Sketch-Finder presented two ways for weighting for the wavelet
coefficients. The fist one is based on the coefficient position and the second is based
on the density of edgels on each orientation. As shown in the experiment varying
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the weight function presented in Section 6.1.1, the use of edgel density information
impacts in retrieval precision better than the wavelet coefficient position. Following this
characteristic, instead of considering weights based on edgels density, that is directly
related to the number of coefficients, Sketch-Finder 2.0 simply computes the number
of coefficients. This change makes the approach more simple and effective as presented
in Section 6.2.3.

The second important change on the new approach of Sketch-Finder is the use
of the pixel domain besides the wavelet-domain index, aiming to improve even more
the effectiveness of the approach. Although the use of only wavelet-domain presents an
equivalent effectiveness with Mind-Finder using natural image contours as query input,
the use of real sketches presents an effectiveness inferior to Mind-Finder. Further, it
was verified in our experiments, that some contours are not very well matched in the
compressed-domain, mainly, due to the loss of information. In order to better match
the spatial pixel consistency, between the sketch and the image contours of the dataset,
we use the Oriented Chamfer Matching as in Mind-Finder. Nevertheless, we do not
perform two hand similarity verification as Mind-Finder (see Equation 3.3), we just
need to apply the verification from the query sketch to the target image, which is the
cheapest computational part of Mind-Finder similarity.

These two improvements, mentioned before, for Sketch-Finder 2.0, are modeled
and presented in the following.

4.2.1 Similarity Measure

In Sketch-Finder 2.0, the similarity measure SimQ,T between the query sketch Q and
some target image T of the dataset is given by the wavelet coefficients similarity
1/(WQ,T + 1) times the edgels similarity PT→Q performed by the Oriented Chamfer
Matching (OCM). The similarity measure SimQ,T between Q and T is presented in
Equation 4.5 and the estimation ofWQ,T and PT→Q are presented in Equations 4.7 and
4.9, respectively.

For the wavelet similarity, we use the same hit function of Sketch-Finder 1.0
presented in Equation 4.1. Further, for the wavelet similarity of this version, let CQKi
be the number of wedgels of the sketch image and CTKi the number of wedgels of the
target image for Ki. The comparison is taken in several parts, one for each combination
of the set K = {Gr, θ, s}. Let NK be the number of combination for the set K and Ki
the ith combination of K. The equation for summing of matched wedgels B(QKi ,TKi) at
each combination of K between Q and T is presented in Equation 4.6. The similarity
between the set of wedgels from the query sketch QKi and the set of wedgels for some
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target image TKi is presented in Equation 4.7.

SimQ,T = 1

WQ,T + 1
⋅PT→Q (4.5)

B(QKi ,TKi) =
∣AKi∣
∑
q=1

HitQ(wKq) (4.6)

WQ,T =
NK
∑
i=1

∣CQKi − CTKi ∣ + (CQKi − B(QKi ,TKi)) + (CTKi − B(QKi ,TKi)) (4.7)

Where, ∣ AKi ∣ is the number of wedgels for the combination of Kq. Thus, the
comparison in the compressed-domain WQ,T shown in Equation 4.7 considers the dis-
tance between the sketch Q and the target image T in three parts. First, the difference
between the number of coefficients of Q and T ∣CQKi − CTKi ∣; second, the difference be-
tween the number of sketch coefficients CQKi and the number of matched coefficients
B(QKi ,TKi), which is zero if all sketch coefficients match; and third, the difference be-
tween the number of coefficients in the target image CTKi and the number of matched
coefficients B(QKi ,TKi), also zero if all target image coefficients match. This distance in
three parts is important because similar images must have a similar number of coeffi-
cients, measured in the first part of the equation. Further, matching all coefficients of
the sketch is not enough to affirm that the sketch is similar to the target image (second
part of Equation 4.7) if the target image has not all coefficients also matched (third
part of Equation 4.7).

4.2.2 Oriented Chamfer Matching

The proposed compressed-domain index of Sketch-Finder 1.0 presents a very compact
index and fast query. However, the effectiveness is just equivalent for natural contours
input, but not superior to the one presented in Cao et al. [2011] for real sketches.
Thus, by only analyzing the results of the wavelet comparison, we observed that this
method is robust to some spatial variation between the position of the sketch strokes
and the image contours. Nevertheless, the consistency on the quantity of strokes at
similar position is not very well matched in the wavelet domain due to the loss of
information. To overcome this problem, a verification in terms of how much the number
of edgels are similar between the query sketch and the image contour, at similar spatial
position, becomes necessary. One strategy that can be applied to solve this problem
is the Chamfer Matching [Borgefors, 1988] or, more specifically, the Oriented Chamfer
Matching [Cao et al., 2011; Lee and Grauman, 2009b; Liu et al., 2010].
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Although the use of OCM decrease the efficiency of the method, this second
comparison does not present high computational cost for two reasons: first, it does
not process two similarity measures of OCM as in Cao et al. [2011], i.e., the similarity
between the sketch Q and the target image T (Q → T ) and the similarity (T → Q).
The present approach just performs the OCM of (T → Q). Second, all oriented edgel
maps of the dataset are indexed already with their neighbors in a radius r given in
pixels, saving computational cost to compute the edgels inside a radius r during the
query time, as defined in Hit function PT→Q, presented in Equation 4.9. Another
possibility, is to process the OCM only for the z best ranked images on the wavelet
comparison, saving computational cost and index size.

Figure 4.6 illustrates the pixel consistency idea between the query sketch Q and
some target image T . Although in Figure 4.6 the pixel consistency is presented without
considering the edge orientation, for simplification of the scheme, the comparison takes
the orientation into account.

Figure 4.6. Pixel consistency comparison between the sketch and some target
image. In this figure, form left to right; the sketch strokes Q; the target image
contours T and the representation of sketch stroke pixels inside a neighborhood
radius r (given in pixels) of T (T → Q).

Formally, consider the set of edgels LQ, representing the oriented sketch contours,
whose position of the edgels p ∈ LQ is denoted by Xp = (xp, yp), and its gradient
orientation is denoted by θp. In this pixel consistency, the Hit map MT of a target
image contour Q with NΘ oriented quantized channels, and each channel is a binary
mapMT

θ , θ ∈ Θ, where r is the tolerance radius, given in pixels, and ∣LQ∣ is the number
of edgels of Q. The hit of edgel between Q and T is defined in Equation 4.8.

HitQ(p) =
⎧⎪⎪⎨⎪⎪⎩

1 ∃p ∈ LQ(∥XQ −XT ∥2 ⩽ r & θQ = θT )
0 otherwise

(4.8)

PT→Q = 1

∣LQ∣
∑ p∈LHitQ(p) (4.9)

In Sketch-Finder 2.0, the index can be visualized as two indexes, both are based
on the inverted list strategy. The first index is used for the compressed-domain of the
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wavelet coefficients (wedgels) and the second is used for the pixel domain of edgels.
The first index structure was presented in Section4.1.5 for Sketch-Finder 1.0 and the
second index, used to compute the OCM on Sketch-Finder 2.0, is presented on the
following.

4.2.3 Neighborhood Edgel Map Index

In order to save computational cost, instead of computing the neighborhood edgel map
in the query time, we can compute the neighborhood inside a radius r for all images
of the dataset in the indexing time, thus, saving this precomputed data in a form
of inverted file lists to compose an index of neighborhood of edgels. These inverted
lists are similar to those representing wedgels, however, in such case, these lists of
image IDs represent, therefore, the neighborhood of edgels used in the Hit function
(Equation 4.9).

The neighborhood edgels index is responsible for the pixel consistency verification
using the OCM. For each neighborhood edgel (x, y, θ) of the dictionary, we store the
list of image IDs where there is an edgel in the neighborhood of each image. Instead of
comparing the radius r of all dataset edgels to the strokes of the sketch, we just have
to retrieve the set of sketch edgel LQ lists, giving a computational cost of O(LQ) lists
to process. In a real time application, we can compute the neighborhood of the edgel
maps in the query time only for the z best ranked images of the compressed-domain
measure, i.e., the wavelet similarity (WQ,T ), thus, exchanging memory space cost by a
small computational cost.

Figure 4.7 presents the neighborhood edgel map index structure. Figure 4.7 (a)
illustrates the three neighborhood edgel maps, Figure 4.7 (b) represents the neigh-
borhood edgel dictionary (x, y, θ), and Figure 4.7 (c) represents the list of image IDs
associated to each edgel of the dictionary. In this figure, we illustrate just three orienta-
tions, aiming simplification of the scheme, although, actually we have six orientations.

Although the computational cost is saved in query time, the only drawback of
this strategy is storage, once that it changes computational cost by memory space.
However, a second option that can be applied to a industrial product is, to only com-
pute the neighborhood edgels for the best classified images on the wavelet similarity
measure. We did not use this second scheme aiming to have an accurate precision for
the experiments of this work.
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Figure 4.7. Neighborhood edgel indexing using inverted lists: (a) neighborhood
edgel map GIθ ; (b) edgels dictionary; and (c) inverted list of image IDs.

4.3 Conclusion

In this chapter, we presented our approach for efficient and effective sketch-based image
retrieval in two versions. The first one, presents better efficiency due to the use of the
compressed-domain index. The second one also uses, besides the compressed-domain,
the pixel domain index in order to effectiveness improvement.

Further, we presented in details in this chapter, the similarity measure for com-
paring sketches in the proposed compressed-domain and pixel domain index, likewise,
how to build the index and compare images with the sketch. Inverted lists of image
IDs are employed to build the dataset index and this strategy improves the efficiency
of our method.

Although Sketch-Finder also uses the pixel domain, it is still more efficient than
Mind-Finder by two reasons. First, the most computationally expensive comparison
on the pixel domain of Mind-Finder is changed by our faster comparison on the com-
pressed domain, and second, the other pixel domain verification performed in both
approaches is not expensive as the first performed by Mind-Finder. Also, only the
compressed-domain retrieval presents an effectiveness quite good and near to Mind-
Finder effectiveness.We can always allow the use of this technique when the query time
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answer is imperative, like in the practical application that we present in Chapter 7.
In next chapter, we present three datasets used in our experiments to measure

efficiency and effectiveness of our method and compare with other approaches. We
present the Paris dataset, a small collection of images mostly used to measure effec-
tiveness; a big dataset, obtained from ImageNet, mostly used to measure efficiency;
and a third dataset, Flickr15K, is used to compare our approach to several others.



Chapter 5

Experimental Setup and Image
Dataset Analysis

In this chapter, we describe three image datasets used in our experiments. The first
dataset, named Paris dataset1, is a collection of more than six thousand images.
This is a relatively small dataset used to set the parameters of our approach. The huge
volume of experiments to find the right parameters requires a small dataset because
each evaluation, even on a small set of images, demands lots of CPU time to index
and perform all the queries. The second dataset, with more than 535 thousand images
issued from ImageNet2 is used to evaluate both, effectiveness and efficiency. This big
dataset is important to evaluate the behavior of our approach with big data, what is
also one of the goals of the present dissertation. A third dataset with 15 thousand
images named Flickr15K is used in our experiments to compare our approach with
others found in the literature.

Additionally, in this chapter we describe the methodology used to evaluate our
approach, as well as, the sketches, the ground-truths, and the metrics used in our
experiments.

5.1 Image Datasets

The Paris Dataset is a homogeneous collection of 6,412 images collected by Visual
Geometry Group (VGG) on Flickr. The dataset is grouped by 11 particular famous
landmarks of Paris (La Defense, Tour Eiffel, Hotel des Invalides, Musée du Louvre,

1Visual Geometry Group – http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/index.
html

2ImageNet – http://www.imagenet.org/
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Moulin Rouge, Musée d’Orsay, Notre Dame, Panthéon, Centre Pompidou, Sacré Cœur
and Arc de Triomphe). Also, there is one general category for all kinds of images from
Paris. Some image examples of the Paris dataset are presented in Figure 5.1.

Figure 5.1. Image examples from Paris dataset. From left to right: La Defense,
Tour Eiffel, Hotel des Invalides, Musée du Louvre, Moulin Rouge, Musée d’Orsay,
Notre Dame, Panthéon, Centre Pompidou, Sacré Cœur and Arc de Triomphe.

The Building and Vehicle ImageNet Dataset is a subset of ImageNet2011
fall release. The ImageNet2011 fall release is a dataset with more than 14 million
images organized according to the WordNet [Miller, 1995] hierarchy, where each node
of the hierarchy is depicted by hundred and thousands of images. Inside this hierarchy,
with more than 21 thousand categories, two main nodes and all their subcategories
were selected: Building Edifice with code node n02913152 and Vehicle with code
node n04524313. These two categories sum a total of more than 535,000 images. Some
images of this subset are shown in Figure 5.2. From this point up, we just refer as
ImageNet, the subset of 535 thousand images collected from ImageNet2011 fall release,
as described in this paragraph.

A third dataset, Flickr15K, from Hu and Collomosse [2013], was used to compare
our approach with the one using the Gradient-Field HOG descriptor and the other
descriptors for BoVW, all presented in Hu and Collomosse [2013]. Flickr15K is a
dataset with 14,660 images issued from Flickr. Hu and Collomosse [2013] also present
a set of 330 sketches partitioned into 33 categories that we used in our queries. The
categories of the Flickr15K dataset contain shapes, e.g., hart, etc; landmarks, e.g.,
Eiffel Tower, Big Ben, etc and objects, e.g., bike, airplane and etc.

It is important to note that the ground-truths we employed for these datasets were
not designed specifically for SBIR, but rather corresponds to a higher semantic level.
The images inside each class may have the same object at different viewpoint, shape,
rotation, scale and/or position. It follows that the performance measure we obtained
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Figure 5.2. Image examples from ImageNet Subset. In this figure, each image
represents one of the following classes: airplane, ambulance, automobile, dump-
cart, governmental building, helicopter, house, motorcycle, oast-house, opera
house, rotunda, scooter, serving-cart, ship and velocipede cart.

with these ground-truths are, naturally, lower than should be expected on a ground-
truth specifically designed for SBIR. There are, however, many images showing very
similar items from similar viewpoints and having similar positions, that are relevant
for the evaluation of SBIR. Furthermore, since our approach and the method in [Cao
et al., 2011] make similar assumptions regarding the queries and used the very same
ground-truths and evaluation methods, we believe the comparison is fair on these
ground-truths.

5.2 Dataset Analysis

To better know and understand the image datasets, we performed a statistical analysis
of contours on the Paris and ImageNet datasets. The analysis estimates the distribution
of the edgels (x, y, θ) in six orientations, as well as, the density of edges (x, y) in rows
and columns.

5.2.1 Paris Dataset Analysis

The contours of the Paris dataset are analyzed in three histograms: one histogram for
the edgel distribution, which represents density of the contours in six quantized orien-
tations, and two other histograms for edge analysis respectively on rows and columns.
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Figure 5.3 presents the histogram of probability for each one of the six orientations.
The fist orientation is the horizontal and the others follow anticlockwise orientation.
This distribution used the contours of the dataset obtained from the UCM algorithm
[Arbelaez et al., 2011], using images with resolution of 256 × 256 pixels.
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Figure 5.3. Paris dataset edgel orientation histogram. Horizontal (−15○ ∼ 15○)
and vertical (75○ ∼ 105○) contours are more dense, probably because the dataset
has several buildings where these orientations are more common.

As shown in Figure 5.3, the vertical orientation (75○ ∼ 105○) is the most dense,
with more than 35% of the edgels. We believe that the Paris buildings, full of horizontal
and vertical lines, contributed to this concentration. Further, the high number of Eiffel
Tower images contributed to the vertical lines dominance.

With the histogram presented in Figure 5.3 it is not possible to visualize the
spatial distribution of the edgels. Additionally, the spatial distribution of the edgels in
six orientations can be analyzed in Figure 5.4. As presented, some areas are more dense
than others, where the more black the region, the more dense is the area in edges, and
vice-versa. For example, in Figures 5.4 (c) and (e), some dense regions in the middle
are self-asymmetrical but symmetrical to one each other between (c) and (e).

The histogram distribution of edges in rows for the Paris dataset is shown in
Figure 5.5. As presented in this figure, the bottom is more dense in edges rather
than the top in most part of images. We believe this occurred influenced by outdoor
images with sky and clouds. These images present less contours on the top rather than
bottom, full of buildings, cars and people. Figure 5.4 (g) also shows that top left and
right regions of the images are less dense on edges in several images of the dataset. This
density estimation was obtained by summing all the edges in each row of the dataset
divided by the total number of edges.

The histogram distribution of edges in columns for the Paris dataset is shown
in Figure 5.6. The edge distribution in columns is more homogeneous than in rows,
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(a) Paris edgels / -15o,...,15o (b) Paris edgels / 15o,...,45o (c) Paris edgels / 45o,...,75o

(d) Paris edgels / 75o,...,105o (e) Paris edgels / 105o,...,135o (f) Paris edgels / 135o,...,165o

(g) Paris / all edges

Figure 5.4. Paris dataset spatial edgel distribution in six orientations. In this
figure, the average spatial distribution of edgels, from all images of the Paris
dataset. Each image from (a) to (f) presents the density in one of the six quantized
orientation. It is also presented in (g), the average of spatial edges distribution of
all images, without considering orientation.

with a little concentration in the middle of the images, and few edges on the borders.
The occurrence was obtained by summing all the edges in each column of the dataset
divided by the total number of edges.

As presented in Figure 5.3, vertical and horizontal lines are the two most dense ori-
ented edgels. We believe the reason is the presence of buildings and other architectural
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Figure 5.5. Paris dataset row histogram of edges. This distribution shows that
the bottom of the images in this dataset tends to be more dense due to the
presence of buildings, cars and people rather than top of images, frequently full
of sky and clouds.
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Figure 5.6. Paris dataset column histogram of edges. The edges are more
concentrated in the middle of the images of this dataset.

landmarks of Paris, specially Notre Dame, Centre Pompidou and Arc de Triomphe. We
know that these landmarks are mostly composed by vertical and horizontal lines. Once
this dataset is not heterogeneous, some concentration may occur. Another reason for
edges concentration in the middle of images, is that, photographers tend to centralize
the object of interest. Row and column histograms (Figures 5.5 and 5.6) show that
these image borders (top; bottom; right; and left) are less dense than central area.

5.2.2 ImageNet Dataset Analysis

As for Paris dataset, the contours of the ImageNet dataset are analyzed in three his-
tograms: one histogram for edgel distribution, which represents the density of the
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contours in six quantized orientations, and two other histograms for edges analysis
respectively in rows and columns. Figure 5.7 presents the histogram of probability for
each orientation. The fist orientation is the horizontal, the forth is vertical and the
others are intermediate orientations. This distribution used the contours of ImageNet
dataset obtained from the UCM algorithm [Arbelaez et al., 2011], using images with
resolution of 256 × 256 pixels.
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Figure 5.7. ImageNet dataset edgel orientation histogram. Horizontal (−15○ ∼
15○) and vertical (75○ ∼ 105○) contours are more dense, probably because the
dataset is mostly composed by buildings and vehicles, whose orientations are
more common.

In the histogram presented in Figure 5.7, it is not possible to visualize the spatial
distribution of the edgels. However, the spatial distribution of the edgels in the six
orientations can be analyzed in Figure 5.8. As shown in this figure, some areas are
more dense than others, where the more black the region, the more dense is the area
in edges, and vice-versa. For example, in Figures 5.8 (a) the central area is dense in
the middle for horizontal contours, as well as, in (d) for vertical contours. The other
orientations present a homogeneous distribution with few concentration in some areas.
In the same figure, in (g) we also present the density distribution of edges without
considering orientation. In this figure, the center is denser rather than the borders.
All the images are averaged contours obtained from all images of the dataset (535
thousand).

The histogram distribution of edges in rows for the ImageNet dataset is shown in
Figure 5.9. This histogram presents a Gaussian shape and shows that on average, the
middle of the image is the most dense part in edges inside, considering rows. Different
of the row distribution in Paris dataset, this distribution is more symmetric, i.e., the
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(a) ImageNet edgels / -15o,...,15o (b) ImageNet edgels / 15o,...,45o (c) ImageNet edgels / 45o,...,75o

(d) ImageNet edgels / 75o,...,105o (e) ImageNet edgels / 105o,...,135o (f) ImageNet edgels / 135o,...,165o

(g) ImageNet / all edges

Figure 5.8. ImageNet dataset spatial edgel distribution in six orientation. In this
figure, the average spatial distribution of edgels, from all images of the ImageNet
dataset. Each image from (a) to (f) presents the density in one of the six quantized
orientation. It is also presented in (g), the average of spatial edges distribution of
all images, without considering orientation.

density of edges in rows increases from top and bottom of the images to the center,
almost in symmetry. This dataset has more indoor images, what may explain this
behavior.

The histogram distribution of edges in columns for the ImageNet dataset is shown
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Figure 5.9. ImageNet dataset row histogram of edges. This distribution shows
that, on average, edges are more concentrated in the middle rows of the images.

in Figure 5.10. The edge distribution in columns is more homogeneous than rows
distribution, with a little concentration in the middle of the images and few edges
on top and bottom borders. The center of the image is also the most dense contour
region in columns, however the distribution is less concentrated than edges in rows.
This occurrence was obtained by summing all the edges on each column of the dataset
divided by the total number of edges.
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Figure 5.10. ImageNet dataset column histogram of edges. The edges are more
dense in the middle of the images in this dataset, specially from the 100th to the
150th column, presenting in average, almost the same density.

As in the Paris dataset, the ImageNet orientations are more dense in horizontal
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and vertical lines, see Figure 5.7. The histogram distribution in the orientations maps is
quite similar to the Paris one. We believe it is because the subset of the ImageNet is not
homogeneous and the occurrence of buildings in this dataset contributes with a large
number of horizontal and vertical lines. Further, photographers tends to centralize the
object of interest in his photo, that explains the concentration of vertical and horizontal
contours in the middle of the images. In row and column histogram, we also perceived
that the images borders: top; bottom; right; and left, are less dense parts of the images
in edges of the ImageNet dataset.

5.2.3 Wedgel Distribution in the ImageNet Dataset

In this section, we present an evaluation on the probability of wavelet coefficient oc-
currence at spatial position (x, y) of the compressed domain. For this analysis, we
used the ImageNet dataset, with neighborhood edgel map of radius r = 20 pixels, Haar
wavelet transform, and 40 coefficients per neighborhood orientation map, i.e., 20 most
negative and 20 most positive coefficients of each orientated neighborhood map. In this
analysis, we consider the occurrence in all six quantized orientations, and with both
signs of the coefficient (positive and negative) for neighborhood edgel maps of 256×256

rows and columns. In this configuration, shown in Figure 5.11, 99.88% of the coeffi-
cients are concentrated in the first 64×64 rows and columns. Besides understanding the
index distribution of the dataset, the wedgels distribution analysis is also used in some
classical Information Retrieval rank functions like “term frequency inverse document
frequency” and BM25 that we evaluated in our approach as presented in Section 6.2.4.

Figure 5.11 presents the histogram of probability of coefficient occurrence in the
space of Haar wavelet transform. Although in our experiment this space is 256 × 256,
we present just the first 64 × 64 rows and columns, since it concerns almost 100% of
the coefficients. Therefore, this part of the histogram presents better scale for printing
and visualization. The most probables concurrency of coefficients is concentrated near
to coefficient position (0,0), i.e., the near the coefficient is to the coordinate (0,0),
the most probable it tends to exist. Further, these most significant coefficients are also
related to low scales components in the wavelet domain.

An other visualization of the histogram, in more details, is presented in Fig-
ure 5.12. This analysis, in a segment of the first 16 × 16 rows and columns, represents
91.78%, of the coefficients for the indexed ImageNet dataset.

Although the proposed wedgel dictionary maximum size is 256 × 256 × 2 × 6 =
786432, as described in Section 4.1.1, in practice, the real number of visual words is
much smaller due to the concentration of coefficients near to the coordinate (0,0).
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Figure 5.11. Histogram of coefficient occurrence in 64 × 64 rows and columns
wavelet domain space. In this probability analyses, we joined all six quantized
oriented neighborhood edgel maps, transformed into the wavelet domain, consid-
ering both signs of large coefficient magnitude, negative and positive at position
(x, y). In this area, 99.88% of the coefficients are present, from the complete
space of 256 × 256 rows and columns.

Informally, the farther is the coefficient from position (0,0), the less likely is to have a
wedgel word containing a inverted list of image IDs.

There is a relation between the radius r of the neighborhood edgel map and the
spatial distribution of coefficients. The grater is the radius, the more low frequency
coefficients of large magnitude are present in the wavelet domain, thereafter more low
frequency of large magnitude coefficients are present. Another relation is the radius
size and the number of non null, or non empty, inverted lists of image IDs in the dataset
index. Table 5.1 presents the relation between the radius size and the number of non
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Figure 5.12. Histogram of coefficient occurrence in 16 × 16 rows and columns
wavelet domain space. This figure is a segment of Figure 5.11 in the most probable
coefficients, that represents in this subarea, 91.78% of the coefficients from the
complete space of 256 × 256 rows and columns.

null inverted lists. This data was also obtained also from the ImageNet dataset. All the
indexing experiments presented are taken from ImageNet dataset with 40 coefficients
per orientation map, i.e., 20 most negative and 20 most positive coefficients. We
present the variation in the radius r size of the neighborhood edgels, before the wavelet
transform, affecting the Number of Inverted Lists (NIL). We also present in Table 5.1
the percentage of words used of the dictionary.
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Table 5.1. Number of Inverted Lists on the dataset index. In the first column,
we present the variation on the radius r size (given in pixels) of the neighborhood
edgel map. In the second, the Number of Inverted Lists (NIL), and in the third
column, used words, the percentage of Inverted Lists according to all possibilities
of the dictionary.

Radius r NIL Used words (%)

2 418783 53.25

5 149378 18.99

10 59808 7.60

15 43667 5.55

20 37102 4.72

25 31270 3.98

30 29905 3.80

5.3 Paris Sketch Dataset

Collecting sketches from different users is an important task to compose a set of hand
drawn images to evaluate the performance of SBIR approaches.

In the beginning of this work, the lack of sketch datasets motivated us to build
our own set. Once the VGG Paris dataset was not originally designed for sketch-
based image retrieval, it has no sketches for SBIR evaluation. In order to fill this gap,
we asked some voluntaries to draw some sketches representing the Paris landmarks.
The voluntaries were shortly introduced about the objectives of the work, the main
concept of SBIR, and what was the reason for producing those sketches. Aiming to
light the idea of what kind of sketch we were expecting to have, four sketch examples
were shown. For this task, voluntaries were instructed to draw sketches of 11 different
landmarks of the dataset. Ten users, some of them with more than one example per
landmark, outlined 132 sketches. The document instructing the voluntaries on how
to produce their sketches is presented in Attachment A of this dissertation. That
document instructed the voluntary to draw free hand line sketches, at any position,
scale and/or rotation that he/she had in mind. For inspiration, we gave, attached to the
drawn instructions, six example images for each Paris landmark at different rotation,
angle and scale (see Attachment A). The creation of these sketches for the Paris dataset
is one of the contributions of this dissertation work. Figures 5.13 and 5.14 present some
sketches, produced by the voluntaries, for the Paris dataset SBIR evaluation.

As show in Figures 5.13 and 5.14, some users are not very skillful in drawing.
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(a)

(b)

(c)

(d)

(e)

(f)

(h)

(g)

Figure 5.13. Real examples of Paris sketches: (a) La Defense; (b) Tour Eif-
fel ; (c) Hotel des Invalides; (d) Musée du Louvre; (e) Moulin Rouge; (f) Musée
d’Orsay; (g) Notre Dame and (h) Panthéon.
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(a)

(b)

(c)

Figure 5.14. Real examples of Paris sketches: (a) Centre Pompidou; (b) Sacré
Cœur and (c) Arc de Triomphe

Further, other users related some difficulty on using the mouse device to produce the
pictures. Actually, bad sketches, far from the reality, are one of the difficulties of the
query-by-sketch. As cited by [Bird et al., 1999], users blamed their own unreal sketches
when the results were not good.

5.4 Ground-Truth

To gauge and measure the perceptual similarity of the queries, a ground-truth in-
formation created from the user perception is necessary [Eitz et al., 2011]. For the
Paris dataset, a ground-truth mostly used for image classification is available in the
VGG group web page. To overcome this problem, we used the same ground-truth of
VGG for image classification of the Paris landmarks. For example, for the sketches of
Eiffel Tower, we used the same ground-truth of Eiffel Tower already existent for the
classification of this same landmark.

Using the VGG Paris dataset ground-truth, we constructed one general image
contour shape for each landmark category. This general image was constructed by
averaging the contours of each natural image contour of the ground-truth list for its
respective landmark. These averaged images give us a visual pattern shape of the Paris
landmarks revealing the homogeneity of each ground-truth category. The average of
each landmark uses the contours obtained by the Ultrametric Contour Map [Arbelaez
et al., 2011]. The images are shown in Figure 5.15. As we observe, some monuments
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present a general and well defined shape like, Tour Eiffel, Notre Dame, Centre Pompi-
dou and Arc de Triomphe. The Moulin Rouge landmark shape is more heterogeneous,
however it is expected due to the moving blades of the windmill, which generated
pictures with several views.

La Defense Tour Eiffel Hotel des Invalides Musée du Louvre

Moulin Rouge Musee d'Orsay Notre Dame Panthéon

Centre Pompidou Sacré Co Arc de Triomphe Generaleur

Figure 5.15. Average Ultrametric Contour Map (UCM) distribution by land-
mark category of the Paris dataset. These averaged contours used the Visual
Geometry Group (VGG) ground-truth.

5.4.1 Building the ImageNet Ground-Truth

As described in Section 5.1, we collected the subset of images from ImageNet. Aiming
to evaluate the SBIR approaches on this dataset, it makes necessary to build their
respective ground-truths.

For each one of the ten selected vehicle categories of the ImageNet subset (dump-
cart, automobile, scooter, serving-cart, velocipede, airplane, helicopter, ship, motorcycle
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and ambulance), and five building categories (governmental building, house, rotunda,
oast house and opera house) we built a ground-truth list containing the expected im-
ages.

One problem for building ground-truths is the subjective character of SBIR. It is
difficult to set a ranking dataset of assorted images in terms of visual similarity once
that different users may have different assumptions about the similarity evaluation of
images [Gupta and Jain, 1997]. In this case, we assumed some criteria for the ground-
truth construction.

Following the criteria of the Paris ground-truth, the ImageNet ground-truth con-
tains all the objects of each category, independently of their scale, rotation, position or
other visual information, like background and even other objects in the same correct
picture. It makes the ImageNet ground-truth more semantic rather than structural,
but this strategy was adopted in order to build more quickly the ground-truth. Further,
as the compared approaches use the same ground-truth for evaluation of effectiveness,
then, neither one neither other may have benefits, what makes this comparison fair.

The selection of the classes to build the ImageNet ground-truth followed the
criteria of simplicity that we expect from the object in terms of easy drawing its sketch
image, as well as, the homogeneity of the class and the simplicity of the background
of most images. Some object category appear in several imageNet nodes, usually with
the same position and visual similarity. These objects are repeated in several nodes
because of their semantic classification, although the object is still the same on its
general abstraction. On example is the airplane main class, that is present in several
sub classes with the following denominations: airbus, airliner, airplane, aircraft, fighter
aircraft and so on. Table 5.2 presents the categories and the selected images for the
ground-truth of each class.

For the ImageNet dataset, we also averaged one image of each object class based
on the image contours of the ground-truth image list. These images give us a visual
pattern shape of each object class revealing the homogeneity of each ground-truth
category. The averaged contour image of each landmark also uses the contours obtained
by the Ultrametric Contour Map [Arbelaez et al., 2011] and these images are shown in
Figure 5.16. As we observed, some object classes present a general homogeneous shape
like, dump cart, governmental building, motorcycle, opera house, rotunda, scooter, ship
and velocipede cart. The airplane, automobile, helicopter, house, oast house and serving
cart classes are more heterogeneous on their shapes due to the bigger number of images
in the class.

These ground-truths consider fifteen classes or subcategories of general Edifice
and Vehicle categories. Even as in the Paris dataset, the ImageNet ground-truth
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Table 5.2. ImageNet ground-truth. In this table we present the general class,
the ImageNet labels of the selected images of the ground-truth, the ImageNet
code nodes containing the image names, and the total of images belonging to the
class.

Class ImageNet Labels Code Nodes Images

Airplane

Airbus; airliner; airplane, plane; am-
phibious aircraft; biplane; bomber; dive
bomber; fighter aircraft; floatplane; fly-
ing boat; interceptor; jet plane; jet-
liner; jumbo jet; monoplane; multiengine
plane; narrow-body aircraft; propeller
plane; turbo-propeller plane; seaplane, hy-
droplane; single-propeller plane; bomber;
stealth fighter; twinjet; warplane, military
plane; widebody aircraft

n02686121; n02690373; n02691156;
n02704645; n02842573; n02867715;
n03215191; n03335030; n03365231;
n03373611; n03577672; n03595860;
n03596543; n03604311; n03783873;
n03798610; n03809312; n04012084;
n04012482; n04160586; n04222723;
n04308273; n04308397; n04503499;
n04552348; n04583620

23947

Ambulance Ambulance; funny wagon; n02701002; n03404012 1750

Automobile
Car, auto, automobile, motorcar; com-
pact car; motor vehicle, automotive vehi-
cle; roadster; sedan; shooting brake

n02958343; n03079136; n03791235;
n04097373; n04166281; n04201733 9235

Dump Cart Dumpcart n03255899 976

Gov. Building Capitol; chancellery; customshouse; diplo-
matic building; statehouse; town hall

n02956699; n03005033; n03152303;
n03203806; n04305210; n04461437 5845

Helicopter Helicopter, chopper, whirlybird, eggbeater;
shuttle helicopter; single-rotor helicopter n03512147; n04212467; n04223066 1940

House

Boarding house; cabin; chalet; country
house; dacha; log cabin; manse; safe
house; saltbox; shooting lodge, shooting
box; sod house, soddy, adobe house; sum-
mer house; tract house

n02857477; n02932400; n03002816;
n03118969; n03158186; n03180865;
n03322836; n03465605; n03544360;
n03685486; n03686924; n03718935;
n04125541; n04131368; n04202142;
n04255899; n04354026; n04465050

16098

Motorcycle Moped; motorcycle, bike; trail bike, dirt
bike, scrambler n03785016; n03790512; n04466871 3894

Oast House Oast house n03837698 826

Opera House Opera, opera house n03849814 1288

Rotunda Rotunda n04112654 1216

Scooter Scooter n04149374 485

Serving Cart Pastry cart; serving cart; tea cart, tea trol-
ley, tea wagon n03897634; n04176068; n04397027 2340

Ship

Carrack, carack; felucca; ketch; pirate
ship; privateer; rigger; sailing vessel,
sailing ship; school ship, training ship;
schooner; smack; square-rigger; windjam-
mer

n02968210; n03327133; n03612010;
n03947888; n04006067; n04091584;
n04128837; n04146862; n04147183;
n04242408; n04244847; n04291992;
n04587327

14220

Velocipede Cart Boneshaker; Velocipede n02869563; n04524716 921

constructed is semantically based, i.e., we consider the occurrence of the object, inde-
pendent of its position, scale and rotation.

For the queries, each category has five natural contours examples. Table 5.3
presents the query image names used on each class of the ImageNet used to evaluate
efficiency and effectiveness.
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Airplane Ambulance Automobile Dumpcart

Gov. Building Helicopter House Motorcycle

Oast House Opera House Scooter

Serving Cart GeneralShip

Rotunda

Velocipede Cart

Figure 5.16. Average Ultrametric Contour Map (UCM) distribution by object
class of the ImageNet ground-truth. In this figure, some object classes present a
general homogeneous shape like, dump cart, governmental building, motorcycle,
Opera House, rotunda, scooter, ship and velocipede cart. By the other hand, the
classes airplane, automobile, helicopter, house, oast house and serving cart present
a more heterogeneous contours shape. These heterogeneous classes are similar to
the average of contours of all data set presented in the general averaged image on
the bottom right of this figure.
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Table 5.3. List of image queries used to evaluate efficiency and effectiveness on
the ImageNet dataset. Each class has five image queries, column one presents the
class and column two presents the image codes on ImageNet dataset.

Class Images

Airplane n02686121_{96; 256;} n03335030_11844; n03604311_7934; n02686121_684

Ambulance n02701002_{1; 62; 171; 1499;} n03404012_4858

Automobile
n02958343_12; n03079136_1578; n03791235_4765; n04097373_23222;
n04166281_8071

Dump Cart n03255899_{6; 32; 3532; 3830; 3895}

Gov. Building
n02956699_62; n03005033_7819; n03093427_10687; n03152303_964;
n04461437_3102

Helicopter n04223066_{1051; 200;} n04212467_{2323; 119;} n03512147_16265

House
n02857477_18559; n02932400_8639; n03118969_10873; n03002816_2066;
n03180865_13259

Motorcycle n04466871_{24318; 15046; 12916;} n03790512_{20390; 1400}

Oast House n03837698_{1200; 1793; 2336; 3791; 4948}

Opera House n03849814_{2682; 2165; 4169; 5404; 9342}

Rotunda n04112654_{203; 923; 1600; 5213; 11710}

Scooter n04149374_{4; 74; 1118; 1762; 3673}

Serving Cart n03897634_{33; 1203; 1541;} n04176068_427; n04397027_9071

Ship
n02793199_4738; n02901620_2917; n03045228_3887; n03186285_7575;
n03612010_2784

Velocipede Cart n02869563_{126; 1575; 2900; 3709;} n04524716_1727

5.5 Retrieval Performance Evaluation

In this section, we address the topic related to retrieval performance evaluation of CBIR
and SBIR systems. The evaluation performance can be measured from two different
perspectives: efficiency and effectiveness.

The efficiency is related to computational and memory costs, i.e., the amount
used of Central Process Unit (CPU), memory to keep the index and other metadada,
and disk I/O, measured in bytes, to complete an image query. The resource allocation
reflects on the query speed of retrieval. The meaning of speed is the time taken to
perform a query. The faster the query is completed, the better the system is in terms
of efficiency. The efficiency is also measured in memory and I/O reading, both in
bytes. The less memory and I/O operations, the more efficient the system is. In our
approach this relation of memory cost and CPU is direct because the less memory used
to hold the dataset index, the less information the system has to process to complete
a sketch query. Computational efficiency can be measured in time, CPU operations or
algorithm complexity. Memory and I/O can be measured in bytes.

The effectiveness is related to the correctness or accuracy of the retrieved infor-
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mation, in our case, the right classification of the desired images. The criteria employed
to evaluate effectiveness of the image retrieval task must consider the number of correct
images retrieved, and how well those images are classified. A good system must return
not only the expected images, but also, in the first places in the classification order or
rank.

Among several evaluation performance measures reviewed in [Müller et al., 2000;
Del Bimbo, 1999] we detach and use in this dissertation, the classical Precision and
Recall, inherited from Information Retrieval.

The precision measures the ability of the system to retrieve positive images rela-
tive to the number of retrieved images. The precision is presented in Equation 5.1.

Precision = I ∩R

R
(5.1)

By the other hand, recall measures the ability of the system to retrieve positive
images relative to the total number of positives in the corpus. The recall is presented
in Equation 5.2.

Recall = I ∩R

I
(5.2)

where I represents the set of relevant images, and R represents the set of retrieved
images.

With precision and recall measures, we can obtain the precision×recall curve
which is represented by a graph [Davis and Goadrich, 2006].

An other important measure based on precision×recall curve is the Average Pre-
cision (AP) and Mean Average Precision [Philbin et al., 2008]. The Average Precision
is computed as the area under the precision-recall curve, and the bigger is the area,
the better is the precision of the evaluated method. An ideal precision×recall curve has
precision equal to 1, over all recall levels, which corresponds to an Average Precision
of 1.

The Mean Average Precision is the mean of some set of AP computed respectively
for some set of queries. This measure useful to summarize the precision×recall in a
single value, helping the presentation and comparison of approaches. While the AP
summarizes the precision×recall curve of one single query in a single value, the MAP
summarizes the effectiveness of several queries.
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5.6 Conclusion

This chapter introduced three datasets used in our experiments, the Paris dataset used
for effectiveness evaluation and parametrization of our approach, the ImageNet dataset
used to evaluate efficiency, and the Flickr15K used to evaluate the effectiveness and
compare our approach with several others. For the Paris dataset, we also presented
how we collected a set of sketches for the evaluation of our method, and for the Paris
and ImageNet dataset, we presented a detailed description of how the ground-truths
for effectiveness evaluation were built.

This chapter also presented an analysis of the Paris and ImageNet dataset ac-
cording to their statistical low level features used to index them, as well as, presented
some statistical analysis of the indexes. This analysis was important to guide the
development of the approach and evaluate the homogeneity of the dataset and its
ground-truths. Although the analysis of the two datasets presents some differences, we
observed that in both, the distribution of contours are similar. For example, in both,
the vertical and horizontal contours are predominant, as well as, they are more dense
on edges in the middle of the images.

Finally, in the end of this chapter, we presented the concepts of precision and
recall, as well as, average precision and mean average precision and how to estimate
them. These measures are important on the evaluation of our approach experiments
shown in next chapter.
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Experimental Evaluation

In this chapter, we present the experiments performed with our approach. First, we
employ a relatively small image dataset to make the experiments and select the appro-
priate parameters for the content representation and for the similarity measure between
the sketches and indexed images of the dataset. In our experiments, we compare both,
effectiveness and efficiency of our proposal with Mind-Finder [Cao et al., 2011], on a
dataset with more than 535K images issued from ImageNet. We use our own imple-
mentation of Mind-Finder, once that such code was not available. Our Mind-Finder
implementation, as well as the Sketch-Finder is coded in C++ and uses the OpenCV1

library [Bradski and Kaehler, 2008; Dawson-Howe, 2014].

We also present an evaluation of the impact of each parameter of our approach
using the 2k factorial analysis model. This analysis can show us the most important
parameters to set, aiming to achieve the best optimization. For the optimization of
the approach with parameters selection, we present a description of an evolutionary
approach. This evolutionary algorithm automatically performed more than 5,000 in-
dexing experiments and more than 550,000 queries on the Paris dataset.

Finally, we present an effectiveness comparison of our approach and several other
methods based on Bag of Word using the Flickr15K dataset.

6.1 Experiments on the Paris Dataset

The experiments with the Paris dataset used Sketch-Finder 1.0, i.e., the similarity
measure used is the one presented in Equation 4.2, where number of coefficients to
represent the neighborhood edgel map is always constant. The experiments were per-

1OpenCV – http://http://opencv.org/

81

http://http://opencv.org/


82 Chapter 6. Experimental Evaluation

formed with contours extracted from natural images (natural contours), as well as, real
sketches drawn by several users, as described in Section 5.3.

The experiments on the Paris dataset were mostly employed to evaluate the
similarity measure and improve the techniques that should be used in our method
or discarded. The Paris dataset was also used to evaluate the importance of each
parameter with the 2k factorial analysis model, and to evaluate the effectiveness of our
approach. The method was evaluated with real sketches for the Paris dataset presented
in Section 5.3.

6.1.1 Evaluation of the method techniques

In order to develop a robust and efficient approach, several implementations and tec-
niques were evaluated until becoming the final version of our sketch-based image re-
trieval method. In this section, we describe the most important evaluations done on
Sketch-Finder 1.0.

Some parameters have to be well chosen to have a good precision×recall curve
on Sketch-Finder 1.0. Aiming to achieve this goal, we evaluated: (i) the neighbor-
hood edgel map radius size r; (ii) the number of wedgels, i.e., the number of most
significant coefficients to encode the image contours; (iii) the viability of combining
more than one version of neighborhood edgel map; and (iv) the impact evaluation for
the use of different weighting functions. In this section, we show the results of these
comparisons using the Paris dataset. For these experiments, we use our Paris sketch
dataset described in Section 5.3 that contains 132 sketches, from which, we selected
110 samples.

In the following experiments, we consider the best rank precision. In this case, the
first 20 classified images are used as a parameter for measuring the quality of queries.
The evaluation takes into consideration the first 5 positions P5, the first 10 positions
P10, and so on, until the 20th position P20. The reason of choosing the z first positions
for the evaluation of the parametrization is that we consider the best method must
bring the best precision in the first z positions. Further, this is the measure used in
some works similar to ours, like the work presented in [Sun et al., 2013].

The experimental setup of the following experiments, on the Paris dataset, is
given by the variables presented on Section 4.1.2 for the similarity measure of Sketch-
Finder 1.0. Where, NG represents the number of neighborhood edgel map {1,2 or 3}
respectively with radius r1, r2, r3, given in pixels; NΘ the number orientations (always
six); α the weighting function; UCMt the threshold for the dataset image contours in
the interval [0, ...,1]; and Nw the number of coefficients to encode each natural image
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Table 6.1. Experiments with a single neighborhood edgel map ranging its radius
in pixels. Each column represents the radius size ranging from 2 to 45 pixels, and
each line presents the average precision in percentage until the image ranking
position Pz.

Pos 2 5 10 15 20 25 30 35 40 45

P5 64 68 69 70 70 71 72 71 68 66

P10 44 50 55 55 57 58 57 54 55 56

P15 36 42 49 48 51 51 51 48 49 48

P20 32 38 44 44 47 45 46 45 44 44

contour.

Evaluation of Neighborhood Edgel Map Radius Size

For single neighborhood edgel map, we experimented different radius sizes to find the
best configuration. Some query sketches present better precision with smaller radius,
while other queries work better with larger ones. This experiment used the following
setup: NG = 1, NΘ = 6, α = 0, UCMt = 0.27 and Nw = 120. We varied r1 between 2 and
45 pixels. Table 6.1 shows experimental results in average precision.

This experiment demonstrates that in average, the best neighborhood radius size
lies around 20 and 30 pixels. The precision decreases for radius outside this range.

Varying the number of Wedgels

This experiment aims to evaluate the ideal number of large magnitude coefficients to
represent each neighborhood edgel map in the wavelet domain. The number of co-
efficients directly impacts on the level of detail in the compressed representation of
the neighborhood edgel map. In lossy image compression techniques, like JPEG2000
[Christopoulos et al., 2000], it is possible to choose the size of the image file accepting
a lower quality. In JPEG2000, the image compression and its quality is basically deter-
mined by the number of large magnitude wavelet coefficients selected. In a similar way,
the representation of the neighborhood edgel map approximation is determined by the
number of wedgels, which is also based on large magnitude wavelet coefficient. When
only a few number of coefficients are used, the contour signature does not represent the
image edges accurately, by the other hand, using a significant number, can make the
index too large and maybe redundant. To discover the best number of coefficients, we
experimented a variation between 120 and 360 elements per contour signature, i.e., each
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Table 6.2. Experiments ranging the number of wavelet coefficients per image.
Each column represents the number of coefficients per image ranging from 120
to 360. Each neighborhood edgel map of the image contour has 1/6 of the edgel.
Half part for positive and half for negative coefficients. In this table, each line
presents the average precision in percentage until the image ranking position Pz.

Pos 120 144 168 192 216 240 264 288 312 336 360

P5 74 70 72 70 72 70 71 72 71 71 71

P10 56 56 57 57 57 57 58 56 57 57 57

P15 48 48 49 50 50 51 50 49 51 49 49

P20 44 44 44 46 44 47 45 45 45 45 45

oriented neighborhood edgel map is represented by 1/6 of the coefficients, where half
part are negative and half positive. For example, for 120 coefficients, each neighbor-
hood edgel map has 10 positive quantized coefficients and 10 negative ones. Table 6.2
shows the best precision results using the same best rank evaluation of Table 6.1. This
experiment used the following setup: NG = 1, r1 = 30, NΘ = 6, UCMt = 0.27 and α = 0.

Although using more large magnitude coefficients increases the precision on the
first 20 ranking positions, the differences are not very significant, and in the same
queries, the use of more than 264 coefficients per images even decreases the precision.
Further, the variation impact on the number of large magnitude wavelet coefficients is
not very significant, as shown in the 2k factorial analysis, presented in Section 6.2.1.
In this experiment, the best number of coefficients lies between 240 and 264, although
only 120 presents the best configuration for the first five images.

Using Simultaneous Versions of Neighborhood Edgel Map

As shown in the experiments evaluating the radius size for the neighborhood edgel
map (see Table 6.1), the best precision was obtained with radius size between 20 and
30 pixels (r = [20, ...,30]), in average of the 110 queries. However, we observed that
some specific queries worked better with a smaller radius while other with bigger sizes.
This observation raised the supposition that combination of more than one version of
neighborhood edgel map, with different radius size could improve the precision of the
approach.

In this way, we built experiments combining two and three neighborhood edgel
maps with r = [10, ...,45] pixels, and the results are presented in Table 6.3. This
experiment used 120 coefficients per radius size, i.e., 240 coefficients for two radius
per indexed image, and 360 using three radius. The other parameters are: NG = 2 or
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Table 6.3. Experiments with multiple neighborhood edgel maps. The numbers
of r in columns represent the radius size of each neighborhood edgel map. In
this table, each line presents the average precision in percentage until the image
ranking position Pz.

Pos r10,20 r10,30 r10,40 r15,30 r20,25,30 r10,20,30 r10,25,40 r15,30,45

P5 71 72 75 74 74 76 79 74

P10 58 59 61 60 58 58 62 61

P15 51 52 53 53 49 53 54 53

P20 46 47 49 48 44 49 49 48

3, NΘ = 6, α = 0, and UCMt = 0.27. In Table 6.3, the first row presents the sizes of
r for each neighborhood edgel map and, each line, presents the average precision in
percentage until the image ranking position Pz.

Comparing the results of a single neighborhood edgel map (shown in Table 6.1)
with these experiments, we observed that using multiple neighborhood edgel map ver-
sions improves the precision of the method. The most important conclusion is not the
exact size of the radius for each neighborhood edgel map, but, the observation that
using two radius is better than one and, worst than three, for the precision of the
method.

Experimenting the Best Weight function for the Similarity Measure

The initial idea of Sketch-Finder was to use the coefficients weights inherited from the
work of Jacobs et al. [1995] that are given by bin function presented in Equation 3.5.
This function is based on the coefficient position and the weights possibly returned by
bin function are shown in Table 3.2. Although this was a good start, even better than
considering the weight always a constant, one for example, some results were not good,
specially when some contour orientation was very dense in edgels. This observation
leaded us to associate the edgels density to the weight of the coefficient, once that in
Sketch-Finder 1.0 the number of coefficients that represent each edgel map is constant
and do not depends on the edgels density.

This experiment evaluates both weights and in a linear interpolation among them.
The interpolation is controlled by α ranges from 0, when we consider exclusively the
weight associated to edgels density (X ), and 1, when consider only bin function in
Equation 4.2. Intermediate levels among the weights are evaluated in the interval
[0,...,1]. This experiment used the following setup: NG = 1, r1 = 30, NΘ = 6, UCMt =
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Table 6.4. Experimenting the best weight for the similarity measure ranging α.
Each column represents the α value ranging from 0 to 1, and each line presents
the average precision in percentage until the image ranking position Pz.

Pos α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

P5 72 68 68 67 66 66

P10 57 53 52 51 50 50

P15 51 48 46 45 45 45

P20 46 43 42 42 41 41

0.27 and Nw = 120.
This experiment shows clearly that the weights based on the density of edgels

on each quantized oriented edgel map presents a better precision rather than bin func-
tion, based on the coefficient position. It means that bin function is not important
in our approach and can be eliminated in Equation 4.2. Also, guided by the results
of this experiment, we developed a similarity measure for Sketch-Finder 2.0 (see Sec-
tion4.2) based on a variable number of coefficients for each neighborhood edgel map,
where the number of coefficients is related to the edgel density, thus simplifying the
measure without considering these weights. Details for this approach are presented in
Section 4.2.

Changing Wavelet by DCT

Aiming to experiment if the wavelet is the right choice to represent the images contours
in the compressed-domain, we also experimented Discrete-Cosine Transform (DCT) as
the compressed descriptor. The DCT is successfully used for JPEG compression format
[Ansari and Memon, 2000]. However, here, instead of computing the DCT on image
samples of size 8× 8 pixels, as it is performed in JPEG format, we applied the DCT to
the entire image with resolution of 256 × 256 pixels, as we did for wavelet analysis.

For this experiment, we followed the exact Sketch-Finder 1.0 same algorithm
with the similarity measure presented in Equation 4.2. The only difference was the
changing of wavelet coefficient by the DCT one. All the other assumptions made for
Sketch-Finder with wavelet transform are rigorously followed by the DCT approach,
like the use of the most significant positive and negative coefficients to encode the
contours..

In this experiment, we compared the wavelet version and the DCT using the
following setup for both: NG = 1, r1 = 20, NΘ = 6, UCMt = 0.16, α = 0 and Nw = 120.
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Table 6.5. Comparison of the compressed-domain feature (Wavelet vs. DCT).
The presented value corresponds to MAP.

Sketch-Finder 1.0

Wavelet 0.073

DCT 0.053

In this experiment, we abstracted the effectiveness of both approaches in a sin-
gle value, the Mean Average Precision (MAP). The results obtained are presented in
Table 6.5.

As shown, the results using the DCT presented a lower effectiveness comparing
to the wavelet one. We believe the reason for the DCT poor result is the absence of
spatial information on the DCT coefficient, rather than wavelet feature that preservers
it.

6.2 Evaluation on the ImageNet Subset

To evaluate the ImageNet subset, we used the ground-truth presented in Section 5.4.
Among the large number of object categories and subcategories, 15 were selected, on
which the objects were most homogeneous in terms of position, rotation and scale.
Within these 15 categories, 10 were selected for the vehicle subset (dump-cart, au-
tomobile, scooter, serving-cart, velocipede, airplane, helicopter, ship, motorcycle and
ambulance) and five for the building subset (governmental building, house, rotunda,
oast house and opera house). Like the evaluation of the Paris dataset, we considered
the occurrence of the object in the subset label, even knowing that the subset has the
same kind of object in different positions, scale and rotations.

Although the proposed SBIR approach is built for sketches, the difficulties of
having a large number of different sketches encouraged us to use also the extracted
contours from the images of the ImageNet dataset. Also, natural contours obviously
better describe the shape of objects, once that the user, usually, does not know very
well how to draw good sketches and lacks on perspective and scale drawing of objects.
The experiments with natural contours are also important because the user can draw a
sketch to make a first query, and then select one similar image, or true positive on the
result, and remake the query using this image. This new query can extract the natural
image contour and perform a new query with the very same method, improving the
results over the first one. Finally, ImageNet, as our biggest dataset, was mostly used
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Table 6.6. Best rank precision comparing Sketch-Finder 1.0 and Mind-Finder.
Each line presents the average precision in percentage until the image ranking
position Pz.

Sketch-Finder 1.0 Mind-Finder

P5 59 59

P10 48 49

P15 42 43

P20 40 41

to evaluate efficiency rather than effectiveness. Thus, the nature of the input, being a
sketch or a natural image contour, does not bring impact on efficiency evaluation.

The experiments with natural contours used five samples of each category that
we defined. As such, we have 15 categories times 5 images contours, that sum a total of
75 queries. The list of query images contours is presented in Table 5.3. For each query,
we evaluated the precision×recall curve, as well as, the average precision of all queries.
This experiment used the following setup for Sketch-Finder 1.0: NG = 3, r1 = 10, r2 = 25,
r3 = 40, NΘ = 6, α = 0, UCMt = 0.27 and Nw = 360. For Mind-Finder, the experimental
setup was: r1 = 45, NΘ = 6, and UCMt = 0.27.

To compare our approach with Mind-Finder [Cao et al., 2011], we considered
the first 20 results, like we did for the experiments in the Paris dataset. In these
experiments, nine, of fifteen categories, were best classified by our approach.

Table 6.6 shows the average precision in percentage until the image ranking po-
sition Pz of all 75 queries, for both approaches.

Figure 6.1 presents the average precision×recall curve for the first fifty ranked
images. For each one of the fifteen object categories, we averaged the five respective
queries. Also, blue line represents Mind-Finder while the red dashed line represents
Sketch-Finder 1.0.

Figure 6.2 presents the average precision×recall curve for the best fifty results
summarizing all 75 queries. The blue line represents Mind-Finder while the red dashed
line represents Sketch-Finder 1.0.

According to the results, we consider that both approaches, Sketch-Finder 1.0
and Mind-Finder, are equivalent in their effectiveness in a large dataset using natural
contours as input.
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Figure 6.1. Average Precision×Recall curves by object of Sketch-Finder 1.0 and
Mind-Finder approach on the ImageNet subset (535K). Each curve represents the
average Precision×Recall curve of five queries. The continuous blue line represents
the curve of Mind-Finder approach, while the red dashed line represents Sketch-
Finder 1.0. Both curves are representation of the first fifty ranked images.
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Figure 6.2. Average Precision×Recall curves from 75 queries of the Sketch-Finder
1.0 and Mind-Finder approach on the ImageNet subset (535K). The continuous
blue line represents the curve of Mind-Finder approach while the red dashed line
represents Sketch-Finder 1.0. Both curves are representation of the first fifty
ranked images.

Efficiency evaluation using the ImageNet dataset

In order compare Sketch-Finder 1.0, 2.0 and Mind-Finder, we evaluated the CPU query
time, in seconds, and I/O reading, in bytes. To evaluate the CPU time and I/O bytes
of the queries, we used the ImageNet dataset and the same 75 queries used to evaluate
the best rank precision. The experiments with Sketch-Finder 1.0, 2.0 and Mind-Finder
approaches were evaluated in a machine with 24 CPU cores and 72Gb of RAM memory,
without other user processes running at the same time. Also, both approaches used a
single thread for their queries, i.e., only one processor was used in these experiments.

In order to estimate the CPU cost of both approaches, we do not consider the time
for I/O reading of inverted files, i.e., the time was not computed before an I/O request
and immediately restarted after the file loading. This interruption of time during the
I/O emulates the system like if it had the data in main memory, however, the I/O cost
was not discarded and this measurement, in bytes, is presented in Table 6.8, with its
average value (AVG) and standard deviation (SD) for the 75 queries. The CPU cost
is presented in seconds in Table 6.7, also with its average and standard deviation for
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Table 6.7. Average CPU query time estimated in seconds for 75 queries using the
ImageNet dataset. This table presents the average time (CPU AVG), in seconds,
and the standard deviation (CPU SD).

Approach CPU AVG CPU SD

Sketch-Finder 1.0 6.56 1.13

Sketch-Finder 2.0 31.66 11.73

Mind-Finder 394.43 401.57

Table 6.8. Average I/O estimated in bytes for 75 queries using the ImageNet
dataset. This table presents the average (I/O AVG) data reading, in bytes, and
the standard deviation (I/O SD).

Approach I/O AVG I/O SD

Sketch-Finder 1.0 2.89×108 1.58×107

Sketch-Finder 2.0 1.52×109 4.08×108

Mind-Finder 2.96×109 2.79×108

75 queries.

All approaches were implemented using inverted files lists of images ID’s and the
indexes are stored on disk. Although the original implementation of Mind-Finder is
designed for main memory, we used disk implementation in order to have the same
criteria of evaluation. Further, on disk, it is possible to have a scalable approach in
the size of the dataset, that can grows. As shown in Table 6.7, the average CPU time
of the queries in Sketch-Finder 1.0 is more than 47 times faster. This occurs because
Sketch-Finder 1.0 has less data to process. Additionally, the standard deviation is
smaller in Sketch-Finder 1.0 due to the fixed number of inverted lists to process, what
does not occur in Sketch-Finder 20 and Mind-Finder. This is an advantage for the
Sketch-Finder 1.0 approach, once that we can have an expectation of the query time
without very much variation. As expected, the addition of OCM in the algorithm of
Sketch-Finder 2.0 increases the query time, however, it is still under Mind-Finder.

It is important to detach that query time of our Mind-Finder implementation
is higher than its original because we perform the second similarity comparison of
OCM to all images of the dataset, while the original implementation compares only
the 0.0025% best classified images in the first OCM similarity comparison. We decided
to compare all the images in order to have a precise evaluation of effectiveness.
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Table 6.9. Index size in bytes.

Approach Index size

Sketch-Finder 1.0 2.14×109

Sketch-Finder 2.0 2.05 × 1011

Mind-Finder 2.61 × 1010

The index size of Sketch-Finder is the biggest among the evaluated approaches
due to the storage of the preprocessed neighborhood edgel maps used in the OCM
similarity comparison, however, as advantage, this index makes possible a faster query
than the approach of Cao et al. [2011], see Table 6.7. The total index size of each
approach, measured in bytes, is given in Table 6.9.

6.2.1 Parameter Relevance Evaluation on Sketch-Finder 2.0

This section presents an evaluation of the parameters relevance of Sketch-Finder 2.0.
Discovering the most relevant parameters allows us tuning the best configuration of
Sketch-Finder 2.0 with focus to important variables. For this analysis, we also used
the Paris dataset with 110 sketches as in the experiments of Section 6.1.

Aiming to evaluate the relevance of the parameters of our approach, we applied
the 2k Factorial Design model presented in Jain [2008]. We have six parameters or
factors and, as in the 2k Factorial Design each factor of k has two alternative levels, the
higher and lower values of the factor, therefore, our analysis has 26, or 64 possibilities
configuration of parameter combinations.

The parameters and the effect of each one are described in the following:
a) neighborhood edgel radius for the first wavelet transform: this pa-

rameter corresponds to the first neighborhood edgel map Gr1θ radius size used before
the wavelet transform;

b) neighborhood edgel radius for the second wavelet transform: this
parameter corresponds to the second Gr2θ radius size used before the wavelet transform;

c) neighborhood edgel radius for the third wavelet transform: this pa-
rameter corresponds to the third Gr3θ radius size used before the wavelet transform;

d) neighborhood edgel radius for pixel matching (OCM): this parameter
corresponds to the radius r

OCM
used in the OCM. In our approach, 0 means to not use

the pixel matching, i.e., only measure the wavelet similarity (WQ,T );
e) wavelet coefficients threshold: this parameter corresponds to the wavelet

coefficient threshold ω that determines what coefficients are used to represent each
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Table 6.10. 2k Factorial Design Model. In this table, Factor is the parameter
of our approach that we measure the impact, L represents the lowest value of the
parameter, H the highest value and R its respective relevance in percentage.

Factor L H R

a) Edgel map 1 1 10 1.8%

b) Edgel map 2 10 25 18%

c) Edgel map 3 25 45 1.5%

d) Edgel map (OCM) 0 45 47.5%

e) Coefficient Threshold 3.0 8.0 3.8%

f) Contour Threshold 0.15 0.30 27.4%

neighborhood edgel map in the compressed-domain of wavelet and which coefficients
are discarded. The coefficient is selected if its absolute value is greater than ω.

f) threshold of the image contours: this parameter is used for thresholding
the UCM image for indexing.

Table 6.10 presents the relevance (R) of each factor in percentage, as well as, the
lowest (L) and the highest (H) values used to test each factor.

The two most important parameters in our set are the threshold of the image
contours and the radius size of the OCM similarity comparison, both summing almost
75% of impact in the precision. The variation of second neighborhood edge map radius
presents almost 18% of impact, while the variation of the second and the third radius
maps, and the variation of the wavelet threshold are almost insignificant.

The main difference between Sketch-Finder 2.0 over Sketch-Finder 1.0 is the addi-
tion of the Oriented Chamfer Matching for comparing sketch and image contours. The
effect of this parameter, presented by the 2k Factorial Design, indicates an important
improvement on the precision.

6.2.2 Parameter Tuning With Genetic Algorithm

The parameters described in Section 6.2.1 need to be well set for obtaining the best
performance of our approach. Genetic algorithms are robust search and optimization
techniques for finding the global optimum in a multimodal landscape. Therefore, we
present in this section, how the parameters of our approach were chosen using a genetic
evolution approach [Srinivas and Patnaik, 1994]. We chose genetic evolution mainly for
two reasons: first, genetic evolution is an efficient way to converge the parametrization



94 Chapter 6. Experimental Evaluation

to the global or to some local high mean average precision; and second, the algorithm
is relatively easy and quick to write comparing to other optimization approaches.

To set the parameters, due to the large number of experiments, we used a small
dataset, the Paris dataset with a ground-truth for the sketches that we collected. The
parameters and their intervals were chosen as described in Section 6.2.1. We started
the genetic algorithm with a population of one hundred random different configura-
tions, where each parameter had a random value between the lowest and highest limits
(L and H) presented in Table 6.10. On each “evolution” iteration, the best fitness so-
lution was preserved for the next iteration or “generation”. The other fitness solutions
above the average were preserved for crossover and mutation, while solution fitness
sub averaged were disrupted. Random best solutions in pairs were used to generate
two new solutions with crossover and mutation of parameters. For each hight fitness
pair, with a probability Pc of 90%, we applied a crossover into three of the six random
parameters, and with a probability Pm of 10% we applied a mutation into two random
parameters inside the limits. Table 6.10 presents the lowest and highest limits (L and
H) used in the mutation of the parameter.

To represent and evaluate each individual parameter configuration in a sin-
gle fitness value, we used the Mean Average Precision (MAP) obtained from the
precision×recall curve [Davis and Goadrich, 2006].

We conducted extensive experiments for achieving the best rank of the proposed
approach. More than 50 genetic generation iterations, each one with 100 individual
set of parameters were performed, what gave more than 5,000 experiments. Each
experiment built one index solution and performed on it, 110 queries by sketch, i.e., a
total of 550,000 queries.

6.2.3 Evaluation of Sketch Retrieval Effectiveness

The experiments on sketch retrieval used the best parameters obtained by the genetic
algorithm in average of 110 queries. For Sketch-Finder 2.0, this configuration is respec-
tively 9, 15, 28, 6.0, 44 and 0.16 for the parameters a, b, c, d, e and f, described
in Section 6.2.1. For Sketch-Finder 1.0, we used the same parameters in common with
Sketch-Finder 2.0. This configuration is respectively 9, 15, 28, 44 and 0.16 for the
parameters: a, b, c, e and f presented in Section 6.2.1.

Regarding to the evaluation of the Mind-Finder [Cao et al., 2011], we applied the
same parameters to the steps in common with Sketch-Finder 1.0/2.0, in other words,
image resolution of 256×256, same contour detection (UCM) and threshold = 0.16.
For the radius r we experimented several configurations, between 25 and 65 pixels,
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finding that r = 45 brings the best fitness on 110 queries of the Paris dataset, using
the same criteria for the fitness as in our approach. The selected parameters were used
as default for the Mind-Finder in the comparisons with Sketch-Finder 1.0/2.0. The
experiments were realized in a machine with CPU Intel Xeon X5670 with 2.93GHz and
72Gb of RAM memory. For the effectiveness evaluation, we considered the 50 first
ranked images. According to the results, Sketch-Finder 2.0 overcame Sketch-Finder
1.0 and Mind-Finder (MF) in terms of effectiveness as shown by the precision curve of
the 50 first ranked images presented in Figure 6.3.
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Figure 6.3. First 50 ranked images.

Figure 6.4 shows some queries for the Paris dataset using Sketch-Finder 2.0. The
first image on each line is the query image and the following images are the five first
results.

6.2.4 Evaluation of the Similarity Measure for Sketch-Finder

2.0

During the development of Sketch-Finder 2.0, we experimented several similarity mea-
sures, in this section we compare the similarity that we proposed in Equation 4.7 with
two classical models used for general information retrieval, the “term frequency inverse
document frequency” (tf-idf ) weighting [Salton and McGill, 1986; Sivic and Zisserman,
2003; Robertson, 2004] and Okapi BM25 [Robertson et al., 2004].

Term Frequency-Inverse Document Frequency

Term frequency - inverse term frequency is the product of two statistical measures.
Inside tf-idf, the “term frequency” (tf) part, captures the relevance of the word inside
a document d. In our case, the word is the wedgel while the document is obviously an
image.
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Figure 6.4. Sketch-Finder 2.0 query result examples on the Paris dataset - La
Defense; Tour Eiffel; Arc de Triomphe; and Moulin Rouge. It is shown in this
figure the first five results of each query sketch.

The idf part captures the informativeness of visual words. According to the
mathematical theory of communication [Shannon, 1948], the quantity of information
of a random variable is inversely proportional to its probability of occurrence. Thus,
visual words that appear in many different images are less informative than those that
appear rarely.

Given a set of visual words, A = {w1,w2, ...,wn}, the tf and idf are respectively
computed by Equations 6.1 and 6.2.

tf(wi) =
nid
nd

(6.1)

Where nid is the number of occurrences of a word i in the document d, and nd is
the total number of words in the document d. For boolean frequencies, this is our case,
tf(wi) = 1 if the word exists in a document d, and 0 otherwise. The idf is presented
on the following.
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idf(wi) = log
N

ni
(6.2)

Where ni is the number of occurrences of the word i in the whole dataset and N
is the number of documents in the whole dataset, or the number of images.

Finally, tf-idf is the product of the two terms, tf and idf, shown in Equation 6.3.

tfidf(wi) =
nid
nd

log
N

ni
(6.3)

Okapi BM25

In information retrieval, Okapi BM25 is a ranking function used by search engines to
rank text documents according to their relevance. Part of the BM25 weight is based in
the previous presented idf. Okapi BM25 is not a single function, but actually a family
of scoring function, with slightly different components and parameters. We present in
Equation 6.4, a BM25 function which is considered to be one of the most prominent.

BM25(wi) = idf(wi) ⋅
nid ⋅ (k1 + 1)

nid + k1 ⋅ (1 − b + b ⋅ ∣d∣
avgdl)

(6.4)

where nid is the number of word occurrences i in a document d, ∣ d ∣ is the number
of words in the document d, avgdl is the average number of words per documents, and
k1 and b are free parameters, by default, k1 ∈ [1.2,2.0] and b = 0.75.

Comparison of Ranking Functions

Once that in our approach, the number of word occurrences i in a document d (nid)
is always binary, we discard this information because every hit of wavelet coefficient is
also an occurrence of a word, what is not discriminating. Thus, we rewrote the BM25
as BM25A, as presented in Equation 6.5:

BM25A(wi) = idf(wi) ⋅
(k1 + 1)

k1 ⋅ (1 − b + b ⋅ ∣d∣
avgdl)

(6.5)

We compared our weighting function presented in Equation 4.7 with “term fre-
quency inverse document frequency” (tf-idf ) and Okapi BM25A weighting functions.
For this comparison, we followed the same parameter set of Sketch-Finder 2.0, chang-
ing only the weighting function. We used the Paris dataset with 110 sketch queries, as
in the experiments presented in Section 6.1.1. Sketch-Finder 2.0 was configured with
values 9, 15, 28, 6.0, 44 and 0.16, which are respectively the parameters a, b, c, d, e
and f, described in Section 6.2.1.
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Table 6.11. Weighting function comparison for Sketch-Finder 2.0.

Ranking MAP

Ours 0.103

tf-idf 0.080

BM25A 0.097

Table 6.12. Changing the variable b in BM25B ranging function.

b 0.0 0.2 0.4 0.6 0.8 1.0

MAP 0.085 0.093 0.099 0.102 0.104 0.104

In those experiments, (tf-idf ) and BM25A was used as weighting function for the
Hit function presented in Equation 4.6.

For the experiments with BM25A we used k1 = 1.0 and b = 0.75. Table 6.11
presents the comparison result of the three weighting functions. Ours, tf-idf and
BM25A. The results are presented in Mean Average Precision (MAP).

As shown in Table 6.11, the weighting function based on tf-idf presented a low
MAP while BM25A was almost as good as our proposed metric. This result suggested
a new experiments on BM25A, and our idea was to remove the idf from BM25A. Thus,
this new equation, named BM25B can be written as:

BM25B(wi) =
(k1 + 1)

k1 ⋅ (1 − b + b ⋅ ∣d∣
avgdl)

(6.6)

The removal of tf-idf improved the MAP from 0.097 to 0.103, a competitive value
to our weighting function.

In order to evaluate the variable b the Equation 6.6, we ranged it in the interval
[0, ...,1], while keeping k1 = 1. The results are presented in Table 6.12, also in MAP.

According to the results presented in Table 6.12, the best value for b is 1. For
b = 1 and k1 = 1, BM25B can be rewritten as:

BM25C(wi) =
2
∣d∣

avgdl

(6.7)

Once the dividend of Equation 6.7 is a constant 2, changing the constant to 1
does not change the weighting function. Thus the function can be rewritten as:
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Table 6.13. Comparison of several SBIR approaches using Flickr15K dataset.

Approach MAP

Sketch-Finder 2.0 0.0871

Mind-Finder 0.0851

GF-HOG 0.1222

HOG 0.1093

SIFT 0.0911

SSIM 0.0957

ShapeContext 0.0814

StructureTensor 0.0798

BM25C(wi) =
avgdl

∣ d ∣ (6.8)

According to the results presented in Table 6.12, the weighting function of Equa-
tion 6.8 can be used as an alternative to the one that we propose in Equation 4.7.
Equation 6.8 is more simple and computationally faster than Equation 4.7.

6.2.5 Comparison With Other SBIR Approaches

Aiming to compare our approach with others, based on the BoVW, we used the
Flickr15K dataset presented in [Hu and Collomosse, 2013]. The local descriptors for
the BoVW that we compared are: GF-HOG [Hu and Collomosse, 2013], HOG [Dalal
and Triggs, 2005], SIFT [Lowe, 2004], SIMM [Shechtman and Irani, 2007], ShapeCon-
text [Belongie et al., 2002] and StructureTensor [Eitz et al., 2009]. The experiments
used the same image dataset, sketches and methodology of [Hu and Collomosse, 2013].

Although these approaches are designed for SBIR variant to scale and position,
and moreover, they make use of the BoVW techniques, this comparison gives us an idea
of our approaches and other SBIR methods. The results of Mind-Finder, Sketch-Finder
2.0 and the local descriptors using the Flickr15K dataset are presented in Table 6.13.

It is important to detach that our approach is sensitive to affine transforms, which
is a desired characteristic when the user has chosen to query an image by sketch, exactly
because he/she wants not only the desired object that has in mind, but also, at similar
position and scale. Notwithstanding our approach presented a lower MAP than the
SSIM, HOG and GF-HOG, the ground-truths used are designed to approaches where
the image can vary its position, based on BoVW, what brought a negative impact to
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our method and Mind-Finder.

6.3 Conclusion

In this chapter, we evaluated the effectiveness of our approach with Mind-Finder and
several others. We also evaluated the efficiency of Sketch-Finder 2.0 and Mind-Finder,
showing that our approach is more efficient than Mind-Finder.

The experiments on the Paris dataset guided the development of the presented
approach improving its effectiveness. It was concluded that, even in the compressed
domain, the density of edgels on each orientation map plays an important role in the
weights of the similarity measure. Also, joining several indexes, built with different
neighborhood edgel radius, improves the effectiveness of our approach.

Our most simple implementation of Sketch-Finder is equivalent to Mind-Finder
in effectiveness with natural contours as input. This feature is important because this
kind of query can be performed after a query-by-sketch. In this proposed scenario, the
user selects one example image on the rank of the sketch query to use their contours
as input for a second query. Further, it is important to detach that our approach is
faster and feasible to run in large datasets, like the ImageNet that we experimented,
or even much bigger datasets.

The number of wedgels used to encode the contours of the dataset presents a small
impact on the effectiveness of our approach. This was observed by the experiments on
Sketch-Finder 1.0 (varying the number of wedgels) and by the 2k factorial analysis for
Sketch-Finder 2.0, which shows that variation on the number of wedgels impacts only
on 3.8% of the precision over all parameters, what corroborates this affirmation.

Further, the 2k factorial analysis on Sketch-Finder 2.0 shows that the verification
of pixel consistency on the pixel domain plays an important role on the effectiveness
improvement of our approach, followed in terms of impact, by the right selection of the
threshold for the natural contours of the image dataset.

In order to optimize Sketch-Finder 2.0, a large volume of experiments was per-
formed using a genetic algorithm to find the best parameter configuration. These
experiments ran during six months performing more than a half million queries in this
optimization process.

The experiments of Sketch-Finder 2.0 shows that our approach outperformed
Mind-Finder in effectiveness, and although Sketch-Finder 2.0 is less efficient than
Sketch-Finder 1.0, the new version is still more efficient than Mind-Finder. Also,
for sketch-based image retrieval, where affine transforms are considered, we believe
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that our approach is the state of the art, as far as we know. For sketch-based-image
retrieval without affine transforms, our approach presented quite good result among
several others.





Chapter 7

Application: A Mobile App for
SBIR

Mobile devices with touchscreen display are an ideal gadget to easily create sketches
that can be used in SBIR. The wide spread of mobile devices and the absence of SBIR
mobile application for Android motivated us to create a SBIR practical application us-
ing our SBIR approach for Android platform. As far as we know, there is no equivalent
application for Android.

Thus, in this dissertation, we also present an application that fills this gap. In
general lines, the application has an input interface where the user draws the desired
sketch and another where the user visualize the results.

7.1 Sketch-Finder Mobile Application

Sketch-finder mobile application is an end user tool for image query-by-sketch. This
application was implemented in Java for Android platform. The mobile application,
or just app, is simple to use and intuitive. The query screen presents a square white
canvas, where the user can draw the query sketch in black lines through the touch screen
display (Figure 7.1 (a)). Besides the drawing area, we also have three edit buttons:
undo, erase and draw strokes, respectively represented by icons, as well as, one button
to clear the sketch depiction area “Clear”, and to submit the query “Search”. Once
the user is satisfied with the drawn sketch, he/she clicks on search button to perform
the search, this is all the user needs to do. The query image is sent in png [Miano,
1999; Adler et al., 2003] because this format compresses the query without loss of
information. Further, this format reaches very good compression rates in this kind of
binary image, that usually does not have very much details.
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Figure 7.1 (b) presents the interface for result display. In this screen, the query
sketch, followed by the most relevant images are shown in a slide bar, ordered by
relevance in a queue. There is one area to display, in larger size, the selected thumbnail
image in the slide bar.

(a) (b)

Figure 7.1. Mobile Sketch-Finder Android application prototype. In (a) we
show the drawing interface with an area for sketch depiction and edit buttons
(undo, erase and draw strokes), represented by icons. The drawing interface has
also one button to clear the sketch depiction area “Clear”, and to submit the
query “Search”. In (b), we show the query result interface, containing the query
sketch, followed by the ten fist ranked images. There is also an area to display
the selected result image in larger size.

7.1.1 Sketch-Finder Query Server

Sketch-Finder server accomplishes three main tasks, it stores the image dataset, their
index, and hosts Sketch-Finder search engine. This engine stays waiting a connection
of some Sketch-Finder app client. Once some connection is closed, the server receives
the query sketch, preprocesses it, and performs the query mechanism. As result, the
server sends back to the app client the ten most relevant images, and a list with the
classification order of them. Preprocessing consists on two main steps: first, the binary
query image is inverted, once the Sketch-Finder works with images in black back ground
and white strokes; second, the strokes are thinned [Chatbri and Kameyama, 2012] to
be used in the orientation algorithm that requires thinned strokes. The preprocessing
steps are shown in Figure 7.2. The routines running in the server are detached inside
the blue dashed line box. The steps inside “Sketch-Finder Quering” box of Figure 7.2
encapsulate the steps of Figure 4.4 where the Sketch-Finder performs the query-by-
sketch.

In order to present a better efficiency and quickly send back the results for the
user, the OCM is not performed, i.e., the query is performed using Sketch-Finder 1.0,
where we just compare wavelet coefficients as presented in Equation 4.2.
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Figure 7.2. Sketch-Finder client/server querying workflow. From left to right,
the first box represents the sketch capture in the mobile device, which sends the
query sketch to the server using TCP/IP protocol. Inside the blue dashed line is
represented the remote server routines. They are: image inversion, image thinning
and Sketch-Finder querying steps. In the final, Sketch-Finder server delivers to
the Android client app the ten most relevant images.

The setup of Sketch-Finder is given by the variables presented on Section 4.1.2
for the similarity measure of Sketch-Finder 1.0. Where, NG represents the number
of neighborhood edgel map {1,2 or 3} respectively with radius r1, r2, r3, given in
pixels; NΘ the number orientations (always six); α the weighting function; UCMt the
threshold for the dataset image contours in the interval [0, ...,1]; and Nw the number
of coefficients to encode each natural image contour. Thus, we have: NG = 3, r1 = 9,
r2 = 15, r3 = 28, NΘ = 6, UCMt = 0.16, α = 0 and Nw = 120.

7.1.2 The Project Infrastructure

The infrastructure of the project is shown in Figure 7.3. Sketch-Finder mobile appli-
cation, either in a mobile phone or a tablet, connects to the server using an Internet
TCP/IP socket connection. The mobile device must be connected to the Internet,
either using 3G/4G connection, either WiFi network [Tanenbaum, 2002].

Figure 7.3 presents the infrastructure of Sketch-Finder mobile project. On the
left, mobile gadgets with Sketch-Finder app installed, on the middle, an abstraction
of the internet infrastructure used to connect the mobile devices and Sketch-Finder
server. Finally, on the right, the server, hosting the dataset, the index and the search
engine.

Figure 7.4 presents some query examples performed by the Sketch-Finder app on
the Flickr15k dataset.

7.2 Conclusion

The mobile application for SBIR is intuitive and easy to use. This application is useful
and can help users to find images of their interest. The touchscreen interface enables a
good creation of sketches, and the resources available to edit the sketch, although sim-
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Figure 7.3. Mobile Sketch-Finder Infrastructure. On the left, mobile gadgets
with Sketch-Finder application. On the middle, Internet connects Skecth-Finder
mobile application to Sketch-Finder search engine using a TPC/IP socket con-
nection. On the right, the server stores Sketch-Finder search engine, the image
dataset and its index.

Figure 7.4. Mobile Sketch-Finder query examples.

ple, are sufficient to draw sketches for SBIR. The main difficult in this implementation
was the communication protocol over TCP/IP using different languages. On the client
side, the protocol was written in Java while in the server side, written in C++.

The algorithm used on the server was Sketch-Finder 1.0 because this is the most
efficient approach. The query usually takes one second to complete, but, most part of
the waiting time is expended on the transmission of the resulting images, especially if
the user is using a mobile 2G, or even 3G, connection.
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Conclusion and Future Work

Building a practical sketch-based image search application is a challenging problem,
either in academic or industrial communities. In this dissertation, we developed and
systematically evaluated an approach for SBIR for large image dataset. The approach
is designed for line-based sketches, where the dataset image contours are coded in the
compressed-domain of wavelets and also in the pixel domain. The compressed-domain
index allows the comparison between the sketch and the dataset image contours using
just a few set of data, while the pixel domain is used to improve the precision by
applying a spatial pixel consistency verification with the Oriented Chamfer Matching
(OCM) algorithm. The OCM algorithm impact, reveled by the 2k Factorial Design
analysis (Section 6.2.1), showed that the improvement on effectiveness of our proposal
overcomes Mind-Finder [Cao et al., 2011].

The query of our approach is faster than the one presented in Cao et al. [2011]
because we use the compressed domain. Also, for the OCM, we store the neighborhood
edgel maps with precomputed radius. As a drawback, our approach has a bigger index
comparing to Mind-Finder, however, in a real time application, we can avoid this
strategy and compute the radius of the edgel maps only for the best ranked images
revealed by the wavelet similarity. Thus, improving efficiency and reducing memory,
while preserving effectiveness.

Another advantage of our approach is that we can control the size of the
compressed-domain index (CDI), just like we choose the size of an image controlling
its compression rate. The low impact on the number of wedgels used to build the CDI,
reveled by 2k Factorial Design analysis, enforces this affirmation. Further, the use of
OCM to improve effectiveness can be used or not, depending on the urgency of the
query time that the user desire. It can be an advantage to avoid the OCM comparison
when the server is performing several requests at the same time or even running other
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important processes. Thus, the OCM can be applied when the server load is low or
when the query effectiveness is priority. Although the computation of the OCM in-
creases the similarity measure cost of Sketch-Finder, even with this second step, our
approach is still faster and more efficient than Mind-Finder.

8.1 Future Work

As future work, we intend to use two different thresholds, one to encode the image
contours on the compressed-domain index and another for the OCM. If this is the case,
we believe that just the most significant contours obtained with a larger threshold can
be used to encode the contours in the CDI, while more contour details obtained with
a smaller threshold can be used on the OCM algorithm for effectiveness refinement.

Sketch-Finder app can be improved to make a second query using the natural
contours of some image selected by the user in the results of a previous query-by-
sketch. Sketch-Finder app can also be modified to receive a hashtag attached to the
query sketch, in order to bring semantic information and improve the results. An other
idea is to keep all the sketches drawn by the Sketch-Finder app users, aiming to build
a big sketch dataset associated to its hashtag, where this sketch dataset can fill the
gap of annotated sketches bases. Moreover, a sketch collection can be used to evaluate
SBIR systems, be applied to machine learning techniques aiming sketch classification
and recognition, among other applications.

Finally, we intend to crawl web images and build a big dataset. This big dataset
can be used on Sketch-Finder app, as well as, it can be used on the development of a
web SBIR engine, that is an other future work idea.
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Attachment A

Paris Sketch

The objective of this work is to retrieve similar images according to an input sketch.
In order to this, the user must draw this sketch image.

Figure A.1 presents an example of input image and its similar results. The image
in black background and white lines is the input image, while the following color images
are the similar ones. From left to right and up to bottom, Figure A.1 shows, in color,
the most similar to the less similar images, according to the sketch input image.

Figure A.1. Query example of the Eiffel Tower.

Instructions for drawing the sketch:

1. Use your favorite tool for drawing, it can be the windows paint for example.

2. Open the black image of the landmark you want to draw (zip file attached in your
e-mail). For example, for Eiffel Tower, use eiffel_XMW.bmp and so on. The list
of landmarks and 6 examples images for each one are shown in the next pages of
this document
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3. Draw the landmark in the black background with thin white lines, then save the
file in the same format and resolution.

4. Draw the landmark in the form, position and desired perspectives, there is no
restrictions. You can try to base your sketch in one of the six example images
of the landmarks or you can just create one image that represent the monument
without imitate any given example.

5. You can try to base your sketch in one of the six example images of the landmarks
or you can just create one image that represent the monument without imitate
any given example.

6. Try to not draw “blurry” lines.

7. The sketches does not need to be sophisticated, simple lines are welcome.

8. Clue: create the drawn in the zoom mode of the painting tool, so it is easier to
not draw blurry lines when using the free hand pencil.

9. In the final, please send the sketches to the e-mail: fragapimentel@gmail.com
You don’t have to draw all the 11 sketches, the sketches sent are welcome.

10. You don’t have to draw all the 11 sketches, the sketches sent are welcome.

Some examples of sketches are shown in Figure A.2:

Figure A.2. Examples of sketches

Thank you very much for your contribution!
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure A.3. Paris images examples - (a) La Defense, (b) Eiffel Tower, (c) Hotel
des Invalides, (d) Musée du Louvre, (e) Moulin Rouge, (f) Musée d’Orsay, (g)
Notre Dame, (h) Panthéon
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(i)

(j)

(k)

Figure A.4. Paris images examples - (i) Pompidou, (j) Sacré Cœur and (k) Arc
de Triomphe
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